
THE COM PUT E R SOL UTI 0 N o F PRO B L EMS I N 

I N T E G E R PRO G RAM MIN G 

M.R. GUY. 

Ph.D. Thesis September, 1969. 



- 2 -

ABSTRACT. 

The thesis is concerned largely with Gomory s Method of Integer 
Forms whereby an integer programming problem is solved by a combination 
of linear programming operations and the addition of new constraints. 

Chapter I describes the theory behind the method. It deals 
with the techniques of linear programming when the use of floating 
point and its associated rounding and truncation errors are avoided 
and describes the way in which new constraints can be generated and 
added during solution of the problem. 

Chapter 2 deals with the author'~ experimemts in integer 
programming. Parts I to 3 are concerned with the linear programming 
method which was developed partly to deal with numerical problems 
and partly to facilitate the choice of constraints. Part 4 deals with 
experiments with different criteria for choosing constraints. 

Chapter 3 is concerned with two algorithms. The first is 
essentially the lexicographic method advocated by Haldi and Isaacson. 
An independent approach has provided an insight into it which led to 
the development of the second algorithm. In this the objective 
function is replaced by approximations to it with smaller coefficients 
in order to obtain an approximate solution more rapidly. A 
restriction is then placed on the objective function and a search made 
for a better solution. 

Chapter 4 compares the two algorithms of Chapter 3 with those 
of certain other authors. It is concluded that the systematic 
method of choosing constraints used in the author s algorithms 
enables them to be regarded as special forms firstly of a branch 
and bound algorithm and secondly of a backtrack method. As a 
corollary it is suggested that some of the techniques used in the 
author·s algorithms to speed up solution could be applied to these 
other methods. 
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Chapter 1 BacW°1J.lld 

Part 1 The Simplex Method 

The maJor part of this thesis is concerned with a method of 

integer programming the basis of which was laid in a paper by 

R.E. Gomory: An algorithm for Integer Solutions to Linear Programs 

(ref. 1). It is concerned with the solution of the linear programming 

problem: 

n 
Minimise ~ 

J=l 
c.x. 

J J 

subject to the constraints 

n 

I 
j=l 

< 
w .. x. > b. 
~J J ~ 

x. > ° J 

where the w .. , b., c. are constants, 
lJ 1 J 

the x. are variables 
J 

and < 
> means < or = or ~, 

and the additional integer constraints: 

x. integer. 
J 

(i=1. •• m) 

U=l ... n} 

In our treatment of the problem we will assume that all the 

constraints, apart from the ones x. ~ 0, are in the form ~w .. x. = b .• 
J - r.. ~J J 1 

This does not involve loss of, generality for the inequalities 

LW .. x. < b. and Lw .. x. > b. can be expressed as the pairs 
~J J 1 lJ J - 1 

LW' .x. + s. = b., s. > ° and Lw .. x. - s. = b., s. > 0, respectively. 
~J J ~ ~ ~ - ~J J ~ ~ ~ 

Also we will normally use matrix notation. 

Accordingly we may restate the problem as: 

minimise c' z 1.1.1. 

subject to Wz = b 

and ~ ~ ° 
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where A is an m x n matrix, ~ is an m-dimensional vector, and £ and 

~ are n-dimensional vectors. It will be convenient for us to 

partition W into [B, N], where B ~s a non-singular square matrix of 

order m, and N is an m x(n~L matrix. Partitioning £' into 

[£~, £~J and~' into ~" l..'J we have: 

m~n~m~se 1.1.2. 

subject to 

This system can be solved for x in terms of l..: 

1.1.3. 

and the problem becomes 

minimise 1.1. 4. 

subject to 

The basic result of linear programming theory is that 

l.. = 0, ~ = B-1~ will cause £' B-1b to be a minimum solution 

provided B-1b > 0 and c' - c1 B-1 N ~ O. If one or both of these 
- - -2-1 

conditions are not satisfied an element of x and an element of l.. 
are selected according to certain rules and exchanged. It is not 

considered necessary to prove these results here and the rules for 

selecting an x and a yare simply stated with references. 

Let us denote by (BL .. the ijth element of matrix B, and by 
~J 

eel. or (C'L. the ith element of vector c. - ~ - ~ -

If B-l~~ 0 but £~ - £~ B-1N ~ ~ we select an element (~)j of ~ 
such that its coefficient (c' - c' BIN). in the objective function 

-2 -1 J 
is < 0 (usually the most negative}. It is then exchanged with an 

-1 -1 (-1 (x). where i is such that (B Nl .. > 0, and (B b).; B N) .. is a 
- ~ ~J - ~ ~J 

minimum over all i. This ensures that B-1~ remains ~ o. This 

procedure is known as the Simplex method (ref. 3, p.70). 
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On the other hand if £' - £' B-IN ~ 0 but B-l£ to we select 
2 I_ 

an element (x). of x such that lB Ib}. < 0 lusually the most - ~ - - ~ 

negativeL and then exchange it with (~1. where j ~s such that 
J 

(B-1N) .. < 0 and - (c' - c' B-IN}.j(B-IN) .. is a minimum over all j. 
~J -2 -1_ J ~J 

This ensures that c' - c' B IN remains> o. This procedure is known 
-2 -1 

as the Dual Simplex method (ref. 3, p.991. 

If both B-l:Q. < 0 and c' - c' B-IN < 0 a "composite" method ~s 
-2 -1 

used. The use of composite methods is not yet given much space in 

linear programming textbooks. The general principle is to construct 

some function of the infeasibilities and non-optimal cost elements, 

and choose pivots to make this function tend toward zero. One such 

is a 11 self-dual parametric algorithm I' (ref. 4, p. 2451. 

These three methods are used once a non-singular matrix, B, 

has been found, as in equation 1.1.3. Such a matrix can be obtained 

by inventing an artificial vector, y, to form a basis and then 

eliminating it. For example, in order to find a matrix, B, ~n the 

problem 1.1.2. one would start by solving the sub-problem: 

minimise v' 

subject to Iv + ~ + N~ = £ 

y, ~, ~ ~ O. 

Providing a non-singular matrix, B, exists the minimum of v ~s zero, 

and once this minimum has been obtained v can be left out of the 

equations and the problem takes the form 1.1.4. 

The introduction of y presents us with a unit matrix, I, as a 

starting point. Sometimes B will contain some unit vectors, when 

slack variables have been used to turn inequalities into the equalities 

of equations 1.1.2. In such a case as many of these unit vectors as 

possible will be used to make up the initial unit matrix, an artificial 

vector being used to fill the remaining columns. 
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If b contains negative elements when the problem 1S expressed 

in the form 1.1.1. one has two kinds of infeasibility 1n the same 

problem. 

One composite method of solving this is described by Wolfe in 

(ref. 6). It chooses pivots which will reduce a function of the 

infeasibilities until the problem becomes feasible. Thereafter the 

normal form of the Simplex method is used to obtain an optimal 

solution. 

The programmes contained in Appendix D were designed in such a 

way that problems entered two procedures, first one that performed 

the ordinary Simplex method for both eliminating artificial variables 

and obtaining an optimal solution, and secondly one that carried out 

the Dual Simplex method. The intention of this was to be able to 

accept problems in either of two forms. However it was found to work 

successfully on problems which were infeasible in both ways and also 

non-optimal. It is not suggested that this method was efficient. 
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Part 2; The Matru Algebra of Linear Programming 

The purpose of this Part ~s to establish the algebra of pivoting 

used in linear programming in a slightly different form to that 

normally ~sed. This is in order that we might know at any stage of 

computation exactly which quantities are integer and which are not. 

The problem is: 

Minimise 1.2.1. 

subject to 

~ ~ 0, il.. ~ 0 and ~, il.. integer. 

We have separated the variables into basic variables, ~, and 

non-basic variables, il... If the original inequalities are written ~n 

the form 

1.2.2. 

we are assuming that the rows and columns have been suitably ordered 

and we may consider it either as an express~on for ~ in terms of il.. 

when viewed as 

or as a collection of entries in a table which is to be manipulated 

whilst working towards the desired optimal solution. We shall refer 

to this table as the tableau. 

Since we are essentially working with integers throughout this 

thesis all matrices, vectors and scalars will be taken to be integer , 

unless otherwise stated. In particular all coefficients in the 

original problem, i.e. c , c , B, N, and b will be integer. 
-1 -2 

Wherever possible the use of inverse matrices will be avoided 

and adjugate matrices used instead. Let us write d for IB\, the 
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determinant of B, and B* for the adjugate matrix of B, so that 

dB-I = B* and BB* = B*B = dI. Since (B*) .. is the cofactor of 
~J 

(B) .. in B, the elements of B* are integers, (ref. 5, p.87) which 
~J 

~s of course why we prefer the use of B* to that of B- 1 • Accordingly 

we will normally express 1.2.2. ~n the form 

~ + B*Ni[ = B*b 1.2.3. 

The letters d and D will be used exclusively for IBI. Gomory, 

~n (ref. 1), uses D and this will be followed in some parts of this 

thesis, notably the appendices. In this chapter d will be used to 

emphasise the fact that it is a scalar. 

Before proceeding with the main part of this section we need to 

establish two preliminary results. 

Lemma 1.2.1. Let a non-singular square matrix B be partitioned 

by its last row and column into ~B 1 hI]' where B 1 is also non-

h'" h 
-2 3 

singular. Then IBI, the determinant of B, may be written as 

IBI = h IB I - h'" B* h 
3 1 -2 1-1 

1.2.4. 

To show this we add to the last column of the partitioned form 

of B the vector formed by postmultiplying the previous columns by 

- B-1 h. Thus 
1 -1 

= IB I (h 
1 3 

= h IB I - h'" B* h 
3 1 -2 1-1 

since IB I B-1 = B*. 
1 1 

Lemma 1.2.2. Let B be defined and partitioned as ~n Lemma 

1.2.1. Then B* may be written in the partitioned form 
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IBI B* B* h h" B* 
1 + 1 J. -2 1 - B* h 

B* ~ IB I IB I 
1 1 

- h" B* 
-2 1 

To show this we observe that 

as can be verified by pre- or post~ultiplication by 

form of B. As shown in Lemma 1, IBI = IBI I (h
3 

- h; 

1 -1 
1.2.5. 

IB I 
1 

1.2.6. 
y 

the partitioned 

B-1 h ), and we 
1 -1 

may write this in the form y IBI = IB I. Substituting this expression 
1 

for y 1n 1.2.6. and multiplying by IBI we obtain 1.2.5. 

We now examine the process of 'pivoting' the expression 1.2.3. 

This implies choosing a particular element of x together with a 

particular element of~, exchanging the elements between the two 

vectors and reforming the relevant matrices. Let us suppose that the 

expression 1.~.3. becomes 

d ~ + B*N~ = B*b 

- -
after one pivot, ~ and ~ each differ from ~ and ~ in exactly one 

element, and Band N each differ from Band N in exactly one column. 

d is defined to be lEI. 

The pivot element of the transformation of B*N into B*N is 

defined to be that element of B*N contained in the row corresponding to 

the chosen element in ~ and the column corresponding to the chosen 
-element of~. We assert that d is equal to this piyot element. 



- 15 -

For convenience let ~s assume that it is the last element of x 

and the last element of ~ that are to be exchanged. Then the pivot 

element will be in the last row and column of B*N. We partition B 

and N by the last row and column: 

Then B and N will take the form 

-
N = 

having exchanged the last columns of Band N. 

The pivot element in B*N is the 

of B* and the last column of N, that 

making use of the expression for B* proved in lemma 1.2.2. This 

expands into IB I n - h~ B* n which is precisely the determinant 
- 1 3 -2 1-1 

of B. 

Some programmes written to perform linear programming hold B*, 

N and ~ separately and update them at every pivot operation. Others, 

including those described in this thesis, hold these quantities in 

combined form, namely B*N and B*~, and it is these which are updated 

every pivot operation. Let us write A = B*N and B*~ = ~ so that 

1.2.3. becomes 

1.2.7. 

Suppose that A is partitioned into 

[~ : :J and ~ into ~J 1.2.8. 
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We will show that when a is the pivot element the new array to 
3 

replace A is given by 

-
IBI d A - a a'" -a where d = 1.2.9. 

1 1 ~ -1 

- -
1131 A = d and d = = a 

3 
a'" d 
-2 

As A = B*N, the product of two integer matrices, it must be integer 

itself, and this permits us to deduce that 

(mod d) 1.2.10. 

This property forms the basis of the discussion in Part 4. 

To prove equation 1.2.9. we evaluate the product of B*N us~ng 

the partitioned form for B* derived in lemma 1.2.2. We have 

a = -h'" B* n + IB I n 
3 -2 1 -1 1 3 

-= d 

as alrea~ shown. 

a'" = -h'" B*N + IB I n" 
-2 -2 1 1 1 -2 

a = ( IBI B* n + B* h h'" B* n 1/ . I B I - n B* h 
-1 1 -1 1 -1 2 1 -1 1 3 1 -1 

= ( IBI B* n + B* h (h" B* n - IB I n ))JIB I 
1 -1 1 -1 -2 1 -1 1 3 1 

= (d B* n - d B* h )JIB I 
1 -1 1 -1 1 

A = ( IBI B*N + B* h h" B*N )JIB I - B* h n .. 
1 1 1 1 1 2 1 1 1 1 -1 -2 

= ( IBI B*N + B* h (h" B*N - IB In"))JIB I 
1 1 1 -1 -2 1 1 1 -2 1 

= (d B*N - B* h a")/IB I 
1 1 1 -1 -2 1 

-To obtain the corresponding values for the elements of A we simply 

exchange the yalues of hand n ,h and n , and d and d. Thus 
~ J. 3 3 
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a = d 
3 

a" = -h" B*N + IB I 
, 

n -2 -2 1 1 1 -2 

a = (d B* h - d B* !lIl/IBI I -1 I -1 1 

- (d - B* ~;)J IBll A = B*N n 
1 1 1 1 -1 

We immediately note that a = d, a" = a", and a = - a. To prove 
_ 3 -2 -2 -1 -1 

the expression for A we evaluate it: 

Cd A - a 
1 J. 

1 

a"l/d = (d 
-2 

= Cd 

= Cd 

= A 
1 

d B*N 
1 

d B*N 
1 

B*N 
1 1 

-- d B* h a" - d B* n 
1 1 -1 -2 1 -1 

- d B* n a")/d IB I 
1 1 -1 -2 1 

- B* n a')/IB I 
1 -1 -2 1 

a + d B* h a")/d 
-2 1 -1 -2 

-It is necessary to comment on the sign of d and d. The algebra 

presented so far is valid whether they are negative or positive. 

However in the remainder of this thesis it will be convenient to 

assume that d and d are positive. 

that the partitioned form of A in 

a into 1.2.9. only when a > O. 
3 3 

Accordingly we adopt the convention 

1.2.8 will transform by pivoting on 

If a < 0 we will define d = - a 
3 3 

and will write A as the negative of 1.2.9: 

dA + a a" ~ 
1 -1 -2 1 

- d A = 1.2.11. 
- a" - d 

-2 

IB I 
1 
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Part 3: Extending the Problem during Computation 

The method of (ref. 1) consists of two basic steps. The first 

1S pivoting~ the algebra for which is described in Part 2~ and the 

second consists of adding new constraints. In order that computation 

may continue to be performed in integers it 1S necessary that any new 

constraint must have integer coefficients in its representation in the 

original space. To be precise, the original equations can be expressed 

as 

~ + NZ = 12. 1.3.1. 

and any addi.tional constraint as 

k' x + s + £' Z = b • 
2 3 

1.3.2. 

s can be regarded either as a slack variable~ constrained to be non­

negative, or an artificial variable constrained to be zero in any 

feasible solution. 

Additional constraints may be added either to the original 

constraints, in which case it is easy to ensure that the variables are 

integers, or to the transformed array. In the latter case the 

transformed array is that obtained by multiplying 1.3.1. through by B*, 

viz 

~ + B*NZ = B*12. 1.3.3. 

and substituting for ~ in 1.3.2., which gives us, after multiplying 

1.3.2. through by d and rearranging~ 

ds + (dn' - k' B*N)v = db - k' B*b 
-2 - L 3 - -

1.3.4. 

Thus the coefficient of Z in the constraint added to the 

transformed array is the sum of an integer vector each of whose 

elements is a multiple of d and an integer combination of the 

coefficients of Z in the existing constraints. As there is a one to 

one correspondence between e~uations 1.3.2. and 1.3.4. it will be 

seen that the condition that an additional constraint is in the form 

1.3.4. is necessary and sufficient for the e~uivalent constraint 

added to 1.3.1. to have integer coefficients. 
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We now consider the possibility of adding a new variable. 

Although no programme was written which actually did this it 

facilitates a proof in Part 4. We add a new variable, t, with 

coefficient S to 1.3.1.: 

~ + N~ + st = ~ 
Multiplying through by B* we obtain 

dx + B*Nx, oj- B*st = B*£.. 1.3.6. 

If now we restrict S to be of the form Br + Nr e~uation 1.3.6. 
J. -2 

takes the torm 

dx_ + B*Nx, + Cdr + B*Nr lt = B*b 
-1 -2 

which is of a form analogous to 1.3.4. 

In Part 4 we shall append a new row and column at the same 

time so that the tableau of B*N will expand to become 

r B*N 

l¥'B*N 

B*NV~ 
Y.'B*NyJ 
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Part 4: The Integer Properties of the Rows 

of the Transformed Matrix. 

Gomory has shown that, in general, if we take the rows of 

matrix B*N modulo d, they generate an additive group of order d. 

As before, we write A for B*N and d for the determinant of B. 
""-

We shall prove this result for the predo~inant case, i.e. when A 

has no common factor. 

Firstly, however, let us consider two examples. The first 

~s from Gomory (ref. 1, p. 297). 

Minimise - 3x + x 
1 2 

Subject to 3x - 2x + x = 3 
1 2 3 

- 5x - 4x + x = -10 
1 2 4 

2x + x + x = 5 
1 2 5 

Rewriting this in the form of a tableau and optimising we have, 

indicating the pivot elements by asterisks: 

z 

x 
3 

x 
4 

x 
5 

z 

x 
1 

x 
4 

X 
5 

1 

0 

3 

-10 

5 

3 

1 

-5 

3 

x 
1 

-3 

3* 

-5 
2 

x 
3 

1 

1/3 

5/3 

-2/3 

x 
2 

1 

-2 (d = l) 

-4 
1 

x 
2 

-1 

-2/3 (d = 3) 

-22/3 

7/3* 
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1 x x 
3 5 

z 30/7 5/7 3/7 

x 13j7 1/7 2/7 (d = 7) 
1 

x 31J7 -3/7 22J7 
1+ 

x 9J7 -2J7 3J7 
2 

Let us construct a row from the cost row by taking the elements 

of the cost row modulo d. This is (2, 5, 3). If we now construct 

the rows obtained by taking successive multiples of this we obtain 

the sequence 

l. (2, 5, 3) 
2. (4, 3, 6) 

3. (6, 1, 2) 

4. (1, 6, 5) 

5. (3, 4, l) 

6. (5, 2, 4) 
7. (0, 0, o) 

It is not surprising that we obtain exactly 7 distinct rows. 

What is interesting is that if we now take the rows corresponding 

to x , x and x modulo d we obtain 
1 '+ 2 

x (6, 1, 2) 
1 

x (3, 4, l} 
1+ 

x (2, 5, 3) 
2 

These are the same as the rows obtained by taking multiples 

3, 5 and 1 of the cost row. 

This result is a perfectly ge~l one. It may be summed up 

by saying that the rows generated by taking the rows of the matrix 

modulo d form an additive group of order d. In other words there 
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are exactly d such rows and any linear combination of the rows 1S 

also a member of the group. In this case the group is cyclic, 1.e. 

there is a member of the group such that every other member of the 

group may be generated by taking successive multiples of it. 

In the next example the group is not cyclic. 

Minimise - x -x 
1 3 

Subject to 2x + 3x + 4x + x = 5 
1 2 3 4 

4x + 3x + 2x + x = 5 
1 2 3 5 

In tableau form: 

1 x x x 
1 2 3 

z ° -1 ° -1 

x 5 2 3 4 (d = l) 
4 

x 5 4* 3 2 
5 

1 x x x 
5 2 3 

z 5)4 1)4 3)4 -1)2 

x 5)2 -1)2 3)2 3* (d = 4) 
If. 

x 5)4 
1 

1)4 3)4 1)2 

1 x x x 
5 2 4 

z 5)3 1/6 1 1/6 

x 5)6 -1)6 1)2 1/3 Cd = 12) 
3 

x 5)6 1)3 1)2 -1)6 
1 

To construct the group of rows modulo d from this we need two 

rows. For example take the row generated from the cost row, that is 

(8, 2, 0, 2) and from 3 times the x row, that is (6, 6, 6, 01. We 
3 

construct 6 rows by taking multiples of the (8, 2, 0, 2) row, and 

the other 6 by adding the (6, 6, 6, 0) row on to each. 
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Cal (bi 

1. (8, 2, 0, 21 (2, 8, 6, 21 
2. (4, 4, 0, 41 C1O, la, 6, 41 

3. (0, 6, 0, 6) (6, 0, 6, 6) 
4. (8, 8, 0, 81 (2, 2, 6, 8) 

5. (4, 10, 0, 101 (10, 4, 6, 101 

6. Co, 0, 0, 01 (6, 6, 6, a) 

That none of these rows can generate the whole group can be 

easily demonstrated. If we take successive multiples of any row 

the 6th element will be the row (0, 0, 0, a) because every element 

is a multiple of 2. Thereafter the cycle will repeat. 

The rows corresponding to x and x are (10, 10, 6, 4) and 
3 1 

C10, 4, 6, 101 and these appear in the second column of the list 

as numbers 2 and 5. 

Before we prove the main result we must establish a preliminary 

one. This is that if the elements of a matrix W have a highest 

common factor of g, there exist vectors ~, y, such that 

~' W Y = g (mod h) 

where h is any given integer. 

To illustrate this consider the following matrix, whose elements 

are shown in factorised form: 

r2 • 3. 5. 7. 11 

L2. 3. 1. 11. 13 

2. 3. 5. 1. 13 

2. 5. 1. 11. 13 

and suppose that h = 2. 3. 5. 1. 11. 13. 

2. 3. 5. 11. 131 1. 4 .l. 

3. 5. 1· 11. 13J 

The highest common factor of the elements of this matrix is 

1 and so we must choose vectors with which to pre- and post- multiply 

the matrix so that the resultant scalar has no factors in common with 

d. This is easily done, for if we premultiply the matrix by [l,lJ 

and post~ultiply by [l,l,lJ' this effectively sums the elements of 

the matrix and this sum is prime to h. For example, the sum will not 
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have 5 as a factor for it may be written as 

2. 3. 7. 11. 13. + 5(2. 3. 7. 11. + .••. + 3. 7. 11. 13). 

To further the example, suppose now that h = 2. 3. 5. 7. 11. 13. 17. 

We cannot easily determine whether the sum of the elements of matrix 

1.4.1. is a multiple of 17 or not, but this is not necessary if we 

change the pre- and post- multiplying vectors to [1,17] and [1,17,17J '. 

The point of this is to show that we needed to determine only 

five variables, that is the elements of ~ and y, to generate a number 

congruent to g whereas if the six elements of the matrix had been 

arranged as a vector, w, any vector t such that t'w = 1 (mod d) would 

have to have six non-zero elements. 

The following lemma makes use of two arguments in particular. 

Firstly; that given a vector y, there is a vector ~ such that ~'y 1S 

equal to the highest common factor of w. Secondly; that if r is 

prime to s, r + as is prime to s. 

Lemma 1.4.1. Let W be an integer matrix whose elements have a 

highest common factor g, and let h be any integer. Then there exist 

integer vectors u, v such that 

~' W Y = g (mod h} 1.4.2. 

To show this we first write W = gT, and rewrite equation 1.4.2. 
as 

~' T Y = 1 (mod h) 

To establish this result let h be expressed as the product of 

its prime factors: 

n 
h = n p. 

1 

i=l 

q. 
1 

For each index i we select a row which does not contain p. as a 
1 

common factor. Denote this row by k eil. We take this row which 

we denote as before by Tk(i}* and multiply it by every other factor 

of h: 
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This still does not contain p. as a common factor, but does have as 
~ 

a factor every p. where j ~ i. 
J 

~ this expre$.sion oYer i. As everyone except the i th contains 

p. as a cammon factor the resultant vector will not contain p. as a 
1 1 

common factor. The sum can be expressed as 

u' T 

where 

u= 
q. 

~ ~k(i) n p. J , J 
... jfi 

where ~k(i} has 1 as its k(i} th element and zero elsewhere. 

As u' T does not contain any p. as a common factor there exists 
~ 

a vector v such that 

~' T v = 1 (mod h). 

The vector y can be generated by means of the Euclidean Algorithm. 

We now set out to prove the result illustrated at the beginning 

of this chapter, namely that when the matrix A = B*N has no common 

factor its rows taken modulo d generate a group of order d, where d 

= IB I· 

It is assumed initially that A is of the form B*N where Band 

N are integer matrices, and that d = IBI. It is not assumed at this 

point that A has no common factor. 

Let us choose vectors ~ and y such that J!' A Y. is the highest 

common factor of A. As established in Part 3,A can be extended by 

adding a row and a column to become 

r A Avl 
L~'A ~'AYJ 
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This matrix has the same properties as A in that it represents the 

product of two integer matrices, one of which is the adjugate of an 

integer matrix with determinant d. Accordingly we may use the 

property established in Part 2 (equation 1.2.10) that 

Let us write g for u' A v 

g A == A ~ ~'A (mod d) 1.4.3. 

We wish to establish a property concerning row vectors generated 

by taking an integer linear combination of the rows of A. Let us 

denote a typical row vector as ~' A, where ~ is any m-dimensional 

vector. Multiplying both sides of 1.4.3. by ~' we obtain 

g ~' A == ~' A ~~' A (mod d) 

We now assume that g = 1. If we write ~ = w' A ~ we have 

w' A == ~ ~'A Unod dl 

As u' is fixed independently of ~, and ~ can have at most d distinct 

values modulo d this shows that w' A can have at most d distinct 

values modulo d. 

To show that w' A can in fact take on d distinct values we 

first observe that ~ can take on d distinct values. For let 

~' = A~', where A .:: 1, •• , d. Then 

}.l .:: ~' A ~ = AY,' A Y = A 

Secondly the d values of ~ will generate d distinct values of ~ u' A. 

~or if not suppose 

1-1. ~' A ;; )l. Jt.' A where 11· * ~. 
1 J 1 J 

Th.en ;postlll1J.ltip1ring each side of the equation by y we obtain 

". ll' A y :: .~. u' A v (inod d 1 
"1 - - r J -

But we ~e ass1Jllled that Jt.' A y.:: 1. 

Therefore il± ;; '~j contrary to hypothesis. 

Th.erefore .!i' A can take on d distinct values. 
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This result is a very general one, and fails only when A has 

a common factor. The proof of lemma 1.4.1. is a constructive one 

and shows us how to construct the group of permissible rows. For 

each of the prime factors p. of d we select a row that contains 
1 

q1· an element prime to p. and multiply this row by dip. ,where q. 
111 

1S the number of times p. is repeated as a factor of d. The sum 
~ 

of these will generate the whole group. 

In practice of course if an element exists which is prime to 

d the row that contains it will generate the whole group of 

constraints. Experimentation showed that the group was usually 

cyclic, and also could often be generated by a single row of A. 
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Part 5: The Generation of Additional Constraints 

Methods of integer programming ~n general need to augment 

the constraints contained in the original statement of the problem 

with constraints derived ~uring the process of solution. In this 

part we consider four ways of deriving such constraints in such 

a way as to fill the following conditions 

(a) the constraints must have integer coefficients when 

represented in the original space. 

(b) they must not render infeasible any feasible integer 

point. 

(c) they must exclude from the feasible space some part 

of it which contains no integer point. 

To satisfy the first condition we write any new constraint as 

k' x + S + .!l' ;L = b 
2 3 

1.5.1. 

where k, nand b are integer constants, and s is an integer 
- -2 3 

variable. This is its representation in the original space, that 

is when added to the equation 1.3.1. Recalling Part 3 we remember 

that 1.5.1., then referred to as 1.3.2., takes on the form 1.3.4. 

when added to the transformed set of equations 1.3.3. We reproduce 

1.3.4. here as 1.5.2. 
S 

d • + (d .!l; - k' B*N);L = d b
3 

- ~' B*~ 1.5.2. 

The rest of the section describes different approaches to defining 

the values of k, nand b • 
- -2 3 

First however we introdllQe a new pair of symbols [J. We 

define them to be such that [aJ represents the largest integer not 

greater than a. We also extend the definition so that [aJ d represents 

the largest multiple of d not greater than a. We can define the 

second usage in terms of the first: 

We will make use of the relations 
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a - [aJd !. 0 1.5.3. 

and a - [aJd < d. 1.5.4. 
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5 (i) Gomory's Original Derivation 

This is the derivation presented In (ref. 1). 

We have to choose values for the k, n , and b in 1.5.2. We 
- -2 3 

allow ourselves a choice of ~, subject to conditions discussed 

later. We then define nand b such that 
-2 3 

d n' = rk' B*Nl and d b 
-2 L Jd 3 

1.5.5. 

Substituting in 1.5.2. we obtain 

and relations 1.5.3. and 1.5.4. enable us to deduce that 

ds > - d. 

As s is integer this implies 82:. 0 . 

This turns equation 1.5.6., which is simply a definition of 

s, into an inequality which excludes no integer point. It will 

exclude some part of the space not containing an integer point 

provided 

i.e. 

I"k' B*bl - k' B*b < 0 L -:.Jd -

k' B*J2. * 0 (mod dL 

Attempts to implement the method of (ref. 11 tend to choose 

~ so that 1.5.6, looks like a good constraint. For example the 

constant term might be large and negative, that is approaching 

the value of - d, or the coefficient of ~ might have small elements. 

The next section describes a derivation based on a different 

approach. 
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5(ii} A more direct approach 

Dr. Land (ref 7) suggests that good constraints tend to be generated 

from the sum of small multiples of the original constraints. So whereas 

others might choose k so that ~' B*N or ~' B* ~ satisfy certain conditions, 

Dr. Land would choose k so that the vector k' B* contained small elements. 

So we pre~ultiply the original equations 

B~ + N1. = ~ 

by l' B* to get 

d l' .!. +~! B* N1. = k' B* b 

Relation 1,5,3 permits us to write 

d k' .!. + [.1' B*NJd 1. ~ ~' B*b 

and since the left hand side is a multiple of d we can round down the right 

hand side to be a multiple of d also: 

d ~' .!. + [~' B*NJd 1. ~ ~' B*~Jd 

If we now write ds for the integer slack variable and substitue B*~ - B*N1. 

for d x we obtain 

ds = [.k' B*~Jd - k' B*b - l[~' B*NJ d - k' B*Nl 1. 

as before. 
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5 C.iii 1 At more general approach 

This was given by Gomory in (ref 2) and in addition to producing 

the constraints already described produces the constraints used in his 

all-integer algorithm contained in the same re~erence. 

Let A be any non-negative number, not necessarily integer. 

Define .!:.,' .!:..l. and ro as follows: 

d k' 

k' B*N 

+ r 
o 

where 0< (r ). <A, all i 
-1 1. 

where 0< (r ). <A, all 1. 
-2 1. 

where 0 < r <A. 
- 0 

Consider a linear combination of the e~uations, thus 

d k' ~ + ~' B*N ~ = ~' B*~ 

1.5.7. 

where~' integer. We may rewrite it using e~uations 1.5.7. and 

rearranging the terms: 

r; ;L + !:~ x • r 0 + A f f' A B"l - f' A B*N ~ ;L - td A £ j ~} 
Now let us define s to be the contents o~ the curly bracket: 

Clearly s is integer. But from 1.5.8. we have 

AS = - r +~' ~ + ~' ~ > - r > - A 
o 2 1 - 0 

since ~' ~ +~' ~ > 0 and r <A from 1.5.1. 
210 

As s is integer, we deduce 

s > O. 

1.5.8. 

1.5.9. 
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Now let A = d and define nand b as before (1.5.5.). Then 
-2 3 

1. 5.9. beCOlllea 

s = fk' B*Nl 

L d J ~ - k' x 

On multiplying through by d and substituting B*~ - B*N~ for d ~ we again 

obtain 

1. 5.10. 

In the all-integer algorithm Gomory derived constraints in such a way 

that the pivot element was always -1 and hence d - 1. 

These constraints were derived by making A > d in 1.5.9. and adding that 

constraint to the transformed tableau. The value of A was chosen large 

enough to ensure a pivot of -1. 

The method was designed to work with a tableau in dual feasible foc.m 

and k was chosen so that k' B*b < 0, thus ensuring that [k' B*1!J)] < O. 
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5(iv) Gomory's mixed integer method 

In (ref 8) Gomory gives a method of deriving constraints where some 

but not all of the variables must take on integer values. It is of interest 

here because it does not reduce to the method of Part 5(i} when there are no 

non-integer variables present. 

We consider an integer combination of the transfo+med tableau: 

d k' x + l' B*N ~ = k' B*b 1. 5 .11. 

We restrict the choice of 1 to ensure that l' ~ is a combination of 

integer variables. To make the algebra more readable let us write x for 1'~ 

.. and a' - a' for k' B*N 
-1 -Z -

element of a and a 
-1 -2 

d x + (a! 
-1 

where a > 0 and a _> 0, that is to say every 
-1 - -2 

is greater or equal to zero. 1.5.11. then becomes 

- ~} ~ = l' B*b 1.5.12. 

We assume that although x must be integer valued k' B*b is not a multiple 

of d at this point. 

We define f = k' B*b - ~' B*J2.] d. 
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We have two alternatives. 

Either (a) 

or (b) 

d x .::. ~' B*b - f 

d x > k' B*b - f + d 

1. 5 .13. 

1. 5 .14. 

Suppose (a) ~s true. Eliminating d x between 1.5.12. and 1.5.13. we have 

- (a' - a') il.. < - f 
-1 -2 -

Since d - f > 0 we have 

- Cd - flea' - a'l v < - Cd - f) f. -1 -2 IL.._ 

Since - d ~~ il.. .::. 0 we may add it to the left hand side: 

- d a' v - Cd - f} a' v + (d - f) a' v < - (d - f) f 
-2 IL.. -1 IL.. -2 IL.. -

or - (d - fl ~~ il.. - f ~~ il.. .::. - (d - f) f. 1.5.15. 

On the other hand suppose (b) is true. 

Then 1.5.12. and 1.5.14. give us 

- (a' - a') v _> - f + d. 
-1 -2 IL.. 

Since - f < 0: 

f ~~ il.. - f ~~ il..'::' - fed - f) 

and since - d ~~ il.. ~ 0: 

- (d - f) ~~ y.. - f ~ il.. ~ - f (d - f). 1. 5.16. 

So either 1.5.15. is true or 1.5.16. is true. But we have so arranged 

them as to be exactly the same and thus may add the constraint 

d s - ((d - f) a' + f a'} v = - fed - f) 
-1 -2 IL.. 

1.5.17. 

where s > O. 

Rearranging 1.5.17. slightly and resorting to the definitions of ~ - ~ 
1 2 

and f we may write 1.5.17. as 

d s + (f k' B*N - d ~~) il.. = f ~' B*1! - f (~' B*1!Jd + d) 

which is of the form necessary to ensure that it has integer coefficients ~n 

the original space, as may be seen by comparing it with 1.3.4. 

In general, s is not an integer variable for its value depends on the non­

integer variable il... However if all the variables are integer s will be too. 

Furthermore we may strengthen 1.5.17. Instead of 1.5.12. we write 

d x + (a - r a 1 - (~ - r ~ ] )} il..:: ~'B*b (mod d). 
-1 L1j.c :l t 2 d 

1. 5 .18. 

Relations 1.5.13. and 1.5.14. remain the same and an analogous argument results 

in a constraint at least as strong as 1.5.17. 
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1. 5 .19. 

There is no longer any point ~n distinguishing between a and a 
-1 -2 

If we denote the coefficient of a typical element of ~ as a. we may replace 
~ 

it by a. - n d in any equation of a similar form to 1.5.18. The i th 
~ 

coefficient of ~ ~n 1.5.19. will be least negative, thus making the constraint 

strongest, if a i ~s replaced by a i - [aiJd giving a coefficient in 1.5.19. 

of 

or by a. -
~ 

d giving a coefficient of 
~ 

f (a. 
~ 

- d). 

1.5.20. will be less negative than 1.5.21 if and only if 

ai - [aiJ d < f. 

It should be remarked that in (ref. 8} Gomory writes 1.5.16 as 
f 

- a' v - a' ~ < - f. -1.... d - f -2 -

1.5.20 

1. 5 .21. 

Although this would appear to be better sealed than 1.5.16 it does not 

usually represent an equation with integer coefficients. 



- 37 -

Figure 1.5.1: Examples of derivable cuts 

Example taken from Gomory (ref. 1) . 

Minimise z = 3x - x 
1 L 

Subject to 3x - 2x + x = 3 
1 2 3 

-5x - 4x + x = 10 
1 2 4 

2x + x + x = 5 
1 L 5 

In full tableau form After 1st pivot: 

1 x x x x x 1 x x x x x 
1 2 3 '+ 5 1 2 3 4 5 

z 0 3 -1 0 0 0 z 3 0 -1 1 0 0 

x 3 3* -2 1 0 0 x 1 1 -2/3 1/3 0 0 
3 1 

x -10 -5 -4 0 1 0 x -5 0 -22/3 5/3 1 0 
4 If 

X 5 2 1 0 0 1 x 3 0 7/3*-2/3 0 1 
5 5 

Optimal: Inverse matrix: 

1 x x x x x 
1 2 3 4 5 

z 30/7 0 0 5/7 0 3/7 1 5/7 0 3/7 

x 13/7 1 0 1i7 0 2i7 0 1i7 0 2i7 
1 

x 
4 

31/7 0 0 -3/7 1 22/7 0 -3/7 1 22/7 

x 
2 

9/7 0 1 -2i7 0 3i7 0 -2i7 0 3/7 

Set of constraints derived by 6(i} ,(ii) and (iii): 

Added to optimal Added to original 

tableau tableau 

x + 2x ~ 6 x .$ 1 
3 5 1 

2x + 4x ~ 5 2x :s 3 
3 5 1 

3x + 6x ~ 4 3x .$ 5 
3 5 1 

4x + x ~ 3 2x - x ~ 2 
3 5 1 2 

5x + 3x ~ 2 3x - x .$ 4 
3 5 1 2 

6x + 5x ~ 1 4x - x .$ 6 
3 5 1 2 
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Figure 1.5.1. continued 
Additional constraints derived by 5(iv) 

Corresponding constraint New constraint New constraint 

derived by 6(i) added to optimal added to original 

x::l + 2xs ~6 X3 + 2xs ~ 6 Xl ~l 

2x3 + 4x!> ~5 4X3 + 8xs ~lO 4XI ~6 

3x3 + 6xs <!4 9xj + 4xs H2 5xl - 2X2 ~5 

4X3 + Xs ~3 9X3 + 4xs ,12 5xI - 2X2 !>5 

5x 3 + 3xs ,2 4X3 + 8xs ~lO 4XI ~6 

6X3 + 5xs ,1 x3 + 2xs , 6 Xl ~l 
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Part 6: The lexicographic dual simplex method 

In Part 1 we described the dual simplex method. We select an 

(x). such that 
- 1 

(B-1b). < ° and exchange it for a (~)j (i.e. pivot on 
- 1 

-1 (B N) .. 
1J 

-1 where. is such that (B N) .. < ° and 
J :LJ 

1.6.1. 

1S a minimum over J. Unfortunately if there is more than one j for 

which this is a minimum one needs some criterion to choose between 

them, and it has been shown that a bad choice can, theoretically at 

least, give rise to looping, i.e. returning to the same basis again 

and again until the programme is thrown off (ref. 3, pp. 84,104). 

One of the ways of combating this is the lexicographic method. 

The algorithm is simply that if for a given set of j the ratio 1.6.1. 

has the same value, we exam1ne the ratios 

_1 _1 
- (B N)l.}(B N) .. 

J lJ 

for the same J, and choose the column j which glves the minimum ratio. 

If there is another tie, the process is repeated for the next row, and 

so on. 

The finiteness of this process is easily demonstrated using the 

algebra of Part 2. We assume that the tableau of equation 1.2.7, partitioned 

as in 1.2.8, is lexicographically optimal, i.e. not only is the first 

element in each column ~ 0, but the first non-zero element in every column 

is > 0. We say that each column is lexicographically positive. 

Let us also assume that a3 has been chosen as pivot, so that P3 < 0, 

a3 < 0, and when the column -~ ja3 is compared with analogous columns, 

i.e. columns -CAll*j}(!2)j such that (~}j < 0, the first element which 

differs from the corresponding element of the other column is less than it. 

We use (A1 )*. to denote the jth column of A1' 
J 
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The partitioned tableau of A in 1.2.8. transforms into 1.2.11, 

s~nce we are considering the case when a3 < 0. 

We show, firstly, that once the tableau is lexicographically optimal 

it will remain so. Choose a typical column of A , let it be the jth. 

It will transform into (d(Ad* . + .!:.1 (a' } . }jd. 
J -2 J 

We must show that the first non-zero element of this column is > O. 

If (a'}. > 0 we are summing two columns which are lexicographically 
-2 J 

positive, and so the result will be lexicographically positive also. 

If (a'}. < 0, we make use of the fact that the pivot column was 
-2 J 

chosen because 

-a J a 
-1 3 

where the 'less than' sign is used in the sense of 'lexicographically 

less than'. Writing d for - a and rearranging, this relation becomes 
3 

d (A )*. + a (a'). > ° 
1 J -1 -2 J 

as we wished to show. 

Secondly we must show that the tableau never repeats itself. 

Consider the right hand side of equation 1.2.7, partitioned as in 1.2.8, 

divided by d, as it would be held in normal linear programming. 

E j d will transform into E j d - P a j d a . As p < 0, a < 0, 
1 1 3 -1 3 3 3 

d > 0, and the first non-zero element of a is > 0, the first non-zero element 
-1 

of -p a J d a is < 0. Thus the first element of ~ I d to change at 
3 -1 3 1 

any pivot step decreases, and so the tableau can never go back on itself. 

This does not mean the same solution can never occur more than once. 

In general the pivot element will not be chosen from the last row as in 

1.2.8. and it is possible for the order of the basic variables to be permuted. 

For example the solution x = 3, x = 2, could appear a second time as x = 2, 
122 

x = 3. 
1 

For this reason the programmes described in this thesis used a stronger 

form of the lexicographic method. 

The equation 

d x + B*N ~ = B*£ 1.6.2. 
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was extended to 

d 
[

B*N Jt = [B*E.J 
-dI - 0 1.6.3. 

A pivot row 1S first copied to the bottom of the tableau, and after 

pivoting is discarded. The same goes for any new constraint. By this 

means the elements of ~. will change but not the elements of ~ and ~. 

Equation 1.6.2. can always be reconstructed by eliminating t from 

equation 1.6.3. This is the system adopted in the example in (ref. 2, 

p. 204). In the examples in (ref. 1, p.295) new constraints are added 

to a tableau of the form 1.6.2., and constraints can only be discarded 

when this can be done without discarding an element of ~ or ~, i.e. when 

the basic variable 1S not an element of ~ or~. This system has the 

advantage over the other in that 1.6.2. is easier to store than 1.6.3., 

but this advantage is lost when the equations are held is sparse form, 

i.e. only non-zero elements are stored. 

In general the elements of x and ~ 1n 1.6.3. are interspersed. 
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Part 7: The use of integer arithmetic within a digital computer 

The simplest arithmetic operations of a digital computer are 

addition, subtraction, multiplication and division of integers. These 

are usually quicker than other forms of arithmetic and invariablY give 

the exact answer. There is just one proviso - that the answer must not 

be too big for the location which is to hold it. When this happens the 

programmer either has to resort to double or multiple length integers, 

or use fixed point decimals or floating point numbers. 

For many people, the advantages of floating point and decimal 

arithmetic outweigh the perils, but one would hope that in integer 

programming. of all subjects, one would be able to use the computer 

for what it is best at. In an all-integer method (ref.2) every 

number in the constraint matrix is an integer, and if any are so big 

as to cause overflow, the use of floating point will not solve the 

problem. This is because floating point can only be used when the 

answer is only required to within a certain percentage. In integer 

programming the answer is required to the nearest integer, irrespective 

of what percentage accuracy this represents. 

In the method we are discussing the coefficients are assumed to 

start off as integers but do not remain so during the calculation. 

Our treatment of the method has been designed to show how they can be 

held as integers with a common denominator of d. In deriving new 

constraints, e.g. 1.5.6., the new coefficients are of the form 

[~'J d - a' 1.7.1. 

or ~J - ~' 
d 1.7·2. 

which is the form they would take if floating point were used. If the 

~alue of [~J were of the order of ten one decimal place would be lost 

ln accuracy. If [~J were very big much more would be lost. When we 

consider that multiples of a' may be taken, e.g. 
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half the accuracy of ~' / d could be lost 1n one operation if d were 

sufficiently big. 

The disadvantage of using integer arithmetic would seem to be the 

limit on the size of ~ and d. But this is rather doubtful. For if a 

were floating point and allowed to exceed the limit it would cease to 

be accurate to the nearest integer and any hope of generating constraints 

from large multiples would be lost. If d lost its accuracy we would not 

even know how many constraints could be generated. 

Because it was desired to experiment with large multiples of 

constraints without having to worry about accuracy, the programmes were 

written to hold the coefficients as an integer array with common denominator 

d. Tests were made for overflow and when this happened a constraint of the 

type described in Part 5(i) was added. This always leads to a pivot < d which 

is in fact the new d, and this leads to an overall reduction in the size of 

the elements of the array A. The transformations 

and 
dA ... a a' 

1 ~ -2 

d 

were performed in double lerigth. 

In many problems solved there was no danger of overflow, and only 

occasionally was great difficulty experienced because of it. But this 

may have been because the examples tried were mostly simple compared 

with the potential problems of integer programming. 

It was interesting that the experiments suggested that complicated 

multiples and combinations of constraints did not justify t]le effort 

needed (see Chapter 2). If only small multiples were used it might be 

feasible to use floating point arithmetic. However it is likely that 

accuracy would be better preserved by deriving a l' B* and calculating 

the new constraint direct from the original ones 1n the manner of 

Part 5(ii} of this chapter. 
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Part 8: The Euclidean Algorithm 

The programmes in Appendix D include a procedure to perform the 

Euclidean Algorithm. This part is a verification of it. 

The integer procedure euclidalg (h, DI computes an integer w such 

that 

w h :: hef (h, D) mod CDJ 

where hef lh, DL denotes the highest common factor of h and D. The value 

of w is assigned to euclidalg. 

The procedure initiates four variables: 

hO = h - [h ]D' 
and iterates as follows 

k = k - h 
r+l r r 

alternately with 

k = D, -u :: 1, Y = 0 
000 

Y 
r+l 

= Y - U 
r . r 

[ h J k J' u r r+l r+l 
= u - v 

r r+l [ h / k J r r+l 
and stops as soon as h or k 

r+l r+j 
becomes zero. 

become zero h is the highest common factor of h 
o 

If k 
r:t-l 

~s the first to 

and k , if h is the 

first to become zero kr+ is the required number. 
1 

o r+1 
At this point w is 

given by u r if kr+ is zero and Cu + + v + 1 if h + is zero. 
1 r l r l rl 

Firstly we verify the formula for the highest common factor. We 
observe that since 

kr+l = kr - hr [kr j hr J 
any number that divides kr and h also divides k 1. Conversely any number r r+ 
that divides kr+l and hr also divides kr and so 

hef (hr , kr ) = hef (h , k + ). 
r r 1 

Similarly we can show that 

hef (hr , ~+ ) = hef (h + ' k + ) 
1 r 1 r 1 

Thus by induction we have 

hef (ho ' ko) = hef (hr , kr +1) = hef (hr+l' kr +1) 

which will be h if k + = 0 and k if h = o. 
-~ -~ 1 r+1 r+1 



To show that 

u h - hef (h , r 0 r 
(u + v )h - hef (h , r r 0 r 

we again use induction. 

v h - k r 0 r 

u h - h r 0 r 

These are clearly true 

r + 1: 

vr+l h - kr+l = 
0 

= 

-

ur +1 h - hr+l = 
0 

= 

-
Accordingly if k r 

u h -r 0 

and if h = 0 r 

(u + v ) h -r r a 

- 45 -

k ) = h r r 
k ) = k 

r r 

Suppose 

(mod Dl 

(mod Dl 

for r = O. 

if kr+l = 0 

if h = 0 
r 

To show they are true for 

(v - u [krlhrJ 1 h - (k - h [k /h J ) r r 0 r r r r 

(v h - k 1 - (u h - h 1 [k jh J r 0 r r 0 r r r 

0 (mod D) 

(u - vr+l [ h)kr+1J 1 h - (h - k r 0 r r+l [ h/kr+1J 

(u h - h 1 - (vr +1 h - k ) [ h;kr+lJ r 0 r 0 r+l 

0 (mod D) 

= 0 

h = he!' (h , k 1 r 0 0 

k + h - k = hef (h , k}. 
r r r a a 
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CHAPTER 2 

EXPERIMENTS IN INTEGER PROGRAMMING 
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Chapter 2 Experiments in Integer Programming 

The method of integer programming described by Gomory in (ref. 1), 

often referred to as the Method of Integer Forms, permits of many variations. 

The most common of these consist of two operations, optimisation and 

adding constraints. First of all the problem, which is formulated as a 

linear programming problem, is solved as if it were a linear programming 

problem, using the methods outlined in Part I of Chapter 1. If the 

solution obtained is integer, the integer programming problem ~s solved. 

If the solution obtained is not integer a constraint of the type 

described in Part 5(i} of Chapter I is added. This has the property that 

it does not render infeasible any feasible integer point but does make 

infeasible the current optimal (non-integer) point. After this the 

problem is re-optimised in linear programming fashion, and the process 

repeated until an integer solution is found. 

The author's experimentation in the Method of Integer Forms 

started along these lines. It originally consisted of trying different 

criteria for choosing constraints of the type described in Part 5(i) 

and adding them to a tableau held in the form of floating point numbers. 
¥\. 

It was soon realised that there was more to integer programming tha~ 

merely choosing good constraints. Parts 2 and 3 of this chapter describe 

these other problems and how they were dealt with, and Part 4 describes 

some of the different constraints tried and compares their performance. 

Firstly however we digress slightly upon the purpose of linear 

programming within an integer programming method. 
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Part 1 Linear programming as a subset of 

integer programming. 

The optimum feasible solution of a linear programming problem 

~s defined by the identity of the variables which are basic in that 

optimum feasible solution. However if we wish to know the values of 

the variables in that solution or prove that it is indeed optimal we 

have to transform the tableau of the problem by a series of pivot 

operations. Thus pivoting performs two functions~ firstly it gives 

us the values of the variables in the solution, secondly it indicates 

whether the solution is optimal and if not enables us to choose another 

pivot which will carry us nearer the optimum. 

There is a direct analogy with integer programming. To define 

the optimum feasible solution of an integer programming problem we 

need to know what constraints have been added as well as the identity 

of the basic variables. However, these will not give us the value 

of the variables in the solution or establish its optimality or 

feasibility. (Here we use the term feasible to mean that all variables 

are integer-valued as well as non-negative}. To this end we use linear 

programming. Every time a new constraint is added a linear programming 

routine is used firstly to establish the values of the variables and 

secondly to determine whether they are integer or not. If they are not 

the tableau enables a constraint to be chosen which will carry the solution 

nearer the optimum. 

We now present an example which illustrates another aspect of 

iterating. When constraints are derived in the manner of Part 5(i) 

of Chapter 1 they represent a lower limit on a non-negative combination 

of the variables which are non-basic at that time. In other words when 

a new constraint is added it will not assist the choice of any succeeding 

constraints until its slack variable has been made basic by a pivot 

operation. 
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The problem consists of two constraints 

4x + 2y <; 5 

2x + 4y <; 1 

2.1.1. 

2.1.2. 

These define a convex region which contains three integer points 

(0,0) (0,11 and (1,0). The feasible integer space is bounded by 

the two implicit constraints x ~ 0, y ~ 0, and a new constraint, 

x+y~1. 2.1.3. 

To obtain 2.1.3 from 2.1.1 and 2.1.2 we first divide 2.1.1 and 2.1.2 

by 2 and round down the right hand sides to the nearest integer 1n 

the manner of Part 5(ii) of Chapter 1. These constraints then become 

2x+y~ 2 

x+2y~3 

2.1.4 

If now we add these new constraints, divide their sum by 3, and round 

down the right hand side to an integer value we obtain 2.1.3. 

We have derived 2.1.3 from 2.1.1 and 2.1.2 by a two stage process 

and we shall show that it cannot be done in a single stage. For example 

if we add 2.1.1 and 2.1.2 and divide the sum by six we obtain 

x + y ~ 2. 2.1.6 

Part 5liil of Chapter 1 showed that any constraint generated by the 

Method of Integer Forms could be obtained by taking a linear combination 

of the original inequalities and any additions to them and rounding all 

coefficients down to integer values. But before additional constraints 

can be used to generate any further constraints their slack variables 

must first be eliminated from the basis, i.e. a pivot operation must 

be performed. 



- 50 -

We may write a linear combination of 2.1.1 and 2.1.2. as 

A L4x + 2y} + LA + V}(2x + 4y) ~ A 5 + (A + ~) 7 

where A > 0 and A + ~ > 0, but otherwise are not restricted. 

2.1. 7 becomes 

(6A + 2 ~) x + (6A + 4~ } y < 12A + 7~ 

We now attempt to find a number, v, such that 

~A : 211J x + ~A : 4~ y ~ ~2A v + 711J 

2.1.7 

Simplifying, 

is identical to 2.1.3. We observe by comparing right hand sides that 

2v > 12A + 7~ 2.1.8 

In order that the coefficient of x might be at least 1 we have 

v < 6A + 211 

which to be consistent with 2.1.8 requires that ~ < O. 

On the other hand for the coefficient of y to be at least 1 we have 

the condition. 

v < 6A + 4~ 

which to be consistent with 2.1.8 requires ~ > O. 

As 11 cannot be simultaneously < 0 and> 0 we have shown 2.1.3 

cannot be obtained directly from 2.1.1 and 2.1.2. In particular we 

note that having found an optimal and feasible solution in the linear 

programming sense, one cannot expect to find the integer solution by 

adding all possible constraints. 
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Part 2 The linear programming structure of the experimental programmes 

The author started experimenting with integer programming using 

an Algol programme received from Dr. J.C. Wilkinson of Liverpool 

University. This used the Simplex Method of linear programming to 

find a linear programming optimal solution and then added a constraint 

of the type derived by Gomory and described in Part 5(i) of Chapter 1. 

The cycle of linear programming optimisation and adding a constraint 

was repeated until an integer solution was found. 

It was not long before problems of accuracy were encountered, and 

the purpose of this part is to present the difficulties met and the 

methods used to overcome them. 

The first problem arose because the programme worked in floating 

point. Every constraint added contained coefficients of the form 

[a
ij

] - a
ij

, and these usually implied a loss of accuracy. This loss 

of accuracy was evident because every iteration the value of the 

determinant d, calculated as the product of the pivot elements, was 

printed, and this value often lost any resemblance to an integer, 

although it was supposed to be onel. This loss of accuracy often 

prevented quite small problems being solved, for example the 4 x 5 

Problem no. 10. 1 in Appendix B. 

The remedy adopted to tackle this problem was to rewrite the 

programme using integer arithmetic throughout, employing the algebra 

of Part 2 of Chapter 1. This introduced the restriction that the 

original equations must have integer coefficients and that any constraints 

introduced during solution must represent constraints in the original 

space with integer coefficients (see Part 3 of Chapter 1). However, 

it is usual to adopt such restrictions in integer programming as it 

means that all slack variables are integer valued. 

The use of integer arithmetic gives rise to another problem, that 

of integer'overflow. There are two ways of approaching this problem. 

One is to attempt to avoid it by keeping the elements of the tableau 

as small as possible; the other is to wait until it occurs or is about 

to occur and take action then. Eventually the latter approach was taken. 

Checks were made for overflow while pivoting and if overflow occurred 

the tableau was restored to its form before the pivot operation was 

started. However, this approach was not taken immediately because the 

Algol language contains no built-in facilities to inform the object­

programme when overflow occurs. KDF9 Algol tests for overflow but 
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terminates the programme if it occuxs. To test for overflow in 

Algol it would be necessary to perform every calculation twice: first 

in real arithmetic to check that the answer is in range, secondly in 

integer arithmetic to retain accuxacy. 

It was considered that there was a clear case for us~ng User Code 

to carry out pi~ot operations. This raised difficulties of its own 

for the Algol interpreter normally used for developing programmes did 

not accept user code bodied procedures. Instead the compiler had to 

be used and this only afforded one compilation per day in place of 

three using the interpreter. As a result the implementation of checks 

for overflow was postponed and attention turned to a teChniques 

designed to lessen the chances of overflow. This technique was a 

method of scaling equations duxing solution of a problem. 

To a large extent the size of the coefficients in a tableau of 

the form 1.2.9 are proportional to the size of d, and efforts to reduce 

the size of the coefficients were directed towards reducing the size 

of d. One way to do this is to scale the original equations before 

starting to solve a problem, that is to eliminate any common factors ~n 

them. The reason for this is that d is the determinant of part of the 

original matrix, and removing a common factor from a row of the original 

matrix will also remove it from d provided that this row has been 

incorporated into the determinant. This will be so if the slack variable 

associated with the row has been made non-basic. 

As an example consider the following problem: 

minimise = - 2xl - 3x2 

su bject to 2Xl + 4x2 < 6 

3xl + 3x2 ~ 5 . 
Writing x3 and x~ for the slack variables we write this 1n tableau 

form and perform one pivot. 

1 Xl x2 1 Xl x3 

z 0 -2 -3 z 18/4 -2/4 3/4 2.2.1. 

X3 6 2 4* ~ X2 6/4 2/4 1/4 

x~ 5 3 3 X4 2/4 6/4 -3/4 

If we were to scale the first inequality by 2 the same pivot operation 

would become 
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1 Xl X2 1 Xl X3 

z 0 -2 -3 z ~2 -1)2 3/2 2.2.2 

xj 3 1 2* x2 ~2 V2 1/2 

X4 5 3 3 X4 Ij2 Y2 -3/2 

All the numerators save those ln the last column are now half the 

Slze they were previously. 

All this is fairly obvious, but what is not so obvious is that 

this scaling can be done automatically at times other than before 

starting the process of solution. The transformed tableau 2.2.1 

has d = 4 and 4 possible constraints. They have coefficients: 

(-2, -2, -11, (0, 0, -2), (-2, -2, -3), (0,0, 0). 

We note the second of these has zero constant term and if we append 

it to the transformed tableau 2.2.1 and perform a pivot we obtain 

1 xl x3 1 xl s 

z 18/4 -V4 ~4 z 9/2 -1/2 3/2 2.2.3 

X2 6/4 2/4 V4 
~ 

x2 3/2 V2 1/2 

x4 V4 6/4 -3/4 X4 1/2 3/2 -3/2 

s -0 -0 -2j4* x3 0 0 -2 

This is now the same as the transformed tableau 2.2.2 except that 

it has an extra row. 

Therewas bound to be a constraint with zero constant term because 

2.2.1 could produce four constraints. As it was equivalent to 2.2.2 

the constant terms had to be the same and so any constraint could only 

have two values for the constant term: -2 and O. This means there 

must be at least one constraint with zero constant term apart from the 

null constraint (0, 0, 0). For as there are four constraints but only 

two constant terms there must be at least two distinct constraints 

with the same constant term. If these are subtracted they generate a 

constraint with zero constant term. For example (-2, -2, -1) 

subtracted from (-2, -2, -3) will generate (0, 0, -2) 

If it is possible to scale the original equations it is of course 

better to do it at the start rather than using the method just outlined. 

However the method has value as it is often possible to use it even 

when the original equations have no COmmon factor. An example of this is 

given is figure 2.2.1. on page 55. 

Another aspect of scaling is that besides reducing the size of the 

coefficients in the tableau it reduces the number of possible constraints. 

Noting that x3 = 2x~ as can be seen from a comparison of 2.2.1 and 2.2.2 
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we can write the two non-trivial constraints of 2.2.1 

as 2xl + x3 ~ 2 and 2xl + 3X3 ~ 2, 

or 2xl + 2xA ~ 2 and 2xl + 6xA ~ 2. 

Tableau 2.2.2 will only produce the first of these, and the first is 

clearly more restrictive than the second. 

~n figure 2.2.1. 

This is also illustrated 

It is believed that reducing the number of constraints in this 

way will increase the proportion of 'good' constraints and hence the 

likelihood of choosing one. Figure 2.2.1 compares some of the correspond-

ing constraints in the tableaux before and after scaling. This com-

parison also suggests that a good choice of constraint 1S more likely 

to result from a scaled tableau than an unsealed one. 

However the last constraint of figure 2.2.1 has a scaled verS10n 

that contains a positive coefficient and thus exclude~pnrt of the 

space which no constraint of the form we are considering would exclude. 

This suggests that the benefits of scaling from the point of view of 

choosing constraints would be difficult to prove. In any case it 

presupposes that the choice of constraint is random. 

Let us state the al~bra of scaling more formally. If at some 

point during solution the constant terms are p./d and the p. and d have 
1 1 

a common factor, say g, and furthermore the tableau can generate d 

possible constraints, then We can scale the tableau. For any constraint 

can be derived by taking an integer linear combination of the rows of 

the tableau and deriving the remainders modulo d. Thus each constraint 

will have a constant term which is a multiple of g. As there are d 

constraints but only dig constant terms it follows there are at least 

two distinct constraints with the same constant term. The difference 

of these constraints will generate a constraint with zero constant term. 

Adding this to the tableau and pivoting in the normal way will reduce 

the value of d without altering the values of the basic variables. 

In practice such constraints were derived by searching the tableau 

for a constant term whose numerator p., had a factor, g, common with d, 
~ 

but whose associated row also contained a coefficient whose numerator 

a .. did not contain the factor g. This row was then multiplied by the 
~J 

integer dig and this generated the constraint. 

To return to the original purpose of scaling. Scaling was introduced 

partly to assist the choosing of a cut (the constraints used in scaling are 
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Figure 2.2.1: An example of scaling 

Minimize 10Xl - l11x2 

Subject to -12xl + 109x2 ~ 420 

Xl + X2 ~ 20 

In tableau form: 

1 Xl X2 1 xl x~ 

z 0 10 -111 z 46620/109 -242/109 111/109 

X3 420 -12 109* X2 420/109 -12/109 1/109 

X4 20 1 1 X4 1760/109 121/109* -1/109 

1 X4 Xj 

z 460 2 1 

x2 60/11 12/121 1/121 

xl 160jll 109/121 -lj121 

51 0 -11/121 -11/121* 

Constraint generated by taking 11 times the x2 row. 

This gives 

1 X4 51 

Z 460 1 11 

X2 60j11 Ij11 Ijll 

xl 160jl1 10/11 -ljll 

x3 0 1 -11 

The extra constraint is equivalent to -Xl + 10x2 ~ 40 

in the original tableau. In terms of the optimal tableau it can be 

written -X4 -X3 + 11s1 = 0, i.e. X4 + X3 is a multiple of 11. 

One is in fact adding the two original constraints to get -llxl 

+110xl ~ 440, and then dividing it through by 11. 

The two tab1eauxdo not in general generate the same constraints. 

For example, 

.:2. -12 -1 
11 !. 121x4 121X'3 

.:2. -23 -12 
11 !. 121x4 121x3 

-6 -120 -10 
11 !. 121x4 121x3 

-6 -~ -120 
11 !. 121 4 121X3 

becomes 
-"i -1 -1 
~ i?4 Ils1 

.:2. -1 -12 
11 :.. 1J:X4 US I 

-6 -10 -10 
11 ~ 11 Xli" l"J:' 1 

-6 +1 -120 
11 ~ 1J:X4 US l 
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not cuts in the strict sense of the word}, and partly to try and avoid 

overflow. To both these ends scaling was carried out every time a new 

rational optimum solution was reached. 

This enabled a larger type of problem to be tackled and solved. 

Inevitably problems arose which were abandoned because of overflo~, 

and eventually a machine code subroutine was written to perform the 

pivot operation and test for overflow, and if necessary reconstruct the 

matrix. Rather than add a cut at a non-optimal solution an attempt 

was made to scale the matrix, and only if this was unsuccessful was a 

cut generated. As will be seen from the tables in Appendix C even this 

procedure failed. Once (Problem 1: programme BH9) overflow occurred 

when pivoting on a cut, and twice (Problem 6: programmes BHE and BHF) 

overflow occurred when d was equal to one and no cut could be added. 

These were rare happenings and no attempt to get past the difficulty 

was made. The difficulty could have been overcome by searching for 

alternative pivots or introducing rows of the sort Gomory generates 

in his all-integer algorithm. 

At the same time as the means of combating overflow were being 

developed the author was suspecting more and more that the programme 

was prone to looping or circling. The evidence for this was that a 

series of rational solutions had the same value of the cost function. 

Looping becomes possible when there are zero coefficients 1n the 

cost function. For if a pivot is chosen from a column with a cost 

coefficient of zero, the cost function will not change. If a succession 

of such pivots returns the tableau to a previous state it will continue 

to do so ad infinitum. There are two sorts of looping; one can happen 1n 

linear programming and the other in integer programming. 

Looping in linear programming is moving from one infeasible or 

non-optimal basis to another and never reaching a feasible or optimal one. 

Examples of this have been constructed by A.J. Hoffman and E.M.L. Beale 

(ref. 4, pp 229-230). 

Looping in integer programming is moving from one feasible and 

optimal solution to another and never reaching an integer one. At each 

rational solution a cut 1S added. After one pivot the slack variable 

associated with it will be made non-basic, but if after two or more 

pivots, or after further cuts, the slack variable re-enters the basis 

and has a positive value at the next rational solution, it will be 
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discarded as redundant. An example of this lS given In figure 2.2.2. 

Although there was no direct evidence of looping when the 

programmes were being developed, they often gave the appearance of being 

lost in a maze of figures. 

by luck than designJ 

When they eventually got out it was more 

It might have been possible to avoid the danger of looping by 

revising the rule of discarding previous cuts, but the systematic 

approach of lexicography was used instead. (see Chapter 1, Part 6) . 
At first the simple form using the tableau of equation 1.6.2. was used. 

Later, when the cuts being generated became sensitive to the order In 

which the basic variables were held, the full lexicographic method 

based on the tableau of equation 1.6.3 was used. 
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Figure 2.2.2: An example of looping in integer programming 

l. 2. 

1 88 8b z 1 8f 86 z 
c 0 0 0 1 c 0 0 0 1 
z 0 0 0 -1 z 0 0 0 -1 
81 16/9 1/9 2/3 0 <- 81 1 1 0 0 
82 2/9 -1/9 -2/3 0 82 1 -1 0 0 
83 22 4 6 0 8j -6 36 -18* 0 
84 2 -4 -6 0 84 30 -36 18 0 
8~ 2 0 1 0 85 2 0 1 0 

Y 1/2 0 -1/2 0 Y 1/2 0 -1/2 0 
8
7 

2 1 0 0 87 -5 9 -6 0 
x 13/18 -1/9 -1/6 0 x 3/2 -1 1/2 0 
8f -7/9 *-1/9 -2/3 0 8tj 7 -9 6 0 

3. 4. 

1 8f 83 z 1 81 83 Z 

c 0 0 0 1 c 0 0 0 1 
z 0 0 0 -1 z 0 0 0 -1 

81 1 1 0 0 81 0 1/3 -1/9 0 

82 1 -1 0 0 52 2 -1/3 1/9 0 

8b 1/3 -2 -1/18 0 56 7/3 -2/3 1/6 0 
54 24 0 1 0 54 24 0 1 0 

55 5/3 2 1/18 0 55 -1/3 2/3 -1/6* 0 

Y 2/3 -1 -1/36 0 Y 5/3 -1/3 1/12 0 

57 -3 -3* -1/3 0 51 1 -1/3 1/9 0 

x 4/3 G 1/36 0 x 4/3 0 1/36 0 

5ti 5 3 1/3 0 58 2 1 0 0 

5. 6. 
1 57 85 z 1 82 85 z 

c 0 0 0 1 c 0 0 0 1 
z 0 0 0 -1 z 0 0 0 -1 
51 2/9 -1/9 -2j3 0 51 1 -1 0 0 
52 16/9 1/9 2/3 0 <- 82 1 1 0 0 
8b 2 0 1 0 86 2 0 1 0 
54 22 4 6 0 84 -6 36 -18* 0 
83 2 -4 -6 0 53 30 -36 18 0 

Y 3/2 0 IJ2 0 Y 3/2 0 1/2 0 

51 7/9 1/9 2J3 0 drop x 1/2 1 -1/2 0 
x 23/18 1/9 Ij6 0 58 -5 9 -6 0 
88 2 1 0 0 57 7 -9 6 0 
82 -7/9 -1/9* -2/3 0 
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Figure 2.2.2 continued 

7. 8. 

1 s; s4 Z 1 s8 S4 z 
c 0 0 0 1 c 0 0 0 1 
z 0 0 0 -1 z 0 0 0 -1 
sl 1 -1 0 0 sl 2 -1/3 1/9 0 
s2 1 1 0 0 s2 0 1/3 -1/9 0 

S6 5/3 2 1/18 0 s6 -1/3 2/3 -1/6* 0 
s5 1/3 -2 -1/18 0 S5 7/3 -2/3 1/6 0 
S3 24 0 1 0 Sj 24 0 1 0 

Y 4/3 1 1/36 0 y 1/3 1/3 -1/12 0 
x 2/3 0 -1/36 0 x 2/3 0 -1/36 0 
Slj -3 -3* -1/3 0 s2 1 -1/3 1/9 0 
S7 5 3 1/3 0 s7 2 1 0 0 

9. 

1 s8 s6 z 
c 0 0 0 1 
z 0 0 0 -1 
sl 16/9 1/9 2/3 0 
Sl 2/9 -1/9 -2/3 0 

s4 2 -4 -6 0 
s:, 2 0 1 0 
Sj 22 4 6 0 
y 1/2 0 -1/2 0 
x 13/18 -1/9 -1/6 0 
S2 7/9 1/9 2/3 0 drop 
s7 2 1 0 0 

Rule for choosing a cut: take fractional parts from the row with 

largest "right hand side". 

Rule for choosing a pivot row: most negative "right hand side" 

Rule for choosing a pivot column: in the event of a tie: first column 

Rule for discarding a cut: when it ceases to be binding at an optimal 

(not necessarily integer) solution 

The problem will cycle interminably S1nce tableau 9 differs from 

tableau 1 only in the order of the rows, and the order of the rows is 

immaterial in this particular example. 
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Figure 2.2.2. continued 

The tableaux represent an attempt to solve the problem: 

Minimise z 

Subject to 

z > 0 
x+Y2. 3 
x + Y > 1 

36x 7 48 
36x "> 24 

2y 2. 3 
2y ~ 1 

9x -3y 2. 7 
9x -3y ~ 5 

1.e. z-z = 0 
x + y + 

-x - y + 
36x + 

-36x + 
2y + 

-2y + 
9x-3y + 

-9x+3y + 

Sl = 3 
s2 =-1 
s3 = 48 
S4 =-24 
S5 = 3 
s6 =-1 
97 = 7 
Stj =-5 

In the following diagram the basic solutions encountered 
1n the loop are marked with a cross and numbered. 

Ss 

$, 
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Part 3 Summary of the structure of the experimental programmes 

If one took all the variations of programme described in Part 2 

and multiplied them by a representative number of methods for choosing 

cuts one would end up with hundreds of programmes. In most of the 

programmes presented in Appendix D we have chosen to fix the methods 

used to find linear programming solutions and combat overflow in order 

to provide a valid comparison of different methods of choosing 

constraints. The two exceptions are programmes BGD and BH6 but even 

these differed from the rest only a little. 

In consequence we present only one programme in full, and this is 

programme BHD. We now present a brief description of it. 

The form of the data is specified at the start of Appendix D. 

After it is read in it is augmented by a negative unit matrix to enable 

every variable to appear as basic, and facilitate the use of the lexico­

graphic method described ~n Part 6 of Chapter 1. This matrix is placed 

above the constraints contained in the data unless the data specifies 

otherwise. 

Two linear programming procedures are used to find the optimum to 

the problem in rational numbers. The first is Intsimp which performs 

the Simplex Method, eliminating any artificial variables and optimising 

the tableau ~n such a way as to obtain the lexicographic optimum. This 

is followed by Dintsimp which performs the Dual Simplex Method, iterating 

until the constant terms are non-negative while maintaining lexicographic 

optimality. As mentioned in Part 1 of Chapter 1 these procedures enablel 

the introduction of artificial variables to be avoided except when 

equalities are present. 

Once a feasible and optimal solution in rationals is found procedure 

Scale is used to scale the equations as described in Part 2 of this 

Chapter by adding constraints with zero constant terms, if any can be 

found. If after this the determinant, d, is equal to 1 the problem 

is solved. 

At this point procedure ~onstraint is used to choose a constraint 

and add it to the tableau. Iteration then starts by returning to 

procedure Dintsimp to obtain a new feasible and optimal solution. 



- 62 -

During pivoting a test is made for overflow. If it occurs the 

tableau is restored to its form before attempting to pivot. 

Procedure Scale is entered to try and reduce the value of d. If it 

is successful another attempt is made at pivoting. If scaling is 

unsuccessful, or overflow occurs again the tableau is treated as a 

scaled feasible optimal solution, i.e. procedure eonstraint is used 

to generate another constraint. Following this another attempt is 

made to reach a feasible optimal solution. 

Figure 2,3,1 presents a simplified flowchart of programme BHD. 
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Figure 2.3.1. An outline flowchart of programme BHD. 
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Part 4 Description and comparison of the experimental programmes 

Appendix C compares the performance of the programmes in appendix D 

when solving the problems contained in appendix B. The purpose of 

this part is to describe these programmes and to comment on their 

relative performance. 

with the exception of programmes BGD and BH6 the programmes differed 

only in one procedure; procedure ~onstraint. For this reason only one 

programme is given in full, and it is followed by the versions of procedure 

constraint used in the other programmes. As for programme BH6, this 

differed also in integer procedure pivot and the differing version follows 

the procedures constraint. Programme BGD differs from BHD in one line 

only and this is given in a comment on page Itt. With the exception of 

BGD and BH6 the main body of the programmes ~s as described in the 

previous part. This part is concerned mainly with the various versions 

of procedure constraint. 

As programmes BGD and BH6 are special cases the other programmes 

are discussed first. While the reader is entitled to his opinion, the 

author considered that of these other programmes BHD was the most consistent 

as well as often being the most efficient, particularly in the larger 

problems. For this reason BHD is described first, and the other programmes 

compared with it. 

At the end of this Part figure 2.4.1 gives examples of the various 

methods of choosing constraints. 

(al Programme BHD. A cut is generated from the first row which 

has a non-integer right hand side. This row could be the cost 

right hand side is a. iD, and that a. 
Suppose the --!.Q. = 

~o D 
0< f. < D. 

~o 

This will directly yield a constraint of the form 

f! x > f. 
~ ~o 

If there ~s an integer,~ , such that 

f. < 1.1 f. < D 
~o ~o 

t' j f. ~o + ~o, 

function. 

where 

2.4.1 

2.4.2. 

2.4.3 

we can multiply 2.4.2 byl.1 and take fractional parts once again. 

Taking fractional parts the second time will not alter the right hand 

side, because of 2.4.3, but might alter parts of the left hand side. 



So the new constraint is 

* , 
f. 
-:L 

f. 
~o 
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* , where f. ~ II f . 
-:L -:L 

The cut 2.4.4 is at least as binding as 2.4.2. 

The value of II chosen is the largest possible. 

In the notation of Algol: 

II = (D - 1) f f. 
~o 

2.4.4. 

2.4.5 

A constraint of the form 2.4.2 has a special property. When 

the tableau is optimal and the constraint is taken from the cost 

function it has the effect of reducing the value of the cost function 

at least to the next integer below. To show this we denote the positive 

fractional part of an element of the cost function, a ./D, by f .ID: 
oJ oJ 

a. ta.~ f. --2J. = --2J. +-2J.. 
D D D 

2.4.6 

A constraint taken from this will have coefficients -f .jD. 
OJ If we 

now pivot on the j th element of the constraint the cost function will 

change in value from a jD to 
00 

2.4.7 

which will be less or equal to [ao/DJ according as ro/DJ is greater 

or equal to zero. 

If the cost function is integer-valued the constraint will be taken 

from the first row that is not integer valued. If we denote this as 

the i th row and the pivot column as the j th column, as before, we can 

use the same argument. If [aij/DJ is greater or equal to zero aio/D 

will be reduced at least to the next integer below. If however 

[aij/DJ is negative it follows from our use of the lexicographic method 

that there will be a coefficient in the j th column in some row before 

the i th which is positive. The constant term of this row will then 

decrease in value. If it does not decrease as far as the next integer 

value below it only needs one more constraint to bring this about. 

We thus have outlined an algorithm for making a systematic search 

for an integer solution. The argument is taken further in Chapter 3. 

The constraints added by programme BHD were of the form 2.4.4 where II 

is as defined in 2.4.5. As 2.4.4 is at least as binding as 2.4.2 it 

has similar properties, the only difference being that a. /D can be 
~o 

reduced below [aioJD] even when ri/D] is zero. Gomory suggests 
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this method in (ref 1, p 290). 

(b) Programme BHM. This 1S similar to BHD in that the constraint 

1S generated from the first row with a non-integer right hand side, 

but differs 1n that no multiple of the row is generated, the constraint 

is taken as it stands. This is the method for which Gomory constructed 

a finiteness proof in his paper (ref 1, p. 287). 

In spite of the fact that at any given stage BHD will produce a cut 

at least as good as BHM, there was one problem (problem F5) in which 

BHM introduced fewer cuts than BHD. In two others (problems 7 and E4) 

BHM used more cuts but needed fewer pivots. While it is expected that 

the better the cut the more pivots are needed to reoptimise it would be 

surprising if experiments were to advocate deliberately choosing weak 

constraints. The examples show up one avoidable weakness of BHD, namely 

that if, in the notation of 2.4.4, f~ = ~ f. , then the constraint will 
-1 ~ 

have a common factor and one or more extra constraints and pivots may be 

needed to eliminate it. However, in the majority of cases BHD took 

fewer pivots, fewer cuts, and less time. 

(c) Programme BH9. This was a variation of BHD, the difference 

being that the search for a row with non-integer right hand side started 

with the first basic variable instead of the cost function. The object 

was to try and avoid zeros creeping into the cost function. The programme 

ended prematurely with two sets of data (problems 1 and 7) when overflow 

occurred immediately after adding a cut. 

On the remaining sets of data its performance was similar to that of BHD. 

(d) Programme BHQ. This, like BHD, generated a constraint from 

the first row with a non-integer right hand side. The Euclidean 

Algorithm was used to generate a constraint with the maximum possible 

right hand side. If the original right hand side is denoted by a. ID, 
10 

then the generated one is 

D-hcf(a. , D) 
10 

D 

When a. and D are mutually prime the method obtains the unique constraint 
10 

with right hand side (D-l)jD. 

In three problems (problems 3,9 and B4) BHQ was marginally better than 

BHD. In most cases, however, BHQ performed noticeably worse. 

(el Programme BHN. This was attempt to imitate the algorithm of 

Martin (ref 101. It first of all selected the row whose right hand side 

had the largest fractional part. It derived a constraint from this row, 
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without taking any multiple of it, and calculated the pivot column. 

However instead of pivoting it used the Euclidean Algorithm to 

determine the correct multiple of this constraint to make the previously 

calculated pivot element a minimum, this being usually minus one. The 

constraint calculated from this multiple of the original constraint was 

added and reoptimisation performed in the same way as in the other 

programmes. 

This was not a very good approximation to Martin's algorithm, the 

main point of which was that it did not use the lexicographic dual simplex 

method. Instead it used the freedom of choice of optimum solution when 

there are zeros in the cost function to try and find an optimum with a 

small value of the determinant, D. 

It did this by pivoting on the element mentioned in the previous paragraph 

which was calculated to be as small as possible. This entailed use of a 

composite algorithm. It is discussed more fully ~n Chapter 4. Because 

BEN bore little resemblance to Martin~s algorithm it was only tried on a 

small set of examples. BEN was superior to BHD on problems 10. 1 to 

10. 4 and 8 and 9, but considerably inferior on the more exacting 

problems 6 and 7. 

(f} Programme BHP. The idea behind this programme was to take some 

of the ideas in Martin's algorithm and modify them in the context of the 

overall lexicographic method. It was also, in a sense, an opposite of 

BHQ. Whereas BHQ generated a large value for the right hand side of the 

constraint, BHP choose the column which was lexicographically smallest and 

which was eligible for pivoting, and generated a constraint whose coefficient 

in this column was as small as possible. 

In detail, BHP first located the first row in the tableau with a 

non-integer right hand side. It then made a note of the columns which 

had non-integer elements in this row. Any constraint generated from this 

row would have zero coefficients in the remaining columns. Of these 

selected columns, the one which was lexicographically smallest was chosen. 

(A particular column is lexicographically smaller than another column if, 

when comparing the elements of the two columns from the top downwards, the 

first element of the first column which differs from the corresponding 

element of the second column, is smaller than that element). The element 

which lay in the chosen column and row was then subjected to the Euclidean 

Algorithm to find a multiple of this row such that the constraint produced 

from it had ~small an element as possible in this chosen column. This 
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constraint was added and the tableau reoptimised. The element on which 

all the attention had been placed was not necessarily pivoted on. The 

sort of lexicography being used had only one optimum and was independent 

of the individual pivots used in obtaining it. 

In spite of their similarity BHN and BHP differed considerably in 

the examples. On the whole BHP was better than BRN. When BHP was 

compared with BHD it was not obvious that BED was a superior programme. 

Of the 24 examples solved by both BHP and BHD, BHP had fewer pivots in 

12 of them and BHD fewer pivots in 9. As for the number of cuts the 

situation was reversed; BHP had fewer in 8 problems, and BHD fewer 1n 

12. Most of these examples only differed between BHP and BHD by a very 

few pivots. If our attention is restricted to those examples for which 

the number of pivots taken by BHP and BHD differed by 10% or more we find 

BHD had fewer pivots in 6 examples and BHP fewer in 5. If our attention 

is restricted to examples where one programme took more than twice as many 

pivots as the other there are only two, and in both of them BED took fewer 

pivots. They are problem 2: BHD 45 pivots, 6 cuts; BHP 378 pivots, 75 cuts; 

and problem 7: BED 129 pivots, 30 cuts; BHP 318 pivots, 113 cuts. 

There is not really enough evidence to say BED is preferable to BHP. 

All one can say is that there are indications that BED is more consistent. 

If the pivots and cuts for all 24 examples are added up, thus giving 

greater weight to the bigger problems, we find BHD has a total of 3549 

pivots and 290 cuts, and BHP a total of 4092 pivots and 471 cuts. It is 

interesting to note that BED's ratio of pivots to cuts is 12.2:1, and BHP's 

8.7:1. 

(g) Programme BRE. This programme chose constraints by 'the crudest 

possible criterion', to quote Gomory (ref 1, p.292) that is it examined 

the right hand side of each equation in the tableau, and chose the one with 

the largest fractional part. 

modification. 

The constraint was added without any 

In one problem (problem 6) the run had to be abandoned. Integer 

overflow occurred and as D was equal to one at the time the usual 

avoiding action of adding a cut was not possible. In two problems 

(10. 2 and F4) BRE took fewer pivots than BHD, but in 11 others it took more. 
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(h) Programme JlHF. This bore the same resemblance to BHE as BHD 

did to BHM. For each row with a non-integer right hand side, a. /D, 
l.0 

we calculate the largest multiple, ~., of the fractional part, f. , such 
l. l.0 

that ~.f. <D (see equations 2.4.1 to 2.4.5). The row which has the 
1 l.0 

largest value of ~.f. is multiplied by its ~. and the constraint is 
1 l.0 l. 

taken from this multiple. 

BHF took fewer pivots than BHD in 6 problems, and BHD fewer than 

BHF in 9. However BHF never took less than 33% fewer pivots than BHD, whereas 

in one case (problem 6) the run of BHF had to be abandoned (for the same 

reason as BHE1 after taking four times as many pivots as BHD, and in another 

case (problem 71 BHF took 1086 pivots and 451 cuts as opposed to BHD's 

129 pivots and 30 cuts. BED would seem a better programme than BHF 

mainly on the grounds of consistency. 

(i) Programme BH6. The purpose of this programme was to demonstrate 

the advantages of using a lexicographic system. The programme was the 

same as BHF except for integer procedure pivot, the procedure that chose 

the pivot. Normally if two columns had the same ratio of objective 

function coefficient to pivot row coefficient the first and if necessary 

subsequent constraint rows were used to break the tie. In BH6 the method 

of breaking the tie was simply to take the first column. There was one 

place in the programme where this rule was broken. In many linear 

programming suites the initial primal optimisation is performed in two 

phases; first the artificial cost function is optimised and secondly the 

proper cost function. A lexicographic method allows these two optimisations 

to be done in one phase. Accordingly the initial optimisation when 

optimising the artificial cost function broke any ties by reference to the 

proper cost function. In subsequent optimisations only the proper cost 

function was used when choosing pivots. 

To the surprise of the author this programme actually went into an 

infinite loop in three of the problems. Looping in linear programming 

is regarded as something which is theoretically possible but which never 

happens. The explanation offered for this discrepancy is that BHF was 

a programme based on a rigorous lexicographic system and that BH6 was 

generated by relaxing just one part of this system. It still retained 

the part of the system whereby every variable in the initial tableau was 

placed on the right hand sides of the equations and their relative order 

never changed. It also retained the use of integer arithmetic. This 

1n particular was intended to make computation exact and avoid such things 

as rounding error. In linear programming the use of floating point 
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and its associated inexactitude often means that two numbers which 

are supposed to be identical are not, and this presents an automatic 

method of breaking ties. 

Looping starts when the tableau of numbers used in solving a 

problem is identical to a previous one. In BH6 the identity of 

variables on the right hand side was always the same, and the numbers 

in the tableau were always correct. It was much easier for the programme 

to repeat itself than if these other things had been allowed to vary. 

It would seem to suggest that no rigour is better than some! 

(j} Programme BGD. This programme was based on BED. When it 

has a cost function consisting entirely of ones, as with the 'covering 

theorem' problem (problem 6} it worked exactly the same as BHD. It 

was designed to exploit one of the advantages and avoid two of the 

disadvantages of BHD. The advantage was that BED regards every row as 

a cost row which is used to break ties in the previous row, and the first 

disadvantage was the difficulty of ordering the rows in the tableau to 

avail oneself of this advantage. The second disadvantage was that its 

performance was considerably affected by the size of the cost function. 

It was found that when the cost function could be divided through by a 

common factor (aompare problem 10. 1 with 10. 2 and problem 10. 3 with 

10. 4} there was usually a saving in time. 

~ 

When an ana~ous operation was performed on a cost function without 

a common factor there was a similar result. The cost function of 

problem 1 was divided through by 7.5 and each coefficient rounded to the 

nearest integer. (The number 7.5 was chosen to try and minimise the 

accuracy lost by rounding). BED solved this modified problem with 693 
pivots whereas it was still a long way from solving the original problem 

after 3546. More by luck than anything the optimum point of the modified 

problem was the same as that in the original problem. 

BGD was an extension of this principle. It started by setting up 

the tableau used by BED. It then preceded the cost function by a row 

obtained by dividing the cost function by 2 and rounding to the nearest 

integer. This in turn was preceded by a row obtained by dividing the 

cost function by 4 and rounding. The process was continued using 

successive powers of 2 until the coefficients were all zero. The problem 

was solved using the row corresponding to the highest power of 2 as cost 

function and using successive rows as tie breakers. When a solution was 

found the value of the original cost function was printed out. As this 
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was not necessarily the optimum the original cost function was then 

constrained to be at least one better than the solution obtained. 

If another solution was found the same process was repeated, if the 

problem was then infeasible it was thereby established that the last 

solution found was the optimal. 

The greatest success of BGD was that it solved the Markowi~ and 

Mann problem (problem I) in four minutes whereas BED was still a long 

way from the solution after 30 minutes. Generally there was not much 

to choose between BGD and BHD. Using the number of pivots as criterion 

for choosing between BGD and BED, BGD obtained the optimal solution first 

in 13 problems as opposed to BED's 9, but by the time BGD had proved the 

solution optimal it was only ahead in 11, as opposed to BED's 10. Using 

time as the criterion BGD obtained the solution before BED in 11 problems 

as opposed to BHD's 12, but after proving optimality was only ahead in 8, 

whereas BHD was ahead in 15. 

BGD took longer to perform a pivot operation because the tableau contained 

more rows. 

Perhaps the main point of interest concerning BGD was that it 

prod~ced a feasible solution fairly quickly. In only three problems 

(B4, A5, c51 did BED produce a solution before BGD, and even thenBGD 

took only 10% longer in time to produce a solution, which in those cases 

happened to be the optimum. 

BGD, as well as BED, is discussed in greater detail in Chapter 3 and 

a numerical illustration is given in Part 4 of that chapter. 

(k) Story and Wagner (ref 11) used a form of Gomory's All-integer 

algorithm (ref 2) to solve a formulation of the 3-machine job-shop 

sequencing problem. They ran several sets of data of which problems 

A4 to F6 are some. Their results, which give only pivots, are listed for 

comparison. 

There was a remarkable correlation between the number of pivots taken 

by Story and Wagner's programme and BED. Out of 18 problems run, which 

took pivots varying in number from 22 to over 1000, in only three cases 

did one programme take more than twice the number of pivots the other did. 

In two cases the ratio~ was nearly twice. This makes problem A5 a strange 

exception to the pattern. BED needed no cuts to solve it, only 35 pivots. 

It was a simple linear programming problem. 

algorithm took 613 pivots. 

However the all-integer 
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Out of 18 problems BHD took fewer pivots in 10 of them. 

However this is not a valid comparison as a pivot operation in the 

all-integer algorithm requires less arithmetic than in Gomory's other 

algorithm, as used in BED. 

(1) This last section is concerned not with a programme for solving 

integer programming problems but rather with a method for enabling an 

existing programme to obtain approximate solutions to a problem. 

One of the ideas behind programme BGD was to be able to obtain approximate 

solutions to a problem comparatively quickly by simplifying the cost 

function. It was realised however that when the artificial cost function 

contained zeros that were not in the original cost function they might 

cease to be valid approximations to the original cost function. This 

was considered to be the case ~n Problems A4 to F6 which are described 

in the first half of Appendix B. Although the variables representing 

the.slack time on machine III have coefficients of 1 in the cost function 

which vanish when divided by anything greater than 2 they are vital to the 

formulation of the problem. When they are omitted from an artificial 

cost function that function represents not the total idle time on machine 

III but merely the idle time of machine III before it starts its first job. 

It was argued that in this case it would be more effective to scale 

the whole problem and not merely the cost function. To test this out the 

numbers used in problems A4 to F6 were scaled by dividing each by 3 and 

rounding to the nearest integer. This scaled problem was solved us~ng 

BHD and in 15 cases out of 18 took fewer pivots than the original problem. 

The answers to the two problems never differed by more than 2. BGD 

obtained an answer before the scaled problem in 7 cases out of 12, but 

this first answer was out by as much as 5 in some cases. 
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Figure 2.4.1: An illustration of the methods described ~n 

Part 4 of Chapter 2. 

The problem : Maximise 

subject to 

4x + l3y 

3x + 7y < 11 

2x + 9y.::. 12 

We denote the slack variables by u and v and write the problem 

in tableau form 

1. 2. 

1 x Y 1 x v 

s 0 -4 -13 s 156/9 -10/9 13/9 

u 11 3 7 u 15/9 13/9* -7/9 

v 12 2 9* y 12/9 2/9 1/9 

3. rational solution 

1 u v 

e 242/13 10/13 11/13 

x 15/13 9/13 -7/13 

y 14/13 -2/13 3/13 

The constraints generated by taking the fractional parts of these rows are: 

(e) -8/13 

(x) -2/13 

(y) -1/13 

-10/13 

-9/13 

-11/13 

-11/13 

-6/13 

-3/13 

The whole group of thirteen constraints is as follows, the first one being 

generated directly from the row corresponding to y and the remainder being 

successive multiples of it. 

(-1/13, -11/13, -3/13) (-8/13, -10/13, -11/13) 

(-2/13, -9/13, -6/13) (-9/13, -8/13, -1/13) 

(-3/13, -7/13, -9/13) (-10/13, -6/13, -4/13) 

(-4/13, -5/13, -12/13) (-11/13, -4/13, -7/13) 

(-5/13, -3/13, -2/13) (-12/13, -2/13, -10/13) 

(-6/13, -1/13, -5/13) ( 0 0 0 ) 

(-7/13, -12/13, -8/13) 
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Figure 2.4.1 continued 

(a 1 ProgramJlle BHD. 

The first row with a non-integer constant term is the cost function. 

Taking fractional parts we obtain the row (-BJ13, -10/13, -11/13). 

As B is greater than 13J2 we cannot improve the constraint and so we 

add it to the tableau and perform one iteration: 

3. Ii = IB BJ13 4. ft = IB 

1 u v 1 u s 

~ 242J13 10/13 llJl3 ii 18 0 1 

x 15Jl3 9J13 -7/13 x 17/11 13/11 -7/11 

y 14J13 -2Jl3 3J13 y 10/11 -4/11 3/11 

s -B}l3 -10J13 -11113* v B/11 10/11-13/11 

Note that if the cost row had given us for example the row (-3/13, 

-7Jl3, -9J131 we would have improved it by taking the largest multiple, 

~ , of it such that 3~ < 13. This multiple is 4, so we would have 

multiplied through by 4 to get (-12Jl3, -2B/13, -36/13). Taking 

fractional parts of the negative of this gives us the row (-12/13, -2/13, 

-10)13}. 

(b} Programme BRM. 

This produces a constraint by taking factional parts from the first 

row with a non-zero constant term. No multiple of it is considered. 

In this case it produces the same constraint as ~n (a). 

(c) Programme BH9. 

We choose the first row after the cost function with a non-integer 

constant term. This is the row corresponding to x and it has fractional 

parts (-2J13 , -9J13 , -6Jl31. We improve it in the same way as BHD and 

multiply it by -6 and take fractional parts again to give (-12/13, 

-2}13, -10)l3}. If we add this to the tableau and pivot we have 

3. " = 1B B}13 4. ii = 17 6/10 

1 u v 1 u s 

242113 10J13 1.1)13 176J10 6/10 11/10 

x 15J13 9}l3 -7ll3 x IBJI0 B/I0 -7/10 

y 14J13 -2}l3 3J13 y B/I0 -2/10 3/10 

s -12/13 -2J13 -10/13* v 12J10 2/10 -13/10 

(d) Programme BHQ 
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Figure 2.4.1 : continued. 

We pick the first available row which is in fact the cost function. 

Taking fractional parts we obtain (-8/13, -10/13, -11/13). Integer 

procedure euc1idalg tells us that 5 x 8 = 1 (mod 13) and so (13 - 5) x 8 

= 8 x 8 = 12 (mod 13). 

Multiplying the row by -8 and taking fractional parts again we obtain 

(-12/13, -2/13, -10/13). This is the same constraint as produced in (c). 

(e) Programme BHN. 

We select the row whose constant term has the maximum fractional 

part and work out the constraint of fractional parts. This gives us 

constraint corresponding to the cost row which is (-8/13, -10/13, -11/13). 

If this constraint were added as in (b) the pivot column would have been 

the last. We derive the constraint with coefficient -1/13 in the last 

column. Integer procedure euclidalg tells us that 6 x 11 = 1 (mod 13) 

and so we multiply the above constraint by -6 and take fractional parts 

again to obtain the row (-9/13, -8/13, -1/13). Incorporating it 

3. i!r = 18 8/13 4. i!r = 17 6/8 

1 u v 1 s v 

~ 242/13 10/13 11/13 i!r 142/8 10/8 6/8 

x 15/13 9/13 -7/13 x 3/8 9/8 -5/8 

y 14/13 -2/13 3/13 y 10/8 -2/8 2/8 

s -9/13 -8/13* -1/13 u 9/8 -13/8 1/8 

(f) Programme BHP. 

We choose the first available row and take fractional parts. 

Again this is the cost row and it gives us (-8/13, -10/13, -11/13). 

We choose the smallest column, that is the one corresponding to u, and 

minimise the coefficient in this row. Integer procedure euclidalg 

tells us that 4 x 10 = 1 (mod 13) and so we generate a constraint from 

-4 times the above row. We obtain (-6/13, -1/13, -5/13). Incorporating 

it: 

3. i!r = 18 8/13 4. Ii = 11 3/5 

1 u v 1 u s 

a 242/13 10/13 11/13 88/5 3/5 11/5 

x 15/13 9/13 -7/13 x 9/5 4/5 -7/5 

y 14/13 -2/13 3/13 y 4/5 -1/5 3/5 

s -6/13 -1/13 -5/13* v 6/5 1/5 -13/5 
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Figure 2.4.1: continued. 

(g) Programme BHE. 

We choose the ~ov wnose constant term has the largest fractional 

part and we add the constraint formed b~ its fractional parts to the 

tableau. This produces the constraint (-8]13, -10]13, -11/13} from 

the cost function as in Cal. 

(h) Programme BHF. 

This extracts the fractional part of each constant term and takes 

the maximum multiple of each such that the numl'erator remains less than 

the denominator. From the constant term of the cost function we get 

1 x (8/13) = 8/13. From the row corresponding to x we obtain 

6(2/13) = 12/13 and from the y row we obtain 12(1/13) = 12/13. 

We choose the row which generates the largest and in this case it is the 

x row as we found it before the y row. 6 times the x row generates 

(-12/13, -2/13, -10/13) which has already been iterated upon in (c). 
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CHAPTER ~" 

THE TWO MOST EFFECTIVE ALGORITHMS 
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Chapter 3: The two most effective algorithms. 

In this chapter we consider programme BHD from the point of view 

of a programme which having found a feasible optimum solution in 

rationals, adds a constraint and reoptimises, the constraint being 

such that the first basic variable with a non-integer value is reduced 

at least to the next integer below. We are not concerned here with 

the mechanics of avoiding and dealing with integer overflow. However 

we are concerned with the use of the lexicographic method of choosing 

pivots, for it is this which determines from which row a constraint is 

taken. 

We also consider programme BGD as an extension of BHD. 
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Part 1: The significance of a lexicographic method. 

Part 4 of Chapter 2 included a brief description of programme BHD. 

As described there the programme derives a constraint from the cost 

function whenever this has a non-integer value, and the constraint is 

such that the value of the cost function is reduced at least to the next 

integer below. With the exception of BHM and BGD,the other programmes 

described in Chapter 2 generated constraints which bore no guarantee 

of doing this, and it was found that very often they did not do this, 

especially when D was large. 

and often superior result. 

The 'obvious' constraint gave a consistent 

Although such a constraint has a good immediate effect on the problem 

it tends to make the problem more difficult by introducing zero coefficients 

into the cost function. This is evidenced by the performance of programme 

BHD when solving problem 1, listed in Appendix C. As the difference be-

tween the solution in rationals and the solution at the point the run was 

terminated was 42.4 the cost function can have had a non-integer value after 

at most 43 iterations. For such a value gives r1se to a constraint reducing 

the value at least to the next integer below. However 426 cuts were added 

when trying to solve the problem which indicates that on average it took 

10 iterations to shift the cost function from an integer value. As all the 

426 cuts had non-zero constant terms the cost function must have contained 

zero- coefficients. 

The reason for this is suggested in part by the formula for the 

transformation of a coefficient of the cost function a ./D during a pivot 
OJ 

operation incorporating a new constraint: 

a. f. a h 
-.£J. - -.£J. --E-

D D foh 
3.1.1 

where we denote the j th coefficient of the constraint by f ./D and the 
oJ 

pivot column by h. 

As a
oh

' f
oj

' and foh are all non-negative the expression 3.1.1 will tend 

- to decrease. Of course this does not apply to other pivot operations. 

Given that the coefficients of the cost function do decrease in value 

we would expect zeros to appear eventually. 

new constraint are defined by 

f . 
+ -.£J. 

D 

For the coefficients of a 

3.1.2 
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where ~is the largest integer such that 

~C~o - ta~oJ} < D. 

If ~ a .JD is so small that the middle term of 3.1.2 vanishes we have 
OJ 

f . = ~ a .. 
oJ oJ 

If similarly foh = ~ aoh the expression 3.1.1 will 

vanish. Furthermore if there are columns, j, such f . = ~ a . the 
oJ oJ 

pivot column will be chosen from among them for only they minimise the 

ratioJ a .Jf . by which the pivot column is chosen. r OJ OJ 

Any ties are resolved by reference to subsequent rows. 

Once a cost row has zero coefficients in it, it will remain unchanged 

until a pivot row, possibly an added cut, is chosen which has no negative 

coefficients in the columns with zero cost. Sometimes a large number 

of pivot operations can be performed and several cuts added without 

changing the value of the cost function. When this happens it is rather 

like being lost in a maze and there is a potential danger of looping. 

As mentioned in Part 2 of Chapter 2 the lexicographic method of Part 6 

in Chapter 1 was used to avoid this danger. 

One way of regarding lexicographic ordering 1S that the method 

effectively turns the basic variables into secondary cost functions. 

If any row of the tableau contains coefficients which are the first 

non-zero elements in a column, these coefficients must be positive, by 

definition of lexicographic ordering. As any pivoting operation 

which did not alter the rows above the row in question would have to 

have a pivot in one of these columns, it would reduce the value of the 

basic variable associated with the row. Hence any basic variable 1n 

the tableau is maximised if we regard the basic variables above it as 

fixed. 

Accordingly if a cost function, optimised and at an integer value, 

does not define uniquely the value of the variables, we have a subspace 

to search for an integer point, and for this we use the first basic 

variable in the tableau as a subsidiary cost function. If this still 

does not define the value of the variables the second variable becomes 

a cost function, and so on. As the value of no basic variable may be 

increased without reducing the value of a basic variable higher in the 

tableau, it follows that if the full lexicographic system is used no 

feasible solution is visited twice. 
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The purpose of these remarks is to demonstrate that 1n a 

lexicographic system every variable is a cost function. Thus, if 

the primary cost function is at an integer value and the first basic 

variable is at a non-integer value, our immediate object is to reduce 

the value of this variable as much as possible. We know we can reduce 

it at least to the next integer below, and so we do this. If it is 

already at an integer value, we inspect the next variable and act 1n 

a similar way. 
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Part 2: The dependence of the rate of convergence 

upon the ordering of the basic variables 

in the tableau 

One of the biggest problems of integer programming ~s the 

unpredictability and irregularity of convergence. But although 

the method just outlined still suffered from these faults, the main 

cause of them was apparent. 

Taking the next constraint from the first row whose basic variable 

had a non-integer value always reduced the value of that basic variable 

at least to the next integer below. However, it often went no further, 

and it is conceivable for a variable in successive steps to take every 

feasible integer value consistent with a fixed integer value of the 

cost function. The number of such integer values can be arbitrarily 

big. For example, in the Markowitz and Mann problem (ref. 13) (problem 1 

in Appendix Bl the values of the slack variables can vary from 0 to 

about 50 when the value of the cost function is in the region of the 

integer solution. If the equations were multiplied through by 10, the 

slack variables would have ten times as many feasible integer values. 

Accordingly if the slack variables were the first basic variables in 

the tableau, we would expect the value of the cost function to stay 

stationary for many iterations. 

On the other hand, the 'proper' variables, that ~s the variables 

with non-zero coefficients in the cost function, can only take two 

values, zero or one, for any given value of the cost function. If 

these variables were listed as the first basic variables in the tableau, 

then at any iteration one would simply look for the first non-integer 

value, and force that variable to zero. One would expect such a 

constraint to have a much bigger effect on the problem than one derived 

from a slack variable, and that as a result fewer constraints would be 

required to break the value of the cost function away from a given integer 

value. In practice this was found to be the case. 

In the Markowitz and Mann problem it is quite easy to deduce 

that one has a better chance of getting a good cut from a 'proper' 

variable than from a slack variable, and since if all the 'proper' 

variables are integer the slack variables are integer also, we need 

never take a cut from a slack variable. However it is more difficult 

to decide which among the 'proper , variables should come first. As the 

coefficients in the constraints are randomly distributed one might 
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consider it best in this case to put first the variables with the 

largest coefficients in the cost function, but when this was tried it 

did not make a startling improvement to the speed of calculation. 

While these procedures proved very useful for the Markowitz and 

Mann problem, it is very difficult to generalize them. In general, 

we wish to place the more 'significant' variables first. Unfortunately, 

while one can intuitively accept the concept of significance, it is 

extremely difficult to define, let alone construct an algorithm for. 

One is probably seeking variables which produce a large decrease in 

the value of the lexicographic cost vector per unit decrease of their 

own value. Slack variables, that is variables with zero coefficient 

in the cost function, are usually a bad choice. However, variables 

with large coefficients in the cost function will not necessarily be 

a good choice if their coefficients in the constraints are also large. 

We have now described the reasoning which lay behind the 

development of programme BHD. We go on to discuss the considerations 

which gave rise to programme BGD. 
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Part 3: The problem of the dual function of the cost row 

When the variables were ordered so that the 'proper' ones came 

first in the tableau there was a great improvement. The progress of 

the calculation became systematic and regular in the sense that the 

amount of calculation required to pass from one integer value of the 

cost function to the next increased slowly as the solution was 

approached. 

In Part I of this chapter it was demonstrated that every variable 

was a cost function. The reverse is also true, that the cost function 

is an integer variable, though not restricted in sign. This means that 

instead of dividing a tableau into cost function and constraints, as ~s 

usual, each variable of the tableau performs both functions, and 

variables only receive differing treatment if some, but not all, are 

restricted in sign. 

This enables us to manufacture variables which have no direct 

relation to the problem but are 'significant', using the word in the 

same sense as in Part 2 of this chapter. Such variables can be placed 

immediately after the cost function in the list of basic variables. 

Such new variables can sometimes be generated by dividing the coefficients 

in the cost function by a number greater than one and rounding to the 

nearest integer. Such variables will be integer valued and approximately 

proportional to the value of the cost function itself. So for a given 

value of the cost function, this new variable will be extremely restricted 

. ~n value. 

All the techniques discussed so far in Parts I and 2 of this 

chapter have been designed to reduce the work needed to search the 

sub-problem associated with any given integer value of the cost 

function, but they have no bearing on the fundamental weakness of the 

method so far described. This is that the cost function itself may 

have to pass through a large number of integer points before the 

solution is reached. In some aspects the cost function is similar to 

a slack variable in that it is not essentiallY an integer variable, but 

is only integer because it is an integer combination of integer variables. 

And like a slack variable, if its coefficients are multiplied by ten say, 

it will have ten times as many integer values to pass through to reach a 

solution. 

The converse 1S true, that if we were able to divide the coefficients 

of the cost function through by a common factor we would speed up the 
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calculation, but generally this cannot be done without altering the 

problem and its solution. 

The theory demands that one function should serve two purposes 

~n the problem, to be both the cost and also the first variable from 

which cuts are taken. If this function should not be the original 

cost function but a function derived from it as already described, 

namely dividing the coefficients by a number greater than one and 

rounding, we will of course by liable to get a different answer. 

But under certain conditions the new cost function will have fewer integer 

values to pass through before reaching its optimum, and thus reach 

it more rapidly, and also the integer point at which it has its optimum 

value will furnish the original cost function with a value which is not far 

from its optimum. Once such an answer is found it is noted, and a new 

constraint added which constrains the value of the (original) cost 

function to be better than the one just found. The process continues 

until the problem becomes infeasible ln which case the last solution 

found is known to be optimal. 

As with 'significant' variables, it is difficult to construct an 

algorithm to determine whether such scaling of the cost function will 

reduce the number of integer points to be searched and at the same time 

produce a reasonable approximate answer. If the divisor of the 

coefficients is such that no new zeros are created in the cost function, 

the new function will be a genuine approximation to the cost function, 

even though the ratio between two coefficients could change by as much 

as a factor of three. (For example both 2.9 and 1 become 1 when divided 

by 2 and rounded to an integer). 

However, if a coefficient becomes zero the associated variable 

has no influence on the cost. If the size of the coefficient in the 

cost function is a true indication of the importance or significance 

of the variable this does not matter, and the technique can be applied. 

This is the case with the first variable in the Markowitz and Mann 

problem (problem I in Appendix B). On the other hand the cost function 

ln the job-shop scheduling problem (ref. II) {problems A4 to F6 in Appendix 

B} contains unit coefficients for variables which represent the slack time 

on the third machine between successive jobs. These variables form an 

important part of the objective function and cannot be omitted without 

seriously affecting it. 
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If a problem is susceptible to a scaling of the cost function its 

speed of solution will depend very much on the choice of divisor. If 

the divisor is small; say two, the cost function will pass through 

about half the number of values, and reach a solution which is reasonably 

close to the optimal. But a factor of two is not usually a satisfactory 

saving when one is concerned with integer programming! It is often 

preferable to use a large divisor and obtain a good solution rapidly as 

long as it 15 not too distant from the optimal. Probably a divisor 

somewhere between the two extremes would be most satisfactory. 

An example of this is given in Appendix C under problem 1. Programme 

BED failed to solve the problem even after 30 minutes. However when 

the cost function was divided through by 7.5 and each element rounded 

to an integer the same programme solved the altered problem in less than 

seven minutes. Because the divisor of 7.5 had been carefully chosen 

the two problems had the same solution. 

Such speculation or experimentation 15 not necessary if we exploit 

our ability to have several cost rows. Firstly, we do not actually 

replace the original cost function by a new one, we keep it as a 

secondary cost function. This ensures that if at the optimum of the 

generated function the original one has two solutions, then the better 

one will automatically be chosen. If the divisor of the generated 

function is small the function will produce a solution close to the 

optimal, but will not produce it rapidly. Accordingly we can precede 

this function by a second cost function with a larger divisor. And the 

second cost function can be preceded by a third, and so on. 

The technique actually used was to precede the cost function by 

a function generated by a divisor of 2, and precede this by one generated 

by a divisor of 22 , and so on using increasing powers of 2 until the 

function vanished. Each function was generated from the original row, 

not the row preceding it. 

Programme BED and its extension to become programme BGD were tested 

on several problems and the results of these tests are given in Appendix C 

and commented upon in Part 4 of Chapter 2. 
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Part 4: A numerical illustration of the use of artificial cost functions 

We can illustrate the discussion of Part 3. Figure 3.4.1 solves a 

simple problem in three ways. 

The first method is that of programme BHD. The original tableau 

consists of five rows; the cost function, the two constraints representing 

x ~ 0 and y ~ 0, and the two explicit constraints of the problem. The 

tableau is optimised by the Simplex Method. Before a row is pivoted 

on it is copied to the bottom of the tableau and afterwards this extra 

row is discarded. 

Tableau 3 contains the optimal solution to the linear programming 

problem. The cost function 6 has an integer value so a constraint is 

taken from the first variable with a non-integer value, in this case x. 

The coefficients of the constraint are taken from the positive fractional 

parts of the row corresponding to x. This constraint is added to the 

bottom of the tableau and pivoted upon. Although the extra row at the 

bottom ~s then discarded the constraint itself is retained as the row 

corresponding to v in tableau 4. 

Tableau 4 is optimal and feasible but still non-integer, and the 

process of adding a constraint and reoptimising is repeated twice more 

to give an optimal integer solution in tableau 6. 

We note that after the initial optimisation three constraints and 

three reoptimisations were needed, the cost function 8 successivelY taking 

the values 10, 9~, 8~ and 8. 

The second method inVOlves adding an artificial cost function to 

the problem. The function added has been chosen on the basis that it 

must have smaller elements than the proper cost function but must also 

be a reasonable approximation to it. As in the first method the tableau 

is optimal after two pivots to give tableau 3. However this time we 

examine the artificial cost function when looking for a constraint. As 

its value is non-integer we derive a constraint from it by taking fractional 

parts and this reduces its value to an integer. 

Tableau 4 has integer constant terms and is optimal and feasible; 

moreover the original cost function is also optimal. We have found 

an optimal integer solution with one constraint instead of three. 

However we perform one more iteration to produce an integer matrix. 
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Method 3 illustrates the working of programme BGD. It is an 

extension and mechanisation of the ideas of method 2. Instead of 

one artificial cost function we have several which are obtained by 

dividing the original one by 2,4 and 8, and rounding to an integer. 

After one pivot the tableau, but not the original cost function, 

1S optimal. The solution is also integer, but one constraint and 

one pivot element are needed to obtain the integer matrix of tableau 3. 

We now have a feasible integer solution, and although this solution 

happens to give ~ its optimal value we still have to prove its optimality. 

To do this we add a constraint to the bottom of the tableau which 

constrains the value of the cost function to be at least one better than 

the value we have just obtained. This constraint becomes a permanent 

addition to the tableau. As this constraint renders the tableau 

infeasible we copy it to the bottom of the tableau and pivot on it. 

Tableau 4 is optimal and feasible again but non-integer. After 

adding one constraint and performing two pivots we obtain the final 

tableau, tableau 6. This tells us that the problem now has no solution 

as one row has a negative constant term but no negative elements on which 

to pivot. Therefore the optimal integer solution is the one obtained 

from tableau 3. 

We note that method 3 produced the optimal integer solution more 

quickly than the other two methods, but lost this advantage in proving 

the optimality of the solution. In fact it took longer to prove 

optimality of the integer solution than it did to find it. 
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,Figu,re 3,4.l: A cQlllPari~on of thr~e different ways of solying 

a simple problem. 

The problem: 
~ 
Mi"imis9 ~ = 4x + 3y 

Subject to 3x + Y < 6 

x -+- 2y .::.. 4 

We represent the slack variables by u and v. 

Method 1: The method of programme BHD. 

1. 2. 

1 x Y 1 

~ 0 -4 -3 & 8 

x 0 -1 0 x 2 

y 0 0 -1 Y 0 

u 6 3 1 <- u 0 

v 4 1 2 v 2 

u Y 

4/3 -5/3 

1/3 1/3 

0 -1 

-1 0 

-1/3 5/3 

u 6 3* 1 v 2 -1/3 5/3* 

3. optimal, feasible, 4. optimal, feasible, 

non-integer, rr = 10 non-integer, & = 9~ 

1 u v 1 u sl 

& 10 1 1 rr 37j4 2/4 5/4 

x 8/5 2/5 -1/5 <- X 7/4 2/4 -1/4 

y 6/5 -lj5 3J5 y 3/4 -2/4 3/4 

u 0 -1 0 u 0 -1 0 

v 0 0 -1 v 3/4 2/4 -5/4 

Sl -3j5 -2j5 -4j5* S2 -3/4 -2j4* -3/4 

5. optimal, feasible, 6. optimal, feasible, 

non-integer, ir = 8~ integer matrix & = 8 

1 s2 sl 1 s2 s3 

rr 17/2 1 1/2 <- & 8 1 1 

x 1 1 -1 x 2 1 -2 

Y 3/2 -1 3/2 Y 0 -1 3 

u 3/2 -2 3/2 u 0 -2 3 

v 0 1 -2 v 2 1 -4 

S3 -1/2 0 -1/2* 

<-

<-
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:Figu.,re 3.4,1 conthmed 

Method 2 : Augmenting the problem with an art Hic ial cost function 

zJ = x + y and using the method of programme BHD. 

l. 2. 

1 x y u y 

fi1 0 -1 -1 &1 2 1/3 -2J3 

&0 0 -4 -3 fiQ 8 4)3 -5J3 

x 0 -1 0 x 2 113 lJ3 

Y 0 0 -1 Y 0 0 -1 

u 6 3 1 <- u 0 -1 0 

y 4 1 2 y 2 -lJ3 5J3 <-

u 6 3* 1 y 2 -1/3 5/3* 

3. optimal, feasible, 4. optimal, feasible, 

non-integer, fiO = 10. integer solution, fiO = 8. 

1 u v 1 u s1 

~1 14/5 1/5 2/5 <- fi1 2 0 1 

~O 10 1 1 ~O 8 1/2 5/2 <-

x 8/5 2/5 -1/5 x 2 1/2 -lj2 

Y 6j5 -1/5 3/5 Y 0 -1/2 3j2 

u 0 -1 0 u 0 -1 0 

v 0 0 -1 v 2 1/2 -5/2 

Sl -4j5 -1/5 -2/5* S2 0 -1/2* -lj2 

5. optimal, feasible, 

integer matrix, fiO = 8 

1 s2 sl 

fil 2 0 1 

~O 8 1 2 

x 2 1 -1 

Y 0 -1 2 

u 0 -2 1 

v 2 1 -3 
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Figure 3.4.1 continued 

Method 3: Augmenting the problem with several artificial cost functions 

as in the method of programme BGD. 

Added cost functions i!r3 = x 

i!r2 =x + y 

irl = 2x i2 y 

l. 2. optimal, feasible, 

integer solution, t!a = 8 
1 x y 1 u y 

!l3 0 "1 0 ir3 2 lJ3 Ij3 <-

t!2 0 -1 -1 !l2 2 1./3 -2j3 

irl 0 ... 2 -2 irl 4 2j3 -4j3 

ira 0 -4 -3 ira 8 4J3 -5j3 

.x 0 -1 0 x 2 lJ3 lj3 

Y 0 0 "'1 Y 0 0 -1 

u 6 3 1 u 0 -1 O. 

v 4 1 2 v 2 -lJ3 5j3 

u 6 3* 1 sl 0 -lJ3 -lj3* 

3. optimal, feasible, 4. optimal, feasible, 

integer matrix, t!a = 8 non-integer, ira = 9 

1 U sl 1 u lloa 

t!;j 2 0 1 ir3 9/5 3/5 1/5 <-

ir2 2 1 -2 !lz 12/5 -1/5 -2/5 

t!l 4 2 -4 irl 24j5 -2j5 -4/5 

t!a 8 3 -5 <- i!r u 9 0 -1 

x 2 0 1 x 9/5 3/5 1/5 

Y 0 1 -3 y 3J5 -4J5 -3J5 

u 0 -1 0 u 0 -1 0 

v 2 -2 5 v 1 1 1 

ira -1 3 -5 fla 0 0 -1 

ira -1 3 -5* Sz -4J5 -3J5 -1/5* 
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5. optimal, infeasible, 6. infeasible, no solution. 

integer matrix, &0 =13 

1 u s2 1 v s2 

i!r3 1 0 1 i!r3 1 0 1 

i!r2 4 1 -2 i!r2 5J2 1J2 1j2 

i!r1 8 2 -4 &1 5 1 1 

&0 13 3 -5 i!ro 11/2 3j2 5/2 
x 1 0 1 x 1 0 1 

Y 3 1 -3 Y 3J2 1J2 -1/2 

u 0 -1 0 u 3J2 -1/2 5/2 

v -3 -2 5 <- V 0 -1 0 

&0 4 3 -5 i!ro -lj2 3j2 5/2 <-

v -3 -2* 5 i!ro -lj2 3j2 5/2 



- 93 -

Part 5: Aspects of the algorithm which would benefit from further research 

(a) The residual freedom of choice of constraint 

The basic principle of the algorithm is to optimise the linear 

programming problem in such a way that each variable is maximised 

subject to the variables preceding it in the tableau remaining at 

their respective maxima. The first variable in the tableau, (the 

cost function being regarded as a variable), which is not at an 

integer value, is then reduced to at least the next integer below by 

a cut. 

There are as a rule several cuts which will reduce the value of 

the variable at least to the next integer below. If in the terminology 

of e~uations 2.4.1. and 2.4.3., f. is the fractional part of the value 
10 

of the basic variable, there will be ~ such cuts, where ~ is the largest 

integer such that 

~ f. < D. 
10 

In programmes BHD and BHM, ~ was chosen to be as large as possible 

and to be e~ual to 1, respectively. Quicker results seemed to be 

obtained when ~ was as large as possible, but there may be better 

values of ~. For example we might write ~ = 2~ , where A is as large 

ai integer as possible consistent with 3.5.1. A constraint derived 

from this would have the property that it was at least as good aQ:A 

other constraints. 

(b) Choosing the order of the variables 

As explained in Part 2 of this Chapter, it is desirable to order 

the basic variables in the tableau according to their importance, or 

significance. While what is re~uired is a quick and efficient way of 

selecting an ordering it would be a considerable advance simply to 

discover some property of the variables which affected it. 

One possible way of deriving an order is based on the geometrical 

form of the problem. An optimal non-integer solution is at the vertex 

of a hypercone. The various variables in the problem will have values 

which lie on hyperplanes intersecting the hypercone. It is possible 

that the variables with the smallest range of feasible values will be 

the best ones to put at the head of the tableau. 



- 94 -

In algebraic language we first solve the linear programming 

problem. We then constrain the cost function to be valued at the next 

integer below the rational optimum. For each variable in the problem 

we solve the subsidiary problems: maximise that variable and then 

m~n~m~se it. The variable with the smallest range of values is placed 

first in the tableau, and the remainder in order of their range of 

values. 

If this method were successful it might be desirable to repeat it 

and rearrange the ordering at intervals during the calculation. For as 

the hyperplane defined by the cost function moves into the feasible 

space and cuts off more and more vertices, so will change the shape of 

the hypercone formed by the boundaries of the feasible region which 

intersect the hyperplane associated with the cost. 

(c) The necessity of reducing the cost function to an integer 

value whenever possible. 

The theory of programme BHD demands that the cost function should 

be reduced to an integer value whenever possible. For then if the first 

variable is not at an integer value the next cut will either reduce it 

at least to the next integer below or else reduce the cost function, in 

which case the next cut is chosen to reduce the cost function to at 

least the next integer below. If one does not reduce the cost function 

as often as possible the whole argument loses its validity. 

Nonetheless when using the extended algorithm it does seem 

inefficient to have to use the wrong cost function ~n order that one 

might derive better cuts from it. One is tempted to try preceding the 

first artificial cost function by the original cost function in order 

that the original one is always optimal, but continuing to choose cuts 

starting at the artificial cost function. 

(d) The manner of generating subsidiary cost functions 

Programme BHD was extended into programme BGD by replacing the 

cost function, which we may denote by £' ~, by a series of cost 

functions, which we may denote by C~. The ith row of C is defined 

by 

(cl i • ={ ~~I 
where we use the :~:;~ brackets i } to denote that each member of 
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C'jA. is rounded to the nearest integer. - ~ 

restriction 

where k is the number of rows of C, and 

Ak = 1, Al < 2 max (cj). 

The A. need not be integer. 
~ 

Programme BGD defined A. by 
~ 

A small modification of this would be 

Ak- l ~ 3, Ai ~ 2Ai+l - 1. 

The A. are subject to the 
~ 

~ = 2, ... , k - 1 

This will give us the series 1,3,5,9,17 ... instead of 1,2,4,8,16 ... 

The justification for this would be that when an integer is divided by an 

even number the maximum error when rounding is a half, but when it is 

divided by an odd number the error is always less than a half. In 

particular when dividing by 3 one gains a function with much smaller 

coefficients than when dividing by 2 but with no greater loss of accuracy. 

More generally, there is scope for experiment in deciding the 

optimum number of A. and the distance between them. If the number of 
~ 

them is increased the cuts may become more efficient, but each pivot 

will take longer. It might be that a fibonacci series would be suitable, 

i.e. 

i = l, ... k - 2. 

This would of course increase the number of cost rows. 

Alternatively the number of cost rows could be reduced by use of the 

relation 

A. = (k - i + I)! 
~ 

The last two sets of formulae give us series of 1, 2, 3, 5, 8, 13, 21, ... 

and 1,2, 6, 24, 120, ••• respectively. 

(e) General computational procedure 

The programmes described have been experimental. If they were 

going to be used on a routine basis for problem solving many changes 

would be necessary. Integer programming problems are often expressed 

in terms of large and sparse matrices, as are many linear programming 

problems. To deal with the latter first the inverse matrix method 
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(ref. 3, p.89) and then the product form of the inverse (ref. 4, p.200) 

were developed. These methods gain their efficiency of computation by 

evaluating as few elements of the transformed array as possible. In 

particular they use the Primal Simplex Algorithm and select pivot 

columns by reference only to the elements of the cost function, and 

pivot rows by reference to the constants column and the pivot column. 

The programmes in Appendix D use the lexicographic Dual Simplex Method. 

Pivot rows are chosen by reference to the constants column, but 

pivot columns, besides referring to the cost function and pivot row, 

can require references to several other rows in order to break ties. 

It might not be economical to use the aforementioned methods for integer 

programming. 

On the other hand the method of choosing additional constraints 

used in programmes BHD and BGD is ideal for use with the inverse matrix 

method. 

The use of integer arithmetic would also cause problems. As 

pointed out in Part 7 of Chapter 1, the problems associated with 

integer arithmetic may well be fundamental to the problems of integer 

programming. Nevertheless the author considers that it was fortunate 

for him that KDF9 Algol permits the use of 39 bit integers, and 

KDF9 User Code permits the use of 96 bit integers. These word sizes 

were not always big enough for the problems tackled, and as computers 

seem to be standardising on 32-bit words, and compilers do not often 

provide facilities for multilength integers, this problem would merit 

further attention. 

Associated with this problem is the question of how or whether 

to use the method of scaling the problem described in Part 2 of 

Chapter 2. It was used, firstly, after an optimum was reached, and 

secondly, after integer overflow occurred. With some of the methods 

of choosing constraints scaling may have improved the choice when 

applied at an optimum solution. This may also have been the case in 

programmes BHD and BGD. But as a method of counteracting overflow it 

may not have been so helpful. 
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CHAPTER 4 

COMPARISON OF THE METHODS DESCRIBED IN THIS 
THESIS WITH THE WORK OF OTHER AUTHORS 
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Chapter 4: Comparison of the methods described 

in this thesis with the work of other authors 

Part 1: Haldi and Isaacson (ref 9) 

In their paper Haldi and Isaacson describe a method which 

differs very little from programme BHD. The author read their 

paper about the same time as he was forming his own ideas on the 

value of the algorithm. Although Haldi and Isaacson published their 

findings first an independent approach has enabled the author to view 

the problem from another angle. As Haldi and Isaacson acknowledge. 

Gomory was the first to describe the method (ref. 1. p.287). but he 

used it simply because it produced a neat finiteness proof. Some 

of the results of this thesis take the ideas of Haldi and Isaacson a 

little further. 

Their method ~s actually that of programme BHM as described in 

Part 4(b} of Chapter 2. They do not suggest improving the constraints 

~n the manner of programme BHD. 

They make certain suggestions on problem formulation. They note 

that the wider the range of integer values the cost function has to 

pass through the longer the solution takes, and they "recommend that 

coefficients in the objective function be divided by multiples of 10 

and rounded off whenever possible." (ref. 9, p.955). The burden of 

deciding whether it is possible or not lies on the user of the programme. 

There is no suggestion of an automatic procedure for doing this. They 

also recommend that columns and rows of the constraint matrix be rounded 

and scaled down wherever possible. This is to avoid numerical 

difficulties encountered in their use of floating point. In the integer 

arithmetic programmes contained in Appendix D these same problems would have 

caused the determinan~ D, to have large values and possibly give rise 

to integer overflow. Reducing the size of the elements in the matrix 

would reduce the size of D. It is interesting to note that large numbers 

in the original matrix cause problems in both floating point and integer 

arithmetic solutions of the problem. 

Haldi and Isaacson also realise that the ordering of the variables 

in the tableau is important. "Let the first variables in the data deck 

be those which, if their value should be changed by a unit amount, would 

cause the greatest net effect on the overall problem." (ref. 9, p.956). 
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Part 2: Martin Cref. 10) 

The method of Martin is similar to the methods described in 

this thesis in that it is a direct extension of Gomory's algorithm 

(ref. 1). The steps of the method are: 

Ca) Optimise the linear programming problem. 

(b) Choose a row with non-integer right hand side and derive 

the elementary constraint consisting simply of the fractional 

parts of the coefficients. 

Ccl Compute the column which would contain the pivot if this 

constraint were added to the tableau and the dual simplex 

algorithm were used to choose the next pivot. 

ed) From this constraint generate a new one which has the 

smallest possible element in the above mentioned pivot column. 

(e) Add this constraint to the tableau and pivot on this element. 

Cf) If the right hand sides are now integer, a sufficient condition 

for which is D = 1, return to step Cal. Otherwise return to step (b). 

The calculation Cd) is carried out by a vers~on of the Euclidean 

Algorithm. However instead of interating on D and the coefficient in the 

chosen pivot column to obtain the appropriate multiple of the row which 

would generate the desired constraint, the iteration is carried out on 

the whole row of coefficients. This is unnecessary and wasteful in time. 

The more important ideas embodied in the method were taken and 

moulded into the format described in Part 2 of Chapter 2 to produce 

programme BHP. The steps of this programme correspond to that of Glenn 

Martin. 

Cal Optimise. Programme BHP uses a lexicographic method. 

(bl Choose a row with non-integer right hand side. If D is prime 

if does not matter which for each such row would generate every 

constraint. Programme BHP chooses the first row with a non-integer 

right hand side. 

(c) Choose a column. It is questionable why one should make use 

of a constraint one is not going to apply. Instead programme BHP 

chooses the smallest column lexicographically speaking, providing 

of course the generating constraint has a non-zero element in that 

column. 

Cd} Generate the constraint with the smallest element in the chosen 

column. This produces the same result in both methods and has 

already been commented upon. 
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(el Add this constraint to the tableau. As in 'a lexicographic 

system there is a unique optimum there is no point in forcing 

a pivot on any particular coefficient. 

(f) Programme BHP always returns to (a) to reoptimise. 

The main difference between the two methods is that where programme 

BHP uses a lexicographic method Martin's programme deliberately avoids 

it. In step Ce) he chooses a pivot which is small, if not actually -1. 

This immediately ensures a matrix of small numbers. If the subsequent 

reoptimisation tends to keep the value of D small it might be of 

advantage in keeping numerical difficulties under control and in reducing 

the choice of constraints. However, no such explanation is offered in 

the paper. On the other hand there are definite advantages in using a 

lexicographic method. 

The two methods were not compared computationally by the author. 

Step (elin Glen Martin's algorithm would normally make the tableau non­

optimal and infeasible, and the composite method needed to reoptimise 

the problem was not defined. However some aspects of the algorithm 

were incorporated into programme BHN. This was a modification of 

programme BHP such that the row chosen in step(b) was the one with largest 

fractional right hand side, and in step (cl the column was chosen by 

reference to the constraint derived in step (bl. In the few problems 

solved by both BHP and BHN, BHP appeared to be superior. (See Part 4 of 

Chapter 2). 



- lOt -

Part 3: Land and Doig (ref. 12) 

The method of Land and Doig is a branch and bound algorithm 

which uses. linear programming to calculate the bounds and provide 

information to help choose the next branch. 

method are: 

The steps of the 

Cal Optimise the linear programming problem. 

Cbl Select an integer variable with a non-integer value. 

lcl Branch on this variable. If we denote this variable by 

x. and we have x. = a. JD, then the branches are 1 1 10 

Cil add the constraintc. Xi > [aioJD] + 1 

(ii) add x. < ra. JD 1 . 
1 - L 10 J 

(d) Put bounds on these two subproblems by solving them by 

linear programming. If either problem 1S infeasible, abandon 

it, otherwise augment it to the list of branches. If in (c), 

(i) 1S a better bound than (ii) it may be necessary at some 

stage to solve the subproblem with x. > ra. JDl + 2 as a constraint; 
1 - L 10 J 

if (ii) is better than (i) it may be necessary to solve with the 

constraint x. < ra. JDl - 1. 
1-LlOj 

(e) Choose 

to (b). 

the subproblem with the best bound so far and return 

Programme BHD has much 1n common with this method. 

them step by step. 
We compare 

(a) Optimise. Programme BHD uses a lexicographic method. 

(b) Select an integer variable with a non-integer value. 

Programme BHD always takes the first, if possible the cost 

function. 

(c) Branch on this variable 

(i) Xi > [ai/DJ + 1 

(ii) Xi < [ai/DJ 

If the previous branches, i.e. the variables higher in the tableau, 

are kept fixed (i) will be infeasible in programme BHD because Xi 

has been maximised subject to the higher variables. So programme 

BHD will always "branch" in one direction only. 

(d) Bound the branch (es) by solving the linear programming sub-

problem. Programme BHD will either obtain a solution 
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satisfying (iil subject to the previous branches remaining fixed 

or, if no such solution exists, will automatically "branch" on 

one of the variables higher in the tableau, i.e. reduce it. 

(e) Return to (b). 

The advantage of Land and Doig's method over programme BHD is 

that it will cope with mixed integer problems. It is vital to the 

logic of programme BHD that a constraint is taken from the cost function 

whenever it is non-integer, but the cost function will not be constrained 

to be integer if it contains non-integer variables. 

On the other hand if the method of Land and Doig used a 

lexicographic method of optimisation and selected variables for branching 

in the same order as programme BHD the two methods would follow similar 

COurses. Whereas Land and Doig add simple constraints like x. < ra. /Dl, 
]. - L].O J 

programme BHD adds constraints which implicitly include the proviso that 

they only hold so long as the variables higher in the tableau do not 

change. This enables the programme to retrace its steps without having 

to store all previous partial solutions. 

The close analogy between the two methods suggests that just as 

programme BHD was extended to become programme BGD by adding a set of 

artificial cost functions, so might the method of Land and Doig. The 

success of their method depends on finding variables on which to branch 

which will have a large effect on the cost function. In the pure integer 

case the cost function itself can be guaranteed to affect the cost function, 

but not in a large way. However scaled down versions of the cost function 

would, and it might well prove worthwhile to generate a set of cost 

functions in the same way as is described in Part 3 of Chapter 3. 

The mixed integer problem is not so easy to generate integer variables 

for. Possibly the best that could be done would be to select that part of 

the cost function which consists of integer variables and derive a new 

set of integer variables from that. 
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Part 4: Backtrack methods 

Programmes BHD and BGD can be interpreted as applying back-

track procedures. Such a description follows. 

(a) Choose an integer variable. Calculate an upper bound 

for it by optimising the linear programming problem with this 

variable as cost function, and reduce it to an integer value 

if it is not already at one. 

(b) Using linear programming, test whether the problem 1S 

still feasible. If not, proceed to (d). 

(c) (i) If there are still some variables remaining in the tableau 

maximise the next variable and reduce it to an integer value if 

not already at one. Return to (b). 

(c) (ii) If no variables remain a feasible integer solution has 

been found. 

to (d). 

Remember it if it is the best so far and proceed 

(d) Backtrack: reduce previous variable by 1. If there is no 

previous variable the search is finished. 

(b). 

The programmes employ several short cuts. 

Otherwise return to 

A constraint will 

sometimes reduce the value of a variable beyond the next integer below. 

Also when (b) finds a subproblem is infeasible it automatically reduces 

a previous variable in the tableau thus effecting a backtrack to that 

variable. 

The above description is a fair description of programme BGD. 

To make it exact we have to specify how the first variables in the 

tableau are chosen. In addition programme BGD adds a sophistication 

whereby in (c)(ii) when a new feasible integer solution is found a 

constraint is added to ensure that any future feasible integer solution 

will be an improvement on the one just found. 

If we define the variable chosen in (a) to be the cost function 

we obtain programme BHD. This has the property that the first feasible 

integer solution encountered is also the best. 

There is little point in comparing these methods with other 

specific backtrack methods. The art of backtrack lies in inventing 

sophisticated short cuts which enable possible solutions to be 

enumerated implicitly rather than explicitly. Programmes BHD and 

BGD use linear programming for their short cuts. 
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An exposition of the principles of backtrack is contained in 

(ref. 141. It assumes that all variables are zero-one. It takes 

advantage of the fact that when adding variables to the list of 

those with assigned values they may be given any value initially 

rather than a predetermined one. This enables an algorithm to use 

heuristic techniques to get a reasonable solution quickly; it only 

becomes an exact algorithm after complete enumeration. 

Programmes BHD and BGD are more concerned with getting an 

optimal solution. For this reason the first variable considered 

~s either the cost function or an approximation to it. 

Nevertheless it is possible that certain backtrack algorithms 

could be improved by introducing artificial cost functions as 

variables along the lines of programme BGD. This would depend 

very much on the individual algorithm. 
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APPENDIX A 

SYMBOLS NOTATWNS AND DEFL~ITI()NS 



Appendix A 

Symbols 

A,B,N 

~,Z'£ 

, I I 
~,Z,£, 

[B,N] 

-, 
B 

(B). . 
1.J 

(B).* 1. , 

I 
n 

o 

d,D 

B* 

e. -1. 

and 

(B) . 
*J 

- 109 -

Symbols, Notations and Definitions 

Notations 

matrices 

column vectors 

row vectors 

partitioned matrix 

inverse of matrix B 

the element of B in row i and column j 

the i th row and j th column of B 

a unit matrix of dimension n. 

n is omitted where the dimension is 

apparent from the context. 

a zero scalar, a zero vector, or a zero 

matrix, according to the context. 

the determinant of B 

the value of the determinant of the 

matrix which has implicitly been 

inverted at any stage of a linear 

programming problem. This matrix is 

usually denoted by B. 

the adjugate matrix of B, i. e. (B*) .. 
1.J 

is defined as the cofactor of (B)ij in B. 

a vector whose i th element is one and 

whose other elements are zero 

F • G (mod h) every element of F - G is a multiple of h 



nf 

~~o, A~O 

- llO -

the largest integer not greater than a 

the largest multiple of d not greater 

than a 

each element of b is rounded down to 

an integer or a multiple of d 

factori al n 

every element of a and A is non-negative 



DE l"INIT IONS. 

Simplex Method 

Dual Simplex Method 

Composite Method 

Optimal 

Feasible 

Dual feasibl~ 

Dual optimal 

Tabl,~au 

Lexicographic 

Lexicographically 

posi.tive 

Lexicographically 

optimal 

Lexicographically 

greater than 

- III -

a method used to solve a linear 

programming problem when the constant 

terms are all non-negative. 

a method used ~o solve a linear 

programrni.ng p.robV~m w'len the 

coefficients of the cost function are 

all non-nega t i ve and .'111 arti fici al 

variables have been eliminated from 

the pr::>bl~m. 

any method which caters for probl'~ms not 

catered for by the ahove. 

having all non-negative coefficients in 

the cost function. 

having all constant terms non-negative. 

optillal 

feasible 

the matrix of numbers which is 

manipulated during sol'Jt10n of a problem. 

ordered, taken in the order written. 

applied to a vector this means that the 

first element of it which is non-zero is 

posi.tive. 

applied to a tableau of a problem it 

means t'-1at every column is l~xj<!ographical Ly 

posi.tive. 

a is lexicographically greater than ~ 

means tha t (~-!:) is lexi.cographically 

posi ti ve. 
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APPENDIX B 

THE TEST DATA 

PART 1 

DESCRIPTION OF THE PROBLEMS 
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Appendix B: The test data. 

Part 1: Description of the problems. 

Problem 1: A production problem. 

This problem was contained in a paper by Markowitz and Manne 

(ref. 13). It is a hypothetical production problem where a choice 

has to be made among 21 items to be manufactured subject to the 

limitations of six resources. Only one of each item can be chosen. 

The coefficients of the constraints and cost row were chosen 

from a table of random numbers. 

Problem 2: A two-dimensional knapsack problem. 

This was contained in a paper by Weingartner and Ness. It is 

described as a two-dimensional knapsack problem and is of a similar 

form as problem 1 except that there are only two resources instead of 

six. However the coefficients are not random as can be seen from the 

high proportions of zeros in one constraint. 

Problem 3. 4. and 5: Travelling salesman. 

These problems are a formulation of the travelling salesman problem 

due to A.W. Tucker and described by Dantzig in (ref. 4, p. 547). We 

reproduce the derivation here. 

Consider an n - city problem. Let x .. = 1 if the salesman travels 
lJ 

from city i to city j. and 0 otherwise. The problem is defined by the 

constraints. 

n 
1: x .. = 1 (i = 1, ... , n) 

j=l lJ 

n 
l.: x .. = 1 

i=l lJ 
(j=l, ... ,n-l) 

l.: u. < 
1 -

, 
n (n+l) l1 

nx .. + u. - u. < n - 1 
lJ 1 J 

(2 < 1 :f J < n) 
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The first two sets of constraints define the assignment problem. 

The last set constrain any solution to be a tour provided all x .. are 
lJ 

o or 1. This is done by omitting city 1 from the equations and 

constraining the other links not to form a tour. If some of these links 

did form a tour, say of length k, we could sum the appropriate 

equations of the last set so that the u. cancelled out, leaving 
1 

nk ~ k(n-l) 

which is not possible. On the other hand any journey visiting cities 

2 to n and not forming a tour will satisfy the last set of equations. 

To show this choose the values of u. so the u. = t if city 1 is 
1 1 

reached on the t-th step. 

If x .. = 0 we have u. < u. 
lJ 1 - J 

u· = t-l so that 
J 

Then the u. will have the values l, .•• n-l. 
1 

n-2 <n-l. If x .. = 1 then u. = t and 
lJ 1 

nx .. + U. - u. = n - 1. 
lJ 1 J 

The purpose of the third equation in the list was to provide an 

upper bound for the u. which is demanded by the use of a lexicographic 
1 

method. 

Three problems were travelling salesman problem. Numbers 3 and 4 

were 1 - city problems, the matrix of distances being symmetric and 

containing random numbers. The problems were obtained from A.K. Obruca 

(ref. 151. Number 5 was the non-symmetric 6 - city problem used as 

an example by Little, Murty Sweeney and Karel in their paper (ref. 16) 
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Problem 6: Covering theorem. 

This problem is perhaps the most interesting of those presented 

here in that it is without doubt a genuine integer programming problem. 

A paper by Taussky and Todd (ref. 17) includes a description of the 

problem. The problem was tackled in collaboration with L.B. Wilson 

and J. Clowes of Newcastle University. 

was 
The specific problem posed in the paper concerned with 5 entities, 

"-
each of which could take on 3 values. The illustration given in the 

paper was of 5 football matches each having three possible results. 

To anticipate every possible outcome of the set of 5 matches one 

would have to be prepared for 35 = 243 cases. However, if one is 

prepared to consider a subset of these 243 cases which is such that for 

any case there is a member of the subset which only differs from it in 

the outcome of one match one is left with much fewer possibilities. 

Such a subset is termed a covering and the problem was to find the 

smallest possible covering of these 5 matches. 

To formulate the problem let us denote the three values of each 

match result by 1,2 and 3. We use the term element for each combination 

of five results and consider the 243 elements to be ordered as follows: 

1 1 1 1 1 1 1 1 1 1 .......... , ..... 
1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 2 
1 1 1 2 2 2 3 3 3 1 
1 2 3 1 2 3 1 2 3 1 

Each element will cover itself and ten others. For example element 

(1,1,1,2,3) covers 

1 1 1 1 1 1 1 1 1 2 3 
1 1 1 1 1 1 1 2 3 1 1 
1 1 1 1 1 2 3 1 1 1 1 
1 2 2 2 3 2 2 2 2 2 2 
3 1 2 3 3 3 3 3 3 3 3 

As 243/11 ~ 22 1/11 we deduce that a covering must consist of at least 

23 elements. The question is what is the minimum size of a covering. 

We associate a zero-one variable x. with each element j such that 
J 

x. is one if j belongs to a given covering and zero otherwise. We define 
J 

constants a, . such that a, , is one if elements i and j cover each other 
~J ~J 

and zero otherwise. The problem can then be expressed as 
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minimise t x. 
J 

subject to- l a. .x. 
lJ J 

1> 1 (i -::1, ... , 243) 

and x. o. 0 or 1 (j.,.,l, ... , 243) 
J 

This problem was too large to be handled by any of the writer's 

programmes. Instead an auxiliary problem was solved which provided 

a lower bound for the number of elements in the covering. This 

auxiliary problem was one of a series that can be derived by making 

use of the special structure of the matrix (a .. ). 
IJ 

Let us write E
243 

for the matrix of coefficients (a
ij

). 

obeys the recurrence relation. 

I 
n 

E 
n 

I 
n 

It 

as may be verified by observing that in E
243 

each element covers and 

is covered by the elements 81 and 162 places after, the order of the 

elements being considered cydically, which gives rise to the I . 
n 

Within in each of the three groups of 81 each element covers and is 

covered by those 27 and 54 places after. The reasoning is continued 

for the groups of size 27, 9, and 3~ and El is equal to 1 representing 
" 

the fact that each element covers itself. As each element covers itself 

and 10 others we know that we have defined every non-zero element in the 

matrix. 

The 0verall problem can be expressed as 

[ [J (243 elements) 

the partitioned matrix being the expansion of E
243

. This can be 

weakened in two ways. Firstly we may add the three rows of the partitioned 

matrix and the corresponding rows of the vector on the right hand side to 

obtain. 

(81 elements) 

Secondly we may group the variables into 3s to obtain 
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rn 
l ~J (81 elements) 

The value of L xi in the solution to this problem formed a lower bound 

to its value in the overall problems. The process of adding triples 

of rows and columns was repeated twice more to obtain the actual 

subproblem solved, which may be written algebraically as 

> 
27 

27 (9 elements) 

In Taussky and Todd's paper (ref. 17) it was stated that t xi 

must be at least 24 but need not be more than 27. A minimum solution 

to the sub-problem was found to be (5,2,2,2,3,3,2,3,3) giving a lower 

bound of 25 for t xi' an increase of one on 1aussky and Todd ~ figure. 

The author also succeeded in solving the 27 x 27 subproblem, but 

this did not produce a better lower bound. The first attempts to solve 

the 27 x 27 subproblem were abortive because of trouble with integer 

overflow. The problem matrix has 5 s down the diagonal indicating a 

determinant of the order of 527 or 5 x 1016 . However it was found 

possible to steer programme BHD round this stumbling block by adding 

redundant constraints containing small coefficients. An attempt was 

also made to solve the 81 x 81 problem by a method involving the use 

of the KDF9 linear programming package. This was unsuccessful, presumably 

because of the size of the determinant of the 81 x 81 problem which is of 
81 36 

the order of 3 or 10 . 
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Problem 7: A problem with large coefficients. 

This problem was given by Vajda as an example in (ref 3, p. 159). 

It has been scaled up to make all coefficients integer. Its main point 

of interest is that integer overflow occurred before a rational solution was 

found. Although the rational solution was never identified the integer 

solution was nevertheless found. 

Problems 8 and 9 Two very small problems. 

Problem 8 was given by Vajda to illustrate integer programming 

(ref. 3, p. 199). It can be solved by adding a single cut. 

Problem 9 was derived from problem 8 by slightly altering the 

ratios one to another of the coefficients in the first constraint. 

Its solution then required at least two cuts. 
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Problems 10.1, 10.2, 10.3 and 10.4: Four 
formulations of a product mix problem. 

Problem 10.1 is due to Ferguson and Sargent (ref. 18). It concerns 

a hypothetical factory which can manufacture five different products. 

The products make varying demands on the labour resources in six different 

sections of the factory and the six constraints represent the limits of 

these resources. The problem is to select the product mix which will 

maximise the profit made by the factory. 

The other three problems arose from the observation that the rows of 

problem 10.1 can be scaled down by factors varying from 5 to 60. 

Problem 10.2 is derived from problem 10.1 by scaling the cost function, 

problem 10.3 by scaling the constraints. 

been scaled. 

In problem 10.4 all the rows have 

It is interesting to compare the numbers of pivots needed to solve 

the four forms of the problem. 
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Problems A4 to F6 Job-shop scheduling. 

These problems represent three-machine job-shop scheduling. 

n items are to be processed on each of three machines I, II and III, 

and in that order. The objective is to minimise the time elapsed 

between the start of the first item on machine I and the finish of the 

last item on machine III. Both the formulation and the data are taken 

from Story and Wagner (ref. 11). 

The formulation takes advantage of the property of the three machine problem 

that there is an optimum solution in which the jobs are processed in the 

same order on each machine. Let us define variables x .. to be such that 
1J 

x .. is 1 if item i is scheduled in order - position j and 0 otherwise. 
1J 

The constraints start with the assignment problem matrix: 

n 
t x. '" 1 

i=l 
1j (j '" 1, •• , n) 

n 

t x. -= 1 

j=l 
1j 

(i = 1, .. , n) 

where n is the number of jobs to be processed. The formulation was 

altered slightly to avoid equality constraints: 

n n 

t t x .. < n 

j=l i=l 
1J 

n 
t x. !> 1 (j = 1, .. , n) 

i=l 
1j 

n 

t x. '> 1 (i = 1, .. , n) 
j=l 

1j 

We must also have timing restrictions to ensure that each item is 

not processed by more than one machine at a time and that each machine 

is not processing more than one item at a time. 

extra variables. 

We first define some 

Let shk = the slack time on machine h between the end of job k and 

the start of job k-l-1. 

w
hk = the waiting time for job k between finishing processing 

machine h and starting processing on machine h-l-1. 

Phk = the processing time for job k on machine h. 

on 

The timing constraints are derived by considering the time interval 

between the end of job k on machine h and the start of job k + 1 on machine 

h + 1. In this interval machine h must have processed job k + 1 so we can 
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express it as 

shk + t Ph . x . k 1 + wh k 1 ,1 1, + , + ' 

At the same time machine h ~ 1 must have processed job k so we can also 

express the time interval as 

Equating these two we have 

-w = 
h, k+l 

o 

where h attains values of 1 and 2 and k l, .. "n-l. 

In the data submitted to the various programmes equals signs were 

avoided by replacing them by a greater than or equals sign in each constraint 

To ensure that each constraint attained its lower bound the left hand sides 

of the constraints were summed and this sum was constrained to be less than 

or equal to zero. 

The function to be minimised is the total idle time on machine 3: 

s3' J. 

This has the same effect as minimising the total elapsed time. 

The layout of data for a three job problem is given in the following 

table. The data for problems E4 and A5 are given in full; for the 

remaining problems only the values of the p, , are gi ven. 
lJ 



X
H 

x
21 

x
31 

x
12 

x
22 

x
32 

x
13 

x
23 x33 s21 s22 s31 s32 w

12 
w

13 
w

22 
w

23 

ql q2 q3 1 1 :: z 

1 1 1 1 1 1 1 1 1 4 
< 

1 1 1 ;> 1 

1 1 1 ;> 1 

1 1 1 ;> 1 

1 1 1 ;> 1 

1 1 1 ;> 1 

,... 
1 1 1 ;> 1 to.) 

to.) 

P21 P 22 P23 -PH -P
12 -P

13 
1 -1 ;> 0 

P 21 P22 P23 -PH -P
12 

-P
13 

1 1 -1 ;> 0 

P 31 P32 P33 
-P

21 -P22 -P
23 

-1 1 -1 ;> 0 

P 31 P32 P
33 

-P
21 

-P
22 

-P
23 

-1 1 1 -1 ;> 0 

r
H 

r
12 

r
13 

r
21 

r
22 

r
23 

r
31 

r
32 r33 1 1 -1 -1 < 0 

where q. :: P lj + P2j 
r 
lj 

:: P2j .I. P3j 
r
2j 

:: P3j - P lj r
3j 

:: - Pij - P2j J 

Variables sl" 
J 

si3' w
3j

' w
il 

are omitted as they are either zero in an optimum solution or have no meaning in the 

problem. 

The problem is to minimise z. 
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APPENDIX B 

PART 2 

THE PROBLEMS 
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Part 2 The problems. 

Note on the layo~t of th~ data. 
e i . 4 t 

Line 1 of ~ each problem contains a title enclosed between two 't' 
symbols, 

Line 2 contains the dimensions of the constraint matrix. 

Line 3 contains the !~ctron to be minimised, the first number being 

an initial yal~e for th~s ~nction. 

Lines 4 onwards contain the constraints of the problem. The first 

number of each of these lines is the constraint number. The 

symbol following the constraint number is ~ , =, or ~ and 

dete.nnines th.e type of constraint. Then come the coefficients 

of the constraint followed by the constant term. 

If the cost ~nction or a constraint contained several zeros or ones 

in Sl,l.ccession a shorthand was used whereby the number of zeros or ones 

appeared in the data followed by Z or U respectively. 

For example, 

represents 

t :Problem 8t 

2 z 2~ 

0; 10; - 111; 

1< 

2< 

-1; 

2U 

Minimise 

subject to 

10; 40 

20 

lOx - 111 Y 

-x + 10 y < 40 

x + y < 20 

x, Y > 0 and integer. 

I 
I 
I 

! 

I 
I 
I 
! 
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tProblem*I:**Markowitz*and*Mann*(ref*13>t 

27X21; 

00 -3--470-43·-73·-86·-36·-96·-47·-36.-61·-46-_nQ--6'--71--62--33.-26• , , 6' , , 60' , , , , , , ';JU, J, , , , , 

-1 .-80'-45 0- -, , , , 
1~ 1;20Z 1; 
2~ lZl; 19Z 1; 
3~ 2Z1; 18z 1; 
4,! 3Z1 ; 17Z 1; 
5< 4Z1; 16z 1; 
~ 5Z1; 15Z 1; 
7~ 6Z1; 14Z 1; 
8,! 7Z1; 13Z 1; 
9,! 8Z1; 12Z 1; 

10,! 9Z1; llZ 1; 
11,! 10Z1; 10Z 1; 
12,! llZ1;9Z 1; 
13.! 12Z1 ;8z 1; 
14.! 13Z1 ;7Z 1; 
15< 4Z1;6z 1; 
16! 15Z1;5Z 1; 
17,! 16z1;4Z 1; 
18.! 17Z1;3Z 1; 
19,! 18z1 ;2Z 1; 
20,! 19Z1; lZ 1; 
21< 20Z1; 1· 
22~ 97;74;24;~;62;42;81;14;57;20;42;53;32;37;32;27; 7;36; 7;51;24; 400 ; 
23~ 16;76;62;27;66;56;50;26;71; 7;32;90;79;78;53;13;55;38;58;59;88; 400; 
24.! 12;56;85;99;26;96;96;68;27;31; 5; 3;72;93;15;57;12;10;14;21;88; 350; 
25.! 55;59;56;35;64;38;54;82;46;22;31;62;43; 9;90; 6;18;44;32;53;23; 320 ; 
26,! 16;22;77;94;39;49;54;43;54;82;17;37;93;23;78;87;35;20;96;43;84; 420; 
27,! 84;42;17;53;31;57;24;55; 6;88;77; 4;74;47;67;21;76;33;15;25;83; 400; 
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tProblem*2: * *2-dimensional*knapsack: **Weingartner* and*Ne ss*28*problemt 

30x28 ; 

0; -1898;-440;-22507;-270;-14148;-3100;-4650;-30800;-615;-4975; 
-1160;-4225;-510;-11880;-479;-440;-490;-330;-110;-560; 
-24355;-2885;-1174&;-4550;-750;-3720;-1950;-10500; 

1~ 45;0;85;150;65;95;30;0;170;0;40;25;20;0; 
0;25;0;0;25;0;165;0;85;0;0;0;0;100; 600; 

2~ 30;20; 125;S;80;2S;3S;73; 12;IS; 15;40;5; 10; 
1001201°'900.20.60'4°'5°036'4904°'19'15°. 600. """"""" , 3~ lU27Z 1; 

4~ lZ1U26z 1; 
5< 2Z1U2SZ 1; 
~ 3Z1U24Z 1; 
7! 4Z1U23Z 1; 
8! 5Z1U22Z 1; 
9< 6Z1U21Z 1; 

10! 7Z1U20Z 1; 
11< 8Z1U19Z 1; 
12< 9Z1U18z 1; 
13< 10Z1U17Z 1; 
14! llZ1U16z 1; 
15< 12Z1Ul,5Z 1; 
10! 13Z1U14Z 1; 
17< 14Z1UI3Z 1; 
18< 15Z1U12Z 1; 
19< 16z1UllZ 1; 
20< 17Z1UI0Z 1; 
213: 18z1U9Z 1; 
22< 19Z1u8z 1; 
23< 20Z1U7Z 1; 
24~ 21Z1U6z 1; 
25< 22Z1USZ 1; 
20< 23Z1U4Z 1; 
27~ 24Z1U3Z 1; 
28< 25Z1U2Z 1; 
293: 26z1UIZ 1; 
30~ 27Z1U 1; 
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t Problem*3:**7-city*travelling*aaleamant 

0; 37;63;80;49;84;30;37;40;60;20;50;19;63;40;19;21;70; 
59;80;60;19;40;85;78;49;20;21;40;55;39;84;50; 
70;85;55;55;30;19;59;78;39;55;0;0;0;0;0;0; 

1= 1;1;1;1;1;1;42Z 1; 
2= 6Z1.1.1·101·1·36z 1· """ , 3= 12Z1;1;1;1;1;1;30Z 1; 
4= 18z1;1;1;1;1;1;24Z 1; 
5= 24Z1;1;1;1;1;1;18z 1; 
6= 30Z1·1·1·1·1·1.12Z 1· , , , , , , , 
7= 36z1;1;1;1;1;1; 6z 1; 
8= 6Z1;5Z1j5Z1;5Z1;5Z1;5Z1;IIZ 1; 
9= 1;12Z 1;5Z1;5Z1;5Z1;5Z1;10Z 1; 

10= lZ1;5Z1;12Z 1;5Z1;5Z1;5Z1; 9Z 1; 
11= 2Z1;5Z1;5Z1;12Z 1;5Z1;5Z1; 8z 1; 
12= 3Z1;5Z1;5Z1;5Z1;12Z 1;5Z1; 7Z 1; 
13= 4Z1;5Z1;5Z1;5Z1;5Z1;12Z 1; 6z 1; 
1A< 42Z1.1.1.1.1.1. 28 • 
....,_ """ 1 
15< 7z7;34z1;-1;4z 6; 
Ib< 8Z7·33z1·1Z-1·3z 6. - , , , , 
17< 9z7·32Z1.2Z-1·2Z 6. - , , , , 
18< loz7·31Z1·3z-1·1Z 6· - , , , , 
19< l1Z7·30Z1·4z-1. 6· - , , , , 
20< 13Z7·28z-1·1·4z 6· - , , , , 
21< 1AZ~·28z 1'-1'3z 6· -....,'1' " , 
22< 15Z~'27Z 1·1Z-1·2Z 6. 

- 'I, ", 
23< 16z7·26z 1·2Z-1·1Z 6· -' ", 24! 17z7;25z 1;3z- 1; 6; 
25< 19z7·22Z-1·1Z1·3z 6· - , " , 26! 20z7;22Z -1;1;3z 6; 
~< 21Z~·22Z 1·-1·2Z 6· -'1- ''I, " , 
28< 22Z7;21Z 1;IZ-1;1Z 6; 
29< 23Z7;20Z 1;2Z-1; 6; 
30< 25Z7·16z-1·2Z1.2Z 6· - , " , 
31< 26z7·16z-1.1Z1.2Z 6. - , " , 
32< 27Z7·16z -1·1·2Z 6· - , , , , 
33< 28Z7·16z 1·-1·1Z 6. -' ", 
34< 29z7'15z 1·1Z-1· 6· -' " , 35< 31Z7;10Z-1;3z1;1Z 6; 
3~ 32Z7jl0Z-l;2Z1;IZ 6; 
37! 33z7;10Z-I;lZ1;IZ 6; 
38< 34Z7·10Z -1·1·1Z 6· - , , , , 
39< 35Z7;10Z 1;-1; 6; 
40! 37z7; 4Z-1;4z1; 6; 
41! 38z7; 4Z-1;3z1; 6; 
42! 39z7; 4Z-1;2Z1; 6; 
43! 40z7; 4Z-1;IZ1; 6; 
44< 41Z7' 4Z -1·1· 6· - , ", 
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tProblem*4:**7-city*travelling*salesmant 

44X48;* 

0; 42;78;51;63;71;70;42;47;65;87;75;85;78;47;68;93;62; 
81;51;65;68;25;23;20;63;87;93;25;38;20;71;75; 
62·23·38-20·70·8~·81'20'20'20·0-0-0.0.0.0. , , , , ,;), , , , ""'" 

1= 1;1;1;1;1;1;42Z 1; 
2= 6Z1.101.1-1·1·36z 1-""" , 3= 12Z1;1;1;1;1;1;30Z 1; 
4= 18z1;1;1;1;1;1;24z 1; 
5= 24Z1;1;1;1;1;1;18z 1; 
6: 30Z1;1;1;1;1;1;12Z 1; 
7= 36z1-1.1-1-1-1- 6z 1· """ , 8= 6Z1;5Z1;5ZI;5Z1;5Z1;5Z1;11Z 1; 
9= 1;12Z 1;5Z1;5Z1;5Z1;5Z1;10Z 1; 

10= lZI;5Z1;12Z 1;5Z1;5Z1;5Z1; 9Z 1; 
11= 2Z1;5Z1;5Z1;12Z 1;5Z1;5Z1; 8z 1; 
12= 3Z1;5Z1;5Z1;5Z1;12Z 1;5Z1 ; 7Z 1; 
13= 4Z1;5Z1;5Z1;5ZI;5Z1;12Z 1; 6z 1; 
4! 42Z1;1;1;1;1;1; 28; 
1~ 7z7;34z1;-1;4z 6; 
16< 8z7·33Z1.1Z-1·3Z 6-- , , , , 
17! 9z7;32Z1;2Z-1;2Z 6; 
18< loz7·31Z1·3z-1.1Z 6· - , , , , 
19< l1Z7'30Z1'4z-1- 6. - , , , , 
20< 13z7·28z-1·1-4Z 6· - , " , 
21< 1AZ7·28z 1'-1'3z 6. -...,., " , 
22! 15z7;27z 1;IZ-1;2Z 6; 
23< 16z7'26z 1·2Z-1·lZ 6. - , ", 
24! 17z7;25z 1;3Z- 1; 6; 
25< 19z7;22Z-1;lZ1;3z 6; 
2b< 2oz7;22Z -ljl;3Z 6; 
27< 21Z7·22Z 1·-1·2Z 6. -' " , 28< 22Z7·21Z 1;IZ-1,'lZ 6. 

- , 6' 29! 23z7;20Z Ij2Z-1; ; 
30< 25z7016z-1;2Z1;2Z 6; 
31< 26z7; 16z-1; lZI;2Z 6; 
32< 27Z7·16z -1·1·2Z 6· - , , , , 
33! 2Bz7;16z 1;-I;IZ 6; 
34< 29z7·15z 1·1Z-1· 6· -' " , 35< 31Z7;10Z-1;3z1;lZ 6; 
3b< 32Z7·lOZ-1·2Z1.1Z 6· - , " , 
37! 33z7;10Z-1;IZI;IZ 6; 
~Q< 34z7-10Z -1-1'IZ 6 . .JU_ ", , 

39! 35Z7;10Z 1;-1; 6; 
40! 37z7; 4Z-1;4z1; 6; 
41! 38z7; 4Z-1;3z1; 6; 
42! 39z7; 4Z-1;2Z1; 6; 
43! 4oz7; 4Z-1;IZ1; 6; 
44 < 41Z7' 4z -I-I· 6· - , ,,' 
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tProblem*5:**6-city*travelling*salesman:**Little*et*alt 

32X35; 

0- 27-43.16'3°'26-7,16.1'3°'25'2°'13'35'5'°.21.16'25' 
, """""" "", J 18'18'12'46'27'48 '5'23'5'5-9'5'0'°'°'0-0' """, """"" 

1= 1;1;1;1;1;30Z 1; 
2= 5Z1;1;1;1;1;25Z 1; 
3= 10Z1;1;1;1;1;20Z 1; 
4= 15Z1;1;1;1;1;15Z 1; 
5= 20Z1;1;1;1;1;10Z 1; 
6: 25Z1;1;1;1;1;5Z 1; 
7= SZ1;4Z1;4Z1j4Z1j4Z1;9Z 
8= 1;10Z 1;4Z1;4Z1;4z1;8z 
9= 1Z1;4z1 ;10Z 1;4Z1;4Z1;7Z 

10= 2Z1;4Z1;4Z1;10Z 1;4Z1;6z 
11= 3Z1;4Z1;4Z1;4Z1;10Z 1;5Z 
12! 30Z1;1;1;1;1; 21; 
13< 6z6'23Z1--1 '3Z 5' - , " , 
1A< 7z6.22Z1.1Z-1-2Z 5' ~- , , , , 
15< 8z6'21Z1'2Z-1-1Z 5-- , , , , 
16< 9z6·20Z1·3Z-1. 5' - , , , , 
17! l1Z6;18z-1;1;3Z 5; 
18< 12Z6'18z 1·-1·2Z 5' - , " , 
19< 13Z6-17Z l·lZ-l-lZ 5' - , ", 
20< ~Z6'16Z 1-2Z-1' 5-- , '" 21! 1 Z6;13Z- 1;lZ1;2Z 5; 
22< 17Z6'13Z -1·1·2Z 5' - , , , , 
23! 18Z6;13Z 1;-1;1Z 5; 
24! 19Z6;12Z l;lZ-1; 5; 
25< 21Z6; 8Z-1;2Z1;lZ 5; 
2~ 22Z6; 8Z-1;lZl;IZ 5; 
27~ 23Z6; 8z -1;1;1Z 5; 
28< 2~Z6. 8z 1·-1· 5' -, , , , 
29< 2 z6· 3Z- 1-3z1' 5' - , '" 30! 27Z6; 3Z- 1;2Z1; 5; 
31< 28z6. 3Z-1-1Z1· 5-- , '" 32~ zgz6; 3Z -1;1; 5; 

l' , 
1· , 
l' , 
1-, 
1· , 
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tProblem*6:**covering*theoremt 

9X9; 

o· , 1;1;1; 1; 1; 1; 1;1;1; 

1> 7;1;1; 1;0;0; 1;0;0; 27; 
2> 1;7;1; 0;1;0; 0;1;0; 27; -3! 1;1;7; 0;0;1; 0;0;1; 27; 

4! 1;0;0; 7;1;1; 1;0;0; 27; 
5> 0;1;0; 1;7; 1; 0; 1;0; 27; 
6> 0;0;1; 1;1;7; 0;0; 1; 27; 

7> 1;0;0; 1;0;0; 7;1;1; 27; 
8> 0;1;0; 0;1;0; 1;7;1; 27; -9! OjO; 1; 0;0;1; 1·1·7· , , , 27; 

4X5; 

O· , 3; 7; 7; 5; 2· , 
1> 83; 249; 4; 60· 51; - , 
2> 246; 423; 793; 93; 26. - , 
3> 86;4050; 7~; 308;2975; 
4!. 201; 57; 1 • , 

2X2; 

0; 10;-111; 

1< -1; 10; 40; 
2! 1; 1; 20; 

2X2; 

0; 10;-111; 

I! -12; 109; 420; 
2< 1; 1; 20; 

205; 400; 

700; 
3000; 
4000; 
1200; 
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tProblem*10.1:**Ferguson*and*Sargentt 

6x5; 

0-, -2000--100-250'-400--100' , ", 

1< 800-, 20; 20; 120; 30; 2000; 
2< 200; 10; 15; 3°; 20; 1000' , . 
3! 3°°; 20; 40; 45; 10; 1000; 
4! 2400; 4°; 24°; 320; 160- 8000; , 
5< 400; 3°' 50; 8o, 40; 2000; 

6o~ 
, 

6< 900; 240; 180; 120; 6000' , , 

tProblem*10.2:**problem*10.1*with*cost*row*scaledt 

6X5; 

0-, -40; -2; -5; -8· , -2; 

1< 800-, 20; 20; 120; 30; 2000; 
2< 200; 10; 15; 30; 20; 1000; -3< 300; 20; 40; 45; 10; 1000; 
4! 2400; 40; 240 ; 320; 160. 8000; , 
5< 400; 30- 50; 80· 40; 2000; 
6< 60: , 

900; 240; 180' 120; 6000· , , , 

6X5; 

0-, -2000;-100;-250;-400;-100; 

1< 80' 2' 2' 12; 3; 200; , , , 
2< 

~: 2- 3; 6- 4; 200; - , , 
3! 4; 8- 9; 2- 200; 60: , , 
4! 1- 6- 8- 4; 200; , , , , 
5< 40; 3; 5; 8- 4; 200; , 
6< 15; 1· 4; 3; 2- 100; , , 

tProblem*10.4:**problem*10.1*with*all*rows*scaledt 

6X5; 

0; -40; -2; -5; -8-, -2; 

1< 80- 2- 2- 12; 3; 200; , , , 
2< 

~~ 2- 3; 6- 4; 200; - , , 
3! 4; 8- 9; 2- 200-

60: 6: , , 
4! 1- 8- 4; 200; , , , , 
5< 40; 3; 5; 8- 4; 200; , 
6< 15; 1-, 4; 3; 2-, 100; 
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tProblem*E4:**4-job*3-machine*job*shop*scheduling 

16x28; 

0; 10;13;14;20;1SZ3U6z 

1,! 16U12Z 4; 
2> 4U24Z 1; 
3~ 4Z4U20Z 1; 
4~ 8Z4U16z 1; 
5> 12Z4u 12Z 1; 
0> 103Z1o3Z1o3Z1.15Z 10 - , , " , 
7~ lZI;3Z1;3Z1;3Z1;4Z 1; 
8~ 2Z1;3Z1;3Z1;3Z1;13Z 1; 
9~ 3Z1;3Z1;3Z1;3Z1;12Z 1; 
10~ S;13;7;10;-I;-1;-6;-g;8z-1;2Z1;5Z-1;2Z 0; 
11> 4ZSo1307o10o-1'-1o-6o-9o5Z-1o2Z1o4Z1.-1o1Z 00 - """" , , " , 12> 8Z5013o7o10o-1o-1.-6o-9o2Z-1'2Z1·4Z1o-1. 0' - """" "'" 13~ 1;1;6;g;-g;-12;-8;-11;SI1;4I1; 1;4I Of gz I; ~Z-I; 5Z 
1A> 4Z101o6og.-g'-12o-8o-11oSZ1o4Z1o-1'4Z 00 ....... - "'" , , , , " , 
15> 8Z101·6ogo-go-12o-8'-11'2Z1o4Z1.-1o3Z 0' 
~ """",', , 10< 6-1Ao13019·-4o1·-lo-1o-4o1o-1o-1o-10.-13o-1Ao-20o _ ,--,., , , " , , " , , , ,--,., , 

3Z3U2Z-1;2Z-1; 0; 

tProblem*AS:**S-job*3-machine*job*8hop*scheduling 

2OX41; 

0; 13;36;34;7;13;24Z4U8z 

1,! 25U16z 5; 
2~ SU36z 1; 
3~ 5ZSU31Z 1; 
4~ 10Z5U26z 1; 
S!, lSZSU21Z 1; 
6~ 20ZSU16z 1; 
7~ 1;4Z1;4Z1;4Z1;4Z1;20Z 1; 
8!, 1Z1;4Z1;4Z1;4Z1;4Z1;19Z 1; 
9~ 2Z1;4Z1;4Z1;4Z1;4Z1;18z 1; 
10~ 3Z1;4Z1;4Z1;4Z1;4Z1;17Z 1; 
11> 4Z104Z1'4Z1o4Z1-4Z1o16z 1-- "'" , 12~ 20;6;S;3;4;-8;-30;-4;-S;-10;ISZ-1;3Z1;7Z-1;3Z 0; 
13> SZ2006·So3·4·-8·-30·-4°-So-10.11Z-1o3Z1o6z1.-1'2Z 0' - """"" "" , 1A> 10Z20.6'So3'4o-8'-30'-4·-So-1007z-1·3Z1.6z1'-lo1Z 0-....... - , , , " , , , , , , , " , 
15> 15Z2006oS·3°4o-8·-30o-4·-So-10o3Z-1o3Z1.6z1'-lo 0' 

""""" "'" In> 8'3004oSo10·-S.-6·-30o-2o-3o1SZ1o7Z-1·7Z 0' - """",' , , , 17> 5ZS·3004·5o10o-So-6o-30'-2°-3·11Z1-6z1o-1.6z 0· - ""'" '" , " , 18> 10ZSo30040So10o-So-6o-30o-20-3°7Z1.6z1o-1·SZ 00 - """, , , , , ." , 
19> ISZSo3004'So10o-So-6o-30o-2°-3°3Z1o6z1o-1'4Z 00 - , ,"""'."" , 20,! 28;36;9;8;14;15;0;-25;1;1;15;0;-25;1;1;15;0;-25;1;1; 

-13;-36;-34;-7;-13;4Z4U3Z-1;3Z-1; 0; 

o· J 
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Values of p .. used in problems A to F. 
lJ 

The columns refer to the machines, the rows to the items to be processed. 

In the 4 and 5 item problems the first 4 and 5 in each table were used. 

A B 

5 8 20 9 13 6 
6 30 6 7 7 20 

30 4 5 6 4 8 
2 5 3 8 3 10 
3 10 4 20 7 2 
4 1 4 10 2 l3 

C D 

6 7 3 4 5 5 
12 2 3 2 17 7 

4 6 8 2 1.0 4 
3 11 7 1::> 8 2 
6 8 10 7 15 6 
2 11 12 f.l 4 II 

E F 

9 1 :) l5 5 11 
12 1 l3 7 4 2 

8 6 7 9 14 l8 
11 9 10 28 11 9 

5 13 6 1 17 4 
12 3 9 1 8 3 
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APPENDIX C 

TABLES GIVING THE RESULTS OF RUNNING THE 

EXPERIMENTAL PROGRAMMES ON THE TEST DATA 
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Tables Giving the Results of Running the Experimental 
Programmes on the Test Data. 

Explanation of the tables. 

For a detailed account of the logic of the programmes as regards 
slacks and overflows the reader is referred to Parts 2 and 3 of 
Chapter 2. A brief explanation is given here. 

Time: The time excludes the reading in of the data and printing 
out of the results but includes the monitoring printout 
which printed every value of D. 

Pivots: This relates to the successful pivots and excludes attempts 
at pivoting which had to be backtracked because of integer 
overflow. "After rational solution" relates to the solution 
of the original linear programming problem except where 
stated in a footnote. 

Cuts: These were constraints added with a non-zero constant term. 

Slacks: These were Gomory type constraints with zero constant terms 
used for reducing the size of the determinant D. They 
also reduced the choice of cuts. 

Overflows: These figures relate to the number of times a pivot operation 
had to be backtracked because of integer overflow. 

Distance between integer and rational solutions: 
This indicates the number of integer values the cost function 
had to pass through during solution. It is thought that 
this distance is one indication of the difficulty of the 
problem particularly in the case of programme BHD (see 
Chapter 3 Part 3). Where BGD is concerned the figure relates 
to the first artificial cost function (see Chapter 3 Part 3). 

Value of D at rational solution: 
This is the value of the determinant after solving the linear 
programming problem. Its size is an indication of the 
difficulty of solving the problem firstly as regards the 
problem of integer overflow and secondly as regards the choice 
of constraint. 

Value of objective function: 
This gives an indication of success where a programme pro­
duces approximate solutions. Where a programme was terminated 
prematurely it indicates how far it was from the solution to 
the problem. 

The programmes: 

, : 

These are described in Part 4 of Chapter 2. In the case of 
programme BGD the figures relate to the point at which the 
first integer solution was found, the point at which the last 
integer solution was found, and the point at which it was 
established that no more integer solutions existed and that 
the last one discovered was in fact the optimal one. 



Pivots Slacks Overflows 
Problem 1: ,... 

CI) 
Markowitz and Mann. 0 , 

G> , I 
CI) .-4S:: .-4 C .-4 C 

...... I III 0 I III 0 I III 0 
c· .... s:: ..... s:: ..... 

.-4 , s.. 0'" ...-I ,s.. 0'" .-4 ,s.. 0 ... 
Q) as Q> ..... =' CI) as Q> -roI =' as G> -roI =' 
e +> I+>'" .-4 +> +> I+>+> .-4 ... , ...... ...-I 
..... 0 'H III 0 =' 0 'H as 0 0 'M as 0 

Programme E-< Eo-< I III s.. CI) CJ E-< ,Ill s.. CI) E-< , as '"' CI) 

BGD· at 1st solution 14 28 I 16 4 3 I 2 0 I 0 
at best, i.e. 2nd solution 168 332 I 320 31 63 I 62 19 , 19 
at end of run. 238 506 I 494 43 89 I 88 23 I 23 

I , I 
I , I 
I 

BHD 1801* 3546 I 3529 426 572 1571 239 1237 

BHM 1801* 3549 I 3532 442 504 1503 206 1206 
I 

BHP 1803* 1914 I 1897 633 567 1566 437 1437 
I I 

BHQ 1802* 2379 12362 657 857 1856 170 1170 

BH9 345+ 426 I 409 149 118 1117 17 I 17 
I 

Cost function s~aled by 7.5 399 693 I 680 79 96 I 96 34 , 34 
I I 

(using BHD) I I I 
I f 

I I I 

I , t 
I I 

*run terminated by time limit. 
+run terminated because integer overflow occurred when pivoting on a cut. 

CI) 
c 

s:: 0 
Q> ..... 
Q> ... 
~ =' ... .-4 
G> '0 0 
,Q s:: CI) 

III 
Q> .-4 

o '"' III s:: III s:: 
III be 0 
... Q> ..... 
CI)+>+> ..... s:: as 
'O-roIs.. 

0 
1 
2 

42.4 

42.4 

19.5 

23.8 

15.5 

3.9 

.-4 
Cl III 

C 
'H 0 s:: o ..... 0 ........ 
Q) as ... 
=' '"' =' .-4 .-4 
as +> 0 
> as CI) 

319 
319 
319 

25,619105 

25,619105 

25,619105 

25,619105 

25,619105 

176716 

Q> 
'H > s:: 
0· .... 0 ... ..... 
III 0 ... 
=' III 0 

...-I • ..., s:: 
as ,Q =' 
> 0 'M 

504 
540 
540 

552 

552 
I 

575 

570.6 

578.9 

540 

I 

I 

..... 
Co.) 
en 



Pivots Slacks 
Problem 2: ,..... 
2-dimensional knapsack. (/) 

0 I Q) I 
(/) r-41: r-4 I: 

'-" I as 0 I as 0 
I:.~ C .~ 

r-4 I 10. 0 +> r-4 ,10. 0 +> 
Q) as Q) .~ ;j rIl as Q) .~ ;j 

e +> I+>+> ..... +> +> I+> +> ..... 
·M 0 ~ as 0 ;j 0 ~ as 0 
r-o Eo< I as 10. II) U Eo< ,as 10. II) 

Programme 

BGD: at 1st solution 10 17 I 5 1 5 
, 

4 
at best, i.e. 2nd solution 51 62 I 50 7 13 

I 12 
I I 

at end of run 67 91 I 79 9 14 13 
I 

I I 
I , 

BHD 36 45 I 27 6 15 I 15 
I 

BHM 1805* 1907 ~889 392 413 1413 

BHP 330 378 :360 75 78 I 78 

BHQ 1801* 1795 f777 356 558 ' 558 

I I 
I 

I I 
I 

I I 
I J 

I I 

I I 

I 

*run terminated by time limit. 

II) 

I: 
I: 0 
Q) .~ 

Overflows 
Q) +> 
~ ;j 
+> r-4 
Q) -0 0 
,c I: II) , as 

..... I: Q) ..... 
I as 0 o 10. as 

I: ·M I: Q) I: 
..... t 10. 0 +> as bD 0 
as Q) ..-4 ;j +> Q) .~ 

+> I+>+> ..... Ul+>+> 
0 ~ as 0 .~ I: as 

Eo< I as 10. Ul -0 .~ ... 

0 
, 

0 0 
2 

t 
2 0 

I 
2 I 2 0 

I 
, 

0 I 0 741 

0 I 0 571.1 

0 I 0 741 

43 , 43 567 

I 

I 
I 

I 

I 

, 
I 

r-4 
o as 

I: 
'+-101: o .~ 0 

+> .~ 

Q) as +> 
;j 10. ;j 
..... r-4 
as +> 0 
> tIS II) 

18 
18 
18 

40 

40 

40 

40 

I 

Q) 
~ > I: 
o·~ 0 

+> .~ 
Q) 0 +> 

~ ·~gl as,c;j 
> 0 '+-I 

35673 
41278 
41278 

41278 

41447 

41278 

41452 

9 

I 

t-' 
W 
...;J 



Pivots Slacks 
Problem 3: ,.... 
7-city travelling salesman III 

0 
Q) I I 
III .-4S:: .-4 s:: 
'-' I as 0 I '" 0 

s::.~ s:: .~ 

.-4 I ... 0 +> .-4 , ... 0 +> 
Q) as Q) .~ ;::l III as Q) • .-1 ;::l 

Ei +> I+>+> .-4 +> +> I+>+> .-4 .... 0 'H as 0 ;::l 0 'H as 0 

Programme Eo< Eo< I as ... III U E-< las ... III 

BGD: at 1st solution 246 170 I 129 9 23 ' 23 
at best, i. e. 3rd solution 666 461 I 420 17 79 I 79 
at end of run. 727 514 I 473 19 82 I 82 

I I 
I I 

BHD 552 418 I 379 22 59 I 59 
, 

BHM 570 420 , 381 24 58 I 58 
I 

BHP 507 401 : 362 18 52 I 52 
I 

BHQ 557 416 I 377 23 61 , 61 
I 

I , 
I I 

I I 
I 

I 
I I 
I I 

, , 
I I 

i I 

III 
s:: s:: 0 

Q) • .-1 

Overflows 
Q) +> 
~ ;::l 
+> .-4 
Q) '0 0 
.c s:: III 

I '" .-4 s:: Q) .-4 

I as 0 0...", s:: . .-1 s:: Q) s:: 
.-4 , ... 0 +> asbilO 
as CD 'M ;::l +> CD • .-1 
+> I+>+> .-4 Ill+>+> 
0 'H as 0 .~ s:: '" 

Eo< I as ... III '0 'M '"' 

0 I 0 0 
4 I 4 1 
4 I 4 1 

I 
I 

1 I 1 39.1 

1 I 1 39.1 

1 I 1 39.1 
I 

1 I 1 39.1 

I 

I 
I 

I 

, 
, 
I 

.-4 

o '" s:: 
'H 0 s:: 
o .~ 0 +> . .-1 
Q) '" +> ::I ... ;::l .... .-4 
as +> 0 
:> as III 

35 
35 
35 

35 

35 

35 

35 

Q) 
I 

'H :> s:: 
0'.-10 ' +> .~I 
Q) 0 +> 
;::l Q) 0 

.-4 • ..., s:: 
as .c ;::l 
:> 0 'H 

277 
267 
267 

267 

267 

267 

1
267 

I 

I-' 
W 
(Xl 



I III 
I:: 

I:: 0 
Q) ~ 

Pivots Slacks Overflows 
Q) .... 
~ ;j 

,.... .... ~ 

Problem 4: III Q) '0 0 
() .c I:: III 

7-city travelling salesman Q) I I I til 
III ~c ~ c ~ c Q) ~ 

'-J I til 0 I til 0 I 1\1 0 () s.. 1\1 
C::'r"i I:: .~ c:: .r"i C Q) C 

~ Is..O .... ~ Is.. 0 .... ~ Is..O .... as bIl 0 
Q) as Q) .~ ;j III as Q) .~ ;j as Q) .~ ;j .... Q) ~ 

Ii .... I ........ ~ .... .... , ........ ~ .... , ........ ~ Ill ........ 

~ 0 'H as 0 ;j 0 ..... as 0 0 1M as 0 • ..-l C as 
E-< Eo< I as s.. III U Eo< ,as s.. III E-< I «I s.. III '0 .~ s.. 

Programme 

I I I 
BGD: at 1st solution 68 54 1 16 2 3 

I 
2 0 0 0 

at best, i.e. 1st solution 68 16 2 3 2 
I 

54 I , 0 I 0 0 
at end of run. 217 175 I 137 6 13 

I 
12 0 I 0 0 

I I I 
I 

I I 

BHD 203 138 I 100 10 16 I 15 0 
, 

0 13.4 
I 

BHM 247 152 : 114 14 18 I 17 0 I 0 13.4 

BHN 207 139 : 101 10 15 I 14 0 
, 

0 13.4 

BHP 188 134 I 96 8 14 I 13 0 I 0 13.4 
I 

I 

BHQ 217 145 : 107 12 18 I 17 0 I 0 13.4 

BHE 250 157 : 119 16 15 I 14 0 I 0 13.4 
I 

BHF 339 183 : 145 27 22 I 21 0 I 0 13.4 
I 

BH6 * 111 I 83 14 27 I 27 0 I 0 1.4 

BH9 202 136 I 98 10 15 I 14 0 
t 

0 13.4 
---~ ------ -- I L ---

*at this point BH6 started looping with a period of 38 pivots (2cuts, 26 slacks) 

~ 
Q til 

C 
'H 0 C o .~ 0 

..... r"i 
Q) til .... 
;j H ;j 
~ ~ 
1\1 .... 0 
:> «I III 

14 
14 
14 

21 

21 

21 

21 

21 

21 

21 

343 

21 

Q) 
'H :> I:: 
o~o 

..... r"i 
Q) () .... 
;j Q) () 
~ . ...,1:: 
til .c =' 
:> 0 ..... 

267 
267 
267 

267 

1267 
I 

267 

267 

267 

267 

267 

255 

267 

1 

.... 
(..) 
to 



I Pivots Slacks 
Problem 5: ,..... 

II) 

6-city travelling salesman 0 
Q) I I 
II) .-4e:: .-4 e:: 

'-' I alO 
, aI 0 

e::.r-! c: .r-! 

.-4 I I-< 0 +> .-4 II-< 0 +> 
Q) III Q) .r-! =' CII aI Q) ·M =' 
Ei +> I+>+> .-4 +> +> ,+> +> .-4 
.r-! 0 '+-t III 0 =' 0 '+-t III 0 
E-< E-< I aI I-< CII U E-< ,aI M CII 

Progranune 

BGD: at 1st solution 38 50 I 16 3 2 
I 

1 
at best, i.e. 1st solution 38 50 I 16 3 2 I 1 

I I 
at end of run. 47 62 I 28 4 2 1 

I 
I , 
I 

BHD 40 62 I 25 3 3 I 1 
I 

BHM 45 63 I 26 4 3 I 1 
I i 

BHN 41 62 : 25 3 3 I 1 

BHP 44 I 63 I 26 4 3 I 1 
I 

BHQ 40 62 : 25 3 3 I 1 

BHE 41 62 I 25 3 3 I 1 

BHF 46 65 : 28 4 4 I 2 

BH6 34 50 I 16 3 3 I 1 

BH9 41 62 ~ 25 3 3 I 

I 
1 

II) 

e:: 
e:: 0 
Q) .r-! 

Overflows 
Q) +> 
~ =' +> .-4 
Q) "0 0 

,Q e:: II) 

I aI 
.-4 e:: Q) .-4 

I as 0 o I-< as 
e:: .r-! c: Q) C 

.-4 I I-< 0 +> III bIl 0 
1\1 Q) .1"1 :;l +> Q) ·M 
+> I+>+> .-4 CII+>+> 
0 '+-t as 0 .r-! c: as 

E-< , as I-< CII "0..-1 '"' 

0 I 0 0 
0 

, 
I 

0 0 
0 

I 
0 0 

I 

I 

0 I 0 7.2 

0 I 0 7.2 

0 I 0 7.2 

0 I 0 7.2 
I 

0 I 0 7.2 

0 I 0 7.2 
_I 

0 I 0 7.2 

0 I 0 7.2 

0 t 0 7.2 
I 

.-4 
Cl aI 

e:: 
'+-t 0 e:: o .r-! 0 

+> ·M 
Q) cd +> 
:;l I-< :;l 
.-4 .-4 
cd +> 0 
> 1\1 CII 

20 
20 
20 

30 

30 

30 

30 

30 

30 

30 

6 

30 

Q) 
'+-t > c: o .r-! 0 

+> ..-I 
Q) 0 +> 
:;l Q) 0 
.-4 .1"") C 
1\1 ,Q =' 
:> 0 'H 

63 
63 
63 

63 

I 63 
I 

63 

63 

63 

63 

63 

63 

63 

I 
I 

I-' 
Ill> 
o 



III 
I: 

I: 0 
Q) ..... 

Pivots Slacks Overflows 
Q) +> 
~ =' 

Problem 6: " 
+> ~ 

III Q) '0 0 ~ 

Covering theorem. 0 .c I: III ~ ~ 
Q) I I I '" I: 
III ~I: ~ I: ~ I: Q) ~ 'H 0 I: 

'-' I aso I as 0 I 1\1 0 o r.. as o ..... 0 
1:.,-4 I: . .-4 c:: • .-4 I: Q) I: +> . .-4 

~ I r.. 0 +> .-I I r.. 0 +' ~ , r.. 0 +> as bO 0 Q) as +' 

~ as Q) ..... =' III as Q) -.-4 =' as Q) ." =' +> Q) • .-4 ;::l M =' 
+' I+>+> .-I +> +> I+>+> .-I +> I+>+>~ 1Il+'+' ~ .-I 

'.-4 0 'H 1\1 0 =' 0 'H CIS 0 0 'H 1\1 0 .,-4 I: CIS 1\1 +> 0 
Eo< Eo< I ~ r.. III u Eo< I'" M III Eo< 11\1 M III 'O-.-4r.. > CIS III 

Programme 

BGD * 
I I I 

I I I 
I I I 

I I I , I I 
I 

BHD 78 494 I 467 55 227 I 209 0 I 0 2.9 11 
I 

BHM 80 513 I 486 56 227 I 209 0 I 0 2.9 11 
I 

BHN 148 894 I 867 121 421 I 403 0 I 0 2.9 11 
I l I 

BHP 81 514 I 487 57 222 I 204 0 I 0 2.9 11 
I 

BHQ 127 762 I 735 100 385 I 367 0 I 0 2.9 11 
I 

BHE I 228+ 1077 '1050 159 516 I 498 140 1140 0.9 11 
I I 

BHF 430+ 2090 '2063 370 907 I 889 214 1214 0.9 11 , , 
BH6 • 673 I 642 60 451 I 429 0 , 0 0.9 11 

BH9 87 532 I 505 62 247 ' 229 0 
, 

0 2.9 11 
----- ~ - - L_ --- _~~_ I I -~---

*as the objective function consisted entirely of ones BGD would have taken the same path as BHD 
+at this pOint integer overflow occurred and as D was equal to 1 no cut could be added 
.at this pOint BH6 started looping with a period of 18 pivots (2 cuts, 11 slacks) 

Q) 
'H > I: 
0· .... 0 

+>-.-4 
Q) 0 +> 
=' Q) 0 
.-I .~ I: 
'" .c =' > 0 'H 

25 

25 

25 

25 

25 

23 

23 

23 

25 

I 

...... 
~ 
...... 



III 
c: c: 0 

4l ·rl 

Pivots Slacks Overflows 4l +> 
~ :s 

Problem 7: 
,.... +>. .-t 

III 4l 't3 0 .-t 

A problem with large 0 ..a c: III o (\I 
(1) 

Q) I I 1 as c: 
III .-tC: .-t c: .-t c: Q) .-t '1-1 0 c: '1-1 > c: 

coefficients. '-' I aso I as 0 I as 0 o 1-0 as o ·rl 0 O'rl 0 
C:.rl c: ·rl c: ·rl c: (1) c: +> ·rl +> ..... 

.-t , 1-0 0 +> .-t ,1-0 0 +> .-t 1 1-0 0 +> as bIl 0 (1) as +> (1) () +> 
Q) as Q) ·rl :s III as (1) ·rl :s as (1) ..... :s +> (1) 'rl :s 1-0 :s :s 4l () 

e +> I+>+> .-t +> +> I+>+> .-t +> I+>+> .-t Ill+> ..... .-t .-t .-t . .., c:: 
..... 0 .... as 0 :s 0 .... as 0 0 .... as 0 ·rl c: as as +> 0 as..c:s 
Eo< Eo< I as 1-0 III U Eo< ,as 1-0 III Eo< I as 1-0 III 't3 ·rl 1-0 > as III > 0 .... 

ProgramJlle 

BOD: 
I 

2 
, I 364807 at 1st solution 1 7 I 4 2 I 

2 0 , 0 0 40 
at best, Le. 2nd solution 3 20 I 17 6 8 I 

7 0 
I 0 1 364807 38 

at end of run. 9 75 I 72 17 30 I 29 0 I 0 1 364807 38 

I I I 
I 

I I 

BHD 13 129 I 126* 30 47 
, 

47* 4 I 3 6.6 *442,136027 38 

BlIM 13 112 ' 109* 40 24 I 24* 5 I 4* 6.6* *442,136027 38 
I i 

BHN 52 381 : 378* ... 166 108 1 108* 3 I 2* 6.6* *442,136027 38 
I 

BHP 38 318 : 315* 113 112 1112* 3 I 2* 6.6* *442,136027 38 

BHQ 67 539 :536* 201 224 1224* 17 I 17* 6.6* *442,136027 38 

BHE 46 362 :359* 164 110 ' 110* 18 I 17* 
i 

6.6* *442,136027 38 

BHF 152 1086 ~083* 451 379 1 379* 37 I 36* 6.6* *442,136027 38 

BH6 53 I 50* 21 13 I 13* 13 I 12* 3.6* *442,136027 35 + 

BH9 20. 72 I 69* 44 16 I 16* 54 I 
53* 2.6* *442,136027 34.0 

~ ------- ____ t ___ -----' ___ _ I j 

*the rational solution was never determined. These figures relate to the point at which the first cut 
was added. 
+at this point BH6 started looping with a period of 11 pivots (4 cuts, 2 slacks) . 
• at this point integer overflow occurred when pivoting on a cut. 

I-' 
~ 
~ 

-'~- . ...:"-~ 



Pivots Slacks 
Problem 8: ,..... 

Ul 
A 2 x 2 problem. () 

Q) I I 
Ul .... e:: .... c:: 
'-' I t\! 0 I t\! 0 

c::." e:: ." .... I r.. 0 +> .... I r.. 0 +> 

~ t\! Q) ." ;j UI tI! Q)'" ;j 
+> I+>+> .... +> +> I+> +> .... 

." 0 'H t\! 0 ;j 0 'H t\! 0 
E-t E-< I t\! r.. Ul u E-< It\! r.. (I) 

Programme 

BGD: at 1st solution 0 4 I 2 1 1 I 1 
at best, i.e. 1st solution 0 4 I 2 1 1 I 1 
at end of run. 0 4 

I 
2 1 1 I 1 

I I , I 

I 

BHD 1 6 I 4 2 2 I 2 
I 

BHM 2 5 I 3 2 1 I 1 
I I 

BHN 1 3 I 1 1 0 I 0 
I 

BHP 1 3 I 1 1 0 I 0 
I 

BHQ 1 4 , 2 1 1 I 1 
I 

BHE 1 8 I 6 3 3 I 3 , 

BHF 0 4 , 2 1 1 I 1 

BH6 0 4 I 2 1 0 I 0 

BH9 1 6 I 4 2 2 
, 

2 
I 

Overflows 

I .... c:: 
I t\! 0 

e:: ." .... I r.. 0 +> 
t\! Q) ." ;j 
+> I+>+> .... 
0 'H t\! 0 

E-< It\! r.. (I) 

0 I 0 
0 I 0 
0 

I 
0 

I 
I 

I 

0 I 0 

0 I 0 

0 I 0 

0 I 0 

0 I 0 

0 I 0 , 
0 I 0 

0 , 0 

0 I 0 
~ 

Ul 
e:: 

c:: 0 
Q) ." 
Q) +> 
~ ;j 

+> .... 
Q) '0 0 

..0 e:: Ul 
t\! 

Q) .... 
() r.. t\! c:: Q) c:: 
t\! bIl 0 
+> Q) ." 
Ul +> +> 
." c:: t\! 
'0 ." r.. 

0.5 
0.5 
0.5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

.... 
o t\! c:: 
'H 0 e:: 
o ." 0 

+> ." 
Q) t\! +> 
;j r.. ;j .... .... 
t\! +> 0 
> t\! (I) 

11 
11 
11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

Q) 
'H > c:: 
0·" 0 

+> ." 
Q) () +> 
;j Q) () 

.... '1"") c:: 
t\! ..0 ;j 
> 0 'H 

455 
455 
455 

455 

455 

455 

455 

455 

455 

455 

455 

455 

j 

I-' 
~ 
CAl 



Problem 9: Pivots 
A 2 x 2 problem. ,.... 

II) 

0 
Q) I 
II) ..... c:: 
'-' I tIS 0 

C::'.-I ..... Is..O.j.> 
Q) as Q) -.-I :s II) 

e .j.> ,.j.> .j.> ..... .j.> 
• .-1 0 'H tIS 0 :s 

Progranune E-< E-< I as s.. II) U 

BGD: at 1st solution 1 7 I 4 2 
at best, i.e. 1st solution 1 7 I 4 2 
at end of run. 1 7 I 4 2 

I 
I 

BHD 1 12 I 8 4 

BHM 1 11 I 7 4 
I 

BHN 0 8 I 4 3 
I 

BHP 2 8 I 4 3 

BHQ 0 11 
I 7 3 
I 

I 

BHE I 2 18 
I 

14 7 

BHF I 2 11 
I 

7 3 
I 

BH6 1 11 
I 7 3 

BH9 1 14 
I 

10 4 

Slacks Overflows 

I I ..... c:: ..... c:: 
I tIS 0 I tIS 0 c: . .-1 c:: '.-1 

..... Is.. O.j.> ..... Is..O.j.> 
as Q) .,-4 ;::I tIS Q) .,-4 ;::I 

.j.> ,.j.> .j.> ..... .j.> ,.j.> .j.> r-l 

0 'H tIS 0 0 'H tIS 0 
E-< I til s.. VI E-< I as s.. I/) 

2 I 1 0 I 0 
2 I 1 0 I 0 
2 I 1 0 I 0 

I I 
I I 

I 

5 
, 

3 0 I 0 
I 

4 I 2 0 I 0 

2 I 0 0 I 0 
I 

2 
, 

0 0 I 0 
I 

5 I 3 0 I 0 

7 I 5 0 I 0 
I 

5 
I 

I 
3 0 I 0 

5 I 
3 0 I 0 

6 
I 

I 4 
I 

0 1 0 

II) 

c:: 
c:: 0 
Q) • .-1 
Q) .j.> 
~ :s 

.j.> ..... 
Q) 't:l 0 

,Q c:: II) 
tIS 

Q) ..... 
o s.. tIS 
c:: Q) c:: 
tIS bO 0 

.j.> Q) • .-1 
1I).j.>.j.> 
'r-! c: tIS 
't:l ',-4 s.. 

0.5 
0.5 
0.5 

15 

15 

15 

15 

15 

15 

15 

15 

15 

..... 
o tIS 

c:: 
'H 0 c:: o . .-1 0 

.j.> .,-4 

Q) tIS .j.> 
;::I s.. ;::I 
r-l ..... 
tIS .j.> 0 
> til I/) 

11 
11 
11 

11 

I 11 I 

11 

11 

11 

11 

11 

11 
I 

11 

Q) 
'H > c:: 
0·.-1 0 

.j.> ..-4 
Q) ().j.> 
:s Q) I:) ...... .., c:: 
tIS ,Q ;::I 
> 0 'H 

445 
445 
445 

445 

445 

445 

445 

445 

445 

445 

445 I 

445 

I-' 
~ 
~ 



I Pivots Slacks 
Problem 10.1: ,..... 

(I) 

A product mix problem. 0 
Q} I I 
III ~~ ~ ~ ...., , til 0 , CI! 0 

t:: • .-4 c: .r-! 

~ Is-.O .... ~ Is-. 0 .... 
Q) CI! Q} .0-4 =' III CI! Q} • .-1 =' 
S .... I ........ ~ .... .... , ........ ~ 
• .-4 0 '+-I til 0 =' 0 '+-I CI! 0 
Eo< Eo< I CI! '" III U Eo< ,CI! s-. UJ 

Programme 

BGD: at 1st solution 2 9 
I 5 2 5 

, 
2 

at best, i.e. 8th solution 25 132 '128 29 51 1 48 
I 1 at end of run. 32 178 1174 39 69 66 

I 
I I 

BHD 7 59 1 42 8 39 I 26 
I 

BHM 9 73 I 56 13 43 1 30 
I 

BHN 5 46 I 29 7 28 
, 

15 
1 

BHP 7 58 I 41 11 34 , 21 

BHQ 9 73 I 56 13 46 I 33 
I 

BHE 9 76 I 59 13 51 I 38 

BHF 9 74 I 57 12 48 I 35 
I 

BH6 15 125 1108 17 88 I 75 

BH9 9 84 I 67 12 54 I 41 
I I 

en 
~ 

t:: 0 
Q} • .-4 

Overflows 
Q} .... 
~ =' .... ~ 
Q} '0 0 
.c ~ en 

I CI! 
~ ~ Q} ~ 

1 til 0 o s-. til 
~ • .-4 t:: Q) ~ 

~ Is-. 0 .... til bO 0 
CI! Q) .0-4 =' .... Q) • .-4 
.... , ........ ~ Ill ........ 
0 'H til 0 • .-4 t:: til 

Eo< I as '" UJ '0 . .-1 s-. 

0 I 0 0.5 
1 I 1 2.5 
1 

I 

1 1 2.5 

I 

I 

0 I 0 76.5 

0 I 0 76.5 

0 I 0 76.5 

0 I 0 76.5 
, 

0 I 0 76.5 

0 I 0 76.5 

0 I 0 76.5 

0 I 0 76.5 

0 I 0 76.5 
---- 1 

~ 

o CI! 
~ 

'+-lot:: o . .-4 0 
..... .-4 

Q} til .... 
=' ~ =' 
~ ~ 
til .... 0 
> CI! UJ 

. 
2 
2 
2 

17 

17 

17 

17 

17 

17 

17 

17 

17 

Q} 
'+-I > ~ 
0·.-4 0 

..... .-4 
Q} 0 .... 
=' Q) 0 
~.,.., ~ 

CI! .c =' 
> 0 '+-I 

5700 
8100 
8100 

8100 

18100 

8100 

8100 

8100 

8100 

8100 

18100 

8100 

! 
I 

I-' 
~ 
c.n 



I 

Pivots 
Problem 10.2: ,..... 

I/) 

Problem 10.1 with cost C,) 
Q) I 
I/) .-Il:: function sOaled. ....... I alO 

l::'1"l 
.-I I ... 0 +-> 

Q) aI Q) .I"l ::l I/) 

S +-> I+->+-> .-I +-> 
'I"l 0 '+-i aI 0 ::s 

PrograDDDe e-. e-. I a! '"' I/) u 

11 I 5 BGD: at 1st solution 2 2 
at best, i.e. 8th solution 14 120 : 114 21 
at end of run. 16 137 I 131 23 

I 
1 

BHD 5 44 I 32 7 

BHM 5 43 t 31 7 
I 

BHN 4 37 I 25 6 
I 

BHP 6 48 I 36 10 
I 

BHQ 7 61 I 49 12 
I 

BHE 5 40 I 28 9 
I I 
! 

BHF 8 60 I 48 12 
I 

BH6 7 56 I 44 8 

BH9 7 55 I 43 11 
i 

Slacks Overflows 

I I 
.-I l:: .-I l:: 

I aI 0 I aI 0 
C 'I"l l:: 'I"l 

.-I t ... 0 +-> .-I I ... 0 +-> 
aI Q) 'I"l ::s a! Q) .I"l ::s 

+-> I+->+-> .-I +-> I+->+-> .-I 
0 'H aI 0 0 '+-i a! 0 
e-. ta! ... I/) e-. I a! '"' I/) 

I t 7 
I 

2 0 0 
57 52 0 

, 
0 

I I 
67 

I 
62 0 I 0 

I I 

26 I 18 0 I 0 

25 I 17 0 I 0 

21 I 13 0 I 0 
1 I 

26 , 18 0 I 0 
! 

36 I 28 0 I 0 

23 I 15 0 I 0 

33 I 25 0 I 0 
I 

36 I 28 0 I 0 

31 I 23 0 I 0 I I 

(I) 

l:: 
l:: 0 
Q) .I"l 
Q) +-> 
~ ::l 

+-> .-I 
Q) 'tj 0 
.c l:: I/) 

aI 
Q) .-I 
C,) ... aI 
l:: Q) ~ 
aI bO 0 

+-> Q) .I"l 
I/) +-> +-> 
'I"l l:: a! 
'tj ." ... 

0.5 
2.5 
2.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

1.5 

.-I o a! 
l:: 

'+-i 0 l:: 
o 'I"l 0 

+-> .I"l 
Q) a! +-> ::s ... ::s 
.-I .-I 
aI +-> 0 
> aI I/) 

2 
2 
2 

17 

17 

17 

17 

17 

17 

17 

17 

17 

Q) 
'+-i > l:: o 'I"l 0 

+->oI"l 
Q) C) +-> ::s Q) C) 
.-I .~ ~ 
a! .c ::s 
> 0 '+-i 

114 
162 
162 

162 

162 

162 

162 

162 

162 

162 

162 

162 

i 

, 

I 

I 

I-' 
w::. 
0) 



Pivots 
Problem 10.3: ,... 
Problem 10.1 with constraint CIl 

t.) 

scaled. Q) I 
CIl ~s:: 
'-' I CIS 0 

t:." 
~ Is..O +-> 

(\) as Q) ." ::l CIl 
e +-> I+->+'~ +-> 
." 0 <t-t (1\ 0 ;:l 

Programme Eo< Eo< I as s.. CIl U 

BGD: at 1st solution 2 9 
I 

5 2 
I 

at best, Le. 8th solution 18 98 94 28 
I 

at end of run. 23 129 I 125 37 

I 

BHD 3 16 I 10 6 

BHM 5 35 I 29 15 
I 

BHN 2 10 I 4 3 
I 

BHP 2 13 I 7 3 
I 

BHQ 4 34 I 28 11 
I 

BHE 5 32 I 26 10 
I I 

BHF 3 18 I 12 6 
I 

BH6 4 25 I 18 7 

BH9 1 18 ! 12 6 
I 

Slacks Overflows 

I I 
~ s:: ~ s:: 

I CIS 0 I CIS 0 
s:: ." t: ." 

~ Is..O +-> ~ Is..O +-> 
as Q) ." ::l as Q) ." ::l 

+-> I+->+-> ~ +-> I+'+'~ 
0 <t-t as 0 0 'H (1\ 0 

Eo< I CIS s.. CIl Eo< 1(1\ s.. CIl 

5 
, 

2 t 0 0 
25 I 22 0 I 0 

I I 
32 29 0 I 0 

I 
I I 

4 I 2 0 I 0 
I 

7 I 5 0 I 0 

2 I 0 0 I 0 
I I 

4 , 2 0 I 0 

13 I 11 0 I 0 

12 I 10 0 I 0 

6 I 4 0 I 0 
I 

8 I 5 0 I 0 

6 I 4 o t 0 
I I 

CIl 
s:: 

t: 0 
Q) ." Q) +-> 
~ ;:l 

+-> ~ 
Q) 't:l 0 
.c s:: CIl 

CIS 
Q) ~ 
t.) s.. CIS s:: Q) s:: 
CIS bO 0 

+-> Q) ." 
CIl+->+-> 
." s:: CIS 
't:l ." s.. 

0.5 
2.5 
2.5 

76.5 

76.5 

76.5 

76.5 

76.5 

76.5 

76.5 

76.5 

76°.5 

~ o CIS s:: 
'H 0 s:: 
o ." 0 

+-> ." 
Q) CIS +-> 
::l s.. ;:l 
~ ~ 
(1\ +-> 0 
> CIS CIl 

2 
2 
2 

17 

17 

17 

17 

17 

17 

17 

17 

17 

Q) 
<t-t > s:: 
0·" 0 

+-> ." 
Q) t.) +-> 
;:l Q) t.) 
~ .,.., t: 
as .c ;:l 
> 0 <t-t 

5700 
8100 
8100 

8100 

8100 

8100 

8100 

8100 

8100 

8100 

8100 

8100 

I 

~ 

""' ...J 



Pivots Slacks 
Problem 10.4: 

,.... 
III 

Problem 10.1 with all rows C) 
I Q) I 

sealed. III ~c: ~ r:: 
'-' I aso , as 0 

c:." c: ." 
~ I I-< 0 +> ~ II-< 0 .. 

Q) as Q) ..... ;j III as Q) ." ;j 
e .. , .... ~ .. .. , .... ~ 
." 0 ..... as 0 ;j 0 'H as 0 

Programme E-< E-< I as '"' III U E-< las ,.. III 

I I 
BGD: at 1st solution 1 10 , 5 2 6 , 2 

at best, i.e. 8th solution 13 82 I 77 21 23 , 19 
at end of run. 14 92 , 87 23 24 , 20 

I , 
I 

BHD 2 21 
, 

16 7 5 
, 

4 

BHM 3 20 I 15 7 4 
, 

3 
I _1 

BHN 1 9 I 
I 

4 3 1 
, 

0 

BHP 2 11 I 6 3 2 I 1 
I 

BHQ 5 33 I 28 11 12 I 11 
I 

BHE 4 25 
I 

I 
20 10 7 I 6 

I 
BHF 2 17 I 12 6 5 4 

I 

BH6 3 27 I 18 7 10 I 5 

BH9 
! 5 

I 
4 3 17 12 6 I ____ _ ---L------- ______ 

III 
s:: s:: 0 

Q) ." 
Overflows 

Q) .. 
~ ;j .. ~ 
Q) "0 0 
.0 s:: III 

I as 
~ r:: Q) ~ , til 0 c) I-< as 
s:: ." s:: Q) s:: 

~ I I-< 0 .. as bO 0 
as Q) ." ;j .. Q) ." .. , .... ~ Ill .... 
0 OM as 0 ." c: as 

E-< I as '"' II) "0." I-< 

I 0 0 0.5 
I 

0 0 2.5 
I 

0 , 0 2.5 

I 

0 I 0 1.5 

0 
, 

0 1.5 

0 I 0 1.5 
I 

0 I 0 1.5 

0 I 0 1.5 

o I 0 1.5 
I 

0 
, 

0 1.5 

0 I 0 1.5 

I 1.5 0 I 0 

~ o til s:: 
..... 0 c: 
o ." 0 ... " Q)as .. 
;j I-< ;j 
~ .-! 
as .. 0 
:> as II) 

2 
2 
2 

17 

17 

17 

17 

17 

17 

17 

17 

17 

Q) 
..... > c: 
o ." 0 ....... 
Q) C)" 
;j Q) c) 
.-! .,.., r:: 
as .0 ;j 
:> 0 ..... 

114 
162 
162 

162 

162 

162 

162 

162 

162 

162 

162 

162 

I 

.... 
~ 
(Xl 



Pivots Slacks 
,... 
III 

Problem A4: t) 
Q) I I 
III r-tC r-t C 

'"" I tIS 0 I tIS 0 
C·.-4 r:: .... 

r-t , M 0 +' .-t 1M 0 +' 
Q) CIS Q) • .-4 ::s III CIS Q) • .-4 ::s 
Ei +' I+'+' r-t +' +' I+'+' .-t 

'.-4 0 'H ell 0 ::s 0 'H CIS 0 
E-< E-< I tIS Mill U E-< ,tIS M III 

Programme 

BGD: at 1st solution 15 32 I 13 3 3 
I 

2 
I 

at best, i.e. 1st solution 15 32 I '13 3 3 2 
I , 

at end of run 21 48 I 29 4 4 3 
I 

I I 

BHD 33 83 I 54 5 11 I 8 

BRM 34 87 I 58 6 7 I 4 
I I 

BHP 64 U5 I 86 18 13 I 10 
I 

BHQ 109 192 : 163 33 39 I 36 

BHE 40 84 I 55 10 9 I 6 
I 

BHF 28 64 I 35 6 11 I 8 
I 

Problem scaled by 3 (using 22 54 I 28 
I 

3 10 I 6 
I 

BHD) 
I I 

Story and Wagner I 261 I , 
-- I 

- - I 

- -,--_ .. -.-.~.- .-~-- •... -- •... -.-~- .. 

III 
C 

C 0 
Q) .... 

Overflows 
Q) +' 
~ ::s 
+' r-t 
Q) '0 0 
.0 C III 

I tIS 
.-t C Q) .-t 

I ell 0 t) M ell r:: .... C Q) C 
r-t I M 0 +' ell bl! 0 
CIS Q) .... ::s +' Q) .... 
+' I+'+' .... Ill+'+> 
0 'H ell 0 • .-4 C ell 

E-< , ell M III '0 .... M 

0 
I 

0 0 
0 

I 
0 , 0 

0 I 0 0 

I 

0 I 0 1.9 

0 I 0 1.9 

0 I 0 1.9 
I 

0 I 0 1.9 

0 I 0 1.9 

0 I 0 1.9 

0 I 0 1 

I 

t 
I 

r-t 
Q tIS 

C 
'H 0 C o . .-4 0 

+' .... 
Q) CIS +' 
::s M ::s 
.-t .... 

CIS +' 0 
:> tIS III 

27 
27 
27 

27 

27 

27 

27 

27 

27 

9 

- -

Q) 
'H > c:: 
0· ... 0 

+' ..... 
Q) C) +' ::s Q) t) 
.... '1"") c:: 
CIS .0 ::s 
> 0 'H 

22 
22 
22 

22 

22 
I 

22 

22 

22 

22 

23 

; 

I-' 
~ 
CD 



Pivots Problem B4: ,... 
III 
C) 
Q) I 
III ....tS:: 
'-' - I aso 

S::'I"I 
....t I '"' 0 .... 

Q) CIS Q) .1"1 =' 
EI .... I ........ ....t 

.1"1 0 '+-4 as 0 

PrograDDDe E-< E-< I as '"' III 

BGD: at 1st solution 12 25 I 5 
at best, i.e. 1st solution 12 25 I 5 
at end of run. 12 25 f 5 

I 
I 

BHD 11 25 I 5 

BHM 13 29 I 9 
I 

BHP 8 23 I 3 
I 

BHQ 9 24 I 4 
I 

BHE 14 30 I 10 
I 

BHF 9 24 I 4 
I 

bBB~lem sealed by 3 (using I 6 20 I 0 
I 

Story and Wagner 31 I 

I 
I 

III 
s:: 

s:: 0 
Q) .1"1 

Slacks Overflows 
Q) .... 
~ =' .... ....t 
Q) '0 0 ....t , ..0 s:: UJ Q as 

I I as s:: 
....t s:: ....t s:: CD ....t '+-4 0 s:: 

I CIS 0 I CIS 0 C) '"' CIS o '1"1 0 
s:: '1"1 s:: ..... s:: Q) s:: ..... 1"1 

....t I'"' 0 .... ....t 
''"' 0 .... 

as bO 0 Q) as .... 
III CIS Q) '1"1 :l CIS Q) '1"1 :l .... Q) '1"1 =' '"' =' .... +> I+> +> ....t .... , ........ ....t (I) ........ ....t ....t 

=' 0 '+-4 CIS 0 0 '+-4 as 0 .~ s:: as as .... 0 
() E-< las '"' III E-< I as '"' (I) '0 ..... '"' > as (I) 

2 3 I 2 0 I 0 0 80 
2 3 I 2 0 

, 
0 0 80 

2 3 I 2 0 I 0 0 80 , I 
I I 

2 3 I 2 0 I 0 0 80 

2 3 I 2 0 I 0 0 80 

1 2 I 1 0 I 0 0 80 
I I 

1 3 I 2 0 I 0 0 80 

3 2 I 1 0 I 0 0 80 

1 3 I 2 0 f 0 0 80 

0 1 I 0 0 I 0 0 1 
I . 
I I 

I t 
I I 

....,." . .---.... -----.-~-.. ---~----.--"---- ,......... ... ~.-.-- .. --~--.-.. "-."~- . -.. - _.-._. ~- .. 

Q) 
<t-I > c: 
0·1"1 0 

.... '1"1 
Q) C) .... 
=' Q) C) 
....t -~ c: 
CIS..c:l 
> 0'+-4 

10 
10 
10 

10 

10 

10 

10 

10 

10 

12 

..... 
C1I 
o 

--_ ... -.----_._-----,--- _._. _ ... -_._.- ...... -



Pivots Slacks 
. Problem C4: ,.... 

Ul 
C) 
4) I I 
IF) .-4C .-4 C 

"" I CdO I Cd 0 
C'r-! C .r-! 

.-4 Is-.O ..... .-4 Is-. 0 ..... 
Q) CIS Q) .r-! :s IF) lIS Q) ...... :s 
a ~ 1~~.-4 ..... ~ I~ ..... .-4 .... 0 1M til 0 :s 0 1M Cd 0 

E-< E-< I Cd s-. Ul U E-< ICd s-. IF) 
Programme 

I I 
BGD: at 1st solution 25 57 I 33 4 5 I 5 
at best, i.e. 1st solution 25 57 I 33 4 5 I 5 
at end of run. 27 64 I 40 4 5 

I 
5 

I I 
I , 

BHD 30 70 I 45 6 6 I 5 
I 

BlIM 39 88 I 63 7 8 I 7 , 
~ 

BHP 39 88 I 
I 

63 7 8 I 7 

BHQ 42 88 I 63 10 10 
, 

9 
I 

I 

BHE 37 78 I 
I 

53 9 5 I 4 

BHF 57 117 I 92 14 18 I 17 
I 

Problem sc,a1ed by 3 (using 
27 I 

I 
BHD) 11 

I 
4 2 1 

J 
1 

Story and Wagner 59 ' I 

I , 
I I 

IF) 

~ 
~ 0 
4) .... 

Overflows 
4) ~ 

~ :s 
~ .-4 
Q) '0 0 

.D. ~ III 
I Cd 

.-4 ~ 4) .-4 

I Cd 0 C) s-. Cd c ...... C Q) C 
.-4 I J.t 0 ~ Cd bO 0 
Cd Q) 'r-! :s ..... Q) .... 

..... 1~~.-4 IF) ~ ~ 

0 'H as 0 .r-! C tIS 
E-< I as s-. IF) 'O'r-! J.t 

I 
0 

f 
0 0 

0 
I 

0 0 
0 I 0 0 

I 
, 

0 I 0 1.4 

0 I 0 1.4 

0 I 0 1.4 
I 

0 I 0 1.4 

0 t 0 1.4 

0 I 0 1.4 
I 

0 I 
0 0 

I 

I 
I 

.-4 
Q lIS 

C 
1M 0 C o .r-! 0 

...... r-! 
Q) lIS ..... 
:s s-. :s 
.-4 .-4 
til ..... 0 > til IF) 

9 
9 
9 

25 

25 

25 

25 

25 

25 

2 

Q) 
1M > C 
0· ... 0 

~'r-! 
Q) 0 ..... :s Q) C) 
.-4 '1"") C 
til .D. :s 
> OIM 

13 
13 
13 

13 

13 

13 

13 

13 

13 

13 

I 

...... 
(JI 
...... 



Pivots 
Problem D4: ,.... 

III 
C) 
Q) I 
III ....tC 

'-" I as 0 
s:::.re 

r-I Is..O ..., 
Q) as Q) ·re ::s III 
S ..., I ..., ...,....t ..., 
·re 0 ~ III 0 ::s 
E-< E-< I III s.. III U Programme 

BGD: at 1st solution 6 21 I 0 0 

at best, i.e. 2nd solution 9 24 I 3 1 
at end of run. 10 25 I 4 1 

I 
I 

BHD 6 22 I 0 0 

BHM 6 22 I 0 0 
I 

BHP 7 22 I 0 0 
I 

BHQ 7 22 I 0 0 

BHE 7 22 I 0 0 
I 

I 

BHF I 6 22 I 0 0 

prOO.lem scaleany J-\u::>.J.Il~ 
BHD) 8 25 I 0 0 

f 
I 

Story and Wagner I 37 I 

I 

Slacks Overflows 

I I 
....t ~ ....t ~ 

I as 0 I as 0 
C ·re S:::orI 

....t Is..O ..., ....t Is..O ..., 
as Q) ·re ::s as Q) ·re ::s ..., I"" ..., ....t ..., I ..., ..., ....t 
0 ~ III 0 0 ~ III 0 

E-< ,III s.. III E-< fills.. III 

0 I 0 0 I 0 

0 I 0 0 
, 

0 
0 I 0 0 I 0 

I I 
I I 

I I 

0 , 0 0 I 0 

I 

0 I 0 0 I 0 , 
0 I 0 0 I 0 

0 I 0 0 , 0 

0 I 0 0 I 0 
I 

0 I 0 0 I 0 

0 I 0 0 I 0 
L 

I I 

f I 
I I 

III 
~ 

!=: 0 
Q) ·re 
Q) ..., 
~ ;:l ..., r-I 
Q) '0 0 
.c ~ III 

as 
Q) r-I 
C) s.. III 
C Q) c:: 
as bO 0 

..., Q) ·re 
Ill"""" ·re C III 
'0 .,-t s.. 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

....t 
o as 

s::: 
~ 0 C 
o ·re 0 

..., ·re 
Q) as ..., 
::s s.. ::s 
....t ....t as ..., 0 
:> as III 

1 
1 
1 

1 

1 

1 

1 

1 

1 

1 

Q) 
~ :> c 
o ·re 0 

...,·re 
Q) C)"" ::s Q) C) 

....t .1"') C 
III .c ::s 
:> 0 ~ 

28 
26 
26 

26 

26 

26 

26 

26 

26 

28 

~ 
U1 
~ 



Pivots Slacks 
Problem E4: ,.... 

III 
0 , Q) I 
III .-tC .-t ~ 
'-' I ttto I ttt 0 

C;:.r-i c:: .r-i 
.-t 1 .. 0 +> .-t , .. 0 +> 

I '" Q) .... =' til '" Q) .r-i =' 
+> I+>+> .-t +> +> I+>+> .-t 

or-i 0 'H '" 0 ::s 0 'H ttt 0 
E-< E-< I ttt '"' III U E-< I'" .. III PrograJlDDe 

BGD: at 1st solution 45 76 I 51 10 10 I 6 
at best, i.e. 2nd solution 120 209 I 184 27 16 , 12 
at end of run. 154 292 1 267 32 18 , 14 , , , I 

I 

BHD 139 306 I 277 27 39 I 35 

BHM 139 300 I 271 29 31 , 27 
I t 

BHP 281 I 252 30 34 I 30 
1 

BHQ 226 447 I 418 50 74 , 70 

BHE 206 402 I 373 49 54 I 50 
I 

BHF 254 491 I 462 59 87 I 83 
I 

Problem sCaled by 3 (using 
1 I 

BHD) 39 75 I 50 9 9 I 9 

Story and Wagner 261 ' 
I 

, I 

---- - _ .. - J _____ -- ...... --- ~-

til 
~ 

~ 0 Q) .r-i 
Overflows 

Q) +> 
~ =' +> .-t 
Q) "t:l 0 
.0 ~·tIl 

I ttt 
.-t C Q) .-t , 
'" 0 

0..", 
~ .r-i C Q) ~ 

.-t , M 0 +> '" bIl 0 

'" Q) .r-i =' +> Q) .r-i 
+> I+>+> .-t Ill+>+> 
0 'M '" 0 .r-i ~ '" 

E-< , '" '"' til "t:l.r-i '"' 

0 I 0 0 
0 

, 
0 0 

0 1 0 0 
I 
I 

0 I 0 4.4 

0 I 0 4.4 

0 I 0 4.4 
I 

0 I 0 4.4 

0 I 0 4.4 

0 I 0 4.4 
I 

I 
0 0 1.4 

I 

I 
I 

.-t 
o ttt 

~ 
'H 0 ~ 
o .r-i 0 +> .r-i 
Q)"'+> 
=' .. =' 
.-t .-t 

'" +> 0 
> '" III 

19 
19 
19 

317 

317 

317 

317 

317 

317 

88 

-

Q) 
'H > ~ o .r-i 0 

+>.r-i 
Q) 0 +> 
=' Q) 0 
.-t ." ~ ",.o::s 
> 0 'H 

23 
19 
19 

19 

19 

19 

19 

19 

19 

19 

I 
i 

! 

..... 
(]I 

w 



Pivots Slacks 
Problem F4 ,... 

III 
C) 
Q) I 

, 
ftl .-4S:: .-4 s:: 

I ...... I CIS 0 , CIS 0 
I S::.r-! s:: ..... 

.-4 I ~ 0 +> .-4 I ~ 0 +> 
Q) aI Q) ..... ::I III aI Q) .r-! ::I 
EI +> I+>+> .... +> +> I+>+' .-4 
.r-! 0 'H aI 0 ;j 0 'H aI 0 
Eo< Eo< I «I ~ III U Eo< ,til ~ III 

PrograllDDe 

BGD: at 1st solution 8 27 I 0 0 0 
, 

0 
at best, i.e. 3rd solution 56 90 I 63 14 8 I 8 

I I at end of run. 57 94 I 67 14 8 8 
I 

I I 

I 

BHD 61 139 I 106 12 17 I 15 
I 

BHM 69 156 : 123 14 14 I 12 

BHP 128 ' 95 11 10 I 8 
I 

BHQ 72 140 : 107 20 22 ! 20 

BHE 47 101 : 68 10 14 I 12 

BHF 63 122 : 89 16 20 I 18 

Problem sGaled by 3 (using 
29 62 : 35 7 4 I 3 

RHn) I 

Story and Wagner 62 I I 

I I 

I _. _ ~ __ ----.J ____ 

ftl 
I::: 

I::: 0 
Q) .r-! 

Overflows 
Q) +> 
il ;j 
+> .-4 

Q) " 0 .c s:: III 
I CIS 

.-4 s:: Q) .-4 

I «I 0 t) ~ «I s:: .r-! s:: Q) s:: 
.-4 I ~ 0 +> «I bIl 0 
til Q) .r-! ::I +' Q) .r-! 

+> I+>+> .... 1Il+>+> 
0 'H «I 0 .r-! s:: «I 

Eo< I «I ~ III ".r-! ~ 

0 I 0 0 
0 

, 
0 0 

0 
I 

I 0 0 

I 

0 I 0 5.2 

0 I 0 5.2 

0 I 0 5.2 
I 

0 I 0 5.2 

0 I 0 5.2 

0 I 0 5.2 
I 

0 I 0 2.7 

I 

, 
I 

.-4 
(:) CIS s:: 
'H 0 s:: 
o .r-! 0 

+> ..... 
Q) til +> 
::I ~ ::I 
.-4 .... 
til +> 0 
:> «I III 

1 
1 
1 

203 

203 

203 

203 

203 

203 

30 

Q) 
'H > s:: o .r-! 0 

+> ..... 
Q) t) +> 
::I Q) C) 
..... 1'") s:: 
«I .c ;j 
:> 0 'H 

35 
30 
30 

30 

130 

30 

30 

30 

30 

31 

I 

..... 
(}l 

"'" 



Pivots Slacks 
Problem A5 ,... 

Ul 
0 I Q) I 
III .-4t:: .-4 t:: 
'-' I ~o 

, ~ 0 
c·" t:: .r-4 

.-4 I 1-0 0 +> .-4 11-0 0 +> 
Q) ~ Q) .r-4 :l Ul ~ Q) .r-4 :l 
S +> I+>+> .-4 +> +> I+>+> .-4 

.r-4 0 1M ~ 0 :s 0 1M as 0 
Eo< Eo< ,asl-o Ul u Eo< ,~ 1-0 Ul 

PrograDDDe 

BGD: at 1st solution 19 36 ' 0 0 1 
, 

0 
at best, i.e. 1st solution 19 36 I 0 0 1 I 0 
at end of run. 21 40 I 4 0 1 I 0 

I I 
I I 

BHD 17 35 I 0 0 1 I 0 
I 

BHM 17 35 I 0 0 1 I 0 
I 

BHP 18 35 I 0 0 1 I 0 , I 

BHQ 16 35 I 0 0 1 I 0 

Problem sealed by 3 (using 
BHD) 21 42 j 0 0 1 I 0 

I L 

Story and Wagner 613 I I 
I 

I I , I 

I I 

I I 

I 

III 
c: 

c: 0 
Q) .r-4 

Overflows 
II) +> 
~ ~ 

+> .-4 
Q) 'tI 0 
.0 c: III 

I ~ 
~t:: Q) .-4 

I ~ 0 o 1-0 ~ c .r-4 t:: Q) C 
.-4 , 1-0 0 +> ~ bO 0 
~ Q) .r-4 :l .... Q) .r-4 

+> I+>.... .-4 Ul+>+> 
0 'M as 0 .r-4 t:: ~ 

Eo< I ~ 1-0 Ul 'tI .r-4 1-0 

0 I 0 0 
0 I 0 0 
0 I 0 0 

I 
I 
I 

0 I 0 0 

0 I 0 0 

0 I 0 0 

0 I 0 0 
, 

0 I 0 0 
, 
I 

I 

I 

, 
I 

.-4 
Q ~ 

t:: 
1M 0 t:: 
0·" 0 

+> ." 
Q) ~ +> 
:s 1-0 :l 
.-4 .-4 
~ +> 0 
> as Ul 

I 

1 
1 

1 

I 

1 

1 

1 

Q) 
1M > t:: o .r-4 0 

+>." 
Q) 0 +> :s Q) 0 
.-4 ." c:: 
~ .0 ='1 > 0 '+-t 

25 
25 
25 

25 

25 

25 

25 

25 
I 

I-' 
U1 
U1 



Pivots Slacks 
Problem B5 ,... 

III 
C) 

I Q) I 
III .-IC .-I c: 
'-' I t1S 0 I t1S 0 

c·"" c: ."" 
.-I I '"' 0 +> .-I I'"' 0 +> 

~ t1S CII ."" ::s II) t1S Q) ."" ::s 
+> I+>+> .-I +> +> I+>+> .-I 

."" 0 'M t1S 0 ::s 0 'M aI 0 

Progranune Eo< E-o I as '"' II) U E-o ,as '"' III 

BGD: at 1st solution 26 45 I 9 1 1 I 1 
at best, i.e. 1st solution 26 45 I 9 1 1 I 1 

at end of run. 26 45 I 9 1 1 I 1 
I I , I 

BHD 45 78 I 42 3 3 I 2 

BHM 44 70 I 34 3 1 I 0 
I 

BHP 44 76 : 40 3 1 I 0 
I 

BHQ 51 79 I 43' 4 4 I 3 
I 

Problem scaled by 3 (using 
BHD) 32 61 j 21 1 2 I 1 , 
Story and Wagner 71 I I 

J 

I I 
I I 

I t 

I I 

i I 

II) 

c: 
c: 0 
Q) ."" 

Overflows 
Q) +> 
~ ~ 

+> .-I 
Q) '0 0 
.0 c: II) 

I t1S 
.-I c: CII .-I 

I t1S 0 C) '"' t1S c: ."" c: CII c: 
.-I I '"' 0 +> as bIJ 0 
t1S Q) ."" ::s +> CII ."" +> I+>+> .-I Ill+>+> 
0 'M as 0 ."" c: t1S 

Eo< , as '"' III '0 '1"'1 '"' 

0 t 0 0 
0 I 0 0 
0 I 0 0 

I 
I 

0 I 0 0 

0 I 0 0 

0 I 0 0 
I 

0 I 0 0 
, 

0 I 0 0 

I 

I 

, 

I 

• 

.-I 
Q t1S c: 
'M 0 c: 
o ."" 0 

+> ."" 
CII t1S +> 
::s '"' ::s 
.-I .-I 
t1S +> 0 
:> t1S II) 

88 
88 
88 

352 

352 

352 

352 

4 

Q) 
'M :> c: 
0·"" 0 +> '1"'1 
CII C) +> 
~ Q) C) 
r-i • ..., c: 
aI.o::s 
:> 0 q.; 

13 
13 
13 

13 

113 

13 

13 

14 
I 

I 

I 

I 

I-' 
(]I 
en 



Pi vots Slacks 
Problem C5 ..... 

(/) 

0 1 Q) 1 
(/) ~t: ~ t: 
'-' I as 0 I as 0 

t:or-! t: or-! 

~ I$.< 0 +" ~ 1 $.< 0 +" 
CIl as Q) or-! ;:l (/) as Q) or-! ;:l 
a +" I+"+" ~ +" +" I+"+" ~ 

or-! 0 'H as 0 ;:l 0 'H as 0 
Eo< Eo< I as $.< (/) U E-o ,as $.< III 

Programme 

BGO: at 1st solution 114 145' 114 8 17 1 15 
at best, i.e. 1st solution 114 145' 114 8 17 1 15 
at end of run ° 114 145: 114 8 17 I 15 , 

, , 
1 

BHO 106 1451 114 8 17 , 15 
I 

BHM 110 1481 117 10 13 1 11 
1 

BHP 127 1601 129 13 14 1 13 
I 

BHQ 144 166' 135 17 24 , 22 

Problem scaled by 3 (using 
50 I 61' 5 ' BHO) 29 6 4 ·1 

Story and Wagner 1411 I 

, I 
I 1 

I 1 

! , 
I 

(/) 

t: 
t: 0 
CIl or-! 

Overflows Gl +" 
~ ;:l 
+" ~ 

Gl '0 0 
.0 t: (/) 

1 as 
~ t: Q) ~ 

I as 0 o $.< as 
t:-r-I t: Q) t: 

~ 1 $.< 0 +" as bO 0 
as Q) or-! ;:l +" Q) or-! 
+" I+"+" ~ II) +" +" 
0 'H as 0 or-! t: as 

Eo< , as $.< III '0 or-! $.< 

0 1 0 0 
0 1 0 0 
0 

I 
0 0 

1 
1 

I 

0 I 0 1 

0 I 0 1 

0 I 0 1 

0 1 0 1 

0 t 0 0 
I 

I 

I 

I 

I 
I 

~ 

o as 
t: 

'H 0 t: 
o or-! 0 +" or-! 
Gl as +" 
;:l $.< ;:l 
~ ~ 

as +" 0 
> as III 

93 
93 
93 

93 

93 

93 

93 

2 

Q) 
'H > t: o or-! 0 

+" or-! 
Q) 0 +" 
;:l Q) 0 
~ o .. !=: 
as.o;:l 
> 0 'H 

11 
11 
11 

11 

ill 
11 

11 

11 

I 
I 

..... 
(Jl 

'I 



I Pivots Slacks 
: Problem D5 ,-.. 

UJ 
C) 
Q) , , 
UJ ~~ ~ ,;: 
-.; r «so I «S 0 

,;: .... ,;: .... 
~ , I-< 0-1-' ~ ,I-< 0 -I-' 

Q) as Q) .... ::l CIl <IS Q) .... ::l 
Ei -I-' ( -I-' -1-'.-4 -I-' -I-' (-I-' -I-' ~ .... 0 ct-t «S 0 ::l 0 ct-t as 0 

E-o E-o I «S I-< UJ U E-o ,«S I-< UJ 
Programme 

BGD: at 1st solution 19 37 I 0 0 0 
, 

0 
at best, i.e. 2nd solution 23 39 ( 2 1 0 I 0 
at end of run. 23 40 I 3 1 0 I 0 

I r 
I I 
I 

I 

BHD 21 45 I 0 0 0 , 0 
, 

BHM 20 45 I 0 0 0 I 0 
I 

BHP 20 45 , 0 0 0 I 0 
I 

BHQ 20 45 I 0 0 0 ! 0 
I 

Problem scaled by 3 (using 
, 

I I 
BHD) 18 38 I 0 0 0 0 

I 
I , 

StorY and Wagner 46 I 

I I , 
I 

I I I 

I I 

I 

CIl 
~ 

~ 0 
Q) .... 

Overflows 
Q) -I-' 
~ ::l 
-I-' ~ 
Q) '0 0 
.c ~ CIl , «S 

~ ,;: Q) ~ 

I «S 0 c) I-< «S 
,;: .... ~ Q) ~ 

.-4 , I-< 0 -I-' «S bD 0 
«S Q) .... ::l -I-' Q) .... 
-I-' r -I-' -I-' .-4 UJ-I-'-I-' 
0 'H «S 0 .... C «S 

E-o , «S I-< III '0 .... I-< 

0 I 0 0 
0 I 0 0 
0 

, 
I 

0 0 

I 

I 

0 I 0 0 

0 I 0 0 

0 I 0 0 

0 I 0 0 

0 
I 0 0 

, 
I 

I 

I 

I 
I 

~ 

o «S 
~ 

'H 0 ,;: 
0· ... 0 

-I-' .... 
Q) «S -I-' 
::l I-< ::l 
.-4 .-4 
«S -I-' 0 
> «S III 

1 
1 
1 

1 

1 

1 

1 

1 

Q) 
'H > ,;: o .... 0 

-1-' .... 
Q) C)-I-' 
::l Q) C) 
~ . ....,,;: 
as .c ::l 
> 0 'H 

37 
35 
35 

35 

35 
I 

35 

' 35 

37 

I 

I 

I 

J 
1 

I-' 
Ul 
00 



Pivots Slacks 
,.... 

Problem E5 III 
0 
Q) I I 
I/) .-4C:: .-4 c:: 
'-' r til 0 I til 0 

c::.~ c:: .~ 

.-4 Is..O ~ .-4 I~ 0 ~ 
Q) as Q) '" =' Ul as Q) .~ =' 
a ~ I .j.I ~.-4 .j.I .j.I 1.j.I .j.I .-4 

." 0 'H C\I 0 =' 0 'H as 0 

Prograuune E-< E-< 1 as ~ rIl U Eo< ,as ~ rIl 

BGD: at 1st solution 188 256' 220 13 17 I 15 

at best, i.e. 3rd solution 761 9661 930 57 82 I 80 
at end of run. 761 966' 930 57 82 1 80 

1 I 
I I 
I 

1 

BHD 469 6731 620 37 52 I 50 
1 

BHM 508 7241 671 39 61 1 59 
I 

BHP 591 8091 756 50 69 I 67 
I 1 

BHQ 862 10621 1009 90 129 I 127 

Problem scaled by 3 (using 
126' 15 1 BHD) 101 

"I 
91 11 14 

Story and Wagner I *1000' I 

I 
1 I 
I I 

1 
, 

, I 

i I 

*run terminated by limit on the number of pivots. 

Ul 
c:: 

c:: 0 
Q) .~ 

Overflows 
Q) ~ 

~ =' 
~ .-4 
Q) 'tl 0 
.0 c:: Ul 

I as 
.-4 c:: Q) .-4 

I as 0 u s.. as 
c:: .~ c:: Q) c:: 

.-4 Is..O ~ til be 0 
as Q) .~ =' .j.I Q) .~ 

.j.I r ~ .j.I .-4 rIl.j.l~ 

0 'H C\I 0 .~ c:: as 
Eo< I as ~ rIl 't:I .~ s.. 

0 I 0 0 
0 I 0 1 
0 I 

I 
0 1 

1 
1 

0 I 0 3.5 

0 I 0 3.5 

0 I 0 3.5 

0 I 0 3.5 

0 I 0 1.3 
1 

I 

I 

, 
I 
I 

.-4 
Cl til 

c:: 
'H 0 c:: o .~ 0 
~ .~ 

Q) til .j.I 

=' ~ =' 
.-4 .-4 
as ~ 0 
> as rIl 

144 
144 
144 

2250 

2250 

2250 

2250 

104 

Q) 
'H > c:: o .~ 0 

~.~ 

Q) U.j.I 

=' Q) U 

.-4 . ..., c:: I as .0 =' > 0 'H 

22 
18 
18 

18 

18 

18 

18 

120 

I 
I 

i-' 
U1 
to 



Pivots Slacks 
,..... 
III 

Problem F5 () 
III I I 
III r-It: r-I t: 
'-' I as 0 I til 0 

i C:.t'i c: .t'i 

r-I I ~ 0 ~ r-I ,~ 0 ~ 
Q) CIS Q) .t'i :l III as Q).t'i :l 
e ~ I~~r-I ~ ~ I~ ~ r-I 

.r-! 0 'H (II 0 :l 0 'H CIS 0 
E-< E-< I CIS ~ III U Eo< ,CIS M III 

Programme 

BGD: at 1st solution 57 78 I 38 4 4 
, 

3 
at best, i.e. 2nd solution 191 224 I 184 19 11 I 10 
at end of run. 233 284 j 244 22 13 I 12 

I I 
I I 
I 

I 

BHD 348 484 , 433 30 50 I 45 
I 

BHM 326 467 , 416 28 42 I 37 
I 

BHP 288 361 : 310 32 39 , 34 

BHQ 451 499 I 448 53 82 I 77 

Problem soaled by 3 (using 
BHD) 129 169 I 132 11 24 I 24 

I 

Story and Wagner 323 I I 

I I 
I I 

I I I 

I I 

I 

III 
t: 

t: 0 
Q) .,-4 

Overflows 
Q) ~ 

~ :l 
~ r-I 
Q) '0 0 
.c t: III 

I as 
r-I C Q) r-I 

I til 0 t) ~ til c: .t'i t: Q) c: 
r-I , ~ 0 ~ til bO 0 
til Q) .t'i :l ~ Q) .t'i 
~ I~~r-I III~~ 

0 'H (II 0 .r-! C CIS 
E-< I CIS ~ III '0 .t'i ... 

0 I 0 0 
0 

, 
0 0 

0 
, 

0 0 
I , 

0 I 0 6.2 

0 I 0 6.2 

0 I 0 6.2 

0 I 0 6.2 

0 I 0 2.6 
I 

I 

I 

I 

, 
I 

r-I 
Q as 

C 
'H 0 c: o .t'i 0 

~ .t'i 
III as ~ 
:l ~ :l 
r-I r-I 
(II ~ 0 
> CIS III 

4 
4 
4 

4646 

4646 

4646 

4646 

12750 

Q) 
'H > c: o .t'i 0 

~ •• t'i 
Q) t) ~ 
:l Q) t) 
r-I 'r-) C 
CIS.c:l 
> 0 'H 

33 
28 
28 

28 

128 

28 

28 

28 

I , 

t-' 
en 
o 



UJ ~ ~ ~ 
"0 "C 

M- "1 "1 
0 tl g tl 0 0 
"1 ~ aq C' 
'< ~ "1 ~ 

~ <D 
~ 51 8 51 
;:l 
0. C/l <D ~ (!) 

~ ~ 1»:1 
I§ ~ 
<D 
"1 ~ 

C. 

c: 
C/l 

"" ;:l 
oq 

I--- --~- f--

00 Time ( sees) (0 c..J 
0 00 

Total "C 
00 ~ ~ ""0 
0 0 0 < 

1-- - - - I- - I- - I-~ I-~ 00 0 
- 1--- --- - - - - - M-

after 
III 

c..J rational 
l\) CJI 
~ ...:J solution 

l\) (0 Cuts 

Total UJ 
~ ..... 
0') 

.... - - t- - t- - ~- Q. 
~ 

- - - -- - -- 1------ 0 
after ;I';' 

C/l 

..... rational 
~ solution l\) 0') 

0 

~ Total < 
<D 

0 0') "1 

+-- - - - --. - - - - - - - -- - - - -- .... 
after ~ 

0 

0 ~ rational ~ 
C/l 

l\) 
solution 

* distance between 
..... integer and 

0 0') 

00 
rational solutions 

* c..J value of D (!) 
0') at rational -
l\) solution c..J 
l\) 
0') 

c..J ...:J 
0 c..J -

l\) l\) 
value of 

c..J l\) objective 
function 

_-L-

- 191 -



CIJ ~~~ ~ ~ 

c+ ::t >oj ::t ""l ""l 
0 t:l 0 t:l 0 0 
>oj '-'t:l 

aq 0-
'<: >oj ...... 

(1) III (1) 

III a f1 
a 

::s 
0- en (1) ~ 

~ 
(j) 

:;; 
III 
'§ 
(1) 
>oj ~ 

c.. 

~ 
J 

-

C11 (j) Time ( sees) 
t.:) w 

Total ~ 

00 (j) (j) 
1-'0 

"" 00 C11 < 
0 

-- - I- - I- - - - f... .- -- - - - - - - -- - - - - - c+ 

after 
en 

t.:) rational 
0 t.:) 

solution 

0 t.:) Cuts 

Total CIJ 
t\:) C11 ...... 

III 
1-- - +- - - -- - t-- - - -- - -- 0 

after - - p;-
C/! 

0 ~ 
rational 
solution 

0 

0 0 Total < 
(1) 
""l -- - - I- - - - ~- - - - - - -- - - - - - ~ 

after 
...... 
0 

0 0 rational :E! 
en 

solution 
distance between 

0 0 integer and 
rational solutions 

value of D 
,j:>. at rational 
~ solution ...... 0 

---
...... ...... value of 
t.:) 0 

objective 
function '-____ L-. 

- ~91 -



I 
CJ) t:J:I ~I t:J:I ~ ~ 

r+ :x 'i :x 'i 'i 
0 8~t:I 0 0 
'i IJQ 0-
'< ~ 'i I-' 

~I ~ ~ 

§ i a 
Co 

~ 
en (j 

a'l 
~ 
~ 

~ 
(\) 
'i 

,... 
r::: 
1/1 
~ 

::s 
(JQ 

~ -- f--~ 

I-' a'l Time ( sees) 
I-' 0 
I-' ()1 

r----- -

I 
Total 

'0 
()) M::o 

~. 

~ ~ a'l 
< --t- -~ _02 w 0 

- - - - - - - - - -- - - - - - r+ 

after 
1/1 

M::o rational 
M::o (I.) 
()) 0 solution 

w Cuts 
a'l (I.) 

Total CJ) 
a'l I-' 

-..J ()1 III 

t-- - f- - - - - - -- - - -- - -- - - - -- 0 
after ~ 

1/1 

a'l rational 
()1 I-' solution 

0 

0 0 Total < 
(\) 
'i 

-- - - - f- - - - f-- - - - - - -- - - - - - ~ 
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APPENDIX D 

THE EXPERIMENTAL PROGRAMMES 

PART 1 

THE TWO MOST EFFECTIVE PROGRAMMES 
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Appendix D The Experimental Programmes. 

Part l: The Two Most Effective Algorithms. 

Specification of Programme BHD. 

Purpose. 

The programme mlnlmlses a function 
n 

constraints L 
j=l 

a .. x .. < b. (i=l, ... m) 
lJ lJ ~ 1 

n 
L 

j=l 
c. x. subject to the 

J J 

all the x. being constrained to ~De non-negative integers. 
J 

Data. 

The layout of the numerical data is as follows, the letters having 
the same meaning as in the previous section: 

t a title consisting of the identifier of the user plus any sequence of algol 
basic symbols excluding 't't 

m; n· , 
0 cI c L ...... 
1 PI all a12 ...... 
2 P2 aLl a22 ...... 

m Pm a a ...... 
ml m2 

The p. must be 
1 

the terminators of the previous n 
according to the relation 1: a .. x. p. b. , 

j=l lJ J 1 1 

e.g. the row 

3 ~ 1; 1; 4; 

represents the third constraint Xl + x2 ~ 4. 

integer. 

c 
n 

a, in b 1 

a2n b2 

a b 
mn m 

number and are either ,.::, = or ~ 

Each a .. , b. and c. must be an 
lJ 1 J 

Although the programme will accept data regardless of the signs of 
the a .. , b. land c. and the values of the Pl" the user is advised to restrict 

lJ 1 J 
his data to one of the following forms: 

either b. ~ 0, p. being = or .$. 
1 J. 

or c. ~ 0, p. being ~ or ~ 
J 1 

With other configurations the programme may terminate erroneously. 

The above form of data may be repeated as many times as desired, and 
the programme is terminated by a nominal set of data as follows: 

t t 

-1;-+ 
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Method. 

The programme is one of the many variants of Gomory's Method of 
Integer Forms (ref I}. It is described in Part 3 and Part 4 (a) of 
Chapter 2. 

Output. 

The programme produces a considerable amount of output to enable 
the user to monitor the progress of the programme towards a solution. 

Every pivot element is printed out. They are printed sequentially, 
six to a line. If three asterisks are printed it indicates that integer 
overflow occurred and that the last figure printed represents an un­
successful attempt at pivoting. If a pivot is followed by an S it 
indicates that a constraint with zero constant term has been added to scale 
the tableau. If a C is printed it indicates a cut has been added. 

The more important monitoring information is 
(a) The rational solution is printed giving the value of every basic 

Variable. 
(b) Every time a cut is added the number of the interation and the value 

of the cost function is printed provided this value has changed since 
the last iteration. 

(c} When an integer solution is found the values of the basic variables 
are printed followed by the entire array. 

The following error messages may be encountered: 

SOLUTION UNBOUNDED: 
The solution to the original linear programming problem is unbounded. 

LEXICOGRAPHICALLY UNBOUNDED: 
Although the problem itself is bounded one of the variables is not. The 
user must add a constraint giving this variable a bound. 

INTEGER OVERFLOW: 
Integer overflow has occurred in circumstances with which the programme ~s 
unable to cope. 

NO RATIONAL SOLUTION (p): 
It has not been possible to eliminate the artificial variables. 

NO RATIONAL SOLUTION CD): 
The problem was discovered to be infeasible while performing the Dual Simplex 
Algorithm. If the rational solution has already been found this message 
is to be interpreted as meaning there ~s no integer solution. 

LOGICAL ERROR: 
This should never occur. It could arise from a number of places is tae ~~J _eA~'~ 
programme error, an undetected error in the format of the data, or a machine 
fault . 

NO INTEGER SOLUTION: 
A basic variable has non-integer constant term but the coefficients of the 
associated)(ow have all integer values. 



Computer reguirements. 

Paper tape reader 
Line printer 
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Core store: programme plus (m+n+6} x (n+2) + 50 words where m and n are 
as previously defined. 
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Specification of Programme BGD. 

This programme is the same as BHD save for one statement which is con­
tained in the comment on page "i. Its specification is the same save for 
the following points. 

Method. 
The programme approaches the optimal integer solution via a series of 

approximate ones and is described in Part 3 and Part 4(j) of Chapter 2. 

Output. 
This is the same as that of Programme BHD except that after an integer 

solution is printed the solution process continues and with it the monitoring 
printout. The programme terminates computation with the message 'NO 
BETTER SOLUTION' and the last integer solution printed is the optimal one. 

Computer requirements. 

An extra s(n+l) words of store is needed where s is the smallest number 
2s . 

such that ~s not less than the largest element of the objective function, 
i.e. 2

s 
> max (abs(c.) ) , j=l, ... ,n. 

J 
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begin co_nt This is the text of programme BHD. Where it differs 

fro. the text of the other programaes is indicated in the 

comaents; 

library A6,A12,A13,A14; 

co .. ent The library functions used were those that dealt with 

input-output. Only three of the standard function. were 

used and the KDF9 User Code versions of the.e follow; 

!!!! prooedure abs(x); value x; !!!! x; 

~ 1/0/0/0; 

[xl· ABSF- EXIT· ALGOL,---, '-' 
integer prooedure sign(x); value x; !!!! x; 

!!!!:9. 2/0/0/0; 

[xl- ZERO- SIGNF· _EXIT,. ALOOL,· - -, , , 
integer procedure entier(x); value x; !!!! x; 

~ 4/0/0/1; 

VO:B4322S063162270S2; 

V1=B1S71~OOOOOOOOOO; 

Ixl; FIX; DUP; SE1'39; -; DUP; J3>Z; 

=C3; Jl>Z; 

J2<Z; 

ZERO; !!!I; 

2; SET-l; !!!I; 

1; SET-8; :rC3; SHLC3; NC3; SHLC3; 

NC3; SHAC3; !!!!; 

3; ERASE; FlDAT; SETAVO; REV; SET1; JSP299; 

ALGOL; 



- 173 -

procedure printar(a,m,n,p,q,D,g); value m,n,D; 

integer m,n,D,g; integer array a,p,q; 

comment This prooedure prints the contents of arrays a, p, and q 

arranged as a matrix. It ohooses a format to fit the largest 

element of a and the value of this format is assigned to parameter 

g. The arrays are dimensioned a[-1:m,0:n], p[1sm], q[1:n]; 

begin inteJer i,j,I,J,s,f; 

I::ain(-abs(a[i,min(-abs(a[i,j]),j,o,n,true)]),i,-l,m,true). - -, 
J::min(-aba(a[I,j]),j,o,n,true). -, 
ss:!,! abs(a[I,J]»D !h!! ab8(a[I,J]) !!!! D; 

fs:!,! 8<1000 ~ format(l-ndd;l) 

.!!!! !! s<'(l6 .!!!.!! format(l-nddddd;l) 

.!!!!. !,! s<,09 ~ format(l-nddsdddddd;l) 

!!!! format(l-ndddddsdddddd;l); 

writetext(3o,1»=1); write(30,f,D); newline(30 ,2); 

:!2!: i ::-1 step 1 until m !!2 

begin write(30,f,!,! i>o !h!! p[i] !!!! i); 

end· -, 

~ j::o step 1 until n !!2 write(30,f,a[i,j]); 

newline(30,1+(i+1)~(m+1» 

write(30,f,0); write(30 ,f,0); 

!2! j::1 step 1 until n ~ write(30 ,f,q[j]); newline(30 ,3); 

g::f; 

integer procedure time; 

co_ent This procedure assigns to time the run time used so far by 

this programme rounded down to the nearest second; 

KDF9 1/0/0/0; 

SE'I'3; OUT; SHL-24; !!!!; 

ALQOL; 

~t 
! 

t 
\ 

i 
\ 
1 

I 
I 
j 
I 

i 

! 
t 

I 



- 174 -

inteler procedure hcf(a,b); value a,b; integer a,b; 

comment This procedure as.igna to hcf the highest common 

factor of a and b; 

begin a:=abs(a); b:=abs(b); 

!! &:0 2!: b:0 !!.!!. loto H; .!! a<b !!!.!.! loto B; 

A: a::a-a-tbXb; !! &:0 !h!!!. loto H; 

B: b::b-btaXa; !! b~O then loto A; 

H: hcf::!! &:0 !!!!!!. b .!.!!!. a 

end· -, 
inteler procedure euc1ida1g(h,D); value h,D; integer h,D; 

comment This procedure assigns to euc1ida1g a number 

between 0 and D such that 

euc1ida1gXh : hcf(h,D) (mod D); 

begin integer k,u,v,g; 

h:=d1re.(h,1,D); k:=D; u:=l; v:=O; !! h:o !!!! goto I; 

g:=h-tk; h::h-gXk; u:=u-gXv; .!! ~O ~ i2!2. G; 

E: euc1ida1g::if k=O th.n u e1 •• U+V - --
end· -, 
intecer procedure min(t,s,p,q,B); !!!! t; int.,.r .,p,q; boolean B; 

comment Thi. procedure us •• Jen.en'. device to find the miniMUm of a 

one dimensional array .ubject to a boolean expression; 

be,in !!!! z; 

!2! s:=p step 1 until q ~ 

!! B ~ begin!! t<z then be,in min::.; 

z:=t 

end end - end· -' 

! 
1. 
; 

I 
t 
I 
I 

I 
I 
I 
I 

I 
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prooedure Intoh(a,.,n,p,q,D,I,J,FAIL,oflow); value .,n,I,J; 

inte,er .,n,D,I,J; inte,er array a,p,q; .. itoh FAIL; label ollow; 

co .. ent Thi. prooedure perlor.. a pivot operation on a[I,J]. In the 

event of overflow the array a i. r •• tored to it. orieinal .tate and 

the prooedur •• xit. to label ollow. 

Apart fro. I,J, and of low , the par_.ter. p.rfor. the .... 

funotion a. the variable. with the .... id.ntifier. d •• oribed at 

the .tart of the .. in prolr __ ; 

be,in int ... r i,j,D1,02,I; 

write(30,foraat(1-nddddd.ddddddal),a[I,J]); 

O2::a[I,J]; D1::DXaign(02); 

trana(a,.,n,D1,02,I,J,i,j,LOFLDW,FAIL[5]); 

.!! 02<0 ~ 

becin !2!: j:: ° atep 1 until n .!!2 .!! j~ !!!!! a[ I, j] ::-a[l, ~] ~ 

.!!!!.!2!: i::-1 atep 1 until a!!2.!! i~1 !!!!! a[1,J]::-a[i,J]; 

a[I,3]::D1; D:=aba(DZ); 1:=p[I]; p[I]::q[3]; q[J]::e; 

e!2 DOHK; 

WFLOW: ~ j:=j-l at.p -1 until ° ~.!! j~ l!!!!. 
a[i,j]::dlprod(Dl,a[i,j],a[I,j],a[i,J],DZ,FAIL[5],FAIL[5]); 

!2!: i ::i-1 atep -1 until -1 ~ !! i1!1 !!!!! 

DOJfB: 

end· -, 

b!&in!2!: j:=n atep -1 until J+1,J-1 .tep -1 until ° ~ 
a[i,j]l:dlprod(D1,a[i,j],a[l,j],a[i,J],D2,FAIL[5],FAIL[5]) 

I 
~ 

I 
p, 

! 
I 
I 
( 

~ 
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prooedure tran.(a,.,n,Dl,D2,I,J,io,jo,OF~,BRROR); value m,n,Dl,D2,I,J; 

int.,er array a; int .. er .,n,DI,D2,I,J,io,jo; label OFLOW,ERRORj 

oo_nt The purpo.e of this procedure is to perf ON that part of the 

pivot op.ration whioh replace •• ach .le •• nt, a[i,j], of a by 

(D2Xa[i,j]-a[i,J]Xa[I,j]).DI, where I and J are the pivot row and 

colu.n, re.peotiv.ly. It doe. not alt.r the pivot row and oolumn 

th •••• lv ••• 

The advantage. of writing this prooedur. in User Code are 

(i) it peralts the u.e of double l.ngth arithmetio, 

(ii) it is .asier to detect ov.rflow without terainatinc the 

prolr ... e, 

(iii) it spe.ds up a prooedure in whioh the prolr ..... pends a 

laree proportion of its ti ... 

Th. integ.r array a i. dimen.ion.d a[-I:_,Oln], 

Dl and D2 are the old and new valu •• of the deteninant 

.ultiplied by the .ien of the pivot element, 

I i. the pivot row, 

J i. the pivot colu.n, 

io and jo are only defined if ov.rflow ocour.: th.y are .uch that 

a[io,jo] i. the .le .. nt on which ov.rflow oocurr.d, 

OFLOW i. the .rror exit if overflow ocour., 

ERROR i. the error exit if the division leave. a r ... inderl 

it. ocourrenoe indioate. either a 10Cioai error in the procramme 

or a aachine fault; 
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comment The Algol equivalent of this procedure is as follows: 

~ 10:= -1 step 1 until 1-1,1+1 step 1 until m .!!2. 

!2!: jo:= ° step 1 until J-l,J+l step 1 until n ~ 

a[io,jo]:=dlprod(DZ,a[io,jo],-a[l,jo],a[io,J],Dl,OFLOW,ERROR); 

~ 6/6/2/0 ; 

[a]· SRC-16· =Ql1· [a]. 11]. DUp· NOT· NEG· =RC 1A • DUp· - -, , , - -, -, , , , ~, , 
SET AYO; Cll; +; DUP; =1110; DUP; NEG; NOT; =114; +; =1112; -; =113; 

Yl1111; SETS 177777; AND; iJl; DUPD; =CI2; =115; XD; CONT; =1113; 

~lJ C12; -; =CI3; ZERO; iD11; DUP; ASS; =Ql1; J99>Z; NOT; 99; =CI0; 

(QI0= ° or -1/ - IAa[o,o]); (QU= abs(Dl) ); 

(QI2= J/ - lAa[I,o»; (Q13= n-J/m-I/JX(L+3»; 

(Q14= row ctr/ 1 IAa[i,o]); (QI5= 001 ctr/L+31jX(L+3»; 

i021; JI7CI0Z; NEG; 17; sHA+8; JS3; 113; =C14; JS4; ERASE; !!!I; 

• *3; 110 ro Q15; C12 TO Q15; 1113114; DUP; J 10=Z; J 18clOZ; NEG; 

REV; JS5; C13 TO Q15; 11+115; JS5; 

12; REV; ERASE; DC4; 

4; 1If-14; J3C4NZ; OIT 1; 

*1; DUPD; 11141115; XDj CAB; 11121115; XD; -D; 

11; Qll; +R; SRA-8; J2V; =1I14M15Q; J6~z; 

5; JICI5NZ; EXIT 1; 

10; ERASE; Ql1; REV; JS7; C13 TO Q15; 11+115; JS7; J12; 

*8; DUPD; 11141115; XD; 

9; CAB; +R; SRA-8; J2V; =M4M15Q; J~Z; 

7; J8Cl5NZ; EXIT 1; 

2; LINK; LINK; 20; ERASE; J2ONEN; 

114; 1110; -; =ii01; 1115; 115; +1; ERASE; =ijo1; JiOFLOW1; 

6; LINK; LINK; 60; ERASE; J60lfEN; JiERROR1; 

ALGOL; 

18. SUA. o. , nft1"O, 
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intecer procedure dlprod(a,b,c,d,e,oflow,error); value a,b,c,d,e; 

integer a,b,c,d,e; label oflo.,error; 

co_ent Thi. procedure i. DOl'Ilally equivalent to 

dlprodr=(aXb+cXd)+e. 

However, it perfora. the arithaetic in double leftlth and in the 

event of the re.ult overflowiftl or the diviaion leaving a 

reaainder it exita to 'of low' or 'error' reapectively; 

!Q?!9. 4/0 / 0 / 0 ; 

[a]. [b]. XD· [c]. Cd]. XD. +D,. _[e_l,· DUP,' Jl>Z,. --, --, ,--, --, , 
PERIl; HmD; CAB; JfBG; 

1; +R; sHA+8; SRA-8; J2V; REV; J~Z; BXIT; 

2; BRASE; ERASB; Jioflowl; 

3; BRASB; J i error 1; 

AUJOL; 

int .. er procedure dl.ign(a,b,c,d); value a,b,c,d; integer a,b,c,d; 

oo_ent ,",i. procedure ia normally equivalent to 

dlaignr=.ign(aXb-cXd). 

It perforaa the arithaetic in double length to avoid the 

poa.ibility of overflow; 

!!?!2 4/0 / 0 / 0 ; 

AlOOL; 

int .. er procedure dlre.(a,g,D); value a,I,D; inteler a, I,D; 

oo ... nt ,",i. prooedure ia noraally equivalent to 

dlre.:=aXc-aXl+DXD. 

It perforaa the arit~tic in double lencth to avoid the 

po.aibility of overflow. It aaauaea that D ia poaitive; 

!!!a 3/0/0/0; 

AUIOL; 
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integer prooedure pivot(a,.,n,I,iO,FAIL); value m,n,I,iO; 

inte,er array a; integer a,n,I,iO; label FAIL; 

co .. ent Given the pivot row, I, this prooedure .eleota the pivot column 

accordin, to the rule. for the lexicoeraphic Dual Simplex Method and 

a.sien. it to piTOt. The Dual Simplex lIethod .eleot. a pivot colullll 

J auoh that a[I,J]<O and a[iO,J]/ab.(a[I,J]) i. a miniaum over J, 

where 10 i. the co.t row. The lexicoeraphio rule laya down that in 

the event of a tie between two row. the ratio. a[iO+l,J]/aba(a[I,J]) 

are compared, and so on until the tie is resolved. The procedure .ay 

also be used to find the pivot coluan in the Siaplex lIethod by 

insert inc a duaay pivot row consiatine entirely of _I' •• 

The reason for writinc this prooedure in U.er Code was that in 

so .. proble .. coluana appeared with laree nuaber. of zero. at the top 

of thea, with the re.ult that the nuaber of operation. needed to 

ohoose a pivot coluan was of the order of .xn, rather than simply n. 

Array a i. diaen.ioned a[-I:m,O:n], 

I i. the pivot row, 

iO is the fir.t coat funotion: -1 when called by Int.iap, 0 when 

called by Dintsi~, 

FAIL i. the error exit if no fea.ible pivot column can be found. 

The Aleol equivalent of this procedure is contained in int .. er 

procedure pivot2, on the following Pale. 

The procedure was altered in prolr .... BR6 to oait the 

lexicolraphic rule for break inc ties; 

!!!:2 4/710 / 0 ; 

1a ]. SHC-16· :Ql1. Cll; SETATO; +; Tl1111; DUP; =115; +; =1115; -, , , 
riO]. Dup· =RIII0' [a]· NOT; NEG; REV; -; DUP; =CI0; =C9; - -, , , --, 
[n]· DUp. =C1S' =CI2· [I],' =1112; ZBRO; =C14; SET-I; =1111; - -' , , , --
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*1; M12M15; J9~Z; MIIM15; J9>Z; Q10TOQ13; 

*2; M15M13Q; J~Z; *J2Cl3NZS; J9; 

*3; M- 113; M15M13; ZERO; SIGN; NEG; NOT; =Cl1; M13; DUP; =111; J7C14Z: 

112; -; DUP; J7>Z; J4=Z; J9C11Z; ZERO; J7; 

*4; C9; M13; -; =c13; M4M13; M15M12; XD; M14M12; M15M13Q; 

XD; -D; OR; DUP; J7<Z; J9>Z; J4Cl3NZ; J9; 

7; ERASE; Q15TOQ4; Il1TOQ12; J9C11Z; 111; NOT; NEG; MI0; -; =CI0; 

9; M+115; DC15; JIC15NZj JlOC14Z; C12; c14; -; NOT; NEG; !!!!; 

10; JiFAIL1; 

ALGOL; 

integer procedure pivot2(a,m,n,I,io,FAIL); value m,n,I,iO; 

integer array a; integer m,n,I,iO; label FAIL; 

comment Although not called by the programme this procedure has been 

inserted here because it contains the Algol equivalent of integer 

procedure pivot; 

begin integer J,i,j,gj 

end· -, 

J:=O; 

.!2!: j:=l step 1 until n ~ .!! a[I,j]<O and a[-l,j]!O .!!!!!!. 

begin if J=O .!h!!!. goto FND 

!2! i :=iO step 1 ~ Ii ~ 

begin g:=dlsign(a[i,j],a[I,J],a[I,j],a[i,J); 

end· -, 

.!! g>O ~ goto FND; .!! g<o !!!!.!! goto NEXT 

goto NEXT; 

FND: J:=j; 

NEXT: 

end· -' 
pivot2::J; .!! J=O .!!!!!. goto FAIL 
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procedure Intsimp(a,m,n,p,q,D,R,L,FAIL,x,z); value n,x; 

integer .,n,D,R,L,x; integer array a,p,q,z; switch FAIL; 

comment This procedure performs the Simplex algorithm. It produces a 

lexicographically optimal tableau, i.e. the first non-zero element 

of every column is positive. The purpose of this is to assist the 

selection of oonstraints in the integer programming part of the 

programae, but it also enables the artifioial cost, in row -1, and 

the objective funotion, in row 0, to be optimised simultaneously. 

In the event of overflow prooedure Scale is called. If 

succe8sful, another attempt is made at pivoting, if un8uccessful, 

the run i8 abandoned. 

The parameter8 perform the same function as the variable8 with 

the same identifiers described at the start of the main programme; 

besin integer i,j,I,J; boolean success; 

ONE: ..!2!: j::l step 1 until n !!2 a[atl.j)::-I; 

TWO: J::pivot(a, •• n,m+l,-I.FOUR); i::-2; 

TIfREE: i::i+l;.!! a[i,J):O !!!!!. i<m ~.12!2 THREE 

.!!!!. .!! aU ,J)?..o !!!!.!! goto FOUR; 

I::ain(a[i,0]/a[i,J),i.z[10]+1,m.a[i,J]>0); 

!! 1:0 l!!!.!!. ~ FAIL[.!! a[o,J]<o !!!.2 1 .!.!!! 7]; 

p[m+l]::p[I]; !2! j::O step 1 until n ~ a[m+l,j]::a[I,j]; 

space(30,5) ; 

Intoh(a,m+l,n,p,q,D,a+l,J,FAIL,OFLOW); loto ONE; 

OFLOW: Scale(a,.,n,p,q,D,R,L,FAIL,succes.); 

J2!2 !! BUCce •• !!!! ONE !!!! FAIL[6]; 

FOUR: !2! i::l step 1 until m !!2 .!! p[i]<O ~ a[i,O]>O ~ goto FAIL[3] 

end· -, 
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procedure Dlntsimp(a,m,n,p,q,D,R,L,FAIL,x,z); value n,x; 

integer .,n,D,R,L,x; integer array a,p,q,z; switoh FAIL; 

comment This procedure performs the Dual Simplex algorithm. It chooses 

the row with least a[i,o] to pivot on, calls integer procedure pivot 

to locate the pivot oolumn, and oalls procedure Intch to effect the 

transformation. In the event of overflow oocurring in Intch 

procedure Soale is called and if suocessful another attempt is made 

to choose a pivot element and pivot on it suocessfully. If no 

overflow occurs procedure Soale is called nonetheless before exiting 

fro. the prooedure. 

The parameters perform the same function as the variables with 

the same identifiers desoribed at the start of the main programme; 

begin inteJer i,I,J,g; boolean 8ucoess; 

ROW: g::1 ::0; 

.!2!: i::z[lO]+l step 1 until m ~!! aU,o]<g!!!!!l 

beJin I::i; g::a[i,o] ~; 

.!! g:o !!!!.! loto DONE; 

J::pivot(a,_,n,I,0,FAIL[2]); 

p[~l]::p[I]; ~ j::o step 1 until n ~ a[a+l,jl::a[I,jl; 

space(30,5) ; 

Intoh(a,m+l,n,p,q,D,a+l,J,FAIL,OFLOW); ~ ROW; 

OFLOW: Scale(a,.,n,p,q,D,R,L,FAIL,suocess); 

!!. .uece •• ~ Joto ROW: 

DONE: Scale(a,m,n,p,q.D.R,L.FAIL,.uooe •• ); 

FIN: 

end· -, 
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procedure Scale(a,.,n,p,q,D,R,L,FAIL,aucces.); value m,n,R,L; 

integer .,n,D,R,L; integer array a,p,q; switch FAIL; boolean success; 

co .. ent The purpose of this procedure is to search for 'constraints' 

with zero constant tera and incorporate them into the tableau by 

means of a pivot operation. This has the effect of reducing the 

value of D without altering the value of any a[i,o]/D. 

The advantace of adding such constraints is that the value 

of D is reduced while maintaining optimality and fea.ibility. 

The parameter 'success' i. assigned the value !!2! if at 

least one such constraint i. found, false otherwis.. The other 

parameters perfor. the same function as those with the .... 

identifiers described at the start of the main programme; 

becin integer i,j,k; 

succe.s::fal •• ; 

AGAIN: .!2!: i::o .t.p 1 until m ~ 

becin k:=D+hcf(D,a[i,o]); 

end· -, 

!!. k~D !!!!! .!2!: j :=1 step 1 until n ~ 

b!Jin !! dlre.(a[i,j].k.D)~O ~ a[-I,j]~O 

FOUND: succes.::!!2!; a::m+l; p[a]::999; writet.xt(3o,lS····l); 

1XlNB: 

end· -, 

!2! j:=O step 1 until n ~ a[.,j]::-dlr •• (a[i,j],k,D); 

Intch(a,m,n,p,q,D,m,pivot(a,m,n,m,0,FAIL[5]),FAIL,FAIL[6]); 

.::11-1; goto AGAIN; 
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procedure Integer(a,m,n,p,q,D,R,L,FAIL,x,z); 

integer m,n,D,R,L,x; integer array a,p,q,z; switch FAIL; 

comment The purpose of this procedure is to choose a new constraint, 

add it to the tableau, and restore the tableau to feasibility. 

This is done by calli~ prooedures Constraint, Intch and Dintaimp. 

The procedure also ohecka the time taken so far and prints certain 

monitori~ information. 

The functions of the parameters are the s .. e aa those with 

the aame identifiera described at the start of the main programme; 

becin intecer f,fi,fr,pao,pD,tm,t; boolean finiah; 

f::format(l-ndddddsddddddsl); fr::forllat(l+d.ddddsddddsddds/o+ndl); 

fi::format(lsssss-nddddds •• aal); 

tm::ti .. ; t::o; fini.h::false; pao::a[o,o]+lj pD::D; 

REPORT: !! z[7]+ti .. -tm>1800 !!!!!l finish::!!:2!; 

DONE: 

end--, 

if finish or dlaign(paO,D,a(O,O],pD)~O then - - -
becin pao::a[o,o]; pD::D; newline(30,1); 

write(30,fi,t); write(30,fr,pao/D); spaoe(30 ,6); 

write(30,f,pao); writetext(30,!ll); write(30 ,f,pD); 

!! finhh !!!!! coto DONE 

end--, 
Conatraint(a,m,n,p,D,FAIL[4],finish); 

!! finiah!!!!!. goto REPORT; t:=t+l; p[ .... l]::R+tj 

Intch(a,a+l,n,p,q,D,m+l,pivot(a,m+l,n,m+l,o,FAIL[4]),FAIL,FAIL[6]); 

Dintaimp(a,m+l,n,p,q,D,R,L,FAIL,x,z); ~ REPORT; 

newline(30 , 1) 
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procedure Constraint(a,m,n,p,D,fail,finish); value .,n,D; 

integer array a,p; integer m,n,D; label fail; boolean finish; 

comment This procedure generates and adds a constraint according to 

the particular algorithm being tested. The majority of programmes 

differed from BHD only in this prooedure, the exoeptions being BaD, 

which has one extra statement in the main programme, and BH6, which 

differs in integer procedure pivot. The text of the procedure 

reproduoed here is common to programmes BHD and BaD. 

Programmes BHD and BGD ohoose the first row with an a[i,o]/D 

which is non-integer, calculate dlrem(a[i,o],!,D), that is the 

remainder af a[i,o] when divided by D, and multiply the row by the 

largest multiple of the remainder whioh is less than D, and take 

the constraint from this row. 

The parameter fail is not used in this version of the 

procedure, finish is set to true if the ourrent solution is an 

integer one, and the remaining parameters perform the same function 

as the variables with the same identifiers described at the start of 

the main programme; 

begin integer i,j,g; 

!2! i:=o step 1 until m 22 !! d1rem(a[i,0],1,D)~0 !h!! goto FND; 

finish:=true; goto DONE; 

FND: g:=(D-l).d1rem(a[i,0],1,D); 

DONE: 

end--, 

~ j:=O step 1 until n 22 a[m+l,j]:=-dlrem(a[i,j],g,D); 

writetext(3o,lC··*·1); 



- 186 -

comment This is the start of the main programme. The programme first 

reads the dimensions of the data, m and n, followed by the variable 

parameters whose presence is indicated by n<O. The parameters are 

held in integer array z. 

The objective function is read and temporarily placed in integer 

array q. The number of cost rows to be generated is calculated and 

assigned to s. In all but programme BGD s=O: in programme BaD it is 

such that 2+s is the largest power of 2 les8 than or equal to the 

coefficient of the objective function with maximum absolute value. 

Variable m is now increased, viz. m:=m+n+s, and integer array a 

is declared to be large enough to hold a problem with this number of 

rows. The 8+1 cost functions are now generated. Next the constraints 

on the original data are read and assigned to rows a[&+1,jl to a[m,jl, 

where j=1, •• ,n, but leaving rows a[B+y+l,j] to a[&+y+n,j] free for 

the negative unit matrix which is next to be generated. y signifies 

the nuaber of constraints of the original data to be placed above the 

negative unit matrix. The purpose of the matrix i. to ensure that 

after the cost functions have been maximised the next variables to 

be maximised in the lexicographic tableau are those in the original 

objective function. 

Once the data has been read and the tableau assembled procedures 

Intsimp and Dintsimp are called to find the solution to the linear 

programming problem, and the result i. printed. Prooedure Integer 

is then called to find an integer solution, which is alao printed. 

A constraint is then added to make the solution just found 

infeasible o In the case of all but programme BOD this automatically 

terminates the programme. In the case of programme BOD procedure 

Integer is reentered to search for a better one. 
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m is initially the number of constraints in the original data but is 

later increased to include the extra constraints and cost functions 

generated by the programme, 

n is the number of non-basic variables in the original data, 

D is the absolute value of the determinant of the inverse matrix, and 

is initially set to 1, 

R is used for numbering slack variables added in procedure Integer: 

it is initially equal to m+n, 

L is used to define the dimensions of a and p, 

x defines the dimension of integer array z, 

s is the index of the row of a containing the objective function, and 

is thus also the number of added cost rowa, 

y is the number of constraints in the input data to be placed above the 

negative unit matrix. It is defined by one of the parameters in the data, 

tm holds the run time at which timing waa last started, 

nores is true if no feasible integer solution has yet been found, 

f, fB, g, h, i, j, k, and u are formats and working variables, 

q initially holds the objective function: later it holds the indices 

identifying the non-basic variables, 

p holds the indices identifying the basic variables, 

a holds the tableau representing the problem to be solved, 

z holds the parameters of the problem. Only one can be set by the 

original data and that is z[BJ which holds y. If unspecified it is set 

to zero. The six elements of z which are not redundant are 

z[lJ=D, z[2J=R, z[3J=L, 

z[71= time used by the programme so far, excluding input/output, 

z[Bl=y, z[10J=8; 
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inte,er m,n,D,R,L,x,s,y,tm,f,f8,g,h,i,j,k,u; 

boolean no res; norea:=!!2!; 

open(20); open(30); 

START: copytext(20,3o,lttl); m:=read(20); !! m!o ~ goto END; 

!! ~ nores ~ gap(30,1); nores1=!!2!; n:=read(20); 

x:=!! n>O ~ 0 !!!! read(20); n:=abs(n); 

begin integer array q[0:n],z[1:!! x!10 ~ x !!!! 10]; 

comment The variable parameters are read in; 

!2! i:=1 step 1 until x,~1 step 1 until 10 do 

z[i):=if i>x then 0 elae read(20)· - - - , 
y:=z[8]; !! x<10 ~ x:=10; g:=O; 

comment The cost function is read into array q and the element with 

maximum absolute value assigned to g; 

!2! j :=0 step 1 until n ~ 

begin q[j]:=read(20): u:=inbaaicsymbol(20); 

!! u=37 2! u=32 then 

begin u:=!! u=37 ~ 0 !!!! 1; h:=q[j)-1; 

!2! k:=o step 1 until h 22 q[j+k):=u; 

end· -, 
if j>O ~ abs(q[j]»g ~ g:=abs(q[j]); 

end· -' 
8:=0; 

comment In this position programme BaD calculates the number of additional 

cost rows to be added by including the following statement: 

for h:=1, hX2 while h!g ~ s:=&+1; 

m:=m+n+s; L:=Z[3]:=m+2; z[10]:=s; 



- 189 -

begin integer array a[-l:L+l,o:n),p[o:L+l); 

switch FAIL:=Fl,F2,F3,F4,F5,F6,F7,F8; 

proc.dure fl(s,ind); value ind; string 8; boolean ind; 

begin n.wline(30,2); 

!! ind ~ writet.xt(30,s) 

!!!! writ.t.xt<30,ino*better*solutionl); 

.12!2. FINISH 

end· -' 
q[o) :=-q[o); 

comment Th. following statement generates the additional cost row. for 

progr .... BOD. In the other programmes s=O and the c08t function is 

simply copied from array q to row ° of array a; 

~ i :=0 8tep 1 until 8 ~ 

b!(in g:=2+<s-i); p[i]::2ti ; 

~ j::o step 1 until n do a[i,j]::(q[j]+g~2X8ign<q[j]».g; 

.nd· -, 
p[s]::o; 

~ j :=0 step 1 until n do 

b!lin a[-l,j]:=O; q[j]::j ~; 

R::n; 

comment Th. constraints on the input data are now read in and the 

artificial cost function generated; 
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~ i :=8+1 step 1 until 8+Y, B+Y+ll+l step 1 until m !!2. 

begin R:=R+l; j:=read(20); g:=inbasicsymbol(20); 

end· -' 

g:=!! g=178 ~ -1 .!!!.! +1; 

!2!: j :=1 step 1 until n !!2 

begin a[i,j]:=gxread(20); 

end· -, 

u:=inbaaicaymbol(20); 

begin u:=!! u=37 !!!! 0 !!!! g; h:=aba(a[i,j])-I; 

end 

!2! k:=O step 1 until h do 

begin a[i,j+k]:=u; 

!! p[i]<o 

~ a[-I,j+k]:=a[-I,j+k]-a[i,j+k] 

end· -, 

!!!!!! p[i]<o ~ a[-I,j]:=a[-I,j]-a[i,j] 

a[i,0]:=gXread(20); !! p[i]<O ~ a[-I,O]:=a[-I,O]-a[i,O] 

z[l]:=D:=l; Z[2]:=R; a:=z[10]; 

comment The negative nXn unit matrix ia generated; 

~ i :=B+y+l step 1 until &+y+n .!!2 

begin ~ j:=O step 1 until n ~ a[i,j]:=O; 

a[i,i-s-y]:=-I; p[i):=i-a-y 

end--' 
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f::format(ls-ndddddsddddddl); f8::format(l-nddddddd;1>; 

tm::time; z[7]I:o; 

co .. ent The feaaible optimal 8Olution in rationals ia found and printed out; 

Intsimp(a,m,n,p,q,D,R,L,FAIL,x,z); 

Dintsimp(a,m,n,p,q,D,R,L,FAIL,x,z); 

z[7]::time-tm; writetext(30,!lcclrational*aolutionlI5s1D:l>; 

write(30,f,D); newline(30 ,2); 

.!2!: i ::0 step 1 until .. ~ 

begin write(30,f,p[i]); write(30,f,a[i,o]); writetext(30 ,i*ll); 

write(3o,f,D); 8pace(30,10); output(30 ,a[i,o]/D) 

~; newline(30 ,2); 

co .. ent The integer solution to the problem is found and printed out; 

REIT: Integer(a,m,n,p,q,D,R,L,FAIL,x,z); 

write(30,f8,p[s]); newline(30 ,2); 

.!2!: i::o step 1 until g-1 ~ 

~ j::i step g until i+5Xr ~ 

!! j!_ ~ begin write(30,f8,p[j]); write(30.f8,a[j,O]) end 

!!!! begin newline(30,1); j::i+5Xg ~; 

writetext(30,!lcclrun*time*in*secs:l>; 

write(30,f,z[7]); newline(30 ,2); 

1£ z[7]!1800 !h!! goto CLOSE; tm::time; sl:z[lo1; 

if nores then m::m+l; nores::false; - -
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comment A constraint is added to make the integer solution just found 

infeasible, 80 that a search can be made for a better one. In all but 

programme BGD the first solution found is optimal so that the next 

five lines could be replaced by ~ FINISH; 

p[m):=p[m+l]:=O; a[m,o)s=a[m+l,O):=-D; 

!2! j:=l step 1 until n do a[m,j]:=a[m+l,j]:=a[s,j]; 

Intch(a,m+l,n,p,q,D,m+l,pivot(a,m,n,m,O,F4),FAIL,F6); 

Dintsimp(a,m,n,p,q,D,R,L,FAIL,x,z); 

goto REIT; 

CLOSE: printar(a,m,n,p,q,D,f); 

writetext(O,!lclanother*problem*completedl); goto START; 

F5: f1(ilogical*errorl,~); 

F4: fl(ino*intecer*solutionl,nores); 

13: fl(lno*rational*solution*(priaal)l,~); 

F1: fl(isolution*unboundedl,~); 

FINISH: z[7]:=z[7]+time-tm; writetext(30 ,!lcclrun*time*in*secs=1); 

end -
end--' 
END: close(20); close(30 ) 

.n~ 
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APPENDIX D 

PART 2 

THE OTHER PROGRAMMES 
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Part 2 The Other Programmes 

The specification of the other programmes is the same as that of 

programme BHD. As they differ from BHD only within one or two 

procedures only the differences are reproduced here. 

Programmes BHM, BH9, BHQ, BHN, BHP,BHE and BHF differ only in 

procedure Constraint. Their methods of choosing constraints are 

described in sections (b) to (h) of Part 4 of Chapter 2. 

Programme BH6 uses the same version of procedure Constraint as 

does programme BHF but has its own version of integer procedure 

pivot. This is described in section (i) of Part 4 of Chapter 2. 
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procedure Constraint(a,.,n,p,D,fail,finish); value .,n,D; 

integer array a,p; integer .,n,D; label fail; boolean finish; 

comaent The text of this procedure ia that contained in programme BHM; 

begin intecer i,j,g; 

!2! i:=o step 1 until • ~ !! dlre.(a[i,o],1,D)~0 ~ loto FND; 

finish:=~; ~ DONE; 

FND: g:=1; 

12! j:=O step 1 until n ~ a[m+1,j]:=-dlrem(a[i,j],g,D); 

writetext(30,IC·**·1); 

DONE: 

end· -, 

procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D; 

integer array a,p; integer .,n,D; label fail; boolean finiah; 

co_ent The text of this procedure i8 that contained in programme BH9; 

begin intecer i,j,l; 

~ i:=1 step 1 until • ~!! dlrem(a[i,O],l,D)~O !!!!! goto FND; 

finish:=~; goto DONE; 

PHD: 1:=(D-1)idlr .. (a[i,o],1,D); 

DONE: 

end--, 

12! j:=O step 1 until n ~ a[m+1,j]:=-dlrem(a[i,j],g,D); 

writetext(3o,IC*·*·1); 
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procedure Oonstraint(a,.,n,p,D,fail,finish); value .,n,D; 

integer array a,p; integer .,n,D; label fail; boolean finiah; 

comment The text of this procedure is that contained in programme BHQ; 

begin inteler i,j,(; 

~ i:=O step 1 until • ~!! dlre.(a[i,ol,l,D)~O ~ (oto FND; 

finish:=!!,:!:!!; goto DONE; 

FND: g:=D-euclidalg(a[i,ol,D); 

OONE: 

end--' 

~ j:=o step 1 until n ~ a[~l,jl:=-dlre.(a[i,j],g,D); 

writetext(3o,iC··*·1); 

procedure Oonstraint(a,.,n,p,D,fail,finiah); value m,n,D; 

integer array a,p; integer .,n,D; label fail; boolean finish; 

comment The text of this procedure is that contained in programme BHN; 

begin integer i,j,g,h,k; 

DONE: 

end--, 

.!2.!: h:=o step 1 until a ~ 

begin k:=dlrem(a[h,o],l,D); 

!! k>g ~ basin i:=h; g:=k ~ 

end--, 
!! g:o !!!!! begin finish :=~; goto DONE ~; 

!2! ja=l step 1 until n ~ a[m+l,j]:=-dlre.(a[i,j],l,D); 

g:=euolidalg(a[l,pivot(a,atl,n,-+l,O,fail)],D); 

!2! j:=O step 1 until n ~ a[m+l,j]:=-dlre.(a[i,j],g,D); 

writetext(30,iC·***1); 
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procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D; 

integer array a,p; integer .,n,D; label fail; boolean finish; 

comment The text of this procedure is that contained in programme BHP; 

begin integer i,j,I; 

12! 1::0 step 1 until - ~ !! dlre.(a[i,o],l,D)~O ~ loto FND; 

finish::!!!!; goto DONE; 

FND: !2! j::O step 1 until n ~ 

DONE: 

end--, 

a[m+l,j]::if dlre.(a[i,j],I,D):O then 0 else -1. - - - , 
g::euclidalg(a[i,pivot(a,atl,n,m+l,o,fail)],D); 

12! j::o step 1 until n ~ a[m+l,j]s:-dlre.(a[i,j),g,D); 

writetext(3o,lC****1); 

procedu~ Constraint(a,m,n,p,D,fail,finiah); value _,n,D; 

intecer array a,p; intecer _,n,D; label fail; boolean finish; 

co_ent The text of thh procedure 18 that contained in prograJllllle BHE; 

begin integer i,j,g,h,k; 

DONE: 

end--' 

1::0 ; 

!2! hs:o step 1 until m ~ 

begin k::dlrem(a[h,o),I,D); 

!! k>g ~ begin i::h; g::k !!! 

end--' 

c::1; 

!2! j::O step 1 until n ~ a[m+l,j)::-dlrem(a[i,j),c,D); 

writetext(3o,lc****1); 
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procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D; 

inte,er array a,p; integer m,n,D; label fail; boolean finish; 

comment The text of this procedure i8 that in programaes BHF and BH6; 

begin integer i,j,g,h,k; 

DONE: 

end--' 

g::O; 

!2! h::O step 1 until m do 

begin k::dlrem(a[h,o],l,D); !! k~O !h!! k::(D-l).kXk; 

!! k>g ~ begin i:=h; g:=k ~ 

end. -, 
!! g:O !!!! begin finish::~; goto DONE ~; 

g::(D-l)~dlrem(a[i,o],l,D); 

!2! j::O step 1 until n ~ a[m+l,j]::-dlrem(a[i,j],g,D); 

writetext(3o,lC****1); 



- 199 -

integer procedure pivot(a,m,n,I,iO,FAIL); value m,n,I,iO; 

integer array a; integer m,n,I,iO; label FAIL; 

comment This version of the procedure was used in programme BH6. It 

resolves ties between two possible pivot columns by choosing the 

first one, rather than referring to the following rows as in the 

lexicographic method. Nevertheless it still ensures that when 

called by Intsiap the artificial cost and objective functions are 

optimised simultaneously; 

begin integer j,J,gn,gd; 

end­-, 

J:=gn:=o; gd:=-l; 

.!2! j:=l step 1 until n ~.!! a[I,j]<O and a[-l,j]~O ~ 

begin!! dlsign(gn,a[I,j],a[iO,j],gd)<O ~ J=O ~ 

begin gn:=a[iO,j); gd:=a[I,j]; J:=j ~ 

end--, 
if iO=-1 then -

begin !2!: j :=1 step 1 until n ~ 

.!! a[-I,j)=a[-l,J] ~ a[o,j]<a[o,J] !h!! J:=j 

end--' 
pivot :=J; .!! J=O ~ goto FAIL 


	457674_001
	457674_002
	457674_003
	457674_004
	457674_005
	457674_006
	457674_007
	457674_008
	457674_009
	457674_010
	457674_011
	457674_012
	457674_013
	457674_014
	457674_015
	457674_016
	457674_017
	457674_018
	457674_019
	457674_020
	457674_021
	457674_022
	457674_023
	457674_024
	457674_025
	457674_026
	457674_027
	457674_028
	457674_029
	457674_030
	457674_031
	457674_032
	457674_033
	457674_034
	457674_035
	457674_036
	457674_037
	457674_038
	457674_039
	457674_040
	457674_041
	457674_042
	457674_043
	457674_044
	457674_045
	457674_046
	457674_047
	457674_048
	457674_049
	457674_050
	457674_051
	457674_052
	457674_053
	457674_054
	457674_055
	457674_056
	457674_057
	457674_058
	457674_059
	457674_060
	457674_061
	457674_062
	457674_063
	457674_064
	457674_065
	457674_066
	457674_067
	457674_068
	457674_069
	457674_070
	457674_071
	457674_072
	457674_073
	457674_074
	457674_075
	457674_076
	457674_077
	457674_078
	457674_079
	457674_080
	457674_081
	457674_082
	457674_083
	457674_084
	457674_085
	457674_086
	457674_087
	457674_088
	457674_089
	457674_090
	457674_091
	457674_092
	457674_093
	457674_094
	457674_095
	457674_096
	457674_097
	457674_098
	457674_099
	457674_100
	457674_101
	457674_102
	457674_103
	457674_104
	457674_105
	457674_106
	457674_107
	457674_108
	457674_109
	457674_110
	457674_111
	457674_112
	457674_113
	457674_114
	457674_115
	457674_116
	457674_117
	457674_118
	457674_119
	457674_120
	457674_121
	457674_122
	457674_123
	457674_124
	457674_125
	457674_126
	457674_127
	457674_128
	457674_129
	457674_130
	457674_131
	457674_132
	457674_133
	457674_134
	457674_135
	457674_136
	457674_137
	457674_138
	457674_139
	457674_140
	457674_141
	457674_142
	457674_143
	457674_144
	457674_145
	457674_146
	457674_147
	457674_148
	457674_149
	457674_150
	457674_151
	457674_152
	457674_153
	457674_154
	457674_155
	457674_156
	457674_157
	457674_158
	457674_159
	457674_160
	457674_161
	457674_162
	457674_163
	457674_164
	457674_165
	457674_166
	457674_167
	457674_168
	457674_169
	457674_170
	457674_171
	457674_172
	457674_173
	457674_174
	457674_175
	457674_176
	457674_177
	457674_178
	457674_179
	457674_180
	457674_181
	457674_182
	457674_183
	457674_184
	457674_185
	457674_186
	457674_187
	457674_188
	457674_189
	457674_190
	457674_191
	457674_192
	457674_193
	457674_194
	457674_195
	457674_196
	457674_197
	457674_198
	457674_199

