
THE UNIVERSITY OF NEWCASTLE UPON TYNE

DEPARTMENT OF COMPUTING SCIENCE

Dataflow Development
of Medium-Grained

Parallel Software

by

Jonathan William Harley

PhD Thesis

September 1993

O~)] ') I) :.::3') 14

- i l 1.....-- \ .. \

Abstract

In the 1980s, multiple-processor computers (multiprocessors) based on conven­

tional processing elements emerged as a popular solution to the continuing demand

for ever-greater computing power. These machines offer a general-purpose parallel

processing platform on which the size of program units which can be efficiently

executed in parallel - the "grain size" - is smaller than that offered by distributed

computing environments, though greater than that of some more specialised

architectures. However, programming to exploit this medium-grained parallelism

remains difficult. Concurrent execution is inherently complex, yet there is a lack of

programming tools to support parallel programming activities such as program

design, implementation, debugging, performance tuning and so on.

In helping to manage complexity in sequential programming, visual tools have

often been used to great effect, which suggests one approach towards the goal of

making parallel programming less difficult.

This thesis examines the possibilities which the dataflow paradigm has to offer

as the basis for a set of visual parallel programming tools, and presents a dataflow

notation designed as a framework for medium-grained parallel programming. The

implementation of this notation as a programming language is discussed, and its

suitability for the medium-grained level is examined.

Acknowledgements/Dedication

Although this thesis and the research it describes are my own work, I would like to

express my gratitude to several people whose support I received in the course of the

work. First among these must come my supervisor, Professor Peter Lee, for

encouragement and guidance throughout my time at Newcastle. Additionally, I

would like to thank Dr. Graham Megson and Dan McCue for constructive criticism

on many pieces of work which eventually contributed to this thesis.

I spent three months in Rennes, France during the course of my research, and I

would like to thank Fran<;oise Andre for her support and encouragement during that

time.

Finally, I acknowledge the financial support of the Science and Engineering

Research Council of Great Britain during the first three years of my research, and

of the Ee ERASMUS scheme for funding my stay in Rennes.

This work is dedicated to the memory of my father, Dr. Anthony John Harley,

1933-1987, at one time an honorary lecturer in computer science at this university.

Table of Contents

List of Figures 7

Chapter 1 Introduction 9

1.1 Parallel Computing 9

1.2 Parallel Programming - the Problems 11

1.3 Solutions to the Problems 14

1.4 Dataflow 17

1.5 Main Contribution 20

1.6 Structure of the Subsequent Chapters 22

Chapter 2 Parallel Programming 23

2.1 Multiprocessors 23

2.1.1 The von Neumann machine 24

2.1.2 SISD Architectures 25

2.1.3 SIMD Architectures 25

2.1.4 MIMD Architectures 26

2.1.5 Distributed-memory Architectures 27

2.1.6 Shared-memory Architectures 29

2.1.7 Grain Size 30

2.2 Parallel Programming Models 32

2.2.1 Types of Parallelism 33

2.2.2 Parallel programming models 34

2.3 Programming Tools 38

2.3.1 Tools for Parallel Programming 39

2.3.2 Visual Programming 40

2.4 Dataflow 44

2.4.1 Dataflow for Parallelism 44

2.4.2 Archi tectures 46
2.4.3 Low-level dataflow languages 48

Page 4

2.4.4 Dataflow design languages 49

2.5 Summary 51

Chapter 3 The MeDaL Notation 53

3.1 Concepts 54

3.2 MeDaL Semantics and Syntax 56

3.2.1 Datapaths 56

3.2.2 Actors 58

3.2.3 Companies 62

3.3 Design Decisions 63

3.3.1 General Visual Syntax 64

3.3.2 Actor Semantics 65

3.3.3 Datapath Semantics 67

3.3.4 Persistent Memory 69

3.3.5 Multiple Streams 72

3.4 Examples 79

3.4.1 The MeDaL Library 79

3.4.2 Example MeDaL Program 81

3.5 Summary 85

Chapter 4 Implementation Issues 87

4.1 Functions of the Programming System 88

4.1.1 The Division of Work 88

4.1.2 The Method Code Transformer 90

4.1.3 The Harness Generator 91
4.1.4 The Run-time System 92

4.2 Programming Language Interface 93
4.2.1 Programming actors in C and FORTRAN 94

4~2.2 Programming Interface in C++ 95

4.3 Distributed-memory Run-time System 99
4.3.1 Datapaths Between Distributed Actors 99
4.3.2 Run-time System for Distributed Actors 101

Page 5

4.3.3 The Wrappers of Distributed Actors 103

4.4 Shared-memory Run-time System 105

4.4.1 Shared-memory Datapaths 106

4.4.2 Shared-memory Wrappers 107

4.4.3 Other Functions 110

4.5 Summary 111

Chapter 5 Performance Evaluation 113

5.1 Implementation Environment 115

5.2 MeDaL Run-time System Implementation 117

5.2.1 General Configuration 117

5.2.2 Specific Functions 118

5.3 Experimental Results 121

5.3.1 Basic Functions 122

5.3.2 Use of Basic Functions within Programs 123

5.3.3 Varying Numbers of Actors 129

5.4 Evaluation of Results 135

5.4.1 Grain Size 136

5.4.2 Limitations 137

5.4.3 Conclusions 138

Chapter 6 Conclusions 141

6.1 Summary 141

6.2 Conclusions 145

6.3 Future Work 149

6.4 Closing Remarks 151

Bibliography 153

Appendix A MeDaL Classes 164

Appendix B Example Application 172

Page 6

List of Figures

Figure Page

1.4a Dataflow graph to calculate x=4y + .I(z77) 18

2.1a Examples of interconnection in distributed-

memory multiprocessor architectures 28

2.1b Typical shared-memory architecture 29

2.1c Definition of multiprocessor grain sizes 31

3.2a Datapath syntax 56

3.2b General-purpose actors 60

3.2c Source actor 60

3.2d Sink actor 61

3.2e Merge actor 61

3.2f Replicator 62

3.2g Company (component view) 63

3.3a Memory entity 70

3.3b Persistent memory within an actor 71

3.3c Output looped back to input 73

3.3d Equalising method merge 74

3.3e Datapaths to persistent memory 75

3.3f Shared memory 76

3.3g Demand-driven dataflow 77

3.3h Synchronous and Asynchronous inputs 78

3.4a Standard input and output actors 80

3.4b File input and output actors 80

3.4c Halt actor 81

3.4d MeDaL example program "matrix-mult" 82

4.0a Modules of a MeDaL programming system 87

4.2a Wrapper and real method functions using C++

inteiface 98

4.4a Shared-memory transmit algorithm 109

5.3a Basic RTS functions 122

5.3b Time-activity diagram - scenario 1 125

5.3c MeDaL diagram - scenario 1 126

Page 7

5.3d Timings - scenario 1 127

5.3e Time-activity diagram - scenario 2 127

5.3f MeDaL diagram - scenario 2 128

5.3g Timings - scenario 2 128

5.3h Simplified matrix multiplication example 130

5.3i Matrix multiplication - speedup against sequential

MeDaL program 132

5.3j Matrix multiplication - speedup against serial

program 134

Page 8

Chapter 1

Introduction

1.1 Parallel Computing

The relentless drive for higher throughput m manufacturing industries has led

factory managers not only to buy faster machines, which can speed up their

production line by producing parts faster, but also to seek greater efficiency on the

factory floor - for instance, by having two parts which are not components of each

other made by different machines at the same time.

Such gains in throughput are also desired from computing equipment; there is a

clear and continuing demand for computers which can do more processing in less

time. Not only are computers continually developed with ever faster number­

crunching power, but the concept of increasing computational capacity by

executing mutually independent computations in parallel is also increasingly being

employed.'

In the race to build ever more powerful computers, the designers of the leading

edge machines have therefore chosen paths which are leading away from the

sequential processing model of John von Neumann, into designs which allow the

concurrent processing of a number of parts of a computation. Of course, the success

of these techniques relies on parallelism being available for exploitation in the

software being developed. It is not always possible to parallelise: in the general

case, any two instructions can be executed concurrently only when the data

operated on by each one is not a direct result of the other - in which case there is no

direct data dependency between those instructions. The same can be said of

program modules which have inputs and outputs: two modules can only be

executed concurrently when none of the inputs of either is an output of the other.

This is equivalent to two machines being able to make parts of a man-made product

which are not components of one another.

For some computer applications, the absence of data dependencies between

instructions is obvious; an example is vector multiplication, in which the

Page 9

Chapter 1 Introduction

multiplication of each element of the vector by a scalar does not depend on the

value of any of the vector's other elements. The usefulness of this characteristic of

vector operations has led to one type of architecture for computers known as vector

processors, which exploit the parallelism of vector operations by processing

elements of a vector concurrently.

However, such vector-based machines are clearly specialised in terms of what

they are good at. Many, if not most, commercial applications do not employ large

amounts of vector processing which could be executed faster by employing the

type of machine just described. More general-purpose parallel machines have been

built employing a number of (general-purpose) von Neumann processing units,

each of which may execute different instructions on different data, in parallel.

These machines are classified as MIMD machines [Flyn66], because they process

Multiple Instruction streams and Multiple Data streams (as opposed to conven­

tional, uniprocessor von Neumann machines which would be classified as SISD).

Of course, from time to time, data dependencies arise between the streams of

execution on different processors, so the separate streams need to communicate. In

most such machines, this communication is initiated by the software.

So, unlike some of the vector processors, on most MIMD multiprocessors the

control of parallelism is the responsibility uf the software, not the hardware. The

advantage of this is that such computers are general-purpose; just as a factory

manager may often prefer a versatile machine to a specialised one, MIMD

multiprocessors appeal to those who may wish to exploit parallelism in many

different types of application. The disadvantage of controlling parallelism in

software is that decoding this software into hardware instructions, and executing

them, takes valuable time.

On machines in which the control of software is driven by parallelism, a

parallel application must ultimately be expressed in the form of a parallel program

with explicitly parallel sections, and explicit communication between these sections

(though this form of the program is not necessarily visible to the programmer).

Such is the variety of architectures even within the family of MIMD multiproces­

sors that this communication between sections of a parallel program may take one

of several forms. One way of classifying communication types is by categorising

architectures as shared memory, in which the mUltiple processing units share the

Page 10

Chapter 1 Introduction

main memory, or distributed memory in which each processing unit has some

local memory which the others cannot access. Communication between processors

is required when data produced by a process executing on one processor is needed

by a process running on another: in the shared memory case, communication may

take place through some synchronisation mechanism such as joint access to "flags"

in memory which indicate when the data in question is ready, while with

distributed memory, communication is through "message passing" between

processing units (the messages being the data required). However, even within

these two basic architectures, there are many variations each with different

strengths and weaknesses, which therefore require different programming

techniques in order to be exploited efficiently. It should be re-iterated that on

MIMD multiprocessors, the communication between processes within an

application is under software control - so the onus of controlling communication is

generally on the programmer. This may be the programmer of the application, or

when the program is written in a high-level language (ULL) it may be the

programmer of the HLL compiler who is ultimately responsible for generating the

parallel program.

1.2 Parallel Programming - t.he Problems

Just as a commercial industrial product such as a turbine generator has a "life­

cycle," consisting of design, manufacture, testing, use, and maintenance, so does a

software product. The first three phases of the software life-cycle (design,

implementation and testing) can be loosely termed "programming". The term

parallel programming refers to the process of making an explicitly parallel

program, from the design stage onwards. This definition excludes the use of those

HLL compilers mentioned at the end of the previous section which generate

parallel code from programs which are not explicitly parallel. Although such

compilers can be a cost-effective way of parallelising existing programs, the code

they produce is usually not as efficient as that of programs designed from scratch to

run in parallel, since such compilers can only detect potential parallelism in the

implementation of a program, and not parallelism in the design. Thus, the interest

in parallel programming derives from the desire for more efficient parallel

programs.

Page 11

Chapter 1 Introduction

However, it is widely accepted that parallel programming is inherently difficult

compared to traditional sequential programming. Apart from the fact that it is a

relatively new and immature field, there are three main reasons for this difficulty:

• the complexity of managing parallelism from the design stage onwards;

• the low-level nature of many parallel programming languages;

• the lack of debugging support.

The problem of managing the complexity of parallel programming occurs mainly at

the design stage if the program is designed from scratch (if not, it can occur later).

In some applications the potential for parallelism may be obvious, such as in ray­

tracing (the generation of images by tracing rays of light as they reflect off

representations of objects), where the final value of any pixel depends only on the

given representation of the scene, and not on the final value of any other pixel. In

such cases the input data and work are simply divided into pieces, which are shared

out among the available processors. However, in other applications - in which the

data dependencies are far more complex - it is much less obvious where parallelism

can be efficiently exploited. On one hand, if the programmer attempts to parallelise

two computations between which there is a dependency, one computation may

spend time waiting for the other, which is inefficient. On the other hand, if the

programmer plays safe and places the two computations in sequence, computations

which could have been executed concurrently are not, and again the program is less

than optimally efficient.

The programming difficulty described above is important because multiproces­

sors are generally employed in situations where speed (and hence, maximum

efficiency) are considered of paramount importance, since that was the motivation

for developing multiprocessor technology; yet most existing programming

languages (explicitly parallel or not) concentrate on providing support only for

implementation, not for parallel program design, or software maintenance at the

design level.

After the problems of design complexity have been dealt with, the next

problem which must be faced is that of the low-level nature of parallel program­

ming. The terms low-level and high-level refer to proximity to the machine's view

of a program (hardware instructions) and to the user's view (mathematical or real­

world objects to be manipulated) respectively. A higher "level" allows the human

Page 12

Chapter 1 Introduction

programmer to understand code better, and hence be more productive. This

principle led, in the 1950s and 1960s, to the development of what were at the time

termed "high level languages," a term which has already been introduced in this

chapter. However, the reality is that although these HLLs were higher-level than

machine code, they fell far short of being a natural way of expressing programs;

and subsequently languages have been developed (for sequential architectures)

which offer a higher level still, and these will be discussed in the next section.

Meanwhile, the multiplicity of parallel architectures described in section 1.1

has led to a proliferation of "parallel" versions of the older, sequential, textual

HLLs. Many of the programming languages supplied by multiprocessor manufac­

turers are simply extended versions of popular languages like C and FORTRAN. It

is a characteristic of these parallel languages that they typically reflect the target

architecture in their language constructs, in other words, whether it is message­

passing or shared memory. Thus, the programmer must expend time and effort on

controlling the machine (simply to make the program work in parallel) rather than

on making the application more efficient.

Of course, this reliance on architecture-·specific constructs makes the programs

difficult to "port" between different machil1~s as well as laborious to write; and the

focus on the mechanics of parallelism only aggravates the difficulties of identifying

and hence implementing any potential for parallelism in the application being

developed (a problem inherited from the design phase due to the lack of design

tools, as identified above).

Moreover, the need for low-level machine knowledge has kept parallel

programming a domain for specialists, those who possess detailed knowledge about

the architecture and operating system of their parallel machines. Such a situation

has long been recognised as a cause of much expense and delay in producing and

maintaining software for multiprocessor computers, and is entirely due to this low­

level bias of current parallel programming languages.

In the third phase of parallel programming - testing - problems arise because

there is little support for the debugging of parallel programs. Debugging tools for

parallel systems are in their infancy, and tend to concentrate on low-level,

architecture-specific aspects of the program such as communication, echoing the

problems already outlined in this section. Parallel programs can fail for many

Page 13

Chapter 1 Introduction

reasons which are not a problem in sequential programming, for instance because

of synchronisation problems between co-operating tasks (sections of a program

which carry out a particular function, such as multiplying a matrix or generating a

table of results) or side-effects between particular combinations of tasks if they

happen to be executing concurrently. Not only do few tools adequately address

these problems, but where timing problems are involved, the presence or absence

of monitoring for debugging purposes can be "intrusive" and affect the behaviour

of the program.

Even when debugging tools are available, they are often in the form of a

"toolkit", a collection of different tools to aid different aspects of programming,

with little or no integration, or even uniformity of user interface; each tool

providing its own model of how the parallel program works (examples of tools

being profilers and symbolic debuggers). Reconciling these models, understanding

all the different possible views, and switching between them, is a further burden for

the parallel programmer. When bugs require changes to the implementation or even

the design of the program, programmers must return to the tools used for these

earlier phases, increasing the number of tools which they must deal with, and hence

the difficulty of programming.

These problems in the design, implementation and testing of parallel programs

clearly illustrate that the problems of parallel programming extend across several

phases of the software life-cycle. Little effort has yet been put into developing

Computer-Aided Software Engineering (CASE) tools for supporting the design of

parallel programs and carrying this design through to implementation, let alone

debugging. There is no widely accepted "methodology" for the process of building

parallel software. In the 1970s, the lack of this kind of advanced software support

for sequential programming led to the perception of the "software crisis". A similar

state of affairs still applies in the field of parallel programming.

1.3 Solutions to the Problems

The field of sequential programming, being somewhat older than that of parallel

programming, is therefore more mature. In considering solutions to the three-sided

problem described above, it is useful to look at the ways in which software support

for sequential programming has developed.

Page 14

Chapter 1 Introduction

The difficulties arising from having to control computers at too low a level has

been recognised for decades, and the ready answer to this is abstraction.

Abstraction is what makes the HLLs discussed earlier "higher-level" than machine

code; each sequential HLL implements a "virtual machine" which, abstracting

away from the underlying (von Neumann) architecture, hides technical details from

the programmers, enabling them to concentrate on the correctness of their

algorithms. The more abstraction is applied, the higher-level a language becomes;

the first level of abstraction produced assembly languages, and the second, HLLs

such as FORTRAN, PL/I, PASCAL and C. Because this second level of abstraction

hides machine-language details, software implemented in these languages is easily

"portable" to machines with different machine-languages.

In the 1970s and 1980s, abstraction was taken further and languages were

developed which were even further from the underlying machine - sometimes

adopting visual representations to aid understanding (examples of these "third­

generation languages" are Ada, with its Mascot diagrams, and Smalltalk).

However, it should be noted that with higher-level languages there is usually a

trade-off between ease of understanding and efficiency; at a lower level, program­

mers have greater control over the machine, and hence can "tune" their code for

greater efficiency (at the expense of potentwlly making more mistakes). Given that

a slow, correct program is usually preferred by customers to a fast, incorrect one,

the fact that higher-level languages have not been more widely adopted than they

have can only be put down to a great optimism in the ability of programmers to

produce correct code.

So far, though, third-generation languages have mostly been restricted to

sequential architectures. This is probably due to several factors: firstly, the time-lag

between sequential and parallel computer technology. Secondly, the lack of a clear

winner so far in the search for parallel programming models for parallel languages

to be based on. And finally, perhaps, the fact that multiprocessors tend to be used in

situations where speed is of the essence (as mentioned above), and hence efficiency

is considered more important than the amount of programmer effort that will be

needed to produce correct code.

In the meantime, the level of abstraction represented by second-generation

HLLs (especially C and FORTRAN) has become more or less standard in parallel

Page 15

Chapter 1 Introduction

programming. Certainly, in adopting a familiar form of programming one reaps a

benefit from the familiarity most programmers will have with it. However, there

are problems with adapting this type of programming language for parallelism. The

most obvious arises from the inherently sequential nature of existing HLLs; HLL

programs take the form (on paper or on the screen) of a linear array of textual

statements. This clearly does not accurately model the behaviour of even a

sequential program (because of control jumps, loops, calls subroutines and returns,

etc.). For describing the concurrent sections of a parallel program, textual

languages are even more inadequate. So, although programmers do not have to map

algorithms onto low-level machine operations, they do have the burden of mentally

mapping a sequential list of statements into a parallel form.

The difficulty of this mapping is clearly linked to the first aspect of the parallel

programming problem, namely the complexity of parallelism. Complex parallel

programs can contain a web of data dependencies which are by no means easy to

understand; and when one has to derive a mental model of a parallel system from a

low-level textual description such as a HLL as described above - as is necessary in

software maintenance - the problem is even more acute.

One solution to this lies in the provision of more sophisticated design tools. For

instance, cognitive science reveals that humans can interpret and understand

diagrams much more easily than text, and the developing field of "visual

programming" attempts to put this principle into practice. Visual programming

environments have been developed for uniprocessor computers, replacing the

traditional textual programming language with a visual language which can be

entered and manipulated on a graphical display. The freedom which visual

programming offers from linear arrays of text should be especially useful in

parallel programming, with its additional complexities of concurrency and data

dependencies. The benefits of visual programming environments in terms of

helping programmers to manage complexity are becoming increasingly widely

recognised: for instance, the appearance of Smalltalk, with its manipulation of

graphical representations of objects, revolutionised the field of object-oriented

programming. However, there has been no analogous contender in the parallel

programming arena.

The application of visual programming techniques to parallel programming has

Page 16

Chapter 1 Introduction

implications on the other aspects of the parallel programming problem as well. In a

visual programming environment, it is visual abstractions of lower-level functions

and/or data which are manipulated, bringing the greater ease of interpretation that

diagrams have over text. Also, a visual programming environment provides a ready

framework into which further programming tools, such as debugging aids, can be

integrated. Thus the benefits of abstraction and visual programming can be brought

to the task of debugging parallel software.

To summarise, it seems that an obvious strategy to help alleviate the problems

of parallel programming would be to provide a visual programming environment.

In such an environment the design, implementation and debugging of parallel

programs could take place, entirely at a high level, employing visual abstraction.

The question therefore arises, what would be a suitable visual abstraction for such a

system to be based upon? One answer to this question is a visual abstraction known

as the dataflow graph, also called the dataflow schema.

1.4 Dataflow

To explain what a dataflow graph is, it is first necessary to consider the concept of

dataflow as opposed to control flow.

Algorithms are almost always programmed on sequential computers in a form

which describes the flow of control through the program, in terms of sequences of

instructions and jumps to other sequences. Data items are defined in terms of the

program's operations, for instance as operands to instructions and as parameters to

be passed when a subroutine is called. The class of HLLs described as imperative

languages implement this paradigm directly, using constructs such as loops,

procedures and so on, which are abstractions (hence the name High Level) of

machine operations. The other classes of HLLs, such as functional languages,

translate other language forms into control flow form. This focus on control flow

merely reflects the fact that all such languages are programming a virtual machine

which is based on the von Neumann model. However, for parallel machines there is

no one accepted virtual machine which HLL designers can agree on~ no one

bridging model to bridge the gap between radically different architectures and one

software programming environment. This is one reason why new models must be

explored.

Page 17

Chapter 1 Introduction

One model to emerge is the dataflow model, so called because its focus is not

on the flow of control through a program but on the flow of data. Operations are

defined in terms of the data they operate on, and not vice versa as in control flow.

Thus, while a control flow program specifies the order in which operations must be

executed, a dataflow program consists of a collection of operations together with a

description of the way in which data flows between them; first the data is

transformed by one operation, then another, and so on.

Programs of this form can easily be visualised as a directed graph, with data

flowing along the arcs and being processed at nodes which represent the operations.

A very simple dataflow graph is illustrated below.

Ii(

+)

Figure fAa: Dataflow graph to calculate

x = 4y + ,/(z':'-7)

In this simplified graph, data (in this case, numeric variables and constants) flow

along explicit paths described by the lines, through operations (simple mathemati­

cal functions) represented by circles. The other shapes represent the input to and

output from the program. Each operation has one or more inputs and one or more

outputs, and can be executed when all of its inputs have become available.

The interest in the dataflow model with relation to parallel programming is

made clear by examining a dataflow graph. Since all data dependencies are

explicitly shown in the graph, it is implicit which operations do not depend upon

each other for data, and can therefore be executed in parallel. In the example above,

the multiply and divide operations can always be executed in parallel, but the

Page 18

Chapter 1 Introduction

addition operation must wait until both the multiply and the square-root operations

have produced a result. Furthermore, if multiple instances of x are to be calculated

from multiple pairs of y and z, the division operation can execute on one value of z

while the square-root operation is still executing using the division's previous

result; a pipeline can be set up to increase throughput, in a way exactly analogous

to a factory assembly line. In terms of data dependencies, this is possible because

the division does not depend on the result of the square root; there is no data path

from the square root to the division operation. This relationship between two such

unconnected operations is known as implicit parallelism because it is implied by

(implicit upon) the explicit data dependencies. Because operations can operate only

on rigidly defined sets of data, namely their own input paths, there can be none of

the "side effects" (one operation interfering with another's data) which have long

been recognised as a problem in software engineering.

The value of dataflow graphs as a design tool has long been recognised.

Programs can be designed in the form of such graphs, and then implemented using

the insight into the data dependencies gained from reading the graph. Since the

graph is an abstraction, the design is not lifchitecture-specific, and because it

provides a visual overview, it should in general make the program easier to

understand. Some systems analysis methodologies do indeed make use of data flow

diagrams. The data flow design is usually a stagc before a lower-level design of the

program in the form of (control) flowcharts. It is a natural step to design programs

in a control flow form if the programming is to be done using a HLL based on the

sequential control flow model.

However, it has also been established that it is possible to implement programs

directly from these familiar data flow descriptions, or at least from a modified form

of them. A dataflow program consists of the same type of operations as a

traditional program, but instead of having a predetermined sequential order of

execution, each operation is executed at any time after the resources it needs have

become available: the data it operates on, and a processor to execute it. Dataflow

programs are programs for a "virtual machine" based on the dataflow model. The

model does not assume any particular number of processors, but clearly the more

processors available, the more potential parallelism in a program can be exploited.

The term "operations" is deliberately vague, since there are several possibilities

Page 19

Chapter 1 Introduction

for its definition. An operation could be an individual machine instruction, a

definition which typically results in a very large amount of parallelism in a

program. As there is an overhead associated with every instruction (that of deciding

when its resources have become available) this form of dataflow becomes very

inefficient on conventional computers. Specialised dataflow machines are

currently under development which seek to deal with these overheads in hardware,

a subject which is discussed further in Chapter 2.

An alternative definition is Large Grain dataflow in which the operations are

independent program modules which are themselves based on control flow; they

exchange data between separate Von Neumann processors, which may even be

located in different machines. The term grain size refers to the size of units which

may be executed in parallel. Large Grain dataflow is also discussed in Chapter 2.

While fine-grained dataflow requires specialised architectural features, and

Large Grain Dataflow was designed with loosely-coupled networks of processors

in mind, the MIMD multiprocessors discussed in the introduction operate

efficiently at an intermediate grain size. It is this combination of medium-grained

parallelism and dataflow techniques which this thesis examines.

1.5 Main Contribution

It was stated earlier that dataflow graphs are a useful design tool. However, given

software support, there is no reason why dataflow programs should not be directly

compiled into executable code, providing an alternative to the textual HLLs

currently in use.

The control-flow HLLs used to program MIMD multiprocessors usually

employ their function or procedure constructs as the units which are executed in

parallel. This thesis proposes a dataflow system in which this level of parallelism is

used: the "operations" in a dataflow graph are written in a familiar imperative HLL.

In fact, the dataflow system could act as a harness around already-written

functions of a sequential program, as a means of parallelising it.

Using such a system, the programmer would be able to design a program in the

form of a dataflow graph on a visual display, using a graph editing tool. The

operations are "filled in" in windows using a traditional text editor; and the system

Page 20

Chapter 1 Introduction

uses the graph and the code segments to generate a parallel program, extracting the

implicit parallelism from the dataflow graph. This is analogous to the HLL

compilers discussed earlier which produce parallel code from sequential; but the

software development system proposed here has the benefit of access to the

program's design (the top level of abstraction) and not just implementation code.

Using the editors, it would be possible to modify the graph and code sections at

will, and visual aids to debugging could be presented in terms of the dataflow graph

- in other words, the whole parallel programming process could take place at a high

level of abstraction. This thesis contends that such a system is a viable solution to

the problems involved with parallel programming described in section 1.2.

The system described uses a new form of dataflow graph notation specially

designed for the purpose of supporting high-level visual programming of

conventional (shared and distributed memory) MIMD multiprocessors. The

features of this new notation are described fully in subsequent chapters.

In the field of parallel processing, the efficiency with which parallel programs

execute is often considered of paramount importance, since faster execution is of

course the main motivation for employing parallelism. Thus, the most important

criterion for the success of the parallel programming system presented here is likely

to be the efficiency of the executable parallel code which it generates. Therefore,

the practical focus of this thesis is on the efficient implementation of a run-time

system which enables segments of sequential code (as described above) to run in a

dataflow fashion on a conventional MIMD multiprocessor architecture. The

examination of the efficiency of an actual implementation of such a run-time

system (on a shared-memory multiprocessor) forms the main practical result arising

from this work.

Finally, the usefulness of such a system is evaluated, taking into account the

conclusions on the efficiency of the dataflow approach, and the various possibilities

the proposed system may hold for further software tools.

Page 21

Chapter 1 Introduction

1.6 Structure of the Subsequent Chapters

The remainder of this thesis is structured as follows. The context of this work is

described in Chapter 2: each of the main components is considered in turn (MIMD

architectures, software tools for parallel programming and debugging, visual

programming and the dataflow model) in terms of the previous research in each of

these fields. The various ways in which the dataflow paradigm has been developed

are summarised, relating some of the important concepts to the system to be

considered in later chapters.

Chapter 3 gives details of the proposed notation for medium-grained dataflow,

with the emphasis on its uses as a framework for parallel programming. The syntax

and semantics of the notation are presented, with a worked example. There is a

discussion of the main design decisions involved, focussing in particular on the

provision of persistent memory and synchronisation mechanisms, as well as some

of the alternatives which were considered.

In Chapter 4 the possibilities for implementations of the proposed system, on

both shared-memory and distributed-memory architectures, are described. In

particular, it is demonstrated how dataflow graphs can be automatically compiled

into executable parallel code, forming a harness for HLL functions. The run-time

support needed by the executable code thus generated is also described in detail.

Chapter 5 describes an actual implementation of a run-time system, as outlined

in Chapter 4, on one hardware platform. Emphasis is given to demonstrating that

the implementation allows the efficient execution of parallel programs in a

dataflow fashion at the medium-grained level of parallelism.

Finally, Chapter 6 summarises what conclusions may be drawn from the

experiences gained with the system, and what significance this type of system may

have, within the context provided by Chapter 2. In particular, conclusions are

drawn on what the potential range of application areas might be for this type of

system. Possible future developments for the system so far developed, and potential

related topics for research, are also outlined.

Page 22

Chapter 2

Parallel Programming

Having briefly described the parallel programmmg problem, and outlined the

approach which this thesis proposes in order to move towards a solution, it is

necessary to examine the components of the programming problem in more detail.

Much research has already been undertaken into the problem of how to increase

processing throughput by using parallelism, and to summarise all of this research

would be a gargantuan task. Therefore, the discussion presented here is deliberately

limited to the work which has had a direct input on the material developed in the

remaining chapters.

Since the scope of this research is itself limited - to the study of "dataflow

development of medium-grained parallel software" - this chapter serves to define

the terms used in this title, and to present the important concepts involved in

understanding these terms. The motivation for this research is to examine the

possibilities for the provision of a graphical software development environment for

medium-grained parallel software; this chapter focuses on four key areas - the

underlying medium-grained multiprocessor technology; parallel programmmg

models; parallel programming tools, including visual tools; and dataflow. An

understanding of each of these facets of the parallel programming problem is

necessary in order to understand the original work presented in subsequent

chapters.

2.1 Multiprocessors

Much research into parallel programming has come about as a result of the

availability of parallel computers, the architectures of which allow multiple

operations to occur concurrently. Since programming consists of controlling what

operations take place, it is necessary to examine the technology underlying parallel

programming.

Page 23

Chapter 2 Parallel Programming

2.1.1 The von Neumann machine

Multiprocessors are descended from single-processor technology, so before

considering multiprocessors, it is useful to review the important concepts of

uniprocessing. For many years, most uniprocessors have been based on the "von

Neumann machine" [vonN58]. A simple von Neumann machine consists of a

memory store which contains instructions and data, and a processing element

which performs operations in a perpetual cycle of fetching a coded instruction from

the store, decoding and executing it, the result being put back in the store (the

fetch-decode-execute cycle). One element of the store is designated at the program

counter - a pointer to the next instruction to be fetched - and this is automatically

updated at the end of each cycle. The sequence of operations can be selected by the

program itself, by altering the program counter.

In the general case, each instruction has at least one operand (input) and a result

(output). As stated in Chapter 1, in principle when the output of any two instruc­

tions is not the input of the other, those two instructions can potentially be executed

in parallel. However, the existence of only one processing element and one store

means that in practice, no two instructions can be executed concurrently, and this

has led to experimentation with other architectures which derive from the simple

von Neumann model.

In fact, a wide variety of architectures have been experimented with, working

on a variety of principles, and so a need has arisen for a classification scheme to

organise these computer architectures into "families" governed by the same

operating principles. One such scheme has been proposed by Flynn [Flyn66].

Although Flynn's classification is fairly limited in terms of today's architectures,

and various enhancements to have subsequently been proposed (for example

[Dunc90]), Flynn's scheme remains a useful and elegant way of describing broad

types of architectures. Flynn's classification is simply based on the instruction

streams (how many instructions are fetched concurrently) and data streams (how

many items of data are fetched concurrently to be operated on) in an architecture.

These two characteristics are simply classified as "single" or "multiple" streams.

Thus, in Flynn's scheme there are four basic families of architecture: SISD (Single

Instruction stream, Single Data stream), SIMD (Single Instruction, Multiple Data),

MISD (Multiple Instruction, Single Data) and MIMD (Multiple Instruction,

Page 24

Chapter 2 Parallel Programming

Multiple Data). There are many examples of each of these types of architecture,

with the exception of MISD machines, which has not, so far, proved to be a useful

configuration.

2.1.2 SISD Architectures

The conventional Von Neumann machine is of course classed as SISD, since it has

fetches a single instruction to operate on a single data item in each cycle. It is worth

noting that a certain amount of parallelism has been introduced into SISD

architectures, particularly employing an instruction pipeline in which as one

instruction is being executed, the next is decoded, while the following instruction is

being fetched, all concurrently. Although this is a very limited form of parallelism,

it is an important concept and is used in many of the other architectures described

below, in addition to their other forms of parallelism.

2.1.3 SIMD Architectures

SIMD machines, as their name suggests, execute the same instruction on multiple

data items concurrently. There are a number of different architectures in this class,

among which are array and vector processors. Array processors typically have a

single control unit, and an array of directly connected processing units; the

processing units each have their own registers and store, and hence operate on

different data items, but the execution of operations is directed by the control unit

(a master-slave arrangement). An early example of this type of architecture was

the Illiac-IV [Barn68], a more recent example being the DAP [Hock81]. Vector

processors are similar, achieving parallelism by providing hardware which allows

Whole vectors to be used as operands to instructions, and producing whole vectors

as the result, the same (single) instruction being applied to each element of the

vector concurrently. The TI-ASC [Wats72] and the Cray-l [Russ78] are typical

examples of vector processing architectures. To achieve further parallelism, some

vector processors employ memory pipelining (referring to the fetching of vectors

from store) in addition to the instruction pipelining described above.

Although SIMD architectures have been very successfully employed in many

heaVily numerical applications, these architectures have their limitations in terms of

applicability. Any master-slave arrangement is liable to be subject to bottlenecks in

some cases; in the case of array processors, when there is insufficient data

Page 25

Chapter 2 Parallel Programming

parallelism - that is, when there is less data to be operated on than there are

processing units - the full speedup cannot be achieved. A problem when using

vector processors is that the vectors used for operands and results are of a fixed size

on each machine, and when a problem requires vectors which are, for example,

somewhat greater than this size, there is the same problem of inefficency due to a

mismatch of data parallelism. So, although SIMD architectures can often be used

very succesfully if used for applications which map well onto their particular

architecture, they lack the generality to be applied to a variety of problems - such as

those containing vectors of varying sizes, or indeed the many computing tasks

containing no significant amount of vectorisable mathematics.

2.1.4 MIMD Architectures

Since MIMD machines can concurrently execute different instructions on different

data, this gives them greater flexibility of control than SIMD machines. This makes

them a more general-purpose solution to parallel programming. MIMD machines

have already been employed in many different application areas. As with the SIMD

family, there are a number of different architectures within this classification;

among the approaches to MIMD multiprocessing which have been tried, are:

• Systolic arrays [Kung82], which have an array of interconnected

processing elements which operate on data pumped through the array.

Various topologies for the arrays are appropriate for different appli­

cations; in the CHiP [Snyd82] the array topology is reconfigurable,

providing a general-purpose machine.

• Dataflow architectures, which are described in more detail in section

2.4.

• Shared-memory architectures, in which a number of processors share a

store, usually through a common bus.

• Distributed-memory architectures, containing a network of communi-

cating processors each with its own store.

Of these, the latter two have become by far the most prevalent. Their strength lies

in the fact that the processing units involved in these architectures are, in

themselves, essentially von Neumann machines; multiprocessors based on these

architectures usually incorporate a number of commonly-available uniprocessor

processing elements linked together. This strategy is particularly cost effective,

Page 26

Chapter 2 Parallel Programming

since it "rides on the back of" advances in uniprocessor technology, and only the

hardware technology which needs to be developed specifically for these multipro­

cessors is that of the communication links between the processors (and protocols

for using them efficiently).

There is, though, a trade-off between speed and generality; after all, hardware

solutions to problems are in general faster than software solutions, and the more

general-purpose machines lack the specialised hardware of, for instance, vector

processors. The fact that on conventional multiprocessors parallelism is managed

by software, leads to the variety of parallel programming models described in

section 2.2. However, since many of these models are based on the underlying

architecture involved, it is first necessary to examine these architectures in more

detail.

2.1.5 Distributed-memory Architectures

Distributed-memory multiprocessor architectures consist of a number of processing

nodes, with each node comprising one processor and a memory store which is only

accessible by that processor; there is no globally accessible memory. Processors

communicate by sending data messages to other nodes via communication links,

each processor being linked to one or more other nodes. However, the more nodes

each node is linked to, the greater the sophistication of communications electronics

needed, which limits the number of links implemented in practice. Architectures

exist with a number of different topologies of interconnection between the nodes,

of varying complexity from linear arrays, to hypercubes (notably the Intel iPSC

[Gehr88]), to complete connectivity. Figure 2.la illustrates the first and third of

these arrangements, though it should be emphasised that there are many others.

Page 27

Chapter 2 Parallel Programming

= 1 node (memory + processor)

Linear Array Fully interconnected

Figure 2.Ja: Examples of interconnection in

distributed-memory multiprocessor architectures.

An additional limitation is that the bandwidth of inter-node communications is

usually much lower than that between a node's processor and its local memory.

This means that algorithms must be found with a minimal amount of communi­

cation for maximal efficiciency. Indeed, in general it is preferable to undertake

extra processing if this can avoid extra communication [Padd93]. Naturally, if not

all processors are connected to each other, the cost of communicating between any

two nodes increases in proportion to the number of "hops" messages must make.

From the programmer's point of view a completely-connected architecture is the

simplest to use, but on any other type of distributed-memory multiprocessor,

programming involves finding an algorithm which is efficient on the available

topology of processors. This makes the development of software for these

machines far more complex than that of software for uniprocessors.

Nevertheless, distributed-memory multiprocessors have a number of attractive

features which have made them popular; perhaps the most important of these is

scalability. This arises because each inter-node link can be a simple point-to-point

communications bus, used only by the two processors involved. Therefore, further

processors (and hence memory) can be added to the architecture with new inter­

node links as appropriate, without placing a greater load on existing links. For

applications in which the computing load is very large, and the communication

needed between tasks is relatively small, this makes distributed-memory

multiprocessors attractive.

Page 28

Chapter 2 Parallel Programming

2.1.6 Shared-memory Architectures

In contrast to distributed-memory multiprocessors, shared-memory multiprocessor

architectures share memory between a number of processors. Machines of this type

are typically symmetric, in the sense that all processors have equal access to all of

the memory (there is no master-slave relationship). Because of this, it is never

necessary for a particular process to know where within a topology .of physical

processors it is running, unlike any non-fully-interconnected distributed-memory

multiprocessor. There may in fact be several physical banks of memory, but the

mapping of logical to physical addresses is easily done by hardware; at the software

level there appears to be only one logical memory. Because software does not need

to know about physical processor or memory location, the programming model of

these architectures is very simple: all data in memory is normally available

immediately, the only basic access mechanism needed being the use of software

locks (usually supported by hardware instructions) to restrict concurrent access, for

instance in a concurrent producer/consumer situation.

Memory access is typically through a common bus (figure 2.1 b). Because this

medium is shared, bus bandwidth becomes the limiting factor in expanding the

number of processors in the machine.

= Processor

D =Memory

BUS
T T

Figure 2.1 b: Typical shared-memory architecture

Shared-memory machines have been built in a range of orders of magnitude of

processing power, from the Firefly multiprocessor workstation [Thac87] to the 2 to

20 processor Encore Multimax [Enc089], to the Cray X-MP supercomputer

Page 29

Chapter 2 Parallel Programming

[Lars84]. Whatever the scale, the attractiveness of this type of architecture lies

mainly in the simplicity of the programming model.

The distributed-memory and shared-memory models are not completely

exclusive. A few hybrid architectures such as the KSR-l [Kend92] have used

elements of both models. Moreover, a current research topic is the implementation

of a "virtual" shared memory on distributed memory architectures. In such

architectures, extensions to the operating system of a distributed memory machine

provide the programmer with a logical shared memory, which is in fact distributed

across the available nodes. Essentially when a memory access is requested, the

system checks which node that location is physically stored on, and if it is not the

current node, retrieves it from another node using message-passing - thus relieving

the programmer of the burden of explicit message-passing. The current interest in

virtual shared memory perhaps demonstrates the superiority of shared memory as a

programming model.

2.1.7 Grain Size

Having described the most popular platforms for parallel processing in terms of

their architecture, there is one further aspect of hardware which has a bearing on

parallel software development, and must therefore be considered: namely, the

question of whether the cost of making a program parallel is justified by the

processing time gains achieved. There is always a "cost" associated with running a

program in parallel, in terms of time spent performing tasks necessary to allow the

program to run in parallel. On distributed-memory architectures, the major cost

involved is that of transferring code and data to the node on which they will be

needed; on shared-memory machines, the system calls needed to create tasks,

process control blocks, manage locks and so on for parallel processes are the most

significant cost. These costs form an "overhead" of time lost which must be

compared to the time gained by parallel execution. For example, if a program

contains a loop which takes time 20t to execute, and is repeated 5 times, the

program will not execute faster if each iteration of that loop is executed as a

different process, unless the time taken to start each of these 5 processes (each

containing one iteration) is less than 16t (80t in total).

This start-up cost is not the only consideration in deciding whether (and how)

to make a program parallel. Even if the sections of a program which can be

Page 30

Chapter 2 Parallel Programming

executed in parallel are long compared to the start-up overhead, separate parallel

tasks often need to co-operate with each other, and they can only do this when both

tasks are ready - in other words, they need to synchronise. This synchronisation

event could be, for example, a producer process making data available for a

consumer process. Synchronisation events, too, carry an overhead. Where

synchronisation occurs for tasks to pass data between one another, this overhead

includes any time taken to copy the data from one area of shared memory to

another, or to transmit the data from one processing element to another.

It is the time taken by these two types of overhead, in relation to the total time

taken by parallel sections between synchronisation events, which determine

whether or not parallelisation is worthwhile in a particular case. Thinking of time

as a "size", the term grain size is used to describe the time taken by a process

between synchronisation events. For any given multiprocessor architecture, there is

a certain minimum grain size, below which parallelisation is not efficient; namely,

grains which take less time to execute than does the code which implements the

synchronisation (including communication time). This will vary from one

architecture to another, since the time taken to synchronise depends on the

hardware operations required.

To be more architecture-independent, it is more useful to define grain size in

terms of numbers of instructions rather than absolute time. Gordon Bell proposed a

classification of parallel architectures according to grain size defining fine,

medium, coarse and very coarse grained parallelism [Lee87]. This is adapted in

Figure 2.1c in an updated form which more accurately represents present-day

usage. The grain size definitions illustrated below are adopted in the remainder of

this thesis.

Page 31

Chapter 2 Parallel Programming

Grain Size Synchronization Interval Construct for Parallelism
(Instructions)

Fine <20 Inter-instruction
(hardware controlled)

Medium 20-2000 Inter-task
(within a single program)

Coarse 2000-10,000 Multiprocessing
of concurrent processes

Large 10,000 + Distributed processing
across local area network

Figure 2.1c: Definition of multiprocessor grain sizes

This concept of a minimum grain size, which must be employed for parallellism in

software to produce any gains in terms of reducing execution time, is the final

important way in which the architecture of conventional parallel machines affects

the software which runs on them. The next component of parallel programming to

be considered is a level above the hardware - the programming models on which

languages for parallel programming are based.

2.2 Parallel Programming Models

Very little programming in the 1990s is undertaken at machine code level, because

of the complexity of programs currently being developed. When programming in

parallel, that complexity is increased so greatly that high-level programming is

essential. This section discusses the programming models of parallelism which

current high-level parallel programming languages for conventional MIMD

multiprocessors are based upon. This section, and the next section (on parallel

programming tools), focus on control-flow based, rather than dataflow based,

programming models. Dataflow is considered in more detail in section 2.4. This

chapter also focuses on the operational, rather than formal, aspects of parallel

programming.

Although the need for structured programming languages for parallel

programming was recognised long ago [Tane78], parallel programming languages

developed in the early 1980s nevertheless evolved in an ad hoc manner. Often the

programming model used by such languages simply added the parallel processing

Page 32

Chapter 2 Parallel Programming

primitives provided by one particular architecture to an existing language, with

little attempt at generalisation. This approach sacrifices ease of use and portability

to efficiency of implementation, though this is not surprising given the emphasis on

speeding up execution times. More recently, a number of more general program­

ming models which are not architecture-specific have been introduced; and their

usefulness has been proven on a wider range of real applications. This answers

Karp's criticism [Karp87] that the early parallel languages were not tested on

realistic enough examples to prove their worth for general-purpose parallel

programming.

The remainder of this section describes the major models of parallelism on

which parallel programming systems have so far been based. First, however, it is

useful to identify an abstraction of parallelism with which to compare these models.

2.2.1 Types of Parallelism

One abstraction of software parallelism has been proposed by Carriero and

Gelernter [Carr88], who identify three basic types of parallelism which a parallel

programming model may offer the programmer, namely:

•

•

result parallelism

activity parallelism

• structure parallelism.

Taking each of these in turn, result parallelism is the type of parallelism used

When a task is broken down into multiple sub-tasks, each of which executes in

parallel to produce a different part of the overall task's result. For instance, consider

a parallel relational database program in which a table Z is required which is the

intersection of two tables Y and V, Y being the union of two further tables Wand X,

and V being the projection of tuple t over table V. The calculation of union(W,

X)-+Yand that of project(t,U)---+V can be executed in parallel, producing the two

partial results V and Y concurrently.

Activity parallelism is an alternative to result parallelism, in which a number

of identical tasks are created to work on the data needing to be processed, taking

slices of the data until it is used up. An example of this is a matrix operation in

which each row or column of the resulting matrix could be calculated indepen­

dently, in parallel. If there were more columns or rows to be processed than

Page 33

Chapter 2 Parallel Programming

available processors, one task might be created per processor, and each process

would take the data needed for an output column from a "pool" of input data, until

all the result columns had been calculated. This type of parallelism is typical of

master/worker process organisation.

Finally, structure parallelism can be exploited when a task has a number of

identifiably separate stages involved in producing its result, and a stream of data

which must go through these stages. In such a case, separate processes can execute

each stage in parallel while the data is streamed through, in a software equivalent to

the pipelines described in section 2.1.

These three orthogonal types of parallelism may of course all be employed

within the same parallel program - if the programming model allows. In the

following section, various programming models are discussed, with reference to the

ease with which these three types of parallelism may be employed by the

programmer.

2.2.2 Parallel programming models

Just as the types of parallelism which can be expressed in a parallel programming

language can be classified, it is useful to similarly classify the models for parallel

programming which exist. Most models are based on the concept of processes,

which undertake the computation and are within themselves sequential, and differ

only in the way in which these processes synchronise when data dependencies

Occur. One way of classifying the models is according to whether they assume the

existence of shared resources to aid synchronisation, or instead rely on message­

passing; the obvious analogy being with the two main types of multiprocessor

deScribed above. Within the classification of message-passing models, there are

two SUb-types; those models which assume asynchronous communication, and

those which use synchronous message-passing.

This classification along similar lines to the classification of architectures does

not necessarily mean that each such programming model is specific to one

particular architecture, or even to one type of architecture; portability can be

achieved by providing the features demanded by the model in software. For

Instance, a message-passing system could be run on a shared-memory machine, by

passing the messages through an area of shared memory in a controlled way. The

Page 34

Chapter 2 Parallel Programming

classification is merely a convenient perspective from which to view the available

models. Each of the three types of model (shared memory, asynchronous message­

passing, and synchronous message-passing) can now be considered in turn.

An early shared-resource model for synchronisation is the semaphore

[Dijk68]. Semaphores provide an abstraction of hardware mechanisms for

synchronisation; the semaphore has a value, and two operations, P (which

decreases the value) and V (which increases it). The value, however, is not allowed

to drop below zero and if it reaches zero, any process which subsequently tries to

use the P operation on it can be suspended until another process uses a V operation

on it. Thus, sempahores are a shared resource which can be used to synchronise

processes. However, they are a low-level mechanism for synchronisation, and most

models support higher-level abstractions for synchronisation. A higher-level model

which has proved popular is that of the monitor [Hoar74]. A monitor is an object

consisting of the resource, such as shared memory, and the operations which access

that resource; access is not allowed from outside the monitor. Execution of the

operations is guaranteed to be mutually exclusive, i.e. execution can only be by

one process at a time. Thus, if one process reaches the execution of a monitor

operation while another process is already using that monitor, it is suspended until

the other process leaves the monitor, thus providing transparent synchronisation.

MOnitor constructs have been added to existing programming languages to form

languages suitable for parallel programming, as in Concurrent Pascal [Brin77]; and

formed the basis for new programming languges, such as Mesa [Lamp 80] .

An alternative model based on a shared-memory paradigm is the Linda model

[Ahuj86]. The central concept in Linda is that of the tuple space, a shared memory

space containing structured data items called tuples. Data can be placed in tuple

space using a write operation, and read or copied out by any other process; indeed,

processes can also be placed in tuple space, to be executed by the system at some

time when a processor is free. Linda has been shown to be successful across a

range of grain-sizes, on both shared-memory and distributed architectures, where it

implements a virtual shared memory [earr88]. Shared-memory models in general

are particularly well suited to program structures in which the problem is broken

down into sub-tasks, which can use different data to work on different parts of the

Overall computation, in other words result parallelism. Because Linda supports

Page 35

Chapter 2 Parallel Programming

process tuples, it also supports activity parallelism, with a master process

generating data tuples and "slave" process tuples to consume them when processors

become available.

Turning to programming models which are not based on shared resources, the

archetypal message-passing model is known as the Communicating Sequential

Processes model (CSP) [Hoar78] [Bro084]. This model relies on explicit send and

receive operations used to pass data between two specific, named processes. At any

one time, all data is owned by one process; this concept of a single owner is central.

Synchronisation is achieved because messages cannot be received until they have

been sent. The CSP model has been directly implemented as a programming

language [Jaza80], and the Occam language is also based closely upon it [Jone85].

While most CSP-based languages allow only static allocation of processing tasks, a

more recent language, Strand88, is a CSP-based system which supports dynamic

work allocation [Catt89] [Fost90]. An alternative model based on asynchronous

message passing is the Actor model [Agha86]. Asynchronous message-passing

systems are particularly well-suited to applications in which pipelines of processes

each pass on data to the next, in other words where there is structure parallelism.

While in CSP and its derivatives, communication between processes IS

asynchronous, the third type of model is based on synchronous message-passing.

As in asynchronous message passing, all data has one owner; however, in

synchronous systems, many data objects remain in the ownership of one process

which acts as a caretaker, performing any necessary operations on them. Thus,

When a process needs to perform an operation on some object, in this type of model

the process must synchronise with the object's caretaker process (i.e., wait for it to

return the result). This is the basis of the Remote Procedure Call (RPC), the remote

procedure being the object's caretaker, and the call being synchronous. The Ada

language's rendezvous mechanism is another example of this type of programming

model [Mund86]. The two types of message-passing model, synchronous and

asynchronous are philosophically similar, and it has been argued that they are

directly equivalent in expressive power and performance [Laue79]. However,

synchronous message-passing systems are designed more for client/server

processing arrangements, and is therefore more suited to activity rather than

structure parallelism.

Page 36

Chapter 2 Parallel Programming

As noted earlier, the fact that these parallel programming models have

similarities to certain concurrent architectures does not mean they can only be

implemented on such architectures. In the same way, the fact that each model is

particularly suited to one of the three types of parallelism described above,

certainly does not imply that programs based on one of these models cannot

express any other type of parallelism. However, the fact that each of these types of

programming model allows a certain type of flexibility that the others do not,

implies that certain algorithms are easier to express in one model than another.

Because algorithms which can only be expressed awkwardly tend to result in an

inefficient implementation, in recent years there has been a move towards parallel

programming models which are abstracted further away from architectural features.

One solution to this is to provide a model which consists of processes and a set

of sequencing operations encompassing all three models above, so that whichever

operations seem most appropriate can be chosen [Brow85c].

An alternative is to adopt an object-oriented programming approach and adapt

it for parallelism [Toko87]. The object-oriented paradigm is convenient, since it

involves encapsulating data and the operations which can be applied to it within

self-contained units, which can therefore easily be distributed amongst processors.

This distribution of objects can be done in two ways: either explicity by the

program (by inheriting the properties of parallel objects and synchronisation

objects, as in Presto [Bers87]); or transparently by the system. In the latter case, the

system must trap invocations of other objects if they are not on the same node. The

two objects can then communicate either by message-passing, or by object

migration - moving one of the objects so that they then reside on the same node.

The management of objects placement can be done in various ways; for instance by

tagging each object with a unique global identifier, as in the Emerald system

[JuI88] or by maintaining a virtual shared object memory as the Amber system does

[Chas89]. Systems based on object mobility have proved efficient, but the question

of decision-making in such systems (when to migrate an object and when to leave it

in place) is still a topic for further research.

While parallel object-oriented systems are typically aimed at distributed

systems consisting of a number of von Neumann processors, one final control-flow

based parallel programming model does not assume anyone particular hardware

Page 37

Chapter 2 Parallel Programming

architecture. The Bulk Synchronous Parallelism (BSP) model is aimed at

"providing guaranteed performance at near-optimal processor utilisation" [Vali90].

It does this by arranging for "parallel slackness" - in other words, ensuring that

there are normally more virtual processes in existence than there are physical

processors. In this way, all available processors can be kept busy processing the

waiting tasks. This idea itself is not new; systems which are made efficient by

judicious "grain-packing" of processes onto processors in order to balance

execution and communication times have already been proposed [Boon88]. The

main innovation of BSP is instead that its synchronisation facilities are not

architecture-based. Instead, they are based on optionally controlling processing

tasks by the use "supersteps" of a set period of time, after which the tasks are

synchronised. This period can be controlled by software, at run-time if required,

thus providing control over the effective grain size of the program (over a certain

minimum necessitated by the hardware being used). Thus, BSP appears to provide

a programming model which is abstracted away from traditional architectural

models, while retaining the aspect of efficiency which is ever important in parallel

processing.

Section 2.1 introduced parallel processing hardware, and this section has discussed

a conceptual layer above the hardware, the abstract models involved in program­

ming such hardware. The next step, therefore, is to move up another layer to

examine the actual tools which can be used for parallel programming, based on

these models.

2.3 Programming Tools

It has long been realised that parallel programming is sufficiently different from

sequential programming that new, specialised tools would be needed for it, beyond

Simply providing parallel programming languages based on the models described in

the previous section. In particular, the complexities introduced by concurrency give

rise to specific programming needs unique to parallel programming [Wino79]. A

number of software tools have been developed to aid the parallel programmer

manage the complexity involved, but so far these have often failed to meet the

needs of real application programmers [Panc90]. The following section examines

Page 38

Chapter 2 Parallel Programming

some of the tools which are available, and assesses what is needed. Section 2.3.2

then describes an alternative approach to the provision of tools to manage the

complexity of parallel programming - namely, the application of techniques from

the field of visual programming.

2.3.1 Tools for Parallel Programming

Perhaps the most common means of parallel programming is to use text-based

HLLs; thus the most common tools used are compilers. There are three main

approaches to providing compilers for parallel programming:

• To extend existing programming languages with parallel constructs,

such as the Pisces system based on FORTRAN [Prat85];

• To provide "auto-parallelising" compilers which detect potential

parallelism within a program and generate parallel code accordingly

[Kuck81];

• To provide compilers for specifically parallel languages such as those

mentioned in the previous section.

Many systems provide no tools for parallel programming other than the compiler,

and standard debuggers not originally intended for debugging parallel program.

However, other tools to be used in conjunction with parallel program compilers

exist, particularly tools for inter-procedural analysis to discover data dependencies

[Alle85]. There are also de buggers designed for parallel programming [Cheu90].

Some, such as Instant Replay [LeBI87], focus on ensuring reproducible behaviour;

others, such as Parasight, on minimal intrusiveness [AraI88]. Although such tools

ameliorate certain tasks, parallel programming still remains generally difficult.

Part of the problem may be that many of the existing tools each address only

one aspect of parallel programming. Few systems provide an integrated computer­

aided software engineering (CASE) environment encompassing the whole of the

parallel software life-cycle (including design, implementation, debugging/testing

and performance tuning).

However, the trend seems to be towards this ideal of a complete, integrated

programming environment. The Pie system provides an architecture-independent

programming environment based on a modular programming "metalanguage" on

which tools for implementation and instrumentation (i.e. the collection of data for

Page 39

Chapter 2 Parallel Programming

debugging and performance tuning) are based [Sega85]. There are also systems

based around existing languages; the Schedule system provides an integrated set of

programming tools for a parallel FORTRAN [Dong87]. On a wider scale, a system

called IPE provides an Integrated Programming Environment which is intended to

be able to support all stages of the software development process for distributed

parallel programming [Szaf92]. IPE is not based on one of the conventional parallel

programming models, but instead uses a business organisation metaphor, in an

attempt to make parallel programming more accessible. IPE is also aimed at large­

grained computation, another trend in parallel programming tools as networks of

workstations (which lend themselves only to the large-grain level of parallelism)

become almost Ubiquitous.

IPE makes use of graphics to specify and modify some aspects of the

application. This, too, is becoming a trend in providing tools and even program­

ming environments for parallel (and most other types of) programming. To

understand why, it is necessary to examine the nature of visual programming.

2.3.2 Visual Programming

The term visual programming is used to refer to the design and development of

software using visual images rather than text. The study of programming using

Images - in other words, computer graphics - is younger than that of parallel

programming, because high-resolution bitmapped graphics technology has only

relatively recently become so cheap that it is available to all. However, it has long

been realised that graphical displays are inherently easier to understand than purely

textual ones, for a number of reasons which include:

• Pictures contain more dimensions of expression - not only can they

represent two or three-dimensional objects, but they can represent other

physical properties such as size, shape, colour, direction and distance.

• Pictures resemble the real world - they are concrete rather than abstract.

This means that the viewer can apply the same cognitive skills used to

assess the world around us. These skills are used constantly, unlike

language skills (and are learnt much earlier in life) and are therefore

more familiar. This in turn makes the information transfer rate much

faster [Raed85].

Page 40

Chapter 2 Parallel Programming

• Pictures are random-access rather than sequential-access - the eye can

instantly move around a picture, and switch between viewing the

overall picture and a detailed view easily.

It has been shown that, following from reasons such as those above, programming

using visual abstractions of computer operations is easier than programming using

textual HLLs [Powe83]. Moreover, it is the last of the three attributes above which

make visual programming particularly well suited to the task of parallel

programming.

From the principles described above, the field of visual programmmg has

developed. Visual programming languages employ graphical representations of

programs, in a self-consistent notation; a familiar example of a graphical

representation of a program is the control flowchart, in which boxes represent

operations and arrows between them represent the flow of control from one to the

next. A notation can have formal properties (i.e., formal definitions of the syntax

and semantics of combining aspects of the notation together) so that it is a precise

definition of the behaviour of any program which can be expressed in it [Hare88].

To design or edit a program using a visual language involves a visual display and

the direct manipulation [Schn83] [Card87] of easily recognisable shapes on it

using appropriate input devices such as the mouse, trackerball etc. Entering and

editing a program in a visual language is directly analogous to the same operations

for a textual language, using a graphical editor rather than a text edior. Graphical

editors which allow the manipulation of graphical images (essentially moving

pixels on a bit-mapped display) are not significantly more complex than text

editors.

Visual programming is beginning to have a major impact on programming

methods. Among its advantages is that complete programming environments can

be built around a visual abstraction, including integrated toolsets covering several

stages of the software development cycle [AmbI89]. But not only have visual

programming techniques made programming easier, in the field of parallel

programming they have begun to make things possible which were previously

infeaSible, due to the difficulty of managing the complexities of parallelism.

Visually-based tools for parallel programming have begun to appear. These

tOols can be divided into three main types [Roma89]:

Page 41

Chapter 2 Parallel Programming

• visual programming environments (in which algorithms are specified);

• program visualisation and animation tools (graphical representations of

algorithms and their run-time behaviour); and

• data visualisation and animation tools (graphical representations of data

structures and their run-time behaviour).

Taking each of these in turn, visual programming environments for sequential

languages have been under development for some years. One of the earliest was the

Cornell Program Synthesiser [Teit81] which, while not completely graphical,

introduced the concept of syntax-directed entry of application code; the program­

mer's input being restricted to the syntactically correct possibilities. This has

become a common feature of software tools which support visual programming.

Through the 1980s, many visual programming environment systems have become

available [Chan87]. Those programming environments designed for parallel

programming are only a fraction of the total, but there have been a number of

sUccessful systems among them. Some have provided visual tools designed to

produce code in an existing textual programming language, such as graphical

Occam [Mour89], which is based on control flow graphs which illustrate Occam's

constructs for parallelism and its communication channels. Others have developed

new visual abstractions for parallel programming, at a variety of levels, for

example Poker, which uses graphs to describe the architectural characteristics of

distributed systems [Snyd82]. At a more architecture-independent level, CODE

provides an Computation Oriented Display Environment in which graphs represent

the data and scheduling dependencies between processes [Brow89]. Other systems

have adopted existing architecture-independent models, such as the object-oriented

model [Roge88]. At a higher level still, PegaSys uses graphics which represent

statements in a formal logic to represent the specification and design of parallel

programs [Mori85] [Mori86]. Another system, Faust provides a spectrum of tools

from high-level project management tools, to low-level event displaying tool

[Guar89].

It was noted above that visual programming tools can be classified as those for

algorithm visualisation and those for data visualisation, and many of the tools

provided by visual parallel programming environments such as those mentioned

above fall into these categories. In addition, there are a number of such tools which

do not form part of a complete visual programming environment.

Page 42

Chapter 2 Parallel Programming

The purpose of algorithm visualisation tools which are not integrated into a

programming environment per se is to generate graphical representations (or

"visualisations" of parallel programs developed in another way. There are many

possibilities for algorithm visualisation [Brow85]. For instance, recent develop­

ments of the Pie system provide visual depictions of algorithmic behaviour

designed for performance debugging [Sega89]; the Voyeur system provides

hierarchical graphical views of Poker programs [Soch89]; views of parallel

programs can also be generated and viewed using an entity-relationship based

query language [Schw86]. The motivation for these tools is that if programmers

have access to a rich variety of ways of viewing the parallel program, they will be

better able to understand the complexities of the algorithm and hence of the

program's behaviour.

To represent the program's behaviour at run-time is the aim of algorithm

animation tools. Such tools are based on some other graphical representation of the

algorithm and add to it graphical cues (such as colour changes) which represent the

activity of the program, such as the position of threads of control [Brow85b]. Of

more interest are data visualisation tools, since the contents of data structures are

generally much more complex than the flow of control, and therefore the

programmer benefits more from visualisations of data. The VIPS system provides

both algorithm and data visualisation tools for Ada programs [Isod87]. Since data

structures are defined by the programmer, the programmer also specifies the most

appropriate way to display each variable required, using a Figure Description

Language. The visualisations can be chosen from a predefined set; or in Incense, a

data visualisation tool for the Mesa language, can be defined by the programmer

[Meye83].

The theme common to all systems which provide data visualisation tools is that

understanding the flow of data through a program is central to the understanding of

the program's behaviour. Indeed, the flow of data has been used as the central

visual concept in many sequential visual programming languages. In parallel visual

languages, the relationships between processes and in particular their synchronis­

ation has tended to be the focus. However, the dataflow paradigm does allow the

visual specification of synchronisation, as a few systems have proved. They are

described in the next section, which examines dataflow in more detail.

Page 43

Chapter 2 Parallel Programming

2.4 Dataflow

The basic concept of the dataflow paradigm was introduced in Chapter 1. The idea

of describing programs in terms of the flow of data through them has been around

almost as long as that of describing them in terms of flow of control. One

advantage of the dataflow approach is that data items usually represent real-world

entities, and so to describe the program in terms of these (rather than in terms of an

artificially devised flow of control) makes the program description closer to the real

world, and hence easier to understand. For this reason, "data flow diagrams" have

long been used for systems analysis, to describe the overall design of a program

though not the implementation. It is also because of this closeness to the real world

that dataflow is popular in the field of visual programming, since relating programs

to the real world makes them more understandable - the chief goal of visual

programming. However, most of the interest motivating research into dataflow for

its own sake has been due to the implicit parallelism found in dataflow-based

descriptions of programs. The following sections describe the field of dataflow

research, which is in itself a complex area with a number of distinct branches.

2.4.1 Dataflow for Parallelism

As explained in Chapter 1, dataflow programs consist of discrete operations, which

have data inputs and outputs. Dataflow programs are almost always considered as

digraphs - directed graphs in which the operations are the nodes, and data items

flow in a set direction along the arcs of the graph. These arcs describe all of the

data dependencies which exist between operations; the only data to which

operations have access is that of their inputs, there being no global memory. From

this, it is implied that any two operations which do not have an explicit dependency

have the potential to be executed concurrently, since they do not share any

resources for which there could be contention. Indeed, even if the operations are

not ultimately executed in parallel, the lack of any shared information between

them means that there can be no side-effects (one software module interfering with

another's data, causing results not obvious from looking at either module). This

freedom from side-effects is a very useful property even when developing

sequential software [Stev82]. In a parallel environment, where debugging

Page 44

Chapter 2 Parallel Programming

information IS often harder to collect and interpret, this becomes even more

important.

It has been shown that this implicit parallelism is straightforward to extract

from dataflow descriptions of programs, for use in executing the operations of the

program in parallel [TreI77]. Thus, on architectures on which concurrent execution

is possible, it is often useful to use a dataflow rather than control-flow description

of a program; in other words, to use dataflow not just as a design tool, but for the

implementation as well. Indeed, the time at which a particular interest began to be

taken in dataflow as an implementation medium in its own right, was the early

1970s when a research project at MIT undertook to implement an early parallel

architecture based on the dataflow paradigm.

Research into dataflow machine architectures is described in the following

section, but from the early 1970s onwards, there was increasing interest in the

dataflow paradigm at all levels of software development - at the design level and at

the programming language level (described in section 2.4.3), as well as at the

machine architecture level. Much dataflow design work arose from the dataflow

system originally devised to show how the proposed MIT dataflow architecture

would be programmed [Denn74]. This system consisted of a design notation based

on dataflow graphs, not dissimilar to the example dataflow graph in section 1.4. In

this system (and its successors), data is introduced into the program, and flows

through the graph. The dataflow operations (operations in this case meaning

machine instructions such as addition, multiplication etc.) are executed when all of

their inputs are present. This is usually known as firing - operations are fired when

they have data available on all inputs (and when processing hardware is available to

execute the operation). Each operation has two states: enabled, which means that

data are available on all inputs, so the operation can fire as soon as the appropriate

hardware is available; and not enabled, when data are not available on all inputs.

The system of waiting until all inputs are available before becoming enabled is

known as the strict enabling rule and most dataflow systems have followed this,

for simplicity of implementation.

The type of dataflow system described above is known as data-driven since

the fact that data are available drives the events. This is the scheme used in most

dataflow systems; however, an alternative exists, in demand-driven dataflow.

Page 45

Chapter 2 Parallel Programming

Here it is demands for the data needed which drive the events (enabling operations

which would produce the data required, which may in turn enable further

operations to produce the data they require, and so on). The obvious analogy is that

data-driven dataflow corresponds to the imperative language model, while demand­

driven dataflow corresponds to the functional language model. In data-driven

dataflow, data is "pumped" through the graph, while in demand-driven systems it is

"sucked" through. Some systems of dataflow allow both interpretations [Shar82],

but data-driven dataflow is the more common, particularly in the research into

dataflow architectures. This research is now discussed in more detail.

2.4.2 Architectures

Dataflow architectures are designed to provide a parallel alternative to the

inherently serial von Neumann model of processor architecture. Such architectures

exploit the potential parallelism of dataflow programs by executing operations

which do not have immediate dependencies concurrently on their multiple

processing units. These processing units are "fed" from a queue of enabled

operations, and because the concurrent operations do not depend on each other for

sequencing, the processors can execute them asynchronously. Items of data are

passed between modules of the architecture as data tokens containing the data

value and the destination operation of that data item; operations are passed as

operation packets comprising the opcode, operands and destinations of their

results. This packet communication system makes dataflow machines particularly

suited to distributed organisation, and makes dataflow architectures easily

scaleable.

There are two main types of dataflow architecture. In the MIT machines and

others, only one data token is allowed to exist on each arc of the dataflow graph at

a time [Denn80] [Denn88]. This form of dataflow avoids problems of sequencing

successive data tokens on the same arc, and has been used for its deterministic

properties [Rumb77]; it is known as static dataflow. This type of system involves

feedback since if an operation's output arc remains full, that operation cannot fire

again if it would produce another data token for that arc. This information about the

full/empty state of each arc must be fed back by control tokens.

In dynamic dataflow, on the other hand, multiple data tokens are allowed to

exist on the same arc. Dynamic dataflow machines, such as those developed at

Pa e46

Chapter 2 Parallel Programming

Manchester [Gurd80] and by a second team now at MIT [Arvi90] use a tagged­

token system in which each data token carries a unique tag to identify its sequence

on an arc. This removes the need for feedback and allows loop unravelling -

successive iterations of loops can sometimes be executed in parallel rather than in

sequence, the results being restored to the correct order using the tags. Thus,

dynamic dataflow architectures provide greater potential for the exploitation of

parallelism in a program [Gurd86].

However, this ability to exploit large amounts of fine-grained parallelism is not

the unqualified advantage it might seem; it is often the case that there is more

potential parallelism in dataflow programs than the architecture can handle, leading

to very long queues of enabled operations and high memory usage of data tokens

produced. Thus, a need has been identified to reduce the parallelism in programs

for dynamic dataflow architectures [Bic87]. This and other problems, such as the

cost of large packet-switched networks needed when many processing units are

implemented, are ongoing topics of dataflow architecture research.

Various alternatives to the classic static or dynamic dataflow architectures have

also been proposed. For instance, it has been suggested that dual architectures

would be possible, with instructions activated either by control tokens or data

tokens, according to context [Hopk79]. Most others have been hybrid architectures,

based on cheap von Neuman processing elements, but with dataflow synchronis­

ation of the operations [TreI82] [Gaud85] [Bueh87]. Such architectures generally

Use a slightly coarser-grained definition of operations than the instruction-level

dataflow architectures; hardware support for dataflow is used because of the ease of

extraction of parallelism, and freedom from side-effects. Similar architectures have

implemented dataflow "macros" which allow groups of instructions to be scheduled

as a single dataflow unit or actor [Evri90]. These architectures still provide fine­

grained parallelism, but there seems to be a significant trend towards coarser­

grained parallelism.

This is not to say that fine-grained dataflow architectures have no future; work

on both static and dynamic architectures continues [Gurd87], and there is hope that

the main technical problems with such architectures may soon be overcome

[Nikh89]. However, any trend towards larger grain sizes is relevant here because it

shifts the focus towards a higher level of abstraction; in this case, away from

Page 47

Chapter 2 Parallel Programming

hardware and towards software. The software uses of dataflow, therefore, are

described in the following sections.

2.4.3 Low-level dataflow languages

A number of textual dataflow languages, somewhat akin to the HLLs used to

program conventional architectures, have been developed. This section provides a

only a brief overview, in order to provide context for the later discussion of higher­

level dataflow systems; the details of these languages are not directly relevant.

Many of these textual dataflow languages follow the pattern of imperative

HLLs, but with important differences, notably that of single assignment.

Languages such as ID [Arvi77], Lucid [Wadg85] and SISAL [Cann90] do not have

variables, which can be modified at any time, but simply values, which can only be

assigned once. Values model the arcs of dataflow graphs; they are set by the

operation which produces the value, and read by the operation which consumes it.

These languages can be compiled into code for dataflow architectures, which then

Use the assignment of values to sequence the operations.

Programming languages based on the dataflow paradigm have been called

applicative languages [Acke82]. A number of hybrid languages have also been

proposed, combining dataflow and control-flow features; for instance applicative

languages which allow variables rather than values [Ruig90], or languages based

on path expressions [Oldh84] or CSP [Bond89] [Gaud89]. The variety of

programming languages used is almost as great as the variety of broadly dataflow­

based architectures.

Not all dataflow-based languages have been developed specifically to program

dataflow architectures; the dataflow paradigm has also been used simply for its

advantages as a programming model and software engineering tool, namely the

ease with which parallelism can be identified and freedom from side-effects

[Gajs82]. An example is Mentat, an object-oriented programming system based on

a dataflow model [Grim87]. Another is the Tyger model, a hybrid between

dataflow and control flow which employs alternating "stripes" of dataflow and

Control-flow execution, with shared values passed between the two [Stok90]. A

further benefit of the dataflow model which these systems and others exploit is its

architecture-independence, making it easy to port dataflow programs between

Page 48

Chapter 2 Parallel Programming

different types of parallel architecture [SldI90].

As mentioned earlier, the details of these text-based dataflow languages are not

important; what is significant is their place within the context of dataflow

programming. These applicative languages and others form the implementation

language for dataflow programs, at a higher level than the machine instructions

needed to manipulate the target architecture, but at a lower level than the overall

program design. Having briefly outlined the work which has been done in the first

two of these areas, we can finally turn to the last, the area of dataflow program

design.

2.4.4 Dataflow design languages

The obvious vehicle to use for designing dataflow programs is the dataflow graph.

The advantages of using graphs for program design are the same as those of visual

programming: graphical representations of algorithms are simple to understand. In

the case of dataflow, this is particularly evident in the visual representation of

implicit parallelism, since potential parallelism can be seen wherever two

operations do not have direct dependencies.

A number of notations for dataflow graphs have been proposed; the original

motivation for these was to provide visual design languages for programs to be

implemented on dataflow architectures [Kosi73] [Denn74]. For this reason, a

number of variations arose which reflected design decisions within the proposed

architecture, such as specialised arcs for control tokens [Wo083]. However, the

basic features such as digraphs, arcs representing the paths for data, nodes

representing operations, and so on, remain common [Davi82]. Another feature

which many notations include is the ability to include cycles in the graph; although

allowing data tokens to loop back tends to introduce nondeterminacy, it allows

operations to be given information about the past; this can only be done with loops

since operations themselves have no persistent state between firings. This ability to

express "history-sensitive computations" by allowing graph cycles has proved

useful.

Besides these basic concepts, the graph notations include specialised features

corresponding to programming constructs in lower-level languages, allowing

selection, iteration and so on. Examples of specialised features found in some of

Page 49

Chapter 2 Parallel Programming

these graphical notations are:

• replicators, which copy one input data token to two output arcs;

• unions (merges), which pass on a token from one of a choice of input

arcs to one output arc;

• selectors (switches), which pass on one of several possible input tokens

according to the value of a control input;

• case nodes, which pass on their input token if it has a certain value;

• loop nodes, which pass on their input data token while a control input

remains true.

These operations are equivalent in grain SIze to the fine-grained operations

implemented on dataflow architectures. However, similar graphs continued to be

used when the usefulness of applying dataflow techniques to non-dataflow

architectures began to be recognised - in other words, in a less fine-grained

environment [Shar85]. In such cases, fewer specialised features of the notation

need be provided, since the programmer generally implements the operations

themselves, rather than having to rely on what operations are available in the

hardware. Operations provided by the programmer within a dataflow graph are

generally called dataflow actors (with reference to the actor model, described in

section 2.2.3).

It was primarily the move towards distributed computing of the 1980s which

motivated research into dataflow at a larger grain size. In the LGDF (Large Grain

Data Flow) language [Babb82], [DiNu88], dataflow graphs can be designed in

which the operations are whole modules of the eventual application program.

Programs designed in LGDF are intended for parallel execution across a network of

workstations, hence the need for a large grain size because of the relatively high

cost of communications. While still essentially a design language, LGDF2

[DiNu89] moves even closer to doubling as a high-level implementation language;

TDFL (Task-level Data Flow Language) [SuhI90] is another system with the same

objective. In these systems, while the program modules are still coded in some

textual HLL, the overall design (i.e. the dataflow side of the program) is expressed

in the high-level language. Because it is straightforward to detect parallelism in a

dataflow program, it should be easy for software to take a machine-readable form

of the dataflow graph, and combine it with the module code (the dataflow actors) to

Page 50

Chapter 2 Parallel Programming

form an executable parallel program. This is a powerful idea because it allows

programmers to generate parallel programs without having to write parallel code,

thus avoiding the pitfalls of parallel textual HLLs. Because of this, the program­

mer's own code remains portable - only the tool which generates the parallel code

need be modified for different platforms. The task of generating the parallel code is

shifted from the programmer to the system, with the aid of a visual CASE tool for

parallel programming.

One system which already provides such a tool is Paralex [Baba91]. Paralex

programs use a very simple (acyclic) dataflow language for the program design,

which can be edited using a graphical editor. The actors are coded in textual HLLs

using traditional text editors. The system then compiles this into a set of program

modules which can be distributed across a group of interconnected workstations.

Although the primary goal of Paralex is fault tolerant computing through

replication of the actors, it provides an effective way of parallelising very

computationally intensive programs.

One important aspect Paralex has in common with design languages such as

LGDF is that it is intended for a very large grain size - that appropriate to

networked workstations. This is reflected in the design of their dataflow notations,

which have no specialised operations; the languages provide only very high-level

support for dataflow execution, and lower-level operations such as input/output,

replicating data items, and merging streams of data items must be done by the

programmer within a module.

To summarise, applicative languages and others cater for fine-grained dataflow

(on specialised architectures); there are systems based on textual HLLs for dataflow

execution at a medium-grained level (on conventional multiprocessor architec­

tures); and there are visually-oriented design tools for very large grain dataflow (on

distributed systems). However, as yet no visually-oriented dataflow design system

has been proposed which caters specifically for medium-grained multiprocessors of

the kind described earlier in this chapter.

2.5 Summary

This chapter began by discussing multiprocessor technology, and m particular

Page 51

Chapter 2 Parallel Programming

shared and distributed-memory multiprocessors. These were described in the

context of the other forms of parallel processing equipment, and in terms of the

software grain size which they support. Then, the methods by which they can be

programmed were discussed, in terms of the programming models upon which

parallel programming languages are based. Some of the tools which can be used to

aid parallel programming were also described, with particular emphasis on visual

programming. As noted in section 2.3.2, visual programming is particularly well

suited for parallel programming, because visual abstractions are easier to

understand and work with than textual abstractions - a fact which is particularly

important given the high degree of complexity of concurrent programs of non­

trivial size. The trend towards integrated programming environments was noted.

The dataflow paradigm was then described in detail. Dataflow is inherently a

visual model, and it was mentioned that for this reason, a number of sequential

visual programming languages have been based on dataflow concept. Although

dataflow graphs were originally intended for the design of fine-grained dataflow

programs, they have also been used as a visual programming language at the large­

grained level.

This thesis seeks to fill the gap in current dataflow programming research

between the fine-grained and large-grained levels of parallelism. The next chapter

introduces a new form of dataflow graph designed with efficient execution at the

medium-grained level in mind, and intended for use as a visual language; and

indeed, as the basis of an integrated CASE environment, supporting the develop­

ment of parallel software from the design stage, through implementation and

debugging to performance tuning.

For reasons of scope, this thesis examines the effectiveness of the new notation

only in terms of efficiency of execution, and does not include an evaluation of its

Use as a visual design and implementation language. The possibilities for such an

evaluation are discussed in Chapter 6. Moreover, this research is limited to the

consideration of dataflow programs on conventional MIMD multiprocessors. This

chapter has sought to show that there is a need for a visual design and programming

language for medium-grained mUltiprocessors; the remainder of the thesis seeks to

demonstrate that dataflow is a feasible candidate for such a language.

Page 52

Chapter 3

The MeDaL Notation

This chapter introduces MeDaL (an acronym for Medium-grained Dataflow

Language). The MeDaL notation has been developed as a visual way of specifying

parallel programs, and in some respects resembles the various dataflow notations

described in the previous chapter. However, MeDaL is unique in being designed

specifically for the medium-grained (inter-task) parallelism commonly used for

parallel programming on the medium-grained MIMD multiprocessors described in

Chapter 2. This chapter describes MeDaL and the decisions taken in its design, in

relation to many of the issues of parallel programming discussed in Chapter 2;

Chapter 4 goes on to describe how MeDaL can be implemented to allow the

efficient implementation of parallel programs.

MeDaL, however, is not designed purely to be a visual specification of parallel

programs. Rather, it is designed to fulfill some of the roles of a software develop­

ment methodology, supporting the development of parallel software from the

design phase, through implementation and debugging and testing, to performance

analysis and tuning. This thesis concentrates on the implementation phase, though

tools based on MeDaL for supporting the other phases are described in Chapter 6.

However, these wider aims of MeDaL should be borne in mind and will be referred

to in the discussion of some of the design decisions.

This chapter is structured as follows: firstly, the main concepts of the MeDaL

notation are described, to provide an understanding of the MeDaL approach to

describing parallel programs. Then the semantics and syntax of the notation are

described in detail, drawing on these concepts. Having presented MeDal, a number

of the key design decisions that were made during its evolution are discussed, and a

number of the alternative ideas which were considered but rejected are described.

It is envisaged that any full implementation of MeDaL would include a library of

useful functions which could be incorporated into MeDaL programs, and a minimal

suggested library is also described. An example MeDaL program is then presented,

and its salient features discussed. The implementation and performance of this

Page 53

Chapter 3 The MeDaL Notation

program is described in Chapter 5.

The final section of this chapter gives a reprise of the main features of MeDaL,

and shows how MeDaL achieves its aims as a flexible parallel program specifi­

cation language.

3.1 Concepts

This section describes the specific aspects of dataflow used in the MeDaL notation.

MeDaL is a traditional data-driven dataflow notation in the tradition of those

described in section 2.5. Programs are specified in the form of a MeDaL graph,

consisting of nodes (called dataflow actors) and lines connecting them (called

datapaths). Data can only flow through datapaths in one, specified direction, but

loops in the graph are allowed, so MeDaL graphs are cyclic digraphs. MeDaL

follows the dynamic dataflow model in that more than one item of data is allowed

to exist on a datapath at the same time.

With specific exceptions, MeDaL actors obey the strict enabling rule; they fire

only when data is available on all input paths (and since datapaths are directed,

each path is an output path for one actor and an input path for one actor). Once data

has initially entered the graph, actors become enabled when at least one item of

data is available on each of their input paths, and fire repeatedly (normally

consuming one item from each of these paths), for as long as this condition

continues to be met. When this condition is no longer true, the actor becomes

disabled once it finishes processing its last complete set of inputs, but may become

enabled again later. Execution of the program terminates when no actor is in an

enabled state (or until the program is halted artificially). Although this firing rule is

the fundamental basis of the execution of MeDaL programs, there are a number of

variations to it, provided for greater flexibility of programming, and which form the

basis of much of the MeDaL notation and semantics.

MeDaL is designed for medium-grained parallel programming, and therefore

only describes algorithms at the medium-grained level, in other words, at the sub­

program level. MeDaL actors are tasks, such as subroutines within an application

program; the tasks themselves are not described by the notation. Like the large­

grained dataflow systems described in Chapter 2, the graphical representation of an

Page 54

Chapter 3 The MeDaL Notation

actor corresponds to a section of code written in some other language; in the case of

MeDaL, it corresponds to a single function or procedure. It is envisaged that actor

code will normally be written in some textual imperative language such as a C or

C++ function, a Pascal procedure or a FORTRAN subroutine. The interface to

these code sections, in an abstract form, is included in the specification of MeDaL.

The code section which forms an actor in MeDaL is known as a method (following

object-oriented terminology) and an actor which contains a method (all actors

contain zero or one methods) is known as a method actor.

MeDaL consists of six kinds of actor, which can be divided into two types:

general-purpose and special-purpose. The function of general-purpose actors is not

specified by the notation, and hence all such actors contain a method. The special­

purpose actors are, as the name suggests, provided for a specific purpose and does

not neccessarily contain method code supplied by the programmer; but in some

cases, a method can be supplied if the programmer wishes, and these cases are

described below.

The components which make up the MeDaL notation consist purely of closed

shapes and lines which connect them, but textual annotations are recommended to

aid the programmer in relating the MeDaL graph level of the program to the actor­

method level. In particular, all method actors should be labelled with the name of

the method (as used in its declaration in the underlying code). All of the illustra­

tions of MeDaL features and the examples in this thesis include annotations, but it

should be borne in mind that they do not have any syntactic effect on the notation

itself.

MeDaL programs can be given a modular structure; to follow the acting

metaphor, these modules (consisting of a collection of actors and datapaths) are

called companies. A program comprises one or more companies. These companies

form a tree structure, with the first company at the root of the tree, and any

company can contain any other company (except the root company), including

itself, thus allowing recursion. Companies serve as the visual equivalent of a

macro. When executed, a MeDaL graph is created from the root company, and

subsequently whenever data flowing along a datapath encounters a company, the

graph used for execution is rewritten to include the graph contained in that

company. This hierarchical structure encourages the top-down structured design of

Page 55

Chapter 3 The MeDaL Notation

programs using the notation.

With these points in mind, it is now possible to describe the notation itself.

3.2 MeDaL Semantics and Syntax

As outlined above, MeDaL programs consist of several components:

• Companies, which contain:

• Datapaths

• Actors, which may contain:

• Methods

This section describes the semantics and visual syntax of datapaths and then

actors. The actor methods interface with datapaths in various ways, and these

interfaces are described in the appropriate sections. Finally, the syntax and

semantics of companies are described.

3.2.1 Datapaths

Semantics

A datapath can be thought of as a unidirectional buffer between a producer and a

consumer. Data items are queued in FIFO order and cannot overtake each other.

The data items must all be of the same, specified data type, but this data type need

not be an atomic type; structured data types such as records and arrays can be

passed as single items, for instance.

There are two types of datapath, called E-type and F-type paths (a mnemonic

for empty and full paths). E-type paths are used in most circumstances, and

implement a classic FIFO queue in which, when a consumer reads the head of the

queue, that data item is removed from the queue. F-type paths are similar, except

that if the tail of the queue is empty, the item at the head is not removed, only

copied; it remains in the queue for as long as it is the only item in that queue, and

may be consumed any number of times. This implements a form of "persistent"

memory, in the sense that the item is stored persistently relative to the number of

firings of the consumer actor. This is important because actors themselves are not

intended to retain any state (such as persistent memory) between firings.

Page 56

Chapter 3 The MeDaL Notation

Syntax

A datapath is represented as a line between the producer actor and the consumer

actor. The direction of flow is indicated by an arrowhead at the consumer end. The

arrowhead is coloured white in the case of an E-type path, black in the F-type case

(Figure 3.2a). In addition, the ends of the datapath line can only touch the

"southern" edge of its producer actor, and the "northern" edge of its consumer.

Thus, the overall flow of data is north to south, but datapaths are not constrained to

being straight north-south lines, and effectively data may flow in any compass

direction so long as the datapath connects an output to an input.

E-type F-type

Figure 3.2a: Datapath syntax

Method interface

Datapaths can only be manipulated by the method code in the producer actor. The

actor can send a data item on a particular output path, adding it to the path's

queue, which may cause the consumer actor to fire immediately. The producer can

also flush a particular output path, destroying all data in the queue, ensuring that

the next item to be sent on that path will immediately be the head of the queue.

This is particularly useful in conjunction with F-type paths.

There are two further operations on datapaths. Send-sticky acts like send,

placing a data item on an output path; however, being "sticky" means that it cannot

be delivered to the consumer - even if it reaches the head of the queue - until re­

sent using send. In conjunction with the method interface with the actor (see

below), this provides a powerful form of persistent memory between firings

(though unlike the persistence of the last item in an F-type path, the stickiness

mechanism requires the intervention of a method actor). This mechanism is

described fully in section 3.4. Finally, a predicate function is_sticky is

provided which for a given output path, returns the boolean true if the tail item of

that path is "sticky", andfalse if not.

For the purposes of the notation, datapaths are assumed to be infinite in storage

capacity; in other words, send operations always succeed, and never "block" the

Page 57

Chapter 3 The MeDaL Notation

producer. If the system runmng a MeDaL program runs out of memory it is

assumed to be fatal to the MeDaL program (as it would be to any other

application).

3.2.2 Actors

General Semantics

Actors have 0 or more inputs and 0 or more outputs, each input or output being

connected to a datapath in accordance with datapath semantics. Like datapaths,

actors' inputs and outputs are typed (only carry items of one data type), and it

follows that the type of each input or output must match the type of the datapath to

which it is connected.

When data arrives on a datapath for a particular input, this may cause the

recipient actor to become enabled; the definition of enabled varies between the six

different kinds of actor presented below. At some point in time after the actor

becomes enabled, it begins execution or fires. Firing denotes the start of execution

of some code associated with the actor: either a method supplied by the program­

mer, or in the case of the special-purpose actors, code provided by the system to

carry out a predefined action in the absence of a method.

All actors are assumed to terminate. In most cases, an actor can then be fired

again (after termination) if data is again available on all input paths.

General Method Interface

An actor's only interaction with its input paths occurs at the point when it fires. At

this time, it effectively performs a read - inpu t operation on each of its input

paths, taking the data item at the head of each datapath's queue (which mayor may

not remove it from the queue - see the section on datapath semantics above). Also

at firing, the actor effectively performs a read-output operation on each of its

output queues, which returns an empty data item of the appropriate type if send­

sticky has not been used on that output, or if send-sticky was used, returns

the "sticky" data item sent. All inputs and outputs read in this way are then passed

to the method (or internal) code which begins executing. This procedure is

automatic, and only the results are visible to the programmer.

Although these read operations occur only once, when the actor fires, actors are

allowed to place data on output paths using send etc. at any time during execution,

Page 58

Chapter 3 The MeDaL Notation

in order to allow any actors which may depend on them for data to fire as early as

possible.

This programming interface applies to all six types of actor provided by the

MeDaL notation, and the particular semantics and syntax of each of these are now

presented. The six types are: general-purpose actors, deep actors (a subset of

general purpose actors), source actors, sink actors, merge actors and replicators.

General-purpose Actors: Semantics

The general-purpose actor has one or more inputs and one or more outputs. There is

no default action, so general-purpose actors always contain a method supplied by

the programmer.

The standard general-purpose actor follows the general semantics above.

However, there is also a special type of general-purpose method actor called the

deep actor (the reason for the name will be revealed in section 3.5). Multiple

instantiations of the same deep actor can exist at the same time; for instance, if

there are three or more items of data in each of its input paths, a deep actor can fire

three times immediately, rather than waiting until the method has terminated before

firing again. Each instantiation consumes the head of each input queue, and may

then execute concurrently with the others; however, the act of firing itself (and the

reading of the heads of input queues) is not concurrent. Moreover, making a

method actor a deep actor does not guarantee concurrency, only allows it if

sufficient processors happen to be available. It should be emphasised that only one

copy of each general-purpose actor can be executing at a given time unless it is

explicitly a deep actor; in this respect, MeDaL encompasses both the static and

dynamic models of dataflow.

General-purpose Actors: Syntax

A general-purpose actor is represented in the MeDaL notation as a round-ended

box as shown in figure 3.2b. The input/s arrive on the north edge and the output/s

leave from the south edge. The box contains a label indicating what task it

performs.

Deep actors are denoted by having a shaded border round the outer edge.

Page 59

Chapter 3 The MeDaL Notation

C_~)

Figure 3.2b: General-purpose actors

Source Actor: Semantics

The source actor is the only type of actor with no inputs. A source actor fires only

once, when the company which contains it is expanded (at the start of the program's

execution in the case of the root company) - see section 3.1. If no method is

supplied by the programmer, the default action is to place the boolean value true on

its output path and then terminate. It can have only one output path. Since all other

actors cannot fire until data arrives on their input path/s, it follows that all useful

MeDaL programs must contain at least one source actor.

Source Actor: Syntax

The source actor is drawn as a polygon made from a square above a right-angled

triangle with the right-angle pointing south. The output leaves from the point of the

triangle. The polygon box may contain a label, especially appropriate if the actor

has been given a method.

Figure 3.2c: Source actor

Sink Actor: Semantics

The sink actor is the only type of actor with no outputs. It has one input. The

default action after firing is to do nothing, so that the data arriving on the input path

(and being consumed when the actor fires) is lost. However, a method can be

provided, for instance to release memory or other resources used by the data item.

Page 60

Chapter 3 The MeDaL Notation

Sink Actor: Syntax

The sink actor is represented by a polygon made of a square below a right-angled

triangle pointing north. The input arrives at the north point of this triangle. The box

may contain a label.

Figure 3.2d: Sink actor

Merge Actor: Semantics

The merge actor is the only type of actor which is not subject to the normal firing

rule for actors. It has two or more input paths, and one output path, all of which

must be of the same data type. The actor fires when a data item arrives on anyone

input path, consuming that data item only. If two items arrive simultaneously on

two paths the actor will fire twice, consuming the items one at a time; but the order

in which they are taken is not defined. Thus the merge actor simply copies the

inputls to the output. It cannot contain a programmer-supplied method, for reasons

explained in section 3.3.2.

Merge Actor: syntax

The merge actor is a closed semicircle, with the straight edge on the north side. The

inputs arrive on this north edge and the output leaves from the southmost point of

the semicircle. (In Figure 3.2e a merge actor with two input paths and its one output

path is illustrated).

Figure 3.2e: Merge actor

Page 61

Chapter 3 The MeDaL Notation

Replicator: Semantics

The replicator is essentially a specialised form of the method actor. It has one input

path and two or more output paths, all of which must be of the same data type. The

replicator's function is to copy the input to all of the outputs. It cannot contain a

method (again, the reason for this is discussed in section 3.3).

Replicator: Syntax

The replicator actor is a right-angled triangle pointing north, as illustrated in Figure

3.2f. The input path arrives at the north point, and the outputs leave from the south

edge. (In Figure 3.2f it is illustrated with its input path and two output paths.)

Figure 3.2f' Replicator

3.2.3 Companies

The final visual aspect of the MeDaL notation is that of the company. As outlined

in section 3.1, a company is essentially a representation of a hierarchical module of

a MeDaL program. Each company can be viewed in two ways: as a component of

another company, or as a MeDaL graph in its own right. Naturally, the two

different logical views of a company means that two graphical representations are

needed.

Viewed as a component, a company simply replaces part of a graph. A

company can appear anywhere in a MeDaL graph, in place of a number of actors

and datapaths; it is a visual macro, analogous to textual macros in textual

programming languages. Graphically, it is represented as a rectangular box (which

may contain a label indicating the name of the company). To be useful, at least one

datapath will enter any company. Input paths enter via the north edge, but since the

company is not itself a destination to which data can be delivered, the input paths

do not have arrowheads here. The company may also have outputs, which leave

from the south edge. Figure 3.2g illustrates a company with two inputs and two

outputs; in a real MeDaL program, it is likely that the inputs and outputs would be

Page 62

Chapter 3 The MeDaL Notation

annotated to permit association with the exploded (graph) view.

Figure 3.2g: Company (component view)

Viewed as a graph, the company is represented as a larger rectangular box,

containing other components of the MeDaL notation~ indeed, all MeDaL

components appear within a company. It should also contain a textual label

indicating its name (the name of the program itself, in the case of the root

company). Companies which are components of another company will have at least

one input path, which enters from the north side of the box, and if there are output

paths, they leave to the south side of the box. An example of this notational device

can be seen in the matrix multiplication example in section 3.4.2.

The numbers of inputs and outputs to a company, and the left-to-right ordering

must remain the same for both of its two views: for example, the leftmost datapath

seen entering a company when viewed as a component, is the leftmost path to

emerge from the north side of the box when the company is viewed as a graph.

It should be noted that at run-time, the graph contained in a company is added

to the graph of the main program the first time that a data item is sent to a datapath

which crosses into that company (it is also at this point when any source actors

contained in the company are fired). The fact that companies are used for dynamic

expansion of the graph at run-time means that recursion is possible. Thus,

companies play both a structural rOle, in terms of organising groups of MeDaL

components into a hierarchical structure, and a dynamic role, in providing groups

of components to be executed at run-time.

3.3 Design Decisions

This section examines some of the main design decisions which were made during

the process of designing the MeDaL notation. After briefly justifying the visual

syntax, a number of details of the semantics are examined: firstly the semantics of

Page 63

Chapter 3 The MeDaL Notation

the various types of actors, then those of datapaths. The least clear-cut design

decision involved was the form which persistent memory should take, and section

3.3.4 describes a number of the alternative mechanisms for this which were

considered, along with possible visual representations which could have formed

part of the notation. It is likely that any future research based on MeDaL would

wish to re-evaluate the design criteria explained in this section, so as full an

account is given as possible.

3.3.1 General Visual Syntax

The shapes of the MeDaL actors were chosen primarily to be as visually distinctive

as possible. It is the shapes rather than the sizes which distinguish actors, but it is

assumed that the actors with be drawn with the relative proportions illustrated in

section 3.2.

The merge and replicator actors are the shapes proposed by Sharp [Shar82].

The round-ended boxes of the general-purpose actors correspond to what are

usually shown as circles in more traditional notations such as Sharp's, but it was

found that an elongated shape was convenient for longer, more descriptive textual

labels - necessary in MeDaL to relate the visual level to the hidden method level.

The source and sink actors are novel to the MeDaL notation, and the shapes

were chosen simply to be distinctive, emphasising the special semantics of these

actors.

The use of arrowheads on the datapaths is not, strictly speaking, necessary in

MeDaL since the notation specifies that where a datapath connects to a south edge

or point, it is an output, and when a north edge or point, it is an input. However, it

was found that the use of arrowheads reinforced this directional convention,

making the graphs easier to read. Additionally, some means of visually distinguish­

ing E-type and F-type datapaths was needed. One possibility would have been to

used dashed or dotted lines, but to incorporate this in the colouring of the

arrowheads was preferred because this difference in datapaths, after all, only has an

effect on the consumer, which is where the arrowheads are located.

Page 64

Chapter 3 The MeDaL Notation

3.3.2 Actor Semantics

This section briefly justifies the provision of the six different types of MeDaL

actor. Some notations have chosen to have only one type of actor, while others

have provided a wide variety; this decision is essentially a trade-off between

providing useful functions (which, being part of the system, can be implemented

for optimum efficiency), against providing generality and a simple programming

model. MeDaL attempts to compromise between these goals.

For instance, the replicator and the merge actor are provided as useful

functions. They have proved useful in designing applications using MeDaL; it is

regularly necessary for one data stream to be copied to several different actors, and

for several streams to be merged to lead to one destination (for instance when

several sections of a program have been generating the same type of results).

Neither of these actors is strictly necessary - their purpose could be achieved by

multiple outputs and inputs carrying the same data. However, this would place an

extra burden on the method programmer. Moreover, these actors can be imple­

mented efficiently: because both can fire immediately, the overhead of checking for

enablement can be avoided, and because their function is known to be small, the

overhead of starting a new process or thread of control to execute them can be

avoided. The replicator is not allowed to contain a method to preserve the latter

efficiency gain.

The merge actor is not allowed to contain a method since it has a different

firing rule to the other actors, and a more complex interface to a method would

therefore be needed, to incorporate some mechanism for indicating which input

contained a data item. Although some benefit could be seen from allowing merge

actors to contain a method - the method could, for instance, have provided sorting

functions - simplicity of the programming interface was seen as the overriding

factor.

The source actor is included in the notation because of its special firing rule; it

was a design criterion that MeDaL graphs should express an entire program, from

start to finish, including its initial input; therefore, there was a need for an actor

which could fire without previous input. Additionally, method source actors can

provide input data (including structured data such as in the matrix-multiplication

example in section 3.4) to other actors.

Page 65

Chapter 3 The MeDaL Notation

The sink actor might be seen as being of limited use, since it produces no

output, but it is included for two reasons. The first reason is completeness, since it

complements the source actor; but the other is for reasons of modularity and code

re-use. It is a principle of code re-use that programs should be structured as

general-purpose modules; the MeDaL equivalent is to design actors with general

functions. Such actors can then simply be plugged into a graph where their function

is needed. However, if a particular output of that actor is not needed in some

circumstances, it cannot simply be left unconnected, since all datapaths must

connect an output to an input in a legal MeDaL program. The alternatives are either

to re-write the actor code for those specific circumstances, or to connect that output

to a sink actor which will simply ignore it. The latter approach has the extra

advantage that if the program is modified later and that output is needed, the sink

actor can then be removed and other actors inserted, without resorting to changes at

the method code level.

The provision of specialised functions such as the merge actor may seem out of

place in a medium-grained programming language; however, it is because these

specialised functions are recognised primitives of the language, that they can be

recognised at compile time and hence implemented as efficiently as possible. There

is a tradeoff to be made between efficiency and generality, and in providing a few

specialised actors, the MeDaL notation is an attempt to balance these factors.

The provision of the standard general-purpose method actor is obvious at the

medium-grained level, being a vehicle for the programmer's code. The inclusion of

the deep actor involves more complex issues. Since copies of its method code can

execute concurrently on different sets of input data, it provides an extra type of

concurrency available to a programmer using MeDaL.

Thus, there are three types of parallelism available in MeDaL. These can be

characterised as:

• vertical parallelism - when two actors have a direct dependency (i.e.

datapath) between them, they are normally drawn one above the other;

• horizontal parallelism - when two actors do not have any direct

dependency, they can be drawn next to each other horizontally; and

• depth parallelism - a third dimension is needed for copies of the same

actor, occupying the same place on the graph, but operating on different

Page 66

Chapter 3 The MeDaL Notation

data. Hence the name "deep actor".

Vertical, horizontal and depth parallelism correspond exactly to the structure, result

and activity parallelism described in Chapter 2. This makes the maximum possible

flexibility of programming techniques available when using MeDaL to design

parallel programs.

3.3.3 Datapath Semantics

As described above, two types of datapaths are provided: the normal E-type and the

specialised F-type. The main advantage of the F-type path is that when one data

item needs to be used repeatedly, it need not be repeatedly transmitted by the

producer. Obviously transmission of a data item on a datapath would incur some

overhead, both in terms of processing time (consumed by the actor doing the

transmitting) and of memory space (occupied by the datapath queue). This

overhead would very likely be significant if the two actors involved are executing

on different processing nodes of a message-passing architecture, especially if the

data item was a large, structured data type object such as a matrix. Since MeDaL

was designed with efficient implementation on both shared-memory and

distributed-memory architectures in mind, this was an important consideration.

A corollary of this is that the F-type path allows different input streams to one

actor to contain different numbers of data items. Using only E-types, to fire N

times, an actor must have N items of data on every input path. This is reasonable at

the fine-grain level where the operations carried out by actors are mathematical and

have a set number of parameters. However, at a higher level, there is often no one­

to-one relationship between streams of different types of data. When there is a one­

to-N relationship, the one item would have to be transmitted N times, incurring the

overhead described above.

A further use of the F-type path, in combination with the flush operation, is that

it makes possible a "most recent value" service, for occasions on which an actor is

only interested in the most recent value of a particular stream of data.

Thus, the F-type datapath is useful both in terms of functionality and potential

efficiency. There were a number of alternative strategies which could have been

used to provide a similar functionality, and these will be discussed in section 3.3.5.

However, even accepting that the functionality of the F-type path is useful, this

Page 67

Chapter 3 The MeDaL Notation

does not justify the concept on which both types of datapath are based, namely the

provision of a FIFO queue.

There are, of course, a number of alternatives to simple FIFO queues. Different

types of dataflow system (see Chapter 2) have used a number of different types of

path. In the feedback interpretation of dataflow, for example, a simple, finite FIFO

queue is used. However, for MeDaL, it was decided that physical limitations for

queues are an implementation issue which need not be incorporated in the abstract

notation, hence the assumption of infinite-sized queues. In loop-unravelling

dataflow, paths no longer implement simple queues; data tokens (items) may

overtake each other according to information encoded in them at an earlier stage

(using tags or colouring). The need for this arises because, in loop-unravelling

dataflow, several instantiations of one actor can exist concurrently (in the same way

as for MeDaL's deep actors). When this is the case, one instantiation may be started

after another, but may (depending on the data values being processed) finish first;

thus the data being processed become disordered. Because the actors are simple

fine-grained operations, the actor receiving the results from the multiply­

instantiated actor cannot in general be sophisticated enough to return the data

tokens to their correct order, so this is done by the system, by re-ordering data

according to its colour or tag.

However, because MeDaL is aimed at medium-grained processing rather than

fine-grained, it is reasonable to assume that where a deep actor is used, if the order

of the data is important, the receiving actor can include code to re-order the data

items correctly. This gives the programmer flexibility to decide what mechanism to

use for re-ordering; for instance, a tag field could be used if the data items are

records. In the case of the matrix multiplication example in section 3.4, the first

element of a fixed-size array can be used to indicate which row (of the matrix to

which it belongs) a particular item represents. Since MeDaL also provides a

persistent memory mechanism (see below), in which a re-ordered data structure can

be built up over a number of firings, this is a reasonable burden to place on the

programmer, and has the benefit of making MeDaL itself simpler and more elegant.

Page 68

Chapter 3 The MeDaL Notation

3.3.4 Persistent Memory

It has long been a principle of dataflow languages that dataflow operations

themselves should not be able to retain any state, partly to keep intact the prized

"freedom from side-effects" principle. On the other hand, the usefulness of some

sense of persistent state has been recognised by some, leading for instance to

decisions to allow cycles in dataflow graphs, as described in Chapter 2.

Absence of persistent state is also desirable from the point of view of the

implementor of a dataflow language. This is because in the general case, if an actor

fires, reserves some memory for its persistent state, then does not have enough

input data to fire again, there is no way for the system to tell whether that actor will

ever fire again; so the memory it reserved can never be reclaimed by a "garbage

collector" .

However, when considering medium-grained dataflow, there is one criterion

which was seen as essential - that of ensuring that data structures are sufficiently

large-grained to ensure efficient execution. In a medium-grained environment, it is

important to be able not only to break data structures down into their components

for processing, but also to be able to build small components up into larger ones.

Without this ability, data structures can only get smaller, causing actors receiving

many small data items to fire once for the arrival of each one, potentially causing

unacceptable overheads. This problem is unique to medium-grained dataflow, since

in fine-grained dataflow there is less need to build up complex data structures, and

at the very coarse-grained level other persistent storage (such as files tore) can be

used, since its overheads are small compared to those of communication between

nodes.

The question therefore arises of what mechanism can be provided for persistent

storage in which complex data types can be built up out of simpler ones - and

should it be purely at the method level or should it be represented at the visual

(graph) level as well? The following sections examine three possible answers to

this question.

i. Memory Entities

One possible solution to the problem of persistent storage would be to provide a

new, third type of entity within the MeDaL notation (in addition to datapaths and

Page 69

Chapter 3 The MeDaL Notation

actors) - a memory entity. An actor could, for instance, communicate with a

memory entity to store data during one execution, and again to retrieve it following

a later firing. Since such communication would be two-way, either two standard

datapaths would be needed, or a new type of communication path could be

employed. Figure 3.3a illustrates a possible visual representation of the latter.

, ,

Figure 3.3a: Memory entity

\

\

'\Z

The advantage of a notation like this is that it provides an explicit visual representa­

tion for the persistent memory, making it easy to see which actors in a MeDaL

program use persistent memory. It is desirable that an actor which needs persistent

memory should be able to store data items of more than one different data type; this

could be accommodated by allowing connections to several typed (single data type)

memory entities, several typed connections to one general (non-type specific)

memory entity, or one typeless connection to a typeless memory entity. In the latter

case, the send and fetch operations needed by the actor could even be pattern-based

operations similar to Linda's tuple-space operations (see Chapter 2). Since the

contents of the memory entity would be managed by the MeDaL run-time system,

garbage collection would be possible.

There are, however, a number of disadvantages. The extra visual representation

would make the MeDaL notation more complex, and hence less easy to understand.

In particular, the introduction of a new type of connection which does not behave

like normal datapaths is confusing and counter-intuitive. The method programming

interface, too, would have to be complex, specifying what type of data was required

from the memory entity (or which memory entity to query). Each fetch operation

from the memory entity would require two messages to be passed (one in each

direction), and even if this did not constitute a major communications overhead, it

would require some programming complexity. However, the major objection is

perhaps that this mechanism does not fit in well with the dataflow paradigm of data

flowing from one actor to the next. A "cleaner" solution would incorporate

Page 70

Chapter 3 The MeDaL Notation

persistent memory into either the actors or the datapaths, and these are the

remaining two options to be examined.

ii. Persistent Memory in Actors

It was noted in the introduction to this section that allowing actors to own persistent

memory in which they can store some state between firings is a disadvantage from

the point of view of automatic garbage collection. However, this approach does

have a number of merits which weigh against this. First among them is simplicity:

each actor with persistent memory could simply own a typeless pointer to a block

of memory (which could, on request, be extended). The actor could then manage

the storage of variables within this memory, so the mechanisms used could be as

simple (or complex) as the application required. The presence of persistent memory

with the actor could easily be denoted visually, for instance by shading one end as

in Figure 3.3b; a visual distinction would be useful to the MeDaL programmer if

only to see at a glance which actors owned persistent memory.

Figure 3.3b: Persistent memory within an actor

This mechanism provides persistent memory in a very simple and natural way,

given that the requirement is for an actor to be able to own some persistent memory

in which, for instance, simple or small data types can be built up into more

complex ones. The programming interface need not be particularly complicated.

The only disadvantage is that the onus of storage management (for instance,

indexing what items of data are where in persistent memory, as well as the release

of redundant memory) is on the method programmer.

iii. Persistent Memory in Datapaths

The final option, and that which was chosen for MeDaL, avoids the latter

disadvantage. As described in section 3.2, the approach chosen consists of

extending the semantics of the "send" operation on output datapaths to include a

variant which uses the datapath being sent to as persistent memory (i.e. send­

sticky). This is extremely simple and has a number of advantages, as follows.

Page 71

Chapter 3 The MeDaL Notation

Firstly, datapaths are already ordered and typed, so no indexing method is needed

to keep track of what data items of what data type are where in the persistent

memory area, as would be needed in the other schemes above. Secondly, memory

management of the datapaths is already done by the system, so persistent memory

can be managed by the same mechanism, keeping both the implementation and the

semantics of the persistent memory mechanism simple. Thirdly, no explicit

retrieval operation is needed, since it can happen automatically at fire-time.

The only slight disadvantage is that the use of this mechanism is not obvious at

the MeDaL graph level, since it is implemented at the method interface level, in the

form of operations on datapaths by actors - hence it does not have a visual

representation. However, its use could easily be indicated by a run-time or

postmortem tool, by changing the colour or line style of a datapath to indicate that

it contains persistent data.

3.3.5 Multiple Streams

The problem arising when an actor needs to have different numbers of data items

arriving on different input streams was described in section 3.3.3 on datapath

semantics. This problem is closely related to the question of how to manage

persistent memory, because if a mechanism is to be provided by which one data

item is retained from one stream while many arrive on another, then clearly one

approach is to store that one data item in persistent memory.

The F-type paths described in section 3.3.3 are in effect a form of persistent

memory, retaining the last item in a FIFO queue to stop it becoming empty. In

effect, this is a method of altering the synchronisation of data arriving at actors'

inputs without altering the firing rule. Its advantage is simplicity (indeed, it is

invisible at the method code level); its disadvantage is that it forms a second type

of persistent memory to that described above.

In designing MeDaL, a number of options were considered which would have

solved the multiple-streams problem and the persistent memory problem in a more

integrated way. This section describes seven of these options, and why only the last

of them was chosen.

i. The Do-nothing Approach

Provision for multiple streams and persistent memory is not strictly necessary if

Page 72

Chapter 3 The MeDaL Notation

actors' outputs are fed back into their inputs. Figure 3.3c illustrates this being done.

A merge actor is used so that the initial input and subsequent outputs arrive at the

same method actor input.

Figure 3.3c: Output looped back to input

The disadvantages of such an approach are many. For instance, the graph

surrounding this one actor would be come extremely complex if it had, say, five

outputs which might either be looped back or (when finished with) delivered to

somewhere else. Also, this approach allows an N: 1 relationship between input

streams, but not N :M. The loop-back circuit cannot easily be flushed, to allow

replacement of the value being used on that input to the actor. The overhead of

transmitting data on an output path and storing it until the next firing would be

incurred, even in the next firing was immediate. And if complex data types were

being built up from simpler ones during the cycling process, data typing of

datapaths would have to be relaxed and the method code programmer would have

the extra burden of working out what stage of the process had been reached for a

particular input.

ii. A New Method Merge

This idea combines the MeDaL merge actor with some form of persistent memory.

Relaxing the rule that merge actors cannot contain methods, this actor would

contain a method which, according to the merge actor's firing rule, would execute

whenever data arrives on anyone of its inputs. It would then store this data in a

persistent-memory queue, one for each output; and if there was data in every queue,

would dispatch the head of each queue on its outputs. It would have semantics

similar to those of the F-type path, retaining the head of the queue if the tail was

empty. In this way, it would equalise the numbers of items of data on each datapath

stream. Figure 3.3d illustrates such an actor with in-actor persistent memory, but it

Page 73

Chapter 3 The MeDaL Notation

could equally well make use of persistent memory in datapaths.

Figure 3.3d: Equalising method merge

The advantage of this idea is that only one type of datapath would be required (the

simple E-type). However, this solution would not be efficient. The actor-firing

overhead would be incurred each time data arrived on each path. The actor would

be a potential bottleneck, since actors cannot fire again until they have finished

executing; in this case, a bottleneck would occur if data items arrived on the input

paths faster than the actor could process them. Finally, because data items would be

duplicated on the output paths (for instance, in the case of two streams of Nand 1

items of data, the one item of data on the second stream would be transmitted N

times) far more datapath storage would be used, needlessly duplicating values.

iii. Datapaths Into Persistent Memory

Another strategy would be to adapt the ideas of persistent memory as being either

within an actor, or a separate entity. If an actor's private persistent memory was

considered separate from it (either attached or as a separate memory-entity), a

system could be employed whereby datapaths could deliver data items direct to

persistent memory rather than to the actor. The actor would still be subject to the

strict enabling rule, but this would only apply to the actor's inputs not the

persistent-memory inputs. Inputs to persistent memory would be automatically

handled by the system when they arrived, by some kind of server mechanism.

Possible visual representations of this are shown in Figure 3.3e.

Page 74

Chapter 3

, ,
\

Figure 3.3e: Datapaths to persistent memory

The MeDaL Notation

The attraction of this method is that again, F-type paths are not needed since the

same mechanism is used for general persistent memory, and storage of data from

streams of potentially different numbers of items. However, for user-defined data

types to be transmitted through datapaths, the server code and the method interface

with persistent memory would need to be sophisticated. Moreover, the firing rule

might need to be altered to ensure that the actor could not fire until at least one data

item had arrived in each area of persistent memory, since that item might be

essential to execution. Finally, the actor would not be able to fire when data arrived

only at a persistent memory server and not at the actor's main inputs. This

mechanism, therefore, is not very flexible.

iv. Using Shared Memory

The last problem, that of not firing even when some data had arrived, would be

solved if actors could share persistent memory. All datapaths would go to actors,

and the actors would be subject to the normal firing rule. If actors could share

persistent memory stores, they would not need to be synchronised; yet every time

any item of data arrived, an actor would fire and deal with it as necessary. Possible

representations for this, using a separate memory entity and using joint access to

internal persistent memory, are given in Figure 3.3f. In any representation, the

graph would become very complex if more than two actors were to share persistent

memory.

Page 75

Chapter 3

, ,
\

Iv
I

f

/

/

SZ

Figure 3.31" Shared memory

The MeDaL Notation

Although this approach solves the problem of different numbers of data items

arriving on different streams, it does not solve that of an actor firing only to

discover that a vital data item from a different stream has not yet arrived. Indeed,

this is the kind of synchronisation problem which dataflow's strict enabling rule is

designed to solve, so it would clearly be counter-productive to re-introduce such

problems in this way. Moreover, if the function of some actors is purely to accept

data and store them in persistent memory, this method is perhaps rather heavy­

handed, incurring the actor firing overhead each time data arrives on any stream.

Meanwhile, the prize of actors' freedom from side-effects is lost.

v. Use of Demand Dataflow

An altogether different strategy would be to incorporate demand-driven dataflow

into MeDal, which is otherwise purely data-driven. An actor would fire when all

"data-driven" inputs had arrived; it would then "demand" data from its other inputs,

which would then be provided by actors above it, which would keep the items in

persistent memory until needed. Figure 3.3g illustrates a graphical representation

for this, using two different styles of arrowhead for data-driven and demand-driven

paths. The demand-driven path has arrowheads at both ends to emphasise that

messages are passed in both directions (the demand upwards, and the data

downwards).

Page 76

Chapter 3 The MeDaL Notation

Figure 3.3g: Demand-driven dataflow

Of course, the fact that two messages would need to be sent for each demand input

would decrease efficiency on a distributed architecture; streams with differing

numbers of data items would be catered for, but only at the expense of transmitting

some items across datapaths more often than necessary, as with the method merge

solution above. In addition to this, both the method programming interface and the

visual language would be made more complicated by this extension. The desire for

both efficiency and as simple as possible a programming model ruled this idea out.

vi. Synchronous and Asynchronous Inputs

The final approach to be considered involves persistent memory and a more

complex firing rule. Most of the previous solutions attempted to keep the model

simple by maintaining a simple firing rule, but all involved other complexities.

However, the firing rule should not be considered sacrosanct. Rather than

insisting all inputs contain data before an actor can fire, it would be possible to

have a system in which not all inputs need be. Of course, some inputs might be

vital prerequisites to an actor's execution, but others might be optional. The

necessary ones could be called synchronous inputs, and the optional ones

asynchronous, since only the necessary ones need be synchronised (by all being

present) for the actor to fire. The two types would be distinguished visually; Figure

3.3h illustrates a distinction either by arrowhead style, or by their arriving from

different directions: synchronous inputs arriving at the north edge of the actor's

box, asynchronous inputs arriving at the west edge.

Page 77

Chapter 3 The MeDaL Notation

Figure 3.3h: Synchronous and Asynchronous inputs

The actors in Figure 3.3h are shown as containing persistent memory. This would

be necessary in order to cope with different input streams containing different

numbers of items, since the smaller number could be stored in persistent memory.

Thus, this scheme would be relatively efficient, requiring no extra transmission on

datapaths of data items needed more than once. Persistent memory in datapaths

rather than in actors could equally well be used.

The only disadvantage of this scheme is that the method programming interface

would need to be somewhat more complex, since different numbers of inputs may

be present at each different firing. The interface with the actor method would need

to include information about which inputs were present and which were not, and

this information would have to be decoded by the method.

vii. E-type and F-type Paths

The E-type and F-type datapaths described in section 3.2 are very similar to the

synchronous and asynchronous paths described above. However, in the case of F­

type paths, the normal firing rule is circumvented by the datapath delivery

mechanism itself, rather than being explicitly relaxed. This has the advantage that it

can be specified purely at the visual MeDaL level rather than requiring the method

interface to be made more complex. In conjunction with persistent memory being

located in datapaths rather than in actors, it is as efficient as synchronous and

asynchronous inputs, while being simpler for the programmer to use. Hence, out of

all the alternatives described above, the E-type and F-type datapath solution

together with datapath-based persistent memory was chosen as being the best

solution to the problem of how to provide efficient persistent memory.

Page 78

Chapter 3 The MeDaL Notation

3.4 Examples

Having presented the MeDaL notation, this section provides some examples of its

use. The main example used here is a parallel matrix multiplication program. The

features of the notation which it illustrates are described.

First, however, the MeDaL library must be described. It was stated in section

3.1 that a library of actors would be provided for the programmer to make use of,

and a minimal library is described in the following section. These library actors are

an integral part of the MeDaL language; however, they use actors of types

described above and do not introduce new features of syntax or semantics.

3.4.1 The MeDaL Library

This library contains five method actors, based on the primitive types described

above, which in an implementation would contain instructions to the MeDaL run­

time system. The reason for their existence is to provide a clean interface between

the MeDaL program and the "outside world" i.e. the host computer system.

Standard Input and Output Actors

The standard input actor (labelled stdin) is essentially a source actor which fires

whenever a line of character input appears on the program's standard input stream,

as provided by the host operating system. The data type of the output path is text­

string.

The standard output actor (stdout) is the corresponding sink actor, sending its

input to the program's standard output stream. Again, the data type of its input must

be text-string. (In figure 3.4a they are illustrated with their input or ouput path

present.)

The terminology for these actors is inspired by the Unix operating system,

which provides these streams as a standard facility which programs can use without

needing knowledge of whether, for instance, the input comes from a keyboard, file,

or other device. However, MeDaL does not assume the Unix model and the stdin

and stdout actors could be implemented to access devices directly on other systems;

they are intended to provide portable input/output mechanisms.

Page 79

Chapter 3 The MeDaL Notation

stdin

stdout

Figure 3.4a: Standard input and output actors

File Input and Output Actors

These are based on general-purpose actors. The file input actor filein has one input

which specifies the filename, and two outputs, one for any error messages, and one

on which the contents of the file are placed, line by line. All three datapaths are of

type text-string. The fact that the filename to be used is an input to the actor means

that the filename is under program control at run-time.

The file output actor fileout has two inputs and one output: one input for the

filename, and the other for lines of text to be sent to the file; the output is for any

error messages. Again, the inputs and output are all of type text-string. In figure

3.4b the fileout actor is shown with an F-type path as the filename input, with the

effect that the filename to be used need only be transmitted once, and will remain

the same each time a new line arrives on the data input.

filein fileout

Figure 3.4b: File input and output actors

Halt Actor

The halt actor is a sink actor (labelled halt) which contains a method. When

executed, its effect is to cause the entire program to halt as soon as all currently

executing actors have finished their processing and terminated (it was stated in

section 3.2.2 that all actors are assumed to terminate). This allows a more elegant

termination than waiting until all actors run out of inputs. It is intended that it could

Page 80

Chapter 3 The MeDaL Notation

also be used for debugging, not only in forcing early termination of the program as

a whole (i.e. while there are still enabled actors) but for use as a breakpoint after

which the program could be restarted.

halt

Figure 3.4c: Halt actor

3.4.2 Example MeDaL Program

As a simple example of how a program can be expressed in the MeDaL notation,

consider a program for multiplying two matrices together. It is well established that

there is potential parallelism is this computation, since each element of the

resulting matrix depends only on the values of one row of the first matrix and one

column of the second. Assuming the first matrix A is of size i,j and the second B of

size j,k, the result will of course be of size i,k. Thus, for maximum parallelism, one

would create ixk processes, each of which would compute one element of the result

(by multiplying one row of A by one column of B; a vector-by-vector calculation).

However, this is a fine-grained computation (each process computing one

value). On a MIMD multiprocessor, where the process creation overhead is

significant, such an approach is likely to be inefficient. A better solution at the

medium-grained level is to create k processes, each of which computes a whole

column of the result matrix, using the whole of A and one column of B. In other

words, this is a matrix-by-vector calculation. Figure 3.4d below is an example

MeDaL program, matrix-mult, which takes this approach. The actor code

associated with this MeDaL graph can be found in Appendix B.

Page 81

Chapter 3

matrix-mult

2mult

output
matrix

filename

The MeDaL Notation

matrix J matrix 2

2mult

fileout

stdout

matrix 2

split into vectors

matrix J

multiply matrix by vector

result vectors

merge vectors into matrix

result matrix

Figure 3.4d: MeDaL example program "matrix-mult"

The program consists of two companies, the root company (labelled in the

northwest corner with the name of the program) and a company called 2mult which

serves to group together the actors concerned with the main processing work of the

Page 82

Chapter 3 The MeDaL Notation

program. 2mult can be seen in its "component" form within the root company, and

in its expanded form below. It can be seen that the program could be rewritten to

eliminate 2mult, by placing its contents where the 2muZt component appears in the

root company. Indeed, this is effectively what happens at run-time; the use of a

company in this case is only for notational convenience.

The root company comprises three source actors, one library actor and one sink

actor as well as the 2mult company. The source actors Matrix 1 and Matrix 2 each

contain a simple method which simply transmits a matrix on the output path. The

other source actor transmits a single character string on its output path, containing

the file name to be used for storing the matrix resulting from the computation. The

stdout actor exists purely to print out any error messages which may be output from

the fiZeout actor. This illustrates the building-block use of the sink actor; although

in this case the error output of fileout is not dealt with by the program, fileout need

not be rewritten so as not to produce one; it can be used as it is. Additionally, the

program could later be expanded to handle errors, simply by replacing the sink

actor with a general-purpose type actor.

The fileout and stdout actors are used as examples of library actors; in a real

program, it is likely that filein actors would also be used to load in the input

matrices. They are omitted here only for simplicity.

The expanded form of the 2mult company illustrates how companies other than

the root company receive inputs from "outside" (the paths which appear from the

north side of the box) and can transmit a result back "outside" (the path which ends

on the south side of the box). In this case, the two inputs are the matrices to be

multiplied. The second of these goes to the actor labelled split into vectors which

fires only once, but transmits each row of that matrix on its output as a separate

vector.

The multiply matrix by vector actor fires once each time one of these vectors

arrives; it has two input paths, one for a matrix and one for a vector. Because the

matrix input is an F-type path, the matrix is not consumed and remains present as

an input each time this actor fires. Moreover, since multiply matrix by vector is a

deep actor, each matrix by vector calculation can be computed in parallel

(assuming sufficient processors are available). Each result (a column of the result

matrix) is then output.

Page 83

Chapter 3 The MeDaL Notation

The merge vectors into matrix actor fires once for each time one of these result

columns arrives. Its only purpose is to copy the vector to the appropriate column of

the result matrix, which is built up (in textual form) on its output path using the

send-sticky technique. When every column is present, it then sends the

whole resulting matrix. This goes to the fileout actor which stores it in a file, and

the program terminates.

Of course the multiplying actor and the merging actor need to know which

column of the result their vector input represents. For each vector, an index value is

needed to indicate which column the vector is. This index could be passed from

split into vectors to multiply matrix by vector on an extra datapath, then on from

multiply matrix by vector to merge vectors into matrix on another separate datapath.

This would have the advantage of making the passing of this piece of information

explicit at the MeDaL graph level. However, it also carries the penalty of

transmitting and storing a separate item of data. Since this index is a numerical

value, and the vector also contains numerics, it is more efficient to transmit it as

part of the vector, for instance as the first element of each vector at each stage. In

the interests of efficiency and simplifying this example graph, this approach was

chosen here. If the index value was not of the same data type, it could at least be

sent in the same data item (using a structured data item).

Two types of parallelism are illustrated by this example: structure (pipeline)

parallelism, since the actions of splitting a matrix into vectors, multiplying, and

merging the results can be done in parallel; and activity parallelism, due to making

a number of instantiations of the actor which does the multiplication. An alternate

strategy would have been to control the amount of parallelism by constructing the

graph in the form of a number of side-by-side copies of the multiplication actor,

each with its own datapath from the vector producer and to the vector merger. In

other words, to employ horizontal rather than depth parallelism in designing the

program. While this is a valid approach, it would be less flexible in this particular

example, since the amount of parallelism available to be exploited by the program

would then be fixed in the design, rather than decided at run-time, making the

program harder to modify later.

Page 84

Chapter 3 The MeDaL Notation

3.5 Summary

The example above has been described in detail, and if this explanation is added to

the size of the MeDaL graph and its method code, then the simple matrix-mult

program may not seem very concise. However, this explanation is provided only to

clarify the description in the previous section of the operation of programs

expressed in MeDaL. Once one fully understands how MeDaL programs work,

MeDaL graphs and method code need very little annotation, and provide a concise

description of a potentially parallel program. This is important because naturally,

the easier it is to understand (and modify) the design of the program, the easier

development and maintenance of the software becomes.

The main advantage of MeDaL is in the implicit parallelism found in dataflow

graphs. In addition, MeDal provides a number of specialised features. To

summarise these:

• MeDaL programs consist of two levels: a dataflow graph and method code

This scheme is of course designed primarily for medium-grained parallelism, where

chunks of code the size of imperative language procedures or functions can

efficiently be executed in parallel. Rather than hindering understanding of the

program, the two-level structure of MeDaL programs (graph and textual code) is

designed to make programs easier to understand, describing first the whole

structure - the graph level - and then, once that is understood, the computational

details. Another benefit of this structure is that existing imperative language

functions can be adapted and placed in a MeDaL "harness" graph to facilitate their

transformation into a parallel program.

• MeDaL graphs consist of actors and datapaths

Actors fire according to well-defined firing rules, and data flows between them on

unidirectional datapaths. These concepts are simple, making the graphs easy to

interpret. Data flows from top to bottom, but cycles are allowed, for flexibility.

• MeDaL provides six primitive actor types

There are six basic types of actor: the general-purpose actor, the deep actor, the

source and sink actors, the replicator and the merge actor. Each varies in its firing

rule or number of outputs. All but the replicator and merge can contain a method,

Page 85

Chapter 3 The MeDaL Notation

i.e. a section of code which performs some function, expressed for instance in some

textual imperative language. The non-method actors are more fine-grained, but are

not inefficent since they can easily be optimised out at compile-time. The provision

of six types of actors is a compromise: an attempt to provide flexibility and

generality without making it necessary to learn the functions of a large number of

different primitives.

• Datapaths can carry structured data

MeDaL's datapaths can carry structured data items such as matrices, vectors,

records etc, corresponding to the input parameters of the method functions, and is

hence efficient at the medium-grained level. The standard datapath is the E-type

which represents a simple FIFO queue, a simple but general concept.

• Datapath semantics provide two types of persistent memory

Memory which is persistent between different firings of an actor is desirable for

two reasons: it allows actors to have two or more input streams which receive

different numbers of data items, and it allows actors to build up complex data items

out of simpler ones over a number of firings. MeDaL datapaths provide a different

type of persistent memory for each of these two purposes. Firstly, at the graph

level, F-type paths are provided which are FIFO except in that they retain their last

element rather than becoming empty. Thus, actors do not have to wait for the same

number of input data items on every path. Secondly, the semantics of the operations

which actors perform on datapaths include not only a normal send, but a send­

sticky which does not allow the data item being "sent" to be delivered, so that it

is still available on the next firing. Thus output data can remain "stuck" in an output

path to be manipulated by the actor using more than one set of input data.

The provision of the features described above are designed to make MeDaL a

useful language for the design, implementation and testing of parallel programs for

medium-grained multiprocessors. This chapter has described the language itself,

and illustrated its use in designing a parallel matrix multiplication program. The

next chapter, therefore, turns to the implementation of MeDaL as a design and

implementation language.

Page 86

Chapter 4

Implementation Issues

In order to implement MeDaL as a complete programmmg system, with the

features described in the previous chapter, a number of distinct modular tasks can

easily be identified. A graphical editor is needed to edit the MeDaL graph; and a

text editor is needed to edit the actor methods. A module is needed to extract

information from the MeDaL graph to form the basis of a parallel program (the

"harness"), transforming the MeDaL program into a structure appropriate to the

target architecture. Another module may be needed to package the method code

into a form which can be directly executed, for instance by adding code which

fetches data items from datapaths and passes them as parameters to function calls.

The harness, and the code which it surrounds, can then be combined into a parallel

program using an existing compiler. Since MeDaL allows run-time expansion (of

datapath queues and of the MeDaL graph itself, through the use of companies) a

run-time library module would also be needed to support or manage execution of

the parallel program. Figure 4.0a illustrates the interconnection of these modules.

I Text editor I

1
method code

1
I Code Transformer I

1 1..,-­

parallel program

I Graph editor I

1
graph

_-1

~

I Run-time system I

Figure 4.0a: Modules of a MeDaL programming system

The dotted lines from the harness to the program and the run-time system indicate

that harness information could be built into either the program or the run-time

system; there are a number of options for the exact constitution of the run-time

system, and these are enumerated in the next section.

The technology involved in text editors is essentially very simple, and graph

Page 87

Chapter 4 Implementation Issues

editors are also well understood (see Chapter 2). The MeDaL graph editor would

simply allow the addition, movement and deletion of MeDaL actors and datapaths,

according to the syntax rules described in Chapter 3. It would allow "browsing" of

the graph, and would need to support examination of every level of the graph (for

instance by opening further graph-editor windows onto companies, and by opening

text-editor windows onto method code associated with a particular actor). These

operations are sufficiently simple not to require further discussion here; therefore

only the final output of the graph editor, which is the input to the harness­

generating module, will be considered here.

This chapter concentrates on the other roles of the MeDaL programming

system: how parallel code can be automatically generated from actor methods and

the MeDaL graph, and how to support the execution of this parallel code at run­

time. Section 4.1 discusses in more detail what is needed from the various parts of

the programming system; section 4.2 describes the programming interface between

the system and the programmer's actor method code; section 4.3 raises some of the

issues of how such a system can be implemented on a distributed-memory

architecture; and section 4.4 describes the implementation of the system on a

shared memory architecture. This implementation was used for the experimentation

to be described in the next chapter. The machines used for the work described in

this chapter were an Intel iPSC/2 hypercube (distributed memory) and an Encore

Multimax 520 (shared memory).

4.1 Functions of the Programming System

This section examines the techniques which can be used to generate executable

parallel programs from method code and MeDaL graphs, using graph and method

transforming modules and a run-time system, as described above. First, however, it

is necessary to define more clearly the distinction between these transformation

modules and the run-time system, in terms of the work which they do.

4.1.1 The Division of Work

As mentioned in the previous section, there are several possible strategies for the

provision of a run-time system, depending on whether harness information is

incorporated or not. The options are:

Page 88

Chapter 4 Implementation Issues

• a standard library of support functions could be provided;

• a tailor-made run-time system could be built for each application using

information from the harness;

• a hybrid approach could be adopted, with a library of generalised

functions which is fed data about the dependencies of a specific

application, for instance by means of a file loaded before the start of

dataflow execution.

The choice between these options is simply one of work allocation between the

modules of the MeDaL programming system; the greater the support given by the

run-time system, the less work needs to be done by the transforming modules to

turn the MeDaL graph and method codes into an executable program.

Each approach has its advantages and disadvantages. The provision of a

generalised, pre-compiled run-time library is a common approach, and has the

advantage that it reduces compile time. However, more coding effort must be

expended in ensuring that it is generalised enough to deal with all possible

requirements, and will result in functions which contain code not all of which is

used in every situation. This is a disadvantage on distributed-memory architectures,

since it is desirable to avoid the overhead of distributing unused code between

processing nodes and storing it in the relatively limited memory there.

The tailoring of the run-time system effectively moves complexity from the

run-time library to the transformation modules, but causes longer compile-times.

Finally, the hybrid approach, while offering a compromise, has the unfortunate

characteristic that the reading-in and interpretation of the application-specific

information adds to the total run time of the program. The obvious comparison

which can be drawn is with compiled versus interpreted languages - interpreters

can be very flexible but are, in general, slower. For this reason, this approach was

not chosen.

The criterion used to choose between the other two approaches was that of the

characteristics of the underlying architecture. On a distributed-memory architec­

ture, relatively complex decisions must be made about the way in which processing

tasks will be allocated to processors, in order to minimise communication (which is

the major factor determining throughput). On a symmetric shared-memory

multiprocessor, such decisions are not necessary. Since these decisions take time, it

Page 89

Chapter 4 Implementation Issues

is desirable to take them at compile-time, to ensure the best possible efficiency of

execution (more detail about the nature of these decisions is given in the next

section). Therefore, the second approach (with the bulk of the work done in the

transformer modules) was adopted for use with the distributed-memory architec­

ture, while the first approach (with a pre-compiled, generalised run-time library)

was used on the shared-memory architecture, bringing the benefit of faster

compilation without a significant loss in execution efficiency.

Thus, two distinct balances of work allocation between modules of the system

were tried: on the shared-memory architecture, simple transformation modules

generated a program which executed with the aid of a relatively complex run-time

library; and on the distributed-memory machine, more complex transformation

modules were planned, supported by a simpler core run-time system. Section 4.3

describes the experimentation using the distributed-memory machine, and section

4.4 the implementation using shared-memory. However, there are some general

issues involved which are common to both, and these are considered in the

immediately following sections. To summarise, the three components of the

MeDaL programming system to be considered here are:

• the method code transformer

(input: a collection of fragments of HLL code, the actor methods)

• the harness generator

(input: some representation of the MeDaL graph)

• the run-time system

(possible input: the harness)

Each of these will now be dealt with in turn.

4.1.2 The Method Code Transformer

Ideally, the HLL method code written by the programmer should not contain any

code specifically to perform dataflow functions, in order to minimise programming

effort and to maximise portability. The input data (data items from the input paths)

and output data (items to be transmitted on output paths) should be passed in and

out using the programming language's normal mechanisms for parameter passing.

The method code transformer, therefore, must undertake the task of interfacing

actor code with the mechanism used to implement datapaths between actors

(through shared memory or inter-node communication links as appropriate). The

Page 90

Chapter 4 Implementation Issues

main function of this interface is to extract information about what inputs and

outputs an actor has, and binding these to appropriate calls to the datapath

mechanism.

The simplest way of implementing such an interface is to generate a "wrapper"

function for each actor, which undertakes the task of retrieving the input data from

datapaths, then calling the method code, passing in the data thus retrieved as input

parameters. It is this wrapper which is called when the actor fires, rather than the

method code itself. Thus, a program comprising the method functions and the

wrapper for each one is the output of the method code transforming module. The

requirements for the programming language interface (between the method code

and the wrapper and/or the run-time system) are discussed further in section 4.2.

4.1.3 The Harness Generator

While the method code is transformed into code corresponding to the program's

actors, the MeDaL graph must be used to generate code corresponding to the

program's datapaths (the "harness" which allows dataflow-based execution). At

first glance, the harness generator's task of transforming lines in a graphical editor

into executable code might seem a much bigger task than that of the method code

transformer which merely augments HLL code sections. However, since the main

function of the datapaths is to transport data, and since most commercially

available multiprocessors provide mechanisms which do this, the task is not as

great is it might seem. Only code which makes use of these mechanisms in the

appropriate way need be generated.

Therefore, the task of the graph transformer is to extract information from the

graph concerning the source and destination actors of each datapath, and to

generate efficient code to enable the method wrappers and the run-time system to

control the available data transport mechanism. This code is no more complex than

a series of assignments mapping datapaths to actor inputs, and actor outputs to

datapaths.

While doing this, the graph transformer must take into account actors which do

not contain a method. Although these are logically actors, the fact that they contain

no method means that they do not need a method wrapper, and in fact do not need

to be executed separately at all; so it is reasonable to consider them merely part of

Page 91

Chapter 4 Implementation Issues

the graph for the purposes of generating executable code. An example would be a

merge actor: suppose actors A and B have output datapaths x and y respectively

which are the inputs of a merge actor C, and that the output datapath of C, called z,
is the input of actor D. Rather than generating code which maps A~x, x~C, B~y,

y~C, C~z and z~D, it would be more efficient simply to map A~z, B~z and

z~D. In this way, a non-method actor and two datapaths can be optimised out

completely. Other optimisations are similarly possible when generating the

datapath code for other non-method actors.

The code generated in the way described above is then incorporated either into

the run-time system, or into a further level of wrapper around the method code,

according to the approach being adopted (see above). In the case in which the code

derived from the MeDaL graph is used in a new wrapper level, a wrapper is created

round each company giving details of the connections between actors in the

company. This code is not executed like an actor, but is called by the run-time

system whenever data first enters a company, to find out which actor the data

should be delivered to.

The harness generator would also need to generate code to handle such tasks as

type conversions in a heterogeneous computing environment. However, for

simplicity's sake, this thesis only considers homogeneous multiprocessors, i.e.

those in which the CPU and data representation are the same on all processing

nodes.

4.1.4 The Run-time System

Having considered the code transformer and the harness generator, the remaining

component is the run-time system, and much of the functionality of this has already

been implied. The full list of the run-time system's functions is as follows. It must:

• do any machine-specific preparations for parallel processing;

• maintain a "roadmap" describing datapath connectivity (see below);

• generate any data from MeDaL source actors;

• implement MeDaL library actors such as halt and file input/output;

• decide when method actors are able to fire, and invoke them via their

wrappers;

• detect termination of the program and shut down gracefully.

Page 92

Chapter 4 Implementation Issues

In addition, it may perform other functions such as the saving of "checkpoint"

snapshots of the running program enabling it to be restarted later from the point at

which it was saved; the collection of datapath contents and actor variables for

debugging; and run-time garbage collection.

The road map referred to above is a dynamic data structure, the maintenance of

which is central to the role of the run-time system. Essentially, it records the

mapping between actor outputs and datapaths, and the destination of each datapath.

It takes the form of a set or array of companies, each of which contain actors,

datapaths and possibly companies. As described above, the code which sets up this

data structure is either part of a tailor-made run-time system, or is available in code

which can be called by the run-time system. However, because MeDaL graphs can

expand at run-time (for instance through recursive calling of companies), the

roadmap must be dynamically extensible.

The roadmap must also contain information such as the physical location in

memory of datapaths and actors, and information relating the group of datapaths

which form the inputs of each actor, so that the run-time system can easily check

whether an actor is runnable (i.e., when all of such a group of datapaths are non­

empty).

It is this run-time information held in the roadmap which is (indirectly)

accessed by the method programming language interface, including the method

wrappers, to put into effect the "transmitting" and "receiving" of data through

datapaths. This interface is described next.

4.2 Programming Language Interface

It has already been stated that the code transformer module takes method code and

generates code consisting of each method with a wrapper round it, to handle the

receiving and sending of items of data from and to datapaths. It has been asserted

that, ideally, the method code should not need to include any code to control the

flow of its input and output data through the dataflow graph. However, there are a

number of issues which mean that this idea may not be quite achievable in practice.

This section identifies these issues, and describes how they can be tackled using

FORTRAN, C and C++ as method implementation languages.

Page 93

Chapter 4 Implementation Issues

Although there are essentially only two points at which method code needs an

interface to the system - the receiving of input data and the sending of output data -

there are complications to both of these. Because of the semantics of datapaths, it is

necessary for method code to have two operations on output data (send and

send-sticky), and to be able to find out whether or not a particular output path

currently contains a "sticky" item of data from a previous firing of that actor.

There are also a number of features which are desirable from the point of view

of efficiency; for instance, if an input is to be passed on to an output unchanged (or

largely unchanged, if it is a relatively large structure) physical copying of the data

from an input parameter to an output parameter is undesirable. Since the aim of

MeDaL is to provide a programming environment which is efficient at the medium­

grained level, this type of issue must be addressed.

4.2.1 Programming actors in C and FORTRAN

Passing input parameters to an actor method is simple in any block-structured

imperative language, since a mechanism already exists, namely that of input

parameters to functions or procedures. Passing output parameters back to the caller

is less easy in languages like C and FORTRAN, since these languages only have

provision for functions to return one value as the result, whereas in MeDaL there

can be an arbitrary number of outputs from an actor. An approach often adopted is

to pass in (using the input parameter mechanism) pointers to the variables which

will be used as the function's outputs. A simplistic solution to the need for

"stickiness" semantics would be simply to pass in not only variables for the actor's

outputs, but a flag for each output variable marking its "stickiness" which could be

tested by the method code, and set or unset by it, resulting in a sticky or non-sticky

send when the method terminated - the wrapper code handling the actual sending.

Additionally, each output would need a further flag marking whether or not there

actually was any data to be sent on that particular output (since it is not a

requirement that data items be sent on every output for every firing).

Although this simplistic solution is easy to implement, it has two mam

disadvantages. Firstly, if the wrapper code is to handle the transmission of each

output variable, only one item of data can be sent on each output path for each

firing - unless a more complex scheme, such as using variable-length arrays for

each potential output, is used. Secondly, if one particular output of an actor is ready

Page 94

Chapter 4 Implementation Issues

half-way through its execution, and the datapath on which it is to be sent is empty,

not sending it until the end of execution this may cause the destination actor of that

datapath to wait for that particular input longer than necessary. For optimum

efficiency, it must be possible to send an item on a datapath as soon as it is ready to

be sent.

The simplest way to solve these problems in C and FORTRAN is to use

function calls representing the send and send-sticky operations. These may

be calls direct to the run-time system, or more probably, to the wrapper level. This

is likely to be necessary because, to transmit data on a datapath, the function needs

not only the data item itself and information about which of the actor's output paths

to use, but also the position of the actor in the roadmap - something which cannot

be determined at compile-time. Since it is also desirable to hide this detail from the

actor programmer, each actor wrapper could include a function called by the actor

method code to fill in this information before the data-sending operation goes

ahead. Alternatively, in C, macros could be provided instead of function calls, so

that the appropriate code would be added to the main body of the actor method

before compile-time (by the C preprocessor).

However, most of the problems raised by the use of C or FORTRAN as the

programming interface can be elegantly avoided by using C++ as the implementa­

tion language.

4.2.2 Programming Interface in C++

C++ includes many programming features missing from the older HLLs, and these

features can be used to hide much complexity from the actor programmer. In a C++

method programming interface, c++ objects representing each input path and each

output path are passed to the method function as parameters. The class of each

object depends on the data type carried by the datapath it represents. For instance

an input variable read from a datapath which carries integers would be an object of

a class Mint representing MeDaL-integers (integers with extra information and

functions to facilitate the integer's passing through the MeDaL dataflow system).

Objects of this class contain not only the integer's value, but the "stickiness" flag,

and the run-time information about location within the dynamic "roadmap"

(instantiated by the wrapper before the object is passed to the method function

itself).

Page 95

Chapter 4 Implementation Issues

The MeDaL classes can contain not only information, but member functions

which perform operations on them - such as retrieving the value from an input

datapath, and placing a new value on an output datapath (with the sticky attribute

set or unset). Essentially, these MeDaL classes form part of the method wrapper.

However, by splitting the wrapper two ways (into the wrapper-function which is

called by the run-time system, and the class code relating to input/output objects) it

is possible to make the wrapper-function simpler - by making the MeDaL classes

contain all possible generalised code, the wrapper-function need only contain any

method-specific code. This in turn makes the function of the method-transforming

module simpler.

The pre-defined MeDaL classes can include definitions of many commonly­

used data structures, such as arrays, which can then be passed between actors

through datapaths. However, using C++, programmers are not limited to the data

types provided: they could easily implement new MeDaL data types by using

inheritance to create new classes based on those provided. So long as a type is

provided which can transfer blocks of memory through datapaths, any other more

complex type can be built on top of this without needing technical knowledge of

the interface with the run-time system. A minimal set of MeDaL classes is included

in Appendix A.

A further way in which the C++ interface can hide technical detail from the

programmer is in the provision of data-sending functions to be called during the

actor method when data becomes ready for transmission on a datapath. While in C

a function call (or a macro to hide one) must explicitly be used, this can be avoided

in C++ by using the operator overloading mechanism. By overloading the

assignment operator, a class member function can be called whenever a value is

assigned to a MeDaL object; this function can check whether the object is an output

object (corresponding to an output datapath), and if so, do whatever is necessary for

it to be placed immediately on that datapath. None of this detail is visible to the

actor method programmer, and naturally assignment to an output object can occur

any number of times within an actor (for instance, within a loop). The assignment

function provided with the class can also deal efficiently with copying; for instance,

when an array from an input path is assigned to an output path, the assignment need

only copy a pointer to where the array is stored in memory from one object to the

Page 96

Chapter 4 Implementation Issues

other. In other programming languages, this task would usually fall to the actor

method programmer.

Other memory management issues can also be efficiently handled using C++;

for instance, when an array from an input path is not copied to any output path, the

memory taken up by that array should be "garbage-collected", and this can be done

automatically by setting up a C++ destructor function for the class which frees any

memory which is not marked as still being wanted (this marking being done by the

assignment function). An example of this can be found in Appendix A in the

MeDaL array (Mary) class.

Thus, by shifting much of the wrapper's complexity into standard class

definitions, using the techniques described above, the remaining wrapper-function

becomes very simple. Figure 4.2a illustrates typical wrapper code using the classes

defined in Appendix A. The wrapper-function, cOa2, is what is actually called by

the run-time system when it is found that all of this actor's input paths contain data.

This wrapper then calls the real method function actor2.

void cOa2(unsigned company)
{

}

ActorId me;
ActorIdP meep = &me;
Mint ipO, opO
void actor2(Mint&, Mint&);

me. troupe = company;
me.actor = 2;

ipO.setup(in, 0, meep);

opO.setup(out, 0, meep);

RTS_ActGoing(meep);

actor2(ipO, opO);

RTS_ActOver(meep);

II company is passed in
II by the run-time system

II actor's input and output

II this structure holds the
II identity of this actor.

II tell ilo objects whether
/I they are input or output;
II WHICH input or output;
II and the actor's identity

II tell run-time system
II actor has started

II run the actor method

II tell run-time system
II actor has completed.

Page 97

Chapter 4

void actor2(Mint & inO,
Mint & outO)

{

int inv;

inv = 100 - inO;

outO = inv;

}

Implementation Issues

II pass by reference

II do something trivial
II (note type conversions
II are handled by C++)

II assignment calls
II transmit function

Figure 4.2a: Wrapper and real method/unctions using C++ inteiface

A company must of course be passed to the wrapper at run-time because new

companies can be created during execution. However, the other parts of the

wrapper - the number of this actor within the company, and the numbers and types

of the input and output paths - do not change. Actors with more than one input and

output would simply have more lines of the form

ip1.setup(in, 1, meep)

which give each input/output object all the information necessary to call a

generalised datapath receive or transmit function in the run-time system at the

appropriate time - immediately, in the case of input objects (receives), and at

assignment time in the case of output objects (transmits). The three arguments to

the setup function are a token indicating whether the object is for input or output

(actually an enumerated type); the number of that particular input or output,

numbered from 0; and the pointer to the structure indicating what actor of which

company is accessing that path.

The example above (and the code listings in the appendices) are taken from the

shared-memory implementation of MeDaL; however, the type of architecture on

which the MeDaL program is executing should not have a great impact on the

functionality of the wrapper code, only the underlying run-time system. The run­

time system, naturally, contains much architecture-specific detail. However, the

general issues involved and techniques which can be used to implement them are

discussed in the following sections.

Page 98

Chapter 4 Implementation Issues

4.3 Distributed-memory Run-time System

In comparing techniques used to implement the MeDaL run-time system on

distributed-memory and shared-memory architectures, there are two important

areas which account for most of the differences: the techniques used in transporting

data items from one actor to the next, and the rOle played by the run-time system.

Both types of architectures have their strengths and weaknesses in both of the

areas mentioned above. Dataflow is, in a sense, a message-passing paradigm; it is

easy to draw comparisons between dataflow's actors and datapaths, and the

processing nodes and links of message-passing architectures. However, this is not

to say that a dataflow system of the type proposed here necessarily maps easily and

efficiently onto a message-passing architecture. The problem is that since

parallelism is extracted from a MeDaL program by the programming system rather

than the programmer, the programming system must make the decisions about

which nodes to place which actors on - moreover, it must sometimes do this at run­

time. The load-balancing of dynamic processes is a non-trivial task, especially on a

distributed architecture, on which load details of other nodes must be transmitted

through the relatively slow inter-node links. The simplest strategy would be to have

a single process on one node dedicated to doing this - but in a complex application,

this process could become a bottleneck.

However, leaving such issues as load-balancing aside, before an efficient

dataflow system can be produced, it is necessary to consider the basic techniques

which can allow dataflow programs to run at all on distributed-memory multipro­

cessors. It was stated above that the two main issues are the implementation of

datapaths between actors, and the role of the run-time system and the method code

wrappers; these are dealt with in the following three sections.

4.3.1 Datapaths Between Distributed Actors

The basic mechanism for passing messages between processes on the iPSC/2

hypercube architecture, as with many other distributed multiprocessors, is explicitly

to transmit messages, containing the data to be sent, to a specific destination. The

operating system on the iPSC/2 (which runs on every node) provides functions to

do this; on some other architectures, the application program itself would have to

Page 99

Chapter 4 Implementation Issues

handle routing of messages from one processor to the next until they reach their

destination. Each processing node in the hypercube has a unique number, and since

each node can run multiple processes, each process on a given node must be given

a unique Process Identifier (PID) when it is started up. This message-passing

mechanism can be adopted directly for the implementation of datapaths, the only

caveat being that each actor must know the physical location of the actor to which

each of its output paths leads. This is handled by the wrapper code, as will be

shown below.

Conveniently, the iPSC/2's operating system provides not only a message­

sending system call, but both blocking and non-blocking message-receiving calls;

if data arrives for a process and no receive call is (blocked and) waiting for data

items to arrive, the operating system places the data on a FIFO queue where it stays

until the process requests more data. This provides everything necessary for the

implementation of MeDaL's E-type paths. F-type paths simply remember the last

item of data from the queue, and this datum is stored by the method-wrapper. The

operating system detects and reports queue overflow which, as described in

Chapter 3, is considered fatal to the execution of MeDaL programs; no "feedback"

is needed from a consumer actor to its producer actor, to tell it whether or not the

queue is full, so this does not constitute any message-passing overhead.

Naturally, data items which are sent to output paths using send-sticky are

not actually sent to their destinations, but are rather stored by the method-wrapper

to be passed back into the actor on its next firing. The optimisation of the dataflow

graph (involving the removal of non-method actors and re-mapping of datapath

destinations) described above also helps to reduce message-passing. All of these

techniques by which the numbers of messages being transmitted can be reduced are

important not only because message-passing is costly in terms of time, but because

the bandwidth of inter-node communication links is limited, and too many

messages can cause "congestion", leading to even greater delay.

It can be seen from the discussion above that the wrapper code around each

actor's method code is of great importance in efficiently implementing dataflow

programs on a distributed-memory architecture. The way in which the wrapper

does its work, in co-operation with the run-time system, can now be described.

Page 100

Chapter 4 Implementation Issues

4.3.2 Run-time System for Distributed Actors

In a sense, the wrapper code around each actor forms part of the dataflow run-time

system on a distributed architecture, handling the technical details of sending

output data to its correct destination. To have execution of the dataflow program

controlled by one central process would be a potential bottleneck both in terms of

processing throughput and of inter-node congestion. However, as indicated above,

there are situations in which processes need information about other processes on

other nodes, and this will inevitably lead to inter-node traffic. These situations are

as follows:

• for load balancing (even in the simplest possible terms, e.g. the initial

allocation of new actor processes to nodes);

• for termination detection;

• for consulting the roadmap to find out the node and PID of the actor at

the consumer end of an output path.

The latter situation occurs because of the need to keep the roadmap coherent.

Since the roadmap can be extended dynamically at run-time, not all actors can be

set up before execution begins; some will be "created" (i.e., their code copied to a

processing node and set running) during execution, namely, when data is sent to

them. In other words, the act of producing data for an actor which does not yet

exists, causes its creation. Data could be produced for an actor C, before its

creation, by two other actors A and B, each producing data for a different input path

of C. If this happened simultaneously, and actor creation could happen in two

places at once, two copies of the new actor C might be created - and neither might

ever be able to execute, since it might never receive data on all of its input paths.

Thus, the ability to extend the roadmap must reside with one process on one

node. There are two possible strategies for this, namely:

• The roadmap could be distributed between different nodes, and a key

allowing extension could be held by anyone node. A process wishing

to acquire this key would have to request it from other nodes repeatedly

until it was found and "given to" the searching process.

• One centralised copy of the roadmap could be held by a process

always residing on the same node. This process would undertake any

necessary extension of the map and creation of new actors.

Page 101

Chapter 4 Implementation Issues

Both of these strategies are viable, but each has its problems. The first has the

potential for a higher number of messages, while the second has the potential to be

a bottleneck. The first of these two approaches has been successfully adopted in

implementing a virtual shared memory on the iPSC/2 [Lahj91], and indeed the

handling of a dataflow roadmap could easily be implemented given a shared virtual

memory. However, the development work described here pre-dates the completion

of the virtual shared memory work which was in progress at the time. Ultimately,

the second strategy was adopted for its far greater simplicity.

Thus, a system was adopted whereby a single process implementing a number

of run-time system functions ran on a single processing node (the hypercube's host

processor). This process, known as Equity (since all of the actor functions

"belong" to it) maintained a single, global roadmap containing all of the informa­

tion about which actors were located on which nodes (and with which PID). This

roadmap was initially generated by the dataflow harness code incorporated into the

run-time system at compile-time (see section 4.1.1).

The functions, therefore, of the Equi ty run-time system were to manage all

the situations defined above in which inter-node co-operation is needed, in the

following ways.

Load Balancing

Since Equi ty knows the physical location of all currently running actors, it has

the only available information which can be used for load balancing. Thus, new

actor processes can be placed on the nodes with the fewest already executing

processes.

Termination Detection

Equi ty can co-operate with the actor wrappers (see below) and be informed

whether an actor on a remote node is executing or not. In addition, any message

sent to a halt actor anywhere in the dataflow graph is automatically routed to

Equi ty so that it can perform the shutdown.

Creation of New Actors

It was stated earlier that the act of producing data for an actor which is not yet in

existence causes the creation of the new actor. Essentially, when an actor's wrapper

wishes to transmit data on a datapath for which it does not know the destination, it

Page 102

Chapter 4 Implementation Issues

sends a message to Equi ty requesting the appropriate information from the

roadmap. If the actor does not already exist, Equi ty creates it before passing its

location back to the actor which made the request.

In addition to these three functions, it is also Equi ty's job to transmit data

from source actors, and to handle program input/output (i.e., data to and from the

input/output library actors). The former was necessary because source actors are

virtually always too lightweight to be worth the cost of distributing to a remote

node, and the latter because all I/O on the iPSC12 must go through the host

processor anyway. This being the case, it was simplest for all messages to output

actors to be sent automatically to Equi ty to for processing.

4.3.3 The Wrappers of Distributed Actors

As explained above, the role of the actor method wrapper is to handle technical

aspects of dataflow execution from the actor programmer. Obviously, because

actors can only communicate with other parts of the program through datapaths, the

implementation of receiving and sending data through datapaths form the main

basis of the wrapper code.

Considering transmission first, it was described above that when an actor

wishes to send a data item to an actor the location of which it does not know, it

requests the location from Equity. In fact, initially, the actor does not know the

location of any of the actors to which its output paths go; a form of late binding of

output paths to their destinations is employed. What happens is as follows: when an

actor wishes to place data on an output path, it calls a function which is part of its

wrapper (since C++ was not available on the iPSC12, this was by means of an

explicit function call). The parameters to this call are the data item to be sent, and

the unique number of the datapath on which it is to be sent.

This wrapper maintains a lookup table mapping each output datapath to the

node, PID, and input port number of the actor which form the destination of that

datapath. If the entry corresponding to an output path is empty, the wrapper sends a

message to Equi ty requesting the destination to that output path (identifying the

path by specifying the current actor's company identification, number within the

company, and the number of the output path). The wrapper code then blocks until

Equi ty sends back the node, PIO and input number of the input path and

Page 103

Chapter 4 Implementation Issues

destination actor, and when this arrives, places this information into the lookup

table. The important point is that this lookup table is persistent with relation to the

actor; so once the information has been found, it will not cause message-passing to

find it again for subsequent transmits on that datapath, even during future

executions. This approach reduces the amount of message-passing needed, and

hence speeds up execution; though it does make subsequent load-balancing

difficult.

In fact, the run-time system can be completely passive under this arrangement;

all communication is initiated by the actors themselves (or their wrappers), and the

run-time system simply responds. Since the wrappers need not deal with messages

from the run-time system except when one has specifically been requested, this

makes them reasonably simple.

It was mentioned above that actor wrappers maintain a datapath destination

look-up table which is persistent relative to actor firings. This is possible because

the processes in which actors and their wrappers run are not destroyed once the

actor has terminated. Since MeDaL graphs can contain cycles, and MeDaL actors

can place more than one item of data on an output path during one execution, it is

not possible - in the general case - to know whether, once an actor has completed

its work, whether it will be able to fire again in the future.

Therefore, the following procedure must be followed. Once an actor completes,

and control returns to the wrapper, the wrapper checks the operating system's input

queues for its process, and if all are non-empty, runs again immediately. It checks

these queues using the asynchronous checking call, iprobe () which does not

block until there is data in the queue. However, if any of the queues are empty, it

sends a message to Equity stating that it its actor is no longer working, and

blocks until data arrives on that queue (using the synchronous call, cprobe () so

that its process is suspended, freeing that processing node). When data is received,

such that all paths again contain data, the wrapper sends a message telling Equi ty

that its actor is working once more.

In this way Equi ty can detect termination, which might arise through all

actors completing their work, but can also happen if deadlock occurs. In many

programs there will be far more of these messages than any other type between the

nodes and the run-time system (in the iterative programs used for experimentation

Page 104

Chapter 4 Implementation Issues

they made up between 84%-90% of the messages received by Equi ty); however,

since the messages are short, can easily be processed by the run-time system, and

can be sent asynchronously (the actor does not need to wait for a reply), this does

not significantly slow down the execution. There are, however, more sophisticated

algorithms which could be adapted, a number of which are discussed in [Matt87].

This section has described the issues involved in implementing a run-time system

which supports all the main features of MeDaL on a distributed-memory

architecture such as the iPSCI2, and what techniques can be used to address these

issues. However, the work described here does not go beyond demonstrating that

such an implementation is possible. Because of the lack of experimental time

available on such an architecture, no claims can be made that such a system would

provide a viable system for implementing parallel programs, in terms of time­

efficiency compared to other systems.

4.4 Shared-memory Run-time System

Even though dataflow can be seen as a message-passing model, the availability of

shared memory makes implementing dataflow programs (and, arguably, parallel

programs in general) easier than it is on a distributed architecture in a number of

ways. In particular, there is no need for mechanisms to work out which processor a

particular actor is running on, and since the run-time system code is easily

accessible to all actor methods, the actors themselves can execute this code (via

run-time library function calls) rather than requiring a separate process to do this.

The Encore Multimax, like other symmetric shared-memory multiprocessors,

provides HLL-Ievel support for parallelism in the form of a library of parallelism

primitives for creating parallel processes and for mutual exclusion. The parallel

process mechanism involves the creation of "threads," which are essentially

"lightweight" processes in the sense that they are not costly in terms of time and

space to create and destroy. If the program creates more threads than there are

processors available to run them, the system handles scheduling of the threads

through its own run-queue; the programmer's view is that all threads run concur­

rently. This system is convenient because, as it has often been noted, most

Page 105

Chapter 4 Implementation Issues

applications contain more potential parallelism than is available on current MIMD

multiprocessors [Vali90]. Thus, if more processes are set going than there are

processors, this ensures that all processors will be kept busy all the time, ensuring

near-optimum efficiency (subject, of course, to the overhead of process creation

and destruction).

As described earlier in this chapter, the run-time system implemented on the

shared-memory machine provides a generalised (not tailored) set of functions; in

fact, it provides a second run-time library, which forms an interface between the

method wrapper code and the threads library.

The shared-memory run-time system can, like the distributed-memory one, be

considered as the sum of three separate parts: the code which implements the

datapaths, the method wrapper code, and the rest of the run-time library. The

following sections deal with each of these in turn.

4.4.1 Shared-memory Datapaths

Datapaths can be easily implemented using shared memory, which is therefore

accessible to both of the actors which use it, namely the producer and the

consumer. In fact, using the merge-actor optimisation described in section 4.1.3,

there may actually be several producers writing to the tail of one datapath queue.

Mutual exclusion must therefore be used to ensure consistency of the datapath

structure, and this can be easily implemented by creating a lock associated with

each datapath, which must be acquired before writing can take place (note that the

consumer also alters the queue by removing the head element, and so must also

acquire the lock). This lock can be a simple parallelism primitive such as a

semaphore.

A simple bounded-buffer algorithm can be used to implement the FIFO queue

needed for datapaths. Since MeDaL datapaths are theoretically infinite, it is

necessary for the producer to extend the buffer (assuming memory is available)

when it becomes full. This results in the producer holding the path's lock for longer

than normal. However, simple heuristics can be added to determine by how much

the buffer is extended each time it becomes full, to ensure that this happens

relatively infrequently; and in any case, memory allocation is generally not a

heavyweight operation.

Page 106

Chapter 4 Implementation Issues

4.4.2 Shared-memory Wrappers

The method code wrappers needed in a shared-memory implementation are almost

identical to those in the distributed-memory version; their main purpose is to set up

the C++ input/output objects with all the information needed to receive and

transmit data through datapaths - information which is not known until run-time.

The classes for these input and output objects contain member functions (such as

the overloaded assignment operator) which use this information to call functions in

the run-time library. Since these are simple function calls, the run-time library code

is executed by the actors themselves - even when this involves extending the

roadmap (sections of the roadmap also being protected by locks, to prevent two

actors altering a section concurrently). So, although the code for roadmap

maintenance is part of the run-time system, and its details do not need to be visible

to the wrapper or actor method levels, this code is executed in concurrent

processes, achieving greater parallelism than the simple centralised-roadmap

scheme adopted on the hypercube machine.

The shared-memory run-time system itself is not included in this thesis since it

is highly machine-specific; however, its function call interface is clearly illustrated

in the MeDaL classes listed in Appendix A. All function names beginning RTS_

are calls to run-time library functions.

Because a generalised run-time library is used, an extra wrapper layer is needed

to provide the dataflow harness describing the layout of a particular dataflow graph.

This takes the form of an extra wrapper function, one for each company in the

MeDaL program. Each company harness function is called in turn by a single

further function, which is effectively a wrapper for the whole program, in the

following way.

When starting execution, control enters the run-time library (not the program­

mer's method code), which calls the whole-program wrapper function. Since the

run-time library is pre-compiled, this function must have a specific name such as

RegisterCompanies (). This function embodies knowledge of the company

harness functions and calls each of them in turn, allowing them to register

themselves with the run-time system: they call run-time library functions which

place appropriate numbers of actors and datapaths in a data structure (the company

register) along with pointers to the actor wrapper functions, the destinations of the

Page 107

Chapter 4 Implementation Issues

datapaths and so on. Thus, after every company harness function has been called,

the run-time system has a record of the layout of each company.

The company data structure used in the register of companies, however, only

contains static data about the internal layout of each company. This data structure is

then used during execution as a template, from which the dynamic roadmap can be

built. The roadmap itself is a set of dynamic structures called troupes, each of

which is essentially a company, with the addition of dynamic data such as the

physical locations of datapath memory buffers, locks to protect them, etc. When

data flows into a troupe for the first time during execution, the troupe is instantiated

with the appropriate actors and datapaths, using the template in the company

register. In this way, the roadmap can be dynamically extended very quickly (and,

indeed, potentially garbage-collected) without altering the information needed to

create further troupes.

Since troupe creation involves the creation of data structures for an entire

company at once, it is of course a relatively heavyweight operation compared to the

placing of data on a datapath; however, it occurs correspondingly more rarely - in

fact MeDaL programs can be developed without using troupes at all. Moreover, it

occurs within the threads running actor processes, and so two different new troupes

can be set up concurrently.

Both datapath extension and troupe creation occur as a result of an actor

method transmitting a data item on a datapath. In fact, time spent within the

transmit function accounts for almost all the time the actor spends executing run­

time library code. Since acquiring a datapath lock (or, relatively rarely, a roadmap

lock in order to extend the roadmap) is the only action which may force actors to

synchronise with each other, it is important to consider the algorithm for

transmitting data items on a datapath, in order to find the minimum time for which

these locks must be held. Figure 4.4a is a simplified, pseudo-code version of the

algorithm used. Essentially each datapath has a lock; each actor has a lock; the

whole roadmap has a lock; and a global count of running actors has a lock.

Page 108

Chapter 4 Implementation Issues

acquire path_lock;
place data at tail of datapath;
if (path is now full) {

extend path; }
release path_lock;

acquire roadmap_lock;
if (destination is in a new troupe) {

create troupe from appropriate company;
add troupe to roadmap; }

release roadmap_lock;

acquire destination actor_lock;
if ((actor is a depth actor)

or (actor is not running)) {
enabled = True;

else {

for (index = 1 to number_of_input-paths) {
if (input-path[index] is empty)
enabled = False; }

}

if (enabled) {

else {

mark actor as running;
acquire running_lock;
increment running_count;
release running_lock;
create new thread to run actor; }

release actor_lock; }

release actor_lock }

Figure 4.4a: Shared-memory transmit algorithm

Note that when datapaths are created, they are allocated a certain amount of empty

space to start with, and they are extended whenever they become full, so that the

next item of data can quickly be added to the tail of the path.

The reason why the roadmap must be locked before even testing that the

destination is an (as yet) uninstantiated troupe, is that two different datapaths, being

written-to concurrently, may both have destinations in the same uninstantiated

troupe; so a situation in which both of these try to instantiate the new troupe must

be avoided.

The destination actor must also have a lock which is acquired before the sender

begins to check whether the actor is enabled for execution, to prevent another

transmitter to the same destination actor from firing it, thus removing items from

the queues, during the process. However, testing each of the actor's input paths for

Page 109

Chapter 4 Implementation Issues

non-emptiness does not involve acquiring the lock for each datapath, since adding

further items to a non-empty path will not affect enablement. It can be seen that, if

the destination actor is enabled, its actor_lock is not released by this algorithm.

The lock is in fact released by the RTS_ActGoing () function in the actor

wrapper (see Figure 4.2a). This is called after data has been read from all of the

actor's input datapaths. Another actor adding data to the input paths of the actor can

then enter the critical section and check whether to fire another copy of the actor.

The algorithm above was chosen on two criteria: firstly, to be as simple as

possible, and secondly, to ensure that actors are fired as early as possible. The

second criterion relies on the underlying parallelism package to place new actor

threads on a run-queue if no processors are currently available to execute them. A

more sophisticated algorithm could be used to ensure that there were always as

many actors executing as processors available, to avoid the thread creation and

termination overheads by starting a set number of threads which would execute one

actor and then another. However, such an algorithm would also need to maintain a

queue of enabled actors, in order to avoid having to check the enabled state of

every actor in the roadmap. Assuming the overhead of the two queueing mechan­

isms was comparable, the only difference then would be the thread creation

overhead; and since the point of threads is that they are lightweight to create and

destroy, this possible gain was not deemed to be worth the extra complexity of

code.

4.4.3 Other Functions

Apart from creating the company register, maintaining the roadmap, handling the

transmitting and receiving of data items through datapaths, and firing actors, the

run-time library's other main task is to support the MeDaL library actors. Since

some file handling operations can take orders of magnitude longer than the

operations done within the transmit function described above, file handling is not

done within actor threads. Instead, a dedicated input/output handler thread must be

set up, to monitor any input files (including the standard input) and accept any data

from them, using the normal transmit function to place it on a datapath; and to

accept any data items sent to file outputs (including the standard output) and write

them to the appropriate file. Data items sent to file output actors are handled in a

special way in the transmit function (but not illustrated above, for simplicity);

Page 110

Chapter 4 Implementation Issues

rather than being placed in a datapath like other items, data to be sent to a file

output actor is placed in a specially designated buffer of shared memory. The run­

time system's input/output thread monitors this buffer, so as to retrieve new output

data to be sent to a file.

The halt actor is very simple to implement using shared memory. This, too, is

handled in a special way by the transmit function; when data is sent to a halt actor,

a global flag is simply set indicating that no actors may be fired. This flag is

checked in the transmit routine (again, not shown above for simplicity) at the same

time as the other conditions for firing (whether the destination actor is a depth

actor, or is not already running). Thus, after the flag has been set, all currently

executing actors run to termination as normal, then shut down gracefully, but no

new actors are started.

The final function of the run-time system is to detect termination, and this too

is very simple, using the running_count shown in figure 4.4a. When this count

reaches zero - whether through normal circumstances or through the halt flag

preventing any enabled actors from firing - termination of the program occurs.

Using the techniques described in this section, a fully working shared-memory

run-time system has been implemented on the Encore Multimax, and the

performance of this run-time system, and of the way in which it executes programs,

are described in the next chapter.

4.5 Summary

This chapter has described the issues and problems involved in implementing a

programming system based on the MeDaL notation, on both shared-memory and

distributed-memory multiprocessors, and has presented techniques and solutions to

address them.

Although MeDaL was designed for use in the whole software life-cycle of

design, implementation, debugging, performance tuning, and maintenance, the

work described in this chapter concentrates heavily on software support for

implementation, though clearly the design of the programming system has some

implications for design and debugging. However, success in implementing MeDaL

programs is the key to the success of the whole MeDaL concept, since unless

Page 111

Chapter 4 Implementation Issues

efficient implementation is possible, MeDaL cannot be considered a successful

parallel programming tool.

This chapter has sought to demonstrate that it is possible to implement MeDaL

programs directly on both main types of MIMD architecture. Indeed, the

implementation techniques described have proven successful, in the sense that the

major parts of the programming system described here have been implemented and

real MeDaL programs have been run, on both architectures used. However, this is

of course a very limited definition of success. In order to consider the fuller picture,

the efficiency and effectiveness of software developed using MeDal must be

examined, and this forms the focus of the next chapter.

Page 112

Chapter 5

Performance Evaluation

Having demonstrated that is is possible to implement a programming system based

on MeDaL on medium-grained multiprocessors, a far more complex question

arises: one of whether such a system is worthwhile. The question is complex

because there is no general way in which one can completely evaluate the

efficiency and effectiveness of a programming system. This complexity arises from

the general-purpose nature of programming languages and systems; they can be

used for many different purposes, and the criteria for success varies between

different cases.

Because MeDaL is designed to support all the phases of the software life-cycle,

there are many components which must be designed and tested in order to obtain

information about MeDaL's suitability for those phases of software development

(these modules and their rOles were described in Chapter 4). The implementation

and evaluation of all of these modules is beyond the scope of this thesis. However,

it can be seen that the MeDaL run-time system is a key component on which the

success of the whole system hinges. MeDaL actor code does not contain parallel

constructs: it is the run-time system which manages parallelism for the whole

program. It is therefore vital to the success of MeDaL as a parallel programming

system, that this management of parallelism by the run-time system can be

implemented efficiently enough for programs implemented using MeDaL to exhibit

speedups when running on multiple processors. If this is not so, then clearly the

exercise as a whole can be regarded as not worthwhile.

The term "speedups" used above is a vague and somewhat controversial term,

since it implies a comparison, but it is not clear exactly what the comparison should

be between. Should the time taken to execute a program in parallel be compared

with: the same program running on only one processor; a program with the same

functionality written purely sequentially, without any parallel constructs; a program

with the same functionality using an alternative method of parallelisation; or a

theoretical "ideal" version of the algorithm being used? None of these is an entirely

Page 113

Chapter 5 Performance Evaluation

fair comparison. However, as the primary aim of this chapter is to examine the

behaviour of the MeDaL system, the latter two can reasonably be ignored.

Comparison to alternative methods of parallelisation is of only limited interest,

since it would provide as much information about the other parallelisation methods

as about MeDaL. Comparison to ideal versions of the algorithm being parallelised

would provide information about the algorithm rather than about the performance

of the MeDaL system. Thus, this chapter is limited to a definition of speedup

whereby

speedup = Tserial
Tparallel

Where Tserial is the time taken by a serial version of the program - either a MeDaL

program running on one processor (hence serially) or a program based on the same

algorithm but without using MeDaL or any other parallel constructs.

U sing this definition of speedup, when employing 2 processes (in this case,

actors) to do some computation, the ideal would be that the speedup would be 2

(i.e. that the time taken would be half as long). When employing 3 processes, the

ideal speedup would be 3, and so on - this is known as linear speedup. In practice,

however, as stated in Amdahl's Law [Amda67] there is usually some part of the

program, involved with starting up parallelism, which cannot itself be parallelised -

it must remain serial. Thus, there is an upper bound on speedup which means that

linear speedup can rarely, in practice, be achieved.

An alternative to measuring speedups is to measure the efficiency of a parallel

program. One useful measure of a parallel program's efficiency is the proportion of

the program's total execution time which is spent executing that code which

actually performs the "useful" algorithm, rather than the code which implements

the parallel constructs. Of course, the structure of the parallel program has a

significant effect on efficiency - an algorithm which requires frequent synchronis­

ation between processors, for instance, is likely to be inefficient. Moreover, a

programming language can be used to express a wide range of programs (usually

each having a number of possible structural forms). Thus, it is not possible to prove

in general that MeDaL programs are efficient.

However, it remains that an efficient implementation is needed to underpin an

efficient design of any parallel program; so if it can be shown that the means of

Page 114

Chapter 5 Performance Evaluation

parallelisation used by MeDaL do not, in themselves, make parallel programs

unacceptably inefficent, it follows that efficient parallel programs can be

implemented in MeDaL. Therefore, this chapter concentrates on evaluating the

efficiency of an implementation of a MeDaL run-time system which provides the

parallelism for MeDaL programs. Only once this has been covered are the speedups

recorded on an example application presented, to provide a general guide to the

success of MeDaL. The remainder of the chapter describes the implementation

environment, and the key parts of the implementation which were measured. The

experimental results themselves are then presented and evaluated.

5.1 Implementation Environment

Since the work implementing a MeDaL run-time system on a distributed

architecture (the Intel iPSC/2 - see Chapter 4) was of too limited a time period to

yield a fully working implementation, this chapter deals only with the implementa­

tion on a shared-memory multiprocessor, the Encore Multimax. The hardware used

was a Multimax 520 system, with 14 30MHz NS32532 processors and 96MBytes

of memory. The processors in Multimax systems are fully symmetric, and

communicate with a logically single shared memory, through a common bus with a

typical transfer rate of 100MBytes/second. There are two processors to each

processor card, which share 256KBytes of write-deferred cache memory on each

card. The mention of cache memory is relevant because its presence can have a

significant effect on the observed execution times of parallel programs, not only

because access to cache memory is faster than access to main memory, but because

cache hits reduce the need for access to memory through the bus, thus reducing the

chances of contention between processors for the bus. This latter effect can be a

major cause of loss of efficiency in shared-memory parallel processing. The

maintenance of cache memory in shared-memory mUltiprocessors is relatively

complex, since cache coherency (consistency between two or more caches which

may hold the same word of shared memory) must be maintained. The mechanisms

for providing cache coherency, however, are transparent to the application

programmer.

The operating system available on the Multimax was UMAX4.3, a variety of

Unix similar to BSD4.3, though with System V-like extensions (including the

Page 115

Chapter 5 Performance Evaluation

provision of shared segments) and system calls to manage concurrent access to

shared memory. Parallel programming is possible at the operating system level,

since Unix processes are scheduled to run on any available processor. However, the

synchronisation mechanisms available at this level are heavyweight; they require

many instructions, and take of the order of milliseconds to execute. To be efficient,

therefore - by reducing this overhead to an insignificant proportion of the total

execution time - the size of the computations undertaken by each processor would

have to be correspondingly large, certainly of the order of thousands of instruc­

tions. Thus, concurrency at this level could be described as large-grained

parallelism.

However, parallel programming at a finer-grained level is also provided for on

the Multimax, in the form of run-time libraries which provide synchronisation

functions which operate directly in shared memory without using the concurrency

system calls provided by the operating system kernel. This effectively gives the

programmer a way to bypass heavyweight operating system constructs. The finest­

grain interface available is called EPT, the Encore Parallel Threads library - a

thread being the lightweight equivalent of a Unix process. Using this library,

programs can be built in which the individual processing tasks can run as

(potentially concurrent) threads; these threads can be created and destroyed with a

much smaller overhead than that of the creation and destruction of Unix processes,

enabling programs to be efficient at a finer grain size.

In fact, threads run within a number of Unix processes, which are created at the

start of the program's execution and not destroyed until the EPT-based program

terminates. In other words, there is a hierarchy:

• threads (medium-grained) can be run in any of a group of participating

• unix processes (large-grained) which can execute on any available

• processor.

The EPT run-time library handles the decisions about the scheduling of threads

within the available processes, and the operating system handles the decisions

about the scheduling of processes on processor hardware. Thus, application

programmers only need to structure their programs into individual threads, and

handle the synchronisation between these threads using primitives such as

semaphores provided by the EPT library. These synchronisation primitives must

Page 116

Chapter 5 Performance Evaluation

also be used to regulate access to shared memory; the onus of shared memory

management is on the programmer.

This is the programming environment in which many parallel applications are

developed on the Multimax (and similar environments are available on similar

architectures). However, the management of shared data structures and synchronis­

ation between threads can require much programmer effort. MeDaL aims to

provide a "higher-level" programming system in which all control of parallelism is

handled by the system, and the programmer need only write sequential processes.

5.2 MeDaL Run-time System Implementation

The MeDaL run-time system undertakes the tasks of memory management and the

management of, and synchronisation between, medium-grained processes (threads

on the Multimax). It does this by providing a second run-time system "between"

the MeDaL programmer's sequential code sections and the EPT library. Since

MeDaL uses a dataflow model, process management is via the firing of actors

(each actor being executed in one thread), and the only access to shared memory

(requiring synchronisation to prevent concurrent access) is through datapaths; so

these two functions (actor firing and datapath management) are the main tasks

which the MeDaL run-time system performs. Sections 5.3 and 5.4 evaluate the

efficiency of the implemented run-time system, but first it is necessary to

understand specifically what the run-time system does. This section briefly

describes the implementation of the MeDaL run-time system in the environment

described in the previous section.

5.2.1 General Configuration

As discussed in sections 4.1 and 4.4, the approach taken on the shared-memory

architecture was to provide a generalised run-time system. Thus, the final runnable

parallel program consists of:

• the actor code, written by the application programmer;

• the actor wrappers, which envelop each actor in an EPT thread;

• roadmap-generating code, derived from the MeDaL graph;

• the generalised MeDaL run-time library, which makes calls to the EPT

library.

Page 117

Chapter 5 Performance Evaluation

The first three components are compiled from the MeDaL graph and actor code

supplied by the programmer; these are then linked to the MeDaL run-time system

library (called RTS) and the EPT run-time library (libept). Control enters the

program through RTS, which sets up the thread environment via calls to libept.

The RTS then calls the roadmap-generating code, which in turn calls RTS functions

to register each company (consisting of actors and datapaths) into the roadmap

maintained by RTS. In this way, the functions of the RTS are generalised - the code

for each specific MeDaL application is separate.

Once this roadmap-generating code has finished executing, the RTS runs the

source actor code for the root company; the data items placed on datapaths by the

source actors normally cause other actors to fire, and so execution of the MeDaL

program, potentially in parallel, begins. The procedure described above is

essentially a "set-up" procedure necessary before parallel execution can begin, and

as such imposes an overhead on the execution time of the program. However, the

extra time needed to perform this (over a program written directly in the EPT

environment without using MeDaL) only amounts to a few hundred instructions, or

a few thousand for a very complex application. Given that parallel programming is

only needed in cases where large amounts of processing is done (millions of

instructions at the least), this set-up overhead is not considered significant, and will

not be considered in detail.

5.2.2 Specific Functions

The reason the set-up overhead is insignificant is because it is incurred only once

for each execution run of the program, and is therefore an overhead of the whole

program. However, MeDaL memory management (e.g. the maintenance of

datapaths) and actor-firing functions are called repeatedly during the lifetime of the

program, and therefore have a much more important effect on the overall efficiency

of the program. These operations are now described in more detail. The main

functions are:

• Transmit an item of data to an output datapath;

• Receive an item of data from an input datapath; and

• Yank a "sticky" item of data back from an output datapath.

The algorithms for each of these are discussed in turn below. However, there is one

common factor: each of these functions alters the contents of a datapath. To prevent

Page 118

Chapter 5 Performance Evaluation

concurrent access, which could potentially leave the datapath in an inconsistent

state, each datapath has a lock associated with it (in fact, a semaphore) which must

be acquired before any operation can take place. Consider the following scenarios:

• Two actors share an output datapath (where a merge actor has been

optimised out). Since any two actors can potentially run concurrently,

they could both attempt to write at the same moment.

• An actor Z has two input paths A and B. A contains several items of

data, B none. While one actor writes to A, another writes to B. The latter

causes Z to fire, and so read data from both A and B. Therefore, there

could be an attempt to both write to, and read from, A at the same time.

These scenarios illustrate that, in general, both read-write and write-write conflicts

can occur on datapaths. A simple scheme was adopted by which the datapath's lock

must be acquired before any read or write operation proceeds. A more sophisticated

scheme might, for instance, check for the existence of other actors sharing a

datapath, or for other inputs to the destination; however, the extra complexity of

code needed to do this was not felt sufficient to justify its inclusion in this simple

implementation. With the principle in mind that the datapath's lock must be

acquired before any operation on it, the three main functions Transmit,

Recei ve and Yank may be described.

When an actor wishes to transmit an item of data on its output port, it simply

passes the data (or, in the case of structured data such as arrays, a pointer to the

data) and the number of the output port (output ports being numbered, left to right)

to the RTS function Transmi t. This function consults the roadmap to map the

output port to a datapath and then acquires the lock for that datapath, possibly

blocking if another actor already owns the lock until it is released. Having done

this, the next step is to place the data item onto the tail of the datapath's queue

structure, extending the size of the queue if necessary. This size extension requires

the allocation of a new block of memory for the queue, and the copying across of

the elements from the old to the new memory areas - a relatively heavyweight

operation. To ensure that re-allocation does not happen often, whenever the queue

becomes full its size is doubled; therefore, datapath extension rarely causes other

actors to block (more complex algorithms for extension involving heuristics, or

non-contiguous memory areas, would also be possible). Having added the data item

to the queue and possibly adjusted its size, the datapath's lock is released.

Page 119

Chapter 5 Performance Evaluation

Transmitting a data item may, of course, result in the datapath's destination

actor becoming enabled, and so firing; this too takes place within the Transmi t

function. Having added the data item being transmitted to a datapath, Transmi t

looks up the path's destination actor. If the actor is known to be a general-purpose

(non-depth) actor which is already running, it cannot be fired immediately, and so

no further action is taken. Otherwise, Transmi t now acquires a lock pertaining to

the destination actor (to prevent two actors checking for fireability concurrently),

then the lock for each of that actor's input paths, checking as it goes along that each

path is non-empty; if a path is empty, the procedure is aborted and all locks already

obtained are released. If, however, all paths are found to be non-empty, the actor is

fired, by telling EPT to run the actor's wrapper as a thread. EPT places the new

thread on its run queue before returning (the new thread runs immediately only if a

processor is available). This EPT operation adds a significant overhead to the time

taken by Transmi t (see below), but only in the case where Transmit does

actually result in the firing of another actor. Finally, the datapath locks are released

again. Note that if an actor is fired, Transmi t does not release the destination

actor's lock - see Receive, below.

It can be seen from the discussion above that Transmit acquires and releases the

lock associated with its datapath, and then acquires and releases a number of

further locks, depending on how many input paths the receiving actor has, and what

these input paths contain. At best only one path lock will be aquired and released;

at worst, for an actor with n inputs, there will be n acquisitions and n releases (in

the case where only the last path is empty).

Turning to the Receive function, this is called by the actor wrapper code

(when it is run as a thread by EPT). Receive is called for each input path. Like

Transmi t, the number of the input path must be mapped to an actual datapath

(paths being numbered from left to right as usual). The datapath's lock is acquired,

the data item at the head of the queue is read, and the queue size decremented; then

the lock is released. No further work need be done by the Receive function. Once

Recei ve has been called for each of an actor's input paths, the actor wrapper can

release the actor's lock, allowing any Transmi ts in progress to check whether it

can be run again.

The Yank function is similar to Receive, except that it receives data from a

Page 120

Chapter 5 Performance Evaluation

given output path, rather than an input path. Like Receive, it is called by the

actor wrapper as part of the firing procedure; the actor wrapper checks each output

path in turn to see whether a "sticky" item of data is present. Since only the

producer can affect sticky data items, there is no need to acquire the datapath locks

for this unless the producer is a deep actor; though the mapping from output path to

physical datapath must be done. When sticky data is detected, Yank is called on

that datapath. Yank simply acquires the datapath lock, reads the tail item of data,

decrements the queue size and releases the lock. Thus, the data item is completely

removed from that path; it is up to the actor to re-transmit it (stickily or otherwise).

Since the mapping of output path to datapath has already been done, Yank appears

to take slightly less time than Receive (see below). However, the two operations

are in fact directly equivalent.

Having discussed the functionality of these three key components of the RTS,

and shown what the algorithms involve, the actual times taken to execute these

algorithms can now be examined.

5.3 Experimental Results

To determine how efficient or inefficient the presence of the MeDaL RTS makes a

parallel program, one first needs to know the amount of execution time spent in the

RTS as a fraction of the total execution time of the program. Therefore, the starting

point to measuring this fraction is to measure the time taken by the three main RTS

operations, Transmi t, Recei ve and Yank.

The Multimax used for this experimentation is a multi-user timesharing system

running a complex operating system. As it was not possible to obtain sole use of

the machine for experimentation, all programs were potentially subject to

interference from other processes running on the machine at the same time; while

this interference does not affect the functionality of programs, it does affect the

timing, since at any time the program may be suspended to allow other processes

the use of processors. Therefore, in order to approximate a true picture of the time

taken for particular operations, the test programs were each run approximately 30

times, and the lowest observed time was recorded. The lowest observed time

represents the program run in which there was the least operating system

interference, and so provides the most accurate approximation to the real cost (in

Page 121

Chapter 5 Performance Evaluation

terms of time) of the RTS operations. In addition, all experiments were run at times

when the average system load was less than 1.0 (i.e. there was on average less than

1 runnable user process per minute, across all 14 processors).

Of course, if the test programs had been run more times, lower execution times

might have been recorded; however, the standard deviation of results was found to

be sufficiently small not to warrant more runs. The mean execution time was

typically 10% higher than the lowest observed time. It should also be noted that all

of the test programs were run in the same execution environment, namely within an

EPT thread. This is true even in those cases below which do not involve parallel­

ism, to enable fair comparisons.

The following sections give the results of experimentation first with the basic

RTS functions, and then with more complex programs which incorporate them. The

performance of a real application program - the matrix multiplication example from

Chapter 3 - is then presented and discussed. Finally, the efficiency of these

programs is examined.

5.3.1 Basic Functions

Figure 5.3a shows the time cost of the main RTS functions. The timings, of course,

relate to the hardware platform used and are of no significance to other (perhaps

newer) hardware; for this reason, the number of source-level instructions involved

is also given. However, these too are of only limited value since some of the

instructions are in fact function calls to the EPT library, which may then in turn call

the operating system; so all "instructions" are not of the same cost. To further aid

comparison, the times taken to do tight loops of 100 floating-point multiplications,

and 100 integer multiplications, are also given.

Operation Instructions Time (Ils)
Yank l3 35

Receive 16 37
Transmit 64 118

Transmit + fire 74 445
EPT thread startup N/A 161

100 flop mults 100 277
100 int mults 100 146

Figure 5.3a: Basic RTSfunctions

Page 122

Chapter 5 Performance Evaluation

It can be seen that the call to libept to start up a new thread (or more accurately,

place it on a run queue) forms a significant part of the cost of any Transrni t call

which involves firing another actor: 36% in the case of firing a two-input actor. In

fact, it was observed that the first few calls to EPT to start up a new thread took

significantly longer than subsequent calls; this is thought to be due to memory

allocation overheads and a cacheing effect (the relevant code is present in cache

after the first call, and so can be executed much more quickly). The cacheing effect

was also observed in other functions, so the minimum observed times are from

programs in which the appropriate functions were called several times before the

timing was recorded, to ensure presence in the cache.

There are a two other minor points to note about the timings given in Figure

5.3a. Firstly, the timings given for Transrni t refer to a specimen situation in

which the destination actor has two inputs. Timings for Transrni t to actors with

fewer or more input paths were found to vary by only a few microseconds; this

could extend into the tens of microseconds only for actors with large numbers of

input paths, a rare occurrence. Secondly, for comparison with the timings given for

floating-point and integer multiplications, it was found that in 500 microseconds,

182 floating-point multiplications or 327 integer multiplications could be executed.

These figures will be referred to later in this chapter. For floating-point multipli­

cations, this is equivalent to around 0.5 megaflops, a performance figure which is

verified by benchmarks such as LINP ACK. The integer operation was deliberately

chosen to be a poor case, and equates to around 1 MIPS; benchmarks show that for

other integer-based operations, the Multimax can reach 7.5 MIPS.

Having determined the time-cost of the basic RTS functions, the overhead

caused by their use in parallel programs can now be considered.

5.3.2 Use of Basic Functions within Programs

Although Figure 5.3a above gives an indication of the minimum overhead of using

the MeDaL RTS functions, these overheads do not constitute the whole cost of

using RTS for the parallelism constructs and shared-memory management of

parallel programs. In addition to these costs, there are the cost of the actor wrappers

and the cost of the programming language interface between RTS and whatever

Page 123

Chapter 5 Performance Evaluation

language the actors are written Ill; III the case of this implementation, C++.

Whenever an actor wishes to transmit an item of data on a datapath, an overhead is

incurred before the RTS is even called. In the case of C++, transmission is

triggered by an assignment to a variable representing an output path; assignment is

overloaded, so a function which handles assignment is called in the C++ library

(essentially part of the actor wrapper) which in turn calls the RTS.

These overheads are important because it is their cost which will determine

how efficient parallel programs which use the MeDaL RTS can be. In particular, if

the overhead of the RTS functions grows as the amount of processing being done

by the rest of the program grows, this would place an upper bound on the range of

algorithms which can be efficiently implemented using MeDaL. Therefore, this

section examines whether this is in fact the case.

Rather than trying to time each such overhead individually, it is more

informative to look at the overall picture using program scenarios. To examine

these scenarios, consider a parallel program which consists of two processes, A and

B, which require time Ta and Tb to complete, respectively. Clearly, the fastest

possible sequential version of this program would take time Ta+ Tb to run, and the

fastest possible parallel version (in theory) would take max(Ta, Tb). Assume further

that Ta=Tb, then in theory a parallel version (with no data dependency between the

two processes) could execute both processes in time Ta. The question now

becomes, what overhead does the use of the MeDaL RTS in practice add to this

time? This depends on exactly what the relationship between A and B is. The

possible scenarios are:

1. A and B are the same code, operating on different input data.

2. A and B are two different pieces of code, operating on the same or

different input data.

3. A and B are different pieces of code, and one is dependent on the other.

In MeDaL, scenario 1 is represented by a depth actor; two items of data are sent on

its input path and two copies of the actor are fired. Scenario 2 corresponds to

horizontal parallelism, where the two data items are transmitted on two separate

datapaths, causing each of the two actors to fire. Scenario 3 corresponds to vertical

parallelism, in which the output path of A, for instance, is the input path of B.

To look at these scenarios another way, in scenario 1, actors A and B share two

Page 124

Chapter 5 Performance Evaluation

datapaths - the input path and the output path of the depth actor. In scenario 2, no

paths are shared - A and B have separate input and output paths. In scenario 3, one

path, the path between A and B, is shared. The presence of shared datapaths is

important because, as described earlier, access to datapaths must be mutually

exclusive - thus when two actors both require access at the same time, an

unavoidable extra overhead on execution is created.

Scenarios 1 and 2 are the most interesting because they constitute the worst and

best case, respectively, when considering the use of RTS functions. In the case of

the depth actor, both actors must contend for access to a datapath both when

reading their input data and writing their output data. In scenario 2, neither actor

has to contend when either reading or writing.

Figure 5.3b illustrates what happens during execution of scenario 1. There are

assumed to be three processes running concurrently: one which transmits the initial

data, and two which receive the data, process it, and transmit further data. Each of

these processes consist of several individual activities, which are labelled as

follows. The label T represents the Transmi t function; the label R the Receive

function; A the actor process; and T', a transmit function which does not result in

an actor firing, since any further actor firing can be considered the overhead of that

actor, rather than actor A. The times taken by these activities are Tt, Tr, Ta and Tt',

respectively. Dotted lines in the diagram indicate the presence of dependencies

between the processes; the order of execution illustrated has both Transmit

functions occurring before either Receive is allowed access to the datapath which

they all access. This need not, in practice, be the case; however, the overall time is

not affected.

Process J
T T

" 1\ \
1 \
1 \

R A T' Process 2 \

1 1 \ 1
\ 1

1
\1 R I A T' 1

Process 3

Time-+

Figure 5.3b: Time-activity diagram - scenario J

Page 125

Chapter 5 Performance Evaluation

It can be seen from this diagram that, since T' is known to take longer than R, one

of the processes is blocked for Tt'-Tr time. The diagram illustrates that the

minimum possible execution time in this scenario is 2Tt+2Tt'+2Tr+ Ta. Of course,

this does not take into account the extra overheads mentioned at the start of this

section, so in practice the time taken is slightly longer.

These overheads can be measured experimentally. Figure 5.3c illustrates a

fragment of a MeDaL program representing scenario 1. The actor C transmits two

items of data to depth actor A. Two copies of A then fire each spending time Ta

processing, then transmitting a further item.

c

Figure 5.3c: MeDaL diagram - scenario J

A parallel program representing this MeDaL program was executed using the

MeDaL run-time system, and the elapsed time was measured from the point when

actor C first called Transmi t, to the completion of the second Transmi t called

by an instantiation of actor A, thus measuring 2Tt+2Tt'+2Tr+ Ta, plus any extra

overheads incurred.

In the experiments with this program, the time Ta was varied from 0 to 5000

microseconds, in steps of 500, to find out whether any extra overhead occurred

depending on the time taken by actor A. The results are shown below.

Page 126

Chapter 5 Performance Evaluation

Time (ps)

Ta (ps)

Figure 5.3d: Timings - scenario J

As the results show, from 1000flS upwards, the total execution time recorded

increases in steps of roughly 500flS, suggesting that the run-time system overheads

involved in this scenario are constant.

Turning to scenario 2, Figure 5.3e illustrates the activity of the three processes

in this case. Since the two Transmit functions operate on different datapaths, the

corresponding Receive functions can start immediately.

Process J
T T

I
I

Process 2
IR A T'

Process 3
R A T'

Time -+

Figure 5. 3e: Time-activity diagram - scenario 2

It can be seen from this diagram that the total minimum possible execution time in

this scenario is 2Tt+ Tt'+ Tr+ Ta . Again, an example program was constructed to

Page 127

Chapter 5 Performance Evaluation

measure this time. Figure 5.3f illustrates a fragment of a MeDaL program to do

this; the actor C transmits an item of data to actor A and to actor B, which each

spend time Ta processing before transmitting an item of data on their respective

output path.

c

A B

Figure 5.3!" MeDaL diagram - scenario 2

The time taken between the start of the first of the two Transmi t calls made in C,

until both A and B had completed their Transmi t call, was measured, thus

measuring 2Tt+ Tt'+ Tr+ Ta as described above, plus the extra overheads incurred.

Again, the time Ta was varied from 0 to 5000 microseconds in steps of 500. Table

5.3g shows the results obtained.

Time (ps)

Ta (ps)

Table 5.3g: Timings - scenario 2

Page 128

Chapter S Performance Evaluation

As one would expect, the times recorded are somewhat smaller for scenario 2 than

those for scenario 1. Again, however, the timings obtained for each Ta can be seen

to increase in steps of roughly SOOfJS, adding further evidence to suggest that the

overheads involved in the RTS functions are fixed, and do not depend on the

amount of processing being done by the actors they support. The implications of

this are discussed in section S.4.

Having shown that the overhead imposed by the MeDaL RTS does not appear

to vary with the amount of processing being done by the two processes running in

parallel, one further issue must be addressed: that of whether the RTS overheads

increase when increasing numbers of parallel processes are involved. This issue is

dealt with in the next section.

5.3.3 Varying Numbers of Actors

In order to examine the behaviour of the MeDaL RTS in a situation in which both

the time taken to execute an actor and the number of actors varies, timing

measurements were taken from one of the example programs coded using MeDaL.

A simplified form of the matrix multiplication example given in Chapter 3 was

chosen, because it is a computational problem which is easily scaled to whatever

size is desired. This ease of scaleability makes it a tough test for any parallel

programming system, since if the parallel system does not scale so well, the

speedups which result are well short of ideal. Therefore this application is a good

test of MeDaL's potential.

The MeDaL diagram of the program used is shown in Figure S.3h. For further

details of the algorithm used, see Chapter 3, section 3.4.2; the version used here is

simplified only in that it contains no companies or file handling.

Page 129

Chapter 5 Performance Evaluation

matrix-mult

matrix A matrix B

split into strips

multiply matrix by vectors

result vector strips

merge vectors into matrix

result matrix

print result matrix

stdout

Figure 5.3h: Simplified matrix multiplication example

As in the program scenarios in the previous section, measurements were made of

the time taken for the whole of the parallel portion of the program; specifically,

from the start of the first Transmi t operation on the datapath marked strips in

Figure 5.3h, to the end of the last Transmi t operation on the datapath marked

result vector strips. Further, the RTS was modified so that the actor marked merge

vectors into matrix was not allowed to fire, to avoid interference effects.

In the timing experiments with this program, the sizes of the two matrices

being multiplied were varied from 625 elements (25x25) each to 22500 elements

(150x150) each. The number of processes allowed to participate in the computa­

tion, n, was varied from 1 to 8. For each experiment, the second matrix B was split

up into n "strips" of columns to be multiplied by matrix A; thus for each value of n,

Page 130

Chapter 5 Performance Evaluation

the depth actor fires n times, receiving a strip of vectors to be multiplied by matrix

A.

Naturally, in the case of n=l, the code involved executes completely sequen­

tially. However, since matrix B is passed on in only one strip, the minimum of RTS

basic functions are called; Transmi t is called only once on each datapaths. When

n=2, Transmi t is called twice on each path, and so on.

Thus, by comparing the times taken for varying numbers of matrix multipli­

cation actors to the time taken by one actor, it is possible to derive an

understanding of any loss of efficiency caused by the use of basic RTS functions.

This comparison is a measurement of "speedup" as discussed at the start of this

chapter - the "serial" version in this case being the same MeDaL program running

on a single processor.

However, the speedup figure for a given array size and a given number of

actors contains more information than just the unparallelisable, serial fraction of the

algorithm used. The amount by which a speedup figure is less than the ideal, linear

speedup figure, provides a good indication to the efficiency of the parallel program;

the patterns in which these speedups vary can illustrate whether efficiency

increases or decreases as the number of actors and array size vary.

An easy way to identify these patterns is to examine a visual representation of

the data. Figure 5.3i shows a three-dimensional bar chart of the data obtained by

experimentation, plotting array size against number of processes against speedup.

Page 131

Chapter 5

!II 100

!Il 125

D 150

Illlll IDEAL

8

7

6

§' 5
'C
~ 4
0..

en 3

2

1

o

Number of processors
.....
" 10:

Performance Evaluation

Matrix size

Figllre 5.3i: Matrix multiplication - speedllp against sequential MeDaL program

For comparison, the "ideal" of linear speedup is also shown on the graph. Thus,

where n=4, the ideal speedup would be 4; the graph shows that with an array size

of 25x25, the speedup was some way short of this; with 50x50 arrays, the speedup

was closer to 4; and for all larger array sizes, the speedup was very close to 4.

In fact, a clear general trend illustrated by the graph is that the larger the array

size, the closer to linear the speedup becomes. In other words, the conclusion of the

previous section - that no further overheads are incurred by increasing the amount

of processing being done - holds.

The other trend illustrated by the graph is that, for each array size over 25x25,

adding each extra actor, i.e. each step from n to n+1, results in a similar speedup for

each nand n+ 1. These steps are slightly larger for larger array sizes, but each

matrix size over 25x25 shows a smooth, almost linear progression from small to

large values of n.

What this pattern suggests is that, above a certain data (and hence processing)

size, extra MeDaL actors may be employed without incurring any unforseen

overheads, in other words without any significant loss of efficiency. Use of the

Page 132

Chapter 5 Performance Evaluation

MeDaL RTS for parallelism within a program does not place any barrier to

achieving close-to-linear speedup; at large problem sizes, the time spent executing

the RTS basic functions becomes a very small fraction of the total execution time,

thus causing only a small loss of efficiency.

Unsurprisingly, when the amount of processing being done by each actor is

small, the overhead of using the MeDaL RTS remains relatively large. This

explains why the multiplications of 25x25 and 50x50 matrices do not speed up as

well as those of larger matrices. The fact that when mUltiplying 25x25 matrices, the

maximum speedup is obtained when n=5 and declines for larger values, is due to

the algorithm used. The strips given to each actor were of equal size; the number of

vectors in each strip being the integer division of the total number of rows in the

array by n. The last actor handled the remainder from this division if any; there was

none in the case of n=5 since 25 is exactly divisible by 5. For larger values of n,

each actor was doing small amounts of work, with the last actor doing even less.

Thus, the overhead imposed by the RTS became more significant, and a drop in

speedup was observed, in just the same way as in the scenarios described in section

5.3.2.

The alternative way of measuring speedup, mentioned at the start of this

chapter, is to measure gains in execution time not against a version of the same

(MeDaL) program running on one processor, but against a purely serial program,

using essentially the same algorithm but without any parallel constructs. As stated

earlier, the basic algorithm involved in matrix multiplication scales very well.

When processing larger matrices, the only overhead incurred (above the extra

multiplication instructions) is to execute iteration constructs. However, any parallel

version of this algorithm must partition the matrices, and transmit these partitions

to the worker processes; and the larger the matrices, the greater this partitioning

and transmitting task becomes. Moreover, because this partitioning must be done

before the partitions can be processed, it is not parallelisable; so if it is included in

the measurement of total time taken, it represents an increasingly large overhead.

Thus, as matrix size increases, speedup would not increase as fast as it would if this

overhead was fixed. However, as the overhead of partitioning only increases

proportionally to the number of elements, while the time taken for the multipli­

cation increases proportionally to the cube of this number, partitioning represents

Page 133

Chapter 5 Performance Evaluation

an inreasingly small serial fraction of the total computation, and so one would

expect speedups to increase even if only gradually.

Speedup results for matrix multiplication were derived using the same figures

used in the previous experiment, but compared against a purely serial matrix

multiplication program processing matrices of the same range of sizes. Because the

time for the MeDaL version was measured from the first Transmi t operation on

the datapath labelled strips in Figure 5.3h, the time for partitioning is included. The

graph of speedups against number of processors against matrix size is shown in

Figure 5.3j.

0 25 8

II 50
7

6

.75 P- 5
::l

"t:l
CI) 4

[,§] J 00
Q)

P-
C/) 3

~ 125 2
IDEAL

CJ 150

~ IDEAL
Matrix size

.....
Number of processors II

!::

Figure 5.3j: Matrix multiplicatioll - speedup agaillst serial program

This speedup graph shows the expected behaviour; that as matrix size grows, so too

does the speedup increase; but more slowly than in the previous example as the

overhead of partitioning also increases. When more processors are used, the

partitioning process again grows, and so the graph is flatter on both these axes. The

fact that speedups do increase with larger matrices and more processors illustrates

that the overhead of using the MeDaL RTS does not become prohibitive across a

range of grain sizes (and experiments with larger arrays and more processors

Chapter 5 Performance Evaluation

suggested that this pattern continues). Nevertheless, comparison with linear

speedup shows that this is a fairly poor result.

However, this result is a reflection more on the implementation of matrix

multiplication used, as much as on the RTS implementation. Apart from the fact

that serial matrix multiplication does not suffer from an increasing partitioning

overhead, the MeDaL version suffered on two counts. Firstly, the actual multipli­

cation algorithm was written for simplicity rather than efficiency; various shortcuts

were ignored in favour of a simple working implementation. Secondly, and more

importantly, the most obvious strategy for partitioning was used - sections of

matrix B were copied into individual arrays representing the strips to be processed

by the deep actor. This copying is relatively time-consuming, and could have been

avoided by passing only pointers to shared memory. However, the latter is

undesirable from the design point of view, since the use of shared memory

undermines the property of freedom from side-effects; in this sense, it is against the

MeDaL "philosophy," and hence it was not the strategy chosen in this case. These

two drawbacks, added to the general overhead of partitioning for parallel matrix

multiplication, account for the apparently poor performance of this application

illustrated in Figure 5.3j.

Had the whole MeDaL programming system been available, in particular the

harness generator, it would have been feasible to implement other examples which

did not have the drawbacks of the one actually implemented, and thus would have

showed MeDaL in a better light; but the fact that wrapper code for applications had

to be written by hand made this impossible in the time available. In any case, the

aim of the exercise was to evaluate the efficiency of the run-time system, rather

than the use of the MeDaL notation itself.

Having studied the behaviour of the MeDaL RTS implementation and a sample

application, using the data presented in this section, these results can now be

analysed.

5.4 Evaluation of Results

To understand the significance of the results described in the last section, it is

necessary to return to the concept of grain size described in earlier chapters. Grain

Page 135

Chapter 5 Performance Evaluation

size refers to the amount of processing done by a process between synchronisations

- in the case of MeDaL, the amount of processing done by an actor between

receiving its input data and transmitting its output data. Therefore, in considering

the question posed at the start of this chapter, about whether MeDaL can be

implemented efficiently enough to provide speedups for parallel programs, an

alternati ve question can be put: is there a grain size for actors at which their

execution under MeDaL is acceptably efficient?

5.4.1 Grain Size

The results shown in section 5.3.2 show that MeDaL overheads remain fixed as the

amount of processing (grain size) in actors increases; thus, as stated above, the

proportion of computation taken up by RTS functions decreases as the grain size

gets larger. This means that, if MeDaL is efficient at any grain size, there is no

upper bound on the grain size at which it is efficient.

The results presented in section 5.3.3 further show that above a certain grain

size, one can add further processors to work on the computation without a

significant loss of efficiency (at least, on the fairly small numbers of processors

available on the Multimax). This confirms that there is no upper bound on this

machine. However, the figures obtained in the experiments in both these sections

clearly show that there is a lower bound.

A first guess at this lower bound is suggested by scenario 2 in section 5.3.2 -

the "best case" for the RTS overhead of adding another actor. Given that the total

amount of processing being done takes 2Ta time, the program first showed a

speedup (over a sequential version) when Ta=1500IlS. Thus, one could say that the

minimum efficient grain size for MeDaL is 1500llS on the Multimax; to put this in

a more architecture-independent context, using the figures mentioned in section

5.3.1, this is equivalent to around 540 floating-point multiplications (or 980 integer

multiplications) .

U sing the worst case rather than the best case to determine the lower bound, the

scenario 1 program began to exhibit a speedup when approximately Ta=2500lls. If

this is used as a measurement of the minimum efficient grain size, then the grain

size is 2500lls on the Multimax, or roughly 920 floating-point multiplications.

Of course, floating-point operations are in themselves something of a worst

Page 136

Chapter 5 Performance Evaluation

case in terms of computer performance, so in a practical program, perhaps with a

mix of integer and floating-point operations, the grain size (in terms of instructions)

necessary for this implementation of MeDaL to yield speedups would in fact be

somewhat higher. However, even if we conclude that the minimum efficient grain

size of this implementation is in the range 1000-2000 instructions, this still falls

clearly within what is suggested for the term "medium-grained" in Chapter 2,

section 2.1.7.

5.4.2 Limitations

Identifying the minimum efficient grain size has its limitations. It is not generally

possible to say that because a program has potentially parallel computations of

above a minimum size it is "worth" parallelising, because of two factors:

• the desire for "acceptable" speedups; and

• the presence of unparallelisable sections of the algorithm.

The first of these two factors is hard to define qualitatively, not only because the

standard of what may be "acceptable" will vary from one application to another,

but also because it tends to be a fairly subjective judgement.

However, a general feel for the performance of the MeDaL RTS can be

obtained by tentatively imposing some criterion of what is an acceptable speedup.

For instance, if one arbitrarily suggests that only speedups which come within 25%

of linear speedup are acceptable, then clearly the speedup obtained in the case of

3000l1s grain size in scenario 1 above (see section 53.2, in particular Figure 5.3d) is

no longer acceptable. Although MeDaL can run 6000l1s worth of processing in only

535111S, this is only a speedup of 1.121 compared to a theoretical linear speedup of

2. In this example the grain size has to rise to 5000l1s before the speedup reaches

1.502, crossing the arbitrary 25% line at 1.5.

The second factor, that of un-parallelisable components of an algorithm, IS

demonstrated very clearly in the matrix multiplication example. Because timing

was to include the RTS overhead of transmitting strips of vectors to the depth actor,

the start time used was the start of the first call to Transmi t made by the actor

which splits matrix B into strips. However, this meant that the total time recorded

included the time taken by that actor to generate the other strips (i.e., to partition

that data). As the algorithm used was chosen for simplicity rather than efficiency,

Page 137

Chapter 5 Performance Evaluation

for the smaller matrices the overhead imposed by this serial algorithm added a

significant time overhead to the total execution time, contributing to the poor

speedups seen for the smaller matrix sizes.

This point is not limited to the matrix multiplication example, but is a general

feature of parallel programming: where a non-trivial algorithm is needed to

partition data so that it can be worked on in parallel, this algorithm must usually be

executed serially, and as such causes a further overhead on parallelism, limiting the

speedups which can be achieved. Moreover, the fact that the algorithm in the

parallel section must deal with partitioned data may make it more complex; this is

true in the matrix multiplication example, in which the actor which does the

multiplying must deal with strips and know which column of matrix B each vector

is. Of course, in a complex program, it is possible that other tasks can continue

while partitioning etc. is going on, and so efficiency is not significantly decreased.

But in simple programs, it can be a major factor.

5.4.3 Conclusions

One general conclusion, therefore, is that in deciding whether or not it is worth

parallelising a computational problem, one should take into careful account not

only the grain size of the computations, but the potential for parallelism. The

tighter the criteria required to make speedups acceptable, the closer attention must

be paid to the algorithm used. This point is not limited to MeDaL, but can be

applied to high-level programming languages in general.

Further conclusions can be drawn from the performance of the matrix

multiplication example. As explained above, the lack of efficiency of the

partitioning algorithm led to less than ideal scaleability in terms of the amount of

processing being done. Therefore, when compared to the the serial version, MeDaL

exhibited fairly poor speedups. The partitioning part of the program was inefficient

for two reasons: firstly, because of the way it was coded (including copying

sections of data to transmit as separate data items); and secondly, because it was

inherently serial. From the first of these two points, a conclusion can be drawn in

the form of a recommendation to MeDaL programmers: for maximum efficiency,

when shared memory is available it should be exploited. Had the matrix-multipli­

cation example merely passed pointers to matrix B's position in shared memory

(and the multiplication actor been coded with knowledge of matrix B's storage

Page 138

Chapter 5 Performance Evaluation

structure), the program would have been considerably more efficient. In other

words, a tradeoff can sometimes be made between efficiency and the much-vaunted

"freedom from side-effects" property of the dataflow paradigm. Either maximum

efficency, or minimum danger of side-effects can be chosen, but not both. On a

shared-memory architecture, the MeDaL system does not enforce a choice one way

or the other; it is for the programmer to decide, based on the particular case.

From the second point - that the partitioning section of the program was

inherently serial - one final conculsion can be drawn. It was noted earlier that in a

more complex program, there may be other tasks which can execute concurrently

with partitioning tasks, thus masking the inefficiency of such serial partitioning

algorithms. The conclusion which can be drawn from this is that MeDaL is likely

to be more useful for the implementation of complex parallel programs, with many

potentially concurrent sections, than for simple programs. This conclusion was

expected from the outset, and once again it is a general point about the nature of

high-level programming: the higher-level the language, the more inefficiencies are

introduced; so the smaller the program, the less benefit can be made from using a

high-level language. Because MeDaL provides horizontal, vertical and depth

parallelism, and because it allows tasks to be executed as soon as resources allow,

MeDaL is particularly suited to large, complex parallel programs. For such

programs, whenever the number of enabled actors exceeds the number of

processors, MeDaL can keep all processors busy and thus ensure maximum

efficiency - this is a major benefit considering the application programmer does not

have to write any parallel code to achieve this. The more complex the program, the

more benefit MeDaL is likely to bring - this is as true of MeDaL as of any other

programming system.

Of course, this statement is not conclusively proven. However, the experimen­

tation with small, simple programs described in this chapter clearly indicate that the

design of MeDaL should be no hindrance to the efficient execution of parallel

programs. It has been shown, in particular, that:

• executing two actors is efficient so long as the actors are each doing a

certain minimum amount of processing, consistent with the "medium­

grain" size;

• this minimum remains constant when the total number of actors is

Page 139

Chapter 5 Performance Evaluation

increased, and when the amount of work being done by each actor is

increased.

Therefore, use of the MeDaL run-time system as a means of providing parallel

constructs for a program allows efficient execution in the medium-grained context -

assuming the algorithm to be parallelised can itself be implemented efficiently. It

should be emphasised that all of the test programs were run using a realistic (if

simple) implementation of the RTS. Furthermore, the test programs were also

coded in a realistic way, i.e. the actor wrapper code, although written by hand, was

written in such a way as to simulate the code which would have been generated

from a MeDaL graph. The fact that the module of the MeDaL system to generate

this code was not implemented prohibited the testing of the RTS with more

complex application; but the simple tests described here indicate that the

components which would be used for more complex programs allow efficient

execution within certain constraints described above. The general conclusion,

therefore, is that on the strength of the implementation used, the MeDaL

programming system appears to support the efficient execution of parallel

programs.

Page 140

Chapter 6

Conclusions

In order to present a concise view of the conclusions which may be drawn from this

work, this chapter first gives an overview of the various aspects of the research

described in the previous chapters; then draws these aspects together. The

possibilities for future related research which this work opens up are then

discussed.

6.1 Overview

The thesis opened by describing the current state of parallel computing, and in

particular how the demand for high processing performance at low cost has led to a

variety of architectures which allow concurrent processing. Of these architectures,

two types of MIMD machines - shared-memory and distributed-memory

multiprocessors - have become particularly prevalent. These two types of

multiprocessor machine are particularly attractive because they utilise standard

processing elements, already manufactured in bulk, which therefore offer an

attractive price/performance ratio. Furthermore, the control of parallelism on these

machines is left to software rather than being implemented in hardware, which

makes them general-purpose. This generality of application is (as is often the case)

at the expense of some speed, since flexibility at a higher level - in this case system

software - generally inhibits optimisation at a lower level, in this case hardware.

However, this flexibility as well as the relatively low cost of multiprocessor

machines has made them successful.

Because synchronisation on these multiprocessors is not as fast as on some

specialised architectures, these multiprocessors do not offer fine-grained (inter­

instruction) parallelism; rather, they offer medium-grained or coarse-grained

parallelism. Medium-grained parallelism is typically exploited by the use of

specifically-designed parallel programming languages which map onto the

constructs for parallelism provided by the machine's operating system.

Page 141

Chapter 6 Conclusions

These parallel programming languages come in a variety of models. Often, the

model of parallelism used for a language is based upon a target architecture; for

instance, many programming models assume a message-passing architecture, and

base their constructs for synchronisation on the explicit transfer of data through

structured channels, which map onto the inter-node links of a message-passing

architecture. Alternatively, the model may assume the presence of shared resources

such as semaphores which can be easily implemented on a shared-memory

architecture. Indeed, many parallel programming languages are no more than well­

established HLLs with constructs added to control the specific features of one

architecture. The advantage of this approach is that since the parallel language code

maps closely to the target architecture, the resulting code controls the machine

efficiently and so achieves good processing performance. The disadvantage is that

the code - and moreover the programming skills involved - are to a large extent

unportable. This can only have hindered the success of parallel architectures.

Of course, a few more architecture-independent parallel languages have been

developed. However, no one leading candidate has emerged, and this may be partly

due to two main factors: the lack of integrated programming environments, and the

fact that they are mostly text-based. To consider the first of these factors, it is

necessary to remember that parallel programming is inherently more complex than

sequential programming, and hence parallel programs are more difficult for the

programmer to design, implement, debug and tune for performance. However,

many parallel programming languages have tended to concentrate on implementa­

tion (and, to an extent, debugging). When tools for these activities are available, it

is often in the form of piecemeal "toolsets" rather than integrated systems based

around a common programming model. The fact that the programmer must learn

and remember the user interface for each tool makes the task of programming more

difficult. In the field of sequential programming, this has led to the development of

integrated CASE tools which aid the programming process from design through to

maintenance; however, such tools are still rare in parallel programming.

The second statement (that the textual nature of most parallel programming

languages is also problematic) is also due to the complexity of parallelism. Textual

languages are inherently abstract and sequential, and these factors added to the

inherent complexity of parallel programming makes textual parallel languages

Page 142

Chapter 6 Conclusions

uniquely difficult to understand. However, textual parallel programming languages

remain predominant, probably because of the relatively very recent affordability of

standard graphical displays.

From these arguments it follows that there is a need for graphical parallel

programming languages around which an integrated programming environment can

be based. While there are a few such programming environments, not all are

designed for medium-grained multiprocessor machines, and of those which are,

none use the dataflow paradigm.

Yet the dataflow paradigm seems a feasible candidate for such an integrated

parallel programming system. It is an inherently visual model, and has been used as

the basis of sequential programming languages because it is easy to use. But

because dataflow graphs contain implicit parallelism, dataflow is well suited for

use as the basis of a parallel programming language. One possible solution,

therefore, to the difficulty of parallel programming on medium-grained multipro­

cessors, might be to base a parallel programming language on the dataflow model,

combining medium-grained sequential computations (written in an arbitrary

sequential programming language) together using a dataflow graph.

However, existing dataflow graph notations are not well suited to the medium­

grained level; many are contain specialised fine-grained operations which would be

inefficient at the medium-grained level, and others contain no specialised

operations at all leaving much work to the programmer.

As a result of this, it was necessary to design a new dataflow graph notation

specifically for use at the medium-grained level. This notation is called MeDaL

(Medium-grained Dataflow Language) and is based on traditional data-driven

dataflow notations. As in traditional notations, data tokens flow between actors

through unidirectional datapaths. The actors are subject to the strict enabling rule

and contain no persistent state. As well as general-purpose actors, which contain a

medium-grained computation as described above (the computation being known as

the actor's method), there are four specialised types of actor which need not or

cannot contain a method: the source, sink, replicator and merge actors. Because

they do not contain a method, these operations are in a sense fine-grained; however,

they can be implemented specially and so do not have a significant influence on

efficiency.

Page 143

Chapter 6 Conclusions

In addition to these basic elements, MeDaL contains a number of features

designed to make it an effective medium-grained programming language. These

include a notation for a modular, hierarchical structure, through a system of

grouping actors together into companies; a library of standard functions such as

actors to handle program input/output; and provision for activity parallelism (as

well as structure and result parallelism) in the form of "deep actors," multiple

copies of which can fire concurrently. A further important feature of MeDaL is the

ability of its datapaths to convey arbitrary structured data types, and facilities to

store data items persistently relative to firings of actors. This persistent storage

takes the form firstly of datapaths which retain a copy of the last data item to pass

through them (F-type paths), and secondly of operations on datapaths to prevent a

data item which is sent from being delivered immediately (sticky sending). The

provision of persistent memory is important not only because it reduces program­

mer effort, but because it allows complex data types to be built up out of simpler

ones, aiding working at a larger grain size.

There are various options for the way III which MeDaL programs can be

compiled and executed, and these options were described in Chapter 4. It was

shown how information can be extracted from the MeDaL graph and combined

with the actor method code and a run-time library to form an executable program. It

was illustrated that the method code can have a simple interface with the MeDaL

system using encapsulation features of the C++ language.

The run-time library is central to the efficient execution of MeDaL programs,

and the way in which this can be implemented on both distributed-memory and

shared-memory architectures was described. The fact that this architecture­

dependent detail is implemented in the MeDaL run-time library and the code

generated from the MeDaL graph - rather than in the code supplied by the

programmer - supports the aim of MeDaL to provide a portable parallel program­

ming environment. The efficiency issues involved in implementing MeDaL on both

types of architecture were described in detail, since efficiency is crucial to the

success of any parallel programming language; programming techniques devised to

address these issues were given.

Having considered the implementation of MeDaL as a programming language

in theory, the final step was to evaluate the implementation in practice. Efficiency

Page 144

Chapter 6 Conclusions

being the focus, the performance of an implementation of the MeDaL run-time

system was examined. Due to time limitations, this part of the practical work was

restricted to the Multimax shared-memory architecture. Chapter 5 described the

implementation and the results of experimentation with certain key parts of the run­

time system; namely the functions pertaining to the transmission of data items onto

datapaths, and the firing of actor methods. The time taken by these functions was

measured not only in isolation, but within the context of best-case and worst-case

usage scenarios of MeDaL program fragments. Within the context of these

scenarios, the overheads imposed by the functions of the MeDaL run-time system

were shown to be approximately constant. Further experimentation using an

example application revealed that the speedups achieved by MeDaL programs

increase in a steady progression when the number of participating actors, and the

amount of work done by each actor, is varied. This suggests that MeDaL could be

used for programming a variety of applications without incurring unexpected

overheads leading to loss of efficiency. Having identified the precise effect on

efficiency of using MeDaL as an implementation system, it was shown that MeDaL

allows efficient execution (in the sense that it delivers speedups) when the

computations involved are of 1,000 instructions upwards. Thus, MeDaL was

demonstrated to be a viable candidate for use as a medium-grained parallel

programming language, in the terms defined in Chapter 2.

6.2 Conclusions

The above overview of the preceding chapters of this thesis provide the basis for a

summary of the conclusions which can be drawn.

The motivation for this work results from the research described in Chapter 2.

The general conclusion is that programming languages for the mUltiprocessor

architectures described mainly operate at a low level (close to architectural details),

do little to alleviate the conceptual difficulties of parallel programming, and are not

well supported by programming tools. However, a second conclusion is that the

field of serial programming has clearly benefitted from abstraction, for reasons

both of portability and ease of understanding. From this arose the interest in

providing a higher-level parallel programming system designed for these

multiprocessors. Visual programming seems to have much to offer from the point

Page 145

Chapter 6 Conclusions

of view of abstraction in programming languages, and the dataflow paradigm is an

example of a very visual model from which it is straightforward to extract potential

parallelism. Thus, the final conclusion of the research into parallel programming is

that dataflow offers possibilities for a visual parallel programming system which

have not previously been explored on medium-grained multiprocessor machines.

Therefore, the aim of the project became to design a dataflow language for

medium-grained parallel programming, and in conjunction with this, to develop

techniques which allow the efficient execution of programs expressed in this

language. In designing the dataflow language, MeDaL, a number of points became

clear, such as the need for a small number of efficient primitives, and a modular

structure to prevent anyone graph becoming unmanageably large and complex.

However, more important than either of these are the issues of persistent memory

and synchronisation. It was found that allowing complex data types to be built up

from simpler ones, and making provision for actors to deal with data streams

containing inequal numbers of data items, make the language much more flexible:

not only can many algorithms be expressed more concisely, but the inclusion of

these features in the language remove the need for the programmer to implement

them when needed. Of course, the solutions to these problems incorporated into the

language are only part of a range of possible solutions, and several of the

alternatives given in Chapter 3 are also clearly viable solutions. In particular, the

option of allowing actors to contain persistent state, and the provision of syn­

chronous and asynchronous datapaths, seem to be realistic propositions.

The design of the MeDaL language, and the subsequent development of the

techniques which make it possible to implement efficiently, was to some extent an

iterative process. For each language feature, it was first decided what would be

needed, and then the possible implementation considered; and the notation was

often then modified in the light of what seemed practical. An example of this is the

deep actor, which is a compromise between a desired feature (provision for activity

parallelism) with efficiency considerations (the need to avoid the creation of large

numbers of datapaths, hence the decision that deep actors should share their input

path/s) resulting in a tidy, concise notation.

Of course, the techniques described in this thesis are based on the provisions

for parallel programming provided by the operating systems of the architectures

Page 146

Chapter 6 Conclusions

which were available. It must be recognised that other architectures may not

provide the same facilities. In particular, where the hypercube's operating system

provides functions which transport program code or data from any node to any

other, many distributed-memory multiprocessors (such as transputer-based

machines) only provide support for communication between one node and the next,

through a specified link. In such cases, further techniques would need to be

developed to implement actor-to-actor communication through a point-to-point

network. This should not pose a major problem, since techniques for configuration

and communication on distributed architectures have already been developed.

However, it must ultimately be borne in mind that the results arrived at with the

shared-memory architecture do not allow hard conclusions to be drawn about the

suitability of MeDaL for distributed-memory architectures. While some techniques

were developed by which the MeDaL run-time system could be implemented on

the hypercube, without the implementation itself, the conclusion can be no more

than informed speculation. However, since dataflow maps closely to the message­

passing model (with actors as nodes and datapaths as inter-node links) there seem

to be strong grounds for hope that MeDaL would prove reasonably efficient.

Moreover, since one of the main aims of implementing the basic functions of

the MeDaL run-time system was to deduce the actor grain size at which MeDaL

can execute efficiently, it must be noted that the conclusions about grain size drawn

in Chapter 5 are also specific to the Multimax. Nevertheless, since synchronisation

mechanisms do not vary greatly between shared-memory architectures, it seems

likely that similar results could be achieved on similar machines. Furthermore, it

should certainly be possible to improve on the figures obtained with the prototype

implementation, which was coded for simplicity rather than speed. For instance,

little attempt was made to ensure that cache memory was used to the fullest extent

possible, a factor which can have a significant effect on execution time. If the code

was profiled and re-written optimising for speed, the overhead of the MeDaL run­

time system could be reduced somewhat, resulting in an improvement in the actor

grain size supported (namely, to support a somewhat smaller minimum grain size).

A further limitation is that a few of the features of MeDaL were not imple­

mented in the prototype run-time system. Standard input and file handling were not

implemented. These were not considered of great important because programs

Page 147

Chapter 6 Conclusions

considered worth implementing in a parallel language are generally cpu-bound

rather than lIO-bound, and so the provision of these features would not have

significantly affected grain size or overall efficiency. In addition, the company

system was not fully implemented, and no test was made of recursion. The

possibility of recursion was included at the design stage because it makes certain

algorithms much easier to express concisely - there can be little doubt of this.

However, recursion involves the creation of a new copy of the company involved at

run-time, and therefore carries a significant overhead, not only of time, but more

particularly of memory space. The large-scale use of recursion might approach

system-dependent limitations on memory size, and so might not be the most

appropriate technique. Whether this should be reflected in the notation is another

matter.

The more general question which arises out of this, though, is that of for what

type of program is MeDaL not a suitable design and implementation medium. The

point was made in Chapter 5 that algorithms with an unparallelisable partitioning

section do not, in general, speed up well. More generally, the greater the serial

fraction of an algorithm, the less it will (on its own) benefit from implementation in

MeDaL. In a sense, the fact that MeDaL imposes its own overheads means that

there is not only a minimum actor grain size at which MeDaL is viable, but a

minimum program size. Of course, this minimum is less easily quantifiable than the

minimum grain size, since the criteria for the success of whole applications is more

complex, and will vary more from one situation to another.

Conversely, MeDaL will provide benefits as a programming language when

parallelising algorithms with a small serial fraction; when implementing actors with

a large grain size relative to the minimums imposed by the MeDaL run-time

system; and when implementing complex programs. Indeed, the more complex the

program, the more benefit can be gained from MeDaL's two main strengths: firstly,

its simplicity, which makes developing and maintaining complex parallel software

(with many different actors and a complex web of dependencies) simpler than a

textual language. This is especially true because of the fact that MeDaL does not

require the programmer to write any code for controlling the overall threads of

control, nor for synchronisation. Naturally, the larger the parallel program, the

more effort this takes in a traditional, textual parallel language. And secondly, the

Page 148

Chapter 6 Conclusions

dataflow scheduling of MeDaL programs ensures that maximum possible

throughput of processing tasks, since each actor joins the run queue as early as

possible (i.e. when all its input data is available). Of course, this does not guarantee

optimal processor utilisation, but that is a matter for the scheduler rather than for

MeDaL.

Examples of applications which might prove complex and large-grained

enough to benefit greatly from implementation in MeDaL might include: text

formatting, which consists of many different tasks such as filling, justifying,

contents and index generation, with various interdependencies; relational database

querying, where a variety of relational operations take place in parallel and may

feed their results to further operations; parallel make program compilation;

complex graphics processes such as ray-tracing; and any computation consisting of

a number of stages through which streams of data are fed. Since MeDaL is intended

to be a flexible, general-purpose programming language, the possibilities are

endless.

Of course, without an implementation of the full MeDaL programming system,

it was not possible to experiment with the process of implementing programs in

MeDaL, and it is possible that the experience gained from such experimentation

might have raised further issues relating to the design of the language. Such

experimentation would be a priority in any future research based on this work. The

next section describes this and other possible directions for any such future work.

6.3 Future Work

Given that the prototype described in this thesis implemented only part of the

MeDaL programming system, the obvious starting point for any future work would

be to implement the remainder. The main modules which need to be implemented

are a syntax-directed MeDaL graph editor and graph browser, and the transforma­

tion module which generates actor and company wrappers from the MeDaL graph.

The presence of these modules would allow many more trial applications to be

implemented fairly rapidly, given that MeDaL can be used as a parallel harness for

sections of existing sequential code. The experience gained from developing these

further applications would provide feedback on whether the semantics of the

Page 149

Chapter 6 Conclusions

MeDaL notation were acceptable, from the point of VIew of implementing

acceptably efficient parallel programs.

Furthermore, the availability of a prototype MeDaL programming system

would make it possible to study its use by those implementing the trial applications.

It would be desirable to study the cognitive models of parallelism involved when

using MeDaL as a programming system. Such a study would result in an analysis

of MeDaL's use as a parallel programming language, from the point of view of

providing a medium for the design and implementation of parallel programs; and

would answer questions on the acceptability of the features which MeDaL

provides, and the way in which it provides them (its syntax) which this thesis has

not been able to address.

This inquiry into the syntax and semantics of MeDaL would provide a more

empirical basis for presenting MeDaL as a viable parallel programming system,

replacing the assumptions on which this thesis relies. Having shown that MeDaL

programs can be efficiently executed at the medium-grained level, thus providing a

solid technical framework, an inquiry into its suitability as a language seems the

obvious next step.

Once the above steps were complete, and any feedback from them incorporated

into the notation (or indeed into the design of the system as a whole), the next stage

would be to design and implement further programming tools based on the

graphical notation. The bulk of these would be needed to support the debugging

and performance tuning phases of development. Among the possibilities would be

tools to support the placing of breakpoints in a graph (using an appropriate visual

metaphor such as a bar across a datapath), and checkpointing of MeDaL programs.

Single-stepping (executing one actor at a time) and fragment execution (executing a

subset of a graph, for testing purposes) should also be supported. Naturally, these

functions would require support in the MeDaL system as well as being part of the

graph editing/browsing system.

There are many other possibilities for graphical tools. Tools for data and

process visualisation would greatly aid in the understanding of how a program

behaved during execution. Data visualisation could include notations for

visualising memory usage in datapaths (such as through colour - for instance

progressing from blue for an empty datapath through to red for high memory usage

Page 150

Chapter 6 Conclusions

datapaths - or through the thickness of lines). It should also be possible to allow the

programmer to select a particular data item, or group of items, in a datapath queue

and examine their contents. Process visualisation could include displaying which

actors were running, enabled or not enabled by the use of colour or icons; and

colour or some graph form (such as bar charts or dials) to represent how many

times a particular actor has fired, and/or how long was spent executing that actor

(for one firing of the actor or a group of firings).

Further tools to be based around MeDaL could include utilities for the

detection of nondeterministic constructs and race conditions at run-time, and tools

for extracting code from existing sequential applications and harnessing such code

into the form of a MeDaL program. Support for a range of languages for actor

implementation should be developed to aid this. At the same time, tools should be

provided for developing applications from scratch using MeDaL; indeed, there

seems no inherent reason why tools for software project support, and for program

documentation should not be integrated into the same graphical framework. After

all, if the method code of an actor can be made available by (for instance) clicking

on its graphical representation, there is no reason why the documentation for that

module should not be made available the same way. More general documentation

about a section of the program could be linked to the company level, and so on.

With a rich set of tools based on the MeDaL notation, supporting the whole

software development process, MeDaL would become an example of the type of

integrated visual software development environment which the field of parallel

programming currently lacks.

6.4 Closing Remarks

In order to make the first step towards this goal of an integrated visual parallel

programming environment, it was neccessary to take elements from several

traditionally separate areas of research. Ideas were taken from the fields of parallel

hardware development; parallel programming; visual programming; and dataflow

research, which has generally been regarded as a separate branch of each of these

fields. The original contribution of this thesis is to explore the synthesis of ideas

from these fields.

Page 151

Chapter 6 Conclusions

Within the context of these research fields, this thesis adds nothing to that of

parallel hardware, indeed the intention was always to make the programming of

existing platforms easier and more accessible. This thesis also adds little to the field

of visual programming; MeDaL is just one variant in a set of existing visual

languages (intended for sequential processing) based on the dataflow paradigm.

However, this thesis does seek to add to the field of dataflow software research, by

proposing new constructs which make dataflow efficient at the medium-grained

level; and by proposing a potential solution to the difficulty of parallel program­

ming, this thesis aims to contribute to that field as well.

It could be argued that proposed languages such as MeDaL, which seek to

operate on a "higher level" than existing languages, can never be successful. It was

mentioned at the start of this chapter that implementation at a higher level generally

involves imposing overheads over an implementation at a lower level, thus

reducing efficiency. This has certainly proven true with MeDaL, which executes

programs less efficiently than if they were implemented in the level below, the

level which the MeDaL run-time system itself manipulates. However, reductio ad

absurdum shows that if this were the only criterion, all software applications would

be implemented in machine code since it is the most efficient! Yet this is not the

case. The fact is that abstraction away from low-level details makes possible

software projects which would be infeasible if low-level implementation was used;

the loss of efficiency is acceptable in order to make possible larger, more complex

software. Computing science history shows a clear trend towards ever-greater

complexity in software, and a parallel trend in increasingly high-level programming

systems to solve the problems involved. The MeDaL system proposes one path

towards a solution to problems which, unless trends change drastically, will

become increasingly evident in the future.

Page 152

Bibliography

[Acke82] Ackerman, W.B.: "Data Flow Languages" IEEE Computer, vol. 15, no.

2, February 1982.

[Agha86] Agha, G.: Actors: a model of concurrent computation in distributed

systems MIT Press, Cambridge MA, 1986.

[Ahuj86] Ahuja, S., Carriero, N. and Gelernter, D.: "Linda and Friends" IEEE

Computer, vol. 19, no. 8, August 1986.

[Alle85] Allen, J .R. and Kennedy, K.: "A Parallel Programming Environment"

IEEE Software, vol. 4, no. 2, July 1985.

[AmbI89] Ambler, A.L. and Burnett, M.M.: "Influence of Visual Technology on

the Evolution of Language Environments" IEEE Computer, vol. 22, no.

10, October 1989.

[Amda67] Amdahl, G.M.: "Validity of the Single Processor Approach to

Achieving Large Scale Computing Capabilities" AFIPS Conference

Proceedings, vol. 30, pp. 483-487, 1967.

[Andr83} Andrews, G.R. and Schneider, F.B.: "Concepts and Notations for

Concurrent Programming" ACM Computing Surveys, vol. 15, pp. 3-43,

March 1983.

[AraI88] Aral, Z. and Gertner, I.: "Non-intrusive and Interactive Profiling in

Parasight" SIGPLAN Notices, vol. 23, no. 9, ACM, September 1988.

[Arvi77] Arvind, Gostelow, K.P. and Plouffe, W.: "Indeterminacy, Monitors and

Dataflow" Proc. 6th ACM Symposium on Operating Systems Principles,

ACM, November 1977.

[Arvi90] Arvind and Nikhil, R.S.: "Executing a Program on the MIT Tagged­

token Dataflow Architecture" IEEE Trans. on Computers, vol. 39, no. 3,

pp. 300-318, March 1990.

[Baba91] Babaoglu, o. et al: "Paralex: An Environment for Parallel Programming

in Distributed Systems" Technical Report UB-LCS-91-01, Uni. di

Bologna, February 1991.

Page 153

Bibliography

[Babb82] Babb, R.G.: "Data-Driven Implementation of Data Flow Diagrams"

Proc. 6th Int'l Conference on Software Engineering, IEEE, September

1982.

[Back78] Backus, J.: "Can Programming Be Liberated from the von Neumann

Style? A Functional Style and Its Algebra of Programs" CACM, vol. 21,

no. 8, pp. 613-641, August 1978.

[Barn68] Barnes, G.H. et al: "The Illiac IV Computer" IEEE Trans. on Compu­

ters, vol. C-17, pp. 746-757,1968.

[Bers87] Bershad, B.N., Lazowska, E.D. and Levy, H.M.: "Presto: A System for

Object-Oriented Parallel Programming" Technical Report No. 87-09-01,

Univ. of Washington, September 1987.

[Bic87] Bic, L.: "A Procedure-Oriented Model for Efficient Execution of

Dataflow Programs" Proc. 7th Int'l Conference on Distributed Comput­

ing Systems, pp. 467-475, IEEE, April 1981.

[Boon88] Boontree, K. and Lewis, E.: "Grain Size Determination for Parallel

Processing" IEEE Software, vol. 5, no. 1, January 1988.

[Bond89] Bondavalli, A. and Simoncini, L.: "Dataflow-like model for robust

computations" Journal of Computer System Science and Engineering,

vol. 4, no. 3, pp. 176-184, July 1989.

[Brin77] Brinch-Hansen, P.: The Architecture of Concurrent Programs, Prentice­

Hall International, 1977.

[Broo84] Brookes, S.D. and Hoare, C.A.R.: "A Theory of Communicating

Sequential Processes" Journal of the ACM, vol. 31, no. 3, July 1984.

[Brow85] Brown, G.P. et al: "Program Visualisation: Graphical Support for

Software Development" IEEE Computer, vol. 18, no. 8, August 1985.

[Brow85b] Brown, M.H.: "Techniques for Algorithm Animation" IEEE Software,

vol. 2, no. 1, January 1985.

[Brow85c] Browne, lC.: "Formulation and Programming of Parallel

Computations" Proc. Int'l Conference on Parallel Processing, CS Press,

Los Alamitos CA, 1985.

Page 154

Bibliography

[Brow89] Browne, J.e., Azam, M. and Sobek, S.M.: "CODE: A Unified Approach

to Parallel Programming" IEEE Software, vol. 6, no. 4, July 1989.

[Bueh87] Buehrer A. and Ekandham, B.: "Incorporating Data Flow Ideas into von

Neuman Processors for Parallel Execution" IEEE Trans. on Computers,

vol. C-36, no. 12, December 1987.

[Cann90] Cann, D.e. and Oldehoeft, R.R.: "A Report on the Sisal Language

Project" Journal of Parallel and Distributed Computing, vol. 10, no. 4,

December 1990.

[Card87] Cardelli, L.: "Building User Interfaces by Direct Manipulation" Systems

Research Center Report no. 22, Digital Equipment Corporation Systems

Reseach Center, Palo Alto CA, October 1987.

[Carr88] Carriero, N. and Gelernter, D.: "Applications experience with Linda"

SIGPLAN Notices, vol. 23, no. 9, ACM Press, Sep 1988.

[Carr89] Carriero, N. and Gelernter, D.: "How to Write Parallel Programs: A

Guide to the Perplexed" ACM Computing Surveys, vol. 21, no. 3, pp.

323-357, September 1989.

[Catt89] Catton, DJ. and Florentin, JJ.: Structured Design Methodologies for

Parallel Programming, Strand Software Technologies, 1989.

[Chan87] Chang, S.: "Visual Languages: A Tutorial and Survey" IEEE Software,

vol. 4, no. 1 , January 1987.

[Chas89] Chase, J.S. et al: "The Amber System: Parallel Programming on a

Network of Multiprocessors" Technical Report No. 89-04-01, Univ. of

Washington, Seattle, April 1989.

[Cheu90] Cheung, W.H., Black, J.P. and Manning, E.: "A Framework for

Distributed Debugging" IEEE Software, vol. 7, no. 1, January 1990.

[Davi82] Davis, A.L. and Keller, R.M.: "Data Flow Program Graphs" IEEE

Computer, vol. 15, no. 2, February 1982.

[Denn78] Denning, PJ.: "Operating Systems Principles for Data Flow Networks"

IEEE Computer, pp. 86-96, July 1978.

Page 155

Bibliography

[Denn74] Dennis, J.B.: "First Version of a Data Flow Procedure Language"

Lecture Notes in Computer Science, 19, pp. 362-376, Springer-Verlag,

Berlin, 1974.

{Denn80] Dennis, J.B.: "Data Flow Supercomputers" IEEE Computer, pp. 48-56,

November 1980.

[Denn88] Dennis, J.B. and Gao, G.R.: "An Efficient Pipeline Dataflow Processor

Architecture" Joint Conference on Supercomputing, ACM SIGArch, pp.

368-373, November 1988.

[DiNu88] DiNucci, D.C. and Babb, R.G. II: "Practical Support for Parallel

Programming" Proc. 21st Int'l Hawaii Conference on System Sciences,

January 1988.

[DiNu89] DiNucci, D.C. and Babb, R.G. II: "Design and Implementation of

Parallel Programs with LGDF2" Proc. CompCon Spring 89, IEEE,

March 1989.

[Dijk68] Dijkstra, E.W.: "Cooperating Sequential Processes" Programming

Languages (ed. Genuys, F.) pp. 43-112, Academic Press, New York,

1968.

[Dong87] Dongarra, J.1. and Sorensen, D.C.: "SCHEDULE: Tools for Developing

and Analyzing Parallel Fortran Programs" in The Characteristics of

Parallel Algorithms, ed. Jamieson, L.H., Gannon, D.B. and Donylass,

R.1., pp. 363-394, MIT Press, 1987.

[Dunc90] Duncan, R.: "A Survey of Parallel Computer Architectures" IEEE

Computer, vol. 23 no. 2, February 1990.

[Enco89] Multimax Technical Summary, Encore Computer Corporation, January

1989.

[Evri90] Evripidou, P. and Gaudiot, J.L.: "A Decoupled Data-Driven Architec­

ture with Vectors and Macro Actors" Proc. ConvPar 90Napp IV,

Lecture Notes in Computer Science, no. 457, pp. 39-50, Springer­

Verlag, September 1990.

[Flyn66] Flynn, M.1.: "Very High-Speed Computing Systems" Proc. IEEE, vol.

54, pp. 1901-1909, December 1966.

Page 156

Bibliography

[Fost90] Foster, I. and Taylor, S.: Strand: New Concepts in Parallel Program­

ming Prentice-Hall Inc NJ, 1990.

[Gajs82] Gajski, D.D., Panda, D.A., Kuck, D.J. and Kuhn, R.H.: "A Second

Opinion on Dataflow Machines and Languages" IEEE Computer, pp.

58-70, February 1982.

[Gaud85] Gaudiot, J.L. et al: "A Distributed VLSI Architecture for Efficient

Signal and Data Processing" IEEE Trans. on Computers, vol. C-34, no.

12, pp. 1072-1088, December 1985.

[Gaud89] Gaudiot, J.L. and Lee, A.: "Occamflow" Journal of Parallel and

Distributed Computing, vol. 7, no. 1, August 1989.

[Gehr88] Gehringer, E.F., Abullarade, J. and Gulyn, M.H.: "A Survey of

Commercial Parallel Processors" Computer Architecture News, vol. 16,

no. 4, pp. 75-107, ACM, September 1988.

[Grim87] Grimshaw, A.S. and Liu, J.W.S.: "Mentat: an Object-Oriented Macro

Data Flow System" Proceedings OOPSLA 87, pp. 35-47, ACM,

October 1987

[Guar89] Guarna, V.A. et al: "Faust: An Integrated Environment for Parallel

Programming" IEEE Software, vol. 6, no. 4, July 1989.

[Gurd80] Gurd, J. and Watson, I.: "Data Driven System for High Speed Parallel

Computing" Computer Design, parts I and II, June/July 1980.

[Gurd85] Gurd, J.R., Kirkham, c.c. and Watson, I.: "The Manchester Data Flow

Computer" CACM, vol. 28, no. 1, January 1985.

[Gurd86] Gurd, J.R. et al: "Fine-Grained Parallel Computing: the Dataflow

Approach" Proc. "Future Parallel Computers, an Advanced Course" (ed.

Treleaven, P. and Vaneschi, M.) in Lecture Notes in Computer Science,

vol. 272, pp. 82-152, Springer-Verlag, June 1986.

[Gurd87] Gurd, J.R.: "Data Flow Architectures" in Major Advances in Parallel

Processing (ed. Jesshope, C.), pp. 51-68, Technical Press, 1987.

[Hare88] Harel, D.: "On Visual Formalisms" CACM vol. 31, no. 5, pp. 514-530,

May 1988.

Page 157

Bibliography

[Hoar74] Hoare, C.A.R: "Monitors: An Operating System Structuring Concept",

CACM, vol. 17, no.10, pp. 549-557, October 1974.

[Hoar78] Hoare, C.A.R.: "Communicating Sequential Processes" CACM, vol. 21,

no. 8, August 1978.

[Hock81] Hockney, RW. and Jesshope, C.R: "Parallel Computers" Adam Hilger

Ltd. 1981.

[Hopk79] Hopkins, R.P., Rautenbach, P.W. and Treleaven, P.C.: "A Computer

Supporting Data Flow, Control Flow and Updateable Memory"

Technical Report Series no. 144, Univ. of Newcastle upon Tyne, 1979.

[Hwan85] Hwang, K. and Briggs, F.A.: Computer Architecture and Parallel

Processing, McGraw-Hill, 1985.

[Isod87] Isoda, S., Shimomura, T. and Ono, Y.: "VIPS: A Visual Debugger"

IEEE Software, vol. 4, no. 3, May 1987.

[Jaza80] Jazayeri, M. et al: "CSP/80: A Language for Communicating Processes"

Proc. Fall IEEE CompCon 80, IEEE, 1980.

[Jone85] Jones, G.: Programming in Occam, Prentice-Hall, 1985.

[JuI88] Jul, E., Levy, H., Hutchinson, N. and Black, A.: "Fine-Grained Mobility

in the Emerald System" ACM Trans. on Computer Systems, vol. 6, no.

1, February 1988.

[Karp87] Karp, A.: "Programming for Parallelism" IEEE Computer, vol. 20, no.

5, May 1987.

[Kend92] Kendall Square Research Technical Summary, Kendall Square Research

Corporation, 1992.

[Kosi73] Kosinsky, P.R: "A Data Flow Programming Language" Report

RC4264, IBM T.J.Watson Research Center, NY, March 1973.

[Kuck81] Kuck, D.J., et al: "Dependence Graphs and Compiler Optimisations"

Proc. 8th ACM Symp. on Principles of Programming Languages, pp.

207-218, January 1981.

[Kung82] Kung, H.T.: "Why Systolic Architectures" IEEE Computer, pp. 37-48,

January 1982.

Page 158

Bibliography

[Lahj91] Lahjomri, Z and Priol, T.: "KOAN: a Shared Virtual Memory for the

iPSC/2 hypercube" INRIA Technical Report, no. 1504, September 1991.

[Lamp80] Lampson, B. and Redell, D.: "Experiences with Processes and Monitors

in MESA" CACM, vol. 23, no. 2, February 1980.

[Lars84] Larson, J.L.: "An introduction to multitasking on the Cray X-MP-2

multiprocessor" IEEE Computer, vol. 17, no. 7, pp. 62-69, July 1984.

[Laue79] Lauer, H.C. and Needham, R.M.: "On the Duality of Operating System

Structures" ACM Operating Systems Review, vol. 13, no. 2, April 1979.

[LeBI87] LeBlanc, TJ. and Mellor-Crummey, J.M.: "Debugging Parallel

Programs with Instant Replay" IEEE Trans. on Computers, vol. C-36,

no. 4, pp. 471-482, April 1987.

[Lee87] Lee, P.A.: "Parallel Processing on the Multimax Computer System"

Major Advances in Parallel Processing (ed. Jesshope, C.), pp. 51-68,

Technical Press, 1987.

[Matt87] Mattern, F.: "Algorithms for Distributed Termination Detection"

Distributed Computing 2, pp. 161-175, 1987.

[Meye83] Meyers, B.A.: "Incense: A System for Displaying Data Structures"

Computer Graphics, vol. 17, no. 3, ACM, July 1983.

[Mori85] Moriconi, M. and Hare, D.F.: "Visualising Program Designs through

PegaSys" IEEE Computer, vol. 18, no. 8, August 1985.

[Mori86] Moriconi, M. and Hare, D.F.: "The PegaSys System Pictures as Formal

Documentation of Large Programs" ACM Trans. on Programming

Languages and Systems, vol. 8, no. 4, October 1986.

[Mour89] Mourlin, F. and Cournarie, E.: "A Graphical Environment for OCCAM

Programming" OCCAM User Group Newsletter No. 11, July 1989.

[Mund86] Mundie, D.A. and Fisher, D.A.: "Parallel Processing in Ada" IEEE

Computer, August 1986.

[Nikh89] Nikhil, R. and Arvind: "Can Dataflow Subsume von Neuman

Computing?" Computer Architecture News, vol. 17, no. 3, pp. 262-272,

June 1989.

Page 159

Bibliography

[Oldh84] Oldoeft, A.E. and Jennings, S.F.: "Data Flow Resource Managers and

their Synthesis from Open Path Expressions" IEEE Trans. on Software

Engineering, vol. SE-10, no. 3, May 1984.

[Padd93] Paddon, DJ. and Chalmers, A.G.: "The Effect of Configurations and

Algorithms on Performance" Parallel Computing on Distributed

Memory Multiprocessors, Computer and Systems Sciences vol. 103, pp.

77-97, Springer-Verlag 1993.

[Panc90] Pancake, C.M. and Bergmark, D.: "Do Parallel Languages Respond to

the Needs of Scientific Programmers" IEEE Computer, vol. 23, no. 12,

pp. 13-23, December 1990.

[Powe83] Powell, M.L. and Linton, M.A.: "Visual Abstraction in an Interactive

Programming Environment" SIGPLAN Symposium on Programming

Language Issues in Software Systems, ACM SIGPLAN Notices, vol. 18,

no. 6, June 1983.

[Prat85] Pratt, T.W.: "Pisces: An Environment for Parallel Scientific

Computation" IEEE Software, vol. 2, no. 4, July 1985.

[Raed85] Raeder, G.: "A Surevey of Current Graphical Programming

Techniques" IEEE Computer, vol. 18, no. 8, August 1985.

[Roge88] Rogers, G.: "Visual Programming with Objects and Relations" Proc.

1988 Workshop on Visual Languages, IEEE, October 1988.

[Roma89] Roman, G.c. and Cox, K.C.: "A Declarative Approach to Visualising

Concurrent Computations" IEEE Computer, vol. 22, no. 10, October

1989.

[Ruig90] Ruighauer, A.T.S. and Yeo, T.T.E.: "Language Support for a Semi­

Dataflow Programming Environment" SIGPLAN Notices, vol. 25, no. 9,

pp. 39-47, September 1990.

[Rumb77] Rumbaugh, J.: "A Dataflow Multiprocessor" IEEE Trans. on Compu­

ters, vol. C-26, no. 2, pp. 138-146, February 1977.

[Russ78] Russel, R.M.: "The Cray-1 Computer System" CACM, pp 63-72,

January 1978.

[Schn83] Schneiderman, B.: "Direct Manipulation: A Step Beyond Programming

Languages" IEEE Computer, vol. 16, no. 8, August 1983.

Page 160

Bibliography

[Schw86] Schwan, K. and Matthews, J.: "Graphical Views of Parallel Programs"

ACM SIGSOFT Software Engineering Notes, vol. 11, no. 3, July 1986.

[Sega85] Segall, Z. and Rudolph, L.: "Pie: a Programming and Instrumentation

Environment for Parallel Programming" IEEE Software, vol. 2, no. 6,

November 1985.

[Sega89] Segall, Z., Lehr, T. et al: "Visualising Performance Debugging" IEEE

Computer, vol. 22, no. 10, October 1989.

[Shar82] Sharp, J.A.: The Programmer's Approach to Data Flow as a Basis for

Parallel Programming, PhD Thesis, Uni. of London, February 1982.

[Shar85] Sharp, J.A.: Data Flow Computing, Ellis Horwood, Sussex, 1985.

[SkiI90] Skillicorn, D.B.: "Architecture-Independent Parallel Computation"

IEEE Computer, vol. 23, no. 12, pp. 38-50, December 1990.

[Snyd82] Snyner, L.: "Introduction to the Configurable, Highly Parallel

Computer" IEEE Computer, vol. 15, pp. 47-56, January 1982.

[Snyd84] Snyder, L.: "Parallel Programming and the Poker Programming

Environment" IEEE Computer, vol. 17, no. 7, July 1984.

[Soch89] Socha, D., Bailey, M.L. and Notkin, D.: "Voyeur: Graphical Views of

Parallel Programs" SIGPIAN Notices, vol. 24, no. 1, ACM, January

1989.

[Stev82] Stevens, W.P.: "How Data Flow Can Improve Application Development

Productivity" IBM Systems Journal, vol. 21, no. 2, 1982.

[Stok90] Stoker, M.A.: The Exploitation of Parallelism on Shared Memory

Multiprocessors, PhD Thesis, Univ. of Newcastle upon Tyne, Septem­

ber 1990.

[SuhI90] Suhler, P., Biswas, J. Korner, K. and Browne, J.: "TDFL: A Task-level

Data Flow Language" Journal of Parallel and Distributed Computing,

vol.9,no. 2,pp. 103-115, 1990.

[Szaf92] Szafron, D. et al: "The Enterprise Distributed Programming Model"

IFIP Working Conference on Programming Environments for Parallel

Computing, IFIP Press, April 1992.

Page 161

Bibliography

[Tane78] Tanenbaum, A.: "Implication of Structured Programming for Computer

Architecture" CACM, vol. 21, pp. 237-246, March 1978.

[Thac87] Thacker, c.P., Stewart, L.c. and Satterthwaite, E.H.: "Firefly: A

Multiprocessor Workstation" Report No. 23, Digital Equipment

Corporation Systems Research Center, Palo Alto CA, December 1987.

[Teit81] Teitelbaum, T. and Reps, T.: "The Cornell Program Synthesiser: A

Syntax-Directed Programming Environment" CACM, vol. 24, no. 9,

September 1981.

[Toko87] Tokoro, M. and Yonezawa, A. (ed.): Object-Oriented Concurrent

Programming, MIT Press, Cambridge MA, 1987.

[TreI77] Treleaven, P.c.: "Exploiting Problem-Parallelism III Computing

Systems" Technical Report no. 107, Univ. of Newcastle upon Tyne,

July 1977.

[TreI82] Treleaven, P.c., Brownbridge, D.R. and Hopkins, R.P.: "Data Driven

and Demand Driven Computer Architecture" ACM Computing Surveys,

pp. 93, 144, March 1982.

[TreI84] Treleaven, P.c. and Gouveia Lima, I.: "Future Computers: Logic, Data

Flow, Control Flow?" IEEE Computer, vol. 17, no. 3, March 1984.

[Vali90] Valiant, L.G.: "A Bridging Model for Parallel Computation" CACM,

vol. 33, no. 8, pp. 103-111, August 1990.

[vonN58] Neumann, J. von: The Computer and the Brain, Yale University Press,

1958.

[Wadg85] Wadge, W.W. and Ashcroft, E.A.: Lucid, the Dataflow Programming

Language, Academic Press, London, 1985.

[Wats72] Watson, W.J.: "The TI-ASC - A Highly Modular and Flexible Super

Computer Architecture" Proc. AFIPS Fall Joint Computer Conference,

pp 221-228, AFIPS Press, Montvale NJ, 1972.

[Wino79] Winograd, T.: "Beyond Programming Languages" CACM, vol. 22, no.

7, pp. 391-401, July 1979.

Page 162

Bibliography

[Woo83] Woo, N.S. and Agrawala, A.A.: "The DCI Flow Schema With The

Data/Control Driven Evaluation" Proc. 1983 Int'l Conference on

Parallel Processing, IEEE, August 1983.

Page 163

Appendix A

MeDaL Classes

This appendix presents c++ classes which define the interface between the actor

programmer's code and the MeDaL run-time system. Objects belonging to these

classes represent data items which have been received from an actor's input

datapaths, or are to be sent to an actor's output datapaths. As described in Chapter

4, these classes contain the generalised parts of the wrapper level, leaving the actor

method wrapper code to contain only the application-specific code.

For simplicity, the full range of operations implemented in the MeDaL classes

(mathematical operations such as addition, multiplication etc for the MeDaL

Integer, boolean-algebra operations for the MeDaL Boolean) have been omitted.

These are not necessary so long as the programmer can cast the variable into a

built-in type to do these operations. Also, "stickiness" is omitted from the simple

types; assignment results in a non-sticky send. This seems sensible in a prototype

implementation because the simple types consist of only one value, whereas

stickiness is intended for use in building up complex data types from simpler ones.

Note that the class presented for transmitting arrays through datapaths is a

template class, a feature of the most recent version of C++ at the time of writing

(version 3.0). This allows one class definition for any kind of array, for instance

arrays of integers, floats, characters, or user-defined types. The template is

instantiated when it is used in method and wrapper code. Examples of this can be

seen in Appendix B. Note also that assignment to elements of MeDaL Arrays does

not automatically result in the transmission of the whole array on a datapath;

explicit send and sendSticky operations are provided. These are felt to be

more appropriate semantics given that many elements in an array must often be

changed during the execution of one actor. Array element assignment is neverthe­

less overloaded, in order to provide array bounds checking.

Page 164

Appendix A

II medal.h
II c++ Header file defining data structures used by actors
/I
II version of 18/01/93
/I
II Copyright (c) 1993 Jon Harley BSc
II See main copyright notice
/I

/**

* Standard types
*1

enum mdir_type { in , out, user }; II in 0, out 1.

enum Boolean { true, false };

1*** ***********

* Things used by the Run Time System - functions used and data
* structures they need
* These things could be a class if the RTS was in C++, but it's
* in C so most of these things have to be in C form.
*1

typedef unsigned char Bool;
#define BOOL_T 'T'
#define BOOL_F 'F'

#define NULL 0

typedef struct aid {
unsigned troupe
unsigned actor;
Actorld;

typedef struct aid *ActorldP;

extern "C" {rts_getactin(actoridp , unsigned);
unsigned RTS_GetActOut(ActorldP, unsigned);
void RTS_WriteMsg(unsigned, char *);
void RTS_Shfree(void *);
void *RTS_Shmalloc(unsigned, unsigned);

void RTS_TxBool(ActorldP, unsigned, Bool);
Bool RTS_RxBool(ActorldP, unsigned);
void RTS_Txlnt(ActorldP, unsigned, int);
int RTS_Rxlnt(ActorldP, unsigned);
void RTS_TxArray(ActorldP, unsigned, void *, unsigned, Bool);
void RTS_RxArray(ActorldP, unsigned,void **,unsigned *,Bool *);
void RTS_UnTxArray(ActorldP, unsigned, void **, unsigned *);
Bool RTS_IsHeld(ActorldP, unsigned);
void RTS_ActGoing(ActorldP);
void RTS_ActOver(ActorldP);

1*** ***********

* Classes passed in and out
*1

II MeDaL boolean

class Mbool {
Boolean truth
mdir_type direction;
unsigned whichpath;
ActorldP my_id;
void transbool();
Boolean recbool();

MeDaL Classes

Page 165

Appendix A

public:

} ;

Mbool() { truth = true; direction = user; whichpath = 0; }
Mbool(Boolean tree) { truth = tree; direction = user; }
void setup(mdir_type dir, unsigned what, ActorldP me-ptr);
operator Boolean() (return (truth) ; }
Mbool operator=(Mbool & black);
Mbool operator=(Boolean & white);
Mbool operator! (); II I, & etc. omitted for brevity

void Mbool: : setup (mdir_type dir, unsigned what, ActorldP me-ptr)
{

direction = dir;
my_id = me-ptr;

if (direction == in) (
whichpath = RTS_GetActln(me-ptr, what);
truth = recbool();

else {
whichpath

} ;

RTS_GetActOut(me-ptr, what);

Boolean Mbool: :recbool(void)
(

Bool inval ;

inval = RTS_RxBool(my_id, whichpath);
if (inval == BOOL_T)

return true;
else

if (inval == BOOL_F)
return false;

1/ printf ("Aargh! %i !", (int) inval); or something.
return false;

void Mbool: : transbool (void)
{

Bool truth_val ;

if (truth == true)
truth_val BOOL_T;

else
truth_val

Mbool Mbool: :operator=(Mbool & black)
{

truth = black. truth;
if (direction == out)

transbool () ;
return *this;

Mbool Mbool: : operator= (Boolean & white)
{

truth = white;
if (direction == out)

transbool() ;
return *this;

MeDaL Classes

Page 166

Appendix A

Mbool Mbool: : operator! (void)
{

/I

Boolean tt ;

if (truth == true)
tt false;

else
tt true;

return Mbool(tt);

II MeDaL integer

class Mint {
int intval
mdir_type direction;
unsigned whichpath;
ActorldP my_id;
void transint();
int recint();

public:
Mint() { intval = 0; direction = user; whichpath = 0;
Mint(int z) { intval = z; direction = user; }
Mint(float f) { intval = (int)f; direction = user;
void setup(mdir_type dir, unsigned what, ActorldP me-ptr);

II operator int() {intval ; } II doesn't work ... g++ bug

MeDaL Classes

int integer() { return intval ; } II so we must do this :-(

} ;

operator float() { return (float)intval ; }
operator unsigned int() { return (unsigned int)intval; }
Mint& operator=(Mint &);
Mint& operator=(const int &);
Mint& operator=(const unsigned int &);
Mint& operator=(const float &);

void Mint: : setup (mdir_type dir, unsigned what, ActorldP me-ptr)

direction = dir;
my_id = me-ptr;

if (direction == in) {
whichpath = RTS_GetActln(me-ptr, what);
intval = recint();

else {
whichpath

} ;

RTS_GetActOut(me-ptr, what);

int Mint: :recint(void)
{inval ;

inval = RTS_Rxlnt(my_id, whichpath);
return inval;

void Mint: : transint (void)
{

RTS_Txlnt(my_id, whichpath, intval);

Page 167

Appendix A

Mint & Mint: :operator=(Mint & choc)
{

intval = choc.intval;
if (direction == out)

transint();
return *this;

Mint & Mint: :operator=(const int & cake)
{

intval = cake;
if (direction out)

transint() ;
return *this;

Mint & Mint: :operator=(const unsigned int & bar)
{

intval = (int)bar;
if (direction == out)

transint() ;
return *this;

Mint & Mint: :operator=(const float & chip)
{

II

intval = (int)chip;
if (direction == out)

transint() ;
return *this;

II MeDaL array

template <class Type>
class Mary {

MeDaL Classes

unsigned size II size in terms of number of elements, not bytes.
Type *aa;
Boolean is_held;
Boolean keep;
mdir_type direction;
unsigned whichpath;
ActorldP my_id;
void init(const Type*, unsigned,
void chuck (void) ;
unsigned checkbounds(unsigned);
void recarray();
void yankarray();
void transarray();

public:

Boolean) ;

Mary(unsigned ni=O) { init(O , ni, true); }
Mary(const Type *ar, unsigned nil (init(ar , ni, true);
Mary(const Mary &m) { init(m.aa , m.size, true); }
-Mary() { chuck() ; }

void setup(mdir_type dir, unsigned what, ActorldP me-ptr);
unsigned getSize() { return size; }
void extend (unsigned) ;
Boolean isSticky() { return is_held
void send () ;
void sendSticky();

Page 168

Appendix A

} ;

Mary& operator=(const Mary&);
Mary& operator=(const Type*);
Type& operator[] (unsigned ix)

template <class Type> void

II only for Mary<char> really.
unsigned nix = checkbounds(ix);
return aa[nix]; }

Mary<Type>: :init(const Type *array, unsigned sz, Boolean scratch)
{

aa = NULL;
size = 0;

if (scratch == true)
is_held = false;
direction = user;
keep = false;

} ;

if (sz == 0)
return;

extend(sz) ;

if (array != 0) {

} ;

for (unsigned ix = 0; ix < size; ix++)
aa[ix] = array[ix];

template <class Type> void
Mary<Type>: :chuck(void)
{

if ((aa != NULL) && (keep
RTS_Shfree(aa) ;

false))

template <class Type> unsigned
Mary<Type>: :checkbounds(unsigned index)
{

char bounds_warn [64]

if ((index >= size) II (aa NULL)) {
if (index >= size) {

sprintf(bounds_warn,

MeDaL Classes

"Warning, array out of bounds (%u/%u) in t%u a%u",
index, size, my_id->troupe, my_id->actor);

} ;

else
sprintf(bounds_warn, "Dire warning! About to deref null pointer");

} ;
RTS_WriteMsg(3, bounds_warn);
return 0;

return index;

template <class Type> void
Mary<Type>: :recarray(void)
{

void *bb ;
Bool f_type;

bb = (void *)aa;
RTS_RxArray(my_id, whichpath, &bb, &size, &f_type);

Page 169

Appendix A MeDaL Classes

if (f_type == BOOL_T)
keep = true;

aa = (Type *)bb;

template <class Type> void
Mary<Type>: :yankarray(void)
{

void *bb ;

bb = (void *)aa;
RTS_UnTxArray(my_id, whichpath, &bb, &size);

aa = (Type *)bb;

template <class Type> void
Mary<Type>: : trans array (void)
{

Bool please_hold ;

if (is_held == true)
please_hold BOOL_T;

else
please_hold BOOL_F;

RTS_TxArray(my_id, whichpath, (void *)aa, size, please_hold);

aa = NULL;
size = 0;
is_held = false;

II maybe a new array
I I of the same size
II should be created here.

template <class Type> void
Mary<Type>: : setup (mdir_type dir, unsigned what, ActorldP me-ptr)
{

direction = dir;
my_id = me-ptr;
is_held = false;

if (direction in) (
whichpath = RTS_GetActln(me-ptr, what);
recarray() ;

else {

} ;

if (direction == out) (

} ;

whichpath = RTS_GetActOut(me-ptr, what);
if (RTS_IsHeld(me-ptr, whichpath) == BOOL_T)

is_held = true;
yankarray () ;

template <class Type> void
Mary<Type>: : extend (unsigned extra)
{

Type *new_aa ;
unsigned ix = 0, new_size, typesize;

if (keep true) (
RTS_WriteMsg(3 , "Warning: user is extending F-type input path.");

} ;

Page 170

Appendix A

new_size
typesize

size + extra + 1; II you get 1 free :-0

sizeof (Type) ;

if (((void *)new_aa = RTS_Shmalloc(new_size, typesize))
return;

while (ix < size)
new_aa[ix] = aa[ix++];

while (ix < new_size)
new_aa[ix++] = (Type)O;

if (aa ! = NULL)
RTS_Shfree(aa) ;

aa = new_aa;
size = new_size;

template <class Type> void
Mary<Type>: :sendSticky(void)
{

is_held = true;
if (direction == out)

trans array () ;

template <class Type> void
Mary<Type>: :send(void)
{

is_held = false;
if (direction == out)

transarray () ;

template <class Type> Mary<Type>&
Mary<Type>: :operator=(const Mary &ma)
{

MeDaL Classes

NULL)

if (this == &ma)
return *this; II copying an array to itself would be silly

if (aa != NULL)
RTS_Shfree(aa) ;

init(ma.aa, rna. size, false);

return *this;

II The following is purely for assigning constant strings to Mary<char> things.
II It would be inadvisable to use it for any other Mary<type>.

template <class Type> Mary<Type>&
Mary<Type>: :operator=(const Type *s-ptr)
{

unsigned s_len = 0;

if (aa ! = NULL)
RTS_Shfree (aa) ;

if ((s-ptr != NULL) && (sizeof(Type)
while (*(s-ptr + s_len) != 0)

++s_len;
init(s-ptr, s_len, false);

} ;

return *this;

sizeof (char))) {

Page 171

Appendix B Example Application

Appendix B

Example Application

This appendix presents the code needed to implement the simplified matrix

multiplication example described in Chapter 5. Three source code files are

included, their function being as follows:

generic.c

This program is part of the wrapper code which would ultimately be generated

from the MeDaL graph by the wrapper generator module, though in this case it was

coded by hand (though, for realism, it is coded in such a way as if it had been

automatically generated). Entry into the executable derived from the MeDaL

program is in fact into the run-time system; after some inital setting-up, the RTS

calls the function Ini tcoO () (initialise company 0, the root company) in

generic.c. This function name is, of course, fixed at the compile time of the RTS.

This function, and those it calls, "register" the actors and datapaths with the RTS

(by calling RTS functions) so that the RTS can build up an initial "roadmap" of the

layout of the graph. Among the information passed to the RTS in this way is a

pointer to the similar initialisation function of any sub-companies, and to the

wrapper function of each actor wrapper, which are contained in the next file.

wrappers.C

This module contains the wrapper functions for each actor method. Each such

function is called by the EPT system when requested to do so by the MeDaL run­

time system, which passes EPT a pointer to the wrapper function. The wrappers

simply set up the data structures needed by the actor method functions, before

calling them. Again, these wrapper functions were coded in as realistic a way as

possible, to simulate their having been generated automatically from a MeDaL

graph.

actors.C

This file contains the C++ source code actually written by the application

programmer. The code is that used in experiments described in Chapter 5.

Page 172

Appendix B Example Application

file: generic.c

/* companyO: generic.c
* generated from companyO/src/* and graph info
* by hand
*/

#include -thread.h"
#include -rts.h"

extern void cOaO (unsigned) ;
extern void cOal (unsigned) ;
extern void cOa2 (unsigned) ;
extern void cOa3 (unsigned) ;
extern void cOa4 (unsigned) ;
extern void cOa5 (unsigned) ;

extern void RTS_writeMsg(unsigned,

Bool InitCoO(unsigned myid)
{

CompanyP myco
Bool ok;
CActorP actr;

char*) ;

CompanyP RTS_RegisterCompany(unsigned, char *, SFuncP);
CActorP RTS_MakeActor(CompanyP, ACT_TYPE, FuncP);
void RTS_SetActIn(CActorP, unsigned);
void RTS_SetActOut(CActorP, unsigned);
void RTS_MakePath(CompanyP, PATH_TYPE, unsigned, unsigned, Bool);
void SrcCoO(unsigned);

if ((myco = RTS_RegisterCompany (myid, -MatMul" , (SFuncP) SrcCoO))
== (CompanyP) NULL)

return FALSE;

/* The following sets up the actors & paths. It knows about merged paths.
* The order of actors and output paths determines their place in the roadmap.
*/

actr = RTS_MakeActor(myco, ACT_M_SOURCE, (FuncP)cOaO);
RTS_SetActOut(actr, 0);
actr = RTS_MakeActor(myco, ACT_M_SOURCE, (FuncP)cOa1);
RTS_SetActOut(actr, 1);
actr = RTS_MakeActor(myco, ACT_GEN, (FuncP)cOa2);
RTS_SetActIn(actr, 1);
RTS_SetActOut(actr, 2);
actr = RTS_MakeActor(myco, ACT_DEPTH, (FuncP)cOa3);
RTS_SetActIn(actr, 0);
RTS_SetActIn(actr, 2);
RTS_SetActOut(actr, 3);
actr = RTS_MakeActor(myco, ACT_GEN, (FuncP)cOa4);
RTS_SetActIn(actr, 3);
RTS_SetActIn(actr, 6);
RTS_SetActOut(actr, 4);
actr = RTS_MakeActor(myco, ACT_GEN, (FuncP)cOa5);
RTS_SetActIn(actr, 4);
RTS_SetActOut(actr, 5);
actr = RTS_MakeActor(myco, ACT_STDOUTS, (FuncP)NULL);
RTS_SetActIn(actr, 5);

RTS_MakePath(myco, PATH_F, 3, MARY _SIZE, BOOL_F) ;
RTS~akePath(myco, PATH_E, 2, MARY_SIZE, BOOL_F) ;
RTS_MakePath(myco, PATH_E, 3, MARY _SIZE, BOOL_F) ;
RTS_MakePath(myco, PATH_E, 4, MARY_SIZE, BOOL_F) ;

Page 173

Appendix B Example Application

RTS_MakePath(myco, PATH_E, 5, MARY_SIZE, BOOL_F);
RTS_MakePath(myco, PATH_E, 6, MARY_SIZE, BOOL_F);
RTS_MakePath(myco, PATH_E, 4, BOOL_SIZE, BOOL_F);

if ((myco->num_actors < 7) I I (myco->num-paths < 7))
return FALSE;

return TRUE;

/***

* The source-actor code is conglomerated into this function.
*/

void SrcCoO(unsigned as_troupe)
{

/* there are no non-method sources */
cOaO(as_troupe) ;
cOal (as_troupe) ;

Page 174

Appendix B Example Application

file: wrapper.C

II company 0 actors 0-5 c++
II The MeDaL-generated bits
II see the following file, actors.C for which actor is which.
/!

#include "medal.h"

II We must give these C linkage because they will be called from C.
extern "C" {

void cOaO(unsigned)
void cOal (unsigned) ;
void cOa2(unsigned);
void cOa3(unsigned);
void cOa4(unsigned);
void cOa5(unsigned);

II called from SrcCoO every time a troupe is
II created from this company
II
II called as threads
/!
/!

void cOaO(unsigned my troupe)
{

Mary<int> opO
Actorld me;
ActorldP meep &me;
void companyO_actorO(Mary<int>&);

me. troupe = my troupe;
me.actor = 0;

opO.setup(out, 0, meep);

companyO_actorO(opO) ;

void cOal (unsigned my troupe)
{

Mary<int>opO ;
Actorld me;
ActorldP meep = &me;
void companyO_actor1(Mary<int>&);

me. troupe = my troupe;
me.actor = 1;

opO.setup(out, 0, meep);

companyO_actor1(opO) ;

void cOa2(unsigned my troupe)
{

Mary<int>ipO ;
Mary<int> opO;
Actorld me;
ActorldP meep = &me;
void companyO_actor2(Mary<int>&, Mary<int>&);

me. troupe = my troupe;
me.actor = 2;

ipO.setup(in, 0, meep);

Page 175

Appendix B

opO.setup(out, 0, meep);

RTS_ActGoing(meep);

companyO_actor2(ipO, opO);

RTS_ActOver(meep) ;

void cOa3(unsigned my troupe)
{

Mary<int> ipO ;
Mary<int> ip1;
Mary<float> opO;
Actorld me;
ActorldP meep = &me;

Example Application

void companyO_actor3(Mary<int>&, Mary<int>&, Mary<float>&);

me. troupe = my troupe;
me.actor = 3;

ipO.setup(in, 0, meep);
ip1.setup(in, 1, meep);

opO.setup(out, 0, meep);

RTS_ActGoing(meep) ;

companyO_actor3(ipO, ip1, opO);

RTS_ActOver(meep) ;

void cOa4(unsigned my troupe)
{

Mary<float> ipO ;
Mbool ip1;
Mary<float> opO;
Actorld me;
ActorldP meep = &me;
void companyO_actor4(Mary<float>&, Mbool, Mary<float>&);

me. troupe = my troupe;
me.actor = 4;

ipO.setup(in, 0, meep);
ip1.setup(in, 1, meep);

opO.setup(out, 0, meep);

RTS_ActGoing(meep);

companyO_actor4(ipO, ip1, opO);

RTS_ActOver(meep) ;

void cOa5(unsigned my troupe)
{

Mary<float> ipO
Mary<char> opO;
Actorld me;
ActorldP meep = &me;
void companyO_actor5(Mary<float>&, Mary<char>&);

Page 176

Appendix B

me. troupe = my troupe;
me.actor = 5;

ipO.setup(in, 0, meep);

opO.setup(out, 0, meep);

RTS_ActGoing(meep) ;

companyO_actor5(ipO, opO);

RTS_ActOver(meep);

Example Application

Page 177

Appendix B Example Application

actors.C

// this is the only part the user writes:

#define VEe_SIZE 150
#define STRIPE_WIDTH 19
#define NUM_STRIPES 8

void companyO_actorO(Mary<int> & outO) II source actor for matrix A
{

unsigned sq , ix;
sq = VEe_SIZE * VEe_SIZE;
outO. extend (sq) ;

for (ix = 0; ix < sq; ix++)
outO[ix] = 0;

for (ix = 0; ix < VEe_SIzE; ix++)
outO[(ix * VEe_SIZE) + ix] = 1;

outO. send();

void companyO_actor1(Mary<int> & outO) II source actor for matrix B
{

unsigned sq , ix;
sq = VEe_SIZE * VEe_SIZE;
outO.extend(sq) ;

for (ix = 0; ix < sq; ix++)
outO[ix] = sq - ix;

outO. send () ;

1/ actor 2 splits the input array into columns and outputs each column with
1/ a corresponding index to say *which* column it actually is.

void companyO_actor2(Mary<int> & inO, Mary<int> & outO)

unsigned strip, index, row, col, outcol;

for (index = 0; index < NUM_STRIPES; index++) {+ 1) * STRIPE_WIDTH);
outcol = 0;
for (col = (index*STRIPE_WIDTH); col < ((index+1)*STRIPE_WIDTH); col++)

{(col >= VEe_SIZE)
outO[outcol + VEe_SIZE] = 99999; II end of last stripe may be empty

else {(row = 0; row < VEe_SIzE; row++) {

} ;

outO[outcol + row] = inO[col + (VEe_SIZE * row)];
} ;

outO[outcol + VEe_SIZE] = col;

outcol += (VEe_SIZE + 1);
} ;

outO.send();

Page 178

Appendix B Example Application

II actor3 multiples an array in inO by a stripe in inl.

void companyO_actor3(Mary<int> & inO, Mary<int> & inl, Mary<float> & outO)
{

unsigned i , j, which, row, el, striper, resrow;
float sum;

outO.extend((VEC_SIZE + 1) * STRIPE_WIDTH);

for (striper = 0; striper < STRIPE_WIDTH; striper++)
resrow = striper * (VEC_SIZE + 1);
which = inl[resrow + VEC_SIZE];
if (which != 99999) {= which * VEC_SIZE;

for (i = 0; i < VEC_SIZE; i++) {

} ;

sum = 0;
for (j = 0; j < VEC_SIZE; j++)

sum += (inO[row + j] * inl[resrow + i]);
} ;

outO[resrow + i] = sum;
} ;

outO[resrow + VEC_SIZE]
} ;

which; II pass on which result row this is

outO.send();

II actor4 receives result vectors and puts them back together as an array
II by using sendSticky.

void companyO_actor4(Mary<float> & inO, Mbool inl, Mary<float> & outO)
{

unsigned index, which, col, sq, striper;
Boolean dummy;
dummy = inl;

if (outO.isSticky() == false)
outO.extend(sq+l) ;
outO[sq] = 0.0; II number of stripes processed

for (striper = 0; striper < STRIPE_WIDTH; striper++) {
which = (int)inO[(striper * (VEC_SIZE + 1)) + VEC_SIZE];
if (which != 99999) {

col = which * VEC_SIZE;
for (index = 0; index < VEC_SIZE; index++) {

outO[index * VEC SIZE)+which] inO[(striper * (VEC_SIZE+l)) + index];

} ;

} ;

} ;

outO[sq] = outO[sq] + 1.0;

if (outO[sq] < (float) NUM_STRIPES)
outO.sendSticky() ;

else
outO.send();

Page 179

Appendix B Example Application

II This actor's input is the result array, and it outputs it as a character
II stream to a Stdout actor.

void companyO_actor5(Mary<float> & inO, Mary<char> & outO)
{

unsigned row, col;
char cbuf[32];

outO = "And the result is ... \n";
outO.send();

for (row = 0; row < VEe_SIZE; row++) {
for (col = 0; col < VEe_SIZE; col++)

} ;

} ;

sprintf(cbuf, "\t%3.2f", inO[(row * VEe_SIZE) + col]);
outO = cbuf;
outO.send() ;

outO = "\nTa-dah! \n" ;
outO. send () ;

Page 180

	336020_001
	336020_002
	336020_003
	336020_004
	336020_005
	336020_006
	336020_007
	336020_008
	336020_009
	336020_010
	336020_011
	336020_012
	336020_013
	336020_014
	336020_015
	336020_016
	336020_017
	336020_018
	336020_019
	336020_020
	336020_021
	336020_022
	336020_023
	336020_024
	336020_025
	336020_026
	336020_027
	336020_028
	336020_029
	336020_030
	336020_031
	336020_032
	336020_033
	336020_034
	336020_035
	336020_036
	336020_037
	336020_038
	336020_039
	336020_040
	336020_041
	336020_042
	336020_043
	336020_044
	336020_045
	336020_046
	336020_047
	336020_048
	336020_049
	336020_050
	336020_051
	336020_052
	336020_053
	336020_054
	336020_055
	336020_056
	336020_057
	336020_058
	336020_059
	336020_060
	336020_061
	336020_062
	336020_063
	336020_064
	336020_065
	336020_066
	336020_067
	336020_068
	336020_069
	336020_070
	336020_071
	336020_072
	336020_073
	336020_074
	336020_075
	336020_076
	336020_077
	336020_078
	336020_079
	336020_080
	336020_081
	336020_082
	336020_083
	336020_084
	336020_085
	336020_086
	336020_087
	336020_088
	336020_089
	336020_090
	336020_091
	336020_092
	336020_093
	336020_094
	336020_095
	336020_096
	336020_097
	336020_098
	336020_099
	336020_100
	336020_101
	336020_102
	336020_103
	336020_104
	336020_105
	336020_106
	336020_107
	336020_108
	336020_109
	336020_110
	336020_111
	336020_112
	336020_113
	336020_114
	336020_115
	336020_116
	336020_117
	336020_118
	336020_119
	336020_120
	336020_121
	336020_122
	336020_123
	336020_124
	336020_125
	336020_126
	336020_127
	336020_128
	336020_129
	336020_130
	336020_131
	336020_132
	336020_133
	336020_134
	336020_135
	336020_136
	336020_137
	336020_138
	336020_139
	336020_140
	336020_141
	336020_142
	336020_143
	336020_144
	336020_145
	336020_146
	336020_147
	336020_148
	336020_149
	336020_150
	336020_151
	336020_152
	336020_153
	336020_154
	336020_155
	336020_156
	336020_157
	336020_158
	336020_159
	336020_160
	336020_161
	336020_162
	336020_163
	336020_164
	336020_165
	336020_166
	336020_167
	336020_168
	336020_169
	336020_170
	336020_171
	336020_172
	336020_173
	336020_174
	336020_175
	336020_176
	336020_177
	336020_178
	336020_179
	336020_180

