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ABSTRACT

The research work contained in this thesis lies

mainly in the field of ccmputer graphics.

The initial chapters are concerned with metheds of
representing three dimensicnal solids in two dimensions.
Chapter 2 describes a method by which points in three
dimensions can be projected onto a two dimensional plane of
projection, This is an essential requirement in the

representation of three dimensional solids,

Chapter 3 describes a method by which convex
polyhedra can be represented by ccaputer., Both the hidden
and visible faces of the polyhedron can be lecated by the
method described. KRaving tackled this prcblem, the rather
more difficult problem of representing the non ccenvex
volyhedren has been attempied 2nd the results of this work

are presented in Chapter 4,

Line drawings of the various polyhedra,produced
on a graph plotter, are given as examples at the end of

Chapters 2, 3 and 4.

The problem of how to connect a given line
drawing such that the distance travelled by *he pen of
scme computer display ic kept to a minimum is discussed in
Chapter 5 and various definiticns of the concepts involved

are given,

Theory associated with this 'Pen-Up Problem!
has been developed and is explained in detail in the early
part of Chapter 6, A method of obtaining an optimal

solution to the problem is presented in the latter part



of this chapter in additicn to various enumerative schemes
which have been developed to obtain good feasible solutions

to the pen up problen under varicus conditions.,

Extensive C,P.U. timing experiments have been
carried out in Chapter 7 on the various enunerative schemes
introduced in Chapter 6 and it has been possible %o reach
conclusions on the applicability of the varions methods.

Several topics of interest which have arisen
during the main research work are presented as appendices,
The programs which have been coded during the period of

research are also included as appendices.
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CHAPTER 1

INTRCDUCTICN,

L general introduction to *he Thesis with a comprehensive
analysis of procedure line,



1.1. General Intrecduction,

The research work which has been carried cut
by the author during the last three years can be said to
lie in the computer graphics field. The initial work
concerned methods by which a straight line could be drawn
by the pen of some computer display when the pen is
restricted to mcve in one of a number of different directions.
This work was particularly applicable to the display
ecquipment available at the University at that time which
was a Benson Lehner graph plotter in which the pen is
restricted to move in any one of eight directions, The
work wes essentially an extension of research which had
been initiated by Ian Leitch at the Laboratory in
collaboration with Dr, Scoing, a Senior Lecturer in the

Laboratory.

The extension concerned a condition which was

known as a 'Knights Move'. Since the research presented

in this thesis is almost entirely cencerned with the
drawing of lines on a computer display (in one way or
another) this initial research work has been included in
this introductory chapter for completeness. A mathematical
consideration of the problem is presented and examples of
the Knights lMove condition (produced on the graph plotter)

are included at the end of the chapter.
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Cne of the main fields in computer grapnics is the
conputer representaticn of three dimensional solids in two
dimensions,. For the last six years or so many researchers
have tackled the problem,

The simplest method and naturally the first to be
attempted, was the wire frame drawing in which the three
dimensional solid is represented by 2 number of lines in
space, These lines are then projected (by scme convenient
method) onto a "plane of projection" which has been
mathematically defined. The lines on the projection plane,
corresponding to the lines in space, are then connected,
there teing ne attempt made to ascertain those lines which

arc hidden to the viewpoint,

13

Puckett ia his work for N.A.S.A. (National
l

Aercnzutics znd Space Administration) and Johnson at M,.ILT.
fassachusetts Institute of Technelogy) were perhaps the
first researchers %o utilise this technique, which has
become widely used in the design of motor cars and the like.

However, before any work can proceed in this type
of research, it is necessary to have some means of projecting
points in three dimensions onfo a two dimensional plane of
projection.,  Methods of projection and the algorithm
which has been used to project a number of spatial vertices
onto a projection plane are discussed in Chapter 2, The
main type of projection which has been utilised is
perspective,

Methods of projection, related to computer displays,

: 27
are being considered by some researchers (such as Sutherland)

but it has not been possible to devote much time to this and
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the auther has contented himeelf with a methed which allows

a solid to be represented by both orthographic and perspective
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jection algorithm has essentially

The solids which are represented by computer in
this thesis are polyhedra, Various other forms of solids
can Ye represented by computer of course and cne of the
first researchers to produce a method of representing
quadratic surfaces was Ruth VWeiss,

Probably ihe first researcher to consider the

2
polynedron in a computer display was Larry Roberts at
M.I.7., He produced an algoritira in 1963 which considered
polyhedra and a method by which the hidden lines could be
eliminated., From this initlal work verious people attempted
methods of representing the convex polytedron (such as
Loutrel and Cole). The convex polyhedron was represented
initially since this is a particularly simple case in that
any face of the pelyhedron is either completely hidden
or completely visible to the viewpoint. From these first
steps it was possible to consider the more difficult
exercise of representing the general polyhedron which can

have faces which are only partially hidden to the viewpoint,

%
The method adopted by Cole could not be extended
9
to the general polyhedron (as could Loutrel's) and the method
as presented had several raither grave disadvantages, although

the general approach seemed to possess many advantages.
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This general approach to the problem of reprecenting the
cenvex polyhedrcn has been used in Chapter 3 and many of

the disadvantages of Cole's initial method have been overceme.,
In zddition, new techniques have been intrcdveced to prcduce

an algorithm which appears to have scme powerful features.,

It is possible to choose any viewpoint in space
from which to view the convex polyhedron with the restriction
that the viewpoint lies outside the polyhedron, The first
main step in the algorithm is to locate the visible plane
faces and the associated visible edges. It is then possible,
if required, to locate the hidden faces by a elight change

in the logic of the pregram,

Various concepts and definitions are introduced
during the descripticn of the methed and two hand-worked
examples are develogped, Several computer displays
(produced on the graph plotter) are presented at the end
of the chapter, Some of these show the hidden edges with
dotted lines and some have the hidden edge: completely

removed,

The rather more difficult problem is to produce
a computer display to represent the general polyhedron
and a completely new approach has been taken in this case.,
The type of approach adopted is similar to that of

\0 14
Loutrel and Appel.

It is convenient in the case of the general polyhedron,
which can have an edge with portions both visible and hidden

to the viewpoint, to calculate, for a given edge, the number

of plane faces of the polyhedron which hides the edge from the

viewpoint., ¢Cince this number, which has been defined as the



wb

'depth count', can vary aleng a given edge it is convenient
to divide an edge into a nurber of portions, each or which
has a given depth count. In this way it is possible to
determine the portions of any given edge whnich are visible
(or hidden) to the viewpoint,

In this respect the line segments on the projection
plane which correspond to the edges of the polyhedron have
been divided into a2 number of 'partial line segments' (a
formal definition for which is given) which are associated
with a constant depth count. Those partial line segments
which have zero depth count have no faces of the polyhedren
which hide them from the viewpoint and are thus visible,
Nonezero depth counts (which will be pogitive) signify
partial line segments which are hidden to the viewpoint,

Rather than have to calculate the depth count
of every partial line segment it has been possible to
calculate the change in depth count along a given line
segment, In this way it is only necessary to calculate
the depth count of one cf the partial line segments (of a
given line segment) and from this value the depth counts
of the other partial line segments (belonging to the given
line sngment) can be obtained,

One of the most important computational aspects
of the algorithm is the determination of the intersection
points occurring between the line segments on the plane of
projection and because of this the method used has been

explained in some detail,

The results of this research work are presented

in Chapter 4 and a number of computer displays of non convex
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polyhedra are given at the end of the chagpter,

It should perhops be pointed out at this stage that
there are basically two different types of zpprcach to computer
displays of three dimensional solids, depending on the %type of
hardware being used. The 'calligraphie' display (described
in a later section) is concerned with the drawing of lines
on the display 'screen' by an oscilloscope type of action,

The graph plotter belongs to this categery in which edges of
thie s0lids being considered are depicted by line segaents on

the screen of the display,

In the 'raster' type of display it is pessidle to
shade the surfaces of the solid and produce different tones
on the sereen, so that a given solid can be represented

simply by the various shades produced on the screen, By

~

thase methodes it is possible bo reproduce photographs by

ccmputer and a new field of research comes within reach.

Unfortunately, it was not possible to produce
any worthwhile research in this field since, to produce
shading using an off-line graph plotter necessitates the
production of an enormous amount of pagper tape. Although
work was initiated in this direction by the author, it was
quickly realised that the facilities available precluded

any hope of productive research,
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"he final rezulits of theé work which has been
described so far produces a line drawing on the plane of
projection, Initially these line drawings were drawn on
the graph plotter simply by dbuilding into the problen
progroms commands which would produce instructions to the
graph plotter to draw the various line segments as the
program proceeded. Later in the work various simple
methods were incorporated so that the distance moved by the
pan of the grarh plotter tended to be reduced. As these
various methods increzsed in number it became obvious

hat it would be beneficial to produce an algeorithm which
would accept the line segments of a line drawing (in
addition to the co-ordinaces »f each point) and utilise
some method of connecting thesé line segments such that
the total distance travelled by the pen was kept to a
respectable minimum, Since the line drawings produced
could be.described as cennected graphs the problem was
defined as being that of developing a method of drawing
a connected graph such that the distance “‘ravelled by the
pen, in excess of the distance of the line segments, was
minimised,

The excess distance travelled by the pen corresponds
to the distance travelled with the pen in a raised position,
So that it is possible to connect the line drawing by a
continuous sequence of pen movement it was found necessary
to add to the original line drawing a number of vpen-up lines
(line segments drawn with the pen in = raised position),

It

was thus necessary to choose theze pen up line segments such
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that their total distence tended to be minimal,
The various concepts which have been develeped and

~

a discussion of the Pen Up Problem (as it has been called) is

given in Chapter 5. It is necessary, in fact, to choose the
pen up segments such that the addition of these to the original
line drawing converts the line drawing to one which has all of
its points asscciated with an even number of line scgments.,
Graphs of this kind are knovm as Eulerian Cycles ard their
importance lies in the fact that it is possidle i~ connecy

them by a continuous line without going over any line more

than once.

This of course is the requirement to connect a given
line drawing by a continuous sequence of pen movement, The
pen up problem is concerned with the number of odd degree
points n in the line drawing for it is necessary %vo select n/2
line segments (which will be pen up lines) between these n
points such that the cdd points are each associated with just

one of the pen up segments. As a simple example consider

tre line drawing shown below

1 3
6 4
5
Diagram 1.1
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Of the six poin%s in the drawing four are of

]

c2d degree and it is thus necessary to select two pen 1p

(

lines which span these four points, A valid choice could
be 1-3 and A-6 for example or 3-4 and 1-6,
Tt should be clear that given n odd degree
P n/
points there are a aunber of ways of selecting the /2 pen
up lines, The total number of distinct pen up lines is
given by n.{n-1)/2 so that when n = 4 the nunber of
distinct pen up lines is 6., These are 1-3, 14, =B,
3_4, 3-6, 4-6 for the example given.
The number of ways of chcosing tne n/2 pen up
o Mok n/
lines is equivalent to the number of combinations of 72
pairs of peints from the n available., This number is

given by

n)
(_ri\_)\ Z“/z

In this case (for n = 4) the number of ways of choosing

the pen up lines is 3. The 3 choices are as follows :

0o 1-3, 4‘6
o 1-4, 3-6
o -8, 3-4
90 as to reduce the total pen up distance it would be

best to select those two pen up lines such that ihe total

distance was a minimum,

Suppose 1-3, 4-6 is an cptimal choice in the
example given. The segments would then be added to the
line drawing as pen up lines,

It is then neceasary to

assign a direction to each of the line segments so that

the pen can connect the line drawing by a coniinuous
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proviso that scme of the segrnents are
connected with the pen in a raised position. Cne

1

solution would be as follows :-

[¢

Pen up lines

Diagram 1.2

— e e

with the pen starting and finishing at point 1, The directicn

o

f travel of the pen is given by

1-2, 2-3, 3-4, A-5, 5‘67 6""?: ﬁ"'69 6"1v 1-3, 3-1
Tt is obviocus that it is desiradle to obtain a quick choice
of the pen up lines and in this respect a heuristic method
of choosing the pen up lines has been developed. The

method is described in Chapter 5,

For any given line drawing there are varjous ways
in which the drawing can be connected depending on the choice

of pen up lines, There exists,

Lo

or any line drawing, a
particular choice of pen up lines such that the total distance
travelied by the pen of the display is a minimum. This has

‘been called the Optimal Pen Up Troblem

and an implicit
enureration algorithm has been developed to obtain an optimal

solution. This algorithm is described in Chepter 6 znd the

thecry associated with the pen up problem is aleo elucidated

in this chapter,



-12-

he implicit enunmeration algorithm requires both
a lower bound cost and an upper bound cost. The lower bound
has been obtained by defining a problem which is related to

the pen up problem and has been called the Imzge Pen Up

Problem., A feasible solution to this problem turnishes

a lower bound cost to the pen up proolem,

‘he upper bound cost has been obtained by
utilising the concept of the 'domind graph, a term first
introduced by Scoins and snow in their research at the
University. ‘'he methods by which the upper bound cost
and the lower bound cost are ootained for the pen up

problem are explained in Chapter 6.

Methods to reduce bthe time taken to reach a
gocd (or Optimal) solution to the pen up problem
(under various conditions) have been developed and are

jncluded at the end of Chapter 6.

Chapter 7 consists of timing experiments which
have been carried out on the IBM 360/67 computer to
compare the C.P.U. (central processing wnit) times
taken by the various forms of the general imﬁlicit
enumeration algorithm, The C,P.U, times taken to

obtain both the upper ana lower bound costs have also

been obtained.

‘the C.P.U. times have been compared and various

conclusions have been made. the ¢.P.U. timer used in

this chapter has been explained in one of the appendices.
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various related recearch topies which have arisen
from the main research work are alsc included in the

appendices.,

Listings of the more important programs which
have been developed are given at the end of this thesis.
It has been the aim of the author to make these as clear
as possible by the inclusion of numerous comments, Flow
diagrams are also included in the main text of the thesis

and usually follow the cxplanaticn of the method used.

vhe thesis includes a number of line drawings
which have been output on the graph plotter, S0
that these drawings can be recognised at first glance,
thev have been referred to as !'figures' and a [ligure
list is given in the contents. Line drawings which
have been drawn by hana have been referred to as
‘diagrams' and a diagram list is also given in the

contents,
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1.2, Facilities Available at Newecastle University Computing lLabez atory.

The two computers in general use at Newcastle
University are the 1.C.L. XDFS computer and the I.B.M. 360/67
which was the first multi-access computer produced by I.B.M.

The total storage of the I.C.L. cemputer is 16K 48
bit words and that of the I.B.lM. conputer is 192X 32 bit words
with an additional 1,000K words of virtual storage.

A Tenson Lehner incremental graph pleotter, which
is off-1iaz, is available at the laboratory. The input data
to the pleotter consists of characters on paper tape produced
as output from the KDFY computer, The drawings shown in this
thesis were preduced on the Bensou Lehner plotter. Since the
560/67 computer dces not have an output paper tape punch it
was neceszary to use the KDFQ in producing the output paper
tave which was subsequently input to the graph plotter.

There exist two Algol compilers associated with
the KDF9 conputer. Walgol (Whetstone Algol) is a load and
go compiler used for programs requiring less than five
minutes of C.F.U., time, Kalgol (Kidsgrove Algol) is the
compiler used for programs requiring more than five minutes
C.,P.U., time and in this case the compiled programs are
stored on magnetic tape and may be accessed Ly use of a

suitable call tape.

C.T.P, Valgol was inircduced by a research group
in Conputer Typeseiting and is used vhere output paper
tape from the KDF9 is %o be produced as input data to the

graph plotter, 1In this case procedures, which produce
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the characters to move the pen of the graph plotter,
exist as library procedures., C.T.P. Walgol uses the
on-line paper tape punch.

When large numbers of characters are required
at the output punch it is not economical to use the
on-line paper tape punch since elapsed computer time
can become excessive. As a direct result of this a
schene known as Device 4 has been introcduced which
allows characters to be stored on audio magnetic tape
instead of being output to the punch, In this way the
elapsed time required Ly a given program (producing paper
tape output) can be substantially reduced. Paper tape
output can be produced from Device 4 by an associated
off-line punch which simply copies the characters from
the audio magnetic tape.

I+ is necessary when using Device 4 to have
the compiled programs on magnetic tape and so it is
necessary to use the Kalgol compiler. A short description
of Device 4 is given in a later section., The I.B.M.
360/67 computer, on which most of the programming for
this thesis was carried out, is a multi-éccess computer
which facilitates up to %2 serarate consoles at any given
time, It is possible to store programs on disc and
various editing and other facilities are available.,
The Michigan Terminal System (M.T.S.) has been implemented:
thissystem was developed for a 360/67 computer at Michigan

University in collaboration with I.B.M,

The prograns for this thesis were writien in



Algol 60 and the I.B.M. computer was uced because it was
eigier to debug programs using a terminal system, with
the extensive editing facilities available, than on the
KDF9 cemputer,

Since it is not possible to produce paper tape
output from the 360/67, there being no paper tape
punch, it was found necessary to write a program to run

on the KDFQ computer which accepted as data the line

segnents of a gven line drawing. The output from this
program was paper tape which was then fed as input to

the graph plotter,

The drawings shown in this thesis have been
produced with the use of this progranm, It is in fact
the only program which wuses  the KDF9 computer, all
other programs being rwi on the more powerful I.B.M.

computer,
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1.3, Computer Displays.

There are two basic types of computer display’$ in

common usee

The first of these is the incremental plotter, the

computer generated data for which consists of information to
move the pen. The plotter can be either on-line or off-line.
On-line plotters receive the data directly from the computer
vhereas off line plotters are fed with data in tape or card
form vreviously output from the computer.  The plotters

are incremental in that the pen moves in small increments

in any one of a specified number of directions. The
plotter at llewcastle University Computing Laboratory is a
Renson Lehner incremental plotter which is described in the
following section. It is vossible to obtain various
colours of drawing simply by changing the colour of ink

in the pen, The second and perhaps more widely used
display is the cathode ray tube display which produces the
drawing on a screen very similar to the oscilloscope in
electrical enginecering. The cathode ray displaye can
themselves be split into two broadly defined subsets,

The calligraphic display converts the digital

information from the computer into analogue form at the
electrodes so that the electron beam is suitably deflected
across the screen. Calligraphic displays are €herefore
very similar indeed to the ordinary oscilloscope in that
voltages are varicd to produce electron beam deflection,
The informaticn associated with any drawing can therefore

be suitably arranged within the computer before being

output to the display. The second type of cathode ray



tuke display is the raster display which produces pictures

in a similar way to that of a television set. The picture
is produced in a fixed and unvarying sequence which is
usually from left to right and from top to bottom. The
raster display thus has the disadvantage that the information
associated with any picture must be sorted in the same way
each time, that is, from left tc right and from top to
bottom. It is mainly due to this restriction that raster
displays are utilised for character displays more than
anything else. Apart from this restricticn, raster displays
are useful in that the electronic equinment required, such
as deflection amplifiers, is fairly cheap when compared to
the more elaborate equiovment reguired for the calligraphic
display.

Raster displays are very useful if shading of the
surfaces of solids is required and pictures of this sort
have a decided advantage over those displayed by the
incremental plotters and célligraphic displays, which are
usually liae drawings. Any attcmpt to shade surfaces
using these displays has always met with very unsatisfactory
results,

The resolution of the cathode ray tube display is
dependent on the number of rows and columns of points which

are present on the screen and which define the display

co-ordinate system. This number can vary from say 1024 on

a good display to even 4096 on the most modern displays at

present in use. The resolution of the incremental plotiers

is governed by the distance of a single increment which is

0.1 mm on the Benson Lehner plotter and can be as good as

1/500 inch on a modern Calcomp plotter,
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The computer drawn figures in this thesis have been
oroduced on the Benson Lehner incremental graph plotter, the
input data for which was output from the KDF9 computer,

The graph plotter is off-line in that paper tape
output from the cemputer acts as the input to the graph
plotter,

The pen of the graph plotter can move in any one

of eight numbered directions as showa below,

3 A 1 2

Diagyam 1.4

The increment of the pexn in cach direction is O.lmn
mcasuredAalong the cartesian axgs so that a diagonal move in
directions 2, #, 6 and 8 is of lengthpfz-x (0.1) mm.

The maximum specd of the pen is 2 cm/sec and two
pens of nib widths 0.2mm and 0.4 mm are available for use.

The paper tapge code conveys two plotting instructions
for every row of paper tape outpul. The first four holes
convey the first instruction and the second four holes convey

the second instruction. The plotter recognises in all twelve

separate instructions from the paper tage. Eight of these
correspond to the eight different directions of motion shown
above and the remairing four instructions will cause the pen

to raise, lower, do nothing or stop reading paper tape.



A procedure plot (r,s) will output characters on
paper tape corresponding to the numerical values assumed
by r and s. The procedure outputs two instructions at once_
so that one row of paper tape is output for each call of
plot.

Movement in any one of the eight directions is
possible by assigning the corresponding numbers to r and s,
which are of course botn integer. Special combinations of
the integers r and s are used to produce tie pen up, pen
down, do nothing or stop instructions.  After eack of the
pen up, pen down and stop instructions, three do nothing
instructions are inserted to allow for the finite time of
mechanical motion in pen movement.

The system software has its own cartesian
co-ordinate system and at the beginning of any plot the
pen is assumed to be at the origin (0,0).

Restrictions exist for total movement in any one

of the four cartesian directions in any given program  as

follows

I L2 "
000 D, >/ 200
and 00 v -15
3500 ) 3 >/ 500
The upper bound on x can be changed by a special

plot instruction.

The most severe restriction on pen movement Is in
the negative x direction which corresponds to the paper

unvinding into the plotter. It is in this direction that

there is danger of the paper coming out of the sprocket

holes which explains why only 2 cm of movement is allowed

in this direction,
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It should be clear from this that it is always

ae

6]

(o]

irable to tegin a plot 2t or very close to the lowest x
value of the line drawing. If the pen does in fact push
up against the lateral extremities of the plotter the
photo-clectric paper tape reader will stop reading tape.
It is possible to move the pen by a manual
control in order that the pen may be suitably positioned
before any tape is read by the photo-clectric reader.
The procedure plot is an Algol procedure with
& Usercode body and is available as a library procedure in
o, T.P. Walgols Its function is to produce paper tape from
the output punch of the I.C.L. KDFY computer corresponding

to the instructions specified by the integers r and s.

=3

he procedures open go and close gp are analageus to the

standard procedures open (dv) and close (dv).  They

respectively claim and deallocate the papcr tape punch of

the I,C.L. machine and are library procedures in C.T.P.

Walgol. Open gp should be called before the first call

of plot and cloce gp is called following the last call of plot.

Open gp ciaims buffer areas recuired by the

procedure plot and is written in Usercode. Close gp before

deallocating the punch causes any partially filled buffer

area used by plot to be output. Clese gp is also written

in Usercode.

Gap gp (n) is a Usercode procedure which produces
‘

2n do rothing instructions and is a library procedure in

C.T.P. Walgol, the formal parameter n being a positive integer.



1¢5. Devica 4.

When large amounts of paper tape are to be generated
by computer it is not econcmical to use the on line paper tape
punch since the total elapsed time required by the coaputer

may beccme excessive,

In this respect a system was developed at Newcastle
University which allowed the characiers corresponding to the
paper tape characters to be stcred on audic magnetic tape.

By this meanc the total elapsed time taken by a given

program producing output paper tapc can be reduced,

The system by which this was carried out is knewn
as Device 4, Yhen the given program has finished it is
possible to retrieve the paper tape characters from the
magnetic tape by initiating an off line paper tape punch
attached to Device 4, This punch produces paper tape
characters corresponding to those stored con the magnetic
tape, It should alsc be clear frem this discussion that

an added advantage of Device 4 is that it is possidle to

retrieve punched tape should & roll be lost or damaged,
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1,6, Algorithm to Compute a Coded String of Instructions
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This thesis cuntains methods by which
polyhedra can be drawn by computer, The representations
consist of various line drawings of the polyhedra, The
hidden lines can be shown dotted, full or can te omitted
altogether,

Another important aspect of the thesis is that
the organisation of any given line drawing and problems
related to it are tackled,

It can thus be said that this thesis is
concerned a2lomeost entirely with the drawing of lines
in one way or another,

parly research work by the author consisted of
methods by which an incremental p&@tter, which could
traverse in any one of eight directions, could be
programmed to trace a line between two given points,

The results of thigs work are presented in the following
section,

The line traceld out by the pen is the 'best'
approximation to the actual straight line in that each
move is at least as good as any other possible move
under the existing conditions, The line can be
considered to be drawn on a mesh of size h where h is

the incremental length of the pen in the directions

of the cartesian axes, The extreme co-ordinate

positions will Be assumed to lie on the grid,
Directions referred to are those numbered in

the se ction describing the Benson Lehner graph plotter.
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The problem is to compute a string of incremental steps

rom A to

oy

B such that for any increment the pen is as near the true line,
ghovn in full, as ony other candilate for that position,

No generality is lost by considering the line te
be drawn in the first quadrant. (See Diagram 1.5f;

For any given extreme co-ordinate positionsA and B
it is only necessary to utilise two directions of the pen.
One of the moves will be a straight (s) mote parallel to
the .ortesian axes and the other will ke an adjacent diagonal
move (d).

It is a fairly simple matter to determine the s and
d moves for any given points A and B, Consider the following
booleans

B=xn - X8 >»O C=yn - y5:>(3

K = abs (xn-xs) - abs (yn-ya)j}()
I¢ B is true the d move must be either 2 or &4 and the s
move 1,3 or 5. If in addition C is true the d move must
be 2 and if K is true the s move must be 3.

Thus, by inspection of three booleans, it is
possible for any given cxtreme co-ordinatc positions A

and B,to determine the d and s moves as shown in tabular form

belowve
d move s move
BAC 2 KAB 3
BAC I KAB 7
BAT 8 X\C 1
BAT 6 KAC 5
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Suppcse the total number oI moves in the x direction betweasn

A and B is aC, the static x moves. Similarly bO will be

the static y moves.

Consider that a string of instructions has been
determined and that the pen is currently at 2 position

P (x,y)s The number of x moves made to P is say a, the

dynamic x moves and b is the corresponding dynamic y moves

made to P. As the string of instructions increases a and
b increase unil B is rcached when & = a0 and b = bO.
Now
ha® = xn - xa; hbO = yn - ya; (h {s mesh size)
ha = x - xs; hb = y ~ ys;
The perpendicular dista..ce of P from the true line between

A and B is given by

g = (y=y=)e (xn-x4) -~ (yn-y=)e (x-xu)

sqrt %(xn-xz)a + (yn--ys)2 %

= h .(pr - é’gbO)
2 2
sqrt (a0“+b0%)

a0, bO and h are constant so that

8 = kk (hpO - ab0) = kk | b 1O
a ad

where kk is a constant given by

kk = h
sqrt (aa2 + boa)

Now suppose

W = static s moves
vO = static d moves
w = dynamic s moves
h'4 =

dynamiz d moves



It follows that

wO

abs (abs (a0) Avabs (b0) )

vO

min (abs (a0), abs (bO) )
w = abs (abs (a) A abs (b) )

v = nmin (abs (a), abs (b) )

Substituting values for a, b, 20 and b0 in terms of w, vwO,
v, vO, the perpendicular distance # from the true line is
given by

8 = + kk (wy0 - vwO)

The sign of ® depends on the values assumed by wO, vO, w
and v according to the ausolute values of a, b, a0 and bC.
o generality is lost by assuming

s = kk (wy0 = vu0)

since the sign of & determines on which side of the line

P 1ieS.

Consider thL. change in s, §8 for both a s move (825)
and a d move (8@\0
Sﬁs = vO since w increases by 1
and Sgd = -w0O since v increasec by 1
If the value of 8 at P is sp then the new value of % after
one increment will be «s after a s move and z#d after a d

move, given by

85 = ap + vO

ad

8p ~ wO
Depending on which is the smaller of as and sd determines

wvhich of the moves should be made.
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Thus

if \gs\<:\ad\ a s move is made

if ‘RS\:?\Edl a d move is made
The above determination is simple but a problem as to which
move is selected exists if \ss\ = \ﬁdl for then the s move
is as‘good.as the 4 move.

Note that it is not sufficient to specify at
each equality that a certain move should be made for if
the string of moves is computed from B to A the two lines
will differ slightly in this region.

It is necescary that different moves be made
a2t this condition in the two different directions in which
the line can be plotted. 1In this case the siring of
instructions from A to B is exactly the same as the reversed
string of instructions from B to A. If the line is drawn
in the two directions no divergence will occur vhich is the
required situation,

A situation of the type explained abeve has been

referred to as a Knights Move condition.

This is discussed

in the following section,
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Diagram 1.6

This is based on the theory which has been explained
eariier,

Two moves are plotted at cnce since two moves correspond

to one row of paper tape characters. (See section 1.4).
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1.6,1, Knirhts 1ove Condition, In practice a

Lrnignts llove condition will lead %o a thickening of the
plotted line in the area in which the condition occurs,

The extent of the thickening will depend on the resolution

(2]

of the graph plotter, If the resolution is poor, there
will be more thickening than if the resolution is good.
Possibly the simplest example of a line in

which a XKnights NMove condition occurs is a line having

terminal co-ordinates (0,0) and (2,1) a3 shown below,

B (2,1)

A (0,0) Diagram 1,7

In this case the s move is 3 and the d move 2,

The constants defined earlier thus have the fcllowing

values,
a0 = 2 b0 =1
h is given by
w0 = 1 vO =1 1 In this case
%S = 1 86d ==l

Initially 8 is zero.

If a d move is selected the new ® value ad

-1 whereas if a s move is selected the new & value

@ will be +1, Since these have the same magnitude a

Knights Move condition exists.



<%=

Suppcse at the Inights Move condition a 4 move
is selected.
HHence in this case g = -1

The second (and final) move will be a s move
since the final value of & will oe zero (8 = 3 + 1 = 0)
in this case., (Note that g8 = -2 if a d move were to be
selected).

In ths reverse string of moves (from B to A)
a diagonal move will be made at the Knisnts Move condition

and then a straighit move and thus the twe lines will

traverse as shown below,

Y
w

A

A

Diagram 1.8

Now suppose thai at the Knights Move condition
different moves are to be mede depending on th2 direction in
which the line is drawn. in the direction A to B suppose

the move made at the Knights Move condition is a diagonal
(or straight) move and that in the opposite direction this
move is a straight (or diagonal) move. Tn this case the

two lines traverse as shewn below




..
No divergence of the itwo lines occurs and thus
no thickening of the line will be seen in practice,
rthus it is possible to allow for the Knights Move condition
by utilising the direction in which the line is drawn. !n

procedure line (given in Appendix 1) this is achieved by

inspection of boolean B,

1t shculd be noted that the Knights Move

condition does not occur for all lines,

two examples of lines in which a Knights Move
condition occurs (produced on the graph plotter) are
shown, In both cases the lines have been drawn in

two directions so that any divergence can be clearly

seen,



No coxrrection

for nights Move

vorrection for ¥nignts move

’

EXAMPLE OF KNIGHTS MIVE.

Line (0,0)to (14’9) Figure 1.



No correction feor Knights Move

Correction for Knights Move

EXRMPLE OF KNICHTS MOVE.

Fipare 2,

Line (0,0) to (2,1)



CHAITER 2,

FLANZ FRCJECTIONS

Theory associated with projecting a three dimensional
point onto a two dimensional plane of projection.
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CHAPTER 2

PLANE PROJECTIONS

2.1. Introduction,

In the field of computer graphics one of the most
important topics is a means by which objects in three
dimensional space can be represented on a plane in two
dimensions., In order to represent three dimensional
objects it is first necessary to be able to project the
vertices ontc a viewing plane, called the plane of
projection, which will corrcspond to the screen of a
display or the paper of a graph ploiter,

The method oy which this is achieved is known
as projection, The three dimensiornal objects to be
considered will be polyhedra and various methods of

projecting the vertices will be discussed.

This chapter describes a simple methed by
which vertices in three dimensions can be projected on

to a two dimensional plane of projection,
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2.2. Projection.

Consider some point V in space to be the viewpoint
and consider the vertices of some polyhedren S to be joined
to V. Any section of these lines by a plane, known as the
plane of projection, is called a projection.

The projection of any vertex P of S in the plane
of projection is the intersecticn of PV with the plane
of projection.

This tvpe of projection is sometimes known as
axonouetric projection and the subject dealing with

projections of this kind is known as axonometry.

2.2+.1. Perspective Proicction, If the viewpoint

V is at a finite distance from»s,lines from the vertices of
S converge at V. This type of projection is known as
PERSPECTIVE and depicts the object as it would appecar to an
observer at V. However, duc to the convergence of the
sight lines the true proportions of the object do not

appear in the projection,

2e2e2+ Orthiographic Projection, If the viewpoint

is an infinite distance from S the lines of sight will be
parallel and the projection is said to be ORTHOGRAPHIC if

the plane of projection is at right angles to the cylinder

of lines from S. If the plane of projection is at any

other angle to the cylinder of lines the projection is
said to be OBLIQUE,

One of the irmportant things pertaining to

projections is that lines in space are projectdd into lines
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on the projection plane, In projection the lengths and
direction of lines may, however, vary,

Isometric orthographic projection is an
orthographic projection such that the projection plane
makes equal angles with the three cartesian co-ordinate
axes, If the projection plane makes equal angles with
two axes the orthographic projection is dimetric and if
the engles made by the projection plane differ for all
three axes the orthographic projection is said to be
trimetric,

Note that to define the position of the
projection plane for perspective it is necessary to give
some line of sight and position the plane so that it is
a% right angles to this.

There are a number of invariants in any
projection the important ones of vhich ere listed below.

(a) Collinearity of lines is preserved

(b) Concurrency of lines is preserved.



1

Le2 wexderq

A‘

.A/ uot309foxd Jo auvld P

-39~

A utodmatp

nll.
T o y . AT/ T oY T AT T AT ICUTT r W T TWATI OO UV AYT
dd0d v o0 NOLLDELCHd EATLIOIASHEd FHI ONILVHILSATILI AVEOS Ia

=



-40-
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2.3, Mathematical Princivles of Perspective Projection.

-

W

The information required to project any given vertex
P(x,y,%) in three dimensions onto a plane of projection in two
dimensions consists of a number of variables,

The viewpoint V from which the object is seen is
given as a point in cartesian co-ordinates (xv,yv,ev) and
the line of sight is given as the angles made with the three
cartesian axes and are given by &, B and 7S . A seventh
variable d fixes the distance of the plane of projection
from the viewpoint,

Now suppose that the viewpoint is positioned at the
origin., It will thus he necessary to tranclate the original

vertex P (x%,y,8) to a new position Pt (xt,yt,st) given by

Xt X = XV
vt = y - yv (M
at G - @y

It is now required to rotate the translated vertex
Pt until the 8 axis coincides with the given line of sight.
This can be achicved by rotating Pt by®{about the x axis, B
about the y axis and?f'about the 8 axis.

The three rotation matrices to dolthis are as

follows:

FH 0 0 rotation by &
Rx = |0 cos¥ -sing about x axis (2)
| O sing cos )
"cos B 0 sinB rotation by B
Ry= 0 1 0 about y axis (3)
-sinB 0  cosB_
o ™
cos¥ -sind 0 rotation by 1(
Res = | sin cos§ O about & axis (4)
LO 0 1J
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These three rotations can be combined to give one matrix
of rotation R given by

R = Rx.Ry.Ra

so that

R = ~co:a'cosB -sin‘cosB sinB i

sirgsinBeocy cos¥eosed
+coctsing —siro(:sir:BsirK ~sirticosB

cinBecocdc 053 sintlcos ¥
+5indsinet -cosobinBcosX cocicos B‘J

o =

(5)

The rotated vertex Pr (xr, yr, @#r) is thus given by
::r] xt
yr| =R. |yt
ar at (6)
Now consider the plane of projection to he parallel
tc the xy plane at a distance d from the origin as shown in
Diagram 2,2,
The determination of the projected point Pp
(xp, yP, &p) is then easily calculated from the geometry of
similar triangles. The projected point Pp (xp, yr, &p)
has each of its co-~ordinates in a constant ratio k to those:

of Pt where k is given by

k=d (7
a

r

so that xp and yp are given by

il

xp = k.,xr (8)

k,yr (9)

i

P

The projected vertex Pp is thus

xp xr
yp| =k, lyr (10)
4D &

The co-ordinate axes on the plane of projection
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are taken a2s the x y axes so that the projected point on the
vlane of projection, corresponding to the original spatial
vertex P, is given by (xp, yp).

For each spatial vertex it is therefore possible
by multiplying the rotated coordinates by a constant ratio
vhich depends on the value of sr and d, to project the
vertex so that the s coordinates are th: same and therefore
all the projected vertices lie in a given plane, the plane
of projection.

It is fairly easy to scale the object on the
plane of projection so that the value of d is superfluous
in that the variation of it =imply alters the scaling on
the projection plane,

The algorithm for perspective projection is

given in Appendix 2.
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204, Wire Frame Drawingse.

As has been seen in a preceding section, lines
are projected into lines, and it is only because of this
that it is possible to represent objects by the simple
wire frame drawing.

Possibly the first researcher to realise this simple
fact in the computer representation of objects was T. Johnsoé
at the Lincoln Laboratories in Massachusetts. About a year
or so later in 19¢4 Pucket produced a fairly sood paper
on this development, for the National Aeronautics and Space
Administration (N.A.S.A.)

The method is simple since it is only necessary
to store data corresponding to the co--ordinates of the
vertices of the object and information concerning the
formation of the line segments. Zach of the spatial
vertices is then projected onto the projection plane and
the corresponding extreme points of the line segments on
the plane of projection are connected by straight lines.

Any object can be represented in some waj by
straight lines in space so that the wire frame drawing has
a wide range of application,

An algorithm has been written to produce simple
wire frame drawings and examples of the possibilities of
the method are shown. One of the great advantages of
the algorithm presented is that since the formation of
the line segmenis for a given object does not change it
is only necessary to organise the data associated with

a line drawing once. Other views of the object can
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be quickly generated and all that is reguired is the new
rojection of the spatial vertices from the new viewpoint,.
the rest of the information remains unchanged and the

line drawing can be ccnnected as in previous cases.

The only disadvantage or this is that the pen up
distances under certain ccnditions may become very large
and no effort is made to check for the ccincidence of
points on the projection plane, which could lead to a

reduction in the calculaticn time.,

However, since the method is so easily
programmed to deal with varying viewpoints it was
considered that nothing much was lost since the advantage
of wire frame drawings is that it affords a method by which

any object can be viewed from a number of viewpoints.

The wire frame drawing is quickly and easily
produczed since no effort is made to locate which of the
lines of the object are hidden to the viewpoint. 1n
reality the hidden line probiem, as it has been called
is solved because it is not possible to see surfaces wnich

have other peft opaque surfaces between it and the eye.

+he hidden line problem has received much
attention during the last few years. Methods of locating
the visible and hidden edges of polyhedra have been
developed by the author and are presented later in the
thesis,

The following chapter is concerned with a

method by which convex polyhedra can be represented by
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computer while thapter 4 deals with the rather more

difficult problem of the non-convex polyhedren.,

In both cases practical examples produced on

the graph plotter, are included,
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Figure 4.
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WIRE-FRAME DRAWING

Figure 5,
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CFAPTER 3

Computer Revresentation of Convex Polvhedra,

3.17. Introduction,

In 1966, Cole published a short paper in the
Computer Journal on the revresentation of convex polyhedra

from minimal information.

The method urcd enabled both the hidden plane faces
and the visible plane faces of the polyhedra %o he found

from input data consisting simply of the co=-ordinates of the

vertices of the polyhedra.

This algorithm has meny sericus disadvantages
however, Bach plane face of the polyhedroa can be
located more than once so that it was npecessary, as each
plane face was found, to check it against a list of already
located faces to ascertain whether the face had been found
previouslye. With polyhedra consisting of a large number

of faces this can become a very serious disadvantage.

As each plane face was located, it could be
rejected not only if it had already been found, but also
if it divided the existing perimeter list of points into
two disjoint pieces. These two cases of rejection necessitated

a large amount of checking for each plane face of the polyhedron.

Although the algorithm is rather sketchy, the
general idea has been utilised in this thesis to produce
an algorithm which has nany complementary features. By

introducing the concept of‘valid third vertice; it has been

possible to produce an algorithm which locates each plane
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face of the polvhadron once and once only. The current

perimeter list of line segments defines the existing

perimeter list in terms of segments rather than points (as
Cole used). By this means a convenient method of locating
each edge of the polyhedron without the need to check existing
lists of already located edges has been developed. In
addition, a method has been devised to alter the current
perimeter list such that the list ig allowed to split into

any rumber of disjoint piecese

A method of reducing the number of vertices which
can lie on plane faces still to be located has been developed.

This is particularly beneficial for polyhedra with a large

number of vertices,

The only part of the algorithm to be described
which is taken from Colds algorithm is the general method
of locating the initial perimeter list of line segments.
All the other concepts which are introduced are the

original work of the author,

It should be noted that the method to be
described inherently utilises the fact that for a given
convex polyhedron any given plane face is either ccmpletely
hidden, or completely visible to the viewpoint, A given
edge of the polyhedron is also either cempletely hidden

or completely visible,

It is because of these considerations tha. the

computer representation of convex polyhedra is simpler



than that of the general polyhedron ﬁhich may have both
faces and edges only partially hidden to the viewpoint.
A completely new approach is needed when
considering the general polyhedron., An algorithm has
been developed which determines those portions of each
edge which are visible to the viewpoint. This work

is presented in the following chapter. (Chapter 4.)
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3.2« General Method.

The input data which is associated with the convex
polyhedron consists of the cartesian co-ordinates of tne n
spatial vertices of the polyhedron. Supvose that some
viewpoint V (xv, yv, zv), which lirs outside the polyhedron
and a line of sight from V, defined by the angles it makes
with the co-ordinate axes, are also supplied as data. The
n spatial vertices of the polyhedron can now be projected
onto a plane of projection at right angles to the line of
sight.

Suppose, for clarity, that cdges of the polyncdron
are referred to as secgments on the projecrion plane and that
spatial vertices have corresponding_iging_on the projection
plane. In addition, plane faces of the polyhedron will

have corresponding convex yolyrons on the projection plane.

As an example suppvose that a cube is to be
represented and suppose that the 8 spatial vertices have

been projected onto the projection plane as shown below:

. 4
i
W5
°
8 ' *3
6
°
[
7
%2
""x 01

Cartesian Co-ordinate
Axes on the Plane of
Projection

Diagram 3,1
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Tnese points will correspond to a completed drawing as shown

below in Diagram 3.2.

Diagran 2el

An edge of the polyhadron will be called an initial perimeter

edze if the two plane faces cssociated with it are a hidden
face and a visible face as secn from the viewpoint. Thus,
ir Diagram 3.2, the initial perimeter edges will be 1-2, 2-3,

3-li, 4-5, 5-6 and 6-1.
The first step of the algorithm is to leocate the
initial perimeter cdges of the convex polyhedron,

-

3e2e1e Location of Initial Perimeter Edges. 1y

the vertices of each plane face, ordered in some direction
(either clockwise or anticlockwise), were supplied as data,
it would be possible to determine the outward normal vectors
to each face. The angles made by cach of these outward
normals with the line of sight could then be calculated, If
this angle vwere greater than 900 for a given face then the

Fad . 3 ) .
face would be visible from the viewvoint, otherwise the

face would be hidden. The special case, vhen the angle
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In Diagram 3.2 the outward normal vector to face
(1,2,8,6) makes an angle of about 180° to the line of sight
and is therefore a visible face. The face (1,7,5,6) has an
outward normal vector which makes an angle of about 60° o

the line of sight and is tnerefore a hidden fauce,

After calculating these angles it would be a
fajrly simple matter to locate those edges associated with
both visible and hidden faces which would be the initial
perimeter edges. However, the only information relating
to the convex polyhedron to be assumed in this discussion
is the cartesian co-ordinates of the vertices so that it is

necessary to develop another method of lecating these edges.
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It should be noted at this stage that the spatial vertices
of the convex polyhedron have been projected onto the plane
of projection as shown in Diagram 3.1, No edges of the
convex polyhedron have been supplied ac data and reference
will only be made to Diagram 3.2 to explain the algorithm
more clearly.

Since the polyhedron is convex the initial

perimeter edges will form an enclosing convex polygon on

the projection plane which will enclese all the points
of the polyhedron,

In the example shown in Diagram 3.2 the enclesing
convex polygon is (1,2,3,4,5,6) so that it is required
to locate these points from the information implicitly
contained in Diagram 3.1. An initial point on the
enclosing polygon can be found as follows :

Find the point on the plane of projection which
has the least y co~ordinate, If there is more than one
point satisfying this condition then choose that point
among them which has the least x co~ordinate. If there
ic still mere than one point satisfying Lhese conditions
then choose that point whose corresponding spatial vertex
is nearest to the viewpoint, This point has its
corresponding spatial vertex visible to the viewpoint. In
Diag. 3.7 the initial point will be 1. The next point to
be located on the enclosing convex polygon will be that
point which when joined to the initial point, makes the
least angle with the x axis on the projection plane. This
will correspond to point 2 in Diagram 3.1,

The first two points located on the enclosing

convex polygon are thus 1 and 2.
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The next point to e located will be that point
which when connected to the last peint obtained, makes the
least angle (measured in an anti-clockwise direction) with
the previous line segment located (1-2)., Thus frem among
the possible points 3,4,5,6,7 and 8, point 3 is selected.

The first three points to te located on the

enclosing convex polygon are thus 1,2 and 3.

‘4

93 is angle made by peint
327with line segment 1-2,

Diapram 3,

The method of locating the next points on the
enclosing convex polygon can be repeated with 2-3 now
the previous line segment. The next point located in
Diagram 3.1 will be 4, The terminating condition is
wnen the initial point (1 in this case) makes a smaller
angle with the previous line segment than any other
point, Thus, in Diagram 3.1, 7 will be selected as making

the least angle with segment 5-6 bul point 1 makes a

smaller angle, 6-1 is thus the final line segment on

the enclosing convex polygon. The enclosing convex
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polygon is thus (1,2,3,4,5,6). 1In the procedure to locate

the initial perimeter edges, given in appendix 3, the

@

number of points to be tested is gradually reduced since as
each poeint is located on the enclosing convex polygon it
will obviously not occur again and sc can be deleted from

the available list of points.

3e242. Faces Parallel to the Line of Sight. A

difficulty exists in locating the next point on the
enclosing convex polygon if more than one point makes the

least angle with the previously located segment. This

: o
n outward mormal vector making an angle of 90  with

e a2 m b ~ T 5 He i3 ¢
the line of sight. The plane face is then parallel to

the line of sight.

and suppose tnat these points correspond to a final drawing

as shown helow:

Diagram 3.6



-62-

The cube corresponds to that given in Diagrams3.1 and 3.2
rotated slightly so that faces (2,8,4,3 ) and (1,6,5,7) are

parallel to the line of sight.

Points 1 and 2 will be the first two points

Jocated on the enclosing convex polygon.

-

Points 3,4 and 8 make equal least angles with
the line segment 1-2, It is not sufficient to locate
points 3, Iy and 8 =nd sori them according to their distances
(on the projection plane) from the last point located.
This would give the initial points of the enclosing ccnvex
polygon as (1,2,3,8,4).  Scgment 3-8 does not correspond
to an edge of the polyhedron. Consecutive points on the
¢nclosing convex polygon must correspond to initial perimeter
~dges of the polyhedron, altnough we only deduce thesc =dges
from the co-ordinatesof the spatial vertices and their
projected imagese

In the example given in Diagram 3.5 the points
%, L ghd 8 have been located.  Select that point whick
lies furthest from the last point located. This will
correspond to point 4 since this lies furthest from point
2 in the plane of projection. If there is more than one

point satisfying this condition select that point from

among them vhose corresponding spatial vertex lies nearest

to the viewpoint, This point has its corresponding

vertex visible and will lie on the cnclosing cenvex polygomn.

Now it is possible that points which lie between

points 2 and 4 on the plane of projection also lie on the
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enclesing convex nolygon. The points must have their

corresponding spatial vertices visible to the viewpoint.

Points will lie on the enclosing convex vpolygon

if their corresponding vertices lie on the viewpoint side

of the planz perpendicular to the line of sight which

passes through the vertices 2 and L4, Thus,.in the example
given, point 3 has its cerresponding spatial vertex lying

on the viewpcint side oI this plane while 3 does not,

Point 8 thus lies on the enclosing convex polygon and

so the initial points on the enclosing convex polygon in
Dizg.3.5 are 1, 2, 8,4 and these correspond to the initial

)
perimeter edges 1-2, 2-8, 3-4,
If there is morc than one point betwcen 2 and 4
which lies on the enclosing polygon, then these are sorted

according to their distances (on the projection plane)

from point 2.

Note from Diagram 3.6 that of the initial
perimeter segments located, 2-8 and 8-4 are each associated

with a visible face and a hidden face,

2-8 is associated with the hidden face (2,8,4,3)

and the visible face (2,8,6,1).

8-t

[

s associated with the hidden face (2,8,4,3)

and the visible face (8,4,5,6).

Both 2-8 and 8-4 thus satisfy the definition

of initial perimeter edges given earlier,
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Locate initial point with
lowest y coord. (lowest x
coord) (nearest spatial
vertex) and take copy of it

\

vefine last segment as line
frem initial point parallel
to x & xis and in positive
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]
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projectiion plane

!

Any available points in list

vas

Get next poinb~¢__<::)
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¥
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A

e
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™NO
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(e

current min
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Store in parallel
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FLOW DIAGRAM O MEyHOD USED 'O LOCATE POINTS OF INITIAL

CCNVEX POLYGON

Diagram 5.1
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| -66-

2 8D ol ¢ . 4 -~ i §
Jele e LUTYTeIlT SHigh BT T

segments corresponding to the initial perimeter edges will form

an initial entry to a current verimeter list of line segments,

The line segments contained in this list are to have corres-
ponding edges which are associated with just one visible plane

face yet to be located.

The plane polygons associated with each of these
segments will be found and the current perimeter list will
be eltered accordingly so that the above definition of
the line segments will always be true, Note that the

definition holds true initially since each initial perimeter

D

dge (segment) is associated with one visible plane face

(1]
m

(polygon) yet to be located., A list of line segments to be
subsequently drawa and called the draw list will ve kept and
as each plane face is located,visible edges associated with
it will be added to this list, Since cach of the initial

perimeter edges is visible they will form the initial draw list,

Consider again the cube given in Diagrams 3.7 and.

3o Diagram 3.8
L
o 4
05 7
8 ° 3 3
6 6
)
°
7
°5 2
01 1

The points on the left of the diagram correspond to a final
line drawing shown on the right.



The initial perimeter edges are 1-2, 2-3, 3-4, 4-5, 5-6 and 6-1,

Y ! PO SR — .
Fecatts Locztion of Visible Plane Faces, It is

required to Jocate the visible plane face (1, 2, 8, 6) which

i

is associated with the first segment 1-2 in the current
perinecter list. Supnose the plane defined by the two vertices
of the first current perimeter line segment and another vertex
Z

2, tzken from a verticas list of valid third vertices (to be

discussed in a later sectien) is given by

ax + by +ca +d =C

where the constants a2,b,c and d can be determinecd from the

determinant
x1 y1 51 1
X, ¥, 8 1 ] .3
. &_ 1 iz
*3 Y3 Pz
Xy ] 1

vhere (x1, Yq 51) refers to the cartesian co-ordinates of
vertex 1, The visible plane f{ace associated with edge 1-2
will be such that none of the vertices of the polyhedron
will lie on the viewpoint side of it. It is therefore
required to obtain a third vertex, from the vertices list,
such that the vertices 1, 2 and *he third vertex define a
plane which satisfies this condition. The vertices lying
on this plane will define the visible plane face of the
polyhedron. The ceorresponding points on the projection
plene will correspond to a convex molygon and the edges

of the face can thus be obtained in a similar manner as

in locating the enclosing convex polygon.,

Initially the vertices list will contain all
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the vertices of the convex polyhedron. Consider that a
‘nearest' plane is already defined by the coastants a, b,
¢ and d and that another vertex L is a candidate for che
third vertex,

In the projection of the vertices the viewpoint V
was translated to the origin so that, with the viewpoint
substituted in the eguation of the plane, the equation has

a value given by the value of d.

Now suppose the vertex L has its cartesian
co-ordinates substituted in the eouation of the plane. The
value s of the cquation of the plane is given by

s = ax, + byL + C&

L + d

L
where (XL Yy, aL) are the cartesian co-ordinates of the
vertex L. If s x d<10 the vertex L lies on the oppeosite
side of the plane to the viewpoint. If s x d>o the vertex
L lies on the same side of the plane as the viewpoint. In
this case the currently deiined plane must be replaced by
the plane defined by the vertices 1, 2 and L which becomes
the new nearest plane. If s x d = O vertex L liec on the
curcently defined plane and may be stored as being a vertex
iying on the ncarest plane located so far. 1In gpractice
this corresponds to an absolute value of s x d being less

than some small value 8.

After every vertex in the vertices list has been
tested in this way the necarest plane will define the visible
face associated with the edge 1-2. The vertices which have
been stored (corresponding to s x d = O since the last nearest

plane was replaced) will be the other vertices lying on this

visible face.



As oxplained earlier the correspending points can
now te sorteda in the same vay as in locating the initial
perimeter edges. For example, the visible plane face

s Bt BB 5 " ¥
associated with segment 1 - 2 is (1,

n

,&,6) which has a
corr-sponding convex vnolygon ca the plane of projection

as shown below.

Dizecram 2.9

— e &

The points on this polygon will be sorted into the order
(1,2,8,6). The correspending edges of the plane face

are thus 1-2, 2-8, 8-6 and 6-1,

The visible edges which lie on the visible face

located are stored in @ 'plane' list of line segnents.
The plane list is thus (1-2, 2-8, 8-6, 6-1).

The next step in the algorithm is to alter the
current perimeter list of line segments such that the
segments which are present in the list after the alteration

are associated with only one plane face still to be located.

Note that it is necessary at this stage to alter
the existing current perimeter list (1-2, 2-3, 34, 45,
5-6, 6-1) since line segments 1-2 and 6-1 are not now
associated with one face still to be located since the
visible plane face on which they lie (1,2,8,6) has now

been located.
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Diagram 5.19

At the finish the nearest plane is defined as being
that on which the vertices a, b and L lie. The stored

list of vertices contains the remaining vertices on
this plane.
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3.2.5. Formation of New Perimeter List of Line

Segments, In the example given earlier the visidble edges of
the plane face associated with edge 1-2 have been found and
are stored in a plans list (1-2, 2-8, 8-6, €-1). The current
perimeter list of line segments is 1-2, 2-3, 3-4, 4-5, 5-6, 6-1.
Now since each segment in this current perimeter list is, by
definition, associated with just one face of the polyhedron
to be located, it is clear that if 2 segment of this list
occurs in the plane list it can be cancelled from the current
perimeter list., Suppose also that these segments are
deleted from the plane list of segments,

In the example given, sesments 1-2 and 6-1 will
te cancelled in beth lists so that the remaining lists are
as follows : .

current perimeter list: 2-3, 3-4, 4-5, 5-6

plane list : 6-8, 8-2
Since each visible edge, apart from those in the initial
perimeter list, is associated with two visible plane faces,
the remaining segments in fthe plane list will now be
associated with just one plane face to te located., These
edges therefore satisfy the conditions of current perimeter
edges and may therefore be added to the current perimeter
list which is now as follows :

2-3, 34, 4-5, 5-6, 6-8, 8~2
The segments remaining in the plane list are added to the
draw list of visible line segments since this is the first
occurrence of these segments. Note that before the plane

face (1-2, 2-8, 8-6, 6-1) was located these line segments

vere not associated with dnu plane faces already located.,
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A convenient method of cancelling the semments in the current
perimeter and plane lists is by having a direction associated
with each of the segments. Suppose this direction is anti-
clockwise for the current nerimeter list and clockwise for

the plane list.

The line segments of the current perimeter list

have directions as shown below:

Diagram 3.11

The line segments of the plane list have directions as

follows :

Diagram 3,12
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The line scgments vhich are cancelled are those which have

@

q

opposite directions associated with them and are thus 1-2

and 6"1 .

Diagram 3%.13

The new current perimcter list is thus

2-3, 3-4, 4.5, 5-6, 6.8, 8-2

The first segment of the new current perimeter
list (in the example given this is 23) is taken and the
visible face associated with the corresponding edge located.
The currcnt perimeter list of line segments is again altered
and the method is repecated until the plane lists and
current perimeter lists completely cancel. At this stage
the current perimeter list will be empty so that there are no visible
edges of the polyhedron associated with plane faces still
tc be locateds  Moreover the draw list of edges will

contain all visible edges of the convex polyhedron.

3.2.6. Location of Hidden Faces. The method

can now be repeated to find the hidden faces of the polyhedron,
The initial entry in the current perimeter list of line
segments consists as before of the initial verimeter edges.

In this case however these edges are not added to the draw
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list of edges which will now consist of the hidden edges

of the convex polyhedron,

The plane face located in this case will be that

plane face such that none of the vertices of the polyhedron

lie on the onposite side of the plane face to the
If the constants a,b,c,d define the current plane
if L is a vertex being tested, L will replace the
vertex if

d x (axL + by, +ce +d )‘<:; 0
where (xL, Y1, EL) are the caitesian co-ordinates
for then L lies on the oprosite side of the plane

the viewpoint.

Tnis is the only altération necessary in

general method described earlier.

viewpoint.
face and

third

of vertex L

face to

the
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3636 Valid Third Vertices.

The algorithm locates each plane face of the
polyhedron once and once only so that it is not necesscary,
after locating a plane face, to check against a list
of plane faces to ascertain whether the face has been located
before. It is not sufficient, however, to select any vertex
(occurring in the vertices list) as a third vertex to define
a plane with the two vertices of the current perimeter list.
In this case, as will be shown later, it is possible to

find a plane face a second time,

The faces of the convex polyhedron have associated
convex polygons on the plane of projection and as explained
carlier the current perimetcer list of line segments has
anticlockwise directions associated with each of the line
segments,

Given an initial segment from the current
perimeter list it is required to locate the polygon
associated with it. low the points lying on this plane
polygon will all lie on one side of the segment since the

rolygon is convex,

Consider the following example:

Diagram 3,14




2a 3 - . - X ~ . ',
The current perimeter list of line segments at

this stage is 1-2, 2=3, 3-l4, 4=5 and 5-6 along with other
segments which need not be considered in this example. The
plane face corresponding to the polygon (2,4,35) has been
found.

Now suppose 2-3 is seiected as the edge for which
the visible plane face of the polyhedron is to be located.
The corresponding points on the plane of projection will all
lie on one side of segment 2-3. By the method used to find
the new current perimeter at each stage, this side of the
segment will be the left hand side {(in the direction 2-3).
Therefore 2all points lying on the convex polygon associated
with segment 2-3 will lie to the left of it, Thixs any
voints on the plane of projection which lie to the right
of the segment under review must be invalid as third
vertices. This will prohibit point 4 from being used as
a third point for if it was used then the already lccated
polygon (2,3,4) would be located again. Suvpose the
visible face associated with edge 2-3 is (2,3,1). Vertex 1
is a valid third vertex since the corresponding point lies to

the left of the directed segment 2-3,

valid third vertices
on this side of extended

line segment 2-3
\ /
#
/ 6
7/

-3

Diagram 3,15
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Thus, by plecing this restriction on the third vertices used,
no face of the convex polyhedron will be located more than
once, A simple test can be used to determine which side

of a directed line a given point lies.

Consider the directed line segment 2-3 and a
third point L. The area of the triangle D defined by the

points 2,3 and L is given by

D= x2 ya 1
X 1
3 I3
xL yL 1

where (x?, ya) are the cartesian co-ordinates of point 2.
If the determinant D is positive the point (XL, yL) lies to

the left of the directed line 2--3.

Thus, for each of the vertices in the vertices
list, it is possible by determining the siegn of the area of

a triangle, to determine whether a vertex is a valid vertex

for the line segment .nder consideration.

By this means plane faces of the polyhedron will

be located once and once only.
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3.4, Peduction in the MNumber of Vertices in Vertices Liste

As explained in the last section each vertex of the
vertex list must be tezted in order to ascertain whether it can
be used as a valid third vertex, It is also possible to reduce
the number of vertices in the vertices list as the algorithm

procceds,

It is fairly obvicus that vertices should only be
present in the vertices list if they lie on plane faces yet
to be located. If it can be shown that it is not possible
for a given vertex tu be on any more plane faces,then the
vertex can he erased from the vertex list, The reduction
in the number of vertices in the vertices list will be
particularly hcneficial if tngre exist a large numbder of

spalkial vertices for the given convex polyhedron.

~

Suppose a situation exists where two adjacent
segments of the current perimeter list both lie on the

vlane face located.

6 1 Diagram 3,16

In the example above suppose the current perimeter
list is 1-2, 2=3, 3~4, b5 5.0, 6-1,

The visible plane face located is say 1=747=-343=2,
2"‘1 )
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The s

seements 1-2 and 2-3 will be cancelled in
both lists so that the new current perimeter list will be

3-L, L.5, 5.6, 6-1, 1=7, 7-3.

Now since segments 1-2 and 2-3 were on the current
perimeter list there can be no other non located wvisible edges of

the polyhedron from the vertex 2.

In the example above both these edges (1-2 and 2-3)
have been located. There can now be no more visible edges
from the vertex 2 and this 2 can be deleted from the vertices
list, since no more visible plane faces are associated
with ite Thus if, at any time, two adjacent current
perimeter segments lie on the plane face located the vertex
which is common to the two corresponding edges can te
deleted from the verlices list since there are no more

edges associated with this vertex to be located,

These deleted vertices need only be re~introduced
when locating the hidden faces of the polyhedron if they
are associated with edges on the initial perimeter list.
it is only in this case that they lie on plane faces which

are hidden to the viewpoint,
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Diagram 3,17
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Consider the convex polynedron the visible cdges of which cre
shown atove. As a general example of the method each plane

face of the polyhedron will be leccated.

2-1, 1-6, 6-5,

Thus the current perimeter list will be 5-4, h—3,
3=2, 2=1, 1=6, (=5,
The visible plane face associated with edge 5-4

has edges 5-9, 94, 4~5 so that the new current perimeter is

b3 initial entry in draw list
1 > .

3~2 5=l

2-1 b
6 3 5

i 3-2

65 2-1

9
oy 1-6
5 4
9"+ 6_5

Edges added to draw list from first piane face 5-9, 9-lL.,
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next visible plane face

-9 edges added to draw list 9-8, 8-3.
9-8

8-3

34 vertices rejected - none

new current perimeter
3-2
2-1 3 2

1-6

¥
oo
\O

next visible plane face

3-8 edges added to draw list 8-2
8-2

2=3 vertices rejected - vertexr 3

-

new current perimeter

3~2
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next visible plane face

2-8 edges added to draw list 8-7, 7-1
8-7

7-1

1-2 vertices rejected - vertex 2

new current perimeter
1-6
6-5
5-9 . 3
9-8
87

7-1 5 o
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