
Design and Evaluation of Crash Tolerant Protocols for 
Mobile Ad-hoc Networks 

Thesis by 

Einar Wiik Vollset 

In Partial Fulfi lment of the Requirements 

for the Degree of 

Doctor of Philosophy 

UNIVERSITY OF 
NEWCASTLE UPON TYNE 

(Defended September 30, 2005) 

N[WCASTl[ UNIV[RSITY lIDRARY 

204 06419 8 

~e.S\S L-~009 



BLANK PAGE 
IN 

ORIGINAL 



iii 

To Laura. 



BLANK PAGE 
IN 

ORIGINAL 



v 

Acknowledgements 

I'd like to thank my supervisor, Paul Ezhilchelvan for his support and guidance and for taking me on

board the EPSRC PACE project, Simon "the cripple" Woodman for being a genius (BubbleSearch!), 

a great friend and also various pleasurable zymurgy related incidents, lsi Mitrani for numerous maths 

lessons, Santosh Shrivastava for generous financial support, Francois Bonnet for proof reading (lit

erally), John Lloyd for being foolish enough to fund my trip to Hawaii, Dave Cooper for sharing the 

pain that is GloMoSim hacking, whichever poor misguided soul decided that I was good enough for 

an ORS award, Rimon Barr for Java simulator related joy, and Dave Ingham for that chat which 

helped me through one of my darkest moments. 

I'd also like to thank my parents. Ever since I was a kid my parents have always told me to 

pursue what makes me happy, and have supported me in doing so. For that I'm eternally grateful. 



BLANK PAGE 
IN 

ORIGINAL 



vii 

Abstract 

Mobile ad-hoc networks are wireless networks operating without any form of supporting infrastruc

ture such as base-stations, and thus require the participating nodes to co-operate by forwarding 

each other's messages. Ad-hoc networks can be deployed when installing network infrastructure 

is considered too expensive, too cumbersome or simply too slow, for example in domains such as 

battlefields, search-and-rescue or space exploration. 

Tolerating node crashes and transient network partitions is likely to be important in such do

mains. However, developing applications which do so is a difficult task, a task which can be made 

easier by the availability of fault-tolerant protocols and middleware. 

This dissertation studies two core fault-tolerant primitives, reliable dissemination and consensus, 

and presents two families of protocols which implement these primitives in a wide range of mobile 

ad-hoc networks. The performance of the protocols is studied through simulation indicating that 

they are able to provide their guarantees in a bandwidth efficient manner. This is achieved by 

taking advantage of the broadcast nature and variable message delivery latencies inherent in ad-hoc 

networks. 

To illustrate the usefulness of these two primitives, a design for a distributed, fault-tolerant tuple 

space suitable to implement on mobile ad-hoc networks is presented. This design, if implemented, 

would provide a simple, yet powerful abstraction to the developer of fault-tolerant applications in 

mobile ad-hoc networks. 



BLANK PAGE 
IN 

ORIGINAL 



Contents 

Acknowledgements 

Abstract 

1 Introduction 

1.1 Background and motivation 

1.2 Contributions"", 

1.3 Dissertation Structure 

2 System model and foundational results 

2,1 Introduction" 

2,2 System model , 

2,3 Foundational results 

ix 

2,3,1 Implications of the live ness property 

2,3,2 Implication of undetectable node crashes, 

2.4 A note on the simulation environment 

2,5 Conclusion and summary , , , , , , , 

3 Reliable dissemination in ad-hoc networks with crash failures 

3,1 Introduction""""""""""""" 

3,2 Reliable dissemination in ad-hoc networks without routes 

3,2,1 Problem definition , , , , , , , , , , , , , , , 

3,2,2 Distributing the ability to detect termination 

3,2,3 Strategies for ensuring sufficient coverage 

3,2.4 Comparing basic dissemination strategies 

3,3 An optimised reliable dissemination protocol 

3,3,1 Pulling large payloads , , , , , , , , 

3,3,2 Suppressing equivalent transmissions 

3,3,3 Performance study , , , , , , , , , , , 

iv 

vi 

1 

1 

3 

4 

6 

6 

7 

11 

11 

14 

15 

17 

19 

19 

20 

20 

21 

22 

26 

30 

31 

35 

38 



x 

3.4 Related work ............. . 

3.4.1 Reliable Broadcast (RB) protocol. 

3.4.2 Adaptive Reliable Broadcast (ARB) protocol 

3.4.3 Reliable Adaptive Lightweight Multicast (RALM) 

3.4.4 Discussion..... 

3.5 Conclusion and summary 

4 Consensus in ad-hoc networks with crash failures 

4.1 Introduction ...... . 

4.2 The consensus problem. 

4.2.1 Problem definition 

4.2.2 A fundamental impossibility result 

4.3 Known approaches to solving consensus 

4.3.1 Unreliable failure detectors 

4.3.2 Randomization ...... . 

4.4 A randomised consensus protocol for ad-hoc networks 

4.4.1 

4.4.2 

4.4.3 

4.4.4 

4.4.5 

Using randomization to reduce choice .. 

Taking advantage of a noisy environment 

4.4.2.1 An interesting possibility . . . . 

Reducing overhead using a cross layer optimisation . 

Putting it all together 

Proof of correctness 

4.5 Related work ..... 

4.5.1 JazzEnsemble. 

4.6 Conclusion and summary 

5 A design for a fault-tolerant tuple space for mobile ad-hoc networks 

5.1 Introduction ....... . 

5.1.1 Linda in a nutshell 

5.1.2 Why Linda in mobile ad-hoc networks? 

5.2 Previous efforts to bring Linda to ad-hoc networks 

5.3 Design overview ................... . 

5.4 A fault-tolerant tuple space with static group membership. 

5.4.1 Reading from and writing to replicas . 

5.4.2 Removing items from replicas ..... 

5.4.2.1 Ensuring tuple consumption using in(p) is atomic. 

5.4.2.2 Guaranteeing read(p)s do not return consumed tuples 

41 

41 

42 

43 

43 

44 

46 

46 

47 

47 

48 

49 

49 

51 

57 

59 

62 

64 

65 

68 

69 

74 

75 

77 

79 

79 

80 

82 

84 

85 

85 

86 

88 

88 

90 



5.5 Handling dynamic group membership 

5.5.1 State transfer to joining nodes 

xi 

5.5.2 Ensuring sufficient replication on nodes joining or leaving 

5.6 Changing quorums sizes and number of failures tolerated 

5.7 Conclusion and summary 

6 Summary and conclusions 

6.1 Summary . 

6.2 Conclusion 

6.3 Future work . 

Bibliography 

A Responsibility transfer for reliable broadcast 

A.1 Introduction ..... . 

A.2 The Scribble protocol 

A.2.1 Responsibility transfer mechanism 

A.2.2 Protocol termination 

A.3 Performance evaluation . 

A.3.1 Simulation Model. 

A.3.2 Simulation Results 

A.4 Conclusion and summary 

B Supplementary material for the consensus chapter 

B.1 Pseudo code for the combined consensus protocol .. 

B.2 Performance study of the combined consensus protocol. 

92 

92 

95 

96 

96 

98 

98 

99 

99 

101 

108 

108 

109 

109 

111 

112 

112 

113 

115 

117 

117 

120 



BLANK PAGE 
IN 

ORIGINAL 



1 

Chapter 1 

Introduction 

This dissertation is concerned with fault-tolerant reliable group communication in mobile ad-hoc 

networks. It studies two fault-tolerant group communication problems, reliable dissemination and 

consensus, in potentially highly mobile, transiently disconnected and crash-prone ad-hoc networks. 

Two families of protocols, one solving the reliable dissemination problem and one solving the 

consensus problem are introduced. Extensive simulations covering a wide range of mobile ad-hoc 

network scenarios demonstrate that, contrary to what is commonly assumed, these do not incur too 

high overheads to be feasible. 

To illustrate the usefulness of these two primitives, a design for a distributed, fault-tolerant tuple 

space suitable to implement on mobile ad-hoc networks is presented. 

1.1 Background and motivation 

A mobile ad-hoc network is a wireless network operating without any form of supporting infrastruc

ture such as base-stations. The absences of such supporting infrastructure requires that the devices 

which constitute the ad-hoc network, called nodes, co-operate by forwarding each other's messages. 

This is made difficult by the fact that nodes typically have limited bandwidth, storage and energy 

resources available and, as nodes are mobile, network topology is highly dynamic. 

A further complication arises if we assume that nodes can suffer cmsh-failures at any time. A 

node which crashes stops functioning and sends no further messages. A node in an ad-hoc network 

can crash by for example being dropped, kicked, drowned, set on fire or simply switched off. A 

protocol which can tolerate a specified number of such failures while still providing its service is 

called crash- or fault-tolemnt. 

A substantial amount of recent research in the area of mobile ad-hoc networks has focused on 

implementing unicast routing protocols (e.g. [JMBOlj, [Per97j), which allow two nodes in an ad-hoc 

network to communicate in a best-effort fashion. Another research topic which has attracted a lot 

of interest is how to enable users of an ad-hoc network to connect to the Internet through some 



2 

gateway node (see for example [RK03][SRBOIJ). The nodes in such ad-hoc networks are only loosely 

associated, and typically fault-tolerance is not critical. It may for example be simple to detect and 

remedy a node crash, or the network as a whole may not necessarily fail in accomplishing its task 

simply because of a few node crashes. 

However, if we start to consider scenarios where the nodes which make up the ad-hoc network 

form a cohesive group performing some important task, the situation changes dramatically. Consider 

for example the case of a team of mobile robots collaborating towards a common goal, perhaps 

excavating a landing site on Mars or putting out a fire in a nuclear reactor. 

In such scenarios the robots must be able to co-ordinate their actions despite the possibility of 

some robots crashing. For example, the robots must (i) be able to decide on an agreed course of 

action despite possibly differing initial action plans, and (ii) ensure that any important information 

or requests for support is received by a sufficient number of robots. 

In fault-tolerant distributed computing, the first of these issues is known as the consensus prob

lem, while the second is the reliable dissemination or broadcast problem. Reliable dissemination 

and consensus are two fundamental primitives in fault-tolerant group communication, and proto

cols which implement these have been shown to be vital building blocks in building sophisticated 

fault-tolerant applications in wired networks[GHMOO]. 

However, it is commonly assumed that protocols which aim to provide such primitives in mobile 

ad-hoc networks must incur very high transmission overheads or at least require the network topology 

to be essentially static. The issue most frequently cited in support of this assumption is the problem 

of ack-implosion. Ack-implosion arises when a very large number of acknowledgements is generated 

in response to a single message (see e.g. [DDC97J). 

The perception is that the limited bandwidth available in ad-hoc networks will exacerbate the 

ack-implosion problem causing severe congestion. In addition, the (correct) observation is made that 

sending even a single acknowledgement from a receiver back the originator may incur much higher 

transmission overheads in ad-hoc than in wired networks, and further that, unless the network is 

essentially static, amalgamation of acknowledgements is unlikely to work. 

As mobile ad-hoc network by definition have highly dynamic network topologies and limited 

bandwidth, such protocols have been thought to be unfeasible (see for example [LW04][LEH03bJ). 

This is one of the reasons why weaker, less powerful primitives have .been proposed as alternatives. 

Examples of such weaker primitives include protocols which only provide probabilistic guar

antees (e.g. [CRBOl][LEH03aJ), and protocols which assume no crash failures will occur (e.g. 

[VKT04][WWVOIJ). Protocols that only provide probabilistic guarantees, where there is a non

zero probability that a protocol terminates without doing whatever it is supposed to do, puts the 

onus on the application developer to check that the behaviour is as expected. This can be a signi

ficant burden, and in some critical applications may not be possible. Protocols which assume that 



3 

no crash failures will occur are useless in any scenario where crashes do occur. 

It thus appears that if sophisticated, fault-tolerant applications running over mobile ad-hoc 

networks are to be built, solutions to the reliable dissemination and consensus problems must be 

sought, even if they are currently thought impractical. The alternative is for each application 

developer to have to implement her own application specific consensus and dissemination solutions 

whenever these are required. This is a complex and thus error prone process. 

1.2 Contributions 

This dissertation aims to demonstrate that reliable, fault-tolerant group communication protocols 

can be implemented in a wide range of mobile ad-hoc networks, from fully connected, relatively 

static networks through to highly mobile, frequently partitioned networks. In addition, it aims to 

demonstrate that the overheads associated with such protocols are not too high to be feasible. In 

doing so it makes a number of contributions. 

The first contribution lies in precisely defining a system model for mobile ad-hoc networks and 

deriving three foundational results which arise from this model. The system model includes require

ments about the connectivity of the network, and the assumption that there is a finite bound on the 

resources which can be used by any protocol. The requirements about network connectivity aim to 

be minimal so as to encompass as wide a range of network conditions as possible. A finite bound on 

resources is necessary because of the resource constrained nature of mobile ad-hoc networks. 

The three foundational results show how no reliable dissemination protocol can guarantee that all 

nodes receive a message, and dictate behaviour which must be included in any reliable dissemination 

protocol. These results influence all the work in this dissertation, and also have wider implications 

for reliable dissemination protocols designed for the same environment. 

The second contribution is the development of a family of crash-tolerant reliable dissemination 

protocols. The protocols allow the end user to specify the minimum number of nodes which should 

be guaranteed to receive a message. They avoid attempting to construct and maintain routing 

structures such as trees or meshes, and use a novel distributed method to detect that a sufficient 

number of nodes have received a message. 

The protocols are shown to be able to guarantee delivery in even frequently partitioned and highly 

mobile network conditions. One of the protocols is optimised to take advantage of the peculiarities 

of mobile ad-hoc networks, such as the omnidirectional nature of wireless transmissions, as well as 

the fact that network conditions are not always extreme. Extensive simulations suggest that this 

protocol is able to provide its guarantees with overheads on par with an unreliable flooding protocol 

in relatively normal network conditions. 

The third contribution is a solution to the consensus problem in mobile ad-hoc networks. The 



4 

solution is based on an existing wired network protocol which works in asynchronous, consecutive 

rounds. The existing protocol is shown to require a very high number of rounds to reach a decision 

and also involves a high transmission overhead per round. This makes the protocol impractical in 

ad-hoc networks. The protocol also requires a reliable dissemination protocol that can guarantee 

that all nodes receive a message, which is impossible when resources are finite. Finally a straight 

forward implementation of the existing protocol on a mobile ad-hoc network will stop working if 

more than a quarter of the nodes fail; the wired network implementation only stops working when 

a majority of the nodes fail. 

A family of consensus protocols is derived by optimising the protocol in three important ways. 

The first optimisation removes the need for a reliable dissemination to all nodes. The second reduces 

the number of rounds required to reach a decision by several orders of magnitude by taking advantage 

of the highly variable network latencies found in ad-hoc networks. The third reduces the per round 

transmission overhead by 1-2 orders of magnitude, changing the required number of invocations 

of the reliable dissemination primitive per round from O(n) to 0(1). This is done by means of a 

cross-layer optimisation. The protocol which combines all these optimisations is shown to reach a 

decision on average in 2-4 rounds over a very wide range of simulation parameters, and only stops 

working when a majority of nodes fail. The combined protocol is also proven correct. 

The final contribution is the design of a fault-tolerant tuple space suitable for mobile ad-hoc 

networks. A tuple space is an implementation of the shared associative memory paradigm for 

parallel/distributed computing. Existing tuple space solutions for mobile ad-hoc networks have had 

to either provide no fault-tolerance or weaken the semantics compared to what one would expect from 

a wired network implementation. This is argued to be because of the lack of suitable fault-tolerant, 

reliable group communication protocols for ad-hoc networks. The design presented demonstrates 

how the reliable dissemination and consensus protocols can be used to develop a fault-tolerant 

tuple space which does not weaken the semantics of the tuple space primitives. Such a system, if 

implemented, is likely to make developing sophisticated fault-tolerant applications for mobile ad-hoc 

networks easier. 

1.3 Dissertation Structure 

This dissertation is structured bottom up; we first explicitly define the assumptions we make about 

the underlying ad-hoc network in chapter 2. The system model is the foundation upon which we 

base the protocols presented in this dissertation. Three theoretical results which arise from the 

system model is also presented and proven in this chapter. 

Chapter 3 then studies the reliable dissemination problem, deriving a family of dissemination 

protocols which are extensively studied. The design of these is guided by the theoretical results 



5 

in chapter 2 and the correctness of the protocols is based on the assumptions made in the system 

model. 

Chapter 4 deals with the consensus problem in mobile ad-hoc networks. A thorough review of 

the theory is given, and two existing wired network protocols presented. The wired network protocol 

depends critically on a reliable dissemination protocol of the type presented in chapter 3. The new 

protocols are derived by optimising the existing protocol in 3 important ways. 

Chapter 5 presents a design for fault-tolerant tuple space. It shows how the two primitives 

presented in chapters 3 and 4 can be used to implement the first tuple space suitable for mobile 

ad-hoc networks which both provides equivalent semantics to what one would expect on a wired 

network system and also is fault-tolerant. 

Finally chapter 6 concludes with future work. 



6 

Chapter 2 

System model and foundational 
results 

2.1 Introduction 

When designing reliable, fault tolerant protocols for mobile ad-hoc networks, two core issues must 

be addressed. First the protocol must be shown to guarantee to provide the functionality it claims 

to provide despite a specified number of failures. This is true for any reliable, fault-tolerant protocol 

as without such guarantees an end user will not be able to rely on the protocol to perform correctly. 

Second, as ad-hoc networks are typically resource constrained, the protocol needs to be shown to 

provide its guaranteed functionality with reasonable overheads. 

To make claims about what functionality a protocol is guaranteed to provide, either an informal 

correctness sketch or a more formal proof can be provided. In this dissertation, if the argument 

required to show correctness is relatively straight forward, a correctness sketch is used, while a more 

formal proof is used if the argument is more complex. 

The basis of such correctness arguments is the system model. The system model is the assump

tions made about the environment the protocol operates in, and provides the basis upon which 

correctness arguments are made; proofs only hold if the assumptions outlined in the system model 

hold. 

A system model should be a realistic approximation ofthe physical system in which the protocols 

operate. This implies that the assumptions made in the model should not be too restrictive. 

For example, consider a system model which makes the assumption that the maximum com

munication delay between any two nodes is 3 seconds, and that the proofs of some protocol relies 

critically on this assumption. If this protocol is deployed in a scenario where this assumption does 

not hold, say one where the communication delay is 4 seconds, then the proofs no longer hold and 

the end user cannot rely on the protocol to perform its task correctly. However, determining that 

such an assumption has been broken, or ensuring that it is met, may not be trivial. 



7 

For this reason, a system model should make as few and weak assumptions as possible; the fewer 

and weaker the assumptions are, the more operational environments the protocol can be deployed 

in and the easier it is for the end user to ensure that assumptions are met. In a sense, a weaker 

system model requires a more powerful protocol, and a more powerful protocol is easier for the end 

user to use, at least if this more powerful protocol does not add complexity. 

The system model used throughout this dissertation is presented in the next section. The system 

model as described gives rise to three foundational results, described in section 2.3. These results 

(i) limit the number of nodes which can be guaranteed to receive a message, showing how if failures 

are to be tolerated, not all nodes can be guaranteed to receive a message, and (ii) prove that when 

the network acts as an adversary, all nodes which have received a message may have to actively 

participate in the dissemination of that message to guarantee that a sufficient number of nodes 

receive it. 

These results guide the design of both the reliable dissemination and the consensus protocols 

presented in chapters 3 and 4, and influence the design of the tuple space presented in chapter 5. 

In mobile ad-hoc networks, simply guaranteeing some functionality is not enough. An ad-hoc 

network is inherently resource constrained and thus protocols should demonstrate that they do not 

incur too high overheads to be practical. What is required is a way to measure whether the overheads 

associated with the protocol are reasonable. A simulation environment provides such a means. The 

environment should be as realistic as possible without being too scenario specific. The simulation 

environment used throughout this dissertation is presented in section 2.4. 

2.2 System model 

Throughout this dissertation we will consider the system as a group, g, of nodes collaborating 

towards some common goal. An example of such a system could be a group of mobile robots 

collaborating in putting out a fire at a nuclear power station. 

The nodes are assumed to be able to communicate using only the omnidirectional wireless trans

mission functionality of a CSMA/CA-like MAC layer protocol (e.g. IEEE 802.11b). Further, the 

terrain in which the nodes operate is assumed to have no fixed infrastructure for supporting com

munication between nodes (that is, there are no fixed base-stations to rely on), and information 

exchange is thus strictly limited to ad-hoc networking. 

Assumptions about group membership 

The membership of 9 is dynamic; a new node can join 9 and a collaborating node can leave 9 at 

any time. Upon joining g, each node gets assigned a unique node identifier, nid. However, joining 

or leaving the group can only happen after the nodes of 9 have approved the join/leave requests. 



8 

For this reason, the number, n, of nodes in the group 9 at any given time can vary, but is known in 

the group. 

The details of how nodes can join and leave is covered in detail in chapter 5. For ease of exposition, 

and without loss of generality, chapters 3 and 4 assumes there are no requests to join or leave and 

that each node has a nid already assigned and is aware of the number of nodes in the group. 

Assumptions about node failures 

This dissertation is concerned with tolerating a finite number of crash-failures. A node which suffers 

a crash-failure (or more colloquially, crashes) stops functioning and sends or receives no further 

messages. We assume that a node does not recover from a crash, though if the node is reset, it 

can join the group as a new node if this is desirable. We further assume that node crashes are 

undetectable, that is, there is no way for other nodes to detect that a node has crashed. This 

assumption is based on two observations: (i) it is very difficult for a node to determine if a node has 

crashed or is simply in another network partition, and (ii) attempting to detect crashes inevitably 

incurs some transmission overhead, which is undesirable in ad-hoc networks. 

A node is either correct or faulty. A faulty node can crash at any moment, while a correct node 

is one that does not crash until the collaboration ends or the node leaves the group. We also assume 

that the number of faulty nodes in the system is bounded to within some known value 0 < f < n. 

Thus 9 contains at least n - f correct nodes at any time. 

Assumptions about network connectivity 

Consider two correct nodes that are in wireless range of each other. We will say that a congestion- and 

collision-resilient (CCR) channel exist between them, if at least one of a few consecutive attempts 

made by each node to send a packet to the other, is successful. (These attempts are typically made 

at the MAC layer.) 

Let 8 be the maximum delay which a packet can experience to be received over such a CCR 

channel. Two correct nodes are said to be directly connected at any given moment, if a CCR 

channel exists between them for B or more seconds starting from that moment, where B » 8 is 

an application specified parameter (note that in this dissertation the "applications" are the fault 

tolerant protocols). The intuition is that unless two nodes directly connect when they are in range of 

each other, the nodes might as well have been out of range in terms of their ability to communicate. 

Having defined direct connectivity, we can now define a network liveness property as follows: Let 

o be the set of all nodes of 9 that are correct. Let P be a non-empty and proper subset of 0, and 

P be its complementary set in 0; that is, P contains those nodes that are correct, but not in P. 

If no node in P ever has direct connectivity with any node in P, then P and P are said to 

be permanently partitioned from the perspective of the application that specified B. The live ness 



9 

property disallows this by requiring at least one node in P to directly connect with some node(s) in 

P at least once during [t, t + I], where I 2: B is finite but unknown. 

Assuming the collaboration is initiated at to, and Ni and Nj denotes any two correct nodes in 

the collaborating group Q, the network liveness requirement, NLR, is defined as follows: 

Definition. A network satisfies the network liveness requirement, NLR, if no permanent par

titioning of any set of correct nodes P from the collaborating group, Q, occurs at any instance, 

t > to, during the collaboration of Q. (Intermittent or transient partitions are of course allowed.) 

The NLR can be stated formally as: 

tiP, tit 2: to, 31, B ::; I f 00: 3Ni E P, N j E P: Ni directly connects with Nj . 

To get a feel for the what the NLR means, consider figure 2.1. In this figure there are three 

---.~ = Path taken by 
" .. -- ....... , , , , , , . . , . , , , , , ......... _ .... ' 

node Nk 

= Wireless range of 
nodes Nj and Nj 

Figure 2.1: An example of when the NLR holds despite the network not being in one partition and 
no multi-hop paths being formed. 

nodes, Ni , N j and Nk making up the ad-hoc network. Assume that nodes Ni and Nj never move. 

From the figure, we can deduce that nodes Ni and N j are unable to communicate directly; if there 

are no other nodes in the network, nodes Ni and N j are permanently partitioned. Such a scenario 

(consisting only of nodes Ni and N j ) is disallowed by the NLR 



10 

However, if we introduce the movements and connectivity of node Nk , we get a different result. 

Node Nk moves along the path shown; six snapshots of the positions of node Nk from time h to 

time t6 is indicated. If the time between tl and t2 is less than B, then node Nj and node Nk do not 

directly connect, as they are not in each others wireless range for long enough. However, assume 

that the time between t3 and t4 and also the time between t5 and t6 is greater than B. In this case, 

node Nk directly connects to node N j , and node Nk directly connects to node Ni. This means the 

NLR is satisfied because node Ni and node Nj can communicate via node Nk. That is, they are not 

permanently partitioned, even though they are in separate network partitions l . 

As can be seen from figure 2.1, the NLR is a very weak assumption, as it does not specify which 

nodes should directly connect or say anything about the ability to establish a contemporaneous 

multi-hop communication path between a pair of nodes. For example, in figure 2.1 there are no 

multi-hop paths and the group is never in one partition, but the NLR is still satisfied. As argued 

above, the weaker the assumptions, the more powerful the protocol needs to be, as the protocol 

designer can assume less of a "helping hand" from the environment. 

Assumptions about finite node resources 

Mobile ad-hoc networks are typically relatively resource constrained, with for example limited avail

able bandwidth or storage at the each node. For this reason a more powerful protocol should not 

come at a cost of it requiring potentially unbounded resources at each node, and it is important 

that protocols designed for ad-hoc networks allow nodes to free most of the resources used by the 

protocol within some finite time. 

Specifically, for reliable dissemination protocols, it is important that a protocol is designed such 

that it does not require nodes to retain a copy of each message, or transmit control messages relating 

to the message, indefinitely. We thus define the subsidence properties for reliable dissemination 

protocols as follows: 

Definition. Let the message m be originated at time to. A reliable dissemination protocol satisfies 

the subsidence properties if it ensures that a correct node with m discards m (Storage Subsidence 

Property, SSP) and stops transmitting any packet relating to m (Bandwidth Subsidence Property, 

BSP) at some finite time, te > to. 

Note that the SSP does not require all information about a message to be deleted, only the mes

sage itself. Requiring nodes to delete all information about a given message, m, is near impossible; 

IThis is perhaps a bit confusing: a connected component of a network is called a "partition", and a network can 
be "partitioned" into several "partitions". Two nodes are said to "be partitioned" from each other if each node is 
in a different partition. However, they need not be "permanently partitioned", unless there is absolutely no way to 
communicate between the two nodes at any time, even if intermediary, moving nodes (such as Nk in figure 2.1) are 
used to support this communication. 



11 

consider for example how to ensure at-most once delivery of m if all information about m (including 

that it had already been received) had to be deleted. 

2.3 Foundational results 

Three general results arise from the system model as defined in the previous section. These arise 

based on the assumptions that (i) node crashes are considered undetectable and (ii) only permanent 

partitions are disallowed. 

The results apply to any reliable dissemination protocol where these two assumptions are made, 

and thus has obvious implications for the reliable dissemination protocols presented in chapter 3. It 

also has important ramifications for the consensus solution in chapter 4 and the way the fault-tolerant 

tuple space is designed in chapter 5, as both these depend critically on a reliable dissemination 

primitive. For this reason these three results are presented separately from the chapter describing 

the reliable dissemination protocol. 

2.3.1 Implications of the liveness property 

The liveness property was designed to be as weak as possible, while still permitting a reliable protocol 

to provide guarantees about message delivery. The following theorem shows that in order for any 

reliable dissemination protocol to guarantee delivery to a specified number of nodes (called achieving 

a specified covemge), it may potentially require all nodes which have received a message to keep a 

copy of, and be ready to transmit, the message. 

Definition. A node is responsible for a message, m, if the node keeps a copy of m ready to tmnsmit 

if instructed by the protocol. 

Note that a node can become responsible for a message whenever it receives a copy of it, not 

just the first time it receives the message, or when it originates it. Likewise a node can become 

responsible for a message, then stop being responsible for it after a while (and thus by definition not 

keep a copy of m or be able to transmit it), and then decide to become responsible for it the next 

time it receives it. 

Theorem 2.1. Suppose that nodes never cmsh (every node is correct). A reliable dissemination 

protocol which satisfies the subsidence properties cannot guamntee a covemge, c > 1, unless there is 

a time after which every node becomes responsible for m upon receiving it, until c is achieved. 

Proof. Let us hypothesize that there is a reliable dissemination protocol, n, which in every execution 

satisfies the subsidence properties, guarantees a coverage of c', 1 < c' :::; n and also allows some nodes 

which have received m to not be responsible for it. 



12 

Let us consider an execution in which a node, say No, initiates a dissemination of a message, m, 

at time to. We define RECEIVED and NOT_RECEIVED as the sets containing the nodes which 

have received m and not received m respectively. Further, we define RESPONSIBLE as the subset of 

nodes in RECEIVED which are responsible for m, and NOT -RESPONSIBLE as the complimentary 

subset of the nodes in RECEIVED which are not responsible for m (and thus are unable to transmit 

it). 

At time to RECEIVED is assured to contain only the initiator of m, and NOT -RECEIVED the 

rest of the nodes. Consider an instance tl when 1 ::; I RECEIVED I < c', that is NOT -RECEIVED 

is non-empty. Since R is supposed to ensure a coverage of c', its execution must continue after tl' 

Consider an execution in which the ad-hoc network controls its own topology in the following ad

versarial manner after tl: The ad-hoc networks forbids the direct connectivity between nodes in RE

SPONSIBLE and nodes in NOT-RECEIVED. Further, the direct connectivity between RESPONS

IBLE and NOT _RESPONSIBLE, and NOT -RESPONSIBLE and NOT -RECEIVED occurs at differ

ent timing instants (Le. there is no contemporaneous path between any node in RESPONSIBLE 

and any node in NOT -RECEIVED). 

Observe that the ad-hoc network meets the network liveness requirement, NLR, as there is no 

permanent partitioning between nodes in NOT_RECEIVED and nodes in RESPONSIBLE. However, 

they are only able to communicate through the nodes which by definition do not keep a copy of m 

(the nodes which are not responsible), and thus coverage is not increased (the number of nodes in 

NOT-RECEIVED does not decrease). 

This means that the coverage will never reach c' unless R makes every node in RECEIVED 

responsible for m. 

To put it differently, in order to ensure that coverage c' is achieved in a bounded amount of time, 

and the subsidence properties to be satisfied, any protocol must have a timing instance after which 

all nodes in RECEIVED should be responsible for m (Le. keep NOT-RESPONSIBLE = 0) until c' 

is achieved. 

o 

Another result arises if we assume that the reliable dissemination protocol has no access to neigh

bourhood knowledge. Neighbourhood knowledge is the information provided to a node about which . 
nodes that are in its wireless range. The following theorem dictates how a reliable dissemination 

protocol without any neighbourhood knowledge should be designed. Specifically, it shows that all 

such protocols need to include the possibility of executions where all nodes which have received a 

message periodically transmit it. 

Theorem 2.2. Suppose that nodes never crash (every node is correct) and have no knowledge about 

neighbourhood. A reliable dissemination protocol which satisfies the subsidence properties cannot 



13 

guarantee a coverage, c > 1, unless there is a time after which every node with m transmits m at 

least once every T time T < (B - 8), until m is received by all c nodes. 

Proof Let us hypothesize that there is a reliable dissemination protocol which preserves the subsid

ence properties and also ensures coverage of c', where 1 < c' < n, in every execution. 

Let us consider an execution in which m is originated at time to. Let us also define RECEIVED 

and NOT ..RECEIVED as the sets containing nodes that have and have not received m at any 

given moment respectively. Note that at time to, RECEIVED contains only the initiator and 

NOT _RECEIVED all other nodes. 

A node that has received m is said to be active (on m) during [t, t + DJ, for some finite D > B, if 

it transmits m at least once every T time, 0 < T < (B - 8), during [t, t + DJ. It is said to be inactive 

on m during [t, t + DJ if there exists one or more occasions during [t, t + DJ in which the node does 

not transmit m for a duration of at least (B - 8) time. 

Consider an instance tl, tl 2:: to when 1 :s: I RECEIVED I < c'. Since the protocol ensures a 

coverage of c', its execution must continue after ti' Suppose that the ad-hoc network controls its 

topology in the following adversarial manner after tl: it delays the development of CCR-channels 

between nodes of RECEIVED and those of NOT ..RECEIVED until the protocol chooses to keep 

some nodes of RECEIVED inactive. When some nodes of RECEIVED are made inactive, the ad

hoc networks allows CCR-channels to be formed only between such inactive nodes and some nodes 

of NOT ..RECEIVED for exactly B time and after 8 time has elapsed since the nodes of RECEIVED 

started becoming inactive. 

Since nodes have no neighbourhood knowledge, they cannot sense the emergence of CCR-channels 

connecting them with other nodes . Therefore the protocol cannot make use of the CCR-channels 

between inactive nodes of RECEIVED and nodes of NOT ..RECEIVED for disseminating m any fur

ther. While coverage c' does not increase, CCR-channel formation helps the ad-hoc network to meet 

the NLR. That is, even though the liveness requirement is met, coverage d does not increase because 

the adversarial ad-hoc network exploits the protocol feature of keeping some nodes of RECEIVED 

inactive occasionally. 

From the above discussion it is obvious that the required coverage, c' can be guaranteed to 

be achieved, only if the protocol, at or some time after tl, forbids the nodes of RECEIVED from 

becoming inactive until m is received by all c' nodes. Forbidding node inactivity leads to increase in 

coverage when m is disseminated to nodes in NOT ..RECEIVED over the CCR-channels which the 

ad-hoc network is obliged to bring about within every finite I. o 



14 

2.3.2 Implication of undetectable node crashes 

The following theorem shows how, given that node crashes are undetectable, it is impossible for any 

reliable dissemination protocol to both satisfy the subsidence properties and also guarantee that 

more than n - f nodes receive a given message, even if no nodes actually crash during the execution 

of the protocol. 

Recall that the subsidence properties requires there is some finite time, te , after which nodes 

that have received a message, m, are not required to retain it, and where no further packets relating 

to m are to be transmitted. 

Theorem 2.3. It is impossible for any crash-tolerant reliable dissemination protocol that satisfies 

the subsidence properties to guarantee that more than n - f nodes (including the originator) receive 

a message m originated by a correct node even if less than f nodes crash before te. 

Proof. By contradiction. Assume there is such a protocol, n, which satisfies the termination property 

and which can guarantee that more than n - f nodes receive a message m if less than f nodes crash 

before teo Let F be any set of f nodes which does not include the originator of m, and F be its 

complementary subset. Further, let to be the time at which the originator of a m starts disseminating 

it. 

Consider two executions of n: 

Execution 1: All nodes in F have crashed before to. Since there are only n - f correct nodes in 

the system, n cannot guarantee that more than n - f nodes receive m. 

Execution 2: No nodes have crashed before to, and no nodes crash until after teo However, the 

network (acting as an adversary) keeps all nodes of F outside the wireless range of every node 

in F until after teo Nodes of F thus never receive m. 

Execution 2 is possible as n has no way of distinguishing between the case where all nodes in F 

have crashed, and the case where all nodes in F have not crashed, as: (i) nodes of F do not execute 

the protocol and (ii) there is no way for any node in F to detect if a node in F has crashed. 

Therefore to satisfy the SSP, n must chose some finite te after which the nodes in F can stop 

being responsible for, and thus delete m. The network acting as Ctn adversary can then directly 

connect F and F immediately after the chosen te and thus satisfy the NLR. This is true whatever 

(finite) te is chosen by n. 
Therefore, only n - f nodes receive m in both executions. This contradicts the hypothesis that 

n can guarantee that more than n - f nodes receive a message m, if less than f nodes crash before 

te since no nodes crashed before te in execution 2. Hence the theorem. 

o 



15 

2.4 A note on the simulation environment 

In an ideal world, all proposed protocols for ad-hoc networks would be tested on a real ad-hoc 

network. Unfortunately this is near impossible as at time of writing so few non-trivial ad-hoc 

networks are in use, and even fewer of these are readily available to researchers. For this reason 

most protocols are only tested in simulators. 

Ad-hoc network simulators are widely used, as a brief survey of the proceedings of conferences 

such as ACM MobiCom, MobiHoc and IEEE InfoCom will indicate. However, simulators have some 

issues to be aware of. 

Cavin et al. showed that even relatively simple protocols could get qualitatively different results 

if implemented on different simulators[CSS02], and they argue that protocols should ideally be 

implemented on more than one simulator to obtain more reliable results. This has actually been 

done for some of the work in this dissertation, though more by accident than design. The initial 

performance study of the reliable dissemination was done using GloMoSim[ZBG98], a widely used 

simulator developed in a parallel version of the C programming language. However, for reasons of 

programmer efficiency, later implementations (and all work on the consensus protocols) was done 

in the JiST/SWANS simulator, a Java based discrete event simulator[BHR05]. The results for the 

GloMoSim and JiST/SWANS simulator were for all intents and purposes identical, thus alleviating 

this concern. 

A further difficulty arises in getting realistic mobility models; most performance studies assume 

the nodes move randomly in a confined, 2-dimensional space with no obstacles. Clearly, most people 

(if we assume the nodes are PDAs) or even mobile robots do not move randomly. However, as so 

few ad-hoc networks exist, it is difficult to know exactly what should replace the random movement 

models. This dissertation therefore uses the most widely used random mobility model, the Random 

Waypoint model throughout. This has the advantage that the experiments should be relatively easy 

to replicate. 

Finally, probably the most critical issue is that protocols designed for mobile ad-hoc networks 

must avoid relying on properties which may only exist in simulation. For example, Kotz et al. 

observe [KNE03] that a number of assumptions, such as assuming that "hello packet" propagation 

is symmetric, or that signal strength is a simple function of distance, are often made by protocol 

designers, but that these typically do not hold in a "real" wireless network. 

Having an explicit system model as outlined in the previous section alleviates this problem 

somewhat; the model presented in section 2.2 explicitly states the assumptions we make, and none 

of these rely on anything that is likely to exist only in simulation. Further, we do not rely solely on 

simulation to validate our protocols; proofs or correctness sketches also accompany all protocols. 

The default simulation parameters used throughout this dissertation, unless otherwise specified, 



16 

Table 2.1: 

Default simulation parameters 
Simulator SWANS v1.0.1 [BHR05] 

Simulation time 3000s 
Node placement Random 
Number of nodes 50 

Choice of initiators Random 
Percentage of actual crashes 10% (f = 5) 

Choices of crashing nodes Random 
Wireless range 250m 

Area size 1000m x 1000m 
Mobility model Random Waypoint 

Node speed [min, max] [lm/s, lOm/s] 
Pause time Os 

Nodes' buffer size 50 packets 
Fading model Rayleigh 

Pathloss model Two-Ray 

are shown in table 2.1. Note that each simulation was run at least 10 times and that the first 1000s 

of simulation time was discarded to remove initial bias. 

Throughout this dissertation we will be varying the following 3 parameters: 

Wireless range: Changing the wireless range of the nodes in the simulation changes the density 

of the network and has a strong impact on the likelihood of the network being transiently par

titioned. In general, a low wireless range (e.g. 150m) results in the network being partitioned 

quite frequently (often into several partitions), while a high wireless range (e.g. 350m) is likely 

to cause the network to be connected. 

Node speed: Varying node speed has a direct impact on the rate of change of topology; high 

maximum node speeds cause the network graph to be very dynamic, where as low speeds 

cause the network to remain fairly static. 

N umber of nodes: Changing the number of nodes in the system shows if the protocol is scalable. 

Note that when changing the number of nodes in the system we also modify the size of the 

area in which the nodes operate. This is so that the density of the network remains constant 

and we are able to isolate the effects of varying the number of,nodes. 

An indication of the network conditions experienced at low densities is given in figure 2.2 which 

shows how the number of network partitions varied throughout a typical simulation run when the 

wireless range was 150m. Note that 1 partition implies the network is not partitioned (is in one 

connected component), which does not happen in this case. This means that establishing contem

poraneous multi-hop paths between all nodes would have been impossible in this simulation run. 

However, this does not necessarily mean the network is permanently partitioned; for that to occur 



17 

10 r------------------------------------, 

8 

'" B 
t 6 
tl 
'0 
Jj 4 
E 
" z 

2 

o L-____ ~ ______ ~ ______ ~ ______ ~ ____ ~ 

o 100 200 300 400 500 

Simulation time (s) 

Figure 2.2: Number of partitions in a typical simulation run with wireless range = 150m and average 
speed = 5 mls 

there would have to be a complete segregation of nodes for the duration of the simulation run. In the 

simulation run depicted in figure 2.2 nodes moved frequently between partitions and thus avoided 

this. 

Finally, a protocol designed for ad-hoc networks should incur a limited amount of transmission 

overhead, so as to reduce interference, increase throughput and potentially save energy. In addition, 

it should have low latency, so as to provide its service quickly. Thus these are the two main measures 

of interest to us in this dissertation. In the few instances were we are interested in other measures, 

these will be explained in detail. 

2.5 Conclusion and summary 

This chapter has defined the assumptions made about the environment which the protocols presented 

in the rest of this dissertation operates in. In particular, in the rest of this dissertation we will assume 

that (i) node crashes are undetectable, and (ii) that the mobile ad-hoc network is not permanently 

partitioned. 

These assumptions give rise the following foundational results: 

1. Any reliable dissemination protocol must include the potential for executions where all nodes 

retain a message, ready to transmit if instructed by the protocol (theorem 2.1). 

2. Any reliable dissemination protocol which has no neighbourhood knowledge must include the 

potential for executions where all nodes periodically transmit a message (theorem 2.2). 



18 

3. No reliable dissemination protocol can guarantee that more than n - f nodes receive any given 

message, where n is the number of nodes in the network and f is the number of tolerated 

failures, even though less than f nodes actually crash in any given execution (theorem 2.3). 

These results influence the design of reliable dissemination protocol presented in the next chapter, 

but also has important implications for the consensus solution in chapter 4 (which makes use of the 

reliable dissemination primitive) and the design of the tuple space in chapter 5 (which makes use of 

both the consensus and the reliable dissemination primitives). 

Finally, this chapter has described the simulation environment used to evaluate the perform

ance of the reliable dissemination and the consensus protocols, including discussing some important 

caveats to be aware of when simulating mobile ad-hoc networks. 



19 

Chapter 3 

Reliable dissemination in ad-hoc 
networks with crash failures 

3.1 Introduction 

In this chapter we will study the problem of how to reliably disseminate messages to a group of nodes 

in mobile ad-hoc networks where transient network partitions and undetectable node crashes can 

occur. The reliable dissemination protocols presented here allows the user to specify the minimum 

number of nodes a message should be delivered to, called the desired coverage. The protocols guar

antee that the specified minimum coverage is achieved despite node failures and network partitions. 

Such protocols are useful when developing fault-tolerant applications. Without the strong guar

antees provided by these protocols, the burden of ensuring message delivery gets pushed from the 

middleware to the application level. Doing so necessarily makes application code more complex, 

and therefore more error prone. In addition, as highlighted by Friedman[Fri03J, it is much harder 

to prove the correctness of applications which rely on protocols that provide weaker guarantees. 

Finally, a reliable dissemination protocol is a crucial building block when attempting to solve harder 

distributed problems such as agreement. 

Previously proposed reliable dissemination protocols for ad-hoc networks typically create and 

maintain some form of routing structure over which the reliable dissemination is performed. The 

overheads associated with creating and maintaining such structures can become high given the 

volatile nature of ad-hoc networks, particularly as these structures are used both to disseminate a 

message, and to send acknowledgements back to the node which originated the message. Sending 

acknowledgements back to the originator (or some other "core" node) is necessary as typically only 

the originator has the ability to determine when sufficient coverage has been achieved. 

However, as shown in theorem 2.1, creating multi-hop routes between two nodes, much less 

between the originator and every node in the network, is by no means guaranteed to be successful in 

the types of ad-hoc networks considered in this dissertation. What is required instead is (i) a method 



20 

by which the ability to detect when sufficient coverage has been achieved can be distributed among 

the nodes in the network, and (ii) a dissemination strategy which does not rely on the existence of 

routes, but still guarantees sufficient coverage. 

This chapter presents a distributed method to detect when the protocol can terminate. This 

method addresses (i) above by requiring each node to add a unique "signature" to every message, thus 

allowing any node to determine if sufficient coverage has been achieved. This method removes the 

reliance on a single node to perform this task found in other protocols (e.g. [TOL02][PR97][GS99j). 

We present two core dissemination strategies, one reactive and one proactive, which are able to 

guarantee that sufficient coverage is achieved (and thus address (ii) above). When combined with 

the distributed termination method, these two strategies render two reliable dissemination protocols 

for ad-hoc networks. The performance of these two protocols is studied, providing some insights 

into the network conditions under which they perform well. 

The lessons learnt from the two basic dissemination strategies are used in developing a third, 

optimised protocol, combining the benefits of the proactive and reactive approach. The extensive 

simulations performed indicate that the optimised protocol meets our objective of developing a fault

tolerant reliable protocol which has overheads on par with a simple, unreliable, flooding protocol. 

This suggests that the overheads associated with reliable dissemination are not inherently too high 

to be feasible in ad-hoc networks. 

3.2 Reliable dissemination in ad-hoc networks without routes 

This section presents and studies the problem of how to develop crash-tolerant reliable dissemination 

protocols when routing structures are not guaranteed to work. After a formal definition of the 

problem to be solved, the distributed method to detect that sufficient coverage has been achieved is 

presented. This method underpins the remainder of this chapter. 

We then combine this method with two core dissemination strategies to derive two quite simple 

reliable protocols. These protocols satisfy theorem 2.1 by making all nodes responsible from the 

outset. The performance of the resulting protocols is studied and some general conclusions drawn. 

3.2.1 Problem definition 

Recall that a faulty node can crash at any moment, while a correct node is one that does not crash. 

The number of faulty nodes is assumed to not exceed some known bound, j (see section 2.2). 

For the dissemination of a message, m, to a specified number of nodes, 1 < k ~ (n - f), a crash

tolerant reliable dissemination protocol offers the following guarantees despite at most j, 0 < j < n, 

faulty nodes: 



21 

Delivery: if the initiator is correct (Le. does not crash), or at least one correct node receives m, 

then at least k nodes (including the initiator) receive m within some bounded time. 

Termination : if a node that receives m is correct, it discards m and stops transmitting any packet 

relating to the dissemination of m within some finite time. 

There is no prior knowledge of which nodes crash and when; all or some of the f crashes may 

have occurred before the dissemination was initiated or may occur during the protocol execution. 

Therefore it is possible that the initiator crashes before completing the protocol and the few 

nodes, if any, that receive m also crash. In that case, no delivery guarantees can be given; however, 

if a correct node receives m, then at least k nodes are guaranteed to receive m. 

The termination property is essentially the same as the subsidence properties and is crucial in 

mobile ad-hoc networks where bandwidth, energy and node capabilities are typically limited. In 

wired networks, reliable protocols with similar properties, such as eventually not having to transmit 

m, are called quiescent [ACTOOJ. 

3.2.2 Distributing the ability to detect termination 

The reliable dissemination of a message, m, can terminate once it is guaranteed that enough nodes 

have received m. 

To distribute the ability to detect termination, all responsible nodes maintain a set of "signatures" 

of nodes it knows to have received m. A signature is a unique identifier associated with a node. 

This set of signatures is known as the "knowledge of m", and is denoted as K(m). A node's K(m) 

always contains its own signature. Whenever a node transmits a copy of m, it sets a header field, 

m.K to its current K(m). Whenever a node receives a copy of m, it merges the contents of the 

received m.K with its K (m). 

The originator of m, specifies the minimum number of nodes, k, which m should be delivered to 

by setting a header field, m.k. This means any node can compare the number of signatures in K(m) 

and know when enough nodes have received it. The ability to determine that the dissemination 

can terminate thus gets distributed throughout the network instead of residing at any single node. 

Detecting that enough nodes have received m is called the realisation of m. 

If all nodes in the network are assigned unique node identifiers, nids, which are monotonically 

increasing integers from 0 to n, K(m) can be represented as a bit vector of size n; a node's signature 

is represented as a 1 in the bit vector in the position indicated by its nid. Assigning node ids to 

satisfy this constraint in a fault-tolerant manner can be achieved by means of a consensus protocol 

(see next chapter) and is explained in chapter 5. Throughout this chapter and the next we will 

assume all nodes have been assigned such nids. 



22 

The above method distributes the ability to detect if and when sufficient coverage has been 

achieved. However, it does nothing to ensure that sufficient coverage is actually guaranteed to be 

achieved. 

3.2.3 Strategies for ensuring sufficient coverage 

The alternative to creating routing structures is to make optimal use of the direct connectivity 

experienced by each node. There are two basic approaches: (i) the proactive approach; a responsible 

node periodically transmits the whole message regardless of which nodes are in its neighbourhood, 

and (ii) the reactive approach; a responsible node only transmits the minimum necessary based on 

which nodes are in its neighbourhood and what it knows about these. 

The following two sections describe two protocols which use these strategies. Note that in both 

the descriptions we assume that all nodes know the values of nand f. This assumption is also based 

on the assumed use of the consensus protocol to assign nids. 

Proactive dissemination 

The proactive dissemination protocol, PDP, is the simplest of the two. It only requires that nodes 

transmit m periodically once every (3 seconds. (3 is a configurable parameter such that B 2: 2((3 + 8). 

Recall that B is the minimum time a "direct" connection lasts, and 8 is the maximum transmission 

delay of a message (see section 2.2). Requiring B 2: 2((3 + 8) thus allows a node to both receive a 

message, and respond to that message during the direct connectivity. 

By periodically transmitting m every (3 seconds, PDP ensures that direct connectivity is taken 

advantage of (by theorem 2.2, such periodic transmissions may be required in any protocol which 

has no neighbourhood knowledge). 

The protocol steps are as follows: 

1. Starting the dissemination: The initiator initialises the set of signatures K(m) to be all O's, 

and sets its own bit to 1. It generates a unique id, m.id, for the message and sets the m.k to 

the minimum number of nodes it wants to guarantee receives m (note that k :S (n - f)). It 

then becomes responsible for m. 

2. Being responsible: Every message a node is responsible for is retained, and the message is 

transmitted periodically every (3 seconds. Immediately prior to transmission, m.K is set to 

K(m) containing the latest knowledge a node has about which nodes have received m. 

3. Receiving a message: Upon receiving a message for the first time, a node initialises K(m) = 

m.K and sets its own bit to 1. It then becomes responsible for m. Every time it receives a 

message it is responsible for, it merges the received m.K with K(m). 



23 

4. Realising a message: every time a node updates K(m), either because it adds its own signature 

to it, or because it merges K(m) with an incoming m.K, it checks if IK(m)1 :2: m.k. If it is, the 

node realises m. Realising m involves canceling the periodic transmission of m and deleting m 

from stable storage. Every time a node receives a packet relating to a message which has been 

realised, it transmits a small realisation packet, R_Pkt, containing the message's unique id. A 

node which receives an RPkt(m.id) takes the same action as if it had detected IK(m)1 :2: m.k 

itself. 

Correctness arguments for PDP (sketch) 

Consider an execution where a message, m, is initiated at time to, and where either the initiator is 

correct, or a correct node receives m. Let t :2: to be a timing instance during this execution. 

Delivery: Assume that no correct node that has m has realised m at t. Choose P to be any 

non-empty subset of all the correct nodes with identical K(m) at t. (By the nature of the execution 

considered, there is at least one such singleton P.) Let P denote the set of all those correct nodes 

not in P at t. Given this, P cannot be empty as otherwise P contains all correct nodes (of which 

there are at least n - f) and all of them have identical K(m)s; since a node has 1 for its own bit in 

its K(m), all nodes in P must have realised m which is not the case at t. 

When node Ni E P and node Nj E P directly connect, either N j receives m for the first time or 

the nodes exchange their different K(m)s. Thus, as the execution progresses with no node realising 

m, each occurrence of direct connectivity increases by at least 1 the number of I-bits in the K(m) 

of some correct node. Since (n - f) is finite, some correct node(s) must realise m within some finite 

duration. 

Termination: Assume not all correct nodes have realised m at t. Let P be the set of those 

correct nodes that have received, but not realised m at t. Let P denote the set of all those correct 

nodes not in P at t. When node Ni E P and node N j E P directly connect, either: (i) Ni will realise 

m if N j has realised m, or (ii) N j receives m for the first time. 

Since the number of correct nodes is finite, case (ii) will cease and all correct nodes that have m 

will realise m in finite time. After this, no more realisation packets will be transmitted. 

Reactive dissemination 

The reactive dissemination protocol, RDP, assumes that information about which nodes are in a 

node's neighbourhood is provided without any additional transmission overhead (e.g. by MAC-layer 

signaling). This information is represented as a set of nids. Let Neigh denote this set. The basic 

strategy is to transmit m only when a node observes someone in its neighbourhood who it does not 

know to have received m (e.g. when Neigh - K(m) =f. {}). This is evaluated once every 13 seconds, 

where B :2: 2(13 + 8) as above. 



24 

Although sufficient to guarantee that enough nodes receive m, the basic strategy is insufficient 

to guarantee that a node realises m. Consider for example an ad-hoc network of 3 nodes (n = 3) 

arranged in a straight line, with each node having only its immediate neighbour(s) in its Neigh. 

Assume the middle node originates m. When it transmits m, each of its two neighbours (the end 

nodes) receives m and forms K(m) with two 1 bits (as in PDP above). Since each end node has 

only the transmitting node in its Neigh, it will find Neigh-K(m) = {} and choose not to transmit 

m. If f = 0, the originator, which cannot know (for sure) whether its neighbours have received m, 

cannot realise m even though all have received it. 

It thus follows that additional data structures and control packets are needed. 

Nodes maintain two more bit vectors: knowledge on the propagation knowledge of m (KK(m)) 

and knowledge on the realisation of m (KR(m)). If node Ni knows that a node Nj has the same 

K(m) as itself, then its KKi(m)[j] is set to 1; otherwise, its KKi(m)[j] will retain the initialised 

value of O. Similarly, if node Ni knows that node Nj knows of the realisation of m, then its K Ri (m) [j] 

is set to 1; otherwise, KRi(m)[j] will retain the initialised value of O. 

Note that, unlike in K(m) and KR(m), the number of Is in KK(m) can decrease, because 

KK(m) will be reset every time K(m) changes. Similarly, while KKi(m)[j] = 1, node N j may 

have added more Is to its K j (m) without node Ni being aware of this addition. Therefore, the only 

certainty that Ni can derive from K Ki (m) [j] = 1 is that N j had the same K (m) as itself at some 

point in the past. 

Packets of the following types may be transmitted by a node: K_pkt(m.id) containing the m.id 

and the transmitting node's knowledge K(m) and KK(m); R_Pkt(m.id) containing the m.id and 

the transmitting node's KR(m); and RAck(m.id) which acts as an acknowledgement to receiving 

an R_Pkt(m.id). 

The protocol steps are as follows: 

1. Starting the dissemination: The initiator initialises K(m), KK(m) and KR(m) to be all O's, 

and sets its own bit to 1 in the two former. It generates a unique id, m.id and sets the m.k as 

above. It then becomes responsible for m. 

2. Being responsible: Every message a node is responsible for is retained, and the following tests 

are evaluated every (3 seconds: 

if(Neigh contains nodes not in K(m»: The full message, m, with m.K = K(m) is trans

mitted. 

else if (Neigh contains nodes not in KK(m)): Only KJ>kt(m.id), containing K(m) and 

KK(m) is transmitted. 

else: Nothing is transmitted. 



25 

3. Receiving a message: Upon receiving a message for the first time, a node initialises K(m) = 

m.K and sets its own bit to 1. It also initialises KK(m) and KR(m) to be all D's, and sets 

its own bit to 1 in the former. It then becomes responsible for m. Every time it receives a 

message it is responsible for, it merges the received m.K with K(m), and if this changes its 

K(m) it resets KK(m) to be all D's and sets its own bit to 1. 

4. Realising a message: every time a node updates K(m), either because it adds its own sig

nature to it, or because it merges the K(m) with the m.K of an incoming message, it checks 

if IK(m)1 ;::: m.k. If it is, the node realises m. Realising m involves deleting m from stable 

storage, and setting its own bit in K R( m) to 1. A node can also realise m upon receiving an 

RYkt(m.id) or an R..Ack(m.id) 

5. Having realised a message: If a message has been realised, a node evaluates the following 

test every f3 seconds untilIKR(m)1 = n: 

if(Neigh contains nodes not in KR(m»: An R_Pkt(m.id), containing KR(m), is trans

mitted 

A node which has realised m transmits an R_Pkt(m.id) whenever it receives m of KYkt(m.id), 

and transmits an R..Ack(m.id) whenever it receives an R_Pkt(m.id) 

RDP is not as simple as PDP, and in addition to requiring neighbourhood knowledge, also suffers 

from one other drawback; because a node must retain K R( m) until it knows that all nodes have 

realised m, it is possible for all nodes to have to maintain this data structure, and perform the 

evaluation described in step 5, for ever. The reason is that if even just one node has crashed before 

realising m, the number of signatures in K R( m) will never reach n. 

This is impractical, but does not violate the termination property from section 3.2.1; if some 

nodes have crashed the correct nodes will never find the (crashed) nodes in its neighbourhood, 

and therefore never actually transmit anything after all correct nodes have realised m (and thus 

bandwidth subsidence is maintained). Storage subsidence is also maintained, as the actual message, 

m, can be discarded, it is only the K R( m) which cannot be. 

Correctness arguments for RDP (sketch) 

Claim: Consider node Ni and node Nj with Ki(m) =I- Kj(m) at some time t during an execution. 

It is not possible for both KKi(m)[j] = 1 and KKj(m)[i] = 1 at t. 

With no loss of generality, suppose that K K j (m )[i] = 1 at t. This is possible only if Nj has 

known in the past that Ki(m) = Kj(m). But at t, Ki(m) =I- Kj(m). That is, Ni has increased its 

Ki(m) which must have caused its KKi(m) to be reset. Further, Ni could not have learnt that Nj 

also increased its Kj(m) in the same way. Therefore, KKi(m)[j] cannot be 1, and can only be O. 



26 

The claim suggests that when unrealised nodes Ni and N j with different K (m) experience direct 

connectivity, at least one of them will transmit at step 3. Further, if KKi(m)[j] = 0 and KKj(m)[i] = 

1, then N j gains more I-bits. The rest of the arguments can be constructed by choosing appropriate 

p as was done for the proactive protocol above, and is omitted. 

3.2.4 Comparing basic dissemination strategies 

Studying the performance of PDP and RDP provides an insight into the advantages and disadvant

ages of the proactive, and the reactive dissemination strategies. In this section we will study their 

relative performance using one simple optimisation; instead of static periods of (3 seconds between 

actions (whether transmitting m, as in PDP, or evaluating whether to transmit, as in RDP), each 

node will pick a random interval between 0 and (3 and then perform the action after this interval. 

After the action has been performed, a new random interval is chosen if required. 

Recall that we are interested in the transmission overheads and the latency of the protocols. In 

general, for both the protocols, increasing the value of (3 decreases transmission overheads, while 

increasing the latencies. A value of (3 = 5 seconds provides a good balance between these two, and 

is used throughout the dissertation. 

The measure of overheads is based on how many bytes get put on the network by all nodes during 

the execution of the protocol. The total number of bytes is then divided by k as guaranteeing 

delivery to 50 nodes generates more overheads than guaranteeing delivery to 2, independently of 

which protocol is being studied. Similarly, guaranteeing delivery of a message with a payload of 

1024 bytes causes more bytes to be put on the network than guaranteeing delivery of one with a 

payload of 64 bytes. For this reason the total number of bytes is also divided by the payload size, 

yielding the formula for overhead shown below: 

O h d 
total number of bytes transmitted by all nodes 

ver ea = . 
k * SIze of payload 

A good way to get an intuition for how this measure works is to consider how an "idealised" 

flooding protocol would perform. An "idealised" flooding protocol in this case is a protocol where 

every node transmits each message once. Such a protocol would have an overhead of approximately 

1 assuming that k = n 1. Wherever appropriate, a line indicating how such an idealised protocol 

would perform for k = n has been added to the graphs for reference. It is important to note however, 

that a simple flooding protocol is not reliable and that this line is only intended as a reference point 

in terms of transmission overheads. 

Latency for PDP and RDP is defined as how long it takes for the first node to realise that k 

nodes have received a given message. This measure was chosen as it encompasses both how long it 

1 Actually slightly above 1, as even a simple flooding protocol needs packet headers which would add to the 
overheads 



27 

takes for at least k nodes to receive m, and how long it takes the first node to determine that this 

has happened. Latency is measured in milliseconds. 

Figures 3.1 and 3.2 shows the impact on overhead and latency of varying the wireless range of the 

nodes while keeping all other variables constant (recall that the default variables used throughout 

this dissertation is listed in table 2.1 in section 2.4). 

o 

f------l\ RDP 
PDP 
"Flooding" 

, , , 

~~---'~ • .---~I~--.I-----~f---~~ m.. 
• • 111- - - - - om: • _ • __ ... ____ • 

150 200 250 300 

Wireless Range(m) 

Figure 3.1: Overhead vs. Wireless range for PDP and RDP. Max speed = 5m/s, k = 45. 

There is a clear trend in these figures; RDP outperforms PDP at low densities, while PDP 

outperforms RDP at higher densities. 

At low densities PDP performs poorly as the simple strategy of transmitting the whole message 

periodically results in a number of transmissions where there are no nodes in the neighbourhood to 

receive the message. RDP performs better as it is able to make use of its neighbourhood knowledge 

to avoid transmissions when there are no nodes in a node's neighbourhood. It is thus evident that at 

low densities, adopting a more reactive strategy is beneficial both in terms of latency and overhead. 

At high densities PDP performs better, as its strategy of proactively pushing the message (in

cluding K(m)) leads to rapid realisation of m, at costs not much greater than idealised flooding. 

RDP's use of neighbourhood knowledge leads to quite a few redundant transmissions, including 

redundant transmissions of m. What appears to happen is that responsible nodes determine that 

nodes in their neighbourhood are not known to have received m, and thus transmit it. However, 

very often these nodes have received m from elsewhere and so the transmission is redundant. In 

addition, a node in RDP strives to ensure that all nodes in its neighbourhood has the same K(m) 

as it self; at high densities this is nearly never achieved prior to realisation, though in the attempt a 

lot of redundant control information gets transmitted. It thus appears that the proactive approach 



28 

0 1----_ 
~ I RDP I - - - PDP 

(i) 

.s , 
g- o , 

8 
~ '" ...J 

§ -~ - - - - -1-_ 
~ ---------m 
0 

150 200 250 300 

Wireless Range(m) 

Figure 3.2: Latency vs. Wireless range for PDP and RDP. Max speed = 5m/s, k = 45 .. 

has the edge at higher densities. 

Figure 3.3 shows the impact of node speeds on overheads when the wireless range is 250m. The 

figure suggests that nodes speeds have a negligible impact on the overhead of both protocols. This 

was also found to be true at both higher and lower densities than shown in this figure. Similar results 

were observed with regards to the impact of node speeds on latency. The reason there is so little 

impact is that none of the protocols make use of any routing structure which may break and then 

needs repairs in order to work; the protocols are "opportunistic" in making use of what connectivity 

there is. In general, this a very beneficial feature for protocols designed for ad-hoc networks. 

Figures 3.4 and 3.5 indicate how the protocols scale. The overhead associated with PDP increases 

slightly as the number of nodes increase, while the overhead is reduced for RDP. 

The reason the performance of PDP suffers is that increasing the number of nodes while keeping 

density constant (by varying the size of the simulation area) means a smaller percentage of the 

nodes in the network hear each transmission of m (and thus K(m)). As fewer nodes hear each 

transmission, more transmissions must occur before realisation happens. When more transmissions 

are required both overhead and latency increases. 

For RDP, keeping the density constant means the same number of nodes are in each node's 

neighbourhood, and the number of transmissions of m therefore remains relatively unaffected by 

the change in scale. As in PDP, the number of transmissions overall increase, though typically 

increasing the number of nodes in the network while retaining the same density means these extra 

transmissions are K _Pkts. This increased number of transmissions is more than compensated for 

by the fact that the measure of overheads divides by (the increasing) value of k. 



C\I 

29 

:r 
y 

RDP 
PDP 
"Flooding" 

or T 

II - - - § - - - - 11- - - - - ._ - - - -.- - - __ • ____ -m - - - - -til 

o -T----.-,---.,----"----"----"r----.----,J 
o 5 10 15 20 25 30 35 

Max node speed (m/s) 

Figure 3.3: Overhead vs. Maximum node speed for PDP and RDP. Wireless range = 250m, k = 45. 

o 

RDP 
PDP 
"Flooding" 

~r----+-!~ 
4r-_ -__ -_-_-_ -:J..lII .- -----~-- --- -.. ------.. ------

10 20 30 40 50 60 

Number of nodes 

Figure 3.4: Overhead vs. Number of nodes for PDP and RDP. Wireless range = 250m, k = (n - 5). 



30 

I RDP I - - - PDP 

__ 1- ------I 

o 
& ______ -& ___ - - - -lI--- --- -1:-

10 20 30 40 50 60 

Number of nodes 

Figure 3.5: Latency vs. Number of nodes for PDP and RDP. Wireless range = 250m, k = (n - 5) 

Summary 

The findings in this subsection can be summarised as follows: 

• Both RDP and PDP are able to provide their guarantees in a very wide range of network 

scenarios. 

• The proactive dissemination strategy is better at high densities, the reactive at low. 

• Node speeds are largely immaterial to both protocols. This is a good result in ad-hoc networks. 

• Increasing the number of nodes slightly benefits the reactive approach and slightly disadvant

ages the proactive. 

In the next section we will use some of these findings to develop an optimised reliable dissemin

ation protocol. 

3.3 An optimised reliable dissemination protocol 

The two protocols presented in the previous section, PDP and RDP, were designed to show how 

purely proactive and purely reactive dissemination strategies performed. To this end, only a very 

simple optimisation, namely choosing a random time between 0 and f3 to perform the evaluation of 

neighbourhood/transmission of m, was added. 



31 

This section presents an optimised reliable dissemination protocol which takes into account the 

lessons learned from PDP and RDP, and attempts to optimise for the case when the network does 

not behave in an adversarial manner. 

3.3.1 Pulling large payloads 

As we have seen in the previous section, a proactive approach is better at high densities, while 

a reactive approach has the upper hand at low densities. An ideal solution is a protocol which 

combines the best of these two approaches while retaining the simplicity of PDP, including avoiding 

the need for neighbourhood knowledge. A Push-Pull, PP, optimisation of PDP goes some way 

towards providing this. 

The PP optimisation requires responsible nodes to periodically transmit (push) K(m), at least 

once every (3 seconds where B 2:: 3((3 + 8), while nodes which have not received m must request 

(pull) m from responsible nodes upon receiving a K(m) for a message they have not yet received. 

The protocol steps are as follows (note that for clarity, new functionality not found in PDP has been 

italicised) : 

1. Starting the dissemination: The initiator initialises K(m) to be all D's, and sets its own bit 

to 1. It generates a unique id, m.id, for the message and sets the m.k to the minimum number 

of nodes it wants to guarantee receives m (note that k :::; (n - I)). It then becomes responsible 

for m. 

2. Being responsible: Every message a node is responsible for is retained and a K -Pkt, contain

ing m.id and K(m), is transmitted periodically with intervals randomly chosen between 0 and 

(3 seconds. After each transmission of a K _Pkt, a new random interval is chosen. 

3. Receiving an m: Upon receiving a message for the first time, a node initialises K(m) = m.K 

and sets its own bit to 1. It then becomes responsible for m. Every time it receives a message 

it is responsible for, it merges the received m.K with K(m). 

4. Receiving a KYkt: If a node receives a K-Pkt(m.id) for a message it has not received, it 

transmits a request packet, Req_Pkt, containing m.id. 

5. Receiving a Req_Pkt: A responsible node receiving a Req-Pkt(m.id) transmits m. A node 

which has not received m ignores the Req-Pkt. 

6. Realising m: Every time a node updates K(m), either because it adds its own signature to it, 

or because it merges K(m) with an incoming m.K, it checks if IK(m)1 2:: m.k. If it is, the node 

realises m. Realising m involves canceling the periodic transmission of K-Pkt and deleting m 

from stable storage. Every time a node receives a packet relating to a message which has been 



32 

realised, it transmits a small realisation packet, R_Pkt, containing the message's unique id. A 

node which receives an RYkt(m.id) takes the same action as if it had detected IK(m)1 2:: m.k 

itself. A node which has not received m and which receives a R_Pkt(m.id) transmits a 

Req_Pkt(m.id), and only realises m if and when it receives it. 

The PP-optimised protocol's correctness follows from that of PDP, with the observation that 

given 3(13 + b) S B, the PP-optimised protocol uses the direct connectivity between an unrealised, 

but responsible node Ni and some other node Nj effectively; either (i) Nj receives m, if it has not 

already received it, or (ii) or Ni and N j will exchange their K(m)s if both are unrealised. 

If N j has not already received m (case (i) above), then N j is guaranteed to receive a KYkt(m.id) 

during the first 13 seconds, as Ni is executing step 2. N j then and has the time to send (step 4), and 

Ni will receive, its Req_Pkt during the middle 13 seconds. Finally Ni will respond by transmitting 

m (step 5), which Nj will receive m during the final 13 seconds. 

If both Ni and N j are responsible, but have not realised m (case (ii) above), then both will 

exchange their K Ykts during the first 13 seconds. 

Figure 3.6 shows how the PP-optimised protocol performs in terms of overhead compared to 

PDP and RDP as density is varied (this is the same setting as in figure 3.1). 

C\I 

1-···-1\ :~~ 
, "Flooding"" I '.' • ,/ 1 

~"'" ~'t .. -!- - i'~'{ -! 
lI!- ' - ' - ' - ' -I .... 11 ______ II: _ -.-._--. 

o 

150 200 250 300 

Wireless Range(m) 

Figure 3.6: Overhead vs Wireless range for PDP and RDP and the RP-optimised protocol. Max 
speed = 5m/s, k = 45. 

At low densities, PP performs better than both PDP and RDP. 

PP outperforms PDP at low densities because it puts less bytes on the network than the simple 

PDP approach; the use of ReqYkts is similar in spirit to utilising neighbourhood knowledge, and 

therefore PP is able to be more selective about when it transmits m. This is beneficial at low 



33 

densities as we saw in section 3.2.4. 

PP is also able to outperform RDP at low densities as it causes fewer copies of m be transmitted 

than RDP. The reason is that RDP forces a responsible node to transmit m to any node in its neigh

bourhood which it does not know to have received m. This is because neighbourhood knowledge, 

as it is assumed to incur no extra overhead and thus cannot be protocol specific, does not include 

information about what messages any given neighbour has already received. This quite frequently 

results in RDP transmitting copies of m to nodes which have already received it (as discussed in 

section 3.2.4). With PP, m is only transmitted if a node actually requests it, and is thus less likely 

to be redundant. 

However, as nodes' wireless ranges exceeds 200m, the PP-optimised protocol performs worse than 

PDP, and at above 250m is worse than both. The reason is that at higher densities, the additional 

overhead and delay associated with having to request m is detrimental to performance; it is better 

simply to push m (as PDP does) at such densities. 

A further optimisation 

Based on this observation we present a further optimisation, called Push-Pull with initial push of data 

payloads, or PP++. PP++ is the same as PP, but in addition each node is required to retransmit 

m once the first time they receive it. That is, step 3 becomes: 

3. Receiving a message: Upon receiving a message for the first time, a node initialises K(m) = 

m.K and sets its own bit to 1. It then immediately retransmits m, and becomes responsible 

for m. Every time it receives a message it is responsible for, it merges the received m.K with 

K(m). 

The rationale is to attempt to get m to as many nodes as possible, as quickly as possible without 

having to send Req_Pkts. This captures some of the beneficial characteristics PDP has at both high 

and low densities. At high densities we have seen that quickly pushing m is the better approach 

(see for example figure 3.6), but even at low densities making nodes which happen to be directly 

connected to the initiators responsible, is beneficial. 

Figure 3.7 shows how the PP++ protocol performs in terms of overhead compared to PDP 

and RDP as density is varied. The PP++ protocol is now quite efficient. It is able to provide its 

guaranteed delivery with transmission overheads of only about 1.5 times that associated with an 

unreliable, idealised flooding protocol. Further, it consistently outperforms RDP and is only beaten 

by PDP as wireless ranges reach 300m. The reason it is outperformed at this density is that any 

thing other than a single transmission from anyone node is redundant when the density is that high. 

Figure 3.8 indicates that both the PP and PP++ optimisations have not increased latency 

substantially. In fact it suggests (at high densities, at low densities there is no identifiable trend) 



C\I 

o 

1------I , , , , , , 

34 

RDP 
PDP 
PP++ 
"Flooding" 

, 

~ \. "'" ~_i --! III- __ 

... - -. -.• -. -. _. _ .• -. -.--~ ~.:~--.: .--~:: ~-~:.---. ~-~ :.:~-! 

150 200 250 300 

Wireless Range(m) 

Figure 3.7: Overhead vs Wireless range for PDP and RDP and Push/Pull with initial push of data 
payloads. Max speed = 5m/s, k = 45. 

8 
8 

i\ 
~ 

~ RDP 

\. PDP 
Ui' § I'" PP 
.s " PP++ CD .... ,'" 
~ -,- ~ 
c: 

~ 
, ;, 

~ 
, , 

~ 
0 

150 200 250 300 

Wireless Range(m) 

Figure 3.8: Latency vs Wireless range for PDP, RDP, PP and PP++. Max speed = 5m/s, k = 45. 



35 

that PP has similar latency to RDP and PP++ has a similar latency to PDP. This is another benefit 

of the initial push of data by PP++; latency is lower. 

Finally we note that the push-pull optimisations' (PP jPP++) efficiency is dependent upon the 

size of the payload in each message, particularly at lower densities. As a rule, there was no, or a 

deteriorating benefit to using the push-pull optimisations if the payload was less than about 100 

bytes. This is natural as when payloads get smaller, the difference in size between the full m and 

only the K _Pkt is reduced. 

3.3.2 Suppressing equivalent transmissions 

Mobile ad-hoc networks are broadcast by nature, as most communication happens by means of 

omnidirectional antennae. The implication of this is that a node will receive messages transmitted 

in its neighbourhood, even if it is not the destination node. This feature can be taken advantage of 

to reduce the overhead of our protocol. 

Ni et al.[NTC99] were the first to use this feature to reduce the overhead of unreliable flooding. 

Specifically, they proposed a simple counter-based scheme where a node, upon receiving a message 

for the first time, picks a short random interval called random assessment delay, RAD. During the 

RAD (typically between a-lOOms), a node counts the number of transmissions of the same message 

it receives, and if this count is greater than some threshold, the message is not retransmitted by the 

node and simply deleted. 

The rationale behind this approach is that the additional physical area a node's transmission of 

m can expect to cover drops dramatically as the number of redundant transmissions of m received 

increases. This is shown graphically in figure 3.9. 

The figure shows, for example, that if a node has received 3 transmissions of the same message, 

it can expect that 91 % of the area covered by its wireless range has already been covered by another 

transmission. In such cases it is probably not prudent for the node to retransmit. 

These results are based on a number of simplifying assumptions; specifically that a node's neigh

bourhood is perfectly spherical and that nodes do not move. None the less, this simple counter-based 

scheme performs well when compared against other, more complex optimisations. Examples of the 

more complex schemes include a distance-based scheme, where the physical distance to the trans

mitting node is approximated and a node only retransmits if it is more than a threshold distance 

from the transmitter, and a cluster-based scheme, where nodes are grouped into clusters and only 

the cluster-head retransmits [NTC99]. 

However, the approach taken by Ni et al. must be adapted to work with our protocol, as Ni 

et al. only considers unreliable, best-effort broadcast. The differences arise because in Ni et al.'s 

approach, any two messages with the same message identifier (m.id) are considered equivalent and 

because each node is only required to make a decision once about whether to retransmit any given 



0.45 

0035 
OJ 

0.25 
0.2 

0.15 
0.1 

0.05 
o 

3 

36 

5 7 9 11 13 15 

Figure 3.9: "Expected additional coverage" vs. number of transmissions received during the random 
assessment delay. From [NTC99j. Note that 1.0 = 100% of the area covered by a node's wireless 
range. 

message. This is not the case for our protocol. 

The reason two messages with the same m.id may not be equivalent is because there are two 

things that are important in our protocol; the actual data payload, and the knowledge about which 

nodes have received the message, K (m), contained in the message header. The data payload is the 

same in any transmission of m. However, this is not the case for K(m)s, as K(m)s with different 

signatures are not equivalent. For example, it would be undesirable for a message with only 1 

signature to suppress the transmission of a message with lots of signatures. 

In addition, in the best effort case there is no need to consider how long ago a transmission 

happened. This is because RADs are short, and a node will never transmit a message more than 

once; all transmission received during the RAD is counted, and if some threshold is reached the 

message is simply uiscarueu. In a reliable protocol tnis is not possible as a noue may nave to transmit 

the message more than once. The question then becomes; how recent should a transmission be for 

it to be counted? 

The urst of these issues has been addressed by observing that in general, it is undesirable for 

a message to suppress the transmission of another message if the forI{ler does not contain all the 

signatures in the latter, as this can hinder the protocol's ability to successfully terminate. We 

therefore define an "equivalent" K(m) to be one where the received m.K contains all signatures in 

the local K(m); e.g. K(m) -m.K = 0. We now keep two counts; one for equivalent K(m)s received, 

eqvKmCount, and one for ms received, eqvDataCount. The suppression threshold, the number of 

equivalent transmissions after which a transmission is suppressed, is denoted by Q. 

The suppression optimisation can be added to the P P + + optimisation described in section 3.3.1 



37 

by performing the following additional steps at the events described: 

Receiving an m : The eqvDataCount(m.id) is incremented by 1. 

Receiving a m.K (Note that this can be both in a m and a K_pkt): The received m.K and 

local K (m) is merged. If the number of signatures in K (m) is increased as a result of this, 

eqvKmCount(m.id) is reset to O. If K(m) -m.K = 0, eqvKmCount(m.id) is incremented by 

one. 

Transmitting m: If eqvDataCount(m.id) > a, the transmission of m is suppressed. Then 

eqvDataCount(m.id) is reset to O. 

Transmitting K_Pkt : If eqvKmCount(m.id) > a, the transmission of K_Pkt is suppressed. 

Then eqvKmCount(m.id) is reset to O. 

Figures 3.10 and 3.11 shows how varying the value of a impacts overhead and latency. 

0 
N 

~ 
~ 

"C 
C\l 

~ C! 

~ 
~ 

It) 

d 

0 a 

pp++ with Suppress 
"Flooding" 

----------------------------------

2 3 4 5 6 7 

Alpha 

8 

"E\.lbun~ ~.1c\·. (he1:\.\.eaG. '1'i) '1a1:\.C)\l'i) '1a\ue'i) ()\ (). -Wl\'\\' t>\l'i)\\.r~u\\ -Wl\'\\' \n\\'\a\ -pUS\\. ()\ nata -pay\oans 
(PP++). Wireless range = 250m and max speed = 5m/s 

The figures show a clear trade-off between latency and overhead, with overhead increasing and 

latency decreasing as a is increased. For example, the overhead with a = 1, is only half that when 

a = 8, but the latency is increased by around 1500ms in doing so. As it is difficult to predict what 

the end user will find more important, latency or overheads, it is probably a good idea to allow the 

application developer to tune the values of a. It is therefore left as a configurable parameter. 

Throughout the rest of this dissertation we are mostly concerned with reducing overhead, and 

thus use the dissemination protocol with a = 1; in this case the overhead associated with the reliable 



38 

0 
0 

ss 

'iii' 
.§. 

8 ~ 0 c: C') 

~ 
.-J 

8 
~ 

0 

2 3 4 5 6 7 8 

Alpha 

Figure 3.11: Latency vs various values of 0: with Push/Pull with initial push of data payloads 
(PP++). Wireless range = 250m and max speed = 5m/s 

dissemination is less than an idealised flooding protocol, as the suppress optimisation means many 

nodes never need to transmit m. Such low overheads make reliable dissemination a practical option 

in ad-hoc networks. 

3.3.3 Performance study 

This section briefly studies the performance of the "complete" protocol; that is, the reliable dissem

ination protocol which includes the push-pull with initial push of data (PP++)(section 3.3.1) and 

the suppress on equivalent (section 3.3.2) optimisations. 

Figures 3.12 and 3.13 shows how the protocol performs as density is varied. The overhead as

sociated with the reliable dissemination protocol is now less than an unreliable, idealised flooding 

protocol for all wireless ranges greater than 100m. This improvement is achieved while still main

taining quite a reasonable latency, as seen in figure 3.13 

Figure 3.14 shows that the complete protocol maintains one of the nice properties of PDP and 

RDP, namely that node speed does not impact overheads. This is nqt surprising as none of the 

optimisations involve routing structures. We observe that, as with PDP and RDP, this also holds 

at higher and lower densities than shown and also applies to latency. 

Finally, the results in figures 3.15 suggests that the optimised protocol has the same scaling 

properties as RDP. This is because the optimised protocol makes use of the "virtualised" neighbour

hood knowledge afforded by the push-pull optimisation to avoid making redundant transmissions. 

However, this comes at a cost of slightly increased latency, as can be seen in 3.16. 



C\I 

o 

39 

1-----1\ RDP 
PDP 
Complete protocol 
"Flooding" , , 

~~---'~'.~--~I~--!~----~!----!~ m. __ 

150 200 250 300 

Wireless Range(m) 

Figure 3.12: Overhead vs node density. Max speed = 5m/s. Number of nodes = 50, k = 45. 

Figure 3.13: Latency vs Density. Max speed = 5m/s. Number of nodes = 50, k = 45. 



40 

:r 
.:L-

y 
-.x. 

..,. 

RDP 
PDP 
Complete protocol 
"Flooding" 

T 
~ 

11- - - -m- - - - -lI!- - - - - c- - - - -e- - - __ 11: ___ - -IJI- - - --iII 

.. ' -, -.' -, -, -'.-' -, -' .. -, -, -'-.. ' -, -' -.' -, -, -'. -, -, -' .. 
o -

T-----r----.-----r-�---,-----r-�---,�-----~I 

o 5 10 15 20 25 30 35 

Max speed (m/s) 

Figure 3.14: Overhead vs Node speed. Wireless range = 250m. Number of nodes = 50, k = 45. 

N 

o 

RDP 
PDP 
Complete protocol 
"Flooding" 

~ .~ 
______ 1I!t""------__ -_ ~1 

• ______ .. -------IJI--- -- - -ca-

-.-:7 ~ ~ =-c:,: ~~_-:. ~~_~~~, ~,~,:,~ ~ ~_ ~_~_-.~ ~ ~,~,~: 

> I 

10 20 30 40 50 60 

Number of nodes 

Figure 3.15: Overhead vs Number of nodes. Wireless range = 250m. Max speed = 5m/s. 



41 

RDP 
PDP 
Complete protocol 

~ .......... ~ 
....... ~ 

.' I ....... I 

o 
.~' .' •••• -& •••••• ~ •••• ' • ~-

10 20 30 40 50 60 

Number of nodes 

Figure 3.16: Latency vs Number of nodes. Wireless range = 250m. Max speed = 5m/s. 

3.4 Related work 

Few, if any, fault. tolerant reliable dissemination protocols (be it broadcast or multicast) have been 

proposed specifically for mobile ad-hoc networks. However, a number of protocols which are not 

fault-tolerant, but none the less reliable, have been proposed. Representative examples include 

Reliable Broadcast (RB)[PR97], Adaptive Reliable Broadcast (ARB)[GS99] and Reliable Adaptive 

Lightweight Multicast(RALM) [TOL02]. This section briefly describes these three and discusses the 

differences and similarities between them and the protocols presented in this chapter. 

3.4.1 Reliable Broadcast (RB) protocol 

The RB[PR97] protocol was the first reliable broadcast protocol designed explicitly for mobile ad

hoc networks. The authors argue that for low mobility ad-hoc networks, well known spanning tree 

algorithms could be used, as the network is essentially static. At the other extreme, where the 

mobility of the nodes is very high, the authors claim that: "there is no alternative to flooding". The 

RB protocol is designed for when the mobility is in between these two extremes, and also provides 

the ability to switch to flooding once the rate of topology change in the network is deemed too high. 

RB assumes the existence of a clustering algorithm (e.g. [LG97]), and works by having each node 

wishing to reliably broadcast a message do a blocking send to the cluster head of the cluster it is 

currently in. The cluster head then sends the message to all the nodes in its cluster, and waits for 

acknowledgments from each of the cluster members. Any nodes acting as gateway will then forward 

the message onto the gateway or cluster head of the cluster to which it is the gateway, and delay the 



42 

acknowledgment of the message received from the original cluster-head until the message has been 

successfully diffused in the nearby cluster. This in turn could involve a recursive wait, as the this 

cluster might be connected to another cluster and so on. 

The protocol essentially constructs a routing tree, using the underlying clustering algorithm, over 

which messages and acknowledgments are sent. In cases when the underlying clustering algorithm 

is unable to cope with increased node mobility, the protocol will switch to flooding acknowledg

ments back to the cluster head of the cluster containing the originating node. This is required as 

acknowledgments from the destination nodes' cluster heads is essential for the protocol to ensure 

that the message has been received by all nodes. This is an example of the type of centralised 

mechanism which is necessary to detect that a sufficient number of nodes have received a message 

when a distributed mechanism (such as that introduced in section 3.2.2) is not used. 

A further observation is that even when RB reverts to flooding acknowledgements and messages, 

the protocol is not guaranteed to succeed if only the NLR is guaranteed to hold; the network acting 

in an adversarial manner can easily disallow any contemporaneous paths (which a flooding protocol 

relies on) between the originating node's cluster head and other nodes in the network. What is 

required (as dictated by theorem 2.1) is that all nodes must potentially retain each message. Flooding 

does not require nodes to do this. 

3.4.2 Adaptive Reliable Broadcast (ARB) protocol 

The ARB protocol [GS99] is a reliable multicast protocol that adapts to the rate of topology change 

in the network. The protocol works by constructing a core based shared multicast tree. Whenever a 

sender wants to multicast a message to members of the group, it sends a multicast message to the core 

node of the given group, which initiates the dissemination of the message down the multicast tree. 

The acknowledgments from individual nodes travel in the opposite direction up the tree to the core 

node. In order to reduce bandwidth consumption, the protocol uses acknowledgment aggregation. 

A message is said to be "stabilized" when the core node has received acknowledgments from all the 

group nodes. This is another good example of the type of "centralised realisation mechanism" which 

is required when there is no distributed mechanism available. 

In case of fragmentation due to node movement, the concept of a forwarding region is introduced 

which is used to "glue together" the fragmented multicast tree. This gIving involves flooding of the 

forwarding region (essentially consisting of nodes which witness the topology change due to node 

mobility) in order to attempt to repair the routing tree. In addition, there is a notion of nodes 

requesting missing messages from the core node when they (re)join the multicast tree. 

The (implicit) assumption made is that eventually the multicast tree will be created in such 

a manner as to include all destination nodes, and further that this tree remains intact (or can 

be repaired) until the nodes can acknowledge the reception of a message; the protocol does not 



43 

even include a "revert to flooding" strategy as in RB. From this we can conclude that the protocol 

would not cope with an ad-hoc network which acted in an adversarial manner, unlike the protocols 

presented in this chapter. 

3.4.3 Reliable Adaptive Lightweight Multicast (RALM) 

RALM [TOL02] is a reliable protocol which uses a TCP-like error and congestion control. The 

protocol assumes that the multicast receivers are known to the source, either through receiver 

discovery or by advance knowledge. 

When a source has multicast data to send, it picks a receiver from the Receiver List, containing 

the receivers. It then starts to send messages to the multicast group, with the chosen receiver (called 

the feedback receiver) included in the packet header instructing it to unicast a reply containing an 

ACK or a NACK and a sequence number. All other receivers in the multicast group simply process 

the message without acknowledging. If the feedback receiver determines that packets are missing, it 

will request the missing packets one at a time from the source. 

The philosophy behind transmitting each lost packet one at a time is to slow down the source 

when congestion is detected. Both new and retransmitted packets are multicast, which implies that 

most of the multicast group members should receive the data packets received by every feedback 

receiver. Once the feedback receiver has received all the packets, it unicasts an ACK back to the 

source, upon which the source picks a new receiver from the Receiver List and repeats the process 

until the list is empty. 

The central new contribution of RALM is the introduction of a TCP-like window-based conges

tion control mechanism used to reduce overhead and increase efficiency. The protocol therefore does 

not attempt to guarantee delivery when the network acts as an adversary. The assumption is that 

contemporaneous paths between the source and the receivers in the Receiver List can be established. 

Such an assumption is not made by the protocols in this dissertation. 

3.4.4 Discussion 

In general, these protocols make stronger assumptions about the underlying network property than 

that made by the protocols introduced in this chapter. For example, RB makes the following two 

assumptions about network behaviour: 

1. If there are pending messages for a node, Pi, then Pi receives at least one of these messages, 

and it succeeds in notifying the reception before the topology changes again. 

2. A host remains cluster head for the time necessary to guarantee that the exchange of status 

information with the other cluster heads is successfully completed and, if there are partially 

diffused messages, that at least one of them is known amongst the cluster heads. 



44 

Clearly these assumptions are much stronger than the network liveness requirement, NLR, (see 

section 2.2) assumed by the protocols presented in this chapter. This explains why RB, ARB and 

RALM do not include the possibility that every node becomes responsible for a given message as 

dictated by theorem 2.1; by assuming more about the behaviour of the underlying network, the 

protocol has to do less work. However, this does mean that the protocols will not work in as 

wide a range of network scenarios as the protocol presented in this chapter. In addition, as argued 

previously, the more complex the assumptions made by the reliable protocol, the harder it is for the 

end user to ensure that these assumptions are met. 

A further observation is that the protocols also make use of routing structures, whether these 

are clusters, multicast trees or unicast routes, and all require the initiator (or the core node in the 

case of ARB) to be able to detect when the dissemination has been successful. However, even in 

relatively benign network conditions, creating and maintaining routing structures can become ex

pensive in terms of overhead. For example, the lower bound on message passing overhead associated 

with creating a minimally connected dominating set (MCDS), the most efficient form of multicast 

structure, is O(n log n)[WAF04J. Further, when the density is low, it may not be possible to create 

a route between all nodes and some form of store-and-forward approach is necessary. 

3.5 Conclusion and summary 

This chapter has studied the problem of providing reliable dissemination in mobile ad-hoc networks 

where transient partitions and undetectable node crashes can occur. The study has been guided by 

the foundational results presented in chapter 2 which restrict the number of nodes which can be 

guaranteed to receive a message, and show how protocols which cannot rely on routing structures 

must include the possibility of all nodes actively participating in the dissemination of a message. 

A novel, distributed method for detecting that a protocol can terminate has been presented. 

The method removes the need for separate acknowledgements to be sent back to the originating 

node through the use of "node signatures" appended to message headers. This removes the reliance 

on routing structures and a single node to detect that a protocol can successfully terminate found 

in other protocols. We have also argued that these signatures can be compactly represented when 

nodes are assigned unique identifiers upon joining a collaborative group; 

Two core dissemination strategies, a proactive and a reactive, was combined with the above 

method to derive two reliable dissemination protocols. The proactive protocol assumes no neigh

bourhood knowledge was available and thus, as dictated by theorem 2.2, periodically transmits every 

message. The reactive protocol attempts to make the most out of the neighbourhood knowledge, 

which is assumed to be available to it, by transmitting only when necessary. 

These two basic protocols were studied through simulation and we concluded that both protocols 



45 

are able to provide their delivery guarantees under a very wide range of network conditions, but that 

the reactive strategy outperforms the proactive strategy at low densities, while at high densities the 

roles are reversed. 

Finally, we have also presented an optimised reliable dissemination protocol which, in fairly 

typical network scenarios, is able to provide its strong delivery guarantees with less overheads 

associated with it than what would be expected from an unreliable flooding protocol. It is able 

to do this by means of two optimisations: "push-pull" and "suppress equivalent". The "push

pull" optimisation was arrived at by combining the best features of the proactive and reactive 

dissemination strategies, while the "suppress equivalent" optimisation is a modified version of the 

unreliable counter-based flooding protocol of Ni et al.[NTC99J. 

In summary, the results in this chapter suggests that fault-tolerant reliable protocols are feasible 

in even highly mobile, transiently disconnected and crash-prone ad-hoc networks. In the next section 

we will use the reliable dissemination protocols presented here as a basis for solving the more difficult 

consensus problem in a manner suitable for mobile ad-hoc networks. 



46 

Chapter 4 

Consensus in ad-hoc networks with 
crash failures 

4.1 Introduction 

Services and applications deployed on mobile ad-hoc networks are by their very nature prone to crash 

failures and disconnectedness. If the service being provided is sufficiently critical, it is desirable to 

replicate the state of this service onto several physically distinct nodes to increase fault tolerance 

and improve availability. The replicated state must be kept consistent in order to be functionally 

equivalent to a non-replicated service. 

Two main issues arise when a replicated service state must be kept consistent; (i) each replica of 

the service must receive the same updates and (ii) the replicas must apply the updates in the same 

order. The first issue can be solved by using some form of reliable dissemination primitive of the 

sort discussed in the previous chapter. The second issue is more difficult as it involves the replica 

services agreeing on a common value (the order in which to apply the updates). This problem, 

known as the atomic broadcast problem, is a typical agreement problem from distributed systems 

theory. Other agreement problems include leader election, atomic commitment, mutual exclusion, 

and group membership 

The consensus problem is a general form of agreement in distributed systems[TS92]. A number of 

agreement problems, such as atomic broadcast, have been shown to be equivalent to consensus[CT96]. 

This implies that any such problem can be implemented provided a con~ensus solution is available, 

and any difficulty inherent in solving the consensus problem also inevitably applies to any of the other 

agreement problems. For these reasons, a rigorous solution to consensus is of critical importance if 

fault-tolerant and available services are to be achieved in ad-hoc networks. 

However, existing wired network solutions to the consensus problem are not well suited to the 

types of mobile ad-hoc networks considered in this dissertation. For example, typical wired net

work solutions assume that best-effort unicast or multicast are readily available and low overhead 



47 

operations, and thus use them extensively. As shown by theorem 2.1, the routing structures which 

underpin such protocols are not guaranteed to exist in mobile ad-hoc networks, and numerous stud

ies (e.g. [LSHOO]) show that, even in relatively benign network conditions, providing low overhead 

best-effort unicast or multicast is by no means trivial. Further, the underlying relying dissemination 

protocols which some existing solutions are built on attempt to deliver messages to all nodes. As 

shown by theorem 2.3, this is impossible if bandwidth and storage subsidence are desirable. 

In this chapter we will survey the vast amount of work done on consensus for wired networks, 

including a fundamental impossibility result and two main ways of circumventing it; mndomisation 

and failure-detectors. We will also argue why a randomised consensus solution seems the most 

suitable for the types of mobile ad-hoc networks considered in this dissertation. 

We will then derive a new randomised consensus solution based on a wired network protocol by 

optimizing the latter in 3 different ways. The resulting protocol is the first randomised consensus 

solution developed specifically for mobile ad-hoc networks. The extensive simulations performed 

suggests that the protocol reduces the number of execution rounds required to reach consensus 

by several orders of magnitude, and further reduces the transmission overhead per round by 1-2 

orders of magnitude. This implies that running consensus in mobile ad-hoc networks is a practical 

proposition. 

A further contribution is the provision of a proof of correctness. Crucially this proof removes the 

need to guarantee delivery to all correct nodes found in the original protocol. Such a dependence 

runs contrary to the result in theorem 2.3 which shows that this cannot be guaranteed. 

4.2 The consensus problem 

This section formally defines the consensus problem, followed by a fundamental impossibility result 

applicable in the types of mobile ad-hoc networks considered in this dissertation. 

4.2.1 Problem definition 

As in previous chapters, there are a set of n nodes. A node is either correct or faulty. A correct 

node never crashes, while a faulty node can crash at any time. A node crash is undetectable and 

nodes do not recover from a crash. The number of faulty nodes is bounded to within some known 

value f. Further detail about the system model is given in section 2. 

In the consensus problem, any node Ni can propose a value Vi, and all correct nodes have to decide 

on some common value V which is equal to one of the initially proposed values[CT96]. Formally the 

consensus problem is defined in terms of two primitives: propose and decide. When a node invokes 

propose(vi) where Vi is its initial proposal to the consensus protocol, we say that Ni "proposes" 

Vi. Further, when Ni invokes decideO and gets vasa result, we say that Ni "decides" v. The 



48 

consensus problem is defined as follows: 

Validity If a node decides v then v was proposed by some node. 

Agreement No two correct nodes decide differently. 

Termination Every correct node eventually decides. 

The termination property defines the liveness property associated with consensus. The agreement 

and validity properties are safety properties. 

The agreement property above allows correct and faulty nodes to decide different values. This 

can be undesirable in certain circumstances as it can allow faulty processes to propagate inconsistent 

values before crashing. For this reason, in the uniform consensus problem, agreement is defined as: 

Uniform agreement No two nodes (faulty or not) decide differently. 

All the consensus solutions described in this chapter solve the uniform consensus problem. 

As shown by theorem 2.1, reliably disseminating a message to all correct nodes is impossible 

when crash failures are undetectable, if the storage subsidence property (SSP) must also be met 

(see section 2.3.1). For this reason the termination property in the traditional consensus definition 

is impossible to ensure if the SSP is desirable. As ensuring storage subsidence is clearly desirable, 

the termination property is altered as follows: 

Termination At least one correct node eventually decides. 

This alteration does not weaken the safety properties of the consensus solution in any way. 

A fundamental property of a distributed system is whether there are timing bounds on commu

nication delays or processing speeds. In a synchronous system there is a known, finite bound on 

the processing speeds and communication delay between any two nodes. In an asynchronous system 

there are no such bounds. 

An ad-hoc network is clearly an asynchronous system due to the possibility of transient network 

partitions and highly variable network latencies. Further, a solution to the consensus problem for an 

asynchronous system model is also applicable in the easier to solve synchronous model. The reverse 

is not true. For these reasons this chapter will only consider consensus in asynchronous systems. 

4.2.2 A fundamental impossibility result 

Developing a consensus solution on the assumption that ad-hoc networks are asynchronous is clearly 

preferable to making assumptions about network synchrony, as these assumptions may not hold 

and thus invalidate the guarantees of the consensus protocol. However, in 1985 Fisher, Lynch and 

Paterson showed that it is impossible to design a deterministic consensus protocol in an asynchronous 



49 

distributed system that is guaranteed to terminate in bounded time subject to the possibility of even 

a single crash failure [FLP85]. The proof holds even if the communication network is completely 

reliable. This well known result is commonly known as the F LP impossibility result. 

The intuition behind the result is that in an asynchronous network it is impossible to distinguish 

a crashed node from a very slow one. As a result of this, any deterministic consensus protocol 

contains non-terminating executions; that is, possible executions of the consensus protocol where no 

decision is ever made. This violates the termination property described in the previous section. 

However, as consensus is such a fundamental problem, it still needs solving. In the next section 

we will briefly survey the best known approaches to solving consensus in wired networks. 

4.3 Known approaches to solving consensus 

Two main ways of circumventing the FLP impossibility result have been proposed; (i) imposing some 

form of timing constraint on the network, and (ii) relaxing the deterministic termination property. 

The first of these, imposing further timing constraints, includes the introduction of the timed 

asynchronous model[CF99], the partially synchronous model[DLS88] and the asynchronous systems 

with unreliable failure detectors model[CT96]. The general gist of these approaches is to assume 

that the network goes through stable periods during which progress towards consensus can be made. 

Of these the unreliable failure detector approach is the most general and we will therefore discuss it 

further in the next section. 

The second approach, relaxing the deterministic termination property, circumvents the FLP im

possibility result by weakening the termination property to only require termination with probability 

1 (note that this does not affect the safety properties). This change means non-terminating execu

tions of consensus still exist, but occur with probability o. Randomisation will be further discussed 

in section 4.3.2, and is the approach taken in this dissertation. 

4.3.1 Unreliable failure detectors 

The unreliable failure detector abstraction was first introduced by Chandra and Toueg[CT96]. Fail

ure detectors provide approximate views of process crashes. The ability to detect node crashes, 

even unreliably, allows consensus to be solved deterministically by electing a coordinator to make 

decisions, while at the same time not waiting forever for a crashed coordinator to respond. 

Failure detectors are modules attached to each node. The failure detector module provides a list 

of suspected nodes. Naturally, as the network is still asynchronous, the failure detector cannot be 

mistake-free. That is, a failure detector may suspect a correct node, or fail to suspect a crashed 

one. However, to be useful the failure detector has to provide some correct information. The 

information provided is defined in terms of completeness and accuracy. Accuracy restricts the 



50 

amount of erroneous suspicions that a failure detector may make, while completeness defines to 

what degree crashed nodes must be suspected. 

Chandra and Toueg defined a number of failure detectors based on their completeness and ac

curacy properties. They also showed that the eventual strong failure detector, <>S, was the weakest 

required for consensus to be solved [CT96j1 . <>S is defined by the following properties: 

Strong Completeness : Eventually every crashed node is permanently suspected by every correct 

node 

Eventual Weak Accuracy 

by any correct node. 

There is a time after which some correct node is never suspected 

Intuitively these two properties allow the correct nodes to elect a coordinator which has not 

crashed (by strong completeness) and stay with that coordinator until consensus is reached (by 

eventual weak accuracy). The weak accuracy property may seem highly unrealistic; "some correct 

node is never suspected", but in fact "never" in this case actually only means until a decision is 

made, which in a real system may be a tolerable assumption. 

Failure detectors are typically implemented in one of two ways; either using periodic "heart

beat" messages to all nodes in the system, or through gossiping about perceived view of suspected 

nodes[vMH98]. 

Of these, sending periodic "heartbeat" messages to all nodes is the simplest and most widely 

used, though also the approach which scales worst and incurs the greatest overhead (O(n2) heartbeat 

messages). Gossip based failure detection goes some way to alleviate this. In the basic gossiping 

protocol, each failure detector module picks another failure detection module randomly (without 

concern for the network topology) and sends it its list of known nodes with their heartbeat counters 

after incrementing its own heartbeat counter. The receiving failure detector will merge its local list 

with the received list and adopts the maximum heartbeat counter for each node. Occasionally each 

node broadcasts its list to recover from network partitions. If a heartbeat counter for a node Ni 

maintained at a failure detector at another node Nj has not increased after some timeout, node N j 

suspects node Ni to have crashed. 

A number of consensus protocols have been developed using failure detectors. A failure de

tector based consensus protocol also lies at the heart of group communication toolkits such as 

Horus [RBM96] , Ensemble [RBH98] . 

Most of these protocols (e.g. [CT96][Lam98][MR99]) use the rotating coordinator paradigm to 

solve consensus. The rotating coordinator paradigm works in consecutive, asynchronous rounds. 

Each round is coordinated by a single, coordinator, node. The coordinator of round r, node N e , is 

1 Not strictly true; the eventual weak failure detector, oW, is the weakest, but they also showed how to transform 
the weak completeness property into a strong one, so we focus on oS here 



51 

predetermined. One way to determine this is by choosing the coordinator id, c, as c = (r mod n) + 

1. Each node, Ni keeps an estimate of the decision value, esti to champion. Initially esti is set to 

node Ni's input to the consensus protocol. Nodes update their estimate during the execution of the 

consensus protocol as follows: 

In a round r, all nodes send their estimate to the current coordinator, N c. Nc then proposes one 

of these estimates and sends it to all nodes. If a node does not suspect Nc, and Nc does not crash, 

it eventually receives this proposal and champions it as its estimate. The proposal is decided upon 

when a majority of nodes champion the proposal. If a node suspects a coordinator has crashed, 

it moves on to the next round with a new coordinator. Due to the strong completeness of oS, 

eventually every correct node suspects a crashed coordinator. 

4.3.2 Randomization 

Using randomization was the first known approach, proposed by Ben-Or[Ben83], of circumventing 

the FLP impossibility result. This approach assumes there is a source of randomness in the system 

such that the choice of execution paths at certain points is not deterministic, but rather drawn from 

some probability distribution. 

Adding randomness to the system in this way means no longer looking at a single worst case 

execution of a consensus protocol, as is done to prove the FLP impossibility result, but rather 

studying a probability distribution of bad executions. If the liveness property of the protocol is 

weakened to only requiring eventual termination, the FLP impossibility result no longer holds. By 

only requiring eventual termination, non-terminating executions continue to exist, but they exist 

with probability 0, so are in practice irrelevant. 

Carrying forward the uniform agreement, and the slightly weaker termination property discussed 

in section 4.2.1, we get the following properties for randomised consensus in ad-hoc networks: 

Validity If a node decides v then v was proposed by some node. 

Uniform Agreement No two nodes (correct or faulty) decide differently 

Termination With probability 1, at least one correct node eventually decides some value. 

Again, the safety properties are unaffected by weakening the liveness property in this way. 

There are two ways to add the required randomness to the system; (i) assume the environment 

the protocol operates in has sufficient level of randomness and (ii) add randomness to the protocol 

itself. 

Assuming the environment provides a sufficient level of randomness was first proposed by Bracha 

and Toueg[BT85]. The approach requires that, at any given state, particular operations occur with 



52 

some probability. This differs from the definition of asynchronous systems where any operation is 

possible in each state. This has been called the fair scheduling assumption. 

A fair scheduler assumes that: 

1. In any round r, there is a positive constant E > 0, such that the probability that a node Ni 

receives a message from some other node Nj in round r is > E. 

2. For any distinct nodes, Ni , N j and Nk, in any round r, the event that Nk receives a mes

sage from Ni in round r, and the event that N j receives a message from Ni in round r, are 

independent. 

The protocol works in consecutive rounds by having each node broadcast (i) its preferred value, 

and (ii) the number of nodes it knows of which also have this as their preferred value (the vote 

for this value). In each round, every node receives n - f messages. The nodes then change their 

preferred value according to which value has the most votes. This continues until, in a single phase, 

a node receives f or more messages of a single value each with at least n/2 votes, a which point 

it knows that the algorithm will decide on that value in the next two phases and terminates after 

broadcasting enough messages for the next two phases. 

Given a fair scheduler, the probability that consensus is reached goes to 1 as the number of 

rounds go to infinity. 

The caveat of relying on randomness in the environment is that these assumptions may not hold 

in certain real world scenarios. In addition, adding randomness to the protocol itself, the approach 

discussed next, is usually simple. 

Adding randomness to the consensus protocol is typically done by associating a randomised 

oracle with each node. The oracle when invoked returns the result of a random coin-flip (or a 

random number from some probability distribution). The first protocol to do this was Ben-Or's 

binary randomised consensus protocol, which is presented in figure 4.1. 

Ben-Or's protocol works in asynchronous consecutive rounds, consisting of two phases. Each 

node Ni maintains an estimate of the decision value, esti initially set to the node's input to the 

consensus protocol (line 4). In the first phase of each round, r, each node reliably broadcasts a 

phase one message containing its current estimate to all nodes (line 7). A node then waits to receive 

n - f phase one messages (it cannot wait for more as f nodes may have ,crashed). If more than n/2 

of the received messages carry the same value, v, the node reliably broadcasts a phase two message 

containing v (line 11). Otherwise it reliably broadcasts a special value . .L. A .1 value is by definition 

not a valid estimate/decision and indicates that no majority has been reached. The node then moves 

into phase two. 

In phase two, each node waits to receive n - f phase two messages (line 17). If a node, Ni 

receives at least one phase two message containing some value v =I- .1, it sets its current estimate, 



53 

BenOrConsensus(Vi) 

3 

4 

6 

7 

8 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

{ 
round - 1; 
esti = Vi; 
while (true) 
{ 

send PHASEONE(round, esti) to all nodes; 
wait to receive n- f PHASEONE(round, *) messages; 
if (more than n/2 carry the same value, est f. .L) 
{ 

} 
else 
{ 

} 

send PHASETWO(round, est) to all nodes; 

send PHASETWO(round, .L) to all nodes; 

wait to receive n- f PHASETWO (round , *) messages; 
if( received at least one PHASETWO(round, est f. .L) message) 
{ 

esti = est; 
if (received more than f PHASETWO(round, est f. .L) messages) 
{ 

decide (est) ; 
} 

} 
else (received all PHASETWO(round, .L) messages) 
{ 

28 esti = coinFlip(); 
29 } 

30 round++; 
31 } 

32 } 

Figure 4.1: Ben-Or's binary randomised consensus protocol. Adapted from [Ben83] 



54 

esti = v. If a node Ni receives more than f phase two messages with the same value v f. .1, then 

Ni decide(v) (line 23). If all received phase two messages contain only .1, Ni queries the random 

oracle to adopt either a 1 or a 0 as its esti (line 28). Ni then moves into the next round. 

Ben-Or's guarantees agreement because: 

• At most one value can receive a majority of votes in phase one, so for any phase two message 

with v f. .1, the value of v is the same. 

• If some node receives f + 1 phase two message with v f. .1, all nodes will see at least one 

message with v f. ..i. 

• If every node sees a phase two message with v f. .1 in round r, every node adopts v as its 

current estimate to be used as input into round r + 1. Thus every process decides v in round 

r + 1. 

Termination must also occur with probability 1; nodes do not wait for more messages then they 

are guaranteed to receive (n - f), and thus proceed through consecutively increasing rounds forever 

unless a decision is reached. Further, at the end of each round, if no value receives a majority vote, 

all nodes query the random oracle. Thus it follows that in each round, r , with some probability, 

p > 0, all nodes choose the same value. When this happens, termination is guaranteed in round 

r+2. 

0 
0 en 

f/) 
"0 c: 
" e 
"0 ~ a; 
.c 
E 
" c: 
~ 8 
c( 

0 

2 3 4 5 6 7 

Figure 4.2: Ben-Or's consensus performance: average number of rounds vs. increasing the bound 
on the number of failures (I) for n = 16 nodes. 

Figure 4.2 is an example of how Ben-Or's protocol performs in an ad-hoc network with increasing 

values of f. The simulations were run with the number of nodes (n) kept constant at 16. Note that 



55 

the nodes were forced to execute in lockstep; that is, all nodes progressed through the phases and 

rounds at the same pace. 

The simulations show that the number of rounds grows exponentially versus the the number of 

failures, f. The reason the number of rounds increase as f increase is that increasing f reduces the 

number of phase one values a node waits for (on line 8 in figure 4.2). Reducing the number of values 

makes it less likely that a majority can be found for any single value (on line 9). 

For example, when n = 16 and f = 7, all values received must be the same to reach a decision. 

However, if f = 3, the protocol can tolerate up to 4 dissenting values in a given round and still reach 

a decision. 

Ben-Or's protocol is binary; that is, the input to the consensus protocol can only be 1 or o. A 

multi-value consensus protocol allows the set of input values to be arbitrarily large. This is beneficial 

if the items to be agreed upon are not naturally binary, yes/no, decisions. 

Ezhilchelvan, Moustefaoui and Raynal (EMR)'s consensus protocol is a generalization of Ben

Or's protocol to allow multi-value consensus. The full pseudo code for EMR's consensus protocol is 

presented in figure 4.3. 

The core difference between EMR's and Ben-Or's consensus protocol is the introduction of a 

reliable broadcast of a node's initial proposal (line 4) before the main consensus protocol is started. 

This implies that eventually all correct nodes will have received the same set of initial proposals. 

This set of initial values is called a node's local bag. Upon receiving only .1. values at the end of a 

round (line 37), a node makes its random choice from this bag (line 39) instead of flipping a coin as 

in Ben-Or's protocol (on line 28 in figure 4.1). 

The reason the reliable broadcast is necessary is that the proof of correctness requires that 

eventually all correct nodes make a random choice from bags containing the same values. If nodes 

can have bags containing different values, then all the nodes may not have at least one common value. 

If there is no common value, then the nodes can never choose the same value and the protocol will 

never terminate. In Ben-Or's consensus protocol this is not an issue, as all possible initial inputs to 

the consensus protocol (lor 0) is implicitly known by all nodes. 

The benefit of having a multi-value consensus protocol is offset by the deteriorating performance 

when the number of distinct initial proposals is increased. Figure 4.4 shows how EMR's protocol 

performs in an ad-hoc network as the number of distinct proposals is increased. The simulations 

were run with the number of nodes kept constant at n = 16, and no failures allowed (f = 0). Note 

that f = 0 is the best case scenario for Ben-Or's binary protocol (see figure 4.2). 

The figure indicates that the number of rounds increases exponentially as the number of distinct 

choices available increase. The simulation where each node proposing distinct values (16 distinct 

values in figure 4.4) was omitted as the time each simulation took meant it was almost impossible 

to get statistically meaningful results for this. 



EMRConsensus ( Vi) 

{ 

4 

} 
7 task Tl 
8 { 

bag[n] - {.1 • .1 ..... .1}; 
RBroadcast VAL(Vi); 
activate tasks Tl. T2; 

56 

9 when receive VAL(vj) from node j; do bag[j] • Vj; 

10 when receive DEC(v); return (v); 
11 } 

12 task T2: 
13 { 

14 round = 1; 
15 esti == Vi; 

16 while (true) { 
17 send PHASEONE(round. esti) to all processes; 
18 wait to receive (n-f) PHASEONE(round. *) messages; 
19 if (more than n/2 carry the same value. est =1= .i) 

20 { 

21 send PHASETWO(round. est) to all processes; 
22 } 

23 else 
24 { 

25 send PHASETWO(round • .i) to all processes; 
26 } 

27 wait to receive (n- f) PHASETWO(round. *) messages; 
28 if ( received at least one PHASETWO(round. est =1= .i) message) 
29 { 

30 esti = est; 
31 if (more than f received are PHASETWO(round. est =1= .i) messages) 
~ { 
33 RBroadcast DEC(est); 
34 return(est); 
u } 
36 } 

37 else (received all PHASETWO(round • .i) messages) 
38 } 

39 esti = bag [randomO] ; 
40 } 

41 round++; 
42 } 

43 } 

Figure 4.3: Ezhilchelvan, Mostefaoui and Raynal's randomised consensus protocol. Adapted from 
[EMROl] 



57 

4 6 8 10 12 14 16 

Number of distinct proposals 

Figure 4.4: EMR's consensus protocol: average number of rounds vs. increasing number of distinct 
proposals for n = 16 nodes. 

Finally, we note that the message complexity per round for both EMR's and Ben-Or's consensus 

protocol is around 2n (1 broadcast per node per phase). 

4.4 A randomised consensus protocol for ad-hoc networks 

Randomised consensus is an appealing solution for ad-hoc networks for a number of reasons: 

• A random oracle incurs no message passing overhead. A failure detector inevitably incurs 

some, which is undesirable in an ad-hoc network; not only is the creation of routes for all the 

heartbeat messages expensive, but the exchange of these heartbeat messages may in extreme 

cases cause interference to the extent that connectivity is lost. 

• A randomised consensus solution is completely decentralised. Most failure detector based solu

tions uses a centralised coordinator, thus potentially reducing availability when the coordinator 

is in a different network partition. 

• A randomised consensus solution tolerates completely asynchronous networks. A failure de

tector based solution requires periods of network stability where no nodes suspect the current 

coordinator to make progress. In a local area network the stability assumption is probably 

justified, but in an ad-hoc network it may not be, as appropriate timeouts might be difficult 

to choose. 



58 

For these reasons, and as it has not been done specifically for ad-hoc networks before, the 

randomised consensus approach was adopted in this dissertation. 

However, as we have seen, the randomised consensus protocols as presented in section 4.3.2 have 

a few drawbacks. First, as the number of potential failures, 1, is increased as a fraction of the total 

number of nodes in the system, the expected number of rounds increases exponentially (see figure 

4.2). Second, the message overhead per round is relatively high for ad-hoc networks, requiring O(n) 

broadcasts per round. 

Finally, extending the consensus to allow input values from an arbitrarily large set appears to 

further increase the expected number of rounds as seen in figure 4.4, and require an additional 

reliable broadcast to start with. As shown in theorem 2.3, guaranteeing all correct nodes receive a 

given message is impossible if node crashes are undetectable and storage subsidence is essential (see 

section 2.3.2). 

A further complication is that the bound on the number of failures, 1, must be revisited. In 

the wired network context, where it is typically assumed that failures are detectable, and thus all 

correct nodes can be guaranteed to receive a message, each node can expect to receive n - 1 values 

at the start of each phase (e.g. on line 8 and 17 in Ben-Or's protocol). As long as 1 < n/2, receiving 

n - 1 nodes will always ensure that a node receives a majority of values. 

However, if the dissemination primitive can only guarantee that n - 1 nodes will receive any 

given message, a node can only expect to receive n - 21 values at the start of each phase. This is 

because of the n - 1 nodes which receive a message, 1 can crash, thus leaving just n - 21 nodes to 

send messages in the next phase. If a node can only receive n - 21 messages, then if 1 > n/4, n - 21 

may not be a majority of n. If a node does not receive a majority of values in EMR's and Ben-Or's 

protocol, it can never reach a decision. 

For this reason, the safe option is to let 1 be less than n/4. We will assume 1 < n/4 up until 

section 4.4.4 where we will show how the protocol can still reach a decision with up to 1 < n/2. 

Note here that an implication of theorem 2.3 is that maximum n - 1 (and thus n - 21 correct) nodes 

can ever be assumed to have received a decision, though this limitation is dealt with in chapter 5. 

The contributions of this chapter is to show how these drawbacks can be alleviated. We will: 

Replenish optimisation: Present an optimisation to EMR's protocol which reduces the increase 

in the expected number of rounds as the number of distinct inputs is' increased from exponential 

to linear. This optimisation is not ad-hoc network specific, and is presented in section 4.4.1. 

Adopt optimisation: Show how the highly variable message delivery latencies associated with 

ad-hoc networks can be used to reduce the number of rounds to between 2 and 4, irrespective 

of the number of distinct proposals or the number of failures. This optimisation is presented 

in section 4.4.2. 



59 

Cross layer optimisation: Show how combining the reliable dissemination protocol and the ran

domised consensus protocol we can reduce the per round message overhead by 1-2 orders of 

magnitude. This optimisation is presented in section 4.4.3. 

Benefit of combining optimisations: Show how combining the adoption and cross layer optim

isations produces a protocol which can tolerate 1 < n/2 failures instead of just 1 < n/4. This 

is shown in section 4.4.4. 

Proof of correctness: Present a new proof of correctness of a protocol combining all these optim

isations. The proof is presented in section 4.4.5, and crucially removes the need for an initial 

reliable broadcast. 

4.4.1 Using randomization to reduce choice 

The sharp increase in expected number of rounds for EMR's protocol shown in figure 4.4 makes 

intuitive sensej as the number of distinct values is increased, the chance that a majority of nodes 

choose the same value in any given round decreases correspondingly. 

It is the reliable broadcast of all nodes' initial proposals which is why the number of possibilities 

is so large. As discussed in section 4.3.2, this reliable broadcast is a core part of the proof of 

correctness of EMR's protocol, which requires all correct nodes to eventually have the same set of 

values to choose from in their local bags. 

However, reliably broadcasting all initial proposals appears to be unnecessary if we introduce the 

concept of replenishing a node's bag in each round. Figure 4.5 details how the replenishment works. 

Rl: Each node, Ni , starts in round r = 1 with its local bag containing only the node's 
input (it's initial preference value, Vi). 

R2: In phase one of round r, each node adds the n - 21 values it guaranteed to receive 
to the local bag. 

R3: At the end of phase two of round r, if no decision is reached, a new esti is chosen 
randomly from the local bag and the bag is emptied. After this, the newly adopted 
estimate is added to the bag and round r + 1 is entered into. 

Figure 4.5: The replenish optimisation. 

What this optimisation affords us is an alternate proof of termination. All we need to show to 

prove eventual termination is that the set of distinct values from which nodes make their random 

choice eventually contains only one value. 

The full new proof of termination is presented when proving the correctness of the combined 

protocol in section 4.4.5, but the following proof sketch outlines the intuition behind it: 



60 

If there is more than one distinct value in a round r, then it is not possible for more than one 

of those distinct values to be the only choice available to a node. This follows from the fact that all 

values are disseminated to at least a majority of nodes, and that all nodes wait for at least a majority 

set of values. If some node happens to receive a majority of values all equal to some distinct value, 

v, then by the properties of majority sets, that value v exists in all other nodes' majority sets. Thus 

any other distinct value in round r could not be the only available choice to any node. 

Because of this, in every round r where there exists more than one distinct value, there is some 

probability, p, (strictly greater than 0) that at least one distinct value is not chosen in that round 

r. Further, when a value v is not chosen by some node in round r, it never appears in any round 

r' > r. For this reason the set of distinct values shrinks in each round with some p > o. 
As the protocol does not terminate until a decision has been made, the number of rounds keeps 

increasing. In the limit as the number of rounds tend to infinity, the probability that the set of 

distinct values only contains one value is equal to 1. When there is only one distinct value to chose, 

all nodes adopts this value as their estimate and the protocol is guaranteed to terminate in the next 

round. Hence eventual termination is ensured without requiring an initial reliable broadcast. 

LO 
(\J 

I 1=~41 
~ --- 1=0 

III 
"C 
C 
::::I 
2 LO 

"0 ~ 

1i 
E 0 
::::I ~ 

C 

~ 
< 

LO 

0 

4 6 8 10 12 14 16 

Number 01 distinct proposals 

Figure 4.6: Average number of rounds vs. increasing number of distinct proposals for 16 nodes. 

Recall that the number of rounds until a decision is reached in the unmodified version of EMR's 

protocol increases exponentially as the number of distinct proposals increase (figure 4.4 ). We are 

interested to see if the replenish optimisation can reduce the effect of increasing the number of 

distinct proposals. 

Figure 4.6 shows how increasing the number of distinct proposals impacts EMR's protocol when 

using the replenish optimisation. The simulations were run with n = 16 nodes for f = 0 and f = n/4. 



61 

The number of distinct proposals were varied between 4 and 16 (all nodes proposing distinct values). 

As in figure 4.4, all nodes were forced to act in lockstep; that is, all nodes proceeded through the 

phases and rounds at the same rate. 

The simulations indicate that the replenish optimisation is effective. The number of rounds now 

appears to increase only slightly as the number of distinct proposals increase. This is in sharp 

contrast to the performance of the unmodified version of EMR's protocol with the same simulation 

parameters. 

For example, using the unmodified version of EMR's protocol with 15 out of 16 nodes proposing 

distinct values meant it took on average of 26000 rounds to reach a decision. With the replenish 

optimisation, the average number of rounds is roughly 7. Further, increasing f to n/4 also appears 

to have a very limited effect. 

! 
E 
::l c: 

! 

o 

5 

I f=n/41 
--- f=O 

10 15 20 

,-!"I' 
I ,1--1 , --I' 

25 30 

Number of nodes 

Figure 4.7: Average number of runs with increasing n with each node proposing a distinct value. 

Figure 4.7 suggests that this benign behavior is not peculiar to n = 16. In these simulations each 

node proposed a distinct value, and the number of nodes was varied between 4 and 32. The average 

number of rounds until a decision is reached appears to grow linearly with a factor of less than 1, 

at least for f = 0 and f = n/4. 

In all, we have seen how the replenish optimisation: (i) reduces the impact of increasing the 

number of distinct proposals in terms of the number of rounds required until a decision is reached, 

and (ii) removes the need for an initial reliable broadcast. 

Finally, we note that the optimisation could probably work well in wired networks as well, as the 

changes described here are not specific to ad-hoc networks; recall that all nodes were forced to act 

in lockstep, thus removing the impact of the underlying network being ad-hoc. 



62 

All nodes acting in lockstep is unlikely to happen in a real ad-hoc network, but as we shall see 

next, this is not necessarily a bad thing. 

4.4.2 Taking advantage of a noisy environment 

Ad-hoc networks are noisy; transient network partitions, radio interference, node mobility and MAC 

layer scheduling algorithms all contribute to the level of noise. 

The effect of this noise is highly variable message latencies, so that nodes no longer proceed 

through phases and rounds in lockstep. 

The histogram in figure 4.8 backs this up; it shows an example of how long it takes for various 

nodes to complete a phase (receive n - 21 messages) in a run with n = 50, 1 = 10 and 250m wireless 

range. In this experiment all nodes started the phase at the same time. 

r--

<D 

lO 

(;' 
~ c 

Q) 
::J 
0" 
~ (") 

u.. 

C\J 

o 

150 200 250 300 350 

Time until n-2f messages received (ms) 

Figure 4.8: A histogram of the time it takes various nodes to receive n - 21 messages have been 
received (a phase is complete) in a typical simulation run. All nodes started the phase at the same 
time. Wireless range = 250m. 

We can take advantage of this disparity by making slow nodes adopt the choice of quicker ones. 

The change required to the protocol is outlined in figure 4.9. 

Neither the safety nor the termination properties are affected by this change: A slower node which 

receives a message with a higher round or phase number can safely abandon its current estimate, as 

the higher round or phase can only have been entered into after some node has received a majority 

of values. Therefore, the estimate received in the higher round/phase message is a value which the 

slower node could have adopted itself, if it was quicker. Further, as long as at least one node makes 

a random choice, FLP is still circumvented; there is no need for every node to make a random choice 



63 

A1: A node receiving a message with higher round or phase numbers than it is currently 
in, stops executing the lower round/phase and sets it its round/phase numbers to 
the received numbers. 

A2: After changing its round/phase numbers, the node adopts the estimate, est, in 
the received message as its own. The protocol then starts executing the adopted 
phase/round by disseminating the (adopted) est to n - 21 nodes. 

Figure 4.9: The adopt optimisation. 

as long as at least one does so. 

Making slower nodes adopt the values chosen by quicker ones can be seen as electing (a small 

number of) de-facto coordinators or leaders which impose their choice on others. However, unlike 

the coordinators in failure detector based approaches where coordinators are predetermined in each 

round, these de-facto leaders are always the nodes which obtain a majority of messages in the shortest 

time. 

The effect of this change can be seen in figures 4.10 and 4.11, which shows how increasing nand 

varying the number of distinct initial proposals impacts the optimised protocol. 

-
- 1=0 

- --- 1 = nl8 
.. ,. l=n/6 

- .-.- l=nl4 

-

-11-tJ-1-l1-1-1 -

- t.J'::~·~·~·~<~·~·>~·~>~·~·~·~·~>~·:·>~·~·~·~·~··e 
-

o -

10 20 30 40 

Number 01 distinct proposals 

Figure 4.10: Average number of rounds vs Number of distinct proposals for n = 50. Wireless range 
= 250m, max speed = 5m/s. 

The optimised consensus protocol now appears almost unaffected by either increasing the number 

of nodes or the number of distinct initial proposals. Contrast this with the exponential increase seen 

by the unmodified version of EMR's protocol in section 4.3.2. The only variable with any impact is 

the value of I, and even here the impact appears to be a small constant. This makes multi-value 



64 

,... 
- 1=0 

<0 - --- 1 = nIB 
U) 

...... l=n/6 
"0 

LO C - . _.- l=n/4 
:::l e 
'0 v 

~ 
E CO) 

:::l 
C 

g> C\I 

-

",/i-:j:l;i;l-t:li:l~l,t,-d -

c( 

0 

I I I I I I 

10 20 30 40 50 60 

Number 01 nodes 

Figure 4.11: Average number of rounds vs Number of nodes (n), with all nodes proposing distinct 
values. Wireless range = 250m, max speed = 5mjs 

randomised consensus a practical possibility in ad-hoc networks. 

The improvement seen by this optimisation is dependent on how much noise there is in the 

environment. Unlike with a failure detector based approach which require periods of stability to 

make progress, increasing the level of noise appears to have a benign effect on the expected number 

of rounds. That being said, the results reported in this section are perhaps somewhat artificial, as 

they rely on the randomness in the simulator used to conduct the experiments, and not "real-world" 

noise. However, it is probably reasonable to assume that a real ad-hoc network has at least some 

level of noise associated with it, in which case this optimisation should work well. 

4.4.2.1 An interesting possibility 

Given that the ad-hoc networking environment has an inherent level randomness associated with 

it, an interesting possibility arises; one could design a completely deterministic consensus protocol 

which could circumvent the FLP impossibility result by taking advantage only of randomness in the 

environment. 

For example, if EMR's protocol with the adoption optimisation outlined above was changed 

so that each node reverted to the estimate it held at the start of the round instead of choosing 

randomly when no majority is received, then the EMR protocol itself would no longer contain any 

randomness. However, given a sufficient level of randomness in the environment, the protocol would 

still terminate. 

The proof of correctness would have to be changed so that there was a probability, p > 0, in each 



65 

round that the fastest node in the previous round is able to "impose" their estimate on at least a 

majority of nodes in phase one before these nodes revert to their own estimate. A benefit of this 

approach is its simplicity; there is no need to keep a bag of other nodes' values as they are never 

needed. 

Such an approach is very similar to the "fair/noisy scheduling" approach as discussed in section 

4.3.2. As with these approaches, the probability of termination depends crucially on the randomness 

inherent in the environment being sufficient, something which may not always be the case. Further, 

embedding a random choice in the actual algorithm typically incurs very low overheads, and ensures 

eventual termination should the randomness in the environment be insufficient. 

4.4.3 Reducing overhead using a cross layer optimisation 

The two optimisations presented so far has shown how making further use of randomness in the 

protocols and embracing the randomness inherent in the environment can dramatically reduce the 

number of rounds required to reach a decision. However, the cost in terms of message passing 

overhead per round remains high (around 2n broadcasts per round). In an ad-hoc network this large 

number of messages can cause serious problems, even when the underlying dissemination protocol 

is relatively efficient. 

In this section we will see how the per round message passing overhead can be reduced based on 

the following observations: 

• There is no need to know which node voted for what value. 

• Only one correct node needs to be guaranteed to receive a majority of votes to progress through 

rounds and phases until the eventual decision. 

Both EMR's and Ben-Or's consensus protocols are stacked on top of a reliable broadcast primitive 

unaware of how it implements the service it provides. Similarly, the reliable broadcast primitive has 

no semantic information indicating the significance of any message it is disseminating. A cross layer 

optimisation puts protocols side by side instead of stacking them, making them aware of each others 

functionality and thus able to perform more efficiently overall. 

We now present a cross layer optimisation which works by putting the reliable dissemination 

primitive described in the previous chapter side by side with the randomised consensus protocol. 

The full description of the changes is given in figure 4.12, and assumes familiarity with the reliable 

dissemination protocols presented in chapter 3. 

The gist of the optimisation is to have one reliable dissemination per phase instead of n. The 

nodes participate in this dissemination and add their estimates to the message body (if not already 

present) prior to signing the message. In this way a signature acts as a vote for one of the values in a 

given message. By the properties of the reliable dissemination protocol at least one correct node will 



66 

Cl: The exchange of estimates is done solely through special consensus messages. A 
consensus message's unique id, uid, consists of the round and phase in which the 
message was originated. 

C2: A node initiating a phase (whether phase one or two) does so by initiating a reliable 
dissemination of a consensus message with its current estimate in the body of the 
message, and k = f(n+1)/2l (Le. the consensus message is guaranteed to be received 
by a majority of nodes). 

C3: A node receiving a consensus message with a given phase/round number for the first 
time participates in the dissemination of that message. The node adds its estimate 
to the message body (if not already present) and only then signs the message. This 
replaces initiating a separate dissemination of its estimate at the start of phase one 
or two. A signature acts as a vote for at least one of the values in the message body. 

C4: Every time a node receives a consensus message, it adds all estimates it has received 
in the current phase to the message body, prior to merging the signatures as in the 
dissemination protocol. 

C5: Upon realising a consensus message, a node inspects the contents of the message 
body to decide which action to take. This replaces inspecting all messages after 
having received n - 21 of them, at the end of phase one or two. 

C6: If a node realises a message, there are two possibilities: (i) a decision is reached or 
(ii) the next phase/round is entered into. Only in the first instance is a realisation 
message sent (containing also the decided value). In the second case, the node 
initiates the dissemination of the subsequent round/phase consensus message. This 
removes the need for a realisation message. 

Figure 4.12: The cross layer optimisation. 



67 

realise the consensus message. This correct node therefore has at least a majority of votes and can 

legitimately decide which action to take and start the next dissemination of the higher phase/round 

consensus message. This will continue until decideO is invoked. 

This optimisation is included in the full proof of correctness given in section 4.4.5. Note that the 

push-pull optimisation presented in section 3.3.1 cannot be used in conjunction with this optimisa

tion. 

It would be perfectly feasible to require k = n - 21 instead of only waiting for a majority of 

votes (see C2). As we saw with Ben-Or's protocol; waiting for more values makes it easier to find 

a majority which agree, and thus should reduce the number of rounds until a decision. 

However, for this to make a difference each vote would have to be associated with a particular 

value in the message body so that a majority of votes could be associated with a specific value. 

For purely pragmatic reasons this was not done; the dissemination protocol is obviously much 

quicker with lower values of k and leads to smaller transmission overheads. Also, the optimisations 

described in the previous two sections, which were tailored to reduce the number of rounds, render 

the additional reduction unnecessary. 

The following figures shows how the optimised version of EMR's protocol (including both the 

replenish and the adopt optimisations), performs with and without the cross layer optimisation. 

We are interested in how much the cross layer optimisation can reduce the per round transmission 

overhead, and also if this reduction avoids increasing the average number of rounds until a decision. 

EMR+Adopt+Replenish 
EMR+Adopt+Replenish+Cross Layer 

o &- - - -&- - - -&- - - -&-- - -& - - - -&---- - - - - -&-- --& 

100 150 200 250 300 

Wireless range (m) 

Figure 4.13: Average transmission overhead per node vs Wireless range. Max speed = 5m/s. 

Figure 4.13 shows the transmission overhead per node per round both before and after the cross 

layer optimisation, as density is varied. The number of nodes, n, and the number of failures, I, was 



68 

fixed at 50 and 10 respectively. The number of distinct proposals was varied between 1 and 40. 

The figure indicates a 1-2 orders of magnitude reduction in transmission overhead. The improve

ment is large enough so that the overhead associated with the cross layer optimised protocol barely 

registers on the graph. 

v -

o 
I 

100 

1

- EMR+Adopt+Replenish 1 
- - - EMR+Adopt+Replenish+Cross Layer 

I I I I 

150 200 250 300 

Wireless range (m) 

Figure 4.14: Average number of rounds vs Wireless range. Max speed = 5m/s. 

Figure 4.14 indicates that this reduction in overhead has not come at a significant increase in 

the number of rounds; it shows the average number of rounds for the same simulation parameters 

as figure 4.13. A further improvement, as seen in figure 4.15, is that the latency (the time until 

decide 0 is invoked) is reduced at lower densities as a result of the optimisation. This is because the 

cross layer optimisation only needs a majority of votes to proceed, and because it reduces interference 

by reducing the number of messages being transmitted. 

To summarise, the cross layer optimisation appears to reduce the transmission overhead per round 

by 1-2 orders of magnitude without impacting the number of rounds and even slightly decreasing the 

latency of the protocol. This makes the protocol more usable in ad-hoc networks where bandwidth 

is at a premium. 

4.4.4 Putting it all together 

We have seen how the 3 optimisations presented benefits the protocol in various ways. However, a 

further benefit arises when the adoption and cross layer optimisations are combined; we can now 

(again) tolerate up to f < n/2, instead of just f < n/4 failures. 

The reason is as follows: The cross layer optimisation ensures that at least one correct node 

will receive a majority of votes (because of the properties of the reliable dissemination protocol). 



69 

8 
~ 

§: 
c: f6 .2 
III EMR+Adopt+Replenish 
'0 
CD 0 EMR+Adopt+Replenish+Cross Layer 
"C 

~ 
(0 

::::J 
CD ~ E ., 
~ « 0 

N -, 
o '·----&----e--~-~-~~~~~--~--__ 

100 150 200 250 300 

Wireless range (m) 

Figure 4.15: Average time until decideO is invoked vs Wireless range. Max speed = 5m/s. 

That correct node will initiate the dissemination of the next round or phase consensus message (see 

C6). Further, adding the adoption optimisation means that it is sufficient to have one correct node 

starting in each phase. That correct node will keep disseminating the consensus message until it has 

a sufficient number of votes, making nodes which are "stuck" in previous rounds adopt its value as 

discussed earlier. 

This is in contrast to the case when there is no adoption or cross-layer optimisation. Here the 

progress of nodes is dependent on being able to deliver the current round's messages to f nodes 

more than it can expect to hear back from in the next round. This is because f of the nodes can 

crash. 

A comprehensive study of the combined protocol with up to n/2 failures has been carried out, 

and the results can be seen in appendix B.2. The results generally speaking show the same benefits 

as indicated when studying each optimisation. In addition, the trends associated with changing 

variables such as number of nodes, wireless range or node speeds, closely mirrors that of the reliable 

dissemination protocol reported in the previous chapter. This is as expected. 

Figure 4.16 shows the pseudo code for the combined protocol. Note that the adoption optimisa

tion has been left out, as it is easy to describe, but less easy to present elegantly; the full pseudo 

code with this included is given in the appendix. 

The next section gives the proof of correctness of the combined protocol. 

4.4.5 Proof of correctness 

Roadmap to proof: 



70 

Consensus (preference) 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

{ 
bag[] = 0; 
round = 1; 
phase m 1; 

while (true) 
{ 

estO .. {preference}; 
disseminate consensusMsg(phase, round, est[j) to n/2. 
wait until consensusMsg has more than (n/2) signatures; 
bagO = est[]; //replenish bag with received values and current estimate 
if( lestOI > 1) 

{ 
est[] ={.1}; //then more than one value proposed 

} 
phase .. 2; 
disseminate consensusMsg(phase, round, estO) to n/2 nodes; 
wait until consensusMsg has more than (n/2) signatures; 
if( est[] contains at least one value, v #.1) 
{ 

preference - v; 
if( est[] contains only one value, v #.1) 
{ 

decide(v); //sends a realisation packet with decided value. 
} 

} 
else (estO only contains .i) 

{ 

} 
bagO 

preference - bag[random]; 

0; //empties bag 
34 round++; 
35 phase .. 1; 
36 } 

37 } 

38 

Figure 4.16: Pseudo code for the combined protocol 



71 

1. We first show that either at least one correct node is guaranteed to participate in a phase one 

of round 1, or all nodes which participated in the round crashes before entering phase two 

(lemma 4.1). 

2. Lemmas 4.2 and 4.3 then show that if at least one correct node participates in phase one 

of round 1, then at least one correct node will participate in every phase and round until a 

decision is reached. 

3. Lemma 4.4 then shows that if all nodes start phase one of some round with the same value, 

at least one node will decide on that value at the end of that round. 

4. Using the replenish optimisation, lemmas 4.5 and 4.6 shows how there is a non-zero probability 

that some value is not chosen in each round, and how if a value is not chosen it will not appear 

in any later round. 

5. Theorem 4.1 then proves eventual termination by using lemmas 4.1-4.3 to show that if a 

decision is not reached in some round, the next round is always entered into (progression), and 

showing how as the number of rounds tend to infinity, lemmas 4.5-4.6 ensure that eventually 

there will be only one distinct value in all nodes' bags. The proof of the theorem then concludes 

by using lemma 4.4 to show that in the round when there is only one distinct value in all nodes' 

bags, all nodes will chose the same value and at least one node will decide on that value by 

the end of the round. 

6. Finally, theorem 4.2 proves uniform agreement by showing how if a node has made a decision 

in some round, that decision is the only possible decision that can be reached by any other 

node (whether correct or not). This is done by pointing out the relevant parts of the algorithm 

which ensures this behaviour. 

The proof assumes f < nj2, which is a necessary requirement for randomised consensus protocols[Ben83]. 

Definition (vote). A vote is a node's signature plus the node's estimate and other received values 

in the current phase added to the message body if different from values already in message. 

Definition (participate). A node is said to participate in a phase if it actively disseminates a 

phase 1 or phase 2 message after having added its vote to the message. 

Definition (initiate). To initiate a round or phase is defined as starting the dissemination of new 

message after having received a majority of votes in the previous round or phase. 

Lemma 4.1. If a phase 1 of some round r is initiated by some node, faulty or not, either a correct 

node participates in the phase or all nodes crash without moving into phase 2. 



72 

Proof. As f < n/2, in order for any node to move into phase 2, at least one correct node must 

participate in phase 1. Hence the lemma. 

o 

Lemma 4.2. If a correct node participates in phase 1 of some round r, eventually at least one 

correct node participates in phase 2 of round r. 

Proof. By contradiction. Assume there is a correct node in phase 1, but never a correct node in 

phase 2. The only way a correct node in phase 1 will stop participating in phase 1 without moving 

into phase 2 is if at least f + 1 other nodes are participating in phase 1. In this set of participating 

nodes there must be another correct node. Hence if ever at least one correct node participates in a 

phase 1, at least one correct node will keep participating in phase 1 unless it moves into phase 2. 

As f < n/2, and the dissemination protocol is reliable, a correct node in phase 1 will eventually 

receive a phase 1 message with a majority of votes and stop waiting at line 12. When this happens, 

the correct node moves into phase 2, becoming the correct node in phase 2. This is a contradiction, 

hence the lemma. 0 

Lemma 4.3. If at least one correct node participates in phase 2 of round r, eventually at least one 

correct node participates in phase 1 of round r + 1, or decides. 

Proof. By a similar argument to Lemma 2; assume there is never such a correct node which decides 

in round r or moves into phase 1 of round r + 1. For this to hold the correct node (of which there 

must always be at least one) must block forever waiting for a majority of votes on line 20. As a 

majority of nodes are correct, eventually the correct node will receive a phase 2 message with a 

majority of votes and stop waiting. When this happens the correct node will either move into phase 

1 of round r + 1 or decide. This is a contradiction, hence the lemma. o 

Lemma 4.4. If all nodes which initiate phase 1 of round r do so with their estimates equal to the 

same value v¥- 1-, and at least one correct node participates in phase 1 of round r, then at least one 

correct node decides v at the end of round r. 

Proof. As per the lemma assumption, all nodes which initiate the round do so with their estimates 

equal to the same value v. These estimates are added to the phase 1 message. Any nodes which did 

not initiate round r, but which receives the phase one message will adopt v as their estimate and 

add their vote to the phase 1 message. As there is only one distinct value added to the phase one 

messages, it follows that any node which moves into phase 2 after receiving a majority of votes will 

evaluate the comparison on line 14 to be false and leave v as the only value added to any phase two 

message of round r. By Lemma 2 eventually at least one correct node will participate in phase 2. 

By lemma 3 as at least one correct node is participating in phase 2, eventually at least one correct 

node will receive a phase 2 message with a majority of votes and either participate in phase 1 of 



73 

round r + 1 or decide. As there is only distinct value, v =f. ..l, in any phase 2 message, any node 

which receives a phase 2 message with a majority of votes will evaluate the statement on line 24 to 

be true and will thus decide v on line 26. o 

Definition (Bi ). Bi is node Ni 's local bag of values which it replenishes on line 13, chooses randomly 

from at line 31 and empties at line 33. Initially Bi contains only node Ni's input value to the 

consensus protocol. 

Definition (Cr ). Cr is the set of distinct available values over all local bags, B, in some round 

r. This constitutes the set of possible values which nodes that initiate round r can choose their 

preference value from. Initially C1 = all the distinct initial inputs to the consensus protocol. 

Lemma 4.5. If a value, v =f. ..l, is not chosen by any node in phase one of round r, it will not 

appear in any Cr " for any r' > r. 

Proof By definition; the local bag, Bi , that a node Ni chooses its preference from if it initiates a 

round r + 1 is made up of a majority of the choices made by other nodes in round r. As Bi is emptied 

at the end of round r (line 33), if no node choses v and disseminates it in phase 1 of round r + 1, no 

node can receive v on line 12, thus v rf. Cr+!. o 

Lemma 4.6. If ICrl > 1 during some round r, there is a probability, p (strictly greater than 0), that 

some value v E Cr is not chosen by any node. 

Proof By contradiction; assume there is a round, r, where p = o. For this to hold each value, v E Cr 

has to be guaranteed to be chosen by at least one node in r. For each value v E Cr to be guaranteed 

to be chosen, each v has to be the only choice available to at least one node. However, if a value v is 

the only distinct choice available to a node Ni , then v must also be in every other node's bag, as the 

bags contain at least a majority of values and all majority sets intersect. If v exists in all bags, then 

clearly another value w cannot be the only available choice to any node. This is a contradiction, 

hence the lemma. o 

Theorem 4.1 (Eventual Termination). If at least one correct node participates in a consensus, 

then at least one correct node eventually decides with probability 1. 

Proof. First note that if no correct nodes participate in a given consensus then by Lemma 1, all 

nodes which participate will crash in phase 1 of round 1, in which case no other node will ever know 

about the consensus and it can be ignored. 

Further, by Lemma 2, as a correct node participates in phase 1 or round r, eventually a correct 

node will participate in phase 2 of round r. By Lemma 3, if there is no decision in round r, there will 

be at least one correct node participating in phase 1 of round r + 1. Thus, starting with a correct 



74 

node participating in round 1, if no node decides before round r, it follows that the protocol does 

not block in any round r' < r. 

Now, if in a round r there is d > 1 distinct value to choose from (ICrl > 1), then there is a 

probability p > 0 that some value v E Cr is not chosen in r (Lemma 6). If this happens, v will not 

appear in any Cr" for any r' > r(Lemma 5). As a result, for each round r where ICrl > 1 there is a 

non-zero probability that ICr+11 < ICrl; that is, after 1 round there is a non-zero probability that at 

least one value is removed. 

Hence there is a probability P(a) = p + p(l - p) + p(l - p)2 + ... + p(l - p)",,-l = 1 - (1 _ p)"" 

that ICr+"" I < ICrl. As lim",,-->oo P(a) = 1, it follows that at least one values is removed after a finite 

number of rounds with probability arbitrarily close to 1. 

Repeating this argument d -1 times, we conclude that all nodes which participate in a consensus 

will only have one distinct values to adopt as their estimate, with probability arbitrarily close to 1. 

Once this happens, according to Lemma 4, a correct node will make a decision. o 

Theorem 4.2 (Uniform Agreement). No two nodes decide distinct values. 

Proof. Let r be the first round during which nodes decide. There are two cases: 

1. Two nodes, Ni and N j both decide during r. They decide Vi and Vj respectively. (Note that 

due to the test on line 24 these are necessarily not ..l). Because of lines 12 and 14 we conclude 

that Ni received a majority of votes for its single decision value Vi in phase 1. Similarly N j 

received a majority of votes for its single decision value Vj in phase 1. As nodes do not change 

their vote during a phase 1, it follows that there is a node Nk which added its vote to both Ni 

and N j phase 1 message. Hence v == Vj. 

2. A node Ni decides during r, while another node N j decides during some later round r' > r. As 

node Ni received phase a 2 message with at least a majority votes containing only v in round 

r, the phase 2 message with at least a majority of votes received by any node not deciding in 

round r must contain v. For this reason, all nodes which do not decide during r will adopt v 

as a preference on line 23 and proceed to round r + 1. Therefore, v is the only estimate value 

present in any round r' > r, and thus the only value which N j can decide on. 

o 

4.5 Related work 

There is a large amount of literature about the consensus problem in the wired networking con

text (see [GHMOO] for a concise overview), but relatively little has been done specifically for ad

hoc networks. A number of papers has addressed related agreement problems, including mutual 



75 

exclusion [MVWO IJ[WWVOl] and leader election[VKT04]' but none of these have attempted to 

provide both strong guarantees and tolerate crash failures. 

An example of this is Vasudevan et al.'s leader election protocol[VKT04] which tolerates crash 

failures, but only eventually guarantees a distinct leader in each "connected component"; a much 

less useful abstraction than electing a global leader. Conversely, Welch et al. [MVWOIJ[WWVOl] 

uses a token circulating in the ad-hoc network which ensures mutual and k-mutual exclusion, but 

their algorithms are not guaranteed to work if nodes can crash. 

Another popular approach has been to weaken the safety properties (as opposed to the liveness 

property) to be only probabilistic; Luo et al.[LEH04] uses their probabilistic gossiping protocol[LEH03b] 

to provide a lightweight probabilistic group communication system for ad-hoc networks. This system 

provides "tunable reliability", but is unable to provide anything more than "probabilistic safety" 

properties; that is, there is always a possibility that two correct nodes decide different values. 

The simplest way to provide a consensus solution in ad-hoc networks is probably to use an 

existing wired network solution. There has been a lot of work in providing best-effort unicast and 

multicast protocols suitable for ad-hoc networks, and the Internet Engineering Task Force (IETF) 

is currently working towards standardizing these. With the availability of such protocols, a naive 

solution would be to simply use a group communication toolkit like Ensemble or NewTOP[EMS95] 

(which contain failure detector based consensus solutions) unmodified. This would probably be 

unwise, as the assumptions underlying the design of these toolkits may not hold in ad-hoc networks. 

For example, most wired network group communication toolkits assume that unicast is a relatively 

straightforward, low overhead operation, and thus use it extensively. However, in ad-hoc networks 

unicast may very well incur substantial overheads, as routes must be discovered and maintained in 

face of a potentially very dynamic network topology. 

An interesting approach taken by Friedman et al.[Fri03][FT03] is to use an existing group com

munication toolkit and modifying it to better suit ad-hoc networks. Their group communication 

toolkit, lazzEnsemble, uses Ensemble as its base, and aims to provide both strong guarantees and 

fault tolerance in a manner better suited to ad-hoc networks. 

JazzEnsemble is the only other approach designed specifically for ad-hoc networks which provides 

both strong safety guarantees and tolerates crash failures. Further, this work can be seen as a 

feasibility study of the failure detector approach in ad-hoc networks, and nicely complements the use 

of randomization to provide consensus adopted in this dissertation. For these reasons J azzEnsemble 

is further discussed in the next section. 

4.5.1 JazzEnsemble 

The JazzEnsemble group communication toolkit has adopted the layered approach of Ensemble, 

replacing the layers deemed unsuitable for the ad-hoc network environment. The main changes 



76 

which make up JazzEnsemble is the introduction of fuzzy group membership and the provision of 

middleware level routing. 

The need for so called fuzzy group membership was based on their study of the feasibility of 

using failure detectors in ad-hoc networks [FT03]. In this study a novel gossip based failure detector 

specifically designed for ad-hoc networks is introduced and evaluated. The main change compared to 

the basic gossip based failure detection service discussed in section 4.3.1 is that instead of gossiping 

with any node in the network (regardless of topology), a node gossips with one of its neighbours. The 

study showed that failure detection in ad-hoc networks is possible, although not straight forward. 

For example, in sparse networks the failure detector frequently falsely suspected nodes due to route 

disconnections, and in general, a relatively high timeout had to be set to avoid too many false 

suspicions. 

Fuzzy group membership is introduced to alleviate some of these issues by introducing a level of 

"fuzziness" associated with a node's membership to a group. This is opposed to the binary, either a 

node is connected or it is faulty, relationship found in Ensemble. The fuzziness level of a node can 

relate to simple things like the number of missed heartbeats, or more advanced measures such as 

measured bandwidth, estimated round trip time, sending success rate, etc. 

The benefit of fuzzy group membership is that nodes are not dropped immediately on becoming 

slightly fuzzy. Instead the group communication toolkit's components can decide to behave differ

ently towards fuzzy nodes. For example, the flow control mechanism may decide to continue sending 

new messages if it is lacking acknowledgments for older messages from fuzzy nodes only. The buffer 

management mechanism may choose to compress these older messages, while the reliable retrans

mission mechanism could decide to stop proactively sending these. Either way, the scheme avoids 

immediately dropping fuzzy nodes which are not actually faulty, though of course once a fuzziness 

level reaches a given threshold the node is removed from the current view. 

In Ensemble, routing is considered a network layer operation and it does not concern itself with 

how messages are forwarded. In JazzEnsemble, an application developer may choose to use the 

underlying routing mechanisms in the same way, if these are available. However, JazzEnsemble 

also includes its own routing mechanism, called middleware level routing, as the authors argue 

that JazzEnsemble can sometimes do its own routing more efficiently. For example, middleware 

level routing can make use of the periodic heartbeat messages, alre~y required by the failure 

detection mechanism, to obtain accurate neighbourhood information. Further, unicast messages in 

JazzEnsemble typically only follows a multicast message where the multicast source is the unicast 

destination (the unicast is typically an acknowledgment), and if reverse paths are kept, the number 

of unicast routes which must be maintained by the network layer is reduced. 

As of writing, no performance measurements of JazzEnsemble has been published, though it is 

a promising approach and nicely complements the approach taken in this dissertation. However, 



77 

even with the modifications to suit ad-hoc networks, JazzEnsemble still uses at its core a group 

communication system which assumes quite a high level of stability. It is therefore unlikely to work 

well in the most challenging types of ad-hoc networks considered in this dissertation, such as for 

example frequently partitioned networks. 

4.6 Conclusion and summary 

In this chapter we have argued that a randomised consensus solution is appealing for mobile ad-hoc 

networks, as these are decentralised in nature, require no failure detectors, and are fully asynchron

ous. 

We have presented the first such randomised consensus protocol specifically designed for mobile 

ad-hoc networks, and studied its performance through simulations. The base of the protocol is 

Ezhilchelvan, Mostefaoui and Raynal's multi-value consensus protocol, but we have added 3 import

ant optimisations: 

Replenish optimisation Alleviates the effect on the number of rounds required to reach a decision 

incurred by increasing the number of distinct initial proposals. This optimisation works by 

emptying the local bag of values from which each node makes a random choice at the end of 

each round, and replenishing the bag during each round with only the values received in that 

round. 

Adopt optimisation Further reduces the average number of rounds by having slower nodes adopt 

the choices made by faster ones. This optimisation takes advantage of the highly variable 

network latencies which occur in mobile ad-hoc networks. 

Cross layer optimisation Reduces the message passing overhead without impacting the num

ber of rounds or the decision latency. This optimisation works by integrating the optimised 

consensus protocol and the reliable dissemination primitive presented in chapter 3. 

The first two optimisations combine to reduce the average number of rounds required to reach a 

decision by several orders of magnitude. The observed average number of rounds required is between 

2 and 4 rounds, irrespective of the number of nodes in the system, the number of distinct initial 

proposals made, or even the number of failures tolerated. The third, cross layer optimisation reduces 

the per round transmission overhead by between 1 and 2 orders of magnitude, requiring 0(1) instead 

of O(n) invocations of the reliable dissemination primitive per round. A further benefit of combining 

the cross layer and adopt optimisations is that the protocol can now (again) tolerate up to f < n/2 

instead of just f < n/4 failures. 

Just as importantly, we provided a proof of correctness. Crucially, this proof allows the 

randomised protocol to work despite the fact that only k = n - f nodes could be guaranteed to 



78 

receive any given message. The original proof requires a reliable broadcast of the initial proposals 

made by nodes to reach all correct nodes, something we showed to be impossible in theorem 2.3. 

The new proof shows how the replenish optimisation makes this requirement redundant. 

As a result, we now have a consensus solution suitable for ad-hoc networks; the solution reaches a 

decision fast and has a low transmission overhead. In the next chapter we will see how this consensus 

protocol can be combined with the reliable dissemination primitive described in the previous chapter 

to design a fault-tolerant middleware solution for ad-hoc networks. 



79 

Chapter 5 

A design for a fault-tolerant tuple 
space for mobile ad-hoc networks 

5.1 Introduction 

Linda[Ge185] is a simple, yet powerful coordination language which can be used to coordinate the 

actions of distributed entities. There have been numerous attempts to bring the Linda model to 

ad-hoc networks, as Linda makes implementing sophisticated distributed collaborative applications 

and services much easier. However, all attempts so far have either weakened the semantics of the 

Linda primitives or provided no fault-tolerance. This removes much of the benefit of the Linda 

model in a number of interesting scenarios. 

In this chapter we will argue that the reason for this weakening of semantics or lack of fault

tolerance is because prior to the work described in this dissertation (and the ongoing work by 

Friedman et al.[FT03]) no consensus solution suitable for mobile ad-hoc networks existed. However, 

without a consensus solution, the replication required to provide fault-tolerance cannot be achieved 

while still maintaining the original Linda semantics. 

This chapter will describe the design of a fault-tolerant Linda system which maintains the original 

Linda semantics. In particular, we will show how the two protocols introduced in previous chapters 

can be used to implement the system. As these two protocols have been shown to perform well 

through extensive simulations, we can reasonably conclude that the design, if implemented, would 

render a system suitable for mobile ad-hoc networks. 

The availability of suitable reliable dissemination and consensus protocols does not make the 

design of such a system trivial. A number of important design issues remain and the central contri

bution of this chapter lies in carefully addressing these. 

For example, the result in theorem 2.3 implies that any decision reached by the group as a whole 

cannot be guaranteed to be received by all nodes in the group. This implies that a node cannot 

automatically assume that any node it communicates with has the same view of the state of the 



80 

system as it. This has far reaching implications. 

This problem is exacerbated when nodes are allowed to join and leave the group. The design 

must ensure that sufficient replication is maintained when nodes leave, and that joining nodes are 

given enough information about the state of the system in order to be able to participate fully in 

the group without violating Linda semantics. This last issue is closely related to the classical "state 

transfer" problem in fault-tolerant wired network systems (see for example chapter 18, section 3.2 

in [Bir05]) 

Almost the most trivial contribution of this chapter is to show how to assign node identifiers 

upon nodes joining, showing how an assumption that has been made throughout this dissertation 

can be met; that is, how all nodes can be assigned node identifiers which are sequentially rising 

integers from 0 to n. 

5.1.1 Linda in a nutshell 

Linda was originally developed as a means for programmers to coordinate multiple execution threads 

to create parallel programs on multiprocessors. The Linda model provides a globally accessible tuple 

space, through which independent and possibly heterogeneous processes communicate by means of 

adding, reading and removing tuples. 

A tuple is a sequence of typed fields, such as <' 'foo' " 23, 10, 1978>, containing the inform

ation to be communicated. A tuple is anonymous, and may exist independently of the process which 

created it. Tuples are referenced associatively using tuple templates or patterns. A tuple pattern 

can contain actuals and/or formals. Actuals are typed values; all the fields in the previous tuple 

are actuals. Formals are typed "wild cards"; the tuple pattern <' 'foo' " ?integer, ?integer, 

?integer> contains one actual (the string "foo") and 3 formals of type integer. A tuple pattern 

matches a tuple if each actual field of the pattern equals those of the tuple, and the types of the 

formals in the pattern match the types of the actuals in the tuple. Therefore the tuple pattern 

<' 'foo", ?integer, ?integer, ?integer> matches the tuple <' 'foo", 23, 10, 1978>. 

The original Linda model defined 4 primitives available to the processes using the tuple space: 

out (t) takes a tuple, t, and places it into the tuple space, returning immediately. 

in(p) takes a tuple pattern, p, and if it matches a tuple in the tuple space, the matching tuple is 

removed from the tuple space and returned to the calling process. If there is no matching tuple 

available, this operation will block. This operation is atomic, i.e. a node which gets returned 

a tuple can be sure that no other node will be returned the same tuple. 

read(p) takes a tuple pattern, p, and if it matches a tuple in the tuple space, a copy ofthe matching 

tuple is returned to the calling process. The matching tuple, if any, remains in the tuple space. 



81 

eval (a) is Linda's process creation mechanism. This functionality is orthogonal to the communic

ation primitives which is the focus of this work, so this primitive is ignored. 

If two or more tuples match a given tuple pattern, which tuple is returned as the result of a 

read(p) or an in(p) is undefined. Similarly, if two operations are invoked in parallel on the tuple 

space, it is undefined which of the processes gets executed first. For example, if a read(p) and an 

in(p) matching the same (and only) tuple in the tuple space are executed in parallel, it is undefined 

whether the read(p) will block or not. 

Linda provides a simple and powerful way to coordinate parallel processes. The authors of 

Linda provided as an example an implementation of the classic "Dining Philosophers Problem" 

implemented in a Linda system developed for the C programming Language. Briefly, the Dining 

Philosophers Problem involves a number of philosophers, usually 5, seated around a circular table. 

In front of each one is a bowl of rice. Between each philosopher there is a chopstick. It takes two 

chopsticks to eat rice, so while philosopher n is eating neither philosopher n + 1 nor philosopher 

n - 1 can be eating. The problem arises if each philosopher starts by picking his left chopstick, 

thus causing deadlock (all philosophers have a chopstick each). Assuming there are 5 philosophers, 

a typical solution to this problem is to admit only 4 at a time that try to eat. Then in the worst 

case at least 1 philosopher can always eat when the other 3 are holding 1 chopstick. 

phil(int i) 
{ 

3 while(i) { 
4 think(); 

in("room ticket"); 
6 in(" chopstick", i); 
7 in("chopstick", (i+i)Y.Num); 
8 eatO; 
9 out("chopstick", i); 

10 out("chopstick", (i+i)y'Num); 
11 out (" room ticket"); 
12 } 

13 } 

14 

15 initialise() 
16 { 

17 int i; 
18 for(i • 0; i < Num; i++){ 
19 out(' 'chopstick", i); 
20 eval(phil(i»; 
21 if ( i < (Num-i» 
22 out ( "room ticket"); 
23 } 

24 } 

Figure 5.1: C-Linda implementation of the Dining Philosophers Problem. 

The C-Linda implementation of this solution is reproduced from [CG89] in its entirety in figure 

5.1. N urn chopstick tuples and N urn - 1 room ticket tuples are put into the tuple space by the 

initiating process on line 19 and 22. In addition, Nurn philosopher processes are spawned (line 



82 

20). A philosopher will first attempt to get a room ticket, then pick up the left chopstick, then 

the right, followed by eating and then putting down the chopsticks and releasing the room ticket 

(lines 5 - 11). As the authors note, there is no fairness guaranteed in this solution (because of the 

non-deterministic choice of which parallel process gets returned a tuple during parallel in(p) 's), but 

assuming the implementation is reasonably fair, no philosopher will starve. A solution to the same 

problem implemented in the then state of the art parallel programming language Parlog86, required 

in excess of 70 lines of code, as well as 5 diagrams to explain the code structure[Rin88]. 

The simplicity of the implementation arises from two of the properties provided by the Linda 

model: 

Space decoupling Two processes communicating through the tuple space do not need to know 

each other's identity, as tuples are referenced associatively. This allows processes to be fully 

decoupled in space, enabling for example reconfiguring an application by changing the processes 

which implement it; the parts of the application not being modified can be left unchanged. 

Time decoupling A tuple added to the tuple space by out 0 remains in the tuple space until it 

is removed by an inO. If it is never removed by an inO then in principle it will remain in 

the tuple space forever. This allows processes to be distributed in time; that is, a process A 

can generate some tuples and terminate, followed by another process B at some later time 

consuming the generated tuples. 

These two properties combined implies that a single tuple is functionally equivalent to a sema

phore [Dij68]; in(sem) is functionally equivalent to the semaphore operation P(sem) and out (sem) 

is functionally equivalent to V(sem). Further, these are in fact distributed semaphores[Sch80], that 

is semaphores defined over an arbitrary number of disjoint processes[GeI85], which are very powerful 

primitives as we shall see. 

5.1.2 Why Linda in mobile ad-hoc networks? 

The Linda model has been adopted for the distributed systems setting, with Linda-like systems 

being developed both in academia and industry. The features provided by the Linda model match 

well with the requirements of distributed systems, as often the problems facing programmers of 

physically distributed applications and parallel programs are similar. Pr?minent examples from in

dustry include TSpaces from IBM[WML98] and JavaSpaces from Sun Microsystems[FAH99]. The 

EventHeap[JFW02] developed at Stanford as part of their "iRoom" pervasive computing environ

ment is a good example from academia. However, these systems are implemented as centralised tuple 

spaces on a single server accessible by remote clients. Such implementations are unsuitable to ad-hoc 

networks, where network connectivity is highly variable and the fault tolerance and availability of a 

single server is by no means guaranteed. 



83 

Distributed implementations of Linda providing fault tolerance[BS95] and data availability [Pin93] 

have been proposed. The main disadvantage with these approaches is that they were designed with 

relatively stable network topologies in mind, and thus assume a high degree of network connectivity. 

These approaches are thus unsuitable in ad-hoc networks for the same reasons that the unicast and 

multicast protocols designed for wired networks are not well suited to the ad-hoc environment; in 

ad-hoc networks connectivity can be patchy and topology highly dynamic. 

None the less, if Linda semantics (or something equivalent) could be provided despite the 

obstacles presented by the ad-hoc environment, a number of issues currently facing developers of 

sophisticated, fault-tolerant applications and services using ad-hoc networks would become much 

more manageable. For example, researchers working on multi-robot systems have identified coordin

ating the robots' actions as being important: 

The key to utilizing the potential of multi-robot systems is coordination. How can we 

achieve coordination in systems composed of failure-prone autonomous robots operating 

in noisy, dynamic environments?[GM02] 

The "coordination" problem being alluded to is the so called "Dynamic Multi-Robot Task Alloca

tion" [GMOl] problem; which can be stated as follows: There are a number of robots, each looking 

for one task, and a number of tasks, each requiring exactly one worker. Clearly there are other 

issues besides communication inherent in this problem; optimal assignment of tasks to robots being 

one. However, even just coordinating the robots such that exactly one robot gets assigned each task 

in such a "failure-prone ... noisy, dynamic environment" is a challenge; one which would be greatly 

reduced by the availability of something like a fault-tolerant version of Linda running over a mobile 

ad-hoc network. 

Another example is dynamic address assignment in mobile ad-hoc networks. Briefly this is the 

problem of assigning a unique address (such as an IPv4 address) to nodes joining the network. A 

centralised service, such as that provided by a DHCP server in LAN environments is unusable in 

ad-hoc networks; a decentralised, replicated service is deemed necessary to provide availability. The 

difficulty arises in ensuring that no duplicate addresses are assigned. There are two types of solution 

to this problem; schemes which guarantee that a duplicate IP address will never be assigned, and 

schemes which may supply duplicates, but eventually detect and handle this. Descriptions and a 

study of the relative performance of a number of these approaches can be found in [SB04]. 

Using a fault-tolerant implementation of Linda on ad-hoc networks, the solution is trivial; avail

able IP addresses is simply added to the tuple space using something like out (. • IPv4 address", 

128.134.23.74). The addresses are then stored and duplicated transparently on the nodes imple

menting the tuple space; no separate address assignment protocol is necessary. To be assigned a 

unique IP address a node simply issues an in(' • IPv4 address", ?IPv4Address). 



84 

5.2 Previous efforts to bring Linda to ad-hoc networks 

A number of middleware systems for ad-hoc networks inspired by the Linda model has recently been 

proposed; e.g. LIME (Linda in a Mobile Environment) [PMR99],Limbo[DWF97], 'TUple Board[KB05] 

and RUSSIAN (Resilient and Unified Shared Spaces in Ad-hoc Networks) [CQ04]. However, none of 

the proposed systems have provided "strict" Linda semantics and still tolerated crash failures; all 

have either weakened or modified the properties slightly, or do not tolerate crash failures at all. 

The easiest approach is to weaken the primitives themselves. An example is RUSSIAN where 

a tuple is replicated as widely as possible providing some fault-tolerance, but the in(p) operation 

is only "best effort". This means tuple removal is no longer atomic, and the same tuple can be 

returned as the result of multiple in(p) operations. The drawbacks of this approach becomes clear 

in scenarios where atomic in(p) is necessary, though the authors argue that a number of interesting 

applications can built using this abstraction. 

A more common modification is to introduce some form of "tuple ownership". Limbo, LIME and 

'TUple Board are examples of this type of modification, where a tuple is associated with a specific 

owner node. The idea is to maintain Linda semantics by only allowing the current owner of a tuple 

to withdraw it. Other nodes can get a copy of the tuple using read(p), but not in(p). The 'TUple 

Board simply assigns ownership based on which node inserted the tuple, while Limbo has the ability 

to transfer ownership of a tuple upon request and thus can allow other nodes to withdraw it. The 

LIME model only allows in(p) operations on tuples which are local to the host, but extends the 

Linda semantics with the ability to execute operations on remote nodes when nodes are connected. 

Linking the existence of tuples and semantics of operations to specific owner nodes in this way is 

undesirable in a number of scenarios as space decoupling is lost (the owner node must be identified). 

Another downside to this approach is the lack of availability which arises when a node crashes; even 

if a tuple is replicated on more than one node, if the current owner of a tuple crashes, it cannot be 

consumed by an in(p). 

Consider the examples of assigning IP addresses given in the previous section; which nodes 

should "own" the pool of IP addresses? Why should a whole batch of IP addresses become unusable 

simply because the node which happened to own these addresses crashes? The multi-robot example 

is another case in point; the necessity for a task to be assigned may not go away simply because . 
the robot which deposited the task description has crashed. In extreme cases it may be even more 

pertinent that the task is assigned because it has crashed. The robot may have detected a fire and 

deposited a request for a robot with fire-fighting capability to deal with the fire. The fact that the 

robot which detected the fire now has failed should certainly not stop the task being assigned. 

The reason these Linda implementations weaken semantics is that tuples must be replicated to 

tolerate crash failures. Implementing strict Linda semantics when tuples are replicated is a difficult 



85 

task. The main problem lies in ensuring the in(p) operation remains atomic when a tuple is 

replicated onto several nodes. Guaranteeing only one node is returned a given tuple as a result of an 

in(p) requires consensus between the nodes implementing the distributed tuple space about which 

process gets the tuple. As argued in chapter 4, prior to the work by Friedman et. al and the work 

in this dissertation, low bandwidth consensus solutions suitable for ad-hoc networks did not exist. 

5.3 Design overview 

The tuple space design was driven by the following objectives: 

Availability : The tuple space should be able to tolerate up to f crash failures and be completely 

distributed; the system should not have a single point of failure. This requires all tuples to be 

replicated on at least f + 1 physically distinct nodes 

Consistency: The semantics of tuple space operations in(p), out(t) and read(p) should be 

the same as if there was a single tuple space; the tuple space should provide "strict" Linda 

semantics. Achieving this when tuples are replicated requires consensus between the replica 

holders. 

A system adhering to these design goals would remove the shortcomings outlined in the previous 

section, thus providing the full benefit of the Linda model to the applications which require it. Of 

course, not all applications require the fault-tolerance and strict semantics that a fault tolerant tuple 

space provides, and it is perfectly feasible to run something like LIME or RUSSIAN alongside it, 

using the stronger semantics only when required. 

The next section describes how consistency and availability is achieved in the case when the 

group membership of the nodes implementing the tuple space is static. That is, nodes do not join 

or leave the group implementing the tuple space, though crashes may of course still occur. 

A static group is useful in a number of scenarios. For example, in the case of a group of robots 

cooperating there is no requirement to handle joins and leaves; the group is determined at the start 

of the mission. However in certain situations, being able to have a dynamic group membership may 

be beneficial. How this can be handled is described in detail in section 5.5. 

5.4 A fault-tolerant tuple space with static group member

ship 

A distributed, fault-tolerant tuple space implementation needs to address 3 core issues; how to write 

tuples to replicas, how to read tuples from replicas and how to remove tuples from replicas. 



86 

The next section describes how tuples can be written to replicas using out(t) and read from 

replicas using read(p). The reliable dissemination protocol described in chapter 3 is used in the 

former, while a reliable aggregation protocol is used to achieve the latter. 

The subsequent section describes how tuples can be removed from replicas using in(p), including 

the modifications required to the read(p) operation to maintain consistency once this capability is 

added. 

5.4.1 Reading from and writing to replicas 

An out (t) operation requires replicating the tuple, t, onto a number of nodes. The number of 

replicas of t must be greater than j, and numerous enough so that a subsequent matching read(p) 

operation is guaranteed to find a copy of t. This can be achieved by replicating the tuple onto a 

write quorum, WQ. A quorum is a subset of nodes such that any two quorums in a quorum system 

intersects. A read-write quorum system is a quorum system with two kinds of quorums; write and 

read quorums, RQ, any two of which intersects. More background on quorum systems can be found 

in [Maled]. 

Figure 5.2 shows pseudo-code for the out (t) operation. Once the out (t) operation is invoked, 

out (Tuple t) 
{ 

t.uid = generateUid(); 
4 TupleStore.put(t.uid. t); 

disseminate.write(t.uid. IVVQI. blockUntilrealisation=FALSE); Ilnon-blocking 
6 } 

7 

Figure 5.2: The out (t) operation with static group and no destructive reads. 

a unique identifier, uid, is generated and tagged to the tuple, and the tuple is added to the node's 

local Tuple Store. The Tuple Store contains all the tuples a node has received. The tuple is 

then disseminated to at least IWQI nodes using the reliable dissemination protocol (line 5). This 

invocation of the dissemination protocol is non-blocking (as indicated by the boolean value passed 

to the protocol), as when the message is realised is immaterial to the node performing the out (t); 

the Linda semantics require that a call to the out (t) operation returns immediately. Also note 

how the dissemination protocol is only passed a reference (the uid) of th~ message. The uid is used 

by the dissemination protocol to query the Tuple Store immediately before it transmits the packet, 

thus avoiding duplicating the tuple. A node receiving a tuple adds it to its local Tuple Store (not 

shown). 

In order to perform a read(p) operation, an aggregation protocol is required. An aggregation 

protocol queries at least k nodes for a match to a template. A template is in this case the same as a 

tuple pattern, but could in principle be anything. The reliable dissemination protocol can act as an 



87 

aggregation protocol through some fairly straight forward modifications. The resulting protocol is 

similar to the first phase of the optimised consensus protocol described in section 4.4.4. The main 

differences between the aggregation and the dissemination protocols are as follows: 

1. The aggregation message contains the template and a placeholder for a match to the template 

if one has been found. 

2. On reception, if the placeholder is empty, the template is passed up to the higher layer and 

if a match to the template is found, is returned to the aggregation protocol and added to the 

placeholder. 

3. The node(s) which realise the message adds the match contained in the placeholder (if any) to 

the realisation packet. 

4. As with the cross layer optimisation for the randomised consensus protocol, the push-pull 

optimisation is disabled (see section 4.4.3). 

When the aggregation message is realised, at least k nodes will have checked for a match to the 

template. If a match exists, it will be contained in the aggregation message (by 1 and 2 above). If 

no match exists, no further action is necessary. If a match is found, this match should be returned 

to the node which initiated the aggregation. 

There are two ways in which the match could be returned to the originator; either make it 

the responsibility of the node which initiated the aggregation, or put the onus on the node(s) that 

realised the aggregation message. The former was chosen as putting the onus on the realising node(s) 

has a number of drawbacks; the main problem is that there is no way a realising node can know if 

the originator of the aggregation has since crashed. This implies that any technique to inform the 

originator of a match has to be best-effort only, as an attempt to reliably deliver a message to a 

crashed node will never terminate. For this reason, the approach outlined by modification 3 above 

was chosen. 

It is worth noting a couple of things about this protocol. First, it could be optimised by using 

only the uid of any match found, in a similar way to the push-pull optimisation in section 3.3.1. 

Second, it could easily be modified to return all matches instead of only one. 

A read(p) operation uses the aggregation protocol to query a read quorum as shown in figure 

5.3. The read(p) operation blocks until a match is found, so if a call to the aggregation protocol 

returns a null result indicating no match has been found (line 9), the thread sleeps for readInterval 

seconds after which the condition in the while loop still holds (line 5) and the aggregation protocol 

is called again. The readI nterval should be configurable. If there are many tuples that match a 

given tuple pattern received by the aggregation protocol, one can be chosen at random from the 

Tuple Store. 



88 

read(tuple-pattern p) 

4 

6 

7 

8 

9 

10 

{ 
resultTuple = null; 
while(resultTuple -= null) 
{ 

initiated = Now(); 
p.uid = generateUid(); 
result Tuple = aggregate.read(p.uid. p. I~QI); //blocking 
sleep(readlnterval - (Now() - initiated»; 

11 } 

12 return resultTuple; 
13 } 

14 

15 

Figure 5.3: The read(p) operation with static group and no destructive reads. 

5.4.2 Removing items from replicas 

The reading and writing of tuples from and to replicas using read(p) and out (t) can be achieved 

by the means described in the previous section. However, if the tuple space is to support the in(p) 

operation, the following two issues arise: 

• The in(p) operation is atomic. That is, the same tuple cannot be returned as the result of 

(consumed by) two different in(p) operations . 

• The semantics of a Linda read(p) operation does not allow a tuple to be returned which has 

previously been consumed by an in(p). 

How to guarantee that the in(p) operation remains atomic even though tuples are replicated is 

covered in the next section. Section 5.4.2.2 explains why Linda semantics do not allow read(p)s to 

return tuples which have been consumed by an in(p), and presents the modifications required to 

ensure such semantics. 

5.4.2.1 Ensuring tuple consumption using in(p) is atomic 

The consensus protocol tailored for ad-hoc networks presented in chapter 4 can be used to guarantee 

the atomic nature of in(p). This is done by requiring a node to obtain agreement that a tuple can 

be consumed prior to returning the tuple to the calling application. ,Obtaining such agreement 

necessitates that the node is aware of all other decisions made up to the point where it proposes to 

consume the tuple, as otherwise it may make a proposal which contradicts an earlier decision. 

When the consensus protocol is used to make multiple decisions it can be thought of as working 

in epochs. Epochs are consecutive, monotonically increasing integers representing the order in which 

decisions were made. Each decision has an associated epoch number (which should not be confused 

with round numbers used in each execution of the consensus protocol). 



89 

The state of a consensus protocol includes the decisions reached in all epochs up to and including 

the current epoch. If a node wants a decision on something new, it needs to initiate the consensus 

protocol in the "correct" epoch, where the correct epoch is the epoch which is one higher than the 

latest decision made in the system. 

The pseudo code in figure 5.4 shows how the consensus protocol can be used in conjunction with 

the read(p) operation described in previous section to yield the in(p) functionality. 

in (tuple-pattern p) 
{ 

3 candidateTuple = null; 
4 matchingTuple = null; 

while(matchingTuple == null) 
6 { 

7 if (candidateTuple == null) 
8 { 

9 candidateTuple = read(p); //blocking 
10 TupleStore.put(candidateTuple.uid. candidateTuple); 
11 } 

12 decision - consensus.propose("I get candidateTuple"); 
13 if (decision implies candidateTuple no longer available) 
14 candidateTuple - null; 
15 else if (decision is agreed) 
16 matchingTuple - candidateTuple; 
17 } 

18 disseminate.write(decision. IVVQI. blockUntilrealisation-TRUE); //blocking 
19 return matchingTuple; 
20 } 

Figure 5.4: The in(p) operation with static group. 

A node performing an in(p) operation enters a loop (line 5) which it returns from only when 

a suitable tuple has been found and agreement that it can consume it has been reached. The node 

first issues a read(p) to get a candidate tuple (line 9). Once this has been obtained, it is stored 

in the Tuple Store and the node initiates a consensus in what it believes to be the correct epoch 

proposing that it gets to consume the candidate tuple (line 12). There are three possible decisions 

reached when the consensus returns; (i) the candidate tuple is no longer available, (ii) an unrelated 

decision has been reached or (iii) agreement is reached that the node can consume the tuple. 

The first of these possibilities, the candidate tuple no longer being available, occurs when another 

node has been given the right to consume the tuple. In that case, the tuple should perform another 

read(p) and initiate another consensus on the new candidate tuple. This is achieved by resetting 

the candidate tuple to null on line 14. 

The second possibility arises because all decisions have to be reached in order. For this reason 

a completely unrelated decision could have been made in the current epoch. For example, another 

node could have proposed that it should get to consume some other tuple. When this happens the 

node does not need to do another read(p), as the candidate tuple is still valid; it simply makes the 

same proposal in the new epoch by looping around with the same candidate tuple and making a 

new proposal on line 12. 



90 

Finally, once an agreement that a node can consume a given tuple is reached, the node which 

makes this decision needs to disseminate it to a write quorum. The originating node must block on 

the invocation of this dissemination until the decision message has been realised. This is achieved by 

making a blocking call to the dissemination protocol on line 18. As other nodes receive this decision, 

they can delete the tuple from their Tuple Store. Once the decision message has been realised, the 

originating node can return the matching tuple to the calling process (line 19). 

A node must block and not return the match until it knows the decision message has been 

realised, as not waiting may result in the tuple (which has now been returned by an in(p)) being 

returned as the result of a later read(p). This can arise because there are no guarantees made 

about the relative speed at which dissemination and aggregation invocations are performed. This 

means nodes in subsequent read quorums may not be aware of the decision that the tuple has been 

consumed and thus erroneously return the consumed tuple. 

The next section describes why returning a consumed tuple as result of a read(p) is incorrect, 

and outlines the functionality (in addition to the blocking dissemination of consensus decisions 

described above) required to ensure the correct semantics. 

5.4.2.2 Guaranteeing read(p)s do not return consumed tuples 

Returning a tuple as the result of a read(p) which has previously been consumed by an in(p) 

is wrong because the node which originally consumed the tuple may have performed a subsequent 

out (t) based on the contents of the first tuple. A node performing another read(p) may now be 

returned either of the two tuples, which may be incorrect. 

The following example, adapted from [XL89], shows why this is wrong when two nodes, A and 

B, are using a tuple space. Assume the variables u, v and x have previously been declared as integer 

variables in A and B's programs. 

Node A Node B 
in(' 'count", ?x) read(" count" , ?u) 

out(' 'count", x+1) read(" count" , ?v) 

In this example, the integer value in the second field of tuples with the name "count" increases 

with time. Node A modifies the count in a manner which satisfies this constraint; node B only reads 
> 

the count and should not observe a violation of the constraint. 

The operations in this example could easily be executed in the following order: Node A's in(p) 

returns <' 'count", 1>, node A then increments and performs the out(t) adding <' 'count", 

2> to the tuple space. If a tuple which has previously been in(p) 'ed is allowed to be returned as 

the result of a subsequent read(p), node B's first read(p) could return <' 'count' " 2> and its 

second <' 'count' " 1>, which is incorrect. Removing tuples from replicas thus requires a consensus 



91 

protocol to reach agreement on what nodes gets which tuples, as well a way of synchronizing read(p)s 

with completed in(p)s. 

Making the node which has obtained agreement that it can consume a tuple wait to return the 

tuple until after the realisation of the decision message is not enough to avoid the above situation. 

This is because not all nodes which participate in subsequent read(p)s can be guaranteed to have 

received the decision that the tuple has been consumed. Recall that theorem 2.3 dictates that the 

maximum value for k = (n - f) (section 2.3.2). 

The following example shows how the incorrect semantics can come about: Assume the tuple 

space is being implemented by 5 nodes: A, B, C, D and E. Assume also that f = 2 (thus max 

k = 3) and for simplicity that IWQI = IRQI = majority = 3. Consider if a tuple Z which has been 

replicated onto all three nodes is consumed by node A in epoch 1. Assume that a write quorum 

consisting of nodes A , Band C are aware of this and are now in epoch 2, and that nodes D and 

E remain in epoch 1 and still keep a copy of Z. If node D now initiates a read(p) which happens 

to match the consumed tuple Z, it may happen that node E is the last node to be queried about a 

match. Node E could then add in Z as the matching tuple and inform D. D would then return the 

previously consumed tuple, which is incorrect. 

However, the reliable dissemination protocol is able to guarantee that at least one of the nodes 

which participate in any possible later read(p) will have received any given decision. This is because 

of the intersection property of read and write quorums; the decisions that a tuple has been consumed 

must be disseminated to at least a IWQI nodes, and a read(p) must query at least IRQI nodes using 

the aggregation protocol. 

We can take advantage of this property to ensure that by the time any read(p) returns it will 

not contain a tuple that has been consumed. This is achieved by requiring any node participating 

in a read(p) to tag all messages with what it believes to be the most recent epoch. Nodes can 

then compare the epoch numbers they receive, request any decisions they are missing and take the 

appropriate action; this guarantees that any read(p) will be performed in the correct epoch by the 

time it completes. 

Ensuring that all read(p) 's are performed in the correct epoch can be handled transparently by 

a State Manager. A State Manager maintains the cache of all decisions reached by the consensus 

protocol so far (the Decision Cache), as well as all group related variables, such as the values for 

currenLepoch n, f, IWQI, etc. The State Manager sits between the group communication protocols 

and the network and tags all outgoing packets with what it believes to be the correct epoch (the 

currenLepoch). It also intercepts all incoming messages before they are passed up to the protocol. 

In its most basic form, the State Manager performs the following actions when it receives an 

incoming packet tagged with the epoch incoming_epoch: 

incoming_epoch < currenLepoch: 'Iransmit the decision incoming_epoch + 1 contained in the 



92 

Decision Cache. Discard the packet. 

incoming_epoch > current_epoch and the packet is not a decision: Transmit a request for 

decision currenLepoch + 1. Discard the packet. 

incoming_epoch > currenLepoch and the packet is a decision: If the decision is for 

currenLepoch + 1, add the decision to the Decision cache and terminate the ongoing aggreg

ation and consensus. If the decision is for> currenLepoch + 1, cache the decision (for later, 

in order, processing) and request decision current_epoch + 1. 

incoming_epoch = currenLepoch: If the packet is a decision, discard the packet. Else pass the 

packet to the correct protocol. 

With the introduction of a State Manager, the aggregation protocol (and thus the read(p) 

operation) can no longer return tuples which have previously been in(p) 'ed. From the example 

above, node E would have been aware of the epoch mismatch once it got queried, and would have 

requested its "missing decisions". On reception of these the tuple Z would have been deleted from 

E, and the correct behavior would have been ensured. 

It is worth noting that epoch mismatch can be handled for the dissemination protocol as well. 

We will make use of this ability in the next section. 

5.5 Handling dynamic group membership 

In order to handle nodes joining and leaving the group which implements the tuple space, two 

main issues must be addressed: Transferring a consistent state to a joining node and ensuring the 

replication of tuples is sufficient upon nodes joining or leaving. We will deal with these issues in 

turn. 

5.5.1 State transfer to joining nodes 

The state transfer problem is a classic problem in reliable distributed computing, and is explicitly 

dealt with in for example the Virtual Synchrony[BJ87] or Paxos[Lam98] models. The crux of the 

problem is that a joining node needs to be told of past events in order t,o be able to participate in 

future group related decision making. For example, in our design, if a node is allowed to join without 

being given the past decisions made by the consensus protocol (the Decision Cache), it may propose 

or agree with proposals that contradict earlier decisions. This can easily lead to inconsistencies. 

Assume a node wishing to join can pull the state from some current group member. While an 

important step, this is not the end of it; there is the real possibility that after the state has been 

transfered, but before the node has been admitted to the group properly, further updates are made to 



93 

the group state. If the joining node simply uses the stale state it received some time ago, the updates 

which happened just before the node joined may be lost. This can also lead to inconsistencies. 

In general there are three broad approaches to this problem. The first and most heavy handed 

approach is to lock down the whole group when a node wants to join, transfer the state to the joining 

node and then unlock the group and resume group operations. The second approach involves a 

joining node receiving a checkpoint of the state ofRine (before the node joins the group) and then 

joins. The joining node then reconciles any missing updates, doing something like: "I have the state 

until checkpoint 323"; "This is what happened since then ... ", etc. The third and final approach is 

to attempt to do as much as possible concurrently. The Horus[RBM96] system for example has a 

5 stage process for servers joining, involving initially joining as a client, then requesting to become 

a server, being installed as a special kind of server with "all rights, but no obligations", requesting 

the state and finally becoming a "normal" server. The general gist is to gradually allow the server 

to do more and more as it becomes more capable (see [RBM96] for further details). 

The chosen design for managing node joins is depicted in figure 5.5. It is very similar to the 

second approach in that the state transfer is first done ofRine, followed by a subsequent update of 

any decisions reached after the ofRine state transfer. We assume the joining node has some way of 

getting various configuration information relating to the relevant communication channel used (e.g. 

multicast address and port number or similar). A joining node then pulls the state (on line 5) using 

a modified form of the aggregation protocol; the getState() function acts as a normal aggregation 

except it is handled by the State Manager and is not related to the 'IUple Store in any way. The 

State Manager updates the epoch as it would any other aggregation message and adds the relevant 

state. This state includes: the Decision Cache, n, IWQI, IRQI, f, the current epoch number and 

a Member Cache. The Member Cache is a list of group node ids and the binding between these 

node ids and the underlying (also unique) address (e.g. a MAC address) of already joined group 

members. The joining node initiates its state to the received state as seen on lines 7-12. 

After the joining node has pulled the recent state from the read quorum, it uses this state to 

initiate a consensus on line 24 proposing "Node X joins as Z" , where X is the node's unique address 

and Z is an available group node id, nid from the Member Cache. During this consensus invocation, 

as with any invocation of the consensus protocol, if the joining node is in too low an epoch, the State 

Manager is used to give it any decisions made between it pulling the state while ofRine and now. 

Note that the node has not yet been assigned a nid, so cannot participate in the consensus, though 

it can initiate it and find out about its outcome. From the time a node first proposes to join, we 

consider it a part of the group for failure purposes (Le. if the joining node crashes after this, only 

f - 1 other nodes in the group may crash). 

If there are available nids in the group, the node will eventually be allowed to join. If there is 

no room, the group membership should be expanded, a topic which is not covered by the current 



4 

7 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

94 

join(Address addr) 
{ 

//Get the current state while offline 
state = aggregate.getState(addr); //blocking. addr used as uid. 
//Assign the states 
decisionCache = state.getDecisionCache(); 
n· state.getN(); 
epoch = state.getEpoch(); 
IRQI = state.getRQO; 
IWQI = state.getWQO 
memberCache = state.getMemberCache(); 

canParticipatelnReads = false; 

//Get a candidate tuple 
candidateNodeld - null; 
assignedNodeld - null; 

while(assignedNodeld == null) 
{ 

} 

n++; 
IWQI++ 

if(candidateNodeld == null) 
candidateNodeld = memberCache.pickFree(); //assume one exists .. 

decision = consensus.propose("addr joins as candidateNodeld"); 
if(decision implies candidateNodeld no longer available) 

candidateNodeld - null; 
else if (decision is agreed) 

assignedNodeld= candidateNodeld; 

//Can now participate in out(t)s, and in consensus, but not read(p)s 

all Tuples [] • aggregation. readAll (generateUidO, IRQ!>; / /blocking. 
TS.add(aIITuples[]); //discarding duplicates of tuples stored after joining. 
canParticipatelnReads = true; 

40 //Is now a fully fledged group member 
41 } 

42 

43 

Figure 5.5: The join(addr) operation which increases write qu~rum size on success 



95 

design. Once the the decision that it can join has been received, the joiner will assign itself the 

assigned nid (line 28), and the joiner and other nodes which know of the decision can update n. 

However, the other main issue now arises; simply increasing n by itself means that read and 

write quorums no longer necessarily intersect (they are necessarily fixed values, and not defined in 

terms of n). 

5.5.2 Ensuring sufficient replication on nodes joining or leaving 

The simplest technique for dealing with this lack of quorum intersection would be to increase the 

read quorum size, IRQI, at the same time as n is increased. There are a number of drawbacks to 

this approach however. First, the overhead of performing a read(p) grows with the increase in read 

quorum size. More seriously, simply increasing IRQI implies that availability is not increased by a 

node joining (as tuple replication is not increased). Finally, if this approach was adopted and nodes 

are also allowed to leave, the following undesirable scenario may arise: No matter how many nodes 

join, no nodes can ever leave the group(!). 

For these reasons the desirable and indeed intuitive alternative is for availability to increase upon 

another node joining the group. What is required is increasing the value of IWQI on receiving the 

decision about a node join. The joiner increases the value of IWQI on line 32. 

This will work for tuples which are added to the tuple space by subsequent out (t) calls, as long 

as dissemination protocol calls are also synchronised within a given epoch. Such synchronization 

can easily be achieved using the State Manager as discussed previously. However, availability is 

not increased for tuples already in the tuple space. Indeed, because the old write quorum size is 

now insufficient to ensure intersection with the read quorum, these tuples may never be found by 

subsequent read(p) or in(p) calls. The remedy is to disallow joining nodes from participating 

in aggregations before a readAll() has been performed by the joining node. The boolean value 

canParticipateInReads is used by the joining node's State Manager for this purpose, and is initially 

set to false on line 14. 

A readAllO is a modification to the aggregation protocol's readO as hinted at in the previous 

section; instead of simply adding one matching tuple, all tuples are added to the aggregation. Once 

the readAllO aggregation has returned, the joining node adds the tuples to its local Tuple Store 

(discarding duplicates) and can now participate in the aggregation protocol as a fully fledged group 

member (lines 36-38). 

Managing nodes leaving the group is much simpler, the main issue is ensuring that IWQI is still 

greater than or equal f + 1. For this reason the node must initiate a consensus proposing "I leave" . 

If it gets a negative response (as it leaving would result in the write quorum being less than I), it 

cannot leave until a new node has joined the groupl. When the decision that a node can leave is 

IThis also shows why increasing IRQI instead of IWQI on nodes joining is a very bad idea .. 



96 

received, nodes will decrease nand IWQI, and update the Member Cache appropriately. 

5.6 Changing quorums sizes and number of failures tolerated 

The strategy adopted in our design is to replicate all tuples as widely as possible, thus increasing 

availability and fault-tolerance and making read quorums as small as possible. This may not be 

suitable in all situations however, and the system should therefore have the ability to change the 

sizes of the read and write quorums within the allowable bounds. Further, it may be desirable to 

be able to vary the number of failures a system can tolerate. An example is if the tuple space is 

bootstrapped from a single node. In this scenario, the number of tolerable failures, j, must be zero 

initially, but should be able to increase as new nodes join the group. 

These two issues are very similar; it is about how to reach agreement so that a system wide 

parameter can be changed a within some allowable bounds. The number of tolerable failures, j can 

not be set to higher than n or indeed IWQI or IRQI. In the same way, you would not want to set 

either quorum size to be less than the tolerable number of failures, or higher than the number of 

nodes in the system. However, within these bounds, changing the values is fairly straightforward 

given that all dissemination, aggregation and consensus protocol messages are synchronised in the 

right epoch (using the State Manager as explained in previous sections). 

For example, one might want to keep the tolerated number of failures, j, to roughly 10% of the 

number of nodes making up the group. In that case, one could employ a policy which, upon receiving 

a join decision implying that j was less than 10%, a node would initiate a consensus proposing "RQ 

is increased", after the success of which a node would propose "f is increased to RQ-1". Something 

similar could be done to change the write quorum size if that was desired. 

5.7 Conclusion and summary 

Previous attempts at bringing the Linda model to mobile ad-hoc networks have either had to weaken 

the original semantics of the Linda primitives, or have not been able to provide fault-tolerance. 

Weakening the semantics of Linda makes it less powerful, while not providing fault-tolerance makes 

it less usable in scenarios where failures are likely. 

However, in order to keep the Linda in(p) primitive atomic while replicating tuples to provide 

fault-tolerance, a consensus solution is necessary. This explains why none of the previously proposed 

Linda systems for mobile ad-hoc networks were able to do so; prior to the work in this dissertation 

(and the parallel work by Friedman et al.[FT03]) consensus was considered too heavyweight in terms 

of transmission overheads to be feasible in mobile ad-hoc networks. 

This chapter has shown in detail how a fault-tolerant Linda system which maintains the original 



97 

semantics of the Linda model could be implemented using the protocols presented in the previous two 

chapters. As extensive simulations have shown that both these protocols perform well in a wide range 

of network conditions, it is safe to assume that the system, if implemented, would be very well suited 

to ad-hoc networks; the resulting system would not only have a reasonable transmission overhead, 

but also be able to tolerate highly dynamic and frequently disconnected network conditions. 

The design has addressed a number of issues in addition to keeping in(p) atomic including; how 

to maintain the semantics that a tuple which has already been removed by an in(p) cannot be 

returned by a later read(p), how to ensure sufficient tuple replication upon nodes leaving, how to 

perform state transfer to nodes joining so that these can participate in group decision making, and 

how to vary the number of failures tolerated based on the current number of nodes in the group. 

These issues are particularly challenging given that not every node in the system can be assumed 

to receive the most recent decision made by the group, even though a decision is reliably disseminated 

by the node which reaches it. This naturally arises from theorem 2.3. 

This chapter has described how the issue which arises from theorem 2.3 can be resolved by 

tagging all messages with an epoch number, where an epoch number signifies the latest decision the 

transmitter of the message is aware of. This works because all decisions reached by the consensus 

protocol are assigned monotonically increasing integer identifiers. Nodes which receive a message 

with a higher epoch than it is currently in can thus directly request its missing decision(s). 



98 

Chapter 6 

Summary and conclusions 

This dissertation has introduced two families of reliable group communication protocols, one solving 

the reliable dissemination problem, the other the consensus problem. The protocols have been shown 

to work in even transiently disconnected, highly mobile ad-hoc networks, and extensive simulations 

confirm that the overheads associated with these are not too high to be feasible in ad-hoc networks. 

The dissertation has also presented a design for a fault-tolerant tuple space which is able to provide 

the same semantics as one would expect from such a system implemented on a single machine. 

This chapter summarises the contributions made in this dissertation, and describes some avenues 

for future research. 

6.1 Summary 

In chapter 2, a system model for mobile ad-hoc networks was presented. The system model pre

cisely defines the requirements on network connectivity and the assumption made that the resources 

available to any protocol are finite. The requirement on network connectivity was designed to be as 

minimal as possible, and essentially only requires the ad-hoc network not to be permanently par

titioned. The assumption about finite available resources disallowed any protocol to, for example, 

require a node to keep a copy of a message for ever. This assumption was justified by the definition 

of mobile ad-hoc networks as resource constrained. 

Chapter 3 presented a family of reliable dissemination protocols suitable for mobile ad-hoc net

works. The protocols were shown to guarantee delivery to a minimum number of nodes in any 

ad-hoc network which meets the requirement on network connectivity. The protocols make use of a 

novel, distributed method of detecting when enough nodes have received a message and their design 

were guided by the foundational results presented in chapter 2. One of the protocols was shown to 

have transmission overheads on par with a simple, unreliable flooding protocol in relatively normal 

network conditions. 

Chapter 4 presented a family of consensus protocols. The protocols are based on an existing 



99 

consensus protocol designed for wired networks, but include three important optimisations which 

remedies what make the existing protocol infeasible for mobile ad-hoc networks. The first optim

isation removes the requirement that a message must be delivered to all nodes in the network, a 

requirement which was shown to be impossible to meet in chapter 2. The second optimisation takes 

advantage of the highly variable network latencies found in mobile ad-hoc networks to reduce, by 

several orders of magnitude, the number of rounds until a decision is reached. The third optimisation 

reduces the per round transmission overhead by between 1 and 2 orders of magnitude. The protocol 

which combines all these optimisations is shown to only require between 2 and 4 rounds to reach 

a decision, where, each round only requires 0(1) invocations of the type of reliable dissemination 

protocol presented in chapter 3. 

Finally, chapter 5 has demonstrated how these protocols can be combined to implement a fault

tolerant tuple space for mobile ad-hoc networks with the same semantics as one would expect from 

a tuple space implemented on a single machine. This design, if implemented, is the first tuple space 

system designed specifically for mobile ad-hoc networks which is able to both provide such semantics 

and also be fault tolerant. 

6.2 Conclusion 

This dissertation has demonstrated that reliable, fault-tolerant group communication protocols can 

be implemented in a wide range of mobile ad-hoc networks, and further that doing so does not 

incur too high transmission overheads to be feasible. It has done so by first defining a precise system 

model which a wide range of mobile ad-hoc networks fit into. Then, a family of reliable dissemination 

protocols and a family of consensus protocols have been introduced and proven correct in all ad-hoc 

networks covered by the system model. Finally, extensive simulations has been presented which 

demonstrate that these protocols do not incur excessive transmission overheads. 

6.3 Future work 

It has often been remarked that mobile ad-hoc networking research suffers from a lack of real world 

experimentation. This is a problem which afflicts the work in this dissertation as well. In general, 

any real world testing of the protocols is likely to throw up interesting and unexpected issues, 

and although the protocol's correctness will not suffer as long as the minimum requirements on 

connectivity hold, the protocols' parameters may require some tweaking to get the best possible 

performance. 

For example, the maximum time between periodic transmissions of the reliable dissemination 

protocols presented in chapter 3 was fixed at (13 = 58) throughout this dissertation. Naturally, this 



100 

value is unlikely to be best value for all scenarios, and experimentation with this variable is likely 

to be needed in a real world deployment. (Note that actual studies of both human and animal 

movements are beginning to appear and may be of some use in this, see for example [RCSar] and 

[JOW02]). 

More radical changes to the dissemination strategies of the reliable dissemination protocols is 

also possible (a protocol for when there are no failures is given in appendix A for example). Any 

such optimisation would still have to satisfy theorem 2.1 in that the resulting protocol would have 

to include executions where all nodes were actively participating in the dissemination of a message. 

This naturally lends itself to a two phase protocol; the first phase attempting to deliver the message 

in a more efficient manner (the optimised phase), and then reverting to one ofthe protocols described 

in this dissertation to guarantee delivery in less benign network scenarios (the basic phase). Proving 

termination of such an optimised protocol would thus be reduced to proving that if the protocol 

does not succeed, it reverts the basic phase. 

Extending the reliable dissemination protocols presented in chapter 3 to the multicast case, that 

is, where there are a subset of "server" nodes to deliver a message to and the remainder of the nodes 

only aid in this task, is a worthwhile endeavour. It would extend the usability of the consensus and 

tuple space work to the case where there is a relatively small group of capable server nodes and a 

large number of less capable client nodes which connect to the server nodes. Such a heterogeneous 

system configuration is perhaps more common than the homogenous configuration assumed in this 

dissertation. 

A careful implementation of the design of the tuple space from chapter 5 would be interesting and 

potentially useful. The main problem would be to decide on which platform to perform the work; 

in mobile ad-hoc networks there is no standardised hardware or software platform which everyone 

uses, unlike what the PC is for wired networks. 

A more ambitious endeavour would be to build more a adaptive, intelligent network service using 

the protocols here as a base. Once wireless networking and wirelessly networked devices become 

ubiquitous, the ability of a group of devices to adapt to, learn from, and be aware of, their changing 

environment all the while maintaining fault-tolerance, is challenging. This is even more true if the 

devices which collaborate have different capabilities. A step in that direction may be to use the 

work here enhanced with some form of reinforcement learning algorithm, where for example the 

dissemination protocol "learns" when and how often to transmit a message. 



101 

Bibliography 

[ACTOO] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. "On Quiescent Reliable Commu

nication." SIAM J. Computing, 29(6):2040-2073, 2000. pages 21 

[Ben83] Michael Ben-Or. "Another advantage of free choice (Extended Abstract): Completely 

asynchronous agreement protocols." In Proceedings of the second annual ACM sym

posium on Principles of distributed computing, pp. 27-30, New York, NY, USA, 1983. 

ACM Press. pages 51, 53, 71 

[BHR05] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. "JiST: An efficient approach 

to simulation using virtual machines." Software Practice and Experience, 35(6):539-576, 

May 2005. pages 15, 16 

[Bir05] 

[BJ87] 

[BS95] 

[BT85] 

[Cer05] 

[CF99] 

[CG89] 

Kenneth P. Birman. Reliable Distributed Systems - Technologies, Web Services and 

Applications. Springer-Verlag, 2005. pages 80 

Kenneth P. Birman and T. Joseph. "Exploiting virtual synchrony in distributed systems." 

In Proceedings of the eleventh ACM Symposium on Operating Systems Principles, pp. 

123-138. ACM Press, 1987. pages 92 

David Edward Bakken and Richard D. Schlichting. "Supporting Fault-Tolerant Paral

lel Programming in Linda." IEEE Transactions on Parallel and Distributed Systems, 

6(3):287-302, 1995. pages 83 

Gabriel Bracha and Sam Toueg. "Asynchronous consensus and broadcast protocols." 

Journal of the ACM, 32(4):824-840, 1985. pages 51 

V. Cerf. "IETF Internet draft: Delay-Tolerant Network Architecture." , July 2005. pages 

109 

Flaviu Cristian and Christof Fetzer. "The Timed Asynchronous Distributed System 

Model." IEEE Trans. Parallel Distrib. Syst., 10(6):642-657, 1999. pages 49 

Nicholas Carriero and David Gelernter. "Linda in context." Communications of the 

ACM, 32(4):444-458, 1989. pages 81 



[CQ04] 

102 

Daniel Cutting and Aaron Quigley. "Resilient, Unified, Shared Spaces in Ad hoc Net

works." In Proceedings of the 3rd Workshop on Reflective and Adaptive Middleware, 

2004. pages 84 

[CRBOl] R. Chandra, V. Ramasubramanian, and K. Birman. "Anonymous Gossip: Improving 

Multicast Reliability in Mobile Ad-Hoc Networks." In Proceedings of the 21st Interna

tional Conference on Distributed Computing Systems, 2001. pages 2 

[CSS02] David Cavin, Yoav Sasson, and Andre Schiper. "On the Accuracy of MANET Simulat

ors." In Proceedings of the Workshop on Principles of Mobile Computing (POMC'02), 

pp. 38-43. ACM, 2002. pages 15 

[CT96] Tushar Deepak Chandra and Sam Toueg. "Unreliable failure detectors for reliable dis

tributed systems." Journal of the ACM, 43(2):225-267, 1996. pages 46, 47, 49, 50 

[DDC97] C. Diot, W. Dabbous, and J. Crowcroft. "Multipoint communication: A survey of pro

tocols, functions and mechanisms." IEEE Journal of Selected Areas in Communications, 

15(3):277-290, April 1997. pages 2 

[Dij68] E.W. Dijkstra. "The Structure of the "THE" Multiprogramming System." Communic

ations of the ACM, 11(5):341-346, May 1968. pages 82 

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. "Consensus in the Presence of 

Partial Synchrony." Journal of the ACM, 35(2):288-323, 1988. pages 49 

[DWF97] N. Davies, S. Wade, A. Friday, and G. Blair. "Limbo: A tuple space based platform for 

adaptive mobile applications." In Proceedings of the International Conference on Open 

Distributed Processing/Distributed Platforms, pp. 291-302, May 1997. pages 84 

[EMROl] P. Ezhilchelvan, A. Mostefaoui, and M. Raynal. "Randomized multivalued consensus." 

In Proceedings of the 4th International Symposium on Object-Oriented Real-Time Com

puting, pp. 195-200, 2001. pages 56 

[EMS95] Paul Ezhilchelvan, Raimundo Macedo, and Santosh Shrivastava. "NewTOP: a fault

tolerant group communication protocol." In Proceedings of 15th IEEE International 

Conference on Distributed Computing Systems, pp. 296-306, 1995. pages 75 

[FAH99] Eric Freeman, Ken Arnold, and Susanne Hupfer. Javaspaces Principles, Patterns and 

Practice. Pearson Education, June 1999. pages 82 

[Fa103] Kevin Fall. "A Delay Tolerant Network Architecture for Challenged Internets." In Pro

ceedings of the annual conference of the Special Interest Group on Data Communication 

(SIGCOMM), pp. 27-34, Karlsruhe, Germany, 2003. pages 108 



103 

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. "Impossibility of distrib

uted consensus with one faulty process." J. ACM, 32(2):374-382, 1985. pages 49 

[Fri03] Roy Friedman. "Fuzzy Group Membership." In Future Directions in Distributed Com

puting: Research and Position Papers, 2003. pages 19, 75 

[FT03] Roy Friedman and Galya Tcharny. "Evaluating Failure Detection in Mobile Ad-Hoc 

Networks." Technical Report, Computer Science Department, Technion, CS-2003(06):0-

22, October, 2003. pages 75, 76, 79, 96 

[GeI85] David Gelernter. "Generative communication in Linda." ACM Transactions on Pro

gramming Languages and Systems, 7(1):80-112, 1985. pages 79, 82 

[GHMOO] R. Guerraoui, M. Hurfin, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper. "Con

sensus in Asynchronous Distributed Systems: A Concise Guided Tour." Advances in 

Distributed Systems, LNCS 1752:33-47, 2000. pages 2, 74 

[GM01] 

[GM02] 

[GS99] 

Brian P. Gerkey and Maja J. Mataric. "Principled Communication for Dynamic Multi

Robot Task Allocation." In D. Rus and S. Singh, editors, Experimental Robotics VII, 

LNCIS 271, pp. 353-362. Springer-Verlag, Berlin, 2001. pages 83 

Brian P. Gerkey and Maja J. Mataric. "Sold!: Auction methods for multi-robot coordin

ation." IEEE Transactions on Robotics and Automation, 18(5):758-768, 2002. pages 

83 

S. Gupta and P.K. Srimani. "An Adaptive Protocol for Reliable Multicast in Mobile 

Multi-Hop Radio Networks." In IEEE Workshop on Mobile Computing Systems and 

Applications, 1999. pages 20, 41, 42 

[HCSar] Pan Hui, Augustine Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and Chris

tophe Diot. "Pocket Switched Networks and the Consequences of Human Mobility in 

Conference Environments." In Workshop on Delay Tolerant Networking, ACM SIG

COMM, 2005 (to appear). pages 100 

[JFW02] Brad Johanson, Armando Fox, and T. Winograd. "The Interactive Works paces Project: 

Experiences with Ubiquitous Computing Rooms." IEEE Pervasive Computing, 1(2), 

April 2002. pages 82 

[JMBOl] David B. Johnson, David A. Maltz, and Josh Broch. "DSR: The Dynamic Source Routing 

Protocol for Multi-Hop Wireless Ad Hoc Networks." In Charles E. Perkins, editor, Ad 

Hoc Networking, chapter 5, pp. 139-172. Addison-Wesley, 2001. pages 1 



104 

[JOW02] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh, and Daniel 

Rubenstein. "Energy-efficient computing for wildlife tracking: design tradeoffs and early 

experiences with ZebraNet." SIGOPS Oper. Syst. Rev., 36(5):96-107, 2002. pages 100 

[KB05] 

[KC02] 

Alan Kaminsky and Chaithanya Bondada. "Tuple Board: a new distributed computing 

paradigm for mobile ad-hoc networks." In Extended Abstracts - 2005 GCCIS Conference 

on Computing and Information Sciences, 2005. pages 84 

Thomas Kunz and Ed Cheng. "On-demand multicasting in ad-hoc networks: Comparing 

AODV and ODMRP." In International Conference on Distributed Computing Systems, 

2002. pages 112 

[KNE03] David Kotz, Calvin Newport, and Chip Elliott. "The mistaken axioms of wireless-network 

research." Technical Report TR2003-467, Dept. of Computer Science, Dartmouth Col

lege, July 2003. pages 15 

[Lam98] Leslie Lamport. "The part-time parliament." ACM Transactions on Computer Systems, 

16(2):133-169, 1998. pages 50, 92 

[LEH03a] Jun Luo, Patrick Th. Eugster, and Jean-Pierre Hubaux. "PAN: Providing reliable stor

age in mobile ad hoc networks with probabilistic quorum systems." In Proceedings of 

the 4nd ACM/SIGMOBILE Symposium on Mobile Ad Hoc Networking & Computing 

(MobiHoc'03, pp. 1-12,2003. pages 2 

[LEH03b] Jun Luo, Patrick Th. Eugster, and Jean-Pierre Hubaux. "Route Driven Gossip: Probab

ilistic Reliable Multicast in Ad Hoc Networks." In Proceedings of the 22nd Conference 

of the IEEE Communications Society, 2003. pages 2, 75 

[LEH04] Jun Luo, Patrick Th. Eugster, and Jean-Pierre Hubaux. "Pilot: probabilistic lightweight 

group communication system for ad hoc networks." IEEE Transactions on Mobile Com

puting, 03(2):164-179, April 2004. pages 75 

[LG97] Chunhung Richard Lin and Mario Gerla. "Adaptive Clustering for Mobile Wireless 

Networks." IEEE Journal of Selected Areas in Communications, 15(7):1265-1275, 1997. 

pages 41 

[LSGOO] S. Lee, W. Su, and M. Gerla. "On-Demand Multicast Routing Protocol in Multihop 

Wireless Mobile Networks.", 2000. pages 109, 112, 113 

[LSHOO] Sung-Ju Lee, William Su, Julian Hsu, Mario Gerla, and Rajive Bagrodia. "A Performance 

Comparison Study of Ad Hoc Wireless Multicast Protocols." In Proceedings of the 19th 

Conference of the IEEE Communications Society, pp. 565-574, 2000. pages 47, 112 



[LW04] 

105 

Wei Lou and Jie Wu. "Double-Covered Broadcast (DCB): A Simple Reliable Broadcast 

Algorithm." In Proceedings of the 23rd Conference of the IEEE Communications Society, 

2004. pages 2 

[Maled] Dahlia Malkhi. "Quroum Systems." In The Encyclopedia of Distributed Computing. 

Kluwer Academic Publishers, To be published. pages 86 

[MR99] Achour Mostefaoui and Michel Raynal. "Solving Consensus Using Chandra-Toueg's Un

reliable Failure Detectors: A General Quorum-Based Approach." In Proceedings of the 

13th International Symposium on Distributed Computing, pp. 49-63, London, UK, 1999. 

Springer-Verlag. pages 50 

[MVW01] Navneet Malpani, Nitin H. Vaidya, and Jennifer L. Welch. "Distributed Token Circulation 

on Mobile Ad Hoc Networks." In Proceedings of the Ninth International Conference 

on Network Protocols (ICNP'Ol), p. 4, Washington, DC, USA, 2001. IEEE Computer 

Society. pages 75 

[NTC99] S Ni, Y Tseng, Y Chen, and J Sheu. "The Broadcast Storm Problem in a Mobile Ad

hoc Network." In the proceedings of the ACM Int. ConE. on Mobile Computing and 

Networking (MOBICOM), pp. 151-162, 1999. pages 35, 36, 45 

[Per97] 

[Pin93] 

Charles E. Perkins. "Ad-hoc on-demand distance vector routing." In Proceedings of 

MILCOM,1997. pages 1 

J. Pinakis. Using Linda as the Basis of an Operating System Microkernel. PhD thesis, 

The University of Western Australia, 1993. pages 83 

[PMR99] Gian Pietro Picco, Amy 1. Murphy, and Gruia-Catalin Roman. "LIME: Linda Meets 

Mobility." In Proceedings of the 21st International Conference on Software Engineering, 

pp. 368-377, 1999. pages 84 

[PR97] Elena Pagani and Gian Paolo Rossi. "Reliable Broadcast in Mobile Multihop Packet 

Networks." In Proceedings of the Third Annual ACM/IEEE International Conference 

on Mobile Computing and Networking, 1997. pages 20, 41 

[RBH98] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd, and David Karr. 

"Building adaptive systems using ensemble." Softw. Pract. Exper., 28(9):963-979, 1998. 

pages 50 

[RBM96] Robbert Van Renesse, Kenneth P. Birman, and Silvano Maffeis. "Horus, a flexible Group 

Communication System." Communications of the ACM, 39(41):76-83, 1996. pages 50, 

93 



[Rin88] 

[RK03] 

[SB04] 

106 

G. A. Ringwood. "Parlog86 and the dining logicians." Communications of the ACM, 

31(1):10-25, 1988. pages 82 

Prashant Ratanchandani and Robin Kravets. "A Hybrid Approach to Internet Connectiv

ity for Mobile Ad Hoc Networks." In Proceedings of IEEE Wireless Communications and 

Networking, pp. 1522-1527, 2003. pages 2 

Yuan Sun and Elizabeth M. Belding-Royer. "A Study of Dynamic Addressing Techniques 

in Mobile Ad hoc Networks." In Wireless Communications and Mobile Computing, April 

2004. pages 83 

[Sch80] Fred B. Schneider. "Ensuring Consistency in a Distributed Database System by Use of 

Distributed Semaphores." In Symposium on Distributed Data Bases, pp. 183-189, 1980. 

pages 82 

[SRB01] A. Striegel, R. Ramanujan, and J. Bonney. "A Protocol Independent Internet Gateway 

for Ad-Hoc Wireless Networks." In Proceedings of Local Computer Networks (LCN), 

Tampa, Florida, November 2001. pages 2 

[TOL02] Ken Tang, Katia Obraczka, Sung-Ju Lee, and Mario Gerla. "Reliable, Congestion Con

trolled Multicast Transport Protocol in Multimedia Multi-hop Networks." In Proceedings 

of WPMC, 2002. pages 20, 41, 43 

[TS92] John Turek and Dennis Shasha. "The Many Faces of Consensus in Distributed Systems." 

Computer, 25(6):8-17, 1992. pages 46 

[VKT04] Sudarshan Vasudevan, Jim Kurose, and Don Towsley. "Design and Analysis of a Leader 

Election Algorithm for Mobile Ad Hoc Networks." In 12th IEEE International Conference 

on Network Protocols, pp. 350-360, 2004. pages 2, 75 

[vMH98] Robbert van Renesse, Yaron Minsky, and Mark Hayden. "A Gossip-Based Failure De

tection Service." In Proceedings of the IFIP International Conference on Distributed 

Systems Platforms and Open Distributed Processing (Middleware), pp. 55-70, 1998. 

pages 50 

[WAF04] Peng-Jun Wan, Khaled M. Alzoubi, and Ophir Frieder. "Distributed construction of con

nected dominating set in wireless ad hoc networks." Mobile Networks and Applications, 

9(2):141-149,2004. pages 44 

[WML98] Peter Wyckoff, Stephen McLaughry, Tobin Lehman, and Daniel Ford. "TSpaces." IBM 

Systems Journal, August 1998. pages 82 



107 

[WWVOl] Jennifer E. Walter, Jennifer L. Welch, and Nitin H. Vaidya. "A Mutual Exclusion Al

gorithm for Ad Hoc Mobile Networks." Wireless Networks, 7(6):585-600, 2001. pages 

2,75 

[XL89] 

[YB04] 

Andrew Xu and Barbara Liskov. "A design for a fault-tolerant, distributed implement

ation of Linda." In Ninteenth International Symposium on Fault-Tolerant Computing, 

Digest of Papers, pp. 199-206, June 1989. pages 90 

Eiko Yoneki and Jean Bacon. "An Adaptive Approach to Content-Based Subscription in 

Mobile Ad Hoc Networks." In IEEE International Conference on Pervasive Computing 

and Communications - Workshop on Mobile Peer-to-Peer Computing, 2004. pages 112 

[ZBG98] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. "GloMoSim: A Library for Parallel 

Simulation of Large-Scale Wireless Networks." In Workshop on Parallel and Distributed 

Simulation, pp. 154-161, 1998. pages 15, 112 



108 

Appendix A 

Responsibility transfer for reliable 
broadcast 

A.I Introd uction 

The main part of this dissertation has concerned itself with developing fault-tolerant protocols for 

mobile ad-hoc networks. When fault-tolerance is a key design issue, replication becomes important. 

For example, the tuple space in chapter 5 was designed to replicate each tuple as widely as possible, 

thus maximising both fault-tolerance and availability of each tuple. However, in certain scenarios 

failures may be highly unlikely, and we can avoid the replication required to tolerate failures. 

Even when failures are not considered, the coverage a best-effort multicast or broadcast protocol 

can achieve may fall catastrophically below what the end user might expect. This can cause problems 

if the message to be delivered contains important information (such as for example code updates 

which need to get to all nodes). 

End-to-end acknowledgements between the originator of a message and all the receivers is a 

possibility in cases where guaranteed delivery is important, but this can result in long delays for 

the originator before it can discard each message. This is particularly true when the network is 

frequently partitioned and end-to-end paths between nodes are sporadic at best. 

An alternative to end-to-end acknowledgements is to pass the responsibility for ensuring delivery 

of a message between nodes. This is the approach taken to achieve reliable unicast between nodes 

in so called Delay Tolerant Networks (DTNs)[Fa103]' where i~ is called custody transfer. DTNs 

are networks where no end-to-end path is assumed to exist, and includes the kind of transiently 

partitioned mobile ad-hoc networks considered in this dissertation. 

Using custody transfer, a "better" node to transfer custody to is searched for, and when found, 

a transaction-like handshake takes place to transfer custody between the two nodes. The metric by 

which a node to transfer custody to is chosen is typically dependent on how likely the node is to get 

the message closer to the destination 



109 

However, the most recent IETF internet draft covering the DTN custody transfer mechanism 

states that the exact meaning and design of custody transfer for multicast delivery remains to be fully 

explored [Cer05j. For example, when delivering to more than one destination one might want more 

than one node to be able to have custody of a given message. In such cases, the quite heavy-weight 

method of transferring responsibility between two nodes may not be suitable. 

This chapter presents an alternate method for transferring responsibility between nodes to en

sure reliable broadcast in mobile ad-hoc networks. A reliable, though not fault-tolerant, broadcast 

protocol called Scribble, is derived by combining this method with the basic proactive dissemina

tion strategy from section 3.2.3. The performance of Scribble is compared and contrasted to the 

best-effort multicast protocol ODMRP[LSGOOj. 

Note that as there are no failures, assumptions such as each node being assigned a unique id and 

being aware of the value of n can be trivially met by having a single centralised node maintaining 

group membership. 

A.2 The Scribble protocol 

The next section describes the responsibility transfer mechanism, including explaining how to make 

use of the mechanism to implement the Scribble protocol. 

The assumption that failures do not happen allows Scribble to guarantee delivery to all nodes 

in the system. However, even with no failures, the theorem that shows how possibly all nodes may 

have to become responsible for this to be achieved still holds (theorem 2.1 in section 2.3.1). 

Scribble handles this by gradually making all nodes responsible if the protocol appears not to be 

terminating. Section A.2.2 explains how this is handled. 

A.2.1 Responsibility transfer mechanism 

The responsibility for message dissemination initially rests with the broadcast originator and is 

subsequently passed on to other nodes (as in a relay-race). Consequently, a node can be in one 

of two states regarding the broadcast of m: responsible or passive. A responsible node behaves as 

in PDP (section 3.2.3); it transmits m once, and then repeats this transmission every (3 seconds if 

required. A node in the passive state does not transmit, nor retain m. Note that a node which has 

not received m is considered to be passive. 

Ideally, the number of nodes simultaneously responsible should be kept low, particularly when 

a higher number does not provide any further coverage. The mechanism used for transferring 

responsibility achieves this objective by striving to keep at most one node responsible in any subset 

of nodes that are in each others wireless range (a fully connected subset); moreover, at least one 

node is kept responsible in the group as a whole at any time. 



110 

The initiator is the first node to know of, and to be responsible for, m. The responsibility transfer 

mechanism makes use of logical clocks. A logical clock is just an integer counter whose value can 

only increase, though not necessarily in relation to the passage of real-time. A node Ni constructs a 

logical clock Li(m) with the initial value of zero when Ni first knows of m. Whenever Ni transmits 

a message, Li(m) is added to it; this (logical) time-stamp is denoted as m.l of the transmitted m. 

In addition, the mechanism makes use of a random assessment delay, RAD. Recall that a RAD 

is a short time interval randomly chosen between ° and some maximum value by a node which is 

about to transmit. During the RAD a node will assess the action of neighbouring nodes to see if 

their actions change what it will transmit. 

Suppose that a node Nj is passive on m and receives m. Nj becomes responsible for m if : 

Rl : m.l of the received m is greater than, or equal to Lj(m), and 

R2 : Nj has not received m in the past {3-8 seconds. 

The newly responsible node's first transmission of m is preceded by the following activities: Nj 

adopts the incoming m.l as its Lj(m) and chooses a RAD uniformly distributed on (0, MAX __ HAD). 

The first transmission of m is scheduled for when the RAD has expired. During the RAD, N j 

assesses any incoming values of m.l, and sets Lj(m) to the highest received such value. When the 

RAD expires, Nj increments Lj(m) by 1, stamps m with the value of Lj(m) and transmits m. 

A responsible node Ni becomes passive if it receives m such that: 

Pl : m.l of the received m > Li(m). 

Upon becoming passive, Ni cancels any any pending transmission of m and deletes it. 

Remark 1. IfNj that has just become responsible, receives another transmission of m that meets 

Pl, then it instantly becomes passive canceling any RAD that it had just set and any transmission 

scheduled. This means a responsible node could become passive before ever transmitting m. 

Remark 2. When two responsible nodes receive each other's m, this method does not permit 

both nodes to become passive. However, one of them is likely to become passive except in the case 

where both have identical logical clock values and transmit m nearly at the same instant despite 

RAD. 

An Example. Consider a (fully connected) subset e of nodes that are in wireless range of each 

other. Let us suppose that lei < n and that e contains Co w~ich initiates a dissemination of m. 

Also suppose that every node in e other than Co receives m with m.l = 1 and becomes responsible 

after setting L(m) to 1. If Cl E e chooses the smallest RAD it ends up transmitting m with m.l = 

2. Upon receiving m from Cl, Co will become passive (by Pl). If we assume that all other nodes 

receive m from Cl before their respective RAD expires (Le., before they transmit m which would 

result in increasing their L(m) to 2), only Cl will be responsible in e. That is, the responsibility for 

m has now been passed on from Co to Cl' 



111 

Consider next a node d ¢ C that is in wireless range with only Cl in C and receives m with m.l 

= 2. When d becomes responsible and transmits m with m.l = 3, Cl becomes passive. Note that C 

now has no active node in it, while another fully connected subset (which contains Cl and d) gains 

a responsible node. 

A.2.2 Protocol termination 

Scribble ensures that any responsible node is able to deduce the achievement of the desired coverage 

once the latter is obtained, and thus terminate, using the same distributed detection mechanism as 

described in section 3.2.2. 

The only modification to accommodate passive nodes is that if a node which receives an m.K 

which does not contain its signature, and if it subsequently decides not to transmit m, it transmits 

a small acknowledgment packet for m. It is worth noting that this does not cause an ack-implosion, 

as the acknowledgment packets only ever travel one hop. 

However, as discussed in section 2.3.1, the network can act like an adversary, enabling the direct 

connectivity between nodes which have received m and which has not received m, only when the 

former is passive. This means that a protocol which keeps only a subset of nodes responsible, however 

cleverly designed, cannot guarantee that the right nodes are responsible at the right time. 

To illustrate this in the context of a protocol which allows nodes to transfer responsibility, let 

us revisit the example from the previous section. The fully-connected subset C contains Co which 

initiates a dissemination of m. Since ICI < n, some more nodes, such as d ¢ C, must receive m. In 

the absence of any such d which enters the wireless range of some Ci E C, it is easy to see that the 

desired coverage cannot be obtained. 

Putting the above differently, the desired coverage is guaranteed only if some Ci E C has in its 

wireless range one or more nodes, such as d ¢ C, for a period of at least {3 + 28 (Le. Ci and dare 

in direct connectivity) and if Ci is responsible during this period of direct connectivity. The former 

will occur since the network meets the NLR (see section 2.2) and when it does occur, the protocol 

must ensure the latter. 

Note that the network can choose any Ci E C and place the chosen Ci and d in direct connectivity 

at arbitrarily chosen timing instants. Indeed, the network can behave like an adversary, enabling 

the direct connectivity between Ci and d only when the former is passive. This means that a protocol 

which keeps only a subset of nodes in C responsible, however cleverly designed, cannot guarantee 

that the right nodes in C are responsible at the right time. 

So, the measure taken by Scribble involves gradually allowing all nodes in C to become responsible 

when the broadcast appears not to be terminating. This is achieved by requiring each node, Ni, to 

have a parameter Oi. If Li(m) ~ Oi or if Ni receives m with m.l ~ Oi, then Ni becomes responsible 

(if it is not already) and does not become passive until it realises m. 



112 

If this happens, the execution of Scribble is almost indistinguishable from the (fault-tolerant) 

proactive dissemination protocol, PDP, introduced in section 3.2.3. The discussion above, coupled 

with theorem 2.1, indicates that any reliable protocol must contain the possibility of executions 

similar to PDP. Otherwise, termination cannot be guaranteed even when the network satisfies the 

NLR, but behaves like an adversary. 

Choosing a suitable value for () is highly dependent on the scenario in which the protocol is 

deployed. Transient, and even prolonged, partitions are common in some ad-hoc networks, and their 

occurrences should not necessarily be misread by the protocol as adversarial network behaviour. () 

is therefore left as a configurable parameter. 

A.3 Performance evaluation 

This section compares Scribble to ODMRP[LSGOO], a best-effort multicast protocol. Although 

ODMRP does not provide any delivery guarantees it should act as an interesting benchmark. It has 

fared well in various simulation studies[LSHOO, KC02], and is also widely used; for example acting as 

the underlying transport protocol for the event-based middleware proposed for pervasive computing 

environments by Yoneki and Bacon[YB04]. 

In addition, comparing Scribble to ODMRP provides the first comparison between a best-effort 

and a reliable broadcast protocol. This comparison is an additional contribution as it provides an 

insight into the cost associated with affording the protocol user certainty that a message will be 

delivered to the specified number of nodes. 

A.3.1 Simulation Model 

The simulation parameters used are the same as those described in section 2.1 in section 2.4, though 

the simulator used was GloMoSim[ZBG98] not Jist/SWANS as in the main dissertation. 

In all experiments Scribble set aside 64 bytes for signatures in each data header. All simulations 

used a byte for each node signature. () was chosen to be a high value such that no simulations 

included executions where all nodes were forced by Scribble to be responsible. 

Scribble's performance was studied in both sparse (when wireless range is 150m), as well as dense 

networks (wireless range = 350m). The following performance metrics were considered: 

1. Transmission Overhead: Measures the total number of bytes transmitted by each node in order 

to complete one reliable broadcast. This includes both control (ack, topology control, realisa

tion, etc.) and data packets (including packet headers). It is measured in bytes transmitted 

per byte broadcast, and was measured at the MAC layer for both protocols. 



113 

2. Latency: Measures t he average time from a node initiates a the broadcast of a message unt il 

a node receives that message. This was measured at the application layer. 

3. Percentage Successful Runs (PSR): Measures the percentage of protocol runs where a message 

was delivered to all nodes. This will always be 100% for Scribble as it is a reliable broadcast 

protocol. This was also measured at t he application layer. 

A.3.2 Simulation Results 

5 

4 
'0 
!1:1 
Ol 

.s:: 
Q; 

3 > 
0 
c 
0 
'iii 
en 2 E 
en 
c 
~ 
I-

~ ~II 'I ,I I. 
-. 

H .i ....... , .. .. .......... If· ...... · ........... Ir ........ · • .. ........ H T ...... .. I ' 

o 
o 5 

Scribble PSR 
ODMRP PSR 

10 15 20 
Avg Speed (m/s) --

25 

Scribble 
ODMRP 

30 35 

100 

90 

80 

70 

60 ;g 
L 

50 a: 
(/J 

40 CL 

30 

20 

10 

0 

Figure A.1 : Transmission overhead and PSR vs Average speed with wireless range = 250m 

Figure A.1 shows the impact t hat variable node speeds has on the two protocols, when the 

wireless range of the nodes fixed at 250m. PSR is shown as bars on the right y-axis, while the 

transmission overhead is drawn as lines relative to the left y-axis . 

As expected , ODMRP performs relatively well in terms of overhead with these parameters (these 

conditions are in fact very similar to those chosen by the ODMRP authors themselves in [LSGOO]), 

with mobility having little impact on the transmission overhead, as there are no reconstruction 

efforts in place in case the routing mesh breaks. However the average number of times ODMRP is 

able t o deliver a message to all intended recipients is below 60% even in the most static scenario 

(lm/s) , with the PSR dropping to just under 40% in the most mobile case (35m /s). Furt her , when 

the number of successful recipients of individual packets is studied , one can observe t hat in extreme 

cases, when the originating node is partitioned from the rest of the network , the protocol terminates 

with only the originating node itself having received the packet. 

Scribble on the other hand, provides its delivery guarantees with little additional overhead com-



114 

pared to ODMRP, with the additional overhead being higher when the mobility is relatively low. 

The reason for this is that Scribble guarantees delivery to all nodes including those which might 

be transiently partitioned from the rest. When the mobility is low, these partitions takes longer to 

heal , so t he cost of guaranteeing delivery to partitioned nodes is higher, thus increasing the overall 

cost of guaranteeing delivery. 

0.5 r-:----=----=----:;-----,=----:----=--__=__ 

0.4 

::§: 0.3 

g 
.'!l 
III 

...J 0.2 

0.1 

... .... ... ........ ..• .......... . ........• , ....... l i · ···· · · ··~ ......... . 
o LL_~_~_~~~L-_a-_~_~ 

o 5 10 15 20 
Avg Speed (m/s) 

Scribble PSR 
ODMRP PSR -

25 

Scribble 
ODMRP 

30 35 

100 

90 

80 

70 

60 ~ 
50 a: 

(f) 

40 a... 

30 

20 

10 

0 

Figure A.2: Latency and PSR vs Average speed with wireless range = 250m 

Figure A.2 shows the average latency of ODMRP and Scribble for t he same scenario as above. 

What is immediately obvious is that Scribble has a higher latency than ODMRP. The reason for 

this is mainly that Scribble, as part of its structure-less dissemination mechanism, has to observes 

its neighborhood for a small amount of time before deciding whether or not to retransmit a packet. 

A node in ODMRP, on the other hand, knows instantly whether to retransmit a packet, as this 

decision is based simply on whether it is part of the routing mesh or not. 

Figure A.3 shows how transmission overhead and PSR vary as function of node wireless ranges. 

These results show very clearly the cost of attaining certainty that a message will be delivered to 

enough nodes. As one would expect, the cost of guaranteeing delivery is not excessive when the 

network is fairly dense (remember we do not consider very cong~sted conditions). In fact ODMRP 

and Scribble have almost identical overheads in the densest case considered, though note that even 

here ODMRP is not able to provide delivery to all nodes in more than 72% of cases. As the density 

decreases, t he PSR ODMRP achieves drops dramatically, going as low as 0.2% of cases in the sparsest 

network (this is too small to show up on the graph) . Scribble on the other hand maintains its 100% 

PSR, though at what can be considered considerable costs in the sparsest cases. 

Figure A.4 shows how latency is impacted by variations in density. The general trend is that the 



"0 

'" OJ 
.<:: 
iii 
> 
0 
c 
0 
'iii 
<Il 

E 
<Il 
C 

~ 
I-

115 

5 ,.-------.-------.. ------,,-------., 

4 

3 

2 

....... .... ........... 

o ~------~------~------~------~ 
150 200 

Scribble PSR 
ODMRP PSR 

250 
Wireless Range (m) 

300 

-- Scribble 
ODMRP 

350 

100 

90 

80 

70 

60 ~ 
50 a: 

CI) 

40 c.. 

30 

20 

10 

0 

Figure A.3: Transmission overhead and PSR vs Wireless range with average speed = 5 m/s 

latency of Scribble suffers as density is decreased. This is natural as network partitioning becomes 

more frequent in low densities, and it thus takes longer to delivery a message to nodes partitioned 

from the originator. ODMRP maintains a stable, low latency, but this is merely because latency 

is only measured to nodes which actually receive a packet; if only the originator receives a given 

message, the average latency for t hat packet is 0 seconds(!). 

A.4 Conclusion and summary 

This chapter has introduced a novel mechanism for transferring responsibility for ensuring delivery 

of a message to a group of nodes. This responsibility transfer mechanism is analogous to the custody 

transfer mechanism proposed for reliable unicast in delay tolerant networks, though is designed for 

reliable broadcast in mobile ad-hoc networks. 

A reliable broadcast protocol, Scribble, which makes use of the responsibility transfer mechanism 

has been introduced , and its performance compared to that of the best-effort multicast protocol 

ODMRP. The resulting performance study showed that Scribble overall had a higher transmission 

overhead as well as latency than ODMRP in most cases. 

However, in a number of scenarios the difference was not very great. Further , the simulations 

showed that in none of the scenarios studied was ODMRP able to deliver a message to all nodes 

every time it was invoked . Indeed, in some sparse scenario the percentage of times ODMRP was 

successful in this was less than 0.2% of the times it was invoked. 

This result highlights the inherent trade-off between a reliable and a best-effort protocol; a 



0.8 

~ 0.6 
~ 
c 
Q) 

.!§ 0.4 

0.2 

116 

. I ~ 
-~ 

I---. o ..................... ............. ........ ~ ................... ~ .. ~r.-... -.... -... -... -... _ .... .1 

150 200 250 300 350 

Scribble PSR 
ODMRP PSR 

Wireless Range (m) - Scribble 
ODMRP 

100 

90 

80 

70 

60 ;g 
0 

50 a: 
(f) 

40 CL 

30 

20 

10 

0 

Figure A.4: Latency and PSR vs Wireless range with average speed = 5 mls 

reliable protocol might be more expensive in terms of overhead and latency per invocation, however 

with a reliable protocol the end user only ever needs to invoke it once. With an unreliable protocol 

the end user may have to invoke it several times to get anywhere near acceptable level of coverage. 



117 

Appendix B 

Supplementary material for the 
consensus chapter 

B.l Pseudo code for the combined consensus protocol 

The combined consensus protocol is in two main threads. The core is in the consensus thread, 

depicted in figure B.1. It contains the replenish optimisation. The replenishing and emptying of the 

local bag of values is seen on lines 14 and 34. 

The cross layer and adoption optimisations is in the receive thread depicted in figure B.2. The 

cross layer optimisation involves nodes adding any values they know if in the message body prior to 

the dissemination protocol signing the message (lines 27 and 29). 

How a node should behave when it receives a higher round message is shown on lines 4-12, and 

how it should behave when it receives a higher phase message is shown on lines 13-26. 

Receiving a higher round message involves emptying your local bag, setting the round number to 

the received round number, setting the phase number to 0 and stopping the ongoing dissemination of 

the (lower round) consensus message. The onReceiveConsensusMessageO function is then called 

recursively. 

Receiving a higher phase message involves adopting the incoming phase number and starting 

to disseminate the received dissemination message in the appropriate place (involves setting the 

consensus thread control to the appropriate line). 

One further change is necessary; on line 32 in the consensus thread, it is possible that a node 

has no values to choose randomly from it receives a higher round, phase two message. In this case, 

the consensus blocks on this call, and the dissemination protocol keeps disseminating the phase two 

message. This means that eventually a correct node which has values in its bag realises the phase 

two message, makes a choice, and then moves into the next phase (thus unblocking any nodes which 

had empty bags). 



118 

Consensus(preference) 
4 { 

6 

bag[] = 0; 
round = 1; 
phase = 1; 

while (true) 
{ 

estO -{preference}; 
disseminate consensusMsg(phase, round, estO) to n/2. 
wait until consensusMsg has more than (n/2) signatures; 
bagO ~ est[j; //replenish bag with received values 
if( lestOI > 1) 
{ 

and current estimate 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

estO -{..1}; //then more than one value proposed 
} 
phase .. 2; 
disseminate consensusMsg(phase, round, estO) to n/2 nodes; 
wait until consensusMsg has more than (n/2) signatures; 
if ( est[] contains at least one value, v "1..1) 
{ 

} 

{ 

preference = v; 
if( estO contains only one value, v "1..1) 
{ 

decide(v); //sends a realisation packet with decided value. 
} 

else (estO only contains ..1) 

preference = bag[random]; //maybe empty; block in that case 
33 } 

34 bagO = 0; //empties bag 
35 round++; 
36 phase = 1; 
37 } 

38 } 

39 

40 

Figure B.1: The main consensus thread of the combined protocol 



6 

8 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

119 

onReceiveConsensusMsg(incomingMsg) lIthe Receive Thread 
{ 

} 

if(incomingMsg.round > round) 
{ 

} 

bagD = 0 
round = incomingMsg.round; 
phase = 0; 
consensusMsg = null; Ilstops any ongoing dissemination 
onReceiveConsensusMsg(incomingMsg); lIre cursive 
return; 

if(incomingMsg.phase > phase) 
{ 

} 

phase = incomingMsg.phase; 
consensusMsg - incomingMsg; 
if(incomingMsg.phase == 1) 
{ 

set Consensus thread to line 11 
} 
else 
{ 

set Consensus thread to line 20; 
} 

if(incomingMsg.est[] contains values not in consensusMsg.est[]) 
{ 

add values not found in consensusMsg.est[] 
} 
return; IIWhen this returns, the dissemination protocol signs the message as before 

Figure B.2: The receive thread of the combined protocol 



120 

B.2 Performance study of the combined consensus protocol 

The simulation environment for this performance study is as described in section 2.4. The measures 

of interest to us are the number of rounds, the time until a decision is reached and the message 

passing overhead per round. We will see how these three measures are impacted by varying nodes' 

wireless ranges (and thus varying the network density), the nodes' average speeds (and thus varying 

the rate of topological change), the number of nodes in the system, n, and finally the ratio of 

tolerated failures, f. In all simulations, the number of actual failures induced was half the number 

of tolerated failures. 

Figures B.3, B.4 and B.5 shows the impact (or lack of) when changing the maximum speed of 

the nodes. For 36 nodes, with 250m wireless range, the node speeds appear to have no impact either 

on the number of rounds, the average overhead per round or the time until decision. This is a good 

result for ad-hoc networks where increasing node speeds often leads to deteriorating performance. 

~ ~ 
0 c 

! 0 
10 

~ 
~ 

E 
III 8 c 
~ ~ 

III 

~ 
f6 .0 

~ 
0 

0 5 10 15 20 

f= nI2 
f = nl3 
f=n/4 
f=nl6 
f=nl8 

25 

Max node speed (m/s) 

30 35 

Figure B.3: Average number of bytes transmitted per node vs. Node speeds for n = 36 and 250m 
wireless range 

Figures B.6, B.7 and B.8 shows the impact of varying the number of nodes while keeping the 

wireless range and node speed fixed at 250m and lOm/s respectiyely. It appears that when the 

number of nodes is low, the overhead per round is slightly higher (figure B.6). This is likely due to 

the properties of the dissemination protocol; for example, the dissemination protocol will suppress 

a transmission after hearing a number of equivalent transmissions. If there are few nodes in the 

system, this is unlikely to happen, and a lot of nodes (relatively speaking) will end up transmitting. 

The number of rounds appear to be unaffected by the increasing number of nodes, even for 

f = n/2 (figure B. 7). This shows that the replenishment and adoption optimisations work well, and 



121 

00 ~---------------------------------------, 

f/l <0 
'0 
c: 

~ 
'0 

o 

o 5 10 15 20 

f = nl2 
f = nl3 
f=n/4 
f=n16 
f=nl8 

25 

Max node speed (m/s) 

30 35 

Figure B.4: Average number of rounds vs. Node speeds for n = 36 and 250m wireless range 

II) 

~ .". 

c: 
0 
"iii 
"~ C') 

'0 

is 
Q) 

E C\I 
~ 

Cl 

~ 

0 

0 5 10 15 20 

f=nl2 
f = nl3 
f=n/4 
f=nl6 
f=nl8 

25 

Max node speed (m/s) 

30 35 

Figure B.5: Average time till decision vs. Node speeds for n = 36 and 250m wireless range 



122 

is a significant improvement on the EMR and Ben-Or protocols when they are run in lockstep. 

Figure B.B shows how the time till a decision is reached is increased as the number of nodes 

increases. This is natural, as it takes longer to get a majority of votes when the number of nodes 

is higher. The increase appears to be only linear, and again, unaffected by the number of tolerated 

failures. 

Q) 

~ 
f = nl2 '0 

0 f = nl3 c: 
(jj f=n/4 
Q. 

f=n/6 '0 

~ ~ 
f=n18 

'E 
U) 
c: 
Jg 
U) , 
~ 8 " '. .0 N .... ~ ~ 

g> .. ~ .......... 
« -~~- ... 

0 

10 20 30 40 50 60 

Number of nodes 

Figure B.6: Average number of bytes transmitted per node vs. Number of nodes for lOm/s node 
speeds and 250m wireless range 

0 
~ 

<Xl 
U) 
'0 c: 
:::l e co 
'0 

Z 
E .,. 
:::l 
c: 

! 
N 

0 

10 20 30 40 

Number of nodes 

f = nl2 
f = nl3 
f=nl4 
f=n16 
f=n18 

-.... 
• .:.. ••••• ~"C(_ 

50 60 

Figure B.7: Average number of rounds vs. Number of nodes for lOm/s node speeds and 250m 
wireless range 



123 

LO 

1 = nf2 

:§: 1 = nl3 
c 

...... l=n/4 

:~ 
0 l=n/6 

~ 
l=nl8 

'E 
Q) 

E 
:0:: LO 

~ 
c( 

0 

10 20 30 40 50 60 

Number 01 nodes 

Figure B.8: Average time till decision vs. Number of nodes for lOmls node speeds and 250m wireless 
range 

Finally, figures B.9, B.lO and B.ll shows the impact of varying the node density by varying 

the nodes' wireless ranges. Again, the number of rounds appears unaffected, while the latency and 

the transmission overhead per round is higher at lower densities. This mirrors the result for the 

dissemination protocol where lower densities cause higher overheads. This is because at low densities 

the network is likely to be partitioned more frequently and for longer durations. 



8 
'" Q) 

"8 g 
<: N 

~ 0 

~ toil 

E 0 
III II) 
<: ~ 

<II 
l:> 
III 8 
~ 
LJ 

g' g 
« 

0 

....... 
~ 

100 150 

124 

200 250 

Wireless range (m) 

1 = nl2 
1 = n/3 
l=n/4 
l=n16 
l=nIB 

300 350 

Figure B.g: Average number of bytes transmitted per node vs. Wireless range for 10m/s node speeds 
and n = 36 

o 

100 150 200 250 

Wireless range (m) 

1 = nl2 
1 = n/3 
l=n/4 
l=n/6 
l=nl8 

300 350 

Figure B.lO: Average number of rounds vs. Wireless range for lOm/s node speeds and n = 36 



125 

III 

f = nl2 

:§: f = nl3 
c: 0 f=n/4 
0 ~ f=n/6 'iii 

~ f=nl8 

:6 
Q) 

E 
'." III 

r 
~ 

0 

100 150 200 250 300 350 

Wireless range (m) 

Figure B.ll: Average time till decision vs. Wireless range for 10m/s node speeds and n = 36 


	420067_001
	420067_002
	420067_003
	420067_004
	420067_005
	420067_006
	420067_007
	420067_008
	420067_009
	420067_010
	420067_011
	420067_012
	420067_013
	420067_014
	420067_015
	420067_016
	420067_017
	420067_018
	420067_019
	420067_020
	420067_021
	420067_022
	420067_023
	420067_024
	420067_025
	420067_026
	420067_027
	420067_028
	420067_029
	420067_030
	420067_031
	420067_032
	420067_033
	420067_034
	420067_035
	420067_036
	420067_037
	420067_038
	420067_039
	420067_040
	420067_041
	420067_042
	420067_043
	420067_044
	420067_045
	420067_046
	420067_047
	420067_048
	420067_049
	420067_050
	420067_051
	420067_052
	420067_053
	420067_054
	420067_055
	420067_056
	420067_057
	420067_058
	420067_059
	420067_060
	420067_061
	420067_062
	420067_063
	420067_064
	420067_065
	420067_066
	420067_067
	420067_068
	420067_069
	420067_070
	420067_071
	420067_072
	420067_073
	420067_074
	420067_075
	420067_076
	420067_077
	420067_078
	420067_079
	420067_080
	420067_081
	420067_082
	420067_083
	420067_084
	420067_085
	420067_086
	420067_087
	420067_088
	420067_089
	420067_090
	420067_091
	420067_092
	420067_093
	420067_094
	420067_095
	420067_096
	420067_097
	420067_098
	420067_099
	420067_100
	420067_101
	420067_102
	420067_103
	420067_104
	420067_105
	420067_106
	420067_107
	420067_108
	420067_109
	420067_110
	420067_111
	420067_112
	420067_113
	420067_114
	420067_115
	420067_116
	420067_117
	420067_118
	420067_119
	420067_120
	420067_121
	420067_122
	420067_123
	420067_124
	420067_125
	420067_126
	420067_127
	420067_128
	420067_129
	420067_130
	420067_131
	420067_132
	420067_133
	420067_134
	420067_135
	420067_136
	420067_137

