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ABSTRACT.

The thesis is concerned largely with Gomory' s Method of Integer
Forms whereby an integer programming problem is solved by a combination
of linear programming operations and the addition of new constraints.

Chapter 1 describes the theory behind the method. It deals
with the techniques of linear programming when the use of floating
point and its associated rounding and truncation errors are avoided
and describes the way in which new constraints can be generated and
added during solution of the problem.

Chapter 2 deals with the author 's experiments in integer

programming. Parts 1 to 3 are concerned with the linear programming
method which was developed partly to deal with numerical problems
and partly to facilitate the choice of constraints. Part 4 deals with

experiments with different criteria for choosing constraints.

Chapter 3 is concerned with two algorithms. The first is
essentially the lexicographic method advocated by Haldi and Isaacson.
An independent approach has provided an insight into it which led to

the development of the second algorithm. In this the objective
function is replaced by approximations to it with smaller coefficients
in order to obtain an approximate solution more rapidly. A

restriction is then placed on the objective function and a search made
for a better solution.

Chapter 4 compares the two algorithms of Chapter 3 with those
of certain other authors. It is concluded that the systematic
method of choosing constraints used in the author s algorithms
enables them to be regarded as special forms firstly of a branch
and bound algorithm and secondly of a backtrack method. As a
corollary it is suggested that some of the techniques used in the
author 's algorithms to speed up solution could be applied to these
other methods.
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Chapter 1 : Background

Part 1 : The Simplex Method

The major part of this thesis is concerned with a method of
integer programming the basis of which was laid in a paper by
R.E. Gomory: An algorithm for Integer Solutions to Linear Programs

(ref. 1). It is concerned with the solution of the linear programming

problem:
n
Minimise z c.X.
,j=l J J

subject to the constraints

% WX S b, (i=1...m)
5o M

x. >0 (j=1...n)

where the w.., b., ¢. are constants,
1J 1 J

the x'j are variables

<
and > means < or = Or >,

and the additional integer constraints:

xj integer.

In our treatment of the problem we will assume that all the
constraints, apart from the ones x'j 2 0, are in the form Zwijxj = bi'
This does not involve loss of generality for the inequalities

.. X, . . X, > D, i
ZWleJ 5-b1 and leJxJ > b, can be expressed as the pairs

..X. + 5. =D, . >0 and ..X. = 8. = b, . i .
ZWIJXJ s bl, 5. 2 zlexJ 5. ;0 S > 0, respectively

Also we will normally use matrix notation.

Accordingly we may restate the problem as:
minimise ¢' z 1.1.1.
subject to Wz =D

and z>0



-9_

where A is an m x n matrix, b is an m-dimensional vector, and ¢ and
z are n-dimensional vectors. It will be convenient for us to
partition W into [B, N], where B is a non-singular square matrix of
order m, and N is an m x(n-m) matrix. Partitioning ¢' into

[g;, g;] and z' into [5', I'] we have:

minimise e'x+c'y l.1.2.

subject to Bx+ Ny=>b

This system can be solved for x in terms of y:

x=Blb-Blny 1.1.3.
and the problem becomes

minimise gl Blp+ (¢'-¢c'B Ny 1.1.k,
2 1

subject to B lb -B Ny >0, y > 0.

The basic result of linear programming theory is that
¥ =0, x = B 1b will cause ¢/ B !b to be & minimum solution
provided B 1b > 0 and ¢' - gl' Bl N> 0. If one or both of these
conditions are not sati:fiedlan element of x and an element of y
are selected according to certain rules and exchanged. It is not
considered necessary to prove these results here and the rules for

selecting an x and a y are simply stated with references.

Let us denote by (‘B)‘ij the ijth element of matrix B, and by

(g_)i or (__c_')_i the ith element of vector c.

If B !b > O but c_:_; - gi B IN £ 0 we select an element (y_)j of y
such that its coefficient (g; - g_{ B_lN)j in the objective function
is < 0 (usually the most negative). It is then exchanged with an
(5)i where i is such that (B—IN)ij > 0, and (B-lh)i/(B_lN)ij is a
minimum over all i. This ensures that B b remains > O. This

procedure is known as the Simplex method (ref. 3, p.70).
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On the other hand if ¢' - ¢' B !N > O but B_l_b_ #O we select
an element (g)i of x such tiat (é—lp)i < 0 (usually the most
negative) and then exchange it with (y). where j is such that
(13_11\1)ij <0 and - (9_; -c! 13'1N)j/(B'11\1):.Lj is a minimum over all j.
This ensures that c' - ¢' B !N remains > 0. This procedure is known

2 1
as the Dual Simplex method (ref. 3, p.99).

If both B !b < O and ¢' - ¢' B !N < 0 a "composite" method is
used. The use of compositezmethéds is not yet given much space in
linear programming textbooks. The general principle is to construct
some function of the infeasibilities and non-optimal cost elements,
and choose pivots to make this function tend toward zero. One such

is a "self-dual parametric algorithm" (ref. L4, p.2hs5]}.

These three methods are used once a non-singular matrix, B,
has been found, as in equation 1.1.3. Such a matrix can be obtained
by inventing an artificial vector, v, to form a basis and then
eliminating it. For example, in order to find a matrix, B, in the

problem 1.1.2. one would start by solving the sub-problem:

minimise v'
subject to Iv + Bx + Ny =D

¥, X, y > 0.

Providing a non-singular matrix, B, exists the minimum of v is zero,
and once this minimum has been obtained v can be left out of the

equations and the problem takes the form 1.1.L.

The introduction of v presents us with & unit matrix, I, as a
starting point. Sometimes B will contain some unit vectors, when
slack variables have been used to turn inequalities into the equalities
of equations 1.1.2. 1In such a case as many of these unit vectors as
possible will be used to make up the initial unit matrix, an artificial

vector being used to fill the remaining columns.
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If b contains negative elements when the problem is expressed
in the form 1.1.1. one has two kinds of infeasibility in the same

problem.

One composite method of solving this is described by Wolfe in
(ref. 6). It chooses pivots which will reduce a function of the
infeasibilities until the problem becomes feasible. Thereafter the
normal form of the Simplex method is used to obtain an optimal

solution.

The programmes contained in Appendix D were designed in such a
way that problems entered two procedures, first one that performed
the ordinary Simplex method for both eliminating artificial variables
and obtaining an optimal solution, and secondly one that carried out
the Dual Simplex method. The intention of this was to be able to
accept problems in either of two forms. However it was found to work
successfully on problems which were infeasible in both ways and also

non-optimal., It is not suggested that this method was efficient.
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Part 2; The Matrix Algebra of Linear Programming

The purpose of this Part is to establish the algebra of pivoting
used in linear programming in g slightly different form to that
normally uysed. This is in order that we might know at any stage of

computation exactly which quantities are integer and which are not.

The problem is:

Minimise c l1.2.1.

o,
I
+

NI O_
f.<

subject to B x+ Ny =>»b

x>0, y >0 and x, y integer.

We have separated the variables into basic variables, x, and
non-basic variables, y. If the original inequalities are written in

the form

x+BlNy=Blb 1.2.2.

we are assuming that the rows and columns have been suitably ordered
and we may consider it either as an expression for x in terms of y

when viewed as

x=81b-BlNy

or as a collection of entries in a table which is to be manipulated
whilst working towards the desired optimal solution. We shall refer
to this table as the tableau.

Since we are essentially working with integers throughout this
thesis all matrices, vectors and scalars will be taken to be integer
unless otherwise stated. In particular all coefficients in the

original problem, i.e.‘gl, 92, B, N, and b will be integer.

Wherever possible the use of inverse matrices will be avoided

and adjugate matrices used instead. Let us write 4 for |B|, the
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determinant of B, and B*¥ for the adjugate matrix of B, so that

dB ! = B* and BB* = B¥B = dI. Since (B*)ij is the cofactor of

(B)ij in B, the elements of B¥ are integers, (ref. 5,_p.87) which

is of course why we prefer the use of B* to that of B 1, Accordingly

we will normally express 1.2.2. in the form
dx + B*Ny = B¥p 1.2.3.

The letters d and D will be used exclusively for |B|. Gomory,
in (ref. 1), uses D and this will be followed in some parts of this
thesis, notably the appendices. In this chapter 4 will be used to

emphasise the fact that it is & scalar.

Before proceeding with the main part of this section we need to

establish two preliminary results.

Lemma 1.2.1. Let a non-singular square matrix B be partitioned

by its last row and column into {B h |, where B is also non-
11

1
h* h

2 3

singular. Then IBI, the determinant of B, may be written as

Bl =h |[B|~h"B*h 1.2.4,
3 1 2 171
To show this we add to the last column of the partitioned form

of B the vector formed by postmultiplying the previous columns by
-Blh . Thus
1 1

B 0
= |1 - = - n- gl
B = |,% h -h*Blh =|B|(h ~h"B hl)
=2 3 21 "1
=h |[B|-h’'B*h
301 2 171

since |B | B ! = B*,
1 1

Lemme 1.2.2. Let B be defined and partitioned as in Lemma

1.2.1. Then B* may be written in the partitioned form
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|B| B* B* h h” B* T
1 4 17172 1 - B* p
N 171
B* = IBll IBl| 1.2.5.
-h B B |
L w—

To show this we observe that

- -

Bl+yBln h” B! -yBln
1 1 1 1

1 2 1

Bll = —~h- Bl 1.2.6.
2 1

2 1 1
as can be verified by pre- or post-multiplication by the partitioned

vhere y (h3 -h"Blnp) =1,

form of B. As shown in Lemma 1, |B| = |B1| (h3 - Q; B! h), and we
1 1

may write this in the form y |B| = |B |. Substituting this expression
1

for v in 1.2.6. and multiplying by |B| we obtain 1.2.5.

We now examine the process of 'pivoting' the expression 1.2.3.
This implies choosing a particular element of x together with a
particular element of y, exchanging the elements between the two

vectors and reforming the relevant matrices. Let us suppose that the

expression 1.2.3. becomes

after one pivot, i and i.each differ from x and y in exactly one
element, and B and N each differ from B and N in exactly one column.

d is defined to bve |B].

The pivot element of the transformation of B*N into B*N is
defined to be that element of B¥N contained in the row corresponding to
the chosen element in x and the column corresponding to the chosen

element of y. We assert that d is equal to this pivot element.
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For convenience let us assume that it is the last element of x
and the last element of y that are to be exchanged. Then the pivot
element will be in the last row and column of B*N. We partition B

and N by the last row and column:

=
h
=

n
1 1
“n
3 2 3

w

i
N
= )
B

Then B and N will take the form

o
1}

n
1_1
n
2 3

b=
"
8 =

Nl N
o |
(3]

> o

having exchanged the last columns of B and N.

The pivot element in B*N is the inner product of the last row

of B¥ and the last column of N, that is [—_};‘; B*{', |B1l] . nl,

making use of the expression for B* proved in lemma 1.2.2. This

expands into |B1| n -~ h” B¥ n which is precisely the determinant
- 3 2 171

of B.

Some programmes written to perform linear programming hold B¥,
N and b separately and update them at every pivot operation. Others,
including those described in this thesis, hold these quantities in
combined form, namely B*N and B¥b, and it is these which are updated
every pivot operation. Let us write A = B*N and B¥b = p so that

1.2.3. becomes
dx + Ay = p 1.2.7.
Suppose that A is partitioned into
A a | and p into 1.2.8.
17 B R1
a” a
2, % P3
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We will show that when a 1is the pivot element the new array to
3

replace A is given by

YL

A -8 -a where d

- B 2.9.
sy 15l 1:2:9

R

A= d and d

a’ a

As A = §*ﬁ, the product of two integer matrices, it must be integer

itself, and this permits us to deduce that

dAs & Eé (mod 4) 1.2.10.

This property forms the basis of the discussion in Part L.

To prove equation 1.2.9. we evaluate the product of B*N using

the partitioned form for B* derived in lemms 1.2.2. We have

o
]

~h’ B* n
3 2 1

=d

+ 1B |n
1 3

as already shown.

a” =-h” B*N + |B | n”
2 2 11 1 2
a =(|B|B*n +B*h h'B*n )/ |B|-n B*h
1 171 17172 1 ™1 1 3 171
= (|B| B*n +B*h (h”" B*¥*n - |B B
Bl 171 171 (—2 1 & |1|n3))/| 1|
=(dB*n -dB*h)/[B |
171 15 1
A =(|B| B*N +B*h h°B*N )/|B| -B*¥h n”
11 17172 11 1 1=

1 2

(|B| B*N +B* h (h” B*N =~ |B |n”))/|B_|
11 1 1 2 11 1 2 1

(a3 B*N -B*h a”)/|B |
11 1 1 2 1

To obtain the corresponding values for the elements of A we simply

exchange the yalues of h andn , h and n , and 4 and d. Thus
' 1 ! 3 3



a =4d

2" = -h” B*N + [B | n’
2 2 11 1 2

(01
"

(dB*h -aB*pn)/B |
1 171 1

A =(dB*N -B*n a’)/|B |
1 11 171 2 1
We immediately note that 53 =4, éé = E;, and él = =-a . To prove
1

the expression for A we evaluate it:
1

(@A -a a”)/d
1 | T2

1

(R4 B*N -dB*n a’)/d |B |
11 171 2 1

(QB*N -B*n a°)/|B |
11 171 72 1
= A
1
It is necessary to comment on the sign of 4 and d. The algebra
presented so far is valid whether they are negative or positive.
However in the remainder of this thesis it will be convenient to
assume that d and d are positive. Accordingly we adopt the convention
that the partitioned form of A in 1.2.8 will transform by pivoting on

a3 into 1.2.9. only when a3 > 0. If a3 < 0 we will define d = = &
3

and will write A as the negative of 1.2.9:
dA +a a° a
1 1 72 1

d 1.2.11.
-a” -4
2

g |
]

(daB* =-dB*h a"-dB*n a" +dB*h a°)/d |B |
11 1 1 171 T2 1
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Part 3: Extending the Problem during Computation

The method of (ref. 1) consists of two basic steps. The first
is pivoting, the algebra for which is described in Part 2, and the
second consists of adding new constraints. In order that computation
may continue to be performed in integers it is necessary that any new
constraint must have integer coefficients in its representation in the
original space. To be precise, the original equations can be expressed
as

Bx + Ny = b 1.3.1.

and any additional constraint as

K'x+s+n'y=5>v . 1.3.2.

s can be regarded either as a slack variable, constrained to be non-
negative, or an artificial variable constrained to be zero in any

feasible solution.

Additional constraints may be added either to the original
constraints, in which case it is easy to ensure that the variables are
integers, or to the transformed array. In the latter case the
transformed array is that obtained by multiplying 1.3.1. through by B¥,
viz

dx + B*Ny = B*b 1.3.3.
and substituting for x in 1.3.2., which gives us, after multiplying

1.3.2. through by 4 and rearranging,

ds + (dg; - k' B¥N)y = db3 - k' B*b 1.3.k.

Thus the coefficient of y in the constraint added to the
transformed array is the sum of an integer vector each of whose
elements is a multiple of d and an integer combination of the
coefficients of y in the existing constraints. As there is a one to
one correspondence between equations 1.3.2. and 1.3.4. it will be
seen that the condition that an additional constraint is in the form
1.3.4. is necessary and sufficient for the equivalent constraint

added to 1.3.1. to have integer coefficients.
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We now consider the possibility of adding a new variable.
Although no programme was written which actually did this it
facilitates a proof in Part 4. We add a new variable, t, with

coefficient g to 1.3.1.:

Bx + Ny + gt =b% 1.3.5.
Multiplying through by B¥* we obtain

dx + B¥*Ny + B¥gt = B¥b. 1.3.6.

If now we restrict g to be of the form Bll + Nr equation 1.3.6.
2

takes the form
dx + B¥Ny + (d;r_l + B*N;2 Jt = B¥b
which is of a form analogous to 1.3.k4.

In Part 4 we shall append a new row and column at the same

time so that the tableau of B*N will expand to become

B*N B*Ny
u'B¥N  u'B*Nv
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Part 4: The Integer Properties of the Rows

of the Transformed Matrix.

Gomory has shown that, in general, if we take the rows of
matrix B*N modulo d, they generate an additive group of order 4.
As before, we write A for B*N and 4 for the determinant of B.

We shall prove this result for the predaggnant case, i.e. when A

has no common factor.

Firstly, however, let us consider two examples. The first

is from Gomory {(ref. 1, p. 297).

Minimise - 3x + x
1 2
Subject to 3x = 2x +x = 3
1 2 3
- 5x = hx + X = -10
1 2 4
2x + X +x = 5
1 2 5

Rewriting this in the form of a tableau and optimising we have,

indicating the pivot elements by asterisks:

1 X x
1 2
z 0 -3 1
X, 3 3% -2 (4 = 1)
X =10 -5 N
[
b4 5 2 1
5
b d b4
3 2
z 3 1 -1
x1 1/3 -2/3 (@ = 3)
xq =5 5/3 -22/3"
b'd 3 -2/3 T/3%
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1 x3 x5
z 30/7 5/1 3/7
x1 13/7 1/7 2/71 (a=1)
xu 31/7 =3/7 22/7
x2 9/7 =2/7 3/7

Let us construct a row from the cost row by taking the elements
of the cost row modulo d. This is (2, S, 3). If we now construct
the rows obtained by taking successive multiples of this we obtain

the sequence

1. (2, 5, 3)
2. (4, 3, 6)
3. (6, 1, 2)
L, (L, 6, 5)
5. (3, k&, 1)
6. (5, 2, L)
7. (0, o, 0)

It is not surprising that we obtain exactly 7 distinct rows.
What is interesting is that if we now take the rows corresponding

to x , x and x2 modulo d we obtain
1 4

X (63 l’ 2)
1

x (3, 4, 1)
y

X (,2, 5’ 3)
2

These are the same as the rows obtained by taking multiples

3, 5 and 1 of the cost row.

This result is a perfectly genweal one. It may be summed up
by saying that the rows generated by teking the rows of the matrix

modulo d form an additive group of order d. In other words there
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are exactly d such rows and any linear combination of the rows is
also a member of the group. In this case the group is cyclic, i.e.
there is a member of the group such that every other member of the

group may be generated by taking successive multiples of it.

In the next example the group is not cyclic.

Minimise - X -X
1 3
Subject to 2x + 3x + Lx + x =5
1 2 3 L
hx + 3x + 2x +x =5
1 2 3 5
In tableau form:
1 X X X
1 2 3
Z 0 -1 -1
xu 5 2 I (a = 1)
X 5 L
5
1 X X X
5 2 3
z 5/4 1/4 3/h -1/2
x, 5/2 =1/2 3/2 3% (@ =1L)
. 5/4 1/4 3/4 1/2
1 X b4 X
) 2 L
z 5/3 1/6 1 1/6
s 5/6 -1/6 1/2 1/3 (4 = 12)

5/6 1/3 1/2  -1/6

To construct the group of rows modulo 4 from this we need two
rows, For example take the row generated from the cost row, that is
(8, 2, 0, 2) and from 3 times the x, Tow, that is (6, 6, 6, 0). We
construct 6 rows by taking multiples of the (8, 2, 0, 2) row, and
the other 6 by adding the (6, 6, 6, 0) row on to each.
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(a) (v}
1. (8, 2, o, 2) (2, 8, 6, 2)
2. (4, L4, o, L) (10, 10, 6, L)
3. (o0, 6, 0, 6) (6, o, 6, 6)
¥. (8, 8, 0, 8) (2, 2, 6, 8)
5. (4, 10, 0, 10} (10, 4, 6, 10)
6. (o, 0, 0, O} (6, 6, 6, 0)

That none of these rows can generate the whole group can be
easily demonstrated. If we take successive multiples of any row
the 6th element will be the row (O, O, 0, 0) because every element
is a multiple of 2. Thereafter the cycle will repeat.

The rows corresponding to x3 and x1 are (10, 10, 6, 4) and

(10, 4, 6, 10} and these appear in the second column of the list

as numbers 2 and 5.

Before we prove the main result we must establish a preliminary
one. This is that if the elements of a matrix W have a highest

common factor of g, there exist vectors u, v, such that

u'wyv =g (mod h)

vhere h is any given integer.

To illustrate this consider the following matrix, whose elements

are shown in factorised form:

2, 3. 5. 7. 11 2. 3.5. 7. 13 2. 3. 5. 11. 13} 1.L4.1.
2., 3. 7. 11. 13 2. 5. 7. 11. 13 3. 5. 7. 11. 13

and suppose that h = 2, 3. 5. 7. 11. 13.

The highest common factor of the elements of this matrix is
1l and so we must choose vectors with which to pre— and post- multiply
the matrix so that the resultant scalar has no factors in common with
d. This is easily done, for if we premultiply the matrix by [1,1]
and post-multiply by [l,l,l]' this effectively sums the elements of

the matrix and this sum is prime to h. For example, the sum will not



_24_

have 5 as a factor for it may be written as
2. 3. 7. 11. 13. +5(2. 3. 7. 11. + .... + 3. 7. 11. 13).

To further the example, suppose now that h = 2. 3. 5. 7. 11. 13. 17.
We cannot easily determine whether the sum of the elements of matrix
1.4.1. is a multiple of 17 or not, but this is not necessary if we

change the pre- and post- multiplying vectors to [1,17] and [1,17,17]'.

The point of this is to show that we needed to determine only
five variables, that is the elements of u and v, to generate a number
congruent to g whereas if the six elements of the matrix had been

arranged as a vector, w, any vector t such that t'w = 1 (mod d) would

have to have six non=~zero elements.

The following lemms mekes use of two arguments in particular.
Firstly; that given a vector w, there is a vector t such that t'w is
equal to the highest common factor of w. Secondly; that if r is

brime to s, r + &s is prime to s.

Lemma 1.4,1. Let W be an integer matrix whose elements have a

highest common factor g, and let h be any integer. Then there exist

integer vectors u, v such that

' Wy g (modh) 1.4.2.

To show this we first write W = gT, and rewrite equation 1.k.2.
as

u' Tv =1 (mod h)

To establish this result let h be expressed as the product of

its prime factors:

n qa;
h = f-1 p; .
i=1

For each index i we select a row which does not contain p; &s a
common factor. Denote this row by k (i). We take this row which
we denote as before by Tk(i)* and multiply it by every other factor
of h:
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Q.

J

Teliy* | | p; °
i

This still does not contain p; as a common factor, but does have as

a factor every P vhere j % i,

Sum this expression oyer i. As every one except the i th contains
p; as a common factor the resultant vector will not contain p; as a

common factor. The sum can be expressed as

u' T

where

q.
2=§sk(i) f—l p;

where Ek(i) has 1 as its k(i) th element and zero elsewhere.

As u' T does not contain any pi as a common factor there exists

a vector v such that

u' Ty =1 (mod h).
The vector v can be generated by means of the Euclidean Algorithm.

We now set out to prove the result illustrated at the beginning
of this chapter, namely that when the matrix A = B*N has no common

factor its rows taken modulo d generate a group of order d, where &
= [B].

It is assumed initially that A is of the form B*N where B and
N are integer matrices, and that d = |B|. It is not assumed at this

point that A has no common factor.

Let us choose vectors u and ¥y such that u' A y is the highest
common factor of A, As established in Part 3, A can be extended by

adding a rov and a column to become

A Av
u'A u'Av



_26_

This matrix has the same properties as A in that it represents the
product of two integer matrices, one of which is the adjugate of an
integer matrix with determinant 4. Accordingly we may use the

property established in Part 2 (equation 1.2.10) that
(u' Av) A= (Av)(u'A) (mod Q)

Let us write g for u' A

i<

gAz=Avu A (mod 4d) 1.4.3.

We wish to establish a property concerning row vectors genersated
by teking an integer linear combination of the rows of A. Let us
denote a typical row vector as w' A, where w is any m-dimensional

vector. Multiplying both sides of 1.4.3. by w' we obtain

gw' Azw' Avu' A (modd)

We now assume that g = 1. If we write u = w' A ¥ we have

w'Azypuu' A (mod 4)

As u' is fixed independently of w, and p can have at most d distinct
values modulo d this shows that w' A can have at most d distinct

values modulo d.

To show that ' A can in fact take on d distinet values we
first observe that u can take on d distinct values. For let

w' = ', wvhere A =1, .., d. Then
p=w'Ay=)u'Ays=)

Secondly the d values of p will generate d distinct values of p u' A.

For if not suppose
! = '
py R A,-)Jj}; A vhere 1, #pj
Then postmyltiplying each side of the equation by y we obtain
myu' Ay =p,u' Ay (wod d)
But we haye assymed that ' Ay = 1.
Therefore Yo E Y, contrary to hypothesis.

1 J
Therefore ' A can take on d distinect values.
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This result is a very general one, and fails only when A has
a common factor. The proof of lemma 1.4.1. is a constructive one
and shows us how to construct the group of permissible rows. For
each of the prime factors P; of d we select a row that contains
an element prime to p; and multiply this row by d/pi qi, where q;
is the number of times 1 is repeated as a factor of 4. The sum

of these will generate the whole group.

In practice of course if an element exists which is prime to
d the row that contains it will generate the whole group of
constraints. Experimentation showed that the group was usually

cyclic, and also could often be generated by a single row of A.
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Part 5: The Generation of Additional Constraints

Methods of integer programming in general need to augment
the constraints contained in the original statement of the problem
with constraints derived during the process of solution. In this
part we consider four ways of deriving such constraints in such

a way as to fill the following conditions

(a) the constraints must have integer coefficients when

represented in the original space.

(b) they must not render infeasible any feasible integer

point.

(c) they must exclude from the feasible space some part

of it which contains no integer point.

To satisfy the first condition we write any new constraint as

kE'x+s+n'y=09o ) 1.5.1.

2 3

where k, 22 and b are integer constants, and s is an integer
variable. This is its representation in the original space, that
is when added to the equation 1.3.1. Recalling Part 3 we remember
that 1.5.1., then referred to as 1.3.2., takes on the form 1.3.k4,
when added to the transformed set of equations 1.3.3. We reproduce

1.3.4, here as 1.5.2.
S
ag+(a g; - k' B¥N)y =d b - k' B% 1.5.2.
3

The rest of the section describes different approaches to defining

the values ofl{_,g2 and b3.

First however we introduce a new pair of symbols [ |. We
define them to be such that [a] represents the largest integer not
greater than a. We also extend the definition so that [a]d represents
the largest multiple of 4 not greater than a. We can define the

second usage in terms of the first:

(o], = <[3]-

We will make use of the relations
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1.5.3.

and

1.5.4.
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5 (i) Gomory's Original Derivation

This is the derivation presented in (ref. 1).

We have to choose values for the kX, n , and b in 1.5.2. We
2
allow ourselves a choice of k, subject to conditions discussed
later. We then definen and P such that
2 3

dn'= l}' B*N]. and d b = [k' B*b:l . 1.5.5.

Substituting in 1.5.2. we obtain

ds = —“:5' B*N:d - k' B*N]x + [[g' B*g]d - k' B*_I_:_]‘ 1.5.6.

and relations 1.5.3. and 1.5.4. enable us to deduce that
ds > = d.

As s is integer this implies s > 0.

This turns equation 1.5.6., which is simply a definition of
s, into an inequality which excludes no integer point. It will
exclude some part of the space not containing an integer point

provided

[E' B*:g_-]d - k' B¥D < 0

i.e. k' B¥b £ 0 (mod a).

Attempts to implement the method of (ref. 1) tend to choose
k so that 1.5.6, looks like a good constraint. For example the
constant term might he large and negative, that is approaching
the value of - d, or the coefficient of y might have small elements.
The next section describes a derivation based on a different

approach.
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5(ii) A more direct approach

Dr. Land (ref T) suggests that good constraints tend to be generated
from the sum of small multiples of the original constraints. So whereas
others might choose k so that k' B*N or k' B*¥ b satisfy certain conditions,

Dr. Land would choose k so that the vector k' B* contained small elements.
So we pre-multiply the original equations
Bx + Ny = b

by k' B¥ to get

Relation 1,5,3 permits us to write
ak'x+ [k B¥N], ¥y < k' B*%

and since the left hand side is a multiple of d we can round down the right

hand side to be a multiple of 4 also:
d_li'l(."'[ﬁ' B*NJdli [£| B*h]d
If we now write ds for the integer slack variable and substitue B¥b - B*Ny
for d x we obtain
= [k' p* - k' B¥p - ' B - k' B*
ds = [k' B*p], - k' B*b - ([k' B*N] , - k' B*N) y

as before.
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5(iii) A more general approach

This was given by Gomory in (ref 2) and in addition to producing
the constraints already described produces the constraints used in his

all-integer algorithm contained in the same reference.

Let A be any non-negative number, not necessarily integer.

Define r,, r, and r, as follows:

2

dk'= [d y]x +z where 05 (r ); <A, all i
PO 1
x
k' B*N = [:g_' B*N]A + 5'2 where 0< (r )i <A, 811 i
- e - 2
A
k' B*b =[5'B*g:l>\ tr where 0 < r = <A. 1.5.7.
A

Consider a linear combination of the equations, thus
dk'x+Xk'B*N y = k' B¥b

where k' integer. We may rewrite it using equations 1.5.7. and

rearranging the terms:

t ' = + ! * - 1 #*
ry+mx =r A{[&_B__QJ E_;_ BN:IM_[dE':l é} 1.5.8.
A A _;__
Now let us define s to be the contents of the curly bracket:
s= [k B*p| - [x' BN} y - fak'] x 1.5.9.
N A BN

Clearly s is integer. But from 1.5.8. we have

As ==r +r'y+rtx>-r > -

0 2 17~ 0
since r' y +r'x> Oandr <) from 1,5.7.
2 1 - 0

As s is integer, we deduce

S>O.
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Now let A = d and define n and b as before (1.5.5.). Then
2 3
1.5.9. hecomes

s = [.ls' B*Iz:|~" [ k' B*] K x
| | k

3 3 J L - X

On miltiplying through by 4 and substituting B*b -~ B¥Ny for d x we again

obtain
ds = [_15' B*g]d - k' B*p - [E}g' B*N]d - k' B*N] Y- 1.5.10.

In the all-integer algorithm Gomory derived constraints in such a way
that the pivot element was always -1 and hence d = 1.
These constraints were derived by making A > 4 in 1.5.9. and adding that
constraint to the transformed tableau. The value of A was chosen large
enough to ensure a pivot of =1.

The method was designed to work with a tableau in dual feasible foem
and k was chosen so that k' B*¥b < 0, thus ensuring that [_lg' B*p_/k] < 0.
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5(iv) Gomory's mixed integer method

In (ref 8) Gomory gives a method of deriving constraints where some
but not all of the variables must take on integer values. It is of interest
here because it does not reduce to the method of Part 5(i) when there are no
non-integer variables present.

We consider an integer combination of the transformed tableau:

dk'x +k'B*¥Ny =k'B* 1.5.11.

We restrict the choice of k to ensure that k' x is a combination of

integer variables. To make the algebra more readable let us write x for k'x
- and g&- g; for k' B¥N where 51 > 0 and 22 > 0, that is to say every
element of Ej and a is greater or equal to zero. 1.5.11. then becomes

2
dx+ (é'l -5'2) Y = k' B¥b 1.5.12.

We assume that although x must be integer valued k' B¥b is not a multiple

of 4 at this point.

We define f = k' B¥b - [5' B*g] a
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We have two alternatives.
Either (a) dx<k'B*¥ - f 1.5.13.
or (v) dx>k'B¥ - f +4d 1.5.1k.

Suppose (a) is true. Eliminating d x between 1.5.12. and 1.5.13. we have

-(gi-g.;)xi'f
Since 4 = £ > O we have
- (4 - f)(g{ - gé) y<-(a-1)f.
Since = 4 gé ¥ < 0 we may add it to the left hand side:
-dgél-(d-f)gl'x+(d-f)g;xi-(d-f)f
or - (a-r) _a_.;x-fgéli—(d-f) f. 1.5.15.

On the other hand suppose (b) is true.
Then 1.5.12. and 1.5.14. give us
-(al-al)y>-f+a
Since - f < O: '
fa y-fa y< -fla-r)
and since - d a' y < O:

-(d-f)z_a_iy_-f_al;Xi-f(d-f). 1.5.16.

So either 1.5.15. is true or 1.5.16. is true. But we have so arranged

them as to be exactly the same and thus may add the constraint
ds - ((a~-r1) g._;+fg;)x=-f(d-f) 1.5.17.
where s > O.

Rearranging 1.5.17. slightly and resorting to the definitions of gl- g&
and £ we may write 1.5.17. as
ds + (fk' B*N—dgi)x=f_lg'B*g-f(LI_:_'B*g]d+d)
vhich is of the form necessary to ensure that it has integer coefficients in

the original space, as may be seen by comparing it with 1.3.L.

In general, s is not an integer variable for its value depends on the non=-
integer variable y. However if all the variables are integer s will be too.

Furthermore we may strengthen 1.5.17. Instead of 1.5.12. we write

dx + (_gl - [51}.{- (Qz - [ﬁz]d)) Y = k' B*H (mod 4). 1.5.18.

Relations 1.5.13., and 1.5.14. remain the same and an analogoms argument results

in a constraint at least as strong as 1.5.17.
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ds - ((a=-f)(a - [g:\ Y+ £ (el - 2] x = - fa- 1.
1 1Jd 2 2
1.5.19.

There is no longer any point in distinguishing between g._l and g_z
If we denote the coefficient of a typical element of y as a.i we may replace
it by a; —n d in any equation of a similar form to 1.5.18. The i th
coefficient of y in 1.5.19. will be least negative, thus making the constraint
strongest, if a; is replaced by a; - [ai]d giving a coefficient in 1.5.19.
of

- (a-1) (e - [ai]d) 1.5.20

or by ai - [B‘i]d - d/ giving a coefficient of
£ (a; - [ai]d - dl. 1.5.21.

1.5.20, will be less negative than 1.5.21 if and only if
a,i - [ai]d < f.

It should be remarked that in (ref. 8) Gomory writes 1.5.16 as

-l -
& Y~ 3-¥

a' < = f,
L Y =

Although this would appear to be better sealed than 1.5.16 it does not

usually represent an equation with integer coefficients.
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Examples of derivable cuts
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Example taken from Gomory (ref. 1).

Minimis

e

Subject to

Z

3x

1

"5)(

1

2x

1

3x

1
- 2x

2
- hx

+ X

In full tableau form :

1
z 0
X 3
3
X =10
4
X
s 5
Optimal:
1
z 30/7
Xl 13/7
x, 31/7
XZ 9/7

o O + O

H O O O

]

o O + O

X
3

5/7
1/7
-3/7
-2/7

Z
+ X =
3
+ X =
N
+ X =
5
X X
4 5
0 0
0 0
1 0
0 1
X X
L 5
o 3/7
o 2/7
1 22/7
o 3/7

10

After 1lst pivot:

1
zZ
X
1
x -5
[
X 3

0]
1
0
0

Inverse matrix:

o O O WV

5/T
/7
-3/1
-2/7

Set of constraints derived by 6(i),(ii) and (iii):

Added to optimal

tableau
X + 2x
3
2x  + bx
3
3x3 + 6x
bx  + x
3
5x  + 3x
6x + 5x

v o o »no»no o

v

vV NV NV NV WV

H NN w & O

tableau
X
1
2x
1
3x
1
2x - x
1
3 =-x
1
bhx - x

1A

IA

W W WKW A

oON & NN WUV w

x2 x3
-1 1
-2/3 1/3
-22/3 5/3
T/3%-2/3
0 3/7
0 2/7
1 22/7
0] 3/7

Added to original

™

o + O O

"

= O O O
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Figure 1.5.1. continued
Additional constraints derived by 5(iv)

Corresponding constraint New constraint New constraint
derived by 6(i) added to optimal added to original
x3 + 2xg5 26 X3 +2x5 26 x) <1
2x3 + bxy 25 bx3 + 8xg 210 hx <6
3x3 + 6xs zh 9xy + hxg 212 5%, - 2xp s5
bxs + x5 23 O9x3 + bxg 212 5x; - 2x, £5
5x3 + 3xg5 22 hxy + 8xg5 210 bx,; <6
6x3 + 5xg 21 X3 + 2xg5 2 6 X1 <1
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Part 6: The lexicographic dual simplex method

In Part 1 we described the dual simplex method. We select an
(E)i such that (B-lh)
(B 1N)

; < O and exchange it for a (y)j (i.e. pivot on

.. ) where. is such that (B IN).. < O and
1J Jd 1]

- (e3 - ¢ B'lN)j/(B'lN.)ij 1.6.1.

is a minimum over j. Unfortunately if there is more than one j for
which this is a minimum one needs some criterion to choose between

them, and it has been shown that a bad choice can, theoretically at
least, give rise to looping, i.e. returning to the same basis again

and again until the programme is thrown off (ref. 3, pp. 84, 104).

One of the ways of combating this is the lexicographic method.
The algorithm is simply that if for a given set of j the ratio 1.6.1.

has the same value, we examine the ratios

-1 =1
- N),./(B N)..
(B )13/( )lJ
for the same j, and choose the column J which gives the minimum ratio.
If there is another tie, the process is repeated for the next row, and

SO on.

The finiteness of this process is easily demonstrated using the
algebra of Part 2. We assume that the tableau of equation 1.2.7, partitioned
as in 1.2.8, is lexicographically optimal, i.e. not only is the first
element in each column > O, but the first non-zero element in every column

is > 0, We say that each column is lexicographically positive.

Let us also assume that a; has been chosen as pivot, so that p3 < O,
a3 < 0, and when the column -a, /e3 is compared with analogous columns,

1.e. columns -(Al)*j](éé)j such that (éé)j 0, the first element which

differs from the corresponding element of the other column is less than it.

We use (AI)*j to denote the jth column of A,.
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The partitioned tableau of A in 1.2.8. transforms into 1.2.11,

since we are considering the case when az < O.

We show, firstly, that once the tablesu is lexicographically optimal
it will remain so. Choose a typical column of A , let it be the jth.

It will transform into (E(All*j +a) (a' )j)/d.
2

We must show that the first non-zero element of this column is > O.
If (gé)j > O we are summing two columns which are lexicographically

positive, and so the result will be lexicographically positive also.

If (g')j < 0, we make use of the fact that the pivot column was
2

chosen because

-a] &3 < -(Al)*j/ (9‘;),] )

1
where the 'less than' sign is used in the sense of 'lexicographically

less than'. Writing'a for - a3 and rearranging, this relation becomes

a(A),. +a (a'). > O
(1)*J =1 27

as we wished to show.

Secondly we must show that the tableau never repeats itself.
Consider the right hand side of equation 1.2.7, partitioned as in 1.2.8,
divided by d, as it would be held in normel linear programming.
El/ d will transform into 21/ a- p3‘51 / d'a3 . As p3 < 0, a3 < 0,
da > 0, and the first non-zero element of_gl is > 0, the first non-zero element
of P, N / a 8 is < O. Thus the first element of - / 4 to change at

any pivot step decreases, and so the tableau can never go back on itself.

This does not mean the same solution can never occur more than once.
In general the pivot element will not be chosen from the last row as in
1.2.8. and it is possible for the order of the basic variables to be permuted.
For example the solution x1 = 3, x2 = 2, could appear a second time as x2 = 2,
x = 3.
Fér this reason the programmes described in this thesis used a stronger

form of the lexicographic method.

The equation

d x + B¥EN y = B¥b 1.6.2.



_41—

was extended to

x B*N B¥b

a g7 a1 1B = o 1.6.3.

A pivot row is first copied to the bottom of the tableau, and after
pivoting is discarded. The same goes for any new constraint. By this
means the elements of t' will change but not the elements of x and y.
Equation 1.6.2. can always be reconstructed by eliminating t from
equation 1.6.3. This is the system adopted in the example in (ref. 2,
p. 204%). 1In the examples in (ref. 1, p.295) new constraints are added
to & tableau of the form 1.6.2., and constraints can only be discarded
when this can be done without discarding an element of x or y, i.e. when
the basic variable is not an element of x or y. This system has the
advantage over the other in that 1.6.2. is easier to store than 1.6.3.,
but this advantage is lost when the equations are held is sparse form,

i.e. only non-zero elements are stored.

In general the elements of x and y in 1.6.3. are interspersed.
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Part 7: The use of integer arithmetic within a digital computer

The simplest arithmetic operations of a digital computer are
addition, subtraction, multiplication and division of integers. These
are usually quicker than other forms of arithmetic and invariably give
the exact answer. There is just one proviso - that the answer must not
be too big for the location which is to hold it. When this happens the
programmer either has to resort to double or multiple length integers,

or use fixed point decimals or fleocating point numbers.

For many people, the advantages of floating point and decimal
arithmetic outweigh the perils, but one would hope that in integer
programming, of all subjects, one would be able to use the computer
for what it is best at. In an all-integer method (ref.2) every
number in the constraint matrix is an integer, and if any are so big
as to cause overflow, the use of floating point will not solve the
problem. This is because floating point can only be used when the
answer is only required to within a certain percentage. In integer
programming the answer is required to the nearest integer, irrespective

of what percentage accuracy this represents.

In the method we are discussing the coefficients are assumed to
start off as integers but do not remain so during the calculation.
Our treatment of the method has been designed to show how they can be
held as integers with a common denominator of 4. 1In deriving new

constraints, e.g. 1.5.6., the new coefficients are of the form

:g' -a' 1.7.1.

-

]
W)

'o¢m

or i? 1.7.2.

-

which is the form they would take if floating point were used. If the

value of |g'| were of the order of ten one decimal place would be lost

d
consider that multiples of a' may be taken, e.g.

HEint

in accurac%. If [g{] were very big much more would be lost. When we
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half the accuracy of a' / d could be lost in one operation if d were

sufficiently big.

The disadvantage of using integer arithmetic would seem to be the
1imit on the size of a and d. But this is rather doubtful. For if a
were floating point and allowed to exceed the limit it would cease to
be amccurate to the nearest integer and any hope of generating constraints
from large multiples would be lost. If d lost its accuracy we would not

even know how many constraints could be generated.

Because it was desired to experiment with large multiples of
constraints without having to worry about accuracy, the programmes were
written to hold the coefficients as an integer array with common denominator
d. Tests were made for overflow and when this happened a constraint of the
type described in Part 5(i) was added. This alvays leads to a pivot < d which
is in fact the new d, and this leads to an overall reduction in the size of

the elements of the array A. The transformations

[uE'Jd'ug'

aA -~a s
1 1 T2
d

and

were performed in double lergth.

In many problems solved there was no danger of overflow, and only
occasionally was great difficulty experienced because of it. But this
may have been because the examples tried were mostly simple compared

with the potential problems of integer programming.

It was interesting that the experiments suggested that complicated
multiples and combinations of constraints did not justify the effort
needed (see Chapter 2). If only small multiples were used it might be
feasible to use floating point arithmetic. However it is likely that
accuracy would be better preserved by deriving a k' B* and calculating
the new constraint direct from the original ones in the manner of
Part 5(ii) of this chapter.
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Part 8: The Euclidean Algorithm

The programmes in Appendix D include & procedure to perform the

Euclidean Algorithm. This part is a verification of it.

The integer procedure euclidalg (h, D] computes an integer w such

that
w h = hef (h, D} mod (D)

wvhere hef (h, D} denotes the highest common factor of h and D. The value
of w is assigned to euclidalg.
The procedure initiates four variables:
h =h-[h:|, Kk =D, u =1,v =0
0 D ) 0 o

and iterates as follows

k =k -h [k]h],v =v -~u [k/h]
r+) r r r r r+) r -r r r

alternately with

h =h -~k h k u =u -v h k
r+; r r+; [ r] r-l-l] ? r+y T r+ [ r/ r+1_]

and stops as soon as h o O k becomes zero. If k is the first to
r+] <

r+l
become zero h 1is the highest common factor of ho and k , if hr+ is the
)
first to become zero k.., is the required number. At this point w is

given by u, if kr+l is zero and Cur+1 + vr+1) if hr+1 is zero.
Firstly we verify the formuls for the highest common factor. We

observe that since

kpe = Ky 7B, [kr/ hr]

any number that divides k., and h also divides kr+1 . Conversely any number

that divides kr+1 and hr also divides kr and so

).

k ) = hef (hrs k
1

T+

Similarly we can show that

hef (h,, kr+l) = hef (hr+1, kr+1)

Thus by induction we have

hef (ho’ ko) = hef (hr’ = hef (hr+l’ k )

r+1) r+l

vhich will be h, if kr+1 = 0 and kr+1 if hr+1 = 0.



_45_

To show that

u, h_ = hef (hr, kr) =h_ ifk =
(u +v.)h =hef (h, k) =%k if n =
r r’o r’'r T r
we again use induction.  Suppose
v.h =k (mod D)
r o r
w h = h (mod D)
r o T
These are clearly true for r = 0. To show they are true for
r + 1:

<

oy
|

-
|

r+l "o r+l T (Vr T Y [:kr/hr]) by - (kr - hr[kr/hr])

(vr ho - kr) - (ur ho - hr) [kr/hr]

11l

0 (mod D)

Y1 o hr+l (ur T Vil [h kr-!-l 1 ho - (hr - kr+l [hr/ kr+1:| )

23
[
it

(ur ho - hr)' - (vrﬂ ho B krﬂ )[hr/ krﬂ]

0 (mod D)

Accordingly if kr =0

u h

r o h, = het (ho’ ko)

and if h_ =0
r

(ur + vr) h k, +h =k =nhef (ho, ko).

r
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CHAPTER 2

EXPERIMENTS IN INTEGER PROGRAMMING
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Chapter 2 : Experiments in Integer Programming

The method of integer programming described by Gomory in (ref. 1),
often referred to as the Method of Integer Forms, permits of many variations.
The most common of these consist of two operations, optimisation and
adding constraints. First of all the problem, which is formulated as a
linear programming problem, is solved as if it were a linear programming
problem, using the methods outlined in Part 1 of Chapter 1. If the
solution obtained is integer, the integer programming problem is solved.
If the solution obtained is not integer a constraint of the type
described in Part 5(i) of Chapter 1 is added. This has the property that
it does not render infeasible any feasible integer point but does make
infeasible the current optimsl (non-integer] point. After this the
problem is re-optimised in linear programming fashion, and the process

repeated until an integer solution is found.

The author's experimentation in the Method of Integer Forms
started along these lines. It originally consisted of trying different
criteria for choosing constraints of the type described in Part 5(i)
and adding them to a tableau held in the form of floating point numbers.
It was soon realised that there was more to integer programming tha?
merely choosing good constraints, Parts 2 and 3 of this chapter describe
these other problems and how they were dealt with, and Part L describes

some of the different constraints tried and compares their performance.

Firstly however we digress slightly upon the purpose of linear

programming within an integer programming method.
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Part 1 : Linear programming as & subset of

integer programming.

The optimum feasible solution of a linear programming problem
is defined by the identity of the variables which are basic in that
optimum feasible solution. However if we wish to know the values of
the variables in that solution or prove that it is indeed optimal we
have to transform the tableau of the problem by a series of pivot
operations. Thus pivoting performs two functions- firstly it gives
us the values of the variables in the solution, secondly it indicates
whether the solution is optimal and if not enables us to choose another

pivot which will carry us nearer the optimum.

There is a direct analogy with integer programming. To define
the optimum feasible solution of an integer programming problem we
need to know what constraints have been added as well as the identity
of the basic variables. However, these will not give us the value
of the variables in the solution or establish its optimality or
feasibility. (Here we use the term feasible to mean that all variables
are integer-valued as well as non-negative). To this end we use linear
programming. Eyvery time & new constraint is added a linear programming
routine is used firstly to establish the values of the variables and
secondly to determine whether they are integer or not. If they are not
the tableau enables a constraint to be chosen which will carry the solution

nearer the optimum.

We now present an example which illustrates another aspect of
iterating. When constraints are derived in the manner of Part 5(i)
of Chapter 1 they represent a lower limit on a non-negative combination
of the variables which are non-basic at that time. In other words when
a new constraint is added it will not assist the choice of any succeeding
constraints until its slack variable has been made basic by a pivot

operation.
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The problem consists of two constraints :

hx +2y < 5 2.1.1.
2x + by < T 2.1.2.

These define a convex region which contains three integer points
(0,0) (0,1) and (1,0). The feasible integer space is bounded by

the two implicit constraints x > O, y > O, and a new constraint,
x+y <1, 2.1.3.

To obtain 2.1.3 from 2.1.1 and 2.1.2 we first divide 2.1.1 and 2.1.2
by 2 and round down the right hand sides to the nearest integer in

the manner of Part 5(ii) of Chapter 1. These constraints then become

2x +y < 2 2.1.4
x+2y <3

If now we add these new constraints, divide their sum by 3, and round

down the right hand side to an integer value we obtain 2.1.3.

We have derived 2.1.3 from 2.1.1 and 2.1.2 by & two stage process
and we shall show that it cannot be done in a single stage. For example

if we add 2.1.1 and 2.1.2 and divide the sum by six we obtain
x+y<a2, 2.1.6

Part 5(ii) of Chapter 1 showed that any constraint generated by the
Method of Integer Forms could de obtained by taking a linear combination
of the original inequalities and any additions to them and rounding all
coefficients down to integer values. But before additional constraints
can be used to generate any further constraints their slack variables
must first be eliminated from the basis, i.e. a pivot operation must

be performed.



We may write a linear combination of 2.1.1 and 2.1.2. as

A bx v 2y) + A+ pdx+ by) A5+ A+ )T 2.1.7

where A > O and A + p > O, but otherwise are not restricted. Simplifying,

2.1.7 becomes
(r +2 u) x+ (6 + b4y )y< 120 + Tu
We now attempt to find & number, v, such that

[6)\ + 2]]; x + [6A + hl]! v < [12x + 11]!
Vv v

v

is identical to 2.1.3. We observe by comparing right hand sides that
2v > 121 + Tu 2.1.8

In order that the coefficient of x might be at least 1 we have

v < 6l + 2

which to be consistent with 2.1.8 requires that u < O,
On the other hand for the coefficient of y to be at least 1 we have

the condition.
v < 61+ by

which to be consistent with 2.1.8 requires u > O.

As u cannot be simultaneously < O and > O we have shown 2.1.3
cannot be obtained directly from 2.1.1 and 2.1.2. In particular we
note that having found an optimal and feasible solution in the linear
programming sense, one cannot expect to find the integer solution by

adding all possible constraints,
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Part 2 : The linear programming structure of the experimentsl programmes

The author started experimenting with integer programming using
an Algol programme received from Dr. J.C. Wilkinson of Liverpool
University. This used the Simplex Method of linear programming to
find a linear programming optimal solution and then added a constraint
of the type derived by Gomory and described in Part 5(i) of Chapter 1.
The cycle of linear programming optimisation and adding a constraint

was repeated until an integer solution was found.

It was not long before problems of accuracy were encountered, and
the purpose of this part is to present the difficulties met and the

methods used to overcome them.

The first problem arose because the programme worked in floating
point. Every constraint added contained coefficients of the form
[%iij - aij’ and these usually implied a loss of accuracy. This loss
of accuracy was evident because every iteration the value of the
determinant d, calculated as the product of the pivot elements, was
printed, and this value often lost any resemblance to an integer,
although it was supposed to be oneﬁ. This loss of accuracy often
prevented quite small problems being solved, for example the 4 x 5

Problem no. 10. 1 in Appendix B.

The remedy adopted to tackle this problem was to rewrite the
programme using integer arithmetic throughout, employing the algebra
of Part 2 of Chapter 1. This introduced the restriction that the
original equations must have integer coefficients and that any constraints
introduced during solution must represent constraints in the original
space with integer coefficients (see Part 3 of Chapter 1). However,
it is usual to adopt such restrictions in integer programming as it

means that all slack variables are integer valued.

The use of integer arithmetic gives rise to another problem, that
of integer overflow. There are two ways of approaching this problem.
One is to attempt to avoid it by keeping the elements of the tableau
as smaell as possible; the other is to wait until it occurs or is about
to occur and take action then. Eventually the latter approach was taken.
Checks were made for overflow while pivoting and if overflow occurred
the tableau was restored to its form before the pivot operation was
started. However, this approach was not taken immediately because the
Algol language contains no built-in facilities to inform the object-

brogramme when overflow occurs. KDF9 Algol tests for overflow but
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terminates the programme if it occurs. To test for overflow in
Algol it would be necessary to perform every calculation twice: first
in real arithmetic to check that the answer is in range, secondly in

integer arithmetic to retain accuracy.

It was considered that there was a clear case for using User Code
to carry out pivot operations, This raised difficulties of its own
for the Algol interpreter normally used for developing programmes did
not accept user code bodied procedures. Instead the compiler had to
be used and this only afforded one compilation per day in place of
three using the interpreter. As a result the implementation of checks
for overflow was postponed and attention turned to a techniques
designed to lessen the chances of overflow. This technique was a

method of scaling equations during solution of a problem.

To a large extent the size of the coefficients in a tableau of
the form 1.2.9 are proportional to the size of d, and efforts to reduce
the size of the coefficients were directed towards reducing the size
of d. One way to do this is to scale the original equations before
starting to solve a problem, that is to eliminate any common factors in
them. The reason for this is that d is the determinant of part of the
original matrix, and removing a common factor from a row of the original
matrix will also remove it from d provided that this row has been
incorporated into the determinant. This will be so if the slack variable

associated with the row has been made non-basic.
As an example consider the following problem:

minimise = = 2x; = 3xp
su bject to 2x; + bxp; < 6
3xy + 3x3 <5

Writing x3 and x, for the slack variables we write this in tableau

form and perform one pivot.

1 X] X3 1 X3 X3
zZ 0o =2 =3 va 18/4 =-2/k  3/4 2.2.1.
x3 6 2 e Xo 6/L 2/k  1/h
Xy 5 3 3 x, 2/b  6/4 =3/h

If we were to scale the first inequality by 2 the same pivot operation

would become
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1l X1 X2 1 X x3
Z 0 -2 -3 z 9/2 -1/2 3/2 2.2.2
x3 3 1 2% = x, 3/2 1/2 1/
Xy 5 3 3 xy 1/2 3/2 =3/2

A1l the numerators save those in the last column are now half the

size they were previously.

All this is fairly obvious, but what is not so obvious is that
this scaling can be done automatically at times other than before
starting the process of solution. The transformed tableau 2.2.1
has @ = 4 and 4 possible constraints. They have coefficients:

(=2, -2, -1), (0, 0, -2}, (-2, -2, -3}, (0, 0, 0).

We note the second of these has zero constant term and if we append

it to the transformed tableau 2.2.1 and perform a pivot we obtain

1 b 41 X3 1 X] s
z 18/h  =2/4  3/4 z 9/2 =1/2  3/2 2.2.3
X 6/k4 2/h  1/h4 - xo 3/2 1/2 1/2
Xy 2/b  6/4 -3/k x, 1/2  3/2 =3/2
s -0 -0 -2/L* X3 0 0 -2

This is now the same as the transformed tableau 2.2.2 except that

it has an extra row.

There was bound to be a constraint with zero constant term because
2.2.1 could produce four constraints. As it was equivalent to 2.2.2
the constant terms had to be the same and so any constraint could only
have two values for the constant term: =2 and 0. This means there
must be at least one constraint with zero constant term apart from the
null constraint (O, 0, O0}). For as there are four constraints but only
two constant terms there must be at least two distinet constraints
with the same constant term. If these are subtracted they generate a
constraint with zero constant term. For example (-2, =2, =1)

subtracted from (-2, -2, -3) will generate (0, 0, -2)

If it is possible to scale the original equations it is of course
better to do it at the start rather than using the method just outlined.
However the method has value as it is often possible to use it even
when the original equations have no common factor. An example of this is

given is figure 2.2.1. on page 55.

Another aspect of scaling is that besides reducing the size of the

coefficients in the tableau it reduces the number of possible constraints.

Noting that x3 = 2x} as can be seen from a comparison of 2.2.1 and 2.2.2
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we can write the two non-trivial constraints of 2.2.1

as 2x; + x3 > 2 and 2x; + 3x3 > 2,

or 2xj + 2x} > 2 and 2x; + 6x}§ > 2.

Tableau 2.2.2 will only produce the first of these, and the first is
clearly more restrictive than the second. This is also illustrated
in figure 2.2.1.

It is believed that reducing the number of constraints in this
way will increase the proportion of 'good' constraints and hence the
likelihood of choosing one. Figure 2.2.1 compares some of the correspond-
ing constraints in the tableaux before and after sealing. This com-~
parison also suggests that a good choice of constraint is more likely
to result from a scaled tableau than an unscaled one.

However the last constraint of figure 2.2.1 has a scaled version
that contains a positive coefficient and thus excludefﬁpart of the
space which no constraint of the form we are considering would exclude.
This suggests that the benefits of scaling from the point of view of
choosing constraints would be difficult to prove. In any case it

presupposes that the choice of constraint is random.

Let us state the alyébra of scaling more formally. If at some
point during solution the constant terms are pi/d and the 1 and d have
a common factor, say g, and furthermore the tableau can generate d
possible constraints, then we can scale the tableau. For any constraint
can be derived by taking an integer linear combination of the rows of
the tableau and deriving the remainders modulo 4. Thus each constraint
will have a constant term which is a multiple of g. As there are d
constraints but only 4/g constant terms it follows there are at least
two distinct constraints with the same constant term. The difference
of these constraints will generate a constraint with zero constant term.
Adding this to the tableau and pivoting in the normal way will reduce

the value of 4 without altering the values of the basic variables.

In practice such constraints were derived by searching the tableau
for a constant term whose numerator pi, had & factor, g, common with 4,
but whose associated row also contained a coefficient whose numerator
aij did not contain the factor g. This row was then multiplied by the
integer d/g and this generated the constraint.
To return to the original purpose of scaling. Scaling was introduced

partly to assist the choosing of a cut (the constraints used in scaling are
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Figure 2.2.1: An example of scaling
Minimize 10x; = 11lx,
Subject to =12x; + 109x, < 420

xy + Xy £ 20

In tableau form:

1 X Xy 1 X1 Xs
z 0 10 =111 z 46620/109 =-242/109  111/109
x3 k2o -12 109% Xo 420/109 -12/109 1/109
Xy 20 1 1 Xy 1760/109 121/109% =1/109
1 Xy X3
z 460 2 1
x, 60/11 12/121 1/121
x; 160/11 109/121 -1/121
s1 0 -11/121 -11/121%

Constraint generated by taking 11 times the x, row.

This gives

1 Xy S)
z 460 1 11
X 60/11 1/11 1/11
x; 160/11 10/11 -1/11
X3 0 1 -11

The extra constraint is equivalent to =x; + 10x, < 40

in the original tableau. In terms of the optimal tablesu it can be
written =x, -x3 + 1lls; = 0, i.e. x4 + x3 is a multiple of 11.

One is in fact adding the two original constraints to get -1lx,

+110x, < L4O, and then dividing it through by 11.

The two tableausdo not in general generate the same constraints.

For example,

=2 > ~12 —533 becomes :§¢ :;xu :;31

11 = 121%% 1213 11~ 1174 11
=5 =23 =12 =5 =1 =12
11 2 121754 12173 11 & 11+ T11°1
=6 7120 =10 =6 ,-10 . -10_
11 = 121°% 121%*3 11 = 11°% 11°!
=6 =109 =120 -6  +1 =120
11 = 121%% 191%3 11 2 1% 110
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not cuts in the strict sense of the word), and partly to try and avoid
overflow. To both these ends scaling was carried out every time a new

rational optimum solution was reached.

This enabled a larger type of problem to be tackled and solved.
Inevitably problems arose which were abandoned because of overfloy,
and eventually a machine code subroutine was written to perform the
pivot operation and test for overflow, and if necessary reconstruct the
matrix. Rather than add a cut at a non-optimal solution an attempt
was made to scale the matrix, and only if this was unsuccessful was a
cut generated. As will be seen from the tables in Appendix C even this
procedure failed. Once (Problem 1: programme BH9) overflow occurred
when pivoting on a cut, and twice (Problem 6: programmes BHE and BHF)
overflow occurred when 4 was equal to one and no cut could be added.
These were rare happenings and no attempt to get past the difficulty
was made. The difficulty could have been overcome by searching for
alternative pivots or introducing rows of the sort Gomory generates

in his all-integer algorithm.

At the same time as the means of combating overflow were being
developed the author was suspecting more and more that the programme
was prone to looping or circling. The evidence for this was that a

series of rational solutions had the same value of the cost function.

Looping becomes possible when there are zero coefficients in the
cost function. For if a pivot is chosen from a column with a cost
coefficient of zero, the cost function will not change. If a succession
of such pivots returns the tableau to a previous state it will continue
to do so ad infinitum. There are two sorts of looping; one can happen in

linear programming and the other in integer programming.

Looping in linear programming is moving from one infeasible or
non-optimal basis to another and never reaching a feasible or optimal one.
Examples of this have been constructed by A.J. Hoffman and E.M.L. Beale
(ref. 4, pp 229-230).

Looping in integer programming is moving from one feasible and
optimal solution to another and never reaching an integer one. At each
rational solution a cut is added. After one pivot the slack variable
associated with it will be made non-basic, but if after two or more
pivots, or after further cuts, the slack variable re-enters the basis

and has a positive value at the next rational solution, it will be
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discarded as redundant. An example of this is given in figure 2.2.2.

Although there was no direct evidence of looping when the
programmes were being developed, they often gave the appearance of being
lost in a maze of figures. When they eventually got out it was more

by luck than design}

It might have been possible to avoid the danger of looping by
revising the rule of discarding previous cuts, but the systematic
approach of lexicography was used instead. (see Chapter 1, Part 6).

At first the simple form using the tableau of equation 1.6.2. was used.
Later, when the cuts being generated became sensitive to the order in
which the basic variables were held, the full lexicographic method

based on the tableau of equation 1.6.3 was used.
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An example of looping in integer programming
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O -
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Rule for choosing a pivot row:
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Figure 2.2.2 continued

8.
s sy z
0 0 1 c
0] 0 -1 Z
-1 0 0 S
1 0 0 Sy
2 1/18 0 Sg
-2 -1/18 0O Sg
0 1 0 Sy
1 1/36 0 y
0 ~1/36 0 X
-3% -1/3 © s}
3 1/3 0 s7
Sg Sg 2
0 0 1
0 0 -1
1/9 2/3 0
-1/9 -2/3 0
-4 -6 0
0 1 0
L 6 0
0 -1/2 0
8 =-1/9 -1/6 0O
1/9 2/3 0 drop
1 0 0

largest "right hand side".

choosing a pivot column:

necessarily integer) solution

[ VN eNoN

-1/3

2k
1/3
2/3

2

S8

0

0
-1/3

1/3

2/3
-2/3

1/3

-1/3
1

Sy

0

0

1/9
-1/9
_1/6*

1/6

[eNoNoNoNeoNoNoNONON I |

-1/12
-1/36
1/9

0

take fractional parts from the row with

most negative "right hand side"
in the event of a tie: first column

when it ceases to be binding at an optimal

The problem will cycle interminably since tableau 9 differs from

tableau 1 only in the order of the rows, and the order of the rows is

immaterial in this particular example.
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Figure 2.2.2. continued

The tableaux represent an attempt to solve the problem:

Minimise A

Subject to
z >0 i.e. z=z = 0
x+y <3 x+y+s =3
x+y>1 X =y + sy =-1
36x < L8 36x + 53 = U8
36x > 24 -36x + sy =-2L
2y <3 2y + s = 3
2y > 1 -2y + sg =-1
9x =3y <7 9x=3y + s7 =7
9x =3y 2 5 =9x+3y + sy =-5

In the following diagram the basic solutions encountered
in the loop are marked with a cross and numbered.

¢

P
B
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Part 3 : Summary of the structure of the experimental programmes

If one took all the variations of programme described in Part 2
and multiplied them by a representative number of methods for choosing
cuts one would end up with hundreds of progremmes. In most of the
programmes presented in Appendix D we have chosen to fix the methods
used to find linear programming solutions and combat overflow in order
to provide a valid comparison of different methods of choosing
constraints. The two exceptions are programmes BGD and BH6 but even

these differed from the rest only a little.

In consequence we present only one programme in full, and this is

programme BHD. We now present a brief description of it.

The form of the data is specified at the start of Appendix D.
After it is read in it is augmented by a negative unit matrix to enable
every variable to appear as basic, and facilitate the use of the lexico-
graphic method desc¢ribed in Part 6 of Chapter 1. This matrix is placed
above the constraints contained in the data unless the data specifies

otherwise.

Two linear programming procedures are used to find the optimum to
the problem in rational numbers. The first is Intsimp which performs
the Simplex Method, eliminating any artificial variables and optimising
the tableau in such a way as to obtain the lexicographic optimum. This
is followed by Dintsimp which performs the Dual Simplex Method, iterating
until the constant terms are non-negative while maintaining lexicographic
optimality. As mentioned in Part 1 of Chapter 1 these procedures enableg
the introduction of artificial variables to be avoided except when

equalities are present.

Once a feasible and optimal solution in rationals is found procedure
Scale is used to scale the equations as described in Part 2 of this
Chapter by adding constraints with zero constant terms, if any can be
found. If after this the determinant, d, is equal to 1 the problem

is solved.

At this point procedure @onstraint is used to choose a constraint
and add it to the tableau. Iteration then starts by returning to

procedure Dintsimp to obtain a new feasible and optimal solution.
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During pivoting a test is made for overflow. If it occurs the
tableau is restored to its form before attempting to pivot.
Procedure Scale is entered to try and reduce the value of 4. If it
is successful another attempt is made at pivoting. If scaling is
unsuccessful, or overflow occurs again the tableau is treated as a
scaled feasible optimal solution, i.e. procedure @onstraint is used
to generate another constraint. Following this another attempt is

made to reach a feasible optimal solution.

Figure 2,3,1 presents a simplified flowchart of programme BHD.



Figure 2.3.1.
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Start

Read data and set
up matrix including
a negative unit
matrix so that all
variables appear

in the basis

Optimise the problem
using procedure
Intsimp

An outline flowchart of programme BHD.

unbounded .
— failure

Y

Find dual optimal
solution (= primal
feasible) using
procedure Dintsimp

overglow i

)

Scale the tableau
using procedure
Scale ( called from
procedure Dintsimp)

A

Vﬁ] successful

Scale

Attempt to
scale tableau
using procedure

unsuccessful

Is determinant = 1 ?

N

no
A\ 4

.y

Choose a constraint
using procedure
Constraint

I

,

yes %

print out

answer and
terminate

problem
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Part 4 : Description and comparison of the experimental programmes

Appendix C compares the performance of the programmes in appendix D
when solving the problems contained in appendix B. The purpose of
this part is to describe these programmes and to comment on their

relative performance.

With the exception of programmes BGD and BH6 the programmes differed
only in one procedure; procedure constraint. For this reason only one
progremme is given in full, and it is followed by the versions of procedure
constraint used in the other programmes. As for programme BH6, this

differed also in integer procedure pivot and the differing version follows

the procedures constraint. Programme BGD differs from BHD in one line
only and this is given in a comment on page /$8. With the exception of
BGD and BH6 the main body of the programmes is as described in the
previous part. This part is concerned mainly with the various versions

of procedure constraint.

As programmes BGD and BH6 are special cases the other programmes
are discussed first. While the reader is entitled to his opinion, the
author considered that of these other programmes BHD was the most consistent
as well as often being the most efficient, particularly in the larger
problems. For this reason BHD is described first, and the other programmes

compared with it.

At the end of this Part figure 2.4.1 gives examples of the various

methods of choosing constraints.

(a) Programme BHD. A cut is generated from the first row which

has a non-integer right hand side. This row could be the cost function.

Suppose the right hand side is aiO/D, and that Mo = |%iol+ fio, where
D D D
O< f. < D, 2.4.1
io

This will directly yield a constraint of the form

f! x> f, 2.h.2.
- == Tio

If there is an integer,u , such that

f. <puf. <D 2.4.3
io io

we can multiply 2.4.2 byy and take fractional parts once again.
Taking fractional parts the second time will not alter the right hand
side, because of 2.4.3, but might alter parts of the left hand side.
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So the new constraint is

LA *

x>wu £, , vhere £, <y £, 2.4.4,

Ei
The cut 2.4.4 is at least as binding as 2.4.2.
The value of u chosen is the largest possible.
In the notation of Algol:

p=1(D~-1) ¢ fio 2.4.5

A constraint of the form 2.4.2 has a special property. When
the tableau is optimal and the constraint is taken from the cost
function it has the effect of reducing the value of the cost function
at least to the next integer below. To show this we denote the positive

fractional part of an element of the cost function, aojﬁn, by foj/D:

Boi = %] + foy 2.4.6
D D D

A constraint taken from this will have coefficients -foj/D. If we

now pivot on the j th element of the constraint the cost function will

change in value from aOO/D to

8ol + Too - J"‘oo [[l:aoj:] + i.l) fg_,l) 2.h.7
D D D D D D

which will be less or equal to [%oo/é] according as [%ojlé] is greater

or equal to zero.

If the cost function is integer-valued the constraint will be taken
from the first row that is not integer valued. If we denote this as
the i th row and the pivot column as the j th column, as before, we can
use the same argument. If [éij/é] is greater or equal to zero aio/D
will be reduced at least to the next integer below. If however
[éij/é] is negative it follows from our use of the lexicographic method
that there will be a coefficient in the j th column in some row before
the i th which is positive. The constant term of this row will then
decrease in value. If it does not decrease as far as the next integer

value below it only needs one more constraint to bring this about.

We thus have outlined an algorithm for making a systematic search
for an integer solution. The argument is taken further in Chapter 3.
The constraints added by programme BHD were of the form 2.4.4 where
is as defined in 2.4.5. As 2.4.4 is at least as binding as 2.4.2 it
has similar properties, the only difference being that aio/D can be

reduced below [?io/é] even when [%ij/D] is zero. Gomory suggests
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this method in (ref 1, p 290).

(b) Programme BHM. This is similar to BHD in that the constraint
is generated from the first row with a non-integer right hand side,
but differs in that no multiple of the row is generated, the constraint
is taken as it stands. This is the method for which Gomory constructed

a finiteness proof in his paper (ref 1, p. 287).

In spite of the fact that at any given stage BHD will produce a cut
at least as good as BHM, there was one problem (problem F5) in which
BHM introduced fewer cuts than BHD. In two others (problems 7 and Eb)
BHM used more cuts but needed fewer pivots. While it is expected that
the better the cut the more pivots are needed to reoptimise it would be
surprising if experiments were to advocate deliberately choosing weak
constraints. The examples show up one avoidable weakness of BHD, namely
that if, in the notation of 2.k.lh, £ = £, , then the constraint will
have a common factor and one or more extra constraints and pivots may be
needed to eliminate it. However, in the majority of cases BHD took

fewer pivots, fewer cuts, and less time.

(c) Programme BH9. This was a variation of BHD, the difference
being that the search for a row with non-integer right hand side started
with the first basic varieble instead of the cost function. The object
was to try and avoid zeros creeping into the cost function. The programme
ended prematurely with two sets of data (problems 1 and 7) when overflow

occurred immediately after adding a cut.
On the remaining sets of data its performance was similar to that of BHD.

(d) Programme BHQ. This, like BHD, generated a constraint from
the first row with a non-integer right hand side. The Euclidean
Algorithm was used to generate a constraint with the maximum possible
right hand side. If the original right hand side is denoted by aio/D,

then the generated one is
D-hcf(aio, D)
D
When a, and D are mutually prime the method obtains the unique constraint

with right hand side (D-1)/D.

In three problems (problems 3,9 and Bli) BHQ was marginally better than

BHD. In most cases, however, BHQ performed noticeably worse.

(e) Programme BHN. This was attempt to imitate the algorithm of
Martin (ref 10). It first of all selected the row whose right hand side

had the largest fractional part. It derived a constreint from this row,
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‘without taking any multiple of it, and calculated the pivot column.
However instead of pivoting it used the Euclidean Algorithm to

determine the correct multiple of this constraint to make the previously
calculated pivot element a minimum, this being usually minus one. The
constraint calculated from this multiple of the original constraint was
added and reoptimisation performed in the same way as in the other

programmes.

This was not a very good approximation to Martin's algorithm, the
main point of which was that it did not use the lexicographic duasl simplex
method. Instead it used the freedom of choice of optimum solution when
there are zeros in the cost function to try and find an optimum with a

small value of the determinant, D.

It did this by pivoting on the element mentioned in the previous paragraph
which was calculated to be as small as possible. This entailed use of a
composite algorithm. It is discussed more fully in Chapter 4. Because
BHN bore little resemblance to Martin's algorithm it was only tried on a
small set of examples. BHN was superior to BHD on problems 10. 1 to

10. 4 and 8 and 9, but considerably inferior on the more exacting

problems 6 and 7.

(f) Programme BHP. The idea behind this programme was to take some
of the ideas in Martin's algorithm and modify them in the context of the
overall lexicographic method. It was also, in a sense, an opposite of
BHQ. Whereas BHQ generated a large value for the right hand side of the
constraint, BHP choose the column which was lexicographically smallest and
which was eligible for pivoting, and generated a constraint whose coefficient

in this column was as small as possible.

In detail, BHP first located the first row in the tableau with a

non-integer right hand side. It then made a note of the columns which
had non~integer elements in this row. Any constraint generated from this
row would have zero coefficients in the remsining columns. Of these

selected columns, the one which was lexicographically smallest was chosen.
(A particular column is lexicographically smaller than another column if,
when comparing the elements of the two columns from the top downwards, the
first element of the first column which differs from the corresponding
element of the second column, is smaller than that element). The element
vhich lay in the chosen column and row was then subjected to the Euclidean
Algorithm to find a multiple of this row such that the constraint produced

from it hed assmall an element as possible in this chosen column.  This
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constraint was added and the tableau reoptimised. The element on which
all the attention had been placed was not necessarily pivoted on. The
sort of lexicography being used had only one optimum and was independent

of the individual pivots used in obtaining it.

In spite of their similarity BHN and BHP differed considerably in
the examples. On the whole BHP was better than BHN. When BHP was
compared with BHD it was not obvious thaet BHD was a superior programme.
Of the 24 examples solved by both BHP and BHD, BHP had fewer pivots in
12 of them and BHD fewer pivots in 9. As for the number of cuts the
situation was reversed; BHP had fewer in 8 problems, and BHD fewer in
12. Most of these examples only differed between BHP and BHD by a very
few pivots. If our attention is restricted to those examples for which
the number of pivots taken by BHP and BHD differed by 10% or more we find
BHD had fewer pivots in 6 examples and BHP fewer in 5. If our attention
is restricted to examples where one programme took more than twice as many
pivots as the other there are only two, and in both of them BHD took fewer
pivots. They are problem 2: BHD 45 pivots, 6 cuts; BHP 378 pivots, 75 cuts;
and problem 7: BHD 129 pivots, 30 cuts; BHP 318 pivots, 113 cuts.

There is not really enough evidence to say BHD is preferable to BHP.
All one can say is that there are indications that BHD is more consistent.
If the pivots and cuts for all 2L examples are added up, thus giving
greater weight to the bigger problems, we find BHD has a total of 3549
pivots and 290 cuts, and BHP & total of 4092 pivots and 471 cuts. It is
interesting to note that BHD's ratio of pivots to cuts is 12.2:1, and BHP's
8.7:1.

(g) Programme BHE. This programme chose constraints by 'the crudest
possible criterion', to quote Gomory (ref 1, p.292) that is it examined
the right hand side of each equation in the tableau, and chose the one with
the largest fractional part. The constraint was added without any

modification.

In one problem (problem 6) the run had to be abandoned. Integer
overflow occurred and as D was equal to one at the time the usual
avoiding action of adding a cut was not possible. In two problems

(10. 2 and F4) BHE took fewer pivots than BHD, but in 11 others it took more.
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(h) Programme BHF. This bore the same resemblance to BHE as BHD
did to BHM. For each row with a non-integer right hand side, aio/D,
we calculate the largest multiple, Uy of the fractional part, fio’ such
that uifio <D (see equations 2.4.1 to 2.4.5). The row which has the
largest value of uifio is multiplied by its My and the constraint is

taken from this multiple.

BHF took fewer pivots than BHD in 6 problems, and BHD fewer than
BHF in 9. However BHF never took less than 33% fewer pivots than BHD, whereas
in one case (problem 6) the run of BHF had to be abandoned (for the same
reason as BHE) after taking four times as many pivots as BHD, and in another
case (problem 7) BHF took 1086 pivots and 451 cuts as opposed to BHD's
129 pivots and 30 cuts. BHD would seem a better programme than BHF

mainly on the grounds of consistency.

(i) Programme BH6. The purpose of this programme was to demonstrate
the advantages of using a lexicographic system. The programme was the

same as BHF except for integer procedure pivot, the procedure that chose

the pivot. Normally if two columns had the same ratio of objective
function coefficient to pivot row coefficient the first and if necessary
subsequent constraint rows were used to break the tie. In BH6 the method
of breaking the tie was simply to take the first column. There was one
place in the programme where this rule was broken. In many linear
programming suites the initial primal optimisation is performed in two
phases; first the artificial cost function is optimised and secondly the
proper cost function. A lexicographic method allows these two optimisations
to be done in one phase. Accordingly the initial optimisation when
optimising the artificial cost function broke any ties by reference to the
proper cost function. In subsequent optimisations only the proper cost

function was used when choosing pivots.

To the surprise of the author this programme actually went into an
infinite loop in three of the problems. Looping in linear programming
is regarded as something which is theoretically possible but which never
happens. The explanation offered for this discrepancy is that BHF was
8 programme based on a rigorous lexicographic system and that BH6 was
generated by relaxing just one part of this system. It still retained
the part of the system whereby every variable in the initial tableau was
placed on the right hand sides of the equations and their relative order
never changed. It also retained the use of integer arithmetic. This
in particular was intended to make computation exact and avoid such things

as rounding error. In linear Programming the use of floating point
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and its associated inexactitude often means that two numbers which
are supposed to be identical sre not, and this presents an automatic

method of breaking ties.

Looping starts when the tableau of numbers used in solving a
problem is identical to a previous one. In BH6 the identity of
variables on the right hand side was always the same, and the numbers
in the tableau were always correct. It was much easier for the programme
to repeat itself than if these other things had been allowed to vary.

It would seem to suggest that no rigour is better than some!

(j) Programme BGD. This programme was based on BHD. When it
has a cost function consisting entirely of ones, as with the 'covering
theorem' problem (problem 6) it worked exactly the same as BHD. It
was designed to exploit one of the advantages and avoid two of the
disadvantages of BHD. The advantage was that BHD regards every row as
a cost row which is used to break ties in the previous row, and the first
disadventage was the difficulty of ordering the rows in the tableau to
avail oneself of this advantage. The second disadvantage was that its
performance was considerably affected by the size of the cost function.
It was found that when the cost function could be divided through by a
common factor (compare problem 10. 1 with 10. 2 and problem 10. 3 with

10. 4) there was usually a saving in time.

When an anai%ous operation was performed on a cost function without
a common factor there was a similar result. The cost function of
problem 1 was divided through by 7.5 and each coefficient rounded to the
nearest integer. (The number 7.5 was chosen to try and minimise the
accuracy lost by rounding). BHD solved this modified problem with 693
pivots whereas it was still a long way from solving the original problem
after 35k46. More by luck than anything the optimum point of the modified

problem was the same as that in the original problem.

BGD was an extension of this principle. It started by setting up
the tableau used by BHD. It then preceded the cost function by a row
obtained by dividing the cost function by 2 and rounding to the nearest
integer. This in turn was preceded by a row obtained by dividing the
cost function by 4 and rounding. The process was continued using
successive powers of 2 until the coefficients were all zero. The problem
was solved using the row corresponding to the highest power of 2 as cost
function and using successive rows as tie breakers. When a solution was

found the value of the original cost function was printed out. As this
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was not necessarily the optimum the original cost function was then
constrained to be at least one better than the solution obtained.

If another solution was found the same process was repeated, if the
problem was then infeasible it was thereby established that the last

solution found was the optimal.

The greatest success of BGD was that it solved the Markowit?’and
Mann problem (problem 1) in four minutes whereas BHD was still a long
way from the solution after 30 minutes. Generally there was not much
to choose between BGD and BHD. Using the number of pivots as criterion
for choosing between BGD and BHD, BGD obtained the optimal solution first
in 13 problems as opposed to BHD's 9, but by the time BGD had proved the
solution optimal it was only ahead in 11, as opposed to BHD's 10. Using
time as the criterion BGD obtained the solution before BHD in 11 problems
as opposed to BHD's 12, but after proving optimality was only ahead in 8,

whereas BHD was ahead in 15.

BGD took longer to perform a pivot operation because the tableau contained

more Irows.

Perhaps the main point of interest concerning BGD was that it
produced a feasible solution fairly quickly. In only three problems
(B4, A5, C5) did BHD produce a solution before BGD, and even thenBGD
took only 10% longer in time to produce a solution, which in those cases

happened to be the optimum.

BGD, as well as BHD, is discussed in greater detail in Chapter 3 and

a numerical illustration is given in Part 4 of that chapter.

(k) Story and Wagner (ref 11) used a form of Gomory's All-integer
algorithm (ref 2) to solve a formulation of the 3-machine job=-shop
sequencing problem. They ran several sets of data of which problems
Al to F6 are some. Their results, which give only pivots, are listed for

comparison.

There was a remarkable correlation between the number of pivots taken
by Story and Wagner's programme and BHD. Out of 18 problems run, which
took pivots varying in number from 22 to over 1000, in only three cases
did one programme take more than twice the number of pivots the other did.
In two cases the ratiof was nearly twice. This makes problem A5 a strange
exception to the pattern. BHD needed no cuts to solve it, only 35 pivots.
It was a simple linear programming problem. However the all-integer

algorithm took 613 pivots.
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Out of 18 problems BHD took fewer pivots in 10 of them.
However this is not a valid comparison as a pivot operation in the
all-integer algorithm requires less arithmetic than in Gomory's other

algorithm, as used in BHD.

(1) This last section is concerned not with a programme for solving
integer programming problems but rather with a method for enabling an

existing programme to obtain approximate solutions to a problem.

One of the ideas behind programme BGD was to be able to obtain approximate
solutions to a problem comparatively quickly by simplifying the cost
function. It was realised however that when the artificial cost function
contained zeros that were not in the original cost function they might
cease to be valid approximations to the original cost function. This
was considered to be the case in Problems A4 to F6 which are described
in the first half of Appendix B.  Although the variables representing
the slack time on machine III have coefficients of 1 in the cost function
which vanish when divided by anything greater than 2 they are vital to the
formulation of the problem. When they are omitted from an artificial
cost function that function represents not the total idle time on machine

III but merely the idle time of machine III before it starts its first job.

It was argued that in this case it would be more effective to scale
the whole problem and not merely the cost function. To test this out the
numbers used in problems A4 to F6 were scaled by dividing each by 3 and
rounding to the nearest integer. This scaled problem was solved using
BHD and in 15 cases out of 18 took fewer pivots than the original problem.
The answers to the two problems never differed by more than 2. BGD
obtained an answer before the scaled problem in T cases out of 12, but

this first answer was out by as much as 5 in some cases.
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Figure 2.4.1 : An illustration of the methods described in
Part 4 of Chapter 2.

The problem : Maximise hx + 13y
subject to 3x + Ty <11
2x + 9y <12

We denote the slack variables by u and v and write the problem

in tableau form

1. 2.
1 X Yy 1l X v

& 0 -b o -13 & 156/9 =10/9 13/9
11 3 T u 15/9 13/9% -=7/9
12 2 hd Y 12/9 2/9 1/9

3. rational solution
1 u v
2k2/13  10/13 11/13
X 15/13 9/13  ~=7/13
14/13  -2/13  3/13

The constraints generated by taking the fractional parts of these rows are:

(8) -8/13 =10/13 =-11/13
(x) =-2/13 -9/13 -6/13
(y) =1/13 =11/13 -3/13

The whole group of thirteen constraints is as follows, the first one being
generated directly from the row corresponding to y and the remainder being

successive multiples of it.

(-1/13, =-11/13, -=3/13) (-8/13, -10/13, =11/13)
(~-2/13, ~=9/13, ~-6/13) (-9/13, =8/13, -1/13)
(-3/13, -7/13, -9/13) (-10/13, =-6/13, =k/13)
(=4/13, -5/13, =12/13) (-11/13, -b4/13, -7/13)
(-5/13, =3/13, =-2/13) (=12/13, -2/13, =10/13)
(-6/13, -1/13, =5/13) (o 0 o )

(-7/13, -12/13, =8/13)
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Figure 2.4.1 : continued

(a) Programme BHD.

The first row with a non-integer constant term is the cost function.
Taking fractional parts we obtain the row (-8/13, =-10/13, -11/13).
As 8 is greater than 13/2 we cannot improve the constraint and so we

add it to the tableau and perform one iteration:

3. =& =18 8/13 4. =& = 18

1l u v 1 u s
z 2hk2/13 10/13 11/13 8 18 0 1
b d 15/13 -~ 9/13 ~=7/13 X 17/11 13/11 -7/11
y 14713 -2/13 3/13 Y 10/11 -4/11 3/11
s -8/13 =10/13 =-11/13% v 8/11 10/11-13/11

Note that if the cost row had given us for example the row (-3/13,
-7/13, -9/13) we would have improved it by taking the largest multiple,
u , of it such that 3u < 13. This multiple is 4, so we would have
multiplied through by 4 to get (-12/13, -28/13, =-36/13). Taking
fractional parts of the negative of this gives us the row (-12/13, -2/13,
-10/13).

(b) Progremme BHM.

This produces a constraint by taking factional parts from the first
row with a non-zero constant term. No multiple of it is considered.

In this case it produces the same constraint as in (a).
(c) Programme BH9.

We choose the first row after the cost function with a non-integer
constant term. This is the row corresponding to x and it has fractional
parts (-2/13, -9/13, -6/13). We improve it in the same way as BHD and
multiply it by -6 and take fractional parts asgain to give (-12/13,

-2/13, =10/13). If we add this to the tableau and pivot we have

3. & =18 8/13 L., & =17 6/10

1 u v 1 u s
& 242/13 10/13 11/13 176/10 6/10 11/10
x 15/13 9/13 ~7/13 x 18/10 8/10 -7/10
y 1413 -2/13 3/13 Y 8/10 =-2/10 3/10
s =12/13 -2/13  =10/13% v 12/10 2/10 =13/10

R

(d) Programme BH@
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Figure 2.4.1 : continued.

We pick the first available row which is in fact the cost function.
Teking fractional parts we obtain (-8/13, -10/13, -11/13). Integer
procedure euclidalg tells us that 5 x 8 = 1 (mod 13) and so (13 - 5) x 8
=8 x8 = 12 (mod 13).

Multiplying the row by -8 and teking fractional parts agein we obtain
(-12/13, -2/13, -10/13). This is the same constraint as produced in (c).

(e) Programme BHN.

We select the row whose constant term has the maximum fractional
part and work out the constraint of fractional parts. This gives us
constraint corresponding to the cost row which is (-8/13, -10/13, =11/13).
If this constraint were added as in (b) the pivot column would have been
the last. We derive the constraint with coefficient ~1/13 in the last
column. Integer procedure euclidalg tells us that 6 x 11 = 1 (mod 13)
and so we multiply the above constraint by -6 and take fractional parts
again to obtain the row (-9/13, -8/13, -1/13). Incorporating it :

3. =18 8/13 L., 8 =17 6/8

1 u v 1 s v
= 2k2/13 10/13 11/13 s 142/8 10/8 6/8
X 15/13 9/13 -7/13 x 3/8 9/8 =5/8
y 14/13  -2/13 3/13 y 10/8 -2/8 2/8
s -9/13 -8/13*% -1/13 u 9/8 -13/8 1/8

(f) Progremme BHP.

We choose the first available row and take fractional parts.
Agein this is the cost row and it gives us (-8/13, -10/13, -11/13).
We choose the smallest column, that is the one corresponding to u, and
minimise the coefficient in this row. Integer procedure euclidalg
tells us that 4 x 10 = 1 (mod 13) and so we generate a constraint from
-} times the above row. We obtain (=6/13, -1/13, =5/13). Incorporating
it:

3. 8 =18 8/13 b, ®=17 3/5

1 u v 1 u s
& 242/13 10/13 11/13 H 88/5 3/5 11/5
x  15/13 9/13  -7/13 x 9/5 L4/5  ~T/5
y  14/13  -2/13 3/13 y b5 -1/5 3/5
s -6/13 -1/13 -5/13% v 6/5 1/5 -13/5
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Figure 2.4.1: continued.

(g) Programme BHE.

We choose the row whose constant term has the largest fractional
part and we add the constraint formed by its fractional parts to the
tablesu. This produces the constraint (-8/13, =10/13, -11/13) from
the cost function as in (a].

(h) Programme BHF.

This extracts the fractional part of each constant term and takes
the meximum multiple of each such that the numPerator remains less than
the denominator. From the constant term of the cost function we get
1 x (8/13) = 8/13. From the row corresponding to x we obtain
6(2/13) = 12/13 and from the y row we obtain 12(1/13) = 12/13.

We choose the row which generates the largest and in this case it is the
x row as we found it before the y row. 6 times the x row generstes

(-12/13, =-2/13, =10/13) which has already been iterated upon in (c).
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CHAPTER 3

THE TWO MOST EFFECTIVE ALGORITHMS
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Chapter 3: The two most effective algorithms.

In this chapter we consider programme BHD from the point of view
of a programme which having found a feasible optimum solution in
rationals, adds a constraint and reoptimises, the constraint being
such that the first basic variable with a non-integer value is reduced
at least to the next integer below. We are not concerned here with
the mechanics of avoiding and dealing with integer overflow. However
we are concerned with the use of the lexicographic method of choosing
pivots, for it is this which determines from which row a constraint is

taken.

We also consider programme BGD as an extension of BHD.
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Part 1: The significance of a lexicographic method.

Part 4 of Chapter 2 included a brief description of programme BHD.
As described there the programme derives a constraint from the cost
function whenever this has a non-integer value, and the constraint is
such that the value of the cost function is reduced at least to the next
integer below. With the exception of BHM and BGD,the other programmes
described in Chapter 2 generated constraints which bore no guarantee
of doing this, and it was found that very often they did not do this,
especially when D was large. The 'obvious' constraint gave a consistent

and often superior result.

Although such a constraint has a good immediate effect on the problem
it tends to make the problem more difficult by introducing zero coefficients
into the cost function. This is evidenced by the performance of programme
BHD when solving problem 1, listed in Appendix C. As the difference be-
tween the solution in rationals and the solution at the point the run was
terminated was 42.4 the cost function can have had a non-integer value after
at most 43 iterations. For such a value gives rise to a constraint reducing
the value at least to the next integer below. However 426 cuts were added
when trying to solve the problem which indicates that on average it took
10 iterations to shift the cost function from an integer value. As all the
426 cuts had non-zero constant terms the cost function must have contained

zero. coefficients.

The reason for this is suggested in part by the formula for the
transformation of a coefficient of the cost function aoj/D during a pivot
operation incorporating a new constraint:

ao,j - foj &oh

D D foh

3.101

where we denote the j th coefficient of the constraint by foj/D and the
pivot column by h.

As a _, f ., and £ _ are all non-negative the expression 3.1.1 will tend
oh’ "o0J oh

- to decrease. Of course this does not apply to other pivot operations.

Given that the coefficients of the cost function do decrease in value
we would expect zeros to appear eventually. For the coefficients of a
new constraint are defined by

H aoj,= v 8‘oj + foj 3.1.2
D D D
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vhere pis the largest integer such that

u T
) e
If aoj/D is so small that the middle term of 3.1.2 vanishes we have

=ua .. If similarly foh = p a_. the expression 3.1.1 will

fo,j 0J oh

vanish. Furthermore if there are columns, j, such foj =y aoj the

pivot column will be chosen from among them for only they minimise the

ratlgﬂ aoj/foj by which the pivot column 1s chosen.

Any ties are resolved by reference to subsequent rows.

Once a cost row has zero coefficients in it, it will remain unchanged
until a pivot row, possibly an added cut, is chosen which has no negative
coefficients in the columns with zero cost. Sometimes a large number
of pivot operations can be performed and several cuts added without
changing the value of the cost function. When this happens it is rather
like being lost in a maze and there is a potential danger of looping.

As mentioned in Part 2 of Chapter 2 the lexicographic method of Part 6

in Chapter 1 was used to avoid this danger.

One way of regarding lexicographic ordering is that the method
effectively turns the basic variables into secondary cost functions.
If any row of the tableau contains coefficients which are the first
non-zero elements in a column, these coefficients must be positive, by
definition of lexicographic ordering. As any pivoting operation
which did not alter the rows above the row in question would have to
have a pivot in one of these columns, it would reduce the value of the
basic variable associated with the row. Hence any basic variable in
the tableau is maximised if we regard the basic variables sbove it as

fixed.

Accordingly if a cost function, optimised and at an integer value,
does not define uniquely the value of the variables, we have a subspace
to search for an integer point, and for this we use the first basic
variasble in the tableau as a subsidiary cost function. If this still
does not define the value of the variables the second variable becomes
& cost function, and so on. As the value of no basic variable may be
inereased without reducing the value of a basic variable higher in the
tableau, it follows that if the full lexicographic system is used no

feasible solution is visited twice.
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The purpose of these remarks is to demonstrate that in a
lexicographic system every variable is a cost function. Thus, if
the primary cost function is at an integer value and the first basic
variable is at a non-integer value, our immediate object is to reduce
the value of this variable as much as possible. We know we can reduce
it at least to the next integer below, and so we do this. If it 1is
already at an integer value, we inspect the next variable and act in

a similar way.
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Part 2: The dependence of the rate of convergence

upon the ordering of the basic variables

in the tableau

One of the biggest problems of integer programming is the
unpredictability and irregularity of convergence. But although
the method just outlined still suffered from these faults, the main

cause of them was apparent.

Taking the next constraint from the first row whose basic variable
had a non-integer value always reduced the value of that basic variable
at least to the next integer below. However, it often went no further,
and it is conceivable for a variable in successive steps to take every
feasible integer value consistent with a fixed integer value of the
cost function. The number of such integer values can be arbitrarily
big. For example, in the Markowitz and Mann problem (ref. 13)(problem 1
in Appendix B) the values of the slack variables can vary from O to
about 50 when the value of the cost function is in the region of the
integer solution. If the equations were multiplied through by 10, the
slack variables would have ten times as many feasible integer values.
Accordingly if the slack variables were the first basic variables in
the tableau, we would expect the value of the cost function to stay

stationary for many iterations.

On the other hand, the 'proper' variables, that is the variables
with non-zero coefficients in the cost function, can only take two
values, zero or one, for any given value of the cost function. If
these variables were listed as the first basic variables in the tableau,
then at any iteration one would simply look for the first non-integer
value, and force that variable to zero. One would expect such a
constraint to have a much bigger effect on the problem than one derived
from a slack variable, and that as a result fewer constraints would be
required to break the value of the cost function away from a given integer

value, In practice this was found to be the case.

In the Markowitz and Mann problem it is quite easy to deduce
that one has & better chance of getting a good cut from a 'proper'
variasble than from a slack variable, and since if all the 'proper'
variables are integer the slack variables are integer also, we need
never take a cut from a slack variable. However it is more difficult
to decide which among the'proper' variables should come first. As the

coefficients in the constraints are randomly distributed one might
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consider it best in this case to put first the variables with the
largest coefficients in the cost function, but when this was tried it

did not meke a startling improvement to the speed of calculation.

While these procedures proved very useful for the Markowitz and
Mann problem, it is very difficult to generalize them. In general,
we wish to place the more 'significant' variables first. Unfortunately,
while one can intuitively accept the concept of significance, it is
extremely difficult to define, let alone construct an algorithm for.
One is probably seeking variables which produce a large decrease in
the value of the lexicographic cost vector per unit decrease of their
own value. Slack variables, that is variables with zero coefficient
in the cost function, are usually a bad choice. However, variables
with large coefficients in the cost function will not necessarily be

a good choice if their coefficients in the constraints are also large.

We have now described the reasoning which lay behind the
development of programme BHD. We go on to discuss the considerations

which gave rise to programme BGD.
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Part 3: The problem of the dual function of the cost row

When the variables were ordered so that the 'proper' ones came
first in the tableau there was a great improvement. The progress of
the calculation became systematic and regular in the sense that the
amount of calculation required to pass from one integer value of the
cost function to the next increased slowly as the solution was

approached.

In Part 1 of this chapter it was demonstrated that every variable
was a cost function. The reverse is also true, that the cost function
is an integer variable, though not restricted in sign. This means that
instead of dividing a tableau into cost function and constraints, as is
usual, each variable of the tableau performs both functions, and
variables only receive differing treatment if some, but not all, are

restricted in sign.

This enables us to manufacture variables which have no direct
relation to the problem but are 'significant', using the word in the
same sense as in Part 2 of this chapter. Such variables can be placed
immediately after the cost function in the list of basic varigbles.
Such new variables can sometimes be generated by dividing the coefficients
in the cost function by a number greater than one and rounding to the
nearest integer. Such variables will be integer valued and approximately
proportional to the value of the cost function itself. So for a given

value of the cost function, this new variable will be extremely restricted

.in value.

All the techniques discussed so far in Parts 1 and 2 of this
chapter have been designed to reduce the work needed to search the
sub-problem associated with any given integer value of the cost
function, but they have no bearing on the fundamental weakness of the
method so far described. This is that the cost function itself may
have to pass through a large number of integer points before the
solution is reached. In some aspects the cost function is similar to
a slack variable in that it is not essentially an integer variable, but
is only integer because it is an integer combination of integer variables.
And like a slack variable, if its coefficients are multiplied by ten say,
it will have ten times as many integer values to pass through to reach a

solution.

The converse is true, that if we were able to divide the coefficients

of the cost function through by a common factor we would speed up the
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calculation, but generally this cannot be done without altering the

problem and its solution.

The theory demands that one function should serve two purposes
in the problem, to be both the cost and also the first variable from
which cuts are taken. If this function should not be the original
cost function but a function derived from it as already described,
namely dividing the coefficients by a number greater than one and
rounding, we will of course by liable to get a different answer.
But under certain conditions the new cost function will have fewer integer
values to pass through before reaching its optimum, and thus reach
it more rapidly, and also the integer point at which it has its optimum
value will furnish the originsal cost function with a value which is not far
from its optimum. Once such an answer is found it is noted, and a new
constraint added which constrains the value of the (original) cost
function to be better than the one just found. The process continues
until the problem becomes infeasible in which case the last solution

found is known to be optimal.

As with 'significant' variables, it is difficult to construct an
algorithm to determine whether such scaling of the cost function will
reduce the number of integer points to be searched and at the same time
produce a reasonable approximate answer. If the divisor of the
coefficients is such that no new zeros are created in the cost function,
the new function will be a genuine approximation to the cost function,
even though the ratio between two coefficients could change by as much
as a factor of three. (For example both 2.9 and 1 become 1 when divided

by 2 and rounded to an integer).

However, if a coefficient becomes zero the associated variable
has no influence on the cost. If the size of the coefficient in the
cost function is a true indication of the importance or significance
of the variable this does not matter, and the technique can be applied.
This is the case with the first variable in the Markowitz and Mann
problem (problem 1 in Appendix B). On the other hand the cost function
in the job=-shop scheduling problem (ref. 11) (problems A4 to F6 in Appendix
B) contains unit coefficients for variables which represent the slack time
on the third machine between successive jobs. These variables form an
important part of the objective function and cannot be omitted without

seriously affecting it.
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If a problem is susceptible to a scaling of the cost function its
speed of solution will depend very much on the choice of divisor. If
the divisor is small, say two, the cost function will pass through
about half the number of values, and reach a solution which is reasonably
close to the optimal. But a factor of two is not usually a satisfactory
saving when one is concerned with integer programming! It is often
preferable to use a large divisor and obtain a good solution rapidly as
long as it is not too distant from the optimal. Probably a divisor
somewhere between the two extremes would be most satisfactory.

An example of this is given in Appendix C under problem 1. Programme
BHD fgiled to solve the problem even after 30 minutes. However when
the cost function was divided through by 7.5 and each element rounded
to an integer the same programme solved the altered problem in less than
seven minutes. Because the divisor of 7.5 had been carefully chosen

the two problems had the same solution.

Such speculation or experimentation 1s not necessary if we exploit
our ability to have several cost rows. Firstly, we do not actually
replace the original cost function by & new one, we keep it as a
secondary cost function, This ensures that if at the optimum of the
generated function the original one has two solutions, then the better
one will automatically be chosen. If the divisor of the generated
function is small the function will produce a solution close to the
optimal, but will not produce it rapidly. Accordingly we can precede
this function by a second cost function with a larger divisor. And the

second cost function can be preceded by a third, and so on.

The technique actually used was to precede the cost function by
a function generated by a divisor of 2, and precede this by one generated
by a divisor of 22 , and so on using increasing powers of 2 until the
function vanished. Each function was generated from the original row,

not the row preceding it.

Programme BHD and its extension to become programme BGD were tested
on several problems and the results of these tests are given in Appendix C

and commented upon in Part 4 of Chapter 2.
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Part 4: A numerical illustration of the use of artificial cost functions

We can illustrate the discussion of Part 3, Figure 3.4.1 solves a

simple problem in three ways.

The first method is that of programme BHD. The original tableau
consists of five rows; the cost function, the two constraints representing
x> 0 and y > O, and the two explicit constraints of the problem. The
tableau is optimised by the Simplex Method. Before a row is pivoted
on it is copied to the bottom of the tableau and afterwards this extra

row is discarded.

Tableau 3 contains the optimal solution to the linear programming
problem. The cost function & has an integer value so a constraint is
taken from the first variable with a non—integer value, in this case x.
The coefficients of the constraint are taken from the positive fractional
parts of the row corresponding to x. This constraint is added to the
bottom of the tableau and pivoted upon. Although the extra row at the
bottom is then discarded the constraint itself is retained as the row

corresponding to v in tableau b,

Tableau 4 is optimal and feasible but still non-integer, and the
process of adding a constraint and reoptimising is repeated twice more

to give an optimal integer solution in tableau 6.

We note that after the initial optimisation three constraints and

three reoptimisations were needed, the cost function # successively taking
the values 10, 9%, 8% and 8.

The second method involves adding an artificial cost function to
the problem. The function added has been chosen on the basis that it

must have smaller elements than the proper cost function but must alsc

be a reasonable approximation to it. As in the first method the tableau
is optimal after two pivots to give tableau 3. However this time we
examine the artificial cost function when looking for a constraint. As

its value is non-integer we derive a constraint from it by taking fractional

parts and this reduces its value to an integer.

Tableau 4 has integer constant terms and is optimal and feasible;
moreover the original cost function is also optimal. We have found
an optimal integer solution with one constraint instead of three.

However we perform one more iteration to produce an integer matrix.



- 88 -~

Method 3 illustrates the working of programme BGD. It is an
extension and mechanisation of the ideas of method 2. Instead of
one artificial cost function we have several which are obtained by

dividing the original one by 2,4 and 8, and rounding to an integer.

After one pivot the tableau, but not the original cost function,
is optimal. The solution 1is also integer, but one constraint and

one pivot element are needed to obtain the integer matrix of tableau 3.

We now have a feasible integer solution, and although this solution
happens to give & 1its optimal value we still have to prove its optimality.
To do this we add a constraint to the bottom of the tableau which
constrains the value of the cost function to be at least one better than
the value we have just obtained. This constraint becomes a permanent
addition to the tableau. As this constraint renders the tableau

infeasible we copy it to the bottom of the tableau and pivot on it.

Tableau 4 is optimal and feasible again but non-integer. After
adding one constraint and performing two pivots we obtain the final
tableau, tableau 6. This tells us that the problem now has no solution
as one row has a negative constant term but no negative elements on which
to pivot. Therefore the optimal integer solution is the one obtained

from tableau 3.

We note that method 3 produced the optimal integer solution more
quickly than the other two methods, but lost this advantage in proving
the optimality of the solution. In fact it took longer to prove
optimality of the integer solution than it did to find it.
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Figure 3,4.1: A comparison of three different ways of solving
a simple problem. '

3

W
The problem: Mimimise 8 = Lx + 3y
Subject to 3xk + y<6

x +2y <!l

We represent the slack variables by u and v.

Method 1: The method of programme BHD.

1 2.
1 X Y 1 u y
B 0 -4 -3 & 8 L/3 -5/3
b'd 0 -1 0 b d 2 1/3 1/3
y 0 0 -1 y 0 0 -1
u 6 3 1 <= u 0 -1 0
v b 1 2 v 2 -1/3 5/3 <=
u 6 3% 1 v 2 -1/3 5/3¥%
3. optimal, feasible, 4. optimal, feasible,
non-integer, = = 10 non-integer, ® = 91
1 u v 1 u s3
& 10 1 1 2 37/h 2/h 5/4 <=
b 8/5 2/5 =1/5 <~ x T/4 2/h  -1/h
y 6/5 =1/5 3/5 y 3/ -2/h 3/b
u 0 -1 0 u 0 -1 0
v 0 0 - v 3/h  2/4  -5/k
sy =3/5 -2/5 ~-=kL/5* sp =3/h  =2/k* -3/4
5. optimal, feasible, 6. optimal, feasible,
non-integer, & = 83 integer matrix @ = 8
1 Sy S) 1 2 S3
g 17/2 1 1/2 <= % 8 1 1
x 1 1 -1 x 2 =2
y 3/2 -1 3/2 y 0 -1
u 3/2 -2 3/2 u 0 -2
v 0 1 -2 v 2 1 -4

S3 -1/2

(@]
1
}_J
“~
N

*
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Figure 3.4,1 continued

Method 2 : Augmenting the problem with an artificial cost function
z} = X + y and using the method of programme BHD.

1. 2
1 b'd Y u y
7, 0 -1 -1 8, 2 1/3 -2/3
&g 0 -l =3 B 8 4/3 -5/3
x 0 -1 0 b'e 2 1/3 1/3
y 0 0 -1 Y 0 0 -1
u 6 <~ u 0 -1 0
v L 1 v 2 -1/3 5/3 <=
u 6 3% 1 v 2 -1/3 5/3%
3. optimal, feasible, 4. optimal, feasible,
non-integer, &9 = 10. integer solution, #p = 8.
1 u v 1 u S1
g 1L/5 1/5 2/5 <~ 81 2 0 1
2o 10 1 1 2y 8 1/2  5/2 <=
8/5 2/5 =1/5 x 2 1/2 =-1/2
y 6/5 =1/5  3/5 Y 0o =-1/2 3/2
u 0 -1 0 u 0 -1 0
v 0 0 -1 v 2 1/2 -5/2
0 -1/2% -1/2

sy -=k/5 -1/5 -2/5*% s

5. optimal, feasible,

integer matrix, &g = 8

1 8o S1
#) 2 1
LT 8
X 2 -1
Yy 0 -1
u 0 -2 1l
v 2 1 -3
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Figure 3.4.1 continued

Method 3: Augmenting the problem with several artificial cost functions

as in the method of programme BGD.

Added cost functions : B3 = X
g) =x + Yy
8 =2x by
1. 2. optimal, feasible,
integer solution, &, =8

1 X Yy 1 u Y
23 o) -1 0 B3 2 1/3 1/3 «<-
8) 0 -1 -1 =5 2 1/3 -2/3
8 0 -2 -2 8 L 2/3 -4/3
gg O -4 -3 gg 8 L/3 -5/3
x 0 -1 0 2 1/3 1/3
y 0 0 -1 0 0 -1
u 6 1 0 -1 0.
v 4 v 2 -1/3 5/3
u 6 3% 1 81 0 -1/3 -1/3%
3. optimal, feasible, L. optimal, feasible,

integer matrix, s = 8 non~integer, &g = 9

1 u sy 1 u ;0
&y 2 0 1 83 9/5 3/5 1/5 <=
g8 2 1 -2 s, 12/5 =1/5 =2/5
s, 4 2 -k & 2b/5 -2/5 -b/s
R 8 3 -5 <= &, 9 0 -1
x 2 0 1 x 9/5 3/5 1/5
¥ 0 1 -3 Y 3/5 =k/5 -3/5
u 0 -1 0 u 0 -1 0
v 2 -2 5 v 1 1 1
2, -1 -5 2g O 0 -1
ag -1 -5% s, ~-4/5 -3/5 ~-1/5%



5.

optimal, infeasible,

integer matrix,

w = e e

13

gy =13

- 92 -

6.

infeasible, no solution.

1 v

1 0
5/2  1/2
5 1
17/2  3/2
1 0
3/2  1/2
3/2 -1/2
0 -1
-1/2 3/2
-1/2 3/2

52
1
1/2

5/2

-1/2
5/2

5/2 <=
5/2
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Part 5: Aspects of the algorithm which would benefit from further research

(a) The residual freedom of choice of constraint

The basic principle of the algorithm is to optimise the linear
programming problem in such a way that each variable is maximised
subject to the variables preceding it in the tableau remaining at
their respective maxima. The first variable in the tableau, (the
cost function being regarded as a variable), which is not at an
integer value, is then reduced to at least the next integer below by

a cut.

There are as & rule several cuts which will reduce the value of
the variable at least to the next integer below. If in the terminology
of equations 2.4.1. and 2.4.3., i is the fractional part of the value
of the basic variable, there will be p such cuts, where u is the largest
integer such that

u fio < D. 3.5.1
In programmes BHD and BHM, p was chosen to be as large as possible
and to be equal to 1, respectively. Quicker results seemed to be
obtained when u was as large as possible, but there may be better
values of yu . For example we might write p = 2& , where X\ is as large
é; integer as possible consistent with 3.5.1. A constraint derived
from this would have the property that it was at least as good ag_A

other constraints.

(b) Choosing the order of the variables

As explained in Part 2 of this Chapter, it is desirable to order
the basic variables in the tableau according to their importance, or
significance. While what is required is a quick and efficient way of
selecting an ordering it would be a considerable advance simply to

discover some property of the variables which affected it.

One possible way of deriving an order is based on the geometrical
form of the problem. An optimal non-integer solution is at the vertex
of a hypercone. The various variables in the problem will have values
which lie on hyperplanes intersecting the hypercone. It is possible
thet the variables with the smallest range of feasible values will be

the best ones to put at the head of the tableau.
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In algebraic language we first solve the linear programming
problem. We then constrain the cost function to be valued at the next
integer below the rational optimum. For each variable in the problem
we solve the subsidiary problems: maximise that variable and then
minimise it. The variable with the smallest range of values is placed
first in the tableau, and the remainder in order of their range of

values.

If this method were successful it might be desirable to repeat it
and rearrange the ordering at intervals during the calculation. For as
the hyperplane defined by the cost function moves into the feasible
space and cuts off more and more vertices, so will change the shape of
the hypercone formed by the boundaries of the feasible region which

intersect the hyperplane associated with the cost.

(¢) The necessity of reducing the cost function to an integer

value whenever possible.

The theory of programme BHD demands that the cost function should
be reduced to an integer value whenever possible. For then if the first
variable is not at an integer value the next cut will either reduce it
at least to the next integer below or else reduce the cost function, in
which case the next cut is chosen to reduce the cost function to at
least the next integer below. If one does not reduce the cost function

as often as possible the whole argument loses its validity.

Nonetheless when using the extended algorithm it does seem
inefficient to have to use the wrong cost function in order that one
might derive better cuts from it. One is tempted to try preceding the
first artificial cost function by the original cost function in order
that the original one is always optimal, but continuing to choose cuts

starting at the artificial cost function.
(4) The manner of generating subsidiary cost functions

Programme BHD was extended into programme BGD by replacing the
cost function, which we may denote by c' x, by a series of cost

functions, which we may denote by C x. The ith row of C is defined

by

4
where we use the é;;égg brackets { } to denote that each member of
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g]/ki is rounded to the nearest integer. The Ai are subject to the

restriction

Mal T M7 M 1

2,000, k=1

where k is the number of rows of C, and
Ao =1, A\] <2 max (cé).
The Ai need not be integer.

Programme BGD defined Ai by

Ai = 2Ai+1

A small modification of this would be

Xk-l =3, Xi = 2Ai+l - 1.

This will give us the series 1, 3, 5, 9, 17... instead of 1, 2, 4, 8, 16...
The justification for this would be that when an integer is divided by an
even number the maximum error when rounding is a half, but when it is
divided by an odd number the error is always less than a half. In
particular when dividing by 3 one gains a function with much smaller

coefficients than when dividing by 2 but with no greater loss of accuracy.

More generally, there is scope for experiment in deciding the
optimum number of Ai and the distance between them. If the number of
them is increased the cuts may become more efficient, but each pivot
will take longer. It might be that a fibonacci series would be suitable,
i.e,

Agm1 =20 A5 = A Y Ao

i=1,...k - 2,

This would of course increase the number of cost rows.
Alternatively the number of cost rows could be reduced by use of the
relation

Ai = (k -1+ 1)!

The last two sets of formulase give us series of 1, 2, 3, 5, 8, 13, 21,...

and 1, 2, 6, 24, 120,... respectively.
(e) General computational procedure

The programmes described have been experimental. If they were
going to be used on a routine basis for problem solving many changes
would be necessary. Integer programming problems are often expressed
in terms of large and sparse matrices, as are many linear programming

problems. To deal with the latter first the inverse matrix method
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(ref. 3, p.89) and then the product form of the inverse (ref. 4, p.200)
were developed. These methods gain their efficiency of computation by
evaluating as few elements of the transformed array as possible. In
particular they use the Primal Simplex Algorithm and select pivot
columns by reference only to the elements of the cost function, and
pivot rows by reference to the constants column and the pivot column.

The programmes in Appendix D use the lexicographic Dual Simplex Method.

Pivot rows are chosen by reference to the constants column, but
pivot columns, besides referring to the cost function and pivot row,
can require references to several other rows in order to break ties.
It might not be economical to use the aforementioned methods for integer

programming.

On the other hand the method of choosing additional constraints
used in programmes BHD and BGD is ideal for use with the inverse matrix

method.

The use of integer arithmetic would also cause problems. As
pointed out in Part 7 of Chapter 1, the problems associated with
integer arithmetic may well be fundamental to the problems of integer
programming . Nevertheless the author considers that it was fortunate
for him that KDF9 Algol permits the use of 39 bit integers, and
KDF9 User Code permits the use of 96 bit integers. These word sizes
were not always big enough for the problems tackled, and as computers
seem to be standardising on 32-bit words, and compilers do not often

provide facilities for multilength integers, this problem would merit

further attention.

Associated with this problem is the question of how or whether
to use the method of scaling the problem described in Part 2 of
Chapter 2. It was used, firstly, after an optimum was reached, and
secondly, after integer overflow occurred. With some of the methods
of choosing constraints scaling may have improved the choice when
applied at an optimum solution. This may also have been the case in
programmes BHD and BGD. But as a method of counteracting overflow it

may not have been so helpful.
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CHAPTER 4

COMPARISON OF THE METHODS DESCRIBED IN THIS
THESIS WITH THE WORK OF OTHER AUTHORS
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Chapter L: Comparison of the methods described

in this thesis with the work of other authors

Part 1: Haldi and Isaacson (ref 9)

In their paper Haldi and Isaacson describe a method which
differs very little from programme BHD. The author read their
paper about the same time as he was forming his own ideas on the
value of the algorithm. Although Haldi and Isaacson published their
findings first an independent approach has enabled the author to view
the problem from another angle. As Haldi and Isaacson acknowledge,
Gomory was the first to describe the method (ref. 1, p.287), but he
used it simply because it produced a neat finiteness proof. Some
of the results of this thesis take the ideas of Haldi and Isaacson a

little further.

Their method is actually that of programme BHM as described in
Part 4(b) of Chapter 2. They do not suggest improving the constraints

in the manner of programme BHD.

They make certain suggestions on problem formulation. They note
that the wider the range of integer values the cost function has to
pass through the longer the solution takes, and they 'recommend that
coefficients in the objective function be divided by multiples of 10
and rounded off whenever possible." (ref. 9, p.955). The burden of
deciding whether it is possible or not lies on the user of the programme.
There is no suggestion of an automatic procedure for doing this. They
also recommend that columns and rows of the constraint matrix be rounded
and scaled down wherever possible. This is to avoid numerical
difficulties encountered in their use of floating point. In the integer
arithmetic programmes contained in Appendix D these same problems would have
caused the determinants D, to have large values and possibly give rise
to integer overflow. (Reducing the size of the elements in the matrix
would reduce the size of D. It is interesting to note that large numbers

in the original matrix cause problems in both floating point and integer

arithmetic solutions of the problem.

Haldi and Isaacson also realise that the ordering of the variables
in the tableau is important. '"Let the first variables in the data deck
be those which, if their value should be changed by a unit amount, would

cause the greatest net effect on the overall problem." (ref. 9, p.956).
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Part 2: Martin (ref. 10}

The method of Martin is similar to the methods described in
this thesis in that it is a direct extension of Gomory's algorithm

(ref. 1). The steps of the method are:

(a) Optimise the linear programming problem.

(b) Choose & row with non-integer right hand side and derive

the elementary constraint consisting simply of the fractional
parts of the coefficients.

(c) Compute the column which would contain the pivot if this
constraint were added to the tableau and the dual simplex
algorithm were used to choose the next pivot.

(d) From this constraint generate a new one which has the
smallest possible element in the above mentioned pivot column.
(e) Add this constraint to the tableau and pivot on this element.
(f) If the right hand sides are now integer, a sufficient condition

for which is D = 1, return to step (a). Otherwise return to step (b).

The calculation (d) is carried out by a version of the Euclidean
Algorithm. However instead of interating on D and the coefficient in the
chosen pivot column to obtain the appropriate multiple of the row which
would generate the desired constraint, the iteration is carried out on

the whole row of coefficients, This is unnecessary and wasteful in time.

The more important ideas embodied in the method were taken and
moulded into the format described in Part 2 of Chapter 2 to produce
programme BHP. The steps of this programme correspond to that of Glenn

Martin.

(a) Optimise, Programme BHP uses a lexicographic method.

(b) Choose & row with non-integer right hand side. If D is prime
if does not matter which for each such row would generate every
constraint. Programme BHP chooses the first row with a non-integer
right hand side.

(c) Choose a column. It is questionable why one should make use
of a constraint one is not going to apply. Instead programme BHP
chooses the smallest column lexicographically speaking, providing
of course the generating constraint has a non-zero element in that
column.

(d) Generate the constraint with the smallest element in the chosen

column, This produces the same result in both methods and has

already been commented upon.
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(e) Add this constraint to the tableau. As in a lexicographic
system there is a unique optimum there is no point in forcing
a pivot on any particular coefficient.

(f) Programme BHP always returns to (a) to reoptimise.

The main difference between the two methods is that where programme
BHP uses a lexicographic method Martin's programme deliberately avoids
it. In step (e) he chooses a pivot which is small, if not actually -1.
This immediately ensures a matrix of small numbers. If the subsequent
reoptimisation tends to keep the value of D small it might be of
advantage in keeping numerical difficulties under control and in reducing
the choice of constraints. However, no such explanation is offered in
the paper. On the other hand there are definite advantages in using a

lexicographic method.

The two methods were not compared computationally by the author.
Step (e)in Glen Martin's algorithm would normally make the tableau non=
optimal and infeasible, and the composite method needed to reoptimise
the problem was not defined. However some aspects of the algorithm
were incorporated into programme BHN. This was a modification of
programme BHP such that the row chosen in step(b) was the one with largest
fractional right hand side, and in step (c) the column was chosen by
reference to the constraint derived in step (b). In the few problems
solved by both BHP and BHN, BHP appeared to be superior. (See Part 4 of
Chapter 2).
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Part 3: Land and Doig (ref. 12)

The method of Land and Doig is a branch and bound algorithm
which uses linear programming to calculate the bounds and provide
information to help choose the next branch. The steps of the

method are:

(a) Optimise the linear programming problem.
(b) Select an integer varisble with a non-integer value.
(¢} Branch on this variable. If we denote this variable by

x, 8nd ve have x. = aiojD, then the branches are

(i)  add the constraints x, > [aiO/D] +1
(ii) edd X, < [a'io/D_]'

(d) Put bounds on these two subproblems by solving them by

linear programming. If either problem is infeasible, abandon

it, otherwise augment it to the list of branches. If in (c),

(i) is a better bound than (ii) it may be necessary at some

stage to solve the subproblem with xi > [aio/D:l + 2 as a constraint;
if (ii) is better than (i) it may be necessary to solve with the
constraint X: < [aio/D] - 1.

(e) Choose the subproblem with the best bound so far and return

to (b).

Programme BHD has much in common with this method. We compare

them step by step.

(a) Optimise. Programme BHD uses a lexicographic method.
(b) Select an integer variable with a non-integer value.
Programme BHD always takes the first, if possible the cost
function.

(¢) Branch on this variable

(1) x. > [aio/D] +1

1

(ii) =x, < [aio/D]

1

If the previous branches, i.e. the variables higher in the tableau,
are kept fixed (i) will be infeasible in programme BHD because X5
has been maximised subject to the higher variables. So programme
BHD will always "branch" in one direction only.

(d) Bound the branch (es) by solving the linear programming sub-

problem. Programme BHD will either obtain g solution
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satisfying (ii) subject to the previous branches remaining fixed
or, if no such solution exists, will automatically "branch" on
one of the variables higher in the tableau, i.e. reduce it.

(e) Return to (b).

The advantage of Land and Doig's method over programme BHD is
that it will cope with mixed integer problems. It is vital to the
logic of programme BHD that a constraint is taken from the cost function
whenever it is non-integer, but the cost function will not be constrained

to be integer if it contains non-integer variables.

On the other hand if the method of Land and Doig used a
lexicographic method of optimisation and selected variables for branching
in the same order as programme BHD the two methods would follow similar
courses. Whereas Land and Doig add simple constraints like Xy :-{%io/q]’
programme BHD adds constraints which implicitly include the proviso that
they only hold so long as the variables higher in the tableau do not
change. This enables the programme to retrace its steps without having

to store all previous partial solutions.

The close analogy between the two methods suggests that Jjust as
programme BHD was extended to become programme BGD by adding a set of
artificial cost functions, so might the method of Land and Doig. The
success of their method depends on finding variables on which to branch
which will have a large effect on the cost function. In the pure integer
case the cost function itself can be guaranteed to affect the cost function,
but not in & large way. However scaled down versions of the cost function
would, and it might well prove worthwhile to generate a set of cost

functions in the same way as is described in Part 3 of Chapter 3.

The mixed integer problem is not so easy to generate integer variables
for. Possibly the best that could be done would be to select that part of
the cost function which consists of integer variables and derive a new

set of integer variables from that.
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Part 4: Backtrack methods

Programmes BHD and BGD can be interpreted as applying back-

track procedures. Such & description follows.

(a) Choose an integer variable. Calculate an upper bound

for it by optimising the linear programming problem with this
variable as cost function, and reduce it to an integer value

if it is not already at one.

(b) Using linear programming, test whether the problem is

still feasible. If not, proceed to (d).

(¢) (i) If there are still some variables remaining in the tableau
maximise the next variable and reduce it to an integer value if
not already at one. Return to (b).

(e¢) (ii) If no variables remain a feasible integer solution has
been found. Remember it if it is the best so far and proceed
to (4).

(d) Backtrack: reduce previous variable by 1. If there is no

previous variable the search is finished. Otherwise return to
(b).
The programmes employ several short cuts. A constraint will

sometimes reduce the value of a variable beyond the next integer below.
Also when (b) finds a subproblem is infeasible it automatically reduces
a previous variable in the tableau thus effecting a backtrack to that

variable.

The above description is a fair description of programme BGD.
To meke it exact we have to specify how the first variables in the
tableau are chosen. In addition programme BGD adds a sophistication
whereby in (c)(ii) when a new feasible integer solution is found a
constraint is added to ensure that any future feasible integer solution

will be an improvement on the one just found.

If we define the variable chosen in (a) to be the cost function
we obtain programme BHD, This has the property that the first feasible

integer solution encountered is also the best.

There is little point in comparing these methods with other
specific backtrack methods. The art of backtrack lies in inventing
sophisticated short cuts which enable possible solutions to be
enumerated implicitly rather than explicitly. Programmes BHD and

BGD use linear programming for their short cuts.
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An exposition of the principles of backtrack is contained in
(ref. 14). It assumes that all variables are zero-one. It takes
advantage of the fact that when adding varisbles to the list of
those with assigned values they may be given any value initially
rather than a predetermined one. This enables an algorithm to use
heuristic techniques t0 get a reasonable solution quickly; it only

becomes an exact algorithm after complete enumeration.

Programmes BHD and BGD are more concerned with getting an
optimal solution. For this reason the first variable considered

is either the cost function or an approximation to it.

Nevertheless it is possible that certain backtrack algorithms
could be improved by introducing artificial cost functions as
variables along the lines of programme BGD. This would depend

very much on the individual algorithm.
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Appendix A : Symbols, Notations and Definitions

Symbols and Notations

A,B,N ~ matrices

X,¥,b - column vectors

xy'e! - row vectors

[?,N] - partitioned matrix

B_' - inverse of matrix B

(B)ij - the element of B in row i and column j
(B)i*, (B)*j ~ the i th row and j th column of B

In - a unit matrix of dimension n.

n is omitted where the dimension is

apparent from the context.

o - a zero scalar, a zero vector, or a zero

matrix, according to the context.

lBl - the determinant of B

d,D - the value of the determinant of the
matrix which has implicitly been
inverted at any stage of a linear
programming problem. This matrix is

usually denoted by B.

B* - the adjugate matrix of B, i.e. (B*)ij

is defined as the cofactor of (B)ij in B.

- a vector whose i th element is one and

whose other elements are zero

F m G (mod h) - every element of F - G is a multiple of h
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[a] -~ the largest integer not greater than a
[a] d - the largest multiple of d not greater
than a

each element of b is rounded down to

—
o
—J
r—
1o
| S
o
]

an integer or a multiple of d

n! - factorial n

a20, A20 - every element of a and A is non-negative
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Simplex Method

Dual Simplex Method

Composite Method

Optimal

Feasible

Dual feasible

Dual optimal

Tableau

Lexicographic
Lexicographically

positive

Lexicographically

optimal

Lexicographically

greater than

111 -

a method used to solve a linear
programming problem when the constant

terms are all non-negative.

a method used to solve a linear
programming problam when the
coefficients of the cost function are
all non-negative and all artificial
variables have been eliminated from

the problemn.

any method which caters for problems not

catered for by the above.

having all non-negative coefficients in

the cost function.

having all constant terms non-negative.

optimal

feasible

the matrix of numbers which is

manipulated during solution of a problem.

ordered, taken in the order written.

applied to a vector this means that the
first element of it which is non-zero is

positive.

applied to a tablezau of a problem it
means that every column is lexicographically

positive.

a is lexicographically greater than b

means that (a-b) is lexicographically

positive.
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APPENDIX B

THE TEST DATA

PART 1

DESCRIPTION OF THE PROBLEMS
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Appendix B: The test data.

Part 1: Description of the problems.

Problem 1: A production problem.

This problem was contained in a paper by Markowitz and Manne
(ref. 13). It is a hypothetical production problem where a choice
has to be made among 21 items to be manufactured subject to the

limitations of six resources. Only one of each item can be chosen.

The coefficients of the constraints and cost row were chosen

from a table of random numbers.

Problem 2: A two—dimensional knapsack problem.

This was contained in a paper by Weingartner and Ness. It is
described as a two-dimensional knapsack problem and is of a similar
form as problem 1 except that there are only two resources instead of
six. However the coefficients are not random as can be seen from the

high proportions of zeros in one constraint.

Problem 3, 4, and 5: Travelling salesman.

These problems are a formulation of the travelling salesman problem
due to A.W. Tucker and described by Dantzig in (ref. L4, p. 547). We

reproduce the derivation here.

Consider an n = city problem. Let xij = 1 if the salesman travels
from city i to city j, and O otherwise. The problem is defined by the
constraints.

n

I x..=1 (i=1,..., n)

. ij
J=1

n

I x,.=1 (j =1,..., n~1)
1=1 =

nx; v u; Uy <n- 1 (2<i#J<n)
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The first two sets of constraints define the assignment problem.
The last set constrain any solution to be a tour provided all xij are
0 or 1. This is done by omitting city 1 from the equations and
constraining the other links not to form a tour. If some of these links
did form a tour, say of length k, we could sum the appropriate

equations of the last set so that the u. cancelled out, leaving
nk < k(n-1)

which is not possible. On the other hand any Jjourney visiting cities
2 to n and not forming a tour will satisfy the last set of equations.
To show this choose the values of u. so the u, = t if city i is
reached on the t-th step. Then the Uy will have the values 1,...n-1.
If xij = O we have ui*i u.

n=-2 <n=1l. If x.. =1 then u. =t and
Jd = 1] 1
t-1 so that

u.
J

nx.. +u, —u. =n -1,
1 1 J
The purpose of the third equation in the list was to provide an

upper bound for the u, vhich is demanded by the use of a lexicographic
method.

Three problems were travelling salesman problem. Numbers 3 and U4
were 7 = city problems, the matrix of distances being symmetric and
containing random numbers. The problems were obtained from A.K. Obruca
(ref. 15). Number 5 was the non-symmetric 6 - city problem used as

an example by Little, Murty Sweeney and Karel in their paper (ref. 16)
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Problem 6: Covering theoremn.

This problem is perhaps the most interesting of those presented
here in that it is without doubt a genuine integer programming problemn.
A paper by Taussky and Todd (ref. 17) includes a description of the
problem. The problem was tackled in collaboration with L.B. Wilson
and J. Clowes of Newcastle University.

was
The specific problem posed in the paper concerned with 5 entities,
A

each of which could take on 3 values. The illustration given in the
paper was of 5 football matches each having three possible results.

To anticipate every possible outcome of the set of 5 matches one

would have to be prepared for 35 = 243 cases. However, if one is
prepared to consider a subset of these 243 cases which is such that for
any case there is a member of the subset which only differs from it in
the outcome of one match one is left with much fewer possibilities.

Such a subset is termed a covering and the problem was to find the

smallest possible covering of these 5 matches.

To formulate the problem let us denote the three values of each
match result by 1,2 and 3. We use the term element for each combination

of five results and consider the 243 elements to be ordered as follows:

1111111111 . .........00....
1111111111
1111111112
1112223331
1231231231
Each element will cover itself and ten others. For example element
(1,1,1,2,3) covers
11111111123
11111112311
11111231111
12223222222
31233333333

As 243/11 = 22 1/11 we deduce that a covering must consist of at least

23 elements. The question is what is the minimum size of a covering.

We associate a zero-one variable xj with each element j such that
x. is one if j belongs to a given covering and zero otherwise. We define
constants a, , such that a,j is one if elements i and j cover each other
ij i

and zero otherwise. The problem can then be expressed as
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minimise - Z— X,
J
subject to~Z a, . x, p1 (i=1,..., 243)

and Xj =0or1l (3j=1,..., 243)

This problem was too large to be handled by any of the writer's
programmes. Instead an auxiliary problem was solved which provided
a lower bound for the number of elements in the covering. This
auxiliary problem was one of a series that can be derived by making

use of the special structure of the matrix (aij)'

Let us write E243 for the matrix of coefficients (aij). It

obeys the recurrence relation.

E I I
n n n
E = -
3n In En In ! E1 1
1 I E

as may be verified by observing that in E243 each element covers and

is covered by the elements 81 and 162 places after, the order of the
elements being considered cydically, which gives rise to the In

Within in each of the three groups of 81 each element covers and is
covered by those 27 and 54 places after. The reasoning is continued

for the groups of size 27, 9, and 3, and E; is equal to 1 representing
the fact that each element covers iéself. As each element covers itself
and 10 others we know that we have defined every non-zero element in the

matrix.

The overall problem can be expressed as

Fe1 a1 Is *1 > |!
Tgp a1 Te1 : :
181 181 E81 x243 1 (243 elements)

the partitioned matrix being the expansion of E This can be

243°
weakened in two ways. Firstly we may add the three rows of the partitioned

matrix and the corresponding rows of the vector on the right hand side to

obtain.

2
[Bay * 21g) Bgy + 215y Bgy * 2lg)] ’_xl 1 >

I. 243J

Secondly we may group the variables into 3s to obtain

Ly 2 re L

(81 elements)

M e e e
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l—_E81 * 2181_-1 ¥1 * *s2 * *163 > l‘

s e W

F LA N 2rd
+
X
+
L]

81 el t
81 * 162 * *243 [3_' (81 elements)
The value of Z xi in the solution to this problem formed a lower bound
to its value in the overall problems. The process of adding triples

of rows and columns was repeated twice more to obtain the actual

subproblem solved, which may be written algebraically as

EE9 + 619]

27 77 243 27 (9 elements)

In Taussky and Todd 's paper (ref. 17) it was stated that z X,
must be at least 24 but need not be more than 27. A minimum solution
to the sub-problem was found to be (5,2,2,2,3,3,2,3,3) giving a lower

bound of 25 for Z xi, an increase of one on Taussky and Todd % figure.

The author also succeeded in solving the 27 x 27 subproblem, but
this did not produce a better lower bound. The first attempts to solve
the 27 x 27 subproblem were abortive because of trouble with integer
overflow. The problem matrix has 5 s down the diagonal indicating a

27 016.

determinant of the order of 5 or 5x1 However it was found

possible to steer programme BHD round this stumbling block by adding
redundant constraints containing small coefficients. An attempt was

also made to solve the 81 x 81 problem by a method involving the use

of the KDF9 linear programming package. This was unsuccessful, presumably
because of the size of the determinant of the 81 x 81 problem which is of

the order of 381 or 1036.
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Problem 7: A problem with large coefficients.

This problem was given by Vajda as an example in (ref 3, p. 159).
It has been scaled up to make all coefficients integer. Its main point
of interest is that integer overflow occurred before a rational solution was
found. Although the rational solution was never identified the integer

solution was nevertheless found.

Problems 8 and 9 : Two very small problems.

Problem 8 was given by Vajda to illustrate integer programming

(ref. 3, p. 199). It can be solved by adding a single cut.

Problem 9 was derived from problem 8 by slightly altering the
ratios one to another of the coefficients in the first constraint.

Its solution then required at least two cuts.



- 119 -

Problems 10.1, 10.2, 10.3 and 10.4: Four
formulations of a product mix problem.

Problem 10.1 is due to Ferguson and Sargent (ref. 18). It concerns
a hypothetical factory which can manufacture five different products.
The products make varying demands on the labour resources in six different
sections of the factory and the six constraints represent the limits of
these resources. The problem is to select the product mix which will

maximise the profit made by the factory.

The other three problems arose from the observation that the rows of
problem 10.1 can be scaled down by factors varying from 5 to 60.
Problem 10.2 is derived from problem 10.1 by scaling the cost function,
problem 10.3 by scaling the constraints. In problem 10.4 all the rows have

been scaled.

It is interesting to compare the numbers of pivots needed to solve

the four forms of the problem.
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Problems A4 to F6 : Job-shop scheduling.

These problems represent three-machine job-shop scheduling.
n items are to be processed on each of three machines I, II and 111,
and in that order. The objective is to minimise the time elapsed
between the start of the first item on machine I and the finish of the
last item on machine III. Both the formulation and the data are taken

from Story and Wagner (ref. 11).

The formulation takes advantage of the property of the three machine problem
that there is an optimum solution in which the jobs are processed in the
same order on each machine. Let us define variables Xi' to be such that
Xij is 1 éf item i is scheduled in order - position j ang O otherwise.

The constraints start with the assignment problem matrix:

n 1 .
E XlJ" (J=1)-.-; n)
=1
n
Z xij=1 (i =1, , n)
J=1
where n is the number of jobs to be processed. The formulation was
altered slightly to avoid equality constraints:
nn
L%y = "
J=1l 1=1
n
Z X5 5 > 1 (j=1,.., n)
i=1l
n
¥ X, 3 > 1 (i=1,.., n)

J=1

We must also have timing restrictions to ensure that each item is

not processed by more than one machine at a time and that each machine
is not processing more than one item at a time. We first define some

extra variables.

Let shk < the slack time on machine h between the end of job k and
the start of job k«l.
whk = the waiting time for job k between finishing processing on
machine h and starting processing on machine h+l.
Py = the processing time for job k on machine h.

The timing constraints are derived by considering the time interval
between the end of job k on machine h and the start of job k + 1 on machine

h + 1. In this interval machine h must have processed job k 4+ 1 so we can
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express it as
St L Pooi ® i kel T Yhokgel.

At the same time machine h + 1 must have processed job k so we can also

express the time interval as

Wt L Pri1,i%ik ¥ ha k.

Equating these two we have

! Phi1,i%ik ~ L Phi %i kel “Shk ¥ Shel,k
where h attains values of 1 and 2 and k = 1,.

In the data submitted to the various programmes equals signs were
avoided by replacing them by a greater than or equals sign in each constraint
To ensure that each constraint attained its lower bound the left hand sides
of the constraints were summed and this sum was constrained to be less than

or equal to zero.

The function to be minimised is the total idle time on machine 3:

n n-1

Z (Py; * Pyy) X5y + Z °3j.
1=1 J=l

This has the same effect as minimising the total elapsed time.

The layout of data for a three job problem is given in the following
table. The data for problems E4 and A5 are given in full; for the

remaining problems only the values of the pij are given.
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11 21 31 12 22 32 13 23 33 21 22 31 32 12 13
4 L) a3 1 1
1 1 1 1 1 1 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
Py Poo Poz  "Py3p TPy TPyg 1 -1
P21 Paz  Ppz TPy TPy TPy ! 1 1
P3 P3ga  Pgz Py TPy TPy, -1 1 ~1
P31 P32 Pz Py "Pay Py -1 1 ! -1
11 iz Tz Ta1 Tag  Tag 31 Taz Y33 1 1 -1 -1
where q; = Pyg + Py T, T Pyy *Pgy Toy = Pyy TP g Taj = T Pij T Pyj

s w w are omitted as they are either zero in an optimum solution or have no meaning in the

Variables slj’ i3’ Y35 Vi1

problem.

The problem is to minimise z.

| A

| v

|v

|v

|v

IA
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APPENDIX B

PART 2

THE PROBLEMS
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Part 2 : The problems.

Note on the layout of the dsta.

Line 1 of g each problem contains a title enclosed between two '#4!'
symbols,

Line 2 contains the dimensions of the constraint matrix.

Line 3 contains the function to be minimised, the first number being
an initial value for this function.

Lines 4 onwards contain the constraints of the problem. The first
mumber of each of these lines is the constraint number. The
symbol following the constraint number is < , =, or > and
determines the type of constraint, Then come the coefficients

of the constraint followed by the constant term.

If the cost function or a constralnt contained several zeros or ones
in succession a shorthand was used whereby the number of zeros or ones

appeared in the date followed by Z or U respectively.

For example, + Problem 8+
2 x 2
0; 10; = 111,
1< =1 10; L0

2< 2u 20
represents : Minimise 10x - 111 ¥y
subject to - + 10y < k40
x + y <20

X, ¥ > O and integer.
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$Problem*1s*+Markowitz*and*Mann*(ref*13)4%
27X21;

0; -3;-47;-43;-73;-86;-36;-96;-47;-36;-61;-46;-98;-63;-71;-62;-33;
-16;-80;-45;-60;

1< 1;202
2< 121, 5192
3< 221; ;182
42 321 172
5< 4213162
6< 521;152
7< 621;142
8< 721;13%
9< 821;122
10< 9213112
11< 1021;10Z
12< 1121;9Z 1;
13< 1221;82 13
14< 1321; 72 1
15< 1421;62 1;
16< 15721;52 1;
17< 1621;42 1;

1;

1;

1;

1;

3

L N o Y N T S S g

=k e e WO s e we Ve e wo ‘ee

18< 1721;3Z
19< 1821;22
20< 19Z1;12

21< 2021

22% 07;74;24;67;62;42;81; 14;57:20;42;53;32;37;32;27; 7336 755L:24s
23< 16; 73 62; 27,66;56,50,;3,7 s 7332390;79;78;53;13;55;38;58; 59,88;
24< 12;56; 85 199;26;06;0668;27:31; 5; 3;72;03; 15;57; 12; 10; 14;21;88;
25< 55:59;56;35;64338;354;82;46;22;31;62;43; 9;90; 6;18;44;32; 53,23,
26< 16;22577394139;49354543;54;82; 17;37193123;78;873 38120396, 43;84;
27< 84;42;17;53;31;57;24;55; 6;88,77; 4;74347;67;21; :76,33;15;25;83;

—26;

400;

b

400;

350;
320;
420;

400;

B 35 R PR S A NN DI 5 5 0 i e et St .
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#Problem*2:**2-dimensional*knapsack:**Weingartner*and*Ness*28*problem¢
30x28;

0; ~1898;-440;-22507;-270; -14148; -3100;-4650;-30800; -615;-4975;
-1160;-4225;-510; -11880; -479;-440;-490;-330;-110; iségzs’
-243553-2885;-11748;-4550;-750;-3720;~1950; - 10500;

12 4530;85;150;65;95;30;0; 170;0; 40;25;20;0;

0;25;0;0325;0;165;0;85;0;0;0;0; 100; 600;
2< 30;20;125;5;80;25;35:73;12515; 15;40;5; 10;
a< w;;%li:10;9,0;20;60;40;50;36;49;40;19;150; 600,
4< 121026z 1;
5< 2Z1U25Z 1;
6< 321U24Z 1;
7< 421U232 1;
8< 521U22Z 1;
9< 621U21Z 1;
10< 7210202 1;
11< 821U19Z 1;
12< 9z1U18z 1,
13< 10Z1U17Z 1;
14< 1121U16Z 1;
15< 12Z1V15Z 1;
16< 13210142 1;
17< 14Z1U13Z 1;
18< 15210122 1;
19< 16z21U11Z 1;
20< 17Z1U10Z 13
21< 18Z1U9Z 1;
22< 1921U8Z 1;
23< 20Z1WZ 1;
24< 2121U6Z 1;
25< 22Z1U52Z 1;
26< 23Z1U4Z 1;
27< 24721U3Z 1;
28< 25Z1U2Z 1;
29< 2621U1Z 1;
30< 27z1U 1

e e W we e we ‘e we e ‘e
We we We We ‘es ws ‘s ‘»
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#Problem*3:**7-city*travelling*salesmant

44X48;

i=
2=
3:
4=
8=
6=
7=
8=
9=
10=

2421

e we e ws ws ‘ee

o b b e e

’

o b ek peb s b e

(IR e ws we e ‘eo ws we

Juh e W0 we es e s ‘oo
b 0e ee we e we W

N b= o et s e e

CON*e 0o ws ws e e e

1;122
1Z1;521; 122
11= 221;521;5Z1;12Z
12= 321:5Z1;521;521; 127
13= 421;521;521;521,5Z21;122
14< 422151;1;15151; 28,
15¢  727;34215-134Z
16<  827;3321;12-1;3
17<  977;3221;22-1;2
18< 10Z7;3121;3Z-1;1
19< 1172733021;42-1;
20< 1327;28Z-1;1;4Z

ee we ‘v

6
z 6
zZ 6
zZ 6
6

-e ‘e

21< 1427;282
22< 1527;27%
23< 1627;26z
24< 17273252
25< 1927;22Z
26< 20273222
27< 2127;222
28< 22727217
29< 23Z7;202
30< 2527;162
31< 2627;162
32< 2727;162
33< 2827;162
34< 2927152

1;-1;32
1;1Z-1;22
1;22-1;12
1;32-1;
-1;1Z21;32
~1;1:32
1;-1;22 6
1;12-1;1Z 6
1;22-1,; 6
-1;2Z1;22Z 6
-1;121;22 6
-131;2Z 6
1;,-1;12 6
1;12-1; 6

=) =¥ =2 ¥ - ¥

e ws we we ‘e

L=a¥=a

e e \ee ‘es e

we we we ‘6o ‘we

35< 31Z7;102-1;321;1Z 6
36< 3227;10Z-1;221;12 6
37< 3327;10Z-1;121;12
38< 3427;10Z2 -1;1;12
39< 35273102 1;-1
40% 37773 42-134Z1;
41< 3827; 42-1;321;
422 3927; 42-1;221;
43< 4027; 42-1;1Z1;
442 4127; 42 -1;1;

we ‘es Ve we »

ROV

.
3

[~ 2 X =aX 2 = 2% =)

we O 4o WO ‘ee

3521;521;5Z1; 112
1;521;5Z1:521;521;10Z
1;521;521;521;
1:5Z21,521;
1.521

9z
8z
7z
6z

b

i

y



- 128 -

#Problem+4 :**7-city*travelling*salesmant

44%48;~

e we e ee ‘48 e
e

NNNNNNN
T O T TR SNy

3

IN = = s e
b 00 les es ‘e es e a0
OO pd fuh b ped fed b
{JUes weo o ‘es wo ee ‘oo
IN b b pd b pd pa p

Gwe o wo e we e e

= 1;122
10= 1Z1;521;122
11= 221:521;521;127
12= 321;52135Z213521;122Z

14< 4221313151131, 28
12: 777 33421;-1;42
16< 827;3321;12-1;
17< 9Z7;3221;22-1
18< 10z7;3121;32-1
19< 1127;3021:42-1;
20< 1377;28Z-1;1;4Z
21< 1427;28Z  1;-1;3Z
22< 15773272 1;12-1;2%
23< 1627;262  1;22-1;17
24< 1727;252  1;32-1;
25< 1927;22Z-1;1%21;32
26< 2027;22Z -1;1;3%
27< 2127;22Z 1;-1;22
28< 22773212 1;12-131Z
29< 23Z7;20Z 1;22-1;
30< 2527;162-1;221;22 6
31< 26z7;162-1;121;22 g
6

32
2%
1Z

b
]
b4
.
’

O\ OV OV O O

e We W8 \ue ‘et

= = 2X =X =22

we Wwe we s ‘ee

32< 27773162 -1;1;22
33< 2827;162 1;-1312
34< 29273152 1;12-1; 6
35< 31Z7;102-1;321;1Z 6;
36< 3227;102-1;221;12 6;
37< 3327;102-1;121;1Z 6;
38< 3427;102 -1;1;1Z 6;
39< 3527;102  1;-1; 6
405 3727; 42-1;421; 6

41< 3827; 42-1;321; 6
422 3927; 47-1;271; 6
435 4077; 4Z-1;121; 6
442 4127; 42 -1;1; 6

.
b4
.
14
.
3
.
b4
.
b

20;63;87;

$521;521;521;112
1;521;521;521;521; 102
1;521;521;5Z1; 9Z
1;521;521; 82

1;521; 72
13= 421;5Z1;521;521;521; 122

e we we L e

1 6z

we ‘08 L es ‘we ‘es

P e e b
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#Problem*5:**O~city*travelling*salesman:**Little*et*ald

32X35;
05 27343316;30;2657;16;1;30;25;20;13;35;5;0;21;16;25
18;18;12;46;27;48;5;23;5;5;9;5;0;0;0;0;0;
iz 1;1;1;1351;30Z 1;
2= 521;1;1;1;1;252Z 1;
3= 1021;15151:15202 1;
4= 1521;1;1;1;1;18Z 15
5' 2021;131;1;1;10Z 1;
6= 2521;1;1:1;1;52 1;

7: 5z1;4z1 421;421; 4z1,9z
8= 1;10Z  1;421;421;421;82
9= 1Z1;4Z1;10Z  1;4Z1; 4z1,7z
10=  221;421;421;10Z  13421;62
11=  321;421;421;421; 10z 1; ;52
12< 3021;1;131;1; 21;
13< 626; z3z1- 1;32  §;
14< 7z6 2221;12-1;2Z 5;
15< 8z6; 21z1 2z~ 1 1Z 5;
16< 926 12071, 132~ 1~ 5;
1< 1126 18z- 1 1 3z 5;
18< 1226 18z 1»-1 ;2Z 5
19< 13z6 vz 1, 12~ 1;1Z 5;

20< 1426162 1 27~ 1- 5;

21< z6 132-1; 1z1 2z 5;

22< 17z6 132 -1; 1 22 5;

23< 18z6 132 1-—1 1z 5;

24< 1926 122 1.1z—1— 5;

25< 2126; 82-1;221;12 5,

26< 2226; 82-1;171;17 5,

27< z3z6 8z -1; 1 1z 5;

28< 26 8z 1;—1; 53

20< 2 z6 32-1;321; 5;

30< z7z6. 32-1;2Z1; 5;

31< 28z6 32-1;121; §;

32< 29z6 32 -1;1; 5;

N T T

e w8 we We e
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4#Problem*6: **covering*theorem$

9X9;

0; 1;131; 15131; 13;1;1;

1> 7;1;1; 1;0;0; 13030; 27;
Qz 1;7;1; 0;1;0; 0;1;0; 27;
32 131375 030313 0;0;1;  27;
4> 1;03;0; 731;1; 1;0;0; 27;
%: 0;130; 137:1; 0;130; 27;
> 0;0;1; 131:7: 0;0;1; 27;
72 1;0;0; 1;0;0; 7:1:1; 27;
8> 0;1;0; 0;1;0; 1;7;1; ;
9> 0;0;1; 0;0;1; 1:1;7; H

03 3; 7 75 5 2
1> 83; 249; 4; 60; 51; 700;
2> 246; 423; 793; 93; 26; 3000;

3> 86;4050; 73; 308;2975; 40003
42 201; 57; 10; 205; 400; 12005

4Problem*8:**Vajdax(ref*3)*p, 1994
2X2;
0;  10;-111;

1< -1; 10; 40;
2< 1; 1; 20;

b

4Problem*gs**perturbation*of*problem+84
2X2;

0;  103-111;
1< -12; 109; 420;
2< 1; 1; 203
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#Problem*10, 1 :**Ferguson*and*Sargentf
6x53
0; -2000;-100-250;-400;-100;

1< 800; 20; 20; 120; 30;  2000;
2< 200; 10; 15; 30; 20;  1000;
35 300; 20; 40; 45; 10;  1000;
gs. 2400;  40; 2310; 3205 160;  8000;
< 400; 30; 505 060; 40;  2000;
6<  goo; 60; 240; 180; 120;  6000;

b

4Problem*10,2:**problem*10, 1*with*cost*row*scaled$

6x5;

0;  -40; -2;5 -5; -8; -2;

i< 800; 20; 20; 120; 30; 2000;
2< 200; 10; 15; 30; 20; 1000;
35 300; 20; 40; 45; 10;  1000;
4<  2400; 40; 240; 320; 160;  8000;
55  400; 30; 50; 80; 40; 2000
6: 900, 60; 240; 180 ; 120; 6000 4

4Problem* 10,3 :**problem*10,1*with*constraints*scaled$
6x5;

0; -2000;-100;-2503~400;-100;

3

1< 80; 25 2; 12 ;  200;
2< 23; 2; 3; 6; 4; 200
3 ;45 8 95 23 2005
4< 6o; 1; 6; 8; 4; 200
5< 40; ;5 5; 8 3 200;
6< 15;  1; 43 3;  2; 100;

4Problem* 10,4 :**problem* 10, 1*with*all*rows*scaledt

6X5;

0; -40; -23 -5; -8; -2;

1< 8o0; 23 2; 123 3; 200;
2< zg; 2; 3; 6; 4;  200;
3< 5 43 8 95 2 200;
42 6o; 13 6; 8; 4;  200;
5¢ 40; 3; 5; 8; 4;  200;
6< 15; 1; 43 3; 2; 100
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{Problem*E4 ¢ **4- job*3-machine* job*shop*scheduling
16x28;
0; 10;13;14;20;1523U6Z

1< 16U12Z 4;

22 4U242Z 1;

32 424V20Z 1;

4> 8z4U16z 1;

5> 12Z4U122Z 1;

6>  1;321;321;3Z1;152 1;

72 121;3Z1;321;3Z1;14Z 1;

8> 271;321;321;3Z1;13Z 1;

9> 321;3Z1;321;3Z1;12Z 1;
10> 5313;7;10;-1;-1;-6;-9;82-1;221;52-1;2Z 0;
11> 425513;7;10;-15-1;-6;-0;52-1;221;421;-1;1Z 0
12> 825;13;7;10;-1;-1;-6;-9;22-1,221;421;-1; o0;

132 1;1;6;0;-0;-12;-8;-11;524,:428s-2542 04 BZ[; 52/, 52

14> 421;1;6;0;-9;-12;-8;-11;521;4721;-1;42  0;

15> 821;1;6;9;—9;-12;—8;—11;221;4Z1;—1;3Z 03

165 6;14;13;19;-4;1;-1;-1;-4;1;-1;-1;-10;-13; - 14;-20;
323U2z-1;22-1; O;

)

#Problem*A5 s **§- job*3-machine* job*shop*scheduling
20X41;

0; 13;36;34;7;13;2424U82

1< 25U16z 5;

2> s5U36z 1;

32 52Z5U31Z 1;

4> 10250260z 1;

5> 1525U21Z 1;

6> 2025U16Z 1;

7>  1;421;421;421;421;20Z 1;
8> 121;4713421;421;421;19Z 1;
9> 221;4Z1;421;421;421;182 1;
10> 3Z1;421;421;421;421;172 1;
11> 471;421;421;421;421;10Z 1;
12> 20;6;5;3;4;-8;-30;-4;5-5;~10;152-1;321;72-1;3Z  0;

13> 5220;6;5:3;4;-8;-30;-4;-5;-10;112-1;321;6Z1;-1;2Z 0;

14> 10220;6;5;3;4;-8;-30;-4;-5;-10;72-1;321;621;-1;12 0;

15> 15720;6;5;3;4;-8;-30;-4;-5;-10;32-1;321;621;-1; o0;

16> 8;30;4;5;10;-5;-6;-30;-2;-3;1521;72-1;72 0;

17> 528;30;4;5;10;-5;-6;-30;-2;-3;1121;621;-1;62 o;

18> 1028;30;4;5;10;-5;-6;-30;-25-3;721;621;-1;52  0;

19> ;5310;-5;-6;-30;-2;-3;321;621;-1;4Z o0;
14;15;0;-25;1;1;15;0;-25;1;1;15;0;-2551;1;

-13;-36;-34;-7;-13;424U32-1;3Z-1; O

(5.}

20< 28;36;9;8

.e

o;
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Values of pij used in problems A to F.

The columns refer to the machines, the rows to the items to be processed.

In the 4 and 5 item problems the first 4 and 5 in each table were used.

A B
5 8 20 9 13 6
6 30 6 7 7 20
30 4 5 6 4 8
2 5 3 8 3 10
3 10 4 20 7 2
4 1 4 10 2 13
C D
6 7 3 4 3 5]
12 2 3 2 17 7
4 6 8 2 10 4
3 11 7 1D 8 2
(] 8 10 7 15 6
2 11 12 9 4 11
E F
9 1 3 15 ) 11
12 1 13 7 4 2
8 6 7 9 14 18
11 9 10 28 11 9
5 13 6 1 17 4
12 3 9 1 8 3
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APPENDIX C

TABLES GIVING THE RESULTS OF RUNNING THE

EXPERIMENTAL PROGRAMMES ON THE TEST DATA
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Tables Giving the Results of Running the Experimental

Programmes on the Test Data.

Explanation of the tables.

For a
slacks and
Chapter 2.

Time:

Pivots:

Cuts:
Slacks:

Overflows:

detailed account of the logic of the programmes as regards
overflows the reader is referred to Parts 2 and 3 of
A brief explanation is given here.

The time excludes the reading in of the data and printing
out of the results but includes the monitoring printout
which printed every value of D.

This relates to the successful pivots and excludes attempts
at pivoting which had to be backtracked because of integer
overflow. "After rational solution" relates to the solution
of the original linear programming problem except where
stated in a footnote.

These were constraints added with a non-zero constant term.

These were Gomory type constraints with zero constant terms
used for reducing the size of the determinant D. They
also reduced the choice of cuts.

These figures relate to the number of times a pivot operation
had to be backtracked because of integer overflow.

Distance between integer and rational solutions:

Value of D

This indicates the number of integer values the cost function
had to pass through during solution. It is thought that

this distance is one indication of the difficulty of the
problem particularly in the case of programme BHD (see

Chapter 3 Part 3). Where BGD is concerned the figure relates
to the first artificial cost function (see Chapter 3 Part 3).

at rational solution:

This is the value of the determinant after solving the linear
programming problem. Its size is an indication of the
difficulty of solving the problem firstly as regards the

problem of integer overflow and secondly as regards the choice
of constraint.

value of objective function:

This gives an indication of success where a programme pro-
duces approximate solutions. Where a programme was terminated
prematurely it indicates how far it was from the solution to
the problem.

The programmes:

These are described in Part 4 of Chapter 2. In the case of
programme BGD the figures relate to the point at which the
first integer solution was found, the point at which the last
integer solution was found, and the point at which it was
established that no more integer solutions existed and that
the last one discovered was in fact the optimal one.



)]
c
o o
(] o
Pivots Slacks Overflows 2 ;
Problem 1: a 48 - '5' -
Markowitz and Mann. 3] | | Q g "] a g ©
3 ' - - -~ gl o ~t “ 0 g - > o
~ 1 @ O | ® 0 | s Ol O m oA O o0
=B, oo aHl 80 g + o 2
- | W O — I« O + - |4 O ¥l o O 0 & P 0 O
Q o O A3 0 « - a O A DL O 363 3009
=] + |22 o + |2 £ - + |9 R 0P - - -~
oo e} - @& O 3 o} - @ O ) “ B Ol e S + O s o3
Programme I = | S N B O (24 (S M@ = O1® & BT - N > & @ > Ow
i —4 L
BGD: at 1lst solution 14 28 ' 16 4 3 ! 2 o! o 0 319 504
at best, i.e. 2nd solution 168 332 ! 320| 31 63 ! 62 19 ' 19 1 319| 540
at end of run. 238 506 ! 494 43 89 | 88 23 : 23 2 319{ 540
| |
I i |
+ + ;
BHD 1801* | 3546 13529 | 426 572 | 571 239 | 237 42.4 25,619105 | 552
t 1 -+
BHM 1801* | 3549 13532 | 442 504 | 503 206 | 206 42.4 25,619105 | 552
I 1 i
BHP 1803* {1914 11897 | 633 567 | 566 437 | 437 19.5 25,619105 | 575
| ! i
1 1 T
BHQ 1802%* | 2379 12362 | 657 857 856 170 1170 23.8 25,619105 | 570.6
1 — 4
T T 1
BH9 3454+ 426 + 409 | 149 118 117 17 17 15.5 25,619105 | 578.9
} —+ f
Cost function sgaled by 7.5 399 693 1+ 680 79 96 96 34 ; 34 3.9 176716 | 540
} 4 }
(using BHD) 1 i !
+ —+ 4
1 | i
+ + +
{ 1 t
i 1 {

*run terminated by time limit.

+run terminated because integer overflow occurred when

pivoting on a cut.

- 9€1 -
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*at this point BH6 started looping with a period of 38 pivots (2cuts, 26 slacks)
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63
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b - e e - o

-

.

-+
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[BUOTLIBI

Slacks

-

s3n)

3
4

4

3

4

3

UoT3nios
1BUOT3BI

J91Je
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Pivots

25
26

62
63

25

62

26

63

25

62

-

'25
}
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at 1lst solution

BGD:

1st solution

i.e.
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Covering theorem.

Problem 6:
Programme

BGD

BHD

BHM

BHN

BHQ

BHE

BHF

BH6

BH9

*as the objective function consisted entirely of ones BGD would have taken the same path as BHD

+at this point integer overflow occurred and as D was equal to 1 no cut could be added

zat this point BH6 started looping with a period of 18 pivots (2 cuts, 11 slacks)
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Q -~
Pivots Slacks Overflows % E
Problem 7: " 0T O -
Qa8 0 n %
A problem with large 8 | | - L N L - g o - g e
coefficients. N - | ¢33 | Sgousl ong °on0
- 1L 6% - 0P ~ |mOP & 0 ® © 0P
Q « Q -3 [))] [ [ I N ] [ ] QO = 3|+ O o T PR ] 9.0)0
B8 1289 2 |5 '§RE 5 'EEYAEs| S8 |99
P S wed 8 & 8RB B ISKOTAK| >aa > ow
Programme ! , \
}
BGD: at 1st solution 1 7, 4 2 2 |, 2 0 : ) 0 364807 40
at best, i.e. 2nd solution 3 20, 17 6 8 | 7 o, O 1 364807 38
at end of run. 9 75 | 72 17 30 | 29 0 i 0 1 364807, 38
! § I
4 t t
BHD 13 129 '126% | 30 47 ' 47%* a I 3 6.6 | *442,136027, 38
f t +
BHM 13 112 '109*% | 40 | 24 | 24x | 5 ! 4ax| 6.6%*%142,136027 38
i 1 }
BHN 52 381 :378*; 166 |108 :108* 3 } 2% 6.6%| *442,136027, 38
T A ] ¥
BHP 38 318 :315* 113 [112 '112% 3 ! 2% 6.6%| *442,136027| 38
T 1 1)
BHQ 67 539 :536* 201 |224 :224* 17} o17x 6.6%| *442,136027| 38
l
T Ll 1
BHE 46 362 :359* 164 |[110 :110* 18 41 17%* 6.6%| *442,136027| 38
BHF 152 1086 }083* 451 |379 :379* 37 ! 36% 6.6%| *442,136027| 38
BH6 + 53 ' 50% | 21 13 ' 13%x | 13 ! 12 3.6%| *442,136027, 35
f f —
BHO 20+ 72 ‘ 69* | 44 16 J‘ 16% | 54 : 53% 2.6%| *442,136027| 34.0

*the rational solution was never determined.

was added.

+at this point BH6 started looping with a period of 11 pivots (4 cuts,

sat this point integer overflow occurred when pivoting on a cut.

2 slacks).

These figures relate to the point at which the first cut

- Z2FP1T -
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A 2 x 2 problen.

Problem 8:
Programme

BGD: at 1lst solution

1st solution

i.e.

at best,

at end of run.

BHD

BHM

BHQ

BHE

BHF

BH6

BHY
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Problem 9:
Programme

at 1st solution

BGD:

1st solution

at best, i.e.
at end of run.
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A product mix problem.

Problem 10.1:
Programme

8th solution

i.e.

BGD: at 1st solution

at best,
at end of run.

BHM

BHD

BHQ

BHE

BHF

BH6

BH9
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Problem 10.1 with constraint

sealed.

Problem 10.3:
Programme

at 1lst solution

BGD:

8th solution

i.e.

at best,

at end of run.

BHD

BHM

BHN

BHQ
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BHF

BH6
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Programme

BGD: at 1st solution

1st solution

at best, i.e.
at end of run.

BHD
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BHP
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BHE

BHF

Bﬁﬁglem sealed by 3 (using

Story and Wagner
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Appendix D : The Experimental Programmes.
Part 1 : The Two Most Effective Algorithms.

Specification of Programme BHD.

Purpose.
n
The programme minimises a function X Cj xj subject to the
n J=1

constraints £ a.. x.. < b, (i=1l,...m)
jep 1L 3R

all the xj being constrained to ﬁhe non-negative integers.
Data.

The layout of the numerical data is as follows, the letters having
the same meaning as in the previous section:

+ & title consisting of the identifier of the user plus any sequence of algol
basic symbols excluding '4'+

m; n,
0 5 C] 3 Cu 3 eeee.s <h 3
P1 811 5 812 5 seeees aln 5 by
2 P2 821 5 822 5 eeeere 823 by, 3
m a ; a 5 P 1 3y b H
°m my ’ mp mn > m °

The Py must be the terminagors of the previous number and are either <, =, or 2
according to the relation I a.. x. p. b. ,

P | i71

J=1
e.g. the row

3213 1; 4

represents the third constraint x; + x, 2 4. Each aij’ bi and cj must be an
integer.

Although the programme will accept datas regardless of the signs of
the 8;:s bi'and c. and the values of the Pso the user is advised to restrict

his data to one of the following forms:

either bi > 0, Py being or <

or cj > 0, 0s being 2 or <
With other configurations the programme may terminate erroneously.

The above form of data may be repeated as many times as desired, and
the programme is terminated by a nominal set of data as follows:
+ ¢

-1~
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Method.

The programme is one of the many variants of Gomory's Method of
Integer Forms (ref 1). It is described in Part 3 and Part 4 (a) of
Chapter 2.

OQutput.

The programme produces a considerable amount of output to enable
the user to monitor the progress of the programme towards a solution.

Every pivot element is printed out. They are printed sequentially,
six to a line. If three asterisks are printed it indicates that integer
overflow occurred and that the last figure printed represents an un-
successful attempt at pivoting. If a pivot is followed by an S it
indicates that a constraint with zero constant term has been added to scale
the tableau. If a C is printed it indicates a cut has been added.

The more important monitoring information is

(a) The rational solution is printed giving the value of every basic
Variable.

(b) Every time a cut is added the number of the interation and the value
of the cost function is printed provided this value has changed since
the last iteration.

(¢) When an integer solution is found the values of the basic variables
are printed followed by the entire array.

The following error messages may be encountered:

SOLUTION. UNBOUNDED:
The solution to the original linear programming problem is unbounded.

LEXICOGRAPHICALLY UNBOUNDED:
Although the problem itself is bounded one of the variables is not. The
user must add a constraint giving this variable a bound.

INTEGER OVERFLOW:
Integer overflow has occurred in circumstances with which the programme is
unable to cope.

NO RATIONAL SOLUTION (P):
It has not been possible to eliminate the artificial variables.

NO RATIONAL SOLUTION (D):
The problem was discovered to be infeasible while performing the Dual Simplex

Algorithm. If the rational solution has already been found this message
is to be interpreted as meaning there is no integer solution.

LOGICAL ERROR:
This should never occur. It could arise from a number of places in—the and means,

programme error, an undetected error in the format of the data, or a machine
fault.

NO INTEGER SOLUTION: o

A basic variable has non-integer constant term but the coefficients of the
associated‘%6w have all integer values.
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Computer requirements.

Paper tape reader

Line printer

Core store: programme plus (m+n+6) x (n+2) + 50 words where m and n are
as previously defined.
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Specification of Programme BGD.

This programme is the same as BHD save for one statement which is con-
tained in the comment on page I38. Its specification is the same save for
the following points.

Method.
The programme approaches the optimal integer solution via a series of
approximate ones and is described in Part 3 and Part L4L(j) of Chapter 2.

Output.
This is the same as that of Programme BHD except that after an integer

solution is printed the solution process continues and with it the monitoring
printout. The programme terminates computation with the message 'NO
BETTER SOLUTION' and the last integer solution printed is the optimal one.

Computer requirements.

An extga.s(n+l) words of store is needed where s is the smallest number
such thgt 2" 1s not less than the largest element of the objective function,
i.e. 2° > max (abs(cj) ) J=1,...,n.
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begin comment This is the text of programme BHD, Where it differs
from the text of the other programmes is indicated in the
comments;
library A6,A12,A13,A14;
comment The library functions used were those that dealt with
input-output, Only three of the standard functions were

used and the KDFQ User Code versions of these follow;

real procedure abs(x); value x; real x;

KDFQ 1/0/0/0;

[x]; ABSF; EXIT; ALGOL;

integer procedure sign(x); value x; real x;
KDFQ 2/0/0/0;

Ix]; ZERO; SIGNF; EXIT; ALGOL;

integer procedure entier(x); value x; real x;
KDF9 4/0/0/1;

V0=B4322506316227052;

V1=B157 1640000000000

Ix]; FIX; DUP; SET39; -; DUP; J3>Z;
=C3; J1>2;

J2<Z;

ZERO; EXIT;

23 SET-1; EXIT;
1; SET-8; =+C3; SHLC3; NC3; SHLC3;

NC3; SHAC3; EXIT;
33 ERASE; FLOAT; SETAVO; REV; SET1; JSP299;

ALGOL;
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procedure printar(a,m,n,p,q,D,g); value m,n,D;

integer m,n,D,g; integer array a,p,q;

comment This procedure prints the contents of arrays a, p, and q
arranged as a matrix, It chooses a format to fit the largest
element of a and the value of this format is assigned to parameter
g. The arrays are dimensioned a[-1:m,0:n], p(1:m], ql1:n];

22512 integer i,j,I1,J,s,f;
I::nin(—abs(a[i,min(-abs(a[i,j]),j,o,n,ﬁzgg)]),i,-l,m,EEEg);
J:=min(-abs(alI,jl), j,0,n,true);
s:=if abs(alI,J]1)>D then abs(alI,J]) else D;
f:zif 8<1000 then format([-ndd;])

else if 8< 6 then format([-nddddd;])
else if s< 0 then format([-nddsdddddd;])

else format([-ndddddsdddddd;]);
writetext(30,[D=]); write(30,f,D); newline(30,2);

for i:=-1 step 1 until m do

begin write(30,f,if i>0 then p[i] else i);

for j:=0 step 1 until n do write(30,f,ali,jl);

newline(30, 1+(i+1)4(m+1))
end;
write(30,f,0); write(30,f,0);

for j:=1 step 1 until n do write(30,f,q[jl); newline(30,3);

gz:f;
end:

integer procedure time;

comment This procedure assigns to time the run time used so far by
this programme rounded down to the nearest second;

KDF9Q 1/0/0/0;

SET3; OUT; SHL-24; EXIT;
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integer procedure hcf(a,b); value a,b; integer a,b;

comment This procedure assigns to hcf the highest common
factor of a and b;

begin t=abs(a); b:z=abs(b);

if a=0 or b=0 then goto H; if a<b then goto B;

A a:=a-atbXb; if a=0 them goto H;
B: b:=b-btaXa; if bzO then goto A;
He hef:=if a=0 then b else a

ond;

integer procedure euclidalg(h,D); value h,D; integer h,D;

comment This procedure assigns to euclidalg a number
between O and D such that
euclidalgxh = hcf(h,D) (mod D);
begin integer k,u,v,g;
h:=dlrem(h,1,D); k:=D; u:=1; v:=0; if h=0 then goto E;
G: g:=ksh; kizk-gXh; vizv-gXu; if k=0 then goto E;

g:=htk; hizh-gxk; uszu-gXv; if hzo then goto G;

E? euolidalg::_i_{ k=0 then u else utv
end;

integer procedure min(t,s,p,q,B); real t; integer s,p,q; boolean B;

comment This procedure uses Jensen's device to find the minimum of a
one dimensional array subject to a boolean expression;
begin real z;
mint=0; z:= 11;

for s:=p step 1 until q do

1._{ B then bggin _:I_._g t<z then be‘in min:=s;

end end end;




- 175 -

procedure Intch(a,m,n,p,q,D,I,J,FAIL,0flow); value m,n,I,J;

integer m,n,D,I,J; integer array a,p,q; switch FAIL; label oflow;

comment This procedure performs a pivot operation on a[l,J]. In the
event of overflow the array a is restored to its original state and
the procedure exits to label oflow,

Apart from I,J, and oflow, the parameters perform fho same
function as the variables with the same identifiers described at
the start of the main programme;

begin integer i,j,D1,D2,g;
write(30,format([-ndddddsdddddds]),al1,3]1);

D2:=a[I1,J]; D1:=DXsign(D2);

trans(a,m,n,D1,D02,1,J,1, j, LOFLOW,FAIL[§]);

if D2<0 then

begin for j:= O step 1 until n do if j2J them a[I, j]:=-a(I,j] end

else for i:=-1 step 1 until m do if i£I then a[i,J):=-a[i,J];

a[1,3]1:=D1; D:=abs(D2); g:=p[1]; p(I)t=qlJ]); qlT]):=g;
goto DONE;

LOFLOW: for j:=j-1 step -1 until O do it jzJ then

a1, jl:=dlprod(D1,ali, j1,al1,j),ali,5],D2, PAIL[§],FAIL[S]);

for i:=i-1 step -1 until -1 do if 1ixI then

begin for j:=n step -1 until J+1,J-1 step -1 until 0 do

a[i, j)s=dlprod(D1,ali,j],al1, j),al1,J],D2,FAIL[5],FAIL[5])

end:

writetext(30,[Xx[16s]1X*1); goto oflow;

end.

N

e € AR S L

e e e A PRI L
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procedure trans(a,m,n,D1,D2,1,J,i0, jo,OFLOW,ERROR) ; value m,n,D1,D2,I,J;

integer array a; integer m,n,D1,D2,I,J,io, jo; label OFLOW,ERROR;

comment The purpose of this procedure is to perform that part of the
pivot operation which replaces each element, a[i,j], of a by
(D2xali, jl-afi,71Xal1,jl1)+D1, where I and J are the pivot row and
column, respectively, It does not alter the pivot row and column
themselves,
The advantages of writing this procedure in User Code are
(1) it permits the use of double length arithmetic,
(ii) it is easier to detect overflow without terminating the
programme,
(iii) it speeds up a procedure in which the programme spends a

large proportion of its time,

The integer array a is dimensioned a[-1:m,0tn],
D1 and D2 are the old and new values of the determinant

multiplied by the sign of the pivot element,

I is the pivot row,

J is the pivot columm,

io and jo are only defined if overflow occurs: they are such that
alio,jo] is the element on which overflow occurred,

OFLOW is the error exit if overflow occurs,

ERROR is the error exit if the division leaves a remainder:
its occurrence indicates either a logical error in the programme

or a machine fault;
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comment The Algol equivalent of this procedure is as follows:

for iot= -1 step 1 until I-1,I+1 step 1 until m do

for jo:= O step 1 until J-1,J+1 step 1 until n do

alio, jo]:=dlprod(D2,alio, jol,-alI, jol,ali0,J],D1,0FLOW,ERROR);

KDFQ 6/6/2/0;

*33

ALGOL s

s

[a); sHC-16; =Q11; [m); [I]; DUP; NOT; NEG; =RC14; DUP;
SET AYO; C11; +; DUP; =M10; DUP; NEG; NOT; =M14; +; =M12; -3 =I113;
YiM11; SETB 177777; AND; [J]; DUPD; =C12; =I15; XD; CONT; =M13;

_[_nl; Ci2; -; =C13; ZERO; [D1]; DUP; ABS; =Q11; J99>Z; NOT; 9Q9; =C10;

(Q10= 0 or -1/ - /Aa[0,0]); (Q1i= abs(D1) );
(Q12= J/ - /Aal1,0]); (Q13= n-J/m-1/3X(1+3));
(Q14= row ctr/ 1 /Aa[i,0]); (Q15= col ctr/L+3/3X(1+3));

[p2]; J17C10Z; NEG; 17; SHA+8; JS3; I13; =Cl4; JS4; ERASE; EXIT;
MO TO Q15; C12 TO Q15; M13M14; DUP; J10=Z; J18C10Z; NEG; 18; SHA+8;
REV; JS5; C13 TO Qi5; M+I15; JS5;

REV; ERASE; DC14;

MiI14; J3CL4NZ; EXIT 1;

DUPD; M14M15; XD; CAB; M12M15; XD; -D;

Q11; #R; SHA-8; J2V; =M14M15Q; J62Z;

J1C15NZ; EXIT 1;

ERASE; Q11; REV; JS7; C13 TO Q15; M+I15; J§7; J12;

DUPD; M14M15; XD;

CAB; R; SHA-8; J2Vv; =M14M18Q; J62Z;

J8C15NZ; EXIT 1;

LINK; LINK; 20; ERASE; J20NEN;

Mi4; M10; -; =[io]; M15; I15; ¢I; ERASE; =[jo]; JLOFLOW];

LINK; LINK; 60; ERASE; JOONEN; JLERROR];
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integer procedure dlprod(a,b,c,d,e,oflow,error); value a,b,c,d,e;

integer a,b,c,d,e; label oflow,error;
comment This procedure is normally equivalent to
dlprod:=(axbtcxXd)+te,
However, it performs the arithmetic in double length and in the
event of the result overflowing or the division leaving a
remainder it exits to 'oflow' or 'error' respectively;
KDFQ 4/0/0/0;

XDy +D; [el; DUP; J1>Z;

1; 4R; SHA+8; SHA-8; J2V; REV; J3#Z; EXIT;
2; ERASE; ERASE; J[oflow];

3; ERASE; J[error];

ALGOL;

integer procedure dlsign(a,b,c,d); value a,b,c,d; integer a,b,c,d;

b4

ocomment This procedure is normally equivalent to
dlsigni:=sign(aXxb-cxd),
It performs the arithmetic in double length to avoid the
possibility of overflow;
KDFQ 4/0/0/0;
fal; [bl; xD; fc]); [d]; XD; -D; OR; ZERO; SIGN; EXIT;
ALGOL;
integer procedure dlrem(a,g,D); value a,g,D; integer a,g,D;
comment This procedure is normally equivalent to
dlrem:=aXg-aXg+DXD,
It performs the arithmetic in double length to avoid the
possibility of overflow, It assumes that D is positive;
KDFQ 3/0/0/0;

[a]; [g); xD; [D]; #R; ERASE; EXIT;
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integer procedure pivot(a,m,n,I,i0,FAIL); value m,n,I,i0;

integer array a; integer m,n,I,iO0; label FAIL;

comment Given the pivot row, I, this procedure selects the pivot column
according to the rules for the lexicographic Dual Simplex Method and
assigns it to pivot, The Dual Simplex Method selects a pivot column
J such that a[I1,J]<0 and a[i0,J]/abs(al[I,J]) is a minimum over J,
where i0O is the cost row, The lexicographic rule lays down that in
the event of a tie between two rows the ratios alio+1,J]/abs(al[1,J1)
are compared, and so on until the tie is resolved, The procedure may
also be used to find the pivot columm in the Simplex Method by
inserting a dummy pivot row consisting entirely of -1's,

The reason for writing this procedure in User Code was that in

some problems columns appeared with large numbers of zeros at the top
of them, with the result that the number of operations needed to

choose a pivot column was of the order of mXn, rather than simply n,

Array a is dimensioned al-1:m,0:n],

I is the pivot row,

io is the first cost function: -1 when called by Intsimp, O when
called by Dintsimp,

FAIL is the error exit if no feasible pivot column can be found,

The Algol equivalent of this procedure is contained in integer
procedure pivot2, on the following page.
The procedure was altered in programme BH6 to omit the
lexicographic rule for breaking ties;
KDFQ 4/7/0/0;
[a]; sHC-16; =Q11; C11; SETAYO; +; YiMi1; DUP; =I1§; +; =M13;
[10]; DUP; =RM10; [m); NOT; NEG; REV; -; DUP; =C10; =CQ;

In]; pUP; =c15; =C12; [I]; =M12; ZERO; =Cl4; SET-1; =Mi1;
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N12M15; JO>Z; M11M15; J9>Z; Q10TOQ13;

M15M13Q; J3%Z; *J2C13NZS; JO;

M-113; M15M13; ZERO; SIGN; NEG; NOT; =C11; M13; DUP; =I11; J7C14Z;

2
112; -; DUP; J7>2Z; J4=Z; JOC11Z; ZERO; J7;
C9; M13; -; =C13; M14Mi3; M15M12; XD; M14M12; M15M13Q;

XD; -D; OR; DUP; J7<Z; JQ>Z; J4C13NZ; J9;

ERASE; Q15TOQ14; I1170Q12; JgC11Z; I11; NOT; NEG; M10; -; =C10;

M+I15; DC15; J1C15NZ; J10C14Z; Ci2; C14; -; NOT; NEG; EXIT;

J b

JLFAILl;

integer procedure pivotZ(a,m,n,I,iO,FAIL); value m,n,I,io;

integer array a; integer m,n,I,i0; label FAIL;

comment Although not called by the programme this procedure has been

inserted here because it contains the Algol equivalent of integer

procedure pivot;
begin integer J,1,j,g;

end;

J3=0;

for j:=1 step 1 until n do if alI,jl<0 and a[-1,j}<0 then

begin if J=0 then goto FND

for i:=io step 1 until m do

begin g:=dlsign(ali, jl,al1,5),al1,jl,ali1,5]);

if g>0 then goto FND; if g<0 then goto NEXT

end;
goto NEXT;
FND: =3;
NEXT:
end;

pivot2:=J; if J=O then goto FAIL
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procedure Intsimp(a,m,n,p,q,D,R,L,FAIL,x,z); value n,x;

integer m,n,D,R,L,x; integer array a,p,q,z; switch FAIL;

comment This procedure performs the Simplex algorithm, It produces a
loxicographically optimal tableau, i,e, the first non-zero element
of every column is positive, The purpose of this is to assist the
selection of constraints in the integer programming part of the
programme, but it also enables the artificial cost, in row -1, and
the objective function, in row 0, to be optimised simultaneously,

In the event of overflow procedure Scale is called, If
successful, another attempt is made at pivoting, if unsuccessful,
the run is abandoned,

The parameters perform the same function as the variables with
the same identifiers described at the start of the main programme;

begin integer i,j,I1,J; boolean success;

2

E: for j:=1 step 1 until n do alm+1,j):=-1;

3

:=pivot(a,m,n,m+1,-1,FOUR); i:=-2;
THREE: i:=i+1; if a[i,J]=0 and i<m then goto THREE
else if a[i,J]1>0 then goto FOUR;
I:=min(ali,0l/ali,J],i,z[10}+1,m,a[i,J]>0);
if I=0 then goto FAIL[if a[0,J]<0 then 1 else 7);

plm+11:=p[1]; for j:=0 step 1 until n do alm+1,jle=all,jl;

space(30,5);
Intch(a,m+1,n,p,q,D,m+1,J,FAIL,OFLOW); goto ONE;
OFLOW: Scale(a,m,n,p,q,D,R,L,FAIL,success);

goto if success then ONE else FAIL[6];

FOUR: for i:=1 step 1 until m do if plil<0 and a[i,0}>0 then goto FAIL([3]

end;
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procedure Dintsimp(a,m,n,p,q,D,R,L,FAIL,Xx,2); value n,x;

integer m,n,D,R,L,x; integer array a,p,q,z; switch FAIL;

comment This procedure performs the Dual Simplex algorithm, It chooses

the row with least a[i,0] to pivot on, calls integer procedure pivot

to locate the pivot column, and calls procedure Intch to effect the

transformation, In the event of overflow occurring in Intch

procedure Scale is called and if successful another attempt is made

to choose a pivot element and pivot on it successfully, If no

overflow occurs procedure Scale is called nonetheless before exiting

from the procedure,

The parameters perform the same function as the variables with

the same identifiers described at the start of the main programme;

begin integer i,I,J,g; boolean success;

ROW ¢

OFLOW

DONE ¢
FIN:

ond;

g:=1:=0;

for i:=z{10]+1 step 1 until m do if ali,0)<g then

begin I:=i; g:=a[i,0] end;
if g=0 then goto DONE;
s=pivot(a,m,n,I,0,FAIL[2]);

pi{m+11:=p[I]; for j:=0 step 1 until n do al[m+1,j]:=all,j];

space(30,5);
Intch(a,m1,n,p,q,D,m-1,J,FAIL,OFLOW); goto ROW;
Scale(a,m,n,p,q,D,R,L,FAIL, success);

if success then goto ROW;
writetext(30,[[138]NON-OPT]); goto FIN;

Scale(a,m,n,p,q,D,R,L,FAIL, success);
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procedure Scale(a,m,n,p,q,D,R,L,FAIL,success); value m,n,R,L;

integer m,n,D,R,L; integer array a,p,q; switch FAIL; boolean success;

comment The purpose of this procedure is to search for 'constraints'
with zero constant term and incorporate them into the tableau by
means of a pivot operation, This has the effect of reducing the
value of D without altering the value of any a[i,0]/D,
The advantage of adding such constraints is that the value
of D is reduced while maintaining optimality and feasibility,
The parameter 'success' is assigned the value true if at
least one such constraint is found, false otherwise, The other
parameters perform the same function as those with the same
identifiers described at the start of the main programme;
begin integer i,3,k;
success:=false;

AGAIN: for i:=0 step 1 until m do

begin k:=D+hcf(D,a[i,0]);

if kzZD then for j:=1 step 1 until n do

begin if dlrem(ali, jl,k,D)z0 and al-1,j]<0
then goto FOUND end
end,
goto DONE;
FOUND: successi=true; m:=m+1; pl[m]:=999; writetext(30,[S***x]),

for ji=0 step 1 until n do alm, jli=-dlrem(ali, j], k,D);

Intch(a,m,n,p,q,D,m,pivot(s,m,n,m,0,FAIL[5]),FAIL,FAIL[6]);

m:=m-1; goto AGAIN;

end;
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procedure Integer(a,m,n,p,q,D,R,L,FAIL,Xx,2);

integer m,n,Db,R,L,x; integer array a,p,q,Zz; switch FAIL;

comment The purpose of this procedure is to choose a new constraint,
add it to the tableau, and restore the tableau to feasibility,
This ie done by calling procedures Constraint, Intch and Dintsimp,

The procedure also checks the time taken so far and prints certain

monitoring information,
The functions of the parameters are the same as those with
the same identifiers described at the start of the main programme;
begin integer 1,fi,1fr,pa0,pD,tm, t; boolean finish;
f:=format([-ndddddsdddddds]); fr:=format([+d.ddddsddddsddds +nd]);
fi:=format([sssss-ndddddsssss]);
tm:=time; t:=0; finish:=false; pa0:=a[0,0]+1; pD:=D;
REPORT: if z[7}+time-tm>1800 then finish:=true;
if finish or dlsign(pao,D,a[0,0],pD)%0 then
begin pao:=a[0,0]; pD:=D; newline(30,1);
write(30,fi,t); write(30,fr,pao/D); space(30,0);
write(30,f,pa0); writetext(30,[/]); write(30,f,pD);
if finish then goto DONE
end;
Constraint(a,m,n,p,D,FAIL[4],finish);
if finish then goto REPORT; t:=t+1; plm+1l:=R+t;
Intch(a,m+1,n,p,q,D,m+1,pivot(a,m+1,n,m+1,0,FAIL[4]),FAIL,FAIL(6]);
Dintsimp(a,m+1,n,p,q,D,R,L,FAIL,x,2); goto REPORT;
DONE: newline(30,1)

ond,
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procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment This procedure generates and adds a constraint according to
the particular algorithm being tested, The majority of programmes
differed from BHD only in this procedure, the exceptions being BGD,
which has one extra statement in the main programme, and BH6, which
differs in integer procedure pivot, The text of the procedure
reproduced here is common to programmes BHD and BGD,

Programmes BHD and BGD choose the first row with an af{i,0]/D
which is non-integer, calculate dlrem(a[i,0],1,D), that is the
remainder af a[i,0] when divided by D, and multiply the row by the
largest multiple of the remainder which is less than D, and take
the constraint from this row,

The parameter fail is not used in this version of the
procedure, finish is set to true if the current solution is an
integer one, and the remaining parameters perform the same function
as the variables with the same identifiers described at the start of
the main programme;

begin integer i,j,¢;

for 1:=0 step 1 until m do if dlrem(a[i,0],1,D)#0 then goto FND;

finish:=true; goto DONE;
FND: :=(D-1)4dlrem(ali,0],1,D);

for j:=0 step 1 until n do a[m+1,j]l:=-dlrem(ali,j],g,D);

writetext(30,[Cx***]),
DONE:

end;
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comment This is the start of the main programme, The programme first
reads the dimensions of the data, m and n, followed by the variable
parameters whose presence is indicated by n<0, The parameters are
held in integer array z,

The objective function is read and temporarily placed in integer
array q, The number of cost rows to be generated is calculated and
assigned to s, In all but programme BGD 8=0: in programme BGD it is
such that 248 is the largest power of 2 less than or equal to the
coefficient of the objective function with maximum absolute value,

Variable m is now increased, viz, m:=min+s, and integer array a
is declared to be large enough to hold a problem with this number of
rows, The s8+1 cost functions are now generated, Next the constraints
on the original data are read and assigned to rows al[s+1,j] to alm,j],
where jz1,..,n, but leaving rows als+y+1,j] to als+y+n,jl free for
the negative unit matrix which is next to be generated, y signifies
the number of constraints of the original data to be placed above the
negative unit matrix, The purpose of the matrix is to ensure that
after the cost functions have been maximised the next variables to
be maximised in the lexicographic tableau are those in the original
objective function,

Once the data has been read and the tableau assembled procedures
Intsimp and Dintsimp are called to find the solution to the linear
programming problem, and the result is printed, Procedure Integer
is then called to find an integer solution, which is also printed,

A constraint is then added to make the solution just found
infeasible, In the case of all but programme BGD this automatically
terminates the programme, In the case of programme BGD procedure

Integer is reentered to search for a better one,



- 187 -

m is initially the number of constraints in the original data but is
later increased to include the extra constraints and cost functions
generated by the programme,

n is the number of non-basic variables in the original data,

D is the absolute value of the determinant of the inverse matrix, and
is initially set to 1,

R is used for numbering slack yariablea added in procedure Integer:
it is initially equal to m4n,

L is used to define the dimensions of a and p,

x defines the dimension of integer array z,

s is the index of the row of a containing the objective function, and
is thus also the number of added cost rows,

y is the number of constraints in the input data to be placed above the
negative unit matrix, It is defined by one of the parameters in the data,

tm holds the run time at which timing was last started,

nores is true if no feasible integer solution has yet been found,

f, £f8, g, h, i, j, k, and u are formats and working variables,

q initially holds the objective function: later it holds the indices
identifying the non-basic variables,

p holds the indices identifying the basic variables,

a holds the tableau representing the problem to be solved,

z holds the parameters of the problem, Only one can be set by the
original data and that is z[8] which holds y. If unspecified it is set
to zero, The six elements of z which are not redundant are

z[11=Dp, z[2]=R, =z[3]=L,
z[7]= time used by the programme so far, excluding input/output,

z[8]1=y, z[10]=s;
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integer m,n,D,R,L,x,s,y,tn,f,8,g,h,1, j,k,u;

boolean no res; nores:=true;

open(20); open(30);

START: copytext(20,30,[#t]); m:=read(20); if m<o then goto END;
if not nores then gap(30,1); nores:=true; n:=read(20);

x:=if n>0 then 0 else read(20); n:=abs(n);

begin integer array qlo:n],z(1:if x>10 then x else 10];

comment The variable parameters are read in;

for 1:=1 step 1 until x,x41 step 1 until 10 do

z[i]:=if i>x then O else read(20);
y:=2z[8]; if x<10 then x:=10; g:=0;
comment The cost function is read into array q and the element with
maximum absolute value assigned to g:

for j:=0 step 1 until n do

begin q[jl:=read(20); u:=inbasicsymbo1(20);
if u=37 or u=32 then
begin us=if u=37 then 0 else 1; h:=qljl-1;

for k:=0 step 1 until h do qlj+k]:zu;

ji=j+h
end;

if j>0 and abs(qljl)>g then g:=abs(qljl);

L]
Q.

nas

-e

8:=0
comment In this position programme BGD calculates the number of additional
cost rows to be added by including the following statement:

for h:=1, hX2 while h<g do s:=s+1;

m:=min+s; Le=z(3)s=me2; z[10]:=s;
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begin integer array a[-1:1+1,0:n],pl[0:L+1];

switch FAIL:=F1,F2,F3,F4,F5,F6,F7,F8;

procedure fl(s,ind); value ind; string s; boolean ind;

begin newline(30,2);
if ind then writetext(30,s)
else writetext(30,[no*better*solution]);
goto FINISH
end;
qfo]:=-qf0];
comment The following statement generates the additional cost rows for
programme BGD, In the other programmes s=O0 and the cost function is
simply copied from array q to row O of array a:

for i:=0 step 1 until s do

begin g:=2#(s-i); pliJ:=24i;

for j:=o step 1 until n do ali,jl:=(qljl+g+2Xsign(qlj]))+g;

end.
pls]:=o0;

for j:=O0 step 1 until n do

begin al-1,31:=0; ql[jl:=j end;
R:=n;

comment The constraints on the input data are now read in and the

artificial cost function generated;
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for i:=s+1 step 1 until s+y,s+y+n+1l step 1 until m do

begin R:=R+1; j:=read(20); g:=inbasicsymbol(20);

p[il:=if g=162 or g#178 and g#146 and j<0 then -R else R;

g:=if g=178 then -1 else +1;

for j:=1 step 1 until n do

begin ali,jl:=gXread(20);
u:=inbasicsymbol(20);
if u=37 or u=32 then
begin u:=if u=37 then 0 else g; h:=abs(al[i,jl)-1;

for k:=0 step 1 until h do

begin ali, j+k]szu;
if plil<o
then a[-1,j+k]:=al-1, j+k]-ali, j+k]

end;

end
else if p[il<o then a[-1,j}:=a[-1,j]-ali,]]
end;
ali,0):=gXread(20); if pl[il<o then a[-1,0]:=al-1,0]-ali,0]
end;
z[11:=D:=1; z[2]:=R; s:=z[10];

comment The negative nXn unit matrix is generated;

for i:=s+y+1 step 1 until s+y+n do

begin for j:=0 step 1 until n do ali, jl:=o0;

a[i,i-s-yl:=-1; plil:zi-s-y
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f:=format([s-ndddddsdddddd]); f8:=format([-nddddddd;]);
tm:=time; z[7]:=0;

comment The feasible optimal solution in rationals is found and printed out;
Intsimp(a,m,n,p,q,D,R,L,FAIL,X,z);
Dintsimp(a,m,n,p,q,D,R,L,FAIL,X,2);
z[7]:=time-tm; writotext(30,££pclyational*solutioquSqlp;l);
write(30,f,D); newline(30,2);

for 1i:=0 step 1 until m do

begin write(30,f,p[i]); write(30,f,a[i,0]); writetext(30,{*/]);
write(30,f,D); space(30,10); output(30,a[i,0]/D)
end; newline(30,2);
tm:=time;
comment The integer solution to the problem is found and printed out;
REIT: Integer(a,m,n,p,q,D,R,L,FAIL,x,2);
z(7]1:=2[71+time-tm; wrifotext(3o,££gclp:l); write(30,18,D);
writetext(30,[[108]cost*is*variable*numbered]);
write(30,18,p[s]); newline(30,2);
g:=mabe1;

for i:=0 step 1 until g-1 do

for j:=i step g until i+5Xg do

if j<m then begin write(30,28,p[j]); write(30,f8,a[j,0]) end
else begin newline(30,1); j:=1+5Xg end;
writetext(30,[[cc]lrun*time*in*secs=]);
write(30,1,z[7]); newline(30,2);
if z[71>1800 then goto CLOSE; tm:=time; s:=z[10];

if nores then m:=m+1; nores:=false;
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comment A constraint is added to make the integer solution just found
infeasible, so that a search can be made for a better one, In all but
programme BGD the first solution found is optimal so that the next
five lines could be replaced by goto FINISH;
pim]l:=p{m+1}:=0; alm,0)s=al[m+1,0]:=-D;

for j:=1 step 1 until n do alm,j}:=alm+1,jl:=als,j]l;

Intch(a,m+1,n,p,q,D,m+1,pivot(a,m,n,m,0,F4),FAIL,F6);
Dintsimp(a,m,n,p,q,D,R,L,FAIL,Xx,2);
goto REIT;

CLOSE: printar(a,m,n,p,q,D,f);

writetext(0,[[c]another*problem*completed]); goto START;

F8: f1([array*full*up]},true);

F7: fl(Llexicographically*unboundeql,gggg);
F6: f1([integer*overflow], true);

F51: f1([logical*error], true);

F4: £1([no*integer*solution],nores);

F3: £1([no*rational*solution*(primal)], true);
F2: f1([no*rational*solution*(dual)],nores);
F1: £1([solution*unbounded], true);

FINISH: z[7):=2[7)}+time-tm; writetext(30,[[cclrun*time*in*secs=]);
write(30,f,z[7]1); newline(30,2); goto CLOSE;

end

end;

END: close(20); close(30)

end—
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APPENDIX D

PART 2

THE OTHER PROGRAMMES
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Part 2 : The Other Programmes

The specification of the other programmes is the same as that of
programme BHD. As they differ from BHD only within one or two

procedures only the differences are reproduced here.

Programmes BHM, BH9, BHQ, BHN, BHP,BHE and BHF differ only in
procedure Constraint. Their methods of choosing constraints are

described in sections (b) to (h) of Part 4 of Chapter 2.

Programme BH6 uses the same version of procedure Constraint as
does programme BHF but has its own version of integer procedure

pivot. This is described in section (i) of Part 4 of Chapter 2.
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procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHM;

begin integer i, j,g;

for i:=0 step 1 until m do if dlrem(afli,0},1,D)20 then goto FND;

finish:=true; goto DONE;

FND: g:=1;
for j:=0 step 1 until n do alm+1,jl:=-dlrem(ali, jl,g,D);
writetext(30,[C****]);

DONE:

end;

procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHO;

begin integer i,3.8;
for i:=1 step 1 until m do if dlrem(al[i,0],1,D)#0 then goto FND;

finish:=true; goto DONE;
FND: 1=(D-1)+dlrem(ali,0],1,D);

for j:=0 step 1 until n do alm+i,jls=-dlrem(ali,jl,g,D);

writetext(30,[C¥**x]),

end:

Pt
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procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHQ;

begin integer i, j,g;

for 1:=0 step 1 until m do if direm(a[i,0],1,D)#0 then goto FND;

finish:=true; goto DONE;
FND: g:=D-euclidalg(ali,o],D);

for j:=0 step 1 until n do alm+1,j]:=-dlrem(a(i,jl,g,D);

writetext(30,[C***x]);

end;

procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHN;
begin integer i,j,g,h,k;
g3=0;

or h:=0 step 1 until m do

begin kiz=dlrem(alh,0],1,D);
if k>g then begin i:=h; g:=k end
end;
if g=o0 then begin finish:=true; goto DONE end;

for j:=1 step 1 until n do alm1, jl:=-dlrem(ali, j1,1,D);

g::ouclidnig(a[i,pivot(a,l+1,n,n+1,0,1111)],D);

for j:=0 step 1 until n do alm+i,jl:=-dlrem(ali,jl,g,D);

writetext(30,[C****]);
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procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHP;

begin integer i,j,q;

for i1:=0 step 1 until m do if dlrem(a[i,0],1,D)70 then goto FND;
finish:=true; goto DONE;

FND: for j:=0 step 1 until n do

alm+1,j):=if dlrem(ali,jl],1,D)=0 then O else -1,
:=euclidalg(ali,pivot(a,m+1,n,m1,0,fail1)],D);

for j:=0 step 1 until n do almt1,jli=-dlrem(ali,jl,g,D);

writetext(30,[Cx**x]);
DONE :

end;

procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;
integer array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHE;

begin integer 1,j,g,h,k;

¢=0

.
2

for h:=0 step 1 until m do

begin k:=dlrem(alh,0],1,D);

if k>g then begin i:=h; g:=k end
end;
if g=0 then begin finish:=true; goto DONE end;
€:=1;

for j1=0 step 1 until n do a[m+1,j]l:=-dlrem(ali, jl,e,D);

writetext(30,[Cx***]);
DONE:

end;
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procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure is that in programmes BHF and BHG;
begin integer 1,J,e,h,k;
g1=0;

for h:=0 step 1 until m do

begin k:=dlrem(al[h,0],1,D); if kzO then k:=(D-1)skxk;
if Jog then begin i:=h; g:=k end
end;
if g=0 then begin finish:ztrue; goto DONE end;
g:=(D-1)4dlrem(afi,0],1,D);

for j:=0 step 1 until n do a[m+1,jl:=-dlrem(ali,jl,g,D);

writetext(30,[C****]);
DONE :

ond;



- 199 -

integer procedure pivot(a,m,n,1,i0,FAIL); value m,n,I,i0;

integer array a; integer m,n,I,i0; label FAIL;

comment This version of the procedure was used in programme BHO, It
resolves ties between two possible pivot columns by choosing the
first one, rather than referring to the following rows as in the
lexicographic method, Nevertheless it still ensures that when
called by Intsimp the artificial cost and objective functions are

optimised simultaneously;

begin integer j,J,gn,gd;

for j:=1 step 1 until n do if a[X,jl<0 and al-1,3]<0 then

bogin if dlsign(gn,alI, jl,alio,j],gd)<0 or J=0 then
begin gn:=alio, j); gd:=all,jl; Ji=j end
end;
if i0=-1 then

begin for j:=1 step 1 until n do

if a[-1,j)=al-1,J] and al0,jl<af0,J] then J:=
end;
pivot:=J; if J=0 then goto FAIL

end:
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