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The research work contained in this thesls lies

mainly in the field of computer &'Taphics.

The initial chapters are concerned with methods of

representing three dimensional solids in two dimensions.

Chapt e.r 2 descri'bes a method 'by which points Ln three

dimensions can be projected onto a two dimensional plane of

projection. This is an essential requirement in the

representation of three dimensional solids.

Cha.pter 3 describes a method by which eonvex

polyhedra can be represented by co:nputer. Both the hidden

and .risible faces of the po Iyb edron can be located by the

method described. Having tackled th.is pr cbLem , the 1'3.ther

rnore difficu.lt problem of repr esen ti.ng the non convex

pc Lyhedr'cn has been a t t ernpt ed and the results of this work

are presented in Chapter 4.
Line (lrawings of the various polyhedra, produced

on a graph plotter, are given as examples at the end of

Chapters 2, 3 and 4.

The problem of hO"'7 to connect a given line

drawing such that the distance travelled by ";ho pen of

some computer display i::- kept to a mInimum is discussed in

Chapter 5 and various definitions of the concepts involved

are given.

Theory associated with this 'Pen-Up Problem'

has been developed and is eXplained in detail in the e~rly

part of Chapter 6. A method of obtaining an optimal

solution to t~e problem is presented in the latter part



of this chapter in arldi tLon to var ious eml!lH~rat.i.vl..~schemes

which have been developed to obtain good feasi"ble solutions

Extensive. C.P.u. timing experiments have been

carried out in Chapter 7 on the va r i ous emzne'ratIve schemes

introduced in Chapter 6 and it has been possible to reach

conclusions on the appli.cab.iLi ty of the various methocls.

Several topics of interest which have arisen

during the main research work are presented as appendices.

The pr-og'ram s which have been coded dur Ing the period of

research o.re also inc1udeu as appendices.
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CJLA.F1'El-t 1
r

A ge~eral introduction to +.heThesis with a comprehensive
analysis of proc~dure line.
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1.1. General-._}ntroduction.

The rese8.rch work which has been carried out
by the author during the last three years can be said to

lie in the computer graphics field. The ini t LaI work

concerned methods by which a straight line could be drawn
by the pen of some computer display when the pen is

restricted to mcve in one of a nu~ber of different directions.
This work was particularly applicable to the display
equipment ava i LabLe at the University at that time which
was a Benson Le:mer graph plotter in which the pen is

rest.ricted to move in any one of eight directions. The

«os:« W<'.s essentially an ex t.ensi on of research which had

been lnitiated by Ian Lei teh at t.hG Labora tory in

collaboration with Dr. ;3Goins, a Senior Lec turcr in the

Laboratory.

The extension concerned a condition which was
known as a 'Knights Move' • Since the research presented
in this thesis is almost entirely concerned with the

drawing of lines on a ccrnpute:-display (in one way or

another) this initial research work has been included in

this introductory chapter for completeness. A mathem3.tical

consideration of the probl~~ is presented and examples of

the Knights Move condition (produced on the graph plotter)

are included at the end of the chapte:-.
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Cne ef the main fields in computer graphi cs is the

co.nputer representation of three dirn ensiona I solids in two

dimensions. For the last six years or so many researchers

have t<~c'i.:::'ed th e pr cb Le-n,

The simplest me thod and na tur-aLl.y the first to be

attempted, was the wi.re frame drawing in which the three

dimensional solid is represented by a nUllber of lines in

space. These lines are then projected (by some convenient

method) onto a "plane of projection" vrhich has been

rnathernatically defined. The lines on the projection plane,

corresponding to the lines in space, are then connected,

there beinG no ~ttempt made to ascertain thoee lines which

arc ~idden to the viewpoint.
l~

Fuck e t t 1'"" "",1' S ".·v-~·kt> ro~ ~T I ~ A (H t· 1......... __ ... _~... 1, _" ... ~J.. ....... '1..• .....".,r. •• ':"?N lona,~
Ae;"Gn2.u~ics ::..nd. Space Adlr.inistration) and J ohnscn at M.LT.

U,~a8G2.chusetts Institute of Technr1..ocy) «ei:« perhaps the

first r-esear cher s to utilise this t echn iqu e , which has

become widely used in the design of motor cars and the like.

However, before any work can proceed in thls type

of research, it is necessary to have some means of projecting

points in three dimensions onto a two dimensional plane of

projection. ~~cthods of' projection and the algorithm

which ~as been used t.o projQct a number of spatial vertices

onto a projection plane are discussed in Chapter 2. The

main type of projection which has been utilised is

perspective.

Methods of projection, related to computer displays,
t'7

(such as Sutherland)are being ~()nsidered by some research'?rs

but it has not been possible to devote much time to this and
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the auther has contented hilDself with a method which allows
a solid to be represented 1)y both orthographic and perspective

proj sc t ion s , 'I'he proj(~ctj_on a lgori thm has essentially

been developed to allow more fruitful avenues of research

to be investigated.

The solids which are represented by corapu tor in

this thesis are polyhedra. Various other forms of soUds

can be represented by compu ter of course and one of the

first researchers to produce a method of representlng
S

quad ra tic surfaces was Ruth Vi'ciss.

Frobably ~~e first researc~8r to c~nsider the
2-

po Lyhed'r on in a compu te'rdi spLay was Lar'ryRoberts at

,.

3e pz-oduc ed an a Igori t.rrn in 1963 which con.sLder ed

po Iyhedra and a method b~' which the hidden lines could be

eliminated. From this inl t:al "o;orkvarious people at tem:pterl
..

methods of repre3entin~ the convex polyhedron (such ~s

Loutrel and. Cole). The convex polyhedron Vlas represented

initially since this is a particularly simple case in that
any face of the pol.yhedron is ei ther cc:npletely hidden

or completely visible to the viewpoint. From these first
steps it was possible to con3id2r the more difficult

exercise of repreB2ntinG' the general polyhedron which can

have faces which are only partially hidden to the v Lewpo ln t ,
~The method adopted by Cole could not be extended

9
to the general polyhedron (as could Loutrel's) and the method

as presented had several 'ra'~hf~r gr::1.ved i aadvan t.ages, a1though

the general approach seemed to possess many a.dvanta.ges.
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This gener2l arproach to the problem of representing the

convex polyhedron has been used in Chapter 3 and many of

the disadvantages of Cole's initial method have been overcome.

In ad~ition, new techniques have bee~ introduced to prcduce

an algori thIn which appears to have some powe rf'uL features.

It is possible to choose any v i ewpo i.nt in space

from which to view the convex polyhedron with the restri.ction

that the viewpoint lies outside the polyhedron. The first

main step in the algorithm is to locate the visible plane

faces ar.d the associated visible edges. It is then possible,

if required, to locate the hidden faces by a slight chang~

in t!1e logic of the program.

Various concepts and definitions are introduced

dur Ing the descr-Lpt t on of the method and two hc.nd-cworked

examples are deve Loped , Several compu ter displays

(produced on the graph plotter) are presented at the end

of the chapter. Some of these show' the hidden edges with

dotted lines and some have the hidden edge;) completely

removed.

The rather more difficult problem is to produce

Cl. computer display to represent the general polyhedron

and a completely new approach has been taken in this case.

'The type of
10

Loutrel and

approach
\4-

Appel.

adopted is similar to that of

It is convenient in the case of the general polyhedron,

which can have an edge wi th por tLon s both visible and h Ldden

to the viewpoint, to cal~ulate, for a given edge, the n'LlJ'tber

of plane fJ..ccsof the polyherlron which hides the edge fro:n the

viewpoint. Since this nU'1lber,which has bE'en deflned as the
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'depth count', can vary along a given edge i.t is convenient
to divide an edge into a nmr.ber of portions, each of which
has a given depth count. In tllis way it is poss.i.bLe to
de termi.nethe portions of any given edge wn ich are visible
(or hidden) to the viewpoint.

In this respect the line segments on the projection
plane which correspond to the edges of the polyhedron have

been divided into a number of 'partial line segments' (a
ronnal definition for which is given) which are associated

with a constant depth count. Those partial line segments

which have zero depth count have no faces of the polyhedrcr.
which hide them from the viewpoint and are thue visible.
Non-zero depth counts (which will be poaitive) signify
partial line segmerrt s which are hidden to the viewpoint.

Ra ther than have to cs....LeuLate the depth count

of every partial line seement it has been possible to
calculate the change in dept.h ccun t along Cl. given Li.ne
segment. In this way it is only necessary to ca.Lcul.ate

the depth count of one of the partial line seements (of a
given line segment) and from this value the depth counts
of the other partial line segments (belonging to the given
line s'Jgment) can be obtained.

One of the most important computational aspects

of the algorithm is the determination of the intersection

points occurring between the line se@nents on the plane of

projection and because of this the method used has been
explained in some detail.

The results of this research work are prp.sented
in Chapter 4 and a number of computer displays of non convex
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polyhsdra are given at ~1~ end of the C~3~ter.

It should perhaps be pointed out at this stage that

t~e~e ~re basically two different types of approach to computer

displays of tr:ree dillensianal solids, depending on the type of

hardware being used. The 'calligraphic' di splay (described

in a later section) is concerned with the drawing of lines

on the display 'screen' by an oscilloscope type of action.

'!'hegraph plotter belones to this categcry in which edges of

the solidJ being considered are depicted by line se~~ent8 on

the screen of the display.

In the 'raster' type of display i~ is ~cssible to

shade the surfaces of the solid and produce different tones

on the scr een , so that a given sol.Ld can be repre:::ented

simply by thE va ri ou s sha des pr oduc sd on the screen. By

these methods it is possible co reproduce pho tographs by

computer and a new field of research comes within reach.

Unf'or buna t eLy , it was not possible to produce

any worthwhile research in this field since, to produce

shad ing using an off-line graph pl,)tter ncce ec t bat cc the

pr'cduct.Icn of an enormous amount of paper tare. Although

W()}'K was .in i t La.ted in this direction by the author, it was

qu ickLy re2.1ised that the facili t Ies avaUahle precluded

any hope of productive research.
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'l'heIi na ] resu.lt s of t.ncwork wni ch has been

described so far produces a line drawing on the plane of

projection. Ini tially these line drawings wer e drawn on

the graph plotter simply by building into the proble1
programs ccmmand s which wouLd produce instructions to the
graph plotter to draw the various line segments as the

p~ogram proceeded. Later in the work various a impl.e

methods were Incoz-por-a ted so that the distance moved by the

p:;n of th8 graph plotter tenc.(.J. tu bp reduced. r

various methods Lnc reesed in number it became obvious
tha tit wculd be benefLciaI to produce an algori thm which

would accept the line segmf:nts of C\ line drawing (in

addition to the co-ordina,es ~f each point) and utilise

some method of connecting these line segmen t s such that
the total distance travelled by the pen was kept to a

respectable minimum. Since the 1.ine drawings produced

could be described as connected graphs the problem was
defined as being that of developing a Inethod of drawing

a connected g:::aphsuch that the distance ~ravelled by the

pen, in cxceSG of the distance of the Une segments, was

minimised.

The excess distance travelled by the pen corresponds

to the distance travelled with the pen in a raised position.

So that it i::1possible to connect the line drawing by a

continuous sequence of pen movement it Vias found necessary

to add to the original line dra.wing a number of pen-up lines

(line segments drawn with the pen in ». raised position). It

was thus necessary to c.hoose tbese pen up line segments such
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t1:at their t.c ta l distance tended to be rn i.n ime L,

The various concepts whic.h have b~en develcped and

a discussion of the Pen Up Prob16n (as it has been called) is

given in Chapter 5. It is necessary, in fact, to choose the

pen up segments such that the addition of these to the original

line dr3,wing converts the line drawing to one which has all of

its points a ssoci.ated with an even nurr.berof line segments.

Graphs of thi s kind are knovn as Eulerian Cycles and their

importance lies Ln the f<le+'that it is pos sLbI.c ~" ccnncc t

them by a continuous line \\'ithout l;oing over a':1yline mora

than once.
'I'hls of course is the r-equ i.r emen t to connect a given

line (lrawing by a continuous sequence of pen movemen t , '£11e

pen up problem is c onc ern ed wi th the number of odd degree

poin ts n in the line d.ra.wing for it is necessary to select n/2

line segments (which will be pen up Hnes) between these n

points such that the odd points are each associated with just

one of the pen up segments. As a simple example consider

t~e line drawing shovm below
2

6

5



Of the s ix POi:l:S in the drawing four ar e of

c:':ri dc:g~'ee and .it is thus necessary to select t'~iO pen 'lP

lines which span these four points. A va.Li d choice could

be 1-3 and 4-6 for oxamp Le or 3-4 and 1-6.

It should be clear thA.t given n odd degree

points there are a number of ways of selecting the n/2 pen

up lines. T:1e total number of di s t i.nct pen up lines is

given by n , (n-1)/2 so that when n = 4 the numbe c of

distinct pen up lines is 6. 'I'hese are 1-3, 1-4, 1-6,

3-4, 3-6, 4-6 for the example given.
'I'he nurnber of ways of choosing the n/2 pen up

.. nl
is equivalent to the number of cornbina t i.ons of 2lines

pairs of paints from the n available. This nurnbe r is

given by n\

In this case (for n = 4) the number of ways of choosing

the pen up lines is 3. The 3 choices are as follows :

• 1-3, 4-6
• 1-~, 3-6
o 1~6', 3-4

So as to reduce the total pen up distance it would be

best to ce Icc t those two pen up lines such t!iat ),,:1e tcta L

di stance VIa::> a min imum,

Suppose 1-3, 4-6 is an optimal choi~e in the

example given. The segment.swould then be added to the

line drawing as pen up lines. It is then n8ces8ary to

asoi.gn a direction to each of the line segment a SI) that

the pen can connect the line drawing by a contInuous
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connec:ed with the pen in ? raised • f-'po sit i.cn , Cne

solution would be as follows :-

- ..-~.. -
3 Pen up lines

5

witl] the pen st::,}'_'tin5 and finisninc at point 1. 'l'he dir'c?cticn

of~TaV81 of t::e pen is ~ivE:n by

1-2, 2-3, 3-1" 4··5, t:: '-,-b, 6··4, "',-6, 6-1, 1-3, 3-1

:t is obvious that i~ is desir~ble to obtain a qaick choice
of the pen up !ines and in this respect a heuristic method
of choosing the p>:nup lines has been developed. The

method is described in Chapter 5.

Fo~ any given lint. dz-aw i ng there arc \fa r ious 'Nayfj

in which the drawinG can be connected dependin€; on th'"choice

of pen up lines. T~ere exists, fo~ any line dra~ing, a
par-b LcuIar choice of pen -\lP lines such that the total distance

travel:i.edby -the pen of the display is a mLnirnurn, This has

enume ra tion algori trwi has been cl evel.oped to obtain an optimal

solution.

theory associated with the peu up problem is also elucidatcl

in this chapter.
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The implicit enunera tion aIgor Ithrn requires both

a lower bound cost and an upper bound cost. 7he lower bound

has been obtained by defining a problem which is related to

the pen up problem and has been called the 1m2-ge Pen U·p

Problem. A feasible solution to this pr-ob lem furnishes

a lower bound cost to the pen up problem.

'rhe upper bound cost has been ob taLned by

utilising the concept of the 'dornin6 graph, a term fhst

introduced by 8coin5 and Snow in their research at the ,.

University. The methoJ.s by which the uppe r bound COS1;

and the lower bound cost are oot"tined for the pen up

problem are explained in Chapter 6.

Methods to r educ e t,he tJme taken to reach a

goed \or optimal) solution to the pen up problem

~under various cond Itions) have been developed and are

included at the end of Chapter 6.

Chapter 7 consists of timing experiments which

have been carried out on the 113M 360/67 computer to

compare the C.P.U. (central. processing unit) times

taken by the various forms of the general implicit

enumeration algorithm. The C.P.U. times taken to

obtain both the upper ana lower bound costs have also

been obtained.

'i'he C.P. U. times have been compared and various

conclusions have been made. 'l'he C.F. U. timer used in

this chapter has been explained in one of the appendices.
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Various rela tefl.research topics which have a.ci..sen

from the main research work are also included in the

appendices.

Listings of the more important programs which

have been developed are given at the end of this thesiso

It haJ been the a~n of the author to make these as clear

as possible by the inclusion of numerous comments. i'low

diagrams are also included. in the main text of the thesis

The thesis includes a number of line drawings

which have been output on the gl.'(1ph plottar. ~o

tha~ these drG.wings can be recognised at first glance,

the" h~ve been referred to as 'figures' and a figure

l~st is given in the content3.

have been drawn by hand have been referred to as

'diagrams' and a diagram list is also given in the

contents.
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1 .2. FJ.~ilities ;'.v;:tilaole a.t :,:t···:i~~!.stleUniv er si t:\f CO;:1-pu.tinr! ~~.bO::·~t8~~~:.--.--------~-.-..-.---------------------.- ---

The two computers in gen cra.L use at Newcastle

Uni ver s i ty are the I.C.L. K1)}'9 computer and the I.B.ll:. 360/61

which was the first mu Iti-access computer produced by I.B .M.

The total storage of the I.e.I,. ccap u t er is 16K 48

bit words and that of the I.B.t~. co:nputer is 19Zi\ 32 bit words

v.': th an add i tiona). 1,OOOK wcrd s 01 virtual storage.

A :Benson Lehner Inc remcn te l gra ph pLot t er-, which

is off-l.i.l-:;, is ava.ilab1e at the laboratory. The Lnpu t data

to the plotter consists of characters on paper tape produced

as 011tp\tt f r om the KDF9 compu t c r , 'Phe dT(?,wing::; shown in this

t;1€sis ·.v81'8produced. on the Ben sou Lehner plotter. Since the

36J/67 computer does not have an output pap er tape punch it

was necessary to use the rl)F9 in producing the output paper

ta-pe which was subsequently input to the graph plotter.

There exlst two Algol compilers associated with

the KDF9 computer. Walgol (Whetstone Algol) is il load and

go compiLc'r used for programs requiring less than five

minutes of C.I-.U. time. Kalgol (Kidsgrove Algol) is the

compiler uf'!?d for prog-rams r~quiriog more than five minutes

C.P.u. time and in this case the compiled programs are

stored 0n magnetic tape and may be accessed by use of a

suitable call tape.

c.'r. P. Vlalgol \,,;2.S Int roduced by a research t,TOUp

in Computer. 'I'ypes et t lng and is used ,....hp-re output paper

tapt~ from t.he KDl'9 is to be pnoduc cd as Lnput data to the

gr3.ph plotter. In this case ~rocedures, which produce
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the characters to move the pen of the graph plotter,

exist as library procedures. C.T.P. \'Ialgoluses the

on-line paper tape punch.
Vrnen large numbers of characters are required

at the output punch it is not economical to use the

on-line paper tape punch since elapsed computer time

ca~ become excessive. As a direct result of this a

scheme known as Device 4 has been introduced which

allows charac.ters to be stored on audio magnetic tape
a,

instead of being output to the punch. In this way the

elapsed time required OJ a given prcgrcun (producing paper
tape output) can be su'Jstantially reduced. Paper tape

output can be produced from Device 4 by an associated
off-line punch which sUlply copies the characters from

the audio magnetic tape.
It is necessary when using Device 4 to have

the compd Led programs on magnetic tape and so it is
necessary to use the Kalgol compiler. A shurt description

of Device 4 is given in a later section. The I.B.M.
360/61 computer, on which most of the prograr.uningfor

this thesis was carried out, is a multi-access computer

which facilitates up to 32 se~arate consoles at any given

time. It is :possible to store programs on disc and

various editing and other facilities are available.

The Michigan Terminal System (M.T.S.) has been implemented:

thlssystem was de7eloped for a 360/61 canputp.r at Michigan
University in collaboration with I.B.M.

The progra:1s for this thesis v/erewl.'ihen in



Alsol 60 and the I.B.~. computer was used because it was

ec~sier to debug programs using a t erm i.naI system, with

the extensive editing facilities available, than on the

KD1<'9 t_ compu,er.

Since it is not possible to produce paper tape

output from the 360/67, ther e being no paper tape

punch, it was found necessary to write a program to run

on the KDF9 computer which accepted as data che line

t '" . I' d 'sezmsn t a or J. [,lven 1!18 rawang , The ou tpu t from this

progr3Jij was paper tape which was then fed as input to

the gr",-ph plotter.

'The drawings shown in this thesis have been

produced with the use of this proGram. It is In fac-t

the only program which uses the KDF9 computer, all

otller programs being run on the more powerful I.B.M.

computer.
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v
initial input data to
problem program on IB!f. 360/67

output results from problem
program

~

data tape punched for
'DRAif' prOgT2rJ from output

resul t s --
.I

data tape inpu t to IeL XTIF9]

_------k--
in t er rmd ia te dOl'age of
output paper tape charact.ers

on Dev i.ce 4-

paper tape output from
Device tl

paper- tape input to graph
plotte!'

output line drawing- on
graph plot t.en

Diagr2.Pll •3
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1 .3. CO:1nuter Dis~18 'Is.

There arc two basic types of computer displayS in

common use.
The first of these is the incr()~ntal plotter, the

computer I)enerated data for whi cn consists of information to

move the pen. '1'11eplotter can be either on-line or off-line.

On-line plotters receive the data directly from the computer
whereas off line plot tez-sarc fed wi t.hdata in tape or card

form previously output from the computer. ':'1:eplotters

are incremental in that the pen moves in sm~ll increments
Ln any one of a specified number of directions. 'I'he
plotter at lJewcastle University Computing Labora tor-y is 11

Benson Lehner incremental plotter ....Ihich is described :i.~. the

following section. It is possible to obtain various
colours of dra·....ing simply by changing the colour of ink
in the pen. 'I'hesecond and perhaps more widely used

display is the cathode ray tube display which produces the
drawing on a screen very similar to the oscilloscope in
electrical engineering. The eathode ray di.ap.Laysca,v

themselves be split into two broadly defined subsets.

'1'h8 calligrBvhic display converts the digital

infDrmation from the computer into analogue form at the

electrodes so tbBt the electron beam is suitably deflected

across the screen.
,

Calligraphic displays are therefore

very similar indeed to th~ ordinary oscilloscope in that

voltages are va:ricd to produce electron beam deflection"

The information aasoc i.a ted \oJithany drawing can therefore
be suitably arranged within the computer before bei.ng
output to the display. The second type of cathode ray
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tutc dis~l~y is the ~23ter display w~i:h produces pictures

in a sim'iIar "ray to that of a television set. The picture

is produced in a fixed and unvarying sequence wh ich is

usually from left to right and from top to bottom. The

raster display thus has the diSD.dvantage that the information

associated VIith any picture must be sorted in the same 'vlay

each time, that is, frorn left to right and from top to

bottom. It is mainly due to this restriction that raster

disp13Ys are utilised for character displays more than

anything else. Apar-t from this restriction. raster displays

are useful in that the eJectronic equi.pment required, such

as deflection nl71plifiers, is fairly cheap when compared to

the more elaborate e'1uipment required for the calligraphic

display.
Raster displays are very useful if shadin£; of the

surfaces of solids is required and pictures of this sort

have a decided advantage over tho3e displayed by the

incremental plotters and calligraphic displays, which are

usua.lly Li.ne drC:l,1.·/ings.Any attempt to shade surfaces

using these di.sp'lays has always met with very unsatisfactory

results.

The resolution of the cathode ray tube display is

dependent on the number of rows and columns of points which

are present on the screen and which define the display

co-ordinate system. This number can vary from say 1024 on

a good display to even 11-096 on the most modern displays at

present in use. The resolution of the Lnc retuen ta'L plotters

is gov~rned by the diatance of a sinele increment which is

0.1 mm on tho Benson Lohr •.}r plottel' and can be as good as

1/500 inch on a modern Co.lcomp plotter.
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The computer drawn figures in this thesis have been

nroduced on the Benson Lehner incremental graph plotter, the

input data for which wa s output from the Y.DF9 compu ter,

The graph plotter is off-line in that paper tape

output fro!:'!the co.nput er acts as the input to the graph

plotter.

'l'hepen of the graph p'l.o t ter can move in anyone

of eight uu~~ereci ~irections as sho~~ below, r

2
y

~------------->--x

Diagram 1 .4

The increment of the pE~ in each direction is O.~mm

measur-ed along the cart.es ian iDeS so that a di.agcnaL move in

(Hrections 2, '+, 6 and 8 is of lenr.;th,[2 x (0.1) mm,

The maxi.mum ape..d of the pen is 2 err/sec and two

pens of nib 'Ilidths 0.2mm and 0.4 mmarc ava i.LabLe for use.

'rhe paper tape code conveys tHO plotting instructions

for every rO',t of paper tape output. The first four holes

convey the first instruction and the second four holes convey

the second instruction. Th" plot-ter recognises in all twelve

separate instructions from thE:;paper ta:r:e. Eight of thf'se

correspond to the eight different directions of motion shovm

above and the remo.ir.int;four instructions will cause the pen

to raise, lower, do nothing or stop reading paper tape.
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A procedure plot (r,s) wi.Tl, output characters on

paper tape corresponding to the numerical values assumed

by rand s. The procedure outputs two instructions at once

so that one rOvl of paper tape is output for each call of

plot.
Movement in anyone of the eight directions is

possible by assigning the corresponding numbers to rand s,

which are of course botn integer. Special combinations of

the integers rand s are used to produce the ~en up, pen

down, do nothing or stop instructions. After eact of the

pen up, pen do'.:nand stop instructions, three do nothing

instructions are inserted to allow for the Enite time of

mechanical motion in pen movement.

The sys tem software has its own cartesian

co-ordinate system and at the beginning of any plot the

pen is assumed to be at the origin (0,0).

Restrictions exist for total movement in anyone

of the four cartesian directions in any given program as

ro l lows

lIOOO" v/I ."

3500 ~ y

~ -200

-, -1500
1/and

The upper bound on x can be changed by a special

plot instruction.

The most severe restriction on pen movement ~s in

the negative x direction which corresponds to the paper

unwinding into the plotter. It is in this direction that

there is danger of the papE'r coming out of the sprocket

holes whf.ch explains v/hy only 2 em of movement is a~lowed

in this direction.
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It s~ould be clear from this that it is always

desirable to be;in a plot at or very close to the lowest x

vaIue of the line drawing. If the pen does in fact push

up aGainst the lateral extremities of the plotter the

pho to-electric paper tape reader 1;:illstop reading tape.

It is possible to move the pen by a manual

control in order that the pen may be suitably positioned

before any tape is read by the photo-electric reader.

The procedure plot is an Algol procedure with

"'-Use:ccode body and is available as a library procedure in

S.'I.P. UC\lgol. Its func t Lon Is to produce paper tape from

che oubpu t punch of the LC .L. VJ)F9 compu t cr corresponding

to th~ instructions specified by the integers rand s.

The procedures open gp and close gp an~ ana Lagous to the
6tand~rd procedures open (av) and close (dv). They

respectively claim and deallocate the paper tape punch -:>f

the Le.L. machine ano are library procedures in C.T.P.

Walgol. Open gp should be called before the first call

of pLot and close gp is called following the last call of plot.
Open gp claims buf Icr ar-eas reC';uiredby the

procedure plot and i8 written in User-code. CIC)se gp bE:fore

c.e~llocating the punch ~auses any p':\rtially filled buffer

area used by plot to be output. Close gp is also written

in U8ercodc.

Gap gp (n) is a Use rcode procedure wh ich produces
, .

2n do no"thing i.nstructions and is a libr-ary procedure in

C.T.P. Walgol, the formal parameter n being a posit~ve integer.
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V,'henlarge amounts of paper tape are to be generated

by computer it is not economical to use the on line paper tape

punch since the total eI apsed time required by the COGlpU ter

may become excessive.

In this respEct a system was developed at Newcastl~

Universi ty whi ch aL'l owcd the char-ac t er-s corresponding to the

paper tape characters to be stered on audio magnetic tape.

By this means the total eIapsed time t8.ken by a given

program pr'oduci.ng output paper tape con be reduced.

The sys t em by which this was carried out is known

as Device 4. i','hen the r,i.v(m pr ogr-amha s iinis':1ed .it is

possible to r8tl'i€ve the paper tapt: characters from the

rnagn et ic t.a pe by ini ti a ting an off line papar tape punch

attached to Device 4. This p~nch produces paper tape

ch3.racters corresponding to those stored on the maGnetic
tape. It should also be clear frcm this di ccus sion that

an added advantage of Device 4 is that it is poss i.bl a to

retrieve punched tape should. c.. roll be lost or damaged.
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This thesis cvntains methods by which

poLyhedra can be drawn by computer. The repre senta tions

consi st of various line drawings of the polyhedra. The

hidden line s can be shown dotted, full or can be omitted

altogether.

Another important aspect of the thesis is that

the organisation of any gi_ven line drawing and problems

related to it are tackled.

I t can thus be said that thi s the si sis

concerned s.Lorno st entirely ·.·.ith the drawing of line s

in one way or another.

~~al'ly research work- by the autho r consisted of

methods by which an incremental ~~Hte~~, which could

traverse in anyone of eirrht direetions, could be

programmed to trace a line between two given points.

'rhe re sul,ts of thi:3 work are pre sented in the following

section.

'I'he line tracel! out by the pen is the 'best'

approxima tion to the actual straight line in that each

move is at lea.st as good as any other possible move

under the existing conditions. The line can be

conai dered to be drawn on a mesh of size h where h is

the incremental Length of the pen in the l\irections

of the cartesian axes. The extreme co-ordinate

posi tions will b~ a asumad to lie on the grid.

Directions referred t~ are those n~~bered in

the se c tion describing the Benson Lehner graph plotter.
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The probl~~ is to compute a stricg o~ incre~ent8l steps from A to

B such that for any increment the pen is as near the true line,

shown in full, as any other cardria te for that position.

No generality is lost by considering the line to

be dravm in the first quadrant.

For any gi'Ten extreme co-ordinate positionsA and B
it is only necessary to utilise t.wo directions of the pen.

I

One of the moves will be Cl straight (5) mo..,feparallel to

the "c:rtcsian axes and the other will be an adjacent diagonal

nove (d).

It is a fairly simp'Le matter to determine the s and

d moves for any given points A and B. Consider the following

B = xn - x~ > 0 c =

K = abs (xn-z~) - abs

yn - yljI, > 0

(yn-ys) ) 0

If B iG true the d move must be either 2 or 4 and the s

move 1,3 or 5. If in addition C is true the <l m0ve must

be 2 and if K is true tho s move must be 3.
Thus, by inspection of three booleans, it is

possible for any given extreme co-ordinate positions A

and B, to determine the d and s moves as shown in +.abular form

below.

d move s move-----
BAc 2 KAB 3BAC Lt K~B '1
BA~ 8 KAC 1
B}.'C 6 KAc 5



Suppose the total number o~ move~ in the x direction between

A and B is aO, the static x moves. Similarly bO will be

the stntic y moves.

Con3ider that a string of instructions hns been

determined and that the pen is currently at a position

p (x,y). The number of x moves mnde to P ::.ssay a, the

dynamic x moves and b is the corresponding dynamic y moves

mnde to P. As the strin~ of instructions increases a and

b incroDse ttn~:1 B is r-eached when e: s: dO and 1). = bO.

Now

haO- xn - x~; hbO --yn - Yi3j (h is mesh size)
h~ = x - X~j hb = y - ySj

The per-pcnd'i.cu Lar diGt.::~_cef)f P from the true line be tween

A and B is given by

:: h .(bp.O - C\bO)

sqrt Ca02+b02)

aO, bO and h are constant so that

• " kk (b;;lO - "bO) " kk I: bO 1aO
where y~ is a constant given by

kk=

Now suppose
WJ :: static s moves
vD :: static d moves

w -- dynamic s moves
v :: dynami: d mOVes



TJ. f'o Llows; that-~
wO = abs (abs (0.0) IV a bs (bO) )

vO = r:1in (nbs (ao ) , abs (bO) )

\V = abs (abs (a) "" abs ( b) )

v = min (abs (a) , abs ( b) )

Substi tuting values fer a, 1), aO and bO in terms of w, ....0,

v, '10, the perpendicular distance ~ from the tl~e line is

given by ~

The sign of f3 depends on the values assumed by v;O, '10, ':/

and v acco rd ing to the abso Lut e V21u~s of D., b, 30 and. bO.

No generality is lost by assuming

~ = kk (vrlO - ~.J.
since trw sign of £; determines on which aide of the line

Plies.

Consider t.L.: change in s, 6s for both a G move (b~S)
and Cl d move (~~\0

~ ss - vo since vi inc:re.:lses by 'l

and b!':!cl - -1::0 oi.nc e v Lnc rcaaec by 'I

If the value of @ &t P is 6p then the new value of ~ after

one increment will be ~s after a s move and ~d after a d

move,givcn by

~I:i = ¥.1p + vO

Depending on whi ch is t.he smaL't.er of 53S and ed de t ermi.nee

wh Ich of the moves should be made.
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Thus

if \SG\ < \"d\ a s move is made

if \~S\'I \:oId 1 a d move is made

The above determination is simple but a problem as to which

move is selected exists if \~s\ = \sdl for then the s move
t

is 3S eOOQ as the d move.

Note that it is not sufficient to specify at
each equality that a certain move shou 1d be made for if

the string of moves is computed from B to A the tv/a lines

\all differ slightly in this region.

It is necessary that different moves be made

3t this conditio~ in the two different directions in which

the line can be plotted. In this case the s~ring of

instructions f'rom A to B is exactly the ,3,;'T!10 as the reve rsed

string of inRtructions from B to A. If the line is nraw.}

in the two directions no divergence wi Ll,occur which is the

required situation.

A situation of the type explained above has been

referred to as a Knip:hts Hove condition. This is discussed

in the following section.
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Calculate nu~ber of
str_'·c..icht !T':O",;C~ and
nwnber of diagonal
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.~ YE::>

~__ --.L....-----t
Ca Lcu Lat e straigh-t
move 6: di':gon'::'.l nove
to be madp. for given
line. count::: o.-------'

1
15 uex t move ;j, sLt'i:iight ~-

mov~ ~_J[ ___j NO

-~
1\

NO
,..-, . nextOne more 'Detprmlne

to [le r4'- move
made

___ l_~ES
'De~n7.lir,eJ
thl s move
and plot
it

r--- I di.agonal::itore :-:ss 1 I s next move a
t' . r-c---- movenlS _
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I":;)~Hlt= NO
t,;'J'Qot +1 ~

~
cond it ionIs count Knights Move

2 NO Calculate relevant move:::;

.-

Plot
these
2 moves
count :.:= 0

Any more moves to b~ .--.....
'-- __ __!!lad e 'I r::s

_---..._;.,;y ES

NO

FLOW DIAGRAM OF PROCITlUltE LltJE~:...;___;:;:'""'-~~---------

D iap:ram t , 6

'rhds is based on the theory which has been explained
p.arlier.

Two moves are plotted at once since two moves correspond
to one rou of peper tape characters. ~See ~ection 104).



In pi-a c t i ce a

~Z.dghts l,r-ave condition will Lead to a tn i cke rri ng of the

plotted line in the area in which the condi tion occurs.

The extent of the t.h i ckerri ng will depend on the resolution

of the graph plotter. If the resolution is poor, there

will be more thickening than if the resolution is good.

Possibly the simplest example of a line in

which Cl. Knights 1,:0,/0 condition occur s is a line hav ing

terminal co-ordinates (0,0) a.nd (2,1) a s shown below.

B (2,1)

A (0,0)

In this ea se the s move is 3 and the d move 2.

The constants defined. earlier thus have the following

values.

aO ::.: r, bO "r. ::.:

h is ,?,'i·.ren by
V/O = 1 vO = 1 In this case

sS - 1 Bd :,:...1

Initially 8 is zero.

If a, d move is selected the new 6 value ad

will be ~1 whereas if tl. S move is selected the new g value

s s will be +1. Since these have the same magnitude a

Kni.gh t s Move corldiUon exists.
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Suppose at the Knights Move condition a d move

is selected.

Hence in this case g = -1

The second (and final) move will be a s move

since the final value of ~ will he zero ~~ = g + 1 = 0)

in this case. ~Note that g = -2 if a d move were to be

selected)o
In the reverse string of moves (f r on B to !)

a diagonal move wi 11 be made at tile Kr..j_/~:ntsMove cond i tj en
r

and then a straight move and thus the two lines will

traverse as shown below.

B

Now suppose tha~ at the Knights Move condition
different moves are to be me1e ttepending on tho direction in
which the line is dravm. in the direction A to H suppose
the move made at the Knights Move conditien is a diagonal

(or straight) move and that in the opposite direction this
move is a straight (or d.iagonal) moveo In this case the
two lines traverse as sht"wnbelow

r---------~-----~~---.~---E3
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No divergence of the two lines occurs and thus

no thickening of the line wi Ll,be seen in prac t Lce ,

~hus it is possible to allow for the Knights Move condition

by utilising the direction in whj_ch the line is drawn. .!.n

urocedure line (given in Appendix 1) this is achieved by

inspection of boolean B.

It should be not8d that the Knights Move

condition does not occur for all lines.

'l'wo examples of lines in which a Knights Move

condition occurs tproduced on the graph plotter) are

snown. In both cases the lines have been drawn in

two directions so that any divergence can be c~early

seen.
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f~o cor r ect Lon
for Knights Move

(;orrection fo:c Knights Move

EXAi"fLE OF KNJGHTS ("'lOVEa

Line (O,O)to (14,9) F.1[;Ur.C 1.
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NO correc t i on for: Knights Move

Correction for K.nights Move

EXArfLE OF KNJGHT5 MOVED

f'ir;ar.e 2.

Line (0,0) to (2,1)



C~:\I-'PER 2.

Theory associated with projecting a three dimensional
point onto a two dimensional plane of projection.
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PLANE PROJECTIONS

2.1. Introduction.

In the field of comput ar graphics one of the most

important topics is a means by which objects in three

dimensional space can be represented on a plane in two

dimensions. In order to represent three dimensior.al

objects it is first necess<try to be able to project the

vertices onto a viewing plane, called the plane of

projection, which will corrlspond to the screen of a

display or the paper of a graph !,lo:ter.

'I'he method by which this is achieved is known

as projection. 'I'he three dir:!ensional objects to be

considered will be polyhedra and various methods of

projecting the vertices will be discussed.

This cha p t or de scribes a simple method by

which vertices in three dimensions can be projected on

to a two dimension"'-l plane of projection.
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Consider some point V in spa ce to be the viewpoint

and consider the vertices of some po Lyhe dronS to be joined

to V. AI1Y section of these lines by a plane, kno: ...n as the

plane of projection, is call~d a projection.

The projection of any vertex P of S in the plane

of projection is the :intersection of PV with the plnne

of projection.

This -!;';peof projcctiun is ~:;o;;:etil11e3known as
r

axono~etric projection and the subject dealing with

projections of this kind is known as axonometry.

2.2.1. Persncctive Projection. If the v iewpo int

V is at a finite distance from S,linGs from the vertices of

S converge at V. This type of projection is known as

PERSPECTIVE and depicts the object as it would appear to an

observer at V. However, due to the convergence of the

sight lines the true proportions of the object do not

appear in the projecti~n.

2.2.2. ~o$raphic Projection. If the vi.evpoi.n t

is an infinite distance from S the lines of sight vli11 be

parallel and trw projection is said to be ORTHOORAPHIC if

the plane of projection is ::ttright angles to the cylinder
of lines from S. If the plane of projection is at any
other angle to the cylinder of lines the projection is

said to be OBLIQu~.

One of the iMportant things pertaining to

projections is that lines in space are project~d into li~es
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on the p~ojection plane. In projection the lengths and

direction of lines may, however, vary_

Isometric orthographic projection is an

orthographic projection such that the projection plane

makes equal angles ..nth the three cartesian co-ordinate

axes. If the projection plane rnake a equal angles with

two axes the orthographic projection is dimetric and if

the engles made by the projection plane differ for all

three axes the orthographic projection is said to be

trimetric.

Note that to define the position of the

projection plane for perspective it i3 necessary to give

some lin~ of sight a:ld position the plane so that it is

a ; r:';_ght cng Les to this.

There are a number of invariants in any

projection the important ones of wh i.ch ere listed be Low ,

(a) Collinearity of lines is preserved

(b) Concurrency of lines Ls preserved.
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The information required to project any given vertex

P(x,y,~) in three dimensions onto a plane of projection in tHO

dimensions consists of a number of variables.

'1'11e viewpoint V from wh ich the object is seen is

given as a point in ca r to sLan co-ordinates (-xv,yv,"i',") and

the line of sight is given as the angles made with the three

car-t es ian axes and arc Given by C<, B and C . A seventh

variable d f i.xc.: the dictanco 0: the pIarie of pr-o jcc t i.on

fro~ the viewpoint.

NOVI suppose t.ha t the viewpoi.nt is positioned at the

origin. It wi Ll, thus be necessary to t rana Lat e the or-i gi.naL

vertex P (y.,y,~) to a nc'" porrit ion Pt (xt,yt,>3t) given by

[~:]"3t
= (1 )

It is now required to rotate the translated vertex

Pt until the ~ axi.3 coincides "lith the given 1i11e of sight.

This can be achieved. by rotatine; Pt bYe{about the x axis, B

about the y axis and0 about the 55 axf.n,

The three rota t i.on matrices to do this are as

follov/s :

G
0 -Sin~ rotation by 0(

Rx = cos'-'< about x ax i.s
sinO( cos

UOS B
0 Sin~J rotation by e

Ry= 1 about y axis
-sinB 0 cosB

[cos~-cin If ~J rotation by ~
R~ = sin '6 cos ~ about saxis

0 0
___ (4)
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These three r-ot at i ons can be co.nb ined to gave one matrix

of rotation R given by

R = Rx.Ry,RQ

so that

sir,e(cos'6
-cos~inBcosa cos(~r;osB

R = -sinO cos 8 sinB

-sirc(cos8

____ (5)

The rotated vf;rtex Pr (xr, yr, ~r) :'sthus eiven by

[:l:rl [y.t]yr =R, yt.srJ f>t ___ (6)

Now consider the plane of projection to he parallel

to the xy plane at a distance cl from the or i.gin as shown in

Diagram 2.2.

Thp. determination of th"! projected pOlnt Pp
(xp, yp, "p) is then easily calculated from the geometry of

similar triangles. The projected point Pp (Xl', yp, Mp)
has each of its co-ordinates in a constant ratio k to those'

of Pt whe re k is gi "ICn by

k = d
Ar

so that xp and yp are given by

xp = k.xr

yp = k.yr

___ (8)

____ (9)

The projected vertex Pp is thus

~ (10)

The co-ordinate axes on the plane of projection
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are taken G!S the x y axes so that the projected point on the

plane of pro jecti.on, corresponding to the original spatial

vertex P, is given by (xp, yp).

For each spatial vertex it is therefore possible

by multiplying the rotated coordinates by a constant ratio

which depends on the value of ~r and d, to project the

vertex so thnt the ~ conrdinates are the same and therefore

all the projected vertices lie i::a given plane, the plane

of projection.

It is fairly easy to scale the object on the

plane of projection so that the value of d is superfluous

in that the variation of it simply alters the scaling on

the projection plane.

The ulgorithm for perspective projection is

given in Appendix 2.
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x

Pr (x , J"_~, 5 )
J:J r ... r

./
-:
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,/

p (x p' y p' d)
p

Plane of Pr-ojec t ion

DIH_JTM1"I SHOvlH!G TtLE pnOJECTIOI; or TIlT-: POl'A'l'ED
v:a:rl';'~/ iJ 0: rro 'l'jji2-Plt~i{;~CP ~:(}r);;.!.'I0i'i.·

r ------ ..----.---.-.--

Diagram 2.2
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2.4. Wire Fra~e Drawin~s.----_._-=-.
As has been seen in a preceding section, lines

are projected into lines, and it is only because of this

that it is possible to represent objects by the simple

wire frame dra wi.ng,

Possibly the first researcher to realise this simple
12-fact in the computer representation of objects vias T. Johnson

at the Lincoln Laborat0ries in Hassachusetts. About a year
1~

or so later in 196'1- Pucko t produced a f'a'i rLy ::;oodpape r

on this development, for the National Aeronautics and Space

Administration (N.A.S.A.)

The method is simple since it is only necessary

to store data corresponding to the co=o rd'i.nates of the

vertices of th0 object and information concerning the

formation of the line segments. Each of the spatial

vertices is then, projected onto the projection plane and

the corresponding extreme points of the line segments on

the plane of projection are connected by straight lines.

Any object can be represented in some way by

straight lines in space so that the wire frame drawing has

a wide range of application.

An algorithm has been vlritten to produce simple

wire frame drawings and examples of the possibilities of

the method are shown. One of the ereat advantages of

the algorithm presented is that since the formation of

the line segments for a given object does not change it

is only necessary to organise the data associated vlith

a line dravling once. Other views of the object can
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be qu i ckLy genera ted. and all that is required. is th e new

Pl'ojection of the spatial vertices from the new viewpoint.

The rest of the Lnf'ormation remains unchanged and the

line d'raw.ing can be connected as in previous cases.

The only disadvantage of this is that the pen up

distances under certain conditions may become very large

and no effort is reade to check for the coincidence of

points on the projection plane, which could lead to a

reduction in the calculaGicn t:iJne.

He:...·ever, since the method is so easily

programmed to deal with varying viewpoints it was

cOIlsid.ered that nothing r;;uchW3.3 lost since tl1e advantage

of wire fra..:ne drawings is that it affords a method by which

any object can be viewed from a numbe r of viewpoints.

'1'hewire frame drawing is quickly and easily

produ~cd since no effort is made to locate which of the

lines of the object are hidden to the viewpoint. In

reality the hidden line problem, as it has been called

is solved because it is not possible to see surfaces wnich

have other ~ opaque surf'aces between it and the eyeo

'l'hehidden line problem has received much

attention during the last few years. Methods of locating

the visible and hidden edges of polyhedra have been

developed by the author and arc rresented later in the

thesis.

',l'hef'oLlow.ing chapter .is concerned with a

method by which convex polyhedra can be represented by
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cornputer while l:h8.pter 4 dea l s with the r3. thor more

difficul t pxob Lem of the norr-convex polyhedron.

In both cases practical examples produced on

the goraph plotter, are included.
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NON-CONVEX PDLYHEDRDNa

Figure 4.
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WIRE-FRAME DRAWING
Figure 5.
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WIRE~FRAME DRAWING
F.1.e'~re 6.
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-, .

Theory a s soc La t ed Wl t.n an a Igo r i thm to determine both
the visibJ.e and hiddE~ edges of a.ry giv8n ccnvex

polyhedron.
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C~A1?TER 3

Com'out e r' ReDl-eserlt0.tioll of Convex Po.Ivhe dra ,-------.- -----

3.1. Introduction.

In 1966, Cole published a short paper in the
Computer ,Journal on the representation of convex polyhedra
from minimal information ..

The method uf'ed enabled both the hidden plane faces
and the vi:::;ibleplane faces of the polyhedrc. -:0 'be found
from input <latnconsisting simply of the co-ordinates of th~

vertices of the polyhedra.

'I'hisalgorithm has many serious disadvantages
however. Each plane face of the pol.yhedro":l.can be
loeated more than once so that it \..,asnecessary, as P'lch

plane face was found, to check it against a list of already

located faces to ascertain whether the face had been found

previously. With polyhedra consisting of a large number

of faces this can become a very serious disadvantage.

As each plane face was located, it could be

rejected not only if it had already been found, but also

if it divided the ex~sting perimeter list of points into

two disjoint pieces. These two cases of rejection necessitated

a large amount of checking for each plane face of the polyhedrOn.

Although the algoritr~ is rather sketchy, the

general idea has been utilised in this theGis to produce

an a19ori thm wrrich has many complementary f'eatures. By

introducing the concept of'valid third vertice~ it has been

:t>ossibleto produce an nlgori thm v;hich locates each plane
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f::lceof the polyJ:.edron once and once only. The current

ne rimet er list of line aegment s defines the existing

perir.1eterlist in terms of segments ruther than points (as

Cole used). By t.his means a convenient method. of locating

each edge of the polyhedron without the need to check existing

lists of already located edges has been developed. In

addition, a method has been devised to alter the current

perimeter list such that the list i~ a Ll.owe d to s oLit into

any ~umber of disjoint pieces.

A method of reducing the number of vertices which

can lie on plane faces still to be located has been developed.

This is par-t i.cuIar-Ly beneficial for polyhedra wi, th a large

number of vertices.

The only ~~rt of the algorithm to be described

which is taken from Coles algoritp~ is the general method

of locating the initial perimeter list of line segments.

All the other concepts which are introduced are the

origina I work of the au thor.

It should be noted that the method to be

described inherently utilises the fact that for Cl. given

convex polyhedron any given plane face is either completely
hidden, or completely visible to the viewpoint. A given
edge of the polyhedron is also either completely hidden
or completely visible.

It is because of these cOilsiderations tha~ the
computer representation of convex 1 h_._ po y edra is simpler
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than that of the gsneral polyhedron which may have both

faces and edges only partially hidden to the viewpolnt.

A completely new approach is needed when

considering the general polyhedron. An algori Hun has

been developed which detennines those portions of each

edge which are visible to the viewpoint. This work

is presented in the following chapter. (Chaliter 4.)

A,
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The input data wh ich is associated 'Nith the convex

polyhedron consists of the cartesian co-ordinates of tne n

spatial vertices of the polyhedron. Smmose tha t some....
vi ewpo int V (xv , ~ry, zv), wh.i ch Lies outside the polyhedron

and a line of sight from V, defined by the angles it makes

with the co-ordinntc axes, are also supplied as data. 'I'he

n spatial vertices of the polyhedron can nov be pro jected

onto a plane of projection at right angles to the line of

sight.

Suppose, for clarity, that edges of the polyn~dron

are referred to as scgIT'~ on the pro jccr.Lon plane and tha t

spatial vertices have corresponding noi~ on the projection

plane. In addition, plane faces of the polyhedron will

have corresponding convex polYGons on the projection plane.

As an example suppose that a cube is to oe

represented and suppose that the 8 spatial vertices have

been projected onto the projection plane as shown below:

y

x

• 4

.5

•8 • 36
• •7

-2

'" 1

Ca.rtesian Co-ordinate
Axes on the Plane of
Projection

Diagram 3.1
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These points \,ill correspond. to a completed dr awi ng as shown

below in Diagram 3.2.

4

6

3

1

An edge of the polyh(>dron VliJ.l be called an ini tial....P.2,ri!!:.?te~

edge if the t.wo plane faces rssocaa ted Vii th it are a hidden

face and a vi,sible face as seen from the vi ewpoin t , 'rhus,

. D' m 3.2, the initial per~neter edL,'eswill be 1-2, 2-3,1.r.. lagra". "

3-4, ~-5, 5-6 and 6-1.

The first step of the algorithm is to locate the

ini tial perimeter edges of the convex polyhed:con.

the vertices of each plane face, ordered in some direction

(either cLockwi.se 9!. ant i.cLockwi.se }, were supplied as data,

it would be poaed.b Le to determine the outwar-d norma I vectors

to each face. The angles made by each of these out\Vard

normals with the line of sight could then be calculated. If
this angle \\ere greater them 90° for a given face then the

:!.'acewould be visible from the vd.ewpoi.nt, obhc rwi.se the

face would be hidden. The special case, when the angle



-58-

Line
of
sigh t

/
AnGles ~2de by cut~ard
ncnnal vectors with
line ef siG':Jt less or
equa I to 9'J° - hidd en
feces.

---~

t F~ces associated with
t.ht:!se ou twa r d no rma L
vector8 are visible.
Angle rrad e w i th line of .,
s ie:1 tare Grea ter ,~t,ta.n :;0"'.

In Diagr2.m 3.2 the outward norma 1 vector to face

(1,2,8,6) makes an angle of about '1!300 t o the Li.ne of sight

and is therefore a visible f8ce. The face (1 ,7,5,6) h~s an

k 1 f ~ t 60° tooutward nOY.11aI vector which rna ,(,S an ang e 0 a oou

the line of sight and is tner€fore a hidd en fdce.

After ~alculating these angles it would be a

fal r}y simple matter to Loca te those edges associated with

both visible and hidden faces which would be the initial

per tme t.e r edge s, Howcvcr , the only i.nformat:i_on relating

to the convex polyhedron to be assumed in thin discussion

is the cartesian co-ordinates of the vertices so that it is

necessary to develop another method of locating these edges.
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It should be noted at this stage that the spatial verticos

of the convex polyhedron have been projected onto the plane
of projection as shown in Diagram3. 1 • No edges of the
convex polyhedron have been supplied as data and referen.ce
\>lillonly be made to Diagram 3.2 to explain the algorithm
more clearly.

Since the polyhedron is convex the initial
perimeter edges will form an enclosing convex polygon on
the projection plane which '<lillenclose all the points

of the polyhedron.
In the example shown in Diagram 3.2 the enclv.3ing

convex polygon is (1,2,3,4,5,6) so that it is required
to locate these points from the information implicitly
contained in Diagram 3.1. An initial point on the
enclosing polygon can be found as follm.,rs:

Find the point on the plane of projection which

has the least y co-ordinate. If there is more than one
point satisfying this condition then choose that point

among them which has the least x co-ordinate. If there
iE still mere than cne point satisfying Lhesa conditions

then choose that point whose corresponding spatial vertex
is nearest to the vd.ewpoirrt, This point has its

corresponding spatial vertex visible to the viewpoint. In

Diag. 3. 1 the initial point \,lillbe 1. The next point to

be located on the enclosing convex polygon will be that

point which when joined to the initial point, makes the

least angle with the x axis on the projection plane. This
will correspond to point 2 in Diagram 3.1.

The first two points locat0d on the enclosing
convex polygon are thus 1 and 2.



-bO-

The next point to be located will be that point

which ~hen connected to the last point obtained, makes the

leas t angle (measured in an an tLcc Lockwi se direction) with

the previous line segment Loca ted (1-2). Thus frem among

the possible points 3,4,5,6,7 and 8, point 3 is selectedo

The first three points to be located on the

enclosing convex polygon are thus 1,2 and 3.

,4

93 is angle made by point
3 with line eegm en t 1-2.

-1 DiaPTam 3.1

The method of locating the next points on the
\

enclosing convex polygon can be repeated w1th 2-3 now

the pr evious line segment. 'I'he next point located in

Diagr,JI:13.1 will be 4. The terminating condit:i.onis

when the initial point (1 in this case) makes Cl smaller

angle with the previous line segment than any other

point. Thus, in Diagram 3.1, 7 w':'ll be selected as making

the least angle with segment 5-6 bu t point 1 makes a

smaller angle. 6-1 is thus the final line segment on
the en.closing convex polygon. The enclosing convex

.---_.-



-b1-

polygon is thus (1,2,3,4,5,6). In the proc8dure to locate

the initial perimeter edges, given in appendix 3, the

each point is located on the enclosing convex polygon it

~ill obviously not occur again and so can be deleted from

the available list of points.

difficulty exists in locating the next point on the

enclosing convex polygon if more than one point makes the

least ang Le '.d th the previ ous Iy Locat ed segment. This

corresponds to the case when n plane face of the polyhedron

has an outward normal ve ctor making an angle of 90° ...Jith

the Iine of sight. The plane face is then par-a L'leL to

the line of sight.
~-Consider the f'oLl.owi.ngexample of a cube:

4•

5 •
• 8
.3

6 •
, 7 •

1 • D'., . 3 I:. l",grarr..,(

and suppose that these points correspond to a final drawing

as shown be10\'1:

Diagram 3.6
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The cube corrcaponde to t.hat give): in Diagro.rs3.1 and 3..2
rotated slightly so that faces (2,8,ll-,3 ) and (1,6,5,7) are

narallel to the line of sight.

Points 1 and 2 will be the first two points

located on the enclosing convex polygon.

Points 3,4 and 8 make equal least angles with

the line segment 1-2. It is not sufficient to locate

points 3, 4 and 8 ~nd sort them according to their distnnces

(on the projection plane) from the last point located.
This wouLd give the initial points of the enclosing ccnvex

polygon as (1,2,3,8,lc). Segment 3-8 does ~_~ cor-r-e spond

to an ed~e of the nolvhcdron.o ." ~
Consecutive points on the

enclosing convex polygon rr.'..lctcorrespond to i.nitial perimeter
..::dg0S of the polyhcdl'on, although we only deduce these edges

from the co-ordinates of the spatial vertices and thejr

11rojected images.

In the example given in Diagram 3.5 the points

3, LI- and 8 have been located. Select that point ",;hic!:

licr-furthest from the last point located. This will

c0rrespond to pojnt 4 since this lies furthest fr()tnpoint

2 in the plane of projection. If there is more than one

point satisfying this condition select that point from

among them whose corresponding spatiaL vertex lies nearest

to the viewpoint. This ~oint 1ms its correGponding

vertex visible and vlill lie on the encLosing convex polygon.

Now it is possible that points v,hieh lie betveen

points 2 arid Lt- on the plane of projection also lie on the
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enclosing convex Dolygon. The points must have their

corresponding spatial vertices visible to the viewpoint.

Points will lie on the enclosing convex polygon

if their corresponding vertices lie on the viewpoint side

of the pIane perpendicular to the line of sight which

passes through the vertices 2 and 4. Thus,. in the example

given, T)oint 8 has its corresponding spa t i.sL vertex lying

on the vi ewpo i.nt side 0: this plane wh.iLe 3 does not.

Point 8 thus lies on the enclosing convex polygon and .,
so the initial points on the e~c10sing convex polygon in

D'iag 3 c are 1, 2, 8,4 and bhe sc correspond to the initialc: ..::, u

perimeter edges 1-2, 2-8, 3-4.

If there is more than o~e point between 2 and 4
which lies on the enclosing polygon, then these are sorted

according to their distances (on the pro jection plane)

from point 2.

Note from Diagram 3.6 that of the initial

perimeter segments lo~atsd, 2-8 and 8-4 are each associat~d

with a visible face and a hidden face.

2-8 is associated with the l~~dden f (2 8 4 3)_-'- ace , , , ,

and the visible fac o (2,8,6,1).

8-4 is ccsoc La ted wi.bh the hidden f'ace (2,8,i~,3)

and the visible face (8,4,5,6).

Both 2-8 and 8-it thus satisfy the definition

of initial perimeter edges given earlier.
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\ STlL.l1T J

Locate initial point with
lowest y coordo (lowest x
coord) tnearest spatial
vertex) and take copy of it

l)efine last seb'!llentas line
from initial point parallel
to x a xis and in positive
x (~rection.

L;2-ncelthis point from
initial list of points on
projection plane

L-__ •.

NO .. 1-
I ~ Any available points in list

I Y£S
It

Ge-t~ next point 2.

Detennine positive angle ma~
by point with last line se~~

. lNO.. 'f' t t'\OIs this less than current lTIln ,1----jIIo""1 J.S thi s equal 0 ..,_-..., ..~

YES current min

r YE'S
Lt

fstore in p;rallel
[1ist of points

Replace current min. with this
""",,1"-4 angle and take copy of point

~. Cancel parallel list of
points if one exists

-

'iLOW 1JIAuRAM 0_l4'Mr..'l;HOD USED '1'0 IJOCATE POINTS OF INI'rIAL
CCNvEX POLYliOH --



CD
~-------~------Dei~er:-1ine ang Le j;,2Qe

by jni t i a I po ir.t wi t.n t---'?-t~

last line seGment L-----....---r-10

is this Les s or
to current m i.n ,

e qua I 'lfES . _
~_ ?{ l'"I1HSH]

------

_, --
Dete~aine those points
which are visible to
viewpoint. ~hese lie
on convex polygon.

t 1 1 '{ES18 here a para le
list of points

I S is next point on "'_--1
~nvex polygon

f
S defined as point
on projection plane
v.hich lies furthest
from initial point

Define new last
segment as line
connecting last
point to S

vane e1 :::> from
available list of
points

2 ......'---1 Any points in listYES
~ ~O

~

FLOW DIAGRAM OF KETHOlJ USl<:DTO LOCATE POlmS 01" INITIAL
- CUfl:V~X P00GO~ (Cont'd)

Diagram 307
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segments correspondin8 to the initial perimeter edges will form

an initial entry 1:0 i1 curren~rilTic;ter list of line segments.

The line segJcnts contained in this list are to have corres-

pond irig edges wh ich are associated with just one visible plane

face yet to be located.

The plane polygons associated with each of these

segr.Ientswill be found. and the current perimeter list w::"ll

be altered accor-di.ngLy so that the above definition of

the line segmen ts will aLwaya be true. Note that thE';

definition holds t rue i1':itinIly since each initial perimeter

edge (segment) is Cls::;ociatedwith one visible plo.ne face

lpolygon) yet to he located. A list of line segments to be

subsequently dr-awn and called the draw list will be kept and

as each plane face is 10cated)visib1e edges associated with

it will be added to this list, Since each of the initial

perimeter edges is visible they will form the i~itial draw list.

Consider again the cube given in Diagrams 3.; and.

3.2.
Diagram 3.8

• 4

• 5

• 3
6
• •7

·2

•1

4

6

3

The points on the left of the diagram correspond to a final
line drawine shovm on the right.
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The initial peri~eter edges are 1-2, 2-3, 3-4, 4-5, 5-6 and 6-1.

It is

required to Loca t e the visible plane f'a cc (1, 2, 8, 6) wh i.ch

is associated Hith the first segment 1-2 in the current

perimeter list. Suppose the plaLe defined by the two vertices

of the first current pcri~eter line segment and another vertex

3. taken from a verti~ list of valid third ve r-t ices (to be

discus3cd in a later sccti~n) is given by

ax + by + cs + d = 0

where the constants a,b,c and d can be deter-mi.n ed from the

determinant

x1 Y1 l!;1 1

X2 Y2 li'!2 1

1 - 0x3 Y3 !'lI-,..
..;

x Y P.t 1

whe re (x1, y l' 91) refers to the cartesian co-orciinates of

vertex 1. The vi.sib.Ic plane face associated wi th edge 1-2

will be such that none of the vertices of the polyhedron

...Jill lie on the vLewpo irrt side of it. It is therefore

required to obtain a third vertex, from the vertices list,

such that the ve r-t ices 1, 2 and +,he third ver-tex de fine a

plane which ::;atisfiesthis condition. The vertices lying

on this plane will define the visible plane face of the

polyhedron. The corresponding points on the, projection

plane will correspond to ;J convex "polygon and the edges

of the face can thus be obtained in a similar manner as

in locating the enclosing convex polygon.

Initially the vertices list will contain all
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the vertices of the convex polyhedron. Consider th"lt a

'nearest' plane is already de-fined by the COClGtants a, b,

C and d and that another vertex L is a candidate for ~he

third vertex.

In the projection of the vertices the viewpo int V

was translated to the origin so that, with the viewpoint

substituted in the equation of the plane, the equation has

a value given by the value of d.

Now suppose the vertex L has its c~~tesian

co-ordinates substituted in the equation of the plane. 'I'he

va Iue s of the equation of the plane is given by

where (xl YL ~L) are the

vertex L. If s x cl <0

cartesian co-ordinatES of the

the vertex L lies on the opposite

side of the plane to the vieupoint. If s x d)O the vertex

L lies on the same side of the plane as the v i.ewpo in t , In
this case the currently defined plane must be replaced by

the plane defined by the vertices 1, 2 and L wh i ch becomes

the new nearest plane. If s x cl = 0 vertex L lieE" on the

cUIrently defined plane and may be stored as being a vertex

lying on the ncare st pIane located so far. In practice

this corresponds to an absolute value of s x d being less

than some :small value S.

After every vertex in the vertices list has Deen

tested in this way the nearest plane will define the visible

face associated with the edge 1-2. The vertices which have

been stored (corresponding to s x d = 0 since the last nearest

plane ...las replaced) will be the other vertices lying on this

visible face.
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now oe sorteci in the SG::J.'3 iJ;ay as in locating the initial
perimeter edges. For exarro.Le, the visible pL-'lneface
associate~ with segment 1 - 2 is (1,2,8,6) which has a
corr-sponding convex polygun O~ the plane of projection

as shown below.
8

6

2

1

D iaf,r?zTl )~

The po i.rrt s on e1is polygon ',!illbe: sorted into the or der

(1,2,8,6). '1"11ecor-r-e spcnd'ing edges of the ple.ne face

are thus 1-2, 2-8, 8-6 and 6-1.

'1'hevisible edgp.swhi.ch lie on the visible face
located are stored in a 'plane' list of line segr;ients.

The plane list is thus (1-2, 2-8, 8-6, 6-1).

The next step in the nlgorithm is to alter the

current perimeter list of line segments such that the

segments which are present in the list after the alteration

are associated \-lithonly one plane face still to be located.

Note thnt it is necessary at this stage to alter

the existing current perimeter list (1-2, 2-3, 3-4, 4-5,
5-6, 6-1) since line segments 1-2 and 6-1 are not nO\'I

associnted with one face still to be located since the
vi.sible plnne face on which they lie (1,2,8,6) has now

been located.
- - -~-----



~r.l __o_r_e_e_l_CT':n_c_n_t_S_in-. _V_C_4 r_t_i_c_e_8_J

________--~t~s
r seLect next vertex le in ]I vertices list
------------T------------
.-- .....l.t _,

is d.(a~+byk+c!-',k+d» 0 1-__~,_.__ r-J-o-__i is abstd.(axk+bYk+c~k+d) ~

--

select v~rticcs i~j correspon~ing
to a:1Y giver, sr::.;:centin the
initial perimeter list.

loc~te first vertex L in vertices
list such that t , j and L are
distinct vertices

t
compute coefficients a,b,c,d to
cor-re soond to nlane
ax+by+c~ + d ::: 0
in wh i ch the ve r t i.c ec i, j and
L lie

YES

L ::: k
empty list of stored vertices
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~ NO r FINI.sP]
r;......-.-J._-,I store k I

no
YES !'

FLO\'! DIAGHAl1 ILLUSrrRA'l'ING THE rl1;;cPHOD USED '1'0 IJOCATE THE
NEAR;:srJ' PLAr\n~-;.

:pio.grdm 3.1 J

At the finish the nearest plane is defined as being
that on which the ver t i.ces a, band L lie. rrne stored
list of vertices contains the: remaining vertices on
this plane.

-------------=



3.2.5. Formation of New :::'~!"im(!terList of TA!}..£.
In the eXC',,:-:iple given ear Lder the visible edges of

the plane face associated with edge 1-2 have been found and
are stored in a pl~le list (1-2, 2-8, 8-6, 6-1). The current
perimeter list of line segments is 1-2, 2-3, 3,-4, 4-5, 5-6, 6-1.

Now since each segment in this current perimeter list is, by
definition, associated with just one face of the polyhedron
to be located, it is clear that if a segment of this list
occurs in the plane list it can be c2.ncelled from the current
perimeter list. Suppose also that :hese segments are
deleted from the plane list of seg-nen t s,

In the example given, segments 1-2 and 6-1 will
be cancelled in both lists so that the re;naining lists are
as follows :

currcr.t perLmeter ~ist: 2-3, 3-4, 4-5, 5-6

plane list: 6-8, 8-2

Since each visible edge, apart from ~hose in the initial
perimeter list, is associated with two visible plane faces,

the remaining segments in the plane list will now be

associated with just ~~ plane face to be located. These

edges therefore ~atisfy the conditions of current pe~imeter
edges and may therefore be added to the current perimeter

list which is now as follows :

2-3, 3-4, 4-5, 5-6, 6-8, 8-2
'1'hesegments remaining in the plane list are added to the

d,raw list of visible line segments since this is the first

occurrence of these segnents. Note that before the plane

fa0e (1-2,2-8,8-6, 6-1) wa s Located these line segments

were not associated. wi th an~ pLarie fa.ces already located.
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A convenient me thoc of canc eLl.i.ngthe sr::crncmts in the cur-r-ent

perimeter and plane lists is by having a direction associated

with each of the segments. Suppose this direction is anti-

clockwise for the cur.reritporirncter- list and clockwise for

the plane list.

The line segmen~of the current perimeter list

have directions as shown beLow ;
4

6
3

1

The line segments of the plane list have directions as

follows :

6

1 J)iagra~2
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11 d t l .. , 1'I'ne line SCGr.Je:l ts \!hich 2r2 canco . e are nose wm cn lave
opposite directions associated with them and are thus 1-2
and 6-1.

4

6

3

piagram 3.12

1

The new current perimeter list is thus

2-3, 3-4, 4-5, 5-6, 6-8, 8-2
The first segment of the new current perimeter

list (in the example given this is ~3) is taken and the
visible face associated with the corresponding edge located.
'111ecurrent perimeter list of line segmen ts is again altered
<l];d the method is repeated until the plane lists and
current p8rimeter lists completely cRncel. At this stage
the current perimeter list will be empty so that there are no visible
edges of the polyhedron associated \'Iithplane faces still
to be located. Horeover the draw list of edges will
contain all visible edges of the convex polyhedron.

3.2.6. Location of Hidden Faces. The method
can now be repeated to find the hidden facen of the polyhedron.

'I'he initial entry in the current per-Lmet.er list of Li.ne

segments consists as before of the initial perimeter edges.

In this case however these edGes are not added to t.he draw
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list of ecige'Jwn ich will ne ..",conc i st of the hidden edge s

of the convex polyhedron.

The plane face located in this case will be that

plane face such that none of the vertices of the polyhedron

lie on the oDPo.site side of the plane face to the v i ewpo int ,

If the constnnts a,b,c,d define the current plane face and

if L is a vertex being ~estcd, L will replace the third

vertex if

d x (n~ -t bYL + ct'lL + cl )< 0

where (~, YL, ~L) are the caltesian co-ordinates of vertex L
for then L lies on the opposite Gide of the plane face to

the viewpo irrt,

T"nis is the only Alteration necessary in the

general method described earlier.
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The algorithm locates each plane fuce of the
polyhedron once and once only so that it is not necesGary,
after locating a pIane face, to check against a list
of plane faces to ascertain whether the face has been located
before. It is not sufficient, however, to select any vertex
(occurring in the vertices list) as a third vertex to define

a pIane with the two vertices of the current pe r.irreter list.
In this case, as \'lillbe shown later, it is poss i.b.l,eto
find a plane face a second time ,

'l'hefaces of the convex polyhe:.ironhave associated
convex polygons on the plane of projection and as expLained

carl:ip.rthe current perirr.ctorlist of line sep;r:1entshas
anti.cLockwi.se directions associated with each of the line
segments.

Given an initial segment from the current
perimeter list it is required to locate the polygon

associated vlith it. HO!;I the points lying on this plane

~olygon will all lie on one side of the segment since ~he
polygon is convex.

Consider the followinG example:

6

1

5

Diagra;n 3.1:1
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The current nerin0te~ list of line segments at

this stage is 1-2, 2-3, 3-4, 4-5 and 5-6 along with other

segments wr.ich ne ed not be considered in this example. The

plane face corresponding to the polygon (2,4,3) has been

found.

Now suppose 2-3 is se~ected as the edge for \-Ihieh

the visible plane face of the polyhedron is to be located.

The corresponding points on the plane of projection will all

lie on one side of segment 2-3. By the metnocueed to find

the ne", current perimeter at each stage, this side of the
segment will be the left hand side (in the Qirection 2-3).
'I'he r-ef'or-eall points lying 0::1 the convex polygon associated

wi th segment 2-3 ,,,illlie to the le ft of it. 'I'hus any

points on the plane of projection whd ch lie to the right
of the segment under r-ev iev must be invalid [~s third

vertices. This will prohibit point 4 from being used as

a third point for if it was used then the alreadY located

polygon (2,3,4) would be located again. SU:9pose the
visible face associated ""i·thedge 2-3 is (2,3,1). Vertex 1

is a 7alid third vertex since the corresponding point lies to

the left of the directed segment 2-3.

valid third vertices
on this side of extended
line segment 2-3

1

Diagram ~.15 -.~.-----
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Thus, by pk:cing- this restriction on the third vertices used,

no face of the convex polyhcdrOll.,..,illbe located more than

once. A simple test can be used to determine \-Ihichside

of a directed line a given point lies.

Consider the dire~ted line segment 2-3 and a

third point L. 1~e area of the triangle D defined by the

points 2,3 and L is given by

X2 Y2

x3 Y3
xL YL

1

1

1

where (x2' Y2) arc the ca-;:-tesianco-ordinates of point 2.

If the detcrmiilnnt D is nositive the point (xL' YL) lies to

the left of the dir6cteG line 2-3.

Thus, for each of the vertices in the vertices

list, it is possible by determining the sign of the nrea of

a triangle, to determine whethe r a vertex is a valid vertex

for the line segment r.nder consideration.

By this means plane faces of the polyhec1ron will

be located once and once only.
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P.eC:uction in t'l8 r"L::-:lt:::::'of Vor t ic es in Vor t i ces List.

As exp IaLne d in the last section each vertex of the

vertex list must be tested in order to ascertain \-!hetherit can

be used as a valid thirn vertex. It is also ~ossible to reduce

the number of vertices in the vertices list as the algorithm

:proceeds.

It is fairly obvious that vertices should only be
nresent in the vertices lil::>tif they lie on plane faces yet

to be located. If it can be .sho\Vn~hat it is not possible

for Cl given ve~tex tu be on any more p1ane faces,then the

vertex can be erased from the vertex list. T:'1C reduction

in the numbe r of ve r-t i.cea in the ve r-t i.cos list \vill be

particularly bcne f'Lc i.aL if t.ner-e exist a La rge number- of

spa.lorialve r+i ces for the givan convex polyhedron.

Suppose a si tua tion exists whore two ad jacent

segments of the current perimeter list both lie on the

plane face LoceLad;

4_,- ~3

2

5

6 DIagram ~.16

In the example above SUppOSE:: the current perimeter

list is 1-2, 2-3, 3-4, 4-5, 5-G, 6-1.
The visible plane fnce located is say 1-7,7-3,3-2~

2-1.
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The S8F0cnts 1-2 and 2-3 vill be cancelled in

both lists so that the new current perimeter list will be

3-4, 4-5, 5-6, 6-1, 1-7, 7-3.

Now since segment s 1-2 and 2-3 were on the current

perimeter list there can be no other non located visible edges of
the polyhedron from the vertex 2.

In the eYBmp1e above both these edges (1-2 and 2-3)

have been located. There can now be no more v isi oLe Nif!.es
from the vertex 2 and thus 2 can be deleted from the vertices
list, since no more visible phtne faces are associate~

with it. Thus if, at any time, two ad jacent current
perimeter segments lie on the plane face located the vertex
~lhich is common to the two cor-re spond'i.ngedges can be

deleted from the vertices list since there are no more

edges associated with this vertex to be located.

These deleted vertices need only be r-c-dnt roduced
when locating the hidden faces of the polyhedron if they
are associated \-lithedges on the initial perimeter list.

:L t 1.sonly in this case that they lie on plane faces \...hich
are hidden to the vi.ewpo.int,
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, S!~AP.T I

I rt.ead in data J
,

r:l'Ojec: J. • onto pl-9.neofv e r t i c e s
projection

if

Detemi:1f? inl t i.al CGnVEX po Lygon 1

,
J 8el€ct Eec-;::ent 0'''' current ped-..
L meto:;r list

f

Detemine ver t i c e s en 3.ssocia.tsd
visible f'a c e

Deter,dne S€E;:;!l?ntsof this visible
face

Alter current per irr et e'r J.i st I
~

NQ lIs this list enp ty \
w'_rES

fAll visib:e edges [:,;d faces locate

, l<'pJIc'lr I..L ... 'i 'lJ

Flow DiagTa.!TI of Method used to Locate V_is.ible Edges of a given
Convex Folyhe1ron.

D ia,'!,T.am 3. 17
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3. 5. General EZ<.lnmle

1 2

6 3

Consider the convex poivhedron the visible edges of which cre

shovn above. As a [;enero.l example of the method. each pllme

face of the polyhed~on will be lccated.

The initio.l perimeter edges '.'lill be 5-1+, 4-3, 3-2,

2-1, 1-6, 6-5.
Thus the current perimeter list wi Ll, be 5-4, 1+-3,

3-2, 2~1, 1-6, 6-50
The visible plane face associated with edge 5-4

has edges 5-9, 9·,LI-, Lf--5 so that the new current perimeter is

1+-3 initial entry in drnv( list
1 23-2 5-4

2-1 6 4-33
1-6 3-2
6-5 2-1
5-9 1-6
9-4 6-5

Edges added to draw list from first plane face 5-9, 9-4~



next visible rlane face

14--9

9-8
8-3
3-4

new current perimeter

3-2
2-1

1-6
6-5
5-9
9-8
8-3

next visible plane face

3-8
8-2

2-3

new current perimeter

2-1

1-6
6-5
5-9
9··8
8-2

-82-

edges added to dr'aw list 9-8, 8-3.

vertices rejected - none

1 2

edges added to draw list 8-2

vertices rejected - vertey 3

1 2

3



next visible plane face

2-8
8-7
7-1
1-2

new current perimeter

1-6
6-5
5-9
9-8
8-7
7-1

next visible plane face

1-7
7-6
6-1

new current perimeter

6-5
5-9
9-8
8-7
7-6

-83-

edges added to draw list 8-7, 7-1

vertices rejected - vertex 2

1 2

3

edges added to draw list 7-6

vertices rejected - vertex 1

1 2
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next visible plane face

5-6
6-7
7-9
9-5

edges added to draw list 7~·9

vertices rejected - vertex 5, vertex 6.

2

9-8
8-7

7-9

6 3

new current perimeter

-,

next visible plane face

9-7
7-8
8-9

edges added to drm" li3t

vertices rejected - vertex 9, vertex
8, vertex 7

new current perimeter

At this point the curre i,t perimeter list and plane lists have
completely cancelled.
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Fin']1 cl r'a\'/list

5-·4

4-3
3-2

It can be seen that the final
draw list contains all the
visible edges of the convex

2-1 polyhedron. As the method
proceeded a total of 8 vertices

6-5
9-8
8-3
8-2

wer-e rejected.

8-7
7-1

7-6
7-9
5-9
9-4

As a guide to the formation of the new current pe+ime ter after

each location of a visible plane face the directed current

perimeter line segments are shovrn on the convex }lolyhedron
in each case.

N.B. The draw list is not meant necessarily to be the order
in which the lines are dravm. The drawi.ng of a given
list of line segments is discussed in detail in Chapter 5.
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3. 6. ~~:-::;}_-::-:l:~2..r__~~~E~r:t PerjJ.::~..!~~r:jcnts .spl~J:ti!lrz into
1;"\·/0 Dis ioi~t P'ieces ,

In the general method explained there is no need

to select the first segment of the current perimeter list.

In the example given beLow the first segment is never

selected to show that it has r') effect on the e;eneral

method. In addition, the current perimeter list is split

into two disjoint pieces.

Consider the following example of a convex

polyhedron

5 4

6

1

The initial perimeter list of edges will be 1-2, 2-3, 3-4,
4-5, 5-6, 6-1. Suppose segment 4-5 is selected from the

initial current perimeter ljst (which initially is the

same as the initial p~rimeter list).



next vi.s ible pIane

1-5
5-4
4-1

new current perimeter
1-2

2-3
3-li-

/~-1

1-5
5-6
6-1

initial entry in draw list

1-2, 2-3, 3-4, 4-5, 5-6, 6-1

5 4

6

,-

edges added to draw li};t

4-1, 1-5

At this stage the current perdrne t er consists of tHO convex
polygon~.

segment 2-3 selected·

next visible plane fnce

2-1

1-3
3-2

new current perimeter

3-11

4-1
t-s
5-6
6-1
1-3

5 4

6

edges added to draw licit 1-3
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segment ll--1 selected

next visible plane face

3-1
1-4
i~-3

5 4

6

new current perimeter
1

1-5
5-6
6-1

no edges added to draw list.

segment 5-6 selected

next visible plane face
1-6
6-5
5-1
new current perimeter

final draw list of visible segments

1-2

2-3
3-4
J+-5

5-6
6-1
4-1
1-5
1-3

'l'he draw list thus contains all the visible edges of the

convex polyhedron.
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A nlli~berof examples of convex polyhedra,

produced by the algoritlli~ described, are presented. These

have been produced using the general scheme (described in

the introduction) for ob t.ainine final line drawings on

the graph plotter. (See Diagram 1.3).
'l'he A19o1 programs relating to the ~/ork

described in this chapter, are presented in Appendix ,.
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A,

CHAPTEk 4. ----

COMPCTER RE1?RESENT~ TION OF GENERA I, POLYHED,nA.

Description of a ~t~ple m~thod to d~termine
the visible and hidd0n edges of any non-

convex polyhedron.
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CHAPl'ER 4

4.1. Introduction.

The problem of deciding if a given edge of a
polyhedron is visible or hidden to the vi e:....point is much
easier when a convex polyhedron is beinc considered since
in this case any plane face is either completely hidden
or completely visible to tl1ev Lewpo int , A method of
representing convex polyhedra has been explained i.nthe
previous chapt~r.

With non-convex polyhedra, Cl. plane face can have
portions wh~ch are visible to the viewpoint and portions
which are hidden to the viewpoint. SjJr.ilarly,edges of
non convex polyhedra can have portions which a.reboth
visible and h Ldd en to the viewpoint. An example of a

ncn convex polyhedron having an edge which contains both
visible and hidden portions is shovm in Diagram 4.1.

The edge 1-5 and the face (1,5,4,3) have both
visible and hidden portions.

The problem of deciding if an edge is visible

or hidd€m to the viewpoint has gained wide recognition

in the field of computer graphics being k.l'1ownin

gener~l as the 'Hidden Line Problem'.

An algorithm is presented in this chapter which

divides the line drawing corresponding to the non convex

polyhedron into a no;'r.berof partial line segments (to be

defined later) for which a ~~th count, which is a measu.re

of the number of plane faces ma.sking the corresponding edge
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f rom the viewpoint, is obtained. If the depth count for

a particular partial line segment is greater than zero

then the partial line segment is hidden to the viewpoint,

othervdse it is visible to the viewpoint.

A convenient method of arranging the information

associa ted with any polyhedron is also presented. The Lea s.t

amount of input data required to define a given polyhedron

consists only of the cartesian co-ordinates of the n spatial

vertices in addition to an ordered list of vertices

corresponding to each plane face of the polyhedron.

From this input data it is possible to detemine

additional information associated with the non-convex

polyhedron which is required by the algorithm.

As in the previous chapter faces of the polyhedron

will be referred to as polygons on the plane of projection

but in this case the polygons may be non convex. Edgp.s

of the polyhedron will be referred to as segments on the

projection plane and vertices will have corresponding

points o~ the projection plane.--
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4.2. CC:71Duter Reor e serrta bon of Lnf crrna tion Associa ted with--.....----...--'-------.-.-.--.~-------..-----..---....a Given ::'-:olyh2(l1.'cn.

In the computer representation of polyhedra
(both convex and non convex) it is necessary and important
to have some convenient method of arranging the information
associated with the polyhedron without using an excessive
amount of storage. I~ is also important to reduce to 3.

minimum the amount ;)f Ul\putdata associated with a given
polyhedron. A

"

The least amount of infonnation required to
completely define any given polyhedron consistR of a list
of vertices of each of the~ane faces of the polyhedron,
ordered in scrnedirection a13_. seer.from outside (or inside)

the polyhedron (the direction can either be clockwise or
anti-clockwisG) • In addition to this the cartesian
co-ordtna tes of each of the spatial vertices of the
polyhedron are also required.

Suppose th~ list of vertices of each of the plane
faces corresponds to a one dLmensional array faces to which
a pointer, which is a one dimensional array pOinte:;o,lndicates

the position in the faces list of the beginning of the ith

plane face. Thus'faces (pointer (i) )'i8 the first vertex

of the ith plane face. The final vertex of the ith plane

face will thus be the element'(pointer (i + 1) -1)' in the
• t Ifaces list Wh1Ch corresponds to faces (pointer (1 + 1) -1)0

The vertices of each plane face can thus be considered -to
be stored as sub-lists in the faces list.
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As a si.rnple example suppose the f'aces (1,12,2,3) and

(1,3,4,5,) of diagram 4.1 are to be stored in the faces list.
The relevant faces list and pointer list in this case will

be as follows.
Face List Pointer List

1
12
2
3
1
1

1
6

11

~
.,I

4
5
1

..,

Note that the final vertex corresponds to the
initial vertex in each case. (In the faces list).

It is important that the vertices in the faces list
are ordered in some direction (clockwise or anti_clockwise).
From th~ two lists above, it can be seen that the sub-list
containing the vertices of the second plane fa.ce (in this

, ,
case (1,3,4,5,1))11es between elements pointe~ (2) (which, ,
is 6) and pointer (;) - 1 (which is 10). The vertices of
f'ace2 are thus (1,3,4,;,1 ).

From the input data supplied it is possible to

determine additional infonlation associated with the
polyhedron. The edges of the polyhedron can be determined
an~ may be stored in a two dimensional ~rray edges. Edges

(i,1) and edges (1,2) will thus be the terminal vertices
of the ith edge of the polyhedron.

Consider now a convenient method by which the
edges of the polyhedron can be determined ,End stored in
the array edges.
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4.2.1. De t erm ina t i on of Ed,Cr'e's of a. Given Fo1yh!?d~.

tny two adjacent vertices in any sub-list of the faces list
defines an edge of the poIynedz-on, Since each edge of the
'(:olyhedronis associated with two 'DIanefaces it is not- --'
sufficient, nor economical, to sL~ply define adjacent vertices
of the faces list as corresponding to edges of the polyhedron

since each edge would then be located twice.
Suppose an edge i, corresponding to two adjacent

ve~tices in the faces list, is only transferred to the edges
list if

faces (i)~ faces (i + 1)
Since each of the sub-lists of vertices (corresponding to
each of the plane faces) has elements stored in a given
direction, each edge of the polyhedron will be transferred to

the edges list only once. It is therefore possible, from the
input data, to fonn an edges list containing each edge of
the poIyh ed.ron once and once only.

At this stage a faces list of the vertices of
each plane face, an edges list of the terminal vertices of

each edge and a list 0f the cartesian co-ordinates of each
of the vertices of the polyhedron exists.

4.2.2. p~termination of Flane Faces Assor.ia~ed With
a Given Edge. IIIthe general method to be described it is
necessary to have easy access to the two plane faces

associated with a given edge. For each of the euges in the

edges list it is therefore necessary to search t.hrough
the faces list until the t~o corresponding vertices of
the given edge a~e located as adjacent vertices in the
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faces list. By this means it will be possible to fonn
a two dimensional array polygons such that for any edge
i the two plane faces associated with it are given by
I , I Ipolygons (i,1) and polygons (i,2) which will act as

pointers to the faces list. (The example to follow will
clarify these details).

It is important to notice at this stage that
•since the two dimensional array edges has elements edges

" .(i,1) and edg:<;:;(i,2) as the terminal vertices of the ith
edge, the edges array can similarly be used to define the
ith line segment on the projection plane. This will of

I •• ,course have terminal points edges (i,1) anc edges (i,2).
In a similar r~y the faces list, which has

~elements corresponding to the vertices of each plane

face can be used to define the points associated with
each of the corresponding polygons on the projection
plane.'

4.2.3. Example. Consider as an example of
the method the varinus qrrays which would be set up for
the polyhedron shown in Diagram4.1.

The faces list, the a.ssociated pointer list
and the edges list are shown below:



1
12
2
:5
1
1
3
4
5
1
4
6
8
5
4
6
7
9
8
6
1
5
8
9

10
12
1
2

11
7
6
4
3
2
2

12
10
11
2
7

11
10
9
-7
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Pointer List Edges J~ist
1 12 2
6 3 1

11 5 116 8 521 5 428 9 8
35 8 6
40 12 1
45 11 7

7 6
6 4
4 3
3 2

12 10
11 2
11 10

A,
10 9
9 7

Fa~es List

These lists refer to those set

up for the polyhedron given in
Diagrml1 4.1.
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Note th2t there 8 faces (p), 12 vertices (n)

and 18 edges (e) so that Euler's equality of p + n ~ e + 2

is satisfied.
It is now possible to set up the polygons list

whose ith entry gives the two plane faces associated with
the ith edge. The polygons li~t is as follows:

1 1
1 2
2 5
3 5
2 3
4 5
3 4
1 5
6 8
4 6
3 6
2 6
1 6
5 1
6 17 8
5 8
4 8

Thus from the above list the face 6 lies between
, " .the elements pointer (6) and pointer (7)-1 of the faces list.

The 6th plane face of the polyhedron is thus
(2,11,1,6,4,3,2)
Edge number 6 (9-8) has plane faces 4 and 5

associated with it. These plane faces are thus (6,7,9,8,6)
and (1,5~8,9,10,12,1) respectively.
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Con~ider a given line segmpnt i on the plane
of projection. It is probable that there are a nQ~ber
of other line segments vmich intersect segillenti along
its length. Line segments which intersect i at its
terminal points are not considered to be intersections.
It is convenient to defire the two types of intersections
which are cor....idered to occur 2.1011g C;. given line segment. A,

4.3.1. Re&l Intersection. A real intersection

between a pr:L1Tla~line segment i and a 2..~d.arl line
segment j is said to occur if the correspondlng point
of int~rsection of edg~ j Hes on the viewpoint side
of the corresponding point of intersection of i.

4.3.2. yirtual Intersection. The intersection
will be termed virtual if the corresponding point of
intersection of edge i lies on the viewpoint side of

the corresponding point of intersection of edge l.
Thus for a givsn primary line segment there

may exist a number of both real and virtual intersections
occurring with secondary line se~lents.

Corresponding to the real .intersections

occurring along a gblen primary line segment will exist

a number of partial line segments defined as follows.

4.3.3. Partial Line Segments. If there are k
real intersections along a given primary lino ~egment

then the segment will be diviued into (k + 1) partial
line segments,
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Consider, as an example, line segment 1-5 of

Diagram 4.1. A real intersection occ;urs with the
segment 6-4 since the edge 6-4 lies on the viewpoint
side of the edge 1-5. Thus there is just one real
intersection occurring along the segment 1-5. Suppose
tIlisintersection point is labelled as point 13 on the
plane of projection. The segment 1-5 can thus be
represented as follow3

1

Dia.grC'.Jn 4.2

5

In this case segment 1-5 consists of two
partial line segments 1-13 and 1)-5.

Note that segments 1-3, 1-12, 5-4 and 5-8
intersect segment 1-5 at its extreme points but these
intersections are not to be considered. (As explained earlier).

Now suppose segment 6-4 is taken as the
primary line segment. An intersection with segment 1-5
does of course occur but in this case the intersection
is virtual. The line se@nent 6-4 thus has no real
intersections occurring along its Length and so frcxn

the definition, 6-4 is divided into one partial line

segment which corresponds to the line segment 6-4.
4.3.4. Depth Count. The importa.nce of

partial line segments on the plane of project:i.onis

that the ~rtial edge corresponding to it will hav~
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a constant number of plane faces of the polyhellron lying

between it and the viewpoint. This rrum ber of plane faces
will correspond to some integer value known as the depth
coun t and formally defined as follows:

The deuth count de of a partial line segment
is the n~~ber of plru1efaces of the polyhedron which
mask the partial Une segment fran the viewpoint. It is
thus the number of pl.ane faces which lie between the
correspon1ing partial edge and the vic7Iy:o:i.r.I;and whose

corresponding polygons on the :plane of projection enclose

the given partial line segment.
The algori thrn in this chapter det ertn Lnee the

depth count for eve!"ypart iaI line segment on the
projection plane. If the depth count is greater than

zero then the corresponding partial edge is hidden to
the viewpoint. Partial line segments with depth
counts of zero ha.ve their corresponding partial edges
visible to the viewpoint for then there are no pla.ne
faces of the polyhedron which mask the partial ed.;e
from the viewpoint.

4.3.5. Variation of Denth Count Alon:6.2:..Ltne
Segment. The de:pth count along a given line se.gment

can only change at real intersection points since only

then is it possible £d.r the plane faces associated with

the intersecting segment to mask the edge fran the

v Lewpof.rrt , Thus, in detennining the variation of

depth count along a line eegmen t , .i.t is only necessary
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to determine the change occurring at real intersection
points.

Consider any primary line segment 1-2 which
has a real intersection occurring with a secondary line

segment 3-4 at point 5
3

1

dc1 dc2
5

2

4

Segment 1-2 is thus divided into two partial line segments
1-5 and 5-2.

Suppose dc1 is the depth count of the partial line
segment 1-5 and that dc1 has some known value. Suppose
that it ~s required to determine the depth count dc2 of
the partial line segment 5-2 from the value of dc1 •

Consider the two polygons associated with the

secondary line segment 3-4. These polygons can either

(1).both lie to the left of segment 3-4, (2).both lie to

the right of 3-4 or (3).the polygons can lie on either
side of 3-4.

Case 1. The polygons both l:c to the left of 3-4.
The two plane faces corresponding to these polygons must
thus mask the partial edge 1-5 from the viewpoint. The
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pa rtLaI edge 5-2 ca.nnct therefore be h idden by these two
plane faces and so the depth count dc2 must be subsequently

reduced by 2 so that
dc2 - dc1 - 2

In this case the depth count along the line segmen~ 1-2

is decreased.
Case 2.--- In +.hiscase the two polygons lie to

the righ t of the ser.o;.daryLine segment 3-4 and they must
therefdre mask the partial e1ge 5-2 fr~n the viewpoint.
Since the partial edge 1-5 ccnnot be hidden by these two
faces the depth count dc2 mu::;tbe increased by 2 and

is given by

dc2 =: dc1 + 2

The depth count is thu8 increased in this case.

Case }. The two polygons lie on either side

of the secondary line segment so that each of the
corresponding plane faces masks just ~ of the partial
edges a.nd so in this case there is no change in depth

count and dc2 is thus given by

dc2 =: dc1

Thus at a real intersection point the Change,& dc,
in the value of the depth count is completely dependent

on the :cel~tive position of the two polygons associated

with the secondary line segment. The changa in depth

count is either 0, +2 or -2.

For any primary line segment on the plane of
projection it ls thus only necessary to detennine the
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depth coun t of one of the pa.rt i.a l line segment s .F'l'Oll
this value it is possible to determine the depth counts
of the rellaining partial line segments associated with
the primary partial line segment.

4.3.6. Determination of Initial Depth Count Along

a Line Segment. It is necessary to detennine the

equations of the planes corresponding to the plane faces
of the polyhedron. This can be achieved fairly easily
'Jy choosing th:8e vertices assocLat ed with ea.eh of the
plane faces of the polyhedron and determining the value

of the constants a,b,c and d, such that the plane is
given by

ax + by + cz + d M 0

The constants a,b,c and d can be ob tained from the
determinant

J

X1
. x2

x3
x

y1
y2
y3
y

z1
z2
z3
z j I = 0

where vertices 1 (x1, y1, z1), 2 (x2, y2, z2) and

3 (x3, y3, z3) are three vertices lying on the given
plane face.

Now suppose it is required to determine the

depth count of a given partial line segment. Suppose

the spatial point M (xm, ym, zm) corresponds to the

mid-point of the given partial line seement on the
plane of projection. For each of the plane faces of
the polyhedron, determine thosevhich lie on the viewpoint
side of M. Only these faces ran have any hiding effect
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on the par t ial edge under consid.erati on, If the polygons

on the plane of projection, corresponding to these faces,
enclose the mid point of the partial line segment, then the
plane face masks M (:xm, ym, zm ) and the partial edge from
the viewpoint. In this case the depth count is increased
by one. (The initial value of depth count is zero).

Thus to determine the depth count of any given
partial line segment 5t is necessary to locate those
plane polygons of the polyhedron which lie ~n the viewpoint
side of the corresponding partial edge. 'I'he next step is

to locate thOSE plane faces from among these whose
corres~onding polygons on the plane of projection enclose
the given partial line segment. The number of plane faces
satisfying these two conditions is thus equal to the value

of the depth count for this particular partial line
segment.

Note thatit is a fairly easy :natter to
determine whether a given plane face lies on the viewpoint
side of the mid-peint of an edge in space. As wa~

explained in Chapter 2 of this thesis, the viewpoint

will always be translated to the origin so that from

the constants a,b,c and d which define a given pl.ane

if dx(axm + bym + czm + d)<0

the midpoint M (m, YIn, zm) of the given edge lies on

th~ opposite side of the plane to the viewpoint (origin).

Thus if dx (axm + bym + czm + d) '> 0

M lies on the same side of the plane as the vd.ewpo.lnt ,
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Note

In the actual method used to locate the faces
lying on the viewpoint side of a given mid-point M the

two faces on which the mid-point lies are not considered.

It is thus not possible for a given mid-point

to actually lie on one of the planes considered so that
dx (axm + bym + czm + d) = 0

will never occur.
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partial line se~ent and
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associated with given line
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FLOW DIAGRM'T OF JI':E'l'HOD USED TO DErERlI'1INE INITIAL DEPTH
COUNT 07 A PARrhL LINE SEGiI1Stl'I'.

Get next plane face

Is this plane face on
viewpoint side of

pt

YES

CO~1sider :pol:n;on on J
\ nrojected plane assoc-

d with plane face

Does P lie within this
polygon

YES

Add 1 to depth count

Any ~ore plane faces

Diag-ram 1..4.
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One of the most :important computational aspects of
the algorithm under discussion is the determination of each
of the intersections occurring on the plane of projection. It
is particularly important that the method used to locate the
intersections is efficient since for each view of the
polyhedron the intersections between the line segments will
probably change and so will h~ve to be determined for
each viewpoint.

As. explained earlier it is only necessary to r

consider the real inter.=;cctionsalong any given line
segment. It should be noted, however, that eVE>;EY. inter-
section is a real ir..tersectionfor one of the intersecting
line segmentn (and a virtual~intersection for the other line

segment) so that it is necessary to locate all the inter-
sections which occur between the line segments.

It is of course important that each intersection

is located only once. Since the two dimensional array edges
tt, ,

has elements edges (i,1) and edges (1,2) which are the

tenninal points of the ith line segment, it is possible to

locate each intersection only once by examining those line

segments j (with terminal points edges (j,1) and edges (j,2»)
for which j)i. By this simple organisation each intersection
will be found once and once only.

4.4.1. To determine if Two Given Line ~egments
Intersect. Since there may be a large number of line
segments in a given line drawing it is convenient to have a
method which quLckLy detennir.es if an intersection actually
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occur-swi thin the lengths of the two give Li.ne segmen t s, If
un intersection is found to occur then the actual poir!t of
intersection can then easily be detel":'nined.

Con ai.de.rthe two intersecting line segments 1-2
and 3-4 as shown beLow

4

Dia.gl'Wil 4. ~.

Suppose the signs of the following four triangles are given
as follows ( ~rQo.s)

A134 = a
A342 = b
A132 = c
60142 = d

where a,b,c and dare +1 if the associated area is positive
and -1 if the area. is negative.

Note that the sign of the area of any triangle

with vertices (x1, y1), (x2,'y2), x3, Y3) is given by the
sign of the aterminant

\

x1 y1
x2 y2
x3 y3

Now consider a. boo Lsan exprc8~i_on Q. given by

Q :: (a ::: b)A(c ::: d)
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If Q is true then the segments intersect wi thin both tlleir

lengths. This is because if a : b, points 1 and 2 lie
on either side of segment 3-4 and if c = d points 3 and 4

lie on either side of 1-2. '{'~'lenboth cond itions are true

an intersection Jnust occur.
Note that an intersection is only said to occur

between two segnents if the intersection point lies within
both their lengths. Line segmEn ts which intersect at the
extreme points, such as 1-12 arid 12-10 in Diagr.3..'ll4.1 are

not considered as being valid intersections.
When two line segments have been found to intersect

it 15 a fairly trivial exercise to .ietermine the actual

intersection point.

4.4.2. To Determine if the Intersection is Real

Or Virtual. 'I'h e next step in the algori trJ!11 is to determine
if the intersection is real or virtual for the primary line
segment under consideration.

Consider the tl.I{Oedges of the polyhedron which

correspond to the inte:i:"sectin~line seg)'nentsunder

consideration on the projection pLai.e , Suppose the spatial

cc-ordinatp-son each of these edges, corresponding to the

intersection point, are detennined. The 'edge which lies

nearer to the viewpoint (this is always the origin as

expl.afned in ohapbe r 2) is that whose corresponding spatial

intersection point lies closer to the o=igin (viewpoint).

If this edge corresponds to the primary line

segMent under consideration, then the intersection must be
vir~ual, otherwise the intersection is real. .
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Consider th'2 edges in space

corresponding to t-.'iO intersecting line segment s on the
projection plane as shown :n Diagram 4.6.

Suppose the edges have labels i and j so that the
corresponding line segments on the projection plane are also
labelled i and j. Let segment i be the primary line segment
under considcration~

Suppose it has a.lready been determineu. that an
intersection between Lir,e seements i and j occurs.
vorresponding to the intersection point tmarked k in the

diagram ] will correspond thp.po irrc s pi and pj in space
which lie on the eages i and j respectively. The distances
of pi and pj from the origin are calculated and it is found
tnat pj lies nearer to the viewpoint than pi. Edge j

therefore lies nearer to the viewpoint (origin) than edge 1.

The intersection on the projection plane is thus a real
Lntersect ion since aegmen t i is the primary line segment
u_~der consideration. Note that if the primary line segment
had been segment j the ili.~ersectionwould be virtual.

~ach intersection is located once and then the

type of intersection is determined. if this is real then

the primary line segment will be divided into partial line

segments as explained earlier. lf the intersection is

virtual, however, then it is necessary to store information

relating to the intersection since t.hiswill be real when

considering the current secondary line sejIDentas a primary
line segment. The intersection will not be located again
since only secondary line segments j for which j)i (i is
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primary line segm ent ) are determined.

Thus after considering all valid secondary line

segments (for a given prlllary line se6~ent) it is necessary

to check whether the current primary line segment ha.s

appeared earlier in a virtual intersection. If this is

the case then the intersection will be real for the current

primary line segment under consideration.
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4.5. To Detemine if a Point Lies Within a Cl yen Poly~.

'I'o detennine the depth COUJlts of the par t LeI line
s egmen t s a scoc ta t ed wi th a given line sec::'len~ :lt is necessary
initially to determine the depth counts of cne of the partial
line segments. Frc:n this value of depth count it is then
possible to determine the depth C01L'1tS of adjacent partial
line segments. The initial detenaination and the changes in

the depth count necessitates a method of deciding if a point
lies within a given polygon.

'I'hs method which has been utilised depends on the
fact that ~~ extended line drawn in any direction from the

given point will intersect the seements of the polygon an
odd nwnber of times if the point lies within the polygon
and an even number of times (or not at all) if the point

lies outside the polygon.

Suppose the point under consideration is P (xp,yp)
and consider the line to be drawn in the positive x
direction on the plane of projection. It is necessary to
calculate the number of tli~es this line intersects the
segments of the polygon under consideration.

Consider any line segment of the polygon with
terminal points A (xa, ya) and B (xb, yb) as shown in
Diagram 4. e,

y

B (xb, yb)

- -p (xp, yp)

A (xa, ya)
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The fi:r~t step is to determine w:-:.et}l.?:r' Plies

wi thin the y co-ordinates of the line segment. Consider the

boolean expression E given by

E :: JP ~ y a eqv yP > yb

where eqv "lS a mnemonic for the boolean 'euivalent'.
"

If E is true a second test must now be made to

de t.erm i.ne whet,her P lies to the left of the point R (xr,yr)

which is the point of intersection of the extended line

(dra'.m in the positive x direction) with the given line

~?gment (note that yp ~ yr).

Frem Diagram 4.8 it is seen t.hat X~ is given by

(yr-ya)(xb-xa) :: (yb-ya)(xr-xa)

so that

xr = (yr-ya) (xb-xa )/(yb-ya) + xa

If xr~xp then P lies to the left of the line segment and

the line drawn in the pas! tive x direction intersects the

Li ne segment.

If xr<xp then P lies to the right of the line

segment and no intersection takes place.
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The method whicn has been explained in this Chapter

is a simple but convenient method of locating the visible

and hidden edges of any giYen non-convex polyheC1ron.

'lOhemethod as presented is rather restric1;ed

however and does not overcome all the problems. It

was fel t that becauae of its simp'ltcity , i 1. possesses

advantages over those ma tliod s which approach the problem

in a more rigorous way.

A number of examples produced on the graph

plotter are included in the text.
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NON-CONVEX PDLYHEORDNc HIDDEN LINES ODTTEOo

Figure 18
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NON-CONVEX PDLYHEDRDNo HIDDEN LJNES ERA5EOo.

l<'igure 12
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NJN-CDNVEX PDLYHEDRDNo HIDDEN LINES ERASEDc

FiGure 21
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NON-CONVEX PDLYI-iEORDNo H]ODE~~LINES EAASEOa
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NON-CONVEX PDLYl-IEORDNc HJDOEN LINES ODTTEOll
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CC!.:P1JTER CRGANI~A'l'TO~ OF LINE DRAWINGS

Introduction to the concepts involved
in the drawing o~ any giYen connected

graph.
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CE.A.F·TER 5

C01'LPur.2E~~ ORGANISATION OF LUrE ~RA\.JINGS.

5.1. Introduction.
The objective 0: most of the work in computer graphics

is concerned with the production of a line dr-awi.ng , This may

be some two dimensional representation of a three dimensional
solid, e:~mples of which appear in earlier chapters, or indeed
may simply be a reproduction of some two dimensional figure.
There are, of courae , many ways in wh i ch a three dimensional

object may be represented in two limensions, tne r:Jostpopular
of wh ich for draughtsmen is by cons tructd.ngplan views and

elevations of the object. These views can be Quickly

produced in computer aided dcs i.gnby using or tnograpai.c

projecticns of the solids with the viewpoirrtdirectly above
the object for a plan view and to the side of it for side

elevations.
Perspective views of objects as illustrated in this

thesis may be produced fairly easily and recent research on

the hidden line problem has enabled the representation of

objects in real time to be"almost a reality. Whatever the

representations may be,it is fair to say that the most

popular method of displaying information concerning three

dimensional objects and figures is by the line drawi.ng ,

It is, in fact, only in the last couple of years or

so that efforts have been initiated to represent solid objects

usin~ the raster tyPe of display. Probably the mOGt significant

contribution to date in this type of display is that of John
Warnock of the University of Utah. The line drawirigis
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particularly suited to the graph plotter and tbe calligraphic
display which can both be programmed to join up points by

straight lines. Indeed the more modern calligraphic

displays have associated analogue circuits which produce
'ramp' wave forms and so considerably speed up the process of
dr-awing lines.

In papers devoted to topics v/hich concern the
production of line drawings no mention ever seems to be rrade
of the methods by which the d.rawings are dravn by the 'pen'

of the display. Indeed the problem seems not to exist in

the eyes of many researchers in the computer graphics field.

It would seem at present that the methods of producing th~ line
drawings are almost wholly dependent on the form of the output

drc;,'.vingand so this suggests that one must know wha t the diawi.ng

looks like before the method is dccid.::d. Hhon representing Cl.

given object fr~ a number of different viewpoints, for example,

it is not possible to know the form of the output drawing.

It seems of importance, therefore, to investiC3te

methods by (·!hichany given line drawing can be conveniently

represented in computer storage and then be manipulated in

such a 'v/aythat it is in 'l form suitable to be drawn with the

pen of the display. In a.ddition, it is desirable, particularly
with a graph plotter, to keep the amount of pen movement to an

acceptable minimum. In this respect it has been necessary to

define a drawing efficiency whi.ch relates the amount of movement

with the pen in a raised position to the amount of pen down

movement for any given line drawing. This allows a compariso'l

of the efficiency of the various ways in which a given line
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dra~ing can be connected.

So that the p~oblem can be tackled in a logical manner
and for the sake of completeness, it \-Jas found necessary to
define a line dr;;''vJingas f'oLl.ows,

5.1.1. l,ineDra....ri.nz,.- A line drawing will be
considered to be a connec ted graph which has co-ordinates
associated with each of the nodes.

By considering a line drawing a.sbeing a graph it
has been possible to utilise some of the related topics in
graph theory. In particular, the theory asssociated with
Eulerian chains and cycles has been useful. It should also
be noted that no ge!1~rality is lost by considering a line

drawing to be a connected graph since any drawing can be
considered as being a collection of connected graphs.

Since the following sections are of particular
importance in the theory to be developed later in this thesis,
the work has been treated in an exhaustive manner.

5.2. Computer Representation of Graphs.

Since a line drawing is to be considered to be a graph

then it is clear that line drawings can be represented in the
computer in much the same way as graphs. As will become
clearer later in this chapter a line drawing at different

stages in ies manipulation within the computer is considered

as being both a directed graph and a non-directed graph.

The final line drawing on the display is non-directed in that
no particular direction need be as.3ocated with any of the
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pen of the display each of the segments necessarily has a

direction associ"'1ted vIith it which corresponds to the

direction of the pen movement.

~ne more important methods of representing directed

graphs within the computer will be elucidated for the sake of

completeness.

5.2.1. Connection 1'~1tri)~. Suppose the graph has

n nodes and consider a n x n matrix m associated vdth the

g:-aph. Every element of the connection matrix In is either

o or 1 depending on the conditions set out below

1 if a segment cnn~ects node i to noJe j
mij =

o otherwise

As a simple eN~mple consider the co~ncction matrix of the

following graph
1

1

3

5
the connection matrix is given by

0 1 0 1 0
0 0 0 0 0

m - 1 0 0 1 0 (1 )
0 1 0 0 0
0 0 1 1 0

Note Ehat ~f' a 1 . -I- 1~=v ~ 1S presen~ a ong the principal

diagonal at mii this indicates tha.t there is a loop at the
vertex i.
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5.2.2. Incidence ~atrix. The incidence m3trix

associated with any graph of n nodes and s segments is a nxs

matrix p in wh.ich rows represent nodes and columns represent

segments. Each element of p is either 1, -1 or 0 depending

on the following conditions

1 if ith node is initial node of jth segment

pij = -1 if ith node is final node of the jth segment

o otherwise

It is c::'earthat the Lnc Lder ce ma trix requires more ,A

storage than the assocjated matrix if s>n as is likely for

most line drawings.

The incidence matrix for the above graph is as

follows

r. s-,

1 1 0 0 0 0
0 -1 0 -1 0 0 0

p = 1 0 0 0 1 -1 0 (2)
0 0 -1 1 -1 0 -1
o 0 0 0 0 1 1

5.2.3. List of Line Segments. Perhaps the simplest

way of representing a d.i.r-ected graph is by a list of ordered

pairs of nodes. The ith pair of nodes correspond to the ith

segment.

For the example given earlier the representation is

31
12
14
42
34
53
34

In addition to the information associated ';Jith the

terminal nodes of the s(.gments it is necessary for a given line

drawing to supply the cartesian co-ordinates or some athc;:

co-ordinates for e3ch of the nodF)s.
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The representation wnich has been used in this thGsis
is the simple one of a list of line sednents and the cartesian
co-ordinate system has been used to deter.nine the position of
each of the nodes.

5.3. Essential Definitions.
It is convenient at this stage to define the more

relevant terms in gra~h theory to be used.

5.3.1. Ora oh , A graph G (V,X) consists of a

fini te set of nodes v{vi} and a set of segmen t s X{xj} of
non-directed pairs of distinct node s of V.

5.3.2. Finite Graph. A fiI".itegraph is a g::'aph

having a finite number of segments and nodes.

5.3.3. Chain and Cycle. Consider 8 graph G and
let v, v2 •••••••••vn be a succession of nodes such that

there exist segments xi joining Vi and Vi + t ' i::1,2 ••••• n-1 •
The s'.lccessionof segments x

1
x2 •••••• xn_1 is cal~;d a chain

and if the terminal nodes coincide the succession of

segments is called a cycle.
If thGre eri st a a chain between any two nodes

then the nodes are said to be connected.

5.3.4. Connected Graph. A graph G is

ccnnec ted if eV'erypair of nodes in G is connected.
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5.3.5. Directed Graun. A directed graph is a

graph wh icn nas a direction associated with each segmen t ,

5.3.6. Degree of Node. The degree of some node v

is the number of segments incident to A node of odd

degree has an odd number of segments incident to it and

similarly a node of even degree has an even number of

segments incident to it.

5.3.7. Sub~ranh. If, in some Graph G, one or

:nore nodes are omitted, together \'.'iththe segments linking

these nodes, the remaining portion of the graph is a

subgraph of G.

5.3.8. ~~ln~. In any graph G <V,X) a set of

edges l-lCX is called a matching in G if no two edges of M

are adjacent.

A matching in G will be called a maximal matching

if no matching has higher cardinality. A vertex is said to

be covered or exposed depending on whether or not an edge

of M rneets it.

If every vertex is covered the rnatching is said

to be perfect •

.5.3.9. Regular Graph. A graph of n nodes is Gaid

to be regular if the degrees of each of its n nodes are the

same.

503.10. Planar Grant. A graph G is called planar

if it can be drawn inthe plane in such a rnanner that all
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intersectio~s of edges are vertices of G.

5.1.;. EuleriDn Cycle3 and Chains.

The importance of Eulerian cycles and chains lies in

.the fact that they can be dr-awn without it being necessary to

raise the pen from the paper and without going over any line

more than once.

Cycles and chains of this kind were discovered by

the celebrated mathematician Euler in his solution of the

famous Ko·nigsbers Bridge problem. 'l'heproblem was to ..,
determine whether it was possible to cross each of the seven

bridges over the river Kaliningrad (arranged as shown below)

once and once only.

II

The answer- vas in fact, no, and Euler proved this

to be so in '1736.

Euler's solution to this problem did, in fact,

initiate the mathematical theory of graphs.

The above drawing can be represented by a connected

graph as shown below.
1

~~2

3
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The Graph has 4 nodes and the problem is now does one recognise
whe ther' a given graph possesses an Eulerian chain or cycle.

The definitions vhi.ch follo\-1serve to answer this

question.

5.4.1. Eulerian Cycle. If a graph G is finite

and connected and if all the nodes are of even deeree then

G possesses an Eulerian cycle.

5.4.2. Eulerian Chain. If a graph G is finite
and connected and if the number of nodes of odd degree is
two then G possc3ses an Eulerian chain, the terminal nodes
of which are the two odd nodes.

5.5. Essential Proofs.
In the scheme of organising the line drawings it

is first necessary to digress on the definitions given for

the Eulerian cycles and chains of the preceding section and

to prove some of the topics whd ch were introduced.

5.5.1. _!;.emma1: Any graph possesses alleven

number of odd deg~ee nodes.
Proof :

Suppose there are Nm nodes of degree m in the

graph and further suppose there to be k nodes and s segments.
Then k~

~m.Nm = 2s
m=1

___ (3)

since the sum represents a count of the'number of terminal
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nodes of the seg~ents.

••~o. Nm = 26 -

m = 1,3,5, •••••

~ m, Nm (4)

m = 2,1+,6 •••••

The right hand side of equation it must be even so that

~ m, Nrnis even and the lemma is proved
m = 1,3,5.

5.5.2. Theorem 1 If a graph G is finite and

connected and the degrpe of each node is even then there
exists a cycle in G which goes through every segment once ,"

and once only.
Proof:
That G is connected is evidently necess::.ry.
Consider a conne~ted graph G and suppose tnat a

chain is traced out from .some initial node p to an arbitrary

node q such that every time a segment is traversed it is
deleted from the graph. If p does not coincide with q then

q must be of odd degree SO that thE-remust always be an

available segment alone Hhich to travel. The process can thus

only come to an end.by returning to p. It is therefore always

possible to trace a cycle s from some node p.

The segments, if any, whi ch hove not been deleted

from G will form k subgraphs b1, b2, b
3
, •••••••• bk each of

which will be connected and contain nodes of even degree.

Since G ",asconnected, s must contain at least one node n.
l.

(i = 1,2•••••••k) from each of the k subgraphs.

It will thus be possible, at each n., to trace out
~

a cycle ci having ni as the initial and final node. The segments
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belonging to this cycle are again deleted. If ci is not an
Eulerian cycle the same process can be repeated and the
original cycle s can thus be extended until all the original

segments of G are contained in s which will then be the
Eulerian cycle in G.

5.5.3. Theorem 2. If a graph G has 2n odd
degree nodes there are 11chains that together traverse all
the segments of G once and once only. Ea.chof the chains
begins at an odd node and finishes at an odd node.

Proof:
Suppose the odd nodes are divided into n pairs

since this is possible according to Lemma 1.

Now suppose a graph H is formed by adding to G
n segments, each of which joins a pair of the odd nodes
such that the odd nodes are covered by the n segments. H is

thus a connected graph whose nodes are of even degree.
Theorem 1 (just proved) states that there must be a

cy:le c in H which traverses ell segments once and once 0n~y.
Now suppose the segments just added are now removed. The

remaining segments must consist of n chains which together

traverse the remaining segments. In addition, since the

removed segments of H had terminal nodes of odd degree then

tr.esen chains must start and finish at odd nodes.

Since n of the nodes must be the end nodes of n
chains it is thus not possible to have less than n chains
to cover G.
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5.6. Gr'~eral J~ethod.
To dr-awany connected graph GX,Y) by a continuous

sequence of pen movement it would be particularly convenient

if it Vlerepossible to connect every segment of Yonce and
once only and also be able to draw G by continuous movement

of the pen without it being necessary to raise the pen from
the paper at any stage. If this were possible the cardinality
of the set g ~ ~ seX, ~ of odd degreet must be either zero
or two by 'I'neor-e.as 1 and 2.

If 6 is null the graph contains an Eulerian cycle
and all nodes of G are of even degree. It is also possible
to choose any of the nodes of G as the initial 3nd final nodes
of the directed cycle since t~ese coincide.

If\gl,the cardinality of~, is two, G is covered by
an Eulerian chain and it is possible to connect G by a
directed Eulerian chain such that the terminal nodes belong

In both the above cases the total distance travelled
by the pen is the least possible to draw the graph G and is

thuz equal to the sum of t!1edistances as.:iociatedwith each
of the segments YEY.

Now consider what can be done if g exceeds two

as is likely in most cases. It is pos3itle to choose a set

W of segments which link together the ( ~ /2) Eulerian cr~ins

of G ex, Y) to form an Eulerian cycle G I (X, YU vI) if W is a

perfect matching of the nodes ~!g. If W is a perfect

matching then all of the nodes in g are covered so that the

degree of the nodes in Cl arc all even since c~e has been

added to each one. Note that it is possible to produce an



-150-

Eu Ler i.an chain from G if the cardinality of Vi is ;;/2-1 and

the matching of W is not maximal. In this case all but two

of the nodes in g are covered so that the two exposed nodes

will be the extreme nodes of the direct Eulerian path

obtained from G'
It should be noted from Lemma 1 that it is always

possible to produce a perfect matching W in g since the

cardinality of g is always even.

Since the segments w'C.W are :'lddedto G -:.tey will be

connected with the pen in a raised position so that the

di st.ances associated with the pen up segmen t s will be

additional er 'excess' pen movement.

After the selection of the pen-up segments it is

nece esar'y to sort the segments belonging tc y,r,r; so tha t a

directed Eulerian cyc:e is produced and the graph can be

drawn by continuous movement of the pen, care being taken to

raise the pen. when traversing segm en ts 6w.

It is important to choose the pen-up segments

such that the excess pen movemen t associated with them 'is

minimal. If n is the cardinality of ~, the nrnnber of ways

of choosing the n/2 segments of W from the nx(n-1)/2 feasible

ones is given by

The problem is obviously ccmbdna bor-LaI in nature

and will be referred to as the 'Pen-up Prob16n'. For each

of the choices of pen up segments there will exist an runount

of pen up movement which can be connidered to be excess pen
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movement in that no line of the original grapr, is bei.ngdr'awn ,

In this respect it is neceasery to define a Dray/ing

Efficiency ~:dwhich relates the total pen up and pen down
movement to draw a given line drawing which has co-ordinates
associated with each of the nodes and therefore distances
associated with any two nodes. Tne notion of drawing
efficiency will be exp'laaned in the following section.

It is also neces.sar-y to devise some method by wlri.ch

the Pen Up Problem can b~ quickly solved to give a good
feasible solution.

5.7. Drawing Efficiency of a Line Drawing.

Since it is desirable that the pen should connect

~he line segments in an ordered sequence such that each line
segment is drawn once and once only, it is appar-ent that the
line drawing should be made into an Eulerian cycle by the,
addition of a number of pen up lines. If there are n nodes
of odd degree in the line drawing then it is necessalJ to

select n/2 pen up lines which will cover the n odd point.s

so that the n/2 chains can be linked together to form one
continuous sequence of pen movement.

The selection of the pen up lines is, of course,

combinatorial in nnture, but it is desirable that the total

distance associated with the pen up segments should be kept
small.

If there are s segments in the given line drawing

and di represents some measure of the length of the ith

se~ent the total distance which has to be plotted, pdt is
given by
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pd = s! di (5)-------------------
i :::1

If gi represents,in a similar manner) the length of
the ith pen up segment then the total distance which the pen

must travel in excess of pd is pu and is given by

pu = n/2~ . (6)
~ g1 _

i = 1

It should be clear that pu should be kept as small

as possible for the connection of the line drawing to be

efficient. Indeed, if the line drawing has no odd points
then pu is of course zero and no excess pen movement is
required so that in this case O~e ~an say that the connection

is as efficient as possible.

It is clear that it would be very convenient to
define some factor Wllich gives a measure of the efficiency
with which a line drawing has been connected. In this
respect it is convenient to define a drawing efficiency Nd
which relates pu to pd.

The drawing eff-:'ciencyis defined as follows
Nd ::: pd _______ (7)

pu + pd

If the line drawing has no points of odd degree

then it is an Eulerian cycle and no pen up lines are

required so that pu :::0 and the dl"a\lingefficiency is '100"/0.

An Eulerian cycle or ch3in can thus be defi:1cd as

be-Ing a finite connected graph \ol:i.tha drawing efficiency of 100%.

For any given line drawing)pd is constant and as the
pen up distance pu increases the dra\'lingefficiency Nd decreases.
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The variation of Ud \.,ithpu is ShO\VD in gl'aphical form in

Diagram 5.1. Since there is a choice of pen up line

segments wn ich gives a minimum value of pu, it is possible
to relate this choice to Nd and associate with it an
Optimal Drawing Efficiency defined as follows

The Optir:mlDrsv!ingEfficiency of a line dr-awi.ng

is the highest drawi.ngefficiency pOGsible for the given
drawing and corresponds to pu being chosen so that it is

minimal.

5.8. Organisation Scheme.
The information required to represent any line

drawing consists of the number of nodes and the cart0sian

co-ordinates ~f each, toge:her with the number of seg~ents
and a list of the tenninal poi~ts of each segment. This is
the representation which vlillbe used to doscribe any line

drawing. The information is similar to that required to

represent any graph but in addition the co-ordinates of each

point are required.
As explained earlier it is required to add pen up

segments to the line drawing which will span the odd points

of the graph so that each point will be of even degree and

the line drawing vlillconsist of an Eulerian cycle. So that

the line drawing can be connected by an ordered sequence of

pen movement it is necessary to order the segments sO that

the tyiOdimensional array'lisU of the terminal points of

the s line segments are related as follows :
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list [i,2 ] = list[i + 1,1J i = 1 t 2 ••••(s -11,_(3)

and list [1,1 J = list [s,2J (9)-

since the initial and final nodes of the cycle are the same ,

5.8.1. Domino Granh •. Consider for any J.ine
dr'awi.ng the odd points. Suppose there are n in number, then
it is required to add n/2 pen up segments such that each odd
point is associated Hith O!'lepen un segment. It is perhaps
advisable to define the forr,}of the 8raph consisting of the

pel1up lines and the odd degree nodes as a dcmir.ograph.
~ Domino graph is a perfect rnatchi.ngon the

complete graph of the n odd nodes in the original graph G
and the nX(n-1)/2 possible joins between them.

For any given line dr'awi.ngit is neceasar-yto add
a domino graph linking the odd points of it so that each of
the points of the line drawing is even and so forms an Eulerian
cycle.

From the input information for any line dra·.:ingit

is an easy enough exercise to locate which points are of

odd degree by the number of times each point is associated

with a line segment. Having located the odd degree points

it is now necessary to choose the spanning segments of the
associated domino graph. The choice need not of course be

optim'll but a good quick choice of the pen up lines, which

tends to minimise the total pen up distance, is required.

Once the pen up lines h~ve been selected it is necessary to

sort the line segments into a di.rected Eulerian cycle -:0 be
drawn by the pen.



-155-

Note ttat it is of course possible to add more
than n/2 pen up lines but since this wouLd only increase
pu it is obvious that the minirr."J.mnumber of pen up lines

should be added since this tends to minimise pu.

Coincident Points.--
Since the number of feasible solutions to the

pen up problem rises rapidl:r as n increases, it is
obv:'ously worthw:-.ileinitially to sep if n cannot be r

r~duced. It is poss~ble that two or more points of the
line drawing are coincident and it is obviously necessary
to investigate the cor.sequences of coincident points.

Consider that c of ~he points are coincident

in that the distance between any two of them is less

than some small value Ss. Since the resolution of the
graph plotter is only 0.1 mm one/an consider any points
for which the scaled distance is less than 0.1 mm to be

coincident, for then nothing 'v/illbe lost in the plotting.
For each of ~he coincident poin~s it will be

necessary to change the labelling of the associated

segments so that the coincident points are represented by

one label only. This is a trivial exercise.

It is necessary for the general algorithm to

find whach of the points are of odd degree and it is thus

a simple matter to a2certain the even points. The

degree of each of the 'Points is therefore known, Consider

that the c coincident points are formed by a number e of

even points and a number d of odd points. No matter
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what the value of e the addition of the even segments to

the coincident point will be an even number of segments.

Thus to ascertain the degree of the coincident point it

is only necessary to consider the value of d.

If d is odd then the addition of the d odd degree

nodes will produce an odd number of segments since the

product of two odd numbers is odd. 1~e degree of the

coincident point will in this case be odd and n will

be reduced by (d-1).

If d is even the degree of the coincident point

v:ill be even and sa n will be reduced by d.

The above scheme is represented in~abular form

be Low,

~o. of odd degree Degree of No. of odd degree
~odes in Drg. d. coincident point points saved

odd odd d-1

even even d

Note that the reduction in the number of odd degree

points is always even so that the number of odd points ill the

graph remains even.

It is possible after locating the coincident points

that the t.errnma l, points of a line segment are coincident.

If this is the case then the segment can be deleted SO that

the number of segments is reduced by one.
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VARIATION OF DRA\IING EFFICIENCY Nd
___ v_II_THPEH UP DI:3TANCE pu

75

-

50

25

o -T~--------~---------L--------~~ L J ~J~...o 1 2 3 456
units ef pu are multiples of pd pu

Diagram 5.1
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rrrur "'TT'"O::-I/·~'''ION I.L, ___ .... _ ..

lo

DL''I'Em·;rHE THE n
ODD NODC:S OF THE
LINE DRAWING

CHECK FOR COI1'iCIDEN'r
NODES

\ C!lOOSE A SE'T' OF n/2
PEN UP SEGHE~HTS TO

~RM A liATCSING OF THE
ODD DEG~~ NODES Cl"

HE I,INE DRAWING

~

ADD THIS SET OF PEN UP
SEGH8tHS TO THE ORIGIHAL
SEGt-lENTS

SOR'l' 'rHE SEG!1ENTS INTO
A DIRECTED EUlERIAN
CYClE

I OUTPUT

SCIffiHE OF ORGANISATION FOR ANY GIVEN LINE DRl\vIING.

Diagram 5.2
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Suppose the g:i.vex:.graph has n nodes of ud.d degree.

It is required to .select n/2 segments which cover the odd

nodes so that if ui is a me-asure of the length of the ith
n/2

~Uiselected segment is minimised.
i:::l

These seements will be the pen up lines to be added

to the original segments of the line drawi.ng , A good

quick choice of the segments is required since the

efficiency of the scheme will be lost if too much C.P.U.
time of the computer is expended in the organisation of it. r

The problem Ibf findir!b the optimal choice of pen

up :ines such that pu is a minimum is discussed at some

length later in this thesis.

A heuristic metLod has been o.eveloped to obtain

the pen up segments and ""ill now be explained.

5.10.1. Heuristic Method. Consider a nm

cost matrix rn such that the e Lemen t m [i, j] is some measure

of the distance between the odd nodes i and j. Since

interest lies only in ~he magnitudes of these distances m
will be symmetric 30 that

(10)-------
The main diagonal represents the distance of a node from

itself so that

o i=1,2 •••••• n ____ (11)

Now consider setting up a n x 4 matrix b the elements of

which \'fillbe as follows
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b [ i,1J = nearest point to i ( .,. . .~\eXC_udlng l,

b [i,2 J = next nearest point to i (excluding i)

b [i,3 ] = distance between b [ i,1] and i
b [i,l+ ] = (distance between bG,2j and i) - b[i,3j

High values of b [i,4~suggest that the nearest point to i is
that much better a choice than the next nearest. Small
values of b [i,4J similarly suggest that there is not much
difference in choice between the nearest and next nearest
points to i.

Suppose the matrix b is sec up for every point i.
Now scan through b [i,it] i = 1,2•••••• nand

suppose point j has the highest value. This suggests that

it would be advisable to link point j to b [j,1J since ~he
next best choice is not very good.

Consider j to be linked to b [j,1J .
These points are therefore linked together and

so cannot be the terminal points of any future pen un
segments to be chosen.

nThe problem thus reduces to choo~ing 2 -1 segments
from the n-2 remaining •

It is also necessary to check throu~h the columns

b [i,1] and b [i,2] in case j and b [j,1] occur for these

are no longer valid as the nearest points and next nearest

points.

The method is repeated choosing elements j and
b [j,1J corresponding to the highest value of b [ j,~.].
The obvious di~advantage of the method i3 that after each
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choice, C01UD;;lS b [ i, 1"]and b [1'~need to be checked to

see if either of the clements just chosen occurs. If they

do then it is necessary to adjust the associated row of b.

Note also that only n/2-1 choicc-s need be

made since no choice is required when only two points

remain.
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5.11. Sorti nc :~:eSe~i7lents to Io rrn a~ E~..:lE:'~i&.nCycl~.-----_,...,.;;._,--
At this stage of the organisation the pen up segments

which have been added to G are such that the new graph formed,
G', contains an Eulerian cycle. It is necessary to sort the
segwents G' such that they form a continuouG sequence which

~~ll be a directed Eulerian cyclA. This will enable the

pen of the display to fvllow every edge of G' once and once
only so that the cycle can be dra~n in one continuou~

movement of the pen.
Ber~~ describes an algori t.hm fo!'tracing an Eulerian

cycle without ever having to correct the route taken. The

method obeys two rules as follows :-
1. Start from allYnode p, each time an edge has

been followed, erase it.

2. Never use a segment if, at that particular
moment, the deletion of this segment would divide
the graph G' into two connected components.

'l'he aecond of these rules means that, before a

segment is chosen a check must be mad.e to ensure that the

graph vlillnot be divided into t....o connected components.

This causes the algorithm to be inefficient for usc on a

computer.
A method for forming a directed Eulerian cycle from

a graph G' which has all nodes of even degree has been devised.

The method follov/s directly from the proof given for Theorem 1.

Sta,rt from any node p and trace out a chaLi u.ntil

rode p is reached. 'l'his\-Jillalways be possible :and. the

chain will correspond to an initial Eulerian cycle. Every

time a acgmerrt is traversed it is deleted :fromthe graph.



-163-

Now check every node of tnls initial cycle to

determine whe t.her any non deleted segments ernana te from it.

If a segment does emanate from a node then it will be
possible to trace another Eulerian cycle starting from this

node, 'vlhiehcan be added to the original Eulerian cycle to
ferm an extended cycle as illustrated below. The seg;nents

which are traversed are again deleted from G'.

.,

The nodes of this secc~d cycle can be checked

to determine whether any non deleted segment s branch from it.

If so then the cycle can be extended again to include a

third Eulerian cycle which can be formed from this initial
node as shown be low.

r
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By this means it is possible to extend the initial

Eulerian cycle until all the segments of Gt h3ve been

deleted. The final cycle will be the directed Eulerian

cycle contained in G'.
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Se~ UD o~ the mat~ix b
for the n odd degree
nodes

A

~hoose i such that
b[j, ~Jis the max inum
of -b[i,~l i = 2-: ... n

fj and b [j,1] ar;I :elected nodes ofi pen up s,?Gffient

!

\ El~'i:1ate rows and
coIumn s -o[j,IJ and
brj,~'J lrom matrix b

Reset row i or
matrix 'b if
b [i,<lor
b (1 ,2J equals
either of YtS
nodes just
E~lected.

,

E='~
'is n) 2?t_._. _ __:N;._.;'O";> 1.>5t 2 nOd-;J. ~~~Iselected as

last pen up
segment,~ -

FLOW DIAGRA!I'1 FOR HEUR.1STJC IT1HO.D OF CHOOSING THE
}>I:N UP SJJ_;l;lE;;~ll'~

Diagram 5.3
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CHAP'rER 6

PEN UP PPOBLEM

Theory Assoc ta ted with the Fen Up Problem.
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CR4P1SR G

PEN UP PROBLEM

6.1. Introduction.

It was explained in the previous chapter that the

pen up problem consists of finding a set of segments in the

given line drawi.ng such that they form a perfect ma t ch ing of

th~ n odd degree nodes in the drawing.

If di is a measure of the length of the ith segment

of this set, then the opt.LnaL pen up problem consists of
~

finding a minimisi::1g choice of :a. ~ die The number o i'
. " ~1= I

feasible solutions to the pen up problem will equal the

number of ways in which n/2 pairs of nodes can be cho["en

from the n odd nodes of the line drawing. The nunber of

feasible solutions is thus
nL 2

The number of feasible solutions thus increases

rapidly with n, there being 945 feasible solutions for an n

value of 10. It is not practicable, even for small r.

values, to carry out complete enumeration. An implicit

\:numeration scheme has been developed in which it is only

necessary to examine a small percentage of the total

number of feasible solutions to be certain that an optimal

solution to the pen up problem has been obtained. In
addition, variouG enumerative schemes have also been

developed which enable good feasible solutions to be

obtained rather more quickly than in the general implicit

enumeration scheme.
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In this Ci13pt e r' the theo~y assoc Lated viith the

pen up problem will be discussed and an associat2d problem,

referred to as the iDage pen UD nroblc~, will be developed.

A criterion for opti.mality has been developed

for the pen up problem and if conditions are satisfied for

the criterion then the optimal solution has been obtained.

In most cases\ howeve rjan optimal solution will not satisfy

the criterion. &'1 example of the pen up problem which

sab ef i.es the criterion for optimality and an example which

does not, are presented in this chapter.

6.2. Jhlmbel~ of Fe3sible Solutions Sn 'to Pen Un Problem.

'rhe number of feasible solutions to the pen up

problem for a line drawing r::ontaining 11 odd degree nodes

is the numbe r of ways in which % pa irs of nodes can be

~hosen from the n. If Sn is the number of feasible solutions

for a given n then Sn is given by

Sn = n!
(~)\ 2. 4

______ (1)

SO that
n

3n = n (n-1) (n-2)••••••(2+ 1)

2%
n 2 4 6 8 10

Bn 1 3 15 105 9~5
10["10 Sa 0 0.47'1 1.176 2.02 2.98

- --
Note that

Sn +2 :: (n+2) (n+1).· Sn

(% + 1) . 2
se that

Sn +2 = (n + 1) Sn
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IUSE III THE NUJ<BER OF FEASIBLE SOLUTIONS
'1'0 'THE PEN UP P?OBLEM (Sn) "'JITH DrCHEASE

OF n

,:.0

~.O

D· I"aagram 0.1

2 4 6 8 10
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6.3. Sub-Problems of the Pe:1 UD Problem.

Any feasible solution to the pen up problem

C onsi.st s of a set of segments wh'icr;for:na perfect
matching on the n 01d degree nodes. Consider a division
of the set S of odd degree nodes into two disjoint sets

P and Q such that
n

PUQ = S, PI\Q = 0, \ P \ = \ Q 1 = "2

Corresponding to a given division of S there vri Ll,exist
a number of feasible solutions to the pen up :problem.

Eqch feasible solution will correspond to matching one

of th~ clements of P wi t.h an eLement of Q. If pEP
and qEQ are elements of P and Q respectively then each
division ...lill correspond to the cicuation shown beLov....

p1 • • q1

Set P p2 • • q2 Set Q

p3 • • q3 n = 4 in this ca r e

p4 , • q4

There are a number of feasible solutions to the

pen up problem existing for each davision of S. 'rhese
solutions are also feasible solutions to the assignment

n
problem of order "2 with the two given sets P and Q,.

Thus, corresponding to the pen u:p:problemof

order n there are a number, Gpq, of suo-problems, each
n

of which is an assignment problem of order '2. Gpq is
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e:'.:.al to the number of I::?ys in \·;:lic:·~ the n oLor.en t s of oS

can be divided into two sets P and Q. Gpq is thus

given by

Gpq = 1n~ ______ (2)

10

-
8 10 12
.~.-.- __ ...

35 126 If62
.._ --

1.5lj. 2.1 2.66
_____ L-..

n 2 1+

Gpq 1 3
-1----

log10Gp('. 0 0.48

The number of feasible solutions 5:1 to t~e pen up problem

is linked to the nu~bcr Gno of sub problems as follo~s(% -1) ,
Gpq = Sn.2 (3)

n
2

Note also that
= 4 (nl-2) (n+1~

(n + 2)2

Gpo
• -n

so that Gpo-n+2
(Lt)------

Now each of the suo-problems \Ifill have an optimal solution

associated wi th it, which will be the optLmaI solution of

the n assignment problem.
2

to these optimal soLuti.onc as lo·::.~l optim'::l....§olutions.

It wi.Ll. be convenient to refer

T
' n n
ne '2 x "2 cost m~trix E corresponding to a sub-problem

will have rows and columns which correspond to the

elements of P and ~ respectively.
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2.5

log10 Gpq
RISE IN TEE NU11BER OF SUB P~03LEJ.;S (Gpq )
OF Tn:~ PE;] TJP PROBLFl~ \'lITH 11:C~<=~A.sEOF n

2.0

1.0

0.5

Di.agram 6.2--

o n va Luo

2 4 6 8 10 12
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If C is the n x n.C03t ~Jtrix of t~e pen u~ proble~ cuch

that Cij is some measure of the distance be tween the odd

nodes i and j then it wi L),be possible, by permuting the

rows and coLumns of C simu ltaneous Iy , to ar-range C such

that E corresponds to one quarter of it.

p

.s:1::ld~d a rea
is cost
m:ltrix E of
sur-p:-oble:l1

Q

p

/
original cost mQtrix C of pen up problem

Every sub-problem thus has a cost matrix E Itlhieh can

be made to correspond to one quarter of the original

cost matrix C.
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Sinc~ each ol the sub-problems n nis an 2 x2
assig~ment problem it is possible to obtain a lower bound

to each sub-problcw by obtaining a feasible solution to

the dual assignment problem.
n

Suppose implicit costs a. (i = 1,2 •••• 2) and~
n

b~ (1 = 1,2 •••• 2 ) to be associated with the ro~s and

colu~s of E respectively. The dual assignment

problem is

maximise

n

(~ai :~bj)
n

_____ (5)

such that

Ei j - ai - 1.> ~ 1- 0
i n= 1, •••• 2
j .,.- I, .... !!_

2

Consider the I'c Ll.owi.ngmethod of obtaining

a fea.sible solution to the dual assignment problem with

cost matrix E.
The initial values of the implicit costs a and b

are zero.
n

Assign to the costs si (i = 1 ••• 2 ) thc value of
n

the smallest element occuring in each of the 2 rows. In
the reduced cost matrix ~ E = E - ai-bj, a zero will

therefore futVe been introduced into every tow. Now scan

each of the columns of E wh ich do root contain a zero and

assign to the corresponding :'mplicit cost bj thc value

of the smallest element occurring. Each of the rows and
,,/1. nil.

columns \\Tillthus contain a zero and the cost Z':d + tbj
"'~J. j . .l
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will form a Lower' bound to t.he assignment problem.

6 •4. 1. EY.8mn' e •. . -

2 2 1 3

t 4 3 6 5

3 2 1 8

1 4 3 5

a1
ini ti.aI cos
matrix E

a2

a3

a4

b1 b2 b3 b4

The set of implicit costs a will be assigned the values

a1 = 1, a2 = 3, a3 = 1, a4 = 1 and the reduced cost m2trix

~ E so far will be as follows.
a

1 1 0 2

1 0 3 2

2 1 ° 7

0 3 2 4

1

3

1

1

b1 b2 b3 b4

Each element of the above matrix corresponds to Eij-ai-bj

with all costs b being zero at present.

The only coIu.nn which does not contain a zero is

column 4 SO that the implicit cost corresponding to this

column, b4, is given the value of the smalleGt element

of the column, uhich is 2. Thus b4 = 2. Tho implj~it

costs are thus
a1 = 1, a2 = 3, a3 = 1, a4 = 1

b1 = 0, b2 = 0, b3 = 0, b4 = 2



~176-

and the final reduced m~trix is as follows
a
11 1 0 0

1 0 3 0

2 1 0 5

0 3 2 2

b o o 0 2

The solution to the dual assignment problem

has a cost Cd given by
h L: 1~I:Cd = 2 ai +

,.... bjc:

1=1 j=1

Cd = 8

It is t~erefore possible for each of thE:Gpq sub-problems

to obtain a ] ower bound to f;:ach of the Ioea 1 optimal

solutions.

6.5. 9ptiElal Solution to Pen up Problem.

Consider an n x n matrix x to be a feasible

solution to the pen up problem such that for any given

sub-problem

xij :::xij = 1 and xij :::0 otherwise (6)

jEP jE,Q

x is symmetric

If CijeC is the original cost matrix, then for a given

sub-problem the local optimal solution is such that

)~ Clj .xij is minimised

ie p

jEQ
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The op t i.na L s oLut i.on to the pen up pr-ob Lem will be such

that the total cost t Cij. xij is minimised
iEP
j€.Q

over all P and O.

6.6 LoHer Bound to Pen U·o Problem.

Consider a new set of implicit costs Uk (k=1,2 ••••n)

which are to be associa~ed with the original cost matrix C

of the pen ui_:Jproblem such that :()reach element

Cij - Ui - Uj ~ 0

It has been shown in an ee r-Li er section taat the optimal

_~ (7)

6 =
to minimise the total cost

~ Cij_. xij
i~P
jE~

given bypen up problem is

taken over all the sets P and Q.
Now suppose a reduced matri,xb Cij t..~C has

elements defined as follows

~ Cij = "ij - Ui - Uj

then b "~ (~Cij t Ui t Uj). xij

=

jEQ
2:bCij. xij + Z (Ui + Uj). xij
Hp itP
jEQ j£Q

L:~Cij. xij + 2: Ui + t Uj
i€P iEP jEQ
j£~

=

now since xi j >,., ° and &Cij)/O
then t» ~Ui

+ \ ... Uj
L.,

iep jt~

b ~ 2: Uk (8)
k€s
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Ylhere S is the original set of n ele:nents.,,-i
Fron (8)it can be seen tl~t ~ Uk will give

k~s

a lower bound to the pen up problem.

6.7 Criterion for Optimality.
It has been anown that an optimal solution

has a total cost r: given by

b = ~~ Cij. xij +2: Ui + 2: Uj
iE.p i€P jt:Q
jf.Q

taken over all P and Q.
Now suppose x is given a feasible solution to

the pen up problem consistlnt with equation (6) being

satisfied.
Further suppose that the implicit costs U are

chosen so that
b Cij ;: 0 if xij > 0

~Cij > 0 if xij;: 0

____ (9)

and
(note from the above two conditions ~Cij. xij ;:0)

If it is possible to choose the elements of U
such that the above two conditions are true then x must

correspond to an optimal solution since any alteration

in the elements of ~C and x will only result in an

increase of ~ Cij. xij from its zero value. It is not

aIways possible to choose the elements of U such that the

above conditions ar-e true but if it is possible then x

must correspond to an optimal solution.

The problem of mazimising~ Uk cons i.at-m t \"ith
ke..s

there being positive elements in the reduced cost matrix ~ C
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,<till be referred to as the ir.:a;re "0'2:::' '.In nrobler:i Gad. in

the two examn'Les wh ich fo110\1 feasible solutions to t.he

irr..18e problem v:ill be obtained prior to establishing an

optirral solution to the pen un ~roblem for the given

bJO cost ma cr-Lces,

6.8. ExarmLes ,

The criterion for optimality given earlier

only holds for a f'ew optimal solutions and an examp l,e

for wh i.ch it holds and an example for wlri.ch it does not

hold will be given. The exa.np Les both correspond ;to

an n value of 6.

6.8.1. Criterion True. The original cost

matrix C is given by

c = lL 6 3 5 6 7

6 1/ 5 2 8 9

3 5 1/ 5 6 7

5 2 5 1/ 5 6

V
.-

6 8 6 5 2

7 9 7 6 2 1/

Uk
o

o
o

o

o

o

Nov cons Lder increasing the illlpll.'Cl.' t cost.s Uk (k 1 2 n)- ~ = , - ••••
from their initial zero values to the values of the element

in the corresponding rows wh ich have the sma11est value

of ~ Cij given by

b Cij = Cij - Ui - Uj

'l'here are many orders in which the implicit costs can be
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e:iven a va Luo j bu t for s~m'Olicit:r cuppoae r 1 is Given

the value of the smallest eleneut in row 1.

U \."il1thus be r:iven a value of 3 and the
1

reduced cost matrix will be

,/ 3 0 2 3 1.1-

3 V 5 2 8 9

0 5 1/\ 5 6 7

2 2 5 f-;5 6

3 8 6 . I/~ 2

4 9 7 \
6 2 V

The elements of column 1 and row 1 ha ve thus been

reduced by 3.

Nowsuppose U2 ie to be assigned a value.

Uk
3

o
o

o

o .,.
o

U2 will be given the value cf the smallest clement in

row 2 "..Jhichis 2.

The reduced cost matrix at this stage will

thus be

i/ 1 0 2 3 4

1 7 3 0 6 7

0 3 -: 5 6 7

2 0 5 7 5 6

3 6 6 5 .> 2

4 7 7 6 2 V

Uk
3

2

o
o

o
o

Row 3 has already a zero present so that U7. cannot
:;

be raised above zero wi thout a neGative element being

Similnrly with row L~ so that bo+h U3 and;

UL~ will retain their zero values.

introdu~ed.
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The amaLLest element in row 5 is 2 so that

U5 will be assigned the value of 2 and the reduced cost

matrix will now be as follows

Uk

/ 1 0 2 1 4

1 1/ 3 I 0 4 ?

0 3 V 5 '+ 7

2 0 5 V 3 6

1 4 4 3 V 0

4 7 7 6 0 .:

3

2

o
o

2

o

Row6 already has a zero present so t.ha t U6 must remain

at zero consisttnt with there being no negative eleme~ts

in the reduced cost matrix.

In this case tl: e lower bound cost ~ Uk is
kts

given by 7 and the optimal solution Y. is given by

x=

L 0 1 0 0 0

0 7 0 1 0 0

1 0 -: 0 0 0

0 1 0 L 0 0

0 0 0 0 V 1

0 0 0 0 1 V
Since bothbC and x are symmetric it \".ill only be necessary

to inEJpect elements of x and ~C corresponding to

xij •

bCij •
. , .. , .
• • • • •

This will correspond to the 10\...er half of each matrix.
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Nowfor xi j = 1 t.her e ccr-r-e spond the value s

and the corresponding elements in the reduced cost matrix

~ C are all zero.

The r-ema in ing values of x are ce ro and the remaining

values of SCare non zero so that in this case the

cri terion for opt ima Li.ty holds and the opt irnaL solution

is given by the matrix x.

TJle outiIne'll cost is eiven by ~ Cij. xij =
+ C42 + C65 =

bound 2: Uk
k(,s

3 + 2 + 2 = 7 which is eoua L to the

Lower- evaLun ted previous ly.

Note that the optimal cost evaluated from

the reduced cost matrix has zero value.

6.8.2. Criterion False. Consider the original

cost ~qtrix as follows

1/ 6 4 3 7 2

6 V 2 3 4 "

/+ 2 V 7 6 5

3 3 7 7 4 3

7 4 6 4 -: 2

2 1 5 3 2 1/
By a simih1r method as explained in detail for

the previous example, the reduced matrix 'be \·rith corresponding

implicit costs U will be as follows
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V- 3 1 0 3 0

3 V 0 1- 1 0

1 0 .: 5 3 4

0 L 5 -: 1 2

3 1 3 1 / 0

0 0 4 2 0 V

Uk

2

1

1

1

2

o

a lower bound cost is thus given by 7.
Now consider an optimal solution x given by

x=

1// 0 0 1 0 0

0 / 1 0 0 0

0 1 // 0 I 0 0
I /!1 0 0 0 0

0 0 o 0 .> 1

0 0 0 0 1 V
The elements of x which h~ve unit values are

= 1

and the corresponding elements of the reduced matrix~C
have zero values.

Howeve r in this case there are several elements
Of~C, apart from the three listed above, which have zero

values and so the criterion for optimality does not hold
for this particular example.

Note however that the optimal cost

is still equal to the value obtained for the Lover bound.
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~ne pen up problem may be considered to be a

number of sub-problems which are simple assignment

problems. To each of these sub-problems it is possible

to obtain a lower bound to the local optimal solution by

obtaining a feasible solution to the dual aasi.gnrnent

problcm. The cost matrix E of each of these sub-problems

!;laybe considered to correspond to cne quarter of the

original cost matrix C. ~1e implicit costs associated ,.
vJith the dual assignment problem were such that the

t . C"~. breduced cost rna r i x O~ ga.veri y

~ Ei j = Ei j - 3i - bj
ie.P
$Q

had non negative oLement s,"

By introducing a new set of implicit COsts Ui
and by suitably reducing the original cost IMtrix C to

a cost matrix ~C given by

iCij = Cij - Ui - Uj
it has been possible to form a new problem, called tbe

image pen up problem)D. feasible solution to vhacb will

give a Lower- bound to the pen up problem. A feasible

solution to the in~ge pen up problem may be considered

as Cl method of obtaining a Lowe r bound to the Gpq lower

bounds of the sUb-problems.

Consider a given sub-problem "lith sets P und Q
and suppose the implicit costs a and b have been
introduced,
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b.l. b.1. ..

p

Cost matrix E
of sub-problem

0ri~inal cost
Matrix C

"/'l. "/2.
Note that a Lowe r bound . ~ ai:~bj to any of the

J"l:.T't .J&J.
sub-problems may not give a Lowc r bound to the pen up

probler.lsince elements of the original cost matrix C,

sho ...m shaded, when reduced, may be negative. The

constraints en the elements of U are such that ~he

elements of the reduced cost matrix ~C are non negative.

It is these extra constraints on U which allow ~~k
~€.S

to give a lower hound to all the Gpq sub-problems,

and therefore to the pen up problem ••
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6.10. T~~ I~a~e Pen u~ Problem
The Lrnage pen up problem is as follows

maximise ~ Uk
kE.S

such that the reduced na t r i x ~C given by

bCij = Cij - Ui - Uj

has elements which a re non nega t.i.ve so that ~ Cij ~ o.

A feasible solution to the Image problem \'lill give a

IOVler bound to the pen up problem. Hethods which obtain

a good f'e ac i.bLe oo Iu t.Lon to the Image problem have been

developed and will be described in detail. Initially all

e Lemerits of U vzi Ll, have zero value.

Consider the cost matrix C and suppose the

smallest e Lement fi wh ich occurs in each row i is

found) together with the numbe r of times gi it occurs.

It is required to maximise 2: Uk and two similar

k(s

heuristic methods can be used to obtain a good feasible

solution.

6.10.1. Method 1. Choose that row j for

which gi (i = 1,••••n) has the least value and assign

to Uj the value of the smallest element in row j.

Hence Uj = fj

Since C is symmetric there wi Ll, be g:j rows of the

reduced matrix ~C which will have a zero introduced.

For ever'Y row i of ~C 'v/ithout a zero again

find the smallest element fi,and the number of times

it occurs gi and choose that r0\1 j which has the

sn~llest value of gi. The corresponding element of



-187-

U, U j, is assi.gned the value f j and the method is

reucated until all rows of the reduced mat r-i x 8 C have

zeros present.

If there are cases of equal gi for two or

more rows then the rov \'Jith the greatest value of fi

is chosen.

The method tends to minimise the number of

zeros introduced at ea~h step so that the number of

elements of U which are non-zero is maximised and

the cost 2: Uk tends to",,"ds a high value.

kEs
6.10.2. Examnl,e u

o
--

/ 5 Lt I .3 4 3~-

c: // 2
I

1 2 4.J

4 2 -: 5 4 3

3 1 5 7 2 4

4 3 4 2 / 1

3 4 3 4 1 1/
o

o

o

o

row 3 is chosen and U3 = 2

u

~ 5 2 3 4 3

5 V 0 1 3 l~

2 0 / 3 2 1

3 1 ) / 2 4

4 3 2 2 -> 1

3 l~ 1 4 1 V

o
o
2

o

In this case rO\-IS It, ."5 and 6 have equal claim and in

o

o

-, .

f

3
g

2

1 1

2 1

1 1

1 1

1 1

f g

2 1

1 1

-I 1

1 1
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these cases the r ow with the Loweat number is cnoccn ,

So U4 ::: 1

~
5 2 2 1+ 3

5 .> 0 0 3 4

2 0 -: 2 2 1

/ -
2 0 2 1 3

4 3 2 1 -: 1

3 L~ 1 3 1 :/

/ 3 0 01 2 1

3 / 0 0 3 i;

'"' 0 /1 2

2 i'\..)

0 0 2 V 1- ---;-

2 3 2 I 1 Z 1

I 1
Lj. 1 3 1 V

U f g
0 2 2

0

2

1

0 1 2

0

r

U f s
2

0

2

1

0

0

At this stage only row 5 has not a zero present so

1/ 3 0 I 0 1 1,
3 1/ 0 0 2 4

0 0 V 2 1 1

0 0 2 -: 0 3

1 ? 1 0 / 0

-, 4 1 I 3 0 V
The cost of the feasible solution is thus 60

U

2

o

2

1

1

o
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In this me t.hod

the row vii th the largest VD lue of fi occurring is

chosen and the correspo:1ding elcI:1entof U assigned

this value. The same scheme as in l·letbod1 is

foll01.ee d until all rows of the reduced matrix ~ C

have a zero present.

Note that Method 2 will give a particularly

poor cost if the row chosen has the smnllest element

occurring a large number cf times, for then tni3

number of zeros will be introduced into the reduced

matrix.

Hethod 1 is not particularly good if the

values of fi for the rows chosen are small.

Consider as nn examnle of Hethl:d 2 the
initial cost matrix used for Hethod 1.

6.10.4. Examnle.

.. 5 4 3 It 3

5 -: 2 1 3 4

I~ "" L 5 4 3c:

3 1 5 -: 2 L~

4 3 J+ 2 -: 1

3 4· 3 L~ '1 V

U f

o 3

o 1

o 2

o 1

o 1

o 1

Row 4 is chosen as opposed to row 3 for Method 1.
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.: 2 1 0 1 0

2 .: 2 1 3 4

1 2 / 3 4 3I

0 1 5 ..: 2 '+
1 3 4 2 / 1

0 4 3 4 1 V
Row 2 is chosen so that U2 = 1

/~ 1 1 0 1 0

1 V 1 C 2 3

1 1 .: c 4 3I ./

17 ,

0 0 5 2 4

1 2 1+ 2 7 1

0 3 3 Lt 1 1/
Row 3 is chosen U3 = 1

/ 1 0 0 1 0

1 / 0 0 2 3

0 0 1/ 4 3 2

0 0 4 / 2 1+

1 C. 3 2 / 1

0 3 2 Lt 1 /

U f

3

0 1

0 1

0

0 1

0

'3 s

3

2

0 1

0

0 1

0

U f

3

2

1

0

0 1

0

Row5 is the only rovi in the reduced matrix which

does not have a zero present so
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u
I

'y 1 0 0 0 0

1 V 0 0 1 3

0 a IV 4 2 2

0 0 I 4 / 1 1+

a 1 2 1 V 0

la l 3 l 2 1+ 0 L

3

2

1

o

1

o

In this case the cost is 7.

Note that for l1ethod 2 a total of 14 zeros

have been introduced into the reduced cost matrix wherea s

only 12 were introduced for }1ethod 1.
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It is possible, in some ca se s , to improve the cost

of the I'ca s ibl e eoIu.t i.on obtained by one of t:'18 heuristic

methods described earlier. ::u:ppose a graph called the image

graph is associated with the reduced matrix be such that the

e;-.cc.phhas n nodes arid a seg;:E'l".t links nod.e i to node j

or (",,0 ° 0
1.J. O~lJ:: • Since it is a s surned that the reduced matrix ~ C

has be~n obtained by one of the heuristic methods described

ea.rIie:- there will be at, least one sC!ryJent associated with

each ef the nodes since the teninatir:g cor:dition for each
of t.h e heur i s tLc methods was that a zero was pr e sen t in

each of the rCW3 of the reduced rnat rix be.
Suppose there is an isolated tree pre3e~t in th~

iW3ge graph. Label e2ch of the nodes of this tree by

positive and negative signs such that no two adjacent

nodes have the same sign. This is equivalent to labelling

the nodes of consecutive levels of the tree with alternating

positive and negative signs. t.n example is shown below.

4+ '1+

1+
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A pos.iti.ve s i.gn associated wi.t.hany of the nodes i is to

indicate that the corresponding implicit cost Ui is to be

increased by some incremc!lt b wh ich is yet to be determined.

Similarly, a negative sign is to indicate that the corresponding

implicit cost is to be decreased by an amount ~ •

Suppose the positively labelled nodes belong to a

set A, the negatively labelled nodes to a set B and the

remaining nodes in the image graph to a set C.

NOH c':l::lsiderthe maximum va Lue ~ can assume in any

given case. For the nodes A the maximum value to which b
can be r-a i.aed is b + given by

~+= min (~ Cij)
2

where

since a=:.yfurther rise in ~ will cause elements b Cij to
iEA
jeA

assume negative values.

Nodes belonging to the set C have no alteration

in their implicit costs. Thus the maximum value ~ can

assume such that no negative elements ~ Cij are introduced
iEA

is ~r given, by

~r = min ( ~ Ci j) iEA
jEC

Any further increase in br will cause negative elements to be

introduced into the reduced cost matrix.

The maximum value to whi ch ~ can be raised such that

no negative elements arc introduced into the reduced cost matrix

is given by the minimum va lue of b+ and br so that

S:: min (£ +, Sr)

When ~ has been de t errrined , the implicit costs U are altered

so that for positively labelled no~es in the tree the CC3ts
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are incre3sed by~ and for ne~atively labelled nodes in the

tree the implicit costs are r-educed by b.
If n :ts the number of positively labelled nodes

+

in the tree nnd n- is the number of negatively labelled nodes

in the tree, the cost of thc initial feasible solution will be

increased if n "n •
+ f -

Thus, the labelling of the nodes of

the tree is such that, if possible, n is always greater than n •
+

The a~ount dC by which the cost is increased is

given by

dC = (n - n ) x ~
+

Suppose the reduced matrix ~c is given by

u..- -

~
1 3 u 2 0

V
._- ---

1 0 0 0 0

L3 0 3 2 L~

Z"--- r-'---
L~ 0 3 1 3-- --
2 0 2 1 V 4- V0 0 4 3 4

,
1

2

1

o

The imge graph corre<;ponding to this is Given by

1

3
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It car.be SO(;l1 in this caae tnat the i~ag\~graph

is a tree. Suppose the nodes are labelled with positive and
negative siCr..s.suchthat no two adjacent nodes have the same

sign. This is illustrated below

1-

"?
) 1-

2-

Since all nodes of the image graph are contained in the

tree, in this case~is

~ = ~+

given by
1
2=

The minimum element in the red'lcp.dmatrix corresponding to

two positively labelled nodes is 1)C54 = 1 and sa the

maximum value of b equals one half this vaIuo,

The increase in the cost dc of the initial
feasible solution to the image problem is given by

cl C = ~.(n+- n_)
1= • (/+ - 2)a

... de = 1

The implicit costs U3, Ul+, U5 and U6 are thus



1-:1, 1 1~- U, ~1 U ..,1
U'

1
U_ U

2 = -;; U3 = -- C~ == 1--- = -2= 5 c bI
z; ,+

'I'he image graph is now as fo11o,,\s

)

3

4

2

corresnonding to a reduced matrix as follows

~C=

-: 2 3 4 2 0

2 / 0 0 0 0

3 0 -: 2 1 3

4 0 2 L 0 2

2 0 1 0 L 3

0 0 3 2 3 V

u
11

1-1>

There are now no isolated trees in the image graph since a

loop has been introduced. It is not therefore possible,
by the method explained, to increase the cost of the feasible
solution any further.
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6.12. Unner Bound to Pen UD_ Problem.

A ~ethod has been developed for obtaining an upper

bound cost to the pen up problem.

Consider the graph associated with the reduced

matrix after the feasible solution to the image problem has

been obtained by the methods described earlier. 'l'hishas been

called the image graph and nodes i and j are linked by a

segment if

~.Cij := Cij - Ui - U:j := 0

If the image graph corresponds to a domdr;o graph

(defined in the previous chapter) then there exists a feasible

301ution to the nen up prob18m, the cost of whi.ch coincjr.ies

with that of the image problem.

If the image graph is not dominI) then considp.r

adding segments to the graph until it becomes a domino g raoh ,

Consider the segments corresponding to non zero elements in

the red:i.l:edmatrix ~ C. These 3eb~ents will correspond to

elements

~Cij ) 0

These non zero elements can be sorted in ascending

order of magnitude. Add the segment corresponding to the

smallest element to the image graph and test to see if the

image graph is domino. If it is domino then the upper bound

cost ub will be given by

ub = 1 b + c

where 1 b is the lower bound cost, which equals the cost of

the feasible solution to the image problem)and c is the cost
of the added segment.
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If the im3.ge graph is not domino thGn add to the

initial graph the segment corresponding to the next smallest

element in the reduced cost matrix. By this means it is
possible to add segments to the i~age graph until a domino

graph results. The difference in cost between the lower

bound cost and upper bound cost will be the cost of the

added segments.

It is obvious that this cost should be kept a6

small ns possible for the upper bOQ~d to be a good one.

1ne method by which the segmGnts are added to

the image graph is such that the cost of the added segments

Cl t any stage tends to be small. The method by wh'i.ch this

is achieved is sho....m in Diagram 6.3.
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\START \

ad:! segr.:ent
corresponding
to ith element
in SLIST to
image graph
sum=sur.H-SLIST(J)

sort non zero ele~e~ts bf
reduced rr.C!trixinto ascending
order of rragnitude in list
'SLIS:r I

i = 1 sum = 0

J = 0
add segment corresponding to
ith element in SLIST to image
graph
sum = sum + SLIST (i)

YESis image graph dcrrino?

NO

select next element in SLIST
J = J + 1

is J = i?NO

,11

YES

i = i+ 1
sum -- 0

SIJIST (i) is the size of the ith eLemerrt in SLIST.
Sum is the d'i.ff'er-enco in upper bound cost and Lower
bound cost at any stage.

r FINISH \
bound cost \

upper I
given by

\Lower bound "Olus

I sum J

FLOvl DIAGRAH TO OBTAIN AN UPPER BOUND COST TO PE!~ Lt>
- PHOBLEl1 FHO;·j EXISTHIG LO\VZR BOUIl D COS'll.
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6.13. I~~licit Enumeration Scheme.

As explained in an earlier section the pen up

problem consists of a number of sub problems to which a

Lower bound to the local optimal feasible solution can be

obtained. It is required to find some convenient method

by which elements pi (i = 1, ••••••~ ) of P and qi (i=1,•••~ )
2

of Q can be generated such that all Sn feasible solutions

to the pen up problem can, if necessary, be obtained.

Suppose the elenents of P are obtained for

each of the sub problems such that

pi <Pi + 1
ni = 1,2 •••• 2 - 1

This can be a ch i.eve d by using a r-ecur-si V·3 'for' loop to

ob~ain the elements of P for each of the divisions of the

set S of n odd nodes into disjoint sets ? and Q.
After the elements of P have been obtained the

elements of Q are easily found since

Q = S-P
Now consider finding all feasible solutions for a given

division such that an element from P is linked to an

ele!llentof Q. Obviously it wvuld be unwise to generate

a feasible solution more than once.

Suppose the elements of Q are arranged such tlmt

qi) pi ni = 1,2••••••'2

There may be many different ways, for a given sub-problem,

in whi.ch the elements of Q. can be SO arranged. For each

arrangement the feasible solution will be the ~ pairs of
l'odes

By oi;hismeans it is poasd bl,e to locate every feasible solution
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to the pen up problem once and once only. The pen up

problem is split into sub-problems and each sub-problem
will correspond to obtaining ~ clements of P.

Consider the method set out above for obtaining
the 15 feasible solutions corresponding to an n value of 6

Elements of P Elements of s
1 2 3 4 5 6

4 6 5
5 4 6
5 6 l~

6 4 5
6 5 4

1 2 4- 3 5 6
3 6 5
5 3 6
6 3 5

1 2 5 3 Lt 6
4 3 6

1 3 4 2 5 6
2 6 5

1 3 5 2 It 6

For each division as set out above the corresponding

elements of P and Q are linked together to form ~ ~irs.. For

example, in the last division shown , the feasible so Irti.onis

12, 34, 56 corresponding to a set P(1,3,5). By this method

every feasible solution of the pen up problem is obtained

but it will be seen that only 5 sub-problems are found in this

case. This is because of the constraints p]~ced on the

elements of P and Q. It will aLways be neceasary to have 1

in set P since if it were in Q it would never be possible to
have qi>pi for this particular element. If 6 Vias allowed
in set p then it wouLd be possible to have sets of P of
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126,136,146, 156 and 145 which acc oun t s fer the other
5 sub-problems.

;I'hegeneral irnplicit enumeration scheme will
obtain eLemen t s of P and from this elements of Q can be
obtained. A feasible solution to the dual assignment

nproblem of order 2 for sets P and Q will then be obtained.
If this cost is lower than the best so Iuti.on so far then
feasible solutions to the pen up problem linking elements
of P and !.i are obtained. AS better feasible solutions
to the pen up problem are obtained these will replace

the best existing solution. Th'.lSby using this irnplicit
enumeration scheme, it is possible to be able to skip
sub-problems and the feasible solution associated with

them.

NarE.
SIn the C.P.U. timing experiments, the r1Plts of

which are given in the following chapter, the number of

subsets which need to be examined is in each case determined
and these have been compared with the total number of subsets

for the given value of n.

The nWQber of subsets in this case do not correspond

to the values of Gpq but are eque.I to the number of sets of
P such that pi~pi + 1.

In each case the tota.l number of subsets could be
obtained by incrementing a counter each time a set P of

elements was obtained. "rr the feasible cost to the dual

Cissignment problem with sets P and tcJ. was less than the best
existing solution to the pen up problem it was necessary
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to obtain feasible solutions to the pen up problem.

Another count could then be kept of the numbe r of subsets

which needed to be examined more closely.

Thus in the results of Chapter 7 the number of

subsets do not in fact refer to Gpqo
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Obtain lower bound cost

Obtain upper bound cost

Obtain set P of eleme.nts
r-'----,r-----;r- by recursive Ifor' loop

I

Obtain corresponding set
Q of elements

YES
~ind feasible solution to
vual Assignment Problem

I for sets P and Q

I,..od~---t Is dual cost < best
solution so farNO

Obtain feasible solution
to Assignment ~Pen up)

t----- ....."'tProblem matching elements
of P with elements of ~

Is feasible COS1i -::: lower YH;S r-piNI.::lH~
bound co st t---------__,-t optimal

so Iu t.Lon
NO found

Any more feasible 801-
YES utions for sets P and Q

~

it Nu

~~~YE~~~~S~__ ~A~n:y_:m~o_r~e~v_a~l~i_d~s~e_t~s_O~l~"~P~
NO

I!<'lNlSH 1
,

FLOW DIAGRAM ILLUSTRATING THE Gt;NEitAL iMPLICIT i<iUUMERATIOri
~i!

lJla~am 6.,~
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6.14. Binary Chopping.
The general implicit enumeration algorithm will

obtain an optimal solution to the pen up problem by looking
for feasible solutions better than the existing best

solution. By using this approach it is aLways certain
to obtain an optimal solution but for large values of n ,
the order of the cozt matrix, the C.P.U. time taken to do
so could weL'l,become very large. Consider now a simple

method by which a good feasible solution to the pen up
problem can be obtained much more quickly.

Suppose the cost of ~he existing best solution
at any time is bard the lower bound cost to the pen up
problem is lb. Instead of looking for feasible solutions

better than b suppose feasible solutions having a cost
~etter than (lb + b)/2 are looked for.

TIleadvantage of this method is that there will

be a much better chance of being able to skip sub-problems
of the pun up problem. In addition, if the initial upper
bound of the pen up problem was a poor one a better feasible
solution can be obtained very quic!liy. It can happen,
of course, that when the upp~r bound is particularly good

no feasible solutions with a cost better than (lb + b)/2

exist especially if the initial lower bound cost was poor.

In this case several different methods could then be

tried. For example, the initial low~r bound cost could

be replaced by (lb -I- b)/2 and the mcthoc. repeated. This
binary chopping approach is particularly beneficial if
only a given amount of ~.P.U. time is to ne allowed in
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obtaining a good f'easLb'Iesolution or where a good feasible
solution has to be found quickly.

6.11+.1. Ontimal Solution by Backtracking. In the

general scheme of bir~ry chopping described earlier the
exercise was not necessarily to reach an optimal solution
but rather obtain a good feasible solution as quickly as
possible. An optimal svlution can still be obtained by
implementing Q backt rackfng t.echndque which uses constantly r

improving uppez'and lower bound costs.
After each best feasible solution (with cost c)

has been obtained by a b:i.narychopping enumeratLon , the
new upper bound cost can b€ replaced by c. 'l'heraw Lower

bound cost lb can be replaced by (lb + b)/2 since no
feasible solutions with a cost better than this exist.
By this means it is possible t~ implement a number of
binary chopping enumerations until it ic certain that
an optimal .solution has been obtained. This ,</i1lbe
so when the upper and J:.)werbound cost....are equal in

value.
The method of obtaining an optimal solution is

shown as a flow diagram.
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Deterr.lineinitial lOVier
oO'.md cost 1'0 to pen

up problem
;

de terrm.ne initial upper
bound cost b to pen up

problem.,
initialise the binnry chopping
enumeration to generate sets

P arid Q J~..
any feasible solutions vlith improve upper bound
cost < (10 + b)/2 NO cost Ib to

u. -- (1b + b)/2

YES

~ set upper bound cost to
this value

,--- i
L is UT-per bound cost equal OVl'IY:AL

~NISINO to Lowe r bound cost YES SOLUTION
- ::<'OUl'lD

BACJ<:llRACKING SCHEViE T0 OBTAIN AN OP'l'IHAL SOLurl~ION
TO-FEll LJP FHOBLEi'i BY CO;'is:l:MI'i':Li Ir'.F'LOVING 'rHE
UPPER AND LO~lEH l:lOumJC"reTu.

~gram 6.5
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The number of possible pen up distances associated

with a line draVling consisting of n odd degree nodes is

nx(n-1)/2. As n increases to high vaLues the number of

possible pen up distances becomes very large and it is not

practicable to consider all the pen up distances. If
the pen up distances vary greatly in size then it is even
more unreasonable to consider all the pen up dist.ances
since a good feasible solution to the pen up problem

is unlikely to contain many large pen up distances.

The reduction in the nUTJber of pen up distances

can be simply achieved by only considering those pen up
distances which are less than some srr~ll value f. This

is equivalent to setting up a new pen up problem where
an odd node is not now aLl.oved to be paired with any of

the other odd nodes. Nodes are only allowed to be paired

if the distance between them is less than the value of f.

By eliminating some of the pen up distances each

of the odd nodes i of the line drawing is associated with

a number di of other cdd nodes such that
d' ./ n-1
~~ i = 1,2 •••••n

In the general implicit enumeration scheme di=n-1

(i = 1,2 ••••n) since each of the odd nodes was associated

with every other odd node.

Note that with a reduction in the number of pen
up distances an optimal solution to this pen up problem

may not coincide with an optimal solution to the original
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problem 'vIith all pen up d'istances allo'vled. 'I'hisis because

it is possible, though unlikely, that an optimal solution

will include large pen up distances (~f). 'The value of f

is thus important in that it should be sma.ll enough to

enable a fairly large number of pen up distances to be

eliminated but of course it is also possible tlli,t a

feasible solution to the reduced problem may not exist if

f is too small.

A convenient value can be determined. for f

from the upper bound procedure discussed in Section 6.12.
f can be assigned the value of the line segr.Jentwith

greatest cost which is added to the original image graph

to make it into a domi.no graph.

By this means it is certain that both a

feasible solution exists to the pen up problem and t~~t

f is reasonably small in value.

6.16. Sets of Sub Problems.

In the general im~licit enumeration algorit~~, the

set of odd nodes S 'vas divided into two disjoint sets P and Q

and a lower bound to the local optimal solution was found by

obtaining a feasible solution to the associated dual assignment

problem. This was achieved by assi~~ing values ta ~ sets
n n

of implicit costs ai(i=1g2 ••••• 2 )and bj (j = 1,2 ••••• 2) such

that if E was the cost matrix corresponding to the given sub

problem

Eij - ai - bj ~ 0 i e p
jEQ
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New it is possible to obtain the Lower bOUJ1d cost by using

just one set of implicit costs mi (i = 1 ,2 ••••••• n) which

are associated with the rows of the original cost matrix e
of the pen up problem.

S~ppose the rows and columns of Care per;nuted

simultaneously so that E corresponds to one quarter of the

p

m
m",
rnl.

ori€_;inalcost rna trix C as shown
p

.,

The implicit costs m are assigned va Iue s such that a zero

is introduced into the sha.dC'dportions of each row of e,
the reduced cost matrIx given by

bCij ~c: Cij - mi - mj
n

In this way the implicit costs ai (i = 1,2 •••• 2 ) can be
n

considered to correspond to the ir.lplici t costs mi (i :::1,2 ••• '2)
n n n

and the implicit costs bj (j ::: 1,2 ••• '2) to mi (i :::"2 + 1,2 + 2. It .n},

It is thus possible to obtain a feasible solution to the dual

assignment problem by utilising one set of implicit costs rn

and using the original cost rnatrir C of the pen up problem.
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n
'l'heelements of P, piCi~1 ,2 •••• 2) are obtained

by the use of a recursive for loop such that
n

pi -I- 1) pl.- i = 1,2 •••••• 2 - 1

Suppose that the nWllber of elements obtained at any stage in

Get P is g whe re g < ~.
P and Q was that elements from P were not allowed to be paired

The importance of the disjoint sets

together nnd elements from Q Here not allowed to be paired

together.

Corresponding to the incomplete SEt P of

cardinality g will correspond a number of different complete
n

se t s P of cardinality 2 • Suppose that it is required to

obtain a lower bound to the local optimal solutions of the

various sub problems corresponding to each of the completed

sets P. Suppose the incomplete set P of cardin..':1lityg

is pI and consider arranging the rows Dnd cvlumns of the

original cost matrix C as fol10"'5
pi s->'

s->'

The implicit costs mi (i = 1,2 •••• g) will be the smallest

costs assigned for each of the completed sets P and 'v/illthus

correspond to choosing the smallest elements in the unshade~

portions of rows 1,2~ ••••g. Thus a zero wi.Ll,be introduced
into the unshaded portions of the rows 1,2 •••• g of the
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reduced matrix 'l'hiscorresponds to the fact that
elements of P will never occur in different sets of the
associated sub problems whereas elements of S-P' wi.Ll.,
and anyone of these is thus allowed to be paired with
an element from P'.

The elements of S-P' are allowed to be paired
with each other and so no restriction exists for the
implicit costs mi (i = g • 1, g + 2, •••••• n).

Ths implicit costs rr.'..lst9hJay.sbe chaser. so

that the elements of the reduced cost matrix

CC; Cij == Cij - mi - mj ~ 0
The lower bound cost to the best local opti~al solution
existing for the various associated sub problems is thus

Note that the metho~ simply corresponds to

finding the least of each implicit cost mi (i == 1,2 •••• n)

for each of the possible sub-problems having one of the

sets containing the elements of P'.
Thus, as the elements of P are obtained it

is possible to determine lower bounds to the uncompleted

set and SO determine whether it is possible \IIi th the

elements already contained in P to improve on the best

existing feasible solution after completing the set p.

6.16.1. Subset Grouping Depth. A parameter
sgd, called the subset grouning depth exists which

determines the number of elements contained in P before
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a check on the Lower bound is made. 'I'heelements of P
n

are obtained as p1, then p2, then p3 until p2 has been found.
n

If sgd = 2' the method wi Ll,correspond to the
n

original implicit enumerntion scheme since 2 elements arc
obtained. If sgd = 2, the first two elements of Pare
obtained and a lower bound is obtained to the best feasible
solution which exists for the set of sub-problems such
that p1 and p2 are not paired together. Every tiTl'e
two new elements are obtained for P the associated lower

bound will be determined.

Thus, it is of considernble interest to vary
the value of sgd for various n values in order to
ascertain the best value of sgd for a given n. This

would be expected to be about n/4 because the gain in
skipping sets of sub problems wou Ld then be balanced by
the number of lower bounds to be calculated. If the

lower bound to the set of sub problems exceeds the best

existing feasible solution to the pen up problem then
n

the g~neral method continues until 2 elements of P have
been obtained.

It is possible to obtain the lo~er bound

to the set of sub problems for each element of P

obtained after the element psgd has been found but

this could lead to excessive calculation and so cancel

out any advantage gained in being able to skip sets of
sub problems.
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CHAPl'ER 7.

c.p. u. 'l'IHING EXPERIMENTS ON IHPLICI'l' ENul1ERA'rION AUlORITHM

Extensive C.P.U. Timing experiments on the various enumerative
schemes used to solve Pen Up Problem.
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C;{APTEH 7

c.p. U. TI1HNG EXPERIHEN'rS ON HITJLICIT El'ilJHERATION ALGORITHM

7.1. Introduction.

The various methods by which the performance of
the general implicit enumeration algorithm can be improved
were explained in the previous cr~pter. In this chapter,
C.P.u. timing experiments have been carried out on each
of the methodL; to ascertain the order of the improvement ~
in C.P.U. times brought about to reach both good and

optimal solutions. In addition, C.P.U. timing tests
have been carried out on the general implicit enumerat.Lon
algorithm, the heuristL me thcd explained in Chapter 5

and various other alGcl'itb:s wher-e it is of interest to
ascertain the rise in C.P.U. time as the order of the
cost matrix n was increased.

In practice, the rows and columns of the cost

matrix correspond to nodes of a line drawing and so the
distance between the nooes, which corre"Jpond to the

elements of the cost matrix, should satisfy the triangle
inequality. In this chapter comparisons are being made

between the various enumerative schemes put forward earlier

and it is therefore not of vital importance that the cost

matrices should satisfy the triangle inequality. The cost

matrices which have been used have elements supplied by a

random number generator and so the elements will not in
general satisfy the triangle inequality. The random

number generator used has a rectangular distribution and
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elements with integer values were generated between a
lower limit 1 and an upper limit u. Unless otherwise
stated the lower limit VIas 0 and the upper limit was 100.

The significance of the distribution being
rectangular is that any element be tween limits U and I has
an eqr.a L chance of occurring. 'l'he distribution is termed
rectangular since the probability c~rve is rectanguler in
aha pe as shown below
probability

-r----------------------------------~------~.size of element
The program used for the randem number generator was taken
from the I.B.M. Scientific Subroutine Package and is written
in Fortran.

The timing of the programs was achieved by

using a C.P.U. timer, written in Assembler. The timer,
CPUT(a) returned an integer value 'aI 'vlhichwas the number

of time units used by the central processor unit since the
last call of the timer. Thus it was possible to determine
the C.P.U. time used by a particula~ section of any prog~am.

It was convenient to convert the C.P.U. time taken to seconds
and this was in fact carried out each time.
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In most of the cases, timing experimEnts were

carried out for several values of n, the order of the cost

matrix, so that the variation of C.F.U. time w1th increase

in n could be established. It has been possible from the

results obtained, to draw various conclusions on the

applicability of each of the methods.

The algorithms have all been written in Algol 60

and the experiments have been carried out on the I.B.M.

360/67 cGmputer. M.'l'.S.was used for each of the tests.
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7.2. The Standa r-d Ir1Plici t Enuno r-ation Al;::orith..m.-~--
Tne standard im~licit enumeration algorithm

determines a lower bound to the pen up problem by the

methods explained in the previous chapter. From this

feasible solution to the image problem it was possible,

by the addition of segments (with small cost) to the

image graph, to obtain a feasible solution to the pen

up problem and the corresponding cost gave a good upper

bound to the ~~~n up problem.

A recursive 'for' loop \'1'aS used to generate

the elements of one of the disjoint sets P. The clements

of the other set Q could be quickly determined since

Q = S - P where S is the set of n odd degree nodes. The

seta P and Q formed a sub-problem of the pen up problem.

A lower bound to this sub-problem was f'ound by determining

a feasible solution to the associated dual assignment

problem. If this cost was greater than the best solution

found so far, it H(lS not possible, by obtaining feasible

solutions to this sub pl'oblem, to Lmprcve on the best

solution and so the sub-problem was skipped and another

set of elements P was determined. If the cost was less

t~~n the best solution obtainedr all feasible solutions of

the sub-problem better than the existing best solution were

located.
The number of sub problems skipped in each

case v~s counted so as to form some guide as to the

efficiency of the implicit enumeration algorithm.

Values 0.+' n from 4 to 18 were tested



before the C.P.D. times required became too large. The

results of these tests are presented below.

7.2.1. Results

1 No. of T 'I'otaL No. C.P.U. Lowe r Upper Optimal
n Subsets of Time Bound Bound Solution

Che cke d Subsets Secs.

1+ 0 2 0.01 52 52 52

6 0 6 0.01 56 56 56

8 0 16 0.01 62 62 62

10 0 10 0.01 87 87 87
-

;2 0 2.52 0.01 102 ·102 102

14 35 92J+ l1·6.3 8'+ 109 95 --
16 371+ 3)+32 371, 82 115 98

"8 305 12870 1162 '18 109 86
I'

The results are presented graphically in

Diagram 7.1.
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7.2.2. Conclusions

The results show that the method by which the

upper bound is obtained from the previously determined lower

bound is particul1:lrlygood at the lOlllervalues of n and it

is not until n reaches a value of 14 that a difference in

cost between the two bounds occurs.

Thus) for values of n from 4 to 12 there is

no need for any enumeration at all. As n increases beyond

the value of 12 however, the rise in the C.P.U. time is

exronential in nature and with an n value of 18 the C.P.U.
time required to reach an optimal solution is 1162

seconds. ~le rapid rise in C.P.U. time corresponds to

the eXlonential ride in the number of associated sub-problems

to be solved.

The number of subsets which need to be tested

varies from between 2-;11,~ to 10% and in general it vou ld

be expected that the percentage number of subsets checked

would fall as n increases. At an n value of 18 only 2J%

of the total number of sub-problems need to be solved.

It j.sof par-t icuLar interest to investigate

the actual C.P.U. times required to reach the op~imal

solutions jn each case so as to ascertain the amount of

C.P.U. time expended after an optimal solution has been

found. The results corresponding to the initial test

were Qc. follo\vs:
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.. ----
n value C.P.u. Time Total % C.P.U. Time Wasted

Required to C.P.U. in Looking for a Better
Reach Optimal Time Solution wh ich does notSecs Secs exist

14 7 4·6 84
16 93 371 75
18 277 1162 76

It can be seen t.ha t the amount, of C.p.U. time

which is expended after nn optimal solution has been

found is in each case very large inde0d, varying between

7~~and 85% of the total C.P. '(j. time required for each

enumeration. This shews the need for a good Lower'

bound for if the Lower bound cost Be tually corresponded

to an optimal solution in the above casesl a large

amount of C.P.U. time could have been saved.
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7')0 The li(~u:!."istic !I~ethod.

The heuristic me thod of finding a good feasible

solution to the pen up problem was described in Chapter~

and C.P.Li. timing tests have been carried out on the

method ranging in n values from 4 to 400. The method

developed is used to organise any given line drawing

into an Eulerian cycle and it thus should be veI7 efficient

in choosing the pen up ~ines.
r

.rhe solutions to the pen up pr-oblem are of

course not necessarily opt~al but it is of interest to

compare the cost of the solutions obtained with the

optDnal solutions for a giv~n n. Unf or tuna te ly ,

because of the C.P.U. time requii'ed to find an optimal

solution using the 1mplicit enumeratio~ scheme, the

heuristic C08ts can only be compared with the corresponding

optimal costs for values of n up to and including 18.

The timing results are presented as two

graphs, one for n values rar,ging from 4 to -1-0 and the

other for n values ranging from 40 to 400. 'i'he timing

results are as follows.
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Conclusions.

The results show t.ha t the heuristic method is

indeed economical of C.P.U. time and although the times

rise exponentially ",lithn,the increase in C.P.U. time is

fairly small as n increases. At an n value of 400 only

just over 66 seconds are required to find the feasible

solution. At the smaller values of n the rise in C.P.U.

time \>!ith n is fRirly close to being linear but of course

as n increases the rise in C.P.U. time becomes more and

more exponential in nature.

The C.P.U. times required to obtain good

feasible Golutions to the pen up problem are much less

than those required to reach optimal so~utions using

the implicit enwneration algorithm.

it is of considerable interest to obtain the

costs using the heuristic method and in this resp8ct

the heuristic costs for the various n values have been

determined and are given in the table below.

-n 4 b 8 10 12

heuristic 52 56 62 98 123
cost

optimal 52 56 62 87 102
cost

n 14 16 18

heuristic 123 141 152cost
optimal 9, 98 86

cost
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It can be seen that f0r the lower values of n

the heuristic costs are in fact equal to the optimal costs

but as n increases to values greater than 8 the difference

between the optimal and heuristic costs rises.

At an n value of 10 ~he d5fference in the costs

is 11 corresponding to an optimal cost of 87 while at the

highest value of n tested (18) the difference in the costs

is 66 corresponding to an optimal cost of 86.
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Var ia t ion in Sj_~c: of Elcosnt.s of tr~e COGt Ea trix.. -
The implicit enumeration scheme is only economical

if it is possible to skip sets of solutions. The size of the

elements or pen up distances should thus have a great effect

on the C.P.U. time required by the algorithm to reach an

optimal solution. It Hould be expected that if the elements

of the cost matrix differed greatly in size, the algorithm

would iterate to an optimal solution much more quickly than

if the elements were similar in size. In this respect the

total variation, or range in the size of the elements, was

vClried from 20 to 100 and the C.P.U. times required in each

case to reach an optimal .solution were determined. The

tests were carried out for n va Iuec of '10, 12 arid 1lt and the

results are presented below.

7.4.1. Results

n =10 Range of C.P.U. Time Secs.
Element1:5

20 4.21
LfO 3.77
60 3.43
80 2.0.5

100 2.0

n = 12 20 22.34
40 18.8
60 12.94
80 9.32

100 10.0

n = 14 20 212.9
If() 218.2
60 14L~.2
80 96.2100 73.2
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In ea.ch case the cost of the smallest element \Va.s

20. ~he cost of the largest element in the cost matrix

was thus 120.

The results are presented graphically in Diagrams

7.4, 7.5 and 7.6.
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?~.2. Conclu3ions

The results show that as the range in the size of
the elements in the cost matrix is decreased the C.P.U. times
required to roach o:?timal solutions is increased. It can thus

be said that the implicit enumerD.tion scheme is most efficient
when the range in the size of the elements is high.

Comparing, in each case, the extremes in the C.P.U.
times"it can be seen that the time to reach an optimal
solutiun \·:itha :rangeof 20 is more than double that with a

range of 100. Indeed for n = 14 the C.P.U. time required
for a range of 100 is just more th,:;mone third.of the time
required for a range of 20.

These resul~s are to ~e expected since the pen up

problem has been divided into a number 0: sub-probllC:msand
the imnlicit enumeration scheme is only economical of C.P.U.
tinl';: if it is possible t.oskip some of these sub-problems,
which v,illcorrespond to Cl number of feasible solutions.

If the range in the size of the elements is large there is
more chance that for a given division of the n nodes into

two sets P and Q, which corresponds to a sub-problem, a

lower bound to the local optimal solution will be l~rge and so

enable the sub-problem to be skipped. If the range is small
the local optimal solutions to each sub-problem vzi Ll,tend to

be fairly close together and so there will be J.osschance of

skipping the sub-problems.
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7.5. Direct Solution of Sub-Problems.

For each division of the n elements into two

disjoint sets P and Q the standard implicit enumeration

algorithm will obtain feasible solutions to the pen up

problem by matching elements from P with eLernerrts from Q.

It is therefore possible in each of the sub-problems to

obtain a number of feasible solutions which will improve

on the best solution found 5('1far. Hare tM~ or.e iteratior.
can the refore tal{e p.La co in each of the sub-problems.

It is of considerable interest to obtain the

local optimal solution to a given sub-problem by solving

directly the associated assignment prob Len of order n/2.

The algorithm used to solve the aS5if,nment problems

is that of Silver, which id given as algorithm Z7 in

C.A.C.M.
2~Wright concluded that Silver's algorithm \Jas more

efficient than Kuhns algorithm to solve the assignment

problem and it was because of this, and also the easy

availability of the a16->1"ithm which was the reason for

this particular aIgor i.thm being chosen. Al tlloneh the best

method of solving an assignment problem is probably that of

Ford-Fulkersons the purpose of this 58ction is to determine

the advantcges whfch exist in solving the associated assignment

problems directly and this can be done by using any efficient

algorithm to solve the assignment problem.

So that it was possible to compare the two methods

for n values less than 1Lr the initial upper bounds wer-e set

fairly high in each case so that it \oms possible to have a
number of iterations.
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The n values for whi ch the two methods wer e compar-ed

were 10, 12, 14, 16 and 18 and the results are given below.

7.5.1. Results.

n 10 12 14 16 18
-

CPU Secs
Standard 0.91 2.77 55.3 380 1280

Direct Soll..:i.;ion 0.59 1.18 37.1+ 195 752
CPU Secs
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7.5.2. Conclusions.-----
The results show clearly that obtaining direct

solutions to the sub-nroblems is much more economical than by

finding a number of feasible solutions for each division of

the elements. In each of the cases tested the direct solution

method was of the order of twi ce dS fast as the:standard one

and as an example it took only 752 seconds to reach an optimal

solution for n = 18 compared with 1280 for the standard algorithm.

By using the direct solution method there will aLways

be a smaller number of iterations to the optimal solution of

the pen up problem and so it follows that the method will

always tend to be quicker than tha t of the standard method.

It is CIfinterest to compare the number of iterations

for each value of n for the direct solution and standard

methods. The following number of iterations were made:

n Number of Number of
iterations iterations
standard direct

10 8 3
12 10 2
14 12 5
16 14 5
18 37 3

It can be seen that in each case the number of

iterations made by the direct method was much less than that

of the standard. 'I'he great advante.ge of the direct method is

that many subsidiary iterations are excluded si.nce fo.'each

division, only the best feasible solution is found and no

it~rations within the subsets takes place.



-239-

The difference in the number of iterations for

the two methods seems to grow vii th increase of n and for an

n value of 18 the number of iterations by the standard method

is37 compared \·:ith only 3 of the direct solution

... '
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7.6. Reduction of____!:lrl-::JerBound.

In any implicit enumeration scheme in which the

mechanism is to iterate to better solutions there must alvlaYs

be an initial feasible solution, usually referred to a8 an

upper bound of the problem. There are of course many initial

feasible solutions which can be obtained for the pen up

problem but the lower the upper bound the better the chance

of skipping feasible solutions.

The method of obtaining the upper bound in the

standard algorit~~ has been explained in detail earlier and

consists of adding segments to the image graph associated

with the feasible solution to the image problem until a

domino graph result.s. By this means it has been possible

~o minimise the difference in cost between the upper anu
lower bounds.

It would notlof course/be unreasonable to obtain

an upper bound from the heuristic method obtained earlier

which appears to be very economical of C.P.U. time even at·

extremely large values of n. In this reGpect it has b~~n

necessary to carry out timing tests on the standard upper

bound algorithm to establish the variation in the C.P.U.
times with increase of n. 'l'he results of these experiments

are presented in a later section.

This section presents results of experiments

carried out to determine the variation in GP'~ time to reach

an optimal solution with variation of the initial upper bound.

Separate tests have been carried out for n values of 10, 12, 1l~

and 16 and the results are presented in graphical form in D'. ~agram~ 7.8,
7.9, 7.10 and 7.11.
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7.6.1. ~~ults.

n = 10
-.-Upper CPU Time to reach

Bound Optimal secs.

125 0.862
120 0.81r7
115 0.84lt
110 0.8Lf3
105 0.837
100 0.689
95 0.I+lt7
90 0.32'+

Optimal - 87

Upper CPU Time to reach
Bound Optimal secs

125 53.6
120 53.3115 52.5110 ~8.5
105 }_1-4.4
100 111+.3

Optimal = 95

n = 12

Upper CPU Time to reach
Bound Optimal secs.

125 2.61
120 2.6
115 2.11
110 1.52
105 0.96

Optimal = 102

n = 16
'--,

Upper CPU Time to reach
Bound Opt LmaL secs.

125 391
120 382
115 371110 340
105 317
100 315

Optimal = 98
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7.6.2. Conclu3ions.

The results show clearly that as the initial upper

bound is reduced the Q~U.ti~e required to reach an optimal

solution is also reduced.

In each of the four cases tested the fall in Q~U
time as the upper bound W3S reduced can be divided into three

main phases. At the higher values of upper bound the f'aLl,in

GP.U. time was fairly small but as the upper bound ...:as reduced

further a rapid fall in the ~P.u.time was seen to take place.

As the upper bound approached the optimal solution in each-

case the fall in ~~T]. time again became fairly small.

It is thus imnortant to have the initial upper bound

as small as poas i.bLe and it is noted that for n values of

14 and 16 the standard upper b0'..111d cost lies in the mid

portion of each of the graphs} where the slope is greatest.

It would of course be better if the standard upper bound cost

were to lie on the fl<ltter portion of the graphs where Cl

greater r-educ ti.on in QP,U, time is gained.

The aim of any upper bound procedure must obviously

be to get as close to the optimal solution as is possible and

so maximise the reduction in qp'~ time. It should be noted

that in the standard upper bound algori tml the cost of the

initial lower bound \·/i11have a great effect 011 how good the

initial upper bound solution is.

It was also noted that the cor,ts obtained by the

heuristic method lay on the flatter portion of the graphs

where there vaa little saving in C.l~TJ.time.
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7.? .Sts.n5ardUDTK'~r "SOlLee. 1,1;.::o1'i tnms ,

It was seen in the last section that it is imnortant

to have a good initial upper bound since it is then possible

to reduce the C,P,U, time required to rench a good or optimal

solution. Of course it is only worthwhile to reduce the

upper bound cost consistent with the method itself not being

too complex and taking a Lar-ge amount of C,~U.time.
.,

It has been seen in an earlier section that the

heuristic method of obtaining a feasible solution is very

economical of GEU time, taking only 66 seconds for an n

value of 400. In this resp~ct it is import~nt to jnvestieat~

the varLat.Lon in G~U.time required for the standard uppe r bound

procedure with incr~~se in n. It is important also to

ascertain the ~p'U. time required at the larger values of n

as it would· be unwise to spend a great deal of computer time

to find an initial upper bound to the problem.

The C}:;n, time taken by the at.andard upper bound

procedure was determined for n values from 4 to 30 and the

results are presented graphically in Diagram 7.12.



-248-

n Lower Bound Upper Bound CPU time for
Upper Bound (secs)

4 52 52 0.02
6 56 56 0.05
8 62 62 0.10

10 87 87 0.18
12 102 102 O~37
1" 84 109 1.38
16 82 115 2.09
18 78 109 3.06
20 84 98 3.62
22 93 108 5.5)
24 100 141 19
26 94 126 49
28 93 134 174
30 101 148 423

-
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7.7.2 Conclusions.

It can be seen in each of the cases tested the

actual difference in cost between the lower and upper bounds

is quite low but the cost in ~~U.time becomes very large

at the higher values of n, being 424 seconds at an n value

of 30.

The variation in C,I2U. time with n is fairly

linear up to an n value of about 22 after wh ich the rise

in the q~U.time becomes exponential in nature.

It wouLd thus appear that the staridar-dupper

bound algorithm should only be used for n values up to about

22 and for higher values of n it wouLd appear the hour i.st i,c

method would be more beneficial ih obtaining a good UDDer

bound in a smaller amount of GP'U. time.

Although the costs of the heuristic method

are not as good as the standard upper bound algorithm their

economy of GEU. time makes them much more favourable 4;han

the standard method for the higher values of n.
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7.8. Reduction of Pen Un Distances.

As exp.Ia ined in the previ.ous chanter it is ooas i.bl,e

to reduce the number of nodes aascc i.ated vIi th any other node

so that the total number of pen up distances to be considered

1.3 reduced. If the distance be tween any two nodes was

greater than a given value it was not possible to match these

two nodes to give a pen up segment and so the number of

feasible solutions to the pen up problem was subsequently

reduced.

In order to ascertain the variation in qP,U time to

reach an optili13.lsolution as the number of 'feasible' pen up

distances was reduced, timing ~xperiments were c~rried out

with varying numbers of feasible pen up distances for Each

of the n values tested.

The timing tests wp.re carried out for n values of

10, 12, 11t and 16 for whi ch the maximum number of feasible

pen up distances were l1-5, 66, 91 and 120 respectively.

The number of feasible pen up distances for each of the

tests was varied. In addition, the pen up distances

associate~ with each node were sorted in increasing order

of magnitude. By this means good feasible solutions

should be obtained more quickly since the smaller values

of pen up distances associatec with each of the nodes of

the disjoint set P ~nll be obtained first.

Similar timing tests were therefore carried out

after sorting the pen up distances associated with each of

the nodes.
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Number of Number of C.P.U. Time C.P.U. Time
Odd Nodes Pen Up Secs Secs-- --Di atances ns s
-

10 45 0.91 1.94
38 0.76 1.92
29 0.64 1.80
19 0.36 1.71
,

12 . 66 2.77 7.88
56 2.1+5 7.80
39 1.60 7.57
25 0.93 7.35

14 91 55.29 3'+.12
71+ 51.31 3/+.09
54 1+5.03 34.03
34 '_ 3'7.25 33.98

-'
16 120 380 163

98 341 162
7'1 274 160Lt7 206 157

r
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7.8.2. Conclusions.

The reduction in the <{pp, time required to reach an
optimal solution in each case was directly proportional
to the number of feasible pen up distances allowed. It is
thus of importance to be able to reduce the number of pen
up distances to a minimum consistent with there being a
feasible solution obtainable.

At the bJO 10\'/values of n (10 and 1?) the GP.U,"time
required to reach the optimal solutions for the non sort

method were better than those for the sort method but as r.

(and the number of associated pen up distances) was increased
the sorting method appeared to be a definite advantage,

It was interesting to note that as the number of

pen up distances was reduced for the sort method no great
improvement in the C,EQtimes took place and it would thus
appear that there.is no real need to reduce the pen up

distances at all if they 3re first sorted for each of the
n nodes. This is because a good solution is obtai£led
very quickly and there is therefore little advantage to be

gained from there being fewer pen up distances present.

When no sorting takes place however, good solutions do

not tend to be found quickly and as the results show, a

greater time saving is obtained with a reuuction in the
pen up distances.

From the results it wouLd appear' that most
advantage is gained by simply 60. rting the pen up d' tlS ances-
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assoc i.a ted ,·.ith tr.enodes since the ti.rneto reach an opt.imal

solution for n = 16 with sorting and no reduction in the pen

up distances is 163 seconds, wnereaa with a reduction in the

pen up distances from 120 to 47 and no sorting the qP,U,time

to reach an optimal solution is 206 seconds. Sorting the

pen up distances thus seems to have a greater effect than

simply reducing the number of them. This criterion seems

to hold for n values greater than 12. For n values lower

than this no advantage seems to be gained from sorting

the pen up distances and it can thus be said that at these

low values of n the reduction in the number of pen up

distances has a greater effect than the sorting of them.

It should be noted tha c a convenient upper bound

cost to the pen up distances is provided by the standard

upper bound ~rocedure described in the previous chapter.

The upper bound corresponds to the cost of the largest

pen up segment which is added to make the image graph

associated with the feasible solution to the image

problem a domino graph.
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The great advantage of binary chopping as mentioned

earlier is that good solutions tend to be found in a shorter

time than those of the standard algorithm. It would also

be expected that the binary chopping scheme wou Ld be most

advantageous in the initial period of the enumeration.

In order to compare the performance of the binary

chopping scheme with the standard scheme, timing tests

for both n = 1L~ ant! n = 16 have been car'r'Led out. The ..,

time taken in each case to iterate to the next solution

has been obtained and the resu:ts of these tests are

presented in graphical forru in Diagrams 7.17 and 7.18.

So that it was pos3ible to ~wve n number of

iterations before reaching the best solutions the initial

upper bounds were made fairly high.
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7.9.1. Result~

n = 14

Sto.ndard Binary Chopping
-

Solution CPU Tir.Je Solution CPU 'l'ime
Obtained secs. Obtained secs.

349 0 3'+9 0
229 0.06 178 0.06
178 0.16 130 1.85
167 0.29 96 6.51
162 o .ll-l+ .-151 0.61
11+3 0.74 Total CPU time lt4 se
141 4.36
130 1+.73
130 4.73
126 It.84
113 6.74
96 16,91
95 17.91

Total CPU Time 58. sees

cs
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n = 16

Standard Binary Chapping
Solution CPU Solution CPUObtained Secs Ob:ained Sees

357 0 357 0
337 0.08 179 0.2
324 0.21 127 0.L1-6
231 0.32 105 28.83230 0.'+9
226 0.51+ Total CPU Time 256179 0.79 secs.
146 0.94
127 1.25
122 1.97
118 8,18
115 8.34
114 ~2.53
105 87.18
98 100.46

Total CPU Time 371-s~es.
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1.9.2. Co~clusions.

It can be clearly seen from the results that binary
chopping obtains good solutions much more q:uickly than the

standard algorith~. The total time taken in each case by

the chopping algorithm is less than the standard, being
44 seconds for n = 14 and 256 seconds for n = 16. This
compares with the performance of the standard algorithm

of 58 seconds for n = 14 and 3'l1 seconds for n = 16. The
best solution found by bina1~ chopping was only one wlit

greater than the optimal cost for an n value of 14 and this

was found in 6.5 seconds compar-ed with 16.9 seconds .for
the standard. For an n value of 16 the best solution
found by binary chopping was 105 compared with the optimal

of 98. This was fow1d in 28.8 seconds compared with

87 seconds by the standard method.

It is of considerable interest to note the CPU
times taken after the best solutions have been found. For

n = 14 the standard takes over 40 seconds more in completing

the search after the optLnaI solution has be:sn found. This
is 0 ver 6~: of the total time taken. The binary choppin~

method takes another 38 seconds after findingfts best

solution which it obtains in just over 6 seconds. This is
therefore about 80% of the total time taken.

For n = 16 the standard algorithm continues for

another 270 seconds before terminating which accounts for

over 7~ of the total CPU ti;'TIewhiJ e the binar·y chopping

scheme takes over 220 seconds after finding its best

solution which it obtained in 28 seconds. This is well
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over 8~~ of the total time taken. It is only to be

expected that binary chopping will tend to have a large CPU

time was te at the end of the enumeration since it may well

be looking for a solution vhd ch does not exist. It also

of course tends to obtain the best solution fairly early

in the enumeration. The CPU time expended in trying to

make improvements when the best solutions have been found

are nevertheless extremely high in both cases and show

the importance of having good lower bounds.

The graphs show how the iteratior. nroceeds for

the two different methods. Not-= that each .successive

solution (marked by points) will be below and to the right

')fthe solution immediately before it. As exne ct.ed t.he r'e

are f ewer iterations in the binary chopping scheme than

the standard. The number of iterations for binary

chopping in the tvo cases is only of the order of 25%

of those for the standard schem~.

The results show that for n = 14 a feasible

co Iut ion v..hose cost is 130 is obt.a Lne d by binary chopping

in 1.85 seconds wh iLe this takes Lt.7 seconds to obtain

by the standard method.

~.
The method of obtaining an cptirnal solution

to the pen up problem by the binary chopping backtrack
technique explained in the previous chapter was tested
to ascertain the time taken to obtain an optimal solution.
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The CFJ t im e taKei'l wc.S In every case found to

be extremely high since for each back tracking i tera tion with

the newly detennined upper and lower bounds, the CPU times

of the iterations decreased very slowly so that if ~

iterations were necessary the total CFU tL~e taken was of

the order of Il times that of the first itera tion.

This was extremely high and it was concluded that

although an optimal solution was obtained in each case, the

method could not be considered to be satisfactory.
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It was explained in the previous chapter t.ha t it is

possible to obtain a Lower bound coat to the pen up problem
under the restriction that a n~~ber of elements of the complete
set S are not aLkowed to be paired t.ogecher, 'l'hisnumber of
elements \-lasreferred to as the subset grouuin_g depth, sgd.

When sgd elements of the set P had been obtained a
lower bound cost was calculated as described in the previous
chapter. If this cost Has, :'lotless than the best existing

solution to the pen up problem it \']3S possible to ski.pa r

number of sub problems. These sub uroblems wouLd all
correspond to having the sgd elements contained in set P.

By this means it may be possible to improve -ehe
performance of the general implicit enume ra'ti.onaLgor-itbm
since a number of sub problems (ta!{en together) could be
skipped.

GEU, timing tests were carried out for n values
of 12, 14 and 16 60 as to ascertain the improvement (if any)

in the C,p,U.time to reach an optimal sol<ltion to the pen up
problem.

It was also of considerable interest to vary the
value of sgd for each of the n values teste do The value

n
of sgd was varied from 2 to 2 for each of the n values tested.

For low values of sgd, where only a small number of elements

were not allowed to be paired togeth~r there was less chance
of skipping a number of sub problems. If it was possible
however, then -thenumber of sub problems skipped would be large.
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On the other hand, for large values of sgd, there would be a

better chance of being able to skip a number of sub problems

but in this case the number of sub-problems would be fairly

small.

The variation in qp'~ time to reach an optimal

solution with variation in sgd is shown in Diagrams 7.19.

7.20 Gnd 7.21, corresponding to n values of 12, 14 and 16

respectively.
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7.10.1. Results.

n = 12

sgd CPU 'l'ime to reach
optimal. secs.

2 10.5
3 10.1
4 9..9
5 11.2
6 10.5

r

n = 14

sgd CPT] Time to reach
opt i.maL, secs.

2 60•.5 ~
3 55.84 53.5
5 53.56 61.9
7 59.8

n = 16

sgd CPU Time to reach
optimal. secs.

..-
2 378
3 383
Lt 399
5 410
6 427
7 422
8 391

-
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It can be seen that in each of the cases tested, a

reduction in the ({PP, time to reach an opti.maL solution was
obtained, but only for certain values of the subset grouping depth.

The maximum reduction in GF;U, time varied from 3% for
an n value of 16 to 10010 for an n value of 14.

One of the significant results arising from the
tests was the large variation in GP'U. time with variation in
the value of the subset grouping depth. In gene raL, as sgd

n
'-Ims decreased from 2, thh ~EU. t':"mcsincreased slightly and
then decreased with further decrease of sgd. In the cases of
n=12 and n=1J+, however, the GP.U times were then seen to increase

with further decrease in the sgd value. 'I'rri.a'viasthe expected
trend (discussed in 6.16) since at sgd vaIuos of about n/4,
maximum benefit would probably be gained be tween skipping a

large number of sets of sub problems of Low cardinality and

a small ntmber of sets of sub problems of high cardinality.

Fer n=12 the maximum reduction in GP.~ time corresponded

to an sgd value of 4 and for n=1L~the maximum reduction in GEU.

time corresponded to an sgd value of both 4 and 5.

For n=16 it was seen that the C.P,U.times continued
to fall (after the initj_al r i.sewhich also occurred for n=12

and n=14) as the value of sgd was decreased. In this r.:ase
the maxfmnm decrease corresponded to an sgd value of 2.
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7.~1. S'J.r.i_,;'.,_D.ryof Conc Luc i on s ,~--------------
It is perhaps u~eful at this stage to give a short

summary of the more important conclusions wh'i ch have been
reached for the GP,U, timing experiments carried out.

The rise in the C.P'U, time taken to reach an optimal
solution for the standard implicit enumeration algorithm
vas seen to be of exponential form as n waa increased. At an

n value of 18 the GP.U, time reouired to reach an optimaL ..
"

solution waa of the order of 116()seconds compared "litha
corresponding value of abouc 45 seconds for an n value of 14.

The direct solution of each of the sub problems
of the pen up problem (which n:e simply assignment problems

n
of order '2 ) was perhaps the method by which the standard
implicit enumeration scheme was improved most. The ~P.R time
taken to reach an op~imal solution in this case was of the
order of half that taken by the standard algorithm in each
of the cases tested.

The reduction in the number of feaGible pen up

distances to the pen up problem was seen to reduce the qp'~

time taken to reach an optimal solution in an approximately

linear manner. An added improvement occurred when the sizes

of the distances associated ",titheach of the nodes were sorted

in ascending order of magnitude. In this case it was found
that the effect of the reduction in the ~~~ber of pen up

distances was diminished and when sorting of the distances

was carried out it was concluded that little extra improvement

was gained by also reducing the number of pen up distances.
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In this case the costs of the berst ao Luti.ons obt.a Lned did not

aLways equal the optimal costs obtained by the standard implicit

enumeration algorithm.

to the optimal costs.

It was shown that the cost of the initial upper bound

solution to the pen up problem has indeed a distinct effect on

'These costs we re however, very close

the CPU time taken to reach an optimal solution. The qp,U.

time ~ms seen to decrease as the initial upper bound ccst was

reduced. The timing tests carried out on the standard upper

bound algorithm showed that t~le C.P.U, time taken to calculate

an upper bOlliLdcost increased exponentially with n and it was

concluded that for n values greater bhan about 22 the heur-iat Lc

method of obta ining an ini tia 1 feasible soh tion (~/hich could

b~ used as the initial ~pper bound cost) was preferred.

The importance of obtaining a good Lower- bound cost

was shown by noting that about 7mb of the total qp,U. time taken

to reach an optimal solution using the standar-d algorithm was

expended after the optimal cost had been reached. If the lO\O/er

bound cost \'JaS in fact equal to the optimal cost (for a biven

n value) then it would have been possible to terminate the

enumeration.

By grouping sets of sub problems it ·....as seen that

an improvement of between 3 and 1a;'b (for the n values tested)

on the standard algorithm was obtainedo It was also noted

that the GP.U, times varied substantially vlith variation in the

value of the .sub set grouping depth defined. in 7.11.

The GP'U. timing experiments carried out on the

heuristic algorithm showed that the C;p,U, time required for
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very Lar-ge values of n was reasonably small and 0111y 66 seconds

of C{P,U. time was r-eouired to solve a pen up problem of order 400.

The binary chopping scheme was seen to obtain good

feasible solutions to the pen up }.lroblemmuch more quickly

than the standard algorithm although in this case the C;p.u. time

tnken after the best solution had been found tended to be very

high for each of the cases tested. The best solution obtained

in this case did not aLways equal the optimal cost obtained by

the standard implicit enumeration scheme.
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Program Listings.

The following are program listings relating to

the work discussed in Chapter 1.

Procedure 'line' is the prOCedlITe used to
produce the line drawings shown in this thesis.

~, .

Linedot is a similar prc~edure used to draw

the dotted lines.

Also included in ~his appendix is a sort
procedure which is the standard sort procedure used in
the programs of Chapters 3, 4 and 7.
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APPENDIX 2

, Progt3.m Listings.

Procedure 'project' is ~he procedure used to

obtain the projected points on the plane of projection

given the n spatial vertices and the angles of the line

of sight. ihis procedure is used extensively in

Chapter 3 and (;hapter 4.

The wire frame drawings shown in c.:hap~er2

were obtained by s.impLy projecting the vertices of the

given figures onto the plane of projection. 'l'he

segments corresponding to the edges in space were

then connected up.
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Convex Polyhedron .program ;:,pecificaHen.

Abstract.
The program is written in Algol 60 and it locates

the visible edges and faces of the convex polyhedron in
addition to the hidden edges and faces.

}:nput•.
o Number of vertices n of convex polyhedron.

• n spatial vertices of convex polyhedron.

(carte~ian co-ordinates).
• A vie\vpoint given in cartesian co-ordinates

which must lie outside the convex polyhedron.
• .Angles of the line of sight ~from the viewpoint)

in degree::3.

• Distance of projection plane f"t'omthe viewpoint.
output.

• 'l'heprojected vertices of the convex polyhedron.

• J:l,;achplane face of the polyhedron as it is located.
• The visible edges of the polyhedron.
• the hidden edges of the poIyhedr-on,

• The C.P.U. t.i.metaken by the program.
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APPENDIX 3.2

Program Listings.

The following listings are concerned with
the coding necessary in the convex polyhedron program.
'ihe C.P.U. time is not determined in the actual
listing given but simply consists of two calls
of CPUT from which the C.P.U. time can be obtainedo
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Al)P~NDIX <'1.1---_.-
General Polyhedron Progra~ Suecification

Abstract.
The program is written in Algol 60 ar.d it calculates

those portions of the edges of the polyhedron which are hidden
to the viewpoint and those which are visible.

• Number of vertices n of the polyhedrono
• Gartesian co-ordinates of the n spatial vertices

of the polyhedron.

• Number of faces of the polyhedron and the vertices
of each face ordered in a given direction.

• viewpoint given in cartesian co-ordir.ates which
must lie outside the polyhedron.

• Angle of the line 01' sight (from the viewpoint)
in degrees.

• lJistance of projection plane from the viewpoint.

Output.

• 'rhe projected vertices of the polyhedron.
o 'rhe edges of the polyhedron.

• 'l'he depth counts of each of the partial line

segments defined for the polyhedron (definltions
given in Uhapter 4)0

• The C.P.U. time taken by the program.
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APPE:~lJIX 4.2

Prograrr:Listings.

The following listings are related to the
non-convex polyhedron program, the theory for which
was explained in ~hapter 4.

,-
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APPENDIX 5.1

The Genera 1 Dra\oJPrograp._.

In Chapter 5 it vlas explained that it is possible
to add pen up segments to any given line drawing to enable
the line d'rawi.ngto be drawn in a continuous sequence by the
pen of the display.

A program has been \.,rritten in Algol 60 which A,

utilises the methods explained t0th to choose the pen up
segmonts and sort the segments into an Eulerian cycle.
Various facilities have been added to the program so that
it is possible to scale the gi.ven line drawing to a given
size in both the x and y directions of the cartesian
co-ordinate syste~. It it>possible to draw both full and
dotted lines, the size of the dots being a variable of
the program.

A procedure which was available to the author

aLl.owedgiven characters, read in from a data tape, to be
drawn in a suitable form on the graph plotter. The

characters vrh ich could be drawn on the plotter were KDF9

basic symbols. By this means it was possible to add a

tit Le to each line drawi.ng, the title in each case being

positioned so that it u~ya given distance below the least

y co-ordinate of th~ drawing and so that it was positioned
central of the extreme x co~ordinate.

The size of the characters on the gmph plotter

could be varied in addition to the ~ctual number of

characters in the title.
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The program is thus very general in that there are

several variables which allow any given line drawing to be

output on the graph plotter in any suitable form. The

computer drawn figures presented in this thesis have been

pr-oduced by use of this program. For some of the more

complex drawings it was necessary to manually position

the many parts of the drawi.ng by using several stop instructions

in the program which caused the paper tape bein~ read by

the photo-electric reader to stop so that the pen could be

moved to a suitable position by use of the manual control.
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APPENDIX 5.2

Given an Eulerian cycle the procedure loop traces
a path through the cycle such that every segment is
traversed once and once only. The directions associated
with each of the segments In this path are such that the
cycle is a directed Eulerian cycle.

It is convpnient at this stage to give a

simple e>runple of'the way in which the procedure loop,
by list processing technique, forms a path through the
given Eulerian cycle.

2

1

4

5

Consider the Eulerian cycle, shown above and for each

node determine the adjacent nodes (neighbours) as shovm
below

Node

1
2
}
4
5
6

Neighbours Degree of Node
2,3,4,6 4
1 ,3 2
1,2,4,6 4
1,3,5,6 44,6 2
1,},4,5 4
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Note that the degree of each node is even.

It is an arbitrary choice as to which node is taken

as the start of the cycle.

Suppose node 1 is chosen as the initial node.

The next node in the path will simply be selected as the

first available neighbour. In this case 2 is the first

available neighbour. The path so far is thus 1-2.

After selecting a node is is necessary to cancel this

node in both lists since node 2 is a neighbour of node 1

and node 1 a neighbour of node 2. Thus the first available

neighbour for node 2 will now be noJe 3.
Continue building tbis path until node 1 (the

ini tial node) is reached wh en the path will fom an

initial Eulerian cycle.

The initial cy~le will thus be

1-2-3-1
Now scan every node of thiE cycle until a node is found

to which some neighbours still exist. When a node has

been found traca a secondary cycle frQ~ this node. In

this particular case node 1 still has some neighbours

so that a secondary cycle is traced from node 1 as follows:

~-4- 3-6-1

The cycle at this point consists of two cycles joined

together as a list as illustrated below

.. 41 -
2

_..
3....

3 6

J

1 "" 1-
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The cycle at present is thus

1-4- 3-6-1 -2- 3-1
Now scan each node of the secondary cycle until a node
is located which still has some neighbours associated
with it. In this case node 4 still has same neighbours
and so a further cycle is traced from this node as

follows

4-5-6-4
The cycle at ~his poi~t consists 0f three separate

cycles joined together as a list as illustrated

below

1 4 5- ..
2 -- 3 ...... 6,. ~

3 l 6 4

1 1

At this point there are no ncd.es which have neighbours

still remaining and so the list is complete.

The Eulerian cycle is thus

1-4-5-6-4-3-6-1-2-3-1
and the directions associated wl'th hea.c of the segments
are shown below
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APPElIDIX 5.~

rl~ethodof Detennining whether a Given Graph is Connected.

A convenient method of determining whether a
given graph is connected has been derived from procedure
loop, described in the previous Appendix.

The only difference existing between this
procedure and loop is that the cycles traced out for
each of the secondary cycles are replaced in thi~ case
by paths and the terminating condition for each path is
wher.a selected node has no neighbours remaining.

As ~ach node is encountered a flag is set and
if the flags associated with all the nodes of th~ graph
have been set then the graph is connected. If it is not
possible to extend any of the secondary (or the initial)
paths and all flags have not been set then the graph
cannot be connected.

Example of Connected Graph.

Consider the graph given in the previous
appendix since this will serve to outline the difference
in the two algorithms.

2
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Node Neighbour
1
2
3
4
5
6

2,3,4,6
1,3
1,2,4,6
1,3,5,6
4,6
1,3,4,5

As before trace out an initial path but in this case continue
until it is not possible to extend the path. Every time a
node is located set an associated boolean from its initial
false value to two. The initial path will be

1-2-3-1-4-3-6-1

There are no more nodes associated with node 1 and so th3
pa.th terminates. At the end of this initial path only
node 5 has not been traversed. Now attempt to extend
the path by scannIng each nude to locate a node Hhich

has neighbours still associated with it. If one exists
then form a path (in the same way as for the initial
path) fran it.

In this case node 4 still has some neighbours
associated with it. 'I'hepath frcrn 4 will thus be

4-5-4-6-5
and the path teIillinatessince node 5 has no neighboprs.

Node 5 has now been traversed 30 that ~ll nodes
have been flagged and the graph is thus connected.
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Exar1ple ef lrraD~ which is not Connected.

Consider the graph given beLow
1 4

2

3
Node Neight()urs

1 2,3
2 ~,3

3 1 ,£

4 ),6
~ 4,6./

~-
-6 4,5

,"

5

'l'heinitial path will be
1-2-3-1

and the path tenninates since 1 has no neighbours left.

Now scane this path to ascertain which of the

nodes still has neighbours associated with it. There
are none and since only nodes 1,2 and 3 have been
flagged the graph c~~ot be connected.
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AF?~ND1X 504

Progral'llListings

These are the program listings concerned with

the main DRAW program.
t I

Procedure pen up uses the
heuristic method to obtain the pen up segmentso
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.AppE~TlrX 6.1

Proof th.st an antimal Solution to the Pen Un Problem using the
Reduced. Cost Mc:trix is an Ootimal Solution usi.ng the Or~-ginal

Cost Ii:a tr i.x ,

The implicit enumeration algoritlli~,described in

Section 6.13 uses the reduced cost matrix be and it is therefore

necessary, for the sake of completeness, to prove that an

opt ima I solution using this rnatrix is also an optimal

solution using the original cost matrix C.
It is also of interest to determine the relationship

between the costs in the two cases.

Now ~Cij = Cij - Ui - Uj i~P
jtQ

____ (1)

where P and Q are disjoint sets and PUQ ~ S, the total s~t

of elements.

The optimal pen up problem is to minimise the

total cost t given by

fJ :: ~ Cij. Xij
b iEp

j~Q

where Xij!X is a feasible solution to the pen up problem.

Consider a feasible solution X using the original cost

rnatrix C with corresponding cost b I

jOl ::z (~Cij + Ui + nj), Xij
t7 ifp

jfQ
=4Cij. Xij +2:(Ui + Uj). Xij
iip ilP
jEQ j£Q

Now supposefr' is the total cost using the reduced cost

matrix so that

Crt = ~&Cij. Xij
iEP
jEQ

_______ (2)
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Then + ~ (Ui + Uj). Xij

ifF
jEQ.

= !Or' + Ui + Uj
t) iEI' jf.Q

No'N Ui + Uj
itp jtQ.

= Uk
kt,S

where S = FUQ, the total set of nodes,

b' = br' +rUk
k(.s

Now for a given feasible SOlution~ Uk is constant and
k!s

• _____ (3)

simply the sum of the implicit costs
Thus it follows that jf x is an optlinal solution

'Ising the reduced cost rnatrix ~ C, it must also be optimal
for the original matrix C sinc~ the total costs always
differ by a constant value.

The rela.tionship between the two costs .is

given by equation (3).
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AP},E'ffirx 6.2

The nested for loop used to obtain elements of set P
in the implicit enumeration algorithm described in Chapter 6
is a modification of a nested for loop developed by Dr. Scoins
at the Laboratory.

The elements of set pare dp.termined such that the

following relationships are true
A

"

Pi + 1) Pi

Qi > Pi

i = 1, 2t 3•••••s-1 (1 )

( 2)i = 1,2 ••••••• n

where s = n/2 and Q is the disjoint set.
•

In the fer loop actual~y used Pi + ~4fPi
simply fcr conven i ence and ':)Aseof coding. 'I'he basic
principles to be discussed remain the same. For the kth
element determined (k <s ) Pk must be such that (s,-k) eLemen ts
are available and greater in value than Pk so that a canplete
set P can be obtained while equation (1) is satisfied.

There must thuG be an upper bound for each element
Pk and this must be dependent on the value of k. Since the

first element obtained for P is Ps the upper bound for this

The upper bound for P1 is n - 1 since n must be
available for the corresponding element in the disjoint set Q.

is 1.

and

Similarly the upper bound forF2 must be n-2. Thus it is

possible for each of the elements o~ p to obtain a corresponding
upper bound. This corresponds to an p.lement of e one
dimensional array
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ub(i) i:= 1,2 •••••• 5

The nested for loop is thus as tallows

for P(n)=p(n)+1 step 1 until ub(n) do
if n=1 then GETQ else fornest tn-1)

When n (in the nested for loop) reaches the value 1

a feasible set 01 s elements exists for P and procedure G~TQ
~which is also recursive) is invok8d. (jETI.i simply locates
sets of Q which satisfy equation (2) and whose pairings

with P form a feasible solution to the pen up problem.

~f n is not 1 then the for nest procedure is invoked
wi~hin itself (recursion).

Al though this methoi furnishes a classical way.
of dete~ining elements of P and Q the number of procedure

calls will be quite large and the object program when
executed will probably be inefficient because of this.

I.twould probably have been better if the elements
of P had been obtained by an iterative procedure whicn the
compiler wouJ1 nandle in a mu~h more efficient mar~er.

Unfortunately, tima did not allow the author to
investigate this particularly interesting possibility.

The advarrtaga of utilising a nested for loop
lies in the ease of the coding without regard to
compiler efficiency.
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Implicit Enumeration yrogram Suecification.

Abstract.
The program is written in Algol 60 and it determines

an optimal solution to the pen up problem; the elements of
the cost matrix are ob ta.inedfrom a random number- generator.
There are various forms of the program depending on the
enumerative sch~me being used. ~See Chapter 6).

In'Out.
• Number of nodes In odd degree graph.
• Various other items of data rnay be input for

the varlous enumerative schemes such as
the size of tne la-rgest elGillellt.

Output.
o Lower bound cost.

• Upper bound cost.
• ~lements of the cost matrix.

Each best feasicle solution as it is obtained
and the cost of this solutLon ,

o Optimal cost.

• 0.P.U. time taken.

in most cases the total number of subsets and

the number of subsets which need further examination are
also output. Other items of information pertaining to
the enumerative scheme being used may also be output.
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APPENDIX 6.1
Program Listings

The following program listings are related

to the general implicit enumeration algorithm

explained in Chapter 6.
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The C.P.U. Timer.

It is perhaps necessary at this stage to give a
short description of the program used extensively in Chapter
7 to determine the C.P.U. time expended by portions of the

various programs tested.

The relevclnt procedure, called CPOT, has one
fonnal parameter "a" which is an int.egervariable called by

name. The procedure returns "a" as the number of t irna units
expended by the C.P.U. for the pr~blem program since the
last call of the procedure. By successiye calls of the
procedure it is therefore possible to calculate the C.P.U.
time used by the problem program between the two calls 0

The program is written in the I.B.M. 360

Assembler Language. It is necessary in the initial coding
to satisfy certain I.B.~. linkage conventions and also to

save the contents of the general registers.

The essential part of the procedure consists of a
call to the supervisor which necessitates an inter=upt to

occur so that the supervisor can perform the service r~quired
by the program. In this case the call is supervisor call 38

(caQed ~rROUTER) which returns the number of C.F.U. tune

units used by the problem program (measured in units of
13 microseconds) since the last call. The num ber of time
units is returned in register O.
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'I'o d e t erm ine t!1E' C.P. u. time t.ak en by a 8"iven

piece of program two calls of CPUT are therefore necessary.
It is easy to alter this C.P.U. time to seconds and th.i.s
was carried out in each of the cases tested in Chapter 7.

The general registers are restored to their
initial values before control branches back to the instr-uction
following the point of invocation of t.he procedure.

Procedure r:!PUT was compiled as a "c0ded" -, .

procedure in the author's private library of procedures.

Coded procedures are available in ~r,.T. S. so that users
can invoke previously ccmpi.Ledprocedures at linkage

edit time during execution of the main proeram.

By th5 s means it .i.~ pcssi ble to Lnvoke procedures
written in different source languaces withcut any inconvenience
to tho proGrammer. In fact, the ra!"dom number generator

used to obtain the elements of the cos t, mat rIx of the pen

up pr-cb Lem VIaswritten in Fortran and was present as a

coded procedure in the author's private libr~ry.
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