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ABSTRACT

Investigations into the security of computer systems are becoming more

important. With more people daily coming into contact with these machines,

and personal data stored within the systems accessible in many cases to any

knowledgeable user, the question of privacy of information held in these

computer systems becomes paramount. A different approach, from that currently

used, is advocated in this thesis. The implementation of a recursive virtual

machine system is described, which it is proposed, will permit a highly

secure approach to providing an inter-process protection structure in a

computing environment.

On attempting to extend this system from permitting purely synchronous

processing to allowing some form of asynchronous processing, it was dis-

covered that this could not be achieved without a radical alteration in the

initial design proposals. This thesis describes the synchronous machine

implemented and provides a discussion of the problem of providing a

generalized asynchronous processing mechanism together with a proposed

solution to this problem.
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CHAPTER 1 - INTRODUCTION AND OVERVIEW OF THESIS

1.1 Historical Background

Since their initial conception, computer systems have evolved rapidly from

very large, fast calculating machines into tools enabling people in all

walks of life to collect and examine data of various kinds. However, despite

increasing spphistication there has been 11ttle change in the overall structure

of the computer system as seen by the user, and it is to this topic that this

thesis relates.

Initially computers were used by a single person who, by manipulating the

switches and keys of the machine and wri ting programs in machine code, was

able to use the computational power available for the solution of problems

previously beyond his scope. As more people began to realize the possible

uses of computers, schemes were devised in order that their usage could be

made more efficient. This led to the production of separate processors for

providing input and output facilities, and later programs were written to

schedule the various computer facilities between several users. These

programs formed the basis of current operating systems and were designed to

permit a growing population of potential users to access computers while

providing a solUtion to the problem of resource contentioo. As more users

came to share the facilities of a particular computer system so the need to

protect the operating system from user program malfunctions, and also the

users from each other, became increasingly more important.
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Historically, this requirement for a protection scheme to be provided in a

computer system led to the development of the 'two-state' machine. In such a

system a program may execute in one of either the 'system' or 'user' states,

the operating system being the only suite of programs permitted to execute in

the privileged system state. All other programs could only execute in the

user state. Any program executing in the system state had complete access to

all the resources of the configuration together with the ability to perform

certain priyileged operations. A user program, however, had the resources

available to it limited by the operating system, and was unable to perform

any of the privileged operations. Such a scheme can be used by the operating

system to provide an excellent protection mechanism between the users of the

computer system, assuming that the operating system is functioning correctly.

Unfortunately as computer systems have increased in size so have the operating

systems associated with them; as a result most of these systems do not

provide the clean protection mechanism they strive for. Consequently a

malicious user often can gain access to parts of the system for which per-

miSSion would not normally be granted. The result of such an act may cause

the loss, or change, of certain items of private information. This information

could be owned by another user of the system or the system itself, and the

result of such an action could possibly cause the system to malfunction and
then to 'crash'.

Alternatives to a monolithic computer system architecture such as this have

been devised and implemented. Another alternative is proposed in this thesis

and it is hypothesised that should such an approach be adopted, then any

necessary operating system could be more easily written and tested, and a

clearer approach to providing the necessary protection between processes,

be they initiated by users or the operating system, would be possible.
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1.2 Hierarchical Computer Systems

In an attempt to model complex computer systems, Zurcher and Randell

adopted a multi-level modelling technique based upon the concept of des-

cribing the system at several 'levels of abstraction' ~R 68, Ra 69].

It was claimed that several representations of a system can, and can usefully,

coexist. These representations are at different levels of abstraction.

Example: An input spooling process views its output as files which are

stored somewhere on a disk. The disk file handler which provides the files,

is concerned with physical disk drives, segments and tracks etc. The

representation of a file is said to be at a higher level of abstraction

than that of a segment or track.

A similar approach to computer system design was adopted by Dijkstra in his

design of the 'THE' Multiprogramming System (Di 68b]. Here a strictly

hierarchical structure was adopted, all representation of objects at one

level of abstraction being composed of representations of objects at lower

levels of abstraction. A primar~ design aim of this system was a high

degree of reliability which could readily be demonstrated. In fact,

Dijkstra was able to check each state of the system at each level in the

hierarchy, thus more easily illustrating the overall reliability of the

system.
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A review of computer systems which have adopted a multi-level approach to

operating systems design clearly indicates the benefits to be gained. Perhaps

the most widely publicised of such systems is 'MULTICS' [CV 65, Or 75, SS 72].

This system was designed with the four criteria of functional capability,

economy. simplicity and programming generality uppermost while providing the

most useful set of access control mechanisms in a computer utility. The

designers considered that if these mechanisms could be easily understood

then this was the best way to achieve confidence in the system. The

hierarchical approach to computer system design was implemented in MULTICS

as a series of concentric rings of protection [SS 72]. Each ring represented

an environment of resources at increasingly higher levels of abstraction.

The initial intention was to support a multi-ring supervisor system, as in

the THE system. The main difference being that the MULTICS structure was to

have run time significance whereas the THE structure was purely a design and

implementation tool. However hardware constraints have meant that the

MULTICS Supervisor essentially resides in one ring, at level zero. It is

important to note that only level zero processes are allowed to perform

asynchronous Input and Output operations, and although modifications to the
hardware have permitted more supervisor functions to be provided at more
abstract levels, the rules concerning asynchronous I/O still apply. This
is a problem which is central to this d it ithesis, an s discussed further in
Chapter five.
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1.3 Extendible Computer Systems

SchemeR such as those just mentioned have demonstrated the advantages

of structuring an operating system in a hierarchical fashion. Present

computing trends are towards users interacting with complex packages

which do not form part of the operating system but execute as user

tasks. In many cases the designers of such packages wish to provide

an abstract machine with which the user can interface. There is a

requirement to provide a user's program with some objects, which may be

of an abstract nature, and to prevent this user program from accessing

these objects in any manner other than that prescribed.

Examples:

i) A data base system which provides new file handling facilities

but wishes to prevent users of this system from accessing their

flIes via the standard operating system file operations.

Ii) An APL system which provides a new level of more complex

arithmetic operations than those of the machine hardware.

The various ways in which the extra facilities currently are provided

in these two examples illustrates the sharp contrast between the current

methods used. A popular way of implementing a Data Base Management scheme

is to provide a COllection of subroutines for the use of the interacting

program. This approach permits the user a great deal of flexibility

when designing his program. The program can be written in any programming

language and will be as efficient as the programmer makes it. The only

constraint on the programmer is that all interactions with the data base

be made via the supplied subroutines. However since the program appears
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to the operating system like all other user programs there is no run-time

constraint to prevent direct interaction with the data base via the

standard operating system £iling routines.

On the other hand, many APL systems are completely interpretive. They

provide, as an abstraction o£ the actual machine, a new set of instructions

which form the APL instruction set. Such a scheme certainly prevents

users from directly interacting with the operating system, however it

does not permit a user to access certain primitive functions of the

machine, ego 'ADD', 'SUBTRACT', etc., which, for efficiency considerations,

may be desirable. There is in this case some loss of efficiency due to

fully interpreting each abstract instruction.

Clearly, the desirability of providing an abstract machine on which a

programming system can run is closely linked with the level of

abstraction methodology. The major requirement is the provision of

mechanisms to enable such systems to be extended beyond the boundaries

of the basic operating system. Such systems have been designed, and of

note are the Project-Sue system [At 72a, At 72b] and the RC400 system

designed by Brinch Hansen [Br 70]. Both these systems are more ambitious

than the 'THE' system, and each provides a system 'kernel' ('nucleus' on

the RC400) which handles machine interrupts and provides some

synchronisation primitives. The remainder of the op~rating system

functions in the same way as a user program, new levels of the system providing

a more abstract machine environment in which processes may run. Also,

since both user programs and operating system programs can have the same

facilities, it is easy to see how such a scheme can be extended beyond the

operating system into the provision of user programming packages.
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1.4 Structured Programming Techniques

In parallel with these developments which provided a hierarchical

and extendible computer system, proposals were being made with regard

to the design and construction of programs. A more 'structured'

approach to program development has been advocated [DHH 72] and this,

associated with the concept of user defined 'types' [Br 73], has

enabled pr~grams to be built in a similar manner to that discussed

when decomposing operating systems using the level of abstraction

concept. The use of a structured programming methodology has been

shown to increase efficiency in programming effort and to lead to fewer

errors being introduced into these programs.

It is to be expected therefore, that by combining structured programming

techniques with the level of abstraction methodology, operating systems

can be built which are well protected, error free and thus reliable.
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1.5 Terminology

Before any further discussion is attempted there must be some definition

of the terminology which is being used.

The definition of a process which is used here is that given by Horning

and Randell [HR 73], in which a process is defined as a triple (S,f,s)

where S is a state space, f is an action function in that space, and s

.is the subset of S which defines the initial states of the process.

A computation is defined as a sequence o£ states from the state space S,

obtained by applying the action £unction f, £irst to an initial state

and then to each succeeding state. A process thus generates all the

computations generated by its action function from its initial states.

This definition is, by its nature, very low level. However by using the

techniques of combination and, abstraction and refinement discussed

by Horning and Randell, it is possible to deduce new 'higher' level

processes which may be more appropriate to the requirements of a

particular application.

Access to an object is defined by an algorithm within the system. It

may be implemented in hardware, micro-code or a piece of program and

there may be a number of ways in which a particular object can be accessed.

For example, an object which isa segment of memory could have its

Possible access rights defined as 'read' or 'write' a word, or 'execute' an

instruction; an object which is a procedure may have 'execute' or 'read'

access rights; an object which is a physical device, ego a line printer

may have 'access' or 'no access' access rights.
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Within a system the objects of which it is comprised can be divided

into disjoint sets by ~, all objects of a particular type having

the same set of defined access rights. Thus for any object which is a

segment of memory the access rights 'read' and 'write' a word, and

'execute' an instruction would be defined. Of course, for a particular

process, the protection system may limit the access of some object to a

subset of those defined for that type. For example, the only permissable

access of ~ given segment of memory may be 'execute' an instruction.

The dynamic creation of new types and the deletion of old types throughout

the lifetime of a system considerably helps in producing a general,

extensible system.

The notion of an environment or a 'domain' [Lam 69a] is fundamental

to protection as it forms the means of structuring a system for

protection purposes. It allows processes to reference a group of

objects, and associates the permitted access rights with these processes

for the objects. An environment can be defined as that entity which

specifies, at each instant in time, the objects available to any process

within that environment. Furthermore, the environment also specifies

the manner in which any of its processes may access the objects currently

available. Usually the permitted accesses to an object will be a subset

of those defined for the type of object. A process may execute within a

number of environments dUring its lifetime, though at a particular instant,

it will be associated with precisely one environment.

In order to permi t processes to fully exploi t such an access control

system, it is desirable both to allow t~e set of access rights constituting

an environment to change and to allow a process to switch from one

16



Environments Within A Computer System

a) Set of environments with no shared objects.

b) Set of environments with shared objects.

Figure 1.1

The large circle,
E, represents the
set of objects
constituting the
real computer
system.

The smaller circles
A,Band C represent
that subset of
objects from E
constituting the
environments A, B
and C respectively.



environment to another. The switching o£ environments Day be a less

efficient operation than that of making a small change to the contents

of an environment. either by adding an object to. deleting an object

from. or changing the access rights to an object in the environment.

By a series of such changes it may be possible to avoid environment

switching altogether; however environment switching is not be be

prohibited since it may provide, in some cases, a more efficient and often

a conceptu~lly cleaner solution to a particular protection problem.

With the basic constituents of a computer system defined. a computer

system can be defined as well-protected if and only if processes can

at all times only access those objects currently specified by their

en vironmen t•

For example. referring to figure 1.1. for the system to be well protected

a process within environment A must never be able to access objects

within environments B or C. This does not preclude processes in different

environments from sharing access to objects, as illustrated in figure

1.1 (b).

In order to provide an environment a function. f, is provided which maps

the abstract objects of this environment into real objects of the

underlying computer system. The environment EA is defined by the

mapping function fA of the environment constituting the whole computer

system, E.
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If the environment EA is defined in terms of some intermediate abstract

machine which in turn is mapped into the real computer system then the

mapping function fA may be some function of the mapping function fB'

ie. EA = fA (E) = f~ (EB) = f~ (fB (E»)

The number of intermediate mapping functions used to establish a particular

environment defines the level of abstraction, i, of the environment.

Tbe notion of a process migrating from one environment to another has

already been mentioned briefly. One example of this activity can be

considered as occuring each time a basic machine instruction is executed

in an abstract machine environment. In order to perform the machine

operation the process involved is transferred to the least abstract

environment of the computer system and the required objects mapped into

real machine objects, words of core memory for example. In this case

the machine hardware uses the mapping function supplied in order to

transform the abstract objects of the calling environment into real

machine objects; and the only transformation performed is that for those

objects actually required for the particular machine operation involved.

The alternative approach, of redefining the calling environment so that

basic machine operations can be performed directly, is considerably more

cumbersome if carried out for each abstract machine operation as it may

be impossible to decide in advance which objects need to be renamed.

In order for a process to move from one environment to another, any objects

which are to be shared between the two environments must be renamed in the new

environment's terms. This renaming will involve a number of mapping

transformations dependant upon the level of abstraction of each environment.
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The number of transformations performed when a process migrates from

one environment to another is defined as the distance. d. between the

environments.

A Set of Structured Computer System Environments

level of abstraction
A

1

• 2H

•p •Q 3

Figure 1.2
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Examples:

Referring to figure 1.2

Environments P and D are separated by a distance 1

Environments P and Q are separated by a distance 2

Environments Q and E are separated by a distance 3

Environments D and G are separated by a distance 4

One critic~l factor when discussing structured computer systems is their

overall efficiency, especially when considering the performance of the

machine at more abstract levels than that of the basic hardware. It is

therefore essential to provide a criterion for judging whether or not

such a system is efficient.

A structured computer system will be deemed efficient if the cost, C,

of a process being transferred between two environments is at worst

directly proportional to the distance between the two environments.

ie. CA.B < K x (d )A.B

In practice K should be minimized, and it will be shown that, in the

case of the 'recursive virtual machine' described in this thesis, techniques

exist which reduce K to acceptable proportions, less than 1 in many cases.

However if the cost function is not linear, but is squared or exponential

for example, it is considered that whatever optimizing techniques are

employed to reduce K's value, it will never prove feasible to construct

systems which require an indefinite number of levels to be crossed.

Within a particular system there may be several cost functions, K,

each dependant upon a particular type of inter environment transfer.

This is perfectly acceptable provided that each cost function is at worst

linear with respect to the number of levels crossed.
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With these definitions in mind the following pOints should be noted

with !egard to a well-protected computer system.

i) An environment, which exists at any level in the hierarchy, must

be unaware of the environments at less abstract levels which

have mapped the basic machine objects into a set of virtual

machine objects.

ii) A process existing within an environment should be able to

regard the environment provided to it as a machine in which it

executes. The operations of this machine should appear reliable,

atomic and deterministic; though the program may of course

interact in a non-deterministic manner, through the machine, with

some other process known to it.

iii) If a process creates subsidiary environments, then erroneous

operation of the process can damage these subsidiary

environments.

iv) If a process within an environment collaborates with another

parallel process, possibly through the use of shared data, then

erroneous operation of the process may present invalid or

meaningless data to the parallel process.

v) Erroneous operation of a process must never be able to damage

those processes which provide it with its environment;

furthermore, any program which creates a subsidiary environment

must protect itself against any program which is executing

within that environment. For example, if a program gives a

process in a subsidiary environment access to the data which

defines that environment, then the supervisory program must be

considered responsible if this data is altered.
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vi) It must be ensured that it is impossible for a process to

construct new 'privileged' environments maliciously. which.

because of some knowledge of their immediate supervisor. can

damage other. less abstract environments.

vii) It must be impossible to usurp the total machine's resources

by any malicious process.
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1.6 Access and Protection Mechanisms

Having discussed some of the reasons for providing a well.protected

and extensible computer system, it is perhaps pertinent to mention the

mechanisms which have been used to provide such systems. The 'access

matrix' scheme discussed by Lampson [Lam 71] and used in Project Sue

[At 72b] associates a set of access attributes for each object in the

system wit~ each environment that exists in the system. This is an

extremely general approach and it enables the system to determine at any

instant whether or not a particular process has access to each object.

A further scheme is the 'lock and key' approach discussed by Needham

[Nee 72], whereby access to an object is granted only if the environment

containing the process which is requesting the access has the 'key' for

this object. Such a scheme is clearly more efficient on storage space

than the access matrix, but it may be slower in searching for the keys to

a particular object. Both of these schemes are, in effect, different

implementations of the 'capability list' mechanism first discussed by

Dennis and Van Horn [DV 66] and later further described by Lampson

[Lam 69a].

Initially, implementations of capability machines did not permit the

redefinition of user defined objects. MULTICS [Or 72], for example,

employed a capability mechanism for its access control and addressing

schemes, but was unable to permit the ~enaming of objects. These

implementations held a master table of all possible objects in the system

and then an executing process could only gain access to a particular object

if it currently owned a capability for this object. Thus each environment,
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in the system is defined by the capability list mapping real objects into

abstract objects of that environment.

Later schemes were devised to permit the renaming of objects in a system,

however these tended not to adopt the strict hierarchical approach

taken by the MULTICS designers. The Plessey System 250 [En 74] is one

such realization of a computer system which has based its addressing

structure apd protection policy on the implementation of a capability

list mechanism. The flexibility of such a mechanism has, in this case,

resulted in a system which is an ever changing list structure that can

be arbitrarily complex in its interconnections.

The work on the HYDRA system [wu 74, WLP 75] has shown that a number of

protection problems can be solved using the capability list approach.

The arguments in favour of this approach show that most protection

problems can be sensibly solved using this technique. A serious criticism

of HYDRA, and other capability systems, has been the inability to

'revoke' capabilities passed on to more abstract environments. That is

to say that once an environment has been passed the capability to access

a particular object it cannot be forced to return this capability to the

.less abstract environment. In this way it is possible for processes to

misuse the system by accumulating more than their fair share of system

resources. It is the solution of this problem, although it appears in a

different guise, that is fundamental to this thesis.

At the Stanford Research Institute, it is proposed to use the capability

list approach in order to build a provably secure operating system

[Neu 74]. The intention at SRI is to structure the system hierarchically,

so that using the level of abstraction methodology the proof of security
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may be more easily obtained. In this scheme it is intended to use

a 'revocable capability' ~echanism similar to that described by Redell

and Fabry (RF 74] in order to over come the serious problem discovered

in the HYDRA system. However, two questions remain to be answered in

this system, the £irst concerns the overall efficiency of the system and

the second concerns a problem of revocable capabilities in systems

permitting asynchronous processes.

With regard to the overall e££iciency o£ the system it is interesting to

note that other hierarchically designed capability systems, most notably

MULTICS, have reverted to two-level systems due to the inability to permit

efficient execution of processes at more abstract levels. The e£fect of

this approach is to have a maximum distance between environments o£ 2,

thus lessening the cost of processes being transferred between

environments. This cost of transferring between environments was a major

factor in the design of both the HYDRA and Plessey 250 systems. As a

result a non-hierarchical structure of environments is provided, with

the distance between environments being 1 in the majority of cases wh'ere

processes need to migrate between environments. A hierarchical structure

of environments is permitted, but it is accepted that there will be a loss

of efficiency in their approach in this case.

The flexibility of the capability mechanism permits a structured computer

system to be built in a non-hierarchical manner, and also enables many

protection problems to be solved. The introduction of the 'revocable

capability' mechanism further provides a solution to the particular

problem of subordinate environments not returning capabilities for

objects when they are no longer required. However it is conjectured that
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a further problem, concerning the interaction of asynchronous processes,

is introduced if revocable capabilities are used, and this problem will

be discussed in depth later in this thesis.
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1.7 Virtual Machine Systems

The 'virtual machine' approach to computer system design provides

another approach to providing a well-protected and extensible computer

system. This approach has naturally followed from the use of

'virtual memory' in large multi-user systems [De 70. Pa 72]. The

virtual memory concept provides a protection and allocation mechanism

for controlling the memory resources of a computer system. Users are

separated from each other and the operating system by each being allowed

access to a particular abstract machine with its 'virtual memory' defined

by the operating system.

Virtual Machine mechanisms. such as a.?~ 67[Ms 70. Pa 72]. present to

both users and designers a set of computer systems which are protected

from each other. The virtual machines resemble the existing hardware of

the real machine. and in some cases it is possible to re-define

recursively another virtual machine from a user job already running in

the system. The main feature of virtual machine systems is not however

this recursion. but the ability to support a variety of different

operating systems f0r the hardware of the machine.

The ease with which a virtual machine system can be re-configured to

support several operating environments has led to the proposal of a

virtual machine system in a naval tactical environment [PH 76]. In this

proposal a degree of redundancy is permitted when supporting a computer

configuration on board a naval vessel. In a normal situation this

redundancy is provided by a substantial overhead of expensive hardware

and software. and it is hoped that by employing virtual machine techniques
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this can be considerably reduced. The arguments proposed to support

such a system cite the flexibility, security and performance of a

virtual machine system which has been properly designed in the areas of

hardware and software.

An example of an existing, and widely used, virtual machine system is

CP-67. This system was designed to run on an IBM 360/67 configuration and

originally provided users with a virtual IBM 360/65 on which their programs

could be run. The basic difference between the two machines is a

hardware paging box which forms part of the IBM 360/67. This paging box

is used to map automatically all the virtual memory addresses used on the

machine, and provides the virtual memory requirements of CP 67. An

ordinary user would interface to the machine via the Cambridge Monitor

System, a simple single user operating system. He then was given the

impression of having, totally at his disposal, an IBM 360/65. Other users

could however interface to the system via the standard OS operating sys tem or

even directly program the 'bare' machine. Unfortunately this arrangement

did not permit portions of the CP 67 operating syste~ to be tested as a user

job and later versions were produced which did this by providing users with

a virtual IBM 360/67 on which programs could be run. This development led

to the VM370 system, now widely used on IBM computers.

The ability to provide recursively one abstraction of a machine architecture

on top of another clearly allows the basic machine architecture to be ex-

tended. Any virtual machine which has the capability to recursively create

a further abstract machine could provide an abstract 'APL' or 'Data Base

System' machine. This illustrates the flexibility of this approach when
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structuring an operating system. Starting from the basic types of objects

of this computer hardware, more abstract virtual machines can be built

which provide to their users higher level types o£ objects and these

objects can then in turn be used to produce even more abstract objects.

Example:

In a Data Base system the following abtractions apply:-

A Data base. is a set of files,

A file is a collection of sectors on a disc.

The usefulness of an implementation of such a scheme on conventional

processor exceptions will force control to an environment which is

'two-state' computer architecture is questionable however, since most

permitted full supervisor-state privileges. This might not be the

desired sequence of events, for the facility to recover from this

exception maybe provided by a process in an intervening environment.

In terms of our definition of the efficiency of the system,the distance

between two environments is increased by twice the level of abstraction

of the environment actually providing the required service.

Example of CP67 Operation

illustrates
desired
flow of
Control

USER 3 USER 2 USER 1 USER 4 USER 5
SVC CALL.~ 4~_: .

••"'.OS SVC IMPLEMENTATJO~' CMS CMS,,~
V'

CP67

Figure 1.3

illustrates
actual flow
of control



Example:

In the case of CP 67 any attempt by a process in some environment to issue

a 'supervisor call' operation will result in control being automatically

passed back to CP 67 itself. This may not be the desired action. For

example if the system is currently in the state described in figure 1.3 and

a process user 1, issues an OS supervisor call operation, then the sequence

of control is the following. The user 1 process is stopped and control passed

to CP 67. ~he supervisor call process within CP 67 then determines that this

is an operation provided by the OS environment it has set up and passes

control to this environment. The required operation can then be provided and

user 1 restarted. Clearly however the desired flow of control is merely from

user 1 to OS and back again directly. The distance between the two

adjacent environments when user 1 calls OS is, in this case, 3 instead of

the desired 1.

It is the presence of a supervisor state which causes the problem just

described, and it should be noted that the effect of this problem is

seriously amplified if virtual machines are permitted to redefine other

virtual machines recursively. In fact the amplification effect is so

bad that although a recursive version of CP 67 exists, now known as

VM 370, only a single level of recursion is possible due to efficiency

considerations.

The necessity of the supervisor state has in fact been seriously

questioned by Lauer and Snow [LS 72] and further discussed by Buzen

and Gagliardi [BG 73]. As a result of these discussions, together with

the considerations of performance necessary for providing a useful system,

several new systems designs have evolved. These systems simplify,
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generalize and make recursive the architecture of hardware capable of

supporting virtual machines [LW 73, Go 73, BU 75]. The adoption of a

computer architecture design to support any number of virtual machines

recursively, appears to provide a mechanism for hierarchically structuring

a computer system and also provides a means of extending the system to

any required level. A 'recursive virtual machine' architecture is therefore

proposed herein, whose design follows that described by Lauer and Wyeth

[LW 73] an~ Lauer [Lau 74]. Attempts to implement this design in

micro-code on a Burroughs B1700 [Bu 72] have shown the feasibility of

such a solution in terms of efficiency and performance. The details of

this performance evaluation are given in section 4.5 of chapter four.
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1.8 Virtual Machine Systems and Asynchronous Processing

During the implementation of the recursive virtual machine, described

in chapter 4, an interesting p~oblem arose concerning the implementation

of asynchronous Input and Output facilities. The problem arises that the

protection of the system can easily be broken while any process is having

an I/O operation performed in parallel with any other normal computation

in the syst~m.

This problem can be discussed simply, with relation to figure 1.4. If a

process within e wishes to read a card from the card reader into a section

of its virtual memory, named X, then this I/O processing may be taking

place while another process within environment B can execute. If this

process is permitted to execute it may decide to schedule a process

within environment D. Being unaware of ets asynchronous activity, and

finding a need to provide D with more in core segments, it may move ets

core segments onto secondary storage passing the freed core memory to D.

All this would be acceptable except that e now has access to objects

outside its environment, the input from the card reader overwriting a

segment belonging to D.

This is a simple example of the problem of providing asynchronous

processing in the recursive virtual machine. Further investigation of the

problem shows that it is not merely one of providing asynchronous I/O

operations, but concerns generalized asychronous processing, as encountered

in a complex multi-programming computer system. The cause of the problem

lies in the fact that while a process in an abstract environment, e, is

having an operation performed in a less abstract environment, A, any
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process in an intermediate environment, B, can redefine any more abstract

environment under its control

It is postulated that this problem is the dual of the revocable capability

problem in capability based systems. For the renaming of objects in

recursive virtual machine systems can be likened to the revocation of

capabilities in capability schemes. Whereas in many capability schemes

revocation of capabilities was not originally permitted, in recursive

virtual machine systems a mechanism is needed to prevent the renaming

of objects during certain critical times.
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1.9 Summary of the Thesis

The aim of this thesis is to illustrate the feasibility of a virtual

machine approach to providing a clean protection system. It is advocated

that a good computer system should exhibit the following properties:-

i) It should be well protected, and thus reliable.

ii) It should permit the renaming of objects between environments of

the ~ystem, and thus extensible.

iii) It should permit a hierarchical structuring of environments, thus

simplifying the system and thus making it more readily

demonstrated to be correct.

iv) It should permit any number of processes within the system to

co-operate asynchronously.

v) It should be efficient overall, thus enabling users of the system

to be given useful proportions of time from the various processors

which constitute the system.

The implementation described in chapter four provides all of these

features except asynchronous processing, and a mechanism which will

allow this feature to be integrated into the system is proposed in chapter

six of this thesis.

Chapter two discusses other protection systems in more detail, namely

VM 370 [Pa 72] and other virtual machine systems, the GEC 4000 system

[GEC 74], HYDRA [Wu 74, WLP 75], CAL-TSS [Lam 68, Lam 69b, IS 76] and

CAP [Wa 73, NW 74]. It is argued that all suffer problems which though

apparently different are in fact all manifestations of the difficulty of

providing a computer system which satisfies the five criteria already

36



mentioned. Furthermore it is proposed that both the capability based

systems and the virtual machine systems are essentially the same.

In chapter three, the design of a Recursive Virtual Machine architecture,

the RVM, is discussed. The 'special' mechanisms required to permit

processes to execute in environments at any level of abstraction are

considered together with the constraint that each RVM operation should

be accessible to all processes at any level, providing that each

environment at all lower levels has permitted its use. Questions of

efficiency are raised, especially with regard to the extra processing

required to access an object within an environment at a more abstract

level than the bare machine. Finally mechanisms are proposed which

permit the automatic by-passing of environments for the type of operations

commonly considered as 'supervisor call' operations. In this way, it is

proposed that the RVM eliminates the problems of implementing supervisor

calls which were discovered in VM 370.

Having discussed an RVM design, chapter four describes the implementation

of a purely synchronous RVM. This is realized by writing an interpreter

in the micro-code of a Burroughs B1726. The instruction set chosen, in

order to provide all the facili ties required by the RVM, is discussed

and tests are described which illustrate the feasibility of executing

programs in environments at more abstract levels than that of the bare

machine. In order to increase the efficiency of the RVM an associative

store is introduced and the tests are repeated in order to assess the

usefulness of this mechanism. Figures of the performance of the RVM while

executing these test programs at different levels of abstraction are

discussed and it is claimed that this implementation fulfils all of the
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requirements of the RVM architecture described in chapter three, except

that no asynchronous processing is provided.

In chapter five the problems of providing asynchronous processing in virtual

machine systems and the associated problems in other protection systems

are examined. The dual problem to asynchrony in virtual machine systems

is seen to be the 'Revocable Capability' problem in capability based

systems. I~ is postulated that the reason why asynchronous processing

causes a problem in virtual machine systems is that access to any object

can be revoked at any time by a process in an environment which has created

the object. On the other hand in a capability based system asynchronous

processing is possible because the revocation of access rights is not

permitted. The Revocable Capabi 11ty [Re 74, RF 74] is seen as a solution

to a serious failing in both the HYDRA and CAL-TSS systems, however this

solution is seen as an extension of the virtual machine mappings employed in

theRW. Thus it is postulated that the use of revocable capabilities,

within a system which permits asynchronous processing, will exhibit the

Same properties as those encountered during this research.

In chapter six a mechanism is described which is designed to permit

asynchronous processing within the RVM. Criteria for permitting two or

more processes to execute asynchronously are first discussed, together

with the constraints which must be imposed if the protection system defined

by the RVM is not to be broken. From these discussions a solution to the

problem is evolved which, it is claimed, will permit a sensible efficient

Use of asynchronous p~ocessing within the RVM. It is suggested that this

mechanism will be sufficiently efficient to permit its use for each basic

RVM operation, although in practice there will be many basic operations

Where this is not a requirement.
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Finally, in chapter seven, the work undertaken in this thesis is related

to other work being undertaken in the area of reliable computer systems.

The relevance of the mechanism to permit asynchronous processing in the

RVM is discussed in relation to the problems envisaged in the use of

revocable capabilities. It is suggested that there will be a requirement

for a similar mechanism when revocable capabilities are involved and

that the mechanism could be extended to permit its use in this case.

A summary of the various areas left for further study, as a result of this

research, is then given. Each area is briefly discussed and an indication

given of the sort of results which might be expected in each case.
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OiAPTER 2 - ASSOCIATED COMPUTER SYSTEMS

2.1 Introduction

Many different computer systems have been proposed with the aims

of security and reliability uppermost. These systems fall into two

broad categories, those which utilize a hierarchical structure of

protection and privilege and those which do not. However it is widely

accepted that the best way to ensure a well protected computer system

is to provide an environment structure in which processes can be

contained.

In this chapter several of these computer systems are described

and a close similarity between each approach is shown to exist. As a

result it is proposed that any problem area in one approach may have

a dual in the other, or alternatively that it may be possible to

achieve a solution to the problem by closer examination of the

alternati ve approach.
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2.2 Non-Hierarchical Computer Systems

Most non-hierarchically structured systems which have been built.

HYDRA [Wu 74. WLP 75]. CAL-TSS [Lam 68, Lam 6gb] and the GEC 4000

[GEC 74] for example, are designed around a capability mechanism

which provides the basic protection mechanism for each environment in

the system. The following sub-sections examine these systems in

more detail.
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GEC 4000 Structure

OWNER SYSTEM

ERROR

CORE PROCESS
ERROR

HANDLER
OWNER

MANAGER

BREAKER
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KEY: indicates a route from one environment to another.

Segment Breaks force a message to be transmitted along an environment~ 'BREAKER' route.

Other Errors are trapped by a message being transmitted along environmen~s 'OWNER'
route.

Figure 2.1



2.2.1 The GEe 4000

An advantage of adopting the non-hierarchical approach to computer

system design can be illustrated by examining the efficiency of the

GEe 4000. Environments within the system ('Processes' in GEe

terminology) are linked together by 'routes', see figure 2.1. In order

to stimulate a process in another environment a 'message' is sent

along the ~ppropriate route. The presence of a route between two

environments indicates that the capability to transfer messages

between the two environments exists. For example, if a process in

environment A attempts to access a segment that is currently on secondary

storage then a message will be sent, on the BREAKER route, to the CORE

MANAGER indicating that this segment is to be fetched into main store.

As can be seen the distance between any two communicating environments

is always 1 and thus the cost of switching between any two environments is

always minimised.

A further point of efficiency, with regard to the GEe 4000, concerns

the object naming mechanism used. Each environment in the system has,

associated with it, a list of all the segments currently accessible to it,

together with the type of access each is permitted. This list is termed a

PAST. The PAST is maintained as a global table containing the real

hardware address of each segment. Segments can be passed on to processes

in other environments with messages, and it is always the global name

that is stored in each environment's PAST. Because a global name space

is adopted there is only ever a single mapping function, f, which needs

to be applied in order to translate a name within a particular environment

into a real object. The effect of this approach is that all environments

eXist at a single level of abstraction from the hardware of the machine.
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The global name space approach, also adopted in MULTICS, has the

disadvantage that new types of objects cannot be created in order to set

up totally different abstract machines. Furthermore it is impossible to

rename, or change the access to, a segment previously passed to a process

in another environment.
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2.2.2 HYDRA

The HYDRA system developed at Carnegie-Mellon University was designed

to handle a multi-processor configuration of mini-computers. Although

the HYDRA system itself is not structured hierarchically it will permit

processes to be created hierarchically if so desired. The overall

strategy is to permit processes to execute within a given protection

environmen~, the privileges available to this environment being

dependent upon the operations requested by any process within this

environment. Thus for a process to perform a privileged operation it is not

necessary for there to be a change in environment.

A 'kernel' mechanism is used to manage the physical resources of the

hardware and provides, to programs executing on top of this, a wealth of

abstract types of objects which can then be manipulated. Since a

primary aim of HYDRA was to provide a secure multi-processor system,

the kernel must possess a protection mechanism which prohibits its

corruption by user programs.

The HYDRA system is fullyextendible, processes being permitted to define

new environments, or capabilities in existing environments. The designers

of the system felt it was important to keep separate the areas of policy

and mechanism, and that kernel mechanisms should allow a program to

implement any policy it may find appropriate to its needs [Le 75] •

This separation of policy and mechanism particularly applies to the

protection policy. The mechanism provided by the kernel in order to

implement protection policies is the capability mechanism. Obviously
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there is a consistent protection policy throughout the operating system,

but it is possible for a user sub-system to be built alongside this

with a totally different protection policy, errors in the sUb-system

policy being trapped before propogating to the operating system.

The protection mechanism as implemented in HYDRA was designed to have

five properties. These are defined by Jones and Wulf [JW 74] as

follows:-

i) The set of mechanisms should be sufficiently small that it is

feasible to prove the properties which characterize the

mechanism.

ii) The mechanism should be efficient, especially if dynamically

invoked.

iii) The cost of its use should be linear in respect of the number

of mappings performed from abstract object to real object.

iv) The mechanism should permit its users to express a policy in

natural terms.

v) The mechanism should allow extension so that a user can create

a new object type and use the mechanism for his own security

policy enforcement as readily as the system policies use it for

system objects.

In order to permit the fifth property the global name space approach to

capability de;finitions, as discussed in 2.2.1,had to be modified to

permit the creation and destruction of objects. Unfortunately the cost

of the mechanism's use is not linear with respect to the distance between

called and calling environments. In particular there is a major

problem of efficiency when 'calling' a kernel operation, especially
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Example of HYDRA 'Rights Amplification'
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Figure 2.2
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from environments at a level of abstraction greater than one. This

lack of efficiency, coupled with the ease with which a capability

mechani.sm can provide a security policy for certain classes of

protection problem, led to a set of policies being devised which avoid

the use of a strictly hierarchical environment structure.

The HYDRA designers believe that, ideally, an execution environment

should contain the minimum set of rights needed to perform the task,

or tasks, executed within that environment since each unnecessary right

provides an additional opportunity for errors to have a 'worse'

consequence. Thus a process executing within a non-privileged

environment has to request 'rights amplification' for some of its

Objects when it is necessary to call a procedure which requires these

extra privileges[Jo 73]. A result of this is that on entering a

particular execution environment, a privileged process is permitted

to amplify the rights for the objects to which it requires access.

Example:

Referring to figure 2.2; a system clock may be maintained by a system

process in a fixed segment of the system. A user process which wishes

to read the time of day must call the privileged 'time' process to

request 'rights amplification' to the clock segment while the time is

noted. A more usual approach would be to transfer control to the

system process, determine the time, and return to the user process.
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By implementing improvements and extensions to the original

capability mechanisms many interesting protection problems have been

solved in HYDRA. The 'rights amplification' problem is one example of

a difficulty encountered by not adopting a hierarchical environment

structure. Other examples o~ problem areas for which solutions have

been found in HYDRA but would cause little di~~iculty in a hierarchically

structured machine are 'monitoring' and 'confinement'.

The problem o~ monitoring requires a parent process always to be able

to monitor its descendant processes, and in a hierarchical structure

this should always be the case since the hierarchy will be one o~

protection and privilege.

The problem of con~inement is concerned that the contents of an object

should not leak out o~ a particular environment. This is a serious

matter in HYDRA since a process can always pass on one of its

capabilities to a process in another environment, However in a

hierarchically structured system, the right to access an object can

always only be passed to descendant environments and it is then impossible

to pass this object from that environment without notifying the parent

process.
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2.2.3 CAL-TSS

CAL-TSS in an operating system designed for a CDC 6400 at the University

of California at Berkeley. The major aims of the system were to

provide a general purpose operating system, capable of supporting both

batch and time-sharing operations which would be competitive in

performance with the manufacturer's operating system. Further goals for

the properties of the system, as seen by the sophisticated programmer,

were to provide a protection system based on capabilities and to construct

the system as a sequence of layers, each protected from those at a more

abstract level. Users were to be permitted to add layers in the same

way, intercepting and handling exceptions without incurring any overheads

during 'normal' sequential processing. An implication of this was

that users had to be able to create new types of objects.

The generalized structure.of a capability system and the ease with

which capabilities may be passed between environments has permitted a

non-hierarchical system to be built. As in the HYDRA system a major

reason for this approach is the inefficiency involved in calling 'kernel'

operations. Lampson and Sturgis [LS 76], in their discussion of the

CAL-TSS implementation, explain that this inefficiency is primarily

caused by the fact that the kernel mechanisms are all supplied by

software.

One major fai.ling of CAL-TSS, the GEC 4000, and early HYDRA systems was

the inability of a parent process to retrieve capabilities passed to

processes in more abstract environments until such descendants finally

return them. In this way it is possible for malicious processes to
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Mapping of capabilities within CAL-TSS

L

M

K

capabili ty lis't for environment A z

capability list for system capability list

N

capability list for environment C capability list for enviroment D

Figure 2.3
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request capabilities for certain critical objects and once having

received them to refuse to return them to their owner. In CAL-TSS

the possibility of retrieving the capability, 'revocation' [RF 74], is

dismissed since.it is quite feasible that it has been passed to another

environment of which the owner of the capability is unaware.

Example:

Figure 2.3 describes the structure of capabilities within CAL-TSS.

A process within environment A has access to an object L within its

terms, this is in fact the system object Z. A process within

environment D also has access to the same system object Z, called K

in its terms. The process in A may pass the capability on to a process

in B which may in turn pass the capability on to a process in C. The

process within A cannot now revoke access to Z for B since this implies

revocation of Z in C, and A has no knowledge that C has access to Z.

Furthermore the system capability list cannot be manipulated to delete

Z as D still requires access to it.

This problem is partly caused because a global table is used to hold the

names of all objects currently in the system. The reason for this

approach is the fact that all abstract objects exist at the first level

of abstraction of the system and thus efficiency is improved. In both

the CAL-TSS and HYDRA system it is understood that if the cost of

providing a multi-level mapping function could be made linear with respect

to the level of abstraction then a hierarchical structuring of environments

would be both feasible and desirable.

52



2.3 Hierarchical Computer Systems

As a natural' progression from the level of abstraction methodology,

discussed in the previous chapter, associated with the techniques of

structured programming, developments have taken place which attempt

to provide strictly hierarchical computer systems. Most of these

developments follow the Virtual Machine approach, VM 370 [MS 70, Pa 72],

the 'Hardware Virtualizer' [Go 73], and the 'Recursive Virtual Machine',

RVM [LW 73, Lau 74]. An exception to this is the CAP computer

[Wa 73, NW 74] which bases its protection scheme on a capability

mechanism.
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2.3.1 VM 370

Virtual machine systems have, in the majority of cases, only reached

the design phase. In fact, as far as can be determined, the only

implementation of a virtual machine system which permits repeated levels

of virtualisation is the IBM CP/67, or VM 370, system.

CP/67, or VM 370 as it is now known, is the realization of a virtual

machine system on the IBM 360/67 and IBM 370 series computers. As

mentioned in chapter one these computers are conventional two-state

machines and any use of a privileged instruction causes an automatic

trap to the lowest software level. Such a scheme causes gross inefficiences

when attempting to execute programs in environments at a distance greater than

one from the bare machine.

The security of the VM 370 control program has been rigorously checked

by Belady and Weissman [BW 74], who undertook a series of experiments

which were designed to break the protection mechanisms of this system.

The resuits of these experiments showed that nearly all the design errors

in this control program were in the area of software design, and that

most of these errors could only be exploited by asynchronously using

the data channel programs which were requested for programs executing in

a virtual machine environment. Moreover, it was not possible for a user

to break out of its current virtual machine environment without exploiting

some of these asynchronous processing facilities.

The failure in the security of VM 370, when performing asynchronous I/O

operations, primarily occurs because the underlying machine architecture

is unsuitable for the software structure being imposed upon it. The
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security breach in VM 370 occurs because a process requiring input or

output to be performed must pass control to the control process at the

lowest level of the software hierarchy. possibly by passing some

intermediate environment. The control program is then able to schedule

some other process while the 10 is being performed. and this may be

an ancestor of the original 10 requesting process. This rescheduled

process may thus have access to the data channel program being utilized

by the control program and it may overwrite it either maliciously or

accidentally. as a result this may cause the virtual memory containing

the control program to be passed to another process.

The main point. illustrated by YM 370. is the unsuitability of a

conventional architecture for providing a hierarchically structured

multi-level computer system. However. of perhaps more impo~tance to

this thesis is the fact that by building such a system an extremely high

degree of security has been obtained. The only real breach occuring

in the area of asynchrony.

It is thus postulated that if a mechanism can be devised which will permit

asynchronous processing. without causing any loss ot efficiency or

overall security. and this is implemented in a multi-level virtual

machine system. then the resulting system will be viable in terms of

efficiency. computing power and the protection mechanisms allowed.
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Creation of New Objects within the Hardware Virtualizer

Environment A contains objects L,M,N,O,P

creates object A from Land M,passes X

to environment B

Environment B contains object X,passes X

to environment C

Environment C contains object X

Figure 2.4

56



The 'Hardware Virtualizer'

One proposal for a hierarchical multi-level computer system is the

'Hardware Virtualizer' described by Goldberg [Go 73]. This is .a

formal discussion of a virtual machine system. The use of an

f-map, which provides a mapping of names of objects in the system,

and a ~map, which performs the mapping of these various objects,

is described. These functions are both provided by a segment table

mechanism in the RVM, individual entries performing the +-map, and

the position of each entry within a segment table providing the f-map.

Within the Hardware Virtualizer it is proposed that exceptions occurring

in one virtual machine should be trapped by the virtual machine which

has created the object requested.

Example:

Referring to fig 2.4. A process within environment A creates an object

X from its available resources and passes it to the environment B.

A process within environment B passes X to the environment C. If a

process in B or C attempts to access X then an exception will occur and

the process will be trapped in environment A.

Goldberg's study of the Hardware Virtualizer has led to the implementation

of a Virtual Machine Monitor on a Honeywell series 60 level 68 computer

[GS 76]. In order to effect this implementation minor architectural

changes were made to the processor and other system components. The

designers of this system comment that, in order to produce efficient virtual

machines, it is necessary to avoid a significant amount of virtual
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machine monitor software interference. The results of Goldberg's

work have led to a system being developed which supports both Honeywell

6000 or Honeywell level 68 virtual machines. It permits the running of

multiple distinct copies of the MULTICS and GODS operating systems on

a single hardware system.

This implementation demonstrates, to great effect, the feasability of

virtual machine systems. The performance on a virtual machine

approaches that of the real machine, throughput is high and the

overheads are low. In contrast to the VM 370 system each user need

not have his own virtual machine, interactive facilities can be provided

by either GCOS-TSS or MULTICS running on a Single virtual machine, and

from this virtual machine multi-access facilities can be provided for

a number of users. Unfortunately discussion of the possibilities of

recursive use of this virtual machine monitor system is non-existant,

and it is presumed that the approach adopted is non-hierarchical, all

virtual machines existing at a single level of abstraction from the

hardware.
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2.3.3 The 'Virtual Machine Monitor'

Another proposal for a virtual mac~ine system is presented by Belpaire

and Hsu [BH 75]. This paper proposes a design based upon a 'Virtual

Machine Monitor' which is permitted access to a stack of resource

mapping resisters. The purpose of these registers is to permit the

hardware to access directly the memory locations where the mapping of

virtual objects into real objects is actually contained. The RVM

also provides these facilities through its 'display' and 'segment table'

mechanism, as does the Hardware Virtualizer' s ~-map and f-map

mechanism.

Belpaire and Hsu claim that their approach is more general than either

of these two other schemes, due to the resource mapping registers

being part of the hardware thus leaving the resource allocation policies

to the operating system designers.

The RVM, Hardware Virtualizer and Virtual Machine Monitor all base their

resource allocation and protection mechanisms on a hierarchically

structured resource mapping strategy. Although the implementation of

each scheme may be realized differently all three are based on

essentially the same fundamental concept, that of mapping objects in

one environment into other objects in the next more abstract environment.

Also in all cases ancestor environments have complete power to revoke

objects from any descendant environments. This essential similarity

between these three systems leads to the conjecture that any

fundamental problem area in anyone system will have its dual in each o~

the other systems.
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2.3.4 CAP

The CAP computer. built at Cambridge University, has been designed

as a hierarchical structure of protection environments. and a capability

based mechanism is used to provide the overall security. Two separate

protection schemes have been implemented within the overall structure

of the CAP computer. one is designed to protect processes executing in

different environments and the other is designed to prote~t processes

executing within the same ,environment.

The inter-environment protection scheme is strictly hierarchical in

nature and primarily concerned with storage protection. In this

respect CAP closely resembles a virtual machine system. and indeed the

capabilities it uses are very different from those used conventionally.

The CAP system. see figure 2.5, defines an environment by a set of

'indirectories' which are mapped through a 'process capability segment'

(PCS). The Pes defines a list of capabilities for all objects that a

process within this envircnment has permission to access. It is only

by specifying the capability ~or an object. defined in the PCS. that

a process may access this object.

A closer examination of the CAP capability structure reveals an

extremely close resemblance to virtual machine systems. A capability

is specified as part of an address and this is held as an index to an

indirectory for this PCS. Furthermore the protection mechanism groups

objects into segments. each capability specifying the permitted access

to a set of contiguous memory locations consisting of the named object.
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Capability lists are grouped to form capability segments. such

segments being a different type from ordinary memory segments. and

objects of the capability segment type are provided with special

hardware features to prevent them from being overwritten in error.

Walker. in his thesis [Wa 73]. mentions the reason for the CAP decision

to separate capability segments from memory segments. This was made.

not from any theoretical reason. but primarily to ease the overall

implementation of the system and to prevent descendant environments

from corrupting their own capability lists. Thus there appear close

parallels between this system and other virtual machine systems.

The reasons why a dual protection scheme has been implemented in CAP,

are particularly pertinent to this thesis. Within the CAP system a

process is not permitted to migrate into another environment if it is

at a greater distance than 1. This introduces high overheads when it

is actually required to migrate to an environment at a greater distance

since the intermediate environments at the intervening levels of abstraction

must be entered and left before the reaching of the required goal.

These high overheads. some indeterminate function of the distance between

the two environments. led to the introduction of a within environment

protection scheme. This within environment protection scheme is designed

to permit privileged processes to execute within a less privileged

protection environment, without a less privileged process within that

same environment being able to break the overall security of the system.
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In practice the CAP system only utilizes the two lowest levels.

The high cost of maintaining environments at higher levels of

abstraction proved prohibitive, thus re-inforcing the designers

beliefs that both protection mechanisms were needed. It is still

possible to set up a hierarchy of environments as originally intended

but the resulting system makes little use of this feature.
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2.4 Protection and Addressing Systems

The previous sections have illustrated that there are many

similarities between protection systems,·eg. CAP, HYDRA, CAL-TSS,

and addressing systems, ego RVM, VM 370, Hardware Virtualizer.

Wyeth [wy 76] in his thesis, discusses several protection systems

and also illustrates this duality of the two approaches to providing

a secure computer system.

Both protection and addressing systems aim to protect processes

from either malicious or inadvertent damage by other processes.

An addressing scheme achieves its aim by the mapping of core addresses

into segments or pages and then permits a particular p~ocess to access

only those parts of the total machine resources which exist in its

own address space. Processes can, of course, communicate by being

given access to a common resource, and this resource may be addressed

differently by each process. In such cases the responsibility for

the security of the interacting processes lies with the processes

themselves, and they must ensure that sensible use is made of the

common resource.

Protection systems, of which the capability systems are the most elegant,

define a protection environment in which a process may execute. Each

attempt to access an object is made by profferring this object's name,

the protection system may then permit or reject the access.
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Protection and Addressing systems both permit the dynamic

reallocation of objects between processes, even mapping the same

objects into different real resources of the machine hardware.

Of course, as the inter-environment protection scheme of CAP illustrates,

a protection system can be implemented by the use of an addressing

mechanism.
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2.5 Conclusions

It is interesting to note that all of the real systems which have

been discussed, with the exception of VM 370, do not fully utilize the

hierarchical environment structure which all, except for the GEC 4000,

provide. In all cases the argument against using a hierarchical

structure appears to be one of efficiency, and even users of VM 370 will

,admit that it is impractical to provide virtual machines at high levels

of abstraction.

In the case of CAL-TSS and VM 370, the reason for this inefficiency

is the unsuitability of the underlying computer hardware. In CAP

an impractical means of transferring control from an abstract

environment to an ancestor has been implemented, and in HYDRA the

hierarchical structure suffered because of the extra emphasis placed

on the non-hierarchical structuring of environments.

Since the essential similarity between the various approaches to

providing a secure and reliable computer system is so apparent,

protection systems must be re-examined to investigate whether the

problem of providing asynchrony in the RVM can be solved. Alternatively,

it is postulated, some weakness may be exposed in the design of these

different systems such that further mechanisms will have to be employed

in order that their overall security is maintained.
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Chapter 3 - DESIGN OF TIlERVM

3.1 Introduction

The motivation of adopting the virtual machine approach to providing a well

protected computer system has been discussed in chapter one of this thesis,

Once such a proposal has been adopted it remains to define the features that

are considered desirable in such a system and these are summarized as follows.

i) There should be no supervisor state, instead a hierarchical

structuring of protection environments is to be implemented,

with each environment the responsibility of its immediate ancestor.

11) The system should be reliable. In particular a fault occuring

in any environment should not cause the propagation of any fault

beyond the ancestor environment which has permitted this fault

to occur. In this way sections of a system could be tested while

the production system is executing.

iii) The system should provide a protection mechanism which can easily

be utilized by any process executing within the system. It is this

mechanism which, it is to be hoped, will permit protection policies

to be developed which will increase the overall reliability of the

system.

iv) Objects within the system should be rename8ble, thus permitting the

system to be extended.
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v) The system should be 'efficient', with at worst a linear cost

function when executing at different levels of abstraction.

As explained in chapter two,_although several proposals for a similar system

have been made, the only hierarchical vlrtual machine system known to exist

is VM370. This system is a realization of a virtual'machine system on

conventional two-state architecture and consequently exhibits gross

inefficiencies when processes execute at high levels of abstraction. By

implementing the RVM it is hoped to prove that an efficient virtual machine

system can be built such that processes aa high level of abstraction can

gain a significant amount of processor utilization.

In this chapter the design of the recursive virtual machine architecture

chosen will be discussed. The above features of the system are examined and

an explanation given as to how they are to be provided.

Throughout this chapter it will be assumed that only one processor is present

in the system, and that no 'time-sharing' facilities are available. The

introduction of asynchrony causes the, non-trivial, problems hinted at in the

previous chapters and will be discussed at greater length in subsequent

chapters.
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3.2 The Virtual Memory Addressing Mechanism

Fundamental to the RVM design is the virtual memory mechanism which has

been adopted. This forms the heart of the protection ~echanism, each

environment having access to only those objects within its virtual memory.
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3.2.1 The RVM Virtual Memory

A virtual memory is defined as the set of objects which constitute all the

resources of its virtual machine. It should be noted that this usage of

Virtual memory is an extension of that conventionally taken. In the case

of the RVM 'memory' is that resource conventionally termed 'virtual memory',

Whereas 'virtual memory' in the RVM also includes any other resources

available to a particular virtual machine. So at the lowest, 'hardware',

level the aVM's virtual memory equals the total memory available to the

hardware, no matter on what media it is stored, plus all the peripheral

resources attached to the hardware configuration. A 'virtual memory' at

some more abstract level will then be constructed from a subset of the base

machine':s resources plus some 'virtual' resources provided by any of its

ancestor virtual machines.

The representation of a virtual memory within the RVM is as a collection of

segments, each of which is conceptually a sequence of bits; although these

bits need not necessarily map into the core store of the hardware, for a

peripheral device for example. An attribute of each virtual memory is the

set of possible names of its segments, and these are represented as non-

negative inters up to some reasonable maximum. ASSOCiated with each

virtual memory is a mapping function which specifies, among other things,

which segments are identified with which segment names.
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30202 RVM Segment Tables

The mechanism which provides the mapping function between virtual memories

is called a segment table and defines a particular virtual memory under

discussion. Any particular segment may be identified with one or more

names, but each may be identified with at most one segment. If two

virtual memories have segments in common, it is immaterial whether those

segments have either the same or different names in each virtual memory.

In this wa~ objects in the system can be renamed.

A virtual memory is, in fact, either equal to the hardware memory, which

includes all the objects available to the hardware, total memory and

peripherals etc .• or it is a subset of another virtual memory. Thus the

notion of virtual memory is made recursive. In the first case the segment

table of a virtual memory is implicit in the hardware memory accessing

circuitry, and in the second case, its segment table specifies the name and

part of the containing segment in the containing virtual memory. Figure 3.1

illustrates the required format of a segment table entry. It specifies the

size of the segment, the access permitted to the segment, the type of the

segment and the base address of the segment; this last item is expressed as

an offset within a segment of the environment which is setting up the new

subordinate environment.

Format of a Segment Table Entry

.------.

BASE ADDRESS

ACCESS TYPE SIZE CON-
TAINING OFFSET
SEGMENT

Figure 3.1
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3.2.3 The RVM Hierarchy of Virtual Machines

These segment .tabLea , which define a particul.ar virtual memory. are located

within the containing virtual memory. and the set of vi.rtual memories in a

system at any instant forms a hierarchical structure based upon this

containment relationship. Since each segment table contains only names and

quantities known within its own environment. processes within that environ-

ment can freely operate upon it. in this way managing the resources of

their subo~dinate environments. This hierarchy of environments is best

illustrated by an example and this is pictured in figure 3.2.

All objects within a particular virtual memory are identified by their

virtual memory address. there being no specific reference to any actual

addresses defined by the hardware. Each object is named by a pair.

consisting of segment name and offset within this segment, and this is then

mapped by the hardware into a physical address in the real machine.
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3.2.4 RVM Hardware Addressing Mechanisms

In order to accomplish this address mapping efficiently, the following

mechanisms are used. These are illustrated in figure 3.3.

Within the processor is a small array of registers called the 'display',

and a single register named 'level'. These registers are an integral

part of the hardware and are not accessible to any program within the

system. rhey are automatically maintained by the hardware as side

effects of performing certain machine operations, such as those to transfer

control to a new protection environment. The register 'level' contains,

at all times, the degree of containment of the currently executing

process, the hardware being regarded as level zero.

The elements of display contain the address of the segment tables defining

the current hierarchy of execution environments. These are numbered from

1 to n, the segment table defining the level zero environment not existing,

as this environment is defined implicitly by the hardware configuration.

Such a mechanism clearly provides the hardware with the ability to translate

addresses in one environment into the absolute addresses of the real machine.

In accordance with our definition of efficiency it is essential to ensure

that the number of memory accesses for each call of the address translation

algorithm is minimised. To perform the address mapping at least one segment

table entry must be accessed for each currently active level in the system.

Since the number of levels in this system is linear it is postulated that

the address mapping mechanism is efficient. (Later, techniques for

improving upon this will be discussed.) It should be noted that if the

address held in the display are stored as the relative addresses of the

segment tables within the current ~nvironment then the number of segment
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table accesses for each call of the address translation algorithm will be

exponential. As a result, it is proposed to store in the display the

actual hardware addresses of each segment table in the currently active

system.
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3.2.5 The Address Translation Algorithm

The address translation algorithm is now relatively straightforward. By

addressing the appropriate entry in each segment table of the hierarchy,

it is possible to impose checks for access, type and bounds. Any violation

in one of these checks will result in a fault being signalled at the level of

the environment which owns the segment table entry currently being examined.

This ties in with the philosophy of preventing errors from propagating into

less abstr~ct environment from which they originated.

Example:

Referring to figure 3.4, a process executing within an environment at level 5

may attempt to access a location defined by its segment table in the corres-

ponding level 4 environment. However, this object might Dot exist in the

segment table defining this level 4 environment and thus a violation·will

occur when examing the segment table entry at level 3. The level 3

environment is therefore the most abstract environment at which this fault

can be detectetl~and this is where control is passed.

One further check when performing the address translation, is the validity

of the segment name proffered at each level of the address mapping. This. is

performed by means of a second array of registers, the same size as the

display, each item containing the value of the highest numbered.seg.ent at

each level, names of segments being defined as non-negative.integers. The

three sets of registers, the 'display', 'level' and 'maximum segment number'

constitute the total requirements for performing the address translation

thxough the segment tables. The algorithm can be summarized by the following

'pseudo-algol' procedure.
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procedure hardware address (segment, position)

returns (physical segment, physical position);

begln

integer i;

for i := level, i-I while i > 9 do

begin

if segment ~ maximum segment number (i) or

position> size (display (i)+ segment) or

violation of type (display (i) + segment)~

violation of access (~isplay (i) + segment) then

signal fault at level (i, fault code);

position := position + offset (display (i) + segment);

segment := containing segment (display (i) + segment)

return (segment, position)

end hardware address;

A careful study of this algorithm shows that it should be possible to perform

address translations linearly with respect to the number of levels of

abstraction, and this algorithm fulfils the efficiency requirement. Moreover,

by the use of a proven mechanism such as a sm~ll fast look aside memory 'which

contains the physical address of the most recently used items, it is antici-

pated that a processor adopting this mechanism would operate at nearly the

same speed at all levels in a virtual memory hierarchy. Such a mechanism haa

been implemented on the IBM 370/168 in order to improve the performance of

VM370.
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3.3 .Environment Crossing

Having considered how addresses of objects in one environment can be mapped

into objects of the real machine, the question of a process, executing at

some arbitrary level of abstraction, setting up an envLronment at the next,

more abstract, level must be considered. For in this way virtual machines

are permitted to be recursively defined on top of each other.
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3.3.1 Creating New Virtual Machines

In order to create a new virtual machine, the parent process must construct

a segment table which specifies the virtual memory of the environment it

wishes to create. This virtual memory will define all the objects available

to the virtual machine being created. The parent process is then able to

initialize this virtual memory as required since all the objects are a

subset of the parent process's virtual memory. No special privilege or

knowledge of the physical resources of the hardware is required for this

purpose since the only names in the segment table are the names by which

its own objects are known. Once the next level environment has been set up

it requires the processor to provide a (non-privileged) operation which

will update level, display and maximum segment number correctly and then

perform the transfer.

Such an operation is described by the following procedu~e, which accepts

two parameters, the address of the segment table in the terms of the

current environment and the number of segments in that table. It is assumed

that the hardware of the RVM, at the lowest level in the hierarchy will need

to access a number of registers, the current next instruction pOinter for

example, for any process executing in a given environment. For this reason

procedures are referred to which save and reload these registers.

procedure transfer to son (segment table address, segment table length);

begin

store hardware registers in current virtual memory;

display (1evel + 1) := hardware address (segment table address):

maximum segment number (level *..1) := segment table length;

level := level +1:

load hardware registers from new virtual memory

end transfer to son;



3.3.2 Returning to a Parent Virtual Machine

It has already been noted that should a protection violation of any kind

occur while performing an address mapping, then control is passed directly

to the envi~onment which is capable of providing the object to'which access

has just been denied. An operation to return control to a parent process "

can thus be provided by performing a controlled 'signal fault at level'

operation, and this can be defined by the following two procedures. (Note

that an attempt to perform such an operation from a process within an

environment at the least abstract level. will cause the hardware machine to

halt).

procedure return to father;

begin

signal fault at level (level -1, return code)

end return to father;

procedure; signal fault at level (d, .code) ;

begin

store hardware registers in current virtual memoDYi

if i < 9 then halt

else

begin

level := i;

load hardware registers from new virtual memory;

store fault code in current virtual memory (code)

end

end signal fault at level:
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These operations will maintain consistently the values of level, display

and maximum segment number which reflect the level of nesting of virtual

memories in the current system.



3.3.3 Transfer Back to a More Abstract Virtual Machine

In a hierarchical structuring of virtual machines, processes within one

execution environment act as a supervisor for the next more abstract one,

and it would be possible to build an operating system using the architecture

so far described. However, in order to achieve an e£ficient system, it is

a requirement that processes pass control directly back to calling processes

in environments at more abstract levels. That is to say that an inverse

operation to 'signal fault at level' is required. Clearly such a feature

is essential £rom an e££iciency point of view, since the most likely reason

for returning to a supervisory process is to request some object currently

unavaila~le in the calling process's environment.

The automatic transfer between environments in the system is an important

feature of a hierarchical system such as this. For, as mentioned in the

previous chapter, it is in the area of context switching that other similar

systems have fallen down, especially with regard to the overall efficiency.

Therefore, it is proposed that an automatic mechanism must be provided which

permits the transfer of control back to a calling environment as well as to a

process within a supervisory environment.

Lauer and Wyeth, in their definitive paper on the RVM architecture (LW 73],

describe a mechanism which permits control to be passed automatically to a

descendant environment. Their scheme relies on a set of pOinters being

maintained within each virtual machine which provides information to the

hardware of the next, more abstract environment, see figure 3.5. This

approach will fail if, as a result of being called by a process in a more

abstract environment, the supervisory process decides to set up a new

descendant environment to perform the requested operation, thus overwriting

the pointers defining the called process's environment.
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Example:

Referring to figure 3.5, a process 'within A requests some object provided at

D. If this is supplied immediately and control returned directly then the

'segment table address' and 'segment table length' fields of environments

D and B will ensure that the calling process is restarted. However if the

called process within A creates the environment C in order to provide the

object then this will overwrite the 'segment table address' and 'segment

table length' fields within D. It will not then be possible to return control

to the ..calling process without first passing control to a process within B

which is capable of restarting the calling process in A.

The RVM implementation, described in the following chapter employs a hardware

stack on which are placed the items from the arrays 'maximum segment number'

and 'display' for each environment in the hierarchy which has been by-passed.

Finally the old value of 'level' is placed on the stack in order that the

hardware can return control correctly.

Example:

Referring to figure 3.6, a process within E requests an object provided at

B. The display and maximum segment number values for levels i+3 and i+2 are

placed on the stack as is current value of level. If, as a result of this,

a process within D is created and this requests some object provided at A

then the display and maximum segment number value~' for levels i+2 and i+3

are placed on the stack together with the current value of level. On

returning to the process in D these latter items are unstacked,' and when the

object in B has been provided control) can be returned to the calling process

in E and the stack emptied.
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A slight modification to the signal fault at level routine is required in

order to provide this mechanism and it is now described as follows:-

procedure signal fault at level (i, code);

begin

store hardware registers in current virtual memory;

i£ i < 9 then halt

else

begin

Lnteger old level;

old level := level; level := i;

load hardware registers from current virtual memory;

if code + return code then

begin;

integer j;

for j := old level step -1 until level +1 do

begin

stack (display (j»;

stack (maximum segment number (j»

stack (old level)

end---'
sbore in current virtual memory (code)

end

end signal fault at level;
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The requirement for a mechanism which will permit ~ program to return control

to a calling process within an unknown, more abstract, environment has already

been discussed. There is always the possibility of incorporating this into

the 'transfer to'son' operation, however in the current implementation the

slightly more straightforward approach of introducing a further, non-privileged,

operation has been adopted; and this can be described in the following manner,

thus completing a discussion of the special architectural requirements of the

RVM.

procedure return control;

begin

integer new level;

store hardware registers in current virtual memory;

unstack (new level) ;

for level := level +1 while level.f new level do

begin

uns t ack (maximum segment number(level»;

unstack (display (level»

end;

load hardware registers from current virtual memory

end return control;
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3.4 Protection in the RVM

The machine architecture which has just been described provides an

extremely secure protection mechanism. A process executing within any

environment of the system is unable to break out of this environment with-

out accessing the segment table which defines the environment. Should a

supervisory process pass this segment table to one of its descendants it

is leaving itself wide open to the corruption of its own virtual memory

and can be considered in error. The propagation of this protection

violation can, however, progress no further down the hierarchy of protec-

tion environments, since only the environment of the process in error can

be corrupted.

Also an attempt to gain access to an object which is not owned by the

requesting environment will cause a fault to be signalled in the most

abstract supervisory environment which has denied access to this object.

Thus even if a process sets up an environment with a virtual memory con-

taining objects to which it does not have access, a process executing

within this new environment will still be unable to access these objects.

In fact any attempt to do so will cause a fault to be signalled in the

environment which has prohibited the use of such objects. From this it

should be apparent that the recursive virtual machine addressing mechanism

makes it possible to build a system based on a hierarchy of privilege and

protection. There is, in fact, a natural ordering of types of access

permitted. For example if memory objects are considered then a process

may be given read, write and execute access to a particular segment and

then pass this segment to more abstract environments. Alternatively the

process may decide that the segment is only to be used for semaphores,

the segment will then be passed as a new type on which only 'P' and 'V'

operations are permitted. In particular it is asserted that:
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The set of objects which a process can access is a subset of the objects

which any of its immediately containing processes can access, and the

'privileges' (ie kinds of access) which it enjoys with respect to an

object is a subset of those which any containing processes enjoy.
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3.5 Service Calls Across Levels

As well as providing this hierarchy of protection and privilege, the system

readily permits the creation of new types of objects, together with their

associated operations. Once again it can be seen that if a process creates

a new object and passes it to a ~scendant, then attempts to access the

object will cause control to be passed to the object's creator, which is

then able to perform the access in the required manner. Since in the

original discussion of 'objects', in chapter one, it was stated that objects

would be regarded as both physical and logical resource, ego segments of

code or abstract data types, and since an example of an abstract data type

is an 'operation' upon another abstract data type,;it is a logical step to

envisage a mechanism which might be used to implement a 'supervisor call'

or 'across level procedure call'. Some purists may regard such a mechanism

for communicating between a virtual machine and its immediately containing

environment as contrary. to the spirit of the virtual machine concept. However,

in any practical system, the need for such communication among levels is

apparent (and sometimes awkwardly implemented).

A request for supervisory service is inevitably implemented by some operation

which forces a change in context from the virtual memory environment of the

caller to the virtual memory environment of the supervisor. In a

conventional tW9-level system, the effect of permitting such an operation is

that the supervisor, situated at the less abstract level, provides to its

subordinate processes some new objects, ego file transfer operations, pages,

etc., and refuses access to some of its own objects, ego disk file segments,

absolute core addresses etc. Such a mapping is performed at every level of

the RVM by the segment tables which define the environments in which the

processes may execute, thus this mechanism provides a logical means of

providing these 'supervisor call' facilities. A more powerful system can now
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be contructed, for whereas in a two-level system there can only be one

supervisor, in a system contructed using-the RVM, each environment in the

hierarchy acts in a supervisory capacity to those descendant environments

at more abstract levels of the system.

A Typical Operating System Structure

KERNEL

GLOBAL OBJECT MANAGER

I/O MANAGER USER SCHEDULER

SPOOLER MANAGER

USER 1 USER 2

'1' SPOOLER OUTPUT SPOOLER
Figure 3.7

Thus, if an operating system were constructed as a tree structure of

supervisory environments, an attempt, by any process, to print a line of

output on the line printer might cause control to be passed to the Global

Object Manager. Here a decision could be taken as to whether this process

was to be given control of the line printer or perhaps the output was to go

to a spooling file via the I 0 Manager. In the latter case a new supervisory

'spooler' environment would then be i~itiated, if necessary, which might then
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pass control to a further environment which contains a process to output the

required information onto magnetic tape. On completion of the task. control

would then be returnea to the I/O manager which would then return control to

the Global Object Manager and thence to the calling process. This is the

sort of sequence in which processes would be called in a conventional operating

system. except in this case there is no protection between the various

co~operating processes. This protection may indeed be desirable. especially if

a new versi9n of one of these processes is to be tested. and it can be

achieved easily with the RVM. The tree structure of figure 3.7 illustrates

such an implementation. each node of the tree representing a protection

environment. and since each environment can be completely protected against the

malfunction of any environment at a more abstract level. or an any other branch.

then clearly the introduction of a new 'spooler manager' can only corrupt the

'input spooler' and 'output spooler' environments, thus ensuring the integrity

of the remainder of the system.
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3.6 Co-operating Processes

Of course, although it has been stated in this thesis that it may be

desirable to completely protect each environment from more abstract

environments and also environments in other branches of the tree struc-

ture, it is also possible for any two or more environments to share

access to a particular object, providing this object has been placed in

each environment's current virtual memory. Such co-operation between

processes, especially within an operating system, is essential if 'real'

systems are to be built. Study of the RVM reveals a straight forward

solution to the problem of permitting two or more co-operating environ-,

ments to gain access, via common entries in their segment tables, to a

shareable object. There is, of course, the further possibility that

this object may have a different name in each of the co-operating

environments.

In such a situation, it is the responsibility of the supervisory environ-

ment for the environments which are sharing objects to ensure that any

co-operating processes do not corrupt one antoher's virtual memories.

This might be achieved by creating a new type of object, ego a 'semaphore',

which can only be accessed by the newly defined operations of 'P' and 'V'.

Of course such objects may have been provided at a less abstract level, in

which case they can simply be passed on to the co-operating environments.

Of course the provision of 'P' and 'V' operations does not ensure their

correct use by the co-operating processes. The supervisory process may

prefer to provide 'monitors' which will ensure correct access to shared
objects.

ay restricting the objects which are to be shared, and by constructing

them of types which can only be manipulated in an orderly fashion, it will
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be possible to permit processes to co-operate in a safe and reliable

manner. However, if processes are permitted to co-operate in a dis-

organized fashion, and as a result, corruption of one or all of the

processes occurs, then the fault must be regarded as originating in the

environment which set up the co-operating processes. Furthermore it

should be noted that the protection mechanism will not permit any fault

to propagate to a less abstract level than this supervisory one.



3.7 Applications of the RVM

In the Recursive Virtual Machine system, a protection mechanism has been

developed which is based on a recursive, context - dependant addressing

scheme. Processes operate within a virtual memory, which is defined by its

immediate supervisor; also any p~cess can create a descendant environment

within itself. The mechanism which has been defined ensures that no process in

the system need be aware of the fine structure of its descendants, nor

whether or pot they have descendants. This is because eve"ry request made

to a process is framed in terms of its own virtual address space, no matter

where in the hierarchy it originated. A process need only be concerned

with allocating its resources to its immediate descendants, for they can

allocate them further as appropri ate.

Given this structure it has been illustrated how a copy of an operating

system might run in a virtual machine under itself. Also it bas been shown

that the RVM fulfils the first four of the requirements for a machine

structure as proposed at the beginning of this chapter.

Namely:- i) There is no supervisor state.

ii) The system is reliable.

iii) A sound protection mechanism is provided.

iv) Objects are renameable.

The fifth requirement, that of efficiency, has not been discussed at great

length in this chapter. It has been shown how processes may automatically

call other processes in environments at less abstract levels and how these

processes might automatically return control to the calling process. It

has been proposed that the mechanisms discussed in this chapter provide
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theoretically efficient solutions to the various problems of providing a

hierarchically structured computer system. This discussion will be exten-

ded further in the following chapter, where the implementation o£ a RVM is

described and some experimental results obtained by executing programs at

several levels of abstraction are discussed.

In conclusion, a set of mechanisms have been described which will enable

a recursive. virtual machine system to be constructed. Also the way in

which such a system satisfies the criteria for providing a reliable,

extensible computer system as proposed in this thesis has been discussed.

B¥ programming an interpreter, which provides these mechanisms, it has

been illustrated that such an approach is feasible and this implementation

is described in the followiQg chapter.
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CHAPTER 4 - IMPLEMENTATION OF A RVM

4.1 Introduction

Having discussed the mechanisms necessary to permit the construction of

the RVM in the previous chapter, it remains to describe the effect of imple-

menting such an architecture.

synchronous RVM is described.

In this chapter the implementation of a purely

This implementation was achieved by writing an interpreter in the micro

code of the Computing Laboratory's Burroughs B1726 computer. This chapter

documents this implementation. The various design decisions are explained,

together with their resulting consequences, and some performance figures,

obtained by executing some test programs at different levels of abstraction,

are discussed.

Since the original intention was to permit processes to execute asynchronously

no specific design decisions were taken which assumed a purely synchronous

machine. Consequently it should be noted that although the current imple-

mentation allows only synchronous operations, any implementation of a mechanism

to permit asynchronous processing should prove relatively straight-forward.
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4.2 The Burroughs' Hardware

The machine configuration at Newcastle is a Burroughs B1726 with a main

memory of 48k bytes arid a control memory size of '4k bytes. Associated with

this core storage is a range of associated peripheral devices which are not

relevant to the discussion in this thesis. The design of the B1700 is such

that when a program requests the use of a particular interpreter as much as

possible of this interpreter is placed in the fast control memory. A copy

of the whole 1nterpreter is also stored in the main memory and an algorithm

in the hardware decides from which memory the next micro-instruction should

be fetched. The design of the B1700 thus encourages the use of different

interpreters, each specifically tailored to the requirements of a particular

task. In this way it is possible to provide several different virtual

machine environments, each completely protected from each other and also

capable of providing the type of resources required for their particular users.'

Several of these virtual machine systems are supplied by Burroughs themselves,

Basic and Cobol systems for example; it has been claimed by Wilner [Wil 72aJ

that this attempt to vanquish the rigid structures of a conventional machine

makes the B1700 nearly as efficient as a conventional machine at its best,

and far more efficient in the majority of cases where the task to be performed

is not easily mapped into a conventional architecture.

The flexibility of the B1700 in order to provide different emulated machines

in which programs could execute proved the true value of the B1700. Indeed

in terms of understanding the underlying hardware, the programming of the

interpreter f@r the RVM proved to be a relatively straightforward task.

The B1700 has a bit addressability feature, again discussed by Wilner (Wil 72b),

which it is claimed further increases the Bl700's efficiency over conventional
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machines. Indeed Wilner claims that by the suf'tabl.euse of "Huffman-type" coding

techniques, and variable length operations etc, the bit addressability can

also dramatically improve main memory utilization. Bit addressability is,

in fact, an extremely useful facility, even if it is not fully exploited

to conserve main memory in the RVM implementation, for it enables an interpreter

to extract sub-fields readily from items in store, eg operation codes from

an instruction word.

A complete description of the B1700 hardware is given in the B1700 Reference

Manual [Bu 72). However, it is relevant to describe the main features of

the machine as these influenced the final architecture chosen to represent

the RVM.

4.2.1 General Purpose Registers

Within the hardware of the B1700 there are four general purpose registers

X, Y, Land T. These registers are each twenty four bits long and can all

be used to read or write items from or to main memory. Arithmetic and

logical operations are performed by placing the required operands in the

X and Y registers and the result is automatically provided in the appropriate

function register. XPLUSY, XMINUSY. XANDY, etc. These function registers are

also twenty four bits long, thus users of the B1700 are encouraged to operate

on operands of less than twenty five bits. It is possible to use operands

of less than twenty four bits by setting a register which determines the

length of operands submitted to the arithmetic and logical 'function box'.

Shift operations are performed on the X, Y and T registers, the T register

also being used to 'extract' a number of bits from within a twenty four bit
field.
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The L and T registers may be divided into six ~our bit sub registers, and

these form the basis of the complete set of four bit registers. These

registers can be tested against each other or a mask or have arithmetic

performed upon them with the option of , .branching on overflow'. Using

this facility it is possible to perform simple looping operations, however

an upper bound of fifteen is placed on such calculations.

4.2.2 The Next Instruction Register

The next micro instruction to be executed is always held in the sixteen

bit M register. It is permitted to load this register with any desired

value, this however does not overwrite the original value, instead an

'inclusive or' of the original value and the new value is performed and

the resultant value is used as the next micro instruction. Thus by the

use of this technique it is a straightforward task to modify instructions

as required and in particular avoids the use of tables stored in main

memory when attempting to perform the equivalent of a 'goto switch'

statement.

4.2.3 The Scratchpad Registers

There are thirty two scratchpad registers each containing twenty four bits

of information. These may be accessed singly or in pairs as forty eight

bit entities. The usefulness of these registers stems from the need to

constantly change the contents of the general purpose registers. It is

therefore possible to store a general purpose register temporarily in a

scratchpad rather than writing it away to main memory every time it is to

be overwritten. Also it is possible to store certain frequently used items

in the scratchpads (the absolute main memory address of the current RVM
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instruction being interpreted, for example) and in this way the efficiency

of the interpreter can be increased·

4.2.4 Other Features

The previous sections have given a summary of the B1700 hardware features

which have been utilized in the implementation of the RVM. Other important

facilities, such as the 'soft' interrupts provided. have been used minimally.

This has stemmed from the philosophy that the RVM is a system which has been

designed to p~ovide all its own protection mechanisms. Furthermore, the

mechanisms provided by the 81700 prove incompatible with the requirements

of the RVM

In fact, the original design aims were to build a system which would run

completely independently of any Burroughs' software, except for any necessary

'boot strap' mechanism, and this would indeed be possible. However, since

only a synchronous machine has been implemented. the final version still

uses a considerable amount of Burroughs' software in order to perform the

necessary I/O for testing purposes.
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B1700 Memory Lnyout with RVM loaded

MAIN MEMORY

Mep CONTROL INFORMATION

INTERPRETER FOR RVM

RVM CONTROL INFORMATION

EMULATED MACHINE

RVM RSN

MCP RSN plus I/O INFORMATION

CONTROL MEMORY

GISMO

RVM INTERPRETER

~ MCP BASE REGISTER

< RVM BASE REGISTER

1
16k bytes

1( RVM LIMIT REGISTER

< MCP LIMIT REGISTER



4.3 Interfacing With the Burroughs' Supervisor

The fact that Burroughs' system software is still required to execute the

RVM has had a dramatic effect on the overall memory utilization of the

B17oo. Both the Burroughs' supervisory system, MCP (Master Control Program),

and the micro-instruction program which provides a standard I/O interface for

the MCP, GISMO (~eneralized Interface and Supervision for Multi-process

Operations) are used extensively. As a result it is important that the RVM

interpreter uses only those areas of memory permitted by MCP.

The deci.sion to use MCP and GISMO has drastically reduced the amount of

main memory which is available for use by the RVM, since system tables and

oth.er control information commandeer a large proportion of the main memory

availab.le. The current size of the interpreter for the RVM is 5k bytes.

This includes all the micro-code necessary to interpret each RVM instruction,

the RVM's internal tables plus a quantity of debugging software. As a

result it was hoped to be able to make 32 k bytes of main memory available

for the RVM to use as its personal core storage. Unfortunately the overheads

of MCP's memory management system are such that it is only possible to load

into memory an emulated machine with a store size of 16k bytes. (Details

of MCP's memory management system are provided in the B1700 MCP Reference

Manual [Bu 75).

The manner in which the storage for the emulated machine has been mapped.

although conforming to the rules laid down by MCP, does not in fact follow

the pattern of other Burroughs' interpreters. Figure 4.1 describes the

layout of the B1700 main memory while the RVM is executing, and the following

paragraphs explain why this particular approach was adopted.

105



The Burroughs' approach, when providing interpreters for various 'virtual

machines', is to separate the code which is being interpreted from the data

which is being manipulated by the interpreter. In order to distinguish

between the interpreter's code, micro-instructions , and the code which

the interpreter is executing these are respectively referred to as

M-instructions and S-instructions. The data is placed in an area defined

by the program's Base and Limit registers, and any attempt to access an item

in memory which is outside of this area will cause a bit to be set in one

of the other hardware registers.

The interpreter is therefore able to detect, by examining this interrupt

register,' any attempt to read or write outside of a program's own data

area. In this way an interpreter can process the S-instructions of a

program which has been written in a re-entrant manner, and may have several

data areas concurrently in use. However an interpreter is always able to

override these checks and may then read or write data into any location within

the main memory of the machine. In fact this is essential in order to set

up data to communicate with the Mep.

An interpreter interfaces with Mep via an area of shared memory, known as

the Run Structure Nucleus (RSN). Each process within the system, including

Mep, owns such an area which is defined as a fixed number of bytes immediately

following the process' data area, i~Limit Register = location RSN[O].

The Run Structure Nucleus is used for storing both messages to be passed

between two communicating processes and data which is required to be

preserved for the duration of the inter process call, the scratchpad registers

for example.

Mep makes extensive use of this area for inter process communication, in
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particular standard items of Burroughs' interpreters are stored here.

The items are typically the calling process' base and limit registers and

the next instruction pointer for the S-instruction which is next to be

interpreted. In theRVM implementation only minimal use has been made of

the RSN. Only those locations have been used which are essential to

maintaining a compatible interaction with MCP when requesting I/O operations

etc. Thls is because of the underlying assumption that eventually the RVM

will be able to operate independantly of MCP and GISMO.

Since the protection mechanism provided by the RVM is much more sophisticated

than that of MCP, and since more main memory becomes available to the

emulated machine if there is no physical separation of code and data in

MCP's terms, the decision was taken to make the whole of the emulated

mach.ine's memory, data as far as the MCP is concerned. As a result,

on loading the RVM, a minimal S-code ~e~ent is requested from MCP, this

is then ignored by the interpreter. In fact the code is initalized in

the data space of the hasic recursive virtual machine. Currently this is

performed by the interpreter as it initializes its workspace. it could however

be performed by loading~the required code from disc.
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4.4 Design of the Recessive Virtual Machine

The main aims when choosing an architecture for the RVM were as follows:-

i) Simplicity - The instruction set and storage accessing should be

simple in order to separate the problems of implementing a sophisticated

interpreter from those of implementing an interpreter which would

purely provide the RVM facilities.

ii) Suitability - The instruction set chosen must be suitable for the

needs of the RVM concepts. In particular it was essential that the

setting up of new environments should be straightforward.

iii) Generality - The architecture should be able to provide all the

facilities of a conventional machine, as well as the special facilities

required by the RVM.

4.4.1 The RVM Addressing Mechanism

At the centre of the RVM design is an addressing and protection mechanism based

Upon indirection through segment tables. An object named in one environment

has its name mapped into the name of an object in the next, less abstract,

environment. This mapping is performed by the use of a segment table,

contained in the next less abstract environment, which defines the more

abstract'environment. Progress is made successively through these

environments until the name of the object is obtained in the absolute terms

Of the emulated machine.
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A word-based addressing scheme was chosen as this permitted a larger addressing

range than a byte based scheme, and it was intended to permit the whole

machine to be addressed from a single segment. Initial considerations,

as to the amount of main memory available on the B1700 and the probable

proportion of this available to the RVM, led to a machine size of 16K words

to be chosen. It was felt that this would permit a sensible appraisal of

the RVM's performance in a 'virtual memory' situation in the future, as well

as permitting a reasonable amount of work to be done without using 'virtual

memory'.

The decision was taken to make use of the four-bit arithmetic functions where

possible since this would considerably simplify the looping functions.

As a result an upper limit of fifteen was placed on the maximum segment

number available in any environment at any level, also it was felt that this

same limit would constitute an appropriate maximum on the number of levels

of abstraction at which the RVM was permitted to execute.

With these considerations in mind, eighteen bits of information (four for

the containing segment name and fourteen for the offset within a segment)

are required in order to access each object. This fact, together with the

sizes of other pieces of information' to be stored in a word, led to the

selection of a word size of thirty two bits.

The segment tables, which provide the mapping of object names in one

environment to names in the next, less abstract, environment, must specify

such information as the type of segment, the access permitted to objects within

the segment the base address of the segment and the length of the segment.

In order to allow a segment to start at any location within its containing

segment, and to keep all this information within one word, the length of a
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segment is measured in units of sixty four words. A description of a
segment table entry can be seen in Figure 4.2.

Segment Table Entry

o 1 2 .3 4 5 6 14 I 18 31

CONTROL BASE ADDRESS

LENGTH
CON-ACCESS TYPE TAINING OFFSET
SEGMENT

Figure 4.2

4.4.2 The RVM Instruction Set

For simplicity, a fairly conventional, low-level instruction set was chosen,

however, the effectiveness of a block structured machine was also considered

important. The result is a machine instruction set with an assembler

code which resembles PL360 [Wir.681 ' each assembler code statement having

a direct one-to-one correspondence with a machine instruction.

The RVM instructions are of the conventional assembly level format with

an operation code and list of operands. The conventional operations of

'add', 'subtract', 'load', and 'store' etc., are enhanced by operations which

transfer program control between environments at various levels of the system.

In an attempt to encourage a 'structured' approach to programming the RVM,

the typical 'Jump' and ~Skip' instructions have been abolished. Instead
a stack mechanism has been adopted, similar to that described by Organick
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and Cleary in their discussion of the Burroughs B6700 computer system [CC 71]

The resulting set of operations, which perform program control within an

environment, are of a 'high-level' nature; eg 'call', 'cycle', 'case',

'if then else', instructions have been implemented, together with a controlled

'exit' operation which allows program control to be passed to the end of

a 'block' of code. It is intended that programs be written in a block

structured low-level language which can then be easily compiled into

machine code. In fact, although a compiler for this machine has not been

written it has proved very simple, albeit tedious, to hand translate AlgolW

programs into this machine code.

In an effort to keep the RVM as suitable and general as possible, eight

hardware registers are available to the currently executing environment.

Most RVM instructions have two operands, one of which is a hardware register,

and the other is obtained from the name of an object in memory. This second

operand may be either the name of the object, a variable number of bits of

information addressed by the object or the object itself. Also the name may

be given indirectly through as many memory references as required, indexed

via one of the hardware registers, or directly as named in the instruction.

Not all of these options are available to each instruction as this leads to

a contradiction in some cases. This flexibility in addressing the virtual

memory of a given environment will provide a straightforward mechanism for

setting up the segment tables which define new environments.

4.4.3 RVM Program Control

The instructions which govern program control, eg 'cycle', 'call', etc., also

have associated with them information regarding the RVM memory locations

at which execution is to resume. Each item of information gives the

address and length of a fragment of code to which control may be transferred.
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A 'call' instruction for example has one such fragment descriptor, but an

'if then else' instruction will have two fragmented descriptors, one for the

'then' part of the instruction, the other for the 'else' part. Instructions

are thus variable in length and take the form shown in Figure 4.3

RVM Instruction Format

0 7 re 11 14 .18 3

R I
E N OPERAND NAME
G D

OPERATION I I INDEX
CODE S R REG

T E
E C SEGMENT OFFSET
R T

OFFSET SEGMENT FRAGMENT
LENGTH

Figure 4.3

On interpreting one of these control instructions, the RVM emulator places

the current next instruction pointer, suitably updated for the next instruction
in the current fragment, on a stack. A new next instruction pointer is then
set up from the required fragment descriptor. Depending upon the type of

fragment which is beine executed, on reaching the last instruction in a

fragment, Control is either passed back to the start of the current fragment,

eg 'cycle' type fragment, or the top item on the control stack is removed

and replaces the next instruction pointer, ego 'call' type fragment. The
112
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'exit' instruction causes as Dany items as rer.u!red to be removed

from this stack, the last of these being used to replace the next instruction

pointer.

The fragment descriptor, which defines the fragment of code to which control

is about to be passed, is extremely flexible. Fragments may be of any

length, from one to 16k words, and furthermore different instructions may

access the same fragment in a different manner. Thus if in one part of the

program a section code is required to be exercised conditionally upon some

test this can be accessed via an 'if then' instruction. If in another part

of the program it is required to be accessed unconditionally, then a 'call'

instruction can be used, and if it is required to execute the same piece

of code repeatedly then a 'cycle' instruction could be used, all of which use

an identical fragment descriptor.

One consequence of this approach is the requirement of a segment, of

variable size, in each environment, which contains the stack of next

instruction pointers. However such an approach has the added advantage that

recursive procedures can be implemented trivially. The segment name which

contains the control stack in each environemnt is fixed by the RVM emulator.

Should the segment provided to an environment for use as a control stack prove

inconvenient, the structure of the RVM is such that a process within this

environment is permitted to set up a new, more abstract, environment with

the desired attributes.

Thus it is suggested that the architecture is more flexible than that of a

conventional machine~, while forcing programs to be written in a structured

fashion.
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4.4.4 The RVM Data Stack

To facilitate the use of procedure calls, one of the registers is

distinguished and always contains the top item of a stack of data

objects. Any attempt to reference this register causes the top item

of this stack to be accessed. The register has the same name in every

environment, and is known as register seven.

The use of ~his data stack therefore requires .a further segment for each

environment, again variable in size, in which items of this stack may

be placed.

4.4.5 The Environment Save Area

One further requirement when setting up a new environment is the provision

of a segment, which need only be the minimum size, for the storage of the

hardware registers, next instruction pointer and other information

pertaining to a particular environment. Any attempt to access the locations

housing these items will, in fact, cause the relevant item in the hardware

to be accessed, thus allowing register to register operations directly.

These three segments, essential for the existence of an environment at

any level of abstraction are named as follows:-

Segment ~

Segment 1

Segment 2

contains the cop Laa of the hardware registers etc'f
contains the control stack items,

contains the data stack itmes.

Details of all the operations available, together with their various modes
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of working are given in Appendix I, and Appendix 2 contains details of the

programs used in the experiments described later in this chapter. A

study of these two sections should give the reader an extensive insight

into the mechanisms available when programming the RVM.

4.4.6 Programming the RVM Interpreter

Initial development of the interpreter for the RVM was performed using the

Burrough's proprietary Micro-Implementation Language, MIL. However this

was quickly discarded when the compilation times for the interpreter

became prohibitive. A further disadvantage was the COBOL like structure

of MIL. As a result it was decided to adopt BML as the standard compiler

for the Bl700 micr0-code.

BML is a language which was initially described by De Witt et. al. [DE 73]

in order to evaluate the performance of the B17oo. A basic BML compiler

had been written at Newcastle and this was modified and improved in order

to make BML a practicable alternative to MIL. These modifications

permitted sections of the micro-code to be compiled independantly, and

enabled these segments of code to be 'linked' together prior to loading a

new version of the interpreter. This considerably improved throughput

during testing of the interpreter, for now it was only necessary to

recompile the invalid segment of code, rather than the whole interpreter,

each time an error was detected.

Enhancements were also made to the compiler which permitted the association

of identifiers with constants and also strings of text to be compiled·

later. It is this package that was used to provide the implementation
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of the RVM interpreterj examples of the segments of code produced are

included in Appendix 3.

4.4.7 Hardware Features of the RVM

Having already discussed in chapter three the 'level', 'display' and

'maximum segment number' mechanisms necessary to provide the recursive

virtual machine functions, and the operations which will permit the

switching of processes from one environment to another, it remains to

describe the manner in which they have been implemented.

The 'display' is held as an array of fifteen 24 bit words in main memory,

with each item containing the absolute bit address of the segment table

being referenced. The 'level' is stored in a four bit register which is

reserved by the interpreter for this purpose. The arr~y of 'maximum

segment numbers' is stored as a fifteen 4 bit word array in main memory"

and the stack of 'called environments' is also held in main memory with a

pointer which addresses the top item on this stack.

4.4.8 An Associative Store for the RVM

One refinement has been added to the implemented RVM. In addition to the

basic requirements for a RVM as described in chapter three, an associative

store which. provides the mappings of objects in any environment into

objects in the absolute machine is supplied.

Associative stores are not a new concept, they have been used on machines

such as the IBM 360/67 and the GE 645 to improve the performance of

paging algorithms. Extensive discussion has taken place on the use of sUCh
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devices. Parmelee et. al. [Pa 72] in relation to CP-67. Schroeder (sc 711

in relation to the operation of MULTICS. and Buzen and Gagliardi [BG 73)

in relation to virtual machine systems such as the RVM.

The comprehensive experiments of Schroeder, who monitored the operation

of MULTICS with different configurations of the size of associative memory

used, led to the adoption of a sixteen item store in MULTICS. since this

was sufficient for a general purpose programming environment. Currently

the RVM implementation also has a sixteen item associativb store, though

no experiments have been performed to discover whether or not this is

optimum in this case. This may indeed be an area for further research,

since the pattern of memory accesses in the RVM will be very different

to that encountered in a more conventional machine, due to the necessity

to access one or more segment table entry per attempt to access any object.

The choice of a single associative store to increase the overall efficiency

of the RVM is an important one. A more obvious approach would be to

provide several hardware registers (up to 16 in the case of the RVM

implementation described) which map the base of each segment in the current

environment into the absolute terms of the real machine. This Is the

approach adopted in the GEC 4000series computers [GE 74] .

Within the GEC 4000 an environment is constructed of several segments,

and while a process is executing within an environment it is constrained

to access only those items of memory which are mapped by its four current

segment table registers. In order to access other segments in its

environment the process must first load a suitable current segment table

register. This attempts to ensure that a process does not unnecessarily
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change current segment table items, since the·programmer is made aware

of the implications of such a decision.

However, in the RVM, it was felt that these details should be hidden

from a programmer of a process, and, more important, since it was wished

to permit the rapid switching of environments, possibly every instruction,

then the hardware register approach would become inefficient. Users of

the GEe 4000 series computers are not expected to rapidly change environments.

However it can be seen that any time this occurs the current segment table

must be reloaded, an overhead which was considered unacceptable if the

RVM is to operate in the manner originally envisaged.

The use of an associative store, together with a least recently used

algorithm for the replacement of items, ensures that items currently being

accessed regularly, no matter from which environment, remain in the store

provided that the store is large enough with respect to the locality of

the programs being run. Items are only replaced in the store when they

have not been accessed for a considerable time. It is therefore expected

that this approach will prove more effective and that memory references

should take the same order of time at each level in the hierarchy.

Objects within the store are addressed in the following manner.

i) Local name within an environment, given as segment number

and offset; together with.

ii) Environment name, given by the level at which this environment

exists, the absolute address of the segment table defining this

environment, and the number of segments available to this

environment.
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On finding the name of an object in the associative store, its absolute

address, again given by segment number and offset, together with the

permitted access are returned. A description of the associative memory

can be found in Figure 4.4

Associative Memory
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Figure 4.4

It should, of course , be noted that the approach adopted here differs

from that used in current cache stores. In a cache store the object

itself, rather than its name in absolute terms, is produced. Since
the machanism was only being simulated in software, it was decided not

to implement this extra refinement. The major reason for this being

the extra overhead involved in writing chaneed items-back into main

memory and the extra checks involved when they are removed from the assoc-
iative store.
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4.4.9 Conclusions to RVM Design

In this section a detailed description of the design of the RVM has

been undertaken. The micro-code used to implement the various algorithms

essential to the performance of the RVM is included, as listings of the

BML code used, in Appendix 3. It is to be noted that attempts to pass

control to a level of abstractton below that of the hardware, results

in the machine halting, displaying the reason for the halt. Thus no

instructions require special privileges, and it is claimed that the

implementation meets the design aims described in Chapter three.

120



4.5 Performance of the Recursive Virtual Machine

In order to evaluate the performance of the RVM two sets of statistics

were gathered. These concerned the time spent at each level of abstraction

in the system and the number of addresses which were found in the associative

store.

An initial set of experiments was designed to discover how the RVM address

translation.algorithm performed at different levels of abstractions and

also how the performance of the RVM was affected by the inclusion of the

associative store.

Later, a second experiment was designed to assess the performance of the

RVM when its environment crossing properties were utilized.

4.5.1 Performance of RVM's Address Translation Algorithm

Under these initial experiments it was important to assess the viability

of executing programs at different abstract levels of the RVM's environment

hierarchy. As a result a program was initialized in several environments,

and no Input or Output was performed while the statistics were being

gathered. Each program was then executed in turn, on completion of the

program at one level of abstraction the program at the next level of

abstraction was initiated until the program at the most abstract level
was completed. Having completed all the programs, control was passed

progressively down the levels until the least abstract level was reached

and the RVM halted. At this point the statistics were printed for
subsequent analysis.
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Since an identical program is executed at each level of abstraction and

there are no input or output processing overheads involved, the statistics

obtained relating to the time spent at each level of the RVM indicate

the performance of the RVM's address translation algorithm at different

levels of abstraction.

These initial experiments were designed to illustrate the generality of

the RVM and the manner in which new more abstract environments could be

entered and then control returned to an immediate ancestor environment.

The only feature of the RVM which is not illustrated by these experiments

is that of direct transfer from one environment to a less abstract one

and return to the calling environment. This feature is illustrated by

the second eXperiment which is described in the following section.

For each. test, results were obtained of the execution time taken both

with and without the associative memory. Also, from these figures, an

estimate was obtained of the time required to execute the same program

at each level of abstraction.if no display mechanism was available.

Analytically it can be shown that if it takes 't' seconds to perform a

memory reference in an environment at ·the lowest level of abstraction,
ithen it will taket*(2 - 1) seconds to perform a memory reference at

the ith level of abstraction.
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A total of four tests were performed, each.producing performance figures

which followed the same pattern, and this is summarized in Figure 4.5.

The tests chosen were as follows:-

i) A program to calculate all the solutions to the eight queens'

problem.

ii) A program to sort data into ascending order using a bubble sort

method. Three versions of this test were executed.

ii.i) 69 items of data, initially in descending order.

ii.ii) 131 items of data, initially in descending order.

ii.iii) 131 items of data, initially in random order.
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With the bubble sort experiment, the use of data initialised in

descending order proved that the associative store could be utilized

very effectively and thus the data was initialized in random order

for one test. The use of the 69 item sort enabled statistics to be

gathered for levels ~ to 11 whereas in all the other tests statistics

could only be gathered for levels ~ to 9. However the results of these

experiments indicate nothing unexpected by executing the program at these

two higher levels of abstraction.

The programs which provided these tests are described in Appendix 2,

and a summary of the important details of each test is included in

Figure 4.6

Summary of Performance Tests

Memory Hit Rate in Number 9f levels
TEST References Associative of abstraction

per level Memory used

A 139345 45.6% 10

B 33192' 92.0% 12

c 123841 92.4% 10

D 69685 85.8% 10

Figure 4.6
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Since these results of all these tests followed the same pattern. the

major details will be discussed in terms of Figure 4.5 and the individual

details of each test will be mentioned later.

As can be seen from the graph, if there is no display mechanism, execution

in environments at not very great levels of abstraction soon becomes

impossible due to the prohibitive amount of time required to calculate

an address within that environment. As expected the display mechanism

does reduce the amount of time spent in the address translation algorithm

to a linear scale. and the gradient of this line is dependant upon the number

of memory accesses per level and the efficiency of the algorithm. The

introduction of the associative store can dramatically reduce the

gradient of the graph, however it is interesting to note that the software

implementation of the associative memory introduces a "knee" point 'A'.

which is substantially higher than the equivalent point on grapb (11).

This can be explained as the overhead required to access the associative

memory. Since it is never accessed at the lowest level of abstraction

there is no overhead here, but upon executing a program in an environment

at the next, and all more abstract levels, a further amount of c.p.u. time

is used in searching for each item in the associative store. A hardware

mechanism should cause this 'knee' point to be considerably reduced, thus

greatly improving the overall performance of the recursive virtual machine.

The gradient of line (iii), after the first level of abstraction is•
directly related to the 'hit rate' achieved in the associative memory and

the gradient of line (11). A hit rate of 0% will produce a line with

the same gradient as that of (ii) and a 100% hit rate will produce a

gradient of zero, ie.a line parallel to the x-axis.
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The set of graphs for each test are shown in figure 4.7. each individual

graph being interpreted as follows:-

i) This line indicates the performance figures to be expected

with no display mechanism and no associative memory.

il) This line indicates the performance figures obtained with a

display but no associative memory.

1ii) This line indicates the performance figures obtained with a

di~play and an associative memory.

The graphs are all of execution time against level of abstraction at

which execution is taking place. Since each program is executed

identically at all levels of abstraction. these graphs indicate the

overhead incurred by the address translation algorithm of the RVM.

The results from each test for the graphs (ii) and (iii) were fed into

a polynomial curve fitting program and in all cases it was discovered

that the best match was obtained by using a least squares approximation

to a straight line. This therefore is the way in which the lines have

been plotted. graph (i) being claculated from figures obtained by using

this approximation to graph (11).

The tests used gave hit rates of between 45% and 95% in the associative

memory. This indicates that the gradient of line (ii) can be reduced

considerably by the introduction of a simple sixteen item associative

memory. The low figure obtained for the Queen's Problem may be partially

due to the fact that an unnecessary number of variables were introduced

in order to prevent an unrealistically high hit rate in the associative

store. On the other hand the high figures obtained for the 'worst case'

Bubble Sorts may be caused by unnaturally consistent accesses from the
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store. The Bubble Sort algorithm works by examining adjacent items

in an array, swapping any in the wrong order. Thus in the 'worst case'

situation all items are swapped on each scan of the array holding the

data. A more accurate figure for a 'typical' program will probably

lie nearer the figure of 85% obtained for the Bubble Sort where the

items were in random order.

As has already been mentioned. no experiments were made regarding the

optimum siz~ of associative memory for the RVM. The experiments

performed illustrate the viability of an associative store in the RVM.

but further improvements may be possibly by changing either the size of

the memory. the information it contains, or both.

4.5.2 Experiments with the Environment Crossing Property of the RVM

Two further tests were performed on the RVM. These were designed to

prove that the implementation permits environment crossing in order to

perform 'privileged' operations. the RVM trapping to the less abstract

environment as defined in chapter three.

The first test was very basic and caused a line to be printed indicating

the level of abstraction at which ·the program was currently being

executed. This illustrates the manner in which a program can cause

control to be passed to a less abstract 'supervisory' environment and

then have control returned with no intervention from intermediate

environments. No performance figures were obtained since insufficient

processing was performed at each level of abstraction. The program

used is described in Appendix 2 and the output produced is also included

there.
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The second test is designed to show the performance of the RVM while

crossing between envf.ronment.s at different levels of abstraction.

A program executing in the least abstract environment provides a 'SWAP'

operation to all programs in more abstract environments. Programs in

all more abstract environments then perform a 126 item 'Bubble-Sort'

with. the data in the 'worst case' order. The programs at level ~ and

more abstract levels are described in Appendix 2 and the results obtained

from the test are shown on the graph. Figure 4.8.

The execution time taken by the program at level ~ is not shown in this

case as these figures are rather meaningless. The program at level ~

purely provides th.e 'swap' operation for all more abstract levels and

in fact this is where the majority of processing takes place. The two

graphs drawn are once again least squares approximations to straight

lines through the points plotted. It is encouraging to note that the

effect of crossing between environments certainly does not add an

exponential overhead as could have been possible with some implementations.

In fact when the results of this test are compared with those of Test C

from the previous set of experiments, the indications are that the

gradient of the graphs have decreased rather than increased.

Unfortunately there is no exact way of actually assessing the overhead

of crossing between environments. With any two programs, designed to

perform the same function in different ways, a different set of

primitive operations will be performed. Clearly some of the improvement

takes place because several operations less are performed, at each level

in the latter test. This is because the 'swap' operation is performed

at level ftJ. However these two experiments are so similar that it is
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reasonable to assume that any overhead incurred by crossing between

environments is minimal, possibly less than that incurred when performing

one of the primitive machine operations.

One further point, however, remains to be discussed and that concerns the

extra overheads incurred by the progr~m providing the 'swap' operation.

The current implementation requires that this 'supervisory' program

calculates th.e addresses of all resources it requires to access, and this

can mean tracing up the segment tahles in order to access an object in

the calling environment. In th~ general case this may involve the

execution of several basic machine operations, however it should be noted

that the addressing overhead per instruction is less in the supervisory

environment than that of the calling environment.

In chapter six a mechanism is proposed which permits asynchronous

processing in the RVM. The mechanism suggested provides a means of

mapping resource names between any two levels in the hierarchy of the

RVM, and it is intended that such an approach will lead to a considerable

reduction in the mapping overheads incurred by 'supervisory' programs.
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4.6 Conclusions

In this chapter the implementation of a purely synchronous Recursive

Virtual Machine has been described. The results of experiments

undertaken to determine the efficiency of this RVM when executing

instructions at different levels of abstraction and also when transferring

control directly by passing environments, illustrate the feasibility of

such an architecture for providing a hierarchically structured operating

system. The overheads involved in performing operations at different

levels of abstraction increase in a strictly linear fashion which conforms

to the criteria for efficiency defined in Chapter one. Furthermore it

has been demonstrated that the introduction of a simple sixteen item

cache store can dramatically reduce this overhead.

The experiment to evaluate the performance of the RVM when crossing

between environments illustrates that the cost involved is again linear

and compares favourably with that of performing a basic machine instruction.

Comparing this mechanism with those employed by VM370, CAP, HYDRA etc.,

it can be seen that the RVM really does provide a means whereby operations

for a process executing in one environment can be interpreted equally

efficiently by a process in any other less abstract environment, or on

the hardware of the bare machine.

In order therefore to produce a RVM implementation which can be used

sensibly, it remains to produce a mechanism which permits a useful degree

of asynchronous processing. The complexities of this problem and a

possible solution are discussed in the following chapters, and thus it

is proposed that the RVM implementation undertaken on the 81700 could
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form the basis of a Recursive Virtual Machine Architecture capable of

supporting a general purpose operating system.
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CHAPTER 5 - THE ASYNCHRONOUS PROCESSING PROBLEM

5.1 Introduction

In the previous chapters a hierarchically structured virtual machine system

has been described which provides all the desirable features of a computer

system as defined in chapter three. In order to make 'real' use of this

system some asynchronous processing facilities must be provided without

affecting any'of the 'desirable features' already available.

When the problem of providing asynchronous processing is considered in general

terms, the asynchronous interaction of any operation, at any level in the

hierarchy, with any other operation must be studied carefully. It is a

requirement that each virtual machine operation appears as an atomic entity,

but some 'programmed' operations which may be provided, a 'sort' operation

for example, clearly will be provided as a further sequence of 'atomic'

operations. Obviously therefore, in reality all operations cannot be

truly indivisible. In particular if the machine operations of 'add',

'load', etc., are examined at a less abstract level than that of the machine

hardware as seen by the users of the system, and the system is considered

at a micro-code level, then even those operations normally considered

'atomic' are split into further operations.

In this manner, from the basic transistor level of a computer system, right

the way through progressively more abstract levels, to the level of a

particular user interface, a set of virtual machines is provided in all

computer 3rchitectures.
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In fact it is argued that by strictly regarding each level of a computer

system as an increasingly more abstract virtual machine, all operations,

be they I/O operations, complex 'programmed' operations, across-level

procedure calls (eg the conventional 'supervisor call'), or the basic

machine operations, all can be considered in the same manner.

For these reasons the asynchrony .problem is discussed in the general terms

of two co-operating processes executing asynchronously. It is also

assumed that"in general, any parameters passed between the two processes

cannot always be of type 'value' or 'result' and that there is a requirement

for the processes to share data in such cases. For example, consider a

process which sorts data into ascending order, then the only practical

manner in which the data can be passed to the 'sort' program is as a

shared segment; using ALGOLW terminology, 'value' and'result'parameters

will prov~ highly inefficient in this case.

This approach, of discussing asynchrony in general, has the advantage

that it avoids any pre-conceived notions as to how Input and Output processing

could be included in a particular computer system. Also if it is shown

that a problem exists in the general case then a solution to the general

problem must be found if a viable computer system is to be produced.

Furthermore if asynchronous processing can be provided in the general case

then it becomes logically trivial to provide asynchronously executing I/O

processors.

In this chapter the problem of providing asynchronous processing in virtual

machine systems is examined. Also, capability systems are examined, since

a dual between protection and virtual machine systems was established in

chapter two. This examination of protection systems establishes the
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mechanism which permits asynchronous processing in these systems and shows

that the introduction of 'revocable' capabilities will illustrate a similar

asynchrony problem.
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5.2 Virtual Machine Systems

In chapter two several virtual machine systems were examined, namely

VM370, the RVM, Hardware Virtualizer and Virtual Machine Monitor systems.

Since it was concluded that all these systems exhibited identical properties

it is only necessary to discuss the asynchrony problem with respect to one

of these systems, and the RVM will be used for this purpose.

The only other implementation of a hierarchically structured virtual machine

system, VM370, has been shown to have problems with asynchronous input

and output operations. However, because of the extra complexities of this

system, due to the basic two-state nature of its underlying architecture

it is inappropriate to use this system in these discussions.

5.2.1 Asynchronous Processing in the RVM

Within the RVM a mapping function is supplied which provides objects in one

virtual machine in terms of objects in the next less abstract virtual machine

at each level in the hierarchy. It is therefore possible, see figure 5.1,

for any process providing the mappings of objects at a more abstract level

to rename these objects in its own terms. Eg a process within Fruits could

change the mapping RED -+HIP into RED-+ CHERRY.

This ability for a process to redefine any descendant environment causes

a serious problem if one of the objects being renamed is being shared with

a process in an ancestor environment to that causing the redefinition.

Consider, for example, the following two situations both of a similar

nature, the second highlighting the extreme seriousness of the problem.
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USER SERVICES

USER SCHEDULER

PETER QUENTIN RAYMOND STEPHEN

Figure 5.2

il Referring to Figure 5.2, a process within the environment PETER

may invoke a 'Translate ISO to EBCDIC' operation on some data

'File Record', the operation being provided by a process within the

environment USER SERVICES. The process within USER SERVICES is now

manipulating the object'parameter'in its terminology, this object

having been mapped from the object 'file record' within the

environment PETER. Concurrently a process within USER SCHEDULER

might decide that it is time RAYMOND was permitted to execute and

the objects constituting PETER may be moved onto backing store

thus endangering the 'Translate ISO to EBCDIC' operation. The

problem arises because the process within USER SERVICES can only

refer to the data, 'File Record', in its own terms, and the process

within USER SCHEDULER, being unaware of USER SERVICES dependence

on this object, changes its use. Processes within USER SCHEDULER

have insufficient knowledge to know when it is safe to manipulate

the resources of PETER and thus this may cause a failure in the

protection system •
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OUTPUT SPOOLER

RESOURCE SCHEDULER

PETER PAUL

PATRICK

Figure 5.3

Lil Referring to Figure 5.3, a process within PETER creates a subsidiary

environment PATRICK containing the segment OUTPUT FILE which is to

be spooled by a process within OUTPUT SPOOLER. The spooling

operation, requested by the process within PATRICK, requires the use

of the resources named OUTPUT FILE, which in turn are named FILE

in the environment PETER and Disc in the environment RESOURCE
SCHEDULER. The process within PETER may then inform a process

within RESOURCE SCHEDULER that it has finished with the resource

FILE, although the OUTPUT SPOOLER is still accessing this same

resource on behalf of PATRICK. The called process within RESOURCE

SCHEDULER may,~in ignorance of the spooling operation, make use

140



of the resources DISC itself or it may pass them to a process

within environment PAUL. This will thus mean that information

may be copied from PETER to PAUL or RESOURCE SCHEDULER enabling

PETER to sabotage these environments. Alternatively if input

spooling was being requested by PATRICK then PETER may be able to

read confidential information belonging to PAUL or RESOURCE

SCHEDULER. In either case a serious breach in the protection

system is exposed.

If the RVM system is to remain 'well-protected' as defined in chapter

one, while providing the ability for processes to execute asynchronously,

it must prohibit the renaming of objects while they are required by the

'called' environment. The solution whereby control is passed through each

successive environment can be dismissed on grounds of inefficiency, for

exactly the same reasons that th.eCAP inter environment process migration

scheme, discussed in chapter ~wo, was regarded an inefficient.

As a result of these discussions two important questions arise:-

i) How is a process within one environment, eg RESOURCE SCHEDULER,

to be prevented from (unwittingly) re-allocating the resources

currently being shared between one of its ancestor environments ,
ego OUTPUT SPOOLER, and one of its descendant environments ,
ego PETER ?

ii} How can the RVM assure a called process within some less abstract

environment, eg USER SERVICES, that the resources it is manipulating

on behalf on the calling process will remain stable and accessible

to the calling environment once they have been located ?
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Clearly it is highly inefficient to expect the called environment to check

the validity of the shared resources prior to any access of them. Even

to achieve such a check would require that the called process was non-

interruptable while performing the check and this point contradicts the

premise that if asynchronous processing is to be permitted then the

mechanism must be able to be invoked between any two primitive RVM

instructions.

The notion that environments between called and calling process must be

informed of the requirement that certain resources must remain stable

is invalid. Only occasionally are resources reallocated. Preferably
the overhead of ensuring that the resources are not involved in a concurrently

executing operation should be incurred at the time of re-allocation rather

than as each operation is invoked.
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5.3 Capability Systems

Having discussed the reasons for the problem of providing asynchronous

processing in virtual machine systems, capability systems will be examined

in order to discover the reason why these systems seem to provide an

effective asynchronous processing mechanism.

It is interesting to note that although the basic reason why capability

systems permit asynchronous processing is the same in all cases. a similar

problem to that exposed in virtual machine systems is exibited by GEC 4000

systems when other processors are involved. and also in relation to the

use of capability lists and extended core storage in the CAL-TSS system.

This basic reason why capability systems permit asynchronous processing

is the fact that once a process has been granted the capability for some

resource, it cannot be revoked by any other process in the system. This

philosophy is common to all the capability systems discussed in chapter

two. and is described by the following example.

ANIMALS

BIRDS

FISH
PETS

MAMMALS )- CATS
I

REPTILES

Figure 5.4



Referring to Figure 5.4, if a process within the environment ANIMALS

passes the resource MAM~~LS to a process within the environment PETS.

This resource may be named CATS in the environment PETS. Because it is

impossible for any process to revoke PETS' capability to the resource CATS,

a process within ANIMALS cannot even replace the resource CATS with a

new resource DOGS.

BOTANY
PROPOGATE PLANTS SEEDS
FRUIT FLOWER
ROOT LEAF

~ '",;' "
/ '"
" PLANTS "
[ I I

.

ITREES FLOWERS GRASSES

I \

I \
I \

PANSY

DAISYCall PROPOGATE (DAISY) - ~----------------~
VIOLET
PRIMROSE

Figure 5.5

The ability to revoke access to resources is fundamental to virtual machine

systems, however the lack of revocation permits processes to execute

asynchronously within a capability system. For, referring to figure 5.5,

consider a process within the environment FLOWERS which passes the resource

DAISY to a process within the environment BOTANY requesting the operation
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PROPOGATE. Within a capability system it is impossible for any process

within the environment PLANTS to change the resource DAISY in any way,

and the process within BOTANY Is assured that DAISY will remain stable for

the duration of the PROPOGATE operation.

It is postulated therefore, that if a system can be constructed which

never requires to revoke access to objects then this will permit asynchronous

processing within a well-protected computer system. Further study of the

GEC4000 system and the CAL-TSS system reveals that at some level an element

of revocation exists and in the HYDRA system a revocable capability

mechanism has been proposed [CJ 75]

5.3.1 The GEC 4000 System

The GEC 4000 system ensures that the 'Nucleus' within the central processor

is always aware of the availability of each segment within the system,

ie. in core or on backing store, see Figure 5.6. Any attempt to access a

segment currently backing store will cause the Nucleus to schedule the

CORE MANAGER in order to retrieve the necessary segment. Because of

this approach, any process which is directly controlling an I/O device

must ensure that any segment to be shared with the I/O processor is

'held' in core for the duration of the I/O operation. Consequently the

I/O Device Driver must inform the CORE MANAGER if it is known that the

shared segment is eligible: for removal to backing store.

This situation arises because the CORE MANAGER could decide to move the

shared segment during the I/O operation J thus causing the I/O processor

to overwrite a segment now belonging to a different process.
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In the case of the GEC 4000 thi.ssolution is considered satisfactory,

for the architecture is non-hierarchial and only the more privileged

environments contain I/O device drivers. However the RVM does not lend

itself to such a solution since this would require any segment being

shared to be 'held' prior to each operation that might possibly cause
some asynchrony in the system. If a general solution is to be provided

it must be capable of being utilized between each primitive machine

operation, and only rarely in this case will objects require locking in
memory.

5.3.2 The CAL-TSS System

In the description of CAL-TSS in chapter two it was mentioned that once

a capability for an object has been passed to another domain it cannot

be revoked. Also that the CAL-TSS designers felt that such a feature

could not be implemented in be system, partly because of the global name

space approach which has been adopted (Lam 68, LAM 69b] •

More recently a paper by Lampson and Sturgis [LS 76) discusses the actual

CAL-TSS system finally implemented and the problem areas that were met

while developing the system. The CAL-TSS system is implemented as a

layer on top of the software kernel and was designed to have the following
properties :-

i) User system code executes within environments of kernel processes.

ii) User objects in extended core storage are represented as kernel
objects. This is so that frequent acti,onson user objects can

be implemented as the more efficient kernel actions on the
representing kernel objects.

147



iii} The movement of user objects from extended core storage to the

disc is performed by using kernel operations which read the

state of the kernel object and set up the description of the

state of the represented user object. The user system can

then write the description on the disc, by the appropriate use

of kernel operations.

A major difficulty arose while trying to satisfy the third property, in

particular with regard to capability lists, as these could not be represented

on the disc. The only objects which could be given a disc representation

were those which had no direct kernel representation. This isillus-
trated by discussing the movement of a capability list from disc to extended

core storage. The representation in extended core storage is to be by

a kernel capability list, the user capability list contains capabilities for

various objects, however some of these objects may have eXisting kernel

representations, others do not. Further there may exist other user

capability lists which contain capabilities for the user capability list

which is being moved and which already have a kernel representation. Upon

attempting such an operation one of the kernel actions must be to create

the new capability list, however with the kernel that was constructed it

was not possible for a capability in a pre-existing kernel capability list

to pOint to this new kernel object, nor for a capability in the new

capability list to point to a non-existent kernel object.

As a result of this problem a compromise was reached, whereby user objects

were divided into classes, those which could be moved in the manner indicated

and those which could not. However, as development of the system proceeded

other problems arose because two classes of objects had been used.

148



This problem is very similar to that of providing asynchronous processing

within the RVM, and indeed an initial attempt at a solution, within the

RVM, was made by grouping different classes of objects together in a

similar manner to that just described. Segment table entries could not

be moved and other objects could. This was considered to be a very

inflexible and expensive way of providing a solution to the asynchronous

processing problem since there are occasions when a process will wish to

alter the segment table entries of a descendant and the philosophy of the

RVM is to treat a segment table as 'special' only for the environment

which it defines. Furthermore there was no guarantee, as discovered in

CAL-TSS, that such an approach would provide a comprehensive solution.

5.3.3 The HYDRA System

The fact that capability systems do not permit capabilities to be revoked

provides the mechanism for allowing,asynchronous processing in these

systems. The designers of the GEC 4000 and CAL-TSS systems do not regard

the lack of revocable capabilities as a serious problem in their systems,

however it has been demonstrated that where an element of revocation is

involved then asynchrony problems are highlighted in both cases.

Cohen and Jefferson [CJ 75] discuss the revocable capability in relation

to the HYDRA system, and although they do not regard it as serious they

do propose that a mechanism is introduced which permits the revocation of

capabilities and another is introduced which prevents it.

The revocable capability problem in HYDRA is regarded of low importance

since many other HYDRA mechanisms, associated with the lack of hierarchial

s~ructure, eliminate the need for such a feature.
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not considered essential that the HYDRA revocable capability mechanisms

are highly efficient. This is in direct contrast to the RVM system

where revocation is an essential feature and an integral part of the

segment table mechanism which must be maintained as efficient as possible.
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5.4 Revocable Capability Mechanisms

The importance of providing a facility which permits capabilities to be

revoked from a more abstract environment is a matter that has been discusRed

for some time. Fabry [Fa 74] , in a paper which discussed possible

hardware implementations of a capability based addressing scheme, also

discussed the reasons for wishing to allow capabilities to be revoked,

and from this discussion a proposal for a revocable capability arose.

Redell and Fabry [RP 74] discuss a mechanism which permits a process to

create an environment defined by a capability list, and this capability

list may contain a combination of actual capabilities and pOinters to

capabilities which. can be used by the environment. The pointers and

their associated capabilities are defined as revocable capabilities.

Within a conventional capability system a single level of indirection is

involved when mapping an object in one environment into an absolute resource

of the real machine. This single level of indirection is provided by

the capability associated with the abstract object. Within the revocable

capability scheme further levels of indirection may be introduced as

required, these being provided by the pointers to the actual capability

for the object involved.

Both ordinary and revocable capabilities, when mapping from capabilities

to objects, are considered in the same fashion by any·process. Each

process exists within an environment which is defined by a capability

list containing either or both types of capability. Such a process has

the ability to set up further environments with capability lists constructed

of either ordinary or revocable capabilities. Thus as each more abstract

environment is created there is the possibility of adding a level of
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Example of Revocable Capab,ilities

Environment JOHN Defined by Capability list containing ordinary capabilities.

GRANDAD

FATHER

UNCLE

BRarHER

TOM DICK-- --

HARRY BERT--

TOM

DICK

HARRY

BERT

Capabili ty List Environment JOHN

Environment HARRY defined by Capability list containing a revocable capability for
NEPHEW.

FATHER

BROTHER

NEPHEW

DAUGHTER

TOM

DICK

BROTHER'S SON

BETTY

TOM DICK-- --
I- - - - -~ON: JOHN -

JOHN BETTY--

Capability List Environment HARRY

!:t> Environment BETTY

GRANDAD

FATHER

UNCLE

COUSIN

FATHER'S FATHER

HARRY

FATHER'S BROTHER

UNCLE'S SON

HARRY TOM- - --FATHER: TOM-----8RarHER: DICK-- - - -
DICK BERT-- r---
1-- - - -SON: BERT
t- - - - -

Capability List Environment BETTY

Figure 5.7
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indirection by making the capab.ility to a new object revocable, the

capability for the object in the parent environment being either ordinary

or revocable, see Figure 5.7. It is thus possible 'to introduce revocable

capabilities defined by revocable capabilities repeatedly at each level in

the system thus a very similar structure to that defined by the RVM segment

table mechanism in constructed. Of course it is also possible to pass on

ordinary capabilities between environments in the system repeatedly.

Using this technique asynchronous processing could be performed as in a

normal capability scheme.

The problem which has been exposed in the implementation of the RVM, that

of preserving the mappings of objects between several environments in

the system for significant periods of time, does not appear to have been

considered in the design of revocable capabilities. Redell [RE 74] , in

his thesis, goes to great lengths to illustrate the flexibility of the

scheme for supporting and creating objects of different types and briefly

demonstrates, in a trivial example, that some asynchronous processing is

possible. However a closer study of the more generalized problem reveals

that exactly the same problems occur as in the RVM.

Example: Consider the environment structure of Figure 5.7. The three

environments are non-hierarchial in nature and each environment shares

objects with other environments. If a process within the environment

BETTY starts to perform some operation involving data copying into

the object COUSIN then this may involve the reading from or writing to

the object BERT. Asynchronously ~th this operation a process in the

environment HARRY may decide to rename DICK's SON as JOHN. This may

cause the object JOHN to b.e overwritten. As a result the process within
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BETTY may be corrupted or any other process with access to JOHN could

be forced to divulge privileged information or to crash.

As in the RVM, the problem arises because the process within HARRY which

supplied the capability COUSIN to BETTY, is unaware of BETTY'S dependance

upon this remaining constant.
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5.5 Conclusions

In this chapter the problems of providing asynchronous processing in

virtual machine systems and capability systems have been discussed. It

has been established that the lack of a revocable capability permits

processes to execute asynchronously in a capability system but it is

questioned whether a real system can be built which does not require

revocation at some level. The GEC 4000 and CAL-TSS systems i1.llustrate

that an element of revocation exists at some level of the system and

the HYDRA system now permits the use of revocable capabilities.

An investigation of the revocable capability mechanism demonstrates that

the complete interchangeability of both ordinary and revocable capabilities

causes a replication of the asynchronous processing problem encountered

in the RVM. A process at any level of the hierarchy cannot know if a

process within one of its subordinate environments is dependant upon a

particular capability it may wish to revoke.

In the following chapter a mechanism is proposed which overcomes the

asynchronous processing problem in the RVM. It is expected that this

mechanism will prove generally useful and extendible to revocable capability

systems. thus ensuring the integrity of object mappings in both cases.

A key requirement of this mechanism is to prevent or delay revocation

during use by a subsystem. and this is the point at which the HYDRA

mechanism fails. Of course direct use of the RVM mechanism to be proposed

will not be possible in most revocable capability systems due to their

non-hierarchical structure. This. however, should not prevent an

extension to the mechanism permitting it to be employed in both virtual

machine and capability based systems.
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CHAPTER 6 A MECHANISM TO PERMIT ASYNCHRONY IN THE RVM

6.1 Introduction

Having described in the previous chapters the mechanisms and implementation

of a synchronous RVM, and discussed the problem of providing asynchronous

processing, it remains to examine how asynchrony might be permitted in

the RVM. This chapter describes a mechanism designed to permit asynchronous

processing, insisting that this mechanism must prove sufficiently efficient

to be used for each operation. Further, the mechanism must permit any

two processes within the RVM to interact in a sensible asynchronous

manner so that none of the original design criteria, as described in

chapter three, are broken.

Initially the criteria for providing a solution to the problem are discussed.

A mechanism is then described which conforms to these criteria. Finally

the efficiency of the mechanism is examined and some refinements which

could further increase the efficiency of the scheme are described.

~undamental to this chapter is the criteria that any such mechanism which

permits asynchronous processing in the RVM must prove sufficiently efficient

to be utilized for every operation. For if this criterion is fulfilled

then the mechanism can be used in all cases where asynchronous processing

may be involved.

type operations.

Thus including multiple processors and 'supervisor call'
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6.2 Requirements for a Solution

Consider the environment structure illustrated in Figure 6.1, and the

requirements necessary to ensure that the system is well protected. For

the system to perform consistently and reliably it is sufficient that a

process contained in one environment (V say), having an operation fully

interpreted in an environment at a less abstract level (C say). must have

the mappings between the intervening levels preserved for each resource which

is required by the process at the less abstract level, eg the mappings P_'V

and E~P. It may be desirable to preserve the mappings C-+ E but it

should be observed that any attempt to change this mapping by a process within

environment C can be regarded as an error in the process which is providing

the requested operation, since such a process must be aware of the resources

it is currently manipulating.

A

I
B

/'"c D

/1 / -,
E F G H

/ -, /""p Q R S

/ -, -,
V W X

Figure 6.1



A requirement such as this can be fulfilled by preventing any further

processing in the sub-branch of the tree which contains the calling process.

For example, environments E,P,Q,V,W and X are locked out while an operation

is being provided for V in environment C. Processes within environments

R,F,G,H etc could therefore continue processing asynchronously with that in

C, there being no possibility of the shared resource mappings between

C and V being corrupted. However as it is the principal requirement that

these mappings be protected for each operation, including those of the bare

machine at level ~, then clearly very little processing could take place
in such a system.

As already discussed, the protection of the shared resource, against its

overwriting, or the assurance of it remaining constant, can be achieved

by conventional 'semaphore' or 'monitor' techniques. Thus the protection

of the resource itself will not be considered as the domain of a hardware

protection scheme. Instead it is a requirement that the process, within

the environment which is providing an operation, performs any necessary

protection of the shared resources. Thus two or more processes will be

permitted to communicate via a common data area without any loss of

protection. Should a protection violation occur then it is asserted

that this can only propogate as far as the process, in the least abstract

environment, which is sharing the common resources.

For example, referring to figure 6.1 if processes within X and Care

co-operating via some shared data, then incorrect use of this data cannot

cause a fault in any process within A,B,or D and its sub-branches.

Thus if a process in one environment wishes to co-operate with a process in

a more abstract environment, it must ensure that this process co-operates

in an orderly manner, by the use of 'monitors' for example, or accept the

consequences of any error that may occur within the subordinate process.
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These notions of requirements necessary for ensuring a well-protected

system are fairly intuitive, and it is easy to see that if these

conditions can be maintained then the problems discussed in the previous

chapter will be resolved.

At this point it should be noted, again referring to Figure 6.1, that

while V is having an operation performed at C, a process within B is

permitted to remove a common resource from C (and its descendants).

Such an action is quite acceptable, for although e may be executing on

a separate processor and will inevitably produce a fault when it next

attempts to access the resource, 'since B has removed the resource it

is able to replace it, even mapping it into different resources of its

own environment if appropriate. This will not affect ets operation

in any way, since the resource shared between e and V will still be

named consistently in terms of both e and V.

A mechanism which is incorporated into the RVM in order to provide

asynchronous processing must therefore fulfil the following requirement.

The mechanism must protect the mappings of any objects required by a

process within an environment at one level of the hierarchy, which is

interpreting an operation for some process in an environment at a more

abstract level. Furthermore since the intervening environments know

nothing about these actions this protection must be provided automatically.

Example: Referring to Figure 6.2, if a process within environment W

requests an operation, on a set of objects Wl, which is provided by a

process in environment C then the following mappings must be preserved.

i) WI in environment W into P2 in environment P
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ii) P2 in environment Pinto E3 in environment E

iii) the segment table defining environment W, contained in environment

P, into its realization in environment E,ie Pl in environment P

into E2 in environment E.

These mappings must be preserved automatically since processes within

environments P and E are unaware of the current operation being undertaken

for the process in environment W.
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6.3 Considerations of Efficiency

In order to satisfy the requirements of the previous section, it might

be envisaged that an 'indicator' be maintained, for each basic machine

object, in the micro-program of the base machine. This indicator could

enable the micro-program to establish whether or not the contents of a

particular basic machine object could be changed by a process executing

within any environment of the system.

A call of a process in a less-abstract environment would thus cause certain

objects to be identified as 'locked' to processes in intermediate environ-

ments for the duration of the call. Such an approach will permit a

sensible level of asynchronous processing, however a closer examination

reveals that the cost of providing such 'indicators' will prove prohibitively

expensive if they are to be used at the start and end of each operation.

The major reasons for this high cost are two-fold. Firstly the extra

storage required to implement such a scheme is of the order of a basic

machine object. Each indicator must contain information regarding the

type of the object (segment table or data), the number of environments

which require this item to remain constant, and which environment in

particular has access to the item.

A more important reason for rejecting this approach is the fact that

the cost of setting up these indicators is not linear with respect to the

distance between called and calling processes. The cost function is,

in fact, exponential and this stems from the fact that setting an indicator

on a segment table entry for a resource at one level implies that two

segment table entries require manipulating at the next, less
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abstract level. One of these entries will be mapping the resource in

question, the other will be mapping the resources containing the segment

table for the previous level.

Example: Referring to Figure 6.3 consider the information which requires

to be preserved for the duration of an operation which is being performed

in environment B for a process in environment V, using the shared resource X.

i) Segment table entry in P for X must not be changed,

: 11) Segment table entry in E for X must not be changed,

iii) Segment table entry in C for X must not be changed,

iv) Segment table entry in E for P's segment table for V, must

not be changed, ie segment P1,

v) Segment table entry in C for P's segment table for V, must not

be changed,ie segment E2,

vi) Segment table entry in C for E's segment table for P, must n~t

be changed,ie segment El.

ie six items must be protected when interpreting an operation at four levels

of abstraction less than the requesting process, and sharing only one

set of resources.

In order for the mechanism to be efficient it has been asserted that the

cost of its utilization must remain linear with respect to the distance

between any two environments containing processes which utilize the

mechanism. For this reason a different strategy must be adopted.
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One further point, which indicates the unsuitability of protecting

individual resources, is that any resource which requires protecting

for the duration of an operation can only be protected as it is

identified. Such a scheme may cause the overall protection of the

system to become exposed, since it may be possible for a process within

an intermediate environment to change the mapping of an as yet unidentified

resource unwittingly. The proper approach is to provide this protection

during the call of each operation, and this can be provided if the complete

environment is protected, rather than the individual resources contained

within the environment.
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6.4 The Proposed Mechanism

If the example of the previous section is returned to, and if, rather

than attempting to protect the resource X for the duration of an operation

performed in environment B, the whole environment V is protected then

the following items need protecting.

Referring to Figure 6.3:-

i) The environment V ie segment X

ii) The environment P ie segments PI and Xp

iii) The environment E ie segments El, E2 and XE

Thus the number of items requiring protection is now directly proportional

to the distance between the two communicating pro~esses.

Clearly this is a superset of the condition for providing asynchrony given

in section 6.2. The segment tables for any environment are contained in

the environment at the next, less abstract, level and are thus always

protected by this approach.

One further advantage of such an approach is the fact that the protection

can be provided during the call of a process at the less abstract level,

and once provided it remains valid until the completion of the call.

Therefore there is no requirement to provide the protection for each

shared resource as it is identified.

A mechanism which protects the environments by-passed in an across level

call is therefore proposed. The fact that the number of items to be
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protected is linear with respect to the distance between called and

.calling environment plus the fact that this protection need only be

applied once indicates that such an approach will conform to the efficiency

criteria defined in chapter one.

The following sections describe the extra information to be maintained

by the RVM interpreter in order to implement such a mechanism. This

extra information falls into four sections as follows:-

i) Information required to ensure an environment remains protected

for the duration of an operation.

ii) Information defining the route from a calling to a called process

iii) Extensions to the Associative Memory mechanism of the synchronous

RVM

iv) Table identifying those environments in the system which are

protected.

6.4.1 The Environment Protection Semaphore

Since any environment may be required to be protected by several

asynchronous processes, a multiple reader/single writer semaphore, of

the type described by Courtois et al. [Co 71 ], must be associated with

each environment in the current system. The 'writer' semaphore indicates

that a process wishes to change, or is changing, the segment table defining

a particular environment. The 'reader' semaphore indicates the number of

processes currently dependent upon the environment remaining constant.

Thus an environment can only be redefined when the number of 'readers'

is zero; further no 'readera' can become dependent on the segment table

while the 'writer' is non-zero.
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In this way any attempt to change a segment table which is providing

the mapping which defines a protected environment will not be permitted,

also any attempt to protect an environment which is having its mapping

changed will be suspended until the completion of the operation which is

causing the mapping to be changed.

6.4.2 The 'Called Route' Segment

On completio~ of a particular inter-environment 'procedure' call, in

order to release the semaphores on all the environments protected for

the duration of the call, a list of the 'route' between called and calling

environments must be maintained. However, this information is already

recorded in the synchronous RVM implementation as a stack of environment

descriptors; and this is done in order that control can be returned

correctly to the calling environment.

The positioning of this information is solely concerned with any

implementation of the mechanism. However it is likely that some alternative

to the global scheme employed in the synchronous RVM implementation will have

to be used. The main reason for this difference is the possibility of a

variable number of asynchronous operations outstanding at any instant.

In addition, since across-level procedure calls are considered as an

extension of general asynchronous operations, it will be impossible to

associate this information with a particular processor in the system.

It is therefore proposed to introduce a new segment associated with each

environment which is created. . This segment could be named - I, and made

inaccessible to any process executing within the environment, and would

contain a list of the currently outstanding calls on processes within that
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environment. Again it will probably prove most appropriate to store the

complete route of called and by passed environments, so that when the

requested operation has been performed, control can be returned to the

calling process.

Example: Referring to Figure 6.4, consider a process within an environment

F which requests an operation provided at B. B's 'Called Route' segment

would then contain the environment names F and C. While this operation

is being performed a process within J may request another operation also

provided at B. B's 'Called Route' Segment would then contain the environment

names F, C and J, E.

Clearly there is a requirement to associate each call from a descendant

environment with the 'called route' which has just been saved.

Consequently on request of an operation it is proposed that the called

process is supplied with a reference to the 'called route' so that a

successful return can be established when appropriate.

By storing the 'called route' information in a segment inaccessible to

the called environment, called processes would be protected against

overwriting the return routes. Of course a parent could permit one

of its subordinates to access this routing segment. However, an action

of this kind can be regarded as an error in the parent process. It

will not permit the propogation of any error to a process within a less

abstract environment than that of the parent process.

A further feature of such a scheme is the flexibility it affords.

Although it is necessary for each. parent process to provide a segment in

order to contain this routing information, it may be of variable size,
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even a null segment depending upon how much control the parent process

wishes to exercise over processes within a subordinate environment.

Having established a scheme for protecting environments while any operation

is being performed it must be noted that the process providing the operation

will have to map resource names in the calling environment into resources

of the called environment. If the operation is being provided by the

hardware of the bare machine then this mapping is performed automatically

by the micro-code. However in order for a process in some abstract

environment to calculate, in its own terms, the names of resources it needs

to manipulate then it will have to perform this mapping iteratively by

using the segment tables defined in the segment containing the 'route' of

called to calling environments.

The major problem here is that although a process in the calling

environment requests some operation on a set of resources X, these

are unlikely to have the same name in the called environment. Thus

when the process within the called environment realizes that the resources

to be used are called X in the calling process t,sterms, the called process

must determine from the intervening environments the name of X in their

terms in order to determine the name of X in its own terms.

As already noted this procedure is available in the micro-code of the

RVM in order to map names in any environment into objects of the bare

machine. Clearly a similar function is required to map the names of

any environment into those of the called environment.

6.4.3 Associative Memory Considerations

Essentially the mapping of resource names between any two environments
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Associative Memory Mechanism

~

Resource Environment ~.!apsInto Maps Into Access
Name Resource Environment Allowedm

r. XF F XE E Minimum

2 XD D XA A Full

3 YF F ZD D Minimum

4 Xc C XA A Full

5 XF F Xc C Minimum

6 ZE E ZB B Full
·••·••···

N-l XF F XA A Minimum

N XE E Xc C Full

Environment Hierarchy

A has three objects XA YA ZA

.I and passes them to B, named X,Z,Y. L 1 tB has three objects iB YB

I and passes X and Z to C, named X,Y. tC has two objects jC je1 and passes them to D, also creating a new object.

D has three objects I ID iDl and passes them to E, named X,Z,Y.
E has three objects j! ZE YE

1 and passes them to F with minimal access rights.
1 1F has three objects XF ZF YF

Figure 6.5

172



is the same. The mapping of resources into those of the bare machine

is a special case. The next consideration is therefore the manner in

which this information can be accessed both safely and efficiently.

At any given instant the information regarding the various resource

mappings required must be available to an indeterminable number of

processes. For this reason it must be kept in a separate memory from

the total available resources, and the micro-program of the RVM must

keep the information updated. Clearly there is too much information

for it all to be held in a single high speed store, and there is no

obvious way to decide on an allocation policy for placing some of it in

such a store. An alternative approach would be to address the information

directly but again there is no obvious way this could be achieved.

As already mentioned, in chapter four. the problem of efficiently

accessing repeated items, at any level in the hierarchy, from basic

objects of the bare machine can be achieved by employing associative

memory techniques. Since it has already been asserted that the problem

of addressing objects of the bare machine is an essentially similar

problem of that of providing address mappings between any two levels

in the hierarchy, it is proposed to employ similar associative memory

techniques to help solve this efficiency problem. The associative
memory will therefore contain the mappings of.resources between any

two levels in the system, rather than just the mappings between a level

and the least abstract one. Also since both.operations and objects

are mapped between levels of the system. a single associative memo*y which
fulfils this purpose will be discussed.

Figure 6.5 illustrates the format of the proposed associative memory

tOgether with a possible set of values and environment structure.
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Given the results of the experiments in chapter four, where an associative

memory mechanism was shown to have a marked effect on the efficiency of

the synchronous RVM, it seems realistic to suppose that by careful

selection of the size of a memory which permits the extended functions

described, then the mapping of resource names between any two levels

could be performed efficiently.

It may appear that the use of such a mechanism might enable a process

to overcome the protection scheme enforced by the RVM. For referring

to figure 6.5, consider a process in environment F which requ~sts an operation

on some object XF to be performed in environment C. The object XF may

map into the object XC, to which C has full access rights. If however

the process within environment F has only minimal access rights because

rights have been denied by an intermediate environment then this

information will be maintained within the associative memory, thus

preventing the calling environment from overcoming the protection

mechanism. The fact that access is now performed on an object in a

privileged environmentJis of minor concern. For even if C is permitted

to access Xc in a more privileged manner than F may access XF, these

extra privileges may not be invoked since the associative memory records

the maximum permitted access to any object as it is mapped between

environments.

Of course all of these mappings may not necessarily be present in the

associative memory, but those that are can be used directly. Those

that are not must be obtained by tracing up through the mapping tables,

and may then be entered in the associative memory.
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The proposed mechanism must now be considered in more detail. Using

semaphores to 'protect' environments which have been by-passed suffers

from the disadvantage that the semaphores must be claimed and released

for every operation. A more desirable solution would require that the

semaphores are only claimed and released as necessary. It is to be

assumed that if the protectton of the mappings of the shared resources

is insisted upon for each operation, then for each consecutive operation

in any environment, unless the operation is provided in the next less

abstract environment, then at least one environment will require protecting.

Furthermore, in a typical case, where the operations are to be interpreted

by the micro-code of the RVM, all intervening environments will require

protecting at the start of the operation and unprotecting on completion.

Clearly it may be possible, for each instance that creates the existence

of a particular environment, to perform the protection operation once

only for the first operation performed in that environment, removing that

protection again once only for the last operation performed.

6.4.4 Table of Protected Environments

The suitability of the associative memory mechanism discussed in the

previous section clearly depends on the mappings recorded in the memory

remaining valid over useful periods of time, and upon their removal from

the memory when they are changed. Of course information in the associative

memory may disappear in time, in which case its reliability ceases to be
of any concern. Alternatively a process may wish to modify the resources

of its environment, in this case all items dependant upon this environment

must immediately be ejected. from the associative memory.
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Table of Protected Environments

Flag set List ofEnvironment Readers if to be Associated Protected Environmentschanged

K 1 FALSE

F 2 FALSE K, M

C 2 FALSE F

M 1 FALSE

B 2 FALSE C, E

H 1 FALSE

D 1 FALSE H

J 1 FALSE

E 1 FALSE J

Asynchronous operations A

K calls B
M calls A
H calls B
J ca1ls A

B

/
C D E

/ -,
. F G H I J

/1~
K L M

Figure 6.6



Consequently a mechanism is needed which ensures that environments remain

protected until there is a definite requirement to remove the protection,

and once this requirement has arisen the mechanism muot ensure that the

environments be unprotected as quickly as possible.

With the above criteria in mind it is proposed to provide a mechanism,

based on the following design principles, which will ensure environments

are locked as required. The proposed mechanism employs a table which is

global to the complete RVM system, and this table contains the names of

each environment currently protected.

construction of such a table.

Figure 6.6 illustrates the

Associated with the name of each environment currently protected is an

integer which indicates the number of asynchronous processes currently

dependant upon the mappings provided by this environment. When interpreting

an operation this table can be examined quickly to determine if the necessary

environments require protecting. If the environment name is not present

this indicates that a full protection operation has to be performed,

otherwise the integer 'READERS' associated with this environment is simply

updated. The existence of an environment name in this table thus indicates

that this environment has not been changed since its name was placed there,

and that all mappings within the associative memory which rely on this

environment are valid.

Modification of an environment can now only take place when the number of

processes relying upon this environment is zero. When this occurs the

environment name must be removed from the table and related items in the

associative memory must also be ejected.
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In order to eject all the items in the associative memory which are

dependant upon an environment to be altered, and also to ensure that the

removal of one item from the table of locked environments also forces the

removal of all associated, more abstract environments the following information

must also be maintained. Each protected environment must have associated

with it a flag indicating that it is to be removed when its 'READERS'

count reaches zero. If this flag is set no more processes will be permitted

to by pass this environment until the pending request to change it has taken

place.

Furthermore each entry must contain a list of the environments at the next,

more abstract, level which are also protected and dependant upon the

current environment for their resources. Thus an attempt to change one

environment can cause all associated environments to be flagged as awaiting

change.

It must now be noted that the existence of a mapping in the associative

memory implies the immediate environments are currently protected. The

protection procedure therefore need only take place if a new item is to

be placed in the associative memory. Also environments are now only

unprotected if, on completion of an operation no processes are dependant

upon this environment, and some process has requested to change this

environment.

6.4.5 Appraisal of Mechanism

The scheme discussed has considered ensuring that environments remain

constant for the duration of each operation at any level of abstraction,

these operations betn~ interpreted at some less abstract level. Also
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the removal of this protection has been avoided except when specifically

requested and therefore the reprotection of environments will often be

avoided. As a result the validity of an associative memory mechanism

can be assured for longer periods than initially estimated.

Since by protecting whole environments, rather than resources the number

of items requiring protecting /unprotecting for any operation is linear

with respect to the distance between called and calling environments, the

mechanism meets the criteria for efficiency defined in chapter one. It

is thus expected that with an associative memory mechanism capable of

providing the mappings of the most commonly used operations and objects,

and a protection mechanism which adds little overhead to the basic instruction

execution cycle, the RVM should be able to work efficiently when performing

any form of asynchronous processing.

It has been shown that this proposed mechanism satisfies the criteria for

allowing sensible asynchronous processing which were discussed at the

beginning of this chapter. It remains only to comment on the envisaged

efficiency of the proposed solution. As has been mentioned, the protecting

and unprotecting of environments is now only performed when necessary, ie

after an environment has been or is to be altered. The frequency o~ this

occurring is envisaged to be small compared with the total number of

instructions executed, and since the amount of work involved in this

protection and removal of protection has been reduced to a minimal quantity,

it is clear that any time spent initi.ating and removing the protection will

be very smal1 in comparison with the tt-me spent performing the actual

operations of the machine.
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6.5 Refinements to the Proposed Scheme

The original proposal has been to perform any protection of environments

for each operation at every level of the RVM hierarchy. However, it has

already been noted that such a mechanism is unnecessary when interpreting

certain primitive machine operations such as 'load' and 'add' etc. It

must therefore now be asserted when the full protection and unprotection of

environments is required and when it is possible to make some short cuts in

the scheme proposed. Clearly these short cuts are possibly only when

interpreting primitive machine operations (interpreted on the bare machine,

by micro-program; at level ~) but even then the amount of protection required

depends upon the operation being interpreted. A complete quantification

for each of the RVM operations is rather pointless since any other implemen-

tation will probably choose a more complex I/O system, a different set of

primitive operations, and possibly several central processors all with access

to the shared memory objects of the complete system.

In the case of extremely basic instructions where the objects being acted on

can be obtained within a single memory sycle, then it is apparent that no

protection is required at all. However when the objects to be accessed

require more than one memory cycle then the number of central processors

becomes important, expecially if it is possible to change the objects in

between operations. I/O operations will always require that some protection

of environments is performed, because an intermediate environment can perform

several basic operations during a single I/O operation. It is because of

these complex considerations, which are involved when attempting to assess

the necessity of protecting environments for any operation, that it is

proposed to ensure that on each operation the necessary environments are

protected.
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In the particular case of the RVM implementat~on described in chapter four.

it is clear that the only primitive machine operations which will require

environments to be protected are the I/O operations. and modification of

the instruction execution cycle to reflect this fact would further improve

the RVM's efficiency.
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CHAPTER 7 ~ CONCLUSIONS

7.1 Introduction

In the previous chapters the design and implementation of a synchronous

Recursive Virtual Machine Architecture has been discussed; also a mechanism

has,been proposed which will permit any kind of asynchronous processing

within this machine. It now remains to put this work in perspective and

discuss the applicability of such an architecture in relation to other

structured computer systems. Also in this chapter the further areas of

study, already touched on in this thesis but not fully explored, will be

summarized with some indication of the sort of results which might:.be

expected in each case.
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7.2 The RVMs Relationship With Other Structured Computer Systems

In chapters two and five various problem areas encountered in other

structured computer systems were described. Certain of these systems,

notably MULTICS, CALL_TSS and the GEC 4000, do not provide the full range

of facilities offered by the RVM. In particular it is not always possible

to permit the renaming or creation of objects when mapping them between
environments.

The capability based systems, it was suggested, can permit processes to

interact asynchronously due to the fact that once a process has been given

a capability for an object this capability cannot be revoked by its owner.

Thus object mappings are always preserved for the duration of all

asynchronous operations. However, in these capability systems, the action

of crossing between environments is often extremely complex and inefficient.

As a result of this inefficiency other mechanisms are introduced which

enable systems to be built and avoid the necessity of crossing between

environments. This approach has the undesirable result that further com-

plex protection problems are evolved for which solutions have to be found.

The HYDRA system is an example of this approach and in this case solutions

to most of these further protection problems have been produced.

The strictly hierarchical structure adopted in the RVM avoids certain of

the protection problems encountered in HYDRA, and permits a more logical

structuring of an operating system. Also it has been shown that it is

possible to cross between environments efficiently in the RVM. However,

since it is always possible for a process in one environment to attempt to

revoke the access of 4 process to an object in a more abstract environment,

there arises a problem in providing asynchronous processing.
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7.2.1 Revocable Capabilities and Asynchronous Processing

There is a dual problem in capability based systems to that of providing

asynchronous processing in the RVM. This is the inability of a process to

revoke the access of a subordinate process to any object defined in its

environment. This is a problem which has been studied both in the HYDRA

system and by Redell and Fabry. The solution adopted in both cases permits

an environment to consist of revocable capabilities as well as ordinary

capabilities. To a process within the environment both revocable and

ordinary capabilities appear identical, however the underlying structure is

very different. The ordinary capability fully defines the object to which

access is being granted; the revocable capability points to another object

which in turn defines the object to which access is being granted.

Typically each environment 'owns' the capability list of which it is con-

stituted, however if a capability is revocable then it only owns a pointer

to the actual capability. In this way a process is able to use revocable

capabilities to define objects in a subordinate environment, and without

changing the capability lists can change the capabilities by altering the

pointers. This is essentially a similar approach to that adopted in the

RVM whereby an environment is defined by its segment table which points to

capabilities owned by its ancestor environment.

Because revocable capabilities can be passed as ordinary capabilities there

is no reason why one environment should not be defined by a long chain of

revocable capabilities through several intermediate environments. For this

reason it is considered that the problem encountered in the RVM, that of

preserving object mappings when two processes are co-operating using shared
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resources, will. also occur when revocable capabil.ities are used. It is

clear to see that if two processes sharing data are separated by several

intermediate environments, then a process within one of these intermediate

environments could easily revoke the calling process's access to the

shared data.

The question remains as to whether the mechanism proposed for protecting

environments in the RVM in order to overcome this problem can be applied

to revocable capabilities in capability based systems. The major differ-

ence between the RVM and capability based systems is the lack of a strict

hierarchical structure in most capability based systems. The non-

hierarchical approach will lead to more complex traces through the

environment structure being maintained in order to provide mappings of

objects and protection of environments. As a result the associative

memory and table of protected environments must become more complex in

structure. Also the algorithms required to unprotect environments, when

a process wishes to change an environment under its control, will become

much more complicated. However it seems feasible that since there is an

essential similarity between the RVM segment table structure and the

revocable capability, any problems encountered with asynchronous process-

ing using revocable capabilities could be solved by adopting a similar

mechanism to that proposed in this thesis.



7.3 Topics For Further Study

7.3.1 Implementation of an Asynchronous

Clearly the most important point concerns the need to implement a fully

asynchronous RVM using the mechanisms described in this thesis. It has

been shown that the synchronous RVM is capable of providing an efficient

means for ~tructuring a computer system but it remains to show that the

asynchronous RVM is capable of supporting a general purpose operating

system. The design of the mechanism to support asynchronous processing

has been such that it should be possible to use the mechanism for each

operation performed at any level in the RVM, without adding a significant

overhead to that required when crossing between environments in the

synchronous RVM. Furthermore the experiment undertaken to investigate

this overhead in the synchronous RVM illustrates that this is of the same

order as that required to perform a basic machine operation; and thus it

is suggested that the order of this overhead in the asynchronous RVM will

remain the same. For these reasons.it is suggested that the implementation

of an asynchronous RVM should illustrate that a hierarchically structured

computer system can execute efficiently. The use of such an architecture

will permit an operating system to be well structured and provides a high

level of protection between environments in the system. Thus it is pro-

posed that the use of a recursive virtual machine architecture will enable

a reliable computer system to be produced more easily.
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7.3.2 Optimum Associative Memory Size

A further area for study concerns the optimum size of associative memory

within the RVM. The current synchronous implementation provides a check

on the number of times an item was found in a particular position in the

memory. Items are stored in~the associative memory in relation to when

they were last accessed. Thus if four objects have been accessed since a

particular item was last referenced then this item will occupy position

four in the memory. This simple mechanism permits a least recently used

algorithm to be implemented in order to eject items from the memory, and

also enables a check to be kept on the position in the memory that most

items are found when they are referenced again.

The figures obtained from the test programs described in chapter four

indicated that there was considerably more utilization of items one to

seven than of the remainder of the store. The significance of these

figures from basically only two distinct programs cannot be estimated.

Many.more tests would have to be undertaken with much more general use

being made of environment crossing in the RVM. It is felt that in general

the RVM may perform more memory accesses than a conventional computer

architecture in order to execute a basic operation. If this is the case

there could be a considerable improvement in the performance of the RVM if

the size of the associative memory is increased from 16 to 32 items say.

Of course all the experiments so far have concerned the synchronous RVM

and the use of the more complex associative memory in an asynchronous RVM

could introduce yet further variables in deciding the optimum memory size.

The fact that the items most utilized in the current synchronous RVM have

been contained in the~first half of the store is itself interesting, for

this may show that the results of Schroeder [sc 71] in relation to MULTICS
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have a wider significance, and will certainly go a long way to illustra-

ting how any computer system can be optimized considerably.
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7.3.3 Alternative Environment Protection Algorithms

A further topic for study concerns the mechanism by which an environment

mapping is permitted to be changed. It was suggested, in the previous

chapter, that attempts to change an environment mapping should be

suspended until no processes were dependant upon the mapping. Also that

once a process requests to change a mapping, processes which later attempt

to rely upon this mapping should be suspended until the mapping has been

changed. This approach permits a general solution to the problem and .

avoids processes being prevented indefinitely from changing the environ-

ment.

An alternative, slightly less expensive, solution may be to always permit

processes to rely upon a mapping unless it is actually being changed. A

process would thus be able to change a mapping only when no processes

relied upon it; and there would in this case never be a queue of processes

waiting to rely upon the changed mapping. However there would now be a

requirement for a further primitive RVM operation which enabled a process

to force an environment mapping to be changed. By experimenting with

different systems in the RVM it could then be discovered which is the

optimum approach in terms of efficiency. For if it were only occasionally

that a process found it necessary to force a mapping to be changed, then

this alternative approach may produce a further increase in performance

due to the extra simplification of the protection mechanism.
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7.3.4 The Problem of Only Protecting Shared Objects

Finally there remains the problem of protecting only the resources used

during an operation, as opposed to whole environments. This is an

extremely complex area, for as already mentioned in chapter six, a major

reason for the efficiency o£ the proposed solution lies in the fact that

an environment can be protected on the initiation of an operation, whereas

the resources used can only be protected as they are encountered and thus

identified. Thus there is always the possibility of performing several

locking operations when attempts are made just to protect resources. In

contrast the protection of environments requires a maximum of one locking

operation.

It may be considered that protecting resources rather than environments

will produce a solution more easily able to provide a general purpose

operating system. However if the MULTICS system is considered then it

must be noted that this permits only synchronous processing in each main

branch of the environment structure. This is a considerably more restric-

tive approach to that proposed in this thesis, and yet MULTICS is able to

provide an extremely sophisticated and reliable time-sharing system. It

is therefore proposed that the RVM design mechanisms described in this

thesis will prove perfectly adequate for providing a generalized asynchro-

nous computer system. Furthermore, if the RVM is utilized sensibly then

it should permit extremely complex operating systems to be built in such

a way that they are reliable, well protected and efficient.
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7.4 Conclusions

In chapter three o~ this thesis six requirements were proposed which were

deemed desirable in ~uture computer systems. These are summarized as

follows:-

i) There should be no supervisor state,

ii) The system should be extremely reliable,

iii) The system should provide a sound protection mechanism,

iv) Objects within the system should be renameable,

v) The system should permit generalized asynchronous processing,

vi) The system should be efficient,

This thesis has advocated the use of a Recursive Virtual Machine architecture

in order to provide these factors. It has been shown that the initial

problems of proYiding asynchronous processing can be overcome and a

mechanism has been described which fulfils this objective. A synchronous

RVM implementation has been undertaken which illustrates that such a system

is capable of efficiently executing in environments at all levels of

abstraction.

These pieces of work illustrate that a Recursive Virtual Machine architecture

is a practical alternative to the conventional two-level architectures

currently employed and as such should be considered seriously when designing

future computer systems.
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Appendix 1

Recursive Virtual Machine Operations

Basic Operation Other Forms

LOAD Byte, Literal

STORE Byte

ADD Byte, Literal

SUBTRACT Byte, Literal

MULTIPLY Byte, Literal

DIVIDE Byte, Literal

AND Byte, Literal

OR Byte, Literal

EXCLUSIVE OR Byte, Literal

COMPARE Byte, Literal

SHIFT (operand +ive = left, -ive = right) Byte, Literal

ROTATE (operand +ive = left, -ive = right) Byte, Literal

CASE operand OF Byte, Literal

DO LOOP Byte, Literal

TRANSER TO SON (Literal)

IF register EQUALS operand THEN Byte, Literal

Operands Used

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register,
Operand

Register.
Operand,
Fragment
descriptors

Register.
Operand.
Fragment
descriptors

Register,
Operand

Register,
Operand,
Fragment
descriptor



IF register EQUALS operand THEN ••• ELSE

NO OPERATION

CALL

CYCLE

RETURN TO FATHER

IF CONDITION CODE EQUALS operand THEN

IF CONDITION CODE NOT EQUALS operand THEN

IF CONDITION CODE EQUALS operand THEN ••• ELSE

IF CONDITION CODE NOT EQUALS operand THEN '0' ELSE

EXIT FRAGMENT (Literal)

RETURN CONTROL

START I 0
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Byte, Literal

Byte, Literal

Byte, Literal

Byte, Literal

Byte, Literal

Byte, Literal

Register,
Operand,
Fragment
descriptors

Fragment
descriptor

Fragment
descriptor

Operand,
Fragment
descriptoIl

Operand,
Fragment
descriptor

Operand,
Fragment
descriptors

Operand,
Fragment
descriptors

Operand

Operand



Appendix 2

Sample Recur.sive Virtual Machine Programs

Although no compiler exists for the following code, and the syntax is undefined,

the standard conventions of a block structured language apply. There is only a

small amount of I/O shown here as all the data has been initialized prior to the

start of each program. Apart from certain "comment" statements, each statement

is equivalent to one instruction of the emulated machine. The following notes

may help readers to further understand the program.

Capitalized words

-eg •.begin, these are envisaged as "reserved" words.

Some such as begin and end generate no code, merely

acting as code fragment delimiters. Others such as

true, false and greater etc., take a predefined literal

value which is inserted in the current instruction.

-ego CALL and CYCLE, these indicate actual instructions

used.

-ego R(l), these are defined by R followed by an

index value.

- are prefixed by the basic symbol comment and generate

Underlined words

Registers

Comments

no code.

Array subscripting

- is performed by the COMPARE instruction. This

compares the two operands and sets the condition code

in the current next instruction pOinter. This is

then tested by an instruction of the form IF condition

code (....)= operand THEN (••• ELSE).

-ego a[R(l)], is performed by the use of an index

register, this is placed within square brackets and

suffixes the array name. Any memory operand may be

referenced in this manner.

Comparison
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Indirection

Segment specification

Statement delimiters

Labels

Macros

-ego @B, the "@" indicates that the indirect bit is

to be placed in the current address.

-ego 16<2>, this indicates that the address required

is offset 16 in segment 2. Addresses specified by

name, ego sum, will have their segment number implicitly

associated with them.

- as in 'algol', by a semi-colon or an end.

- blocks of code may be labelled, ego 11: begin, the

instruction EXIT (11) will then cause control to be

passed to the instruction following the end associated

with the named begin.

-ego define push (op) = "R(7) := op", these have been

introduced in an effort to improve the readability of

the programs. Thus certain operations may be

redefined, and names of registers can be given more

meaningful identifiers.
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Program 1

begin comment program to perform a bubble sort;

define push (op) = "R(7) := op";

define pop(op) = "op := R(7)";

define array_size = "R(2)";

integer no_of_items;

begin array a~::no_of_items-1];

array segment_table~::~;

comment number of items to be sorted;

comment items to be sorted

comment segment table for environment

at next level;

procedure sort;

begin comment sorts the contents of 'a' into ascendine orders;

define count = "array_size";

define index = "R(1)";

define interchanges = "R(3)";

define x = "R(4)";

procedure swap;

begin comment exchange the contents of two adjacent items

of 'a', 'index' indicates the offset of the

first item;

define first = "index";

define y = "R(2)";

define z = "R(3)";

push (y) push (z)

y := a [first]; z := a+1 [first];

a (first]:= z ; a+1 [firs~~ := y;

pop (z) ; pop (y)

end swap;

push (index);push (count); push (interchanges); push (x).,
interchanges := true;

CYCLE;



loop2:

begin COMPARE count, 1;

IF condition code = greater THEN x :=true x :=false;

x := x AND interchanges;

COMPARE x,true;

IF condition code = equal THEN

begin interchanges := false; count := count -1;

index := fiJ;

CYCLE;

begin x := a[index] ;

COMPARE x, a+l [index]

IF condition code = greater THEN

begin interchanges := true;

CALL swap

loopl:

end;

index := index +1;

COMPARE index, count;

IF condition code = equal THEN

EXIT (loop2)

end loop2_cycle

end

ELSE EXIT (loopl)

end loopl_cycle;

pop(x); pop (interchanges); pop(count); pop(index)

end sort;

array~ize := no_of_items; CALL sort;

R(I) := 3; TRANSFER TO SON R(I), segment_table;

RETURN TO·FATHER

end

~ program_to_perform_bubble_sort;



Program 2

begin comment program to produce all the solutions to the eight queens'

problem. The algorithm used is that described by Dijkstra

[ni 72];

define n = "R(2)";

= "R(3)";

= "R(l)";

= "R(7) := op" ;

= "op := R(7)";

define no of solutions

define k

define push (op)

define pop (op)

arral x, col ~
.. 7];..

array up, down [-7 .. 7] ;..
arral segment_table U' .. 3];

comment x contains the current solution,

col contains the columns attacked by queens already placed,

up contains the UP diagonals attacked by queens already placed,

down contains the DOWN diagonals attacked by queens already placed,

segment_table contains the segment table for the environment at

the next level;

procedure generate;

begin comment this procedure generates all the solutions to a (8-n)

queens' problem. The total number of solutions found so

far is held in no of solutions. The procedure manipulates

items of x, col, up and down as required;

define h = "R(l)";

define x = "R(4)";

define y = "R(6)";
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push(h); push(x); push(y);

h := fIJ;

CYCLE ;
beginloop:

define z = "R(S)";
push(z) ;

z := col rh]; x := n; x := x-hi z := z AND up [X];
y := 7 [n]; y := y+h; z := z AND down [y];

comment z = col [h] AND up [n-h] AND down [n+h+7];
COMPARE z, true; pop(z);

IF condition code = equal THEN

begin comment set queen on board;

x [n]:= h; "col Eh] := false; up[x]:= false;

down [y] := false; n := n+1;

COMPARE n, 8;

IF condition code = equal THEN

comment a solution has been found;

no of solutions := no of solutions +1

ELSE CALL generate;

n := n-1;

comment remove queen from square [n,h];

down [y] :=~; up[x]:= true; col[h]:= true

h := h+1; C~~ARE h, 7;

IF condition code = greater THEN EXIT(loop)
end loop;

206



POP(y); pop(x); pop(h)

end generate;

k := -7; n := true;

CYCLE ;

1: begin comment initialize arrays;

COMPARE k , $j ;

IF condition code s-> less THEN col {k] := n;

up [k] := n; down [k] := n; k := k+l;

Ca.lPAREk, 7 ;

IF condition code = greater THEN EXIT(I)

end I_cycle;

n := $j; no of solutions := $j; CALL generate

end;
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Program 3

begin comment this is the 'supervisory' program which executes in the lowest

level environment of the RVM. It performs the 'write'

operation for programs executing at all more abstract levels;

define level = "R(l)";

define temp = "R(2)";

define base = "R(3)";

define interrupt_ptr = "9";
define address_out_of~egment = "hex(202)";

define printer = "5";

define ex_only_access = "2";

define rd_only_access = "1";

define full_access = "7";

define segy_base = "224";

define current instruction_ptr = "8";

integer correction factor init hex(40002);

comment value to be subtracted from next

instruction pOinter in calling environment on

completion of 'write' operation;

array segment_table [~::6] init

se~tab1e_entry (full_access, 3,1,seg_~_base),

ses-table entry (full_access, 3,1,288),

seg_table_entry (full_access, 3,1,352),

seK_table entry (full_access, 3,36,416),
seg_table entry (ex_only_access, 3,1,160),
seg_table entry (full_access, 3,2,64),
seg_table~ntry (full_access, 5,1,9);
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procedure error_check;

begin

comment This procedure checks the reason for a return to this environment.

If it is to have the 'write' operation performed then this takes

place and control is passed back to the calling environment;

base := interrupt_ptr; level := <3> 191;

comment Calculate reason for return to this environment;

crc~;

11: begin

CMPR level, 1;

IF condition code ~= greater THEN EXIT (11);

level := level -1;

base := base + seg-'_base

end II_cycle;

temp := <3> 256 [base]

CMPR temp, address_out_of_segment;

IF condition code ~= equals TIIEN EXIT (error_check);

comment Now perform write operation;

START I 0 printer;

comment Now set up control stack index for current environment;

base := current_instruction_ptr; level := <3> 191;
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CYCLE;

12: begin

CMPR level, 1;

IF condition code -.= greater THEN EXIT (12);

level := level -1;

base := base + seg_9_base

end l2_cycle;

comment Now adjust the control stack in the calling environment so

that on return execution continues normally;

temp := <3> 256 [base]; tecp := temp-correction_factor;

<3> seg_9_base [base] := temp;

RETURN_CONTROL; CALL error_check;

comment Return is to this point on any occasion other than the first;

end error_check;

temp := g; <3> 191 := temp;

comment set value of 'level' for program at next

level of abstraction;

temp := 6; TRANSFER TO SON temp, segment_table;
CALL error_check;

RETURN TO FATHER

end program_at_level_9;

210



begin comment this program executes in all environments at more

abstract levels than :thoseof the bare machine. The

procedures 'print-stars' and 'clear-line' are located

in segment four of each environment and constitutes

shared code;

define level = "R(l)";

define temp = "R(2)";

define write = "<4>128";

define full_access = "7";

define ex_only_access = "2";

define rd_on ly_ac cess = "1";

array segment_table [9: :6] ini t

seICt able entry (full_access, 3,1,32),

sebtable entry (full_access, 3,1,96),

seg_table entry (full_access, 3,~,160),

seg_table ent!l (full_access, 3,32,224),

seg_table ent!l (ex_only_access, 4,2,~),

seg_table ent!l (full_access, 5,2,9),

seg__table entry (full_access, 6,~,9);

comment the length field, '32', of the segment table entry for

segment three is decremented by 4 for each environment

at a more abstract level. It should be noted that in order

to ensure that attempts to address 'Write' trap to level

~, segment 4 is given a size of ~28 words as opposed to

the 64 words given to the level ~ environment;

external Clear_line, Print_stars;

temp := <5> ~27; temp := temp +1; <5> 127 :~ tempi
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comment update level £or next, more abstract environment;

CALL Clear_line; CALL Print_stars: CALL Write:

temp ':= 6; TRANSFER_TO~ON temp, segment_table;

RETURN TO FATHER

end program at more abstract_levels;
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begin comment shared procedures 'clear_line' and 'print_stars'

which reside in segment 4 of each environment at more

abstract levels than that of the bare machine;

define level = "R(~)";

define temp = "R(2)";

define i = "R(3)";

define push (op) = "R(7) := op";

define pop (op) = "op := R(7)";

define print_line = "<6> 2";

procedure print_stars;

begin comment this procedure places a number of "*"s in the

output line as defined by the current level of

abstraction at which the program is executing.

If level = n then (2n - 1) "*"s are output;

define number of stars = "R(4)";

define number.._of_spaces= "R(S)";

detine temp 2 = "R(S)";

comment only used when number_at_spaces is

no longer required;

define line_ptr = "R(6)";

integer stars init "****";

array spaces_stars [~: :3] 1nlt "6***", "1l6**","6611*";

array stars_spaces [1: :3] lnlt "*6611", "**All","***A";

push (temp); push (i); push (number of~tars);

push (number_of_spaces); push (llne_ptr);

number_ot_spaces := 16;

number_of_spaces := number_of_spaces MINUS -l[level);

213



comment calculate number of leading spaces as ~6 - (level -1);

number of stars := -I [level]; SHL number_of_stars, 1;

number of stars := number_of_stars +~;

comment calculate number of "*"s to be printed as (level -1) *2+1;

temp := number_of_spaces; SHR temp, 2;

line_ptr := 7[temp];

comment set up line_ptr to index first word which is to

cont ain an "*";

temp2_ := number_of_spaces AND hex (3);

commentnumber of spaces modulo (4);

CMPR temp2. 9;

IF condition code = greater THEN

begin number_of_stars := number_of_stars PLUS -4[temp 2];

commentnumber of "*"s remaining to be printed =
original number + (temp 2 - 4);

temp2 .:= spaces_stars +1[temp 2];

print_line [line_ptr] := temp; line_ptr := line_ptr+l

temp2-, := number_of_stars;

SHR number_of_stars, 2; i := 1; temp := stars;

CYCLE;
1: begin commentprint blocks of "****,, as necessary;

CMPR i, number_of_stars;

IF condition code = greater THEN EXIT (1);

print line [une_ptr] := temp; l1ne_ptr := line_ptr + 1;

i := i + 1

end l_cycle_block;
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temp2 := temp2 AND hex(3)j

CMRP temp2, 9;

IF condition code = greater THEN

begin comment print trailing batch of "*"s;

temp := stars_spaces [temp 2J;

print_line [line_ptr] := temp

end'--'
pop (line_ptr); pop (number_of_spaces);

pop (number_of_stars); pop (i); pop (temp)

end print_stars;

procedure cle ar_line;

begin comment this procedure inserts a piece of text at the

start of each line to indicate at which level

of abstraction the RVM is executing, and then

clears the rest of the line to blanks. Also it

initializes the top code' and 'status' fields of

the 'PRINTER' segment in preparation for the write

operation;

define write_op = "3";

array text [~ :: 4] ini t

ttNOW~tt, "AT~L", "EVEL", "~~~~", "~~~~tt;

push (level); push (temp); push (i);

temp := 9; <5> 9 := temp;

comment clear status;

temp := write_op; ROTATE temp, -3, <5> 1 := temp;

comment set up I/O operation code

= hex (6000);

i := j1J; ..

CYCLE;
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11: begin

CMPR 1, 2;

IF condition_code = greater THEN EXIT (11);

temp ;= text [1]; print_line [1] ;= temp, i := i + 1

end 11 cycle;

CMPR level, 1~; level r= level + text [ i);

IF condition code .,= less THEN level r= level + hex (BOF6)

comment convert to decimal characters,

1e. hex (OOFO) + [F100 - A 1f necessary];

print_line (i] ;= level, i ;= i + 1; temp ;= text [i];

CYCLE;

12 begin

CMPR L, 32;

IF condition_code = greater THEN EXIT (12);

print_line [i] r= temp, i := i + 1

end 12_cycle;

pop (i); pop (temp); pop (level)
end clear_line;
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OUTPUT OF PROGRAM 3

NOW AT If''Vrl 1 ..
NOW AT lrVrl ? .**NOW AT IF''Vr'l ~ *.*••
~OW AT lrVrl A ***** ••NOW AT LrVr'l '5 **••*••••NOW AT I F"Vr:'l " .*••*.**••*
NOW AT l r vrt. 1 *.***.* ••**••NOW AT I rvrt. A *••*••*.**.* ••*NOW AT lEVF'l Q *.*.** •••• *.*.**.

-------- - .._ .._- ._ ..._---- ---"-"
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Program 4

begin

comment this program runs in the least abstract environment and

define

define

define

define

define

define

define

define

define

define

arral

"-
provides a 'swap' operation to all more abstract environments:

index = "R(l)":

temp "R(2)";=

base "R(4)":=

interruptytr = "9";
address out_of_segment "hex (202)":=
segy_base "224":

ex_only_access = "2";

full access = "7";

current instruction_ptr "8";=
num_segs "5":=

segment_table [I.J: :num segs] base <3> 31 init

segment table_entry (full_access, 3,1, segy_base) ,

segment table entry (full_access, 3,1, 288),

segment ta'ble entry (full_access, 3,1, 352),

segment table_entry (full_access, 3,2, 64),

segment table entry (ex_only_:_access, 3,1, 160),

segment_table_entry (full_access, 3,36, 416) :

interger correction factor init hex (4000~);
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procedure error_check;

begin

comment This procedure checks the reason for a return to this

environment. If it is to have the 'swap' operation

performed then this takes place and control is passed

back to the calling environment;

base := interrupt_ptrj index := <3> 191;

comment Calculate reason for return to this environment;

CYCLE;

11: begin

CMPR index,1;

IF condition code~= greater THEN EXIT (11);

index := index -1;

base := base + seg_P_base

end II_cycle;

temp := <3> 256 (base];

CMPR temp, address_out_of_segment;

IF condition code..,= equals THEN EXIT (error_check);

comment Now perform swap;

index := <3> 64; temp := <3> 64 [index]; temp2 := <3> 65 [index];

<3> 64 [index]:= temp2; <3> 65 [index]:= temp;
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oomment Now set up control stack index for current environment;

base := current_instruction_ptr; index := <3> 191;

CYCLE.
12: begin

CMPR index,l;

IF condition code ~= greater THEN EXIT(12);

index := index -1;

base := base + seg_9_base;

end l2_cycle;

comment Now adjust the control stack in the calling environment so

that on return execution continues normally;

temp ;= <3> 256 [base];

temp := temp - correction_factor;

<3> segy_base [base] := temp;

RETURN_CONTROL; CALL error_check;

comment Return is to this point on any occasion other than the first;

~ error_check;

temp := p; <3> 191 := temp;

temp := num_segs;

TRANSFER TO SON temp, segment_table;

comment Pass control to program in environment at next level of

abstraction;
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CALL error_check;

RETURN_TO_FATHER;

end program _=;level_fIi
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begin

comment this program runs in all more abstract environments than that of

the bare machine. The sort procedure is shared code placed in

segment 4 of each environment;

define n = "R (2)" ;

define 1 = "R(3)";

define temp = "R(4)";

define interchanges = "R(5)";
define push (op) = "R(7) :=op";

define pop (op) = "op := R(7)" ;
define ex_only_access = "2";

define full access = "7";

define num_segs = "5";

define data area

define swap
= " <3> 1'";

" <4> 64 It;=

array segment_table [9: :num segs] init

segment_table_entry (full_access, 5,1,32) ,

segment_table_entry (full_access, 5,1,96) ,

segment_table_entry (full_access, 5,1,160) ,

segment_table_entry (full_access, 3,2,9) ,

segment table_entry (ex_only_access, 4,2,1') ,

segment table entry (full_access, 5, 32, 224);

comment note that the length of segment five is reduced by four units

for each extra level of abstraction at which the program is
placed;



begin

procedure sbrt;

comment procedure to perform a bubble sort of the data held in

'data area'. The number of items to be sorted is held in 'n';

push(n); push(i); push(temp); push(interchanges);

n :=,n-2; interchanges := true;

CYCLE;

11: begin

12:

CMPR n,9;

IF condition code = greater THEN temp := true ELSE temp:=false;

temp := temp AND interchanges;

CMPR temp,true;

IF condi tion code w= equal THEN EXIT (11);

interchanges := false; n:=n~l; i := 9;
CYCLE;
begin

CMPR i,n;

IF condition code = greater THEN EXIT (12);
temp := data_area +1 [i];

CMPR temp, data_area +2 [i];

IF condition code = ~ THEN

begin

interchanges := _true·,temp •.--i 1 d t ea+; a a_ar :=
CALL swap;

i := i+l

end l2_cycle

temp;



end ll_cycle

pop(interchanges); pop(temp); pop(i); pop(n);

end sort;

11:

n := p;
CYCLE;
begin comment set up data area;

CMPR n,126;

IF condition code = greater THEN EXIT(ll);

data area [n] :=n;n:=n+l;'

end 11_cycle;

temp := data area [n]; temp := temp+l;

data_area [n]; := temp; CALL SORT;
temp := num_segs; TRANSFER'TO SON temp,segment_table;

RETURN_TO_FATHER;

end program_at_other_levels;
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Appendix 3

BML Code for Address Calculation and 'Special' RVM Instructions
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I

ulADDRES SIN G ,[X CE P 1 ION I
I LEVEL I~ LEVEL + X~l~I GOTO CRASH' I

&

.ADDRESS CALCULATION ALGURITHM T fH"RSO·AV

NEED TO INCREMENT LEVEL AS
CH~SH DECREMENTS IT )1)

,HARDWARE, ADDRESS ••• ENTRY a
HARDWARE.ADDREssa
.1

l:
II

~
II
Ii
~
:1

PARAMETERS I INPUT
OUTPUT

LEVEL' PDSN_ SESMENT.NO_ ACcESS,CODE
POSN, SEGMENT.NG

I
I
I
I
I
I
I
I
I
I

HARDWARE ADDRESS CALCULATION
FUNCTION. CALCULATES THE ACTUAL HARDWARE ADDRESS Of THE

LOCATION DEFINED BY THE CURRENT LEVEL- SEGMENT AND OFFSET.
ALSO CHECKS THAT ACCESS REQUIRED IF LOCATION IS VALID,

TAS 1= S11 TAS 1= S2' TAS 1= S3' TAS i. 54' TAS I~ SS)
I SAVE SCRATCH PADS

TAS I~ LEVEL' I S4VE CURRENT LEVEL'
If X~o~ = SEGMENT.ND THEN SKP' GOTD HWRE.ADDR,2'

I ADDRESS IN SEGMENT ZERO.
L 1= fLAGS' If NO,HARDWARE,REGISTERS THEN GDTD HWRE,ADDR.2'

I REQUIRE ACTUAL SEGMENT ZlRO
I ~HECK If IT IS A REGISTER
I GET OFFSETX 1= POSN(10_ 14)'

Y 1= tOlIf X<Y THEN GOTD fOUND.ADDRESS,II
I
I
I
I

IT IS A REGISTER, HOD RAY
I~, REG 0 • 6 , DATA STACK
, CONTROL STACK PTR OR
INTERRUPTS

PTR

jHWRE.ADOR. 2.
LEVEL a. LEVEL -SKP X~l~J SKIP, GOTO fOUND,ADDRESS,l'
X a= ADDR,MAX.SEG.NO, Y I. LEVELl Y I- SHL Y (2)J TAS a. XPLUSYI
X a. Y, Y a. SHL Y (1)1 X 1= XPLUSY, X 1= SHL X (1)'
Y ,. ADDR.DISPLAY, lAS I. XPLUSY' CALL READ,MAX,SEG,NO.AND,DISPLAY'
TAS 1= X~f~' S5 ,. TAS, I K~EP CHECK ON PERMITTED

I ACCESS
L I. fLAGS' If S A,MEM,PRESENT THEN G8l0 LOOP,ON,LEVEL'CALL SEARCH,ASSOCIATIVE,MEMORY, X I~ LA'
L a= FLAGS' If S ITEM,IN,A,MEM THEN GOlD lOOP,ON.LEVEL'LA a. X,
FA a= S4, POSN le SI' X
Y ,- XANy, If XS=Y THEN
POSN ,= MEMC·OfFSET.SZ_ FAe)' X
SEGMENT,NO 1= XI
X 1= LAI Y 1= XI Y ,= SHL Yel)'

1= ACCESS,CODEJ Y I. MEMC-4, rAe),
GOTO LOOP,ON,LEVEL'

I INVALID ACCESS
,= MEMe·SEG,NO.SZ, fAa)'
X ,= XPLUSY' X I. SHL X(7)'

I WHERE fOUND • 24 • 16Y ,a BITS,ADDR.STATS' Y ,- SHL Yel), X a= XPLUSY,
Y I. ADDR,ADDRESSING,STATSI fA 1= XPLUSYJ
GOlD fOUND. ADDRESS,

lOOP,ON,LEVEL,
X 1= S31 Y le SEGMENT,NOI
IF X>=Y THEN GOTO HWRE.ADDR.31

L ,. SEG,DUT,Of.RANGE' GOlD ADDRESSING,EXCEPTIONJHWRE,AODR,31
X ,. S2' Y 1= SHL Y(S)' FA le XPLUSY'
X ,= MEMCBITS.SEG.ACCESS)I Y ,= ACCESS,CODEI TAS ,. X, X 1= XANY,
If XCV THEN GOTO HWRE,ADOR,4'

L 1= ACCESS.INVALIOI GOTO ADDRESSING,EXCEPTION'
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ADDRESS CALCULAtION ALGORITHM
'HWRl• AOOR. 4 I •

X 1= TAS, Y 1= S5' S5 1= XANY'
fA 1= fA + BllS.SEGMENT.lYPE' X I. MEM(B"ITS,SEGMENT.LEN, fA+)'
X I. SHL X (6)J , • 64
Y 1= POSNCtO, OffSET.SZ)' If X >. Y THEN GOTO HWRE.AODR.5,

L 1= AOOR,OUT.Of.SEG' GOlD AOORESSI~G,EXCEPTIONJ
rHWRE.ADDR,51
I X 1= MEMCBITS.CONTAINING,SEG, fA+)J SEGMENT.NO I. X,

X 1= MEM(BITS,SEG,BASE,AODR)I Y I. XPLUSYI
" S NEW SEGMENT AND OffSET SET UP
X 1= POSN CO.8)1 X 1= RTR X (8)' POSN I. XORYJ
LEVEL 1= lEVEL -SKP X~l~' GOT a HWRE.ADOR.6'L I. flAGS' If SA,MEM,PRESENT THEN GeTD fOUND.ADDRESS.2'
fA .= S4, X I. S5' MEMC-4. fA·) 1= X,
X .= POSN (10. OffSET.SZ)' MEMC-OffSET,SZ, fA·) •• XI
X 1= SlG~ENT.NOI MEMC·SEG,NO,SZ, fA-) I- XI GOIO fOUND.AOORESS,21

HWRE.AOOR,61
CALL REAO,MAX.SEG.NO.AND,OISPLAYI
GOTO lOOP.ON,lEVEL'

rOUND,AODRESS.2'
( fA'= ADDR.AOORESSING.STATSI GOlD fOUND,ADDRESS'

'routJD.ADDRESS.l I
X 1= ADDR.ADDRESSING,STAl5' Y 1= BllS,ADDR,STATS, fA 1= XPlUSY'

rOUND.ADDRESS,
X 1= MEM(24)' Y .= l'
LEVEL 1= lAS'
S5 ,. TASJ S4 •• lASI S3 .- TAS'

, I

X •• XPLUSY' ME~(24) I. XI
S RESTORE LEVEL'

52 I. lAS' Si I. lASJ
I RESTORE SCRATCH PADS

EXI TI
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RECURSIVE MACHINE IN5TRUCTInNS lHUHSDAY 08/05/7~

VIRTUAL MACHINE AND TRANSfER CONTHOl TO IT
rUNCTIONI SAVE THE REGISTERS or THE euRRENT MACHINE, UPDATE

lEVEL, DISPLAYS, MAX.SEG,NO, SET UP REGISTEHS or NEW MACHINE
AND CONTINUE PROCESSING. CONTENT Of REGISTER INDICATES
NO. Or SEGMENTS AND OPERAND POINTS TO SEGMENT TABLE rOR
MACHINE,

PARAMETERS' INPUT LEVEL' DISPLAy, MAX,SEG,NO. CURRENT.INSTR,
T CURRENT OP CODE

OUTPUT
TAS .= 511 TAS 1= S2J TAS ,. S3J TAS I- S4J

I SAVE SCRATCH PADS
IF ~Tf(2) THEN GOTO ILLEGAL,OPJ

J ONLY IMMEDIATE MODE LEGAL
X ,. lJ CALL UPDATE,PROGRAM,STATUS.W$RUJ
CALL CALC.AODR.OPERAND ••• ENTRYI
T 1= LEVELJ X 1::1SHL T (3)J Y 1= SHL T (4)J X 1= XPLUSYJ

I X 1= LEVEL. 24
Y 1= ADDR.DISPLAYI 54 1= XPLUSYJ Ii CURRENT OffSET IN DISPLAY
T 1= S2J POSN I. T(10. LEN.INS.OFFSET)J SEGMENT.NO I- S3J
ACCESS. CODE .= READ.ONLY.ACCESSJ
CALL HARDWARE.ADDRESS."ENTRYJ CALL AaSOlUTE.AODRESS ••• ENTRYJ
x 1= rAI fA 1= 541
MEM(BITS,DISPLAY) I. XI

CALL
Y .-
X a.
X a.

IT,T.S,3.
L

I SET UP NEW DISPLAY ITEMS FROM
I OPERAND OF INSTRUCTION

LEVElJ X a~ ADOR.MAX.SEG,NOJGET,REGISTER,OPEHANDJ T 1=
SHL T (2)J rA 1= XPLUSYJ
S3J Ir XS.O THEN GOTO T,T.S,31
S4J Y 1= 151 IF X<=Y THEN GOTO T,l.s,41
le MAX.SEG.NO.TOO,LARGEJ GOTO CRASHI

I EACH MACHINE IS ONLY ALLOWED
Ii ,6 SEGMENTS

IT,1.S,4'
MEM(BITS.MAX,SEG,ND) 1= XI
CALL SAVE.REGISTERS,ETCJ
LEVEL 1= LEVEL +SKP X~I~J GOTO

L 1= XFER,TO,lEVEL,16J GOlO

Ii SET UP NEW MAX.SEG,NO
T.T.S.61
CRASHJ

I ATTEMPT TO SET UP A MACHINE
I AT LEVEL 16

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

IT,T.S,61•
! FA 1= ADDR,RVM,TIMERJ FA a= FA + TIMER.SZJ ADDR.RVM.TIMER •• FAJ

Ii ADDRESS or TIMER AT THIS LEVEL
FA 1::1fA + 241rA a- ADDR.ADORESSING,STATSJ

ADDR,ADDRESSING,STATS a- FAJ
CALL SET,UP.REGISTERS.ETCJ
CALL TRACEJ
S4 a:; lASJ S3 'a TASI S2 I;: TASJ SI I. lASJ

S RESTORE SCRATCH PADSEXITJ
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RECURSIVE MACHINE INSTHUCTIONS
JETURN.TO,fAT~ERI

THUHSOAy 08/05/76

RETURN CONTROL TO CURRENT VIRTUAL MACHINE~S rATHER
fUNCTION. SAVE THE REGISTERS Of THE CURRENT MACHINE, UPDATE

LEVEL, DISPLAYS, MAX,SEG.NO, RESTORE rATHER~S REGISTERS AND
CONTINUE PROCESSING,

PARAMETERS. INPUT LEVEL, DISPLAY MAX,SEG,NO, CURRENT,INSTR,
T CURRENT OP CODE

OUTPUT LEVEL
SET,HALT,OK,rLAGJ

I X'- II CALL UPOATE,PRQGRAM,STATUS,WORUJ
lETURN,TO,fATHER."ENTRY' J ENTRY POINT WHEN ERROR HAS

J 9CCURREO,

I
J
J
J
J
I
I
I
J
I
J
I

CALL SAVE,REGISTERS,ETCJ
LEVEL 1= LEVEL -SKP X~l~' GOlD R,T,f.4J

fA .= ADDR,INTERRUPTSJ I ALREADY AT LEVEL ZERO, SO HALT
T .= MEM(8, FA+)J L ,. fLAGSJ
If HALT.OK.fLAG THEN SKPJ GOTD R,T,f,2'

L ,- HALT.COOE' SKIPJ
L .= MEM(24)1

HALT'
CLR,HALT,DK,FLAGJ LEVEL ,- 0'
CALL pRINT,STATISTICSJ CALL PRINT,AUDR,STATSJ
CALL OUMPS'
GOTO CLOSE,OUTPUT,fILEJ~,T,r,41

T .= LEVEL' X 1= SHL T (3)J
J CLEAR UP AND QUIT

Y •• SHL T (4)1 X .= XPLUSYI
J LEVEL • 24

Y ,- BR, X 1= XPLUSYJ Y 1= TIMER.STAlI6TICSJ
ADDR.RVM,TIMER 1= XPLUSYJ
Y ,- ADDRESSING.STATSI ADDR,ADDRESSINO,STATS •• XPLUSYI
CALL SET,UP,REGISTERS,ETCJCALL TRACE I
EXITI
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