
THE COM PUT E R SOL UTI 0 N o F PRO B L EMS I N

I N T E G E R PRO G RAM MIN G

M.R. GUY.

Ph.D. Thesis September, 1969.

- 2 -

ABSTRACT.

The thesis is concerned largely with Gomory s Method of Integer
Forms whereby an integer programming problem is solved by a combination
of linear programming operations and the addition of new constraints.

Chapter I describes the theory behind the method. It deals
with the techniques of linear programming when the use of floating
point and its associated rounding and truncation errors are avoided
and describes the way in which new constraints can be generated and
added during solution of the problem.

Chapter 2 deals with the author'~ experimemts in integer
programming. Parts I to 3 are concerned with the linear programming
method which was developed partly to deal with numerical problems
and partly to facilitate the choice of constraints. Part 4 deals with
experiments with different criteria for choosing constraints.

Chapter 3 is concerned with two algorithms. The first is
essentially the lexicographic method advocated by Haldi and Isaacson.
An independent approach has provided an insight into it which led to
the development of the second algorithm. In this the objective
function is replaced by approximations to it with smaller coefficients
in order to obtain an approximate solution more rapidly. A
restriction is then placed on the objective function and a search made
for a better solution.

Chapter 4 compares the two algorithms of Chapter 3 with those
of certain other authors. It is concluded that the systematic
method of choosing constraints used in the author s algorithms
enables them to be regarded as special forms firstly of a branch
and bound algorithm and secondly of a backtrack method. As a
corollary it is suggested that some of the techniques used in the
author·s algorithms to speed up solution could be applied to these
other methods.

- 3 -

ACKNOWLEDGEMENTS.

I am indebted to the Science Research Council for awarding me a
Research Studentship to enable me to study at the University of
Newcastle upon Tyne from October 1964 to September 1967. Also to
Professor E.S. Page for admitting me to the Computing Laboratory to
research for a Ph.D.

My thanks are due to Dr H.I. Scoins for his supervision during
my three years at Newcastle, and after, and for his ideas and comments
from wh±ch I have benefitted.

I must thank Wiggins Teape Research and Development Ltd. for
their encouragement and for arranging to type this thesis.

Lastly, but not least, I have to thank my wife for enduring a
thesis that has occupied many evenings and weekends.

- 4 -

TABLE OF CONTENTS.

Abstract

Acknowledgements

Index to Figures Contained in the Text.
Chapter 1: Background

Part 1: The Simplex Method
Part 2: The Matrix Algebra of Linear Programming
Part 3: Extending the Problem during Computation
Part 4: The Integer Properties of the Rows of the

Part 5:
Part 6:
Part 7:

Part 8:

Chapter 2:
Part 1 :

Part 2:

Part 3:

Part 4:

Chapter 3:
Part 1 :

Part 2·

Part 3:

Part 4·

Part 5·

Chapter 4·

Part 1 :
Part 2:
Part 3:
Part 4·

Transformed Matrix
The Generation of Additional Constraints
The Lexicographic Dual Simplex Method
The Use of Integer Arithmetic within a
Digital Computer
The Euclidean Algorithm

Experiments in Integer Programming
Linear Programming as a Subset of Integer
Programming
The Linear Programming Structure of the
Experimental Programmes
Summary of the Structure of the Experimental
Programmes
Description and Comparison of the
Experimental Programmes

The Two Most Effective Algorithms
The Significance of a Lexicographic
Method
The Dependance of the Rate of Convergence
upon the Ordering of the Basic Variables
in the Tableau
The Problem of the Dual Function of the
Cost Row
A Numerical Illustration of the Use of
Artificial Cost Functions
Aspects of the Algorithm which would
Benefit from Further Research

Comparison of the Methods Described in this
Thesis with the Work of Other Authors
Haldi and Isaacson (ref. 9)
Martin (ref. 10)
Land and Doig (ref. 12)
Backtrack Methods

2

3

6
8
8

12
18
20

28
39
42

44

47
48

51

61

64

78
79

82

84

87

93

98

98
99

101
103

References:

Appendix A:

Appendix B:
Part 1:
Part 2'

Appendix C:

Appendix D:
Part 1:
Part 2:

- 5 -

Symbols, Notations and Definitions

The Test Data
Description of the Problems
The Problems

Tables giving the Results of Running
the Experimental Programmes on the
Test Data

The Experimental Programmes
The Two Most Effective Programmes
The Other Programmes

106

109

113
113
124

135

168
168
194

Figure 1.5.1:

Figure 2.2.1:

Figure 2.2.2:

Figure 2.3.1:

Figure 2.4.1:

Figure 3.4.1:

- 6 -

INDEX TO FIGURES CONTAINED IN THE TEXT

Example of Derivable Cuts

An Example of Scaling

An Example of Looping in
Integer Programming

An Outline Flowchart of;
Programme BHD

An Illustration of the
Methods Described in Part 4
of Chapter 2

A Comparison of Three
Different Ways of Solving
a Simple Problem

37

55

58

63

73

89

- 7 -

CHAPTER 1

BACKGROUND

- 8 -

Chapter 1 BacW°1J.lld

Part 1 The Simplex Method

The maJor part of this thesis is concerned with a method of

integer programming the basis of which was laid in a paper by

R.E. Gomory: An algorithm for Integer Solutions to Linear Programs

(ref. 1). It is concerned with the solution of the linear programming

problem:

n
Minimise ~

J=l
c.x.

J J

subject to the constraints

n

I
j=l

<
w .. x. > b.
~J J ~

x. > ° J

where the w .. , b., c. are constants,
lJ 1 J

the x. are variables
J

and <
> means < or = or ~,

and the additional integer constraints:

x. integer.
J

(i=1. •• m)

U=l ... n}

In our treatment of the problem we will assume that all the

constraints, apart from the ones x. ~ 0, are in the form ~w .. x. = b .•
J - r.. ~J J 1

This does not involve loss of, generality for the inequalities

LW .. x. < b. and Lw .. x. > b. can be expressed as the pairs
~J J 1 lJ J - 1

LW' .x. + s. = b., s. > ° and Lw .. x. - s. = b., s. > 0, respectively.
~J J ~ ~ ~ - ~J J ~ ~ ~

Also we will normally use matrix notation.

Accordingly we may restate the problem as:

minimise c' z 1.1.1.

subject to Wz = b

and ~ ~ °

- 9 -

where A is an m x n matrix, ~ is an m-dimensional vector, and £ and

~ are n-dimensional vectors. It will be convenient for us to

partition W into [B, N], where B ~s a non-singular square matrix of

order m, and N is an m x(n~L matrix. Partitioning £' into

[£~, £~J and~' into ~" l..'J we have:

m~n~m~se 1.1.2.

subject to

This system can be solved for x in terms of l..:

1.1.3.

and the problem becomes

minimise 1.1. 4.

subject to

The basic result of linear programming theory is that

l.. = 0, ~ = B-1~ will cause £' B-1b to be a minimum solution

provided B-1b > 0 and c' - c1 B-1 N ~ O. If one or both of these
- - -2-1

conditions are not satisfied an element of x and an element of l..
are selected according to certain rules and exchanged. It is not

considered necessary to prove these results here and the rules for

selecting an x and a yare simply stated with references.

Let us denote by (BL .. the ijth element of matrix B, and by
~J

eel. or (C'L. the ith element of vector c. - ~ - ~ -

If B-l~~ 0 but £~ - £~ B-1N ~ ~ we select an element (~)j of ~
such that its coefficient (c' - c' BIN). in the objective function

-2 -1 J
is < 0 (usually the most negative}. It is then exchanged with an

-1 -1 (-1 (x). where i is such that (B Nl .. > 0, and (B b).; B N) .. is a
- ~ ~J - ~ ~J

minimum over all i. This ensures that B-1~ remains ~ o. This

procedure is known as the Simplex method (ref. 3, p.70).

- 10 -

On the other hand if £' - £' B-IN ~ 0 but B-l£ to we select
2 I_

an element (x). of x such that lB Ib}. < 0 lusually the most - ~ - - ~

negativeL and then exchange it with (~1. where j ~s such that
J

(B-1N) .. < 0 and - (c' - c' B-IN}.j(B-IN) .. is a minimum over all j.
~J -2 -1_ J ~J

This ensures that c' - c' B IN remains> o. This procedure is known
-2 -1

as the Dual Simplex method (ref. 3, p.991.

If both B-l:Q. < 0 and c' - c' B-IN < 0 a "composite" method ~s
-2 -1

used. The use of composite methods is not yet given much space in

linear programming textbooks. The general principle is to construct

some function of the infeasibilities and non-optimal cost elements,

and choose pivots to make this function tend toward zero. One such

is a 11 self-dual parametric algorithm I' (ref. 4, p. 2451.

These three methods are used once a non-singular matrix, B,

has been found, as in equation 1.1.3. Such a matrix can be obtained

by inventing an artificial vector, y, to form a basis and then

eliminating it. For example, in order to find a matrix, B, ~n the

problem 1.1.2. one would start by solving the sub-problem:

minimise v'

subject to Iv + ~ + N~ = £

y, ~, ~ ~ O.

Providing a non-singular matrix, B, exists the minimum of v ~s zero,

and once this minimum has been obtained v can be left out of the

equations and the problem takes the form 1.1.4.

The introduction of y presents us with a unit matrix, I, as a

starting point. Sometimes B will contain some unit vectors, when

slack variables have been used to turn inequalities into the equalities

of equations 1.1.2. In such a case as many of these unit vectors as

possible will be used to make up the initial unit matrix, an artificial

vector being used to fill the remaining columns.

- 11 -

If b contains negative elements when the problem 1S expressed

in the form 1.1.1. one has two kinds of infeasibility 1n the same

problem.

One composite method of solving this is described by Wolfe in

(ref. 6). It chooses pivots which will reduce a function of the

infeasibilities until the problem becomes feasible. Thereafter the

normal form of the Simplex method is used to obtain an optimal

solution.

The programmes contained in Appendix D were designed in such a

way that problems entered two procedures, first one that performed

the ordinary Simplex method for both eliminating artificial variables

and obtaining an optimal solution, and secondly one that carried out

the Dual Simplex method. The intention of this was to be able to

accept problems in either of two forms. However it was found to work

successfully on problems which were infeasible in both ways and also

non-optimal. It is not suggested that this method was efficient.

- 12 -

Part 2; The Matru Algebra of Linear Programming

The purpose of this Part ~s to establish the algebra of pivoting

used in linear programming in a slightly different form to that

normally ~sed. This is in order that we might know at any stage of

computation exactly which quantities are integer and which are not.

The problem is:

Minimise 1.2.1.

subject to

~ ~ 0, il.. ~ 0 and ~, il.. integer.

We have separated the variables into basic variables, ~, and

non-basic variables, il... If the original inequalities are written ~n

the form

1.2.2.

we are assuming that the rows and columns have been suitably ordered

and we may consider it either as an express~on for ~ in terms of il..

when viewed as

or as a collection of entries in a table which is to be manipulated

whilst working towards the desired optimal solution. We shall refer

to this table as the tableau.

Since we are essentially working with integers throughout this

thesis all matrices, vectors and scalars will be taken to be integer ,

unless otherwise stated. In particular all coefficients in the

original problem, i.e. c , c , B, N, and b will be integer.
-1 -2

Wherever possible the use of inverse matrices will be avoided

and adjugate matrices used instead. Let us write d for IB\, the

- 13 -

determinant of B, and B* for the adjugate matrix of B, so that

dB-I = B* and BB* = B*B = dI. Since (B*) .. is the cofactor of
~J

(B) .. in B, the elements of B* are integers, (ref. 5, p.87) which
~J

~s of course why we prefer the use of B* to that of B- 1 • Accordingly

we will normally express 1.2.2. ~n the form

~ + B*Ni[= B*b 1.2.3.

The letters d and D will be used exclusively for IBI. Gomory,

~n (ref. 1), uses D and this will be followed in some parts of this

thesis, notably the appendices. In this chapter d will be used to

emphasise the fact that it is a scalar.

Before proceeding with the main part of this section we need to

establish two preliminary results.

Lemma 1.2.1. Let a non-singular square matrix B be partitioned

by its last row and column into ~B 1 hI]' where B 1 is also non-

h'" h
-2 3

singular. Then IBI, the determinant of B, may be written as

IBI = h IB I - h'" B* h
3 1 -2 1-1

1.2.4.

To show this we add to the last column of the partitioned form

of B the vector formed by postmultiplying the previous columns by

- B-1 h. Thus
1 -1

= IB I (h
1 3

= h IB I - h'" B* h
3 1 -2 1-1

since IB I B-1 = B*.
1 1

Lemma 1.2.2. Let B be defined and partitioned as ~n Lemma

1.2.1. Then B* may be written in the partitioned form

- 14 -

IBI B* B* h h" B*
1 + 1 J. -2 1 - B* h

B* ~ IB I IB I
1 1

- h" B*
-2 1

To show this we observe that

as can be verified by pre- or post~ultiplication by

form of B. As shown in Lemma 1, IBI = IBI I (h
3

- h;

1 -1
1.2.5.

IB I
1

1.2.6.
y

the partitioned

B-1 h), and we
1 -1

may write this in the form y IBI = IB I. Substituting this expression
1

for y 1n 1.2.6. and multiplying by IBI we obtain 1.2.5.

We now examine the process of 'pivoting' the expression 1.2.3.

This implies choosing a particular element of x together with a

particular element of~, exchanging the elements between the two

vectors and reforming the relevant matrices. Let us suppose that the

expression 1.~.3. becomes

d ~ + B*N~ = B*b

- -
after one pivot, ~ and ~ each differ from ~ and ~ in exactly one

element, and Band N each differ from Band N in exactly one column.

d is defined to be lEI.

The pivot element of the transformation of B*N into B*N is

defined to be that element of B*N contained in the row corresponding to

the chosen element in ~ and the column corresponding to the chosen
-element of~. We assert that d is equal to this piyot element.

- 15 -

For convenience let ~s assume that it is the last element of x

and the last element of ~ that are to be exchanged. Then the pivot

element will be in the last row and column of B*N. We partition B

and N by the last row and column:

Then B and N will take the form

-
N =

having exchanged the last columns of Band N.

The pivot element in B*N is the

of B* and the last column of N, that

making use of the expression for B* proved in lemma 1.2.2. This

expands into IB I n - h~ B* n which is precisely the determinant
- 1 3 -2 1-1

of B.

Some programmes written to perform linear programming hold B*,

N and ~ separately and update them at every pivot operation. Others,

including those described in this thesis, hold these quantities in

combined form, namely B*N and B*~, and it is these which are updated

every pivot operation. Let us write A = B*N and B*~ = ~ so that

1.2.3. becomes

1.2.7.

Suppose that A is partitioned into

[~ : :J and ~ into ~J 1.2.8.

- 16 -

We will show that when a is the pivot element the new array to
3

replace A is given by

-
IBI d A - a a'" -a where d = 1.2.9.

1 1 ~ -1

- -
1131 A = d and d = = a

3
a'" d
-2

As A = B*N, the product of two integer matrices, it must be integer

itself, and this permits us to deduce that

(mod d) 1.2.10.

This property forms the basis of the discussion in Part 4.

To prove equation 1.2.9. we evaluate the product of B*N us~ng

the partitioned form for B* derived in lemma 1.2.2. We have

a = -h'" B* n + IB I n
3 -2 1 -1 1 3

-= d

as alrea~ shown.

a'" = -h'" B*N + IB I n"
-2 -2 1 1 1 -2

a = (IBI B* n + B* h h'" B* n 1/ . I B I - n B* h
-1 1 -1 1 -1 2 1 -1 1 3 1 -1

= (IBI B* n + B* h (h" B* n - IB I n))JIB I
1 -1 1 -1 -2 1 -1 1 3 1

= (d B* n - d B* h)JIB I
1 -1 1 -1 1

A = (IBI B*N + B* h h" B*N)JIB I - B* h n ..
1 1 1 1 1 2 1 1 1 1 -1 -2

= (IBI B*N + B* h (h" B*N - IB In"))JIB I
1 1 1 -1 -2 1 1 1 -2 1

= (d B*N - B* h a")/IB I
1 1 1 -1 -2 1

-To obtain the corresponding values for the elements of A we simply

exchange the yalues of hand n ,h and n , and d and d. Thus
~ J. 3 3

- 17 -

a = d
3

a" = -h" B*N + IB I
,

n -2 -2 1 1 1 -2

a = (d B* h - d B* !lIl/IBI I -1 I -1 1

- (d - B* ~;)J IBll A = B*N n
1 1 1 1 -1

We immediately note that a = d, a" = a", and a = - a. To prove
_ 3 -2 -2 -1 -1

the expression for A we evaluate it:

Cd A - a
1 J.

1

a"l/d = (d
-2

= Cd

= Cd

= A
1

d B*N
1

d B*N
1

B*N
1 1

-- d B* h a" - d B* n
1 1 -1 -2 1 -1

- d B* n a")/d IB I
1 1 -1 -2 1

- B* n a')/IB I
1 -1 -2 1

a + d B* h a")/d
-2 1 -1 -2

-It is necessary to comment on the sign of d and d. The algebra

presented so far is valid whether they are negative or positive.

However in the remainder of this thesis it will be convenient to

assume that d and d are positive.

that the partitioned form of A in

a into 1.2.9. only when a > O.
3 3

Accordingly we adopt the convention

1.2.8 will transform by pivoting on

If a < 0 we will define d = - a
3 3

and will write A as the negative of 1.2.9:

dA + a a" ~
1 -1 -2 1

- d A = 1.2.11.
- a" - d

-2

IB I
1

- 18 -

Part 3: Extending the Problem during Computation

The method of (ref. 1) consists of two basic steps. The first

1S pivoting~ the algebra for which is described in Part 2~ and the

second consists of adding new constraints. In order that computation

may continue to be performed in integers it 1S necessary that any new

constraint must have integer coefficients in its representation in the

original space. To be precise, the original equations can be expressed

as

~ + NZ = 12. 1.3.1.

and any addi.tional constraint as

k' x + s + £' Z = b •
2 3

1.3.2.

s can be regarded either as a slack variable~ constrained to be non­

negative, or an artificial variable constrained to be zero in any

feasible solution.

Additional constraints may be added either to the original

constraints, in which case it is easy to ensure that the variables are

integers, or to the transformed array. In the latter case the

transformed array is that obtained by multiplying 1.3.1. through by B*,

viz

~ + B*NZ = B*12. 1.3.3.

and substituting for ~ in 1.3.2., which gives us, after multiplying

1.3.2. through by d and rearranging~

ds + (dn' - k' B*N)v = db - k' B*b
-2 - L 3 - -

1.3.4.

Thus the coefficient of Z in the constraint added to the

transformed array is the sum of an integer vector each of whose

elements is a multiple of d and an integer combination of the

coefficients of Z in the existing constraints. As there is a one to

one correspondence between e~uations 1.3.2. and 1.3.4. it will be

seen that the condition that an additional constraint is in the form

1.3.4. is necessary and sufficient for the e~uivalent constraint

added to 1.3.1. to have integer coefficients.

- 19 -

We now consider the possibility of adding a new variable.

Although no programme was written which actually did this it

facilitates a proof in Part 4. We add a new variable, t, with

coefficient S to 1.3.1.:

~ + N~ + st = ~
Multiplying through by B* we obtain

dx + B*Nx, oj- B*st = B*£.. 1.3.6.

If now we restrict S to be of the form Br + Nr e~uation 1.3.6.
J. -2

takes the torm

dx_ + B*Nx, + Cdr + B*Nr lt = B*b
-1 -2

which is of a form analogous to 1.3.4.

In Part 4 we shall append a new row and column at the same

time so that the tableau of B*N will expand to become

r B*N

l¥'B*N

B*NV~
Y.'B*NyJ

- 20 -

Part 4: The Integer Properties of the Rows

of the Transformed Matrix.

Gomory has shown that, in general, if we take the rows of

matrix B*N modulo d, they generate an additive group of order d.

As before, we write A for B*N and d for the determinant of B.
""-

We shall prove this result for the predo~inant case, i.e. when A

has no common factor.

Firstly, however, let us consider two examples. The first

~s from Gomory (ref. 1, p. 297).

Minimise - 3x + x
1 2

Subject to 3x - 2x + x = 3
1 2 3

- 5x - 4x + x = -10
1 2 4

2x + x + x = 5
1 2 5

Rewriting this in the form of a tableau and optimising we have,

indicating the pivot elements by asterisks:

z

x
3

x
4

x
5

z

x
1

x
4

X
5

1

0

3

-10

5

3

1

-5

3

x
1

-3

3*

-5
2

x
3

1

1/3

5/3

-2/3

x
2

1

-2 (d = l)

-4
1

x
2

-1

-2/3 (d = 3)

-22/3

7/3*

- 21 -

1 x x
3 5

z 30/7 5/7 3/7

x 13j7 1/7 2/7 (d = 7)
1

x 31J7 -3/7 22J7
1+

x 9J7 -2J7 3J7
2

Let us construct a row from the cost row by taking the elements

of the cost row modulo d. This is (2, 5, 3). If we now construct

the rows obtained by taking successive multiples of this we obtain

the sequence

l. (2, 5, 3)
2. (4, 3, 6)

3. (6, 1, 2)

4. (1, 6, 5)

5. (3, 4, l)

6. (5, 2, 4)
7. (0, 0, o)

It is not surprising that we obtain exactly 7 distinct rows.

What is interesting is that if we now take the rows corresponding

to x , x and x modulo d we obtain
1 '+ 2

x (6, 1, 2)
1

x (3, 4, l}
1+

x (2, 5, 3)
2

These are the same as the rows obtained by taking multiples

3, 5 and 1 of the cost row.

This result is a perfectly ge~l one. It may be summed up

by saying that the rows generated by taking the rows of the matrix

modulo d form an additive group of order d. In other words there

- 22 -

are exactly d such rows and any linear combination of the rows 1S

also a member of the group. In this case the group is cyclic, 1.e.

there is a member of the group such that every other member of the

group may be generated by taking successive multiples of it.

In the next example the group is not cyclic.

Minimise - x -x
1 3

Subject to 2x + 3x + 4x + x = 5
1 2 3 4

4x + 3x + 2x + x = 5
1 2 3 5

In tableau form:

1 x x x
1 2 3

z ° -1 ° -1

x 5 2 3 4 (d = l)
4

x 5 4* 3 2
5

1 x x x
5 2 3

z 5)4 1)4 3)4 -1)2

x 5)2 -1)2 3)2 3* (d = 4)
If.

x 5)4
1

1)4 3)4 1)2

1 x x x
5 2 4

z 5)3 1/6 1 1/6

x 5)6 -1)6 1)2 1/3 Cd = 12)
3

x 5)6 1)3 1)2 -1)6
1

To construct the group of rows modulo d from this we need two

rows. For example take the row generated from the cost row, that is

(8, 2, 0, 2) and from 3 times the x row, that is (6, 6, 6, 01. We
3

construct 6 rows by taking multiples of the (8, 2, 0, 2) row, and

the other 6 by adding the (6, 6, 6, 0) row on to each.

- 23 -

Cal (bi

1. (8, 2, 0, 21 (2, 8, 6, 21
2. (4, 4, 0, 41 C1O, la, 6, 41

3. (0, 6, 0, 6) (6, 0, 6, 6)
4. (8, 8, 0, 81 (2, 2, 6, 8)

5. (4, 10, 0, 101 (10, 4, 6, 101

6. Co, 0, 0, 01 (6, 6, 6, a)

That none of these rows can generate the whole group can be

easily demonstrated. If we take successive multiples of any row

the 6th element will be the row (0, 0, 0, a) because every element

is a multiple of 2. Thereafter the cycle will repeat.

The rows corresponding to x and x are (10, 10, 6, 4) and
3 1

C10, 4, 6, 101 and these appear in the second column of the list

as numbers 2 and 5.

Before we prove the main result we must establish a preliminary

one. This is that if the elements of a matrix W have a highest

common factor of g, there exist vectors ~, y, such that

~' W Y = g (mod h)

where h is any given integer.

To illustrate this consider the following matrix, whose elements

are shown in factorised form:

r2 • 3. 5. 7. 11

L2. 3. 1. 11. 13

2. 3. 5. 1. 13

2. 5. 1. 11. 13

and suppose that h = 2. 3. 5. 1. 11. 13.

2. 3. 5. 11. 131 1. 4 .l.

3. 5. 1· 11. 13J

The highest common factor of the elements of this matrix is

1 and so we must choose vectors with which to pre- and post- multiply

the matrix so that the resultant scalar has no factors in common with

d. This is easily done, for if we premultiply the matrix by [l,lJ

and post~ultiply by [l,l,lJ' this effectively sums the elements of

the matrix and this sum is prime to h. For example, the sum will not

- 24 -

have 5 as a factor for it may be written as

2. 3. 7. 11. 13. + 5(2. 3. 7. 11. + .••. + 3. 7. 11. 13).

To further the example, suppose now that h = 2. 3. 5. 7. 11. 13. 17.

We cannot easily determine whether the sum of the elements of matrix

1.4.1. is a multiple of 17 or not, but this is not necessary if we

change the pre- and post- multiplying vectors to [1,17] and [1,17,17J '.

The point of this is to show that we needed to determine only

five variables, that is the elements of ~ and y, to generate a number

congruent to g whereas if the six elements of the matrix had been

arranged as a vector, w, any vector t such that t'w = 1 (mod d) would

have to have six non-zero elements.

The following lemma makes use of two arguments in particular.

Firstly; that given a vector y, there is a vector ~ such that ~'y 1S

equal to the highest common factor of w. Secondly; that if r is

prime to s, r + as is prime to s.

Lemma 1.4.1. Let W be an integer matrix whose elements have a

highest common factor g, and let h be any integer. Then there exist

integer vectors u, v such that

~' W Y = g (mod h} 1.4.2.

To show this we first write W = gT, and rewrite equation 1.4.2.
as

~' T Y = 1 (mod h)

To establish this result let h be expressed as the product of

its prime factors:

n
h = n p.

1

i=l

q.
1

For each index i we select a row which does not contain p. as a
1

common factor. Denote this row by k eil. We take this row which

we denote as before by Tk(i}* and multiply it by every other factor

of h:

- 25 -

This still does not contain p. as a common factor, but does have as
~

a factor every p. where j ~ i.
J

~ this expre$.sion oYer i. As everyone except the i th contains

p. as a cammon factor the resultant vector will not contain p. as a
1 1

common factor. The sum can be expressed as

u' T

where

u=
q.

~ ~k(i) n p. J , J
... jfi

where ~k(i} has 1 as its k(i} th element and zero elsewhere.

As u' T does not contain any p. as a common factor there exists
~

a vector v such that

~' T v = 1 (mod h).

The vector y can be generated by means of the Euclidean Algorithm.

We now set out to prove the result illustrated at the beginning

of this chapter, namely that when the matrix A = B*N has no common

factor its rows taken modulo d generate a group of order d, where d

= IB I·

It is assumed initially that A is of the form B*N where Band

N are integer matrices, and that d = IBI. It is not assumed at this

point that A has no common factor.

Let us choose vectors ~ and y such that J!' A Y. is the highest

common factor of A. As established in Part 3,A can be extended by

adding a row and a column to become

r A Avl
L~'A ~'AYJ

- 26 -

This matrix has the same properties as A in that it represents the

product of two integer matrices, one of which is the adjugate of an

integer matrix with determinant d. Accordingly we may use the

property established in Part 2 (equation 1.2.10) that

Let us write g for u' A v

g A == A ~ ~'A (mod d) 1.4.3.

We wish to establish a property concerning row vectors generated

by taking an integer linear combination of the rows of A. Let us

denote a typical row vector as ~' A, where ~ is any m-dimensional

vector. Multiplying both sides of 1.4.3. by ~' we obtain

g ~' A == ~' A ~~' A (mod d)

We now assume that g = 1. If we write ~ = w' A ~ we have

w' A == ~ ~'A Unod dl

As u' is fixed independently of ~, and ~ can have at most d distinct

values modulo d this shows that w' A can have at most d distinct

values modulo d.

To show that w' A can in fact take on d distinct values we

first observe that ~ can take on d distinct values. For let

~' = A~', where A .:: 1, •• , d. Then

}.l .:: ~' A ~ = AY,' A Y = A

Secondly the d values of ~ will generate d distinct values of ~ u' A.

~or if not suppose

1-1. ~' A ;;)l. Jt.' A where 11· * ~.
1 J 1 J

Th.en ;postlll1J.ltip1ring each side of the equation by y we obtain

". ll' A y :: .~. u' A v (inod d 1
"1 - - r J -

But we ~e ass1Jllled that Jt.' A y.:: 1.

Therefore il± ;; '~j contrary to hypothesis.

Th.erefore .!i' A can take on d distinct values.

- 27 -

This result is a very general one, and fails only when A has

a common factor. The proof of lemma 1.4.1. is a constructive one

and shows us how to construct the group of permissible rows. For

each of the prime factors p. of d we select a row that contains
1

q1· an element prime to p. and multiply this row by dip. ,where q.
111

1S the number of times p. is repeated as a factor of d. The sum
~

of these will generate the whole group.

In practice of course if an element exists which is prime to

d the row that contains it will generate the whole group of

constraints. Experimentation showed that the group was usually

cyclic, and also could often be generated by a single row of A.

- 28 -

Part 5: The Generation of Additional Constraints

Methods of integer programming ~n general need to augment

the constraints contained in the original statement of the problem

with constraints derived ~uring the process of solution. In this

part we consider four ways of deriving such constraints in such

a way as to fill the following conditions

(a) the constraints must have integer coefficients when

represented in the original space.

(b) they must not render infeasible any feasible integer

point.

(c) they must exclude from the feasible space some part

of it which contains no integer point.

To satisfy the first condition we write any new constraint as

k' x + S + .!l' ;L = b
2 3

1.5.1.

where k, nand b are integer constants, and s is an integer
- -2 3

variable. This is its representation in the original space, that

is when added to the equation 1.3.1. Recalling Part 3 we remember

that 1.5.1., then referred to as 1.3.2., takes on the form 1.3.4.

when added to the transformed set of equations 1.3.3. We reproduce

1.3.4. here as 1.5.2.
S

d • + (d .!l; - k' B*N);L = d b
3

- ~' B*~ 1.5.2.

The rest of the section describes different approaches to defining

the values of k, nand b •
- -2 3

First however we introdllQe a new pair of symbols [J. We

define them to be such that [aJ represents the largest integer not

greater than a. We also extend the definition so that [aJ d represents

the largest multiple of d not greater than a. We can define the

second usage in terms of the first:

We will make use of the relations

- 29 -

a - [aJd !. 0 1.5.3.

and a - [aJd < d. 1.5.4.

- 30 -

5 (i) Gomory's Original Derivation

This is the derivation presented In (ref. 1).

We have to choose values for the k, n , and b in 1.5.2. We
- -2 3

allow ourselves a choice of ~, subject to conditions discussed

later. We then define nand b such that
-2 3

d n' = rk' B*Nl and d b
-2 L Jd 3

1.5.5.

Substituting in 1.5.2. we obtain

and relations 1.5.3. and 1.5.4. enable us to deduce that

ds > - d.

As s is integer this implies 82:. 0 .

This turns equation 1.5.6., which is simply a definition of

s, into an inequality which excludes no integer point. It will

exclude some part of the space not containing an integer point

provided

i.e.

I"k' B*bl - k' B*b < 0 L -:.Jd -

k' B*J2. * 0 (mod dL

Attempts to implement the method of (ref. 11 tend to choose

~ so that 1.5.6, looks like a good constraint. For example the

constant term might be large and negative, that is approaching

the value of - d, or the coefficient of ~ might have small elements.

The next section describes a derivation based on a different

approach.

- 31 -

5(ii} A more direct approach

Dr. Land (ref 7) suggests that good constraints tend to be generated

from the sum of small multiples of the original constraints. So whereas

others might choose k so that ~' B*N or ~' B* ~ satisfy certain conditions,

Dr. Land would choose k so that the vector k' B* contained small elements.

So we pre~ultiply the original equations

B~ + N1. = ~

by l' B* to get

d l' .!. +~! B* N1. = k' B* b

Relation 1,5,3 permits us to write

d k' .!. + [.1' B*NJd 1. ~ ~' B*b

and since the left hand side is a multiple of d we can round down the right

hand side to be a multiple of d also:

d ~' .!. + [~' B*NJd 1. ~ ~' B*~Jd

If we now write ds for the integer slack variable and substitue B*~ - B*N1.

for d x we obtain

ds = [.k' B*~Jd - k' B*b - l[~' B*NJ d - k' B*Nl 1.

as before.

- 32 -

5 C.iii 1 At more general approach

This was given by Gomory in (ref 2) and in addition to producing

the constraints already described produces the constraints used in his

all-integer algorithm contained in the same re~erence.

Let A be any non-negative number, not necessarily integer.

Define .!:.,' .!:..l. and ro as follows:

d k'

k' B*N

+ r
o

where 0< (r). <A, all i
-1 1.

where 0< (r). <A, all 1.
-2 1.

where 0 < r <A.
- 0

Consider a linear combination of the e~uations, thus

d k' ~ + ~' B*N ~ = ~' B*~

1.5.7.

where~' integer. We may rewrite it using e~uations 1.5.7. and

rearranging the terms:

r; ;L + !:~ x • r 0 + A f f' A B"l - f' A B*N ~ ;L - td A £ j ~}
Now let us define s to be the contents o~ the curly bracket:

Clearly s is integer. But from 1.5.8. we have

AS = - r +~' ~ + ~' ~ > - r > - A
o 2 1 - 0

since ~' ~ +~' ~ > 0 and r <A from 1.5.1.
210

As s is integer, we deduce

s > O.

1.5.8.

1.5.9.

,
, .~. , ~

- 33 -

Now let A = d and define nand b as before (1.5.5.). Then
-2 3

1. 5.9. beCOlllea

s = fk' B*Nl

L d J ~ - k' x

On multiplying through by d and substituting B*~ - B*N~ for d ~ we again

obtain

1. 5.10.

In the all-integer algorithm Gomory derived constraints in such a way

that the pivot element was always -1 and hence d - 1.

These constraints were derived by making A > d in 1.5.9. and adding that

constraint to the transformed tableau. The value of A was chosen large

enough to ensure a pivot of -1.

The method was designed to work with a tableau in dual feasible foc.m

and k was chosen so that k' B*b < 0, thus ensuring that [k' B*1!J)] < O.

- 34 -

5(iv) Gomory's mixed integer method

In (ref 8) Gomory gives a method of deriving constraints where some

but not all of the variables must take on integer values. It is of interest

here because it does not reduce to the method of Part 5(i} when there are no

non-integer variables present.

We consider an integer combination of the transfo+med tableau:

d k' x + l' B*N ~ = k' B*b 1. 5 .11.

We restrict the choice of 1 to ensure that l' ~ is a combination of

integer variables. To make the algebra more readable let us write x for 1'~

.. and a' - a' for k' B*N
-1 -Z -

element of a and a
-1 -2

d x + (a!
-1

where a > 0 and a _> 0, that is to say every
-1 - -2

is greater or equal to zero. 1.5.11. then becomes

- ~} ~ = l' B*b 1.5.12.

We assume that although x must be integer valued k' B*b is not a multiple

of d at this point.

We define f = k' B*b - ~' B*J2.] d.

- 35 -

We have two alternatives.

Either (a)

or (b)

d x .::. ~' B*b - f

d x > k' B*b - f + d

1. 5 .13.

1. 5 .14.

Suppose (a) ~s true. Eliminating d x between 1.5.12. and 1.5.13. we have

- (a' - a') il.. < - f
-1 -2 -

Since d - f > 0 we have

- Cd - flea' - a'l v < - Cd - f) f. -1 -2 IL.._

Since - d ~~ il.. .::. 0 we may add it to the left hand side:

- d a' v - Cd - f} a' v + (d - f) a' v < - (d - f) f
-2 IL.. -1 IL.. -2 IL.. -

or - (d - fl ~~ il.. - f ~~ il.. .::. - (d - f) f. 1.5.15.

On the other hand suppose (b) is true.

Then 1.5.12. and 1.5.14. give us

- (a' - a') v _> - f + d.
-1 -2 IL..

Since - f < 0:

f ~~ il.. - f ~~ il..'::' - fed - f)

and since - d ~~ il.. ~ 0:

- (d - f) ~~ y.. - f ~ il.. ~ - f (d - f). 1. 5.16.

So either 1.5.15. is true or 1.5.16. is true. But we have so arranged

them as to be exactly the same and thus may add the constraint

d s - ((d - f) a' + f a'} v = - fed - f)
-1 -2 IL..

1.5.17.

where s > O.

Rearranging 1.5.17. slightly and resorting to the definitions of ~ - ~
1 2

and f we may write 1.5.17. as

d s + (f k' B*N - d ~~) il.. = f ~' B*1! - f (~' B*1!Jd + d)

which is of the form necessary to ensure that it has integer coefficients ~n

the original space, as may be seen by comparing it with 1.3.4.

In general, s is not an integer variable for its value depends on the non­

integer variable il... However if all the variables are integer s will be too.

Furthermore we may strengthen 1.5.17. Instead of 1.5.12. we write

d x + (a - r a 1 - (~ - r ~])} il..:: ~'B*b (mod d).
-1 L1j.c :l t 2 d

1. 5 .18.

Relations 1.5.13. and 1.5.14. remain the same and an analogous argument results

in a constraint at least as strong as 1.5.17.

- 36 -

1. 5 .19.

There is no longer any point ~n distinguishing between a and a
-1 -2

If we denote the coefficient of a typical element of ~ as a. we may replace
~

it by a. - n d in any equation of a similar form to 1.5.18. The i th
~

coefficient of ~ ~n 1.5.19. will be least negative, thus making the constraint

strongest, if a i ~s replaced by a i - [aiJd giving a coefficient in 1.5.19.

of

or by a. -
~

d giving a coefficient of
~

f (a.
~

- d).

1.5.20. will be less negative than 1.5.21 if and only if

ai - [aiJ d < f.

It should be remarked that in (ref. 8} Gomory writes 1.5.16 as
f

- a' v - a' ~ < - f. -1.... d - f -2 -

1.5.20

1. 5 .21.

Although this would appear to be better sealed than 1.5.16 it does not

usually represent an equation with integer coefficients.

- 37 -

Figure 1.5.1: Examples of derivable cuts

Example taken from Gomory (ref. 1) .

Minimise z = 3x - x
1 L

Subject to 3x - 2x + x = 3
1 2 3

-5x - 4x + x = 10
1 2 4

2x + x + x = 5
1 L 5

In full tableau form After 1st pivot:

1 x x x x x 1 x x x x x
1 2 3 '+ 5 1 2 3 4 5

z 0 3 -1 0 0 0 z 3 0 -1 1 0 0

x 3 3* -2 1 0 0 x 1 1 -2/3 1/3 0 0
3 1

x -10 -5 -4 0 1 0 x -5 0 -22/3 5/3 1 0
4 If

X 5 2 1 0 0 1 x 3 0 7/3*-2/3 0 1
5 5

Optimal: Inverse matrix:

1 x x x x x
1 2 3 4 5

z 30/7 0 0 5/7 0 3/7 1 5/7 0 3/7

x 13/7 1 0 1i7 0 2i7 0 1i7 0 2i7
1

x
4

31/7 0 0 -3/7 1 22/7 0 -3/7 1 22/7

x
2

9/7 0 1 -2i7 0 3i7 0 -2i7 0 3/7

Set of constraints derived by 6(i} ,(ii) and (iii):

Added to optimal Added to original

tableau tableau

x + 2x ~ 6 x .$ 1
3 5 1

2x + 4x ~ 5 2x :s 3
3 5 1

3x + 6x ~ 4 3x .$ 5
3 5 1

4x + x ~ 3 2x - x ~ 2
3 5 1 2

5x + 3x ~ 2 3x - x .$ 4
3 5 1 2

6x + 5x ~ 1 4x - x .$ 6
3 5 1 2

- 38 -

Figure 1.5.1. continued
Additional constraints derived by 5(iv)

Corresponding constraint New constraint New constraint

derived by 6(i) added to optimal added to original

x::l + 2xs ~6 X3 + 2xs ~ 6 Xl ~l

2x3 + 4x!> ~5 4X3 + 8xs ~lO 4XI ~6

3x3 + 6xs <!4 9xj + 4xs H2 5xl - 2X2 ~5

4X3 + Xs ~3 9X3 + 4xs ,12 5xI - 2X2 !>5

5x 3 + 3xs ,2 4X3 + 8xs ~lO 4XI ~6

6X3 + 5xs ,1 x3 + 2xs , 6 Xl ~l

- 39 -

Part 6: The lexicographic dual simplex method

In Part 1 we described the dual simplex method. We select an

(x). such that
- 1

(B-1b). < ° and exchange it for a (~)j (i.e. pivot on
- 1

-1 (B N) ..
1J

-1 where. is such that (B N) .. < ° and
J :LJ

1.6.1.

1S a minimum over J. Unfortunately if there is more than one j for

which this is a minimum one needs some criterion to choose between

them, and it has been shown that a bad choice can, theoretically at

least, give rise to looping, i.e. returning to the same basis again

and again until the programme is thrown off (ref. 3, pp. 84,104).

One of the ways of combating this is the lexicographic method.

The algorithm is simply that if for a given set of j the ratio 1.6.1.

has the same value, we exam1ne the ratios

_1 _1
- (B N)l.}(B N) ..

J lJ

for the same J, and choose the column j which glves the minimum ratio.

If there is another tie, the process is repeated for the next row, and

so on.

The finiteness of this process is easily demonstrated using the

algebra of Part 2. We assume that the tableau of equation 1.2.7, partitioned

as in 1.2.8, is lexicographically optimal, i.e. not only is the first

element in each column ~ 0, but the first non-zero element in every column

is > 0. We say that each column is lexicographically positive.

Let us also assume that a3 has been chosen as pivot, so that P3 < 0,

a3 < 0, and when the column -~ ja3 is compared with analogous columns,

i.e. columns -CAll*j}(!2)j such that (~}j < 0, the first element which

differs from the corresponding element of the other column is less than it.

We use (A1)*. to denote the jth column of A1'
J

- 40 -

The partitioned tableau of A in 1.2.8. transforms into 1.2.11,

s~nce we are considering the case when a3 < 0.

We show, firstly, that once the tableau is lexicographically optimal

it will remain so. Choose a typical column of A , let it be the jth.

It will transform into (d(Ad* . + .!:.1 (a' } . }jd.
J -2 J

We must show that the first non-zero element of this column is > O.

If (a'}. > 0 we are summing two columns which are lexicographically
-2 J

positive, and so the result will be lexicographically positive also.

If (a'}. < 0, we make use of the fact that the pivot column was
-2 J

chosen because

-a J a
-1 3

where the 'less than' sign is used in the sense of 'lexicographically

less than'. Writing d for - a and rearranging, this relation becomes
3

d (A)*. + a (a'). > °
1 J -1 -2 J

as we wished to show.

Secondly we must show that the tableau never repeats itself.

Consider the right hand side of equation 1.2.7, partitioned as in 1.2.8,

divided by d, as it would be held in normal linear programming.

E j d will transform into E j d - P a j d a . As p < 0, a < 0,
1 1 3 -1 3 3 3

d > 0, and the first non-zero element of a is > 0, the first non-zero element
-1

of -p a J d a is < 0. Thus the first element of ~ I d to change at
3 -1 3 1

any pivot step decreases, and so the tableau can never go back on itself.

This does not mean the same solution can never occur more than once.

In general the pivot element will not be chosen from the last row as in

1.2.8. and it is possible for the order of the basic variables to be permuted.

For example the solution x = 3, x = 2, could appear a second time as x = 2,
122

x = 3.
1

For this reason the programmes described in this thesis used a stronger

form of the lexicographic method.

The equation

d x + B*N ~ = B*£ 1.6.2.

- 41 -

was extended to

d
[

B*N Jt = [B*E.J
-dI - 0 1.6.3.

A pivot row 1S first copied to the bottom of the tableau, and after

pivoting is discarded. The same goes for any new constraint. By this

means the elements of ~. will change but not the elements of ~ and ~.

Equation 1.6.2. can always be reconstructed by eliminating t from

equation 1.6.3. This is the system adopted in the example in (ref. 2,

p. 204). In the examples in (ref. 1, p.295) new constraints are added

to a tableau of the form 1.6.2., and constraints can only be discarded

when this can be done without discarding an element of ~ or ~, i.e. when

the basic variable 1S not an element of ~ or~. This system has the

advantage over the other in that 1.6.2. is easier to store than 1.6.3.,

but this advantage is lost when the equations are held is sparse form,

i.e. only non-zero elements are stored.

In general the elements of x and ~ 1n 1.6.3. are interspersed.

- 42 -

Part 7: The use of integer arithmetic within a digital computer

The simplest arithmetic operations of a digital computer are

addition, subtraction, multiplication and division of integers. These

are usually quicker than other forms of arithmetic and invariablY give

the exact answer. There is just one proviso - that the answer must not

be too big for the location which is to hold it. When this happens the

programmer either has to resort to double or multiple length integers,

or use fixed point decimals or floating point numbers.

For many people, the advantages of floating point and decimal

arithmetic outweigh the perils, but one would hope that in integer

programming. of all subjects, one would be able to use the computer

for what it is best at. In an all-integer method (ref.2) every

number in the constraint matrix is an integer, and if any are so big

as to cause overflow, the use of floating point will not solve the

problem. This is because floating point can only be used when the

answer is only required to within a certain percentage. In integer

programming the answer is required to the nearest integer, irrespective

of what percentage accuracy this represents.

In the method we are discussing the coefficients are assumed to

start off as integers but do not remain so during the calculation.

Our treatment of the method has been designed to show how they can be

held as integers with a common denominator of d. In deriving new

constraints, e.g. 1.5.6., the new coefficients are of the form

[~'J d - a' 1.7.1.

or ~J - ~'
d 1.7·2.

which is the form they would take if floating point were used. If the

~alue of [~J were of the order of ten one decimal place would be lost

ln accuracy. If [~J were very big much more would be lost. When we

consider that multiples of a' may be taken, e.g.

- 43 -

half the accuracy of ~' / d could be lost 1n one operation if d were

sufficiently big.

The disadvantage of using integer arithmetic would seem to be the

limit on the size of ~ and d. But this is rather doubtful. For if a

were floating point and allowed to exceed the limit it would cease to

be accurate to the nearest integer and any hope of generating constraints

from large multiples would be lost. If d lost its accuracy we would not

even know how many constraints could be generated.

Because it was desired to experiment with large multiples of

constraints without having to worry about accuracy, the programmes were

written to hold the coefficients as an integer array with common denominator

d. Tests were made for overflow and when this happened a constraint of the

type described in Part 5(i) was added. This always leads to a pivot < d which

is in fact the new d, and this leads to an overall reduction in the size of

the elements of the array A. The transformations

and
dA ... a a'

1 ~ -2

d

were performed in double lerigth.

In many problems solved there was no danger of overflow, and only

occasionally was great difficulty experienced because of it. But this

may have been because the examples tried were mostly simple compared

with the potential problems of integer programming.

It was interesting that the experiments suggested that complicated

multiples and combinations of constraints did not justify t]le effort

needed (see Chapter 2). If only small multiples were used it might be

feasible to use floating point arithmetic. However it is likely that

accuracy would be better preserved by deriving a l' B* and calculating

the new constraint direct from the original ones 1n the manner of

Part 5(ii} of this chapter.

- 44 -

Part 8: The Euclidean Algorithm

The programmes in Appendix D include a procedure to perform the

Euclidean Algorithm. This part is a verification of it.

The integer procedure euclidalg (h, DI computes an integer w such

that

w h :: hef (h, D) mod CDJ

where hef lh, DL denotes the highest common factor of h and D. The value

of w is assigned to euclidalg.

The procedure initiates four variables:

hO = h - [h]D'
and iterates as follows

k = k - h
r+l r r

alternately with

k = D, -u :: 1, Y = 0
000

Y
r+l

= Y - U
r . r

[h J k J' u r r+l r+l
= u - v

r r+l [h / k J r r+l
and stops as soon as h or k

r+l r+j
becomes zero.

become zero h is the highest common factor of h
o

If k
r:t-l

~s the first to

and k , if h is the

first to become zero kr+ is the required number.
1

o r+1
At this point w is

given by u r if kr+ is zero and Cu + + v + 1 if h + is zero.
1 r l r l rl

Firstly we verify the formula for the highest common factor. We
observe that since

kr+l = kr - hr [kr j hr J
any number that divides kr and h also divides k 1. Conversely any number r r+
that divides kr+l and hr also divides kr and so

hef (hr , kr) = hef (h , k +).
r r 1

Similarly we can show that

hef (hr , ~+) = hef (h + ' k +)
1 r 1 r 1

Thus by induction we have

hef (ho ' ko) = hef (hr , kr +1) = hef (hr+l' kr +1)

which will be h if k + = 0 and k if h = o.
-~ -~ 1 r+1 r+1

To show that

u h - hef (h , r 0 r
(u + v)h - hef (h , r r 0 r

we again use induction.

v h - k r 0 r

u h - h r 0 r

These are clearly true

r + 1:

vr+l h - kr+l =
0

=

-

ur +1 h - hr+l =
0

=

-
Accordingly if k r

u h -r 0

and if h = 0 r

(u + v) h -r r a

- 45 -

k) = h r r
k) = k

r r

Suppose

(mod Dl

(mod Dl

for r = O.

if kr+l = 0

if h = 0
r

To show they are true for

(v - u [krlhrJ 1 h - (k - h [k /h J) r r 0 r r r r

(v h - k 1 - (u h - h 1 [k jh J r 0 r r 0 r r r

0 (mod D)

(u - vr+l [h)kr+1J 1 h - (h - k r 0 r r+l [h/kr+1J

(u h - h 1 - (vr +1 h - k) [h;kr+lJ r 0 r 0 r+l

0 (mod D)

= 0

h = he!' (h , k 1 r 0 0

k + h - k = hef (h , k}.
r r r a a

- 46 -

CHAPTER 2

EXPERIMENTS IN INTEGER PROGRAMMING

- 47 -

Chapter 2 Experiments in Integer Programming

The method of integer programming described by Gomory in (ref. 1),

often referred to as the Method of Integer Forms, permits of many variations.

The most common of these consist of two operations, optimisation and

adding constraints. First of all the problem, which is formulated as a

linear programming problem, is solved as if it were a linear programming

problem, using the methods outlined in Part I of Chapter 1. If the

solution obtained is integer, the integer programming problem ~s solved.

If the solution obtained is not integer a constraint of the type

described in Part 5(i} of Chapter I is added. This has the property that

it does not render infeasible any feasible integer point but does make

infeasible the current optimal (non-integer) point. After this the

problem is re-optimised in linear programming fashion, and the process

repeated until an integer solution is found.

The author's experimentation in the Method of Integer Forms

started along these lines. It originally consisted of trying different

criteria for choosing constraints of the type described in Part 5(i)

and adding them to a tableau held in the form of floating point numbers.
¥\.

It was soon realised that there was more to integer programming tha~

merely choosing good constraints. Parts 2 and 3 of this chapter describe

these other problems and how they were dealt with, and Part 4 describes

some of the different constraints tried and compares their performance.

Firstly however we digress slightly upon the purpose of linear

programming within an integer programming method.

- 48 -

Part 1 Linear programming as a subset of

integer programming.

The optimum feasible solution of a linear programming problem

~s defined by the identity of the variables which are basic in that

optimum feasible solution. However if we wish to know the values of

the variables in that solution or prove that it is indeed optimal we

have to transform the tableau of the problem by a series of pivot

operations. Thus pivoting performs two functions~ firstly it gives

us the values of the variables in the solution, secondly it indicates

whether the solution is optimal and if not enables us to choose another

pivot which will carry us nearer the optimum.

There is a direct analogy with integer programming. To define

the optimum feasible solution of an integer programming problem we

need to know what constraints have been added as well as the identity

of the basic variables. However, these will not give us the value

of the variables in the solution or establish its optimality or

feasibility. (Here we use the term feasible to mean that all variables

are integer-valued as well as non-negative}. To this end we use linear

programming. Every time a new constraint is added a linear programming

routine is used firstly to establish the values of the variables and

secondly to determine whether they are integer or not. If they are not

the tableau enables a constraint to be chosen which will carry the solution

nearer the optimum.

We now present an example which illustrates another aspect of

iterating. When constraints are derived in the manner of Part 5(i)

of Chapter 1 they represent a lower limit on a non-negative combination

of the variables which are non-basic at that time. In other words when

a new constraint is added it will not assist the choice of any succeeding

constraints until its slack variable has been made basic by a pivot

operation.

- 49 -

The problem consists of two constraints

4x + 2y <; 5

2x + 4y <; 1

2.1.1.

2.1.2.

These define a convex region which contains three integer points

(0,0) (0,11 and (1,0). The feasible integer space is bounded by

the two implicit constraints x ~ 0, y ~ 0, and a new constraint,

x+y~1. 2.1.3.

To obtain 2.1.3 from 2.1.1 and 2.1.2 we first divide 2.1.1 and 2.1.2

by 2 and round down the right hand sides to the nearest integer 1n

the manner of Part 5(ii) of Chapter 1. These constraints then become

2x+y~ 2

x+2y~3

2.1.4

If now we add these new constraints, divide their sum by 3, and round

down the right hand side to an integer value we obtain 2.1.3.

We have derived 2.1.3 from 2.1.1 and 2.1.2 by a two stage process

and we shall show that it cannot be done in a single stage. For example

if we add 2.1.1 and 2.1.2 and divide the sum by six we obtain

x + y ~ 2. 2.1.6

Part 5liil of Chapter 1 showed that any constraint generated by the

Method of Integer Forms could be obtained by taking a linear combination

of the original inequalities and any additions to them and rounding all

coefficients down to integer values. But before additional constraints

can be used to generate any further constraints their slack variables

must first be eliminated from the basis, i.e. a pivot operation must

be performed.

- 50 -

We may write a linear combination of 2.1.1 and 2.1.2. as

A L4x + 2y} + LA + V}(2x + 4y) ~ A 5 + (A + ~) 7

where A > 0 and A + ~ > 0, but otherwise are not restricted.

2.1. 7 becomes

(6A + 2 ~) x + (6A + 4~ } y < 12A + 7~

We now attempt to find a number, v, such that

~A : 211J x + ~A : 4~ y ~ ~2A v + 711J

2.1.7

Simplifying,

is identical to 2.1.3. We observe by comparing right hand sides that

2v > 12A + 7~ 2.1.8

In order that the coefficient of x might be at least 1 we have

v < 6A + 211

which to be consistent with 2.1.8 requires that ~ < O.

On the other hand for the coefficient of y to be at least 1 we have

the condition.

v < 6A + 4~

which to be consistent with 2.1.8 requires ~ > O.

As 11 cannot be simultaneously < 0 and> 0 we have shown 2.1.3

cannot be obtained directly from 2.1.1 and 2.1.2. In particular we

note that having found an optimal and feasible solution in the linear

programming sense, one cannot expect to find the integer solution by

adding all possible constraints.

- 51 -

Part 2 The linear programming structure of the experimental programmes

The author started experimenting with integer programming using

an Algol programme received from Dr. J.C. Wilkinson of Liverpool

University. This used the Simplex Method of linear programming to

find a linear programming optimal solution and then added a constraint

of the type derived by Gomory and described in Part 5(i) of Chapter 1.

The cycle of linear programming optimisation and adding a constraint

was repeated until an integer solution was found.

It was not long before problems of accuracy were encountered, and

the purpose of this part is to present the difficulties met and the

methods used to overcome them.

The first problem arose because the programme worked in floating

point. Every constraint added contained coefficients of the form

[a
ij

] - a
ij

, and these usually implied a loss of accuracy. This loss

of accuracy was evident because every iteration the value of the

determinant d, calculated as the product of the pivot elements, was

printed, and this value often lost any resemblance to an integer,

although it was supposed to be onel. This loss of accuracy often

prevented quite small problems being solved, for example the 4 x 5

Problem no. 10. 1 in Appendix B.

The remedy adopted to tackle this problem was to rewrite the

programme using integer arithmetic throughout, employing the algebra

of Part 2 of Chapter 1. This introduced the restriction that the

original equations must have integer coefficients and that any constraints

introduced during solution must represent constraints in the original

space with integer coefficients (see Part 3 of Chapter 1). However,

it is usual to adopt such restrictions in integer programming as it

means that all slack variables are integer valued.

The use of integer arithmetic gives rise to another problem, that

of integer'overflow. There are two ways of approaching this problem.

One is to attempt to avoid it by keeping the elements of the tableau

as small as possible; the other is to wait until it occurs or is about

to occur and take action then. Eventually the latter approach was taken.

Checks were made for overflow while pivoting and if overflow occurred

the tableau was restored to its form before the pivot operation was

started. However, this approach was not taken immediately because the

Algol language contains no built-in facilities to inform the object­

programme when overflow occurs. KDF9 Algol tests for overflow but

- 52 -

terminates the programme if it occuxs. To test for overflow in

Algol it would be necessary to perform every calculation twice: first

in real arithmetic to check that the answer is in range, secondly in

integer arithmetic to retain accuxacy.

It was considered that there was a clear case for us~ng User Code

to carry out pi~ot operations. This raised difficulties of its own

for the Algol interpreter normally used for developing programmes did

not accept user code bodied procedures. Instead the compiler had to

be used and this only afforded one compilation per day in place of

three using the interpreter. As a result the implementation of checks

for overflow was postponed and attention turned to a teChniques

designed to lessen the chances of overflow. This technique was a

method of scaling equations duxing solution of a problem.

To a large extent the size of the coefficients in a tableau of

the form 1.2.9 are proportional to the size of d, and efforts to reduce

the size of the coefficients were directed towards reducing the size

of d. One way to do this is to scale the original equations before

starting to solve a problem, that is to eliminate any common factors ~n

them. The reason for this is that d is the determinant of part of the

original matrix, and removing a common factor from a row of the original

matrix will also remove it from d provided that this row has been

incorporated into the determinant. This will be so if the slack variable

associated with the row has been made non-basic.

As an example consider the following problem:

minimise = - 2xl - 3x2

su bject to 2Xl + 4x2 < 6

3xl + 3x2 ~ 5 .
Writing x3 and x~ for the slack variables we write this 1n tableau

form and perform one pivot.

1 Xl x2 1 Xl x3

z 0 -2 -3 z 18/4 -2/4 3/4 2.2.1.

X3 6 2 4* ~ X2 6/4 2/4 1/4

x~ 5 3 3 X4 2/4 6/4 -3/4

If we were to scale the first inequality by 2 the same pivot operation

would become

- 53 -

1 Xl X2 1 Xl X3

z 0 -2 -3 z ~2 -1)2 3/2 2.2.2

xj 3 1 2* x2 ~2 V2 1/2

X4 5 3 3 X4 Ij2 Y2 -3/2

All the numerators save those ln the last column are now half the

Slze they were previously.

All this is fairly obvious, but what is not so obvious is that

this scaling can be done automatically at times other than before

starting the process of solution. The transformed tableau 2.2.1

has d = 4 and 4 possible constraints. They have coefficients:

(-2, -2, -11, (0, 0, -2), (-2, -2, -3), (0,0, 0).

We note the second of these has zero constant term and if we append

it to the transformed tableau 2.2.1 and perform a pivot we obtain

1 xl x3 1 xl s

z 18/4 -V4 ~4 z 9/2 -1/2 3/2 2.2.3

X2 6/4 2/4 V4
~

x2 3/2 V2 1/2

x4 V4 6/4 -3/4 X4 1/2 3/2 -3/2

s -0 -0 -2j4* x3 0 0 -2

This is now the same as the transformed tableau 2.2.2 except that

it has an extra row.

Therewas bound to be a constraint with zero constant term because

2.2.1 could produce four constraints. As it was equivalent to 2.2.2

the constant terms had to be the same and so any constraint could only

have two values for the constant term: -2 and O. This means there

must be at least one constraint with zero constant term apart from the

null constraint (0, 0, 0). For as there are four constraints but only

two constant terms there must be at least two distinct constraints

with the same constant term. If these are subtracted they generate a

constraint with zero constant term. For example (-2, -2, -1)

subtracted from (-2, -2, -3) will generate (0, 0, -2)

If it is possible to scale the original equations it is of course

better to do it at the start rather than using the method just outlined.

However the method has value as it is often possible to use it even

when the original equations have no COmmon factor. An example of this is

given is figure 2.2.1. on page 55.

Another aspect of scaling is that besides reducing the size of the

coefficients in the tableau it reduces the number of possible constraints.

Noting that x3 = 2x~ as can be seen from a comparison of 2.2.1 and 2.2.2

- 54 -

we can write the two non-trivial constraints of 2.2.1

as 2xl + x3 ~ 2 and 2xl + 3X3 ~ 2,

or 2xl + 2xA ~ 2 and 2xl + 6xA ~ 2.

Tableau 2.2.2 will only produce the first of these, and the first is

clearly more restrictive than the second.

~n figure 2.2.1.

This is also illustrated

It is believed that reducing the number of constraints in this

way will increase the proportion of 'good' constraints and hence the

likelihood of choosing one. Figure 2.2.1 compares some of the correspond-

ing constraints in the tableaux before and after scaling. This com-

parison also suggests that a good choice of constraint 1S more likely

to result from a scaled tableau than an unsealed one.

However the last constraint of figure 2.2.1 has a scaled verS10n

that contains a positive coefficient and thus exclude~pnrt of the

space which no constraint of the form we are considering would exclude.

This suggests that the benefits of scaling from the point of view of

choosing constraints would be difficult to prove. In any case it

presupposes that the choice of constraint is random.

Let us state the al~bra of scaling more formally. If at some

point during solution the constant terms are p./d and the p. and d have
1 1

a common factor, say g, and furthermore the tableau can generate d

possible constraints, then We can scale the tableau. For any constraint

can be derived by taking an integer linear combination of the rows of

the tableau and deriving the remainders modulo d. Thus each constraint

will have a constant term which is a multiple of g. As there are d

constraints but only dig constant terms it follows there are at least

two distinct constraints with the same constant term. The difference

of these constraints will generate a constraint with zero constant term.

Adding this to the tableau and pivoting in the normal way will reduce

the value of d without altering the values of the basic variables.

In practice such constraints were derived by searching the tableau

for a constant term whose numerator p., had a factor, g, common with d,
~

but whose associated row also contained a coefficient whose numerator

a .. did not contain the factor g. This row was then multiplied by the
~J

integer dig and this generated the constraint.

To return to the original purpose of scaling. Scaling was introduced

partly to assist the choosing of a cut (the constraints used in scaling are

- 55 -

Figure 2.2.1: An example of scaling

Minimize 10Xl - l11x2

Subject to -12xl + 109x2 ~ 420

Xl + X2 ~ 20

In tableau form:

1 Xl X2 1 xl x~

z 0 10 -111 z 46620/109 -242/109 111/109

X3 420 -12 109* X2 420/109 -12/109 1/109

X4 20 1 1 X4 1760/109 121/109* -1/109

1 X4 Xj

z 460 2 1

x2 60/11 12/121 1/121

xl 160jll 109/121 -lj121

51 0 -11/121 -11/121*

Constraint generated by taking 11 times the x2 row.

This gives

1 X4 51

Z 460 1 11

X2 60j11 Ij11 Ijll

xl 160jl1 10/11 -ljll

x3 0 1 -11

The extra constraint is equivalent to -Xl + 10x2 ~ 40

in the original tableau. In terms of the optimal tableau it can be

written -X4 -X3 + 11s1 = 0, i.e. X4 + X3 is a multiple of 11.

One is in fact adding the two original constraints to get -llxl

+110xl ~ 440, and then dividing it through by 11.

The two tab1eauxdo not in general generate the same constraints.

For example,

.:2. -12 -1
11 !. 121x4 121X'3

.:2. -23 -12
11 !. 121x4 121x3

-6 -120 -10
11 !. 121x4 121x3

-6 -~ -120
11 !. 121 4 121X3

becomes
-"i -1 -1
~ i?4 Ils1

.:2. -1 -12
11 :.. 1J:X4 US I

-6 -10 -10
11 ~ 11 Xli" l"J:' 1

-6 +1 -120
11 ~ 1J:X4 US l

- 56 -

not cuts in the strict sense of the word}, and partly to try and avoid

overflow. To both these ends scaling was carried out every time a new

rational optimum solution was reached.

This enabled a larger type of problem to be tackled and solved.

Inevitably problems arose which were abandoned because of overflo~,

and eventually a machine code subroutine was written to perform the

pivot operation and test for overflow, and if necessary reconstruct the

matrix. Rather than add a cut at a non-optimal solution an attempt

was made to scale the matrix, and only if this was unsuccessful was a

cut generated. As will be seen from the tables in Appendix C even this

procedure failed. Once (Problem 1: programme BH9) overflow occurred

when pivoting on a cut, and twice (Problem 6: programmes BHE and BHF)

overflow occurred when d was equal to one and no cut could be added.

These were rare happenings and no attempt to get past the difficulty

was made. The difficulty could have been overcome by searching for

alternative pivots or introducing rows of the sort Gomory generates

in his all-integer algorithm.

At the same time as the means of combating overflow were being

developed the author was suspecting more and more that the programme

was prone to looping or circling. The evidence for this was that a

series of rational solutions had the same value of the cost function.

Looping becomes possible when there are zero coefficients 1n the

cost function. For if a pivot is chosen from a column with a cost

coefficient of zero, the cost function will not change. If a succession

of such pivots returns the tableau to a previous state it will continue

to do so ad infinitum. There are two sorts of looping; one can happen 1n

linear programming and the other in integer programming.

Looping in linear programming is moving from one infeasible or

non-optimal basis to another and never reaching a feasible or optimal one.

Examples of this have been constructed by A.J. Hoffman and E.M.L. Beale

(ref. 4, pp 229-230).

Looping in integer programming is moving from one feasible and

optimal solution to another and never reaching an integer one. At each

rational solution a cut 1S added. After one pivot the slack variable

associated with it will be made non-basic, but if after two or more

pivots, or after further cuts, the slack variable re-enters the basis

and has a positive value at the next rational solution, it will be

- 57 -

discarded as redundant. An example of this lS given In figure 2.2.2.

Although there was no direct evidence of looping when the

programmes were being developed, they often gave the appearance of being

lost in a maze of figures.

by luck than designJ

When they eventually got out it was more

It might have been possible to avoid the danger of looping by

revising the rule of discarding previous cuts, but the systematic

approach of lexicography was used instead. (see Chapter 1, Part 6) .
At first the simple form using the tableau of equation 1.6.2. was used.

Later, when the cuts being generated became sensitive to the order In

which the basic variables were held, the full lexicographic method

based on the tableau of equation 1.6.3 was used.

- 58 -

Figure 2.2.2: An example of looping in integer programming

l. 2.

1 88 8b z 1 8f 86 z
c 0 0 0 1 c 0 0 0 1
z 0 0 0 -1 z 0 0 0 -1
81 16/9 1/9 2/3 0 <- 81 1 1 0 0
82 2/9 -1/9 -2/3 0 82 1 -1 0 0
83 22 4 6 0 8j -6 36 -18* 0
84 2 -4 -6 0 84 30 -36 18 0
8~ 2 0 1 0 85 2 0 1 0

Y 1/2 0 -1/2 0 Y 1/2 0 -1/2 0
8
7

2 1 0 0 87 -5 9 -6 0
x 13/18 -1/9 -1/6 0 x 3/2 -1 1/2 0
8f -7/9 *-1/9 -2/3 0 8tj 7 -9 6 0

3. 4.

1 8f 83 z 1 81 83 Z

c 0 0 0 1 c 0 0 0 1
z 0 0 0 -1 z 0 0 0 -1

81 1 1 0 0 81 0 1/3 -1/9 0

82 1 -1 0 0 52 2 -1/3 1/9 0

8b 1/3 -2 -1/18 0 56 7/3 -2/3 1/6 0
54 24 0 1 0 54 24 0 1 0

55 5/3 2 1/18 0 55 -1/3 2/3 -1/6* 0

Y 2/3 -1 -1/36 0 Y 5/3 -1/3 1/12 0

57 -3 -3* -1/3 0 51 1 -1/3 1/9 0

x 4/3 G 1/36 0 x 4/3 0 1/36 0

5ti 5 3 1/3 0 58 2 1 0 0

5. 6.
1 57 85 z 1 82 85 z

c 0 0 0 1 c 0 0 0 1
z 0 0 0 -1 z 0 0 0 -1
51 2/9 -1/9 -2j3 0 51 1 -1 0 0
52 16/9 1/9 2/3 0 <- 82 1 1 0 0
8b 2 0 1 0 86 2 0 1 0
54 22 4 6 0 84 -6 36 -18* 0
83 2 -4 -6 0 53 30 -36 18 0

Y 3/2 0 IJ2 0 Y 3/2 0 1/2 0

51 7/9 1/9 2J3 0 drop x 1/2 1 -1/2 0
x 23/18 1/9 Ij6 0 58 -5 9 -6 0
88 2 1 0 0 57 7 -9 6 0
82 -7/9 -1/9* -2/3 0

- 59 -

Figure 2.2.2 continued

7. 8.

1 s; s4 Z 1 s8 S4 z
c 0 0 0 1 c 0 0 0 1
z 0 0 0 -1 z 0 0 0 -1
sl 1 -1 0 0 sl 2 -1/3 1/9 0
s2 1 1 0 0 s2 0 1/3 -1/9 0

S6 5/3 2 1/18 0 s6 -1/3 2/3 -1/6* 0
s5 1/3 -2 -1/18 0 S5 7/3 -2/3 1/6 0
S3 24 0 1 0 Sj 24 0 1 0

Y 4/3 1 1/36 0 y 1/3 1/3 -1/12 0
x 2/3 0 -1/36 0 x 2/3 0 -1/36 0
Slj -3 -3* -1/3 0 s2 1 -1/3 1/9 0
S7 5 3 1/3 0 s7 2 1 0 0

9.

1 s8 s6 z
c 0 0 0 1
z 0 0 0 -1
sl 16/9 1/9 2/3 0
Sl 2/9 -1/9 -2/3 0

s4 2 -4 -6 0
s:, 2 0 1 0
Sj 22 4 6 0
y 1/2 0 -1/2 0
x 13/18 -1/9 -1/6 0
S2 7/9 1/9 2/3 0 drop
s7 2 1 0 0

Rule for choosing a cut: take fractional parts from the row with

largest "right hand side".

Rule for choosing a pivot row: most negative "right hand side"

Rule for choosing a pivot column: in the event of a tie: first column

Rule for discarding a cut: when it ceases to be binding at an optimal

(not necessarily integer) solution

The problem will cycle interminably S1nce tableau 9 differs from

tableau 1 only in the order of the rows, and the order of the rows is

immaterial in this particular example.

- 60 -

Figure 2.2.2. continued

The tableaux represent an attempt to solve the problem:

Minimise z

Subject to

z > 0
x+Y2. 3
x + Y > 1

36x 7 48
36x "> 24

2y 2. 3
2y ~ 1

9x -3y 2. 7
9x -3y ~ 5

1.e. z-z = 0
x + y +

-x - y +
36x +

-36x +
2y +

-2y +
9x-3y +

-9x+3y +

Sl = 3
s2 =-1
s3 = 48
S4 =-24
S5 = 3
s6 =-1
97 = 7
Stj =-5

In the following diagram the basic solutions encountered
1n the loop are marked with a cross and numbered.

Ss

$,

- 61 -

Part 3 Summary of the structure of the experimental programmes

If one took all the variations of programme described in Part 2

and multiplied them by a representative number of methods for choosing

cuts one would end up with hundreds of programmes. In most of the

programmes presented in Appendix D we have chosen to fix the methods

used to find linear programming solutions and combat overflow in order

to provide a valid comparison of different methods of choosing

constraints. The two exceptions are programmes BGD and BH6 but even

these differed from the rest only a little.

In consequence we present only one programme in full, and this is

programme BHD. We now present a brief description of it.

The form of the data is specified at the start of Appendix D.

After it is read in it is augmented by a negative unit matrix to enable

every variable to appear as basic, and facilitate the use of the lexico­

graphic method described ~n Part 6 of Chapter 1. This matrix is placed

above the constraints contained in the data unless the data specifies

otherwise.

Two linear programming procedures are used to find the optimum to

the problem in rational numbers. The first is Intsimp which performs

the Simplex Method, eliminating any artificial variables and optimising

the tableau ~n such a way as to obtain the lexicographic optimum. This

is followed by Dintsimp which performs the Dual Simplex Method, iterating

until the constant terms are non-negative while maintaining lexicographic

optimality. As mentioned in Part 1 of Chapter 1 these procedures enablel

the introduction of artificial variables to be avoided except when

equalities are present.

Once a feasible and optimal solution in rationals is found procedure

Scale is used to scale the equations as described in Part 2 of this

Chapter by adding constraints with zero constant terms, if any can be

found. If after this the determinant, d, is equal to 1 the problem

is solved.

At this point procedure ~onstraint is used to choose a constraint

and add it to the tableau. Iteration then starts by returning to

procedure Dintsimp to obtain a new feasible and optimal solution.

- 62 -

During pivoting a test is made for overflow. If it occurs the

tableau is restored to its form before attempting to pivot.

Procedure Scale is entered to try and reduce the value of d. If it

is successful another attempt is made at pivoting. If scaling is

unsuccessful, or overflow occurs again the tableau is treated as a

scaled feasible optimal solution, i.e. procedure eonstraint is used

to generate another constraint. Following this another attempt is

made to reach a feasible optimal solution.

Figure 2,3,1 presents a simplified flowchart of programme BHD.

- 63 -

Figure 2.3.1. An outline flowchart of programme BHD.

,

Start

Read data and set
up matrix including
a negative unit
matrix so that all
variables appear
in the basis

Optimise the problem
using procedure
Intsimp

Find dual optimal
solution (: primal
feasible) using
procedure Dintsimp

"
Scale the tableau
using procedure
Scale (called from
procedure Dintsimp)

Is determinant : 1 ?

no
'If

~hoose a constraint
using procedure
Constraint

~ __ u_n_b_o_u_n_d_e~d __ -+~ failure ,

overflow '

L

successful

Attempt to
scale tableau
using procedure
Scale

unsuccessful

yes --"
~~------------,~ print out

answer and
terminate
problem

- 64 -

Part 4 Description and comparison of the experimental programmes

Appendix C compares the performance of the programmes in appendix D

when solving the problems contained in appendix B. The purpose of

this part is to describe these programmes and to comment on their

relative performance.

with the exception of programmes BGD and BH6 the programmes differed

only in one procedure; procedure ~onstraint. For this reason only one

programme is given in full, and it is followed by the versions of procedure

constraint used in the other programmes. As for programme BH6, this

differed also in integer procedure pivot and the differing version follows

the procedures constraint. Programme BGD differs from BHD in one line

only and this is given in a comment on page Itt. With the exception of

BGD and BH6 the main body of the programmes ~s as described in the

previous part. This part is concerned mainly with the various versions

of procedure constraint.

As programmes BGD and BH6 are special cases the other programmes

are discussed first. While the reader is entitled to his opinion, the

author considered that of these other programmes BHD was the most consistent

as well as often being the most efficient, particularly in the larger

problems. For this reason BHD is described first, and the other programmes

compared with it.

At the end of this Part figure 2.4.1 gives examples of the various

methods of choosing constraints.

(al Programme BHD. A cut is generated from the first row which

has a non-integer right hand side. This row could be the cost

right hand side is a. iD, and that a.
Suppose the --!.Q. =

~o D
0< f. < D.

~o

This will directly yield a constraint of the form

f! x > f.
~ ~o

If there ~s an integer,~ , such that

f. < 1.1 f. < D
~o ~o

t' j f. ~o + ~o,

function.

where

2.4.1

2.4.2.

2.4.3

we can multiply 2.4.2 byl.1 and take fractional parts once again.

Taking fractional parts the second time will not alter the right hand

side, because of 2.4.3, but might alter parts of the left hand side.

So the new constraint is

* ,
f.
-:L

f.
~o

- 65 -

* , where f. ~ II f .
-:L -:L

The cut 2.4.4 is at least as binding as 2.4.2.

The value of II chosen is the largest possible.

In the notation of Algol:

II = (D - 1) f f.
~o

2.4.4.

2.4.5

A constraint of the form 2.4.2 has a special property. When

the tableau is optimal and the constraint is taken from the cost

function it has the effect of reducing the value of the cost function

at least to the next integer below. To show this we denote the positive

fractional part of an element of the cost function, a ./D, by f .ID:
oJ oJ

a. ta.~ f. --2J. = --2J. +-2J..
D D D

2.4.6

A constraint taken from this will have coefficients -f .jD.
OJ If we

now pivot on the j th element of the constraint the cost function will

change in value from a jD to
00

2.4.7

which will be less or equal to [ao/DJ according as ro/DJ is greater

or equal to zero.

If the cost function is integer-valued the constraint will be taken

from the first row that is not integer valued. If we denote this as

the i th row and the pivot column as the j th column, as before, we can

use the same argument. If [aij/DJ is greater or equal to zero aio/D

will be reduced at least to the next integer below. If however

[aij/DJ is negative it follows from our use of the lexicographic method

that there will be a coefficient in the j th column in some row before

the i th which is positive. The constant term of this row will then

decrease in value. If it does not decrease as far as the next integer

value below it only needs one more constraint to bring this about.

We thus have outlined an algorithm for making a systematic search

for an integer solution. The argument is taken further in Chapter 3.

The constraints added by programme BHD were of the form 2.4.4 where II

is as defined in 2.4.5. As 2.4.4 is at least as binding as 2.4.2 it

has similar properties, the only difference being that a. /D can be
~o

reduced below [aioJD] even when ri/D] is zero. Gomory suggests

- 66 -

this method in (ref 1, p 290).

(b) Programme BHM. This 1S similar to BHD in that the constraint

1S generated from the first row with a non-integer right hand side,

but differs 1n that no multiple of the row is generated, the constraint

is taken as it stands. This is the method for which Gomory constructed

a finiteness proof in his paper (ref 1, p. 287).

In spite of the fact that at any given stage BHD will produce a cut

at least as good as BHM, there was one problem (problem F5) in which

BHM introduced fewer cuts than BHD. In two others (problems 7 and E4)

BHM used more cuts but needed fewer pivots. While it is expected that

the better the cut the more pivots are needed to reoptimise it would be

surprising if experiments were to advocate deliberately choosing weak

constraints. The examples show up one avoidable weakness of BHD, namely

that if, in the notation of 2.4.4, f~ = ~ f. , then the constraint will
-1 ~

have a common factor and one or more extra constraints and pivots may be

needed to eliminate it. However, in the majority of cases BHD took

fewer pivots, fewer cuts, and less time.

(c) Programme BH9. This was a variation of BHD, the difference

being that the search for a row with non-integer right hand side started

with the first basic variable instead of the cost function. The object

was to try and avoid zeros creeping into the cost function. The programme

ended prematurely with two sets of data (problems 1 and 7) when overflow

occurred immediately after adding a cut.

On the remaining sets of data its performance was similar to that of BHD.

(d) Programme BHQ. This, like BHD, generated a constraint from

the first row with a non-integer right hand side. The Euclidean

Algorithm was used to generate a constraint with the maximum possible

right hand side. If the original right hand side is denoted by a. ID,
10

then the generated one is

D-hcf(a. , D)
10

D

When a. and D are mutually prime the method obtains the unique constraint
10

with right hand side (D-l)jD.

In three problems (problems 3,9 and B4) BHQ was marginally better than

BHD. In most cases, however, BHQ performed noticeably worse.

(el Programme BHN. This was attempt to imitate the algorithm of

Martin (ref 101. It first of all selected the row whose right hand side

had the largest fractional part. It derived a constraint from this row,

- 67 -

without taking any multiple of it, and calculated the pivot column.

However instead of pivoting it used the Euclidean Algorithm to

determine the correct multiple of this constraint to make the previously

calculated pivot element a minimum, this being usually minus one. The

constraint calculated from this multiple of the original constraint was

added and reoptimisation performed in the same way as in the other

programmes.

This was not a very good approximation to Martin's algorithm, the

main point of which was that it did not use the lexicographic dual simplex

method. Instead it used the freedom of choice of optimum solution when

there are zeros in the cost function to try and find an optimum with a

small value of the determinant, D.

It did this by pivoting on the element mentioned in the previous paragraph

which was calculated to be as small as possible. This entailed use of a

composite algorithm. It is discussed more fully ~n Chapter 4. Because

BEN bore little resemblance to Martin~s algorithm it was only tried on a

small set of examples. BEN was superior to BHD on problems 10. 1 to

10. 4 and 8 and 9, but considerably inferior on the more exacting

problems 6 and 7.

(f} Programme BHP. The idea behind this programme was to take some

of the ideas in Martin's algorithm and modify them in the context of the

overall lexicographic method. It was also, in a sense, an opposite of

BHQ. Whereas BHQ generated a large value for the right hand side of the

constraint, BHP choose the column which was lexicographically smallest and

which was eligible for pivoting, and generated a constraint whose coefficient

in this column was as small as possible.

In detail, BHP first located the first row in the tableau with a

non-integer right hand side. It then made a note of the columns which

had non-integer elements in this row. Any constraint generated from this

row would have zero coefficients in the remaining columns. Of these

selected columns, the one which was lexicographically smallest was chosen.

(A particular column is lexicographically smaller than another column if,

when comparing the elements of the two columns from the top downwards, the

first element of the first column which differs from the corresponding

element of the second column, is smaller than that element). The element

which lay in the chosen column and row was then subjected to the Euclidean

Algorithm to find a multiple of this row such that the constraint produced

from it had ~small an element as possible in this chosen column. This

- 68 -

constraint was added and the tableau reoptimised. The element on which

all the attention had been placed was not necessarily pivoted on. The

sort of lexicography being used had only one optimum and was independent

of the individual pivots used in obtaining it.

In spite of their similarity BHN and BHP differed considerably in

the examples. On the whole BHP was better than BRN. When BHP was

compared with BHD it was not obvious that BED was a superior programme.

Of the 24 examples solved by both BHP and BHD, BHP had fewer pivots in

12 of them and BHD fewer pivots in 9. As for the number of cuts the

situation was reversed; BHP had fewer in 8 problems, and BHD fewer 1n

12. Most of these examples only differed between BHP and BHD by a very

few pivots. If our attention is restricted to those examples for which

the number of pivots taken by BHP and BHD differed by 10% or more we find

BHD had fewer pivots in 6 examples and BHP fewer in 5. If our attention

is restricted to examples where one programme took more than twice as many

pivots as the other there are only two, and in both of them BED took fewer

pivots. They are problem 2: BHD 45 pivots, 6 cuts; BHP 378 pivots, 75 cuts;

and problem 7: BED 129 pivots, 30 cuts; BHP 318 pivots, 113 cuts.

There is not really enough evidence to say BED is preferable to BHP.

All one can say is that there are indications that BED is more consistent.

If the pivots and cuts for all 24 examples are added up, thus giving

greater weight to the bigger problems, we find BHD has a total of 3549

pivots and 290 cuts, and BHP a total of 4092 pivots and 471 cuts. It is

interesting to note that BED's ratio of pivots to cuts is 12.2:1, and BHP's

8.7:1.

(g) Programme BRE. This programme chose constraints by 'the crudest

possible criterion', to quote Gomory (ref 1, p.292) that is it examined

the right hand side of each equation in the tableau, and chose the one with

the largest fractional part.

modification.

The constraint was added without any

In one problem (problem 6) the run had to be abandoned. Integer

overflow occurred and as D was equal to one at the time the usual

avoiding action of adding a cut was not possible. In two problems

(10. 2 and F4) BRE took fewer pivots than BHD, but in 11 others it took more.

- 69 -

(h) Programme JlHF. This bore the same resemblance to BHE as BHD

did to BHM. For each row with a non-integer right hand side, a. /D,
l.0

we calculate the largest multiple, ~., of the fractional part, f. , such
l. l.0

that ~.f. <D (see equations 2.4.1 to 2.4.5). The row which has the
1 l.0

largest value of ~.f. is multiplied by its ~. and the constraint is
1 l.0 l.

taken from this multiple.

BHF took fewer pivots than BHD in 6 problems, and BHD fewer than

BHF in 9. However BHF never took less than 33% fewer pivots than BHD, whereas

in one case (problem 6) the run of BHF had to be abandoned (for the same

reason as BHE1 after taking four times as many pivots as BHD, and in another

case (problem 71 BHF took 1086 pivots and 451 cuts as opposed to BHD's

129 pivots and 30 cuts. BED would seem a better programme than BHF

mainly on the grounds of consistency.

(i) Programme BH6. The purpose of this programme was to demonstrate

the advantages of using a lexicographic system. The programme was the

same as BHF except for integer procedure pivot, the procedure that chose

the pivot. Normally if two columns had the same ratio of objective

function coefficient to pivot row coefficient the first and if necessary

subsequent constraint rows were used to break the tie. In BH6 the method

of breaking the tie was simply to take the first column. There was one

place in the programme where this rule was broken. In many linear

programming suites the initial primal optimisation is performed in two

phases; first the artificial cost function is optimised and secondly the

proper cost function. A lexicographic method allows these two optimisations

to be done in one phase. Accordingly the initial optimisation when

optimising the artificial cost function broke any ties by reference to the

proper cost function. In subsequent optimisations only the proper cost

function was used when choosing pivots.

To the surprise of the author this programme actually went into an

infinite loop in three of the problems. Looping in linear programming

is regarded as something which is theoretically possible but which never

happens. The explanation offered for this discrepancy is that BHF was

a programme based on a rigorous lexicographic system and that BH6 was

generated by relaxing just one part of this system. It still retained

the part of the system whereby every variable in the initial tableau was

placed on the right hand sides of the equations and their relative order

never changed. It also retained the use of integer arithmetic. This

1n particular was intended to make computation exact and avoid such things

as rounding error. In linear programming the use of floating point

- 70 -

and its associated inexactitude often means that two numbers which

are supposed to be identical are not, and this presents an automatic

method of breaking ties.

Looping starts when the tableau of numbers used in solving a

problem is identical to a previous one. In BH6 the identity of

variables on the right hand side was always the same, and the numbers

in the tableau were always correct. It was much easier for the programme

to repeat itself than if these other things had been allowed to vary.

It would seem to suggest that no rigour is better than some!

(j} Programme BGD. This programme was based on BED. When it

has a cost function consisting entirely of ones, as with the 'covering

theorem' problem (problem 6} it worked exactly the same as BHD. It

was designed to exploit one of the advantages and avoid two of the

disadvantages of BHD. The advantage was that BED regards every row as

a cost row which is used to break ties in the previous row, and the first

disadvantage was the difficulty of ordering the rows in the tableau to

avail oneself of this advantage. The second disadvantage was that its

performance was considerably affected by the size of the cost function.

It was found that when the cost function could be divided through by a

common factor (aompare problem 10. 1 with 10. 2 and problem 10. 3 with

10. 4} there was usually a saving in time.

~

When an ana~ous operation was performed on a cost function without

a common factor there was a similar result. The cost function of

problem 1 was divided through by 7.5 and each coefficient rounded to the

nearest integer. (The number 7.5 was chosen to try and minimise the

accuracy lost by rounding). BED solved this modified problem with 693
pivots whereas it was still a long way from solving the original problem

after 3546. More by luck than anything the optimum point of the modified

problem was the same as that in the original problem.

BGD was an extension of this principle. It started by setting up

the tableau used by BED. It then preceded the cost function by a row

obtained by dividing the cost function by 2 and rounding to the nearest

integer. This in turn was preceded by a row obtained by dividing the

cost function by 4 and rounding. The process was continued using

successive powers of 2 until the coefficients were all zero. The problem

was solved using the row corresponding to the highest power of 2 as cost

function and using successive rows as tie breakers. When a solution was

found the value of the original cost function was printed out. As this

- 71 -

was not necessarily the optimum the original cost function was then

constrained to be at least one better than the solution obtained.

If another solution was found the same process was repeated, if the

problem was then infeasible it was thereby established that the last

solution found was the optimal.

The greatest success of BGD was that it solved the Markowi~ and

Mann problem (problem I) in four minutes whereas BED was still a long

way from the solution after 30 minutes. Generally there was not much

to choose between BGD and BHD. Using the number of pivots as criterion

for choosing between BGD and BED, BGD obtained the optimal solution first

in 13 problems as opposed to BED's 9, but by the time BGD had proved the

solution optimal it was only ahead in 11, as opposed to BED's 10. Using

time as the criterion BGD obtained the solution before BED in 11 problems

as opposed to BHD's 12, but after proving optimality was only ahead in 8,

whereas BHD was ahead in 15.

BGD took longer to perform a pivot operation because the tableau contained

more rows.

Perhaps the main point of interest concerning BGD was that it

prod~ced a feasible solution fairly quickly. In only three problems

(B4, A5, c51 did BED produce a solution before BGD, and even thenBGD

took only 10% longer in time to produce a solution, which in those cases

happened to be the optimum.

BGD, as well as BED, is discussed in greater detail in Chapter 3 and

a numerical illustration is given in Part 4 of that chapter.

(k) Story and Wagner (ref 11) used a form of Gomory's All-integer

algorithm (ref 2) to solve a formulation of the 3-machine job-shop

sequencing problem. They ran several sets of data of which problems

A4 to F6 are some. Their results, which give only pivots, are listed for

comparison.

There was a remarkable correlation between the number of pivots taken

by Story and Wagner's programme and BED. Out of 18 problems run, which

took pivots varying in number from 22 to over 1000, in only three cases

did one programme take more than twice the number of pivots the other did.

In two cases the ratio~ was nearly twice. This makes problem A5 a strange

exception to the pattern. BED needed no cuts to solve it, only 35 pivots.

It was a simple linear programming problem.

algorithm took 613 pivots.

However the all-integer

- 72 -

Out of 18 problems BHD took fewer pivots in 10 of them.

However this is not a valid comparison as a pivot operation in the

all-integer algorithm requires less arithmetic than in Gomory's other

algorithm, as used in BED.

(1) This last section is concerned not with a programme for solving

integer programming problems but rather with a method for enabling an

existing programme to obtain approximate solutions to a problem.

One of the ideas behind programme BGD was to be able to obtain approximate

solutions to a problem comparatively quickly by simplifying the cost

function. It was realised however that when the artificial cost function

contained zeros that were not in the original cost function they might

cease to be valid approximations to the original cost function. This

was considered to be the case ~n Problems A4 to F6 which are described

in the first half of Appendix B. Although the variables representing

the.slack time on machine III have coefficients of 1 in the cost function

which vanish when divided by anything greater than 2 they are vital to the

formulation of the problem. When they are omitted from an artificial

cost function that function represents not the total idle time on machine

III but merely the idle time of machine III before it starts its first job.

It was argued that in this case it would be more effective to scale

the whole problem and not merely the cost function. To test this out the

numbers used in problems A4 to F6 were scaled by dividing each by 3 and

rounding to the nearest integer. This scaled problem was solved us~ng

BHD and in 15 cases out of 18 took fewer pivots than the original problem.

The answers to the two problems never differed by more than 2. BGD

obtained an answer before the scaled problem in 7 cases out of 12, but

this first answer was out by as much as 5 in some cases.

- 73 -

Figure 2.4.1: An illustration of the methods described ~n

Part 4 of Chapter 2.

The problem : Maximise

subject to

4x + l3y

3x + 7y < 11

2x + 9y.::. 12

We denote the slack variables by u and v and write the problem

in tableau form

1. 2.

1 x Y 1 x v

s 0 -4 -13 s 156/9 -10/9 13/9

u 11 3 7 u 15/9 13/9* -7/9

v 12 2 9* y 12/9 2/9 1/9

3. rational solution

1 u v

e 242/13 10/13 11/13

x 15/13 9/13 -7/13

y 14/13 -2/13 3/13

The constraints generated by taking the fractional parts of these rows are:

(e) -8/13

(x) -2/13

(y) -1/13

-10/13

-9/13

-11/13

-11/13

-6/13

-3/13

The whole group of thirteen constraints is as follows, the first one being

generated directly from the row corresponding to y and the remainder being

successive multiples of it.

(-1/13, -11/13, -3/13) (-8/13, -10/13, -11/13)

(-2/13, -9/13, -6/13) (-9/13, -8/13, -1/13)

(-3/13, -7/13, -9/13) (-10/13, -6/13, -4/13)

(-4/13, -5/13, -12/13) (-11/13, -4/13, -7/13)

(-5/13, -3/13, -2/13) (-12/13, -2/13, -10/13)

(-6/13, -1/13, -5/13) (0 0 0)

(-7/13, -12/13, -8/13)

- 74 -

Figure 2.4.1 continued

(a 1 ProgramJlle BHD.

The first row with a non-integer constant term is the cost function.

Taking fractional parts we obtain the row (-BJ13, -10/13, -11/13).

As B is greater than 13J2 we cannot improve the constraint and so we

add it to the tableau and perform one iteration:

3. Ii = IB BJ13 4. ft = IB

1 u v 1 u s

~ 242J13 10/13 llJl3 ii 18 0 1

x 15Jl3 9J13 -7/13 x 17/11 13/11 -7/11

y 14J13 -2Jl3 3J13 y 10/11 -4/11 3/11

s -B}l3 -10J13 -11113* v B/11 10/11-13/11

Note that if the cost row had given us for example the row (-3/13,

-7Jl3, -9J131 we would have improved it by taking the largest multiple,

~ , of it such that 3~ < 13. This multiple is 4, so we would have

multiplied through by 4 to get (-12Jl3, -2B/13, -36/13). Taking

fractional parts of the negative of this gives us the row (-12/13, -2/13,

-10)13}.

(b} Programme BRM.

This produces a constraint by taking factional parts from the first

row with a non-zero constant term. No multiple of it is considered.

In this case it produces the same constraint as ~n (a).

(c) Programme BH9.

We choose the first row after the cost function with a non-integer

constant term. This is the row corresponding to x and it has fractional

parts (-2J13 , -9J13 , -6Jl31. We improve it in the same way as BHD and

multiply it by -6 and take fractional parts again to give (-12/13,

-2}13, -10)l3}. If we add this to the tableau and pivot we have

3. " = 1B B}13 4. ii = 17 6/10

1 u v 1 u s

242113 10J13 1.1)13 176J10 6/10 11/10

x 15J13 9}l3 -7ll3 x IBJI0 B/I0 -7/10

y 14J13 -2}l3 3J13 y B/I0 -2/10 3/10

s -12/13 -2J13 -10/13* v 12J10 2/10 -13/10

(d) Programme BHQ

- 75 -

Figure 2.4.1 : continued.

We pick the first available row which is in fact the cost function.

Taking fractional parts we obtain (-8/13, -10/13, -11/13). Integer

procedure euc1idalg tells us that 5 x 8 = 1 (mod 13) and so (13 - 5) x 8

= 8 x 8 = 12 (mod 13).

Multiplying the row by -8 and taking fractional parts again we obtain

(-12/13, -2/13, -10/13). This is the same constraint as produced in (c).

(e) Programme BHN.

We select the row whose constant term has the maximum fractional

part and work out the constraint of fractional parts. This gives us

constraint corresponding to the cost row which is (-8/13, -10/13, -11/13).

If this constraint were added as in (b) the pivot column would have been

the last. We derive the constraint with coefficient -1/13 in the last

column. Integer procedure euclidalg tells us that 6 x 11 = 1 (mod 13)

and so we multiply the above constraint by -6 and take fractional parts

again to obtain the row (-9/13, -8/13, -1/13). Incorporating it

3. i!r = 18 8/13 4. i!r = 17 6/8

1 u v 1 s v

~ 242/13 10/13 11/13 i!r 142/8 10/8 6/8

x 15/13 9/13 -7/13 x 3/8 9/8 -5/8

y 14/13 -2/13 3/13 y 10/8 -2/8 2/8

s -9/13 -8/13* -1/13 u 9/8 -13/8 1/8

(f) Programme BHP.

We choose the first available row and take fractional parts.

Again this is the cost row and it gives us (-8/13, -10/13, -11/13).

We choose the smallest column, that is the one corresponding to u, and

minimise the coefficient in this row. Integer procedure euclidalg

tells us that 4 x 10 = 1 (mod 13) and so we generate a constraint from

-4 times the above row. We obtain (-6/13, -1/13, -5/13). Incorporating

it:

3. i!r = 18 8/13 4. Ii = 11 3/5

1 u v 1 u s

a 242/13 10/13 11/13 88/5 3/5 11/5

x 15/13 9/13 -7/13 x 9/5 4/5 -7/5

y 14/13 -2/13 3/13 y 4/5 -1/5 3/5

s -6/13 -1/13 -5/13* v 6/5 1/5 -13/5

- 76 -

Figure 2.4.1: continued.

(g) Programme BHE.

We choose the ~ov wnose constant term has the largest fractional

part and we add the constraint formed b~ its fractional parts to the

tableau. This produces the constraint (-8]13, -10]13, -11/13} from

the cost function as in Cal.

(h) Programme BHF.

This extracts the fractional part of each constant term and takes

the maximum multiple of each such that the numl'erator remains less than

the denominator. From the constant term of the cost function we get

1 x (8/13) = 8/13. From the row corresponding to x we obtain

6(2/13) = 12/13 and from the y row we obtain 12(1/13) = 12/13.

We choose the row which generates the largest and in this case it is the

x row as we found it before the y row. 6 times the x row generates

(-12/13, -2/13, -10/13) which has already been iterated upon in (c).

- 77 -

CHAPTER ~"

THE TWO MOST EFFECTIVE ALGORITHMS

- 78 -

Chapter 3: The two most effective algorithms.

In this chapter we consider programme BHD from the point of view

of a programme which having found a feasible optimum solution in

rationals, adds a constraint and reoptimises, the constraint being

such that the first basic variable with a non-integer value is reduced

at least to the next integer below. We are not concerned here with

the mechanics of avoiding and dealing with integer overflow. However

we are concerned with the use of the lexicographic method of choosing

pivots, for it is this which determines from which row a constraint is

taken.

We also consider programme BGD as an extension of BHD.

- 79 -

Part 1: The significance of a lexicographic method.

Part 4 of Chapter 2 included a brief description of programme BHD.

As described there the programme derives a constraint from the cost

function whenever this has a non-integer value, and the constraint is

such that the value of the cost function is reduced at least to the next

integer below. With the exception of BHM and BGD,the other programmes

described in Chapter 2 generated constraints which bore no guarantee

of doing this, and it was found that very often they did not do this,

especially when D was large.

and often superior result.

The 'obvious' constraint gave a consistent

Although such a constraint has a good immediate effect on the problem

it tends to make the problem more difficult by introducing zero coefficients

into the cost function. This is evidenced by the performance of programme

BHD when solving problem 1, listed in Appendix C. As the difference be-

tween the solution in rationals and the solution at the point the run was

terminated was 42.4 the cost function can have had a non-integer value after

at most 43 iterations. For such a value gives r1se to a constraint reducing

the value at least to the next integer below. However 426 cuts were added

when trying to solve the problem which indicates that on average it took

10 iterations to shift the cost function from an integer value. As all the

426 cuts had non-zero constant terms the cost function must have contained

zero- coefficients.

The reason for this is suggested in part by the formula for the

transformation of a coefficient of the cost function a ./D during a pivot
OJ

operation incorporating a new constraint:

a. f. a h
-.£J. - -.£J. --E-

D D foh
3.1.1

where we denote the j th coefficient of the constraint by f ./D and the
oJ

pivot column by h.

As a
oh

' f
oj

' and foh are all non-negative the expression 3.1.1 will tend

- to decrease. Of course this does not apply to other pivot operations.

Given that the coefficients of the cost function do decrease in value

we would expect zeros to appear eventually.

new constraint are defined by

f .
+ -.£J.

D

For the coefficients of a

3.1.2

- 80 -

where ~is the largest integer such that

~C~o - ta~oJ} < D.

If ~ a .JD is so small that the middle term of 3.1.2 vanishes we have
OJ

f . = ~ a ..
oJ oJ

If similarly foh = ~ aoh the expression 3.1.1 will

vanish. Furthermore if there are columns, j, such f . = ~ a . the
oJ oJ

pivot column will be chosen from among them for only they minimise the

ratioJ a .Jf . by which the pivot column is chosen. r OJ OJ

Any ties are resolved by reference to subsequent rows.

Once a cost row has zero coefficients in it, it will remain unchanged

until a pivot row, possibly an added cut, is chosen which has no negative

coefficients in the columns with zero cost. Sometimes a large number

of pivot operations can be performed and several cuts added without

changing the value of the cost function. When this happens it is rather

like being lost in a maze and there is a potential danger of looping.

As mentioned in Part 2 of Chapter 2 the lexicographic method of Part 6

in Chapter 1 was used to avoid this danger.

One way of regarding lexicographic ordering 1S that the method

effectively turns the basic variables into secondary cost functions.

If any row of the tableau contains coefficients which are the first

non-zero elements in a column, these coefficients must be positive, by

definition of lexicographic ordering. As any pivoting operation

which did not alter the rows above the row in question would have to

have a pivot in one of these columns, it would reduce the value of the

basic variable associated with the row. Hence any basic variable 1n

the tableau is maximised if we regard the basic variables above it as

fixed.

Accordingly if a cost function, optimised and at an integer value,

does not define uniquely the value of the variables, we have a subspace

to search for an integer point, and for this we use the first basic

variable in the tableau as a subsidiary cost function. If this still

does not define the value of the variables the second variable becomes

a cost function, and so on. As the value of no basic variable may be

increased without reducing the value of a basic variable higher in the

tableau, it follows that if the full lexicographic system is used no

feasible solution is visited twice.

- 81 -

The purpose of these remarks is to demonstrate that 1n a

lexicographic system every variable is a cost function. Thus, if

the primary cost function is at an integer value and the first basic

variable is at a non-integer value, our immediate object is to reduce

the value of this variable as much as possible. We know we can reduce

it at least to the next integer below, and so we do this. If it is

already at an integer value, we inspect the next variable and act 1n

a similar way.

- 82 -

Part 2: The dependence of the rate of convergence

upon the ordering of the basic variables

in the tableau

One of the biggest problems of integer programming ~s the

unpredictability and irregularity of convergence. But although

the method just outlined still suffered from these faults, the main

cause of them was apparent.

Taking the next constraint from the first row whose basic variable

had a non-integer value always reduced the value of that basic variable

at least to the next integer below. However, it often went no further,

and it is conceivable for a variable in successive steps to take every

feasible integer value consistent with a fixed integer value of the

cost function. The number of such integer values can be arbitrarily

big. For example, in the Markowitz and Mann problem (ref. 13) (problem 1

in Appendix Bl the values of the slack variables can vary from 0 to

about 50 when the value of the cost function is in the region of the

integer solution. If the equations were multiplied through by 10, the

slack variables would have ten times as many feasible integer values.

Accordingly if the slack variables were the first basic variables in

the tableau, we would expect the value of the cost function to stay

stationary for many iterations.

On the other hand, the 'proper' variables, that ~s the variables

with non-zero coefficients in the cost function, can only take two

values, zero or one, for any given value of the cost function. If

these variables were listed as the first basic variables in the tableau,

then at any iteration one would simply look for the first non-integer

value, and force that variable to zero. One would expect such a

constraint to have a much bigger effect on the problem than one derived

from a slack variable, and that as a result fewer constraints would be

required to break the value of the cost function away from a given integer

value. In practice this was found to be the case.

In the Markowitz and Mann problem it is quite easy to deduce

that one has a better chance of getting a good cut from a 'proper'

variable than from a slack variable, and since if all the 'proper'

variables are integer the slack variables are integer also, we need

never take a cut from a slack variable. However it is more difficult

to decide which among the 'proper , variables should come first. As the

coefficients in the constraints are randomly distributed one might

- 83 -

consider it best in this case to put first the variables with the

largest coefficients in the cost function, but when this was tried it

did not make a startling improvement to the speed of calculation.

While these procedures proved very useful for the Markowitz and

Mann problem, it is very difficult to generalize them. In general,

we wish to place the more 'significant' variables first. Unfortunately,

while one can intuitively accept the concept of significance, it is

extremely difficult to define, let alone construct an algorithm for.

One is probably seeking variables which produce a large decrease in

the value of the lexicographic cost vector per unit decrease of their

own value. Slack variables, that is variables with zero coefficient

in the cost function, are usually a bad choice. However, variables

with large coefficients in the cost function will not necessarily be

a good choice if their coefficients in the constraints are also large.

We have now described the reasoning which lay behind the

development of programme BHD. We go on to discuss the considerations

which gave rise to programme BGD.

- 84 -

Part 3: The problem of the dual function of the cost row

When the variables were ordered so that the 'proper' ones came

first in the tableau there was a great improvement. The progress of

the calculation became systematic and regular in the sense that the

amount of calculation required to pass from one integer value of the

cost function to the next increased slowly as the solution was

approached.

In Part I of this chapter it was demonstrated that every variable

was a cost function. The reverse is also true, that the cost function

is an integer variable, though not restricted in sign. This means that

instead of dividing a tableau into cost function and constraints, as ~s

usual, each variable of the tableau performs both functions, and

variables only receive differing treatment if some, but not all, are

restricted in sign.

This enables us to manufacture variables which have no direct

relation to the problem but are 'significant', using the word in the

same sense as in Part 2 of this chapter. Such variables can be placed

immediately after the cost function in the list of basic variables.

Such new variables can sometimes be generated by dividing the coefficients

in the cost function by a number greater than one and rounding to the

nearest integer. Such variables will be integer valued and approximately

proportional to the value of the cost function itself. So for a given

value of the cost function, this new variable will be extremely restricted

. ~n value.

All the techniques discussed so far in Parts I and 2 of this

chapter have been designed to reduce the work needed to search the

sub-problem associated with any given integer value of the cost

function, but they have no bearing on the fundamental weakness of the

method so far described. This is that the cost function itself may

have to pass through a large number of integer points before the

solution is reached. In some aspects the cost function is similar to

a slack variable in that it is not essentiallY an integer variable, but

is only integer because it is an integer combination of integer variables.

And like a slack variable, if its coefficients are multiplied by ten say,

it will have ten times as many integer values to pass through to reach a

solution.

The converse 1S true, that if we were able to divide the coefficients

of the cost function through by a common factor we would speed up the

- 85 -

calculation, but generally this cannot be done without altering the

problem and its solution.

The theory demands that one function should serve two purposes

~n the problem, to be both the cost and also the first variable from

which cuts are taken. If this function should not be the original

cost function but a function derived from it as already described,

namely dividing the coefficients by a number greater than one and

rounding, we will of course by liable to get a different answer.

But under certain conditions the new cost function will have fewer integer

values to pass through before reaching its optimum, and thus reach

it more rapidly, and also the integer point at which it has its optimum

value will furnish the original cost function with a value which is not far

from its optimum. Once such an answer is found it is noted, and a new

constraint added which constrains the value of the (original) cost

function to be better than the one just found. The process continues

until the problem becomes infeasible ln which case the last solution

found is known to be optimal.

As with 'significant' variables, it is difficult to construct an

algorithm to determine whether such scaling of the cost function will

reduce the number of integer points to be searched and at the same time

produce a reasonable approximate answer. If the divisor of the

coefficients is such that no new zeros are created in the cost function,

the new function will be a genuine approximation to the cost function,

even though the ratio between two coefficients could change by as much

as a factor of three. (For example both 2.9 and 1 become 1 when divided

by 2 and rounded to an integer).

However, if a coefficient becomes zero the associated variable

has no influence on the cost. If the size of the coefficient in the

cost function is a true indication of the importance or significance

of the variable this does not matter, and the technique can be applied.

This is the case with the first variable in the Markowitz and Mann

problem (problem I in Appendix B). On the other hand the cost function

ln the job-shop scheduling problem (ref. II) {problems A4 to F6 in Appendix

B} contains unit coefficients for variables which represent the slack time

on the third machine between successive jobs. These variables form an

important part of the objective function and cannot be omitted without

seriously affecting it.

- 86 -

If a problem is susceptible to a scaling of the cost function its

speed of solution will depend very much on the choice of divisor. If

the divisor is small; say two, the cost function will pass through

about half the number of values, and reach a solution which is reasonably

close to the optimal. But a factor of two is not usually a satisfactory

saving when one is concerned with integer programming! It is often

preferable to use a large divisor and obtain a good solution rapidly as

long as it 15 not too distant from the optimal. Probably a divisor

somewhere between the two extremes would be most satisfactory.

An example of this is given in Appendix C under problem 1. Programme

BED failed to solve the problem even after 30 minutes. However when

the cost function was divided through by 7.5 and each element rounded

to an integer the same programme solved the altered problem in less than

seven minutes. Because the divisor of 7.5 had been carefully chosen

the two problems had the same solution.

Such speculation or experimentation 15 not necessary if we exploit

our ability to have several cost rows. Firstly, we do not actually

replace the original cost function by a new one, we keep it as a

secondary cost function. This ensures that if at the optimum of the

generated function the original one has two solutions, then the better

one will automatically be chosen. If the divisor of the generated

function is small the function will produce a solution close to the

optimal, but will not produce it rapidly. Accordingly we can precede

this function by a second cost function with a larger divisor. And the

second cost function can be preceded by a third, and so on.

The technique actually used was to precede the cost function by

a function generated by a divisor of 2, and precede this by one generated

by a divisor of 22 , and so on using increasing powers of 2 until the

function vanished. Each function was generated from the original row,

not the row preceding it.

Programme BED and its extension to become programme BGD were tested

on several problems and the results of these tests are given in Appendix C

and commented upon in Part 4 of Chapter 2.

- 87 -

Part 4: A numerical illustration of the use of artificial cost functions

We can illustrate the discussion of Part 3. Figure 3.4.1 solves a

simple problem in three ways.

The first method is that of programme BHD. The original tableau

consists of five rows; the cost function, the two constraints representing

x ~ 0 and y ~ 0, and the two explicit constraints of the problem. The

tableau is optimised by the Simplex Method. Before a row is pivoted

on it is copied to the bottom of the tableau and afterwards this extra

row is discarded.

Tableau 3 contains the optimal solution to the linear programming

problem. The cost function 6 has an integer value so a constraint is

taken from the first variable with a non-integer value, in this case x.

The coefficients of the constraint are taken from the positive fractional

parts of the row corresponding to x. This constraint is added to the

bottom of the tableau and pivoted upon. Although the extra row at the

bottom ~s then discarded the constraint itself is retained as the row

corresponding to v in tableau 4.

Tableau 4 is optimal and feasible but still non-integer, and the

process of adding a constraint and reoptimising is repeated twice more

to give an optimal integer solution in tableau 6.

We note that after the initial optimisation three constraints and

three reoptimisations were needed, the cost function 8 successivelY taking

the values 10, 9~, 8~ and 8.

The second method inVOlves adding an artificial cost function to

the problem. The function added has been chosen on the basis that it

must have smaller elements than the proper cost function but must also

be a reasonable approximation to it. As in the first method the tableau

is optimal after two pivots to give tableau 3. However this time we

examine the artificial cost function when looking for a constraint. As

its value is non-integer we derive a constraint from it by taking fractional

parts and this reduces its value to an integer.

Tableau 4 has integer constant terms and is optimal and feasible;

moreover the original cost function is also optimal. We have found

an optimal integer solution with one constraint instead of three.

However we perform one more iteration to produce an integer matrix.

- 88 -

Method 3 illustrates the working of programme BGD. It is an

extension and mechanisation of the ideas of method 2. Instead of

one artificial cost function we have several which are obtained by

dividing the original one by 2,4 and 8, and rounding to an integer.

After one pivot the tableau, but not the original cost function,

1S optimal. The solution is also integer, but one constraint and

one pivot element are needed to obtain the integer matrix of tableau 3.

We now have a feasible integer solution, and although this solution

happens to give ~ its optimal value we still have to prove its optimality.

To do this we add a constraint to the bottom of the tableau which

constrains the value of the cost function to be at least one better than

the value we have just obtained. This constraint becomes a permanent

addition to the tableau. As this constraint renders the tableau

infeasible we copy it to the bottom of the tableau and pivot on it.

Tableau 4 is optimal and feasible again but non-integer. After

adding one constraint and performing two pivots we obtain the final

tableau, tableau 6. This tells us that the problem now has no solution

as one row has a negative constant term but no negative elements on which

to pivot. Therefore the optimal integer solution is the one obtained

from tableau 3.

We note that method 3 produced the optimal integer solution more

quickly than the other two methods, but lost this advantage in proving

the optimality of the solution. In fact it took longer to prove

optimality of the integer solution than it did to find it.

- 89 -

,Figu,re 3,4.l: A cQlllPari~on of thr~e different ways of solying

a simple problem.

The problem:
~
Mi"imis9 ~ = 4x + 3y

Subject to 3x + Y < 6

x -+- 2y .::.. 4

We represent the slack variables by u and v.

Method 1: The method of programme BHD.

1. 2.

1 x Y 1

~ 0 -4 -3 & 8

x 0 -1 0 x 2

y 0 0 -1 Y 0

u 6 3 1 <- u 0

v 4 1 2 v 2

u Y

4/3 -5/3

1/3 1/3

0 -1

-1 0

-1/3 5/3

u 6 3* 1 v 2 -1/3 5/3*

3. optimal, feasible, 4. optimal, feasible,

non-integer, rr = 10 non-integer, & = 9~

1 u v 1 u sl

& 10 1 1 rr 37j4 2/4 5/4

x 8/5 2/5 -1/5 <- X 7/4 2/4 -1/4

y 6/5 -lj5 3J5 y 3/4 -2/4 3/4

u 0 -1 0 u 0 -1 0

v 0 0 -1 v 3/4 2/4 -5/4

Sl -3j5 -2j5 -4j5* S2 -3/4 -2j4* -3/4

5. optimal, feasible, 6. optimal, feasible,

non-integer, ir = 8~ integer matrix & = 8

1 s2 sl 1 s2 s3

rr 17/2 1 1/2 <- & 8 1 1

x 1 1 -1 x 2 1 -2

Y 3/2 -1 3/2 Y 0 -1 3

u 3/2 -2 3/2 u 0 -2 3

v 0 1 -2 v 2 1 -4

S3 -1/2 0 -1/2*

<-

<-

- 90 -

:Figu.,re 3.4,1 conthmed

Method 2 : Augmenting the problem with an art Hic ial cost function

zJ = x + y and using the method of programme BHD.

l. 2.

1 x y u y

fi1 0 -1 -1 &1 2 1/3 -2J3

&0 0 -4 -3 fiQ 8 4)3 -5J3

x 0 -1 0 x 2 113 lJ3

Y 0 0 -1 Y 0 0 -1

u 6 3 1 <- u 0 -1 0

y 4 1 2 y 2 -lJ3 5J3 <-

u 6 3* 1 y 2 -1/3 5/3*

3. optimal, feasible, 4. optimal, feasible,

non-integer, fiO = 10. integer solution, fiO = 8.

1 u v 1 u s1

~1 14/5 1/5 2/5 <- fi1 2 0 1

~O 10 1 1 ~O 8 1/2 5/2 <-

x 8/5 2/5 -1/5 x 2 1/2 -lj2

Y 6j5 -1/5 3/5 Y 0 -1/2 3j2

u 0 -1 0 u 0 -1 0

v 0 0 -1 v 2 1/2 -5/2

Sl -4j5 -1/5 -2/5* S2 0 -1/2* -lj2

5. optimal, feasible,

integer matrix, fiO = 8

1 s2 sl

fil 2 0 1

~O 8 1 2

x 2 1 -1

Y 0 -1 2

u 0 -2 1

v 2 1 -3

- 91 -

Figure 3.4.1 continued

Method 3: Augmenting the problem with several artificial cost functions

as in the method of programme BGD.

Added cost functions i!r3 = x

i!r2 =x + y

irl = 2x i2 y

l. 2. optimal, feasible,

integer solution, t!a = 8
1 x y 1 u y

!l3 0 "1 0 ir3 2 lJ3 Ij3 <-

t!2 0 -1 -1 !l2 2 1./3 -2j3

irl 0 ... 2 -2 irl 4 2j3 -4j3

ira 0 -4 -3 ira 8 4J3 -5j3

.x 0 -1 0 x 2 lJ3 lj3

Y 0 0 "'1 Y 0 0 -1

u 6 3 1 u 0 -1 O.

v 4 1 2 v 2 -lJ3 5j3

u 6 3* 1 sl 0 -lJ3 -lj3*

3. optimal, feasible, 4. optimal, feasible,

integer matrix, t!a = 8 non-integer, ira = 9

1 U sl 1 u lloa

t!;j 2 0 1 ir3 9/5 3/5 1/5 <-

ir2 2 1 -2 !lz 12/5 -1/5 -2/5

t!l 4 2 -4 irl 24j5 -2j5 -4/5

t!a 8 3 -5 <- i!r u 9 0 -1

x 2 0 1 x 9/5 3/5 1/5

Y 0 1 -3 y 3J5 -4J5 -3J5

u 0 -1 0 u 0 -1 0

v 2 -2 5 v 1 1 1

ira -1 3 -5 fla 0 0 -1

ira -1 3 -5* Sz -4J5 -3J5 -1/5*

- 92 -

5. optimal, infeasible, 6. infeasible, no solution.

integer matrix, &0 =13

1 u s2 1 v s2

i!r3 1 0 1 i!r3 1 0 1

i!r2 4 1 -2 i!r2 5J2 1J2 1j2

i!r1 8 2 -4 &1 5 1 1

&0 13 3 -5 i!ro 11/2 3j2 5/2
x 1 0 1 x 1 0 1

Y 3 1 -3 Y 3J2 1J2 -1/2

u 0 -1 0 u 3J2 -1/2 5/2

v -3 -2 5 <- V 0 -1 0

&0 4 3 -5 i!ro -lj2 3j2 5/2 <-

v -3 -2* 5 i!ro -lj2 3j2 5/2

- 93 -

Part 5: Aspects of the algorithm which would benefit from further research

(a) The residual freedom of choice of constraint

The basic principle of the algorithm is to optimise the linear

programming problem in such a way that each variable is maximised

subject to the variables preceding it in the tableau remaining at

their respective maxima. The first variable in the tableau, (the

cost function being regarded as a variable), which is not at an

integer value, is then reduced to at least the next integer below by

a cut.

There are as a rule several cuts which will reduce the value of

the variable at least to the next integer below. If in the terminology

of e~uations 2.4.1. and 2.4.3., f. is the fractional part of the value
10

of the basic variable, there will be ~ such cuts, where ~ is the largest

integer such that

~ f. < D.
10

In programmes BHD and BHM, ~ was chosen to be as large as possible

and to be e~ual to 1, respectively. Quicker results seemed to be

obtained when ~ was as large as possible, but there may be better

values of ~. For example we might write ~ = 2~ , where A is as large

ai integer as possible consistent with 3.5.1. A constraint derived

from this would have the property that it was at least as good aQ:A

other constraints.

(b) Choosing the order of the variables

As explained in Part 2 of this Chapter, it is desirable to order

the basic variables in the tableau according to their importance, or

significance. While what is re~uired is a quick and efficient way of

selecting an ordering it would be a considerable advance simply to

discover some property of the variables which affected it.

One possible way of deriving an order is based on the geometrical

form of the problem. An optimal non-integer solution is at the vertex

of a hypercone. The various variables in the problem will have values

which lie on hyperplanes intersecting the hypercone. It is possible

that the variables with the smallest range of feasible values will be

the best ones to put at the head of the tableau.

- 94 -

In algebraic language we first solve the linear programming

problem. We then constrain the cost function to be valued at the next

integer below the rational optimum. For each variable in the problem

we solve the subsidiary problems: maximise that variable and then

m~n~m~se it. The variable with the smallest range of values is placed

first in the tableau, and the remainder in order of their range of

values.

If this method were successful it might be desirable to repeat it

and rearrange the ordering at intervals during the calculation. For as

the hyperplane defined by the cost function moves into the feasible

space and cuts off more and more vertices, so will change the shape of

the hypercone formed by the boundaries of the feasible region which

intersect the hyperplane associated with the cost.

(c) The necessity of reducing the cost function to an integer

value whenever possible.

The theory of programme BHD demands that the cost function should

be reduced to an integer value whenever possible. For then if the first

variable is not at an integer value the next cut will either reduce it

at least to the next integer below or else reduce the cost function, in

which case the next cut is chosen to reduce the cost function to at

least the next integer below. If one does not reduce the cost function

as often as possible the whole argument loses its validity.

Nonetheless when using the extended algorithm it does seem

inefficient to have to use the wrong cost function ~n order that one

might derive better cuts from it. One is tempted to try preceding the

first artificial cost function by the original cost function in order

that the original one is always optimal, but continuing to choose cuts

starting at the artificial cost function.

(d) The manner of generating subsidiary cost functions

Programme BHD was extended into programme BGD by replacing the

cost function, which we may denote by £' ~, by a series of cost

functions, which we may denote by C~. The ith row of C is defined

by

(cl i • ={ ~~I
where we use the :~:;~ brackets i } to denote that each member of

- 95 -

C'jA. is rounded to the nearest integer. - ~

restriction

where k is the number of rows of C, and

Ak = 1, Al < 2 max (cj).

The A. need not be integer.
~

Programme BGD defined A. by
~

A small modification of this would be

Ak- l ~ 3, Ai ~ 2Ai+l - 1.

The A. are subject to the
~

~ = 2, ... , k - 1

This will give us the series 1,3,5,9,17 ... instead of 1,2,4,8,16 ...

The justification for this would be that when an integer is divided by an

even number the maximum error when rounding is a half, but when it is

divided by an odd number the error is always less than a half. In

particular when dividing by 3 one gains a function with much smaller

coefficients than when dividing by 2 but with no greater loss of accuracy.

More generally, there is scope for experiment in deciding the

optimum number of A. and the distance between them. If the number of
~

them is increased the cuts may become more efficient, but each pivot

will take longer. It might be that a fibonacci series would be suitable,

i.e.

i = l, ... k - 2.

This would of course increase the number of cost rows.

Alternatively the number of cost rows could be reduced by use of the

relation

A. = (k - i + I)!
~

The last two sets of formulae give us series of 1, 2, 3, 5, 8, 13, 21, ...

and 1,2, 6, 24, 120, ••• respectively.

(e) General computational procedure

The programmes described have been experimental. If they were

going to be used on a routine basis for problem solving many changes

would be necessary. Integer programming problems are often expressed

in terms of large and sparse matrices, as are many linear programming

problems. To deal with the latter first the inverse matrix method

- 96 -

(ref. 3, p.89) and then the product form of the inverse (ref. 4, p.200)

were developed. These methods gain their efficiency of computation by

evaluating as few elements of the transformed array as possible. In

particular they use the Primal Simplex Algorithm and select pivot

columns by reference only to the elements of the cost function, and

pivot rows by reference to the constants column and the pivot column.

The programmes in Appendix D use the lexicographic Dual Simplex Method.

Pivot rows are chosen by reference to the constants column, but

pivot columns, besides referring to the cost function and pivot row,

can require references to several other rows in order to break ties.

It might not be economical to use the aforementioned methods for integer

programming.

On the other hand the method of choosing additional constraints

used in programmes BHD and BGD is ideal for use with the inverse matrix

method.

The use of integer arithmetic would also cause problems. As

pointed out in Part 7 of Chapter 1, the problems associated with

integer arithmetic may well be fundamental to the problems of integer

programming. Nevertheless the author considers that it was fortunate

for him that KDF9 Algol permits the use of 39 bit integers, and

KDF9 User Code permits the use of 96 bit integers. These word sizes

were not always big enough for the problems tackled, and as computers

seem to be standardising on 32-bit words, and compilers do not often

provide facilities for multilength integers, this problem would merit

further attention.

Associated with this problem is the question of how or whether

to use the method of scaling the problem described in Part 2 of

Chapter 2. It was used, firstly, after an optimum was reached, and

secondly, after integer overflow occurred. With some of the methods

of choosing constraints scaling may have improved the choice when

applied at an optimum solution. This may also have been the case in

programmes BHD and BGD. But as a method of counteracting overflow it

may not have been so helpful.

- 97 -

CHAPTER 4

COMPARISON OF THE METHODS DESCRIBED IN THIS
THESIS WITH THE WORK OF OTHER AUTHORS

- 98 -

Chapter 4: Comparison of the methods described

in this thesis with the work of other authors

Part 1: Haldi and Isaacson (ref 9)

In their paper Haldi and Isaacson describe a method which

differs very little from programme BHD. The author read their

paper about the same time as he was forming his own ideas on the

value of the algorithm. Although Haldi and Isaacson published their

findings first an independent approach has enabled the author to view

the problem from another angle. As Haldi and Isaacson acknowledge.

Gomory was the first to describe the method (ref. 1. p.287). but he

used it simply because it produced a neat finiteness proof. Some

of the results of this thesis take the ideas of Haldi and Isaacson a

little further.

Their method ~s actually that of programme BHM as described in

Part 4(b} of Chapter 2. They do not suggest improving the constraints

~n the manner of programme BHD.

They make certain suggestions on problem formulation. They note

that the wider the range of integer values the cost function has to

pass through the longer the solution takes, and they "recommend that

coefficients in the objective function be divided by multiples of 10

and rounded off whenever possible." (ref. 9, p.955). The burden of

deciding whether it is possible or not lies on the user of the programme.

There is no suggestion of an automatic procedure for doing this. They

also recommend that columns and rows of the constraint matrix be rounded

and scaled down wherever possible. This is to avoid numerical

difficulties encountered in their use of floating point. In the integer

arithmetic programmes contained in Appendix D these same problems would have

caused the determinan~ D, to have large values and possibly give rise

to integer overflow. Reducing the size of the elements in the matrix

would reduce the size of D. It is interesting to note that large numbers

in the original matrix cause problems in both floating point and integer

arithmetic solutions of the problem.

Haldi and Isaacson also realise that the ordering of the variables

in the tableau is important. "Let the first variables in the data deck

be those which, if their value should be changed by a unit amount, would

cause the greatest net effect on the overall problem." (ref. 9, p.956).

- 99 -

Part 2: Martin Cref. 10)

The method of Martin is similar to the methods described in

this thesis in that it is a direct extension of Gomory's algorithm

(ref. 1). The steps of the method are:

Ca) Optimise the linear programming problem.

(b) Choose a row with non-integer right hand side and derive

the elementary constraint consisting simply of the fractional

parts of the coefficients.

Ccl Compute the column which would contain the pivot if this

constraint were added to the tableau and the dual simplex

algorithm were used to choose the next pivot.

ed) From this constraint generate a new one which has the

smallest possible element in the above mentioned pivot column.

(e) Add this constraint to the tableau and pivot on this element.

Cf) If the right hand sides are now integer, a sufficient condition

for which is D = 1, return to step Cal. Otherwise return to step (b).

The calculation Cd) is carried out by a vers~on of the Euclidean

Algorithm. However instead of interating on D and the coefficient in the

chosen pivot column to obtain the appropriate multiple of the row which

would generate the desired constraint, the iteration is carried out on

the whole row of coefficients. This is unnecessary and wasteful in time.

The more important ideas embodied in the method were taken and

moulded into the format described in Part 2 of Chapter 2 to produce

programme BHP. The steps of this programme correspond to that of Glenn

Martin.

Cal Optimise. Programme BHP uses a lexicographic method.

(bl Choose a row with non-integer right hand side. If D is prime

if does not matter which for each such row would generate every

constraint. Programme BHP chooses the first row with a non-integer

right hand side.

(c) Choose a column. It is questionable why one should make use

of a constraint one is not going to apply. Instead programme BHP

chooses the smallest column lexicographically speaking, providing

of course the generating constraint has a non-zero element in that

column.

Cd} Generate the constraint with the smallest element in the chosen

column. This produces the same result in both methods and has

already been commented upon.

- 100 -

(el Add this constraint to the tableau. As in 'a lexicographic

system there is a unique optimum there is no point in forcing

a pivot on any particular coefficient.

(f) Programme BHP always returns to (a) to reoptimise.

The main difference between the two methods is that where programme

BHP uses a lexicographic method Martin's programme deliberately avoids

it. In step Ce) he chooses a pivot which is small, if not actually -1.

This immediately ensures a matrix of small numbers. If the subsequent

reoptimisation tends to keep the value of D small it might be of

advantage in keeping numerical difficulties under control and in reducing

the choice of constraints. However, no such explanation is offered in

the paper. On the other hand there are definite advantages in using a

lexicographic method.

The two methods were not compared computationally by the author.

Step (elin Glen Martin's algorithm would normally make the tableau non­

optimal and infeasible, and the composite method needed to reoptimise

the problem was not defined. However some aspects of the algorithm

were incorporated into programme BHN. This was a modification of

programme BHP such that the row chosen in step(b) was the one with largest

fractional right hand side, and in step (cl the column was chosen by

reference to the constraint derived in step (bl. In the few problems

solved by both BHP and BHN, BHP appeared to be superior. (See Part 4 of

Chapter 2).

- lOt -

Part 3: Land and Doig (ref. 12)

The method of Land and Doig is a branch and bound algorithm

which uses. linear programming to calculate the bounds and provide

information to help choose the next branch.

method are:

The steps of the

Cal Optimise the linear programming problem.

Cbl Select an integer variable with a non-integer value.

lcl Branch on this variable. If we denote this variable by

x. and we have x. = a. JD, then the branches are 1 1 10

Cil add the constraintc. Xi > [aioJD] + 1

(ii) add x. < ra. JD 1 .
1 - L 10 J

(d) Put bounds on these two subproblems by solving them by

linear programming. If either problem 1S infeasible, abandon

it, otherwise augment it to the list of branches. If in (c),

(i) 1S a better bound than (ii) it may be necessary at some

stage to solve the subproblem with x. > ra. JDl + 2 as a constraint;
1 - L 10 J

if (ii) is better than (i) it may be necessary to solve with the

constraint x. < ra. JDl - 1.
1-LlOj

(e) Choose

to (b).

the subproblem with the best bound so far and return

Programme BHD has much 1n common with this method.

them step by step.
We compare

(a) Optimise. Programme BHD uses a lexicographic method.

(b) Select an integer variable with a non-integer value.

Programme BHD always takes the first, if possible the cost

function.

(c) Branch on this variable

(i) Xi > [ai/DJ + 1

(ii) Xi < [ai/DJ

If the previous branches, i.e. the variables higher in the tableau,

are kept fixed (i) will be infeasible in programme BHD because Xi

has been maximised subject to the higher variables. So programme

BHD will always "branch" in one direction only.

(d) Bound the branch (es) by solving the linear programming sub-

problem. Programme BHD will either obtain a solution

- 102 -

satisfying (iil subject to the previous branches remaining fixed

or, if no such solution exists, will automatically "branch" on

one of the variables higher in the tableau, i.e. reduce it.

(e) Return to (b).

The advantage of Land and Doig's method over programme BHD is

that it will cope with mixed integer problems. It is vital to the

logic of programme BHD that a constraint is taken from the cost function

whenever it is non-integer, but the cost function will not be constrained

to be integer if it contains non-integer variables.

On the other hand if the method of Land and Doig used a

lexicographic method of optimisation and selected variables for branching

in the same order as programme BHD the two methods would follow similar

COurses. Whereas Land and Doig add simple constraints like x. < ra. /Dl,
]. - L].O J

programme BHD adds constraints which implicitly include the proviso that

they only hold so long as the variables higher in the tableau do not

change. This enables the programme to retrace its steps without having

to store all previous partial solutions.

The close analogy between the two methods suggests that just as

programme BHD was extended to become programme BGD by adding a set of

artificial cost functions, so might the method of Land and Doig. The

success of their method depends on finding variables on which to branch

which will have a large effect on the cost function. In the pure integer

case the cost function itself can be guaranteed to affect the cost function,

but not in a large way. However scaled down versions of the cost function

would, and it might well prove worthwhile to generate a set of cost

functions in the same way as is described in Part 3 of Chapter 3.

The mixed integer problem is not so easy to generate integer variables

for. Possibly the best that could be done would be to select that part of

the cost function which consists of integer variables and derive a new

set of integer variables from that.

- 103 -

Part 4: Backtrack methods

Programmes BHD and BGD can be interpreted as applying back-

track procedures. Such a description follows.

(a) Choose an integer variable. Calculate an upper bound

for it by optimising the linear programming problem with this

variable as cost function, and reduce it to an integer value

if it is not already at one.

(b) Using linear programming, test whether the problem 1S

still feasible. If not, proceed to (d).

(c) (i) If there are still some variables remaining in the tableau

maximise the next variable and reduce it to an integer value if

not already at one. Return to (b).

(c) (ii) If no variables remain a feasible integer solution has

been found.

to (d).

Remember it if it is the best so far and proceed

(d) Backtrack: reduce previous variable by 1. If there is no

previous variable the search is finished.

(b).

The programmes employ several short cuts.

Otherwise return to

A constraint will

sometimes reduce the value of a variable beyond the next integer below.

Also when (b) finds a subproblem is infeasible it automatically reduces

a previous variable in the tableau thus effecting a backtrack to that

variable.

The above description is a fair description of programme BGD.

To make it exact we have to specify how the first variables in the

tableau are chosen. In addition programme BGD adds a sophistication

whereby in (c)(ii) when a new feasible integer solution is found a

constraint is added to ensure that any future feasible integer solution

will be an improvement on the one just found.

If we define the variable chosen in (a) to be the cost function

we obtain programme BHD. This has the property that the first feasible

integer solution encountered is also the best.

There is little point in comparing these methods with other

specific backtrack methods. The art of backtrack lies in inventing

sophisticated short cuts which enable possible solutions to be

enumerated implicitly rather than explicitly. Programmes BHD and

BGD use linear programming for their short cuts.

- 104 -

An exposition of the principles of backtrack is contained in

(ref. 141. It assumes that all variables are zero-one. It takes

advantage of the fact that when adding variables to the list of

those with assigned values they may be given any value initially

rather than a predetermined one. This enables an algorithm to use

heuristic techniques to get a reasonable solution quickly; it only

becomes an exact algorithm after complete enumeration.

Programmes BHD and BGD are more concerned with getting an

optimal solution. For this reason the first variable considered

~s either the cost function or an approximation to it.

Nevertheless it is possible that certain backtrack algorithms

could be improved by introducing artificial cost functions as

variables along the lines of programme BGD. This would depend

very much on the individual algorithm.

- 105 -

REFERENCES

- 106 -

References.

1. Gomory, R.E. An Algorithm for Integer Solutions to Linear Programs.

2.

Recent Advances in Mathematical Programming, ed Graves, R.L., and

Wolfe, P., McGraw Hill (1963), pp 269 - 302.

Gomory, R.E. An All-integer Integer Programming Algorithm.

Industrial Scheduling, ed Muth, J.F., and Thompson, G.L., Prentice

Hall (1963) pp 193 - 206.

3. Vajda, S. Mathematical Programming.

Addison - Wesley (1961).

4. Dant~ig, G.B. Linear Programming and Extensions.

Princeton University Press (1963).

5. Mirsky, L. An Introduct~ion to Linear Algebra.

Oxford University Press (1955).

6. Wolfe, P. The Composite Simplex Algorithm. SIAM Review, vol 7, no 1,

(Jan 1965) pp. 42 - 54.

7. Land, A.H. Talk given to the Mathematical Programming Study Group

of the British Computer Society, 25th October, 1966.

8. Gomory, R.E. An Algorithm for the Mixed Integer Problem, The RAND

Corporation, Paper P-1885, 22nd February, 1960.

9. Haldi, J., and Isaacson, L.M. A Computer Code for Integer Solutions

to Linear Programs. Operations Research, vol 13, no 6, (Nov. 1965),

pp 946-959.

10. Martin, G.T. An Accelerated Euclidean Algorithm for Integer Linear

Programming. Recent Advances in Mathematical Programming, see [lJ,

pp. 311-317.

11. Story, A.E., and Wagner, H.M. Computational Experience with Integer

Programming for Job-shop Scheduling. Industrial Scheduling, see

[2J, pp. 207-219.

12. Land, A.H., and Doig, A.G. An Automatic Method of Solving Discrete

Programming Problems, Econometrica, vol 28, no 3, (July 1960), pp. 497-

520.

13. Markowitz, H.M., and Manne, A.S. On the Solution of Discrete

Programming Problems. Econometrica, vol 25, (1957), pp. 84-110.

14. Geoffrion, A.M. Integer Programming by Implicit Enumeration and

Balas' Method. SIAM Review, vol 9, no 2, (April 1967) pp. 178-190.

15. Obruca, A.K. Private communication.

16. Little, J.D.C., Murty, K.G., Sweeney, D.W., and Karel, C. An

Algorithm for the Travelling Salesman Problem. Operations Research,

vol 11, pp. 972-989 (19631.

17. Taus sky , O. and Todd, J. Some Discrete Variable Computations _

- 107 -

Covering Theorem for Groups. Combinatorial Analysis, ed ECllman, R.,

and Hall, M., Proceedings of Symposia in Applied Mathematics, 10,

American Mathematical Society, (1960) pp. 204-205.

18. Ferguson and Sargent, Linear Programming.

- 108 -

APPENDIX A

SYMBOLS NOTATWNS AND DEFL~ITI()NS

Appendix A

Symbols

A,B,N

~,Z'£

, I I
~,Z,£,

[B,N]

-,
B

(B). .
1.J

(B).* 1. ,

I
n

o

d,D

B*

e. -1.

and

(B) .
*J

- 109 -

Symbols, Notations and Definitions

Notations

matrices

column vectors

row vectors

partitioned matrix

inverse of matrix B

the element of B in row i and column j

the i th row and j th column of B

a unit matrix of dimension n.

n is omitted where the dimension is

apparent from the context.

a zero scalar, a zero vector, or a zero

matrix, according to the context.

the determinant of B

the value of the determinant of the

matrix which has implicitly been

inverted at any stage of a linear

programming problem. This matrix is

usually denoted by B.

the adjugate matrix of B, i. e. (B*) ..
1.J

is defined as the cofactor of (B)ij in B.

a vector whose i th element is one and

whose other elements are zero

F • G (mod h) every element of F - G is a multiple of h

nf

~~o, A~O

- llO -

the largest integer not greater than a

the largest multiple of d not greater

than a

each element of b is rounded down to

an integer or a multiple of d

factori al n

every element of a and A is non-negative

DE l"INIT IONS.

Simplex Method

Dual Simplex Method

Composite Method

Optimal

Feasible

Dual feasibl~

Dual optimal

Tabl,~au

Lexicographic

Lexicographically

posi.tive

Lexicographically

optimal

Lexicographically

greater than

- III -

a method used to solve a linear

programming problem when the constant

terms are all non-negative.

a method used ~o solve a linear

programrni.ng p.robV~m w'len the

coefficients of the cost function are

all non-nega t i ve and .'111 arti fici al

variables have been eliminated from

the pr::>bl~m.

any method which caters for probl'~ms not

catered for by the ahove.

having all non-negative coefficients in

the cost function.

having all constant terms non-negative.

optillal

feasible

the matrix of numbers which is

manipulated during sol'Jt10n of a problem.

ordered, taken in the order written.

applied to a vector this means that the

first element of it which is non-zero is

posi.tive.

applied to a tableau of a problem it

means t'-1at every column is l~xj<!ographical Ly

posi.tive.

a is lexicographically greater than ~

means tha t (~-!:) is lexi.cographically

posi ti ve.

- 112 -

APPENDIX B

THE TEST DATA

PART 1

DESCRIPTION OF THE PROBLEMS

- 113 -

Appendix B: The test data.

Part 1: Description of the problems.

Problem 1: A production problem.

This problem was contained in a paper by Markowitz and Manne

(ref. 13). It is a hypothetical production problem where a choice

has to be made among 21 items to be manufactured subject to the

limitations of six resources. Only one of each item can be chosen.

The coefficients of the constraints and cost row were chosen

from a table of random numbers.

Problem 2: A two-dimensional knapsack problem.

This was contained in a paper by Weingartner and Ness. It is

described as a two-dimensional knapsack problem and is of a similar

form as problem 1 except that there are only two resources instead of

six. However the coefficients are not random as can be seen from the

high proportions of zeros in one constraint.

Problem 3. 4. and 5: Travelling salesman.

These problems are a formulation of the travelling salesman problem

due to A.W. Tucker and described by Dantzig in (ref. 4, p. 547). We

reproduce the derivation here.

Consider an n - city problem. Let x .. = 1 if the salesman travels
lJ

from city i to city j. and 0 otherwise. The problem is defined by the

constraints.

n
1: x .. = 1 (i = 1, ... , n)

j=l lJ

n
l.: x .. = 1

i=l lJ
(j=l, ... ,n-l)

l.: u. <
1 -

,
n (n+l) l1

nx .. + u. - u. < n - 1
lJ 1 J

(2 < 1 :f J < n)

- 114 -

The first two sets of constraints define the assignment problem.

The last set constrain any solution to be a tour provided all x .. are
lJ

o or 1. This is done by omitting city 1 from the equations and

constraining the other links not to form a tour. If some of these links

did form a tour, say of length k, we could sum the appropriate

equations of the last set so that the u. cancelled out, leaving
1

nk ~ k(n-l)

which is not possible. On the other hand any journey visiting cities

2 to n and not forming a tour will satisfy the last set of equations.

To show this choose the values of u. so the u. = t if city 1 is
1 1

reached on the t-th step.

If x .. = 0 we have u. < u.
lJ 1 - J

u· = t-l so that
J

Then the u. will have the values l, .•• n-l.
1

n-2 <n-l. If x .. = 1 then u. = t and
lJ 1

nx .. + U. - u. = n - 1.
lJ 1 J

The purpose of the third equation in the list was to provide an

upper bound for the u. which is demanded by the use of a lexicographic
1

method.

Three problems were travelling salesman problem. Numbers 3 and 4

were 1 - city problems, the matrix of distances being symmetric and

containing random numbers. The problems were obtained from A.K. Obruca

(ref. 151. Number 5 was the non-symmetric 6 - city problem used as

an example by Little, Murty Sweeney and Karel in their paper (ref. 16)

- U5 -

Problem 6: Covering theorem.

This problem is perhaps the most interesting of those presented

here in that it is without doubt a genuine integer programming problem.

A paper by Taussky and Todd (ref. 17) includes a description of the

problem. The problem was tackled in collaboration with L.B. Wilson

and J. Clowes of Newcastle University.

was
The specific problem posed in the paper concerned with 5 entities,

"-
each of which could take on 3 values. The illustration given in the

paper was of 5 football matches each having three possible results.

To anticipate every possible outcome of the set of 5 matches one

would have to be prepared for 35 = 243 cases. However, if one is

prepared to consider a subset of these 243 cases which is such that for

any case there is a member of the subset which only differs from it in

the outcome of one match one is left with much fewer possibilities.

Such a subset is termed a covering and the problem was to find the

smallest possible covering of these 5 matches.

To formulate the problem let us denote the three values of each

match result by 1,2 and 3. We use the term element for each combination

of five results and consider the 243 elements to be ordered as follows:

1 1 1 1 1 1 1 1 1 1 ,
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2
1 1 1 2 2 2 3 3 3 1
1 2 3 1 2 3 1 2 3 1

Each element will cover itself and ten others. For example element

(1,1,1,2,3) covers

1 1 1 1 1 1 1 1 1 2 3
1 1 1 1 1 1 1 2 3 1 1
1 1 1 1 1 2 3 1 1 1 1
1 2 2 2 3 2 2 2 2 2 2
3 1 2 3 3 3 3 3 3 3 3

As 243/11 ~ 22 1/11 we deduce that a covering must consist of at least

23 elements. The question is what is the minimum size of a covering.

We associate a zero-one variable x. with each element j such that
J

x. is one if j belongs to a given covering and zero otherwise. We define
J

constants a, . such that a, , is one if elements i and j cover each other
~J ~J

and zero otherwise. The problem can then be expressed as

- 116 -

minimise t x.
J

subject to- l a. .x.
lJ J

1> 1 (i -::1, ... , 243)

and x. o. 0 or 1 (j.,.,l, ... , 243)
J

This problem was too large to be handled by any of the writer's

programmes. Instead an auxiliary problem was solved which provided

a lower bound for the number of elements in the covering. This

auxiliary problem was one of a series that can be derived by making

use of the special structure of the matrix (a ..).
IJ

Let us write E
243

for the matrix of coefficients (a
ij

).

obeys the recurrence relation.

I
n

E
n

I
n

It

as may be verified by observing that in E
243

each element covers and

is covered by the elements 81 and 162 places after, the order of the

elements being considered cydically, which gives rise to the I .
n

Within in each of the three groups of 81 each element covers and is

covered by those 27 and 54 places after. The reasoning is continued

for the groups of size 27, 9, and 3~ and El is equal to 1 representing
"

the fact that each element covers itself. As each element covers itself

and 10 others we know that we have defined every non-zero element in the

matrix.

The 0verall problem can be expressed as

[[J (243 elements)

the partitioned matrix being the expansion of E
243

. This can be

weakened in two ways. Firstly we may add the three rows of the partitioned

matrix and the corresponding rows of the vector on the right hand side to

obtain.

(81 elements)

Secondly we may group the variables into 3s to obtain

- 117 -

rn
l ~J (81 elements)

The value of L xi in the solution to this problem formed a lower bound

to its value in the overall problems. The process of adding triples

of rows and columns was repeated twice more to obtain the actual

subproblem solved, which may be written algebraically as

>
27

27 (9 elements)

In Taussky and Todd's paper (ref. 17) it was stated that t xi

must be at least 24 but need not be more than 27. A minimum solution

to the sub-problem was found to be (5,2,2,2,3,3,2,3,3) giving a lower

bound of 25 for t xi' an increase of one on 1aussky and Todd ~ figure.

The author also succeeded in solving the 27 x 27 subproblem, but

this did not produce a better lower bound. The first attempts to solve

the 27 x 27 subproblem were abortive because of trouble with integer

overflow. The problem matrix has 5 s down the diagonal indicating a

determinant of the order of 527 or 5 x 1016 . However it was found

possible to steer programme BHD round this stumbling block by adding

redundant constraints containing small coefficients. An attempt was

also made to solve the 81 x 81 problem by a method involving the use

of the KDF9 linear programming package. This was unsuccessful, presumably

because of the size of the determinant of the 81 x 81 problem which is of
81 36

the order of 3 or 10 .

- 118 -

Problem 7: A problem with large coefficients.

This problem was given by Vajda as an example in (ref 3, p. 159).

It has been scaled up to make all coefficients integer. Its main point

of interest is that integer overflow occurred before a rational solution was

found. Although the rational solution was never identified the integer

solution was nevertheless found.

Problems 8 and 9 Two very small problems.

Problem 8 was given by Vajda to illustrate integer programming

(ref. 3, p. 199). It can be solved by adding a single cut.

Problem 9 was derived from problem 8 by slightly altering the

ratios one to another of the coefficients in the first constraint.

Its solution then required at least two cuts.

- 119 -

Problems 10.1, 10.2, 10.3 and 10.4: Four
formulations of a product mix problem.

Problem 10.1 is due to Ferguson and Sargent (ref. 18). It concerns

a hypothetical factory which can manufacture five different products.

The products make varying demands on the labour resources in six different

sections of the factory and the six constraints represent the limits of

these resources. The problem is to select the product mix which will

maximise the profit made by the factory.

The other three problems arose from the observation that the rows of

problem 10.1 can be scaled down by factors varying from 5 to 60.

Problem 10.2 is derived from problem 10.1 by scaling the cost function,

problem 10.3 by scaling the constraints.

been scaled.

In problem 10.4 all the rows have

It is interesting to compare the numbers of pivots needed to solve

the four forms of the problem.

- 120 -

Problems A4 to F6 Job-shop scheduling.

These problems represent three-machine job-shop scheduling.

n items are to be processed on each of three machines I, II and III,

and in that order. The objective is to minimise the time elapsed

between the start of the first item on machine I and the finish of the

last item on machine III. Both the formulation and the data are taken

from Story and Wagner (ref. 11).

The formulation takes advantage of the property of the three machine problem

that there is an optimum solution in which the jobs are processed in the

same order on each machine. Let us define variables x .. to be such that
1J

x .. is 1 if item i is scheduled in order - position j and 0 otherwise.
1J

The constraints start with the assignment problem matrix:

n
t x. '" 1

i=l
1j (j '" 1, •• , n)

n

t x. -= 1

j=l
1j

(i = 1, .. , n)

where n is the number of jobs to be processed. The formulation was

altered slightly to avoid equality constraints:

n n

t t x .. < n

j=l i=l
1J

n
t x. !> 1 (j = 1, .. , n)

i=l
1j

n

t x. '> 1 (i = 1, .. , n)
j=l

1j

We must also have timing restrictions to ensure that each item is

not processed by more than one machine at a time and that each machine

is not processing more than one item at a time.

extra variables.

We first define some

Let shk = the slack time on machine h between the end of job k and

the start of job k-l-1.

w
hk = the waiting time for job k between finishing processing

machine h and starting processing on machine h-l-1.

Phk = the processing time for job k on machine h.

on

The timing constraints are derived by considering the time interval

between the end of job k on machine h and the start of job k + 1 on machine

h + 1. In this interval machine h must have processed job k + 1 so we can

- 121 -

express it as

shk + t Ph . x . k 1 + wh k 1 ,1 1, + , + '

At the same time machine h ~ 1 must have processed job k so we can also

express the time interval as

Equating these two we have

-w =
h, k+l

o

where h attains values of 1 and 2 and k l, .. "n-l.

In the data submitted to the various programmes equals signs were

avoided by replacing them by a greater than or equals sign in each constraint

To ensure that each constraint attained its lower bound the left hand sides

of the constraints were summed and this sum was constrained to be less than

or equal to zero.

The function to be minimised is the total idle time on machine 3:

s3' J.

This has the same effect as minimising the total elapsed time.

The layout of data for a three job problem is given in the following

table. The data for problems E4 and A5 are given in full; for the

remaining problems only the values of the p, , are gi ven.
lJ

X
H

x
21

x
31

x
12

x
22

x
32

x
13

x
23 x33 s21 s22 s31 s32 w

12
w

13
w

22
w

23

ql q2 q3 1 1 :: z

1 1 1 1 1 1 1 1 1 4
<

1 1 1 ;> 1

1 1 1 ;> 1

1 1 1 ;> 1

1 1 1 ;> 1

1 1 1 ;> 1

,...
1 1 1 ;> 1 to.)

to.)

P21 P 22 P23 -PH -P
12 -P

13
1 -1 ;> 0

P 21 P22 P23 -PH -P
12

-P
13

1 1 -1 ;> 0

P 31 P32 P33
-P

21 -P22 -P
23

-1 1 -1 ;> 0

P 31 P32 P
33

-P
21

-P
22

-P
23

-1 1 1 -1 ;> 0

r
H

r
12

r
13

r
21

r
22

r
23

r
31

r
32 r33 1 1 -1 -1 < 0

where q. :: P lj + P2j
r
lj

:: P2j .I. P3j
r
2j

:: P3j - P lj r
3j

:: - Pij - P2j J

Variables sl"
J

si3' w
3j

' w
il

are omitted as they are either zero in an optimum solution or have no meaning in the

problem.

The problem is to minimise z.

- 123 -

APPENDIX B

PART 2

THE PROBLEMS

- 124 -

Part 2 The problems.

Note on the layo~t of th~ data.
e i . 4 t

Line 1 of ~ each problem contains a title enclosed between two 't'
symbols,

Line 2 contains the dimensions of the constraint matrix.

Line 3 contains the !~ctron to be minimised, the first number being

an initial yal~e for th~s ~nction.

Lines 4 onwards contain the constraints of the problem. The first

number of each of these lines is the constraint number. The

symbol following the constraint number is ~ , =, or ~ and

dete.nnines th.e type of constraint. Then come the coefficients

of the constraint followed by the constant term.

If the cost ~nction or a constraint contained several zeros or ones

in Sl,l.ccession a shorthand was used whereby the number of zeros or ones

appeared in the data followed by Z or U respectively.

For example,

represents

t :Problem 8t

2 z 2~

0; 10; - 111;

1<

2<

-1;

2U

Minimise

subject to

10; 40

20

lOx - 111 Y

-x + 10 y < 40

x + y < 20

x, Y > 0 and integer.

I
I
I

!

I
I
I
!

- 125 -

tProblem*I:**Markowitz*and*Mann*(ref*13>t

27X21;

00 -3--470-43·-73·-86·-36·-96·-47·-36.-61·-46-_nQ--6'--71--62--33.-26• , , 6' , , 60' , , , , , , ';JU, J, , , , ,

-1 .-80'-45 0- -, , , ,
1~ 1;20Z 1;
2~ lZl; 19Z 1;
3~ 2Z1; 18z 1;
4,! 3Z1 ; 17Z 1;
5< 4Z1; 16z 1;
~ 5Z1; 15Z 1;
7~ 6Z1; 14Z 1;
8,! 7Z1; 13Z 1;
9,! 8Z1; 12Z 1;

10,! 9Z1; llZ 1;
11,! 10Z1; 10Z 1;
12,! llZ1;9Z 1;
13.! 12Z1 ;8z 1;
14.! 13Z1 ;7Z 1;
15< 4Z1;6z 1;
16! 15Z1;5Z 1;
17,! 16z1;4Z 1;
18.! 17Z1;3Z 1;
19,! 18z1 ;2Z 1;
20,! 19Z1; lZ 1;
21< 20Z1; 1·
22~ 97;74;24;~;62;42;81;14;57;20;42;53;32;37;32;27; 7;36; 7;51;24; 400 ;
23~ 16;76;62;27;66;56;50;26;71; 7;32;90;79;78;53;13;55;38;58;59;88; 400;
24.! 12;56;85;99;26;96;96;68;27;31; 5; 3;72;93;15;57;12;10;14;21;88; 350;
25.! 55;59;56;35;64;38;54;82;46;22;31;62;43; 9;90; 6;18;44;32;53;23; 320 ;
26,! 16;22;77;94;39;49;54;43;54;82;17;37;93;23;78;87;35;20;96;43;84; 420;
27,! 84;42;17;53;31;57;24;55; 6;88;77; 4;74;47;67;21;76;33;15;25;83; 400;

- 126 -

tProblem*2: * *2-dimensional*knapsack: **Weingartner* and*Ne ss*28*problemt

30x28 ;

0; -1898;-440;-22507;-270;-14148;-3100;-4650;-30800;-615;-4975;
-1160;-4225;-510;-11880;-479;-440;-490;-330;-110;-560;
-24355;-2885;-1174&;-4550;-750;-3720;-1950;-10500;

1~ 45;0;85;150;65;95;30;0;170;0;40;25;20;0;
0;25;0;0;25;0;165;0;85;0;0;0;0;100; 600;

2~ 30;20; 125;S;80;2S;3S;73; 12;IS; 15;40;5; 10;
1001201°'900.20.60'4°'5°036'4904°'19'15°. 600. """"""" , 3~ lU27Z 1;

4~ lZ1U26z 1;
5< 2Z1U2SZ 1;
~ 3Z1U24Z 1;
7! 4Z1U23Z 1;
8! 5Z1U22Z 1;
9< 6Z1U21Z 1;

10! 7Z1U20Z 1;
11< 8Z1U19Z 1;
12< 9Z1U18z 1;
13< 10Z1U17Z 1;
14! llZ1U16z 1;
15< 12Z1Ul,5Z 1;
10! 13Z1U14Z 1;
17< 14Z1UI3Z 1;
18< 15Z1U12Z 1;
19< 16z1UllZ 1;
20< 17Z1UI0Z 1;
213: 18z1U9Z 1;
22< 19Z1u8z 1;
23< 20Z1U7Z 1;
24~ 21Z1U6z 1;
25< 22Z1USZ 1;
20< 23Z1U4Z 1;
27~ 24Z1U3Z 1;
28< 25Z1U2Z 1;
293: 26z1UIZ 1;
30~ 27Z1U 1;

- 127 -

t Problem*3:**7-city*travelling*aaleamant

0; 37;63;80;49;84;30;37;40;60;20;50;19;63;40;19;21;70;
59;80;60;19;40;85;78;49;20;21;40;55;39;84;50;
70;85;55;55;30;19;59;78;39;55;0;0;0;0;0;0;

1= 1;1;1;1;1;1;42Z 1;
2= 6Z1.1.1·101·1·36z 1· """ , 3= 12Z1;1;1;1;1;1;30Z 1;
4= 18z1;1;1;1;1;1;24Z 1;
5= 24Z1;1;1;1;1;1;18z 1;
6= 30Z1·1·1·1·1·1.12Z 1· , , , , , , ,
7= 36z1;1;1;1;1;1; 6z 1;
8= 6Z1;5Z1j5Z1;5Z1;5Z1;5Z1;IIZ 1;
9= 1;12Z 1;5Z1;5Z1;5Z1;5Z1;10Z 1;

10= lZ1;5Z1;12Z 1;5Z1;5Z1;5Z1; 9Z 1;
11= 2Z1;5Z1;5Z1;12Z 1;5Z1;5Z1; 8z 1;
12= 3Z1;5Z1;5Z1;5Z1;12Z 1;5Z1; 7Z 1;
13= 4Z1;5Z1;5Z1;5Z1;5Z1;12Z 1; 6z 1;
1A< 42Z1.1.1.1.1.1. 28 •
....,_ """ 1
15< 7z7;34z1;-1;4z 6;
Ib< 8Z7·33z1·1Z-1·3z 6. - , , , ,
17< 9z7·32Z1.2Z-1·2Z 6. - , , , ,
18< loz7·31Z1·3z-1·1Z 6· - , , , ,
19< l1Z7·30Z1·4z-1. 6· - , , , ,
20< 13Z7·28z-1·1·4z 6· - , , , ,
21< 1AZ~·28z 1'-1'3z 6· -....,'1' " ,
22< 15Z~'27Z 1·1Z-1·2Z 6.

- 'I, ",
23< 16z7·26z 1·2Z-1·1Z 6· -' ", 24! 17z7;25z 1;3z- 1; 6;
25< 19z7·22Z-1·1Z1·3z 6· - , " , 26! 20z7;22Z -1;1;3z 6;
~< 21Z~·22Z 1·-1·2Z 6· -'1- ''I, " ,
28< 22Z7;21Z 1;IZ-1;1Z 6;
29< 23Z7;20Z 1;2Z-1; 6;
30< 25Z7·16z-1·2Z1.2Z 6· - , " ,
31< 26z7·16z-1.1Z1.2Z 6. - , " ,
32< 27Z7·16z -1·1·2Z 6· - , , , ,
33< 28Z7·16z 1·-1·1Z 6. -' ",
34< 29z7'15z 1·1Z-1· 6· -' " , 35< 31Z7;10Z-1;3z1;1Z 6;
3~ 32Z7jl0Z-l;2Z1;IZ 6;
37! 33z7;10Z-I;lZ1;IZ 6;
38< 34Z7·10Z -1·1·1Z 6· - , , , ,
39< 35Z7;10Z 1;-1; 6;
40! 37z7; 4Z-1;4z1; 6;
41! 38z7; 4Z-1;3z1; 6;
42! 39z7; 4Z-1;2Z1; 6;
43! 40z7; 4Z-1;IZ1; 6;
44< 41Z7' 4Z -1·1· 6· - , ",

- 128 -

tProblem*4:**7-city*travelling*salesmant

44X48;*

0; 42;78;51;63;71;70;42;47;65;87;75;85;78;47;68;93;62;
81;51;65;68;25;23;20;63;87;93;25;38;20;71;75;
62·23·38-20·70·8~·81'20'20'20·0-0-0.0.0.0. , , , , ,;), , , , ""'"

1= 1;1;1;1;1;1;42Z 1;
2= 6Z1.101.1-1·1·36z 1-""" , 3= 12Z1;1;1;1;1;1;30Z 1;
4= 18z1;1;1;1;1;1;24z 1;
5= 24Z1;1;1;1;1;1;18z 1;
6: 30Z1;1;1;1;1;1;12Z 1;
7= 36z1-1.1-1-1-1- 6z 1· """ , 8= 6Z1;5Z1;5ZI;5Z1;5Z1;5Z1;11Z 1;
9= 1;12Z 1;5Z1;5Z1;5Z1;5Z1;10Z 1;

10= lZI;5Z1;12Z 1;5Z1;5Z1;5Z1; 9Z 1;
11= 2Z1;5Z1;5Z1;12Z 1;5Z1;5Z1; 8z 1;
12= 3Z1;5Z1;5Z1;5Z1;12Z 1;5Z1 ; 7Z 1;
13= 4Z1;5Z1;5Z1;5ZI;5Z1;12Z 1; 6z 1;
4! 42Z1;1;1;1;1;1; 28;
1~ 7z7;34z1;-1;4z 6;
16< 8z7·33Z1.1Z-1·3Z 6-- , , , ,
17! 9z7;32Z1;2Z-1;2Z 6;
18< loz7·31Z1·3z-1.1Z 6· - , , , ,
19< l1Z7'30Z1'4z-1- 6. - , , , ,
20< 13z7·28z-1·1-4Z 6· - , " ,
21< 1AZ7·28z 1'-1'3z 6. -...,., " ,
22! 15z7;27z 1;IZ-1;2Z 6;
23< 16z7'26z 1·2Z-1·lZ 6. - , ",
24! 17z7;25z 1;3Z- 1; 6;
25< 19z7;22Z-1;lZ1;3z 6;
2b< 2oz7;22Z -ljl;3Z 6;
27< 21Z7·22Z 1·-1·2Z 6. -' " , 28< 22Z7·21Z 1;IZ-1,'lZ 6.

- , 6' 29! 23z7;20Z Ij2Z-1; ;
30< 25z7016z-1;2Z1;2Z 6;
31< 26z7; 16z-1; lZI;2Z 6;
32< 27Z7·16z -1·1·2Z 6· - , , , ,
33! 2Bz7;16z 1;-I;IZ 6;
34< 29z7·15z 1·1Z-1· 6· -' " , 35< 31Z7;10Z-1;3z1;lZ 6;
3b< 32Z7·lOZ-1·2Z1.1Z 6· - , " ,
37! 33z7;10Z-1;IZI;IZ 6;
~Q< 34z7-10Z -1-1'IZ 6 . .JU_ ", ,

39! 35Z7;10Z 1;-1; 6;
40! 37z7; 4Z-1;4z1; 6;
41! 38z7; 4Z-1;3z1; 6;
42! 39z7; 4Z-1;2Z1; 6;
43! 4oz7; 4Z-1;IZ1; 6;
44 < 41Z7' 4z -I-I· 6· - , ,,'

- 129 -

tProblem*5:**6-city*travelling*salesman:**Little*et*alt

32X35;

0- 27-43.16'3°'26-7,16.1'3°'25'2°'13'35'5'°.21.16'25'
, """""" "", J 18'18'12'46'27'48 '5'23'5'5-9'5'0'°'°'0-0' """, """""

1= 1;1;1;1;1;30Z 1;
2= 5Z1;1;1;1;1;25Z 1;
3= 10Z1;1;1;1;1;20Z 1;
4= 15Z1;1;1;1;1;15Z 1;
5= 20Z1;1;1;1;1;10Z 1;
6: 25Z1;1;1;1;1;5Z 1;
7= SZ1;4Z1;4Z1j4Z1j4Z1;9Z
8= 1;10Z 1;4Z1;4Z1;4z1;8z
9= 1Z1;4z1 ;10Z 1;4Z1;4Z1;7Z

10= 2Z1;4Z1;4Z1;10Z 1;4Z1;6z
11= 3Z1;4Z1;4Z1;4Z1;10Z 1;5Z
12! 30Z1;1;1;1;1; 21;
13< 6z6'23Z1--1 '3Z 5' - , " ,
1A< 7z6.22Z1.1Z-1-2Z 5' ~- , , , ,
15< 8z6'21Z1'2Z-1-1Z 5-- , , , ,
16< 9z6·20Z1·3Z-1. 5' - , , , ,
17! l1Z6;18z-1;1;3Z 5;
18< 12Z6'18z 1·-1·2Z 5' - , " ,
19< 13Z6-17Z l·lZ-l-lZ 5' - , ",
20< ~Z6'16Z 1-2Z-1' 5-- , '" 21! 1 Z6;13Z- 1;lZ1;2Z 5;
22< 17Z6'13Z -1·1·2Z 5' - , , , ,
23! 18Z6;13Z 1;-1;1Z 5;
24! 19Z6;12Z l;lZ-1; 5;
25< 21Z6; 8Z-1;2Z1;lZ 5;
2~ 22Z6; 8Z-1;lZl;IZ 5;
27~ 23Z6; 8z -1;1;1Z 5;
28< 2~Z6. 8z 1·-1· 5' -, , , ,
29< 2 z6· 3Z- 1-3z1' 5' - , '" 30! 27Z6; 3Z- 1;2Z1; 5;
31< 28z6. 3Z-1-1Z1· 5-- , '" 32~ zgz6; 3Z -1;1; 5;

l' ,
1· ,
l' ,
1-,
1· ,

- 130 -

tProblem*6:**covering*theoremt

9X9;

o· , 1;1;1; 1; 1; 1; 1;1;1;

1> 7;1;1; 1;0;0; 1;0;0; 27;
2> 1;7;1; 0;1;0; 0;1;0; 27; -3! 1;1;7; 0;0;1; 0;0;1; 27;

4! 1;0;0; 7;1;1; 1;0;0; 27;
5> 0;1;0; 1;7; 1; 0; 1;0; 27;
6> 0;0;1; 1;1;7; 0;0; 1; 27;

7> 1;0;0; 1;0;0; 7;1;1; 27;
8> 0;1;0; 0;1;0; 1;7;1; 27; -9! OjO; 1; 0;0;1; 1·1·7· , , , 27;

4X5;

O· , 3; 7; 7; 5; 2· ,
1> 83; 249; 4; 60· 51; - ,
2> 246; 423; 793; 93; 26. - ,
3> 86;4050; 7~; 308;2975;
4!. 201; 57; 1 • ,

2X2;

0; 10;-111;

1< -1; 10; 40;
2! 1; 1; 20;

2X2;

0; 10;-111;

I! -12; 109; 420;
2< 1; 1; 20;

205; 400;

700;
3000;
4000;
1200;

- 131 -

tProblem*10.1:**Ferguson*and*Sargentt

6x5;

0-, -2000--100-250'-400--100' , ",

1< 800-, 20; 20; 120; 30; 2000;
2< 200; 10; 15; 3°; 20; 1000' , .
3! 3°°; 20; 40; 45; 10; 1000;
4! 2400; 4°; 24°; 320; 160- 8000; ,
5< 400; 3°' 50; 8o, 40; 2000;

6o~
,

6< 900; 240; 180; 120; 6000' , ,

tProblem*10.2:**problem*10.1*with*cost*row*scaledt

6X5;

0-, -40; -2; -5; -8· , -2;

1< 800-, 20; 20; 120; 30; 2000;
2< 200; 10; 15; 30; 20; 1000; -3< 300; 20; 40; 45; 10; 1000;
4! 2400; 40; 240 ; 320; 160. 8000; ,
5< 400; 30- 50; 80· 40; 2000;
6< 60: ,

900; 240; 180' 120; 6000· , , ,

6X5;

0-, -2000;-100;-250;-400;-100;

1< 80' 2' 2' 12; 3; 200; , , ,
2<

~: 2- 3; 6- 4; 200; - , ,
3! 4; 8- 9; 2- 200; 60: , ,
4! 1- 6- 8- 4; 200; , , , ,
5< 40; 3; 5; 8- 4; 200; ,
6< 15; 1· 4; 3; 2- 100; , ,

tProblem*10.4:**problem*10.1*with*all*rows*scaledt

6X5;

0; -40; -2; -5; -8-, -2;

1< 80- 2- 2- 12; 3; 200; , , ,
2<

~~ 2- 3; 6- 4; 200; - , ,
3! 4; 8- 9; 2- 200-

60: 6: , ,
4! 1- 8- 4; 200; , , , ,
5< 40; 3; 5; 8- 4; 200; ,
6< 15; 1-, 4; 3; 2-, 100;

- 132 -

tProblem*E4:**4-job*3-machine*job*shop*scheduling

16x28;

0; 10;13;14;20;1SZ3U6z

1,! 16U12Z 4;
2> 4U24Z 1;
3~ 4Z4U20Z 1;
4~ 8Z4U16z 1;
5> 12Z4u 12Z 1;
0> 103Z1o3Z1o3Z1.15Z 10 - , , " ,
7~ lZI;3Z1;3Z1;3Z1;4Z 1;
8~ 2Z1;3Z1;3Z1;3Z1;13Z 1;
9~ 3Z1;3Z1;3Z1;3Z1;12Z 1;
10~ S;13;7;10;-I;-1;-6;-g;8z-1;2Z1;5Z-1;2Z 0;
11> 4ZSo1307o10o-1'-1o-6o-9o5Z-1o2Z1o4Z1.-1o1Z 00 - """" , , " , 12> 8Z5013o7o10o-1o-1.-6o-9o2Z-1'2Z1·4Z1o-1. 0' - """" "'" 13~ 1;1;6;g;-g;-12;-8;-11;SI1;4I1; 1;4I Of gz I; ~Z-I; 5Z
1A> 4Z101o6og.-g'-12o-8o-11oSZ1o4Z1o-1'4Z 00 - "'" , , , , " ,
15> 8Z101·6ogo-go-12o-8'-11'2Z1o4Z1.-1o3Z 0'
~ """",', , 10< 6-1Ao13019·-4o1·-lo-1o-4o1o-1o-1o-10.-13o-1Ao-20o _ ,--,., , , " , , " , , , ,--,., ,

3Z3U2Z-1;2Z-1; 0;

tProblem*AS:**S-job*3-machine*job*8hop*scheduling

2OX41;

0; 13;36;34;7;13;24Z4U8z

1,! 25U16z 5;
2~ SU36z 1;
3~ 5ZSU31Z 1;
4~ 10Z5U26z 1;
S!, lSZSU21Z 1;
6~ 20ZSU16z 1;
7~ 1;4Z1;4Z1;4Z1;4Z1;20Z 1;
8!, 1Z1;4Z1;4Z1;4Z1;4Z1;19Z 1;
9~ 2Z1;4Z1;4Z1;4Z1;4Z1;18z 1;
10~ 3Z1;4Z1;4Z1;4Z1;4Z1;17Z 1;
11> 4Z104Z1'4Z1o4Z1-4Z1o16z 1-- "'" , 12~ 20;6;S;3;4;-8;-30;-4;-S;-10;ISZ-1;3Z1;7Z-1;3Z 0;
13> SZ2006·So3·4·-8·-30·-4°-So-10.11Z-1o3Z1o6z1.-1'2Z 0' - """"" "" , 1A> 10Z20.6'So3'4o-8'-30'-4·-So-1007z-1·3Z1.6z1'-lo1Z 0-....... - , , , " , , , , , , , " ,
15> 15Z2006oS·3°4o-8·-30o-4·-So-10o3Z-1o3Z1.6z1'-lo 0'

""""" "'" In> 8'3004oSo10·-S.-6·-30o-2o-3o1SZ1o7Z-1·7Z 0' - """",' , , , 17> 5ZS·3004·5o10o-So-6o-30'-2°-3·11Z1-6z1o-1.6z 0· - ""'" '" , " , 18> 10ZSo30040So10o-So-6o-30o-20-3°7Z1.6z1o-1·SZ 00 - """, , , , , ." ,
19> ISZSo3004'So10o-So-6o-30o-2°-3°3Z1o6z1o-1'4Z 00 - , ,"""'."" , 20,! 28;36;9;8;14;15;0;-25;1;1;15;0;-25;1;1;15;0;-25;1;1;

-13;-36;-34;-7;-13;4Z4U3Z-1;3Z-1; 0;

o· J

- 133 -

Values of p .. used in problems A to F.
lJ

The columns refer to the machines, the rows to the items to be processed.

In the 4 and 5 item problems the first 4 and 5 in each table were used.

A B

5 8 20 9 13 6
6 30 6 7 7 20

30 4 5 6 4 8
2 5 3 8 3 10
3 10 4 20 7 2
4 1 4 10 2 l3

C D

6 7 3 4 5 5
12 2 3 2 17 7

4 6 8 2 1.0 4
3 11 7 1::> 8 2
6 8 10 7 15 6
2 11 12 f.l 4 II

E F

9 1 :) l5 5 11
12 1 l3 7 4 2

8 6 7 9 14 l8
11 9 10 28 11 9

5 13 6 1 17 4
12 3 9 1 8 3

- 134 -

APPENDIX C

TABLES GIVING THE RESULTS OF RUNNING THE

EXPERIMENTAL PROGRAMMES ON THE TEST DATA

Appendix C:

- 135 -

Tables Giving the Results of Running the Experimental
Programmes on the Test Data.

Explanation of the tables.

For a detailed account of the logic of the programmes as regards
slacks and overflows the reader is referred to Parts 2 and 3 of
Chapter 2. A brief explanation is given here.

Time: The time excludes the reading in of the data and printing
out of the results but includes the monitoring printout
which printed every value of D.

Pivots: This relates to the successful pivots and excludes attempts
at pivoting which had to be backtracked because of integer
overflow. "After rational solution" relates to the solution
of the original linear programming problem except where
stated in a footnote.

Cuts: These were constraints added with a non-zero constant term.

Slacks: These were Gomory type constraints with zero constant terms
used for reducing the size of the determinant D. They
also reduced the choice of cuts.

Overflows: These figures relate to the number of times a pivot operation
had to be backtracked because of integer overflow.

Distance between integer and rational solutions:
This indicates the number of integer values the cost function
had to pass through during solution. It is thought that
this distance is one indication of the difficulty of the
problem particularly in the case of programme BHD (see
Chapter 3 Part 3). Where BGD is concerned the figure relates
to the first artificial cost function (see Chapter 3 Part 3).

Value of D at rational solution:
This is the value of the determinant after solving the linear
programming problem. Its size is an indication of the
difficulty of solving the problem firstly as regards the
problem of integer overflow and secondly as regards the choice
of constraint.

Value of objective function:
This gives an indication of success where a programme pro­
duces approximate solutions. Where a programme was terminated
prematurely it indicates how far it was from the solution to
the problem.

The programmes:

, :

These are described in Part 4 of Chapter 2. In the case of
programme BGD the figures relate to the point at which the
first integer solution was found, the point at which the last
integer solution was found, and the point at which it was
established that no more integer solutions existed and that
the last one discovered was in fact the optimal one.

Pivots Slacks Overflows
Problem 1: ,...

CI)
Markowitz and Mann. 0 ,

G> , I
CI) .-4S:: .-4 C .-4 C

...... I III 0 I III 0 I III 0
c· s:: s::

.-4 , s.. 0'" ...-I ,s.. 0'" .-4 ,s.. 0 ...
Q) as Q> =' CI) as Q> -roI =' as G> -roI ='
e +> I+>'" .-4 +> +> I+>+> .-4 ... ,-I
..... 0 'H III 0 =' 0 'H as 0 0 'M as 0

Programme E-< Eo-< I III s.. CI) CJ E-< ,Ill s.. CI) E-< , as '"' CI)

BGD· at 1st solution 14 28 I 16 4 3 I 2 0 I 0
at best, i.e. 2nd solution 168 332 I 320 31 63 I 62 19 , 19
at end of run. 238 506 I 494 43 89 I 88 23 I 23

I , I
I , I
I

BHD 1801* 3546 I 3529 426 572 1571 239 1237

BHM 1801* 3549 I 3532 442 504 1503 206 1206
I

BHP 1803* 1914 I 1897 633 567 1566 437 1437
I I

BHQ 1802* 2379 12362 657 857 1856 170 1170

BH9 345+ 426 I 409 149 118 1117 17 I 17
I

Cost function s~aled by 7.5 399 693 I 680 79 96 I 96 34 , 34
I I

(using BHD) I I I
I f

I I I

I , t
I I

*run terminated by time limit.
+run terminated because integer overflow occurred when pivoting on a cut.

CI)
c

s:: 0
Q>
Q> ...
~ ='-4
G> '0 0
,Q s:: CI)

III
Q> .-4

o '"' III s:: III s::
III be 0
... Q>
CI)+>+> s:: as
'O-roIs..

0
1
2

42.4

42.4

19.5

23.8

15.5

3.9

.-4
Cl III

C
'H 0 s:: o 0
Q) as ...
=' '"' =' .-4 .-4
as +> 0
> as CI)

319
319
319

25,619105

25,619105

25,619105

25,619105

25,619105

176716

Q>
'H > s::
0· 0
III 0 ...
=' III 0

...-I • ..., s::
as ,Q ='
> 0 'M

504
540
540

552

552
I

575

570.6

578.9

540

I

I

.....
Co.)
en

Pivots Slacks
Problem 2: ,.....
2-dimensional knapsack. (/)

0 I Q) I
(/) r-41: r-4 I:

'-" I as 0 I as 0
I:.~ C .~

r-4 I 10. 0 +> r-4 ,10. 0 +>
Q) as Q) .~ ;j rIl as Q) .~ ;j

e +> I+>+> +> +> I+> +>
·M 0 ~ as 0 ;j 0 ~ as 0
r-o Eo< I as 10. II) U Eo< ,as 10. II)

Programme

BGD: at 1st solution 10 17 I 5 1 5
,

4
at best, i.e. 2nd solution 51 62 I 50 7 13

I 12
I I

at end of run 67 91 I 79 9 14 13
I

I I
I ,

BHD 36 45 I 27 6 15 I 15
I

BHM 1805* 1907 ~889 392 413 1413

BHP 330 378 :360 75 78 I 78

BHQ 1801* 1795 f777 356 558 ' 558

I I
I

I I
I

I I
I J

I I

I I

I

*run terminated by time limit.

II)

I:
I: 0
Q) .~

Overflows
Q) +>
~ ;j
+> r-4
Q) -0 0
,c I: II) , as

..... I: Q)
I as 0 o 10. as

I: ·M I: Q) I:
..... t 10. 0 +> as bD 0
as Q) ..-4 ;j +> Q) .~

+> I+>+> Ul+>+>
0 ~ as 0 .~ I: as

Eo< I as 10. Ul -0 .~ ...

0
,

0 0
2

t
2 0

I
2 I 2 0

I
,

0 I 0 741

0 I 0 571.1

0 I 0 741

43 , 43 567

I

I
I

I

I

,
I

r-4
o as

I:
'+-101: o .~ 0

+> .~

Q) as +>
;j 10. ;j
..... r-4
as +> 0
> tIS II)

18
18
18

40

40

40

40

I

Q)
~ > I:
o·~ 0

+> .~
Q) 0 +>

~ ·~gl as,c;j
> 0 '+-I

35673
41278
41278

41278

41447

41278

41452

9

I

t-'
W
...;J

Pivots Slacks
Problem 3: ,....
7-city travelling salesman III

0
Q) I I
III .-4S:: .-4 s::
'-' I as 0 I '" 0

s::.~ s:: .~

.-4 I ... 0 +> .-4 , ... 0 +>
Q) as Q) .~ ;::l III as Q) • .-1 ;::l

Ei +> I+>+> .-4 +> +> I+>+> .-4 0 'H as 0 ;::l 0 'H as 0

Programme Eo< Eo< I as ... III U E-< las ... III

BGD: at 1st solution 246 170 I 129 9 23 ' 23
at best, i. e. 3rd solution 666 461 I 420 17 79 I 79
at end of run. 727 514 I 473 19 82 I 82

I I
I I

BHD 552 418 I 379 22 59 I 59
,

BHM 570 420 , 381 24 58 I 58
I

BHP 507 401 : 362 18 52 I 52
I

BHQ 557 416 I 377 23 61 , 61
I

I ,
I I

I I
I

I
I I
I I

, ,
I I

i I

III
s:: s:: 0

Q) • .-1

Overflows
Q) +>
~ ;::l
+> .-4
Q) '0 0
.c s:: III

I '" .-4 s:: Q) .-4

I as 0 0...", s:: . .-1 s:: Q) s::
.-4 , ... 0 +> asbilO
as CD 'M ;::l +> CD • .-1
+> I+>+> .-4 Ill+>+>
0 'H as 0 .~ s:: '"

Eo< I as ... III '0 'M '"'

0 I 0 0
4 I 4 1
4 I 4 1

I
I

1 I 1 39.1

1 I 1 39.1

1 I 1 39.1
I

1 I 1 39.1

I

I
I

I

,
,
I

.-4

o '" s::
'H 0 s::
o .~ 0 +> . .-1
Q) '" +> ::I ... ;::l-4
as +> 0
:> as III

35
35
35

35

35

35

35

Q)
I

'H :> s::
0'.-10 ' +> .~I
Q) 0 +>
;::l Q) 0

.-4 • ..., s::
as .c ;::l
:> 0 'H

277
267
267

267

267

267

1
267

I

I-'
W
(Xl

I III
I::

I:: 0
Q) ~

Pivots Slacks Overflows
Q)
~ ;j

,.... ~

Problem 4: III Q) '0 0
() .c I:: III

7-city travelling salesman Q) I I I til
III ~c ~ c ~ c Q) ~

'-J I til 0 I til 0 I 1\1 0 () s.. 1\1
C::'r"i I:: .~ c:: .r"i C Q) C

~ Is..O ~ Is.. 0 ~ Is..O as bIl 0
Q) as Q) .~ ;j III as Q) .~ ;j as Q) .~ ;j Q) ~

Ii I ~ , ~ , ~ Ill

~ 0 'H as 0 ;j 0 as 0 0 1M as 0 • ..-l C as
E-< Eo< I as s.. III U Eo< ,as s.. III E-< I «I s.. III '0 .~ s..

Programme

I I I
BGD: at 1st solution 68 54 1 16 2 3

I
2 0 0 0

at best, i.e. 1st solution 68 16 2 3 2
I

54 I , 0 I 0 0
at end of run. 217 175 I 137 6 13

I
12 0 I 0 0

I I I
I

I I

BHD 203 138 I 100 10 16 I 15 0
,

0 13.4
I

BHM 247 152 : 114 14 18 I 17 0 I 0 13.4

BHN 207 139 : 101 10 15 I 14 0
,

0 13.4

BHP 188 134 I 96 8 14 I 13 0 I 0 13.4
I

I

BHQ 217 145 : 107 12 18 I 17 0 I 0 13.4

BHE 250 157 : 119 16 15 I 14 0 I 0 13.4
I

BHF 339 183 : 145 27 22 I 21 0 I 0 13.4
I

BH6 * 111 I 83 14 27 I 27 0 I 0 1.4

BH9 202 136 I 98 10 15 I 14 0
t

0 13.4
---~ ------ -- I L ---

*at this point BH6 started looping with a period of 38 pivots (2cuts, 26 slacks)

~
Q til

C
'H 0 C o .~ 0

..... r"i
Q) til
;j H ;j
~ ~
1\1 0
:> «I III

14
14
14

21

21

21

21

21

21

21

343

21

Q)
'H :> I::
o~o

..... r"i
Q) ()
;j Q) ()
~,1::
til .c ='
:> 0

267
267
267

267

1267
I

267

267

267

267

267

255

267

1

....
(..)
to

I Pivots Slacks
Problem 5: ,.....

II)

6-city travelling salesman 0
Q) I I
II) .-4e:: .-4 e::

'-' I alO
, aI 0

e::.r-! c: .r-!

.-4 I I-< 0 +> .-4 II-< 0 +>
Q) III Q) .r-! =' CII aI Q) ·M ='
Ei +> I+>+> .-4 +> +> ,+> +> .-4
.r-! 0 '+-t III 0 =' 0 '+-t III 0
E-< E-< I aI I-< CII U E-< ,aI M CII

Progranune

BGD: at 1st solution 38 50 I 16 3 2
I

1
at best, i.e. 1st solution 38 50 I 16 3 2 I 1

I I
at end of run. 47 62 I 28 4 2 1

I
I ,
I

BHD 40 62 I 25 3 3 I 1
I

BHM 45 63 I 26 4 3 I 1
I i

BHN 41 62 : 25 3 3 I 1

BHP 44 I 63 I 26 4 3 I 1
I

BHQ 40 62 : 25 3 3 I 1

BHE 41 62 I 25 3 3 I 1

BHF 46 65 : 28 4 4 I 2

BH6 34 50 I 16 3 3 I 1

BH9 41 62 ~ 25 3 3 I

I
1

II)

e::
e:: 0
Q) .r-!

Overflows
Q) +>
~ =' +> .-4
Q) "0 0

,Q e:: II)

I aI
.-4 e:: Q) .-4

I as 0 o I-< as
e:: .r-! c: Q) C

.-4 I I-< 0 +> III bIl 0
1\1 Q) .1"1 :;l +> Q) ·M
+> I+>+> .-4 CII+>+>
0 '+-t as 0 .r-! c: as

E-< , as I-< CII "0..-1 '"'

0 I 0 0
0

,
I

0 0
0

I
0 0

I

I

0 I 0 7.2

0 I 0 7.2

0 I 0 7.2

0 I 0 7.2
I

0 I 0 7.2

0 I 0 7.2
_I

0 I 0 7.2

0 I 0 7.2

0 t 0 7.2
I

.-4
Cl aI

e::
'+-t 0 e:: o .r-! 0

+> ·M
Q) cd +>
:;l I-< :;l
.-4 .-4
cd +> 0
> 1\1 CII

20
20
20

30

30

30

30

30

30

30

6

30

Q)
'+-t > c: o .r-! 0

+> ..-I
Q) 0 +>
:;l Q) 0
.-4 .1"") C
1\1 ,Q ='
:> 0 'H

63
63
63

63

I 63
I

63

63

63

63

63

63

63

I
I

I-'
Ill>
o

III
I:

I: 0
Q)

Pivots Slacks Overflows
Q) +>
~ ='

Problem 6: "
+> ~

III Q) '0 0 ~

Covering theorem. 0 .c I: III ~ ~
Q) I I I '" I:
III ~I: ~ I: ~ I: Q) ~ 'H 0 I:

'-' I aso I as 0 I 1\1 0 o r.. as o 0
1:.,-4 I: . .-4 c:: • .-4 I: Q) I: +> . .-4

~ I r.. 0 +> .-I I r.. 0 +' ~ , r.. 0 +> as bO 0 Q) as +'

~ as Q) =' III as Q) -.-4 =' as Q) ." =' +> Q) • .-4 ;::l M ='
+' I+>+> .-I +> +> I+>+> .-I +> I+>+>~ 1Il+'+' ~ .-I

'.-4 0 'H 1\1 0 =' 0 'H CIS 0 0 'H 1\1 0 .,-4 I: CIS 1\1 +> 0
Eo< Eo< I ~ r.. III u Eo< I'" M III Eo< 11\1 M III 'O-.-4r.. > CIS III

Programme

BGD *
I I I

I I I
I I I

I I I , I I
I

BHD 78 494 I 467 55 227 I 209 0 I 0 2.9 11
I

BHM 80 513 I 486 56 227 I 209 0 I 0 2.9 11
I

BHN 148 894 I 867 121 421 I 403 0 I 0 2.9 11
I l I

BHP 81 514 I 487 57 222 I 204 0 I 0 2.9 11
I

BHQ 127 762 I 735 100 385 I 367 0 I 0 2.9 11
I

BHE I 228+ 1077 '1050 159 516 I 498 140 1140 0.9 11
I I

BHF 430+ 2090 '2063 370 907 I 889 214 1214 0.9 11 , ,
BH6 • 673 I 642 60 451 I 429 0 , 0 0.9 11

BH9 87 532 I 505 62 247 ' 229 0
,

0 2.9 11
----- ~ - - L_ --- _~~_ I I -~---

*as the objective function consisted entirely of ones BGD would have taken the same path as BHD
+at this pOint integer overflow occurred and as D was equal to 1 no cut could be added
.at this pOint BH6 started looping with a period of 18 pivots (2 cuts, 11 slacks)

Q)
'H > I:
0· 0

+>-.-4
Q) 0 +>
=' Q) 0
.-I .~ I:
'" .c =' > 0 'H

25

25

25

25

25

23

23

23

25

I

......
~
......

III
c: c: 0

4l ·rl

Pivots Slacks Overflows 4l +>
~ :s

Problem 7:
,.... +>. .-t

III 4l 't3 0 .-t

A problem with large 0 ..a c: III o (\I
(1)

Q) I I 1 as c:
III .-tC: .-t c: .-t c: Q) .-t '1-1 0 c: '1-1 > c:

coefficients. '-' I aso I as 0 I as 0 o 1-0 as o ·rl 0 O'rl 0
C:.rl c: ·rl c: ·rl c: (1) c: +> ·rl +>

.-t , 1-0 0 +> .-t ,1-0 0 +> .-t 1 1-0 0 +> as bIl 0 (1) as +> (1) () +>
Q) as Q) ·rl :s III as (1) ·rl :s as (1) :s +> (1) 'rl :s 1-0 :s :s 4l ()

e +> I+>+> .-t +> +> I+>+> .-t +> I+>+> .-t Ill+>-t .-t .-t . .., c::
..... 0 as 0 :s 0 as 0 0 as 0 ·rl c: as as +> 0 as..c:s
Eo< Eo< I as 1-0 III U Eo< ,as 1-0 III Eo< I as 1-0 III 't3 ·rl 1-0 > as III > 0

ProgramJlle

BOD:
I

2
, I 364807 at 1st solution 1 7 I 4 2 I

2 0 , 0 0 40
at best, Le. 2nd solution 3 20 I 17 6 8 I

7 0
I 0 1 364807 38

at end of run. 9 75 I 72 17 30 I 29 0 I 0 1 364807 38

I I I
I

I I

BHD 13 129 I 126* 30 47
,

47* 4 I 3 6.6 *442,136027 38

BlIM 13 112 ' 109* 40 24 I 24* 5 I 4* 6.6* *442,136027 38
I i

BHN 52 381 : 378* ... 166 108 1 108* 3 I 2* 6.6* *442,136027 38
I

BHP 38 318 : 315* 113 112 1112* 3 I 2* 6.6* *442,136027 38

BHQ 67 539 :536* 201 224 1224* 17 I 17* 6.6* *442,136027 38

BHE 46 362 :359* 164 110 ' 110* 18 I 17*
i

6.6* *442,136027 38

BHF 152 1086 ~083* 451 379 1 379* 37 I 36* 6.6* *442,136027 38

BH6 53 I 50* 21 13 I 13* 13 I 12* 3.6* *442,136027 35 +

BH9 20. 72 I 69* 44 16 I 16* 54 I
53* 2.6* *442,136027 34.0

~ ------- ____ t ___ -----' ___ _ I j

*the rational solution was never determined. These figures relate to the point at which the first cut
was added.
+at this point BH6 started looping with a period of 11 pivots (4 cuts, 2 slacks) .
• at this point integer overflow occurred when pivoting on a cut.

I-'
~
~

-'~-:"-~

Pivots Slacks
Problem 8: ,.....

Ul
A 2 x 2 problem. ()

Q) I I
Ul e:: c::
'-' I t\! 0 I t\! 0

c::." e:: ." I r.. 0 +> I r.. 0 +>

~ t\! Q) ." ;j UI tI! Q)'" ;j
+> I+>+> +> +> I+> +>

." 0 'H t\! 0 ;j 0 'H t\! 0
E-t E-< I t\! r.. Ul u E-< It\! r.. (I)

Programme

BGD: at 1st solution 0 4 I 2 1 1 I 1
at best, i.e. 1st solution 0 4 I 2 1 1 I 1
at end of run. 0 4

I
2 1 1 I 1

I I , I

I

BHD 1 6 I 4 2 2 I 2
I

BHM 2 5 I 3 2 1 I 1
I I

BHN 1 3 I 1 1 0 I 0
I

BHP 1 3 I 1 1 0 I 0
I

BHQ 1 4 , 2 1 1 I 1
I

BHE 1 8 I 6 3 3 I 3 ,

BHF 0 4 , 2 1 1 I 1

BH6 0 4 I 2 1 0 I 0

BH9 1 6 I 4 2 2
,

2
I

Overflows

I c::
I t\! 0

e:: ." I r.. 0 +>
t\! Q) ." ;j
+> I+>+>
0 'H t\! 0

E-< It\! r.. (I)

0 I 0
0 I 0
0

I
0

I
I

I

0 I 0

0 I 0

0 I 0

0 I 0

0 I 0

0 I 0 ,
0 I 0

0 , 0

0 I 0
~

Ul
e::

c:: 0
Q) ."
Q) +>
~ ;j

+>
Q) '0 0

..0 e:: Ul
t\!

Q)
() r.. t\! c:: Q) c::
t\! bIl 0
+> Q) ."
Ul +> +>
." c:: t\!
'0 ." r..

0.5
0.5
0.5

5

5

5

5

5

5

5

5

5

....
o t\! c::
'H 0 e::
o ." 0

+> ."
Q) t\! +>
;j r.. ;j
t\! +> 0
> t\! (I)

11
11
11

11

11

11

11

11

11

11

11

11

Q)
'H > c::
0·" 0

+> ."
Q) () +>
;j Q) ()

.... '1"") c::
t\! ..0 ;j
> 0 'H

455
455
455

455

455

455

455

455

455

455

455

455

j

I-'
~
CAl

Problem 9: Pivots
A 2 x 2 problem. ,....

II)

0
Q) I
II) c::
'-' I tIS 0

C::'.-I Is..O.j.>
Q) as Q) -.-I :s II)

e .j.> ,.j.> .j.>j.>
• .-1 0 'H tIS 0 :s

Progranune E-< E-< I as s.. II) U

BGD: at 1st solution 1 7 I 4 2
at best, i.e. 1st solution 1 7 I 4 2
at end of run. 1 7 I 4 2

I
I

BHD 1 12 I 8 4

BHM 1 11 I 7 4
I

BHN 0 8 I 4 3
I

BHP 2 8 I 4 3

BHQ 0 11
I 7 3
I

I

BHE I 2 18
I

14 7

BHF I 2 11
I

7 3
I

BH6 1 11
I 7 3

BH9 1 14
I

10 4

Slacks Overflows

I I c:: c::
I tIS 0 I tIS 0 c: . .-1 c:: '.-1

..... Is.. O.j.> Is..O.j.>
as Q) .,-4 ;::I tIS Q) .,-4 ;::I

.j.> ,.j.> .j.>j.> ,.j.> .j.> r-l

0 'H tIS 0 0 'H tIS 0
E-< I til s.. VI E-< I as s.. I/)

2 I 1 0 I 0
2 I 1 0 I 0
2 I 1 0 I 0

I I
I I

I

5
,

3 0 I 0
I

4 I 2 0 I 0

2 I 0 0 I 0
I

2
,

0 0 I 0
I

5 I 3 0 I 0

7 I 5 0 I 0
I

5
I

I
3 0 I 0

5 I
3 0 I 0

6
I

I 4
I

0 1 0

II)

c::
c:: 0
Q) • .-1
Q) .j.>
~ :s

.j.>
Q) 't:l 0

,Q c:: II)
tIS

Q)
o s.. tIS
c:: Q) c::
tIS bO 0

.j.> Q) • .-1
1I).j.>.j.>
'r-! c: tIS
't:l ',-4 s..

0.5
0.5
0.5

15

15

15

15

15

15

15

15

15

.....
o tIS

c::
'H 0 c:: o . .-1 0

.j.> .,-4

Q) tIS .j.>
;::I s.. ;::I
r-l
tIS .j.> 0
> til I/)

11
11
11

11

I 11 I

11

11

11

11

11

11
I

11

Q)
'H > c::
0·.-1 0

.j.> ..-4
Q) ().j.>
:s Q) I:), c::
tIS ,Q ;::I
> 0 'H

445
445
445

445

445

445

445

445

445

445

445 I

445

I-'
~
~

I Pivots Slacks
Problem 10.1: ,.....

(I)

A product mix problem. 0
Q} I I
III ~~ ~ ~, , til 0 , CI! 0

t:: • .-4 c: .r-!

~ Is-.O ~ Is-. 0
Q) CI! Q} .0-4 =' III CI! Q} • .-1 ='
S I ~ , ~
• .-4 0 '+-I til 0 =' 0 '+-I CI! 0
Eo< Eo< I CI! '" III U Eo< ,CI! s-. UJ

Programme

BGD: at 1st solution 2 9
I 5 2 5

,
2

at best, i.e. 8th solution 25 132 '128 29 51 1 48
I 1 at end of run. 32 178 1174 39 69 66

I
I I

BHD 7 59 1 42 8 39 I 26
I

BHM 9 73 I 56 13 43 1 30
I

BHN 5 46 I 29 7 28
,

15
1

BHP 7 58 I 41 11 34 , 21

BHQ 9 73 I 56 13 46 I 33
I

BHE 9 76 I 59 13 51 I 38

BHF 9 74 I 57 12 48 I 35
I

BH6 15 125 1108 17 88 I 75

BH9 9 84 I 67 12 54 I 41
I I

en
~

t:: 0
Q} • .-4

Overflows
Q}
~ =' ~
Q} '0 0
.c ~ en

I CI!
~ ~ Q} ~

1 til 0 o s-. til
~ • .-4 t:: Q) ~

~ Is-. 0 til bO 0
CI! Q) .0-4 =' Q) • .-4
.... , ~ Ill
0 'H til 0 • .-4 t:: til

Eo< I as '" UJ '0 . .-1 s-.

0 I 0 0.5
1 I 1 2.5
1

I

1 1 2.5

I

I

0 I 0 76.5

0 I 0 76.5

0 I 0 76.5

0 I 0 76.5
,

0 I 0 76.5

0 I 0 76.5

0 I 0 76.5

0 I 0 76.5

0 I 0 76.5
---- 1

~

o CI!
~

'+-lot:: o . .-4 0
..... .-4

Q} til
=' ~ ='
~ ~
til 0
> CI! UJ

.
2
2
2

17

17

17

17

17

17

17

17

17

Q}
'+-I > ~
0·.-4 0

..... .-4
Q} 0
=' Q) 0
~.,.., ~

CI! .c ='
> 0 '+-I

5700
8100
8100

8100

18100

8100

8100

8100

8100

8100

18100

8100

!
I

I-'
~
c.n

I

Pivots
Problem 10.2: ,.....

I/)

Problem 10.1 with cost C,)
Q) I
I/) .-Il:: function sOaled. I alO

l::'1"l
.-I I ... 0 +->

Q) aI Q) .I"l ::l I/)

S +-> I+->+-> .-I +->
'I"l 0 '+-i aI 0 ::s

PrograDDDe e-. e-. I a! '"' I/) u

11 I 5 BGD: at 1st solution 2 2
at best, i.e. 8th solution 14 120 : 114 21
at end of run. 16 137 I 131 23

I
1

BHD 5 44 I 32 7

BHM 5 43 t 31 7
I

BHN 4 37 I 25 6
I

BHP 6 48 I 36 10
I

BHQ 7 61 I 49 12
I

BHE 5 40 I 28 9
I I
!

BHF 8 60 I 48 12
I

BH6 7 56 I 44 8

BH9 7 55 I 43 11
i

Slacks Overflows

I I
.-I l:: .-I l::

I aI 0 I aI 0
C 'I"l l:: 'I"l

.-I t ... 0 +-> .-I I ... 0 +->
aI Q) 'I"l ::s a! Q) .I"l ::s

+-> I+->+-> .-I +-> I+->+-> .-I
0 'H aI 0 0 '+-i a! 0
e-. ta! ... I/) e-. I a! '"' I/)

I t 7
I

2 0 0
57 52 0

,
0

I I
67

I
62 0 I 0

I I

26 I 18 0 I 0

25 I 17 0 I 0

21 I 13 0 I 0
1 I

26 , 18 0 I 0
!

36 I 28 0 I 0

23 I 15 0 I 0

33 I 25 0 I 0
I

36 I 28 0 I 0

31 I 23 0 I 0 I I

(I)

l::
l:: 0
Q) .I"l
Q) +->
~ ::l

+-> .-I
Q) 'tj 0
.c l:: I/)

aI
Q) .-I
C,) ... aI
l:: Q) ~
aI bO 0

+-> Q) .I"l
I/) +-> +->
'I"l l:: a!
'tj ." ...

0.5
2.5
2.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

.-I o a!
l::

'+-i 0 l::
o 'I"l 0

+-> .I"l
Q) a! +-> ::s ... ::s
.-I .-I
aI +-> 0
> aI I/)

2
2
2

17

17

17

17

17

17

17

17

17

Q)
'+-i > l:: o 'I"l 0

+->oI"l
Q) C) +-> ::s Q) C)
.-I .~ ~
a! .c ::s
> 0 '+-i

114
162
162

162

162

162

162

162

162

162

162

162

i

,

I

I

I-'
w::.
0)

Pivots
Problem 10.3: ,...
Problem 10.1 with constraint CIl

t.)

scaled. Q) I
CIl ~s::
'-' I CIS 0

t:."
~ Is..O +->

(\) as Q) ." ::l CIl
e +-> I+->+'~ +->
." 0 <t-t (1\ 0 ;:l

Programme Eo< Eo< I as s.. CIl U

BGD: at 1st solution 2 9
I

5 2
I

at best, Le. 8th solution 18 98 94 28
I

at end of run. 23 129 I 125 37

I

BHD 3 16 I 10 6

BHM 5 35 I 29 15
I

BHN 2 10 I 4 3
I

BHP 2 13 I 7 3
I

BHQ 4 34 I 28 11
I

BHE 5 32 I 26 10
I I

BHF 3 18 I 12 6
I

BH6 4 25 I 18 7

BH9 1 18 ! 12 6
I

Slacks Overflows

I I
~ s:: ~ s::

I CIS 0 I CIS 0
s:: ." t: ."

~ Is..O +-> ~ Is..O +->
as Q) ." ::l as Q) ." ::l

+-> I+->+-> ~ +-> I+'+'~
0 <t-t as 0 0 'H (1\ 0

Eo< I CIS s.. CIl Eo< 1(1\ s.. CIl

5
,

2 t 0 0
25 I 22 0 I 0

I I
32 29 0 I 0

I
I I

4 I 2 0 I 0
I

7 I 5 0 I 0

2 I 0 0 I 0
I I

4 , 2 0 I 0

13 I 11 0 I 0

12 I 10 0 I 0

6 I 4 0 I 0
I

8 I 5 0 I 0

6 I 4 o t 0
I I

CIl
s::

t: 0
Q) ." Q) +->
~ ;:l

+-> ~
Q) 't:l 0
.c s:: CIl

CIS
Q) ~
t.) s.. CIS s:: Q) s::
CIS bO 0

+-> Q) ."
CIl+->+->
." s:: CIS
't:l ." s..

0.5
2.5
2.5

76.5

76.5

76.5

76.5

76.5

76.5

76.5

76.5

76°.5

~ o CIS s::
'H 0 s::
o ." 0

+-> ."
Q) CIS +->
::l s.. ;:l
~ ~
(1\ +-> 0
> CIS CIl

2
2
2

17

17

17

17

17

17

17

17

17

Q)
<t-t > s::
0·" 0

+-> ."
Q) t.) +->
;:l Q) t.)
~ .,.., t:
as .c ;:l
> 0 <t-t

5700
8100
8100

8100

8100

8100

8100

8100

8100

8100

8100

8100

I

~

""' ...J

Pivots Slacks
Problem 10.4:

,....
III

Problem 10.1 with all rows C)
I Q) I

sealed. III ~c: ~ r::
'-' I aso , as 0

c:." c: ."
~ I I-< 0 +> ~ II-< 0 ..

Q) as Q) ;j III as Q) ." ;j
e .. , ~ , ~
." 0 as 0 ;j 0 'H as 0

Programme E-< E-< I as '"' III U E-< las ,.. III

I I
BGD: at 1st solution 1 10 , 5 2 6 , 2

at best, i.e. 8th solution 13 82 I 77 21 23 , 19
at end of run. 14 92 , 87 23 24 , 20

I ,
I

BHD 2 21
,

16 7 5
,

4

BHM 3 20 I 15 7 4
,

3
I _1

BHN 1 9 I
I

4 3 1
,

0

BHP 2 11 I 6 3 2 I 1
I

BHQ 5 33 I 28 11 12 I 11
I

BHE 4 25
I

I
20 10 7 I 6

I
BHF 2 17 I 12 6 5 4

I

BH6 3 27 I 18 7 10 I 5

BH9
! 5

I
4 3 17 12 6 I ____ _ ---L------- ______

III
s:: s:: 0

Q) ."
Overflows

Q) ..
~ ;j .. ~
Q) "0 0
.0 s:: III

I as
~ r:: Q) ~ , til 0 c) I-< as
s:: ." s:: Q) s::

~ I I-< 0 .. as bO 0
as Q) ." ;j .. Q) ." .. , ~ Ill
0 OM as 0 ." c: as

E-< I as '"' II) "0." I-<

I 0 0 0.5
I

0 0 2.5
I

0 , 0 2.5

I

0 I 0 1.5

0
,

0 1.5

0 I 0 1.5
I

0 I 0 1.5

0 I 0 1.5

o I 0 1.5
I

0
,

0 1.5

0 I 0 1.5

I 1.5 0 I 0

~ o til s::
..... 0 c:
o ." 0 ... " Q)as ..
;j I-< ;j
~ .-!
as .. 0
:> as II)

2
2
2

17

17

17

17

17

17

17

17

17

Q)
..... > c:
o ." 0
Q) C)"
;j Q) c)
.-! .,.., r::
as .0 ;j
:> 0

114
162
162

162

162

162

162

162

162

162

162

162

I

....
~
(Xl

Pivots Slacks
,...
III

Problem A4: t)
Q) I I
III r-tC r-t C

'"" I tIS 0 I tIS 0
C·.-4 r::

r-t , M 0 +' .-t 1M 0 +'
Q) CIS Q) • .-4 ::s III CIS Q) • .-4 ::s
Ei +' I+'+' r-t +' +' I+'+' .-t

'.-4 0 'H ell 0 ::s 0 'H CIS 0
E-< E-< I tIS Mill U E-< ,tIS M III

Programme

BGD: at 1st solution 15 32 I 13 3 3
I

2
I

at best, i.e. 1st solution 15 32 I '13 3 3 2
I ,

at end of run 21 48 I 29 4 4 3
I

I I

BHD 33 83 I 54 5 11 I 8

BRM 34 87 I 58 6 7 I 4
I I

BHP 64 U5 I 86 18 13 I 10
I

BHQ 109 192 : 163 33 39 I 36

BHE 40 84 I 55 10 9 I 6
I

BHF 28 64 I 35 6 11 I 8
I

Problem scaled by 3 (using 22 54 I 28
I

3 10 I 6
I

BHD)
I I

Story and Wagner I 261 I ,
-- I

- - I

- -,--_ .. -.-.~.- .-~-- •... -- •... -.-~- ..

III
C

C 0
Q)

Overflows
Q) +'
~ ::s
+' r-t
Q) '0 0
.0 C III

I tIS
.-t C Q) .-t

I ell 0 t) M ell r:: C Q) C
r-t I M 0 +' ell bl! 0
CIS Q) ::s +' Q)
+' I+'+' Ill+'+>
0 'H ell 0 • .-4 C ell

E-< , ell M III '0 M

0
I

0 0
0

I
0 , 0

0 I 0 0

I

0 I 0 1.9

0 I 0 1.9

0 I 0 1.9
I

0 I 0 1.9

0 I 0 1.9

0 I 0 1.9

0 I 0 1

I

t
I

r-t
Q tIS

C
'H 0 C o . .-4 0

+'
Q) CIS +'
::s M ::s
.-t

CIS +' 0
:> tIS III

27
27
27

27

27

27

27

27

27

9

- -

Q)
'H > c::
0· ... 0

+'
Q) C) +' ::s Q) t)
.... '1"") c::
CIS .0 ::s
> 0 'H

22
22
22

22

22
I

22

22

22

22

23

;

I-'
~
CD

Pivots Problem B4: ,...
III
C)
Q) I
IIItS::
'-' - I aso

S::'I"I
....t I '"' 0

Q) CIS Q) .1"1 ='
EI It

.1"1 0 '+-4 as 0

PrograDDDe E-< E-< I as '"' III

BGD: at 1st solution 12 25 I 5
at best, i.e. 1st solution 12 25 I 5
at end of run. 12 25 f 5

I
I

BHD 11 25 I 5

BHM 13 29 I 9
I

BHP 8 23 I 3
I

BHQ 9 24 I 4
I

BHE 14 30 I 10
I

BHF 9 24 I 4
I

bBB~lem sealed by 3 (using I 6 20 I 0
I

Story and Wagner 31 I

I
I

III
s::

s:: 0
Q) .1"1

Slacks Overflows
Q)
~ ='t
Q) '0 0t , ..0 s:: UJ Q as

I I as s::
....t s::t s:: CDt '+-4 0 s::

I CIS 0 I CIS 0 C) '"' CIS o '1"1 0
s:: '1"1 s:: s:: Q) s:: 1"1

....t I'"' 0t
''"' 0

as bO 0 Q) as
III CIS Q) '1"1 :l CIS Q) '1"1 :l Q) '1"1 =' '"' =' +> I+> +>t ,t (I)tt

=' 0 '+-4 CIS 0 0 '+-4 as 0 .~ s:: as as 0
() E-< las '"' III E-< I as '"' (I) '0 '"' > as (I)

2 3 I 2 0 I 0 0 80
2 3 I 2 0

,
0 0 80

2 3 I 2 0 I 0 0 80 , I
I I

2 3 I 2 0 I 0 0 80

2 3 I 2 0 I 0 0 80

1 2 I 1 0 I 0 0 80
I I

1 3 I 2 0 I 0 0 80

3 2 I 1 0 I 0 0 80

1 3 I 2 0 f 0 0 80

0 1 I 0 0 I 0 0 1
I .
I I

I t
I I

....,." . .---.... -----.-~-.. ---~----.--"---- ,......... ... ~.-.-- .. --~--.-.. "-."~- . -.. - _.-._. ~- ..

Q)
<t-I > c:
0·1"1 0

.... '1"1
Q) C)
=' Q) C)
....t -~ c:
CIS..c:l
> 0'+-4

10
10
10

10

10

10

10

10

10

12

.....
C1I
o

--_ ... -.----_._-----,--- _._. _ ... -_._.- -

Pivots Slacks
. Problem C4: ,....

Ul
C)
4) I I
IF) .-4C .-4 C

"" I CdO I Cd 0
C'r-! C .r-!

.-4 Is-.O-4 Is-. 0
Q) CIS Q) .r-! :s IF) lIS Q) :s
a ~ 1~~.-4 ~ I~-4 0 1M til 0 :s 0 1M Cd 0

E-< E-< I Cd s-. Ul U E-< ICd s-. IF)
Programme

I I
BGD: at 1st solution 25 57 I 33 4 5 I 5
at best, i.e. 1st solution 25 57 I 33 4 5 I 5
at end of run. 27 64 I 40 4 5

I
5

I I
I ,

BHD 30 70 I 45 6 6 I 5
I

BlIM 39 88 I 63 7 8 I 7 ,
~

BHP 39 88 I
I

63 7 8 I 7

BHQ 42 88 I 63 10 10
,

9
I

I

BHE 37 78 I
I

53 9 5 I 4

BHF 57 117 I 92 14 18 I 17
I

Problem sc,a1ed by 3 (using
27 I

I
BHD) 11

I
4 2 1

J
1

Story and Wagner 59 ' I

I ,
I I

IF)

~
~ 0
4)

Overflows
4) ~

~ :s
~ .-4
Q) '0 0

.D. ~ III
I Cd

.-4 ~ 4) .-4

I Cd 0 C) s-. Cd c C Q) C
.-4 I J.t 0 ~ Cd bO 0
Cd Q) 'r-! :s Q)

..... 1~~.-4 IF) ~ ~

0 'H as 0 .r-! C tIS
E-< I as s-. IF) 'O'r-! J.t

I
0

f
0 0

0
I

0 0
0 I 0 0

I
,

0 I 0 1.4

0 I 0 1.4

0 I 0 1.4
I

0 I 0 1.4

0 t 0 1.4

0 I 0 1.4
I

0 I
0 0

I

I
I

.-4
Q lIS

C
1M 0 C o .r-! 0

...... r-!
Q) lIS
:s s-. :s
.-4 .-4
til 0 > til IF)

9
9
9

25

25

25

25

25

25

2

Q)
1M > C
0· ... 0

~'r-!
Q) 0 :s Q) C)
.-4 '1"") C
til .D. :s
> OIM

13
13
13

13

13

13

13

13

13

13

I

......
(JI
......

Pivots
Problem D4: ,....

III
C)
Q) I
IIItC

'-" I as 0
s:::.re

r-I Is..O ...,
Q) as Q) ·re ::s III
S ..., I ..., ...,....t ...,
·re 0 ~ III 0 ::s
E-< E-< I III s.. III U Programme

BGD: at 1st solution 6 21 I 0 0

at best, i.e. 2nd solution 9 24 I 3 1
at end of run. 10 25 I 4 1

I
I

BHD 6 22 I 0 0

BHM 6 22 I 0 0
I

BHP 7 22 I 0 0
I

BHQ 7 22 I 0 0

BHE 7 22 I 0 0
I

I

BHF I 6 22 I 0 0

prOO.lem scaleany J-\u::>.J.Il~
BHD) 8 25 I 0 0

f
I

Story and Wagner I 37 I

I

Slacks Overflows

I I
....t ~t ~

I as 0 I as 0
C ·re S:::orI

....t Is..O ...,t Is..O ...,
as Q) ·re ::s as Q) ·re ::s ..., I"" ...,t ..., I ..., ...,t
0 ~ III 0 0 ~ III 0

E-< ,III s.. III E-< fills.. III

0 I 0 0 I 0

0 I 0 0
,

0
0 I 0 0 I 0

I I
I I

I I

0 , 0 0 I 0

I

0 I 0 0 I 0 ,
0 I 0 0 I 0

0 I 0 0 , 0

0 I 0 0 I 0
I

0 I 0 0 I 0

0 I 0 0 I 0
L

I I

f I
I I

III
~

!=: 0
Q) ·re
Q) ...,
~ ;:l ..., r-I
Q) '0 0
.c ~ III

as
Q) r-I
C) s.. III
C Q) c::
as bO 0

..., Q) ·re
Ill"""" ·re C III
'0 .,-t s..

0

0
0

0

0

0

0

0

0

0

....t
o as

s:::
~ 0 C
o ·re 0

..., ·re
Q) as ...,
::s s.. ::s
....tt as ..., 0
:> as III

1
1
1

1

1

1

1

1

1

1

Q)
~ :> c
o ·re 0

...,·re
Q) C)"" ::s Q) C)

....t .1"') C
III .c ::s
:> 0 ~

28
26
26

26

26

26

26

26

26

28

~
U1
~

Pivots Slacks
Problem E4: ,....

III
0 , Q) I
III .-tC .-t ~
'-' I ttto I ttt 0

C;:.r-i c:: .r-i
.-t 1 .. 0 +> .-t , .. 0 +>

I '" Q) =' til '" Q) .r-i ='
+> I+>+> .-t +> +> I+>+> .-t

or-i 0 'H '" 0 ::s 0 'H ttt 0
E-< E-< I ttt '"' III U E-< I'" .. III PrograJlDDe

BGD: at 1st solution 45 76 I 51 10 10 I 6
at best, i.e. 2nd solution 120 209 I 184 27 16 , 12
at end of run. 154 292 1 267 32 18 , 14 , , , I

I

BHD 139 306 I 277 27 39 I 35

BHM 139 300 I 271 29 31 , 27
I t

BHP 281 I 252 30 34 I 30
1

BHQ 226 447 I 418 50 74 , 70

BHE 206 402 I 373 49 54 I 50
I

BHF 254 491 I 462 59 87 I 83
I

Problem sCaled by 3 (using
1 I

BHD) 39 75 I 50 9 9 I 9

Story and Wagner 261 '
I

, I

---- - _ .. - J _____ -- --- ~-

til
~

~ 0 Q) .r-i
Overflows

Q) +>
~ =' +> .-t
Q) "t:l 0
.0 ~·tIl

I ttt
.-t C Q) .-t ,
'" 0

0..",
~ .r-i C Q) ~

.-t , M 0 +> '" bIl 0

'" Q) .r-i =' +> Q) .r-i
+> I+>+> .-t Ill+>+>
0 'M '" 0 .r-i ~ '"

E-< , '" '"' til "t:l.r-i '"'

0 I 0 0
0

,
0 0

0 1 0 0
I
I

0 I 0 4.4

0 I 0 4.4

0 I 0 4.4
I

0 I 0 4.4

0 I 0 4.4

0 I 0 4.4
I

I
0 0 1.4

I

I
I

.-t
o ttt

~
'H 0 ~
o .r-i 0 +> .r-i
Q)"'+>
=' .. ='
.-t .-t

'" +> 0
> '" III

19
19
19

317

317

317

317

317

317

88

-

Q)
'H > ~ o .r-i 0

+>.r-i
Q) 0 +>
=' Q) 0
.-t ." ~ ",.o::s
> 0 'H

23
19
19

19

19

19

19

19

19

19

I
i

!

.....
(]I

w

Pivots Slacks
Problem F4 ,...

III
C)
Q) I

,
ftl .-4S:: .-4 s::

I I CIS 0 , CIS 0
I S::.r-! s::

.-4 I ~ 0 +> .-4 I ~ 0 +>
Q) aI Q) ::I III aI Q) .r-! ::I
EI +> I+>+> +> +> I+>+' .-4
.r-! 0 'H aI 0 ;j 0 'H aI 0
Eo< Eo< I «I ~ III U Eo< ,til ~ III

PrograllDDe

BGD: at 1st solution 8 27 I 0 0 0
,

0
at best, i.e. 3rd solution 56 90 I 63 14 8 I 8

I I at end of run. 57 94 I 67 14 8 8
I

I I

I

BHD 61 139 I 106 12 17 I 15
I

BHM 69 156 : 123 14 14 I 12

BHP 128 ' 95 11 10 I 8
I

BHQ 72 140 : 107 20 22 ! 20

BHE 47 101 : 68 10 14 I 12

BHF 63 122 : 89 16 20 I 18

Problem sGaled by 3 (using
29 62 : 35 7 4 I 3

RHn) I

Story and Wagner 62 I I

I I

I _. _ ~ __ ----.J ____

ftl
I:::

I::: 0
Q) .r-!

Overflows
Q) +>
il ;j
+> .-4

Q) " 0 .c s:: III
I CIS

.-4 s:: Q) .-4

I «I 0 t) ~ «I s:: .r-! s:: Q) s::
.-4 I ~ 0 +> «I bIl 0
til Q) .r-! ::I +' Q) .r-!

+> I+>+> 1Il+>+>
0 'H «I 0 .r-! s:: «I

Eo< I «I ~ III ".r-! ~

0 I 0 0
0

,
0 0

0
I

I 0 0

I

0 I 0 5.2

0 I 0 5.2

0 I 0 5.2
I

0 I 0 5.2

0 I 0 5.2

0 I 0 5.2
I

0 I 0 2.7

I

,
I

.-4
(:) CIS s::
'H 0 s::
o .r-! 0

+>
Q) til +>
::I ~ ::I
.-4
til +> 0
:> «I III

1
1
1

203

203

203

203

203

203

30

Q)
'H > s:: o .r-! 0

+>
Q) t) +>
::I Q) C)
..... 1'") s::
«I .c ;j
:> 0 'H

35
30
30

30

130

30

30

30

30

31

I

.....
(}l

"'"

Pivots Slacks
Problem A5 ,...

Ul
0 I Q) I
III .-4t:: .-4 t::
'-' I ~o

, ~ 0
c·" t:: .r-4

.-4 I 1-0 0 +> .-4 11-0 0 +>
Q) ~ Q) .r-4 :l Ul ~ Q) .r-4 :l
S +> I+>+> .-4 +> +> I+>+> .-4

.r-4 0 1M ~ 0 :s 0 1M as 0
Eo< Eo< ,asl-o Ul u Eo< ,~ 1-0 Ul

PrograDDDe

BGD: at 1st solution 19 36 ' 0 0 1
,

0
at best, i.e. 1st solution 19 36 I 0 0 1 I 0
at end of run. 21 40 I 4 0 1 I 0

I I
I I

BHD 17 35 I 0 0 1 I 0
I

BHM 17 35 I 0 0 1 I 0
I

BHP 18 35 I 0 0 1 I 0 , I

BHQ 16 35 I 0 0 1 I 0

Problem sealed by 3 (using
BHD) 21 42 j 0 0 1 I 0

I L

Story and Wagner 613 I I
I

I I , I

I I

I I

I

III
c:

c: 0
Q) .r-4

Overflows
II) +>
~ ~

+> .-4
Q) 'tI 0
.0 c: III

I ~
~t:: Q) .-4

I ~ 0 o 1-0 ~ c .r-4 t:: Q) C
.-4 , 1-0 0 +> ~ bO 0
~ Q) .r-4 :l Q) .r-4

+> I+>.... .-4 Ul+>+>
0 'M as 0 .r-4 t:: ~

Eo< I ~ 1-0 Ul 'tI .r-4 1-0

0 I 0 0
0 I 0 0
0 I 0 0

I
I
I

0 I 0 0

0 I 0 0

0 I 0 0

0 I 0 0
,

0 I 0 0
,
I

I

I

,
I

.-4
Q ~

t::
1M 0 t::
0·" 0

+> ."
Q) ~ +>
:s 1-0 :l
.-4 .-4
~ +> 0
> as Ul

I

1
1

1

I

1

1

1

Q)
1M > t:: o .r-4 0

+>."
Q) 0 +> :s Q) 0
.-4 ." c::
~ .0 ='1 > 0 '+-t

25
25
25

25

25

25

25

25
I

I-'
U1
U1

Pivots Slacks
Problem B5 ,...

III
C)

I Q) I
III .-IC .-I c:
'-' I t1S 0 I t1S 0

c·"" c: .""
.-I I '"' 0 +> .-I I'"' 0 +>

~ t1S CII ."" ::s II) t1S Q) ."" ::s
+> I+>+> .-I +> +> I+>+> .-I

."" 0 'M t1S 0 ::s 0 'M aI 0

Progranune Eo< E-o I as '"' II) U E-o ,as '"' III

BGD: at 1st solution 26 45 I 9 1 1 I 1
at best, i.e. 1st solution 26 45 I 9 1 1 I 1

at end of run. 26 45 I 9 1 1 I 1
I I , I

BHD 45 78 I 42 3 3 I 2

BHM 44 70 I 34 3 1 I 0
I

BHP 44 76 : 40 3 1 I 0
I

BHQ 51 79 I 43' 4 4 I 3
I

Problem scaled by 3 (using
BHD) 32 61 j 21 1 2 I 1 ,
Story and Wagner 71 I I

J

I I
I I

I t

I I

i I

II)

c:
c: 0
Q) .""

Overflows
Q) +>
~ ~

+> .-I
Q) '0 0
.0 c: II)

I t1S
.-I c: CII .-I

I t1S 0 C) '"' t1S c: ."" c: CII c:
.-I I '"' 0 +> as bIJ 0
t1S Q) ."" ::s +> CII ."" +> I+>+> .-I Ill+>+>
0 'M as 0 ."" c: t1S

Eo< , as '"' III '0 '1"'1 '"'

0 t 0 0
0 I 0 0
0 I 0 0

I
I

0 I 0 0

0 I 0 0

0 I 0 0
I

0 I 0 0
,

0 I 0 0

I

I

,

I

•

.-I
Q t1S c:
'M 0 c:
o ."" 0

+> .""
CII t1S +>
::s '"' ::s
.-I .-I
t1S +> 0
:> t1S II)

88
88
88

352

352

352

352

4

Q)
'M :> c:
0·"" 0 +> '1"'1
CII C) +>
~ Q) C)
r-i • ..., c:
aI.o::s
:> 0 q.;

13
13
13

13

113

13

13

14
I

I

I

I

I-'
(]I
en

Pi vots Slacks
Problem C5

(/)

0 1 Q) 1
(/) ~t: ~ t:
'-' I as 0 I as 0

t:or-! t: or-!

~ I$.< 0 +" ~ 1 $.< 0 +"
CIl as Q) or-! ;:l (/) as Q) or-! ;:l
a +" I+"+" ~ +" +" I+"+" ~

or-! 0 'H as 0 ;:l 0 'H as 0
Eo< Eo< I as $.< (/) U E-o ,as $.< III

Programme

BGO: at 1st solution 114 145' 114 8 17 1 15
at best, i.e. 1st solution 114 145' 114 8 17 1 15
at end of run ° 114 145: 114 8 17 I 15 ,

, ,
1

BHO 106 1451 114 8 17 , 15
I

BHM 110 1481 117 10 13 1 11
1

BHP 127 1601 129 13 14 1 13
I

BHQ 144 166' 135 17 24 , 22

Problem scaled by 3 (using
50 I 61' 5 ' BHO) 29 6 4 ·1

Story and Wagner 1411 I

, I
I 1

I 1

! ,
I

(/)

t:
t: 0
CIl or-!

Overflows Gl +"
~ ;:l
+" ~

Gl '0 0
.0 t: (/)

1 as
~ t: Q) ~

I as 0 o $.< as
t:-r-I t: Q) t:

~ 1 $.< 0 +" as bO 0
as Q) or-! ;:l +" Q) or-!
+" I+"+" ~ II) +" +"
0 'H as 0 or-! t: as

Eo< , as $.< III '0 or-! $.<

0 1 0 0
0 1 0 0
0

I
0 0

1
1

I

0 I 0 1

0 I 0 1

0 I 0 1

0 1 0 1

0 t 0 0
I

I

I

I

I
I

~

o as
t:

'H 0 t:
o or-! 0 +" or-!
Gl as +"
;:l $.< ;:l
~ ~

as +" 0
> as III

93
93
93

93

93

93

93

2

Q)
'H > t: o or-! 0

+" or-!
Q) 0 +"
;:l Q) 0
~ o .. !=:
as.o;:l
> 0 'H

11
11
11

11

ill
11

11

11

I
I

.....
(Jl

'I

I Pivots Slacks
: Problem D5 ,-..

UJ
C)
Q) , ,
UJ ~~ ~ ,;:
-.; r «so I «S 0

,;: ,;:
~ , I-< 0-1-' ~ ,I-< 0 -I-'

Q) as Q) ::l CIl <IS Q) ::l
Ei -I-' (-I-' -1-'.-4 -I-' -I-' (-I-' -I-' ~ 0 ct-t «S 0 ::l 0 ct-t as 0

E-o E-o I «S I-< UJ U E-o ,«S I-< UJ
Programme

BGD: at 1st solution 19 37 I 0 0 0
,

0
at best, i.e. 2nd solution 23 39 (2 1 0 I 0
at end of run. 23 40 I 3 1 0 I 0

I r
I I
I

I

BHD 21 45 I 0 0 0 , 0
,

BHM 20 45 I 0 0 0 I 0
I

BHP 20 45 , 0 0 0 I 0
I

BHQ 20 45 I 0 0 0 ! 0
I

Problem scaled by 3 (using
,

I I
BHD) 18 38 I 0 0 0 0

I
I ,

StorY and Wagner 46 I

I I ,
I

I I I

I I

I

CIl
~

~ 0
Q)

Overflows
Q) -I-'
~ ::l
-I-' ~
Q) '0 0
.c ~ CIl , «S

~ ,;: Q) ~

I «S 0 c) I-< «S
,;: ~ Q) ~

.-4 , I-< 0 -I-' «S bD 0
«S Q) ::l -I-' Q)
-I-' r -I-' -I-' .-4 UJ-I-'-I-'
0 'H «S 0 C «S

E-o , «S I-< III '0 I-<

0 I 0 0
0 I 0 0
0

,
I

0 0

I

I

0 I 0 0

0 I 0 0

0 I 0 0

0 I 0 0

0
I 0 0

,
I

I

I

I
I

~

o «S
~

'H 0 ,;:
0· ... 0

-I-'
Q) «S -I-'
::l I-< ::l
.-4 .-4
«S -I-' 0
> «S III

1
1
1

1

1

1

1

1

Q)
'H > ,;: o 0

-1-'
Q) C)-I-'
::l Q) C)
~,,;:
as .c ::l
> 0 'H

37
35
35

35

35
I

35

' 35

37

I

I

I

J
1

I-'
Ul
00

Pivots Slacks
,....

Problem E5 III
0
Q) I I
I/) .-4C:: .-4 c::
'-' r til 0 I til 0

c::.~ c:: .~

.-4 Is..O ~ .-4 I~ 0 ~
Q) as Q) '" =' Ul as Q) .~ ='
a ~ I .j.I ~.-4 .j.I .j.I 1.j.I .j.I .-4

." 0 'H C\I 0 =' 0 'H as 0

Prograuune E-< E-< 1 as ~ rIl U Eo< ,as ~ rIl

BGD: at 1st solution 188 256' 220 13 17 I 15

at best, i.e. 3rd solution 761 9661 930 57 82 I 80
at end of run. 761 966' 930 57 82 1 80

1 I
I I
I

1

BHD 469 6731 620 37 52 I 50
1

BHM 508 7241 671 39 61 1 59
I

BHP 591 8091 756 50 69 I 67
I 1

BHQ 862 10621 1009 90 129 I 127

Problem scaled by 3 (using
126' 15 1 BHD) 101

"I
91 11 14

Story and Wagner I *1000' I

I
1 I
I I

1
,

, I

i I

*run terminated by limit on the number of pivots.

Ul
c::

c:: 0
Q) .~

Overflows
Q) ~

~ ='
~ .-4
Q) 'tl 0
.0 c:: Ul

I as
.-4 c:: Q) .-4

I as 0 u s.. as
c:: .~ c:: Q) c::

.-4 Is..O ~ til be 0
as Q) .~ =' .j.I Q) .~

.j.I r ~ .j.I .-4 rIl.j.l~

0 'H C\I 0 .~ c:: as
Eo< I as ~ rIl 't:I .~ s..

0 I 0 0
0 I 0 1
0 I

I
0 1

1
1

0 I 0 3.5

0 I 0 3.5

0 I 0 3.5

0 I 0 3.5

0 I 0 1.3
1

I

I

,
I
I

.-4
Cl til

c::
'H 0 c:: o .~ 0
~ .~

Q) til .j.I

=' ~ ='
.-4 .-4
as ~ 0
> as rIl

144
144
144

2250

2250

2250

2250

104

Q)
'H > c:: o .~ 0

~.~

Q) U.j.I

=' Q) U

.-4, c:: I as .0 =' > 0 'H

22
18
18

18

18

18

18

120

I
I

i-'
U1
to

Pivots Slacks
,.....
III

Problem F5 ()
III I I
III r-It: r-I t:
'-' I as 0 I til 0

i C:.t'i c: .t'i

r-I I ~ 0 ~ r-I ,~ 0 ~
Q) CIS Q) .t'i :l III as Q).t'i :l
e ~ I~~r-I ~ ~ I~ ~ r-I

.r-! 0 'H (II 0 :l 0 'H CIS 0
E-< E-< I CIS ~ III U Eo< ,CIS M III

Programme

BGD: at 1st solution 57 78 I 38 4 4
,

3
at best, i.e. 2nd solution 191 224 I 184 19 11 I 10
at end of run. 233 284 j 244 22 13 I 12

I I
I I
I

I

BHD 348 484 , 433 30 50 I 45
I

BHM 326 467 , 416 28 42 I 37
I

BHP 288 361 : 310 32 39 , 34

BHQ 451 499 I 448 53 82 I 77

Problem soaled by 3 (using
BHD) 129 169 I 132 11 24 I 24

I

Story and Wagner 323 I I

I I
I I

I I I

I I

I

III
t:

t: 0
Q) .,-4

Overflows
Q) ~

~ :l
~ r-I
Q) '0 0
.c t: III

I as
r-I C Q) r-I

I til 0 t) ~ til c: .t'i t: Q) c:
r-I , ~ 0 ~ til bO 0
til Q) .t'i :l ~ Q) .t'i
~ I~~r-I III~~

0 'H (II 0 .r-! C CIS
E-< I CIS ~ III '0 .t'i ...

0 I 0 0
0

,
0 0

0
,

0 0
I ,

0 I 0 6.2

0 I 0 6.2

0 I 0 6.2

0 I 0 6.2

0 I 0 2.6
I

I

I

I

,
I

r-I
Q as

C
'H 0 c: o .t'i 0

~ .t'i
III as ~
:l ~ :l
r-I r-I
(II ~ 0
> CIS III

4
4
4

4646

4646

4646

4646

12750

Q)
'H > c: o .t'i 0

~ •• t'i
Q) t) ~
:l Q) t)
r-I 'r-) C
CIS.c:l
> 0 'H

33
28
28

28

128

28

28

28

I ,

t-'
en
o

UJ ~ ~ ~
"0 "C

M- "1 "1
0 tl g tl 0 0
"1 ~ aq C'
'< ~ "1 ~

~ <D
~ 51 8 51
;:l
0. C/l <D ~ (!)

~ ~ 1»:1
I§ ~
<D
"1 ~

C.

c:
C/l

"" ;:l
oq

I--- --~- f--

00 Time (sees) (0 c..J
0 00

Total "C
00 ~ ~ ""0
0 0 0 <

1-- - - - I- - I- - I-~ I-~ 00 0
- 1--- --- - - - - - M-

after
III

c..J rational
l\) CJI
~ ...:J solution

l\) (0 Cuts

Total UJ
~
0')

.... - - t- - t- - ~- Q.
~

- - - -- - -- 1------ 0
after ;I';'

C/l

..... rational
~ solution l\) 0')

0

~ Total <
<D

0 0') "1

+-- - - - --. - - - - - - - -- - - - --
after ~

0

0 ~ rational ~
C/l

l\)
solution

* distance between
..... integer and

0 0')

00
rational solutions

* c..J value of D (!)
0') at rational -
l\) solution c..J
l\)
0')

c..J ...:J
0 c..J -

l\) l\)
value of

c..J l\) objective
function

_-L-

- 191 -

CIJ ~~~ ~ ~

c+ ::t >oj ::t ""l ""l
0 t:l 0 t:l 0 0
>oj '-'t:l

aq 0-
'<: >oj

(1) III (1)

III a f1
a

::s
0- en (1) ~

~
(j)

:;;
III
'§
(1)
>oj ~

c..

~
J

-

C11 (j) Time (sees)
t.:) w

Total ~

00 (j) (j)
1-'0

"" 00 C11 <
0

-- - I- - I- - - - f... .- -- - - - - - - -- - - - - - c+

after
en

t.:) rational
0 t.:)

solution

0 t.:) Cuts

Total CIJ
t\:) C11

III
1-- - +- - - -- - t-- - - -- - -- 0

after - - p;-
C/!

0 ~
rational
solution

0

0 0 Total <
(1)
""l -- - - I- - - - ~- - - - - - -- - - - - - ~

after
......
0

0 0 rational :E!
en

solution
distance between

0 0 integer and
rational solutions

value of D
,j:>. at rational
~ solution 0

...... value of
t.:) 0

objective
function '-____ L-.

- ~91 -

I
CJ) t:J:I ~I t:J:I ~ ~

r+ :x 'i :x 'i 'i
0 8~t:I 0 0
'i IJQ 0-
'< ~ 'i I-'

~I ~ ~

§ i a
Co

~
en (j

a'l
~
~

~
(\)
'i

,...
r:::
1/1
~

::s
(JQ

~ -- f--~

I-' a'l Time (sees)
I-' 0
I-' ()1

r----- -

I
Total

'0
()) M::o

~.

~ ~ a'l
< --t- -~ _02 w 0

- - - - - - - - - -- - - - - - r+

after
1/1

M::o rational
M::o (I.)
()) 0 solution

w Cuts
a'l (I.)

Total CJ)
a'l I-'

-..J ()1 III

t-- - f- - - - - - -- - - -- - -- - - - -- 0
after ~

1/1

a'l rational
()1 I-' solution

0

0 0 Total <
(\)
'i

-- - - - f- - - - f-- - - - - - -- - - - - - ~

after
I-'
0

0 0 rational ~
1/1

solution

distance between
0 (I.) integer and

()1 rational solutions

value of 0

I-' at rational
M::o solution M::o

(I.) 0

-~

I-' I-' value of
M::o M::o

objective
function

--'--~

- £91 -

I
Ul

~r '" '" r+ ::I: '"S ::I: '1 '1
0 t:lOt:l 0 0
'1 '-" OG 0-
«: '1

~ I» CD

§ § S

C. til CD g
(')

~ ~ Q;

~ ~
CD
'1 ~

c..

~
~

I--- -- ------ I-

~ C11 Time (secs) 0)

I Total
"tI

C11 C11 0)
~.

C11 CJl <
0

"". - - ... - - I- - - ~- I- - - - - - -- - - - - - rl"
til

after
C11 rational to solution

..... Cuts

Total Ul
0

s:o
~- - I- - - - - - -- - -- - -- (')

after - - ~
til

0 rational
solution

0

0 0 Total <
CD
'1

+- - - - 1-- - - 1-- - - - - - - - - - - - -
after

.....
0

0 0 rational :E
til

solution
distance between

0 0 integer and
rational solutions

value of D
~ C11 at rational

solution

--
w ~ value of
0 <Xl

objective
function --- --'---

- v91 -

- 165 -

--_.- --
uOll-°unJ

aAlloa fqo
JO anreA 00 0

r-4 N
1---- --~- -

UOll-n 1os 0 00
0

1l1uol:P~.z l-ll 0
0

a JO an1l1l1. C")

suollnlos IlJUOllll~
'O:!'
0 If:)

pUll .la~alUl C") 0
uaaAqaq aoulllslP

uOll-nlOS
III llluOlle .z
~

0 0

0 .zal,JlI
r-4 - - - - - - - - -- - - -- - - - - - - --1M

'"' Q) 1e l-0J, >
0 0

0

uOllnlos 0) C")

1l1uoll-e.z r-..
III .zalJlI -t ~ 1-- 1-- --0 - - - -- - - --- - - - - -
CI1 0 'O:!'

r-4 00
r/l T"8l-°J,

I

00 C")

sl-nJ M

uOlln10S If:) 00

l lluoll ll .z
If:)
r-

.lal-J"8 - t - -III - - - - - - -- - -- ~- 8- - - - - -.
+> M
0 C'iI r-
> 00 0 1lJl-0J, r-4
~ * '--

0) r-..
(soas) emlJ, r-4 r-..

0)

----"

r
~

M

~ '"' IJ)

~ G=o

~ CI1 ;;:
c.o 0
rz:l i III 't:I

C

= = CI1
Q) CI1 ~ r-4 '"'

>.
.0 bO ~8 '"' 0 0 Q 0

'"' '"' m ~m +>
~ ~ til

CIl
C

C 0
(i) oM

Pivots Slacks Overflows
(i) +-'
~ ;l

,-.. +-' .-4

Problem F6 CIl (i) "0 0 .-4

C) .c c CIl o ~
(i) , , , ~ c (i)

III .-4 C .-4 C .-4 C (i) .-4 'H 0 C 'H :> C

'-' 1 (\I 0 , ~ 0 I ~ 0 C) ... a! o OM 0 o OM 0
COM C 'M c: OM c: Q) C +' oM OM

.-4 I ... 0 +' .-4 , ... 0-4 , ... 0 a! bO 0 (i) a! +' Q) C)

(i) a! (i) OM ;l CIl a! (i) ori ;l a! Q) OM ;l Q) oM ;:l ... ;:l :l (i) C)

e I-4 +-' ,-4 1 +-'-4 CIl+-'+-' .-4 .-4 .-4 Or"") C
oM 0 'H (\I 0 :l 0 'H a! 0 0 'H (\I 0 ori C ~ ~ +-' 0 a! .0 ::l

Programme Eo< Eo< I ~ '"' III U Eo-< Ia! ... III Eo< I (\I '"' CIl "0 OM ... :> ~ CIl :> 0 'H

r I f

I I ,
, I I I

1 1 I
I I , ,
I

I

BHD *1867 1384 I +1313 63 192 1 +177 45 I +39 +6.2 -'-11 72819886 24

-prODl.em Seal.ea oy -J \UsIng r I

BHD) 798 734 I 672 35 56 I 45 0 1 0 2.5 14401 26

-+-
I

-

Story and Wagner 1000*1 1 I I

I I I
I ! I , I
I

-+ I I

I f , I
I i

! I I
'i

I I
I I I

i
I I I
I J

I I
i

I
,

I I

I I f
I I

*run terminated by limit on time ~n the number of pivots.
+the rational solution was never determined. These figures relate to the point at which the first cut

was added.

!

i
I

I
I

I

I
i

I-'
m
m

- 167 -

APPENDIX D

THE EXPERIMENTAL PROGRAMMES

PART 1

THE TWO MOST EFFECTIVE PROGRAMMES

- 168 -

Appendix D The Experimental Programmes.

Part l: The Two Most Effective Algorithms.

Specification of Programme BHD.

Purpose.

The programme mlnlmlses a function
n

constraints L
j=l

a .. x .. < b. (i=l, ... m)
lJ lJ ~ 1

n
L

j=l
c. x. subject to the

J J

all the x. being constrained to ~De non-negative integers.
J

Data.

The layout of the numerical data is as follows, the letters having
the same meaning as in the previous section:

t a title consisting of the identifier of the user plus any sequence of algol
basic symbols excluding 't't

m; n· ,
0 cI c L
1 PI all a12
2 P2 aLl a22

m Pm a a
ml m2

The p. must be
1

the terminators of the previous n
according to the relation 1: a .. x. p. b. ,

j=l lJ J 1 1

e.g. the row

3 ~ 1; 1; 4;

represents the third constraint Xl + x2 ~ 4.

integer.

c
n

a, in b 1

a2n b2

a b
mn m

number and are either ,.::, = or ~

Each a .. , b. and c. must be an
lJ 1 J

Although the programme will accept data regardless of the signs of
the a .. , b. land c. and the values of the Pl" the user is advised to restrict

lJ 1 J
his data to one of the following forms:

either b. ~ 0, p. being = or .$.
1 J.

or c. ~ 0, p. being ~ or ~
J 1

With other configurations the programme may terminate erroneously.

The above form of data may be repeated as many times as desired, and
the programme is terminated by a nominal set of data as follows:

t t

-1;-+

- 169 -

Method.

The programme is one of the many variants of Gomory's Method of
Integer Forms (ref I}. It is described in Part 3 and Part 4 (a) of
Chapter 2.

Output.

The programme produces a considerable amount of output to enable
the user to monitor the progress of the programme towards a solution.

Every pivot element is printed out. They are printed sequentially,
six to a line. If three asterisks are printed it indicates that integer
overflow occurred and that the last figure printed represents an un­
successful attempt at pivoting. If a pivot is followed by an S it
indicates that a constraint with zero constant term has been added to scale
the tableau. If a C is printed it indicates a cut has been added.

The more important monitoring information is
(a) The rational solution is printed giving the value of every basic

Variable.
(b) Every time a cut is added the number of the interation and the value

of the cost function is printed provided this value has changed since
the last iteration.

(c} When an integer solution is found the values of the basic variables
are printed followed by the entire array.

The following error messages may be encountered:

SOLUTION UNBOUNDED:
The solution to the original linear programming problem is unbounded.

LEXICOGRAPHICALLY UNBOUNDED:
Although the problem itself is bounded one of the variables is not. The
user must add a constraint giving this variable a bound.

INTEGER OVERFLOW:
Integer overflow has occurred in circumstances with which the programme ~s
unable to cope.

NO RATIONAL SOLUTION (p):
It has not been possible to eliminate the artificial variables.

NO RATIONAL SOLUTION CD):
The problem was discovered to be infeasible while performing the Dual Simplex
Algorithm. If the rational solution has already been found this message
is to be interpreted as meaning there ~s no integer solution.

LOGICAL ERROR:
This should never occur. It could arise from a number of places is tae ~~J _eA~'~
programme error, an undetected error in the format of the data, or a machine
fault .

NO INTEGER SOLUTION:
A basic variable has non-integer constant term but the coefficients of the
associated)(ow have all integer values.

Computer reguirements.

Paper tape reader
Line printer

- 170 -

Core store: programme plus (m+n+6} x (n+2) + 50 words where m and n are
as previously defined.

- 171 -

Specification of Programme BGD.

This programme is the same as BHD save for one statement which is con­
tained in the comment on page "i. Its specification is the same save for
the following points.

Method.
The programme approaches the optimal integer solution via a series of

approximate ones and is described in Part 3 and Part 4(j) of Chapter 2.

Output.
This is the same as that of Programme BHD except that after an integer

solution is printed the solution process continues and with it the monitoring
printout. The programme terminates computation with the message 'NO
BETTER SOLUTION' and the last integer solution printed is the optimal one.

Computer requirements.

An extra s(n+l) words of store is needed where s is the smallest number
2s .

such that ~s not less than the largest element of the objective function,
i.e. 2

s
> max (abs(c.)) , j=l, ... ,n.

J

- 172 -

begin co_nt This is the text of programme BHD. Where it differs

fro. the text of the other programaes is indicated in the

comaents;

library A6,A12,A13,A14;

co .. ent The library functions used were those that dealt with

input-output. Only three of the standard function. were

used and the KDF9 User Code versions of the.e follow;

!!!! prooedure abs(x); value x; !!!! x;

~ 1/0/0/0;

[xl· ABSF- EXIT· ALGOL,---, '-'
integer prooedure sign(x); value x; !!!! x;

!!!!:9. 2/0/0/0;

[xl- ZERO- SIGNF· _EXIT,. ALOOL,· - -, , ,
integer procedure entier(x); value x; !!!! x;

~ 4/0/0/1;

VO:B4322S063162270S2;

V1=B1S71~OOOOOOOOOO;

Ixl; FIX; DUP; SE1'39; -; DUP; J3>Z;

=C3; Jl>Z;

J2<Z;

ZERO; !!!I;

2; SET-l; !!!I;

1; SET-8; :rC3; SHLC3; NC3; SHLC3;

NC3; SHAC3; !!!!;

3; ERASE; FlDAT; SETAVO; REV; SET1; JSP299;

ALGOL;

- 173 -

procedure printar(a,m,n,p,q,D,g); value m,n,D;

integer m,n,D,g; integer array a,p,q;

comment This prooedure prints the contents of arrays a, p, and q

arranged as a matrix. It ohooses a format to fit the largest

element of a and the value of this format is assigned to parameter

g. The arrays are dimensioned a[-1:m,0:n], p[1sm], q[1:n];

begin inteJer i,j,I,J,s,f;

I::ain(-abs(a[i,min(-abs(a[i,j]),j,o,n,true)]),i,-l,m,true). - -,
J::min(-aba(a[I,j]),j,o,n,true). -,
ss:!,! abs(a[I,J]»D !h!! ab8(a[I,J]) !!!! D;

fs:!,! 8<1000 ~ format(l-ndd;l)

.!!!! !! s<'(l6 .!!!.!! format(l-nddddd;l)

.!!!!. !,! s<,09 ~ format(l-nddsdddddd;l)

!!!! format(l-ndddddsdddddd;l);

writetext(3o,1»=1); write(30,f,D); newline(30 ,2);

:!2!: i ::-1 step 1 until m !!2

begin write(30,f,!,! i>o !h!! p[i] !!!! i);

end· -,

~ j::o step 1 until n !!2 write(30,f,a[i,j]);

newline(30,1+(i+1)~(m+1»

write(30,f,0); write(30 ,f,0);

!2! j::1 step 1 until n ~ write(30 ,f,q[j]); newline(30 ,3);

g::f;

integer procedure time;

co_ent This procedure assigns to time the run time used so far by

this programme rounded down to the nearest second;

KDF9 1/0/0/0;

SE'I'3; OUT; SHL-24; !!!!;

ALQOL;

~t
!

t
\

i
\
1

I
I
j
I

i

!
t

I

- 174 -

inteler procedure hcf(a,b); value a,b; integer a,b;

comment This procedure as.igna to hcf the highest common

factor of a and b;

begin a:=abs(a); b:=abs(b);

!! &:0 2!: b:0 !!.!!. loto H; .!! a<b !!!.!.! loto B;

A: a::a-a-tbXb; !! &:0 !h!!!. loto H;

B: b::b-btaXa; !! b~O then loto A;

H: hcf::!! &:0 !!!!!!. b .!.!!!. a

end· -,
inteler procedure euc1ida1g(h,D); value h,D; integer h,D;

comment This procedure assigns to euc1ida1g a number

between 0 and D such that

euc1ida1gXh : hcf(h,D) (mod D);

begin integer k,u,v,g;

h:=d1re.(h,1,D); k:=D; u:=l; v:=O; !! h:o !!!! goto I;

g:=h-tk; h::h-gXk; u:=u-gXv; .!! ~O ~ i2!2. G;

E: euc1ida1g::if k=O th.n u e1 •• U+V - --
end· -,
intecer procedure min(t,s,p,q,B); !!!! t; int.,.r .,p,q; boolean B;

comment Thi. procedure us •• Jen.en'. device to find the miniMUm of a

one dimensional array .ubject to a boolean expression;

be,in !!!! z;

!2! s:=p step 1 until q ~

!! B ~ begin!! t<z then be,in min::.;

z:=t

end end - end· -'

!
1.
;

I
t
I
I

I
I
I
I

I

- 175 -

prooedure Intoh(a,.,n,p,q,D,I,J,FAIL,oflow); value .,n,I,J;

inte,er .,n,D,I,J; inte,er array a,p,q; .. itoh FAIL; label ollow;

co .. ent Thi. prooedure perlor.. a pivot operation on a[I,J]. In the

event of overflow the array a i. r •• tored to it. orieinal .tate and

the prooedur •• xit. to label ollow.

Apart fro. I,J, and of low , the par_.ter. p.rfor. the

funotion a. the variable. with the id.ntifier. d •• oribed at

the .tart of the .. in prolr __ ;

be,in int ... r i,j,D1,02,I;

write(30,foraat(1-nddddd.ddddddal),a[I,J]);

O2::a[I,J]; D1::DXaign(02);

trana(a,.,n,D1,02,I,J,i,j,LOFLDW,FAIL[5]);

.!! 02<0 ~

becin !2!: j:: ° atep 1 until n .!!2 .!! j~ !!!!! a[I, j] ::-a[l, ~] ~

.!!!!.!2!: i::-1 atep 1 until a!!2.!! i~1 !!!!! a[1,J]::-a[i,J];

a[I,3]::D1; D:=aba(DZ); 1:=p[I]; p[I]::q[3]; q[J]::e;

e!2 DOHK;

WFLOW: ~ j:=j-l at.p -1 until ° ~.!! j~ l!!!!.
a[i,j]::dlprod(Dl,a[i,j],a[I,j],a[i,J],DZ,FAIL[5],FAIL[5]);

!2!: i ::i-1 atep -1 until -1 ~ !! i1!1 !!!!!

DOJfB:

end· -,

b!&in!2!: j:=n atep -1 until J+1,J-1 .tep -1 until ° ~
a[i,j]l:dlprod(D1,a[i,j],a[l,j],a[i,J],D2,FAIL[5],FAIL[5])

I
~

I
p,

!
I
I
(

~

- 176 -

prooedure tran.(a,.,n,Dl,D2,I,J,io,jo,OF~,BRROR); value m,n,Dl,D2,I,J;

int.,er array a; int .. er .,n,DI,D2,I,J,io,jo; label OFLOW,ERRORj

oo_nt The purpo.e of this procedure is to perf ON that part of the

pivot op.ration whioh replace •• ach .le •• nt, a[i,j], of a by

(D2Xa[i,j]-a[i,J]Xa[I,j]).DI, where I and J are the pivot row and

colu.n, re.peotiv.ly. It doe. not alt.r the pivot row and oolumn

th •••• lv •••

The advantage. of writing this prooedur. in User Code are

(i) it peralts the u.e of double l.ngth arithmetio,

(ii) it is .asier to detect ov.rflow without terainatinc the

prolr ... e,

(iii) it spe.ds up a prooedure in whioh the prolr pends a

laree proportion of its ti ...

Th. integ.r array a i. dimen.ion.d a[-I:_,Oln],

Dl and D2 are the old and new valu •• of the deteninant

.ultiplied by the .ien of the pivot element,

I i. the pivot row,

J i. the pivot colu.n,

io and jo are only defined if ov.rflow ocour.: th.y are .uch that

a[io,jo] i. the .le .. nt on which ov.rflow oocurr.d,

OFLOW i. the .rror exit if overflow ocour.,

ERROR i. the error exit if the division leave. a r ... inderl

it. ocourrenoe indioate. either a 10Cioai error in the procramme

or a aachine fault;

- 177 -

comment The Algol equivalent of this procedure is as follows:

~ 10:= -1 step 1 until 1-1,1+1 step 1 until m .!!2.

!2!: jo:= ° step 1 until J-l,J+l step 1 until n ~

a[io,jo]:=dlprod(DZ,a[io,jo],-a[l,jo],a[io,J],Dl,OFLOW,ERROR);

~ 6/6/2/0 ;

[a]· SRC-16· =Ql1· [a]. 11]. DUp· NOT· NEG· =RC 1A • DUp· - -, , , - -, -, , , , ~, ,
SET AYO; Cll; +; DUP; =1110; DUP; NEG; NOT; =114; +; =1112; -; =113;

Yl1111; SETS 177777; AND; iJl; DUPD; =CI2; =115; XD; CONT; =1113;

~lJ C12; -; =CI3; ZERO; iD11; DUP; ASS; =Ql1; J99>Z; NOT; 99; =CI0;

(QI0= ° or -1/ - IAa[o,o]); (QU= abs(Dl));

(QI2= J/ - lAa[I,o»; (Q13= n-J/m-I/JX(L+3»;

(Q14= row ctr/ 1 IAa[i,o]); (QI5= 001 ctr/L+31jX(L+3»;

i021; JI7CI0Z; NEG; 17; sHA+8; JS3; 113; =C14; JS4; ERASE; !!!I;

• *3; 110 ro Q15; C12 TO Q15; 1113114; DUP; J 10=Z; J 18clOZ; NEG;

REV; JS5; C13 TO Q15; 11+115; JS5;

12; REV; ERASE; DC4;

4; 1If-14; J3C4NZ; OIT 1;

*1; DUPD; 11141115; XDj CAB; 11121115; XD; -D;

11; Qll; +R; SRA-8; J2V; =1I14M15Q; J6~z;

5; JICI5NZ; EXIT 1;

10; ERASE; Ql1; REV; JS7; C13 TO Q15; 11+115; JS7; J12;

*8; DUPD; 11141115; XD;

9; CAB; +R; SRA-8; J2V; =M4M15Q; J~Z;

7; J8Cl5NZ; EXIT 1;

2; LINK; LINK; 20; ERASE; J2ONEN;

114; 1110; -; =ii01; 1115; 115; +1; ERASE; =ijo1; JiOFLOW1;

6; LINK; LINK; 60; ERASE; J60lfEN; JiERROR1;

ALGOL;

18. SUA. o. , nft1"O,

- 178 -

intecer procedure dlprod(a,b,c,d,e,oflow,error); value a,b,c,d,e;

integer a,b,c,d,e; label oflo.,error;

co_ent Thi. procedure i. DOl'Ilally equivalent to

dlprodr=(aXb+cXd)+e.

However, it perfora. the arithaetic in double leftlth and in the

event of the re.ult overflowiftl or the diviaion leaving a

reaainder it exita to 'of low' or 'error' reapectively;

!Q?!9. 4/0 / 0 / 0 ;

[a]. [b]. XD· [c]. Cd]. XD. +D,. _[e_l,· DUP,' Jl>Z,. --, --, ,--, --, ,
PERIl; HmD; CAB; JfBG;

1; +R; sHA+8; SRA-8; J2V; REV; J~Z; BXIT;

2; BRASE; ERASB; Jioflowl;

3; BRASB; J i error 1;

AUJOL;

int .. er procedure dl.ign(a,b,c,d); value a,b,c,d; integer a,b,c,d;

oo_ent ,",i. procedure ia normally equivalent to

dlaignr=.ign(aXb-cXd).

It perforaa the arithaetic in double length to avoid the

poa.ibility of overflow;

!!?!2 4/0 / 0 / 0 ;

AlOOL;

int .. er procedure dlre.(a,g,D); value a,I,D; inteler a, I,D;

oo ... nt ,",i. prooedure ia noraally equivalent to

dlre.:=aXc-aXl+DXD.

It perforaa the arit~tic in double lencth to avoid the

po.aibility of overflow. It aaauaea that D ia poaitive;

!!!a 3/0/0/0;

AUIOL;

- 179 -

integer prooedure pivot(a,.,n,I,iO,FAIL); value m,n,I,iO;

inte,er array a; integer a,n,I,iO; label FAIL;

co .. ent Given the pivot row, I, this prooedure .eleota the pivot column

accordin, to the rule. for the lexicoeraphic Dual Simplex Method and

a.sien. it to piTOt. The Dual Simplex lIethod .eleot. a pivot colullll

J auoh that a[I,J]<O and a[iO,J]/ab.(a[I,J]) i. a miniaum over J,

where 10 i. the co.t row. The lexicoeraphio rule laya down that in

the event of a tie between two row. the ratio. a[iO+l,J]/aba(a[I,J])

are compared, and so on until the tie is resolved. The procedure .ay

also be used to find the pivot coluan in the Siaplex lIethod by

insert inc a duaay pivot row consiatine entirely of _I' ••

The reason for writinc this prooedure in U.er Code was that in

so .. proble .. coluana appeared with laree nuaber. of zero. at the top

of thea, with the re.ult that the nuaber of operation. needed to

ohoose a pivot coluan was of the order of .xn, rather than simply n.

Array a i. diaen.ioned a[-I:m,O:n],

I i. the pivot row,

iO is the fir.t coat funotion: -1 when called by Int.iap, 0 when

called by Dintsi~,

FAIL i. the error exit if no fea.ible pivot column can be found.

The Aleol equivalent of this procedure is contained in int .. er

procedure pivot2, on the following Pale.

The procedure was altered in prolr BR6 to oait the

lexicolraphic rule for break inc ties;

!!!:2 4/710 / 0 ;

1a]. SHC-16· :Ql1. Cll; SETATO; +; Tl1111; DUP; =115; +; =1115; -, , ,
riO]. Dup· =RIII0' [a]· NOT; NEG; REV; -; DUP; =CI0; =C9; - -, , , --,
[n]· DUp. =C1S' =CI2· [I],' =1112; ZBRO; =C14; SET-I; =1111; - -' , , , --

- 180 -

*1; M12M15; J9~Z; MIIM15; J9>Z; Q10TOQ13;

*2; M15M13Q; J~Z; *J2Cl3NZS; J9;

*3; M- 113; M15M13; ZERO; SIGN; NEG; NOT; =Cl1; M13; DUP; =111; J7C14Z:

112; -; DUP; J7>Z; J4=Z; J9C11Z; ZERO; J7;

*4; C9; M13; -; =c13; M4M13; M15M12; XD; M14M12; M15M13Q;

XD; -D; OR; DUP; J7<Z; J9>Z; J4Cl3NZ; J9;

7; ERASE; Q15TOQ4; Il1TOQ12; J9C11Z; 111; NOT; NEG; MI0; -; =CI0;

9; M+115; DC15; JIC15NZj JlOC14Z; C12; c14; -; NOT; NEG; !!!!;

10; JiFAIL1;

ALGOL;

integer procedure pivot2(a,m,n,I,io,FAIL); value m,n,I,iO;

integer array a; integer m,n,I,iO; label FAIL;

comment Although not called by the programme this procedure has been

inserted here because it contains the Algol equivalent of integer

procedure pivot;

begin integer J,i,j,gj

end· -,

J:=O;

.!2!: j:=l step 1 until n ~ .!! a[I,j]<O and a[-l,j]!O .!!!!!!.

begin if J=O .!h!!!. goto FND

!2! i :=iO step 1 ~ Ii ~

begin g:=dlsign(a[i,j],a[I,J],a[I,j],a[i,J);

end· -,

.!! g>O ~ goto FND; .!! g<o !!!!.!! goto NEXT

goto NEXT;

FND: J:=j;

NEXT:

end· -'
pivot2::J; .!! J=O .!!!!!. goto FAIL

- 181 -

procedure Intsimp(a,m,n,p,q,D,R,L,FAIL,x,z); value n,x;

integer .,n,D,R,L,x; integer array a,p,q,z; switch FAIL;

comment This procedure performs the Simplex algorithm. It produces a

lexicographically optimal tableau, i.e. the first non-zero element

of every column is positive. The purpose of this is to assist the

selection of oonstraints in the integer programming part of the

programae, but it also enables the artifioial cost, in row -1, and

the objective funotion, in row 0, to be optimised simultaneously.

In the event of overflow prooedure Scale is called. If

succe8sful, another attempt is made at pivoting, if un8uccessful,

the run i8 abandoned.

The parameter8 perform the same function as the variable8 with

the same identifiers described at the start of the main programme;

besin integer i,j,I,J; boolean success;

ONE: ..!2!: j::l step 1 until n !!2 a[atl.j)::-I;

TWO: J::pivot(a, •• n,m+l,-I.FOUR); i::-2;

TIfREE: i::i+l;.!! a[i,J):O !!!!!. i<m ~.12!2 THREE

.!!!!. .!! aU ,J)?..o !!!!.!! goto FOUR;

I::ain(a[i,0]/a[i,J),i.z[10]+1,m.a[i,J]>0);

!! 1:0 l!!!.!!. ~ FAIL[.!! a[o,J]<o !!!.2 1 .!.!!! 7];

p[m+l]::p[I]; !2! j::O step 1 until n ~ a[m+l,j]::a[I,j];

space(30,5) ;

Intoh(a,m+l,n,p,q,D,a+l,J,FAIL,OFLOW); loto ONE;

OFLOW: Scale(a,.,n,p,q,D,R,L,FAIL,succes.);

J2!2 !! BUCce •• !!!! ONE !!!! FAIL[6];

FOUR: !2! i::l step 1 until m !!2 .!! p[i]<O ~ a[i,O]>O ~ goto FAIL[3]

end· -,

- 182 -

procedure Dlntsimp(a,m,n,p,q,D,R,L,FAIL,x,z); value n,x;

integer .,n,D,R,L,x; integer array a,p,q,z; switoh FAIL;

comment This procedure performs the Dual Simplex algorithm. It chooses

the row with least a[i,o] to pivot on, calls integer procedure pivot

to locate the pivot oolumn, and oalls procedure Intch to effect the

transformation. In the event of overflow oocurring in Intch

procedure Soale is called and if suocessful another attempt is made

to choose a pivot element and pivot on it suocessfully. If no

overflow occurs procedure Soale is called nonetheless before exiting

fro. the prooedure.

The parameters perform the same function as the variables with

the same identifiers desoribed at the start of the main programme;

begin inteJer i,I,J,g; boolean 8ucoess;

ROW: g::1 ::0;

.!2!: i::z[lO]+l step 1 until m ~!! aU,o]<g!!!!!l

beJin I::i; g::a[i,o] ~;

.!! g:o !!!!.! loto DONE;

J::pivot(a,_,n,I,0,FAIL[2]);

p[~l]::p[I]; ~ j::o step 1 until n ~ a[a+l,jl::a[I,jl;

space(30,5) ;

Intoh(a,m+l,n,p,q,D,a+l,J,FAIL,OFLOW); ~ ROW;

OFLOW: Scale(a,.,n,p,q,D,R,L,FAIL,suocess);

!!. .uece •• ~ Joto ROW:

DONE: Scale(a,m,n,p,q.D.R,L.FAIL,.uooe ••);

FIN:

end· -,

- 183 -

procedure Scale(a,.,n,p,q,D,R,L,FAIL,aucces.); value m,n,R,L;

integer .,n,D,R,L; integer array a,p,q; switch FAIL; boolean success;

co .. ent The purpose of this procedure is to search for 'constraints'

with zero constant tera and incorporate them into the tableau by

means of a pivot operation. This has the effect of reducing the

value of D without altering the value of any a[i,o]/D.

The advantace of adding such constraints is that the value

of D is reduced while maintaining optimality and fea.ibility.

The parameter 'success' i. assigned the value !!2! if at

least one such constraint i. found, false otherwis.. The other

parameters perfor. the same function as those with the

identifiers described at the start of the main programme;

becin integer i,j,k;

succe.s::fal •• ;

AGAIN: .!2!: i::o .t.p 1 until m ~

becin k:=D+hcf(D,a[i,o]);

end· -,

!!. k~D !!!!! .!2!: j :=1 step 1 until n ~

b!Jin !! dlre.(a[i,j].k.D)~O ~ a[-I,j]~O

FOUND: succes.::!!2!; a::m+l; p[a]::999; writet.xt(3o,lS····l);

1XlNB:

end· -,

!2! j:=O step 1 until n ~ a[.,j]::-dlr •• (a[i,j],k,D);

Intch(a,m,n,p,q,D,m,pivot(a,m,n,m,0,FAIL[5]),FAIL,FAIL[6]);

.::11-1; goto AGAIN;

- 184 -

procedure Integer(a,m,n,p,q,D,R,L,FAIL,x,z);

integer m,n,D,R,L,x; integer array a,p,q,z; switch FAIL;

comment The purpose of this procedure is to choose a new constraint,

add it to the tableau, and restore the tableau to feasibility.

This is done by calli~ prooedures Constraint, Intch and Dintaimp.

The procedure also ohecka the time taken so far and prints certain

monitori~ information.

The functions of the parameters are the s .. e aa those with

the aame identifiera described at the start of the main programme;

becin intecer f,fi,fr,pao,pD,tm,t; boolean finiah;

f::format(l-ndddddsddddddsl); fr::forllat(l+d.ddddsddddsddds/o+ndl);

fi::format(lsssss-nddddds •• aal);

tm::ti .. ; t::o; fini.h::false; pao::a[o,o]+lj pD::D;

REPORT: !! z[7]+ti .. -tm>1800 !!!!!l finish::!!:2!;

DONE:

end--,

if finish or dlaign(paO,D,a(O,O],pD)~O then - - -
becin pao::a[o,o]; pD::D; newline(30,1);

write(30,fi,t); write(30,fr,pao/D); spaoe(30 ,6);

write(30,f,pao); writetext(30,!ll); write(30 ,f,pD);

!! finhh !!!!! coto DONE

end--,
Conatraint(a,m,n,p,D,FAIL[4],finish);

!! finiah!!!!!. goto REPORT; t:=t+l; p[.... l]::R+tj

Intch(a,a+l,n,p,q,D,m+l,pivot(a,m+l,n,m+l,o,FAIL[4]),FAIL,FAIL[6]);

Dintaimp(a,m+l,n,p,q,D,R,L,FAIL,x,z); ~ REPORT;

newline(30 , 1)

- 185 -

procedure Constraint(a,m,n,p,D,fail,finish); value .,n,D;

integer array a,p; integer m,n,D; label fail; boolean finish;

comment This procedure generates and adds a constraint according to

the particular algorithm being tested. The majority of programmes

differed from BHD only in this prooedure, the exoeptions being BaD,

which has one extra statement in the main programme, and BH6, which

differs in integer procedure pivot. The text of the procedure

reproduoed here is common to programmes BHD and BaD.

Programmes BHD and BGD ohoose the first row with an a[i,o]/D

which is non-integer, calculate dlrem(a[i,o],!,D), that is the

remainder af a[i,o] when divided by D, and multiply the row by the

largest multiple of the remainder whioh is less than D, and take

the constraint from this row.

The parameter fail is not used in this version of the

procedure, finish is set to true if the ourrent solution is an

integer one, and the remaining parameters perform the same function

as the variables with the same identifiers described at the start of

the main programme;

begin integer i,j,g;

!2! i:=o step 1 until m 22 !! d1rem(a[i,0],1,D)~0 !h!! goto FND;

finish:=true; goto DONE;

FND: g:=(D-l).d1rem(a[i,0],1,D);

DONE:

end--,

~ j:=O step 1 until n 22 a[m+l,j]:=-dlrem(a[i,j],g,D);

writetext(3o,lC··*·1);

- 186 -

comment This is the start of the main programme. The programme first

reads the dimensions of the data, m and n, followed by the variable

parameters whose presence is indicated by n<O. The parameters are

held in integer array z.

The objective function is read and temporarily placed in integer

array q. The number of cost rows to be generated is calculated and

assigned to s. In all but programme BGD s=O: in programme BaD it is

such that 2+s is the largest power of 2 les8 than or equal to the

coefficient of the objective function with maximum absolute value.

Variable m is now increased, viz. m:=m+n+s, and integer array a

is declared to be large enough to hold a problem with this number of

rows. The 8+1 cost functions are now generated. Next the constraints

on the original data are read and assigned to rows a[&+1,jl to a[m,jl,

where j=1, •• ,n, but leaving rows a[B+y+l,j] to a[&+y+n,j] free for

the negative unit matrix which is next to be generated. y signifies

the nuaber of constraints of the original data to be placed above the

negative unit matrix. The purpose of the matrix i. to ensure that

after the cost functions have been maximised the next variables to

be maximised in the lexicographic tableau are those in the original

objective function.

Once the data has been read and the tableau assembled procedures

Intsimp and Dintsimp are called to find the solution to the linear

programming problem, and the result i. printed. Prooedure Integer

is then called to find an integer solution, which is alao printed.

A constraint is then added to make the solution just found

infeasible o In the case of all but programme BOD this automatically

terminates the programme. In the case of programme BOD procedure

Integer is reentered to search for a better one.

- 187 -

m is initially the number of constraints in the original data but is

later increased to include the extra constraints and cost functions

generated by the programme,

n is the number of non-basic variables in the original data,

D is the absolute value of the determinant of the inverse matrix, and

is initially set to 1,

R is used for numbering slack variables added in procedure Integer:

it is initially equal to m+n,

L is used to define the dimensions of a and p,

x defines the dimension of integer array z,

s is the index of the row of a containing the objective function, and

is thus also the number of added cost rowa,

y is the number of constraints in the input data to be placed above the

negative unit matrix. It is defined by one of the parameters in the data,

tm holds the run time at which timing waa last started,

nores is true if no feasible integer solution has yet been found,

f, fB, g, h, i, j, k, and u are formats and working variables,

q initially holds the objective function: later it holds the indices

identifying the non-basic variables,

p holds the indices identifying the basic variables,

a holds the tableau representing the problem to be solved,

z holds the parameters of the problem. Only one can be set by the

original data and that is z[BJ which holds y. If unspecified it is set

to zero. The six elements of z which are not redundant are

z[lJ=D, z[2J=R, z[3J=L,

z[71= time used by the programme so far, excluding input/output,

z[Bl=y, z[10J=8;

- 188 -

inte,er m,n,D,R,L,x,s,y,tm,f,f8,g,h,i,j,k,u;

boolean no res; norea:=!!2!;

open(20); open(30);

START: copytext(20,3o,lttl); m:=read(20); !! m!o ~ goto END;

!! ~ nores ~ gap(30,1); nores1=!!2!; n:=read(20);

x:=!! n>O ~ 0 !!!! read(20); n:=abs(n);

begin integer array q[0:n],z[1:!! x!10 ~ x !!!! 10];

comment The variable parameters are read in;

!2! i:=1 step 1 until x,~1 step 1 until 10 do

z[i):=if i>x then 0 elae read(20)· - - - ,
y:=z[8]; !! x<10 ~ x:=10; g:=O;

comment The cost function is read into array q and the element with

maximum absolute value assigned to g;

!2! j :=0 step 1 until n ~

begin q[j]:=read(20): u:=inbaaicsymbol(20);

!! u=37 2! u=32 then

begin u:=!! u=37 ~ 0 !!!! 1; h:=q[j)-1;

!2! k:=o step 1 until h 22 q[j+k):=u;

end· -,
if j>O ~ abs(q[j]»g ~ g:=abs(q[j]);

end· -'
8:=0;

comment In this position programme BaD calculates the number of additional

cost rows to be added by including the following statement:

for h:=1, hX2 while h!g ~ s:=&+1;

m:=m+n+s; L:=Z[3]:=m+2; z[10]:=s;

- 189 -

begin integer array a[-l:L+l,o:n),p[o:L+l);

switch FAIL:=Fl,F2,F3,F4,F5,F6,F7,F8;

proc.dure fl(s,ind); value ind; string 8; boolean ind;

begin n.wline(30,2);

!! ind ~ writet.xt(30,s)

!!!! writ.t.xt<30,ino*better*solutionl);

.12!2. FINISH

end· -'
q[o) :=-q[o);

comment Th. following statement generates the additional cost row. for

progr BOD. In the other programmes s=O and the c08t function is

simply copied from array q to row ° of array a;

~ i :=0 8tep 1 until 8 ~

b!(in g:=2+<s-i); p[i]::2ti ;

~ j::o step 1 until n do a[i,j]::(q[j]+g~2X8ign<q[j]».g;

.nd· -,
p[s]::o;

~ j :=0 step 1 until n do

b!lin a[-l,j]:=O; q[j]::j ~;

R::n;

comment Th. constraints on the input data are now read in and the

artificial cost function generated;

- 190 -

~ i :=8+1 step 1 until 8+Y, B+Y+ll+l step 1 until m !!2.

begin R:=R+l; j:=read(20); g:=inbasicsymbol(20);

end· -'

g:=!! g=178 ~ -1 .!!!.! +1;

!2!: j :=1 step 1 until n !!2

begin a[i,j]:=gxread(20);

end· -,

u:=inbaaicaymbol(20);

begin u:=!! u=37 !!!! 0 !!!! g; h:=aba(a[i,j])-I;

end

!2! k:=O step 1 until h do

begin a[i,j+k]:=u;

!! p[i]<o

~ a[-I,j+k]:=a[-I,j+k]-a[i,j+k]

end· -,

!!!!!! p[i]<o ~ a[-I,j]:=a[-I,j]-a[i,j]

a[i,0]:=gXread(20); !! p[i]<O ~ a[-I,O]:=a[-I,O]-a[i,O]

z[l]:=D:=l; Z[2]:=R; a:=z[10];

comment The negative nXn unit matrix ia generated;

~ i :=B+y+l step 1 until &+y+n .!!2

begin ~ j:=O step 1 until n ~ a[i,j]:=O;

a[i,i-s-y]:=-I; p[i):=i-a-y

end--'

- 191 -

f::format(ls-ndddddsddddddl); f8::format(l-nddddddd;1>;

tm::time; z[7]I:o;

co .. ent The feaaible optimal 8Olution in rationals ia found and printed out;

Intsimp(a,m,n,p,q,D,R,L,FAIL,x,z);

Dintsimp(a,m,n,p,q,D,R,L,FAIL,x,z);

z[7]::time-tm; writetext(30,!lcclrational*aolutionlI5s1D:l>;

write(30,f,D); newline(30 ,2);

.!2!: i ::0 step 1 until .. ~

begin write(30,f,p[i]); write(30,f,a[i,o]); writetext(30 ,i*ll);

write(3o,f,D); 8pace(30,10); output(30 ,a[i,o]/D)

~; newline(30 ,2);

co .. ent The integer solution to the problem is found and printed out;

REIT: Integer(a,m,n,p,q,D,R,L,FAIL,x,z);

write(30,f8,p[s]); newline(30 ,2);

.!2!: i::o step 1 until g-1 ~

~ j::i step g until i+5Xr ~

!! j!_ ~ begin write(30,f8,p[j]); write(30.f8,a[j,O]) end

!!!! begin newline(30,1); j::i+5Xg ~;

writetext(30,!lcclrun*time*in*secs:l>;

write(30,f,z[7]); newline(30 ,2);

1£ z[7]!1800 !h!! goto CLOSE; tm::time; sl:z[lo1;

if nores then m::m+l; nores::false; - -

- 192 -

comment A constraint is added to make the integer solution just found

infeasible, 80 that a search can be made for a better one. In all but

programme BGD the first solution found is optimal so that the next

five lines could be replaced by ~ FINISH;

p[m):=p[m+l]:=O; a[m,o)s=a[m+l,O):=-D;

!2! j:=l step 1 until n do a[m,j]:=a[m+l,j]:=a[s,j];

Intch(a,m+l,n,p,q,D,m+l,pivot(a,m,n,m,O,F4),FAIL,F6);

Dintsimp(a,m,n,p,q,D,R,L,FAIL,x,z);

goto REIT;

CLOSE: printar(a,m,n,p,q,D,f);

writetext(O,!lclanother*problem*completedl); goto START;

F5: f1(ilogical*errorl,~);

F4: fl(ino*intecer*solutionl,nores);

13: fl(lno*rational*solution*(priaal)l,~);

F1: fl(isolution*unboundedl,~);

FINISH: z[7]:=z[7]+time-tm; writetext(30 ,!lcclrun*time*in*secs=1);

end -
end--'
END: close(20); close(30)

.n~

- 193 -

APPENDIX D

PART 2

THE OTHER PROGRAMMES

- 194 -

Part 2 The Other Programmes

The specification of the other programmes is the same as that of

programme BHD. As they differ from BHD only within one or two

procedures only the differences are reproduced here.

Programmes BHM, BH9, BHQ, BHN, BHP,BHE and BHF differ only in

procedure Constraint. Their methods of choosing constraints are

described in sections (b) to (h) of Part 4 of Chapter 2.

Programme BH6 uses the same version of procedure Constraint as

does programme BHF but has its own version of integer procedure

pivot. This is described in section (i) of Part 4 of Chapter 2.

- 195 -

procedure Constraint(a,.,n,p,D,fail,finish); value .,n,D;

integer array a,p; integer .,n,D; label fail; boolean finish;

comaent The text of this procedure ia that contained in programme BHM;

begin intecer i,j,g;

!2! i:=o step 1 until • ~ !! dlre.(a[i,o],1,D)~0 ~ loto FND;

finish:=~; ~ DONE;

FND: g:=1;

12! j:=O step 1 until n ~ a[m+1,j]:=-dlrem(a[i,j],g,D);

writetext(30,IC·**·1);

DONE:

end· -,

procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer .,n,D; label fail; boolean finiah;

co_ent The text of this procedure i8 that contained in programme BH9;

begin intecer i,j,l;

~ i:=1 step 1 until • ~!! dlrem(a[i,O],l,D)~O !!!!! goto FND;

finish:=~; goto DONE;

PHD: 1:=(D-1)idlr .. (a[i,o],1,D);

DONE:

end--,

12! j:=O step 1 until n ~ a[m+1,j]:=-dlrem(a[i,j],g,D);

writetext(3o,IC*·*·1);

- 196 -

procedure Oonstraint(a,.,n,p,D,fail,finish); value .,n,D;

integer array a,p; integer .,n,D; label fail; boolean finiah;

comment The text of this procedure is that contained in programme BHQ;

begin inteler i,j,(;

~ i:=O step 1 until • ~!! dlre.(a[i,ol,l,D)~O ~ (oto FND;

finish:=!!,:!:!!; goto DONE;

FND: g:=D-euclidalg(a[i,ol,D);

OONE:

end--'

~ j:=o step 1 until n ~ a[~l,jl:=-dlre.(a[i,j],g,D);

writetext(3o,iC··*·1);

procedure Oonstraint(a,.,n,p,D,fail,finiah); value m,n,D;

integer array a,p; integer .,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHN;

begin integer i,j,g,h,k;

DONE:

end--,

.!2.!: h:=o step 1 until a ~

begin k:=dlrem(a[h,o],l,D);

!! k>g ~ basin i:=h; g:=k ~

end--,
!! g:o !!!!! begin finish :=~; goto DONE ~;

!2! ja=l step 1 until n ~ a[m+l,j]:=-dlre.(a[i,j],l,D);

g:=euolidalg(a[l,pivot(a,atl,n,-+l,O,fail)],D);

!2! j:=O step 1 until n ~ a[m+l,j]:=-dlre.(a[i,j],g,D);

writetext(30,iC·***1);

- 197 -

procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

integer array a,p; integer .,n,D; label fail; boolean finish;

comment The text of this procedure is that contained in programme BHP;

begin integer i,j,I;

12! 1::0 step 1 until - ~ !! dlre.(a[i,o],l,D)~O ~ loto FND;

finish::!!!!; goto DONE;

FND: !2! j::O step 1 until n ~

DONE:

end--,

a[m+l,j]::if dlre.(a[i,j],I,D):O then 0 else -1. - - - ,
g::euclidalg(a[i,pivot(a,atl,n,m+l,o,fail)],D);

12! j::o step 1 until n ~ a[m+l,j]s:-dlre.(a[i,j),g,D);

writetext(3o,lC****1);

procedu~ Constraint(a,m,n,p,D,fail,finiah); value _,n,D;

intecer array a,p; intecer _,n,D; label fail; boolean finish;

co_ent The text of thh procedure 18 that contained in prograJllllle BHE;

begin integer i,j,g,h,k;

DONE:

end--'

1::0 ;

!2! hs:o step 1 until m ~

begin k::dlrem(a[h,o),I,D);

!! k>g ~ begin i::h; g::k !!!

end--'

c::1;

!2! j::O step 1 until n ~ a[m+l,j)::-dlrem(a[i,j),c,D);

writetext(3o,lc****1);

- 198 -

procedure Constraint(a,m,n,p,D,fail,finish); value m,n,D;

inte,er array a,p; integer m,n,D; label fail; boolean finish;

comment The text of this procedure i8 that in programaes BHF and BH6;

begin integer i,j,g,h,k;

DONE:

end--'

g::O;

!2! h::O step 1 until m do

begin k::dlrem(a[h,o],l,D); !! k~O !h!! k::(D-l).kXk;

!! k>g ~ begin i:=h; g:=k ~

end. -,
!! g:O !!!! begin finish::~; goto DONE ~;

g::(D-l)~dlrem(a[i,o],l,D);

!2! j::O step 1 until n ~ a[m+l,j]::-dlrem(a[i,j],g,D);

writetext(3o,lC****1);

- 199 -

integer procedure pivot(a,m,n,I,iO,FAIL); value m,n,I,iO;

integer array a; integer m,n,I,iO; label FAIL;

comment This version of the procedure was used in programme BH6. It

resolves ties between two possible pivot columns by choosing the

first one, rather than referring to the following rows as in the

lexicographic method. Nevertheless it still ensures that when

called by Intsiap the artificial cost and objective functions are

optimised simultaneously;

begin integer j,J,gn,gd;

end­-,

J:=gn:=o; gd:=-l;

.!2! j:=l step 1 until n ~.!! a[I,j]<O and a[-l,j]~O ~

begin!! dlsign(gn,a[I,j],a[iO,j],gd)<O ~ J=O ~

begin gn:=a[iO,j); gd:=a[I,j]; J:=j ~

end--,
if iO=-1 then -

begin !2!: j :=1 step 1 until n ~

.!! a[-I,j)=a[-l,J] ~ a[o,j]<a[o,J] !h!! J:=j

end--'
pivot :=J; .!! J=O ~ goto FAIL

	457674_001
	457674_002
	457674_003
	457674_004
	457674_005
	457674_006
	457674_007
	457674_008
	457674_009
	457674_010
	457674_011
	457674_012
	457674_013
	457674_014
	457674_015
	457674_016
	457674_017
	457674_018
	457674_019
	457674_020
	457674_021
	457674_022
	457674_023
	457674_024
	457674_025
	457674_026
	457674_027
	457674_028
	457674_029
	457674_030
	457674_031
	457674_032
	457674_033
	457674_034
	457674_035
	457674_036
	457674_037
	457674_038
	457674_039
	457674_040
	457674_041
	457674_042
	457674_043
	457674_044
	457674_045
	457674_046
	457674_047
	457674_048
	457674_049
	457674_050
	457674_051
	457674_052
	457674_053
	457674_054
	457674_055
	457674_056
	457674_057
	457674_058
	457674_059
	457674_060
	457674_061
	457674_062
	457674_063
	457674_064
	457674_065
	457674_066
	457674_067
	457674_068
	457674_069
	457674_070
	457674_071
	457674_072
	457674_073
	457674_074
	457674_075
	457674_076
	457674_077
	457674_078
	457674_079
	457674_080
	457674_081
	457674_082
	457674_083
	457674_084
	457674_085
	457674_086
	457674_087
	457674_088
	457674_089
	457674_090
	457674_091
	457674_092
	457674_093
	457674_094
	457674_095
	457674_096
	457674_097
	457674_098
	457674_099
	457674_100
	457674_101
	457674_102
	457674_103
	457674_104
	457674_105
	457674_106
	457674_107
	457674_108
	457674_109
	457674_110
	457674_111
	457674_112
	457674_113
	457674_114
	457674_115
	457674_116
	457674_117
	457674_118
	457674_119
	457674_120
	457674_121
	457674_122
	457674_123
	457674_124
	457674_125
	457674_126
	457674_127
	457674_128
	457674_129
	457674_130
	457674_131
	457674_132
	457674_133
	457674_134
	457674_135
	457674_136
	457674_137
	457674_138
	457674_139
	457674_140
	457674_141
	457674_142
	457674_143
	457674_144
	457674_145
	457674_146
	457674_147
	457674_148
	457674_149
	457674_150
	457674_151
	457674_152
	457674_153
	457674_154
	457674_155
	457674_156
	457674_157
	457674_158
	457674_159
	457674_160
	457674_161
	457674_162
	457674_163
	457674_164
	457674_165
	457674_166
	457674_167
	457674_168
	457674_169
	457674_170
	457674_171
	457674_172
	457674_173
	457674_174
	457674_175
	457674_176
	457674_177
	457674_178
	457674_179
	457674_180
	457674_181
	457674_182
	457674_183
	457674_184
	457674_185
	457674_186
	457674_187
	457674_188
	457674_189
	457674_190
	457674_191
	457674_192
	457674_193
	457674_194
	457674_195
	457674_196
	457674_197
	457674_198
	457674_199

