
UNIVERSITY OF
NEWCASTLE

The Effect of Diverse Development Goals on
Computer-Based System Dependability!

(
Anthony Thomas Lawrie

Spring 2006
NEWCASTLE UNIVERSITY LIBRARY----------------------------

204 26769 1----------------------------
\\o..eS\S \..<b \b~

'Presented to the School of Computing Science at The University
of Newcastle upon Tyne. In part fulfilment of the requirements for a
degree of a Doctorate of Philosophy.

Acknowledgments

I would like to thank, first and foremost, my PhD supervisor Professor Clifford
Jones for his invaluable guidance in producing this thesis. Secondly, I would also
like to thank my family, friends and colleagues for their encouragement during this

time. Thirdly, I would like to acknowledge the funding sponsors EPSRC for pro-

viding the practical financial means to conduct this work. Fourthly, I would like
to take this opportunity of thanking my reviewers, Professor Brian Randell and
Professor Bev Littlewood for their helpful advice and comments that improved
the quality of this thesis. Last, but not least, I would also like to formally recog-
nise the positive research environment afforded to me by the Centre for Software
Reliability department, within the school of Computing Science, at Newcastle

University where I was based throughout this period.

Abstract

Society's increasing dependence upon software control and information process-
ing provision has demanded comparable increases in software dependability. While
the existing software dependability approach has resulted in significant improve-
ments, its focus is heavily aimed towards achieving software dependability via

redundant fault-tolerant mechanisms built into the software artifact to provide
error-control in the presence of activated faults. Less emphasis appears to have
been placed upon how software dependability can also be promoted through a
fault-avoidance approach in the software creation process by incorporating hu-
man redundancy and diversity. In this thesis, a process intervention which can

potentially improve fault-avoidance is considered. This involves the setting of

diverse development goals within important generic computer-based system con-

texts in order to increase detection of potentially harmful assumptions which can
result in subtle systemic conflicts that can undermine the dependability of the re-
sultant artifact during the early development phases of requirements, specification
and design. A search theoretic simulation model is progressed and developed to
capture some of the important dynamics involved. The eventual outputs of the
simulation model indicate that increased fault coverage and sensitivity can be ob-
tained through the setting of diverse development goals during the early phases of
software development.

Contents

1 Introduction 12

1.1 Focus of the Thesis 13

1.2 Nature of the Thesis .. 13

1.3 Overview of the Thesis 14

1.3.1 Chapter 2 14

1.3.2 Chapter 3 14

1.3.3 Chapter 4 15

1.3.4 Chapter 5 15

1.3.5 Chapter 6 15

1.3.6 Chapter 7 16

1.3.7 Chapter 8 16

1.3.8 Chapter 9 17

1.3.9 Chapter 10 17

1.3.10 Chapter 11 17

2 Dependable Software Artifacts 18

2.1 Chapter Introduction ... 19

2.2 The Dependability Framework . 19

2.2.1 Threats to Dependability 19

2.2.2 Attributes of Dependability . 21

2.2.3 Means by which Dependability is Attained 21

2.3 The Dependability Process 23

2.3.1 The Software Creation Process 24

2.3.2 The Created Software Artifact . 25

1

CONTENTS 2

Passive Buffering Error Control
Feed-Forward Error Control

Feedback Error Control
More Sophisticated Error Control .

26
27
27
29

31

33
38

2.3.3 Process and/or Artifact Responsibility Issues
2.4 Software Artifact Redundancy

2.4.1 Software Error Control .
2.4.1.1
2.4.1.2

2.4.1.3
2.4.1.4

2.4.2 Broader Software Artifact Redundancy Issues 40
2.4.2.1 Computation Redundancy Classification(s) 40
2.4.2.2 Structural Redundancy Issues . . . 45

2.4.3 Limitations of Software Artifact Redundancy 48
2.4.3.1 Limitations of Error Control. . 48
2.4.3.2 Increasing Artifact Complexity

2.5 Chapter Summary

50
50

Application Domain
Management Issues
Planning ...
Coordinating

Tracking .

52
53

53

56
58
61
62
62
63
64
65
66
67
67
68
72

73
74

3 Dependable Software Processes
3.1 Chapter Introduction

3.2 Problems in The Software Development Process
3.2.1 The Software Creation Task
3.2.2 Human Resources .
3.2.3 Process Technology .

3.2.3.1 Suitability of Process Technology .
3.2.3.2 Effectiveness of Process Technology

3.2.4 The Process Environment ...
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4
3.2.4.5

3.3 A Dependable Process View

3.3.1 Process Attributes
3.3.1.1 Environmental Process Attributes
3.3.1.2 Internal Process Attributes

CONTENTS 3

3.3.2 Process Threats 76
77
77
78
79
79
82
82
83
85
85
88

3.3.2.1 Environmental Process Threats
3.3.2.2 Internal Process Threats
3.3.2.3 Threat Propagation

3.3.3 Process Means .

3.4 Process Redundancy and Diversity .
3.4.1 Fault-Avoidance and Fault-Tolerance

3.4.1.1 The Software Creation Task .
3.4.1.2 Human Resource Redundancy
3.4.1.3 Process Technology Redundancy

3.4.2 Justifying Process Redundancy
3.5 Chapter Summary .

4 Computer-Based Systems
4.1 Chapter Introduction .
4.2 System View

4.3 Computer-Based System View

4.3.1 A Holistic Perspective

4.3.2 The Generic CBS Contexts .
4.3.2.1 The Utility Context
4.3.2.2 The Deployment Context
4.3.2.3 The Engineering Context
4.3.2.4 The Evolution Context.

4.4 Chapter Summary

90
91
91

96

97
98
100
101
104

105
107

5 ATMCase-Study
5.1 Chapter Introduction
5.2 ATM Contexts

5.2.1 The Utility Context.

5.2.2 The Engineering Context
5.2.3 The Deployment Context.

5.2.4 Specific ATM Environment Adaptation
5.3 Chapter Summary .

108
109
109

110

115
122
126
128

CONTENTS 4

6 Assumptions
6.1 Chapter Introduction
6.2 Assumptions in Reasoning . .

6.2.1 Deductive Reasoning

6.2.2 Inductive Reasoning

6.2.3 Suppositions and Presuppositions
6.2.4 Assertions and Beliefs

6.2.4.1 Beliefs.........
6.2.4.2 Formal Argumentation

6.2.5 Enthymemes or Suppressed Premises
6.3 Assumptions in Communication
6.4 Assumptions in Problem-Solving
6.5 Assumptions in Contexts

6.5.1 Culture ..
6.5.2 Knowledge

6.6 Chapter Summary .

130
131
131
131
134

136

139
139
140
142
144
147
153
153
157
160

7 Purpose and Function
7.1 Chapter Introduction
7.2 Teleology

7.2.1 Origins...
7.2.2 Rejection of Teleological Explanations
7.2.3 Types of Teleological Processes
7.2.4 The Four Causes

7.3 Goal-Direction
7.3.1 Single Goals
7.3.2 Multiple Goals

7.4 Chapter Summary . . .

162
163
163
163
165
166
173
175
175
177
179

8 Discussion of a Goal-Diversity Process Intervention
8.1 Chapter Introduction
8.2 A Goal-Diversity Process Intervention

8.3 Non-Functional Notation .

180
181

181
183

CONTENTS 5

8.3.2
8.3.1 Non-Functional Attributes 184

187The Non-Functional Framework
8.3.3 Suitability of the Non-functional Framework 191
8.3.4 Important Differences Between Approaches 195

8.4 Goal-Diversity - Analysis and Synthesis 201
8.4.1 Analysis Examples 202

8.4.1.1 First Stage - Individual Goal Promotion 202
8.4.1.2 Second Stage - Separate Inspection

8.4.2 Synthesis Examples - Using ATMCase Study
8.4.2.1 Encryption Policy - Issue 1 ..

203
205
206

8.4.2.2
8.4.2.3
8.4.2.4
8.4.2.5
8.4.2.6

8.4.2.7

Authorisation Policy - Issue 2 . 207
Human Error Analysis - Issue 3 211
Opportunistic Theft - Issue 4 . 211
Obscure Security Flaw Conflicts - Issue 5 . 213
Interaction Consistency and Completeness -
Issue 6 .. 217
State Representation Completeness - Issue 7 219

8.4.2.8 Environmental Adaptation Issues 8 and 9 . 220
8.5 Chapter Summary. 224

9 SoftwareInspectionsandPhysicalSearching 227
9.1 Chapter Introduction 228
9.2 Software Inspections 228

9.2.1 The Inspection Process 229
9.2.1.1 The TechnicalDimension 230
9.2.1.2 The Managerial Dimension

9.2.2 Software Inspection Process Loss Issues
9.3 Search Theory

9.3.1 Brief History
9.3.2 One-Sided Searches
9.3.3 Two-Sided Searches
9.3.4 The Search Process

9.4 Chapter Summary .

237
239
241
241
243
245
245
247

CONTENTS

10 Search Simulation Model
10.1 Chapter Introduction
10.2 Design Rationale . .

10.2.1 Model Goals

10.2.2 Model Scoping Decisions

10.2.3 Level of Model Detail Decisions

10.2.3.1 Coverage Dimension .
10.2.3.2 Sensitivity Dimension .
10.2.3.3 Distribution Dimension

10.3 Search Simulation Model
10.3.1 Model Verification and Validation

10.3.1.1 Verification
10.3.1.2 Validation

10.3.2 About the Simulation .
10.3.2.1 The Simulation approach
10.3.2.2 The Simulation process .

10.3.2.3 Brief Overview of the Simulation Model

lOA Configuration of the Simulation Model .
1004.1 Predispositioning .

1004.1.1 Differing Dimension Dynamics
10.4.1.2 Predispositioning .

1004.2 Sensitivity Analysis
1004.2.1 Object Detectability
1004.2.2 Object Density
1004.2.3 Searcher Memory

10.5 Simulation Experiments .
10.5.1 Modelling Goal One .

10.5.1.1 Search Strategy Comparisons.

10.5.1.2 Object Type Detection Performance

10.5.2 Modelling Goal Two .

10.5.2.1 Under Representation of Goals
10.5.2.2 Over Representation of Goals

10.6 Chapter Summary

6

249

· 250
· 250
· 252
· 254
258

· 261
· 276
· 292

· 299
· 299
· 299
301
303
304
305

311

316
320

320
322
326
327
328
330
331
332

333
334

339
341
342
343

CONTENTS 7

11 Conclusions
11.1 Summary of Work.
11.2 Limitations of Work
11.3 Future Work .

346
347
355
356

Bibliography 362

A Non-Functional Requirements Key
A.I Existing NFR Framework
A.2 Additions to NFR Framework

380
380

. 382

B Statistical Significance Test
B.I Overview
B.2 More Locations Types Than Searchers
B.3 More Searchers Than Locations
B.4 Overall Comment

384
384
385
387
389

List of Figures

2.1 The Dependability Tree [source: [1]: p 5] 20
2.2 The Dependability Process 24
2.3 Three Forms of System Control [source [5]: p 14] 28
2.4 Triple Modular Redundancy [adapted from source: [4]] 30
2.5 Exception Handling Example [adapted from source: [6]: pp 649-

60] 31
2.6 Recovery Block Example [adapted from source: [12]: pp 410-13] 35
2.7 Redundant Structure and Comprehension [source: [25]: pp. 6-7] 46

3.1 Abstract View of The Software Process
3.2 Process Dynamics .
3.3 Attributes of A Dependable Process ..
3.4 Uniformity and Diversity Contributions

55
69
71
86

4.1 System View .
4.2 Generic CBS Contexts .
4.3 Emergent CBS Dependability

95
99
105

6.1 The Nine Dots Problem
6.2 Example of an Artificial Limit (source: [143] p. 83)

6.3 Overlapping Contexts [source [[128]: p. 78] .

148
150

156

8.1 Differences in Approaches .

8.2 Encryption Policy Issue 1

8.3 Authorisation Policy Issue 2
8.4 Human Error - Issue 3

195

· 208

· 210
· 212

8

LIST OF FIGURES 9

8.5 Opportunistic Theft - Issue 4 . . 214
8.6 Obscure Security Conflict Issue 5 . 215
8.7 Interaction Consistency - Issue 6 . 218
8.8 State Representation - Issue 7 221

8.9 Attack and Fraudulent Access Concerns - Issues 8 and 9 . 223

8.10 Assumption Types and Evaluated Causes .. . 224

9.1 Software Inspection Taxonomy [source [157]]
9.2 Three Group Performance Functions
9.3 Probability of Detection Functions .
9.4 Essential Factors in Search Process

229
240
244
246

10.1 Influence Diagram Notation Used [source: Robson [168]: p. 14] 260
10.2 Influence Diagram Analysis of Coverage Dimension 262
10.3 DiversitylUniformity Focus of Reading Techniques . 265
10.4 Influence Diagram Analysis of Sensitivity Dimension 278
10.5 Influence Diagram of Distribution Dimension 293

10.6 Main Simulation Logic 309

10.7 Main Menu Screen Options 311

10.8 Searcher Sub Menu Screen Options 313
10.9 Configuration Settings Screen ... 315
10.10The Nine Possible Search Strategis 317
10.11Object Detectability Sensitivity 327
10.120bject Density Sensitivity 329
1O.13Searcher Memory Sensitivity . . . 330
1O.14Comparisons of Search Strategies 333
1O.15DC and DS Object Type Performance . 335
1O.16SC and SS Object Type Performance 336

1O.17UC and US Object Type Performance . 337

A.l Non-Functional Requirements Framework Key One 381

A.2 Non-Functional Requirements Framework Key Two 382

A.3 NFR Additions 383

B.l Searchers to Locations Comparisons 385

LIST OFFIGURES 10

B.2 10 Location Types and 2 to 9 Searchers
B.3 9 Location Types and 2 to 8 Searchers
B.4 8 Location Types and 2 to 7 Searchers
B.5 7 Location Types and 2 to 6 Searchers

B.6 6 Location Types and 2 to 5 Searchers

B.7 5 Location Types and 2 to 4 Searchers

B.8 4 Location Types and 2 to 3 Searchers
B.9 2 Location Types and 3 to 10 Searchers
B.10 3 Location Types and 4 to 10 Searchers
B.II 4 Location Types and 5 to 10 Searchers
B.12 5 Location Types and 6 to 10 Searchers
B .13 6 Location Types and 7 to 10 Searchers
B.14 7 Location Types and 8 to 10 Searchers
B.15 8 Location Types and 9 to 10 Searchers

386
386
386
386
386
386
387
387
388
388
388
388
388
388

List of Tables

5.1 ATM fraud in the UK [source: [112]] . 113

6.1 Audience Answers

6.2 Biased vs Random Guessing

157
158

7.1 Teleological Classifications [source:[146]: p. 38] 169
7.2 Aristotelian Causal Typology Example [source: [149]: p. 12] 174

10.1 Reading Technique Classification 264

10.2 Equivalent Object Detection Effectiveness 320

10.3 Diverse Mid-Case for Analysis 322
10.4 Uniform Coverage Characterisation . 323
10.5 Uniform Sensitivity Characterisation 324
10.6 Systematic Coverage Characterisation 324
10.7 Systematic Sensitivity Characterisation 324
10.8 Diverse Coverage Characterisation . . . 325
10.9 Diverse Sensitivity Characterisation .. 325
10.10Searcher and Location Comparison Results 340
10.11Under Representation Example 340
1O.12Under Representation of Goals Results 342

10.130ver Representation of Goals Results . 342

11

Chapter 1

Introduction

12

CHAPTER 1. INTRODUCTION 13

1.1 Focus of the Thesis

As society becomes increasingly dependent upon information technology and in-
formation processing provision there has been an increasing concern about the
trustworthiness of software. Such concerns have given rise to the need to im-

prove the dependability in the service that software systems deliver. In response

to such concerns, the dependability community has been focused upon increasing
the dependability of software systems through the introduction of redundant com-
putation and structure in the software artifact to improve the software system's re-
silience to residual design and implementation faults that are considered inevitable
in any real-world complex software system. Whilst such approaches have resulted
in significant increases in software dependability, the ever-increasing pervasion of
information technology systems has resulted in a recognition that such approaches
have limitations. It is therefore now becoming increasingly apparent that a wider
and more encompassing view of computer-based system dependability is needed
that includes the influencing role played by humans and how they can both com-

promise and improve the dependability of such computer systems is needed.

Subsequently, whilst there has been a reasonable amount of effort focused on

how humans and human error can compromise the dependability of computer
systems during operation, there has been comparatively much less focus upon
how humans, in the creation process, can be better resourced and deployed to
improve the dependability of the created software artifact.

The focus of this thesis is to consider how a socio-technical process interven-
tion utilising diverse goal setting in the context of a computer-based system per-
spective can help improve the dependability of the creation process through the
increased dependability means of fault-avoidance.

1.2 Nature of the Thesis

This thesis is interdisciplinary in nature. In no small part this has been directly in-

fluenced by the interdisciplinary approach of a large multi-university site EPSRC

CHAPTER 1. INTRODUCTION 14

research programme that the author has been involved in from late September
2000 until the present day, which has been focused upon exploring how the fields
of Psychology, Computer Science, Mathematics and Sociology can help improve
the dependability of computer-based systems.

1.3 Overview of the Thesis

To help the reader obtain an understanding of the thesis structure, this section
provides a brief overview of the chapters.

1.3.1 Chapter 2

Chapter 2 focuses upon the dependability of the software artifact and covers the
existing dependability framework that has been progressed and advanced over
recent decades. The framework provides a high-level guidance on: the desired

attributes of the software artifact; the threats that undermine such attributes; and

the means by which the threats can be controlled and the attributes promoted. The

approach taken by the dependability community is to accept that, in any real-
world software development, residual faults are inevitable. Therefore the primary
focus of the dependability community is to rationalise how redundancy, in the
form of additional computation and structure, can be introduced into the software
artifact to control the activation of residual faults during operational execution,
from resulting in judgements of delivered service failures by the user.

1.3.2 Chapter 3

Chapter 3 focuses upon the dependability of the software creation process through
increased fault-avoidance. So far, less emphasis has been placed upon how to

improve the dependability of the software creation process, by the dependability

community. In this chapter a dependable process view is discussed, that attempts

to define what attributes, threats and means would such a mature and predictable
software creation process possess. It is argued that to achieve such a dependable

software creation process would require an integrated understanding of the many

CHAPTER 1. INTRODUCTION 15

process dynamics. The role of process redundancy and diversity is then discussed
along the process dimensions of: the software task; human resources; and process
technology. Finally, two measures of the benefits of justifying the inclusion of
such process redundancy and diversity are briefly covered.

1.3.3 Chapter4

Chapter 4 focuses on the need for a more holistic computer-based system con-
ception. In this computer-based system view, the boundaries of the system are
extended to include not only the technical computer system, but also the interfac-
ing roles, responsibilities, and motivations of humans as a subsystem. With this

system conception dependability is viewed as a super ordinate high-level system
goal that requires a greater bottom-up holistic view that integrates the different
meanings and purpose ascriptions that different context stakeholders will make
during the creation process. The inability to achieve such an holistic view can
not only result in faults and vulnerabilities, but can also lead to technically de-

pendable systems failing through non-technical aspects. For these reasons, the

computer-based system conception incorporates important context classifications
of: the utility context; the engineering context; the deployment context; and the
evolution context to help achieve such a holistic dependability perspective.

1.3.4 Chapter 5

Chapter 5 follows on from chapter 4 to provide a case study of faults and vulner-
abilities from a computer-based system perspective, based upon factual problems
reported over many years in the Automatic Teller Machine (ATM) domain. A total
of nine issues that resulted in faults and vulnerabilities are analysed and charac-
terised in terms of a computer-based system perspective of dependability.

1.3.5 Chapter 6

Chapter 6 focuses on assumptions. Assumptions are a necessary reasoning and
communication mechanism in many decision-making situations. However, par-

ticularly in the software creation process, flawed assumptions represent an im-

CHAPTER 1. INTRODUCTION 16

portant fault-phenomenology that can undermine both the dependability of the
creation process and the eventual created artifact. This chapter therefore reviews
some of the known literature on assumptions in order to get a better understanding
of their nature and what factors influence their occurrence.

1.3.6 Chapter 7

Chapter 7 focuses upon the role of purpose and function ascription. Since differing
ascriptions of purpose and meaning can result in non-technical judgements of
dependability failure from a computer-based system perspective, it is necessary
to understand the underlying philosophy and empirical evidence of how purpose
and goal-setting affects human performance. It can be seen from the literature
that goal-setting offers a dual complementary approach of instituting diversity
into the creation process and promoting a more holistic conception required by a
computer-based system viewpoint.

1.3.7 Chapter 8

Chapter 8 focuses upon pulling many of the issues of the previous chapters into a
rich discussion of how a combination of diverse goal-setting and diverse computer-
based system contexts can help detect assumptions that can undermine the de-
pendability of a computer-based system when dependability is viewed as a holis-
tic super ordinate goal. The chapter discusses the nature of non-functional at-

tributes and the existing ways in which these are considered during software de-
velopment. The chapter then goes on to introduce and justify an existing non-
functional analysis notation along with its merits and differences for graphical
illustration of how the proposed Goal-Diversity process intervention can help
identify harmful assumptions within a computer-based system conception. This

adapted notation then reuses the nine issues raised from the Automatic Teller Ma-

chine case study of chapter 5 as an illustration.

CHAPTER 1. INTRODUCTION 17

1.3.8 Chapter 9

Chapter 9 focuses at drawing upon two longstanding and complimentary areas
of knowledge and literature from Search Theory and Software Inspections as a
preliminary guide to the important concepts, terminology, and processes involved

in searching and detection type tasks. These concepts, terminology, and processes

are then used in Chapter 10 to help inform and structure a design rationale for a
search simulation model.

1.3.9 Chapter 10

Chapter 10 focuses upon the design, implementation, configuration, and simula-
tion of a search simulation model. It does so by first utilising the notions, ter-
minologies and conceptions from both the areas of Search Theory and Software
Inspections covered in chapter 9. These concepts, terminology and processes are
then discussed and justified into a design rationale that is structured upon a basis
of desired simulation goals, modelling scope, and modelling detail. The design ra-

tionale employs a visual diagrammatic technique known as influence diagrams to

help illuminate and explain the many related design decisions discussed and jus-

tified in determining the simulation models design. The chapter then goes on to
discuss the verification, validation and implementation issues before providing a
justification for the configuration of the simulation experiments. Lastly, the results
of the simulation experiments are discussed, analysed and statistically evaluated.

1.3.10 Chapter 11

Chapter 11 provides a summary of the work contained in this thesis along with
recognised limitations of the work and potential future areas of work that this

thesis stimulates.

Chapter 2

Dependable Software Artifacts

18

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 19

2.1 Chapter Introduction

Society's increasing dependence upon computerised software control and infor-
mation processing has resulted in an increasing demand for the dependability of
software in safety-critical and mission-critical applications in recent years. De-

pendability can be promoted in both the creation process via a means of fault-

avoidance and by including additional redundancy directly into the created artifact
via a fault-tolerance approach.

This chapter primarily focuses upon the fault-tolerant approach to increase the
the dependability of the created artifact.

2.2 The Dependability Framework

The dependability approach to constructing software artifacts makes the assump-
tion that, no matter how professional and disciplined the development process is,

any real-world software system will contain residual defects that can compromise

the trust and confidence a user will be prepared to place in the service it delivers.

In order to facilitate a systematic approach to the dependable construction of soft-
ware artifacts, the dependability community has refined and progressed a concep-
tual framework [1, 2, 3]. At the highest conceptual level, this includes the three
categories of: a) the threats that undermine promotion of these system attributes;
b) an integrated view of required system attributes; c) the essential means to the
promotion of these system attributes. These are illustrated in figure 2.1 on the
following page and are presented and discussed in tum in the subsections that

follow.

2.2.1 Threats to Dependability

The threats to dependability represent, at the most general level, a three phase
causality chain that captures the failure pathology of software artifacts. A fault is

the adjudged or assumed cause of an error state when the fault becomes activated

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS

- THREATS --E ::~:::
FAILt:RI~~

r-r- AVAILABILITY

r- RELIABILITY

r- SAFETY

DEPENDABILITY--+-- AITRIBUTES-
t-- COSFlDE~TIAlJTY

t-- INTEGRITY

~ MAII'<TAISABILITY

{

FAULT PREVENTION

FAl'LT TOLERASCE

FACtT REMOVAL

FAULT RJRECASTISG

- MEANS

Figure 2.1: The Dependability Tree [source: [1]: p 5]

20

by some combination of computation input conditions (activation pattern). How-
ever, the presence of a fault in a software artifact does not necessarily result in an

error state, this only occurs when input conditions result in its activation. A fault

that is present in the artifact, but is non-active is a dormant fault. Failure occurs
when the fault is activated and creates an error state which then permeates through

the service interface and results in a judgement of incorrect service delivery. A
failure is thus a visible event occurence that results in a transition from correct to
incorrect service delivery. The presence of an error state (due to an activated fault)
may not necessarily result in a failure transition from correct to incorrect service
delivery, as this may be due to: a) some control or containment of the error state
before it permeates the service interface; or b) the error state permeates through
the service interface but is not detected or judged to result in a transition from
correct to incorrect service. An error state that goes undetected or judged to not

result in a failure is a latent error.

It should be noted that the labelling of the threats is particularly important for two
reasons [3]. Firstly, the fault labelling represents a finality of causal considera-

tions. No further explanation is sought to ask such questions as "Why or how did

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 21

the fault occur in the software artifact?" This is to prevent endless retracing or
recursion to explain the presence of faults in the software artifact. Secondly, the
inclusion of error between fault and failure in the causality chain is important to
emphasise the possibility of intervention that can be enacted in the form of de-
pendability means to forecast, prevent, remove, and tolerate the fault and ensure

that its activation does not necessarily result in a system failure transition.

2.2.2 Attributes of Dependability

Dependability is an integrative system concept that requires the promotion of im-
portant non-functional system properties to be achieved - if the service a soft-
ware artifact provides is to be trustworthy. These include: a) availability - the
readiness for correct service delivery; b) reliability - continuity of correct ser-
vice delivery; c) safety - the absence of catastrophic consequences of incorrect
service delivery on the user(s) or the system environment; d) confidentiality -
the absence of unauthorised disclosure of information; e) integrity - the absence

of improper software artifact state alterations; and f) maintainability - the abil-

ity to undergo repair, change, and alterations.

It is important to point out that other important secondary software artifact prop-

erties are often a combination of the six primary attributes. For example, security
is argued to be the synergy of availability + confidentiality + integrity. Another
example is performability which often relates to the fact that a software artifact
delivers more than one mode of service. Performability captures a measure of
service delivery quality in terms of timeliness of delivery that may range from
full capacity to emergency service delivery. Furthermore, the priority placed upon
anyone (or more) of the six primary or secondary system attributes can vary from

one particular application or domain to another depending upon the criticality of
service demands expected from the artifact.

2.2.3 Means by which Dependability is Attained

In order to help ensure attainment of important dependability attributes a number
of techniques can be employed. These are: 1) FAULT PREVENTION - how to

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 22

prevent the occurrence or introduction of faults into the software artifact. Essen-
tially, this dependability means relates to the professionalism, discipline, or qual-
ity of the creation process of the software artifact. In particular, to process tech-
nology - in the form of development assistance tools, development methods, and
development techniques (e.g. structured programming, information hiding, mod-

ularisation, etc, etc); 2) FAULT TOLERANCE - how to deliver correct service
in the presence of faults. This dependability means is provided by a combination
of error detection and error recovery. Error Detection first initiates an error sig-
nal within the system. Two classes of error detection are possible. The first is
concurrent error detection - which occurs during actual service delivery. The
second is preemptive error detection - which takes place when service delivery
is (temporarily) suspended and checks the software artifact for latent error states

and dormant faults. Error Recovery is then used to transform the detected error
state(s) into a state that is not considered to be erroneous. This can be achieved in
three ways: a) Rollback - the recovery operation returns the detected error state
back to a prior saved error-free state. The saved error-free state is often referred

to as a checkpoint; b) Compensation - the erroneous state possesses sufficient

redundancy to enable error elimination; and c) Rollforward - a state substitution
occurs where a new error-free state is substituted for the previously detected error

state; 3) FAULT REMOVAL - how to reduce the number or severity of faults.
This dependability means relates to both the creation process and operational life-
time of the software artifact. During the creation process, fault removal involves
three steps; a) Verification is the process of ensuring that the software artifact
functions according to verification conditions. If verification fails Fault Diag-
noses occurs. This involves determining the fault(s) that resulted in verification
failure. Once the offending fault(s) are determined Fault Correction takes place to
remove the fault(s) from the software artifact. After correction it is appropriate to

reiterate a verification phase known as Regression Verification to ensure that the

first verification phase has not resulted in introducing new fault(s) that can cause

verification to fail again. Verification techniques can be categorised by whether

they result in dynamically exercising the software artifact or not. Static Verifica-
tion occurs without dynamic execution of the software artifact (e.g. inspections,

walk-throughs, model checking, or theorem proving, etc). Dynamic Verification

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 23

involves exercising the software artifact. This can either involve symbolic in-
puts or actual inputs being supplied; b) Validation - relates to determining the
adequacy or appropriateness of the specification. Specification fault(s) relate to
detection of any behavioural situation where the software artifact will not perform
its required function in a complete, consistent, or correct manner; c) Fault Main-
tenance - relates to the fault removal process during the operational lifetime of
the software artifact. Two approaches are recognised: a) Corrective Maintenance
- aimed at removing fault(s) that have been reported; and b) Preventive Main-
tenance - is focused on detecting and removing faults before they cause error
states during usual operational use; 4) FAULT FORECASTING - involves a fore-
cast evaluation of the dependability requirements of the software artifact concern-
ing the fault potential for fault occurrence or fault activation. This dependability
means has two main facets: a) Qualitative or Ordinal Evaluation - which
includes the identification, classification, and ranking of potential failure modes
along with the environmental conditions that can result in system failures; and b)
Quantitative or Probabilistic Evaluation - which includes the forecast evalu-

ation in terms of fault probabilities of activation or occurrence. The probabilistic

evaluations attempt to capture the degree to which the attributes of dependability
have been satisfied. These are then considered measures of dependability. Exam-

ples include: a) reliability - mean time to failure (MTTF); and b) maintainability
- mean time to change (MTTC).

2.3 The Dependability Process

Before discussing specific examples of how software artifacts can be made more
dependable, it is important to distinguish the software creation process from the
created software artifact - in terms of the dependability framework discussed
in section 2.2. A view of a dependable process incorporating: a) the creation

process; b) the static software artifact; c) the dynamic execution of the software
artifact; and d) the operational process, is illustrated in figure 2.2. This view

explicitly incorporates into these process phases the threats to dependability (i.e.
faults, errors, and failures) along with the essential means by which dependability

can be attained or improved. In doing so, it provides a greater insight into where

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 24

each threat (or impairment) and means most importantly relates - in terms of

whether the dependability means and threat belong to the creation process, the

created artifact, or a hybrid of both in some way.

OPERAHO~AI.

PR(X'E5S
, DEPF~~DABn..rrY
~ R!OQ_l,I~~ME,,:r£~I _

Figure 2.2: The Dependability Process

2.3.1 The Software Creation Process

It can be seen from figure 2.2 that the means of fault prevention is solely the re-
sponsibility of the creation process. By this it is meant that in order to prevent a
fault ever being introduced into the process, it must either never occur, or its poten-

tial occurrence is detected and prevented prior to creation. This may be achieved
through human detection, some form of process technology (i.e. development
tools, methods, or techniques) or some interaction of both. It can be seen that fault
forecasting is solely the responsibility of the creation process - in terms of lever-

aging human experience and knowledge to understand the operational demands

and constraints to accurately predict the failure modes possible and dependability
requirements demanded in that particular domain. I The effectiveness of how well

this is done will have a major bearing upon the types of redundancy mechanisms
that are deemed most feasible, effective, and advantageous to incorporate into the

'This could also be facilitated by process technology

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 25

software artifact (see section 2.4) [4].

As mentioned in the dependability framework in section 2.2, the fault cause phe-
nomenology is strictly a concern of the creation process - in terms of process
approaches to the prevention of such causes occurring.? However, the issue of

residual faults being introduced into the artifact also reveals that fault removal is
also an important responsibility of the creation process - in terms of detecting
and correcting them at some prior development stage (i.e. inspection or testing
etc) in the software artifact before it is placed into operational use. This of course
mandates consideration to both the static and dynamic software artifact and in-
volves detection and removal of dormant faults and error states.

2.3.2 The Created Software Artifact

It can be seen from the dependability process view in figure 2.2 that the means of
fault tolerance is the sole responsibility of the created software artifact if residual

faults become oblivious to both human and process technology detection in the
creation process. In such a situation either the residual fault (once activated into

an error state) will need to be controlled before it permeates the service delivery
interface, or the risk of judgements of failure by the operational domain may re-
sult. In order to achieve this, additional redundant mechanisms will need to be
incorporated directly into the created software artifact (see section 2.4). However,
the means of fault removal is often also an important software artifact responsibil-
ity of fault tolerance - during operational execution usage. This is often referred
to as Fault Handling. Fault handling is geared towards preventing located resid-
ual faults in the static artifact, once activated, from ever being activated again.
It involves four stages [3]: 1) Fault diagnoses - which detects and records the
causes of the error state(s) in terms of both artifact location and type; 2) Fault
isolation - which conducts logical exclusion of the residual fault(s) in the soft-

ware artifact from any possibility of further participation in service delivery; 3)

System reconfiguration - which can switch into action redundant mechanisms

2The dependability framework does go into more detail on the generic classification of poten-
tial faults that may be introduced - such as accidental, malicious, interaction faults etc, but does
not hypothesize how these are caused or overlooked etc

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 26

or reassign processing tasks among other non-failed components; and 4) System
reinitialisation - that can check, update, and record a new configuration along
with updates to internal data structures (i.e. databases, tables, records etc).

2.3.3 Process and/or Artifact Responsibility Issues

It can be seen therefore, that a delineation can be made between dependability
responsibilities for promoting software dependability in both the software creation
process and the created software artifact. Fault forecasting and fault prevention are
sole considerations and responsibilities of the software creation process - along
with issues of fault causality phenomena. Fault tolerance is the sole consideration

and responsibility of the created software artifact - along with error state control
to prevent activated residual faults permeating through the service interface.

However, an overlapping of responsibilities is shared between the creation pro-
cess and created artifact when we consider issues of a) the dependability means

of fault removal; and b) responsibility for detecting faults. In the creation pro-

cess, responsibility lies with detecting and removing faults prior to delivery of the
system, whereas fault tolerance mechanisms, in the created artifact, are often re-
sponsible for handling residual faults that have eluded detection (either by human,

process technology, or both) in the creation process. It should be further noted,
that although fault forecasting is essentially the responsibility of the creation pro-
cess, its impacts (good and bad) - in terms of how effective it is can propagate
through to have a corresponding consequential effect upon the effectiveness of the
fault tolerance mechanisms incorporated into the created artifact.

Finally, for the benefit of simplicity in discussing broader issues of redundancy in-

troduced in the creation process of chapter 3, a strict delineation of responsibilities
between the creation process and the created artifact will be represented by two

labels. To capture the fault forecasting, fault prevention, fault removal responsi-

bilities of the creation process - along with its responsibility for considerations

of fault cause phenomenology and detection of residual faults, the label of soft-

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 27

ware FAULT AVOIDANCE will be used.' To capture the fault toleration and fault
removal responsibilities of the created artifact - along with threats of residual
fault, error, and failure control, the label of software FAULT TOLERANCE will be
used."

2.4 Software Artifact Redundancy

Having discussed and established the differing and overlapping responsibilities of
the creation process and the created artifact in terms of a view of the dependabil-
ity process in section 2.3, this section will expand on the issues and techniques
involved in achieving software dependability via fault tolerance in the created
artifact. In this section artifact redundancy concerns: a) the addition of system

functionality - over-and-above that required to provide required functionality
needed to deliver correct service in normal operating conditions; and b) additional
system structure - to facilitate other creation process or operational process (Le.
maintenance) activities. A broader discussion on redundancy and related issues

of how software dependability can be promoted via a fault avoidance approach in

the creation process will be covered in chapter 3.

This section will first discuss fault tolerance from a broader system control ap-
proach by considering fault tolerance as system error control in subsection 2.4.1.
Next broader issues of software artifact redundancy will be discussed in subsec-
tion 2.4.2. Finally, some limitations of software artifact redundancy will be dis-

cussed in subsection 2.4.3.

2.4.1 Software Error Control

In order to provide successful fault tolerance, the software artifact must be capable

of intervening between fault activation and permeation of the error state through

3This is similar to labelling by the dependability community - such as definitions given by
Laprie in [1, 2]. However, in this thesis the process consideration of fault forecasting and fault
cause phenomenology are also included in the term.

4This labelling is likely to be less controversial and is more in-keeping with traditional views
held by the dependability community. In this label issues of fault removal are interpreted as fault
handling techniques which are subsumed under the label of fault tolerance

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS

I) PASSIVE BUFFERING 2) FEEDFORW ARD CONTROL 3) FEEDBACK CONTROL

Figure 2.3: Three Forms of System Control [source [5]: p 14]

the service interface causing a potential failure transition from correct to incorrect
service delivery. In essence the error state(s), once detected, must be controlled.

Consideration of broader system control from systems theory approaches show
that there are three ways in which a system can be regulated [5]. These are:
a) buffering control; b) feed-forward control; and c) feedback control. A visual

depiction is provided in figure 2.3. In each form of regulation control, the effect
of disturbance (labelled D) on the essential variables (labelled E) is reduced by

either a passive buffer or by an active regulator (labelled R). 5

To return to issues of software artifact redundancy - in view of these three basic
forms of system control, it can be seen from figure 2.3 that in the absence of dis-
turbance (equivalent to faults in the software artifact) the additions of the passive
buffer or active regulators (shaded in figure 2.3) are not necessary (hence the term
"Redundant"). However, in the presence of residual faults in the artifact, which,
with real world software artifacts, is the more realistic case, the passive buffer(s)
or active regulators are no longer unnecessary but in fact critical to ensuring the
system's stability (equivalent to ensuring continued correct service delivery). Ar-

tifact redundancy is therefore only redundant (classical meaning) to the extent of
artifact functionality required to provide service delivery in the absence of non-

active residual artifact faults (of whatever type).

SIt is noted by Heylighen and Joslyn [5] that systemic disturbance can originate externally or
internally. However, these external/internal influences can be combined and abstracted away to
represent either external or internal disturbance.

28

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 29

In the subsections that follow, each of the basic error control forms are discussed
- along with more specific used forms of artifact redundancy they characterize
which are used to provide fault tolerance.

2.4.1.1 Passive Buffering Error Control

Passive buffering error control of systems have many everyday examples. A water
reservoir acts as a buffer against variations of rainfall over the seasons to ensure a
stable supply of water - in spite of seasonal variations. In manufacturing, an or-
ganisation may often deliberately build-up and store dormant stocks of produced
goods to absorb variations in demand (i.e. sales) and supply (i.e. production) in

order to ensure a reliable (or stable) supply of goods - even if there are problems
in purchasing raw materials/components or the production process. In both these
examples, and generally with passive buffering error control, variations can be
tolerated without any direct intervention being necessary (hence the qualification
of the term ''passive'').

A specific example of such error control with fault tolerance is Triple Modular

Redundancy (TMR) architectures (also called n-version redundancy) [4]. A vi-
sual illustration is provided in figure 2.4.6 With TMR designs, each of the three
channels are independently created diverse implementations (i.e. white box data
structures and logics) of the same functionality (i.e. black box functionality) and
to ensure absolute separation of failure are best operated upon individual com-

puter processing units and associated hardware (if required). Input data is passed
to each of the three independent and diversely implemented module channels. The
output from each independent module channel is then compared by a voting mod-
ule (sometimes called an adjudicator). If all three channels produce the same data
outputs a very high level of confidence can be placed in the correct computation

of the output data.

6While not shown in the figure, it should be noted that in many TMR schemes the voters
are also triplicated to increase fault-tolerance, and independent TMR modules vote across and
compare from redundant voters also.

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 30

OUTPUT

VOTING DATA

---~ MODULE

Figure 2.4: Triple Modular Redundancy [adapted from source: [4]]

If, on the other hand, there is a disagreement between the independent module

channel's data output - where one module channel produces a different compu-
tation result from the other two module channels, then a 'majority-rules' protocol
is enforced by the voting module and it accepts the computational output data of
the two agreeing module channels. This is a clear example of how TMR is a spe-
cific software artifact form of passive buffering, as sufficient computational redun-
dancy exists to absorb erroneous computation in one module channel without any
direct or active intervention being required (in the fault tolerance literature; this

is often referred to as fault-masking [3]). Fault-masking approaches to fault tol-
erance can be particularly important when the criticality (or safety) of the system
has performability or timeliness of control response requirements. For example
fty-by-wire aircraft are not only safety critical systems (by applicational defini-

tion), but the timeliness of control responses are also safety critical - due to the

speed at which aircraft travel.' In such applicational domains fault masking, like

TMR, with the ability to provide sufficient computational redundancy to absorb

7Even the delay of a fraction of a second in active error regulation at super sonic speeds could
increase the potential for a collision or accident under emergency or combat conditions.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 31

ABSTRACT EXAMPLE

CATCH BLOCK
I

FAULT ERROR

OL"TPL"T

DATA

cout « "Enter next set of numbers <q to quit>: ";
I

C++ IMPLEMENTATION EXAMPLE

!While (cin »x» y)
! (
: .' try (
: f Z = 2.0 * x • y I (x + y);
:. If(x==-y)
: throw "Bad harmic mean arguments: x = -y not legal!!";. I ...
• catch (const char • s) _ _ _ - - - -
.... (-------
•••• cout« s « "\n";
". cout« "Enter a new pair of numbers: ";
-, continue;

cout « "Harmonic mean of " « x « " and" «y
« " is " «z« "in";

Figure 2.5: Exception Handling Example [adapted from source: [6]: pp 649-60]

error states without direct regulation intervention, helps ensure timeliness of error
control without losing critical response time.

2.4.1.2 Feed-Forward Error Control

The concept of system error control via feedforward control relies upon prior
knowledge of the disturbance in order to anticipate its effects before the distur-
bance actually destabilizes the system. Such approaches are often referred to as
"anticipatory-control" and place a great demand upon the system to collect infor-
mation and knowledge of its internal states and external environmental conditions
before such disturbance can cause a serious deviation from its intended stable
state ranges. Feed-forward control therefore presumes some prior system goal as
an important facet of effective control- as without it, the system would not know
what to consider and categorise as disturbance. Feed-forward control is therefore
limited to controlling only prior known internal/external disturbance, with known

or anticipated effects it can have upon the system's stability.

A good example of such an error control approach within the fault tolerance lit-
erature is exception handling [7]. Since studies have shown that as much as
66% of all software crashes can result from failures that could have been con-

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 32

trolled/prevented by exception handling [8], exception handling error control rep-
resents an important contribution to software artifact robustness from predictable
software faults - such as wrong data type input formats, dividing-by-zero, read-
ing past end-of-file etc. Furthermore, it does so in a much more structured and
modular fashion than ad-hoc error code checking or defensive programming tech-

niques. This aids other dependability properties also, such as maintainability (i.e.
decoupling and code comprehension) and reliability, as a more structured error
control approach helps reduce all round complexity of the software artifact and its
consequent implications for potential side-effects (cf subsection 2.4.3.2).

In the abstract example illustrated in figure 2.5, it can be seen how feed-forward
control is enacted. First some data input or computation is placed within the
"try block". Once data computations are placed within this block, this informs

the system that the statements, data, or computations may result in exceptions
occurring. If no exceptions are raised by the data or computations, then control
passes out of the try blocks, ignores the "catch block", and control flow progresses

as normal. However, in the event that input data or computations do raise or

'throw' an exception (due to the activation of an anticipated residual fault in the
software artifact) then control passes to the "catch block". The catch block then

bypasses the error state and outputs an appropriate error message (and possibly
passes control to either retrieve from the error state or returns control back to
re-input data). This is in contrast to when no exception handling is performed
(indicated by the straight dashed portion of the line in the abstract example of

figure 2.5) which would result in the dormant fault state becoming activated into

an error state.

In the C++ implementation example in figure 2.5 a specific computation of the
harmonic mean of two numbers is illustrated. The harmonic mean of two num-

bers is defined as the inverse of the average of the inverses and represents math-

ematically the formula: x2:Yy. With this formula it can be seen that when y is the
negative of x the computation will result in a division by zero error. This error can
be bypassed by utilizing exception handling and placing the computation into a

try block and throwing an exception when x = -yo This then invokes the handler of

CHAPTER2. DEPENDABLESOFTWAREARTWACTS 33

the catch block which outputs an appropriate error message before passing con-
trol flow back to the beginning of the loop for re-entry of input data - thereby
bypassing the error state. The lines shown in the C++ implementation example of
figure 2.5 indicate how control flow progresses. The solid line shows how control
flow passes from the harmonic mean computation to the end of loop output mes-

sages when no activated fault is anticipated. The dashed lines, on the other hand,
show how control flow passes from the try block once an exception is thrown to
the catch block and then back to the start of the loop.

With the progress of programming paradigms (e.g. object oriented), program lan-
guages now offer sophisticated inclusion for exception handling - including cus-
tomised exception handling classes to relate exception handling to accommodate
for specific applicational domain conditions [cf.[9]: pp 907-920]. However, as
indicated earlier, feed-forward control relies heavily upon fault-forecasting to an-
ticipate the types of faults that can occur - whether internal computation or cus-
tom application domain based. Exception handling fault tolerance therefore, as in

many other aspects of software engineering [10], places great demands upon in-

dividual human ability, experience, and domain knowledge acquisition to ensure

effective error control.

2.4.1.3 Feedback Error Control

The concept of feedback control is based upon compensating the system after the
disturbance has resulted in a serious deviation from the system's intended stable
state ranges. Therefore, like feed-forward control, feedback control is active con-
trol that also relies upon knowledge of a desired goal state in order to take action.

However, unlike feed-forward control, feedback control is not reliant upon high
levels of knowledge and information of internal states and external conditions in
order to function. Instead, it relies upon information directly from the disturbance

effects to enact regulation. A well known example used is that of a thermostat

which records the temperature of the room. When the room temperature deviates

beyond the thermostat's desired goal range temperature (i.e. this low-end devia-

tion is representative of disturbance) then the thermostat switches on the heating.

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 34

Again, when the temperature deviates beyond the thermostat's desired goal range
(i.e. high-end disturbance) the thermostat switches off the heating. Because feed-
back control is reliant upon information from the actual disturbance experienced,
feedback control is often referred directly to as "error-controlled regulation" [cf.

[5]].

Feedback control, however, has its own disadvantages. Firstly, it is only as good
as the sensitivity of the regulator to detect disturbance quickly enough to enact ac-
tive regulation before the system becomes irretrievably unstable (i.e. very serious
deviation(s) from desired stable goal state ranges). Senge [11] provides a cruel
example of where feedback control can fail due to a lack of disturbance sensitiv-

ity in the feedback regulation mechanism - which he entitles "THE PARABLEOF
THE BOILED FROG." cf. pp 22-23. He notes that if you place a frog into a pan of
boiling water, then the frog will immediately try and escape. However, if, instead,
you place a frog into a pan of water at room temperature and don't scare the frog,
then it will stay in the pan. If the pan is already on a heat source and is gently

turned on, then, as the temperature approaches 70 to 80 degrees, the frog is very

likely to stay in the pan - and may even give indications and signs that the frog

is quite enjoying being in that temperature of water. But as the temperature of the
water rises above this, the frog will become groggier, until it is so weakened that it
will eventually become unable to climb out of the pan. Senge notes that although
there is nothing physically restraining the frog, it will actually sit there in the pan
and boil. Senge points out the reason why this can happen, stating [p. 22]:

"The frog's internal apparatus for sensing threats to survival is
geared to sudden changes in its environment, not to slow, gradual
changes."

Secondly, the impact of system disturbance may be so great that feedback control

is completely inappropriate for this form of systemic disturbance. For example, in

general system considerations of feedback control, Heylighen and Joslyn [5] note

that:

"...ifyou see someone pointing a gun in your direction, you would

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 35

ABSTRACT EXAMPLE IMPLEMENTATION OF SORTING EXAMPLE

Do

If SortRecoveryBlockExample

SuperSortAlgorilhrn

CheckAcccptance Test

If CheckAcceptance'Fest Fails
RestoreSortStates
QuickSortAlgorithm

Checkxcceptance'resr

If CheckAcceptanceTest Fails
RestoreSortStates

SelectionSortAlgorithm

ChcckAcceptanceTest

IfChcckAcceptarlceTest Fails
RestorcSortStates
BubblcSortAlgorithm
CheckAcceptance Test

If ChcckAcceptanceTest Fails
RecoveryBlockFailure
RestorcSortStates

Until CheckAcceptanceTest Pass XOR RccoveryBJock Fails

Figure 2.6: Recovery Block Example [adapted from source: [12]: pp 410-13]

better try and move out of the line of fire immediately, instead of wait-
ing until you feel the bullet making contact with your skin." 8

Therefore, although, unlike feed-forward control, feedback control can be very
useful in controlling unanticipated system disturbance. The nature of the distur-
bance, however, must be of a recoverable nature for that particular system, in order
to enact this form of error control successfully.

A good example of feedback error control in the fault tolerance literature is the
recovery block architecture [cf. [13,4, 7, 12]]. An abstract example is illustrated
in figure 2.6. Itcan be seen that, like the TMR architecture in subsection 2.4.1.1, it

utilizes multiple module channels. However, unlike TMR, these are not activated
in parallel with an adjudicator module to provide fault-masking, instead, they are

activated in a sequence hierarchy - often based upon a performability/reliability

preference protocol. For instance, input data is first passed to the module channel
with the highest preference. The output data from this (highest preferred) mod-

ule channel is then checked against some general acceptance criteria (more often
J "

BIn this example, the damage a bullet can cause is clearly anticipated and (often) unrecoverable
from, therefore, feed-forward control is a much more attractive control mechanism to employ.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 36

known as "acceptance checking") in the acceptance test module. If the output
data passes the acceptance test criteria, the output data is used within the wider
software artifact for further processing, etc. In the event, however, that it fails the
acceptance test criteria, control is then passed to another module that: first, re-

stores the computation states back to a state before the highest preference module
performed its (presumed erroneous) computations; second, selects an alternative

(i.e. next highest preference on performability/reliability etc criteria) to carry out
the desired computations. The output data from this (next best) module channel is
then tested against the acceptance criteria. If it passes the acceptance criteria, the
output data is used within the wider software artifact for further processing etc. In
the event that this output data also fails, then, once again, control passes to another
module which restores the computation states and selects a different computation
module channel (third best choice). Once again the input data is then passed to
this particular module channel for computation processing. The output data is
then checked against acceptance criteria and if it passes the output data from this
module channel is used within the wider software artifact for processing. This

cycle continues through however many recovery block channels are included (in

figure 2.6 four recovery block channels are illustrated) until either one passes the
acceptance test criteria, or all recovery block channels have failed.

In figure 2.6 a pseudo-code implementation example of a recovery block archi-
tecture is also given. In this case, the recovery blocks provide different sorting al-
gorithms. The overall recovery block is enclosed within a "Do-Until" loop which
will iterate at least once (assuming no faults in the actual acceptance test mod-
ule and state restorer module). In this example selection of alternative recovery
block module channels is handled by the sequence logic - instead of a sepa-
rate activated module. The highest preference sorting algorithm is the 'SuperSor-
tAlgorithm' (probably because of its performance in sorting data very quickly).

Providing this algorithm results in no dormant fault state activation that fails the

'CheckAcceptanceTest' module, its sorted output data will be utilized in the wider

program (not shown in figure 2.6). If this sorted output data does fail, then the se-
quence logic will result in the 'RestoreSortState' module being called to provide
the initial computation states prior to the 'SuperSortAlgorithm 's' execution. The

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 37

'QuickSortAlgorithm' will then be used to sort the data. If the 'QuickSortAlgo-
rithm' passes the criteria in the 'CheckAcceptanceTest' module, its sorted output
data will be utilized in the wider program. If it fails, then the sequence logic will
result in the 'RestoreSortState' module being called to re-initialise the data to that
which it was prior to the 'QuickSortAlgorithm '. The 'SelectionSortAlgorithm'
will then be used to sort the data. If the 'SelectionSortAlgorithm' passes the crite-
ria in the 'CheckAcceptanceTest' module, its sorted output data will be utilized in

the wider program. If,however, it should also fail to pass the acceptance criteria,
the sequence logic will, once again, result in the 'RestoreSortState' module being
called to re-initialise the data to that which it was prior to the 'SelectionSortAI-
gorithm' module being executed on the data. Finally, the 'BubbleSortAlgorithm'
will be used to sort the data. If the 'BubbleSortAlgorithm' data outputs passes the
'Checkscceptance'Iest's' criteria, then the 'BubbleSortAlgorthim 's' output data
will be utilised in the wider program. If it fails, however, with this four block re-
covery example in figure 2.6 on page 35, then there is no more redundant module
channels to enact feedback recovery. In this situation the flow of control passes

to the 'RestoreSortState' and records that the overall recovery block error control

mechanism's status has failed. Depending upon a) the overall criticality of service

delivery of the software artifact; and b) the specific criticality of the data sorting
operation in the program on service delivery, the recovery block failure status may
just result in a failure report outputted to the user(s), or some other software fault
tolerance mechanisms may be employed to handle this particular recovery block
failure situation.

A number of issues are raised by this recovery block example - in relation to
feedback error control and redundancy in software artifacts. Firstly, it is possible
to see how a particularly critical component of the recovery block mechanism is
the sensitivity of the acceptance test criteria to detect when a error state occurs in

anyone of the executed sorting module channels. Failure to be sensitive enough

to all the possible error states that could occur in a sorting algorithm will quickly

result in a false positive acceptance of the (erroneous) data sorting output and this

could, if undetected elsewhere in the software artifact, lead to an accumulation
and propagation of fault, error, failure in the wider system artifact - right up to

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 38

the service interface potentially resulting in judgements of incorrect service de-
livery (i.e. system failure). Secondly, sequential, instead of parallel execution,
along with the active feedback nature of the recovery block architecture, means
that, unlike fault-masking, it is less desirable for systems and applications where

timeliness of error control are critically important - as the recovery block ap-

proach involves carrying-out acceptance checking, restoration of data states, and
re-execution of another algorithm increases processing overhead. Thirdly, an im-

portant feature of the recovery block approach to achieving fault tolerance allows
a gradual degradation of service delivery. In the fault-tolerance literature this is of-
ten referred to as a failure mode of "graceful" degradation of service [1], whereby,
in the presence of faults, a system fails in a gradual, predictable, and controllable
manner. This can be seen from the example of different sort algorithms in figure
2.6, each one lower down in the preference hierarchy performs (or sorts data) in
a less and less efficient manner (assuming large amounts of data are involved).
Finally, the recovery block architecture, unlike exception handling, allows for the
toleration of unanticipated residual faults in the software artifact.

2.4.1.4 More Sophisticated Error Control

The three basic forms of error control can be combined to produce more sophis-

ticated error control when the system in question is more complex. A good ex-
ample of combined feed-forward and feedback control in software fault tolerance
is Co-ordinated Atomic Actions (CAA) [4]. CAA fault tolerance architecture is
often used to co-ordinate error recovery control along multiple independent and

concurrent processing threads of required computation. When a dormant fault
state is activated and an error state is subsequently detected in one (or more) of
the concurrent processing threads, internal control intervention can be enacted in
two ways. Firstly, feed-forward error control may be attempted by bypassing the

anticipated error state (much like exception handling) and substituting the error

state with a future non-error state in a single processing thread, providing it can

be coordinated at some future check point with the other concurrent processing

threads. Secondly, if feed-forward error control is not possible (Le. the fault
was unanticipated, etc), then feedback error control will be attempted. This in-

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 39

volves coordinating all of the independent and concurrent processing threads by
employing backward recovery to a past check point state and allowing concurrent
processing to continue from there.

These control theoretic explanations of established fault-tolerant mechanisms,

whilst useful for situating the software fault-tolerant literature within a broader
category of system control theory, are not part of the normal terminology used
within computing science. Therefore it is appropriate to highlight the compar-
isons between the two.-

• Fault Masking relates to the broader system theory of buffering control
whereby possible causes of disturbance of the system-of-interest can be
automatically prevented without any direct active control by the system tak-
ing place. In achieving software fault tolerance this is exemplified by such
mechanisms as triple modular redundancy that can automatically filter out
any computation fault by a voting adjudicator;

• Forward Recovery relates to the broader system theory of feedforward

control whereby prior knowledge of possible causes of disturbance of the
system-of-interest and its environment allow anticpatory control to prevent
the cause of disturbance before it is experienced by the system. In achiev-
ing software fault-tolerance this is exemplified by exception handling tech-
niques and other such mechanisms (i.e. defensive programming) that can

anticipate such error states before computation takes place and substitute
these for error-free states;

• Backward Recovery relates to the broader system theory of feedback con-
trol whereby knowledge of possible causes of disturbance of the system-
of-interest and it's environment are not possible in advance, but only subse-

quent detection of a disturbance once it has occurred within the system. In

achieving software fault-tolerance this is exemplified by such mechanisms

as recovery blocks which can only detect a fault once it has been computed

through some acceptance criteria and then must restore the system before
providing some alternative processing module.

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 40

As we have seen with the case of coordinated atomic actions, more sophisticated
fault-tolerant mechanisms may incorporate more than one of the general system
control approaches (i.e. feedforward and feedback control) in providing greater
dependability of the system.

2.4.2 Broader Software Artifact Redundancy Issues

Whilst the examples of buffering, feed-forward, and feedback error control rep-
resent well known usages of software artifact redundancy in the fault tolerance
literature, a number of other classifications of fault tolerance and goals of soft-
ware artifact redundancy also need mentioning. In the subsections that follow,
an important classification and related software artifact redundancy issues will be
discussed in subsection 2.4.2.1. In subsection 2.4.2.2 some broader purposes of
software artifact redundancy, and how they contribute to the promotion of depend-
able artifacts, will also be considered.

2.4.2.1 Computation Redundancy Classification(s)

It can be seen from the software redundancy examples in section 2.4.1 that, broadly,
redundancy can be categorised into either [14]: a) Multi-version redundancy -
such as the examples of TMR and Recovery Blocks; or b) Single-version redun-
dancy - such as exception handling. Each of these categories present their own
issues and implications for employing software artifact redundancy, and these are

covered below.

Multi-Version Redundancy

Multi-version fault tolerance is essentially the incorporation of two or more vari-
ants of a software algorithm that is either executed in sequence (i.e. Recovery

Blocks) or in parallel (i.e. Triple Modular Redundancy) [14]. The underpinning

justification for multiple versions of the same required computation(s), in a single

software artifact, is that should one variant fail, then at least one (and possibly
more) variant(s) will be able to continue computation and provide the necessary

outputs.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 41

While multiple version redundancy pre-dates its usage in software fault toler-
ance in improving the reliability of computer hardware via replication of hardware
components [15], physical replication of hardware components demonstrate truly
independent (or random) failure behaviour [16]. Therefore, its usage in achieving
software fault tolerance is essentially based upon the assumption that if different

individuals or teams develop individual versions in isolation then these algorith-
mic variants will also, like replicated hardware components, fail independently

(or randomly) ensuring that, through the independence law of probability theory,
the overall reliability of the multi-version computation function will be the prod-
uct of the individual reliability of each algorithmic variant [17]. This assumption
with software, however, was later exposed to be flawed since, although multiple
algorithmic variants do provide reliability gains over any single algorithmic vari-
ant [18], a number of studies [cf. [19,20,21]] have shown that the assumption of
truly independent failure between multiple software variant versions is limited in
its ability to provide truly independent failure to tolerate design faults. This limita-
tion can result in dependent failures due to multiple versions containing common

faults whereby all (or some) of the algorithmic variants can fail simultaneously

(e.g. two (or more) independent TMR module channels produce the same (erro-

neous) data output(s)).

A final consideration with multi-version redundancy, is the additional develop-
ment cost involved in producing multiple algorithmic variants for certain com-
putations in the software artifact [14]. Even for safety-critical software artifacts,
complete development duplication (i.e. requirements, specification, design, cod-
ing, testing, etc) would prove to be extremely costly, however, studies have indi-
cated that the cost of developing two versions is not equal to twice the costs [22].
Furthermore, it is often found that even in safety-critical software, only a subset

of the software system's functioning or computations are considered sufficiently

safety critical to justify multiple-version redundancy. In these circumstances, de-

velopment costs can be reduced by only applying diverse development for those

parts of the software."

9Although it should be noted that other uniform or homogeneous software artifact(s) - such
as a common requirements document, specification, architecture, etc do increase the likelihood of

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 42

Single-Version Redundancy

As the term implies, in contrast to multi-version redundancy, single-version re-
dundancy is focused on improving a given piece of software's ability to detect the
presence of residual faults [14]. Therefore, one of the primary purposes of includ-

ing additional redundancy in a single version is to enhance fault state sensitivity
during computation. This can be achieved in a number of ways [23]:-

• Reverse-checking. Providing that the computation function is 'transpar-

ent' [9] - in that no information loss occurs between input data and re-
quired output data, then an alternative computation can double check that
the used computation has not produced erroneous output by comparing
computed outputs with actual inputs provided to the computation function.
For example, the denomination algorithm for converting required total cash
amounts at an Automatic Teller Machine (ATM) into available denomina-
tion amounts (e.g. £20, £10, £5 amounts) represents a transparent function
- where no information loss occurs, as the actual input total cash amount

can be reproduced by multiplying the denomination types by the total num-
ber of each denomination of each type and then summing.'?

• Check-Digits. Check digits may often be used in single version redun-
dancy to detect transcription and transposition errors in important data and
computations during software execution. A longstanding example of check-
summing is MODULUS 11, which will detect all transcription and trans-
position errors - as well as 91% of random errors [24]. MODULUS 11

is performed as the following example shows: a) Original code number =
4214; b) Multiply each digit by the weights 5432 giving (4x5) = 20, (2x4)

= 8, (lx3) = 3, (4x2) = 8; c) Sum the products, giving 20 + 8 + 3 + 8 =39;
d) Divide by modulus 11, giving 39 mod 11 = 3 remainder 6; e) Subtract

common mode failure between subsequent algorithmic variants in the eventual software produced.
IOPorexample, the actual data input amount required to be dispensed is (say) £100.00. And the

the denomination algorithm computes output amounts of two £20 notes, four £ I0 notes, and four
£5 notes. The computed outputs can be compared by reverse checking computation with the actual
inputs by the computation (2x20) + (4xlO) + (4x5) = 100 to ensure that they are of equal value.
In the event that they do not equal each other, then some error has occurred in the denomination
algorithm.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 43

the remainder, giving 11 - 6 = 5; f) 5 now becomes the check digit which
is then added as redundant data to the end of the code number 4214 to be
stored giving 42145. The check digit is then used to detect if any corruption
to the code occurs through faulty future computation(s). This is carried out
as follows and the checking result of the number should yield zero. 42145

is calculated (from the least significant digit) by the the weighting 54321,
giving (4x5), (2x4), (lx3), (4x2), (5x 1). This gives the sum 20 + 8 + 3 +
8 + 5 = 44. This is then divided by mod 11, giving the remainder 0 -
demonstrating to a high level of confidence that no fault corruption during
computation(s) has occurred .

• Assertion Checking. Assertions are additional conditional software state-
ments coded into the software artifact to define what should always be true
about the computation states concerning some particular function [12]. As-
sertions are often placed:-

- At the beginning of a function and are often called preconditions. They

define what the are the allowable state ranges in procedure or function
parameters;

- At the end of a function or procedure and are often called postcon-

ditions. These assertions determine what are the allowable exit state
ranges that can result from the computation(s) within the function or
procedure;

- Within a control loop. Such assertions define an allowable and invari-
ant state range before, and after each iteration of the control loop;

- At the head of classes in object oriented languages. These are some-
times referred to as class invariants, and define what are allowable state

ranges before and after any public method calls of the class .

• An example of a class assertion upon a stack class is provided by Bell [[12]:

p. 401]. With a stack structure data can be added to the stack by calling the
method push, and taken off the stack structure by calling the method pop.
Assuming the stack structure is of a fixed size defined by a constant named

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 44

capacity, and the number of data items at any time placed onto the stack
is defined by the variable count, it is possible to increase the class's fault
state sensitivity to be able to detect activated faults (i.e. error staters) by
employing the following class assertions:-

- In the stack class, the class invariants can be defined as: 1) ASSERT

(COUNT >= 0); and 2) ASSERT (CAPACITY >= COUNT). Assertion
number one ensures that any value count has must be greater than or
equal to zero, meaning that count can never be a negative number as
a negative amount of data items on the stack is a nonsense and such a

value would indicate some error state situation. Assertion number two
captures the fact that because the stack is of a fixed size (defined by
the constant capacity), the number of data items placed onto the stack
(defined by count) must never exceed this fixed size.

- Individual procedure based assertions for calling each of the class
methods push can also be defined as: 1) as a precondition to calling

the method the assertion, ASSERT (COUNT < CAPACITY) is used; and
2) as a postcondition of the method the assertion, ASSERT (COUNT' =
COUNT + 1) is used. The precondition assertion number one ensures

that the method push is not invoked unless the size of the data items
presently on the stack is, at least, one less than the maximum number
of data items that can be placed onto the stack. The postcondition as-
sertion on exit from the push method, ensures that for every call of the
push method, only one extra data item can be placed onto the stack. I I
Anything other than this is considered an error state.

The examples provided above are not intended to be a complete coverage of how
single-version redundancy can be used to increase error detection, instead, they

are used as a subset of examples to emphasise how extra system structure can

improve fault state computation sensitivity. In fact, often, multi-version redun-

dancy approaches may often need to incorporate some aspects of single-version

IIFor example, if through some fault, a single method call could place two data items onto
the stack when the size of count = capacity, or count = capacity-I, then this would result in the
maximum size of the stack being exceeded.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 45

redundancy in some parts of the overall architecture to ensure sufficient fault state
sensitivity in such components responsible for check points (i.e. CAA) and accep-
tance checking (i.e. Recovery Blocks), etc. There is always the concern, however,
of how adding extra software redundancy to the artifact can result in increasing
overall software complexity (with its potential for side-effectual fault causation)

and how this could mitigate the overall performability of the software artifact
during operational usage [14]. These are facets of dependability requirement de-

cisions that have to be taken into consideration and compared with the expected
dependability benefits of employing such redundancy in the artifact.

2.4.2.2 Structural Redundancy Issues

lt can be seen from subsection 2.4.2.1 on computational redundancy classifica-
tions that the categories of multiple and single version redundancy were primarily
focused on introducing redundancy to either duplicate computational functional-
ity, or to provide additional redundancy to increase fault state sensitivity to check

computation. Therefore, both of these forms of redundancy were concerned di-

rectly with contributing fault toleration during computation. However, other soft-
ware artifact redundancy incorporated into the software artifact is concerned with
promoting fault control or promoting certain dependability attributes without be-
ing directly involved in the computational functionality of the software artifact. In
this regard, such redundancy is directly related to either: a) preventing, protecting,
and/or containing software faults via stronger system structure; or b) promoting
other important dependability attributes through improving the system structure.
These issues of structural redundancy are discussed in the subsections that follow.

Improving Security of Data

Under normalisation rules in relational databases, it has long been the goal of

database design to remove redundant storage of data by applying a number of

normal forms (i.e. first normal form, second normal form ... etc). This removes

repeating groups of data, etc - with many-to-many correspondence. Whilst this
is generally regarded as good relational database design practice, the dependabil-
ity attributes of security can be promoted by violating this practice and ensuring

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 46

A) BAD EXAMPLE A) BAD EXAMPLE

I) IMPROVING INTERPRETATION 2) IMPROVING COMPREHENSION

if (! (block_id < actblks) II !(block_id >= unblocks)); 'x += ('xp= (2 • k < (n-m) ? clk+l] : d[k--]));

B) GOOD EXAMPLE: B) GOOD EXAMPLE:

if (2 • k < n-m)
if ((block_id >= actblks) II (block_id < unblocks)); 'xp = clk+l J;

else
'xp =d[k-J;

*x += *xp;

Figure 2.7: Redundant Structure and Comprehension [source: [25]: pp. 6-7]

that highly sensitive data (e.g. a bank customers address details, personal identi-
fication number (for credit cards and ATMs), and bank card number, etc, which
could all be used to commit fraud or card cloning) are placed into a separate table
with increased permission access restrictions. In this case, usual rules of normal-
isation are dispensed with as such data and information will result in repeating
groups of data (Le. one-to-one correspondence), however, by doing so, the at-

tribute of security (Le. availability, confidentiality, and integrity of the sensitive

information and data) is promoted through introducing redundant software struc-

ture to increase protection and prevention from malicious unauthorised access.

Improving Reuse and Maintainability of The Artifact

Since many real world software artifacts must be maintained and evolved, an im-
portant dependability attribute is maintainability of the software artifact - in
terms of corrective, adaptive, and enhancement changes that become necessary.
System structure, in this regard plays a big part in how easily a software artifact
can be corrected, altered, and improved [cf. [26, 27, 28]]. In this regard, system
structure, in terms of its degree of information hiding, coupling, and cohesion,

has not only a part to play in protection against unintended side-effects that can

cause faults, but also how easily the software artifact can be reused and its logical
structure comprehended:-

1. Improving reuse and extension: Riel [29] highlights that introducing re-
dundant artifact structure(s) - in the form of decoupling containers in

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 47

an object oriented language promotes ease-of-reuse and future extension
through ensuring that necessary class methods retain message passing au-
tonomy;

2. Improving understanding: Kerningham and Pike [25] provide numerous

examples of how incorporating (essentially) redundant structure(s) into the

software artifact can greatly improve understandability of the code. In fig-
ure 2.7 two of their examples are illustrated. The first example I) improving
interpretation illustrates how conditional logic can be improved by using
positive forms of conditional logic that is more clearly and natural to inter-
pret. Kerningham and Pike note that in the top example (i.e. A) that the

conditional logic uses a negative form which is always more difficult and
less intuitive to interpret correctly, whereas, in the second example (i.e. B)

the logics have been transformed into positive conditional forms that are
more intuitive and natural to interpret. The second example 2) improving
comprehension is a clear indication of how additional redundant structure(s)
can greatly aid comprehension of the code. In the top example (i.e. A) the

code is obfuscated within the rich C syntax where all the conditionals, op-

erators, and statements are crammed into (what at first glance looks like)
one line statement. Whereas, in the lower example (i.e. B) the structure

of the code is spread over several lines and explicitly uses the more normal
if-else conditional statements which reveals that the processing required is
actually a number of different statements and, because of these (essentially)
redundant coding structures, now becomes far easier to understand.

The examples provided here were not intended to be exhaustive, but to illustrate
that the incorporation of additional redundant structuring of the software artifact
can greatly improve both fault toleration - in terms of fault prevention, protec-
tion, and containment of faults, as well as facilitate and promote other important

dependability attributes of, for example, security and maintainability.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 48

2.4.3 Limitations of Software Artifact Redundancy

Whilst there is little doubt that the introduction of redundancy into the software
artifact to improve fault tolerance has significantly increased the dependability of
software systems, software redundancy - in the form of fault tolerance, also has
limitations that are worth mentioning. These are briefly discussed in the subsec-

tions that follow.

2.4.3.1 Limitations of Error Control

If we look deeper into the essential three forms of system regulation, upon which,
in one form or another, all fault tolerant mechanisms are based, it is possible to
highlight a number of restrictions. Firstly, in terms of passive buffering error
control - such as triple modular redundancy (TMR) fault tolerant schemes, it is
possible to see that such control is really only effective against purely random sys-
tem disturbance. This has introduced controversial claims that such mechanisms
of TMR, whilst effective against accidental development faults, are likely to be

much less effective against intelligent and informed malicious faults - such as

those that undermine the security of a software system [30]. Secondly, in terms of
feedback error control mechanisms, there are three main concerns for such fault
tolerant mechanisms - such as recovery blocks:-

1. Failure Prohibitive. As mentioned earlier in subsection 2.4.1.3, one of the
main problems of feedback error control is that the disturbance must be of
a type which the system can recover from. For example, in the Therac-

25 accidents [31], even if there had been some feedback error control fault
tolerance (i.e. Recovery Blocks, etc) that detected lethal doses of radiother-
apy doses after they had been administered and then recovered to prescribe
the correct doses, it would have been of no real value, as it is not possible

to de-administer a lethal dose after it has taken place. This is an exam-

ple of system deviation of service that is unrecoverable from (in terms of
the patient). With such heavily safety critical systems, it is preferable that

they have fail-silent failure modes [1]. However, contrast this serious and
unrecoverable failure with that of a wrong dispensation of cash from an au-
tomatic teller machine (ATM). Here, feedback error control is feasible, as

CHAPTER2. DEPENDABLESOFTWAREARTWACTS 49

the ATM, after dispensing the wrong cash and detecting so, can either a)
make-up the short-fall immediately; or b) inform the customer that it (the
ATM) is aware of the short-fall cash dispensation and assure the customer
that they will only be debited for that reduced amount. In this case, the
unanticipated error can be recovered from in a satisfactory manner.

2. Time Prohibitive. Even when the system disturbance is of a type that the
system can recover from, there is still the issue of whether there sufficient
time, in the wider system the feedback error control regulates, to enact
feedback error control? For example, in many real-time computer con-

trol domains, such as Air Traffic Control Systems (ATCS), a residual and
unanticipated fault, error, failure chain propagation occurrence that could
(at least temporarily) wrongly direct, stack, or queue waiting aircraft (per-
haps travelling at speeds of 200 plus mph) may not allow the fault toler-
ant system sufficient time to detect, restore, redirect, process, and test ac-
ceptance of another (say) recovery block alternative and then provide the
correct(ed) airspace co-ordinates before a mid-air collision occurred. As

mentioned earlier in subsection 2.4.1.1 passive buffering error control (such

as TMR) that provides sufficient parallel computation redundancy to (in-
actively) mask-out such an error state is more appropriate for time/safety
critical software control systems.

3. State Prohibitive. In order to provide feedback error control the regulation
component of the system must have sufficient state representation to be able
to enact such recovery of unanticipated residual fault activations. For exam-
ple, if due to incompleteness in the original software artifact specification,
an ATM's controlling embedded software did not provide for a physical and
digital state representation of the amount of cash present in the physical cash
magazines, then once the cash magazines have been emptied (or insufficient

cash left to fulfil a customers cash request) then there is no possibility of de-

tecting or recovering from such an unanticipated residual fault activation -

as the up-stream fault phenomenology results in undermining detection of
the system deviation.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 50

It can be seen from these three examples, that they present some limitations and
concerns of feedback error control. In order for these issues to have become more
amenable to feedback error control it would have been necessary to enact prior
detection at a deeper level within the software hierarchy (e.g. prior detection of
lethal dosage administering data indicators, etc). However, as mentioned earlier,

with feed-forward error control in subsection 2.4.1.2 this places a heavier reliance
upon the effectiveness of the fault-forecasting means in the creation process. To

an extent, this also would defeat the purpose and value of feedback error control,
as its value and contribution, in a broader and general system control sense, is used
to control unanticipated system disturbance (or unanticipated residual faults in the
software artifact) and other error control approaches - such as feed-forward con-
trol, would be more appropriate once such disturbance had become more antici-

pated.

2.4.3.2 Increasing Artifact Complexity

As has already been indicated, there is a trade-off between incorporating addi-

tional computational or structural redundancy into the software artifact and in-

creasing the overall complexity and its consequential potential for also increasing
more residual faults. Therefore, the expected benefits of increased dependabil-
ity and associated development costs involved with a particular application by
employing certain fault tolerance mechanisms must also be compared with the
potential it presents for increases in systemic complexity and its consequential
possible effects on undermining the achievement of dependability status required.

2.5 Chapter Summary

This chapter has considered the many ways in which software dependability can

be improved via a fault-tolerant approach. The existing dependability framework

provides an encompassing generic framework for capturing the desired goals to

be achieved; the means by which these goals can be attained; and the threats to un-
dermining software dependability. A crucial issue in achieving fault-tolerance is
the introduction of computational and structural redundancy to aid continuance of

CHAPTER2. DEPENDABLESOFTWAREARTIFACTS 51

correct service delivery in the presence of faults. Essentially, fault-tolerant mech-
anisms can be categorised in a broader system theory sense as error-control. This
chapter has discussed three ways to achieve error-control, namely: passive buffer-
ing; feedforward control; and feedback control. Each error-control approach has
its own advantages and weaknesses which need careful consideration and knowl-

edgeable analysis of the particular failure modes, domain criticality, and opera-

tional demands if dependability requirements are to be correctly unearthed. In the
next chapter, dependability will be sought in terms of the creation process with a
focus upon the fault-avoidance means of promoting software dependability.

Chapter 3

Dependable Software Processes

52

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 53

3.1 Chapter Introduction

Whereas chapter 2 focused upon improving software dependability via a fault-
tolerant approach, this chapter considers how software dependability can be im-
proved via a fault-avoidance approach in the creation process to prevent, detect,

remove, and forecast faults.

The chapter first considers some major problems that the software development
process suffers from before progressing to a view of a dependable software cre-
ation process that is in keeping with the existing approach adopted by the depend-

ability community.

3.2 Problems in The Software Development Process

There are many longstanding issues that surround the software process. Software

projects have proved to be amongst the most difficult projects to manage - with

many projects being abandoned, delivered over-schedule, delivered over-budget.
In addition, even if software is delivered on time and budget, the software system
may not provide the expected benefits envisaged, or suffer from rejection by its

intended users. It is possible to list, broadly, the types of failure that the software
process can experience as folIows:-

• Process Failure:-

- Software delivered over planned schedule (i.e. project management
failure);

- Software delivered over planned budget (i.e. project management fail-

ure);

- Software abandoned due to economic infeasibility (i.e. economic fail-

ure);

• System Failure:-

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 54

- Delivered software does not provide envisaged strategic benefits (i.e.
expectation failure);

* Delivered software was delivered too late to exploit the potential
benefits (i.e. opportunity failure): 1

* The optimism placed in delivery of the software was misplaced
(i.e. conceptual failurej.?

- Delivered software does not provide the essential functionality required
(i.e. functionality failure);

- Delivered software is rejected by the intended users (i.e. deployment
failure);

- Delivered software is abandoned due to the infeasibility of the tech-
nology to be created (i.e. technology failurej;'

While process failure and system failure are separated, in the listing above, the
view taken in this chapter is that all of these failures are inherently connected with

the software process, since, as the proverb goes - ''product always follows pro-
cess". Furthermore, it should be noted that these failure types are not isolated, but

often have a cyclic causality dynamic (Le. technical complexity or infeasibility
is likely to cause schedulelbudget failure, which in turn can result in economic
failure, etc). Issues surrounding such failures as expectation failures and deploy-
ment failures require an expansion of the overall system boundaries - concerning
the software creation process, these are introduced and discussed in more detail
in chapter 4. In this section, directly associated complexities - concerning the
software creation process, and how it can increase the potential for such failures

1This is not to be confused with a budget overrun, as the software system may have been
delivered to planned schedule, but (for instance) a competitor had already seized the advantage
before the software system could be delivered;

2This is not to be confused with some form of functionality failure or deployment failure, as
the essential envisaged functionality may have been delivered as required, and the intended users
enthusiastic about its usage. but the overall beliefs in its strategic advantages were misunderstood
or poorly conceived.

3This is not to be confused with the dependability consequences of technical failure to deliver
the service once in operation, instead it is referring to misunderstanding the sheer technical com-
plexity involved in creating the system that results in failure to deliver the software system. A
good example was the U.S. Governments' "Star Wars" project in the 1980s cf. [32].

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES

o-t" ------ ~
M79:.~' , ···ff·~-:::·::::>-::::~::::···· APPUCA:;N DOMAIN

:': <, /: .- /\ B llvp(j1:
,'. .' HUMAN RESOURCES s .,'

I ;~~~E~~:~""
ARTIFACT I

.......\. ~ .
~--- ~
\,#' .:
" '.. PROCESS TECHNOWGY "

,.", "",
.. ",

:' ·····.'J'/fE ..:::' ~9!'TWARE CREATION PROC~~ ••••• ••" - ..,
NEW TECHNIQUES,
TOOLS, & METHODS

THE PROCESS ENVIRONMENT

Figure 3.1: Abstract View of The Software Process

will be discussed. The essential areas covered are illustrated in figure 3.1. The
diagram captures the essential entities and relationships involved in the software

process. The entities are: a) management; b) human development resources; c)
the process technology (e.g. tools, methods, techniques and programming lan-
guages); and d) the applicational domain. The relationships are represented by
the dashed arrows. It can be seen that management has responsibilities for such

entities as the human resources, process technology and overall planning, coordi-
nating, and controlling these entities (as resources) in the software creation task.
The double headed dashed arrow between human development resources and the
applicational domain represents the respective responsibilities for eliciting and re-

fining requirements. In a more scoping manner, it can be seen that the software

creation task (dashed elipse) encompases the entities of human resources and pro-

cess technology as inputs to the software creation task that produces the eventual
software artifact. Furthermore, new process technology is (like the applicational
domain) considered as an environmental influence that indirectly influences the

software creation process as new techniques, methods, etc become available -

55

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 56

which management will have responsibility for evaluating thier utility.

This view, in contrast to the many software engineering process models - that
describe the phases and degree of formality or informality that characterises the
nature of the activities involved [27, 28], is an abstract conception that seeks to

capture the essential elements, relationships, and influences involved. These ele-

ments and influences upon the software creation process are discussed further in
subsections 3.2.1, 3.2.2, 3.2.3, and 3.2.4.

3.2.1 The Software Creation Task

Software, as a construction medium, is used to create highly sophisticated data
processing logical structures to provide effective and efficient information han-
dling, control, and acquisition in many different situations (c.f. subsection 3.2.4.1).
However, this makes software development amongst some of the most complex
systems a person or group of people could ever attempt to construct [33, 34].
Complexity, however, is a vague and overused term in many areas and software

complexity can be also interpreted in many different ways, such as the number
of operations an algorithm performs, the space/time complexity (i.e. as denoted
by 0 notation), or the number of routes possible through a program. Here, to

provide one specific type or measure of software complexity, it is possible from
considerations of software testing to highlight the huge data space complexity of
software by showing that even a small software program can possess extraordinary
large numbers of possible data states. Firstly, it should be noted that with many
other construction mediums, the complexity of a structure (such as, for example
a building) only increases linearly with the size of the structure being created.

One of the distinctive aspects to the nature of software, is that although, like other
construction mediums, its complexity also increases with its size, this can do so

exponentially. A piece of software ten thousand lines of code long, is not necessar-

ily ten times more complex than a piece of software one thousand lines long - its

complexity, in terms of possible achievable data states, could be up to (say) a hun-

dred times more complex. In fact even in relatively small software programs, the
data state complexity can be enormous. This is clearly indicated by Pressman [27]

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 57

who indicates that a hundred line program can be written in the C language that
contains only two nested loops that executes (a maximum) of only twenty times
each contains a combinatorial data state complexity of 1014• Pressman puts the
software complexity, and exhaustive testing infeasibility, of this trivial program

into perspective, by noting [po470]:

"...assume that some magical test processor ("magical" because
no such test processor exists) has been developed for exhaustive test-
ing. The processor can develop a test case, execute it, and evalu-
ate the result in one millisecond. Working 24 hours a day, 365 days
a year, the test processor would have to continually work for 3, J 70
years to exhaustively test the program. "

Real-world software systems are vastly more complex that this trivial example.
When this complexity is combined with the human potential to make mistakes,
slips, and oversights, in the software creation task, it is not suprising that software
development is an inherently error prone activity. This not only effects the de-

pendability of the eventual delivered artifact (and therefore the necessity of fault-

tolerance, covered in chapter 2), but can also play havoc upon issues of managing
and controlling the actual development work (cf. subsection 3.2.4.2).

Another problem involved with software is that it is intangible by nature [35].
The only physical form software really takes, is as a pattern of high or low volt-
ages stored on temporary or permanent magnetic computer hardware [15]. As a

result, there is an unusual representation, interpretation, and communication prob-
lem - whereby the various phases of the software creation process (i.e. require-

ments, design, etc) need to capture, characterise, and communicate the required
behaviour of the software artifact in many different ways and levels of abstrac-
tion - suitable for that particular phase. This causes a number of difficulties.

First, interpretation can be highly error-prone, whereby interpretations of one

representative form at a certain process phase and abstraction level can become

incomplete or misinterpreted - this can not only directly result in residual faults
that, subsequently, compromise the dependability of the software artifact during
operational usage, but the reworking, revising, and corrective maintenance it can

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 58

cause presents serious management problems and project risks. Second, the extra
workload introduced in representation can extend project budgets and schedules.
Whilst professional software engineering wisdom advocates careful technical doc-
umentation and traceability in the software development process, there is often a

serious separation between theory and practice [12]. Not only do developers often

not document their work, but when they do, it can sometimes be conducted after
the development work for that phase has already been performed [32], or done in
a hurried and incomplete fashion. Additionally, as project budgets and schedules
come under increasing pressure to meet milestones and delivery targets, there is
also the temptation amongst management to view the documentation work as of
secondary importance. Finally, in contrast to many other engineering disciplines,
the intangibility of software makes the necessary measurement for planning and
control over the creation process extremely difficult. With other engineering dis-
ciplines (Le. civil engineering), even when lower levels of formal project planning
and tracking of progress are introduced [36], management can often retain accept-
ably high levels of control over the project via regular visual inspection of the

work."

3.2.2 Human Resources

As figure 3.1 indicates, within the software creation process, human resources are
one of the two essential inputs to the actual software creation task. As Constantine
emphasizes [[37]: p. 17]:

"Good software comes from people. So does bad software. "

4While doing my masters thesis I had the opportunity of reviewing a number of different
projects. Most were I.T. related, but one was a building refurbishment project. While interviewing
the project manager on this project I was surprised to find both the level of informality in planning
and controlling the project and yet the overall satisfaction of the levels of process control claimed
by the project manager. After commenting about this to him, he informed me that in tracking the
progress and exercising overall control of the project he operated a policy of "control-by-walking-
around" the building three to four times every day. He recited numerous occasions of how this
allowed him to assess the progress of the work and detect and prevent problems early before they
had time to have a serious impact. In contrast, although there was often more attempts made to
formally plan and track the I.T. projects, most of the project managers commented that they felt
heavily reliant upon only individual progress reporting by the developers involved - which often
proved overly optimistic and frequently contributed to missed milestones and delivery overruns.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 59

This comment actually highlights an ongoing issue regarding the variability of
human performance - regarding software development. Amongst programmers
there have been many studies on productivity that have found enormous perfor-
mance variability measures upon code production between individual program-
mers. Studies of over three hundred software organisations, conducted by De-

marco and Lister [38], led them to conclude that, over a sample of any software

programmers using any productivity metric, the following productivity perfor-
mances tend to prevail [po45]:

• Count on the best people outperforming the worst by approximately a ratio
of 10:1;

• Count on the best performer being approximately 2.5 times better than a
median performer;

• Count on the half that are better-than-median performers out-performing
the other half by more than a ratio of 2: 1;

However, large individual performance variability not only occurs in the program-
ming task. Brooks [34] has long argued, from his experiences of managing the
production of the IBM 360 operating system in the late 1960s, that, during the

design phase, to help ensure the conceptual integrity of the software, the archi-
tecture should be the product of (at most) one or two talented software designers.
In fact, to accommodate such human performance variances, and help ensure the
eventual quality of the product in software development, Baker [39] and Baker

and Mills [40] proposed a custom-based team composition especially for soft-
ware development, characterised as "The Chief Programmer Team". With this
team composition, only (at most) two talented designers were allowed to take on
the design and coding roles, whilst other team members fulfilled supportive roles

of administration, documentation, etc. The rationale being that, in terms of both

software quality and productivity, two talented designers/programmers can pro-

duce better software faster, than a group of designers/programmers of mixed abil-
ity. This, however, goes against conventional view of the benefits of team work,

and suggests that the nature of the software creation task is not additive, in nature.

CHAPTER 3. DEPENDABLE SOFfWARE PROCESSES 60

Social Psychologists have identified that, in group work, there are essentially four
types of task natures that can be identified [cf. [41]]:-

1. Additive Type Tasks: in which the contributions of each group member
can be predictably combined into an overall group performance. Examples

include a) brick laying; b) moving a heavy object; and c) selling a product,

etc. In all these examples, the group's output is determined by the sum of
the individual efforts;

2. Conjunctive Type Tasks: in this case, the group's final product is largely
determined by the weakest individual performance(s) of the group. A good
example includes a mountaineering group. In this situation, the overall
group can only progress as fast as its slowest group member(s). This is
an example of the "weakest link" effect;

3. Disjunctive Type Tasks: with this type of task, the overall group's perfor-
mance is largely dependent upon the performance of the strongest or most

competent individual group member(s). With this type of task, it is not only

necessary for the most competent group member to identify a viable solu-
tion, but he/she must also be able to convince the other group members of
its viability. In a survey of group dynamics, by Hill [42], it was revealed that
often: a) the verifiability characteristics of a particular task; b) socialising
effects - such as pressure for conformity; and c) individual assertiveness
(i.e. emergent leaders), often play an important influence in the ability of
the most competent group member being able to attain solution acceptance,

by the rest of the group. This is an example of the "strongest link" effect;

4. Compensatory Type Tasks: in this case the contributions of the individ-
ual group members are averaged together to form a single group outcome.

The limitation here is that it is only feasible for tasks that can be reduced to

an average - such as forecasting, estimating, etc. In such task situations,

the benefit of averaging the overall group efforts is that optimistic predic-
tions are off-set by pessimistic predictions and the average prediction or

estimation tends to be more accurate than any single prediction of a group

member.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 61

With regards to the nature of the software task, such findings and team compo-
sitions indicate that software development is either a) a conjunctive type task -
i.e. lower end performers limit overall group performance; or b) a disjunctive type
task - i.e. team composition interventions need to take place to permit the best
performers to reduce errors, and increase quality and productivity.

The intangible nature of software also appears to have negative group performance
effects. Brooks [43] first illustrated that, unlike many other types of engineering
projects, the nature of software development in group-work cannot be factored out
to accelerate project work to expedite project schedules or reduce fixed projects
costs by increasing the manpower [cf. [36]]. He noted that the software task
places a heavy reliance upon learning and interpersonal communication to co-
ordinate the work between developers. Once extra manpower is added to an exist-
ing project, exponential increases in communication overhead actually results in
slowing down activities on productive tasks. This was also reinforced by Gordon
and Lamb's [44] analysis of such production losses in analysing the effects of the

'learning-curve'? However, they argued that such slowing down effects are only

temporary learning effect delays that include: a) "coming up to speed" on the task;

b) acquisition of specific knowledge; c) having to teach/train other (new) group
members; and d) the need for task(s) coordination and communication. After a
time, these learning-curve effects diminish and the group will start performing at
a greater collective productivity level. Gordon and Lamb [44] therefore argued
for adding extra developers early on in the project before schedule acceleration
was required - in order to accommodate for such learning effects before project

acceleration was needed.

3.2.3 Process Technology

Due to the essential complexity, error-prone nature, and intangibility of software,

there is an increasing need placed upon assistive process technology - in the

5Gordon and Lamb note that the 'learning-curve' relates to either a) the acquisition of essential
task skills; or b) the acquisition of specific knowledge for a particular task. In referring to Brooks
Law of software projects, they are concerned primarily with the latter (i.e. the acquisition of
specific knowledge required).

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 62

form of tools, methods, and techniques. However, there are a number of concerns
surrounding: a) the suitability of process technology; and b) the effectiveness of
process technology. These are briefly considered in the subsections below.

3.2.3.1 Suitability of Process Technology

An indication of software engineering process immaturity is that it suffers from a
saturation of tools, methods, and techniques - each of which proposes to be the
answer to developing high quality software in a predictable manner. While, many
of these make certain improvements and have certain strengths and weaknesses,
appraising their suitability - in terms of advantages and disadvantages for a par-

ticular software development system and application domain is very difficult and
can be the cause of problems in the software development process. Unfortunately,
management often believe that greater productivity, quality, and project control
can be achieved simply by the employment of some new tool, method, or tech-
nique. For instance, from his experience in managing large information system
(IS) projects, Hallows [45] argues against the temptation of management buy-

ing and employing new and revolutionary process technology (i.e. CASE tools,

methods, and techniques) as the learning overhead they present, under tight sched-
ule/budgeting duress, is often not accommodated for explicitly within the project
planning scope and can result in serious project delays and artifact defects being
introduced. Such issues, concerning process technology, have began to suggest
that instead of improving developer productivity, software quality, and project
control - process technology is potentially becoming subtle causalities of failure

of software projects [46].

3.2.3.2 Effectiveness of Process Technology

The traditional approach to software engineering has been to concentrate primar-

ily upon achieving fault-avoidance in the software development process through

increasing the sophistication of tools, methods, and techniques that both guide

and constrain the developer from introducing faults into the software artifact or
which improve detection and removal. While, by comparison to earlier genera-

tion ad-hoc approaches [47], these have no doubt raised the level of both software

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 63

engineering and software dependability," this progress is more than matched by
the pace of technological advancement and associated commercial drivers that
demand software controlled systems that involve unprecedented increases of ap-
plication novelty and technical complexity [cf. [48,49]].

An over reliance upon process technology in software engineering has been criti-
cised on three fronts. Firstly, it has been argued that is has never (or is ever likely
to have) solved the fundamental problems that software engineering has always
presented [34]. Secondly. improved methods, tools, and techniques, can actually
act as drivers themselves to the development of vastly more complex software
controlled systems - cancelling out any process support technology gains origi-
nally expected [48]. Finally. an over emphasis of systematic tools, methods, and
techniques in the development process has been criticised for motivating a "one-
size-fits-all" solution-orientated paradigm that can often stifle rigorous problem

analysis in many cases [50].

3.2.4 The Process Environment

The software development process does not take place in an environmental vac-
uum, direct process environmental influences upon the software development pro-

cess include the management of the process and the complexity of the application
domain into which the eventual software artifact will be deployed.

Other, less direct influences, such as the wider organisational structure and culture
can also impact (positively or negatively) upon the dependability of the software
process [cf. [51, 52, 53]], however, such influences are considered to belong to
the realms of organisational development (OD) and are considered out of scope of

this thesis."

6This is particularly true of improved language design, formal approaches, computer-assisted
software engineering (CASE) tools, and integrated development and debugging environments [cf.
[12,27,28,48]]

7This is a practical consideration, not a principle one, and the reader should not infer that the
wider organisational structure and culture of the software engineering organisation are considered
unimportant.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 64

3.2.4.1 Application Domain

Software is the ultimate isomorphic machine [54]. By this, it is meant that soft-
ware functionality can be created in a universal manner to emulate or simulate
almost any behaviour required. This means that its context of application extends
way beyond the limits usually imposed by other engineering disciplines such as

civil or mechanical engineering, etc that have definite applicationallimitations. In

the early years of business computing, software was often used to automate well-
established existing systems - such as centralised payroll systems, etc [55]. With
the combination of increases of processing power and reduced costs of hardware,
over the last twenty years or so, the value that can be realised from incorporating
software control or processing of information in ever more novel applications has

ensured that software systems have become increasingly complex and ubiquitous
in society.

This facet places a heightened dependence upon software engineers to fully un-
derstand the particular nature of the application domain in the software creation

process. This phase has often been referred to as the requirements engineering

phase. Jackson [35] notes that natural language, if not carefully used, can intro-
duce many interpretations that can result in erroneous definition(s) of application
requirements. Furthermore, he notes that there are essentially two types of appli-
cation requirements:-

1. Domain Requirements: these refer to indicative properties that a particular

domain possesses - irrespective of the additional behavioural requirements
that the software system will be designed to provide;

2. Software Requirements: these refer to the optative properties that the soft-
ware system, itself, is to provide.

Failure to elicit and capture these requirements can result in a) incomplete require-

ments documents; b) inconsistencies being introduced; c) incorrectness - in the

required behaviour of the software system; and d) ambiguities due to different

emphasis and/or interpretations of the desired software behaviour. All of these

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 65

requirements failures can seriously undermine the eventual dependability of the
deployed software system.

Advances in process technology, particularly precise formalism and modelling of
requirements specifications [cf. [56, 57, 48]], with their increases of precise se-

mantics, and validating proof techniques, have helped reduce ambiguities, incon-

sistencies, and incorrectness of requirements. However, such process technology,
is not a panacea for solving all requirements problems, as such heavily mathemati-
cal modeIling approaches are still vulnerable to incompleteness concerns through
assumptions made upon the scope of the application's requirements. For such
reasons, the value of, user-centered development, iterative prototyping and do-
main expertise in the requirements phases are also considered to be crucial [cf.
[58, 55, 10]].

3.2.4.2 Management Issues

Management can be defined in many ways. In a broad interpretation, management

involves many activities relating not only to the structure and decision-making of

the organisation (i.e. strategic, tactical, and operational) [59], but also in 'softer'
terms - relating to the political and cultural climate of the organisation [60, 61].
Additionally, vague definitions often exist between the sociological and task dif-
ferences of what distinguishes management from leadership. Kotter [62] argues
that the essential differences between leadership and management relate to deal-

ing with complexity versus dealing with change. He further divides this distinction
into three dimensions, as follows:-

• Direction vs Planning: Direction is a leadership responsibility which in-
volves gathering large amounts of information to assess patterns, relation-

ships, and linkages in order to provide a vision to explain things. By con-
trast, planning is a management responsibility designed to establish order

and produce predictable and orderly results;

• Aligning people vs Organising or Co-ordinating people: Alignment of

people is a leadership responsibility and involves ensuring that everyone
moves towards common goals of the organisation - in times of change.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 66

Organising or coordination of people is a management responsibility and
relates to ensuring that established plans can be resourced as precisely and
efficiently as possible. Typically, this involves complex decision-making
relating to the process structure, task structure, matching of skills to tasks,
and training;

• Motivating People vs Controlling: Human Motivation is a deep psycho-
logical and social psychological area of study [cf. [63]]. Nevertheless, lead-

ership plays an important role. It is not sufficient to provide directive visions
and collective alignment, in times of change, without also ensuring enthusi-
astic interest and support and preventing barriers to change and resistance.
Likewise, in terms of management, it is not sufficient to establish effective
plans and suitable organisation of resources without effective monitoring
and tracking mechanisms to detect when deviations from established plans,
target, and goals occur.

In the context of this thesis, although there are many issues and arguments for how

such managerial aspects of culture, organisational structure, political climate, and

leadership can improve or undermine the effectiveness of the software creation
process [cf. [37, 38, 64]], this subsection focuses upon direct managerial influ-
ences relating to process control, namely: a) planning; b) organising or coordina-
tion; and c) monitoring or tracking. Drawing upon issues and problems already
raised in this section, with the software creation process, these essential manage-
ment elements are considered in terms of how the nature of the software creation
process can result in undermining their effectiveness in achieving process control.
These are briefly discussed in subsections below.

3.2.4.3 Planning

Planning, is predictive, by nature. It relates to acquiring as much relevant infor-

mation and data to deconstruct and order the work so that its progression can be

reconstructed into an orderly scheme of work so that relevant tasks can be se-

quenced and appropriate types and levels of resources applied. Two particularly
important aspects concern: a) in order to realistically assess the entire scope of

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 67

work to begin with; and b) estimate the amount of duration and costs involved
in the performance of required tasks. Only by achieving a sufficiently accurate
assessment of both of these aspects can a realistic and useful plan be determined.
Two particular problems that the software creation task presents - relating to
these two essential planning features, concerns: c) the problematical nature of

ensuring adequate definition of the requirements scope - in its totality. Any

omissions, inconsistencies, etc fundamentally undermine the integrity of the plan
- resulting in unrealistic deadlines, budgets, and resourcing levels; and d) esti-
mating task performance is another critical aspect of achieving a realistic plan.
However, as discussed in subsection 3.2.2, the individual variability of software
developers can lead to grossly optimistic task performance assessments - result-
ing in planned resource allocation levels being seriously inadequate.

3.2.4.4 Coordinating

Coordinating tasks, people, and process technology is essentially an intervention-
ist managerial activity which will frequently occur in order to keep a project

on-track. It is often a response to problems experienced during the project -

such as unexpected staffing shortfalls, lack of adequate staff skills, budgeting or
scheduling overrun predictions, etc. In order for process coordination to be ef-
fective, predictable effects of human performance, training, and the effectiveness
of employed process technology is needed to be present. However, as has been
discussed in previous subsections, the suitability/effectiveness of process technol-
ogy, the variability of individual human performance, the unpredictable additive

nature of collective or collaborative group performance, etc seriously undermines
the manager's ability to achieve predictable effects.

3.2.4.5 Tracking

Project tracking (or monitoring) of project progress is essentially a goal-orientated

activity. It, first and foremost, depends heavily upon the initial integrity (in terms

of realism) of the original planning phase - as this is used to establish the time-
scales, costs, and resourcing projections, against which, project progress will
be tracked. An unrealistic or inadequate overall scheme of work will result in

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 68

early beliefs of serious problems with schedule overruns, budget overruns, re-
source allocation shortfalls, and missed milestone stages. Additional problems
that the software creation task presents are: a) that of invisibility of work under-
taken by developers. This firstly, seriously restricts the sensitivity of the tracking
mechanism to adequately represent the extent of work to be progressed. Without

such visible 'yard-sticks' the project manager will be heavily dependent upon re-

ported progress by the individual developers which can result in deviant practices
that report either overly optimistic progress assessments, or deliberately incor-
rect progress reports." Both of these can result in progress tracking becoming
ineffective and preventing the project manager from taking remedial action - un-
til serious (and potentially unrecoverable) schedule/budgetlresourcing problems
have become manifest; b) the complexity, novelty, and error-prone nature of the
software task can all combine to result in project progress tracking losing sight
of what constitutes progress. This occurs when faults and errors or requirements
incompleteness/inconsistencies" etc result in so much and frequent reworking of
tasks and phases (Le. specification, design, coding, testing) that the whole shape

and structure of the project renders the initial planning and (subsequently) tracking

meaningless. As a consequence, a serious loss of overall process control results.

3.3 A Dependable Process View

In section 3.2 some fundamental problems associated with the software creation
process were considered. To provide a more holistic perspective of these many

problems and issues figure 3.2 shows them in terms of how these dynamics influ-
ence one another within the software creation process. The diagram is a graphical
summary of section 3.2 and shows how the creation process and its process en-

vironmental elements illustrated in figure 3.1 interact and influence the overall
dependability of the creation process. The lines reflect the many interacting dy-

namic influences that are implicit in the descriptive text of section 3. Further

8Such reporting progress dependency problems are synonymous with such issues as the
SNAFU principle, and Parkinson's Law: "A task will spend ninety nine percent a/it's time ninety
nine percent complete. "

9These could be also called faults - but they may not be the type that are so easily detected or
can be tolerated.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 69

115
~~
~~

~----------4-----~1 I~ ~

~

r

I;
I

I

~i
_1

I I I

I = II ~
~ 8~ ~"'" ""'" "'"l I _l _j

fi~I§
I

~ I~

~I ~
~~

~ ~
L J

I;
I
B
I

"g;!
I

Figure 3.2: Process Dynamics

II
I

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 70

examples of such subtle process influences are given and explained in this section
as a dependable process view is progressed.

From this perspective it is possible to see that many of the essential elements of
the abstract view of the software creation process in figure 3.1 interact in complex

cause/effect relationships which can improve or undermine the dependability of

the process.

For example, improving comprehension of the application domain would not only
help improve the dependability of the produced artifact - in technical terms, it
would also greatly improve the overall process control of the process in two funda-
mental ways. Firstly, it would help reduce unnecessary rework when omissions,
ambiguities, or inconsistencies were detected later in the downstream phases of
the development process. Secondly, it would ensure that the estimation and plan-
ning of the work initially was based upon a more complete and consistent require-

ments set.

Figure 3.2 of an initial set of process dynamics, therefore, allows a considera-

tion of what inter-related factors would need to be addressed in order to achieve
a more mature and dependable software creation process. The idea of improv-
ing the maturity of the software creation process is not new in any way, however,
The Software Engineering Institute at The Carnegie Mellon University has pro-
gressed a structured software development process improvement initiative called
"The Capability Maturity Model" (CMM) for over a decade [cf. [65]]. The CMM
approach to improving the maturity of the software creation process is for the
software development organisation to gradually increase its process maturity in
stages, each of which provides the foundations for the next level or stage upward.

Overall, the CMM approach provides five progress stages or levels:-

1. Initial CMM - Levell: The software process is characterised as being ad-
hoc, and occasionally chaotic. Few process phases are defined, and success

largely depends upon individual effort and heroics;

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 71

OOMAIN COMPREHENDABIUlY

;---------------:====::====,------------------',

-{ COVERAGE ! L__,
: EXPRESSION I ,

: : E,."·NIRO!'o'MENTAL:

-+{ :::nNG ~ PROCm~EATS i
; TRACK!NG : :

']_-_-_-_-_-_-_-_-_-_l-_~-~-~-~-~-~-~-~-~-~l~_~~~~-~-~-~~~~_~N:- MEANS-if INDIVIDUAL VA~;~;;~~ - -1 :
I COllECTIVE ADDITIVITY

_If COMPLEXITY

~ V1SIDILITY

-{ TASKSUiTABIUTY

: '~~~_~~~~~~:.:.:.-;L ;

PROCESS CONTROlUr.BILIlY

DEPENDABLE PROCESS -

- HUMAN PERFORMANCE PREDICTABIUTY

It-oTERNAL :

P_R_~~_~~~ __ ~ _
L- INTER..'1ALATTRIB~ -~ SOFTWARETRACTABIUTY

:....__ TF..cHNOLOGY APf'LICABllITY

Figure 3.3: Attributes of A Dependable Process

2. Repeatable CMM - Level 2: Basic project management processes are es-
tablished to track budgets, schedules, and functionality. The necessary pro-
cess discipline is in place to repeat earlier successes on projects with similar

applications;

3. Defined CMM - Level3: The software process for both management and
engineering activities is documented, standardised, and is integrated to sup-
port the standard software process for the organisation. Projects apply a
customised and approved version of the organisation's processes for creat-

ing and maintaining software;

4. Managed CMM - Level 4: Detailed measures of the software process and
associated quality of software are provided and collected. The software pro-
cess and the products produced are quantitatively appraised and controlled;

5. Optimising CMM -LevelS: The process is continually improved - aided

by quantitative feedback in the process and from piloting new and innova-

tive technologies and suggestions for improvement.

While empirical studies into CMM process improvement initiatives have been
positive for improving the maturity of the software process and software product

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 72

quality - especially for organisations improving their processes from level 1 to
level 3 [66], however, the CMM approach is not without its problems and crit-
ics that claim there is little evidence for indicating that such an approach actually
results in higher quality software artifacts. Firstly, introducing a CMM initiative
requires high levels of strategic management support if the initiative is to be suc-

cessful and prevent resistance to changes in the work place [66]. Secondly, some

have argued that the CMM approach introduces too much unnecessary bureau-
cracy and quality software is more reliant upon the quality and skills of the in-
dividuals involved than notions of better organised and supported processes [67].
Thirdly, there is the assumption that all the different capabilities in each level are
achievable without other capabilities at higher levels. For instance, at CMM -
Level 2, there is the assumption that rigorous formal project management can be
implemented to improve the process in isolation from detailed measurement of
the work (i.e. CMM level - 4). However, as has been discussed in section 3.2
(and illustrated in the dynamics of figure 3.2), effective process control- in terms
of planning, coordinating, and tracking has antecedent task, human resource, and

process technology requirements. Without improvements in these, it could be ar-

gued, merely introducing a formal project management approach will be likely to

be inadequate to achieve effective overall process control.

The view taken in this chapter section is that improving the maturity and depend-
ability of the process requires an holistic, not hierarchical, approach whereby mul-
tiple process attributes, and relationships between each other, must be understood

and improved. Drawing upon issues and problems raised in section 3.2 and re-
sulting process dynamics in figure 3.2 subsections 3.3.1, 3.3.2, and 3.3.3 employ
a dependability approach to provide an initial view of the attributes, threats, and
means by which to improve the dependability of the process. This view is illus-

trated in figure 3.3.

3.3.1 Process Attributes

In figure 3.3 a tree view of a set of dependable process attributes is provided -
based upon the issues raised in section 3.2. These are separated further into: a)

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 73

process environment attributes - that introduce a direct influence upon the de-
pendability of the software process; and b) internal process attributes - in terms
of the essential inputs of the software process, and the actual transformational
characteristics presented by the software task. It should also be noted that, as the
process dynamics of figure 3.2 exemplified, cyclic cause/effect relationships ex-

ist between the environmental and internal process attributes (e.g. the influence
upon human performance variability upon planning and coordinating etc). These
could be referred to as inter-process dynamics. Furthermore, within each of these
categories cause/effect relationships also exist (e.g. unsuitable methods, tools, or
techniques for a given software task and its consequent potential for increasing the
occurrence of faults, or insufficient domain knowledge resulting in incomplete or
inconsistent requirements definition(s), etc). In subsections 3.3.1.1 and 3.3.1.2
these environmental and internal process attributes are further discussed.

3.3.1.1 Environmental Process Attributes

In this thesis the process attribute of domain comprehendability is essentially con-

sistent with the definition provided by the dependability community in [68] [po29]

and relates to the "...representativeness of situations to which the computer system
is subjected during its analysis compared to the actual situations that the com-
puter system will be confronted with during its operational lifetime ". With regard
to domain comprehendability, it can be seen that unless sufficient coverage is pro-
vided, this can not only result directly in undermining the eventual dependability
of the software artifact(s), through omissions, but also can directly result in lack
of understanding through such omissions that lead to incomplete coherence of re-
quirements demands and lead to ambiguities, inconsistencies, and incorrectness.
Even if complete coverage is achieved'? the requirements may be misunderstood,
over/under emphasised, or mis-communicated in some way - leading to erro-

neous interpretations. Therefore, expression of covered requirements in a clear,

unambiguous, and consistent manner is also critical to achieve correct compre-
hension of an application domain.

IOWhich, with any real world complex application domain, is unlikely.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 74

Process controllability is also a critical attribute of a mature and dependable pro-
cess, as, without process control, the resulting chaotic effects can easily result
in increasing fault introduction in the eventual software artifact(s) (i.e. over-
emphasis upon over-time working cf. [69] and its potential for increasing human

error via fatigue and monotony) or reducing the creation process's ability to detect

and remove faults introduced (i.e. through cutting or omitting important develop-
ment phases such as validation, verification, etc to expedite project schedules,
reduce project budgets, or meet phased delivery milestones etc). As section 3.2
and the process dynamics in figure 3.2, highlighted, process control is achieved
via: a) effective planning to arrive at a realistic baseline of work scope, work
sequencing, and effort allocation; b) effective coordination to intervene with pre-
dictable effects when problems are identified; and c) tracking or monitoring of
work, in order to detect early deviations from overall project goals of time, cost
and quality, so that effective remedial action can be enacted.

Therefore, these two environmental process attributes are defined as follows:-

• Domain Comprehendability: The ability to adequately cover and clearly
express relevant domain, software, and user requirements in a complete,

consistent, and correct manner;

• Process Controllability: The ability to produce accurate project plans and
monitoring mechanisms, and enact corrective project coordination in a ef-

fective and efficient manner.

As stated earlier, however, while these are important environmental process at-

tributes, they also rely upon other internal process attributes being accomplished,

in order to be feasibly achievable.

3.3.1.2 Internal Process Attributes

To begin with, human performance predictability, it has already been discussed
in section 3.2 that both uncertainties surrounding the individual variability and
collaborative additivity can result in reducing process control - through inade-
quate effort estimation during planning and uncertain performance effects with

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 75

teams during project co-ordination. This can be seen as an instance of propa-
gation effects via inter-process dynamics between the process environment and
the creation process. However, as subsection 3.2.2 indicated, there are additional
internal process performance concerns about human resources during collective

team decision-making regarding sociological influences that can undermine col-

laborative performance. Furthermore, as indicated in the process dynamics in
figure 3.2, on an individual performance level, there are also the concerns of how
faults and errors are introduced with other internal process attributes - such as
the complexity and invisibility of the software task, and the suitability of process
technology for a software task. Therefore, human performance predictability is
an important attribute towards both undermining and improving the dependability

of the overall process.

The software task is also a major process factor that has characteristics of com-
plexity and intangibility, that, combined, can directly undermine both the depend-

ability of the resultant artifact (in terms of residual faults) and also seriously desta-

bilise the software process control. Furthermore, as the process dynamics in figure
3.2 indicate, the nature of the software task can also combine with other internal
process factors of process technology and/or human resources to further com-
plicate this situation (e.g. developers not familiar with process technology, etc).
Therefore, reducing the complexity of the task and increasing the software tasks'
visibility is an important single and interrelated factor for improving both the de-
pendability of the software artifact and the software creation process.

Process technology, in the form of the many tools, methods, and techniques that
can be applied has, for a long time, been perceived as a fundamental process factor
that improves both the dependability of the resultant artifact and raise the maturity

and dependability of the creation process. Like the other internal process attributes

of human resource performance and the essential nature of the software task, it can
have propagation effects via inter-process dynamics (Le. unsuitability of use for

a particular application domain can result in increasing incompleteness, incon-
sistencies, etc). However, as shown in figure 3.2, it also has important internal
interaction dynamics within the software process - such as improving/reducing

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 76

the complexity/intangibility of the software task or aiding/undermining individual
or collaborative human performance. As a consequence, process technology, and
its usage as an input to the creation process, also plays an important part in both
improving the dependability of the resultant software artifact and increasing the

maturity and dependability of the creation process.

These three internal process attributes can therefore be defined as follows:-

• Human Performance Predictability: The ability to forecast both individ-
ual and collaborative task performances in an accurate measurable manner;

• Software Tractability: The ability to employ, as process inputs, human re-
sources and/or processes technology to reduce task complexity and increase
development work visibility in an effective and efficient manner;

• Technology Applicability: The ability to appraise the suitability and de-
termine the learnability of process tools, methods, and techniques in the

context of a given application domain and software task in an efficient and

effective manner.

Again, attainment (or at least improvement) in the state of these internal process
attributes, influences, and is influenced by, attainment (or improvement) of the
environmental process attributes mentioned earlier. 11

3.3.2 ProcessThreats

Threats to achieving a dependable process, as indicated in figure 3.3, are divided
into three categories of: a) Environmental Process Threats; b) Internal Process

Threats; and c) Threat Propagation. These are briefly discussed in subsections

3.3.2.1,3.3.1.2, and 3.3.2.3.

IIFor example, if no attempt is made to formally control a real-world complex development
process, then this will undermine, in turn, the achievement and the benefit of those achievements,
ofthe other internal process attributes. The result (most likely) is both a less dependable software
artifact, and a less dependable process.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 77

As discussed earlier in chapter 2, the view taken here is that the creation process is
concerned with promoting dependability in the software artifact through a fault-
avoidance approach. The existing dependability approach stops at the level of a
fault in the fault--error-failure chain, and is not concerned with the many and var-

ied ways of how faults occur (i.e. fault phenomenology). However, in considering

the creation process, the view taken here is that greater understanding and respon-
sibility of the fault phenomenologies is crucial in both promoting the attributes of
a dependable process and improving the means by which fault-avoidance, in the
software artifact(s), can be achieved. Therefore, in the subsections that follow, is-
sues relating to how, in an undependable creation process, faults can be introduced
into the software artifact are considered.

3.3.2.1 Environmental Process Threats

Environmental threats to achieving a dependable process relate to the direct influ-
ences of the process environment upon: a) management; and b) the application

domain has upon both the dependability of the creation process and the depend-
ability of the resulting software artifact - in terms of how these can cause fault in-
troduction or ameliorate the creation processes' ability to subsequently detect and

remove faults introduced. Two obvious threats are: a) violations and workarounds
of legitimate software activities and phases in the creation process - by manage-
ment deviancy prioritising economic or timescale factors over software artifact
quality factors; and b) completeness, consistency, and correctness issues - due
to the novelty of the application domain. However, these are only suggested as
some of the main direct process environment fault phenomenology influences that
can undermine both process and artifact dependability.

3.3.2.2 Internal Process Threats

Internal process threats to achieving a dependable process relate to problems that
occur inside the creation process - namely, the inputs of human resourcing and

process technology as well as the nature of the software task that can undermine

the dependability of the process and introduce faults or undermine subsequent
detection and removal of introduced faults. The possible fault phenomenologies

CHAPTER3. DEPENDABLESOFTWAREPROCESSES 78

that can occur are many and varied and can result from one internal process fac-
tor source or through some combined relationship influences between two or all
three of them. Some obvious examples include: a) insufficiently trained or skilled
developers; b) inappropriate application of process technology for a particular
software creation task; and c) the increase of human error (i.e. slips and lapses)

due to insufficient experience with the process technology employed. The last
example indicates how faults can occur from a combination of internal process
factors. Again, these examples are by no means intended to be complete, but to
merely indicate how the dependability of the process and the dependability of the
resultant software artifact can be undermined through fault phenomenologies that
occur through one or more internal process factors.

3.3.2.3 Threat Propagation

Threats can also propagate between the two levels of the process environment and
the creation process. This is where a) environmental influences act as a negative

causal influence upon the other internal creation process factors that increases the
potential for fault introductions or undermine the ability of the process to sub-
sequently detect and remove faults introduced. Some examples of this type of

propagation were given in subsection 3.3.2.1; or b) where the internal process
factors (i.e. human resources, etc) act as negative causal effects upon the process
environment which then, in turn, results in negative causal influence back upon
the creation process factors. An example would be inadequately covering all of
the requirements, which then, invalidates the planning, which then results in a
loss of process control which in turn results in omissions of important process
activities and phases being properly conducted. Consequently, this can ultimately
result in both introducing faults into the software artifact and undermining sub-
sequent detection and removal following introduction. This would indicate that

the underlying cause/effect relationships are cyclic, in nature, whereby feedback

effects throughout the levels of the process result in negative reinforcement of any
failure(s) of the creation processes' factors of management, application domain,
human resources, process technology, and the software creation task(s).

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 79

3.3.3 Process Means

It was highlighted in chapter 2 that the view taken is that the creation process
is responsible for the fault-avoidance means of: a) fault-prevention; b) fault-
removal; and c) fault forecasting. From the process dependability issues already

discussed in this section, it can be appreciated that in order to promote the matu-

rity and dependability of the process, and also increase the dependability of the
eventual software artifact, relies heavily upon greater understanding of the fault
phenomenology.

Firstly, in terms of the means of fault prevention, in order to preclude faults be-
ing introduced in the software artifact, a greater understanding of how human
resources and/or process technology can be developed and employed in such a
way as to preclude fault introduction. Secondly, in terms of the means of fault-
removal, in order to remove faults already introduced into the software artifact,
it is first necessary, in order to remove faults, to understand how to human re-

sources and/or process technology can be employed and developed to increase the

sensitivity to detecting such faults. Following detection, it is then important to
understand how human resources and/or process technology can be employed and
developed in such a way so as to preclude or prevent further introduction of faults
during the corrective activities of removing detected faults. Finally, in terms of
fault-forecasting it is important to understand how human resources and process
technology can be employed and developed in such a way as to increase coverage
and prediction of the types of fault, errors, and failures that the eventual software
artifact could be subjected to, during its operational lifetime, in order to both gain
a greater domain understanding and rationalise what fault-tolerant mechanisms
will be most suitable to be employed.

3.4 Process Redundancy and Diversity

Chapter 2 discussed how dependability can be achieved in the software artifact
through the inclusion of additional computational and structural redundancy. Whilst
replication and duplication redundancy is a well established method for improving

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 80

the dependability of physical structures, it was also mentioned that toleration of
faults, in the software artifact, against design faults, required the introduction of
diversity also. However, apart from the problems of achieving random failure and
independence in software design, the nature of some design faults 12 are caused

directly through erroneous human interpretations and judgements during require-

ments engineering and specification. This category of design fault often results in
inadequate state behaviour representation - in terms of not providing the neces-
sary state, logic, or functional behaviour which means the system is less amenable
to software fault-tolerant approaches and relies upon improving software depend-
ability through the means of fault-avoidance in the process that creates the soft-
ware system [70]. Such intolerable design faults may often propagate into errors
of inadequate software control over the system being controlled and emerge as

failures of user expectations about how the system should behave. If this occurs,
it will directly undermine the attributes of dependability upon which judgements
of user confidence and system trustworthiness are ultimately based 13 [71, 4, 1].

This raises the question of how can human redundancy - in the form of human

diversity, in the development process, be employed in as effective manner as in
using it in the artifact to avoid and detect the introduction of such faults. In this

12F1awed assumptions made in the requirements engineering, specification, and conceptual de-
sign phases will result in errors-of-omission or errors-of-commission that result in the absence of
desirable data, function, and/or structural representation. For example, an assumption is made that:
"There is always cash in the ATM." This will result in the state of the physical cash in the cash
magazine(s) not being represented in the software control of the ATM. If the ATM dispenses all of
its cash, then the next customer to use the ATM will receive no cash (or be short-changed) but wiIJ
stilI have their account debited for the full amount. This is due to the assumption there is no con-
sideration of such a situation to begin with and therefore no provision for data, logic conditions or
functional behaviour to accommodate it. Such a design fault is not amenable to recovery or treat-
ment during operational execution and will result in judgements of failure by the user even though
any comparison of the ATM specification and implemented system reveal isomorphic behaviour
(i.e. correctness).

13For example, a design assumption that, "Up to a final commit stage, the user should always
be allowed to cancel the initiated ATM transaction without data change side-effects" (i.e. data
alteration), results in the (usual) banking security policy of only allowing three PIN entry viola-
tions before reclamation of card becoming violated, since a fraudster with a cloned or stolen card
can now potentially enumerate all possible 104 PIN combinations by cancelling the unauthorised
transaction after two failed attempts. This is again due to the absence of some desirable persistent
data state and functional computation that records and retrieves the number of previous failed PIN
attempts independent of the current ATM transaction.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 81

section, a number of approaches that incorporate the employment of human redun-
dancy and diversity will be discussed. However, before doing so, it is important to
distinguish between notions of classical and engineering interpretations of redun-
dancy. The classical meaning of redundancy in normal usage refers to someone or
something that is no longer required, needed, or wanted." In contrast, the mean-

ing of the term redundancy used in engineering contexts refers to the provision
of additional components in a system, over and above the minimum required to

perform the function, for the purpose of achieving reliability or robustness of the
system.P The two interpretations bring into consideration whether only the mini-
mum function of something is required or whether other properties of something
are considered sufficiently important to justify unproductive functional additions.
This comparison clearly indicates that the engineering interpretation is congru-
ent with the classical definition in terms of recognising that components will be
functionally unproductive, but departs from that classical definition in as much
as that the functionally unproductive additions are critical in contributing to some

other desired purpose, property or output (i.e. reliability) of the system. This is

made explicit in Lewin and Noaks' ([15]: pp 413) discussion of the purpose of en-

gineering redundancy in contrast to the classical definition for achieving greater
computer system reliability, noting:

"...enhancing the reliability of a computer system is to use the principle of redun-
dancy by duplicating various parts or functions of the system. Note that the ad-
ditional equipment is redundant only when considered in the sense of providing
the basic system requirements: it is, of course, essential if increased reliability is

required."

In this section the issue of process diversity will be discussed in terms of the
essential elements of the software process from section 3.2: a) the software cre-

ation task in section 3.2.1; b) the human resources in section 3.2.2; and c) process

technology in section 3.2.3. These will be discussed in terms of how human re-
dundancy and diversity can promote the dependability attributes of the process

discussed earlier in section 3.3.

14This is the definition provided by the Oxford Dictionary.
15This is the definition provided by the Oxford Computing Dictionary.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 82

3.4.1 Fault-Avoidance and Fault-Tolerance

So far, from chapter 2, the discussion may have appeared to present fault-avoidance
and fault-tolerance as contrasting approaches to achieving increased software de-
pendability. This is not actually the case as both approaches are required in pro-

moting software dependability, since, intuitively, the fewer residual faults a fault-
tolerant mechanism must detect, treat, and recover from, the less potential there
is for a residual fault occurrence which the mechanism cannot tolerate. There-
fore, although a quite strict delineation of dependability responsibilities between
the creation process and created artifact was provided in section 2.3.3 of chap-
ter 3, the creation process can also be viewed as a particular system-of-interest
in its own right (i.e. a system that creates another system). When viewed in
this way the question of: "How can the system that creates another system be
made more fault-tolerant in avoiding the introduction of faults into the created
artifact?" can be posed. In this respect we can see that a creating system also re-
quires process redundancy to prevent, detect, and remove faults in order to tolerate

the presence of imperfect management, human resources, and process technology

within the creation process. Finally, improvements of fault-avoidance in the pro-
cess improves the reliability of the individual redundant fault-tolerant components
employed [15] - thereby directly raising the overall dependability of software
synergistically through both fault-avoidance and fault-tolerant means.

In the following subsections the issue of how human diversity via human redun-
dancy has been used to promote fault-avoidance will be discussed.

3.4.1.1 The Software Creation Task

It has already been presented in chapter 2 how providing redundant diverse de-

signs and implementations of required artifact functionality can increase the over-

all dependability of the eventual software artifact via design diversity and forced
diversity. It can be seen, therefore, that such approaches can be focused at also

improving the fault-tolerance in the software artifact, not fault-avoidance in the

actual creation process.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 83

3.4.1.2 Human Resource Redundancy

Although, it appears, that the software engineering community has placed signif-
icantly less emphasis upon the role of human diversity in the software process a
number of exceptions do however exist. One notable exception is the considera-
tion of many individual, collaborative, and organisational error vulnerabilities in

the requirements engineering phase to promote fault-avoidance from an interdis-
ciplinary perspective of psychology and computer science [72]. Another long-
standing example is Weinberg's advocacy of open and informal code reviewing to
improve fault detection and correction at the coding phase in order to help avoid
coding faults into the eventual deployed product [64]. Finally, the recent rise of
open-source software development (OSSD) is another example where greater em-
phasis has been placed upon the role of humans, rather than process technology,
to achieve fault-avoidance through large scale deployment of human resources for
massive code reviewing [73]. OSSD has directly motivated others to consider and
experiment with the increased fault-avoidance benefits on other process phases

(Le. requirements engineering) to reduce security specification vulnerabilities and

incompleteness through employing a similar parallel approach of human resources

[74].

However, many of the approaches make the assumption that employing multi-
ple human resources for a given task will provide sufficient levels of diversity to
explore the requirements space and/or subsequently detect faults introduced. A
number of approaches to achieving process and product diversity through the use
of human-redundancy currently exist in the software engineering and dependabil-
ity communities and each of them are based upon some assumption about the
diversity of humans and the manner in which achieving diversity in the process

can be achieved, as follows:

1. Natural Diversity: This approach is primarily used to achieve process-
diversity for fault-avoidance (examples are: [74, 73, 64, 75]). The approach
makes the assumption that functionally redundant human resources are suf-

ficiently diverse to promote a dependable process through the means of the
extra fault-avoidance they provide.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 84

2. Forced Diversity: This approach is primarily used to achieve product-
diversity for fault-tolerance. Unlike the natural diversity approach, it does
not accept the assumption that functionally redundant human resources are
sufficiently diverse. Therefore, in its simplest form (often referred to as

design-diversity) interaction and collaboration between functionally redun-

dant human resources is prevented to preclude any design copying or solu-
tion influencing that could result in common faults in diverse channels or
algorithms (examples are: [7, 76]). In its more sophisticated form (often
referred to es forced-diversityy developers will also be forced to use differ-
ent process support means (i.e. tools, methods, and techniques and some-
times different specification representations and designs) to further reduce
the likelihood that by using the same process support technology the same
common faults could result in diverse channels or algorithms (examples
are: [77, 78, 79]). However, some forced-diversity approaches are more

creation process orientated. One such example is provided by Littlewood et
al [16] who demonstrate through both statistical modelling and statisically

analysed empirical data that there are strong arguments for the fault detec-
tion benefits of factoring out fault detection project effort over a range of
diverse fault detection techniques (e.g. inspection, testing etc) than using
all of the project effort utilising only one fault detection technique.

3. Composed Diversity: This approach has been little used to improve fault-
avoidance directly in promoting dependability (exceptions are: [80, 81])

and has essentially been the preserve of psychology and social psychology
to study human diversity performance effects on group problem-solving
(examples are: [82, 42, 83, 84, 85, 86, 87]). Again the assumption that
functionally redundant human resources are sufficiently diverse to promote

a dependable process through the means of greater fault-avoidance is re-

jected. However, unlike forced-diversity, the approach is to influence diver-
sity in the performers (not the task) by composing teams/groups of individ-

uals who are intrinsically diverse on some pre-tested human dimension (e.g.
personalty, cultural background, attitude, values, intelligence, etc).

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 85

It can be seen from these categories that while adding redundant human resources
can improve the levels of human diversity, increases in human diversity through
human redundancy can be achieved by direct intervention in the creation process.

3.4.1.3 Process Technology Redundancy

Process technology is also another dimension of the creation process which can
improve fault avoidance through diverse application of tools, methods, and tech-
niques. A good example of utilising diverse process technology during develop-
ment was experimented by Kelly et al [77]. In this research they wanted to explore
the fault-avoidance benefits of employing three diverse formal specification meth-
ods (using Estelle, LOTOS, and SDL) which were then 'back-to-back' tested to
compare for coincident faults. Kelly et al found that the redundant (and diverse)
application of multiple formal specification languages found 25 of the total 40
(62.5%) faults early in the development life--cycle at the end of the specification
stage. Furthermore, during back-to-back testing phases, the diversity introduced

into the specification stages avoided any co-incidental or common-mode faults.

3.4.2 Justifying Process Redundancy

As discussed in the previous section on process-redundancy, for human-redundancy
to be viable, the nature of the task must be additive in nature or capable of being
made more additive through some form of process intervention. With natural di-
versity the assumption is made that the task is naturally additive.l" while the other
two approaches do not accept this assumption and intervene in the process in an
attempt to increase the additivity of the task. I7

Another consideration with respect to employing human redundancy to gain greater

diversity in the development process is to attempt to determine the contribution

16By 'additive' it is meant that the human resources are (to a satisfactory level) considered
factorable in the performance they collectively produce on a given task. An example wood be
brick laying as defined in section 3.2.2 by social psychological studies of group performance.

I7Forced diversity uses social interaction and process support technology constraints to stimu-
late diversity, and composed diversity uses intrinsic performer characteristics constraints to gener-
ate diversity.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES

UNtRJRl.llTY AND DlVERSlTY coNTRmunONS

Figure 3.4: Uniformity and Diversity Contributions

86

that diversity makes, since, while diversity within the task itself is always required

- when employing human-redundancy, the desirable outcomes from the task may

consider diverse output not to be additive." This distinction between the task and

the desirable output of the task is necessary in determining the additive contri-
bution that is made by employing functionally unproductive human resources in
promoting dependability. For example, consider the set diagram in figure 3.4.

If the task nature is a searching task, then the desirable output contributions by the
three resources employed in the diagram is generation or identification of different
things. In this case, the more things that lie in the areas of E, F, & G the better (Le.
they increase the additivity between the resources as a performance of the group
of resources). However, if the desirable output from employing human diversity
is uniformity (such as a calculation task), then the more things that lie in the area

A the better (i.e. confidence in the correctness of the calculation is additive in this

18For example, if the task nature is a searching task, then the desirable and additive output from
the task is generation and recognition of different things (i.e. diverse requirement consideration,
diverse design criteria generation, or diverse fault detection). However, if the task was a complex
calculation task to compare outputs then although the task nature still requires diversity, the desir-
able output from the task is corroborated answers - not diverse answers. Therefore, in beginning
to propose some form of measurement of diversity, it is important to make a distinction between
the nature of the task and the desirable additive output required from the task.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 87

type of task)."

This example does raise one final consideration that is important in determining
the additivity of the task or the effectiveness of any process intervention to im-
prove task additivity. Up until now, it has been assumed that achieving diversity

as a desirable output of such a task, as a searching task, is ultimately a good thing.

However, this is not entirely the case. For example, in design or code review-
ing a high level of diversity may be desirable (i.e. detecting different faults) but
the differences may be of an incorrect or superficial nature which contributes lit-
tle (if anything) in terms of promoting dependability.P Therefore, two measures
of the output are required in determining the contribution made from any human

redundancy and diversity employed:

1. Productivity effect. This is a measure of the desirable additive output from
the task. So in a searching type task this would be a measure of difference;

2. Quality effect. This is a measure in purely value or fitness-for-purpose in

terms of promoting dependability. No consideration to difference is made

- just its contribution in promoting dependability.

The two measures combined provide a good indication of how effective human
redundancy has been in promoting dependability on a task, or how effective some
process intervention has been in promoting dependability through employing human-

redundancy on a task."

19To give a more traditional example, consider a TMR scheme: it has three components (re-
sources, 1, 2 & 3) two of which at anyone time are functionally redundant or unproductive (in
the classical sense), but essential in masking out faults if a safety-critical system function is not
to fail (Le. dependability contribution). The nature of the task they provide requires computa-
tional diversity (achieved through process intervention to stimulate greater potential of achieving
computational diversity). The desired additive output, however, does not require difference but
corroborating (and preferably identical) data. Using the set diagram, the most desired additive
output is area A while any of the shared areas B, C or D are also desirable for fault-masking
through consensus voting by the adjudicator. If areas E, F and G result then drastic alternative
actions are required.

20Worst case would be the identification of false-negative faults during the inspection/review
that could result in needless rework, time, and cost. Therefore, some qualitative measure is also
necessary.

211t should be noted though that a low productivity effect means that the redundant human
resources employed were contributing little and in terms of their dependability contributions were

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 88

3.5 Chapter Summary

In this chapter the issue of promoting software dependability via a fault-avoidance
in the software creation process has been considered. Software development suf-
fers from a number of ongoing problems that can undermine the dependability

of the created artifact. These essential problems have been condensed down into

a number of essential process and process environment factors. The view taken,
in this chapter, is that a dependable software artifact is dependent upon a mature
and dependable creation process. An approach to achieving a dependable process,
that is consistent with the existing dependability framework, has been presented
and discussed. It has been argued that, improving the dependability of the pro-
cess, requires an holistic and integrated view that captures the goals that must be
achieved in order for a creation process to be considered dependable. The threats
mandate, unlike the existing dependability framework, a greater understanding of
the fault phenomenology - in order to better understand how process technology
can be effective, and how it should be resourced so that faults can be prevented

or faults introduced can be better detected and removed. Finally, the issue of

process redundancy to improve fault-avoidance was introduced. Itwas discussed
how process redundancy means employing extra effort, that, while not function-
ally productive, are considered crucial in promoting other dependability properties
through some means of achieving greater levels of fault-avoidance in the process
or fault-tolerance within the product. For process redundancy to be justified, how-
ever, the nature of the task must either be sufficiently additive to extra effort or be
capable of being made sufficiently additive through some form of direct process
intervention. The purpose of employing process redundancy, in the process, is to
gain greater levels of diversity to improve the fault-tolerant nature of the creation
process through increasing fault-forecasting, fault-prevention and detection (Le.

fault-avoidance via human and/or technology diversity) and thereby increase the

dependability of the software artifact produced. A number of approaches already
exist to achieve human diversity in the process. These either accept that the nature
of a task is sufficiently additive or attempt to make it more additive through direct

classically redundant. A low productivity effect may only be justified on safety-critical systems,
as even though little diversity is actually achieved, the extra diversity may have resulted in the
avoidance of a fault that could have resulted in a high consequence failure.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 89

process intervention. Determining the additivity of process diversity requires two
measures that 1) measure the degree of diversity achieved - in terms of a produc-
tivity effect; and 2) measure the value or fitness-for-purpose of the contributions
made - in terms of a quality effect. These combined measures are suggested
as an indication of how effective the process redundancy involved has been in

promoting dependability through fault-avoidance.

Chapter 4

Computer-Based Systems

90

CHAPTER 4. COMPUTER-BASED SYSTEMS 91

4.1 Chapter Introduction

Chapter 3 discussed the many issues involved in the software creation process
along with a view of characteristics of a dependable software process. In this
chapter the broader system considerations involving a computer-based system

(CBS) viewpoint will be introduced and discussed.

The chapter first examines in section 4.2 what is meant by a system view by il-
luminating the many established issues involved in analysing and perceiving sys-
tems. Next, in section 4.3, a wider computer system conception of a computer as
a computer-based system is provided using the many system analysis issues from

section 4.2.

4.2 System View

Before discussing the issue of a computer-based system, it is necessary to con-

sider what is typically meant by the term "system", as loose reference and usage of

the term is widespread and has often resulted in some computer scientists avoid-
ing the term altogether to prevent vagueness [cf. [50]]. A systems viewpoint is a
generic conception that attempts to explain and understand the workings of some
natural or artificial entity of interest. It is sometimes loosely applied to refer to
a legal system, an ecological system, an economic system, or a computer system
etc. However, implicitly in all these usages and references, the term "system" im-
plies some degree of organisation (i.e. as a verb to organise). Therefore, we can
list the characteristics of a system as follows:

1. System Environment. Unless the system is closed from its environment,
the environment of the system will often exert indirect influences upon the

system - forcing the system to respond and/or adapt to changes. The na-

ture of the environment is an important facet in systems theory. Cooke and
Slack [59] highlight that there are two aspects to consider with respect to
the environment of a system. Firstly, is the system environment complex or
simple? Simple environments are those that exert only a few well known

CHAPTER 4. COMPUTER-BASED SYSTEMS 92

disturbances and influences upon the system. By contrast, a complex envi-
ronment will exert a large number of relatively unknown disturbances and
influences. Secondly, is the system environment static or dynamic? A static
environment is one that is largely stable and unvarying. Whereas, a dy-

namic environment will demand much larger influences upon the system to

adapt and change. Together, these two system aspects introduce a 2 x 2
matrix in which to characterise a system's environment: Static/Simple-
where the perceived uncertainty surrounding the system is very low; Dy-
namic/Simple - where the perceived uncertainty surrounding the system
is moderately high; Static/Complex - where the perceived uncertainty is
moderately low; and Dynamic/Complex - where the perceived uncertainty
is very high.

2. System Boundary. Defining the system boundary is critical to determin-
ing. communicating and understanding the system-of-interest. Two differ-
ent people may often view the same entity at different levels of abstraction
- through viewing one person's entire system as only a part of their sys-

tem viewpoint. Sometimes two system viewpoints may overlap - and one
person will only perceive part of the other's system view, while both are
oblivious to certain aspects of the other person's system viewpoint.

3. System Inputs and Outputs. Unless the system is closed to its environ-
ment the system will receive inputs and deposit outputs back into its envi-
ronment. The manner, effectiveness, and efficiency, by which the system

converts these inputs into outputs will largely be determined by its purpose,
and influence the system's ability to survive within that environment.

4. System Interfaces. Systems will often be composed of other parts or sub-

systems when viewed from a particular level of abstraction. Within the

perceived system boundary, the manner in which these parts of subsystems
communicate information is via a system interface. If these interfaces are

altered or corrupted, then the system may be quite different in nature or fail

to fulfill its intended purpose.

5. System Control. Systems that posses survivability characteristics are those

CHAPTER 4. COMPUTER-BASED SYSTEMS 93

systems that can protect their identity. To achieve this quality requires ef-
fective control subsystems as a part of the system's internal organisation.
Chapter 2 discussed the three essential means of achieving control in a sys-
tem using either passive buffering, feed-forward, or feedback control. In
essence, this involves blocking, anticipating, or correcting samples of in-

puts from either the environment or at the internal system interfaces.

6. System Emergence. Emergence, while a definitive attribute of a system,
is also a deep and somewhat controversial system aspect. Fundamentally,
it is the view of what properties the entire system possesses,' but which no
individual part or subsystem of the system possesses. It is this that gives
a system view an holistic attribute. Ashby [54] reveals that a system may
be considered to have emergent properties because the parts or subsystems
are either not completely understood, or do not reveal sufficient knowledge

about their behaviour under study. In this sense, the creator or observer
of the system in question only has a homomorphic understanding of the

system's possible state space when subsystems are coupled or observed at

that leve1.23 The essential point that Ashby wished to make was that while
a system viewed at a certain level will contain behavioural properties not
possessed by the parts or subsystems, these are only emergent (or unantic-
ipated) system behaviours if the creator or observer of the system at that
particular level cannot discriminate the subsystem parts and interface link-
ages that result in those behaviours. Otherwise, if an omniscient view of the

state space and interface linkages is provided, then there will be no unantic-

IThis of course depends often upon how the system boundaries are set.
2Ashby gives the examples of a) the gases Ammonia and Hydrogen Chloride - both are

gases, but when mixed form a solid - a property not possessed by either; b) Carbon, Hydrogen,
and Oxygen are all tasteless, but the compound of sugar possesses a taste - which none of the
elements do; c) The twenty amino-acids in a bacterium have no "self-reproducing" property of
there own. Yet the bacterium they make-up possesses this property.

3A point that highlights how a particular system or view of a system may seem to possess
emergent properties when there is incomplete knowledge of the subsystems is also given by Ashby
with the property of elastic, which for years confounded chemical scientists as to why elastic had
a stretching quality, when the molecules that made it up possessed no extension properties at all.
It was later realised that during the composition process the individual molecules jostled tightly
for position resulting in each molecule taking a length that was less than its maximal length.

CHAPTER 4. COMPUTER-BASED SYSTEMS 94

ipated behavioural properties of the system as a whole." Other references to
emergence are often considered in terms of "self-organisation" [cf. [88]].
In self-organising systems, emergence is defined as a survivability prop-
erty, not based upon some top-down command and control subsystem, but

instead based upon a non-hierarchical bottom up emergent order that em-
ploys local rules and interactions to represent the important macro-level

emergent properties critical for a system to maintain its identity and adapt
to its environment.'

In the context of this thesis, the view of emergence relevant to a dependability
perspective (and particularly the wider view of a computer-based system depend-

ability) relates to the potential for unexpected behaviours of the system (that will
be judged to be undesirable by another judging system) that, in essence, results
from an inability to completely comprehend and/or construct the system to prevent
such unanticipated and undesirable behaviour.

An additional aspect of a system view is that systems exhibit goal-directed be-
haviour [5].6 This purposive view, as discussed above, often is influenced by the

particular viewer or creator of the system and connected to the system boundaries
that are set. Furthermore, while a system may have a primary macro-level purpose
- as a super-ordinate type goal, it can also have many secondary micro-level pur-
poses - as sub--ordinate goals. The latter is often referred to as a system having
latent functionalities. Merton [89] makes a clear distinction between manifest and
latent functionalities of systems to remove the confusions often introduced in the

41t is important to point out that emergence in this context is viewed as something inexplicable
about the system when observing an existing (say natural) system, or is considered an undesirable
system behaviour that is unintentional and defeats or undermines the purpose of the system when
creating a (say artificial) system. However, in either case, it can still be ascribed to an incomplete
understanding of the system's total state space.

sJohnson [88] provides examples of harvest ant colonies where the local chemical rules and
physical interactions between individual ants accumulate, in a representational manner, to ensure
that sufficient ants are involved in the colonies critical activities of nest building, food foraging,
nest cleaning, nest defence, etc activities. This order is achieved without any top--down command
and control hierarchy being present in the colony.

6This is a controversial aspect with natural systems that are often given material and efficient
causal explanations [cf. chapter 7]. However, it is an obvious aspect when considering artificial
systems.

CHAPTER 4. COMPUTER-BASED SYSTEMS 95

ENVIRONMENT

)EMERGENT MANIFEST

LA TENT FUNCTION

INPlITS

SYSTEM BOlJl\'DARY

I IENVIRONMENT
ENVIRONMENT

E1\'VIRONMEr..'T

Figure 4.1: System View

sociological literature to distinguish between conscious intentional actions and
motivations and unconscious, unintentional actions and motivations that are of-
ten found in explanations of entities, processes, or system views. Checkland and
Wilson [90] provide two good examples and distinctions between manifest and
latent functional explanations, when considering human-activity systems, from a
sociological perspective, as follows [p, 53]:-

"...various tribal rain-making ceremonies do not in fact serve
their manifest - in this case, meteorological - junction; but they
do serve the latent function of reinforcing the group identity. Nearer
home, the purchase of an expensive car may serve not only the man-
ifest purpose of providing a means of transport but also the latent

junction of declaring, claiming or reaffirming social status. "

It is important to note here, that in the first case the primary or manifest purpose
was actually completely ineffective, while in the second case both manifest and
latent functions of the system (i.e. car) are present. Moreover, purpose of even

CHAPTER 4. COMPUTER-BASED SYSTEMS 96

a simple activity can often be very subjective, relevant, and representational to
only an individual's self interest. A good example of this is provided by Drucker
[91] with the story of the three stone-cutters. Drucker takes the scenario of ask-
ing three stone-cutters individually what they are doing. The first stone-cutter
replies "I'm making a living cutting stone. " The second stone-cutter replies "I'm

practising the skilled art of stone-cutting, of which I'm one of the most talented in
the land. " The third stone-cutter replies "I'm building a Cathedral." The point to
note in this story is that each stone-cutter ascribed a different purpose to what they
were doing. To the first stone-cutter the activity was merely an end in itself (Le.
making a living). To the second stone-cutter the purpose of the activity was also
an end in itself - in terms of reinforcing his sense of self-identity through being
recognised amongst his peers as a highly talented stone-cutter. To the third stone-
cutter however, the activity of stone-cutting was only a means to a greater end.
Whilst we could simply ascribe latent functionality of stone-cutting to both the
first and second stone-cutter, and manifest functionality to the third stone-cutter,
this story also highlights the potential for conflict to emerge between manifest

and latent functionalities of entities, activities, or systems. For instance, optimis-

ing stone-cutting by, for instance, introducing some machine to semi-automate
the stone-cutting process to improve productivity and/or quality would quickly
bring conflict with the first and second stone-cutters - as the first would poten-
tially perceive it as a threat to his livelihood, while the second may perceive it as
a personal attack upon his status and sense of social identity. However, the third

stone-cutter would most likely be content and agreeable with the new situation -
as such activity optimising is in perfect alignment with the purpose ascription he

attaches to stone-cutting.

Figure 4.1 provides a visual depiction of the system view issues provided in this

section.

4.3 Computer-Based System View

Before providing a specific computer-based system view, it is important to stress
that perceiving some aspect of the world as a system is very different from claim-

CHAPTER 4. COMPUTER-BASED SYSTEMS 97

ing it is a system. Checkland and Scholes [92] emphasise this, stating:-

".... it is perfectly legitimate for an investigator to say "I will treat
education provision as if it were a system," but that is very different
from saying that it is a system ...Claiming to think about the world as

if it were a system can be helpful. But this is a very different stance
from arguing that the world is a system, a position that pretends to
knowledge that no human being can have. "

This does not imply that a systems view always has no substance - as a car or a
computer are physical entities that can be touched and objectively observed. Only
that it is often a matter of subjective interest what different individuals choose to
select and emphasise as a system view.

Having stated this explicitly, the following subsections provide the system aspects
of interest in determining a computer-based system view.

4.3.1 A Holistic Perspective

As discussed in section 4.2, the single most influencing aspect of determining a
system viewpoint is in the definition of the system boundaries. Instead of consid-
ering a computer system as primarily a technical construction of an artifact and
associated activities - as chapters 2 and 3 have focused upon, the system view
proposed here is to expand the system boundary outward to include not only the
technical system, but also the human system with which it must interface with. By
the term 'human subsystem' it is meant to not only encompass the role of people
involved in the direct creation process, but also a wider inclusion of the impor-
tant influences of people involved in its strategic and operational exploitation. In
this system viewpoint both the technical computer system and the human system

are considered subsystems of interest at a higher level of system conception. In
principle, this is what is to be interpreted by the term "Computer-Based Systemr.'

7This system view is consistent with that defined by the DIRe research programme cf.
www.dirc.org.uk

http://www.dirc.org.uk

CHAPTER 4. COMPUTER-BASED SYSTEMS 98

As hardware, network, and software technology advances at an increasingly fast
rate, it is becoming ever more necessary to gain a more complete and inclusive
systemic view of information technology. It has been traditional for profession-
als to specialise in certain areas (i.e. hardware, networks, software) and build

computer systems in relative isolation. As computer systems undertake more and

more control of complex and novel information processing situations that can af-
fect everyday lives, the weaknesses of such specialist and isolated approaches are
becoming ever more apparent. This view has long been reinforced and advised
by Neumann [93] noting that long-standing failures of the Hubble telescope, the
ARPANET collapse, and the AT&T long-distance slow down where all directly
attributable to "...a lack of suitable systems perspective on the part of the devel-
opers, administrators, users, etc." Furthermore, Neumann advises that process
technology alone is insufficient to provide such a holistic perspective where dif-
ferent dependability attribute requirements (i.e. reliability, integrity, security, etc)
need an integrative representation - in order to appraise their particular impor-

tance in a given application domain and identify conflicts that can result later in

the form of obscure system flaws.

4.3.2 The Generic CBS Contexts

In this section I introduce the notion of four generic computer-based system
contexts-of-interest that have been interpreted from a variety of information sources
that are cited within this section. However, such an inter-related computer-based
notion is different in the way that this relates the usual major influences and re-
lationships to be found. As this section and future chapters (e.g. chapter 5 and
chapter 8) will show this can be useful in representing and discussing a wider,
holistic, and integrative view when considering computer-based systems.

This section provides an initial system viewpoint of the important subsystem con-
texts that can often affect the success and failure of a computer system. In chapter
3 it was noted that a number of ways in which the creation process can be judged to
have failed would be expanded upon in this chapter and this would require a wider
computer-based system perspective. It was briefly highlighted in chapter 2 that

CHAPTER 4. COMPUTER-BASED SYSTEMS 99

~--.-----------~-
'"

" " ,,,,,
\
\
\

\
\

\

WIDER

APPLICATION

I)():.!AI:-':

a number of other judgements of failure - such as a) expectation failure; and b)
conceptual failure require a wider computer-based system explanation. However,
it should be pointed out, that such a wider computer-based system view should
not be considered a panacea for discussing, thinking about, and developing all
computer systems, as some computer system developments may not require such
a system view. This is particularly true of 'systems' software and 'middle-ware'-
where the domain is much more limited to, essentially, technical considerations.!
Therefore, such a computer-based system view is more associated with 'applica-
tions' software. With applications software, however, a number of non-technical
considerations - can often be responsible for judgements of failure. The generic
computer-based contexts, discussed below and illustrated in figure 4.2, can of-

ten be viewed as 'sources' of interest from which such judgements may be made.

The actual technical computer system development is an assumed technical sys-

tem that influences (and is influenced by) all four of the generic computer-based

,,,
,,

\,,,
••

STRUCTURAL
CIIASGE

,,,,
\
\

,,,,

\
\
\
\
\
\ ,
" "

"

,,,,,,,,,
,,'

"",.----------

Figure 4.2: Generic CBS Contexts

8Good examples of 'system' software are operating systems, and peripherals. Examples of
'middleware' software are web server and network communication software.

CHAPTER 4. COMPUTER-BASED SYSTEMS 100

system contexts discussed.

4.3.2.1 The UtilityContext

This computer-based system context of interest embodies the high-level, and
overriding, justification for the computer system's existence to begin with. From

the late 1970's to present day, the advances of information processing technology,
along with the ongoing reductions in the cost of such technology - has resulted
in information technology occupying an increasingly strategic role within many
organisations [94]. Information technology (IT) has been continually recognised
as a strategic organisational resource which can be exploited to provide a given
organisation with competitive advantage. A number of strategic analysis frame-
works have been developed to aid in the the strategic planning of organisational
information systems, the most widely known and enduring of which has been [cf.
[95,96]]: a) the "value-chain" model for assessing an organisations' primary and
secondary functions - and how IT can be used to improve the organisations'

effectiveness and efficiency; b) associated and adapted with other longstanding
strategic analysis frameworks - such as the ''five-forces model" and the "generic
positioning model" to determine how the information content of a service or prod-
uct can add value and act as competition barriers.

What all the above strategic issues of IT imply, is that there will always be some
high-level strategic value or utility rationale for justifying a computer-system's

existence to begin with. The nature of the organisation itself will often have a
fundamental influence in determining what this strategic justification is. For in-
stance, in a commercial organisation this will often be closely connected with cost
savings, quality of service improvement, greater market penetration projections,

etc, whilst in a non-commercial organisation, such strategic IT value or utility

considerations may well have wider macro sociological, economic, or political

objectives to satisfy. The term of importance here is "satisfaction ", as strategic
planning and analysis considerations are, by definition, of a predictive and fore-
castive decision-making nature [cf.][59]], emphasising utility or value judge-
ments that reflect forecasts and predictions of strategic importance benefits envis-

CHAPTER 4. COMPUTER-BASED SYSTEMS 101

aged with the system. In this regard, it is possible to make clearer what was meant
in chapter 3 - regarding considerations of expectation failure judgements. For
example, in order for the envisaged IT system to satisfy the strategic utility and
value judgements made, the expectations (i.e. actual predictions) of strategic util-
ity and value must be matched by subsequently deployed strategic performance of

the IT system. It can be appreciated that, expectation failure occurs, when either
the original expectations are unrealistic in some way, or the expectations were re-
alistic but subsequent performance of the deployed IT system during operational
deployment was less than the potential that the system could have achieved. Both
of these will result in dissatisfaction with the strategic utility or value that was
expected initially. Amongst the major strategic problems that have compromised
satisfaction with IT investments, by organisations, has been a lack of alignment
between strategic plans (i.e. business etc - depending upon the organisation
type), the information systems necessary to support such plans, and the suitabil-
ity of the actual IT systems deployed and developed to produce such information
[cf. [96]]. Analysis of such expectation failures have often been 'rooted' in non-

technical problems - such as inadequate strategic linkage and representation of

technical know-how at the board level, etc [cf. [94]].

4.3.2.2 The Deployment Context

If the utility context represents strategic value considerations and judgements, then
the deployment context reflects the 'lived-in' day-to-day judgements and experi-
ences of how well the deployed computer system supports the many individual's
own occupational, career, and work requirements. Failure of the IT system to be
effective in aiding people to perform their work commitments and responsibilities
can quickly result in a perfectly capable (i.e. technically) IT system not fulfill-
ing its envisaged strategic benefits. Again, this highlights that, within a wider, and

holistic, computer-based system viewpoint, judgements of failure may result from

non-technical problems. A very good example of such non-technical deployment
failure, is given by Lynne-Markus and Keil [97]. The computer system's strate-
gic aims (i.e. utility) was to reduce the cost inefficiencies and improve customer

service through reducing computer parts configuration errors when creating and

CHAPTER 4. COMPUTER-BASED SYSTEMS 102

fulfilling customer orders. But despite the computer-systems technical capabil-
ity to produce error-free configurations more dependably than the average sales
personnel, two usage surveys carried out in 1986 and 1989 revealed that only, at
best, 25%, and, at worst, 10% of the sales personnel reported using the computer-
system. Despite redesign attempts that significantly improved the usability of the

computer system, usage did not improve. It was finally revealed, that, although
the computer system was technically well designed, the computer systems' under-

lying organisational design conception failed because of the non-technical issues
of being fundamentally mismatched with the responsibilities, roles, and motiva-
tions of its intended users - the sales-force personnel. As Lynne-Markus and
Keil stress, the system failed because of [p.14]:-

"No Motivation: Sales reps were simply not motivated to produce
error-free configurations ...CompuSys 's organisational structure and
reward systems ...did not give any incentive to the sales department to
prevent configuration errors but rewarded reps on the basis of their
sales volumeFurthermore, the sales reps believed that verifying the
accuracy of the configurations they specified on the sales orders was
not their responsibility. Although the redeployment effort removed
many barriers to the use of CONFIG, it did nothing to attack the
users' basic lack of motivation or incentives, without which they were
highly unlikely to use CONFIG ...Disincentives: The sales reps actu-
ally had disincentives to using CONFIG; it made it harder for them to
do what they had the motivation to do - make sales. Its developers
had the goal of optimizing the configuration process. But, from the
sales reps' perspective, creating the configuration is actually a sub-
process: it's only a means to the end of the true goal - getting the
customer a price quote in the course of making a sale. "

This example of a conflict of notions of the 'true' purpose of the computer system

resonates with the earlier example of Drucker in section 4.2 and the scenario of the
three stone-cutters. The manifest strategic goal of the computer system (i.e. cost
efficiencies and customer service) conceived within the utility context-of-interest,
fundamentally conflicted with' other' (say) latent deployment sales goals of the

CHAPTER 4. COMPUTER-BASED SYSTEMS 103

sales department personnel - in the way they perceived their responsibilities and
roles in connection with the computer system. Such a system purpose conflict
is not an isolated occurrence either - as Kirby [98] reveals in his analysis of a
failed Information System (IS) project called IRIS. IRIS's strategic utility or value

rationale was as an Integrated Requisitioning Information System to re-engineer
the requisitioning, purchasing, receiving and disbursement of employee reporting
processes. It was expected that streamlining business functions and eliminating
reporting inefficiencies would result in reduced costs and increased profits - this
justified the system's existence. Furthermore, IRIS also had competitive advan-
tage expectations, as it was believed that IRIS would bring suppliers on-line, and
thereby increase their dependence upon, and commitment to, the organisation.

However, it quickly became apparent to the managers, employees, and intended
users of the computer system that it would radically alter their roles, responsi-
bilities, and work content of their jobs. Furthermore, many began to see that, if

not in the immediate short-term, then in the longer-term, IRIS could threaten their
livelihoods within the organisation. Eventually, they viewed IRIS as headquarter's

way of increasing their domination and control of their workforce and automating

and reducing the richness of their present roles, responsibilities, and jobs. Kirby
highlights that the two views of IRIS (i.e. utility context vs. deployment con-
text) was underpinned by the attribution of different meaning interpretations to
the same set of design rationales and computer system issues, stating that such
differing perspectives about the same things can [pp. 210-11]:

"....be thought of as a set of underlying assumptions and beliefs about
the way in which the world operates. Depending upon the assump-
tions adopted in analysing IRIS, different conclusions can be reached.
Anyone perspective supplies only a partial view of the world, and no

perspective can hope to explain everything ...In each case, the individ-
uals involved saw the same events as management, but attributed dif-
ferent meanings to themmanagement saw things from one perspec-
tive, that of economic rationality and cost-benefit analysis, whereas
others ascribed meanings such as self-preservation, domination, and
power acquisition ...management made the mistake of assuming that

CHAPTER 4. COMPUTER-BASED SYSTEMS 104

everyone saw things from the same rational, economic perspective.
It never occurred to them that the same events could be interpreted
so differently ...The best way to recognize that people are ascribing
different meanings to events is to be aware of the possibility of it hap-

pening. "

From these examples we can see that, in terms of a wider computer-based system
view, it is necessary to be aware that different meanings, views, assumptions, and
beliefs from different contexts of interest can result in non-technical judgements
of failure in spite of the computer systems 'actual' technical capability - due
to different views of the computer-systems perceived purpose. Furthermore, as

briefly discussed in chapter 3, such conflicts can result in a deployment failure -
a situation, as described above, where a technically capable computer system fails
for non-technical organisational reasons like organisational mismatches, informal
rejection, or covert rejection due to conflicts of meaning and purpose between the

two contexts-of-interest.

Finally, just as the strategic utility must be in alignment with the eventual actual
design rationale and infrastructure of the computer system to avoid expectation
failure, the strategic utility must also be in alignment with deployment issues of
latent purpose ascription - if its expected strategic performance is not to be un-
dermined by non-technical deployment problems. This is illustrated as a context
interfacing issue between the utility and deployment contexts in figure 4.2 on

page 99.

4.3.2.3 The Engineering Context

The engineering context issues have already, largely, been covered in chapter 3.

Essentially, as discussed there, the engineering issues relate to the technical con-

struction of the computer system and its supporting infrastructure to both realize

the strategic utility expectations and ensure that the eventual deployed computer
system results in a system that the users are motivated in using. However, as issues
of deployment discussed in subsection 4.3.2.2 indicate, although ergonomic and

CHAPTER 4. COMPUTER-BASED SYSTEMS

Figure 4.3: Emergent CBS Dependability

usability factors can greatly improve the likelihood of the deployed system be-
ing used [cf. [55]] through such approaches as User-Centred-Design (USD), this
alone will not guarantee adoption if there exists fundamental conflicts of notions
of purpose and meaning, etc due to a lack of representation of important socio-
logical and organisational issues. This requires greater coverage of the strategic
and deployment situation than is usually associated with elicitation of functional
requirements found in many software engineering texts [cf. [27,28]], and, as al-
ready discussed in subsection 4.3.1, requires a much greater holistic contextual

integration - if such aspects of strategic alignment, sociological alignment, and

functional requirements are to be more completely covered and considered.

4.3.2.4 The Evolution Context

All open systems must change and adapt to environmental pressures if they are to
persist their identity over time. A computer system is no different in this respect.

105

CHAPTER 4. COMPUTER-BASED SYSTEMS 106

Pressure for change can result from both internal and external sources. Firstly,
it has long been recognised as a law by Lehman and Belady [99] that IT sys-
tem usage stimulates users to request and require more functionality. Therefore,
from a deployment perspective, IT system introduction invokes a reinforcing set

of system dynamics which continually promotes situational evolution. Secondly,

from a strategic utility or value perspective Earl [96] notes that the strategic IT
planning process is also a reinforcing dynamic whereby the strategic introduc-
tion of IT systems can often, over time, stimulate new strategic IT opportunities
in the future - again invoking a set of reinforcing system dynamics that require
constant evolution of IT at the strategic utility level. Both of these examples rep-
resent how evolution is stimulated internally - within the application domain by
both the strategic utility and deployed state of IT systems. However, evolution
can be stimulated externally also - good examples of such external evolution-
ary influences, in regard to IT systems, is in the wider commercial and political
environment. Firstly, Porter and Miller [95] have long argued how, strategically,
the value of greater informational provision, within an organisational situation,

can result in creating whole new ways by which competition is defined - in ex-

treme cases whole new industry sectors can be created where the strategic use of
IT systems has become a prerequisite for competition. Secondly, many public or-
ganisations are often influenced by government political strategies that mandate
fundamental utility or deployment changes to new and pre-existing IT systems -
this is particularly true of the National Health Service (NHS) in the UK where the
government actually provides periodic IT strategies at both the national and local

level.

Lastly, the engineering context is tasked with the problems associated with evolv-

ing IT systems. Research has highlighted the extent of such problems of changing,
correcting, and adapting existing IT systems, it reveals that as much as 80% of the

total lifetime costs associated with IT expenditure can be used up in the evolu-

tion. maintenance, and adaptation of IT systems [cf. [100, 101, 12]]. Failure to
do so, however, can often result in IT systems losing their usefulness and becom-

ing legacy systems, these are systems that the organisation still relies upon for
their strategic and operational viability, but which can no longer be evolved [cf.

CHAPTER 4. COMPUTER-BASED SYSTEMS 107

[101,28]].

4.4 Chapter Summary

In this chapter the view of dependability has been extended to consider what de-
pendability means in the wider view of a computer-based system - where the
boundaries of the system-of-interest are widened to include the interfacing roles,
responsibilities, and motivations of the human subsystem - in its many forms
(i.e. strategic, engineering, deployment, and evolution). It can be seen from fig-
ure 4.3 that dependability is an emergent super-ordinate goal which is dependent
upon an emphasis of a bottom-up and integrated view of the contexts-of-interest
that ascribe often different and subjective notions of what constitutes the meaning
and purpose of the computer system. Identifying and reconciling these subjective
context-of-interest views is crucial, as, within a wider holistic computer-based
system conception it can be seen that judgements of failure, satisfaction, and suc-

cess, with the computer system, can be determined by non-technical aspects of
the system. If these differing views are not identified then different interpreta-

tions, meanings, assumptions, and purpose ascriptions can be fundamentally in
conflict with each other. When this occurs, as has been discussed, the overall per-
ceived dependability of the computer-based system can often be compromised.

In the next chapter a more specific example of applying a wider computer-based
system view of dependability is provided with an analysis of the Automatic Teller

Machine domain.

Chapter 5

ATM Case-Study

108

CHAPTER 5. ATM CASE-STUDY 109

5.1 Chapter Introduction

In this chapter the domain of the Automatic Teller Machine (ATM) is used to
emphasise a computer-based system view of dependability issues. The Automatic
Teller Machine is chosen as it is a well exposed domain - spanning almost 25

years of wide-scale deployment. This chapter raises and discusses a number of
failures and vulnerabilities that have been reported over this period. The chapter
ultises these issues to show how ATMs can be more broadly conceptualised as
a computer-based system and by taking this view demonstrates the need for a
broadening of the system-of-interest to help understand the fault phenomenology
of harmful assumptions that can result in computer-based system failures.

5.2 ATMContexts

In the following subsections a variety of failures of ATM's will be discussed.
These are based upon a wide number of literature sources - some going back

to the early/mid 1980s. The purpose is not to provide a complete coverage, but
to illuminate some varied ways in which ATM's can fail or be exploited. To be
consistent with chapter 4 the subsections will be divided into the computer-based

system contexts-of interest of:-

• The Utility Context - in terms of the strategic IT strategy issues that have
influenced such failures and vulnerabilities;

• The Engineering Context - in terms of the IT development issues that
have resulted in failures and vulnerabilities;

• The Deployment Context - in terms of operational IT issues that have
resulted in failures and vulnerabilities;

• The Evolution Context - in terms of the changing and environmental is-
sues that have resulted in failures and vulnerabilities.

It should be noted, however, that each failure or vulnerability, while originating
from a particular context, often manifests in another context. As a consequence,

CHAPTER 5. ATM CASE-STUDY 110

each context often refers to related ATM contexts in which the consequences of
failures and vulnerabilities manifest.

5.2.1 The Utility Context

This subsection relates to the strategic IT policy issues and oversights that can

result in failures and vulnerabilities becoming manifest in other contexts. While
ATMs have offered banks and financial institutions advantages, these have of-
ten been short-lived as ATMs represent a purely technological differentiation ap-
proach to achieving competitive advantage that has been easily replicated by com-
peting banks and financial institutions [55]. In real terms, the ongoing ubiquity
of ATMs is due to their indispensable industry influence for banks and financial
institutions to maintain competitive market standing with their competition [102].

ATMs were among the first commercial systems to utilize information transfer
protection via data encryption [103]. Some believe that the 56 bit encryption

algorithms, often used in ATMs were deliberately limited for national security
reasons [104], or economic reasons - rather than purely technological reasons
[cf. [105]]. Nevertheless, banking ATM security policies often employ hardware
encryption modules of the Intel 8751H, Intel 8752H, or AMD 9761 H standard for
deriving and verifying PINs in off-line ATM designs! [106]. With later on-line
ATM designs? a more sophisticated form of data encryption utilized a Unique Key
Per Transaction (UKPT) format which signifactly reduced access by unscrupulous
third-party's either internally (i.e. banking staff, maintainers, etc) or externally
(i.e. line-tapping) as the terminal hardware UKPT hardware module translates
the PIN information into an irreversible internal form so the customers PIN never
appears again, either within the ATM or central accounting banking systems in an

unencrypted format [107].

IOff-line ATMs formed most of the earlier ATMs used. These designs did not have 'live'
network links to the banking account systems or credit clearing houses. Consequently, Personal
Identification Numbers (PINs) and Daily withdrawal limits had to be enforced through the ATM
card with only periodic batch-style updating between the ATM and the banking account systems.

20n-line ATM designs have a 'live' direct link with the banking account systems. Conse-
quently, PIN, card, and Daily Withdrawal Limits can be directly verified in (practically) real-time
with a bank customers account information,

CHAPTER 5. ATM CASE-STUDY 111

Encryption Policy - Issue 1. A particular dependability issue that
can arise from such banking encryption policy decisions is where
technically uniformed decisions subsequently result in vulnerabilities
being introduced via the Engineering context. In this specific example
the preference for utilising proprietary software encryption over pro-
fessionally developed hardware encryption modules has been partic-
ularly criticised, for three reasons [cf. [103, 104]]: a) Unintentional
software faults can seriously undermine the sophistication of the data
encryption - resulting in them being more readily translated; b) The
bank's programmers are presented with an opportunity to introduce
malicious code for: i) 'back-door' access; ii) corrupt the algorithm
and keys so it produces a vastly reduced set of encrypted codes; or
iii) use their knowledge of the encryption algorithm and PIN Veri-
fication Values (PW with off-line ATMs) maliciously to gain illegal
unauthorised access to bank customers' accounts. In such a situa-
tion, because PINs offer only a small set of combinations (i.e. usually
4 digits - so 104 combinations), all that is required by the 'knowl-
edgeable' programmer is to tabulate the data into 'look-up' tables.
This method of attack is usually referred to as data-inversion; and c)

Systemic flaws can be introduced into the encryption algorithm un-
wittingly - due to inexperience, that then allows the encryption code
to be subsequently compromised. For instance, Clough [104] argued
that proprietary encryption methods are unlikely to have been sub-
jected to professional independent reviewing - which only a handful
of people outside the National Security Agency (NSA) in the USA can

really provide.

The serious dependability implications, of such a decision, are exemplified by An-

derson [108] where he reveals how proprietary software encryption was compro-

mised by software programmers being able to extract encryption keys that resulted
in a sustained fraud in a large London clearing house during 1985-86.

CHAPTER 5. ATM CASE-STUDY 112

One of the most controversial issues in ATM banking policies is the view taken
by the banks and financial institutions (Le. credit companies) that card and PIN
authorisation is impervious to making unauthorised withdrawals at ATMs without
carelessness or collusion by the card and PIN holder [103, 104]. Carelessness

means that the card and PIN holder has been neglectful in their responsibility to

prevent a third-party gaining access to their cards and PINs. Examples include
writing down their PINs on the cards itself [cf. [109]]; telling their PINs to some
third-party (i.e. friends and family members), or allowing some third-party to
use their cards or PINs to make ATM withdrawals on their behalf. Collusion
refers to ATM card-holders deliberately attempting to defraud the banks or gain
money by deception through nefarious collaborations or coalitions with a third-
party (i.e. friends or family members) that allow them to make withdrawals upon
their account(s) which they then claim to the banks have been made unlawfully
by persons unknown.

While there are examples of carelessness and collusion by bank customers [110],

there also exists a plethora of ways in which the ATM authorisation policies of
separate card and PIN identification can be (and have been) undermined to al-
low fraudulent access and unauthorised withdrawal(s) of money from a bank cus-
tomer's account(s). Such withdrawals have become known as 'Phantom With-
drawals' [cf. [103, 104]]. Phantom withdrawals have become one of the most
controversial issues surrounding ATMs. In order to maintain customer confidence,
public spokesmen/women (such as the Association of Payment Clearing Systems)
have continued to publicly deny the possibility of such fraud taking place [111].
As Clough [[104]: p 59] argues, banks have frequently and officially stated:-

"Banks do not make mistakes, and there are no such things as phan-

tom withdrawals."

Clough goes on to explain that the banks and financial institutions fear that if

they were to admit the possibility of phantom withdrawals then this would open
the floodgates for financial compensation to every customer who genuinely forgot
making a particular ATM transaction. Secretly, however, banks and financial in-
stitutions refer to unauthorised phantom withdrawals as "white card fraud" [113].

CHAPTER 5. ATM CASE-STUDY 113

I Year I Cost in millions £ I
1997 £8.2
1998 £9.7
1999 £12.2
2000 £18.3
2001 £21.1
2002 £29.1
2003 £39.0

Table 5.1: ATM fraud in the UK [source: [112]]

The vast majority of reported ATM fraud to the UK Banking Ombudsman relates
to unauthorised or phantom withdrawal complaints [104].

Table 5.1 shows the recent annual cost of ATM fraud in the UK over the last seven
years to 2003.3 It is clear from these figures that ATM fraud, whilst only a small
percentage of wider credit card fraud [114], is clearly on the increase in the UK.

Authorisation Policy - Issue 2. The maintenance of this strategic
policy view by banks and financial institutions, while to an extent un-
derstandable, also fails to recognise the subsequent deployment de-
pendability context considerations - in terms of potential safety con-
sequences4 it presents for individual customers. While ATMs don't
represent critical safety concerns like other IT/Software systems (i.e.
embedded control of aircraft or nuclear power stations, etc), their us-
age can result in undesirable consequences - with regard to wrong-
ful (or potentially unreliable) criminal convictions that have occurred
from bank customers claiming to have been victims of phantom with-
drawals. Notable cases include [cf. [108, 103]]: a) In 1985 a teenage

girl was charged and convicted of obtaining money by deception by
using her fathers ATM card to make an unauthorised withdrawal. She

3At the time of writing, recent statistics reported for 2004 in the press estimate that this figure
has further doubled in two years to approx. £85 million.

4This is not the usual interpretation of safety - in dependability terms of catastophic dam-
age or loss, etc. Rather, in the context of computer-based systems in this chapter, it should be
interpreted in a more general manner to mean some judgement of an undesirable consequence has
occurred.

CHAPTER 5. ATM CASE-STUDY 114

was advised to plead guilty by her legal representation to ensure a
lighter sentence. It later transpired that no theft had ever taken place
and the £40 deficit resulted from a clerical banking error which the
bank then tried to cover-up; b) In two separate incidents, an elderly
woman from Plymouth and a taxi driver from Great Yarmouth were
both charged with attempting to obtain money by deception through
ATMs. Both charges were later dropped when it was revealed that
in both cases the banks security systems were unacceptably vulner-
able; and c) In 1994 a police constable was charged and convicted
of attempting to obtain money by deception when he complained of
six phantom withdrawals being made to his building society account.
The conviction went ahead despite serious concerns over the build-
ing society's quality assurance and security practice. Additionally, a
number of other technical anomalies existed, including: i) the card
issued by the building society was issue number 2 - without any ex-
planation of why a second card issue had to be raised; and ii) one

of the phantom withdrawals had been made from an ATM in Omagh
Ireland - which the police constable had never visited. An appeal
against his conviction was later successful.

While these instances are rare they nevertheless represent a severe consequence
for the individuals concerned - in terms of everyday risks of using ATMs in their
deployed state. Anderson [108] captures this sentiment in his comment:-

...the idea that complaining about a computer error could land me in
prison is beyond my tolerance limit.

Less consequential safety risks of ATMs, related to this strategic policy issue in-

clude: a) financial loss; b) extra bank charges due to unknowingly going over-

drawn through a phantom withdrawal; c) loss of bank interest that is due; and c)
unavailability of cash dispensing services. It is for such consequences that in the
early 1990s approximately 400 aggrieved bank customers filed law suits through
J. Keith Park Solicitors against UK banks and building societies claiming that

CHAPTER 5. ATM CASE-STUDY 115

their ATMs are in breach of contract due to their susceptibility to fraud [115]. In-
dividual claims ranged from £90 to £ 13,000, and when aggregated, totaling nearly
£500,000.

5.2.2 The Engineering Context

The Engineering context relates to the process by which ATMs, as artificial sys-
tems, are created. This context is responsible for providing a system to the cus-
tomers' required technical specifications within cost and timescale estimates, which
may be reinforced by legal contractual agreements. However, it should be noted
that if the Engineering context involves an external organisation, the created ar-
tifact may also constitute a product of that organisation itself (i.e. the reader
should read the scenario quote by Malan and Bedemeyer [116] from subsection
on page 184 in chapter 8 for an example of this kind). This may fundamentally
influence the development criteria for the artifact, as the organisation attempts to
maximise its product base through modular or object-based product lines. Such

issues, specifically relating to ATMs are presented in [117, 29] where the func-

tional software design of such devices as card-readers, keypads, and printing de-
vices are generalized so that they can be quickly used for other related products

like security doors, EFfPOS equipment, etc.

Nevertheless, whether acting as an internal function of an organisation, or as an
external organisation itself, the important issue that the engineering context plays
is the management of the many resources, as inputs (i.e. human resources and
process technology), towards the creation of an ATM. Importantly, this involves a
great deal of specific and definite technical decision-making in the artifacts' cre-
ation that places an emphasis upon communication, elicitation and interpretation
of large amounts of information. This is a prerequisite to providing a depend-

able product, which is often made much harder when providing a product for
an external customer - due to the complexities of access to, and understanding
of, information about another specific application domain. More precisely, the

engineering context must integrate and balance issues presented from the other
contexts such as strategic utility concerns (i.e. ATM banking policies already

CHAPTER 5. ATM CASE-STUDY 116

discussed), deployment concerns (i.e. bank staff and bank customer operational
issues) and evolution concerns (i.e. for example evolution issues presented by
inter-banking and inter-credit merges over time as large credit card institutions
like Visa emerged).

A more specific complexity of the Engineering context, is that it must consider

a further complicating facet, (more specific to development of an ATM) that
the software provided constitutes an embedded control component of the actual
physical ATM system (like firmware mechanisms) as well as a client informa-
tion processing component of the central banking accounting system and/or clear-
ing house credit system [cf. [118, 110]]. Roberson [119] argues that a lack of
sufficient knowledge representation during the engineering is the cause of many
faults, omissions, and inconsistencies between software, hardware, and firmware
involved in ATM designs. In particular he stressed that this significantly reduces
the potential for accurate fault hypothesis, fault detection, and subsequently error
handling as each area of concern is separated with often little communication and

many questionable assumptions being made about another area of concern.' For
example, the early designs of ATMs omitted to consider the potential for an ATM
user to make a cash withdrawal and forget to take their cash from the cash dis-
pensing slot [104]. As a consequence, the amount was debited to the ATM user's
account with the cash often then stolen by passers-by or subsequent ATM users.
This left the absent-minded ATM user with a financial loss for their error.

Human Error - Issue 3. Whilst the responsibility for fault of the
loss from such errors and the ability to have anticipated such prob-
lems earlier in the development and deployment of ATMs could be
debated, over time, it was recognised that such human-errors of this
kind with ATMs are part of a broader set of known human operational

pathologies that can occur [120}. The increased frequency of such
human error with ATMs resulted in ATM cash dispensing slots be-
ing fitted with sensory devices, cash-retracting firmware mechanisms,
and time-out software control that would retain cash forgotten by the

5Such comments and views reinforce the need for a more inclusive, integrated and holistic
viewpoint, as mentioned in chapter 4.

CHAPTER 5. ATM CASE-STUDY 117

ATM user after a certain time period. It is clear from this historical
fact of early ATM development that, in error-forecasting terms, the
original development undertaken in the engineering of many ATMs
failed to consider the human reliability deployment issues surround-
ing the day-to-day usage and operation of ATMs by bank customers.

While later ATM development considered human reliability issues (such as issue
3 above) in ATM deployment, subsequent ATM designs often failed to identify
(what may be called here) Opportunistic Theft by legitimate ATM users attempt-
ing to steal money during a bona fide transaction interaction with an ATM.

Opportunistic Theft - Issue 4. A good example of this is reported
by Kristiansen [121]. Some customers worked out that when for-
gotten cash was retracted back into the ATM the whole transaction
record was undone to leave the customers account unchanged. There-
fore, if, instead of removing all of the cash dispensed at the dispens-
ing slot, they removed only some of the money, by teasing some notes

out, then, after a certain time period the rest of the money would
be retracted back into the ATM and the shortfall would become un-
traceable to a particular ATM customer. While only a small amount
of cash appears to have been lost by the banks through this secu-
rity vulnerability, the potential for this security hole to be spread by
'word-oJ-mouth', by unscrupulous bank customers, has the potential
to increase losses if it is not identified early. Also it does, in principal,
reveal another example where, in dependability terms, the engineer-
ing contextfailed to anticipate the deployment security vulnerabilities
involved in the dispensing of cash, and its subsequent retraction func-

tionality - following some human error.

Some security flaws in ATMs can be particularly obscure. One in particular is
due to the (quite justifiable) human interaction principle of allowing a computer

system user to cancel a current computer interaction at any time during the trans-
action stage. With regard to ATMs this allowance has proved important in pre-

CHAPTER 5. ATM CASE-STUDY 118

venting customers entering erroneous data, losing their cards, or leaving an ATM
exposed to subsequent theft or fraud, as the following two cases exemplify:

1. Colville [122] reports on a situation where because the hardware keypad
of the ATM was not registering the input data, or was 'bouncing' the input

data twice, it would be a desirable feature to cancel the whole transaction

with that ATM and use another rather than risk losing your card during PIN
entry, withdraw too much money, or transfer too little, etc;

2. Chiasson [123] reports on a personal experience where a state inconsistency
fault between the software and hardware device (i.e. card-reader) would
have allowed a subsequent ATM user or passer-by access to his account if
the ATM had not allowed him to cancel the entire transaction and restore a
consistent state between the software and hardware.

While both of these examples clearly indicate the dependability advantages of
providing transaction undo features with ATM designs, Naggs [113] reveals a
subtle flaw in allowing an ATM user to completely undo the entire transaction

before the ATM user has satisfactorily completed the authentication process by
both inserting the card and entering the correct PIN. Naggs inserted his card and

entered two (known) incorrect PIN numbers before cancelling and repeating the
process for a second time. In his own words he noted:

"If you reinsert the card into the ATM it does not remember your
previously failed attempts. "

Such a security flaw clearly compromises the PIN protection offered with ATMs.
It is normal for ATMs to only allow the user three attempts at correctly entering
the PIN. With a four digit PIN (which is most usual) this would give any fraudu-

lent person only a 1 in 3333.33 (recurring) chance - even if they had access to a
customer's ATM card or had the ability to clone that ATM card (104 = 10,000 pos-
sible combinations divided by 3 PIN attempts). However, this flaw allows many
more than just three attempts and when it is combined with other fraudulent tech-
niques such as covert observation or surreptitious 'shoulder-surfing' to (at least)

CHAPTER 5. ATM CASE-STUDY 119

gain partial knowledge of an ATM user's PIN, then it clearly makes unauthorised
or phantom-withdrawals much easier to achieve." For instance, assuming that a
fraudulent third-party had the ability to get access to a bank customer's ATM card,
or had the ability to create a cloned version of that ATM card, then with partial
knowledge of that same customer's PIN (via covert surveillance or "shoulder-
surfing") he/she could:

• Gain access with a maximum of 4 reinsertions of the card and PIN when
only one of the four digits were unknown e.g. users PIN is 4965 so if I
unknown, ?965, or 4?65, or 49?5, or 496?;

• Gain access with a maximum of 49 reinsertions of the card and PIN when
only two of the four digits were unknown e.g. users PIN is 4965 so if two
unknown - such as ??65 would range from 00659965. With this partic-
ular pin (i.e. 4965) it would only require 22.5 reinsertions (or 45 continuous
PIN enumerations).

The combination of this security flaw initiated from within the engineering con-
text, along with fraudulent techniques to gain (at least) partial PIN knowledge
from within the deployment context, clearly undermines strategic issues such the
authorisation policies expected to be in force. When the two techniques are com-
bined, it makes ATM theft and fraud much easier.

Obscure Security Flaw Conflicts - Issue 5. The specific problem
that makes this issue harder to detect is that there is a conflict between
what constitutes, generally in computer-system development, as good
usability and interaction and the specific application requirements of
what constitutes a dependable ATM deployment. In this case it would
require the engineering context to integrate and emphasise the bank's

authorisation policy inforce together with anticipating the shortcom-
ings above in order to identify that every ATM user must authorise

6The latest covert observation 'scams' is to insert a minature pin-hole type camera to the top
underside of the ATM, allowing fraudsters to then remotely (and covertly) observe a particular
ATM customer's PIN entry.

CHAPTER 5. ATM CASE-STUDY 120

themselves with a correct card and PIN entry before a complete trans-
action undo feature can be initiated. Otherwise any incorrect PIN en-
tries should be retained in the ATM/banking system as a permanent
(i.e. memorised) state across different ATM authorisation attempts if
the integrity of the PIN protection is to be maintained.

As discussed earlier, a specific issue of ATM designs includes the problem of
how embedded control software used to co-ordinate the inputting, processing, and
outputting of data (e.g PIN data, withdrawal amounts, etc) and physical artifacts
(e.g. ATM cards, money, print receipts, etc) interfaces with the hardware and
physical firmware mechanisms that make-up an ATM. The danger in this case,
perhaps emerges from the flexible or malleable nature of software, in contrast
with fixed and definite physical constraints imposed by hardware and firmware
mechanisms with which it is composed. As the following two examples indicate,
when these components are considered in isolation, the overall reliability of the
ATM system can be seriously undermined.

In the first example:-

Interaction Consistency and Completeness - Issue 6. Robertson
[119 J reports on the reliability problems that can result from the flexi-
bility that is offered by the embedded software control becoming out-
of-step with the more definite physical constraints of hardware de-
vices and firmware mechanisms. In this case Robertson wanted to
use an ATM to make a large withdrawal of $700. 7 After entering this
amount to be withdrawn he noticed that the ATM seemed to delay in
outputting his cash at the dispensing slot and eventually made some
strange noises and appeared to be struggling to do so. Eventually it

only outputted $220 in eleven $ bills. Subsequent investigations by
Robertson with his bank revealed that he had been debited for the
full amount of $700 and that the problem had occurred because the

71t should be noted here that it is implicit from the Robertson's report that this large amount
of $700 appears to be within his ATM Daily Withdrawal Limit (DWL) allowed by his banking
institution.

CHAPTER 5. ATM CASE-STUDY 121

ATM's cash magazine had run out of the larger money denomination
of $50 bills. The ATM had attempted to fulfill the withdrawal request
by outputting thirty five $20 bills - which was more than could be
passed, at one time, through the cash dispensing slot.

The second example is similar to Issue 6 above, but relates to a common and more

general complaint about ATMs:-

State Representation Completeness - Issue 7. This is when an
ATM user's account is debited for an entered withdrawal amount,
but the cash dispenser dispenses (at best) less money than requested
and debited, or, (at worst) no money at all. Amongst the many possi-
ble causes of such ATM failures is the possibility that the embedded
software control does not represent the physical state of the internal
cash magazines that contain the physical money to be outputted Ccf.
[124 J for an example of when this issue was explicitly included into
a formal ATM specification in VDM). For a variety of usage, opera-

tional and/or maintenance reasons the replenishing of these internal
money magazines may be delayed or prevented. 8 If the physical state
of the cash magazines is not accurately represented by the embedded
software control, and the ATM's money magazine becomes empty, or
beneath a level that can fulfill a particular ATM user's withdrawal
request, then the ATM user will be debited without having their with-
drawal request satisfactorily fulfilled. 9 A good indication of how ATM
manufacturers perform differently in identifying such embedded con-
trol software issues is reported by Minow [125 J. Minow reveals that
in comparing IBM and Diebold ATMs in the 1980s, many complaints
were made against IBM designed ATMs dispensing incorrect amounts

8For instance, there may be unusual peak-demand usage for ATM services - such as just
before a holiday period. Alternatively, there may be a temporary shortage of money or certain
denominations at the bank, or remotely located ATMs dependent upon outsourced organisations
for re-stocking, may be delayed for a variety of logistical reasons (such bad weather, traffic-jams,
etc)

9The best or worst case may well be dependent upon which, and how many, money denomina-
tion magazineis) actually go empty or low (i.e. £20, £10, or £5).

CHAPTER 5. ATM CASE-STUDY 122

to ATM users. However, Diebold were considered much more reliable
in this regard as they were capable of determining how much money
existed in the internal magazines. In situations where there existed
less money in the magazines than would fulfill an ATM user's with-
drawal request, the ATM would dispense what money was left in the

cash magazine and only debit the customer to that (lesser) amount.

While both of these issues above relate to how inconsistencies arise between
interfaces and separation-of-concerns of embedded software control, that con-
trol/coordinate physical devices such has hardware components and firmware mech-
anisms from the engineering context, they also reveal that faults and vulnerabil-
ities can result from other CBS context concerns. Issue 6 above reflects a need
to recognise that while software can be designed with generality and flexibility or
later enhanced to evolve the ATM system to meet future utility demands, this must
not exceed the physical constraints into which it is embedded.!" The problems re-

ported in Issue 6 above therefore relate to a need to consider the evolutionary

context (in terms of functional flexibility/generality and adaptation) in a holistic
sense that includes recognition of the more restrictive (and less flexible) hardware
and firmware devices and mechanisms of the ATM - into which the software be-
comes embedded.'! Issue 7 is a more local context fault that occurs largely within
the engineering context but becomes self-evident (sooner or later) once the ATM
is deployed. !2

5.2.3 The Deployment Context

The deployment context involves the many day-to-day operational issues and in-
fluences the ATM system (as a whole) is subjected to as its envisaged utility and

IOPorexample, Daily Withdrawal Limits (DWL) vary from bank to bank, customer to customer,
and account type to account type. Not only this, but as the spendable value of money progressively
reduces over time, banks and financial institutions operating ATM networks will need to extend
DWL.

IIIt is obvious from Issue 6 that enhancements of firmware mechanisms (internal cash transfer
and counting mechanisms) and hardware devices (size of cash dispensing slot) would also have
needed to have been enhanced if this problem were to be avoided.

12By "self-evident" it is meant that sooner or later, for a variety of reasons, the internal cash
magazines will become insufficient to fulfill an ATM user's withdrawal request or become empty.

CHAPTER 5. ATM CASE-STUDY 123

value is exploited over its lifetime. This includes such situational operational is-
sues as organisational practices and procedures of the bank, within which the ATM
is situated, and ATM bank customer issues (some of which have already been dis-
cussed in earlier subsections). A particular facet of ATM deployments is that they
physically interface directly into the wider public environment. In fact, this is at

the heart of the intended strategic utility of ATMs - that they can provide conve-

nient 24-hour access to primary banking services of cash-withdrawals, account
balances, and payment transfers, etc for banking customers. As a result, it has
been an ongoing strategic policy of banks and financial institutions to offer more
and more access to such services in more remote/diverse geographical locations
[cf. [126, 102]]. However, this also makes ATMs, ATM users, and confidential
bank customer information more vulnerable to attack, theft, and fraud.

From a computer-system perspective, ATM deployments are also 'walk-up-and-
use' (WUAU) systems - meaning that greater consideration must be given to the
usability of such systems in terms of intuitiveness, leamability, and simplicity, as

ATM users will be provided with little, if any, prior training in how to operate

them. High levels of usability across a wide public user-base is easier to state
than achieve as the survey of 1,530 ATM users by Rogers et al [127] revealed.

They found that across many age groups improvements in training and design are
required to make ATMs more user-friendly, useful, and attract more patronage.
With regards to training they argue that:-

• Existing pamphlets on ATM usage are insufficient;

• Older users would be more willing to use ATMs if some prior training were

provided;

• In particular, as more complex ATM features are added to the design of

ATMs (e.g. account transfers, money depositing, bill payments, and ticket-
ing acquisition, etc), training should be focused on these more sophisticated

functions;

• The transfer of training knowledge over time and across different ATM de-
signs was also highlighted as a particular area in which to focus future train-

CHAPTER 5. ATM CASE-STUDY 124

ing programmes.

With ATM design improvements, Rogers et al distinguish the hardware and firmware
mechanisation with the label "surface-level" improvements, while referring to
embedded software as "conceptual-level" improvements. With surface-level im-
provements they advised that:-

• Better (anti-glare) screens, bigger text, and better physical alignment of
keypad and screen buttons would improve usability;

• Hardware and firmware mechanisms were too slow in functioning, and fu-
ture design should focus upon improving the turnaround times at ATMs;

• Greater thought should be given to the physical environmental context that
ATMs are deployed into. A particular example stated was better location
in respect to the sun to reduce glare and improve readability of on screen
information.

With regards to conceptual-level improvements, Rogers et al advise:-

• Older users expressed concerns about remembering transactions made that
raise challenges to future ATM designers;

• Future ATM design should attempt to reduce emphasis on technology and
become more user-centred - in terms of the personal and interactive nature

of ATMs.

While all of these recommendations are of value in improving future dependability
of ATMs, the general public (which ATM users make up) present such a heteroge-

neous set that it is rarely possible to accommodate every different user's cognitive

model, learnability style, or intuition - influenced by distinct knowledge, bias,
personality, or past experience etc. This problem is indicated explicitly by Delvin
[128] from a situational information theoretic standpoint. Delvin sought to high-

light that it is very difficult (and impossible - in terms of all eventualities) to antic-
ipate how each different individual will respond in a certain interaction (whether

CHAPTER 5. ATM CASE-STUDY 125

human-to-human or human-to-machine). He retold, as an example, the expe-
rience his wife had one day while interacting with an ATM. His wife wished to
deposit a cheque for $100 and make a withdrawal of $50 directly on that deposit
transaction.P The interaction proceeded as follows:-

1. She inserted her card and PIN;

2. ATM asked her which service was required;

3. She selected "Make a Deposit";

4. ATM responded "Do you want cash back from your deposit?";

5. She answered "Yes";

6. ATM responded with the command "Enter amount";

7. She entered $50;

8. ATM responded with the command "Enter amount you want to withdraw".

At this point Delvin noted that his wife realised she had assumed that step 6 meant
enter the amount she wished to withdraw. At this point she cancelled the whole
transaction." removed her card and tried again. The point Delvin made from this,
from a situational information theoretic perspective, is that he had used the same
ATM "transaction-splitting" features without any trouble for some time. Delvin
[pp. 108-109] himself explains why his wife, and not he, had experienced such a

problem:-

"As a mathematician and computer scientist, I automatically viewed
the preplanned, artificially staged "conversation" with the machine
as a machine transaction, and as a result I had always taken the ma-

chine's instruction "Enter Amount" to refer to the first decision point
in the process, namely my choice to make a deposit. In technical

13A feature sometimes called "Transaction-Splitting" with ATMs.
14Note how, in comparison to the issues raised earlier with Obscure Security Flaws (issue 5) that

again cancelling an entire transaction is a useful error-recovery option. However, note also that in
this particular case, it wa a post-authorisation, not a pre-authorisation, transaction cancellation.

CHAPTER 5. ATM CASE-STUDY 126

terms, I assumed (correctly) that the machine operated using a simple
model of what computer scientists call a queue - first-in-first-out.
My wife, on the other hand, viewed the transaction as a highly con-
strained human interaction, where reference would generally be to
the thing mentioned last. Since the instruction "Enter amount" came

immediately after reference to wanting cash back she took the instruc-
tion to refer to the amount of cash she wanted back. The model she
was assuming (incorrectly) was that of a computer scientist's stack
-- last-in-first-out. "

The above issues taken together clearly show that the ATM deployment context
presents many dependability issues that were not easily anticipated, or that can
be easily designed for - without unearthing such 'hidden' assumptions. The
following issues echo some of these points, although to prevent needless repetition
with CBS context issues already discussed (i.e. engineering context and utility
context), the focus will be upon more evolutionary context issues.

5.2.4 Specific ATM Environment Adaptation

As already discussed earlier, an ongoing strategic policy of banks and financial
institutions has been to promote 24-hour availability of basic banking services
which has resulted in the deployment of higher numbers of ATM services in in-
creasingly diverse and remote locations. While this no doubt offers greater con-
venience for banking customers - especially in countries, states and provinces
where bank opening is restrictive [129], it is also possible to recognise that there
is a potential conflict, in dependability terms, between attributes of availability of
service and security and safety of these services. These conflicts are the focus of

the last two issues raised in this chapter below.

First the safety related issue:-

Environmental Adaptation - Safety Issue 8. Safety concerns ap-
pear. from a number of research surveys, to be a general concern of
many ATM users when using ATMs [cf [/27, /30]]. However, when

CHAPTER 5. ATM CASE-STUDY 127

ATMs are remotely located, then this general concern appears to be
even more relevant - especially during off-peak times. These fears
are further reinforced by reports that (both in the US and UK) usage
of ATMs can leave customers vulnerable to physical attack. In the
worst cases police have believed that ATM users have been even mur-
deredfor their ATM card(s) and PIN information while using ATMs
[131,114}.

Secondly, the security related issue:-

Environmental Adaptation - Security Issue 9. Security concerns
also exist with the situation of remotely located ATMs. Fraudsters,
who have obtained stolen ATM cards or have been able to clone ATM
cards are much more likely to carefully choose which ATMs they use
to make illegal or unauthorised withdrawals. It is obvious that these
will most likely be remotely located ATMs during off-peak times as
this allows them then to circumvent visual detection devices provided
by ATMs (i.e. VCRs and CCTV) by wearing masks or disguises etc [cf.
[132}}.15 Furthermore, sophisticated fraud, that results in the cloning
oj many ATM cards would require Jraudsters to target remote ATMs
during off-peak times as it would require the reinsertion oJmany ATM
cards which would quickly attract suspicion by passers-by and other
ATM users [cf [133]].

These conflicting issues, between service availability, safety, and security result
in ATM dependability vulnerabilities due to the commercial policy of 24-hour

remote access not reflecting how dependability is undermined (in terms of cus-
tomer safety and banking security against fraud) by not considering how ATMs,

and their services offered, must be appropriately adapted to the particular envi-
ronment in which they are deployed and operated. Remote ATMs, such as those
deployed on industrial estates, colleges/universities, supermarkets, etc experience

151twas recently reported in the press that 'skimming' devices fitted to the ATM card-reader
device were primarily used on remote ATMs in villages, etc - as, unlike like those in towns and
cities, such ATMs are not commonly under the surveillance of Close Circuit Television (CCTV).

CHAPTER 5. ATM CASE-STUDY 128

high usage only during certain times (i.e. working hours). During off-peak times,
legitimate demand for such services will be greatly reduced anyway, so they could
restrict their services - such as reduced withdrawal amounts being available as
in the example reported by Curry [134], or completely shutting ATM services
down in the interests of customer safety and bank security which would dissuade

both customers and fraudsters from using them in preference for: a) a more safer
ATM for legitimate services; and b) preventing opportunities for fraud, or forcing
fraudsters to use ATMs that will increase thier capture and detection.!"

Vulnerabilities discussed in these two issues reflect an inability to consider the
Evolution context, in terms of ensuring that ATM services (or service restrictions)
are adapted dependably (specifically - safety and security) to their environments
(both geographically and temporally in these cases).

5.3 Chapter Summary

In this chapter a more detailed and specific exemplification of a computer-based

system perspective has been provided. As stated in chapter 4, a computer-based
system perspective expands the boundaries of the system to encompass and con-
sider both the technical and human systems as subsystems-of-interest, When this
view is adopted both types of subsystems are viewed as interfacing systems-of-
interest. This chapter has used the specific application domain of the Automatic

Teller Machine (ATM) to illuminate a much more hollistic and integrative per-
spective of a ATMs as computer-based systems than is normally the case. This has
been achieved by breaking the analysis and considerations of the ATM into four
generic computer-based system contexts-of-interest. These are: a) the strategic
utility context - that ecompasses the strategic value justifications for the sys-

tems existence; b) the engineering context - that is challenged with the creation

of the technical system; c) the deployment context - that is directly responsi-

16Por example, where I work the University has an A1M on-site which is very remote during
out-of-hours, but would make an ideal target for a mugger or a fraudster to use. Conversely, in
Consett Co. Durham there is an A1M virtually outside the town police station. If I had to use an
ATM during the early hours, I would use the latter A1M. Equally, it is more probable a mugger or
a fraudster, would seek to use the former A1M.

CHAPTER 5. ATM CASE-STUDY 129

ble for its day-to-day operational requirements; and d) the evolution context -
that is concerned with maintenance and future adaptation considerations. The
ATM application domain was therefore analysed within this computer-based sys-
tem conception as it is a long-established domain that provides interesting and
insightful examples of how computer-based system dependability can become

compromised. A total of nine such issues have been presented, analysed, and
discussed from a computer-based system viewpoint in detail. It can be seen that
many failures of computer-based systems are holistic, in nature, and a good way
of improving holistic understanding of these failures is by achieving a balanced
emphasis and interpreting them into the generic contexts. Such a computer-based
system view illuminates how vulnerabilities, faults, errors, and failures are often
a matter of how contextual interests are often over/under represented or subse-

quently promoted.

Chap~r6

A~umptions

130

CHAPTER 6. ASSUMPTIONS 131

6.1 Chapter Introduction

In this chapter the issue of assumptions is explained. Assumptions are often char-
acterised as "unstated reasons" used for a basis of argument or activity. While,
broadly, this is true, it doesn't reflect the many possible ways assumptions can oc-

cur or the underlying influences that can often give rise to them. This chapter first
focuses upon reasoning and assumptions. In doing so, both formal deductive and

informal inductive reasoning is discussed, as these both have interesting implica-
tions for how assumptions are used or emerge. Next the role of communication
and assumptions is discussed. In communication, assumptions can result from a
number of influences that can result in ambiguities and inconsistent meaning inter-
pretations. Assumptive influences in problem solving activities are then covered.
It will be indicated that effective problem solving can sometimes be undermined
by artificial constraints and limits we impose upon our thinking during problem
solving activities. Finally, the importance of context and assumptions is discussed.
It can be seen that a contextual situation (however this is interpreted) often results

in collective or shared assumptions being made. While these can result in effective

collaboration, there is also the danger that unquestioned assumptions can result in
erroneous actions and judgements when the context changes, overlaps, or places
serious knowledge acquisition limitations upon us.

6.2 Assumptions in Reasoning

As will be seen in the various subsections in this section, reasoning provides a
good insight into the nature of assumptions. Before going into more detail, how-
ever, it would be beneficial to discuss broadly the established nature of reasoning.
The particular facets of reasoning covered in the following sections relate to de-
ductive and inductive reasoning.

6.2.1 Deductive Reasoning

Deductive reasoning has its origins in ancient Greek philosophy and is essentially
concerned with the truth-preserving structure(s) of human reasoning [135]. In

CHAPTER 6. ASSUMPTIONS 132

essence it is the validity of the conclusions that can be inferred from the premises
that is of major concern. In deductive reasoning structures, it is not possible to
have a true conclusion from false premises. This can be shown as follows [cf.

[136]: p. 109]:

If inflation is receding, the government's economic policies are sound.
Inflation is receding.
Therefore, the government's economic policies are sound.

What is important in this piece of deductive reasoning is the structure. The first
two lines provide the premises - the truth validity of which, ultimately deter-
mines the validity of the conclusion. In the reasoning structure above, the struc-
ture is a form of deductive reasoning known as Modus Ponens, which has the

structure:

If A, Then B.

A is true.
Therefore B is true.

Another valid deductive reasoning structure - based along similar lines, using
the same structure as above is as follows:

If inflation is receding, the Government's economic policies are sound.
The Government's economic policies are not sound.
Therefore, inflation is not receding.

Again, this deductive reasoning structure ensures the validity of the conclusions
_ depending upon the truthfulness of the premises. In this case the conclusion

that inflation is not receding can be inferred from the lack of soundness of the

Government's economic policies. This form of deductive reasoning is known as

Modus Tollens and has the structure:

IfA, then B.

B is not true.
Therefore, A is not true.

CHAPTER 6. ASSUMPTIONS 133

A number of invalid deductive reasoning inferences also exist - based upon this
deductive structure. The first is commonly known as Affirming the Consequent as

follows:

If inflation is receding, the Government's economic policies are sound.

The Government's economic policies are sound.

Therefore, inflation is receding.

In this case the conclusion is not necessarily true - even if both premises (A
and B) are true as inflation mayor may not be receding for many other reasons
quite apart from the quality of the Government's economic policies. In such cases

the conclusion results in a non sequitur - meaning that it doesn't necessarily
follow from the premises. Such an invalid reasoning has the following deductive

structure:

If A, then B.
B is true.

Therefore, A is true.

Another invalid deductive structure is know as Denying the Antecedent as follows:

If inflation is receding, the Government's economic policies are sound.

Inflation is not receding.

Therefore, the Government's economic policies are not sound.

Again, in this case the conclusion that the Government's economic policy is not
sound does not follow from the premises in a deductive sense since although in-
flation is not receding the Government's economic policies may (or may not) be
sound for a wide variety of other reasons irrespective of the inflation rate. This

invalid reasoning has the following deductive structure:

If A, then B.
A is not true.
Therefore, B is not true.

CHAPTER 6. ASSUMPTIONS 134

Although there exist other deductive reasoning structures not covered here [cf.
[136]: pp. 108-133] the main point is that the structure of the reasoning, in
deduction, is all important in ensuring that: a) a true conclusion cannot be de-
duced from false premises; or b) a false conclusion cannot be deduced from true
premises. Although to say that an argument is deductively valid is to say some-

thing strong and positive about its structure, as can be seen from some of the sec-
tions that follow, the validity of the premises themselves can often be an important

pragmatical concern.

6.2.2 Inductive Reasoning

While deductive reasoning can inform us of the truth-preserving nature of rea-
soning structures, much of our reasoning in everyday situations is not so much to
establish the truth of something as it is to reinforce our beliefs or provide extra in-
formation about something of interest [137]. This form of reasoning is essentially
probabilistic, in nature, and reflects a reasoning process that is essentially moving

from specific knowledge, based upon experience, observation, and understanding

to generalisations that reinforce our belief system(s) (at whatever level) and our
comprehension of the world we live in [135].

A good example of this inductive reasoning process is exemplified, within a problem-
solving context, by Polya [138] using a characterisation of the famous journey of
Christopher Columbus in 1492, as follows [p. 178]:

"As Columbus and his companions sailed westward across an un-
known ocean they were cheered whenever they saw birds. They re-
garded a bird as a favourable sign, indicating the nearness of land.
But in this they were repeatedly disappointed. They watchedfor other

signs too. They thought that floating seaweed or low banks of cloud
might indicate land, but they were again disappointed. One day, how-
ever, the signs multiplied. On Thursday, the 11th of October, 1492,
they saw sandpipers, and a green reed near the ship. Those of the
caravel Pinta saw a cane and a pole, and they took up another small
pole which appeared to have been worked by iron; also another bit

CHAPTER 6. ASSUMPTIONS 135

of cane, a land-plant, and a small board. The crew of the caravel
Nina also saw signs of land, and a small branch covered in berries.
Everyone breathed afresh and rejoiced at these signs. And infact the
next day they sighted land, the first island of a New World. "

The point Polya wished to make from this is that in unknown situations we often

use past experience and knowledge in an analogous reasoning manner to inter-
pret signs that we are making progress towards something (be it a solution to a
problem, or discovering new lands). Polya goes on to show the inductive reason-
ing process, using the above example, with the well known 'if, then' deductive
reasoning structure discussed in section 6.2.1, as follows:

If we are approaching land, we often see birds.
Now we see birds.
Therefore, it becomes more credible that we are approaching land.

It can be seen, from section 6.2.1, that in a purely deductive reasoning context,

this structure represents a formal fallacy of Affirming the Consequent. However,
Polya notes that the conclusion is written in the following manner:

If A, Then B.
B is true.
Therefore, A Becomes More Credible/Probable.

Polya argues, that while, within a deductive evaluation, this structure is fallacious,
in a inductive/heuristic reasoning context, this structure is both fair and reasonable
_ providing the conclusion(s) are stated in probabilistic inductive terms and not
in a formal deterministic deductive manner. Polya also notes that in using an in-
ductive reasoning approach, the more data or more frequent the signs are then the

more these reinforce the probabilistic conclusions. From a wider computer-based

system standpoint it can be argued that inductive reasoning can result in faults and

errors through one computer-based system context making (seemingly quite) rea-
sonable associations that are well established and common within that particular
context--of-interest in terms of past experience, training etc. Such an example was

CHAPTER 6. ASSUMPTIONS 136

the (seemingly quite reasonable) implicit assumption that an ATM user should al-
ways be allowed to completely undo a transaction (i.e. pre authentication undo) -
as this is widely considered to be a good usability principle. This computer-based
issue (i.e. Obscure security flaw conflict - issue 5) was discussed in section 5.2.2

of chapter 5. However what was overlooked in this specific issue was the security
vulnerability that this introduces that allows a fraudulent enumeration of an ATM
customer's PIN code. What is actually needed is for the system to either enforce
authentication before the ATM user can completely undo the transaction or record
any failed PIN code verification attempts between distinct ATM accesses.

6.2.3 Suppositions and Presuppositions

Suppositions are premises used for progressing a particular line of argumentation
or reasoning [135]. A particular facet of suppositions is that the person making
them does not necessarily believe in the premise(s) themselves. Two examples of
suppositions is provided by Warburton [[135]: p. 116]:-

...[police inspector] "Had the murderer entered the house by the
window. Surely we would expect to find some evidence of a forced
entry. "

...[prosecuting lawyer cross-examining the defences' expert wit-
ness] "Even ifwe believe that you are right that watching video nas-
ties can trigger violence in a small percentage of viewers. Can you
be sure that they wouldn't have found other triggers if video nasties
didn't exist?"

It can be seen from both these examples that the emboldened text represents ex-
plicitly stated premises that are "supposed". In neither cases does the person(s)

making them necessarily believe in the truth of the premises, instead, they are used

only as an informal reasoning mechanism - much like a hypothesis, in order to

continue a particular avenue of argumentation, reasoning, or thinking. Because
of this explicit hypothetical nature, suppositions are 'internal' to the structure of
argumentation, thinking, or reasoning and therefore they usually represent an ex-
plicitly stated form of assumption(s). Such informal reasoning mechanisms are

CHAPTER 6. ASSUMPTIONS 137

widespread in the software engineering literature [cf. [56, 9]] and although they
can be useful reasoning mechanisms thier informalness can often turn out to be
a weakness. Such an issue was discussed within chapter 5 (i.e. State represen-
tation completeness and consistency - issue 7). It can be seen that the physical

cash magazines were never assumed or supposed to become empty or contain

insufficient money to fulfil an ATM customer's withdrawal request, but such an
informal and assumed justification can easily prove to be false if not investigated

and verified.

Presuppositions are somewhat different, in that a presupposition is a proposition
of another statement, which, if the presupposition is false, makes the statement
(for which it is a presupposition) irrelevant, or pointless [139]. By contrast with
suppositions, presuppositions tend to be, by nature, 'external' to the argument,
reasoning, or thinking process. This is exemplified by Ennis [[139]: pp. 76-
77] who also stresses that in everyday usage people are particularly susceptible to
accepting and becoming committed to the external and unstated assumptive nature

of presuppositions, noting:-

"...1find myself less resistant to believing the [unstated] proposi-
tion that there is a missile gap when I am told, "The missile gap will
take five years to eliminate. " than when I am told, "There is a missile
gap and it will take five years to eliminate. ""

In the first statement there is an increased compulsion to assert (see subsection
6.2.4) the presupposition of "a missile gap exists" due to this proposition being
''pre-supposed'' to be true and externalised (i.e. unstated). Whereas, in the second
statement form, this proposition is explicitly asserted and internalised (i.e. stated).
As a consequence, there is an increased likelihood that someone may seek to ques-

tion the truthfulness or falsity of the premise part of this proposition by asking "Is
there a missile gap?" In some cases, pre-suppositions can be used maliciously
and deliberately, in order to get people to commit to a particular argumentation
line or reasoning position. This is particularly the case with asking and answering
questions - as questions include positive information in the form of propositions

CHAPTER 6. ASSUMPTIONS 138

[136]. The answerer who responds directly to a question based upon presuppo-
sitions risks committing to any (or even all) the presuppositions it is based upon.
Walton [[136]: p. 29] provides the classic loaded question based upon harmful
pre-suppositions for the directly agreeing respondent, as follows:-

"Have you stopped beating your spouse?"

No matter which way the answerer directly responds by answering "yes" or "no"
they become committed to the "pre-supposed" (and prejudicial) proposition that

"You have beaten your spouse".

Therefore, in stark contrast to suppositions, pre-suppositions contain an implicit
hypothetical characteristic that tend to be 'external' to the structure of argumenta-
tion, reasoning, answering, or thinking and can often result in people unwittingly
believing in, or committing too, the unstated propositions they are based upon.
This is indeed a flaw in the structure of deductive reasoning since in both the

examples of correct forms (e.g. modus ponens and modus tollens) in subsection

6.2.1 the causal relationship between (to take the example given there) inflation

and the soundness of the government's economic policies is presupposed. With
deductive structures there need not be any causal nature to provide deductively
valid argument structures. The following example demonstrates this:-

If it is Monday, I'm a millionaire

It is Monday

Therefore I'm a millionaire.

It can be easily appreciated that although this structure is a deductively valid case

of modus ponens there is clearly no causal relationship between the day of the

week and someone being a millionaire. Such deductive type structures are ubiq-

uitous in reasoning and implementing (i.e. IFffHEN condition branches in pro-
gramming languages) software systems and presupposed completeness of subtle

causal relationships between such things can often be the source of faults, errors,

and failures.

CHAPTER 6. ASSUMPTIONS 139

6.2.4 Assertions and Beliefs

Unlike suppositions and pre-suppositions, assertions represent an explicit, yet un-
supported, statement of belief by the individual making the assertion [135]. In this
case, an assertion is not some externalised or implied proposition in the argumen-

tation, reasoning, or thinking process that someone unknowingly believes in, or

commits to. Rather, it is a stated explicit statement of belief in the truthfulness or

validity of something.

However, simply asserting something, does not necessarily make it true in itself,
as the following influences can undermine or help establish the validity of some-

thing asserted:

6.2.4.1 Beliefs

Our beliefs, while important in establishing our sense of identity with the world
around us, are, at best, changing incomplete co-creations and constructions which

have been heavily influenced, biased, and formed by our social, cultural, and in-

dividual experiences [140]. Therefore, even though we may genuinely believe in
something we have explicitly asserted as being true or valid, the underlying beliefs
upon which it is generated may be based upon incomplete knowledge or some
(largely) unchallenged assumption(s) about something(s). O'Conner & McDer-
mott [[140]: pp. 62-81] characterise human beliefs as a cognitive mental model
and reveal four main ways in which humans create, maintain, and change their

belief systems.-

1. Deletion: Every day our senses are inundated with massive amounts of
information which we could not possibly hope to accommodate. Therefore
we need to selectively filter this information which is usually dependent

upon our moods, interests, values, and preoccupations. Although there is

always other information which we could have chosen, our belief system
is formed and maintained through the deletion of other information that

accords with our (believed) notions of what is, and what is not, important to

us;

CHAPTER 6. ASSUMPTIONS 140

2. Construction: Is the inverse of 'deletion'. We often have the compulsion to
construct things that actually don't exist at all through trying to link (what
we consider to be) "...probable cause with possible effect." Uncertainty will
invariably result in 'gap' construction, whereby we fill-in gaps so that our
pre-existing beliefs are reinforced so that the world still makes sense to us;

3. Distortion: Is when we change our actual experience by increasing some
aspects while reducing others. While this can be a healthy thing to do, it can
also be done as a protective measure to preserve our existing values, beliefs,
and conceptions about our world;

4. Generalisation: Is when we "...take one experience and make it repre-
sent a group." It has very close links with inductive reasoning. While it
is, in many cases, a valid mental conception which allows us to learn and
build knowledge, the risks are that we take unrepresentative experiences and
over-generalise them to all similar situations - becoming oblivious to the
extent at which we have done so. As O'Conner &McDermott warn: "Gen-
eralisation combined with prejudice ...is the basis of all racial and sexual

discrimination. "

As will be seen from other sections and subsections, in this chapter, such traits
that influence our beliefs (and resulting mental models) can have a direct bearing
upon the assumptions we make in any given situation.

6.2.4.2 Formal Argumentation

In formal argumentation, a careful separation of assumptive beliefs and explicitly
stated assertions are made. A good example of this careful separation is provided
by Velleman [[141]: pp. 82-85], advising:-

"Never assert anything until you can justify it completely."

By this Velleman argues that in proof-writing techniques, based upon the logical
deductive form of the conclusion, often involves transforming the problem to be
solved into an equivalent, but easier one. Frequently they involve steps in which

CHAPTER 6. ASSUMPTIONS 141

the prover must assume, for the sake of the proof, that some statement is true
without providing any justification for that assumption. Whilst this, at first, ap-
pears to conflict with the above rule that assertions must always be justified, it is
again pointed out, that to assert something is different from assuming something
in formal argumentation. Assertion means to claim that a particular statement is

true, while the purpose of making an assumption in a proof is not to make a claim
about "what is true", instead it is used to help determine "what would be true" if

the assumption involved was to be correct. This is why it is necessary to be aware
that any conclusion that may be arrived at based upon an assumption may well
turn out to be false if the assumption is incorrect. For instance, if during some
proof to establish the truth of statement Q, someone assumes that a statement P
is true, and then uses this assumption to later conclude that another statement Q
is true, it would be false to believe that this is a proof of Q as they have not es-
tablished that the assumption P (upon which the proof of Q is truth dependent) is
true. The proof of Q would be (at best) incomplete. However, if the conclusion of
the proof was a composite proof to prove P => Q then the proof is complete as the
following is a well established proof strategy [cf. [141]: pp. 85-91]:-

To prove a conclusion of the form P => Q:
Assume P is true and then prove Q.

The following proof is a specific simple example of the form P => Q [cf. [141]:
pp. 86-87]: a and b are real numbers. Prove that if 0 < a < b then a2 < b2:_

• Given(s): is that a and b are real numbers;

• P: is the statement 0 < a < b;

• Q: is the statement a2 < b2;

• Prove: Conclusion is P => Q;

• Assume: 0 < a < b and make a2 < b2 the goal;

• Multiply both sides of inequality a < b by a and b:

• Gives: with a a2 < ab and with b ab < b2;

CHAPTER 6. ASSUMPTIONS 142

• Proved: Therefore, if: 0 < a < b then a2 < b2•

It can be seen, therefore, that, due to the analytical reasoning power offered by

mathematical proofs, assertions are more than just unsupported explicit statements

of belief. They are statements, the truth validity of which, should be established
through formal reasoning before being employed as such statements of truth. Ad-
ditionally, there is a sharp distinction made between assumptions and assertions.
Assumptions are used in formal reasoning, much like suppositions are used in in-
formal argumentation, as a reasoning mechanism which is not believed to be true
but only taken as being true to pursue a specific line of argumentation (in this case

mathematical). In this regard we can appreciate the benefits of formal argumen-
tation over informal argumentation as formal argument provides a more rigorous
proof mechanism to formally verify the integrity of assumptions used in reason-
ing about systems, once they have been identified as such. As mentioned earlier

in subsection 6.2.3 (on suppositions and presuppositions) the assumed physical

state of the cash magazines 1 can be more rigorously investigated using formal ar-
gumentation to ensure this is, in fact, the case. Indeed this ATM consideration
was explicitly covered in a formal ATM specification using VDM [124].

6.2.5 Enthymemes or Suppressed Premises

Enthymatic reasoning is an argument with a suppressed premise. During everyday
speech and interaction it is largely unnecessary to have to make explicit every
premise of an argument or line of reasoning - as many people will share and
understand the suppressed premises. In some cases, however, if this premise is
not realised then the conclusion of the argument can often result in a non sequitur
(which means "It does not follow") [135]. Because of the suppressed premises in

enthymatic reasoning they often have the structure of: a) premise, so conclusion;
or b) premise, therefore conclusion. This is shown in the following two examples.
First example is a full deductive reasoning structure:-

IState representation completeness - Issue 7. "That there will always be sufficient money in
the physical cash magazines to fulfil an ATM customers withdrawal request."

CHAPTER 6. ASSUMPTIONS 143

All Sundays are days when I don't have to go to work.
Today is Sunday.
Therefore, I don't have to go to work today.

The second example is the same reasoning, but this time as an enthymeme:

Today is Sunday.

Therefore, I don't have to go to work today.

This second example is an enthymeme where the premise: ''All Sundays are days
when I don't have to go to work" has been left out. This is not a problem in
argumentation providing that everyone understands which premises has been sup-

pressed.

However, Warburton [135] reveals that when either the premise is not clearly un-
derstood from the context or when there are multiple possible suppressed premises

that could be inferred, then, in informal argumentation terms, the enthymatic rea-

soning structure of: premise, so conclusion; or premise, therefore conclusion, is

deemed to be spurious and is considered to be a subtle case of non sequitur rea-
soning. Two examples indicate this. The first example is a case where a person is
not familiar with the particular context.i and would therefore be confused by the
following enthymatic reasoning structure:

This cereal contains wheat.
Therefore you should not eat it.

Now if this line of reasoning was used within a group of people - many of whom
were not aware of a particular person suffering from celiac.' absorption disorder
(or even worse have never even heard of such a disorder) then they are very likely

to think that the person making the reasoning had made a conclusion that simply

did not follow (i.e. non sequitur). They would quite naturally become inquisitive

2The context in this case can be thought of as a knowledge context.
3People affected by this disease experience damage to the villi which shorten and flatten in

the lamina propia in the intestines when they consume certain foods that contain toxic amino acid
sequences. Such amino acid sequences are found in wheat and barley [cf. www.celiac.com]

CHAPTER 6. ASSUMPTIONS 144

and perhaps ask somthing like: "what does wheat have to do with not being able
to eat the cereal?" However, the person making the reasoning, and the absorption
disorder sufferer, would clearly understand the knowledge context and therefore
the suppressed premise that "You should not eat wheat products".

The next example is where multiple possible suppressed premises could be in-

ferred. In such enthymatic reasoning situations, others may believe that either the
reasoning is a disguised assertion of belief (see subsection 6.2.4) or that the rea-
soner's claims are confusing or spurious - resulting in another subtle case of non
sequitur reasoning [cf.[135] : p. 113]:-

Boxing often causes brain damage, so it should be banned.

Several suppressed premises could be installed with this enthymatic reasoning
structure: a) "Any activity which often causes brain damage should be banned";
b) "Sports which often cause brain damage should be banned"; and c) "If boxing
often causes brain damage then it should be banned". There is obviously more

that could be listed, but the point is that, with enthymatic reasoning structures,

the suppressed premise should be made explicit in situations where others cannot
detect the intended premise to install and comprehension is therefore lost.

6.3 Assumptions in Communication

It should be obvious from the discussion earlier on enthymatic reasoning in sub-
section 6.2.5 that assumptions are important to communication - on the condition
that the suppressed assumptions are clearly understood or made explicit so they
can be questioned. During communication, we all have to make assumptions a lot
of the time. The important aspect is to be aware of the assumptions that are being

made and to ensure that they are true [135].

This is easier said that done, however, as misunderstandings in communication
can have, at their root, underpinning assumptions that result in false interpreta-
tions. Such well known ambiguities where multiple interpretations are possible
include [cf. [135]: pp. 9-11]:-

CHAPTER 6. ASSUMPTIONS 145

• Lexical Ambiguity: This is when a word with two or more potential inter-
pretations is used in a statement so that the format in which it occurs could
be comprehended in different ways. A good example, is in the case of hu-
mour when a word is used as a pun that invokes two relevant meanings in
that given context. The example given by Warburton is: "Dr. Johnson saw
two women standing on their doorsteps arguing. He quipped that the two
women will never be able to agree because they were both arguing from dif-
ferent premises. " Obviously the dual meaning of the word 'premise' in this
case has two pertinent meanings in this particular context. Awareness and
appreciation of this provides the particular humour intended by Dr Johnson;

• Referential Ambiguity: This is a situation where a word is used that could
be understood to refer to two or more objects. Referential ambiguities tend
to happen when using a pronoun such as 'it', 'her' , 'him' and 'they'. In
such pronoun usages the pronoun does not make it precisely clear what the
pronoun is referring to. While in many situations the usage of such pro-

nouns will be made clear from the context, even when not using pronouns

within a context, referential ambiguity may still occur. Such a situation

is also exemplified by Warburton: "If two people are in a room and both
are called John, then just walking in and saying: "There's a phone callfor
John" will be confusing to both of the people called John. " In such a situ-
ation other cues (i.e. looking at the John for whom the phone call is for)
would be required in addition to the above statement. If, of course, the per-
son making the statement didn't know which John it was for, or didn't know
that there were two people called John in the room, then this is a situation
where extra information and perhaps subsequent inquiry would be clearly

required;

• Syntactical Ambiguity: This is sometimes called amphiboly. It occurs
when the ordering of words can invoke two or more interpretations. A good
example of syntactical ambiguity provided by Warburton is: "I heard about
what you got up to at work yesterday. " This statement has syntactical am-
biguity in two ways: Firstly, the statement could mean either they heard
what you got up to when you were at work, or they were at work when they

CHAPTER 6. ASSUMPTIONS 146

heard what you got up to. In this case there is ambiguity about where the
two people involved were when they heard about it; Secondly, the statement
is ambiguous because the order of the words makes it vague as to when the
person heard about what happened or when the incident actually occurred.
Was it yesterday that they heard about the person doing something, or was

it something that the person did yesterday?

Although it is hard to remove all ambiguity in communication, when there is the
potential for serious misinterpretations, it is better to make the intended meaning
as clear as possible [135]. This is particularly true in some contexts, situations,
or activities, as not ensuring consistent meanings can have disastrous results. A
good example is provided by Delvin [[128]: pp. 76-79]. In December 1995,
American Airlines Flight 965 from Miami to Columbia was on its final approach
to Cali airport when it crashed into a nearby mountain range, killing all the 159
passengers and crew on board. When the final crash investigation report was
published the following August it was obvious that the crash was not the result

of some mechanical failure or the consequence of bad weather. Instead it was the
result of a decision based on the meaning of information represented by the on-
board computer system and another meaning being interpreted on that on-board

computer information by the flight crew.

What actually happened was that the air controller at Cali instructed the crew to
fly toward the nearby beacon called "Rozo". This was identified on the naviga-
tional charts by the letter "R". The crew entered that letter into the on-board flight
management computer system and the screen presented a list of six navigational
beacons. To the flight crew, such a list presents the beacons on a ranking from
nearest to farthest from the plane. Therefore, the crew naturally accepted that the
top ranked entry on the screen denoted by "R" was the "Rozo" beacon nearest to

them. However, the air traffic control and the flight crew on-board were operating

with different listings and meanings connected with the top ranked letter "R ". The

air traffic control computer system ranked the beacons from farthest to nearest
(not nearest to farthest) and the top ranked beacon denoted by "R" referred to the
beacon "Romeo" in Bogota airport more than 1()()miles away in a direction more

CHAPTER 6. ASSUMPTIONS 147

than 900 off the required course. As a result, when the flight crew selected and
entered the top ranked letter "R" into the on-board flight management system, the
autopilot silently turned the plane more than 900 to the left toward Bogota airport.
By the time the flight crew and ground air traffic control crew realized what had
gone wrong it was impossible for the aircraft to avoid crashing into the mountains.

Clearly we can see that the flight crew and air traffic control crew attributed and
therefore interpreted different meanings as to which beacon was being referred
to by the letter "R". These meaning attributions and interpretations were under-
pinned by different assumptions built in the form of context conventions concern-
ing the ranking order of the beacon listing contained within the ground crew's
computer system. The on-board flight crew (in an out-of-context manner) as-
sumed the beacon listing ranked beacons from top to bottom to represent the near-
est to farthest beacons, whilst the air traffic ground control crew worked with the
(known in-context valid) assumption that the beacon listing always ranks the bea-

cons farthest to nearest.

Here then, we can see that many ambiguities can arise in communication due to
one or more meanings that can be attributed to something. In such situations the
criteria for choosing a particular meaning from the set of possible other meanings
I

is usually underpinned by some assumption. It is obvious from the examples pro-
vided that the particular context (context is broadly meant e.g. physical, cultural,
knowledge, etc) possesses both the potential to provide cues that can clarify and
result in a consistent meaning during communication, or, conversely, obscure and
result in (potentially disastrous) inconsistent meanings being interpreted during
communication. These contextual influences will be returned to in section 6.5.

6.4 Assumptions in Problem-Solving

Assumptions often play an important role, also, in problem-solving. For exam-
ple, Delin et al [142] wished to gain a more psychological understanding of the
nature of assumptions in the context of problem-solving. To do this, Delin et al

CHAPTER 6. ASSUMPTIONS 148

,.<-----.-----~
: -"'" :. '.'" .~-----.-->:~
ST AY[\'G wrnnx ARRAY

SOU!TIOX IS P.o.1POSSIRLE

t,~:,-,~--·------·--,)~·. "'. ,."I (~ .. "

~ /',./"'..
:",

Exn~XDIXG BEYO~1) ARRAY

sor.rrnox IS POSSIBLE

Figure 6.1: The Nine Dots Problem

deliberately chose a range of problems which people were prone to make assump-
tions about. Furthermore, the problems selected were impossible to solve unless
the particular assumption was identified. One of the many problems chosen was
(what Iwill call) 'the nine dots problem' . This problem is illustrated in figure 6.1.

The task is to join up all nine of the dots in the array with four straight lines while

not removing the pen from the paper.

The difficulty with solving this problem is that if the person attempting to solve the

problem tries to stay within the length of the dots array then the minimum number
of lines required to join up all of the nine dots requires five lines (i.e. shown on
the left hand side in figure 6.1). The only way the problem can be solved is to
become aware of the implicit assumption that people often make when reasoning

about this problem of:-

"I must stay within the area of the nine dots array. "

However, Delin et aI's contention was that it is widely believed that people can

somehow become aware of the assumption. Over a number of controlled experi-
ments using (what we may call) 'assumption-seeking' problems, Delin et al split
the problem solvers into two groups: the control group would not be told in ad-
vance that they need to be aware of making some assumption in solving the prob-
lem; while the experimental group was explicitly told, before starting, that they

CHAPTER 6. ASSUMPTIONS 149

needed to be aware of making some assumption in order to solve the problem.
The results from the experiments showed no significant performance increase of
the experimental group over the control group. This Delin et al took to indicate
that although common usage of the term "assumption" leads us to believe that it
is something we carry around with us in our heads while thinking, reasoning, or

arguing, Delin et al argued that it is more like a constraint acting upon our partic-
ular thinking episode about something at any particular time. In their own words

Delin et al state:

"Most assumptions tend to correspond more to the absence of con-
ception than its presence. "

They further argue that the only way to finding such assumptions would be to
examine one's own thinking to try and observe in what ways it was becoming
constrained. However, the shortfall they recognise in this kind of 'meta-thinking'
or cognitive reflection approach is that in searching for such assumptions the indi-
viduals conceptual searching would be limited by the same conceptual constraints

that enforced the assumption to begin with.

These views that assumptions are constraints upon the mental conception about
something are consistent with DeBono's [143] long-held views about assump-
tions within the 'Lateral Thinking' philosophy. With this type of thinking the
purpose is to deliberately restructure an individuals mental conception about how
they think about something. DeBono argues that constraints upon the mental con-
ception about something results from long-held conventions or traditional ways
about looking at something. He notes that such stereotypical views not only con-
strain how we may think about something but also these cliche mental patterns
restrict our ability in even trying to re-think about them.

DeBono recognises that in problem-solving a person always has to assume certain

boundary conditions. While this is a necessary thing to do, otherwise we would
become ineffective and indecisive in doing so, he warns that the danger is that
we often impose such boundary conditions without knowing we have done so or
lazily impose them for no better reason than that it is convenient to do so. In this

CHAPTER 6. ASSUMPTIONS 150

2) TilE ARTIFICIAL LIMIT (Le. ASSUMPTIOl':)I)TIlE PROBLEM

++

3) TIlE SOLlJflO)l

Figure 6.2: Example of an Artificial Limit (source: [143] p. 83)

respect DeBono refers to such assumptions that impose unnecessary boundaries

upon our thinking as "artificial limits. "

In figure 6.2 is a reproduced example, from DeBono [p. 83], of a problem that
people often find unsolvable because they impose upon themselves an artificial
conceptual limit (i.e. an implicit assumption) which prevents them from finding

the solution.

The task is to arrange the shapes in (top left portion 1 in figure 6.2) to give a
single well identifiable shape that is easy to describe that has only four straight
sides. It is impossible to accomplish by just adding the existing shapes together,
but, if instead of trying to fit the existing shapes together, the person decided to

actual question and re-examine the existing shapes and consider actually splitting

the large black square into two equal half's (top right portion 2 in figure 6.2) then
it follows quite quickly to arrange the (now) four shapes into a simple rectangle
with only four straight sides (bottom portion 3 in figure 6.2).

CHAPTER 6. ASSUMPTIONS 151

DeBono used this visual problem analogy to demonstrate how often a problem
is impossible to solve by merely accepting the given shapes as fixed. Only by
questioning that the shapes must remain fixed will the person stand any chance in
solving the problem. He notes, however, that if someone was set this problem and
after not being able to solve it they were told the solution, then there would more

than likely be claims that this would be 'cheating' as it would have been implicitly

assumed that the given shapes could not themselves be altered. Such a situation is
what DeBono characterises as an artificial limit in the mind of the person solving

the problem.

In order to help identify such implicit assumptions DeBono advises that a person
must take nothing as sacred and challenge the underlying assumptions by chal-
lenging the necessity of the boundary limits and the validity of the individual
concepts that may underpin them. In his own words DeBono states [pp. 84-85]:

"As in lateral thinking in general, there is no question of attacking
the assumption as being wrong. Nor is there any question of offer-
ing better alternatives. It is simply a matter of trying to restructure
patterns. And by definition, assumptions are patterns which usually
escape the restructuring process. "

To help ensure that assumptions do not escape the restructuring process, DeBono
advices using the "Why Technique". DeBono notes that while this is similar to a
young child continually asking an adult "why" in order to understand something
or gain additional knowledge, the purpose of this technique, in lateral thinking,
is to ask "why" when the person does understand something and perhaps already
knows the answer. The purpose is to deliberately restructure all possible thinking
patterns to help ensure that any artificial limits (i.e. implicit assumptions) upon

a person's mental conceptions about something is strongly challenged. DeBono

does highlight, however, that although the technique seems easy it is much harder

to perform properly as there is the natural tendency to run out of explanations or
circle back on oneself and provide an answer that has already been used before. In
addition there is a compulsion to just answer "well because" if something seems
completely obvious. To avoid such problems DeBono advises that any "why"

CHAPTER 6. ASSUMPTIONS 152

questions should be directed to some particular aspect of any previous explanation
rather than a general response. DeBono demonstrates this with the object of a

blackboard, as follows:

• Question: Why are blackboards black?

- Answer: So that the white chalk marks can be easily seen;

• Question: Why do you want to see the white chalk marks?

- Answer: So that students in the class can see examples written by the

teacher;

• Question: Why do students want to see the examples by the teacher?

- Answer: So that they can better understand what the teacher is teach-

ing them;

• etc, etc.

In each case the "why" question is focused upon some aspect of the previous

answer.

The ultimate purpose of employing the "why" technique is to elicit more informa-
tion. But to work, the technique should not at any point be comfortable, instead,
at every stage a feeling of discomfort and tension should be felt in posing the
questions and replying with answers. This is to attempt to force one to explain
things and think about things in a different way. Only then is there a possibility in
restructuring the thought patterns in such a manner that could unearth 'hidden' or
implicit assumptions. As an example of how implicit or 'hidden' assumptions in

computer-based system contexts-of-interest can result in flaws, vulnerabilities,

and faults is exemplified in chapter 5 issue 4 (i.e. Opportunistic theft). A distinct
possible contextual assumption made by the engineering context during develop-

ment could have been of the nature "Forgotten cash is the result of human error
only. " Such a 'cliche' mental pattern, in the mind of the developer, indicates an

CHAPTER 6. ASSUMPTIONS 153

unquestioned conventional representation that a legitimate ATM customer will ei-
ther take all of the money, or in error, forget to take thier cash withdrawal and the
implicit assumption acts as a constraint in considering that a legitimate ATM cus-
tomer would be deviously motivated to remove only some of the dispensed cash
- circumventing the retraction protection if additional account tracing and cash

auditing functionality is not provided. As noted by DeBono earlier in this section,
in order to break such artificial limits requires a more enquiring and challeng-
ing process that provides more information of the real influences present. Such
assumptive cases vindicates the need for a more challenging computer-based sys-
tem conception - that provides the potential for such implicit assumptions to be
detected by interfacing different contexts-of-interest.

6.5 Assumptions in Contexts

It has already been inferred in section 6.3 that context - whether this be knowl-
edge, culture, or some characteristic of the physical environment, etc, can result

in individuals making different assumptions. In this section the role(s) that culture

and knowledge plays in generating assumptions is discussed.

6.5.1 Culture

In a prolonged study that researched the national differences of cultures, Hofst-
ede [144] likened culture to a "software of the mind". By this, Hofstede didn't
mean that humans are literally programmed in the same way a computer can be
programmed, as humans still retain the ability to deviate from these influences
and think in new ways. Rather Hofstede was using the analogy to mean that hu-
mans experience a significant amount of pre-conditioning right from their early
childhood to adulthood, that hold a large influence upon how individual(s) react

in certain situations. Such influences include family values, the particular neigh-

bourhood a person grows up in, the particular school(s) they attend, the particular

workplace they are employed in, and the wider community values that are formed
around such institutions and influences. Hofstede also noted, from his research,
that culture is always a collective phenomenon claiming [po 5]:

CHAPTER 6. ASSUMPTIONS 154

"...it is at least partly shared with people who live or lived within
the same environment, which is where it was learned. It is the col-
lective programming of the mind which distinguishes the members of
one group or category of people from another."

Handy [60] provides additional justification for these views in his studies and

experiences of organisational settings. He argued that assumptions affect, not
only our institutions and organisations, but additionally, at a higher national so-
cial level, they have a significant influence upon the whole shape of our political
structures, the design of our educational systems, along with the management and
leadership of such institutions and organisations.

Such collective (and often unquestioned) belief structures can often result in prob-
lems and errors of judgement being made in a collective fashion. A good example
of this is provided by Scholes and Johnson [145]. In the 1970s consumer goods
organisations were very powerful, but lost a massive market share to grocery re-

tail chains - which became larger and more organised. The consumer goods

companies continued with the assumption that it was 'they' that exercised a large
influence over consumer buying patterns as this had been the case for many years
prior. However, from the 1970s onwards, retailers become more organised, many
mergers took place, and as a consequence, these organisations became much larger
and exerted greater influence directly over consumer buying patterns. Both buy-
ing power and influence over the market structure passed over to the retailers and

by the time consumer goods organisations realised the change many had lost their
buying power and market place advantage which resulted in many going out of
business or being taken over. Scholes and Johnson note, in particular, such collec-
tive organisational assumptions (Le. consumer goods companies have the power
and influence over consumer buying patterns) are not like explicit values of the or-

ganisation's culture, instead they are deeply held collective beliefs that are rarely

talked about, made explicit, or thought to be problematic in any way.

A further point to note from the last example, and one that connects with sys-
temic views from chapter 4, is that it highlights how the changing environment

CHAPTER 6. ASSUMPTIONS 155

can invalidate previously valid assumptions. A good example that exemplfies how
previously viable assumptions about an ATM system can subsequently (over time)
become invalidated is provided by issue 6 in chapter 5 (i.e. Interaction consistency
and completeness). Here, although the assumption that the physical firmware dis-
pensing mechanisms were capable of dispensing maximum amounts allowed by

the embedded software DWL were originally viable, over time, with increases

in the allowable DWL by embedded software control, the original assumptions
made about the physical cash dispensing firmware limits was eventually invali-
dated. The result was an inability to physically dispense legitimately allowable
DWL to the ATM user in certain circumstances.

From a situational information theory perspective, Delvin [128] explains how such
collective problems and errors of judgement occur within contexts. Delvin pro-
vides the following formula to explain the concept of situational information the-
ory [pp. 32-34]:

Information = Representation + Constraint

With regards information, Delvin makes a distinction between data and informa-
tion. Data is simply a number of signals, signs, or symbols that contain no real
information themselves. Information, on the other hand, refers to signs, signals,
or symbols that contain or convey some meaning about something. Data therefore
only acts as a representation for something. Because such representations can be
interpreted in many ways there needs to be something else that converts a given
representation into a particular interpretation. Once this representation conveys
a particular interpretation then we can attribute meaning to some data. We often
attribute a particular interpretation (i.e. meaning) to a given representation via sys-
tematic regularities or conventions we have long associated with particular signs,

signals, and symbols (i.e. data representation). Delvin provides the following ex-

amples as cases where we attribute specific interpretations from such conventions
and systematic regularities [p, 30]:

"There is systematic regularity between the existence of smoke and
the existence of.fire and a systematic regularity between dark clouds

CHAPTER 6. ASSUMPTIONS 156

ROMEO BEACON1~
~

ROZOBEACON'T~

TOP"R" TOP"R"

CONl"EXTB

Figure 6.3: Overlapping Contexts [source [[128]: p. 78]

in the sky and rain. Human beings and other creatures that are able
to recognize those systematic regularities can use them in order to

extract information. The person who sees dark clouds can take an
umbrella to work, and the animal that sees smoke on the horizon can
take flight."

Such conventions, systematic regularities, rules, guidelines, and (natural or human

made) laws all constitute constraints that are placed upon a given data represen-
tation in order that it conveys meaning and hence information to us. However, the
nature of the particular context in which the representation occurs therefore places
the overriding selection of what constraints we attribute to a particular represen-

tation.

To return back to the role of Culture in generating assumptions, Delvin notes

that such conventions and systematic regularities, based essentially on the same

representations, can vary widely between countries, regions, organisations and

institutional settings. In such situations problems and errors of judgement can
occur when contexts overlap. Such an example was the tragic aircraft crash of

CHAPTER 6. ASSUMPTIONS 157

I Possible Answer I % of Audience I
Pacific Ocean 53%
Atlantic Ocean 32%
Indian Ocean 9%
Arctic Ocean 6%

Table 6.1: Audience Answers

American Airlines Flight 965 in Cali Columbia discussed in section 6.3.

This tragic situation is illustrated in figure 6.3. It can be seen that the flight crew
(Context A) found themselves in an overlapping context-of-meaning situation
where different constraints applied to the data representations of "R". The con-
vention (or constraint) the flight crew were accustomed to was that the top ranking
letter "R" represented the nearest landing beacon "Rozo". However, unaware to
them was that the context they were now operating in meant that the top ranked
letter "R" really referred to (shown by a dashed line) the "Romeo" landing bea-
con 100 miles away (and 900 off course) in Bogota. Meanwhile, the ground crew

(Context B) were operating in a local convention of representing the top ranked

letter "R" as the farthest landing beacon "Romeo". The confusion over these over-
lapping contexts of meaning resulted in the death of 159 people on-board. From
a computer-based system viewpoint such meaning constraints that emerge from
different contextual influences underlines the need to more thoroughly represent
and make explicit different contextual meaning attributions as, at thier root, they
are frequently underpinned by implicit assumptions. Failure to do so, as has been
seen, can result in (potentially) serious flaws, vulnerabilities, faults, errors, and
failures that ameliorates the overall dependability status of computer-based sys-

tems.

6.5.2 Knowledge

Limited knowledge, or limited means of knowledge acquisition can also result in
collective assumptions being made. A good example of this was provided on a
very popular television game-show in the UK in early April 2003. The question
posed to the contestant was as follows: "Which world ocean is 5.5million square

CHAPTER 6. ASSUMPTIONS 158

I Possible Answers I Actual Answer % I Expected ad-hoc Answer % I
Pacific Ocean 53% 25%
Atlantic Ocean 32% 25%
Indian Ocean 9% 25%
Arctic Ocean 6% 25%

Table 6.2: Biased vs Random Guessing

miles in size?" The possible four answers (of which one was correct) were: a) the
Pacific ocean; b) the Atlantic ocean; c) the Indian ocean; or d) the Arctic ocean.
Not being sure of the answer himself, the contestant decided to get the views of
the live studio audience. Their responses is shown in table 6.1 on the preceding

page.

The contestant selected, as his answer, the most popular studio audience answer,
but lost when he was informed that the correct answer was actually the Arctic
ocean. This represented the least popular studio audience answer - the view of

only 6% of the live studio audience.

Now what makes this interesting is two things: a) that the vast majority (i.e. 94%)
of the live studio audience incorrectly answered the question; and b) such knowl-
edge already exists to answer the question correctly (i.e. size of the world's oceans
exists in encyclopaedias, etc). However, the live studio audience only had approx.
20 seconds or so to make their selections. In such time constraints, either a person
knows (and can remember) the answer or they will have to make a guess at the
answer. It is important at this point to distinguish between 'informed' guessing-

where each individual interprets the information available in the question in some
rational way, and random (or 'blind') guessing - where each individual simply
accepts that they don't possess the knowledge necessary to ensure a correct an-

swer and therefore makes an ad-hoc selection of one of the four possible answers
without thought or supporting rationale.

If the majority of the members of the live studio audience had just made a random

guess then the aggregated answer percentages would have been very unlikely to

CHAPTER 6. ASSUMPTIONS 159

have resulted in the percentage amounts shown in table 6.1. Given the highly
specific knowledge required to know the answer, it is much more likely that the
studio audience answered in an informed guessing manner and some information
in the question collectively biased a large section of the studio audience members
to answer in a very homogeneous intuitive manner. In fact in table 6.2 we can

perform a two-tailed Chi-Squared statistical assessment - based upon the actual
answering percentages of the studio audience that night, and what would have

been (approximately) expected if the vast majority of the studio audience had
simply made an ad-hoc (i.e. random) guess.

In such an assessment x2 results in an obtained value of 30.9. Given the number of
rows and columns the degrees of freedom is 3 (i.e. rows = (4-1) = 3 and columns
= (2-1) = 1, so 3 x 1 = 3 degrees of freedom). Any x2 value greater than 16.27
represents a statistical significant probability of p < 0.001. Meaning, in statistical
terms, that we can be confident that there is only a 1 in 1,000 chance that the live
studio audience, answering in an ad-hoc random fashion to this question, would
have produced the answer percentages shown in table 6.1.

It is therefore reasonable to assume that the vast majority of the audience, not
knowing the highly specific knowledge required and not having time to consult a
suitable information source, attempted some intuitive interpretation of the infor-
mation contained in the question: "Which world ocean is 5.5 million square miles
in size?" While it is impossible to ascertain exactly what this collective informed

intuitive reasoning actually was, a reasonable suggestion, given the statistically
significant bias, is that the vast amount of the studio audience members inter-
preted 5.5 million square miles as a lot of water and therefore intuitively assumed
or rationalised that this very large amount of water must represent one of the two
largest oceans in the world (i.e. either the Pacific or the Atlantic). This would

at least go a long way to explaining the significant bias (i.e. 85%) of the studio
audience answering either the Pacific or Atlantic oceans.

The fact that the collective intuitive view was completely wrong (all of the other
three oceans had much larger water volumes) indicates that not only can peo-

CHAPTER 6. ASSUMPTIONS 160

pIe make collective assumptions when knowledge is lacking, but the particular
knowledge context in which such assumptions are made can sometimes result in
collective biased judgements and interpretations that are completely incorrect.

This section has attempted to show that the context plays a significant role in indi-
viduals making certain assumptions. Not only this, but within a context of under-

standing, collective assumptions are often prevalent. While, as indicated earlier
with enthymatic reasoning, this can facilitate communication and understanding,
such collective assumptions can be the source of problems and error. This is par-
ticularly true if: a) the context undergoes change - resulting in long--established
contextual assumptions becoming invalidated (i.e. consumer goods organisations
in the 1970s); b) when different contexts are overlapping (i.e. American Airlines
Flight 965); or c) when contextual knowledge is lacking (i.e. game show ques-
tion) and people base decisions upon knowledge bounded intuitions to 'jill-in'
those gaps.

6.6 Chapter Summary

In this chapter the issue of assumptions has been discussed. It can be seen that
assumptions can occur from many causes. The manner in which we reason can
often be subject to assumptions - in fact making assumptions are necessary in
many circumstances if we are to avoid needless repetition and explanation which
would stifle communication and activity. Furthermore, assumptions are useful

mechanisms in progressing a line of thinking or reasoning in both a formal and
informal reasoning manner. However, it is important to identify assumptions in
certain situations as these are often unspoken, implicit, and unquestioned limita-
tions placed upon our thinking and reasoning which can have potentially adverse

affects. This is particularly true when such assumptions represent part of our belief

systems. In such instances unidentified assumptions can act as serious constraints

and artificial limits upon our thinking episodes. It has also been recognised that
the context, while often providing additional information cues that help us iden-
tify assumptions, can also result in collective or shared assumptions being made
that can become invalidated over time, cause confusion when contexts overlap,

CHAPTER 6. ASSUMPTIONS 161

or can result in a kind of flawed 'group-think' type paradigm when knowledge is
bounded or knowledge acquisition is difficult. It can be seen from the issues and
computer-based system examples given in this chapter that, broadly, assumptions
could be categorised into:-

• Implicit Assumptions: in the form of unconscious constraints and limits

placed upon our representation and reasoning about something;

• Explicit Assumptions: in the form of conscious reasoning mechanisms
that allow us to progress a particular line of reasoning - either formally or
informally;

• Shared Assumptions: in the form of those made collectively in a unques-
tioned manner - usually from some common context-of-interest:

• Invalidated Assumptions: in the form of either unconscious constraints
or conscious reasoning in an individual or shared manner that, although
are originally viable when made, can become invalidated as circumstances,

demands and/or influences change over time.

Undetected assumptions can result in either inconsistent or incomplete compre-
hension of the true influences that pertain in any particular situation. Detect-
ing assumptions then, is critical if greater dependability coverage of computer-
based systems is to be achieved as such shortfalls of reasoning, thinking, and
problem-solving have potentially major implications when our thinking, reason-
ing, and problem-solving becomes a pre-requisite activity to creating dependable

computer-based systems.

Chapter 7

Purpose and Function

162

CHAPTER 7. PURPOSE AND FUNCTION 163

7.1 Chapter Introduction

In this chapter the issues of goal-setting are raised. Developing computer-based
systems is a definite purposeful act. Artifacts embody the goals of those who
conceive, develop, and deploy them. However, the issue of goal-directedness in

this activity is very important when we consider the interrelatedness of system

structures. Such systems often need to promote many goals, many of which, may
not be promoted - or adequately promoted, during development.

This chapter first considers the controversial area of teleology and related cau-
sation before focusing upon the benefits and concerns raised by goal-setting and
multiple goals.

7.2 Teleology

Teleology is a deep philosophical area which requires a greater coverage than

is possible to provide in this chapter. In this section, however, the underlying

philosophical topic of teleology is discussed to provide a theoretical background
to the later associated issues of purpose, function ascription, and the psychological
effects of goal-setting upon human task performance. In this section the origins
of teleology, the reasons for its scientific rejection, and the types of teleology
recognised from more contemporary theories is covered.

7.2.1 ()rigins

The origins of teleology date back to ancient Greek philosophy. The term 'telos'
means an end or goal, and the complete term 'teleology' means to be end directed.
The two philosophers, from ancient Greece, who established its essential founda-

tions were Plato and Aristotle.

Although the foundational principles of teleology, between the two founders, are
essentially consistent they, do depart in significant ways with regards to determin-
ing how any given entity's end state is conceived and achieved. Platonic concep-

CHAPTER 7. PURPOSE AND FUNCTION 164

tions of teleology relates to 'external' teleology [146]. With external teleology
the ends to be satisfied (or desired to be attained) will be accomplished by some
external agent essentially outside the system-of-interest that is to be created, de-
signed, or modified. The value or utility envisaged in attaining the desired goal
is also subjectively determined from that external agent's perspective. Although

Plato's own usage for this definition was to characterise a divine artisan who cre-
ated the universe, it can be utilised to mean any creative act that results in an
artifact. External teleology captures the notion of a creative entity being moti-
vated into action and producing pre-existing notions and ideas of what the results
of the creative act will (or should) be. I

By contrast, Aristotle, while acknowledging the relevance of Plato's teleological
conceptions, was primarily interested in the biology of living things [147]. As a
direct consequence, he preferred to extend teleological interpretations to accom-
modate an 'internal' conception also [146]. With Aristotle's conception, the ends
or goals belong to the entity or system itself and not those of any external agent.

Additionally, any notion of value, good, or utility of attaining the desired end or
goal is to be determined from the perspective of the entity or system itself. With

such a conception, the purposiveness is subsumed, in any thinking or reasoning
manner, and there need not be any pre-existing notions or ideas of the end or goal
that will (or should) result. Instead, such an end or goal state is provided by the in-
ternal processes or structures of the entity or system itself. Delbruck [148] claims
that Aristotle's principle of an internal 'unmoved mover' that provides for change
to an end or goal state without ever changing itself is probably one of the greatest
conceptual innovations as it perfectly describes DNA that acts, creates, and de-
velops a living organism - and yet remains itself unchanged in the process. The
very existence of DNA, however, was not to be discovered until well into the 20th

century.

In comparing the two originating conceptions of teleology McLaughlin [[146]: p.

17] notes:

1Such original teleological ideas are fundamentally related to a formal causation cf. subsection
7.2.4.

CHAPTER 7. PURPOSE AND FUNCTION 165

"The reality oj external teleology can scarcely be denied: the re-
ality of internal teleology is what is really at issue."

Mayr [147] explains that due to Aristotle's essential interest in biological sys-
tems he, in error, over extended teleological conceptions to include the non-living

world, and, in part, it was this that subsequently resulted in teleological interpre-

tations of scientific phenomena being vehemently rejected during the scientific
revolution of the 17th, 18th and 19th centuries.

7.2.2 Rejection of Teleological Explanations

In addition to teleological explanations being rejected through Aristotelian at-
tempts to explain non-living phenomena, teleology, by the 17th century, was
intrinsically linked with vitalistic explanations that provided religious and meta-
physical theories to explain nature [149]. This was due to much earlier attempts
by the Catholic church to provide Christian interpretations of Aristotle's teleolog-

ical philosophies (particularly idealistic causation of finalistic and formal causes

see subsection 7.2.4). This resulted in reinforcing rejection by the scientific com-
munities (in particular by prominent natural philosophers such as Francis Bacon

and Renae Descartes).

By the late 17th century, mechanism had become the dominant scientific paradigm

championed by (Sir) Isaac Newton that described the universe in purely physical
causation terms. This would subsequently be further reinforced in biology by
Charles Darwin in the 18th century that portrayed the origin of all life on earth in
terms of purely materialistic causation terms of natural selection and adaptation.
Both of these cases alluded to only explain "how" the universe and life on earth

worked using materialistic and efficient causation explanations. This is in con-

trast to "why" explanations that would require reference to finalistic and formal
causation, which, by then, had become scientifically discredited.

It was not until the early 20th century with the advent of relativistic and sub-

atomic physics discoveries that the limits of the mechanistic world-view would

CHAPTER 7. PURPOSE AND FUNCTION 166

became exposed and questioned.

7.2.3 Types of Teleological Processes

Despite these shortfalls in teleological explanations biologists have long argued

for the heuristic and empirical merits of posing teleological questions of the "why"
persuasion. It has been therefore widely recognised in philosophy that in or-
der to meaningfully apply teleological explanations, a careful categorisation of
valid teleological definitions are necessary to avoid the confusion presented when
teleological explanations unwittingly 'criss-cross' issues of vitalism, holism, and

reductionism.

To begin with Mayr [[147]: pp. 19-20] argues that such definitions must be im-
mune to any of the following objections:

• Teleological statements and explanations must not imply the endorsement
of unverifiable theological or metaphysical doctrines in science;

• Explanations for biological phenomena that are not equally applicable to
inanimate nature must not constitute a rejection of a physiochemical expla-

nation.

• The assumption that future goals were the cause of current events must not
seem to be in complete conflict with any concept of causality.

To uphold these criteria Mayr [147] introduces two definitions of teleological pro-

cesses.

The first is termed Teleomatic processes. Teleomatic processes are processes

where causation is simply the consequence of natural laws. One such example

is where gravity provides the natural end state for a rock that is dropped into a
well. Another is where a heated bar reaches its natural end state (under thermo-
dynamic laws) when its temperature with the prevailing environment reaches the

CHAPTER 7. PURPOSE AND FUNCTION 167

point of equalibrium. In teleomatic processes, systems and entities, the end di-
rected causation is only in a passive manner - controlled deterministically by
external forces and boundary conditions. In this sense it is an automatic process.

The second is termed Teleonomic processes. With Teleonomic processes the be-

haviour of the entity owes its causation towards a definite end or goal state to the

execution of some internal program that can both anticipate the desired end or goal
state and can regulate the organism's executive mechanisms and functions towards
achieving that end or goal state. An obvious example would be the genetic DNA
coding of a hen's egg that will transform into a chicken (and ultimately, in time,
into a mature hen). Another example is where a computer's electronic circuitry
and hardware devices acts in a determined manner when it is provided with the
appropriate programmed instructions (i.e. software). An interesting extension to
this definition is also to note that the internal program may be a 'closed' or 'open'
program. For instance, the hen's egg represents a closed genetic program that
determines the ultimate end or goal state (i.e. a chickenlhen) whilst the encoded

computer program may be either a closed or an open program. It is closed if it's

program does not need or cannot acquire other information. Alternatively, if it re-
quires certain information input parameters, or is capable of intaking information,

then it is an open program. Mayr notes that most behaviour of higher organisms
is controlled by open programs which require or can incorporate additional in-
put information in the form of learning, conditioning, experience, etc. Once such
open programs have been 'filled-in' with additional information it then becomes
the equivalent to the closed program in its regulation of teleonomic behaviour.

An important point to note with these two definitions (and one that will be made
more clear in the discussion to follow below) is that in both teleological defini-
tions no reference can be made to an intentional purposeful act. The rock never

intended to fall down to the bottom the well, the metal bar did not intend to be

the same temperature as the room, the hen's egg never intended to become a
chickenlhen, and (say the closed) computer program never intended to print on

the screen "Hello World". Such statements are silly and inappropriate teleolog-
ically for these type of processes. As Rosenblueth et al [[150]: p. 19] noted in

CHAPTER 7. PURPOSE AND FUNCTION 168

their cybernetic considerations of teleology:

"The basis of the concept of purpose is awareness of "voluntary
activity." Now, the purpose of voluntary acts is not a matter of ar-
bitrary interpretation but a physiological fact. When we perform a
voluntary action what we select voluntarily is a specific purpose, not

a specific movement or act. Thus, if we decide to take a glass con-
taining water and carry it to our mouth we do not command certain
muscles to contract to a certain degree and in a certain sequence; we
merely trip the purpose and the reaction follows automatically."

What we can see from the examples of teleomatic and teleonomic behaviour is
that, whilst end or goal directed, in every case there was no voluntary behaviour
present. The systems in the examples had no control of the process and therefore
had no freedom to choose what acts will be performed. Therefore, these examples
ofteleomatic and teleonomic processes, discussed by Mayr [147], represent non-
intentional forms of teleological processes.

McLauglin [146] includes, but also, extends Mayr's [147] teleological defini-

tions by including into the definitions: a) classifications of intentional and non-
intentional processes; b) making distinctions between teleological processes and
teleological entities (in terms of artifacts, organisms, traits, and human institu-
tions); and c) by providing subclassifications within these classifications and dis-
tinctions (i.e. a and b). He does this by providing a range of (considered) gram-
matically valid teleological statements, as follows:

1. The man ran in order to catch the train;

2. The cat opened the door in order to get the cream;

3. The wasp hunts bees in order to feed its larvae;

4. The function of the thermostat in the furnace is to keep the water from going
above a certain temperature - and thus to help it provide steady heat;

CHAPTER 7. PURPOSE AND FUNCTION 169

Processes Entities
Intentional (1) Human Actions (7) Simple Artifacts

(2) The Behaviour of Higher Animals (4) Parts of Complex Arti facts
Non-intentional (3) Behaviour of Lower Animals (l0) Invertebrate Artifacts

(8) Organic Development (6) Biological Traits
(9) Historical Chiliasm (5) Social Institutions and Cultural Practices

Table 7.1: Teleological Classifications [source: [146]: p. 38]

5. The (latent) function of witchcraft persecutions among the Navaho's is to
lower intra-group hostility;

6. The function of the heart is to circulate the blood;

7. The purpose (or function) of knives is to cut;

8. The cell became specialised in order to develop into a lung;

9. The Second Dutch War was necessary in order for England to become a
world power;

10. Spiders spin webs in order to catch food.

The above teleological statements of McLauglin are entered into their appropriate
teleological categories in table 7.1.

Examples (1) and (2) represent the classification of intentional teleological pro-

cesses. This category deals directly with final causation in terms of some aspect
of mental representation of a desired end or goal state is responsible (i.e. a cause)
for the current human or animal behaviour (i.e. the effect) of running for the train
or opening of the door. The two important considerations are: firstly, future an-
ticipated goals are the cause of present events (i.e. running and opening) which

runs in reverse to the traditionally accepted sequence of causality (i.e. the effect

precedes the cause instead of the cause preceding the effect); secondly, both the
man and the cat demonstrate voluntary behaviour (i.e. the man chose to run for the

train, and the cat chose to open the door) which, as discussed earlier, is essential
to ascribe consciously purposeful actions or activity.

CHAPTER 7. PURPOSE AND FUNCTION 170

Examples (4) and (7) represent the classification of intentional teleological enti-
ties. This category is particularly interesting because purposeful ascriptions at-
tributed to artifacts blurs the distinctions between final and formal causation de-
pending upon the complexity of the artifact and the context in which it occurs.
For instance, if we consider first the simpler artifact of the knife in example (7)

we can see that the functional identity of a knife can easily have many possible
"functional propensities" [cf. McLaughlin [146]: p. 51]. It can be used (as it
was designed for) as an implement for cutting. However, it could also be used
as a screwdriver, a wall scraper, a lever, etc, etc. This multi-functional ascription
is particularly common for simple artifacts where the function is completely ex-
ternalised in a holistic way. The possible use functionalities that a simple artifact
like a knife could be put to also introduces interesting issues surrounding final and
formal causation. We can see that functional ascription with the knife relies on
no more than a formal representation of conceiving that particular function of the
knife to perform a different function without ever having to redesign or modify
it at all. This is what McLaughlin terms a "virtual" functional ascription. How
well the knife performs when ascribed other functional ascriptions - other than

which it was designed brings into focus the tension (and possible mismatch) be-
tween its intended designed purpose and its (now new) ascribed usage function.
For example using the knife as a lever may result in very poor performance (and
be potentially dangerous). Here we can see that with such simple artifacts the
final causation - in terms of the functional goal (or purpose) for which it was
conceived, created, and designed (i.e. to cut with), in no conceptual way, restricts
a re~onception of how it could be used. The fact that this, by some, may be

judged to be a misuse of the artifact is a side-issue when considering teleological
explanations. This led McLauglin [[146]: p 206] to concede:

"....functions of artifacts are, in the last analyses, based on men-

tal events: beliefs and pro attitudes ...Paradigmatically, we actually
design and make the artifacts, the artifacts actually have the effects

intended, and the effects are beneficial as expected. However, none of
these need necessarily be the case for an item to have an artefactual

function. "

CHAPTER 7. PURPOSE AND FUNCTION 171

The point McLaughlin wished to make with this comment is that with simple arti-
facts we can change the purpose and function relationship of the artifact as quickly
as we can change our mental representation (Le. formal cause) irrespective of its
originally intended function (i.e. final cause) for which it was designed or cre-
ated. With complex artifacts like example (4) however, the functional identity

of the artifact is slightly more objective and identifiable. This is because, unlike
simple artifacts, its functional contribution is both highly specialised and inter-
nalised within a broader system boundary. With simple artifacts the function can
be changed as quickly as our intentionality towards it, without necessarily any
structural change of the artifact needing to take place. Whilst this may also be the
case with systemically intentionalised artifacts, it is so, to a lesser extent. How-
ever, it is still quite possible, even with complex artifacts, to ascribe a different

purpose to an already existing function - in order to derive latent functionalities
(in terms of intended design). A good example of this, from a computer-based
system perspective, was given in chapter 5 (section 5.2.2) as issue 5 (Obscure se-
curity flaw conflict). Here we can appreciate that although the intended designed
(i.e. manifest) function is to ensure an authorisation function for an ATM user

via PIN code while allowing at all times a complete undo facility. The facility
of allowing the ATM user to completely undo the transaction without recording
any failed PIN code authentication attempts actually leaves open the possibility
for a fraudster to completely enumerate a targetted ATM customer's PIN code.
Therefore, while the design intention is to provide a flexible authentication PIN
code function which promotes the well established usability principle of always
allowing the user to undo a transaction, the unintended freedom within the de-
signed function allows a fraudster with the purpose of gaining illegal access to an
ATM customer's account, to ascribe an additional (i.e. latent) function to this PIN
code authentication function as having the additional functionality of a complete
PIN code enumerator. This ability to ascribe latent functionalities to manifest

functions that they are not intended or designed to satisfy is at the heart of many

security vulnerabilities in computer-based systems and further reinforces the need
for a wider holistic and integrative consideration of both the technical and human
systems as suhsystems-of-interest within a computer-based system perspective.

CHAPTER 7. PURPOSE AND FUNCTION 172

Examples (3) (8) and (9) represent the classification of non-intentional teleolog-
ical processes. Examples (3) and (8) are cases of teleonomic teleological expla-
nations discussed earlier. This is where the end or goal states are determined by
an internal program execution. Example (3) is an interesting distinction between
examples (l) and (2) mentioned earlier. By contrast to examples (l) and (2), ex-

ample (3) represents a much lower order of organism sophistication. Whereas
the man and the cat represents voluntary purposive intelligent behaviour (i.e. in-

tentional), example (3) of the wasp represents a limited level of internal program
execution that constitutes involuntary instinctive behaviour (i.e. non-intentional).
Example (8) is also teleonomic, but this time, represents an internal (and closed)
program execution of a physiological nature. Example (9) is more of a teleomatic
process. Teleological explanations can only be offered with the benefit of hind-
sight that then reveal the external material causation that the Second Dutch War
had subsequently upon the end state of England's world position.

Examples (5) (6) and (to) represent the classification of non-intentional teleologi-

cal entities. Example (5) can be very confusing as organisations are often thought

of as having desired objectives and goals, etc. In this case it is, at first glance,
very appealing to assert that organisational structures have intentionality. How-
ever, what is of interest here in this classification is the latent functional causation
that cultural practices have upon the organisation itself. What must be understood,
however, is that the cultural climate of the organisation or institution may not be
in alignment with the formal or primary intentions of the organisation. Classic
examples include a blame culture climate that can lead to emergent (and uninten-

tional) behaviours of the organisation that are in direct conflict with its formal or
primary goals (e.g. a blame culture in an organisation that requires high levels of
safety). As will be seen in chapter 8 where the ATM case study issues of chap-
ter 5 are analysed within a more suitable computer-based system dependability

representation, assumptive reasoning involved in promoting one particular goal

can often result in unintentional and undesirable interdependencies that compro-
mise and undermine the promotion of other goals. When this occurs, during the

creation process, the compromised goals in the eventual artifact can also be un-
derstood in terms on non-intentional teleological entities and reinforces the need

CHAPTER 7. PURPOSE AND FUNCTION 173

for a more holistic and integrative representation to help prevent this occurence
during the creation process.

7.2.4 The Four Causes

As can be seen from the previous sections, causation is inherently related to is-

sues of teleology. In the following subsections Aristotle's four types of causation
are considered. Despite the scientific criticisms of Aristotle's views of teleology,
his ideas of causation are more complex and sophisticated than at first glance.
Aristotle identified that causation could take anyone (or more) of four essential

forms:

1. Final causation:

2. Formal causation:

3. Material causation:

4. Efficient causation:

The textbook example often used is that of building a house that illuminates the
roles of each causation factor in reaching or achieving a required or desired end-
state (or goalj.! The material cause in house building relates to the stone, brick,
timber and tiles that go to make up the physical structuring of the house. This in-
cludes the tools, methods, and techniques employed in putting the actual materials
together in such a manner as to construct a house. The efficient cause represents
the labourers, joiners, bricklayers, and plumbers involved in the actual construc-
tion. The formal cause is not as clearly categorised, however. As mentioned
earlier, Aristotle's conception of the 'unmoving mover', recognised that there is a
necessity for abstract intervention that precedes actual attainment or achievement

of the intended goal. The formal cause represents some preceding conception or

control of what is to be created. In this sense the formal cause relates to a blueprint
or model of what is to be built, and in the example of building a house, the nearest
role that fulfills this causation is that of the architect who first designs and refines

2Whether this is intentional or unintentional.

CHAPTER 7. PURPOSE AND FUNCTION 174

I Causal Type I House Building Military Battle

Material Stone, bricks, mortar, etc Guns, swords, tanks, etc
Efficient Labourers, joiners, electricians Soldiers
Formal Plans, drawings, models, etc Military strategy, etc
Final Need / purpose for house Political/economic reasons etc

Table 7.2: Aristotelian Causal Typology Example [source: [149]: p. 12]

a model, plan, scheme, or blue print of what the house will look like etc. The
final cause represents the purpose for wanting to build the house in the first place.
This could be for any number of utility reasons such as shelter, luxury, necessity,
commercial gain, or social reasons.

Ulanowicz [149] provides another example which he believes overcomes some
of the blurring between formal and final causation. Ulanowicz uses a military
campaign as an example. In this case, the material cause represents the weapons
and ordnance used by each side. The soldiers fighting on the battle field represent

the efficient cause. The final cause relates to the broad reasons why each side

became involved in the conflict to begin with (i.e. imperial ambitions, economic,

etc). Ulanowicz argues that it is the generals who provide the formal causation,
through strategic military planning and decision making that influences not only
the shape of the battle as it unfolds but can affect the success or failure of the
eventual outcome of the whole endeavour.

Table 7.2 captures the two examples of causation. Ulanowicz goes on to point
out that Aristotelean notion of causalities is hierarchical - in that all the causal
forms participate at different levels and influence the eventual outcomes at dif-
ferent scales. For example, the generals enact an immediate influence over the

success of the entire campaign through the quality of their experience, intuition,

and foresight (i.e. formal cause) in strategic military planning. The soldiers (i.e.
efficient cause) also influence the campaign, but only on a smaller subfield scale.

The same could be said for the quality and quantity of guns, ordnance, etc. Heads

of state (i.e. final cause), on the other hand, exert an influence that goes way
beyond the issues of the campaign itself.

CHAPTER 7. PURPOSE AND FUNCTION 175

It is pointed out, by Ulanowicz, that although material and efficient causes tend
to exert their influence at a subset or subfield level, their effects, if severe enough,
can propagate up the scales in some cases. Furthermore, it is noted that the formal
cause acts at the "focal" level of observation and its alignment with that of the final
cause is the most crucial in determining successful attainment of the end goal.

7.3 Goal-Direction

In the preceding sections teleological and causation issues have been considered.
It can be seen that designing and developing dependable computer-based systems
represents a straightforward external and intentional teleological activity. In this
activity the goals and purposes of the computer-based system artifacts are what
we, as their creators, envisage and embed into them. However, although true, this
is not so clear as it may at first seem. A dependable computer-based system ar-
tifact must be reliable, secure, usable and maintainable. All of these well known
attributes represent goals of the artifact, yet, firstly, these goals cannot be directly

promoted in any structural or architectual sense, and, secondly, this means that a

single artifact may need to contain, embody, and promote many goals. Further-

more, how can we assure that such goals are acceptably represented in the first
place? These issues are raised and discussed in the following two subsections.

7.3.1 SingleGoals

The influence of single goals on human performance has been extensively studied
by industrial psychologists over nearly four decades. In a comprehensive survey
of experimental findings on goal-setting effects upon human performance Locke
& Latham [151] argue that the findings represent one of the most reliable and
replicable areas of psychology.

Goal-setting research focuses on the relationships that consciously set task goals
have upon human task performance. The core findings over the years concerns
the relationships that exist between the difficulty of the goal set and the speci-
ficity. Difficult goals regularly produce more effort - however this levels off

CHAPTER 7. PURPOSE AND FUNCTION 176

once an individual reaches the limits of their ability. Specific goals set often lead
to higher human performance than "do your best goals" and specific and difficult
goals consistently produced higher human task performance and reduced variabil-

ity between human performance.

Four positive mechanisms related to goal-setting have been consistently found
during experimentation. Firstly, goal-setting provides a directive function through
focusing activity and attention towards goal relevant activities and away from goal
irrelevant activities. Locke and Latham noted that this mechanism of goal-setting
influences at both the behavioural and cognitive level. Secondly, goal-setting
provides an energizing function. Higher goals tend to motivate people to em-
ploy greater effort than lower performance goals. Thirdly, goal-setting influences
persistence towards achieving the goal. It has been observed a number of times
during experimentation that when participants control the time they can spend on
a task, they spend longer on the task when explicit goals were set. Finally, goal-
setting promotes an arousal and discovery function. It has been found on a wide

range of tasks that setting goals stimulate the thinking process resulting in them

searching out task relevant knowledge and information appropriate to achieving
the goal. When individuals are confronted with a task they will automatically
employ knowledge, information, and skills directly relevant to attaining the goal.

In task situations which require knowledge, information or skills that people do
not already posses then they will deliberately draw upon previous experience they
deem relevant to that particular goal-setting context and apply it. In completely
novel goal-setting situations where they do not possess even relevant previous ex-
perience then they will deliberately plan and develop new task strategies that will

enable them to achieve the goal.

Despite these very positive and longstanding findings of goal-setting influences

upon human performance, Locke and Latham did find a number of moderating ef-

fects upon goal-setting research. Firstly, is the issue of the particular individual(s)

natural commitment towards achieving the goal. Factors that were considered crit-

ical include:

• The importance of the goal itself. Locke and Latham noted that public

CHAPTER 7. PURPOSE AND FUNCTION 177

announcement of commitment can often increase perceptions of importance
of the goal to an individual;

• Leadership can often increase commitment. In particular Locke and
Latham emphasised the importance of increasing confidence in a persons

ability to be capable of achieving the goal;

• Self-assignment and participative assignment. These were also consid-
ered important in getting commitment from an individual;

• Reasoned rationale. The wider contextual importance of being able to
achieve the goal has also been found to instill commitment.

Secondly, feedback upon performance, in terms of progress made is also an im-
portant consideration. Locke and Latham recognise that goal-setting, by nature,
is a discrepancy creating process that requires careful feedback on task progress.
Lastly, the intrinsic complexity of the task itself can act as a moderating influence.
As complexity of the task increases higher levels of skills, experience, and knowl-

edge is demanded whereby goal-attainment becomes dependent upon the individ-
ual's ability to plan and seek out new task strategies. Locke and Latham report on
two important aspects of goal-attainment with intrinsically complex tasks. One
aspect relates to assigning only learning type goals rather than definite or specific
outcome goals when the nature of the task is inherently complex. When learn-
ing goals are set on complex tasks it has been found that performance is signifi-
cantly higher. The second aspect relates to the careful structuring and alignment
of proximal (sub) goals with distal (overall) goals. Studies on goal-setting on
complex tasks have shown significant performance increases when overall distal
and sub proximal goals are intelligently structured over just a distal or "do your

best" generic goal

7.3.2 Multiple Goals

While goal-setting research has provided robust human performance increases it
must be remembered that the vast majority of the research involved tasks with
only one explicit goal to be achieved. The development and deployment of a

CHAPTER 7. PURPOSE AND FUNCTION 178

dependable computer-based system, on the other hand, involves an artifact and
context which introduces and requires many goals to be simultaneously satisfied
and attained. This introduces issues of multiple goal attainment.

To begin with, multiple goal attainment introduces issues of cognitive limits in

terms of ability to focus and have sufficient knowledge, skills, and experience

to consider many goal-related issues when performing a task. This was the is-
sue Shallice [152] considered in developing and analysing a cognitive model of
consciousness based upon previous psychological research. His resultant analysis
argued that only one goal, plan. or mental scheme can be maximally activated at
anyone time during cognitive reasoning. This suggests that, in situations where
multiple goals need to be promoted and attained, a single individual will be (at
worst) oblivious to the non-activated goal attainment issues or (at best) be inca-
pable of simultaneously providing sufficient consideration of important multiple
goal-related issues. This theory reinforces Weinberg and Schullman's [153] find-
ings of multiple goal-setting influences upon human performance in computer

programming. In a number of studies to attempt to understand the huge perfor-

mance variations in computer programming, Weinberg and Schullman set industry
programmers primary and secondary quality and productivity goals on a number

of programming tasks. What they found was that programmers tended to focus
exclusively on their primary goal while treating secondary (or unstated) goals as
"free variables" to be traded-off in pursuing their main goal.

Within a system development context multiple goals introduce a problematic in-
terdependency problem where in promoting or focusing mainly/solely upon one
goal, relationships between goals can be subtly created. The nature of these rela-
tionships can be of one of three types:

1. Complementary. This is where promoting one goal inadvertently also re-

inforces or promotes another related goal within the system;

2. Compatible. This is where promoting one goal inadvertently does neither
promote nor compromise another related goal within the system;

CHAPTER 7. PURPOSE AND FUNCTION 179

3. Conflicting. This is where, in promoting one goal, another related goal
within the system is inadvertently compromised.

It can be seen from these three inter-goal relationships that conflicting interde-
pendencies are of a major concern in compromising the system. This is especially

true if it occurs or results without detection.

7.4 Chapter Summary

The development of computer-based systems is an intentional teleological activity
whereby the creators who conceive and construct the functionality do so purpose-
fully. Artifacts therefore embody the goals of their creators - even though, in the
case of simple artifacts, their purpose context can be altered merely by the con-
ception of the user. In the case of more complex artifacts, such as computer-based
systems, this is much less likely to occur, but can be at the core of many security
vulnerabilities etc when it does. A particular problem with such complex artifacts

as computer-based systems is that they require many goals to be promoted simul-

taneously - such as maintainability, reliability, security etc. Despite the fact the
goal-setting research has shown that setting individuals explicit conscious goals
can have a significant positive effect upon human performance (in both behaviour
and cognition), it is also recognised that, with such complex artifacts, people can-
not be expected to have the knowledge, experience, skills, or cognitive capacities

to consider all possible inter-goal relationships that can occur in multi-goal pro-
motional situations. If representation and promotion of multiple goals is to be
achieved, therefore, some other way of resourcing and organising development
teams will need to be considered. In the next chapter the ATM issues from chap-
ter 5 will be revisited and reformatted to show how by setting different developers

different goals can help unearth conflicting inter-goal relationships that can un-

dermine computer-based system dependability. Furthermore, it will be shown that

often these relationships occur because of some assumptions that are made about
the goal being promoted and/or context being considered.

Chapter 8

Discussion of a Goal-Diversity
Process Intervention

180

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 181

8.1 Chapter Introduction

In this chapter considerations for a process intervention that attempts to enhance
computer-based system dependability via improved assumption detection by means
of forcing diversity into a development team through diverse goal-setting is dis-

cussed. Section 8.2 provides a justification for considering the setting of diverse

goals to attempt to achieve diversity. This is done by drawing upon the literature

and arguments already presented in the preceding chapters of the thesis. Sec-
tion 8.3 then introduces and justifies the usage of an already established notation
that employes a non-functional analysis and synthesis of computerised systems.
Lastly, in section 8.4.2 this notation is then utilised, in its slightly adapted form, to
provide an insight into the expected benefits a goal-diversity process intervention
may yield in obtaining a greater assumption detection coverage.

8.2 A Goal-Diversity Process Intervention

Chapter 3 provided an initial view of the important attributes one might expect

in a dependable software creation process. From this viewpoint, it is possible to
begin to consider: a) the inter-related dynamics of process technology inputs (e.g.

tools, methods, and techniques), human resource inputs, the nature of the software
creation task, the particular application domain, and overall process management;
and b) how latent and active fault-phenomenologies can occur in both the cre-
ation process and its immediate process environment - as threats to achieving a
dependable process. Viewing the creation process as a system-of-interest in its
own right, it is possible to begin to consider how this creating system could utilize
these elements to increase its fault-tolerance in avoiding the introduction of faults
into the system it creates. As chapter 2 highlighted, the employment of redun-
dancy and diversity into a software artifact has provided substantial increases in

dependability in the presence of residual software faults, following this lead then,

it is reasonable to consider how process redundancy can also aid dependability
increases in tolerating imperfect creation process elements to increase avoidance

of faults into the software artifact. Focusing upon human resources, it can be
seen from chapter 3 that the employment of human redundancy to achieve human

CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION 182

diversity to increase fault-avoidance already exists in many guises. Examples
provided in chapter 3 include: i) ad-hoc or natural human diversity approaches
- such as pair-programming, egoless programming, and, more recently, open
source development; ii) forced-diversity approaches - whereby diverse process
technology is applied to aid fault-avoidance; and iii) to a lesser extent, composed

diversity approaches - whereby diverse human resources are carefully composed
into groups and teams based upon some uncontrollable psychological dimension

such as personality or culture, etc.

Improving the dependability of the software creation process through some di-
verse human resource process intervention is further complicated, however, when
considerations of a computer-based system are to be included. As discussed in
chapter 4, a computer-based system perspective expands the system boundaries
outwards to include the technical computer system and its interacting human sys-
tem(s) as subsystems-of-interest. This wider systemic view is more complex as
it becomes clear that sociological, organisational, and situational influences can

combine to result in judgements of undependability for strictly non-technical rea-

sons. Such examples, considered in chapter 4 include where notions of system
purpose of the system vary in potentially conflicting ways in contextual areas of
responsibility, motivations, and values etc. To help unearth such differing system
purpose perspectives and judgements it is necessary to recognise that computer-
based systems require a higher holistic and integrative understanding of depend-
ability from important, but often conflicting, stakeholder contexts-of-interest. For
this reason four generic contexts-of-interest of: a) the utility context; b) the en-
gineering context; c) the deployment context; and d) the evolution context were
devised as a guiding integrative understanding framework for computer-based
system conceptions. When this computer-based system conception was applied
to understanding a number of reported failures in the long-standing domain Au-

tomatic Teller Machine (ATM), it was indicated that many of the flaws, vulnera-

bilities, etc resulted from various assumptions being made.

In reviewing the literature on assumptions in chapter 6 and relating this literature
to the ATM case study in chapter 5, four broad categories of assumptions can

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 183

be appreciated. These are: i) Implicit assumptions; ii) Explicit assumptions; iii)
Shared assumptions; and iv) Invalidated assumptions. It was highlighted in the
literature of assumptions in chapter 6 that often assumption identification can be
extremely difficult and requires a significant level of conflict, challenging, and
tension to detect them. Therefore a particular question of the thesis was: "What
form of human diversity process intervention could help improve assumption de-
tection coverage during software creation?" In answering this question diverse
goal-setting was accepted for a number of reinforcing reasons. Firstly, from the
literature on goal-setting in section 7.3.1 in chapter 7, industrial psychologists
have found, over the last 30 years of studies, that goal-setting represents one
of the most robust and replicable ways of increasing human task performance.
Secondly, from both a computer-based system and psychological research per-
spective, goal-setting influences and focuses human cognition and behaviour -
effecting peoples' values, reasoning, and priorities, which is considered crucial
for unearthing different stakeholders' notions of purpose (and the underlying as-
sumption set supporting them). Thirdly, because of these cognitive influences,

setting different goals offers a more practical, feasible, and controllable way for

an organisation to employ human redundancy/diversity than other less control-
lable forms of (say) composed diversity. Fourthly, because of these practicalities

of goal-setting, and the fact that software development is a clear case of external
teleology (cf. section 7.2.1), satisfactory levels of dependability representations,
during the creation process, can be promoted. Finally, different goals inevitably
result in higher levels of conflict, challenges, and tension. Diverse goal-setting
therefore provides the necessary task climate for helping unearth assumptions.

A more detailed and specific example of the stages and assumption identifica-

tion benefits of the proposed goal-diversity process intervention is discussed and
exemplified in section 8.4.

8.3 Non-Functional Notation

In this section the nature of non-functional attributes will first be discussed in
section 8.3.1. It will be noted that non-functional attributes have dependability

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 184

consequences for both the creation process and the created artifact. Next, a well
established non-functional requirements framework will be introduced in section
8.3.2 before its merits and suitability of application to demonstrate the anticipated
benefits of a goal-diversity process intervention (documented and illustrated in
section 8.4.2) is provided in subsection 8.3.3. Lastly, some important differences
between the established non-functional framework and the goal-diverse process

intervention is discussed in subsection 8.3.4.

8.3.1 Non-Functional Attributes

In this subsection the nature of non-functional attributes is briefly discussed.
However, before doing so, let's provide a suitable context via a quote from Malan
and Bredemeyer [116] [po 2] that is (perhaps) all too similar and frequent in many
large-scale software development projects:-

"One development team, being close to itsfunction-complete check-
point, was frantically scrambling to meet benchmark targets that the

marketing team was just then putting together for system test. An
architecture assessment revealed that some of these quality require-
ments could not be met by the current architecture without signifi-
cant rework. This problem of attempting to work quality in at the
end of the development phase has been around as long as we have
been doing software development ...Another team started out with the
goal of creating a system that would satisfy current user requirements
and provide the basis for quickly developing other applications. After
putting the engineers through object-oriented training and spending
months on analysis and design, the project started tofeel the pressure
of the impending release date. As this pressure intensified, design re-
views and code inspections were scuttled and key architects and engi-
neers left the team disgruntled by the long workdays and corruption

of the vision of creating a reliable, extensible and evolvable system
that would solve the development pressure problem infuture releases.
More and more engineers were added to the team to make up for this
attrition. Under this pathological cycle, the design degenerated and

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 185

was going to be pretty much abandoned. Quality problems emerged
and excalated out of control. Somehow, through sheer heriocs on the
part of the engineers, the application was eventually released. It met
the critical customer requirements, but came nowhere close to the
organisation's goal of reducing the time-to-market of follow-on re-
leases ...Simply put, either the non-functional requirements were not
specified (in time), or compromised without explicit attention to the
trade-offs involved. Not paying attention to eliciting, documenting
and tracking non-functional requirements makes it harder to priori-
tize and make trade-offs between quality of the product, the cost to
develop and enhance it, and the time-to-market of current and future
releases. Without quality targets to guide the architects and engi-
neers, design choices are arbitrary, and it is hard to assess the system
during architecture and design reviews and system test. "

This quotation is all too reminiscent of chapter 3 in that it demonstrates quite

clearly how the software creation process is made up of a complex interrelated set

of dynamic influences that can cyclically undermine dependability.' More impor-
tantly, and in specific relation to non-functional attributes, while non-functional

attributes are often thought of as desirable properties of the created software ar-
tifact, it can be appreciated that the explicit presence of non-functional attributes
are not only important in providing a dependable software artifact, but their pres-
ence in driving the creation process is critical to promoting a dependable process.
In the context of this thesis, it is their presence for driving the requirements and

INote in particular :- I) How loss of process controllability, as a desirable process attribute, can
act as a latent process environment error that then further introduces faults into the artifact through
fatigue and monotony of heavy overtime working to accelerate project schedules; 2) How subse-
quent reduction of fault detection of the process then occurs via violations of important design
reviews and code inspection stages; 3) How the combination of these two influences then result
in further loss of process control due to unnecessary rework; 4) Also note how desirable process
attribute of technology applicability was undermined - in the form of not knowing the neces-
sary methods (object-oriented) within the creation process also led to a loss of process control
- through the project schedule then having to accomodate learning (which few project managers
ever include within the work scope during planning); 5) Lastly, note the lack of desirable process
attribute of human performance predictability - in that after losing project schedule control the
work remaining could not be factored out for schedule acceleration by increasing the number of
engineers involved in the software creation task.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 186

design decision-making of the software creation process that is primarily focused
upon. In this respect the thesis is focused upon process-oriented non-functional
attributes in a qualitative reasoning manner, rather than product-oriented non-
functional attributes in a quantitative verificational way.

Functional requirements relate to 'what' the system does in terms of transforma-

tional behaviour of how inputs are processed into outputs and can be further bro-
ken down into states and structural elements that enable or constrain those states.
By contrast non-functional requirements are holistic integrative properties of the
entire system and are therefore often referred to as properties or attributes of the
system as a whole. Locally satisfied non-functional properties of a subsystem
may not mean globally optimal assurance of that non-functional property or at-
tribute in the entire system-of-interest as there exists the potential for many subtle
interdependencies (as discussed in chapter 7) between distinct parts and subsys-
tems that can, when combined, result in conflicting or antagonistic relationships
between them that result in an emergent compromisation of various involved non-

functional attributes.

When viewed in a qualitative process-oriented perspective, it can be appreciated
that non-functional attributes have three fundamental characteristics, as follows

[cf. Chung et al [154]]:-

1. Subjectivity. Non-functional attributes can be percieved, viewed and val-
ued in different ways by different people;

2. Relativity. Non-functional attributes can, depending upon the particular
system type and domain characteristics, have a relative importance and pri-
ority attached to them;

3. Interactivity. Within a system, as a whole, attempting to promote one non-

functional attribute can subtly compromise and undermine other important
non-functional attributes.

A further issue that is worth considering in respect to the relationships that exist
between functional requirements and non-functional properties or attributes, is

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 187

that, unlike functional requirements, non-functional attributes cannot be directly
promoted within the system. Instead, when qualitatively reasoning about them,
they exist only in the form of desired goals to be achieved (i.e. non-functional
goals) and require (as chapter 7 emphasised in focusing upon the relationships
between purpose and function) a functional realisation step - in the form of a

functional ascription, in order to promote them. Such an example is discussed
by Chung et al [154] in respect to promoting the non-functional attribute of per-

formability. They note that the performance attribute in a accounting system may
be the goal of achieving a fast response time for customer accounts. As they high-
light, this non-functional goal, in itself, cannot be directly promoted, but requires
some functionalisation to promote fast response time. One such functional as-
cription that could help promote this perfomance attribute for customer accounts
could be the use of indexing of customer accounts. This would provide some di-
rect functionalised means for achieving the non-functional goal of fast response

time for customer account.

Therefore, we can add one more characteristic of non-functional attributes, that

is implicit in Chung et al's [154] framework, but becomes more explicit in respect

to chapter 7, and this is the characteristic of:

4. Indirectivity. Non-functional attributes cannot directly be pro-
moted but require some functional ascription selection in order to be

realised.

As we will see in section 8.4.2 with the analysed and synthesised ATM case study
examples from chapter 5, it is this characteristic of indirectivity combined with the
subjectivity, relativity and intertactivity a given functional ascription can create
that makes the promotion of non-functional attributes difficult and problematic
- in terms of promoting the wider super-ordinate goal of dependability.

8.3.2 The Non-Functional Framework

The non-functional requirements framework proposed by Chung et al [154] is

the result of both theoretical and field research that has been progressed by the

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 188

authors over approximately fifteen years. In this section the essential components
and the process stages are described. Their particular suitability for consideration
of providing exampled envisaged benefits of a goal-diverse process intervention
will be discussed in subsection 8.3.3, later.

The essential main component involved in the non-functional requirements frame-

work involves the notion of a soft-goal. This concept implicitly captures the in-
direct nature of non-functional attributes - in that they are desirable properties
of the software artifact, but ones that, during the creation process, cannot be di-
rectly implemented. Chung et al identify four main types of soft-goals in the
non-functional requirements framework, as follows:-

• Main soft-goal. These are the familiar non-functional attributes that are
commonly known about in connection with software artifacts and the de-
pendability community and include such top-level desirable attributes as:
safety; security; usability; reliability; maintainability, etc;

• Sub soft-goal. These soft-goals are a refinement decomposition of non-

functional attributes and illustrate the more specific contribution that can be
made to the main soft-goals by thier achievement. A familiar example from
the dependability literature would be how the sub soft-goals of achieving
integrity, confidentiality and availability directly contributes to the achieve-
ment of the main soft-goal of security [cf. [68]];

• Operationalising soft-goals. These soft-goals relate to the harder func-
tionalisation design decisions that are made to promote non-functional at-
tributes. In the framework, they are illustrated in a heavier emboldend form
to visually indicate this. However, the authors still refer to them as soft-
goals as they are used as a analysis representation for exploring interde-

pendencies and trade-offs they create, and do not represent fixed design

decisions. Furthermore, as Chung et al [154] highlight, operationalisations

do not always involve functionalisation in the form of design and imple-

mentation components and can include, more broadly, such things as rules,
constraints, data, and information. Therefore, operationalisation soft-goals,

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 189

while considering more definite non-functional promoting aspects, still are
represented as soft-goals to demonstrate their fluid and changeable nature
as development progresses;

• Claim soft-goals. These soft-goals capture the thinking and reasoning

components of the framework as the developer considers non-functional

attributes. They can be attached to any relationships that the other three
types of soft-goals may create (i.e. upward direct contributions or im-
plicit/explicit interdependencies across non-functional attributes detected).
They are often in the form of justifications and priority interpretations that
are provided by the developer in consideration and promotion of non-functional
attributes.

Having described the essential components of the non-functional framework (NFR),
it is now possible to complete this brief introduction of the framework by dis-
cussing the process stages employed in using this non-functional requirements

approach. In total six stages are identified, as follows:-

1. Domain and System Type Consideration. At the top level, the process es-
sentially begins with careful consideration of the particular domain charac-
teristics and system type to be created. This is particularly important for the
consideration of non-functional attributes because, as mentioned in subsec-
tion 8.3.1, non-functional attributes have a relative characteristic that helps
unearth thier particular importance and priority in a particular development

situation;

2. Functional Requirements Definition. These are also critically important
as it is only through gaining a good understanding of the particular infor-
mational, data, and transformational elements required, can the developer

later get to grips with the interactive nature of non-functional attributes and

detect important interdependencies between possible function ascriptions in
deciding, selecting and promoting particular non-functional attributes;

3. Identifying Relevant Non-Functional Attributes. Here, the developer
must identify which non-functional attributes are most important. The com-

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 190

bination of how well stages 1and 2 above are performed will directly impact
on how well the developer succeeds in this stage;

4. Decomposition of Non-Functional Attributes. It is at this stage when
the developer decomposes the main soft-goals down into more specific sub

soft-goals by identifying them and determining and justifying the particu-

lar, more specific, direct contribution they make. It is noted by Chung et

al [154] that the direct upward contributions may require all sub soft-goals
to be contributing or just a subset of them to contribute. The two cases
can be exemplified as: i) All contributing is an AND restriction whereby all
sub soft-goals must be contributing so for example with security it may be
deemed that the sub soft-goals of: intergity AND confidentiality AND avail-
ability must all contribute; ii) alternatively a subset contribution would be
an OR restriction, such as, for example, (again with the attribute of security)
where it is deemed that only confidentiality AND integrity OR availability
must contribute in this case;

5. Operationalising of Non-Functional Attributes. This is where, having

identified the relevant main non-functional attributes soft-goals in 3 above
and decomposed them down into more specific sub soft-goal contributions,
various functional ascriptions, in the form of design alternatives, are con-
templated that fulfil the functional requirements in order to begin to promote
and realise the non-functional attributes for the system under development;

6. Dealing With Interdependencies. A natural step that follows 5 above is
once a number of design alternatives have been contemplated, the various
interdependencies that can exist between them are analysed. As highlighted
in chapter 7, these can be of a complementary, compatible, or conflicting
nature, and all these types of relationships must be considered and recorded.

This is where claim soft-goals will more frequently be used as it becomes

inevitable in complex system development that certain soft-goals cannot be
fully achieved and therefore acceptable trade-offs with supporting priorities

and justifications will need to be documented in the form of claim soft-

goals.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 191

It is stressed by Chung et al [154] that although, when considered in this way, the
non-functional process stages may look like a linear waterfall type development
process model, this is not the case and in actual application through many studies
conducted by the authors, the non-functional process requires many iterations
with plenty of feedback between the various stages. This was also the experience

of the author in using the framework for providing examples for section 8.4.2,

below.

8.3.3 Suitability of the Non-functional Framework

In this subsection a justification for the selection of the NFR by Chung et al [154]
is provided for its utilisation in section 8.4.2 as an initial demonstration into the
assumption identifaction benefits of the proposed goal-diversity process interven-
tion. In order to do this, the underlying philosophy and benefits, proposed by the
NFR framework, are contrasted with the issues raised by such a goal-diversity
process intervention.

Perhaps the most fundamental justification for utilizing the NFR framework pro-
posed by Chung et al [154] is that, at its core, is the principle of putting non-
functional attributes as the foremost important consideration in the mind of the de-
velopers. Typically, as the quote by Malan and Bredemeyer [116] earlier demon-
strates, much lip-service may be paid to promoting quality or non-functional at-
tributes, but the lived-in experience time and again is that they are either never
considered, considered arbitrarily, or considered too late within the software cre-
ation process. The philosophy of the NFR framework is to ensure that non-
functional attributes drive the process right from the start and ensure that quality
is built into the product as it progresses through the software development cycle.
This makes the NFR framework, in essence, a consistent method for demonstrat-

ing the expected benefits of a goal-diversity process intervention, as, at its root,

this process intervention is also aimed at utilizing the psychological/performance

benefits expected from goal-setting by predisposing developers to promote de-

pendability attributes to ensure that dependability considerations also drive the

software creation process.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 192

Probably the next most fundamental justifaction for the suitability of utilising the
NFR framework for exemplifying the anticipated benfits of a goal-diversity pro-
cess intervention is the fact that it is, in principle, qualitatively process-oriented.
Not only, in trivial terms, does this make it suitable for consideration of a pro-
cess intervention, but, as we can appreciate from chapter 4 on computer-based

systems, extending the boundaries outwards to consider both the technical and
human systems as subsystems of interest introduces greater subjective sociolog-
ical, psychological, and organisational considerations as purpose ascriptions and
failure judgements can result in technically dependable systems being judged to
be undependable for non-technical situational and contextual reasons. Computer-
based system consideration, therefore, demands that both subjectivity and relativ-
ity characteristics of non-functional attributes be handled by any applied method,
as different computer-based system contexts-of-interest will both provide differ-
ent meanings and place different priorities and importance upon non-functional
attributes. Since the goal-diversity process intervention benefits expected are
those for computer-based systems, then whatever method chosen to exemplify

those expected benefits would inherently not only need to place non-functional

attributes as a process-oriented driver, but also would need to provide a qualita-
tive representation and reasoning framework that encompasses considerations of
subjective purpose ascriptions, relative importance and priority judgements. The
inclusion of the soft-goal within the NFR framework is not only useful for ensur-
ing non-functional attributes are represented and drive the development process,

they are also fundamentally based, from a qualitative and subjective reasoning
perspective, upon a dialectical form of reasoning from Artificial Intelligence (AI)
research that inherently accommodates for subjectivity in reasoning whereby strict
AND, OR, NOT reasoning is dispensed with and contributions and interdependen-
cies are considered for how they fully/partially influence and positively/negatively
effect non-functional attributes, respectively. The form of reasoning adopted by

the NFR framework is usefully based upon the real-world situation, in consider-

ing such complex contributions and interdependencies, of achieving adequately
satisfied or satisficing promotion of non-functional attributes which is important
in unearthing and making explicit, within the creation process, the degree of de-
pendability and undependability of a computer-based system. This subjective

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 193

qualitative reasoning is therefore highly suitable for consideration of computer-
based systems as subjective sociological, organisational, strategic, and situational
interpretations of non-functional attributes can be more appropriately represented
and reasoned about when the process intervention of goal-diversity is applied for
consideration of computer-based systems.

Another fundamental benefit of using the NFR framework, by Chung et al [154],
is that it provides a holistic approach through accommodating both a top-down
analysis and bottom-up synthesis anticipated as being vital in the goal-diversity
process intervention. As was presented in subsection 8.3.2, relevant main soft-
goals are further refined into more specific contributing sub soft-goals, which are
then further promoted by consideration of design alternatives via oparationalised
soft-goals. This stage is essentially decompositional, top-down and analytical
- in terms of promoting non-functional attributes. Following this stage, mul-
tiple relevant non-functional attributes are then considered for how subtle in-
terdependencies are created with different operationalised soft-goal alternatives

- with regards to how they positively or negatively impact upon promotion of

non-functional attributes. This is fundamentally a synthesis approach stage that
begins the representation, selection, reasoning, and justification of how different

design alternatives can be organised into a system that can be rationalised in non-
functional attribute promotion terms. In the goal-diversity process intervention
considered in this thesis, it is anticipated that the analysis stage will be performed
individually, whereby individual developers can analyse one non-functional at-

tribute and perform considerations of design alternatives that directly promote
this attribute, but the major synthesis part of indentification of subtle interdepen-
dencies between multiple non-functional attributes - in terms of reasoning and
justification of multiple non-functional attributes into an agreed rationalised even-
tual (computer-based) system will be performed in a collaborative meeting stage.

In this respect then, the goal-diversity process intervention approach demands an

tw02 staged holistic consideration of promoting dependability by both individual

2However, although, in analytic and synergistic considerations of the Goal-Diversity process
intervention, it can be considered as a two staged process, when considering an additional inspec-
tion stage, in chapter 10, the analytic stage is divided into two stages of: a) Individual Analysis;
and b) Individual Inspection

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 194

analysis and collaborative synthesis of non-functional attributes. Any such ap-
proach would, by definitions presented earlier in subsection 8.3.1, need to accom-
modate for the inherent indirectivity and interactivity characteristics presented by
consideration of non-functional attributes. In this regard, as can be seen from
subsection 8.3.2, the NFR framework incorporates both representation and rea-

soning about such characteristics and therefore provides another justification for

its suitability for use in exemplifying the expected benefits from a goal-diversity

process intervention.

Finally, as a last justification for the usage of the NFR framework, by Chung et
al [154], for exemplifying the expected benefits of a goal-diversity process in-
tervention, its reasoning representation is valuable in identifying various harm-
ful assumptions in promoting non-functional attributes during development. As
discussed in subsection 8.3.1, non-functional attributes, by nature of thier indi-
rectivity and interactivity characteristics often introduce subtle interdependencies
during system development. Chung et al [154] highlights that these can be of

two fundamental types: i) Explicit intentional contributions, in the form of di-

rect conscious reasoning during considerations of how direct upward specific sub
soft-goals contribute to main soft-goals, and also operationalisation soft-goals

(i.e. design alternatives) contribute to specific soft-goals; and ii) Implicit uninten-
tional interdependencies that result in the form of unconsidered positive/negative
interrelationships between multiple non-functional attributes (i.e. main and sub
soft-goals). This is where the incorporation of claim soft-goals (i.e. in subsec-
tion 8.3.2) is invaluable in forcing the developer to record these during analysis,
as claims are, by nature, defined as "Statements made as being true without be-
ing able to give proof of them being true.,,3 Within the NFR framework, claims

represent the subjective and relative justifications and priorities made by vari-
ous developers which are inherently based upon their own beliefs, experiences,

values, training, preconceptions, etc. Therefore, as chapter 6 discussed, act as a

documentable source for capturing the underlying assumptions being made. From
a goal-diversity process intervention perspective, aimed at increasing assumption
detection to improve computer-based system dependability, the NFR framework

30xford Dictionary definition.

CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION 195

Box I : Ad-hoc Consideration of Non--Functional Attributes Box 2 : NFR Consideration of Non--Functional Attributes

Box 3 : Goal-Diversity Consideration of Non-Functional Attributes

INDIVIDUAL ANALYSIS STAGE

Box 4 : Goal-Diversity Consideration of Non--Functional Attributes

COLLABORATIVE SYNTHESIS STAGE

Figure 8.1: Differences in Approaches

provides an ideal representation as often such subtle and unintentional interdepen-
dencies are the results of various assumptions that occur through over/under rep-
resentation of non-functional goals (i.e. relativity influence) or through ascribing
different meaning/purposes to non-functional attributes (i.e. subjectivity influ-
ence). Since the NFR framework structure ensures that such claim soft-goals are
attached to explicit contributions, interdependencies and operationalisation deci-
sions, made by the developer(s), this then provides a means by which, at the later
collaborative stages of goal-diversity, existing assumptions can be detected -
along with implicit assumptions that result in interdependent consequences be-
tween multiple non-functional attributes.

8.3.4 Important Differences Between Approaches

Although, as subsection 8.3.3 shows, the NFR framework has important represen-

tational and reasoning justifications for helping to illustrate the expected benefits

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 196

of a goal-diversity process intervention, a direct comparison between the two,
also reveals the existence of important differences.

In order to better understand these differences between the NFR framework, and
the proposed goal-diversity process intervention, it will be useful to first describe,

in some level of detail, the three possible ways in which non-functional attributes

can be dealt with during development (i.e. process-oriented view). These three
possible ways are illustrated in figure 8.1 and are described in the bullet points

below:-

• Ad-hoc consideration of non-functional attributes. This is illustrated
in the top-left box (i.e. box 1) in figure 8.1. The hexagons represent the
functional requirement goals (i.e. FG) of a given development project. The
squares represent some functionalisation or functional ascription (Le. FA)
that can help realise those functional requirement goals (i.e. FG). A to-
tal of three functional requirement goals (FG) are shown along with three
functional ascriptions (FA) to achieve them in this particular example. The

three circles illustrate the individual developers (i.e. D) whom are tasked
with fulfilling the functional goals via design and implementation com-

ponents represented by functional ascriptions (FA). The ad-hoc consider-
ation of non-functional attributes results from no systematic aspects within
the development process that ensures they are considered, promoted, and
tracked as development progresses. They are therefore either not considered
at all, considered arbitrarily or considered too late in the development life-
cycle. Often, in many real-world software development projects promotion
of non-functional attributes in the process is reliant upon an arbitrary and
implicit promotion of non-functional attributes through the particular de-
sires, expertise, experience and quality interests of the individual develop-
ers involved. This is why, in figure 8.1, the non-functional requirements

are non-distinct and are represented by an amorphous cloud. As is often re-

alised later, with such an approach, none or ad-hoc consideration like this,
of non-functional attributes during the software creation process, frequently
results in harmful negative interdependencies that are created during func-
tional ascription and implementation of functions to achieve requirements

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 197

that undermine both dependability of the process and eventual delivered
software artifact (if, indeed, it's ever delivered that is!). These harmful in-
terdependencies are illustrated in the figure, in box 1, as dashed lines from
the functional ascriptions back to the non-functional attributes that they
compromise;

• NFR consideration of non-functional attributes. This is illustrated in

the top-right box (Le. box 2) in figure 8.1. The hexagons again represent
the functional requirement goals (i.e. FG) of a given development project.
The squares represent some functionalisation or functional ascription (i.e.
FA) that can realise those functional requirement goals (i.e. FG). A to-
tal of three functional requirement goals (FG) are shown along with three
functional ascriptions (FA) to achieve them. The three circles illustrate the
individual developers (i.e. D) whom are tasked with fulfilling the functional
goals via design and implementation components represented by functional
ascriptions (FA). As already discussed in subsection 8.3.2, the NFR frame-
work approach, by Chung et al [154], improve upon this situation by en-

suring a systematic representation and reasoning framework that ensures

that consideration of relevant non-functional attributes (in the form of soft-
goals) drive the software development process. By doing so, developers
have more opportunity to become explicitly aware of the harmful interede-
pendency consequences of thier functional ascriptions to achieve functional
requirements - thereby reducing the possibility of undermining the overall

quality of the software artifact. In figure 8.1 this is shown by the solid lines
that lead from the developers to distinct non-functional goals (NF As) that
are considered relevant for this particular development.

• Goal-Diversity consideration of non-functional attributes. There is a
two stage process envisaged in this process intervention. The first stage is

illustrated in the bottom-left box (i.e. box 3) of figure 8.1 and involves

individual analysis of a single functional requirement goal (Le. FG) - in
terms of considerations made about various functional ascriptions (i.e. FA)
in the form of design alternatives and implementation components to realise
them. As can be seen from figure 8.1, in comparison to the previous two

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 198

approaches, goal-diversity differs at this stage by ensuring that all three de-
velopers (i.e. D): i) consider the functional realisation of one functional re-
quirement goal while; ii) individually promoting a single and distinct non-
functional attribute only (i.e. NFG). The second stage is illustrated in the
bottom-right box (i.e. box 4) of figure 8.1 and involves the collaborative

synthesis stage whereby after all developers have analysed individually all
three functional requirement goals (i.e. FG) individually (and considered
the most appropriate possible functional ascriptions (FA)), a meeting takes
place where all three developers, committed still to promoting only one
particular and distinct non-functional attribute goal (i.e. NF A) compare,
challenge, and argue the various merits and drawbacks in promoting the
three non-functional attribute goals while satisfying the three functional re-
quirements goals (i.e. FG). Obviously, this will result in conflicts as subtle
negative interdependencies between the various design options require re-
prioritisation and trade-offs, and as section 8.2 highlighted and suggested
earlier, this is where assumptions, in the form of various claim soft-goals,

will be potentially detected.

Contrasting the possible ways that non-functional attributes can be considered

during the development life-cycle, it can be appreciated, as discussed in subsec-
tion 8.3.3, that the NFR framework, proposed by Chung et al [154], is useful in
demonstrating the expected assumption detection benefits of a goal-diversity pro-
cess intervention. Primarily this is because it provides a representation, reasoning
and philosophy that allows the expression of associated complex information to

be illustrated and recorded in a manner superior to what could be achieved as eas-
ily in any textual way. However, within the context of things considered within
this thesis so far, the NFR framework can also be criticised on three aspects when
compared with the proposed goal-diversity process intervention in helping to un-

earth various harmful assumptions that may often compromise computer-based

system dependability.

The first criticism relates to its assumption detection capability - especially with
regards to implicit assumptions. As it was highlighted in the assumption chapter

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 199

6, implicit assumptions often relate to the absence of conception not its presence,
this is due to the fact that a single individual is unlikely to indentify an implicit
assumption by him or herself because the assumption acts as a conceptual con-
straint on that particular thinking episode and therefore, acting as a constraint,
precludes any possibility of detecting it by definition. This introduces problems

within the existing NFR framework as it expects a single developer to consider
many non-functional attributes at once and therefore inherently expects the de-
veloper to individually identify subtle unintentional interdependencies between
them that are often underpinned by such implicit assumptions related to his or her
values, beliefs, biases, etc. By contrast, the proposed goal-diversity process in-
tervention makes no such expectation as the collaborative synthesis stage, where
multiple developers (predisposed to promoting different non-functional attribute
goals) incorporates a more challenging and conflicting phase that can help identify
such implicit assumptions.

The second fundamental criticism relates to cognitive limits in performing very

complex conceptual tasks. As recognised in the literature of chapter 7, achiev-

ing multiple goals 'hits' cognitive limitations as usually only one such goal can
be maximally activated at anyone time during multiple goal problem solving.
At best, this can result in other goals being under or inappropriately emphasised,
and, at worst, can result in other important goals not even being considered at
all. Again this introduces potential problems for the NFR framework as, implic-
itly, a developer using the methodology is tasked with having to promote multiple
non-functional attribute goals simultaneously. In the context of this thesis, this
is considered to be a dubious expectation of the NFR framework methodology in
identifying explicit and implicit assumptions that can often result in unintentional
negative interdependencies that can compromise the dependability of a computer-
based system. With the proposed goal-diversity process intervention, this poten-

tial cognitive limit is accommodated for as throughout both the individual analytic

and collaborative synthesis phases a single developer is only tasked with the re-

sponsibility of promoting a single non-functional attribute. Even at the synthesis
stage, where multiple non-functional attributes need to be considered for harmful
interdependecies, trade-offs, and priorities, this is done in a collaborative manner

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION200

between developers that are considering the various arguments and justifications
of thier fellow development colleagues from only a single non-functional attribute

perspective.

The final criticism relates to the expectation of the NFR framework that a single
developer posseses the necessary experience and knowledge in promoting multi-

ple non-functional attributes - deemed relevant to that system type and domain
characteristics pertaining for particular software development project. This aspect
is only handled generally within the NFR framework. By contrast, the proposed
goal-diversity process intervention ideally expects a level of specialism of the in-
dividual developers in the particular non-functional attribute they are expected to
promote. For example, a developer tasked with the promotion of security will
have specialist knowledge and experience in security considerations, a developer
tasked with the promotion of maintainability will have specialist knowledge and
experience in maintainability considerations, etc. Within the wider perspective of
a computer-based system, the goal-diversity approach also implicitly expects that

each non-functional attribute specialist will intelligently interpret their expertise

into differing computer-based system contexts-of-interest of the utility context,

the deployment context, and the evolution context to enhance a more encompass-
ing and synergistic coverage of assumption identification during the development

process.

As a last point, and whilst not a direct criticism of the NFR framework, perhaps

the most important distinction between the NFR framework and the proposed
goal-diversity process intervention, is that the proposed goal-diversity process

intervention utilises human redundancy and human diversity within the process to
achieve an increased level of process dependability. Firstly, it uses human redun-
dancy, in terms of duplicated effort for a given task. This can be seen from box

3 (bottom-left) by comparison with both the ad-hoc and NFR framework con-

siderations of non-functional attributes in figure 8.1. Note that, by comparison,
the analysis stage employs three developers for the realisation of a functional re-
quirements goal, whereas the other two approaches in box 1 (top-left) and box
2 (top-right) employ the much more typical concurrent engineering principles of

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION201

factoring-out development effort in parrallel by ensuring a specific task is allo-
cated to a specific developer. Secondly, it can be seen, however, from figure 8.1,
that it generates human diversity by predisposing the three developers to promot-
ing three distinct non-functional attributes. From chapter 7 it can be remembered
that goal-setting introduces interesting cognitive influences that motivate individ-
uals to search-out task specific information to fulfil those goals. Furthermore, by

definition, setting an individual goal will effect thier mental model (i.e. formal
cause) thereby inherently sensitizing them to value, prioritise, and judge the same
given thing (i.e. in this case a functional requirement goal) in different ways. It
is a major expectation that when such a process intervention is employed it will
result in greater exploration and coverage that will improve the identification of
flawed assumptions that can ultimately undermine and compromise the eventual
dependability of computer-based systems.

8.4 Goal-Diversity - Analysis and Synthesis

In this section an initial set of examples, in the form of two scenarios, are used

to indicate how the envisaged and proposed process intervention of setting di-
verse non-functional goals can be employed during the software creation process.
In subsection 8.4.1, the two stages of individual analysis and separate inspection
stages are exemplified, using a simple scenario, to show how the subjective, rel-
ative and indirective aspects of non-functional attributes both cause and help de-
tect harmful assumptions. In subsection 8.4.2 the final third collaborative meeting
stage is considered. While this subsection does not consider the particular group
team dynamics and inevitable trade-off conflict and negotations involved, it does
utilise the Chung et al [154] framework and provide more extensive examples of
the ATM case-study in chapter 5 to provide sufficiently rich examples of how

the interactive nature of non-functional attributes can further help detect harmful

assumptions during this collaborative synthesis stage.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION202

8.4.1 Analysis Examples

The envisaged goal-diversity process intervention has three fundamental stages.
The first two of which, belong to the analysis phase. The first analysis stage in-
volves predisposing a number of developers to promote a single non-functional
attribute deemed critical to creating a dependable software artifact. The result

is a number of functional ascribed analysis of a proposed solution from each of
the non-functional predispositions. The second analysis stage involves the sep-
arate cross inspection of each of the predisposed analysis solutions so that each
developer who promoted a non-functional attribute solution in the first stage can
then compare and contrast the other predisposed analysis solutions from their own
single non-functional attribute predisposition. Each of these first two phases are
considered using a simple development scenario in subsections 8.4.1.1 and 8.4.2

below to make this clearer.

8.4.1.1 First Stage - Individual Goal Promotion

The proposition of the proposed goal-diversity process intervention, at this first

stage, is that by predisposing individual developers to promoting a single non-
functional attribute, during analysis, will sensitise them from being less likely
to make harmful assumptions that will directly mitigate their non-functional goal,
and make them more likely to make harmful assumptions that will indirectly com-
promise other non-functional goals being promoted by other developers.

To provide a simple software development scenario, let's consider that a new cat-
alogue customer accounting system has to be produced that keeps track of tele-
phone customers' orders and billing. Customers phone in orders to a telephonist
who then enters the orders and updates the customers outstanding bill. Customers
can also pay over the phone by a credit/debit card which the system then relays to

the credit/debit card financial institution for payment.

After the initial functional requirements, it is deemed that the non-functional at-
tributes of: a) maintainability; b) performability; c) reliability; and d) security are
critical to the overall dependability of the software system. Four developers are

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION203

therefore separately employed to produce an individual design analysis solution.
Each one is predisposed to ensure that while performing the design analysis that
the decisions they make must solely focus on prioritising only one non-functional
attribute. So for instance, developer 1 solely focuses upon promoting maintain-
ability, developer 2 solely focuses upon promoting performability, developer 3

focuses upon promoting reliability, and developer 4 focuses upon promoting se-

curity.

After each of the four developers have performed their individual analysis solu-
tions, they make three copies of them and distribute them to the other three devel-
opers ready for the second stage of separate inspection (see subsection below).

8.4.1.2 Second Stage - Separate Inspection

This stage is performed individually in separation, firstly as an important assump-
tion detection phase in itself, and secondly as a preparation stage for the collabora-

tive meeting so that each developer can gain a richer understanding of the software

development problem - in terms of the important dependability attributes.

It is at this stage that the relative characteristic of non-functional attributes be-
comes important, as each developer continues to inspect each of the other de-
velopers' design analysis solutions - while still being predisposed to promoting

their own single non-functional attribute. It is a proposition of this second stage
that as each individual developer separately compares and contrasts each of the
other developers' design analysis solutions, the relative undesirable consequences
for their own prioritised and promoted non-functional attribute will help unearth
potentially harmful assumptions that could compromise that non-functional at-

tribute.

To return to the simple catalogue accounting system scenario, during this second
separate inspection stage, when developer 1 (promoting maintainability) inspects
the other three design analysis solutions from the other developers, he/she notices

that to speed-up performability developer 2 has advocated that some of the more

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION204

commonly used functions should eventually be implemented inline as he/she (de-
veloper 2) has calculated that within the main execution loop these functions are
the main time-consumer of processing resources and the time spent in executing
these functions is expected to be favourable to the time spent jumping around call-
ing them if they were not inline. However, developer I, comparing and contrasting

his/her analysis solution while still promoting maintainability, is concerned that
such a solution will compromise their goal by undermining the overall cohesion
of the classes which these particular inline functions represent. When developer
3 (promoting reliability) compares and contrasts the other three developers' de-
sign analysis solutions, during this separate inspection stage, he/she is also not
happy with developer 2s (promoting performability) design analysis solution, as
he/she has advocated for a recursive set of functions for printing accounts, copy-
ing account lists, and searching file storage, which, while producing performance
benefits, appear to be particularly complex to developer 3 (promoting reliabil-
ity) and provides a lack of exception handling defenses against potential run-time
faults. Lastly, when developer 4 (promoting security) compares and contrasts the

other three developers' design analysis solutions, he/she notices that developer I

(promoting maintainability) and developer 2 (promoting performability) have both
employed very strict normalisation (up to 5th normal form) and enhanced indexing
of fields to promote future reporting flexibility and speed of information access,
respectively. However, developer 4 (promoting security) has deliberately violated
strict normalisation principles to ensure enhanced confidentiality and privacy of
customers credit/debit card details into a separate table, with I-to-l correspon-
dence, so that such a subset of sensitive customer information can by encrypted
and contain more restrictive access rights.

From this brief example, with the catalogue accounting system, it can be appreci-
ated, that in ensuring individual developers first perform a design analysis while

promoting a single non-functional attribute, and secondly, later compare and con-

trast each others design analysis solutions allows both the relative and integrative
characteristics of non-functional attributes to help detect potentially harmful as-
sumptions that underpin such design analysis solution decisions.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION205

8.4.2 Synthesis Examples - Using ATM Case Study

In the third stage of a collaborative meeting it is anticipated, with the goal-
diversity process intervention, that the issues raised in the second stage (in sub-
section above) will be further discussed and debated. It is in this stage that either
breakthrough solutions or trade-offs will need to be sought or agreed, respec-

tively, to determine the most appropriate or feasible solutions regarding the extent
to which the non-functional attributes can be promoted. If breakthrough solu-
tions are found then conflicting relationships (and their underlying assumptions
supporting them) can both be satisfactorily accommodated. If not, then at least
the degree of both dependability and undependability, concerning the particular
software artifact to be developed, can be made explicit - along the levels of as-

sumption validity allowable.

Rather than continue with a simple example, in this section, we draw-upon such
issues raised in section 8.3 by exemplifying the expected benefits of a goal-
diversity process intervention with the nine ATM computer-based system case

study issues raised in chapter 5 to illustrate how combining computer-based sys-
tem contexts with a multiple diverse goal-orientated approach, that includes the
subjective, relative, and interactive characteristics of non-functional attributes,
can result in greater overall assumption identification coverage. Within a computer-
based system perspective, claims and reasoning approaches often appear reason-
able when viewed from a particular computer-based system context-of-interest
or non-functional attribute goal to be promoted. However, as will be appreci-
ated, they can create harmful or conflicting relationships with other important
non-functional attribute goals necessary to create a dependable computer-based

system.

The reader should note that the illustrations attempt to capture the assumption

identification events expected during the second synergistic phase of a goal-diversity

process intervention when all the developers meet and discuss, argue, and judge
- and therefore produce more integrative system perspective." As will be seen,

4This phase is more consistent with perceiving dependability as a super ordinate system goal
at a higher and more holistic level.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION206

the NFR framework provides a sufficiently rich representational and reasoning
structure to capture the complex collaborative development stage situation in a
manner that would not be so easily ellaborated textually. Finally, the terminol-
ogy and icons used is adapted from Chung et al [154] methodology on the Non-
Functional Requirements Engineering approach. To aid the reader in understand-
ing the NFR framework representations, a subset of the visual modelling icons

used is explained in Appendix section A on page 380 in section A.I, along with
additional terminology and diagrams specifically used for exemplifying the bene-
fits of a goal-diversity process intervention in appendix section A.2 on page 382.

8.4.2.1 Encryption Policy - Issue 1

The first issue relates to the many security flaws that can be introduced through
employing proprietary software encryption. This is illustrated in figure 8.2. It
can be seen that there are two top-level non-functional goals involved. One
concerns the organisation's strategic budget limitations. The other involves the
non-functional attribute of security. The organisation's overall spending budget is

further divided into sub-goals. One of which, that is relevant to this issue, is the
ATM budget for commissioning, developing and deploying a network of ATMs.
Another important sub-goal would be the associated costs of the encryption pol-
icy to be adopted to protect the confidentiality of bank and ATM customer's ac-
count details during transactions. The top level ATM security goal is then fur-
ther divided into important sub-goals to be achieved. One of these, relevant to
this issue, involves the sub-goal of the confidentiality of the customer's accounts.
Correspondingly, an important sub-goal to achieving confidentiality is the partic-
ular nature of the encryption policy to be enforced or promoted. In chapter 7, the
issue of functional ascription was discussed in the context of goal-directedness
and teleological explanations. It should be pointed out that these functional expla-
nations are important in analysing the ATM problems illustrated in the diagrams.

The emboldened clouds in figure 8.2 on page 208 represent potential functional

instantiations of how to promote the security sub-goal of confidentiality. This
confidentiality goal represents a non-functional goal (what Chung et al [154] call
"soft-goals") as they cannot be directly implemented, but require some functional

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION207

implementation (Chung et al use the term "operationalize") in order to achieve
them. In this example two possible functional options exist: either the encryption
can be implemented in hardware or software.

At this point it is necessary to consider the generic computer-based system contexts-
of-interest. Two are illustrated. The utility context represents, in the ATM appli-

cation domain, the higher strategic business assessment surrounding the commer-
cial value expected from investing in an ATM network by the financial organi-
sation. It is reasonable to suggest that the budgetary goal of the ATM network
will have a major influence upon which encryption functionalisation will be em-
ployed. Since this decision will take place within the utility domain a justification
for choosing a proprietary software functionalisation over a professional (industry
standard) hardware functionalisation may employ a priority to financial criteria
over technical criteria. This may result from some uninformed (or knowledge
bounded) reasoning, or, worse stilI, may be politically motivated to place a pri-
ority of financial criteria over technical criteria. In either situation, it is likely to

become manifest in the assumptive claim that software encryption is as secure as

hardware encryption. In this regard, although both non-functional attributes (i.e.
goals) of ATM budget and security are considered together, the assumption that

software encyption is as secure as professionally standardised hardware encryp-
tion is used to emphasise and prioritise financial budget criteria in the form of an
explicit justifying proposition.

It is obvious from chapter 5, that such a decision undermines the dependability of
the ATM as it leaves open the potential for unintentional faults, malicious code
(i.e. intentional), or systemic design flaws that can compromise the encryption
integrity of the software. Such vulnerabilities will most likely become evident
after deployment (i.e. shown in the oval in figure 8.2 on the following page).

8.4.2.2 Authorisation Policy - Issue 2

This issue relates to the system effects of the financial institution's disbelieving
attitude that all unauthorised withdrawals are either due to customer carelessness

CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION208

~
~~

~ ~...l~;::
w ~w

" C Si I-a0(u ill z~ '" «lI-
t " t;; ::;:><:
fil 0(~ >-~

.,;~ ;;l ~ ;;l gz~t z fil z 0..0sS ~
9 «lU

'" ClOl ~"~ 9, t:: w i='~ ~ ~z z
=> :.; ~

········
.
t.

·····............

Figure 8.2: Encryption Policy Issue 1

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION209

or collusion. The issue is illustrated in figure 8.3 on the next page. In particular
it can be seen that the two non-functional attributes of safety and security are
involved. With safety, the sub-goals of the financial institution's safety and the
customer's safety are further illustrated. These are then decomposed into further
specific non-functional goals of: a) protection of the institution from financial

loss; b) protection of the institution from loss of reputation or public confidence;
c) protection of the ATM customer from wrongful conviction; and d) protection

of the customer from financial loss.

It is shown from the persistent maintenance of this attitude that the financial in-
stitution acts as a kind of functionalisation (i.e. to realise the purpose). However,
while this positively protects the institution from damage to its reputation and fi-
nancialloss, it also undermines the safety goals of the ATM customer who is more
likely now to be accused of attempting to obtain money by deception or not be re-
imbursed for any unauthorised withdrawals - due to them not being believed.

This is further undermined by the vulnerabilities of the functional implementation

of achieving ATM authorisation via an ATM card and PIN - which has been

widely proved to be vulnerable to unscrupulous insiders during engineering or
maintenance of ATMs (i.e. engineering and evolution contexts) or from various
methods by external fraudsters within the deployment context such as:-

• Shoulder-Surfing

• Social Engineering Techniques

• Bogus ATMs

• Skimming Devices

In this case, as discussed in chapter 5, the assumptive claim that all unautho-

rised withdrawals must be the result of carelessness or collusion is in the form
of a deliberate public supposition made to protect the financial institution's own
safety from loss of reputation or financial costs. However, this assumption is un-
derpinned by a lack of coverage representation of the non-functional attribute of

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION21 0

c If ~~ m §~
~ ~ ~ ~~'I e

ffi I 7 o ~~
5 i ~ c ~
8 i I ~ w

"
N

~
~ ~
~ t-s ~~ ;:

......... -e it i" ~I~ I;;c
~ ~.,
::1~ -c ~

Figure 8.3: Authorisation Policy Issue 2

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 211

safety - in terms of the potential undesirable consequences that maintaining this
position can have upon ATM customers.

8.4.2.3 Human Error Analysis - Issue 3

This issue is the simplest of the nine issues. It is simple because it involves only

one goal i.e. safety. It is illustrated in figure 8.4. It can be seen that the sub
goal of safety is the non-functional attribute of protection from financial loss of
the customer. In this case the functionalisation involves the human-reliability
development option of either allowing for human error during an ATM transaction
or not by anticipating the potential for the ATM user to commit a post-completion
error by forgetting to take the cash from the mouth of the cash dispenser. To
promote the non-functional goal involves incorporating a timed retraction of the
cash back into the ATM to prevent passers-by or subsequent ATM users stealing
the cash. Incorporating this functionalisation promotes accommodation for human
error and protection of financial loss (i.e. hence the plus sign) and omitting it

undermines the non-functional sub goal.

An interesting facet involves how this functionalisation may be omitted from the
engineering domain. This omission may be due to some implicitly shared assump-
tion caused through a lack of knowledge about the deployment context or some
constraint on that particular thinking episode concerning this human-reliability
issue. In the diagram in figure 8.4 it has been shown as an assumption that ATM

customers are hardly likely to forget to take their cash at the end of an ATM cash
withdrawal. This, however, under represents the non-functional attribute of safety
consequences (with respect to loss of cash) that the ATM customer can experience

with this failure.

8.4.2.4 Opportunistic Theft - Issue 4

This issue is a kind of extension of issue 3 - concerning the retraction of cash
back into the ATM. It is illustrated in figure 8.5. In this case it was reported in
chapter 5, that unless the cash retracted back into the ATM is audited, it is pos-
sible for ATM users to remove part of the dispensed cash before retraction. Two

CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION212

~; 0' i.~o ~<~~~1 ::i~~ ~~+v.: 1-

j

-, ".

Figure 8.4: Human Error - Issue 3

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION213

non-functional goals are of interest in this issue. Firstly security, and secondly
safety. With regards security, a particular sub-goal relevant to this issue concerns
the integrity of the accounts. An important sub-goal of this is to ensure effective
auditing and recording of all ATM transactions so that any physical money devia-
tions can be subsequently traced. This therefore involves two possible functional-

isations to fulfill these goals. Either money retracted is to be carefully audited or
not. If it is, then this directly promotes traceability and the integrity of accounts

(i.e. hence the plus sign). If not then it directly undermines the traceability and
integrity of accounts (i.e. hence the minus sign in the figure).

It can be seen that if this functionalisation is not employed then it can potentially
undermine the safety concerns of the financial institution - in terms of the non-
functional sub-goal of protection from financial loss of the institution from op-
portunistic theft from the deployment context. Employing this functionalisation,
however promotes the safety sub goal.

Finally, it is shown in figure 8.5 on the following page that if this functionalisa-

tion of auditing and recording retracted cash is not anticipated by the engineering

context it may have resulted from some implicit assumptive reasoning that when
cash is retracted it is solely because the ATM user has unintentionally forgot to
take their cash i.e. a genuine mistake. In such cases it is reasonable to assume
that all of the requested cash will be retracted. The choice of omitting extra trace-
ability functionality is demonstrative that this implicit assumption possibly results

from an under representation of safety concerns of protecting the bank institu-
tion from potential financial loss from such opportunistic theft by legitimate ATM

customers.

8.4.2.5 Obscure Security Flaw Conflicts - Issue 5

Recall from chapter 5 that this was identified as one of the more complex examples

and this is certainly illustrated in figure 8.6. Three CBS contexts (Le. deployment,
engineering & utility) are involved, along with four dependability attributes of

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 214

/1.

.

~~~~A ~ r~
<~~

Figure 8.5: Opportunistic Theft - Issue 4



CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION215

+

0--0-0 ", \, ,,

,,, ,
\~ ,

", \, \, ,,,
E-<'>< 1

§
U
o

'I Z
,/: ffi

,,../ 1 t:3
1 25
1 0 I
, Z f
1 ~,, ,, ,
\~'

", \, ,, ,
I ,

I ~

~o
U
E-<

6J
~oI..J
1il

,Cl ', ,, ,
\. '

I

)

~,: I

+

.------------,

" -:;
~I-

>1 ~ ~
"~: 4) e-,

, ~~Ii ~g ,
~I. ------.'

~'"------'''''''

Fizure 8 6' Obscure Securitv rnnflirt T~~IJP Ci



CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION216

safety, usability, reliability.l and security.

A particular aspect relating to assumptions, with this issue, is how inductive rea-
soning, within a particular context, can result in shared contextual or knowledge
based assumptions. In this case, the generic HeI engineering knowledge of pro-
moting usability by always allowing the user, interacting with the computer sys-

tem, to completely undo the transaction so that unanticipated human errors and
conditions (i.e. discussed in chapter 5) can be recovered from (and hence pro-
mote reliability - in terms of transaction error recovery). This inductive premise
results in the engineering domain prioritising the goal of usability - to always al-
low complete transaction undo without ever really being aware of, how, in doing
so, antagonistic (or conflicting) dependencies arise with customer safety and se-
cure authentication procedures within the specific context of an ATM application.
In this respect, as discussed in previous sections, the assumption does not really
exist, as an argumentation supposition (or presupposition), in the mind(s) of the
engineer(s), rather it becomes a shared constraint upon their particular thinking

episode about promoting usability (and indirectly reliability as contributing crite-

ria justifacation). This is an important point to state, as the qualitative interdepen-
dency reasoning and operalisations (or implementation) claims enforced in figure
8.6, would imply such an argumentation (either internally within a particular en-
gineer or collectively between engineers) has actually taken place. Here then, it
is possible to argue that this implicit assumption results from an over-emphasis
placed upon usability criteria and user error-recovery that failed to detect that
when user authentication is required a user should never be able to perform a

complete transaction undo operation until after they have successfully authorised
themselves. Other than this, during the authentication operation, any failed autho-
risation attempts (i.e. in this case via PIN code) should be permanently recorded
if the integrity of the security policy is to be maintained.

5In this case reliability is promoted through a subgoal (not shown for space reasons on graph)
of transaction error-recovery.



CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION217

8.4.2.6 Interaction Consistency and Completeness - Issue 6

This issue relates to ensuring that the flexibility of the embedded software in the
ATM does not extend beyond the firmware or physical limitations of the ATM. It
is illustrated in figure 8.7. In this case, the Daily Withdrawal Limit (DWL) -con-

trolled by the software, is made to be flexible to accommodate the many different
types of accounts by different customers (i.e. this will be stimulated by the utility
context to offer a more flexible customised service to customers). However, over
time, if this exceeds the limitations of the relevant firmware devices - such as the
cash dispensing mechanism and width of the cash slot then erroneous behaviour
is likely to result (i.e. as reported in chapter 5).

Three non-functional goals are involved in this situation. These are reliability,
availability, and safety. With respect to reliable operation of the deployed ATM,
it is important to promote the sub-goal of interaction consistency - in terms
of ensuring that all the controlled composite parts (i.e. software, hardware, and

firmware) are controlled in a consistent manner. The sub goal of interest in this
issue to help this is to ensure that firmware and software interaction consistency
is prioritised. This means that the lower functionalisation of the firmware cash
handling and dispensing mechanisms have constraints, limitations, and flexibility
consistent with the limitations, constraints, and flexibility of the embedded soft-

ware control.

If this firmware/software interaction is not consistently controlled then it will im-
pact unfavourably (in dependability terms) upon a) availability - in terms of al-
lowing customer access to required cash amounts; and b) safety - with regards to
customer(s) potentially losing cash through the banking institution not believing
that the inputted cash requirement (or part of) was not dispensed.

With regards to contextual and assumption issues, it can be argued that this may

arise in the engineering and/or evolution contexts where the engineers involved
assume that their responsibilities only extend to embedded software control flex-
ibility of the Daily Withdrawal Limit (a separation of concerns issue). It can be



CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION218

!Cfr-O--O
1\\

§
iO

~
lE

~
...l Z-e Si
~ inc
'" ::Il-

ii "::; ~
Ii:

'< SiQ

•

Figure 8.7: Interaction Consistency - Issue 6



CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 219

appreciated that such assumptions, depending upon the nature of the engineer-
ing organisation, could be either made in: a) an implicit unquestioned manner -
perhaps due to the culture, structure, or working practices of the particular or-
ganisation in a collective way that results in the software engineers collectively
assuming that consistency between the firmware and software is not thier respon-

sibility; or b) may even be explicitly considered and reasoned about but eventually
it is supposed, as a simplifying reasoning mechanism, that the utility context will
not extend DWL to beyond the maximum withdrawal limits imposed by the phys-
ical firmware of the cash dispensing mechanisms. In either case it can also be seen
from this issue that, from a computer-based system standpoint, there is under rep-
resentation of other important non-functional attributes that have interdependent
relationships of how this assumption (either implicit or explicit) will negatively
impact upon safety and availability. Lastly, it should be noticed, from an evolu-
tionary context perspective, that, as the embedded software DWL are extended
beyond the physical firmware limitations, the assumption will inevitably become

invalidated in certain circumstances.

8.4.2.7 State Representation Completeness - Issue 7

This example is similar in some respects to issue 6. It concerns the need for
adequate state representation completeness of the embedded software control to
ensure reliable behaviour of the ATM. It is illustrated in figure 8.8. In this case the
need to represent the physical state of the amount of cash in the cash magazines
is necessary if the ATM is to avoid dispensing 'fresh air' while debiting the ATM

customer for the full amount.

Three non-functional goals are involved. These are reliability, availability, and

safety. With regards to reliability, it is important that the need to represent the state

of the cash magazines is prioritised if the non-functional sub goal of reliability (i.e.

state representation completeness) is to be represented or promoted. This requires
the functionalisation goal of ensuring a software state representation of the cash
magazines. If this is functionalised then it directly promotes both: a) availability
_ in terms of promoting the sub goals of ATM customer access to required cash



CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION220

amounts; and b) safety - in terms of protection against the ATM customer losing
money - if the financial institution later does not believe that the ATM short
changed the customer. Equally, if this functionalisation is not employed then it
impacts on both availability and safety sub goals in a negative manner.

With regards to contextual and assumption issues, firstly, it can be seen that such

an assumption will tend to emerge from the engineering context and possibly con-
siderations from an evolutionary context perspective. Secondly, the assumption
may well result from them restricting their responsibility to only software con-
cerns believing that any state representation of the cash magazines is outside their
scope of interest and resides with the system or firmware engineers (i.e. a sep-
aration of concerns issue). Either, that, or they may (perhaps) reasonably assert
that the day to day servicing of the ATM will ensure that sufficient cash is always
available. Again, it can be appreciated that such an assumption could be made
in either an unquestioned implicit manner, or, even if explicitly considered, be
used as a simplifying assumption - depending upon the engineering context's

particular structure or culture, etc. In either case, it can be suggested that such
an assumption can be viewed as a lack of a sufficiently holistic and integrative
computer-based system perspective which fails to adequatly represent the nega-

tive influences and interdependencies of other important non-functional attributes
of customer safety and cash availability. Finally, it can also be seen that such an as-

sumption has an evolutionary dimension (in terms of servicing and maintenance),
as while the assumption may be viable most of the time, it will periodically be-
come invalidated when the cash magazine goes empty or so low that they cannot
fulfil an ATM customer's cash withdrawal requirement.

8.4.2.8 Environmental Adaptation Issues 8 and 9

This issue relates to the changing temporal and geographical environments of
ATMs. It has been an ongoing strategy of financial institutions to offer more ubiq-

uitous and remote access to ATMs over the past 20 years or more. However, as
the goal-analysis in figure 8.9 reveals this introduces important computer-based
system dependability issues - in terms of a wider computer-based system con-



CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION221

~ §_,
0ai ~

'" 5:;l ~'"~ ~
~i ~

"' ~ .-"
" "r:: ~
'" ffi

r\~ :>

'" 0_, gd,. u

:;! ~
~ -e

~
D
2;

"'"

Figure 8.8: State Representation - Issue 7



CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION222

ception that includes considerations of not only how different purpose ascriptions
can be attributed to non-functional attributes, but also the changing deployment
context issues within the specific ATM application domain.

The non-functional goals of interest involve availability, safety and security. In

terms of availability, offering both ubiquitous 24 hour access and/or access at re-

mote locations can undermine other important non-functional goals of: a) safety
- regarding the increased potential for physical attack upon ATM customers to
get access to their accounts; and b) security - as off-peak and/or remote ATMs
are likely to become targets for gaining fraudulent access without being seen
or looking suspicious by wearing disguises to circumvent any ATM cameras or

CTTVs.

In order to help prevent this it would be necessary to introduce some function-
alisation that reflects the changing temporal or geographical ATM environment
by reducing or restricting access to ATMs in such off-peak or remote locations.

This would reduce the potential for legitimate ATM users to use such ATMs and
it would not necessarily impact unfavourably on ATM availability as most legiti-
mate ATM users would rarely choose to use such ATMs at such times or locations
anyway (i.e. hence both the plus and negative sign on the reduce/restrict func-
tionalisation relationship). It would, however, impact favourably upon the non-
functional sub goals of confidentiality of accounts (i.e. security against fraudulent
account access) and protection of customer from physical attack (i.e. safety).

In terms of contextual and assumptive considerations it is obvious that the util-
ity context would be motivated to explitly assert that ubiquitous ATM access is a
positive customer service attribute as it gives an overt impression of proficiency

for the financial organisation. Most the time, this is a complementary view of ser-

vice availability when considering the more specific dependability definition of
readiness of service. However, this explicit assertion underpins a different set of
valuing criteria and priorities that make a different purpose ascription to the non-
functional attribute of availability, by the utility context, when specifically con-
sidering the deployment nature of the ATM domain. Here, the interpretation, of



CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION223

::!
I--c

'"'"
ae ~ ~ >-8:;: >-c. z~e Ii: "' -e SI<;:; :3 Q §8~~ z;

0 -e8~ ::2 I- '"< ::2 ;:!1

~ r> I-
U ~-e :;;

5
I<
8

Figure 8.9: Attack and Fraudulent Access Concerns - Issues 8 and 9



CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION224

I~ IMPLICIT EXPLICIT SHARED INY ALIDATED

ASSUMPTIONS ASSUMPTIONS ASSUMPTIONS ASSUMPTIONS

D

.

,

UNDER ISSUE 3
ISSUE4 ISSUE 2 ISSUE 3 ISSUE6

REPRESENTATION ISSUE 6 ISSUE6 ISSUE 6 ISSUE 7
OF NFGOAI.S ISSUE 7 ISSUE 7

OVER

REPRESENTATION ISSUE 5 ISSUE I ISSUE 5
OF NFGOAI.S

DIFFERENT

PURPOSE ISSUES ISSUE K

ASCRIPTIONS ISSUE 9 ISSUE9

OFNFGOALS

Figure 8.10: Assumption Types and Evaluated Causes

promoting a positive commercial customer service imperative, can result in nega-

tive deployment consequences. The occurence of which, demonstrably reflects a
failure to provide a more integrative and holistic computer-based system concep-
tion and evaluation of how offerring a ubiquitious service anytime and anywhere
can negatively and undesirably impact upon important non-functional attributes
of customer safety and account security when considering the ATM application
domain. Furthermore, this is another example where assertive assumptions that
''ATMs are safe and secure to use anytime and anywhere" is too encompassing
and can subsequently become invalidated.

8.5 ChapterSummary

In this chapter a discussion of the expected beneficial effects of a goal-diversity
process intervention has been presented to provide greater assumption detection
coverage when considering the extended boundaries of a computer-based system.



CHAPTER 8. DISCUSSION OFA GOAL-DIVERSITY PROCESS INTERVENTION225

Research on goal-setting has provided robust examples of how both behavioural
and cognitive human performance can be increased. It therefore offers definite
potential for improving the conceptual and motivational performance of human
developers, as necessary input resources, within the software creation process. In
order to improve the dependability of computer-based systems, however, requires

a greater and more encompassing creation process-oriented approach that accom-
modates for such influences as different purpose and meaning ascriptions as well

as different priorities and emphasises of issues during the creation of such soft-
ware systems. Adopting a qualitative process-oriented view of non-functional at-
tributes introduces characteristics that are not only important in representing such
computer-based system influences, but are also intrinsically important to improv-
ing the dependability status of both the resultant artifact and creation process when
they are used as a systematic driver of the many complex development decisions,
choices, and trade-offs that are involved in any real-world software development
situation. An existing non-functional requirements methodology was introduced
and applied in this chapter to demonstrate the expected envisioned assumption de-

tection benefits that could be expected from a goal-diversity process intervention.

It was selected because of its suitability for representing, reasoning, and record-
ing complex information visually in an elaborated form that would not be easily

captured using a textual format. It is already well known from many years of
research in applying this existing methodology that ensuring that non-functional
attributes drive the software creation process in a systematic way significantly
improves the eventual quality of the eventual software artifact. However the ex-
pected beneficial effects of a goal-diversity process intervention go further than
this by overcoming some implicit shortfalls in this existing methodology that have
been highlighted in previous chapters of this thesis. These include the inclusion of
human redundancy and human diversity; improved likelihood of implicit assump-

tion detection; reduced cognitive overload in having to consider non-functional

attributes; and greater specialism, experience, and expertise in promoting non-

functional attributes. The nine ATM issues from chapter 5 were then exemplified
using a slightly adapted form of this existing methodology to demonstrate that, at
the envisioned synthesis stage of the goal-diversity process intervention, greater
overall computer-based system assumption coverage may be possible.



CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION226

Figure 8.10 illustrates a summary table of possible flawed assumptions that could
have resulted in reduced computer-based system dependability of ATMs when
conceived as computer-based systems. The table highlights the broad categories
of assumption types identified in chapter 6, along with the possible non-functional
attribute failures of the creation process in not detecting them. Contained within

appropriate sections of the table matrix is the specific ATM issues evaluated in this
chapter and it reveals that a number of assumption types can be interpreted as the
result of under/over-emphasising non-functional attributes or through different
computer-based contexts-of-interest ascribing different meanings and purposes
to them. Such examples, evaluated in this chapter, begin to suggest that a goal-
diversity process intervention can help gain greater assumption coverage detection
via adopting a qualitative process-oriented approach that simultaneously lever-
ages human redundancy/diversity while representing and reasoning about non-
functional attributes in a more systematic manner.



Chapter 9

Software Inspections and Physical
Searching

227



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 228

9.1 Chapter Introduction

In chapter 8 a goal-diversity process intervention was proposed and discussed
that utilises the characteristics of non-functional attributes to help detect harmful
assumptions that underpin many development decisions that can compromise the

overall dependability of the creation process, and ultimately, the eventual depend-

ability of the created software artifact. As the ATM examples in chapter 8 reveal,
this is particularly true when considering the wider system view of computer-
based systems. As inspection plays a key central part in the proposed process
intervention, it is important, as a pre-consideration for designing and develop-
ing a simulation model for chapter 10, to discuss the many issues and aspects
involved in software inspections. Furthermore, since chapter 6 highlighted that
assumptions are intrinsic to conceptual reasoning, and it can be argued that detect-
ing them can be loosely related to a searching type task, a brief literature of the
longstanding research area of search theory is also covered as it provides categori-
sations and terminology that can be considered useful in designing and developing

a simulation model in chapter 10.

9.2 Software Inspections

As one of the issues covered in the previous discussion of chapter 8 concerned
assumption detection, it is appropriate to briefly cover a well established and anal-
ogous detection process to detect software faults - known as "Software inspec-
tions. " Software inspections of artifacts and documents has emerged as one of the
most effective ways to help assure the quality of software artifacts.

Program code reviews, in the form of informal peer review, have long been prac-
ticed [64]. Software inspections, on the other hand, represent a much more struc-

tured and formal approach. Fagan [155, 156] is credited as providing the original

underlying theories, structure, and research in this area. His original research
found that a combination of design and code inspections resulted in a detection
effectiveness of 82% of all known defects in the artifact [155]. Later research
conducted reported a even higher 93% detection effectiveness of all known de-



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 229

I
SOFTWARE

IINSPECTION

TECHNICAL MANAGERlAL
DIMENSION DIMENSION
GOAL: GOAL:
Characterize Characterize
different the effects
inspection inspection
methodological have on the
variatiCJng project and

vice versa

1 PROCESS E.fFORT

1 PRODUCTS DURATION

1 TEAM ROLES. 1SIZE.A.lIID QUALITY
SELECTiON

~
READING 1"ffiCHNlQUES OTHERS

Figure 9.1: Software Inspection Taxonomy [source [157]]

fects [156].

Although initial research primarily focused upon inspections of design and the
program artifact, the inspection process has expanded to include inspections of
other 'upstream' artifacts - such as problem definitions, customer requirements,
and developer requirements connected with the software process phases of re-
quirements engineering and specification.

9.2.1 The Inspection Process

In an attempt to structure and organise the software inspection phases into the

broader software process to aid further inspection research and facilitate inspec-

tion planning in software development projects, Laitenberger and DeBaud [157]
conducted an exhaustive survey of the software inspection literature - encom-

passing nearly twenty years of research and considering more than four hundred
articles. In discussing the software process and related dimensions, this chapter
adopts a subset of the structured life-cycle, concepts, and relationships taxonomy



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 230

they devised. A graphical subset adaptation of their taxonomy is reproduced in
figure 9.1 on the page before.

9.2.1.1 The Technical Dimension

The first dimension to consider in the technical dimension of software inspections

involves the inspection process itself. The inspection process typically involves
four stages of: a) Planning; b) Defect Detection; c) Defect Collection; and d)
Defect Correction. Furthermore, although not part of these generic inspection
stages, an introductory overview and process follow-up stages are sometimes also

introduced.

Process stages

Inspection Planning. This involves the responsibility of the project manager (or
delegated technical expert) to organise, prepare, coordinate and control the sub-

sequent stages. This may be in strict planning terms of specifying who and how

many inspectors will be involved and how long and how many times the artifacts

will be inspected, along with administrative features, such as, how the defects
will be recorded, evaluated, and collated. Additionally, the planning phase may in-
volve a technical overview phase where the artifact(s) to be inspected are prepared
and explained to the inspection team in order to emphasise particular application
domain issues and expedite learning and understanding of the artifacts. Gilb and
Graham [158] referred to this planning phase as the "kicking-offmeeting".

Defect Detection. This is the central stage and represents the core purpose of the
whole process. The purpose being to allocate both inspectors and time to carefully
scrutinize the artifacts in order to identify potential defects. This stage may be per-
formed by non-interacting inspectors working alone or performed collectively in

the form of an inspection meeting. Additionally, there may be both an individual

inspection stage (sometimes referred to as the preparation phase) and a subsequent
meeting stage. Whether to have just one individual phase, or one collective meet-
ing phase, or both, has proved to be a controversial issue (see subsection 9.2.2 on
page 239) as it is difficult to determine which is the best configuration and to jus-



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 231

tify both must result in greater detection effectiveness as it introduces time/cost
implications that can (in some cases) increase overall project costs and schedule

extensions.

Defect Collection. Because, in most software inspection processes, more than one

person participates it is necessary to collect and document the individual defect

detections made by the inspectors once the defect detection stage is completed.
This stage inherently involves the evaluation of individual defect detections made
by the inspectors as: a) disagreements may be involved in describing a defect and
this will need to be investigated; and b) it is common for individual inspectors to
identify defects that actually don't exist (often termed false positives). One benefit
of performing the defect detection stage as a collective meeting is that such prob-
lems can be quickly discussed and reconciled. If, on the other hand, the defect
detection stage is performed individually, then correction can involve a variety of
formats. One variety is to hold a highly structured collection meeting which is
managed and focused upon the issues of defect evaluation and correction. An-

other variety is where only a few (more experienced) inspectors take part and is
chaired by a moderator. Finally, the issue of defect evaluation and correction can
be held in isolation through ongoing discussions and correspondence by remote
communication methods (i.e. email etc). As with the defect detection stage, the is-
sue of holding meetings can, in some instances, increase costs and extend delivery

schedules.

Defect Correction. This is the last phase in the inspection process and involves
the reworking and removal of defects detected, evaluated, and agreed as undesir-

able attributes in the artifact. An additional phase may involve a follow-up stage
where the authors of defect correction activities are checked to see that defects de-
tected and agreed have been resolved in the artifacts. This is sometimes performed

by another inspection member or someone (i.e. inspection leader or moderator)

appointed with the responsibility.



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 232

The products

As mentioned earlier, software inspection was originally focused on design and
code artifacts. However research into the economics of defect detection and cor-
rection involved in the software development life-cycle [cf. Boehm [100]] identi-
fied that leaving the activity of defect detection and correction until late in the soft-

ware development life-cycle can exponentially increase the correction/removal
costs involved. As a consequence, software inspection has been introduced, in
recent years, into 'up-stream' software artifacts of requirements documents and
requirements specifications also. Listed, defect inspections involve the following
type of software life-cycle documents :-

• Requirements Documents;

• Specification;

• Architecture Models Documents;

• Design Models and Documents;

• Implementation Code;

• Test Cases;

It can be seen from this list that software defect inspections now encompass the
entire span of possible software artifacts produced during the software engineering

life-cycle.

Inspection team

One of the fundamental aspects that define an inspection approach from other in-
formal code review methods (i.e. walkthroughs, etc) is the formalisation of team

roles - in terms of what functions and responsibilities each bring to the soft-
ware inspection process. Laitenberger and DeBaud [157] identify seven possible

contributing team roles within the inspection team, as follows:-

1. Organizer: The organizer is charged with the responsibility of inspection

planning;



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 233

2. Moderator: The moderator takes the role of technical leadership, within
the inspection process, and is responsible for ensuring the procedures from
each stage are followed;

3. Inspector(s): Inspectors, as the name implies, are responsible for scrutiniz-

ing, detecting, evaluating, and correcting software artifact defects;

4. Reader/Presenter: The reader or presenter is responsible for describing the
artifact(s) to be inspected to expedite the learning and understanding of the
artifact to the other inspectors involved;

5. Author: The author is responsible for the preparation and (any) corrections
that are necessary for the artifact to be inspected. Additionally, he/she is
responsible for supporting the reader/presenter if any questions are asked or

posed by the inspectors;

6. The Recorder: The recorder is responsible for the logging of all defect

detections made by the inspectors;

7. The Collector: The collector is responsible for consolidating all the defects
detected by the inspectors.

It should be noted from this list that a member of the inspection team may be
responsible for more than one role in the inspection process. This is obviously the
case with inspectors as most the members of the inspection team will be involved

in this role.

The size of the inspection team is a subjective issue and largely depends upon
such factors as the size of the development product, the experience of the inspec-
tors involved, and the commitment of the wider organisation to software quality

assurance etc. A further, but related issue, is who to assign to the inspection team
and what members of the team are best suited and sufficiently experienced to un-
dertake what roles? Inspectors should be sufficiently knowledgeable of the soft-

ware system being developed, and experienced, in the broader sense, in order to



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 234

help ensure the success of the inspection process. However, wider project and or-
ganisational issues of staff availability and training issues also constrain/facilitate
such decisions. For instance, although inexperienced project members may ex-
tend inspection durations and reduce initial defect detection effectiveness, it has
also been recognised that the software inspection process is a good opportunity to

develop and train inexperienced staff.

Reading Techniques

Since artifact defect inspection depends upon the syntactic, semantic, visual, and
logical understanding of textual/graphic/symbolic based documents (be there tex-
tual documents, design models, or code, etc) it has been recognised, within the
software inspection research area, that reading/reviewing techniques play an im-
portant influence in both individual inspector defect detection and improving the
performance, in terms of detection effectiveness and efficiency, of the inspection
team - as a whole. The selection of a particular reading technique will largely

be one of the responsibilities of the inspection organiser.

The following reading techniques make-up the many reading variations that have
been developed in the field of software inspection over the last twenty years or so.

Ad-Hoc Reading: This is one of the most used techniques. As the term suggests,
no guidance, rules, or support is provided with the software artifact - in terms

of how the inspectors are to conduct the inspection of the artifact. Additionally,
no inspection process intervention takes place - in terms of allocating additional
or different artifact representations or information to certain inspectors. With this
reading technique all the inspectors receive the same representations and informa-

tion.

Checklist Reading: These are the next most popular. As the term suggests, a list

of questions relating to important general issues are provided - in addition to the
software artifact to be inspected. This extra information is the responsibility of the
role of the author of the inspection team to produce. Whilst checklists provide ex-
tra information, their use has often been criticised as only providing very general



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 235

coverage and make demands of personal inspector experience and/or knowledge
of the domain for effective illumination and detection of faults. Another criticism
leveled at the use of checklists is that they can constrain exploration of the defect
space down to only those on the checklist.

Stepwise Refinement Reading: This is a reading technique that is much more

structured and requires greater specific representations and information. This ap-
proach requires the inspector(s) to abstract the function from the coded artifacts.
This is repeated until all function points of the artifact have been covered. These
are then compared with the specification to help detect any defects.

Active Design Review Reading: This reading technique also offers greater spe-
cific support to the inspector. With this approach, inspectors are given clear roles
and responsibilities to ensure a more active, rather than passive involvement. Be-
cause of the active nature, this technique is inherently suited more towards col-
lective inspection meetings than individual inspection effort. It consists of three

steps: 1) an overview step; 2) a defect detection step - where the author en-

sures active participation through asking questions to guide the inspectors. These
questions are carefully chosen to ensure that an in-depth elaboration and under-
standing of the artifact has been achieved by the inspectors in their answering.
In some cases this will even require the creation of assertions or extracts of lines
of code to demonstrate full understanding; and 3) defect collection is performed
during the meeting. It should be pointed-out, however, that this technique breaks
up the inspection meeting into smaller sub meetings also - where specialised
consideration is also given to individual quality properties;

Scenario-Based Reading: More recently, research in inspection reading tech-

niques have been focused into providing custom guidance in the form of detailed

scenarios to limit the individual inspectors attention to the detection of particular

defects - as laid-out in the custom-based scenario. Such an approach involves
a significant process intervention, as inspectors are given deliberately different
representations and information about the software artifact under scrutiny. How-
ever, such deliberate process interventions place a high reliance upon the qual-



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 236

ity, design, and content of the scenario representations and information provided.
Scenario-based reading techniques have a number of subtle variances, as listed

below:-

• Defect-Based Reading: This scenario-based variation is aimed at providing
different inspectors with scenarios that focus their attention upon different

defect classes relevant to the application domain concerned. This may also
include highly customised sets of questions a given inspector must answer.

• Perspective-Based Reading: This scenario-based reading technique starts
with the assumption that the software artifact under review should be scruti-
nized from the perspective or viewpoint of different stakeholder(s) involved
with the software system. The underpinning reasoning for such an assump-
tion is that there is no definite or single interpretation of what software
quality represents. As a consequence, the viewpoint of what constitutes,
for example, maintainable or secure etc, may be interpreted and prioritised
differently. For each individual inspector a number of perspective-based

scenarios are created and the inspector must focus upon this view in order
to answer them. So far research on perspective-based scenarios have been
mainly limited to defined roles and stakeholders within the software devel-
opment process (i.e. maintainer, tester, etc).

• Functional-Point-Based Reading: This scenario-based reading technique
generates scenarios in the format of functional point analyses - in terms
of inputs, files, inquiries, and outputs. The functional point scenarios are
combined with sets of questions that directs the attention of an individual

inspector to that particular function.

N.Foid Inspection Reading: This reading approach makes the explicit assump-

tion that when a large group of potential inspectors are split into subsets of smaller
inspection teams, then inspection teams will detect different defects. N-fold in-

spections, in this sense, place a large emphasis upon the role of human redundancy
in the inspection process to increase defect detection and overall dependability
[159]. The approach is particularly advised, by their advocates, to be used upon



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 237

safety--critical applications where the cost of detection may well be outweighed
by the consequent impact of such defects resulting in loss of life or catastrophic
damage to the wider environment. However, its application employs an ad-hoc
reading approach.

9.2.1.2 The Managerial Dimension

Inspection effort

The first consideration in this dimension concerns the amount of effort a software
inspection process is likely to take. The amount of estimated effort must be con-
sidered against a number of other factors. These include: a) the inspection process
effort against the negative effects it will have on project costs and schedule; b) the
positive effects it will have on increasing overall software quality of the system
- through (hopefully) lower residual fault levels (or densities).

By definition, software artifact inspection is a human activity. Therefore, the first

main consideration for the project manager - concerning effort, is the number

and experience of the inspectors involved in the inspection process. However,
there is more to consider than just the issue that the more experienced the inspec-
tors involved then more defects may be found more quickly, as although this may
be the case, it is also true that the more experienced inspectors will (broadly) cost

more money per unit of effort.

Other considerations that can impact upon inspection process effort are less con-
trollable by the manager. These include the size and complexity (difficulty/novelty,
etc) of the software system under development. The larger and more complex this
is - then the larger and more difficult the software artifacts will be to inspect.

This will not only impact upon defect detection effectiveness, but also directly

upon the levels of effort involved.

Inspection Duration

A major management consideration in the inspection process is the interval du-
ration that is created by the software inspection process activities. This can be



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 238

a critical consideration when the project is mission-critical to an organisations
success or there is a strategic time-to-market criticality for delivery of the soft-
ware system. This delay can be created by the inspection process because of:
a) human resources (inspectors and other inspection process roles) employed in
the inspection process cannot be performing other development work; and b) other

human resources and software artifacts not involved in the inspection process may
be dependent upon work to be done by these resources and/or completion of the
inspected artifact before other development work can proceed.

In addition to inspection process duration being influenced by the number and
experience of the inspectors involved, the organisation of the software inspection

process itself can have a direct impact upon inspection duration. An obvious
example is whether the inspection process involves collective inspection meetings
to detect software artifact defects.

One further consideration, not explicitly covered in Laitenberger and DeBaud's

[157] survey of software inspection, is the fatigue effect upon software inspectors.
Bifft and Halling's [160] study of nominal software inspection teams, using di-
verse reading techniques, found, that as individual inspection duration progressed,
inspection defect detection effectiveness tended to decrease.

Software Quality

In software inspection terms, the quality of the software system is directly related
to the number of defects contained in the artifact (i.e. the defect density). Over
the past twenty years or so, Laitenberger and DeBaud's [157] survey reports on
the quality increases - through defect detection during the software inspection
process over a wide range of sources. In terms of defect detection effectiveness

, many of the studies report defect removal rates of between 50-90% of known

defects being detected (one study reported only 38%).



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 239

Detection Efficiency

A final managerial consideration relates to the detection efficiency of the software
inspection process. Defect detection efficiency relates to the number of defects
found in proportion to the inspection effort duration. It is usually expressed as a
ratio of defects per effort duration. In Laitenberger and DeBaud's [157] survey

there appears to be a wide variance of defect detection efficiency ratios, with ra-
tios reported from 0.67 hours per defect detected - up to 11.6 hours per defect
detected. I

9.2.2 Software Inspection Process Loss Issues

Much speculation surrounds whether the defect detection is better suited to an
individual or group activity. In Fagan's [155] original study of software inspection
he argued that a group detection activity allows for synergy to take place during
inspection through the interaction between group members. Fagan explains this
effect as the ''phantom inspector". In conflict with Fagan's view, however, is the

repeated finding that study after study of aggregated and/or group performance on
software inspection tasks continually show that, quite apart from any synergizing
effect (i.e. whole is greater than the sum of its parts), inefficiencies are introduced
that makes group performance, in the defect detection task, diminishing in nature
(i.e. whole is less than the sum of its parts).

To better explain these issues consider the diagram of three performance func-
tions in figure 9.2 on the next page. In 1) the Additive Function, performance
grows predictably and linearly as extra human resources are added. An example
in software defect detection would be where one inspector detects ten defects,
two inspectors detect twenty defects, and so on. 2) the Synergistic Function is

the views originally held by Fagan [155]. An example in software defect detec-

tion is where one inspector detects ten defects, but two inspectors detect thirty
defects, three inspectors detect fifty, and so on. The last example 3) the Diminish-

ing Function is where there exists some inefficiency within the process that results

IHowever, this variance involves different reading techniques, different artifact products, dif-
ferent inspectors, and different phases in the wider software development life-cycle.



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 240

I) ADDITIVE F1JNCOON 2) SYf'..'ERGISllC RJNCl'ION 3} DIMIl',ISHING FUNCflON

in what is often termed ''process-loss ". An example of this type of function is
where one inspector detects ten defects, but two inspectors detect only eighteen,
three inspectors detect between them only twenty four, and so on. With this type
of function there reaches a point where adding extra human resources becomes

virtually pointless.

Figure 9.2: Three Group Performance Functions

In software inspection, research indicates time and again that the defect detec-
tion task results in a diminishing function [cf. [159], [160], [161]]. In order to

better understand why such process losses occur it is necessary to understand the
nature of the task and what is deemed a desirable feature or output that should
emerge from the task. With software defect inspection, process losses occur due
to individual inspectors detecting the same defects. So, for example three in-
spectors each detect ten defects each, but at the later defect collection phase, it is
realised that inspectors 1 and 2 found two defects in duplicate, inspectors 1 and
3 found two defects in duplicate, inspectors 2 and 3 also found two defects in
duplicate, and all three inspectors found one defect in triplicate. When we take
these duplicate and triplicated detections into account, we can see that, although

they detected ten defects each, they did not actually find thirty defects in total.
When we calculate this out, in terms of unique defect detection, collectively, they

only detected 15 defects uniquelly and duplicated/triplicated detections on 7 other
defects. So only a total of 22 different defects were actually found between the



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 241

three inspectors - not 30.2 As more human resources (i.e. inspectors) are added
to the task, this overlapping of detection tends to further increase.

9.3 Search Theory

In this section a brief overview of search theory is provided - along with rel-
evant comparisons with software fault inspections in the software development
process. Search theory emerged from the military needs of the Second World War
to improve V-Boat detection in the north Atlantic. It provides a long-established
underlying theory and terminology which is useful in considering human redun-
dancy and human diversity aspects within a fault detection context. The detailed
survey by Benkoski et al [162] is used to provide the essential ideas, notions, and
theories. However, other references are also used to provide more specific ideas
and examples.

Subsection 9.3.1 provides a brief history of the emergence of search theory and
the main pioneers in the field. Subsection 9.3.2 describes the ideas and terminol-

ogy that relate to a specific branch of search theory known as one-sided searches.
Subsection 9.3.3 provides additional search theory ideas and terminology relating
to two-sided searches. Although the latter is not so directly relevant to the sec-
tions that follow, it is still a large and significant area in the search theory field
and is therefore included for reasons of completeness. Subsection 9.3.4 then in-
troduces the theories and terminology that will be introduced and used throughout
the chapter 10- along with limitations that must be acknowledged when consid-
ering conceptual, rather than physical searches.

9.3.1 Brief History

Search theory is recognised essentially as one of the generic mathematical models
that have emerged from the area of operational research (OR). The underlying

2This can be calculated as follows: i) 3 (triplicated detections) - 2 (inspectors) = I; ii) 12 (du-
plicated detections) / (2 inspectors detections) = 6; iii) I + 6 = 7 (triplicated/duplicated detections);
iv) 15 (unique detections) + 7 (triplicated/duplicated detections) = 22 total different detections.



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 242

theories and terminology were initially developed from the necessities imposed
by the Second World War in order to counteract the threat of German U-boats
sinking merchant and military ships of the VSA and UK in the North Atlantic.

This work was essentially undertaken by the VS Navy's Antisubmarine Warfare

Operations Research Group (ASWORG) in 1942. Bernard Osgood Koopman (cf.
Morse [163]), along with a number of colleagues at ASWORG, are now largely
credited with providing the pioneering theoretical work that launched search the-
ory as a practical technique for conducting physical searches and undertaking
search planning.' This early theoretical work was later collected together into
a single publication authored by Koopman entitled "Search and Screening" (cf.
Koopman [164]). Search theory recognises a number of important underpinning

concepts in its application. These are:-

• a prior distribution on target object locations;

• a function relating search effort and detection probability;

• a constrained amount of search effort;

• and the optimization criterion of maximizing probability of detection -

subject to a constraint on effort employed.

As well as military and search and rescue fields, search theory has been utilised
to provide insights into many other application contexts. These include missile
detection; oil detection for the petro--chemical industries, and mining, etc.

Historically, since its theoretical inception, practitioners have recognised that search

theory has broadly gone through four generations. These are:-

1. Classical Search Theory (1942-1965): where search theory primarily fo-

cused upon one-sided physical searchers;

3Search Theory today is not only used by the military, but is also practised by a number of civil
organisations - such as mountain rescue, coastguard services, etc.



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 243

2. Mathematical Search Theory (1965-1975): where mathematical analysis
was improved and extended. This included the introduction of two-sided
search-theoretic issues also;

3. Algorithmic Search Theory (1975-85): In which search theory was im-

proved and defined into identifiable proceduralisations that could be per-

formed on computers;

4. Dynamic Search Theory (1985-present day): with the advent of more
sophisticated computer hardware/software, search theory was extended into
the fields of sophisticated simulation and decision-support modelling to im-
prove the utility of its application and increase and extend the boundaries of
knowledge of the field generally.

9.3.2 One-Sided Searches

One-sided search theory is essentially concerned with searching for a target object

that is 'passive' in nature. This means that the target object of interest in the search

does not react to the searcher in any intelligent way in order to avoid or prevent
detection. In this search situation the goal of the search is normally to maximize
detection of the target object of the search and minimize cost/time involved - in
terms of effort expended in detecting the target object, by the searchers.

However, although the target object is passive in one-sided searches, it need not
be a stationary object and target objects may be either mobile or static. With a
stationary target object, the problem is to allocate an optimal amount of effort
to detect the target object. Secondly, with stationary target objects, an exponen-

tial detection function is assumed. Frost [165] highlights that actually there are
three detection functions possible in one-sided searches. These are shown in fig-

ure 9.3 on the following page.

The linear function called the "definite range" function represents a situation

where the search process can be highly controlled and can be factored out with
resources employed to achieve a 100% detection at 100% coverage of the search



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 244

1

0.9

c 0.8
0
'';::
u 0.7(IJ....
(IJ
Cl 0.6
'5
.~ 0.5

.s 0.4ttl..c
0 0.3~
n,

0.2

0.1

0
0

v v v v

v

'"

c Deinite Range
• Inverse Cube
'" Exponential

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Coverage

Figure 9.3: Probability of Detection Functions

area. The exponential search function reflects a search situation which, by contrast

to the definite range search, has uncontrolled negative influences. This variation
results in the search resulting in diminishing returns over larger and larger cover-

ages of the search area. The inverse cube search function reflects a search process
which is (in Koopman's own words) "a middle case", that has been empirically
observed in many physical search situations." The inverse cube search function
approaches 100% detection at search space coverages of about 200%. It can be
clearly seen from the graph in figure 9.3 that while the inverse-cube search is as
effective at detecting objects over larger coverages, it is not as efficient upon finite
search resources employed as the definite range search function.

One-sided searches have a number of extensions when later generation search

theory research is considered. Three later directions have been concerned with:

a) changing the goal of the search; b) target objects can be in multiples and the

assumption of persistence of the object can be disregarded (i.e temporal target .. '
40ne example is the detection of If-boats and warships from the air, but many other examples

also exist



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 245

objects); and c) the assumptions surrounding the detection sensors (i.e. searchers)
of a single searcher can be dropped. Additionally, uncertain or imperfect sensors
can be modelled.

9.3.3 Two-Sided Searches

By contrast with one-sided searches, two-sided searches are 'evasive' in nature.

This means that the target object has intelligence and seeks to actively avoid de-
tection by the searcher. Two-sided search theory, therefore, has much in common
with game-theory in this regard. A number of variations are observable in two-
sided search theory. These include.-

• Where the target object has either a) complete information of the searcher's
search strategy or b) is completely ignorant;

• The actual pay-off functions can vary from the probability of detection, to
probability of capture, to time to capture or detection, etc;

• The target object may be mobile or immobile. In the later case, the target
object can only evade the searcher by choice of initial location or position

in the search space;

A number of search games are well known and exemplify two-sided search the-
ory. One in particular is the "Princess and the Monster". As the title suggests,
the princess is the pursued object and the monster is the pursuant searcher. The
princess must try and avoid capture by the monster and, as listed above. A number

of variations on the search theme exist.

9.3.4 The Search Process

Whether one-sided or two sided searches are involved, the search process usually
involves three factors: a) the search environment; b) the sensors (Le. searchers) ;
and c) the target objects (cf. Champagne [166]). In addition, the goal of the search

process is to attempt to optimize the pay-off function. While these can vary be-
tween different search situations there is usually a focus upon maximizing search



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 246

SEARCH ESVIROllr.'MES"T

1111111111111

OD
~

SE~SOR CAPABILITY
OBJECTS

SE.,",SORS

Figure 9.4: Essential Factors in Search Process

effectiveness (i.e. number of target objects detected) and minimizing search effort
involved (Le. search effort translates directly in 'real-world' searches into time
and cost but can also have safety critical considerations - such as how quickly
can a person lost at sea be recovered (cf. Frost [165]). A search strategy that is as

effective as another search strategy, but uses less effort will normally be consid-

ered the better strategy as it is more search efficient.

In figure 9.4 the main factors of the search process are illustrated along with direct
relationships that exist which are of interest in this chapter. These, along with the

terminology, will be briefly discussed.

The search environment is a fundamental factor in any search situation. It is within
this search space that the target objects will be contained. The distribution and
density of the target objects directly affect search planning since locations or re-
gions within the search space that contain larger densities than others reflects an
uneven object distribution and searching within these particular regions or loca-

tions will, in preference to others with lesser densities, have a favourable detection

effectiveness and efficiency outcome.

The issue of the sensors is also an important factor. A key issue, in relation to
the target objects, is how sensitive or capable are they in detecting the target ob-



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 247

jects? In search theory, sensors (or searchers) can range from perfect through to
oblivious at detecting target objects. Another issue directly associated with the
sensors is how much effort they allocate. Such constraints on effort will directly
affect how much coverage of the search environment can be undertaken. Cover-
age is a key issue in search theory which, at one end, is directly influenced by

particular search strategies, search paths, and search constraints, and at the other

end directly influences the eventual search process functions of detection max-
imization (i.e. detection effectiveness) and search effort resource minimization
(i.e. detection efficiency).

9.4 Chapter Summary

In this chapter the issues and aspects of software inspections and search theory
have been covered and discussed. Software Inspection has a reasonably long his-
tory within the software engineering literature, and has proven, in many cases, to
be instrumental in improving the overall quality of software artifacts, through the

dependability means of fault-avoidance (e.g. detection and removal). Software in-
spection fundamentally incorporates a technical and managerial dimension. The

technical dimension involves consideration of: a) process - the many process
responsibilities for planning, detecting, collecting, and correcting software faults;
b) products - although, initially, introduced to detect code faults, the value and
success of software inspection for detecting faults, has resulted in its application
in many other life--cycle phases such as, requirements engineering, specification,
design, and even test cases, also; c) team roles - since software inspection is
essentially a human activity, various team roles and responsibilities have been de-
vised over the years; and d) reading techniques - there exists a wide range of
approaches to characterising, representing and emphasising how the syntactical,
semantic, visual and logical information can be interpreted and assimilated during

inspection. It has been noted that such predispositioning intervention can play an

important role in improving detection effectiveness and efficiency during inspec-
tion. The managerial dimension involves consideration of: a) effort - how much
effort, and by whom, is always an ongoing and important resourcing consideration
for inspection management, as it can impact positively or negatively upon overall



CHAPTER 9. SOFTWARE INSPECTIONS AND PHYSICAL SEARCHING 248

project schedule and/or budgets; b) duration - the length of time to allow for
inspections is always an important managerial issue as the needs of one project
must be balanced-off against other organisational demands and includes issues of
whether a particular planned inspection process should be individual and/or col-
lective; and c) quality - the overall impact, in terms of value, of including an

inspection phase must always, in the end, be judged both on its immediate qual-
ity impact on the software artifact, and also its longer term positive 'downstream'
creation process impacts on improving the managability of the overall creation
process. Search theory has went through a number of advancements - since
it was first founded during the Second World War. The area primarily consid-
ers physical searches, although, due to its longstanding history, search theory has
produced a useful structured set of categorisations, terminology, and notations that
make it highly useful in preliminarily considering what factors and relationships
are useful in designing and developing a future simulation model for chapter 10.



Chapter 10

Search Simulation Model

249



CHAPTER 10. SEARCH SIMULATION MODEL 250

10.1 Chapter Introduction

In this chapter a search simulation model is used to suggest and indicate the po-
tential assumption detection benefits that may be possible via the employment of
diverse development goals. Section 10.2 draws upon issues raised in the previ-

ous eight chapters in order to provide a design rationale for a simulation model

that can capture a feasible subset of the influences of diverse goals and their con-

sequent effects upon assumption detection. Section 10.3 considers the relevant
verification and validation issues along with the more definite concrete simulation
process issues. Section 10.4 introduces and justifies envisaged modelling configu-
ration issues along with a sensitivity analysis. Section 10.5 then performs a num-
ber of simulation experiments to provide an initial indication of the assumption
detection benefits that may result from such a goal-diversity process intervention.

10.2 Design Rationale

In this section a design rationale is provided for the simulation model. In provid-

ing such a rationale it is necessary to make as explicit as possible the consequences
and impacts for the simulation model's eventual design by unearthing the follow-
ing three aspects: i) what are the alternatives? ii) which alternative was chosen?
and iii) why the alternative was chosen from the set of alternatives. However, as
Chwif and Paul [[167]: p. 450] stress, with regards to removing simulation model

complexity:-

"Since modeling is an abstraction of reality, model results (not
the model itself) should be close to reality, not exactly the same. Who
needs the complexity of reality in the model when that complexity was
what started the project (to begin with)?"

Therefore, implicitly, when providing a rationale, sometimes the design alterna-

tive chosen will be justified upon the basis of removing infeasible and unnecessary
model complexity that would detract from, and undermine, the overall confidence
in the simulation model's eventual output results. Next, it is not always possible to
illuminate a clear set of design alternatives or a clear set of criteria for favouring



CHAPTER 10. SEARCH SIMULATION MODEL 251

one design alternative over another when more than one alternative exists. In such
cases, it is inevitable that the design selection decision is, somewhat, arbitrary in
nature. In these design situations the arbitrary nature of the design decision will
also be made explicit. Finally, the role of the overall objective or goal of the sim-
ulation model is also an important factor in favouring one design alternative over

another.

Robinson [in: Chwif and Paul [167]] notes that, in considering the design pos-
sibilities of a simulation model, there are two fundamental dimensions that need
to be considered. The first is simulation model scope, in terms of the breadth of
phenomenon to be modelled.' The second fundamental dimension involves the
level of model detail, in terms of the depth of phenomenon to be modelled.? It
can be appreciated that two (or more) simulation models can have the same model
scope but have very different levels of detail. Moreover, it can also be appreciated
that when considering model scoping design alternatives, the overall simulation
model's objective(s) or goal(s) playa significant role in providing selection crite-

ria for justifying eventual design alternatives. The role of the simulation model's

objective(s) and its impact and consequence upon modelling scope is provided
in subsection 10.2.2. Finally, in terms of level of modelling detail, the major se-
lection criteria for justifying the eventual design alternatives relate to the need to
remove infeasible and unnecessary complexity that can undermine eventual con-
fidence in the simulation model's outputs. The role of removing infeasible and
unnecessary complexity and its impact and consequences upon the eventual level
of model detail is provided in subsection 10.2.3.

IChwif and Paul provide the example of a manufacturing system. With such a system, mod-
elling scope would concern whether to model the entire facility or just one work-center. If the
entire facility were to be simulated, this would be taking a very wide modelling scope. If, by
contrast, only one work-center process were to be simulated. this would, comparably. be taking a
much narrower modelling scope.

2To continue the Chwif and Paul example with a manufacturing system. if only a single work-
center facility were to be modelled, level of model detail would be concerned with whether to
model: I) processing times; 2) breakdowns; 3) shift patterns; and/or 4) material handling equip-
ment, etc.



CHAPTER 10. SEARCH SIMULATION MODEL 252

10.2.1 Model Goals

As mentioned earlier, in section 10.2, the simulation model's overall goals provide
a significant set of selection criteria for helping determine model scope. In this
section the various approaches to promoting non-functional attributes (including
the proposed goal-diversity process intervention) discussed and illustrated in de-

tail in chapter 8, are rationalised in terms of what is both desirable and feasible to
simulate.

It can be seen from chapter 8, that, including the proposed goal-diversity process
intervention, there are three approaches to considering non-functional attributes
during the software creation process. These are:-

• Ad-hoc Consideration of Non-Functional Attributes: where there are
no systematic aspects or process intervention involved. Non-functional at-
tributes, and their consideration, rely solely upon the arbitrary expertise,
professionalism, and knowledge of the developers concerned. At best, the

nature of the application domain and/or the particular system being devel-

oped may raise certain non-functional attributes as being important,' in the

minds of the developers involved, but this does not constitute a systematic
or interventionist treatment of non-functional attributes;

• Systematic Consideration of Non-Functional Attributes: where non-
functional attributes are explicitly considered. This may be a process orien-
tated or product orientated approach that provides for early and continued
representation throughout the development process;

• Goal-Diversity Process Intervention: where non-functional attributes are
not only promoted in a systematic and explicit process-orientated manner,
but unlike existing systematic approaches, the process intervention is geared

towards utilising the nature of non-functional attributes to justify human re-

dundancy through generating human diversity to increase assumption cov-
erage during the earlier phases of the software development process.

3Por example, in such domains and systems as nuclear process control, safety will be naturally
raised as a priority. In real-time domains and systems, performability will be naturally raised as a
priority, etc.



CHAPTER 10. SEARCH SIMULATION MODEL 253

From these distinctions it can be seen that the first goal of the simulation model is

to:-

COMPARE THE HUMAN DIVERSITY BENEFITS OF THE EXISTING

APPROACHES (OF CONSIDERING NON-FUNCTIONAL ATTRIBUTES)

UPON ASSUMPTION DETECTION COVERAGE UNDER AN CONSTANT

HUMAN RESOURCING CONSTRAINT.

With this first goal of the simulation model, it is important to note that assumption
detection effort will be factored out under a constant human resourcing constraint
to determine the diversity effects upon assumption detection process loss issues
highlighted in consideration of software inspections in section 9.2.2 in chapter 9.

As the literature from search theory indicates from chapter 9, section 9.3.2, it is a
useful baseline to ensure that the constant human resource constraint represents (a
theoretical) 100% effort coverage of the search space to be searched, as this allows
a logical comparison between the different approaches being considered. There-

fore, this human resource constant will represent a 100% human effort coverage,

capable (in theory) of searching the entire search space.

The second simulation model goal is a follow on from the first goal, in that, should
the simulations reveal that a significant increase in assumption detection is possi-
ble with the goal-diversity process intervention, then to what extent is it useful to
factor-out an overall human resource constraint? It is hypothesised that an over-
all resource constraint can be factored-out, up to, but not exceeding the number
of useful goal predispositions possible. Once this limit has been reached, there
will be a gradual loss in assumption detection effectiveness as developers begin
to over-represent a given non-functional attribute and therefore begin to detect
the same assumptions. Additionally, consideration of this issue works in reverse

also, in that, in terms of considering dependability as a super-ordinate goal (as

discussed in chapter 4), if important non-functional attribute goals are not rep-

resented then this will result also in reduced assumption detection through under

representation. The second goal of the simulation model is therefore stated as

follows:-



CHAPTER 10. SEARCH SIMULATION MODEL 254

COMPARE THE ASSUMPTION DETECTION EFFECTS OF THE PRO-

POSED GOAL-DIVERSITY PROCESS INTERVENTION WHEN THE ACHIEV-

ABLE NON-FUNCTIONAL ATTRIBUTE GOALS ARE BOTH OVER AND

UNDER REPRESENTED UNDER A 100% RESOURCE ALLOWANCE

COVERAGE.

These two goals of the simulation model provide a focal reference point for the
later scoping and level of detail design decisions in subsections to.2.2 and to.2.3
below.

10.2.2 Model Scoping Decisions

In this subsection the high-level breadth or scoping design decisions are consid-
ered and determined for the simulation model. These will be in the format of: a)
consideration of what alternatives are available; b) which alternative was selected;
and c) why that alternative was selected from the available options. It should be

noted, however, as stated earlier, the overall goal(s) of the simulation model are

also an important criterion for favouring a particular option. Furthermore, in deci-

sion situations where there is no clear criterion for favouring one alternative over
another, then an arbitrary selection will be made and this will be made explicit.

What stage(s) of the proposed goal-diversity process intervention will be simu-
lated? It can be seen from chapter 8, that there are three envisaged stages to be
considered for possible simulation.

Briefly, the simulation modelling alternatives are:-

• Stage 1. Individual Analysis Stage: Where each of the developers per-
form a separate analysis of the proposed system while being individually

predisposed to promote a single non-functional attribute goal;

• Stage 2. Individual Inspection Stage: Where each of the developers, still

predisposed to promoting the same non-functional attribute goal, separately
inspect the other developers' analysis from stage 1;



CHAPTER 10. SEARCH SIMULATION MODEL 255

• Stage 3. Collective Meeting Stage: Where all of the involved developers,
still individually promoting there own non-functional attribute goal, meet
and collectively contribute to any breakthrough decisions" or negotiate in-
evitable trade-offs.

Of these alternatives, the simulation modelling selection made is to only simulate

stage 2 of the Individual Inspection Stage. The rationale for such a selection is
that: a) it is not necessary to simulate stage 1 of the Individual Analysis Stage as
this only produces the various assumptions and the goal(s) of the simulation model
are to determine the assumption detection benefits of human diversity. Stage 1
can therefore be provided via the configuration of the simulation model to allow
the creation of the assumptions for detection; and b) it is not really feasible to
attempt to simulate stage 3 of the Collective Meeting as, although this stage is
important in providing assumption detection through the synergistic negotiating
and interaction of the developers, attempting to simulate such group and team
dynamics would introduce too much complexity and subjectivity which would

compromise the confidence in the eventual simulation results. Consequently, only

the Individual Inspection Stage 2 will be simulated as this relates directly to the
simulation model's goal(s) of assumption detection benefits from human diversity,
but does not need to consider any group or team dynamics.

What phase and what products of the software engineering life-cycle does the
simulation model relate to? From considerations ofthe software inspection issues

in chapter 9, subsection 9.2.1.1, it can be seen that there are a number of alterna-
tives possible. First, in terms of the software engineering life-cycle, it is possible
for inspections to take place at many phases, including, the requirements engi-
neering phase, the specification phase, the high-level architectural design phase,

4Breakthrough decisions reflect situations where seemingly intractable design conflicts are si-
multaneously resolved. A good example from World-War 2 is the Russian T34 tank. Previously,
tank designers where unable to resolve the two important conflicting dimensions of mobility and
protection. To optimise protection the tank must have extra armour, however, this increases weight
significantly and has a restrictive effect upon the tank's overall mobility in battle - which is also
critical. The Russian T34 tank overcame this, to a great extent, by being the first tank design to
utilise sloping armour, which simultaneously offered greater protection with less actual overall
weight. Today, all modern tanks employ sloping armour for this reason.



CHAPTER 10. SEARCH SIMULATION MODEL 256

the lower-level module design phase, the code implementation phase and test-
ing phase (e.g. generation of test cases etc). Secondly, regarding the various
software engineering products, there are domain requirements documents, speci-
fications, architectural representations, module designs, implementation code, and
test cases. Obviously, from this, it can be seen that, broadly, there is a one-to-one

mapping between the phase of the software engineering life-cycle and the prod-
uct it produces. The selection of the process and products the simulation model is

to representively simulate is the 'upstream' software engineering Iife--cyc1e pro-
cess phases and products of the requirements phase, the specification phase, and
high-level architectural design phase. The rationale for such a decision relates
to the overall goal(s) of the simulation model as the goal(s) wish to consider the
assumption detection benefits of human diversity. While harmful assumptions
may be made in any of the software engineering life-cycle phases, it is expected
that it is in the phases of requirements engineering, specification, and architec-
tural design that, because of their intrinsically conceptual nature, the most harm-
ful assumptions can be made and the greatest dependability benefit achieved from

any such process intervention that can improve assumption detection. Further-

more, the simulation modelling goals, quite specifically, relate to non-functional
attributes, and it is widely accepted (cf. chapter 8) that their consideration early-

on in the software engineering life-cycle brings the biggest reward, in terms of

dependability and quality.

What stages of the generic software inspection process does the simulation
model incorporate? With regards to the technical dimensions in subsection 9.2.1.1
in chapter 9, of the generic software inspection process, there exists a number of
alternatives to consider. These include: a) the planning stages; b) the detection
stage; c) the defect collection stage; and d) the defect correction stage. The se-
lection made is to only simulate the detection and collection stage, but, in order

to configure the simulation model to simulate these stages, it is also necessary to

allow the simulation model certain features of the planning stage. The rationale
for such a design decision is twofold. Firstly, in terms of allowing flexible config-

uration to simulate different approaches to promoting non-functional attributes,
which is an important simulation modelling goal, it is necessary to allow certain



CHAPTER 10. SEARCH SIMULATION MODEL 257

inspection planning activities such as number of inspectors, the duration of effort,
etc. However, these features are only a subset of the normal software inspection
stage and such administrative and specific software inspection features - such as
the 'kick-off' meeting, how defects will be recorded, and facilitation of domain
understanding, etc are all precluded in the simulation model as such planning

activities are unnecessary and can be abstracted from. Secondly, since the sim-
ulation model's goal is to focus upon the assumption detection issues, only the
detection and collection stages will be actually simulated in the simulation model,
it is an arbitrary decision not to include the defect correction stage as it could be
argued that certain human-error influences of misinterpretation and misjudgement
of what consistutes a defect are important, particularly with certain non-functional
attributes, such as security, and consideration of false positive and false negative
defect judgements. However, it is decided that to include such human-error issues
could overly complicate the simulation model and that this simulation model will
only consider defect sensitivity and not defect judgement phenomenon during as-
sumption detection. Furthermore, as will be discussed in considering the more

specific level of detail design decisions in subsection 10.2.3 below, such human-

error aspects, during detection, are highly subjective and result in indeterminate
modelling relationships with other modelling concerns.

What equivalent team-roles, of the generic inspection process, does the simu-
lation model incorporate? In considering what team-roles should be represented
in the simulation model, it should be first pointed out, as already stated earlier in
this section, that the simulation model does not consider the interactive nature of
the collective meeting stage (Le. stage 3) in the simulation, and will only con-
sider the aggregated individual inspection stage (i.e. stage 2). Therefore when
considering the team roles of the generic software inspection process in subsec-
tion 9.2.1.1 in chapter 9, these are interpreted more as individual task roles that

should be considered in terms of model scope. It can be seen that there are various

alternative task roles of: a) the organiser; b) the moderator; c) the inspector; d)
the reader/presenter; e) the author; f) the recorder; and g) the collector. It was
decided only to include the task roles of the inspector, the recorder, and the col-
lector would be selected. The rationale for doing so is, again, twofold. First the



CHAPTER 10. SEARCH SIMULATION MODEL 258

role of the recorder is to log assumption detections and the role of the collector
to determine unique and duplicated detections is functionality that the simulation
model will need to incorporate into its internal logic. Secondly, since the goal of
the simulation model is to determine the assumption detection benefits in combi-
nation with human diversity, it is obviously necessary that the role of the inspector

would need to be incorporated into the simulation model. The other roles reflect

the more real-world inspection environment (e.g. such as the reader/presenter for
facilitating domain understanding, etc) which can be considered out of scope for
the simulation model.

In summary, therefore, in terms of scoping decisions, we can summarise the scope
of the simulation model in the following explicit rationalised terms:-

• Only the second stage of Individual Inspection of the proposed goal-diversity
process intervention will be simulated;

• Analogically, the process phases and products inspected relate to the more
highly conceptual phases of the requirements engineering phase, the specifi-

cation phase and the architectural phase, as it is in these phases that harmful
assumptions are more likely to occur;

• The simulation model's scope will accomodate, for configuration purposes,
a subset of the planning stage of the inspection process along with other
inspection process stages of inspection and collection;

• The simulation model's functionality will incorporate inspection task roles
of the recorder, the collector, and the inspector;

These explicit simulation model scoping decisions now determine a justified and
narrower breadth of modelling concerns which can be elaborated, in greater levels

of detail in section 10.2.3, below.

10.2.3 Level of Model Detail Decisions

In this section the simulation model's design will be elaborated in depth within
the overall model scope determined in section 10.2.2 above. Again, the overall



CHAPTER 10. SEARCH SIMULATION MODEL 259

design decisions made will be of the format: a) consideration of what alternatives
are available; b) which alternative was selected; and c) why that alternative was
selected from the available options. It should be noted, however, as stated earlier,
that the overall goal(s) of the simulation model are also an important criterion, at
this detailed level, for favouring a particular option. Furthermore, in decision situ-

ations where there is no clear criterion for favouring one alternative over another,

then an arbitrary selection will be made and this will be made explicit.

As discussed, by Chwif and Paul [167], a model is a simplified abstraction of re-
ality and should be: "...close to reality ...not exactly the same". Therefore, at this
level-of-detail modelling, it is always necessary to simplify the model in order
to remove complexity that would render the model unnecessarily subjective and
reduce confidence in its results. In order to aid in demonstrating the actual com-
plexity involved in such a simulation model, so that such unnecessary complexity
can be omitted, in performing the simulation model's initial analysis, the author
used a conceptual modelling format known as an Influence Diagram - as used

and demonstrated by Robson [168]. Robson justifies its usage in such detailed

modelling situations, as follows [cf. [168]: p. 14]:-

"...the influence diagram is particularly useful because it can display
all the decisions which need to be made, in addition to distinguish-
ing between the input, process and output variables which have been

identified. "

Input variables are those variables that can be measured or controlled by the simu-
lation model user. They reflect the simulation model's input parameters which can
be changed and reconfigured - depending upon the simulation model's purpose
for simulating. The intermediate variables are those that can be indirectly calcu-

lated or influenced from the input or other intermediate process variables. They

essentially capture the simulation model's internal behaviour. The output vari-

ables are those variables which will be used to make judgements and/or decisions

about the phenomenon being simulated.



CHAPTER 10. SEARCH SIMULATION MODEL

PROCESS VARlABLES

INPUT VARIABLE T

260

Figure 10.1: Influence Diagram Notation Used [source: Robson [168]: p. 14]

INrERMEDIA TE VARlABLE

Distinction is
made between
Input, ProcesslO"~

COMPOSITE STRUCTURE

In addition to displaying design decisions and distinguishing between input, pro-

cess, and output variables, Robson notes that the influence diagram also captures
the relationships that exist between the various types of variables, and emphasises,
that in developing a model, the nature of the relationships is a fundamental sim-
plification criterion for deciding what can be feasibly modelled in order to remove
unnecessary subjectivity and complexity. Robson stresses that there are, in prin-
ciple, two types of relationships. First, there are definite relationships. These are
relationships between variables that have a more obvious and objective relation-
ship that can be more easily quantified. By contrast, secondly, there are indefinite
relationships. These are relationships that contain much subjectivity and variabil-
ity and are, consequently, much more qualitative in nature.

[J OUTPUT VARIABLE

In considering the simulation model's level-of-detail design, the use of influence

diagramming will be used and, as a selection criterion, the simulation model's
design decisions may also be determined by simplification considerations - con-
cerning the indefinite relations between variables. Figure 10.1 is a diagramatic

PROCESS RELATIONSHIPS

'a' ----------- "b' Definite Relationship where 'a' influences 'b'

'a' --------------------------------.- 'b' Indefinite Relationship where 'a' influences 'b'
but the influence is highly subjective andlor qualitative

'a' ....------------------------------ .. 'b' Indefinite Relationship where both 'a' and 'b' influence each other
but the influence is highly subjective andlor qualitative



CHAPTER 10. SEARCH SIMULATION MODEL 261

key to the particular influence diagram notation used in this section.

As a final point, before undertaking the actuallevel-of-detail design decisions, it
will be useful to structure the overall design rationale for this modelling scope.
Search theory, as discussed in section 9.3 of chapter 9, provides a longstanding

and useful set of notions and terminology for structuring the various important

relationships and factors involved. Therefore, in performing the level-of-detail
design rationales, it has been deemed useful to structure the overall discussion
using the search process representation from figure 9.4 on page 246 in chapter 9.
The following subsections reflect the fundamental search relationships from this
figure. Subsection 10.2.3.1 considers the coverage relationship dimension. Sub-
section 10.2.3.2 considers the sensor capability relationship dimension. Finally,
subsection 10.2.3.3 considers the distribution and density dimension.

10.2.3.1 Coverage Dimension

In this section the many level-of-detail design decisions relating the searcher to

the search space will be considered. As noted in subsection 3.3.1.1, in chapter 3,

coverage, in dependability terms, is a critical aspect for ensuring that the situa-

tional representativeness of the computer-based system is sufficiently close to the
actual situations experienced during operation. As shown in chapter 8, when these
do not closely match, it can often be the result of some flawed assumption being
made about the system or domain in question. Therefore, since the simulation

model's goal(s) concern the assumption detection, consideration of assumption
coverage is an important simulation modelling dimension to consider. This sec-
tion documents and discusses a previous analysis performed, by the author, and
illustrated using the influence diagram notation in figure 10.2.

The diagram shows four input variables of: Inspection Duration; Searchers; Lo-

cations; and Process Intervention. There are also ten intermediate variables of:

Inspection Expertise; Location Difficulty; Searcher Learning; Searcher Selection
Bias; Searcher Fatigue; Location Comprehension; Searcher Location Memory;
Searcher Location Selection; Search Space Size; and Location Selection Rate;



CHAPTER 10. SEARCH SIMULATION MODEL 262

2 rnnmmn-mm-n-n- IDURATION I
, 3·-----------------:: '-- __ _J

, ,

SEARCH
SPACE

COVERAGE

,
-- - -- -- ---- -- - -i- ---- - --- -- -- - --.4

, ', ', ',

27 SEARCH
StI1~E §!toooo---------...J

17

Figure 10.2: Influence Diagram Analysis of Coverage Dimension

There is one output variable of Search Space Coverage. The various definite and
indefinite relationships that connect these various variables are numbered 1...27,
and these, and the variables, will be discussed in more detail in the level-of-model

detail rationale below.

In the design rationale that follows the simulation design decisions will be framed
into categories of: a) decisions justified by the goal(s) of the simulation model; b)
decisions justified by the scope of the simulation model; c) decisions justified on
removing unnecessary complexity and subjectivity of the simulation model; and
d) arbitrary design decisions deemed necessary to progress the simulation model

from a more practical standpoint.

Goal Related Decisions.

The following simulation modelling design decisions are justified by the purpose
of the simulation model, in terms of, comparing the various approaches of consid-
ering non-functional attributes and issues of what effect underlover representation

" .'



CHAPTER 10. SEARCH SIMULATION MODEL 263

of non-functional attributes have upon assumption detection.

The input variable of Process Intervention. As can be seen from subsection
10.2.1, the first goal of the simulation model is to compare the various approaches
to promoting non-functional attributes. The alternatives considered in the lit-

erature and the proposed process intervention of goal-diversity, advocated in this

thesis, are: a) an ad-hoc approach; b) a systematic approach; and c) goal-diversity.
Each of these have implications for influencing how assumption coverage may be
affected. In the ad-hoc approach there is the real possibility that, through a combi-
nation of the nature of the system, the characteristics of the domain, and the homo-
geneous influences of culture, training, individual priorities and biases (mentioned
and discussed previously in chapters 6 and 8), too little or too much overlapping
of consideration of non-functional attributes may lead to insufficient sensitivity of
assumptions and/or too little conflict and challenging of shared assumptions and
purpose ascriptions. In the systematic approach there is the possibility that the
individual will be asked to promote too many non-functional attributes at once,

which, as chapter 7 discussed, results in too much cognitive processing, and con-

sequently, a shallower level of assumption coverage may result. With the proposed
goal-diversity process intervention, there is the need to predispose a developer to
the promotion of a single non-functional attribute throughout the higher concep-
tual phases of the development life-cycle - in order to sensitise them and justify
human redundancy in the task to gain a wider and more diverse assumption cover-
age. Therefore, from these alternative approaches, and the simulation modelling
goal of being able to compare the assumption coverage efficacy of the different
approaches, it is necessary to be able, in some way, to emulate a process inter-
vention so that the simulation model user can influence an individual searcher's
search pattern as they search. Here, we can get an insight into how assumption
coverage can be modelled in the simulation model from the software inspection

process from subsection 9.2.1 in chapter 9 with respect to reading techniques.

A major human redundancy and human diversity consideration relates to the re-
lationships of coverage and sensor capability between the factors of the searcher,
the search environment, and the target objects and the different reading techniques



CHAPTER 10. SEARCH SIMULATION MODEL 264

Reading Technique Coverage Sensitive Defect Sensitive
Ad-Hoc No No
Checklists No Yes

Stepwise Abstraction Yes Yes
Active Design Review Yes Yes
SBI Defect-Based Yes Yes

SBI Perspective-Based Yes No
SBI Functional Point-Based Yes Yes

N-Fold No No

Table 10.1: Reading Technique Classification

that have been evolved and used in the software inspection process to improve ar-
tifact coverage and defect detection effectiveness.

In table 10.1 a classification is produced characterizing the reading techniques
from subsection 9.2.1 in chapter 9 into which search theory factors and relation-
ships they attempt to affect. These can be further composed into a 2 x 2 matrix en-

compassing four different different characterizations based upon two dimensions
of Defect Space Coverage and Defect Sensitivity. This is illustrated in figure 10.3.

For example, ad-hoc and n-fold reading techniques reflect no reading predisposi-
tioning support - in terms of defect space coverage or defect type sensitivity. In
this regard, from a search theoretic standpoint, it reflects a uniform search func-
tion where each searcher or inspector, probabilistically, is equally likely to search

certain regions of the defect space and detect certain defects. In this sense they
are, as a group of individual inspectors, more uniform on the dimension of defect
space coverage and uniform on the dimension of defect types. Checklist reading
techniques, however, while offering no support, in terms of where in the artifact

to look, attempt to predispose the inspector to check for certain types of defects.

In this regard, from a search theoretic view, while, like ad-hoc and n-fold reading

techniques, the group of individual inspectors are equally likely to search differ-

ent regions of the defect space, they are more likely to be differently sensitised
to look for different defect types (assuming that different checklists are handed



CHAPTER 10. SEARCH SIMULATION MODEL 265

N-FOLD

SRI PERSPECTIVE BASED

STEPWISE ABSTRACTION

ACTIVE DESIGS REVIEW
S81 DEFECT BASED

S81 FUNCTIONAL POINT BASEn

AD-HOC
CHECKLISTS

U:\IFORM DIVERSE

DEFECT SENSITIVITY

Figure 10.3: Diversity/Uniformity Focus of Reading Techniques

to different inspectors, otherwise, this reading technique would be the same as an
ad-hoc or n-fold approach). Perspective-based reading techniques, on the other

hand, attempt to predispose different inspectors to view the artifact under inspec-

tion from different stakeholder standpoints. This means that, although they may
look at the same part of the artifact, they are likely, or more probable, to bring a
different meaning, emphasis, or value interpretation because of this reading tech-
nique's predispositioning. However, there is no attempt to sensitize the inspectors
to look for certain types of faults with this reading approach. Therefore, it can
be seen that, in this case, the group of individual inspectors are different (or di-
verse) in terms of searching the defect space whilst having the same probability of
detecting certain defect types. Reading techniques like active design review and
functional-point, and step wise refinement appear to attempt predispositioning on
both defect coverage and defect sensitivity as they tend to force the inspectors to
cover (at least) the inspection artifact (i.e. scenarios) and present open-type ques-

tions that predispose inspectors to focus on certain defect type classifications (this

is particularly true of the defect-based approach under the scenario-based reading
technique). Assuming that these reading approaches use these to attempt inspec-
tion process diversity by giving individual inspectors different reviews/scenarios



CHAPTER 10. SEARCH SIMULATION MODEL 266

and focused questioning based upon them, then this has the potential to make each
inspector different or diverse on both defect space and defect types.

Therefore, it is a design decision, in the interest of promoting the simulation
model's goal(s), that the input variable of Process Intervention emulates the di-

versity/uniformity dimensions of the software inspection process and allows a

searcher to be configured in a probabilistic manner to be more/less likely to search
some locations than others, and be more/less likely to detect some assumptions
than others. In the influence diagram on this coverage dimension in figure 10.2,
this coverage process intervention dynamic is modelled by the variables of: Searcher,
Location and Process Intervention (input variables), and Selection Bias and Lo-
cation Selection (intermediate variables), and includes the definite relationships
numbered 9, 10, 11, 16, and 24 which will be modelled as a probability distribu-
tion for each searcher on a location type of each location within the search space.

The input variable of Duration. In subsection 10.2.1, it is noted that the simula-

tion modelling goals require a comparison of the various approaches to promoting

non-functional attributes under an equivalent human resourcing constraint. This
is important as, in a real-world situation, the effectiveness of the proposed goal-
diversity process intervention needs to be compared to the other approaches in
terms of equivalent human effort duration deployed. For example, if the sec-
ond stage of individual inspection is allocated (say) 3 hours each per developer
promoting a single non-functional attribute, and 5 non-functional attributes are
deemed important to represent, then the total human resourcing constraint for the
second stage of individual inspection is 15 hours in total. If the efficacy of the
proposed goal-diversity approach is to be compared with the others then, in the
case of the systematic approach, each of the 5 developers involved would spend 3
hours promoting all 5 non-functional attributes - and told to spend 36 minutes

on each throughout the inspection. With the ad-hoc approach, the 5 developers

would simply be given 3 hours each and told to think about quality issues they

believe are important. The point to note is that in comparing the three approaches
the developers, under each approach, would need to be given comparable duration
in order to compare the effectiveness of each approach. Furthermore, as noted



CHAPTER 10. SEARCH SIMULATION MODEL 267

in chapter 9, search theory also recognises that in order to compare the detec-
tion effectiveness and efficiency of competing search strategies, it is necessary to
ensure that all strategies operate under a constant and equivalent resource con-
straint that reflects a theoretical 100% sufficient search effort coverage as this not
only allows comparison baselines between competing search strategies, but also

unearths and makes explicit the inefficiencies and ineffectiveness of each partic-

ular search strategy when compared generically to the definite range search. In
the simulation model it would have been possible to design the behaviour so that
different searchers could search for a different number of resource units, but this
would have contravened the search theory principle and the overall modelling
goal(s) of the simulation model. Therefore, the design decision is to ensure that
all searchers search under a constant resource constraint, and that no matter how
many searchers are involved, the theoretical 100% sufficient search effort cover-
age constraint will be factored-out by the number of individual searchers involved
in the search. This ensures, that not only are competing searchers comparable -
in terms of competing efficacy on coverage to a common baseline, but that also,

each individual search can be compared to a generic search strategy to achieve

a more general and comparable assessment of how effective a particular search

approach is.

In the influence diagram in figure 10.2, these dynamics are captured by the input
variable of Duration, the intermediate variable of Location Selection Rate, and the
output variable of Search Space Coverage. Furthermore, the relationships 1& 26,
between these variables, is a definite one whereby the user of the model can input
a number that reflects the number of resource units a searcher will search for. This
figure can be between 1 and the overall resource constraint divided by the number
of searchers employed. So, for example, in a 1000 location search space, the user
of the model can set the resource constraint anywhere from 1 resource unit to

1000 resource units. If there is 1 searcher employed and the user sets the resource

constraint to a (theoretical) 100% coverage constraint (i.e. 1000 resource units),

then the single searcher will search for 1000 resource units. On the other hand,
if there are 5 searchers employed in the search, then each searcher will search for

200 resource units.



CHAPTER 10. SEARCH SIMULATION MODEL 268

Scope Related Decisions.

The following simulation design decisions are justified upon the scope of the sim-
ulation model, in terms of: a) only simulating stage 2 of Individual Inspection; b)
the 'upstream' phases and products of the software development process; c) inclu-
sion of the planning, inspection, and collection phases of the inspection process;

and d) inclusion of human roles of the recorder, inspector and collector.

The input variable Searcher. As discussed in subsection 10.2.2, on modelling
scope, the scope must accomodate for the inspection process phases of inspec-
tion, and team role of the inspector. In an obvious way, then, the input variable
of Searcher fulfils the modelling scope of these two requirements. Less obvious,
however, the modelling scope section noted that the stage simulated is stage 2 of
individual inspection. Therefore, while the possible modelling alternatives could
have been to model searchers creating the objects in the search space, and/or, mod-
elling searchers interacting with each other and detecting objects in the search

space, both of these are considered out of modelling scope of the model. In

terms of the coverage dimension, the searcher acts as an independent and non-
interacting agent that decides to direct their search governed by a process inter-
vention probability distribution that predisposes the searcher to be morelless likely
to determine where they search in the search space. As, already mentioned, this is
dependent upon them being more/less predisposed to select a location belonging
to a certain type. Of course, the flexibility, in the search simulation model, means
that the predisposition probability distribution can be configured in such a manner
that makes the searcher(s) equally likely to select a location of any type, which is
important in fulfilling the configuration predispostion necessary for simulating a
systematic approach to promoting non-functional attributes.

It can be seen from the influence diagram in figure 10.2 that the Searcher in-

put variable has many relationships of both a definite and indefinite type. As

previously mentioned, one of the definite relationships relates to the process in-
tervention that biases location selection in order to emulate assumption coverage
diversity. The only other definite relationship from the Searcher input variable



CHAPTER 10. SEARCH SIMULATION MODEL 269

relates to Searcher Memory (i.e. number 15) which will be discussed further, in
terms of design decisions, in the arbitrary section below. All the other relation-
ships from the Searcher input variable are indefinite, in nature, and these will
be further discussed, in terms of design decisions, in the simplification decisions

section below.

The input variable Location. In section 10.2.2 of modelling scope, it was noted
that the scope of the model should account and accommodate for: a) the inspec-
tion process phases of, not only the inspector, but also for a certain amount of
inspection planning and collection phases; and b) the team roles of, not only the
inspector, but also the recorder and collector. In terms of modelling scope, the
input variable of Location, in the simulation model satisfies both of these scope
requirements in an abstract way, as, although it would have been possible to simu-
late the behaviour without the concept of a location (i.e. such as merely selecting
certain numbers within a number range), the object-oriented design approach of
creating a location object that could: i) record the number of times a searcher

has selected a location; ii) record the number of times different searchers have

detected an object in duplicate; and iii) provide a container for holding multiple
objects to be detected, clearly affords an effective and efficient way to fulfil the
modelling scope requirements of recording and collection of objects detected, not
only, uniquely and in duplicate, but also whether they were undetected etc.

Furthermore, the concept of a location, as an input variable to the simulation
model, also helps fulfil the modelling scope of inspection planning, as the number
of search locations, directly determine not only the size of the search space to be
searched (and hence the resource constraint limits - as mentioned above), but in
configuring the number of search space locations to use is also fundamental in de-
termining the density of the objects hidden within the search space. Therefore, the

notion of Location as an input variable is fundamental to satisfying the modelling

scope of planning during configuration of the simulation model.

Finally, it can be seen from the influence diagram in figure 10.2 that the input
variable of Location has a number of relationships with intermediate variables of



CHAPTER 10. SEARCH SIMULATION MODEL 270

both a definite and indefinite type. Its definite relationship (i.e. number 10) as a
member of location type to help fulfil the modelling goal of a process intervention
to influence search space coverage has already been discussed. The other definite
relationship with Searcher Memory will be discussed in the arbitrary decision
section below. The only indefinite relationship of the input Location variable is

with Location Difficulty (i.e. number 8) and this will be further discussed in the

simplification related decisions below.

Simplification Related Decisions.

The following simulation model design decisions are justified primarily upon in-
determinate relationships identified in figure 10.2 that result in overly complicat-
ing the simulation model and hence reducing the simulation model's confidence

through introducing too much subjectivity.

It can be seen from the influence diagram in figure 10.2 that there are a number
of indeterminate relationships between input, process, and output variables. The

most intuitive way to discuss these is to start at the topmost input variable, and

work across to the left and downward in the diagram.

The first indeterminate relationship is between the input variable of Duration (i.e.
number 2) and the intermediate process variable of Searcher Fatigue and the
indeterminate relationship between the input variable of Searcher and Searcher
Fatigue (i.e. number 4). As mentioned in chapter 9 in section 9.2.1, the longer
an inspector performs an inspection, the more fatigue effects can undermine de-
tection. This can manifest in a number of other influences - such as impeding
comprehension of the artifact being inspected, as indicated by the mutually in-
fluencing indeterminate relationship between Searcher Fatigue and Comprehen-
sion (i.e. number 21), or begin to undermine the searcher's memory of where

they have searched, in terms of coverage, resulting in unnecessary and wasteful

duplication of individual effort - as indicated by the indeterminate relationship

between Searcher Fatigue and Searcher Memory (i.e. number 19). Although this
is intuitively plausible it is also highly subjective, variable, and qualitative, in na-
ture, and in the interests of maintaining and promoting confidence in the eventual



CHAPTER 10. SEARCH SIMULATION MODEL 271

search simulation model's outputs, the influential dynamics of searcher memory
is omitted from the simulation model.

The next indeterminate relationship to consider is the one that exists between the
input variable of Searcher and the intermediate process variable of Searcher Ex-

pertise (i.e. number 5). As chapter 3 section 3.2.2 indicated, there is an enormous

amount of human performance variability in software design and programming.
If we are to accept that similar levels of performance variability exists in detecting
software defects, then it is clear, in an absolute sense, that individual inspectors,
will differ widely in their ability to gain greater coverage of the software arti-
fact, during the inspection process. This can be broadly explained in terms of
personal superiority of intelligence and experience etc, which we can generalise
as expertise. However, as already indicated, this is an absolute interpretation of
expertise, there is also the potential for a more relative interpretation of expertise
due to particular knowledge of a particular domain or type of system under de-
velopment. This is illustrated in the influence diagram of figure 10.2 by the dual

influencing indeterminate relationship between Searcher Expertise, Location and

Location Difficulty (i.e. number 7 and 8). Obviously, novelty and unfamiliarity
of the particular system to be developed and/or application domain to be under-
stood can seriously increase/decrease the task difficulty level, depending upon the
individual inspector's prior knowledge and experience of that particular system
and/or application domain. However, trying to objectify, within such a simulation
model, this influential dynamic of Searcher Expertise, in both the absolute and
relative sense, is highly subjective and qualitative and any attempt to do so would
not only over-complicate the simulation model, but could, in doing so, seriously
undermine the confidence of the eventual output information. For these reasons,
the dynamics of searcher expertise is omitted from the simulation model.

The next indeterminate relationship in the influence diagram of figure 10.2, is
between the input variable of Duration, the intermediate process variables of

Searcher Expertise, Location Difficulty and Searcher Learning (i.e. numbers
3, 13, and 14). In the real-world sense of the software inspection process, there
is little doubt that learning what the purpose and function of the software artifact



CHAPTER 10. SEARCH SIMULATION MODEL 272

is aiming to achieve is critical to detecting defects. Additionally, as chapters 6, 7
and 9 have argued, this is also critical in detecting harmful assumptions as many
such assumptions manifest in system flaws because of conflicting purpose ascrip-
tions. In terms of Duration, the longer an inspector spends studying a particular
software artifact, the deeper and more completely they will come to understand it.

However, this can also be influenced, by both the particular inspectors expertise
(in both the absolute and relative sense) and also the intrinsically complex nature

of the artifact to be learned. Nevertheless, as before, although these influential
dynamics will no doubt have an impact upon an individual searcher/inspectors
coverage of the artifact, the dynamics at play here have far too much variability,
subjectivity, and interdependability in thier influences upon Searcher Learning,
therefore, in the interests of maintaining objectivity and confidence in the simu-
lation model's outputs, these influential dynamics are omitted from the model's

design.

The next indeterminate relationship to consider is that between the intermediate

process variables, of Searcher Fatigue, Searcher Learning, Searcher Memory and

Searcher Comprehension (i.e. numbers 20, 21 and 22). As already hinted in
the previous paragraph, comprehension of the purpose, function and behaviour
of the software artifact being inspected is critical in detecting defects and harm-
ful assumptions. The process that leads to greater comprehension coverage is
that of learning. However, there are a number of potentially moderating dynamic
influences upon Searcher Comprehension. The first, which has already been dis-
cussed in this section, is that Searcher Fatigue can inhibit comprehension over
time. Another potentially moderating factor upon Searcher Comprehension is
Searcher Memory. The inability to retain knowledge and information over time
and hence forget what has already been learned can obviously undermine com-

prehension. This is particularly relevant to the software inspection process where

inspections are interrupted or are staged with sizable breaks in between. Once
again, while it is fairly obvious that, in the real-world inspection process, these
dynamics will have an impact upon eventual coverage of the software artifact to be

inspected, it is nonetheless, again another example of highly subjective influences
that can compromise the eventual confidence of the simulation model if included.



CHAPTER 10. SEARCH SIMULATION MODEL 273

For these reasons, the dynamics of searcher comprehension are omitted from the
design of the eventual simulation model.

Finally, the last indeterminate relationship to be considered is that between the
intermediate process variable of Searcher Comprehension and Location Selection

Rate (i.e. number 25). Since the search space is made up of lots of locations (of

various types), then the rate at which a searcher selects them over time will have
an obvious influential dynamic upon coverage. By selection rate, it is meant that
per period of Duration, how many locations does the searcher select? It is intuitive
that, in the real-world inspection process, the inspectors ability to comprehend the
purpose, function and behaviour of the software artifact will have a direct bearing
upon the number of (say) methods, functions, modules, or objects they can be
covered during a given duration constraint. As already discussed, the notion of
comprehension and its preceding dependencies of Searcher Expertise, Location
Difficulty, Searcher Learning, and Searcher Fatigue etc, introduce much subjec-
tivity and unpredictable variability into the design of the simulation model, and

therefore, the effect of Searcher Comprehension upon Location Selection Rate

must also be omitted for this reason. Notwithstanding this, however, there is still
a need to ensure that a flat Location Selection Rate is included into the design of
the simulation model to fulfil the simulation model's goal(s) for comparing differ-
ent searching strategies under a constant resource constraint. Therefore, to keep
the Location Selection Rate simple and comparable across all diversity/uniformity
configurations, 1 resource unit (RV) will be required by all searchers to select and
search a Location. This means that the Location Selection Rate is 1RV per Loca-
tion Selection, which keeps the mathematics fairly simple and straightforward for
determining resourcing constraints in connection with the search space size.

Arbitrary Related Decisions.

The following simulation model design decisions are justified, in a pragmatic

manner, arbitrarily as there are no clear decision-making criterion alternatives

to compare.



CHAPTER 10. SEARCH SIMULATION MODEL 274

There is only one arbitrary simulation modelling design decision concerning the
coverage dimension and this is the intermediate process variable of Searcher Mem-
ory. Although, as stated in the section(s) above that this intermediate process
variables dynamic influences upon Searcher Comprehension is subjective, it does
allow, in terms of individual inspection effort, a real-world aspect to be accom-

modated within the search simulation model that can be more objectively mod-

elled with regards to its dynamic influences upon Searcher Location Selection (i.e.
number 23). This is why the relationships between the input variables of Searcher
and Location have been diagrammed as definite relationships in the influence di-
agram of figure 10.2. The searcher memory can be modelled as a probability
factor for each searcher employed between the ranges of perfect memory (i.e.
p(1.00» of remembering when an individual searcher has already selected and
searched a particular location, and completely imperfect memory (i.e. p(O.OO»of
remembering when an individual searcher has selected and searched a particular
location. Furthermore, not only does this arbitrary design decision allow an aspect
of more real-world influences to be accommodated within the search simulation

model, but additionally, it also affords a more real-world influencing aspect into

the model that can subsequently be analysed for its sensitivity effects upon various
diverse/uniform searching configurations. One aspect of the intermediate process
variable that will not be accommodated into Searcher Memory, however, is the ef-
fect of the Search Space Size. Intuitively, the larger the search space or software
artifact being inspected, the greater the potential of a searcher or inspector forget-
ting and unwittingly re-inspecting a part of a software artifact or re-searching a
location by mistake. This aspect is omitted from the search simulation model's
design (as indicated by the indeterminate relationship number 18) because the re-
lationship between artifact size or search space size and its progressive potential
for undermining Searcher Memory is highly subjective and qualitative and there-
fore removed in the interest of promoting modelling confidence in the eventual

outputs of the simulation.



CHAPTER 10. SEARCH SIMULATION MODEL 275

In Summary

From the influence diagram in figure 10.2, the eventual design decisions of the
search space coverage dimension can be stated, as follows :-

• Duration will be modelled as Resource Units (RU) allocated to Searchers
employed in the search. 1 RU is required by a searcher to select and search

a search space Location. Therefore the Location Selection Rate will be 1
RU per 1 Location selection and search. Total RU can be within the range of
1 to the size of the search space (i.e. number of locations) and this total will
be factored-out between the number of searchers employed to ensure a the-
oretical 100% search resource coverage constraint to ensure a comparable
baseline between competing search configurations;

• Searcher has a memory probability range from imperfect (Le. p(O.OO» to
perfect (i.e. p( 1.(0» for remembering whether they have already selected
and searched a particular location. A Searcher represents an inspector in
the inspection process and is modelled as a non-interacting agent with other

searchers employed;

• Location models, in an abstract manner, the necessary inspection process
aspects of recording and collecting, as well as being instrumental in search
planning. Locations can also be assigned to be a member of a type of loca-
tion, which mayor may not be selected and searched more by a particular

searcher;

• Process Intervention captures the ability to predispose certain searchers em-
ployed in the search to be morelless likely to select and search certain lo-
cations more/less than others. This will be modelled by each searcher em-
ployed in the search having a probability distribution that predisposes or

biases them to search certain location types more/less than others.

Lastly, in connection with the search space coverage dimension, the output vari-
able reflects the overall collective coverage achieved by the searchers involved.



CHAPTER 10. SEARCH SIMULATION MODEL 276

10.2.3.2 SensitivityDimension

In this section the many level-of-detail design decisions that relate the searcher to
actual detection of the objects will be considered. It should be noted, that detec-
tion can be difficult or imperfect for two reasons. Firstly, as subsection 10.2.3.1
highlighted, in order to find an object the searcher needs to be in the location

where the object(s) reside. This first aspect relates to coverage. To provide a more

specific example, someone may find it difficult to find their car keys. They know
'what' they are looking for, and will be able to detect them once they see them,
but finding them may become difficult because they don't know 'where' they are.
Detection can become particularly difficult for the coverage dimension if the lo-
cation 'where' something resides is unusual in some way. For instance, in the car
key example, the person may have left their car keys in a location that is, to them,
very unusual. Let's say when they last had them they came into the house and
went straight to the toilet - inadvertedly placing them on the bathroom window
ledge. Normally, they would place them on the kitchen table, the living-room
sideboard, or the coffee table. Now when they come to need them again, they

search all their usual or normal locations but cannot find them, they spend a long
time searching through pockets, the back of the sofa, the bedroom, etc until they,
by chance, go to the bathroom and glance at them on the window ledge. The im-
portant point to remember is that detection, overall, became difficult, not because
of the difficulty in sensing the particular object to be found, as the searcher in
question knows exactly 'what' they are looking for, but instead, because the ob-
ject sought was contained or located in a location, that, in the mind of the searcher
seeking them, was unusual in some way (i.e. bathroom window ledge). A final
point worth mentioning at this stage, in consideration of the coverage dimension,
is that a containing location is not 'unusual' in any absolute sense, but instead,
only in a relative sense with respect to a given searcher. So the window ledge,
as a containing location for car keys, is not, in any absolute way, an intrinsically

unusual place for a set of car keys, as another person may consider such a location

within their house as quite a usual place to find their car keys - since they nearly
always go to the toilet when first coming in and frequently place their car keys on
the window ledge. Therefore, the 'usualness' and 'unusualness' of the particular



CHAPTER 10. SEARCH SIMULATION MODEL 277

containing location of any object is essentially a relative phenomenon between a
containing location, an object, and a given searcher. Secondly, however, detection
of an object may become difficult due to its essential nature being difficult to de-
tect - even when the searcher is in that particular location, and therefore, has the
potential to detect it. This relates to the sensitivity dimension. A good specific,

and physical, example of something being difficult to detect, even when we are in

the location in which it is contained, is things like a needle, a contact lense, etc.
Such things are physically, small and this, in a physical way, reduces our capabil-
ity to detect them. At least, in a physical sense, on this sensitivity dimension, we
can appreciate that, to a large extent, physical objects may be difficult to detect
in an absolute sense. Nevertheless, it is also possible that, even when an object is
contained in the location under search, an object can be difficult to detect due to:
a) the nature of the containing location. For instance, Search Theory (cf. chapter
9 section 9.3) recognises that conducting searches on open plains is much easier
and more successful than conducting searches in heavy forrestation. A conceptual
searching analogy to this may well be a software inspector inspecting a very com-

plex, unfamiliar, and novel concurrent processing module. Therefore, detection,

on the senstivity dimension, can also be relative to the difficulty of the containing
location; and b) detection, on the sensitivity dimension, may also become difficult
and be undermined due to the indistinguishability of the sought object from other
very similar objects contained in the same location. We have all seen game shows
where the contestant has to find a particular thing (i.e. say a ball) from an area,
container, or location holding a number of similar things. The well known say-
ing "Where's the best place to hide a pebble? ...on a Beach!" is also another clear
case of this physical searching and detection phenomenon. Therefore, at least in a
physical sense, on the the sensitivity dimension, something may become difficult
to detect or find, due to its similarity of other things contained there.

This section, is concerned with illuminating a number of detailed-level design

decisions focusing upon the sensitivity dimension. From what has been discussed

above, it is possible to see that, at least drawing upon physical examples, some-
thing can be difficult to detect in both an absolute and relative way, and this section
is aimed at enumerating a number of design decisions focusing on the searcher's



CHAPTER 10. SEARCH SIMULATION MODEL 278

2

SEARCHER
DETECfION
EFFICIENCY

,:5,,
I : 6 : ,- __ --,:_uu~__m_+ IOBJECT I

,
9 :,

14

SENSmVITy!!f--:-;:-----1
BIAS 15

16

Figure lOA: Influence Diagram Analysis of Sensitivity Dimension

capability to detect or sense an object once they have selected or covered the loca-
tion and hence have the potential to detect or sense the objects being sought. As
in subsection 10.2.3.1, a previous analysis has already been performed and dia-
grammed as an influence diagram in figure 1004to aid explanation of these design

decisions.

The influence diagram shows four input variables of: Duration, Object, Searcher

and Process Intervention. There are also six intermediate process variables of:
Object Criticality, Object Difficulty, Sensitivity Bias, Object Sensitivity, Object
Judgement, and Object Detection. In contrast to the influence diagram illustrat-
ing the coverage dimension in figure 10.2 on page 262, the influence diagram on

the sensitivity dimension in figure lOA illustrates a number of composite variable

structures imported from the coverage dimension diagram and the distribution di-

mension diagram in figure 10.5. As mentioned earlier in this section coverage
is a prerequisite to detection and affords the potential to detect. Therefore, it is
necessary to include a number of influences from the two other influence dia-



CHAPTER 10. SEARCH SIMULATION MODEL 279

grams to capture these conditions. The composite structure variable notation is
used to ensure inclusion while minimizing the illustrative complexity of the dia-
gram. Finally, there are two output variables of Searcher Detection Efficiency and
Searcher Detection Effectiveness. The various definite and indefinite relationships
that connect these variables are numbered 1...24, and these, and the variables, will

be discussed in more detail in the level-of-model detail rationale sections below.

In the design rationale that follows, in these four sections, the simulation model's
design will be framed into the same four categories as in section 10.2.3.1 of: a) de-
sign decisions justified by the goal(s) of the simulation model; b) design decisions
justified by the scope of the simulation model; c) design decisions justified on re-
moving unnecessary complexity and subjectivity from the simulation model; and
d) arbitrary design decisions deemed necessary to progress the simulation model
from a more practical standpoint.

Goal Related Decisions.

The following simulation modelling design decisions are justified for the purpose
of the simuation model, in terms of, comparing the various approaches of consid-

ering non-functional attributes and issues of what effect under/over representation
of non-functional attributes have upon assumption detection.

The input variable of Process Intervention. The justification for the inclusion of
the input variable, has been largely discussed in dealing with the coverage dimen-

sion in subsection to.2.3.1. From the modelling goals in section to.2.1, it can be
seen that there are potentially three approaches that need to be compared within
the simulation model. These are: i) an Ad-Hoc consideration; ii) a Systematic
consideration; and iii) the proposed Goal-Diversity process intervention consider-

ation. As mentioned earlier in this section, there are two fundamental dimensions

to detection. These are a coverage dimension, in terms of 'where' to search, and a

sensitivity dimension, in terms of 'how' sensitive the searcher/inspector is, when

the containing location is actually searched (i.e. covered). These two dimensions
are both in evidence within physical searches, from search theory in chapter 9 sec-
tion 9.3, and also within the software inspection literature in chapter 9 section 9.2,



CHAPTER 10. SEARCH SIMULATION MODEL 280

as exemplified by the predispositioning potential of the reading techniques used
by the software inspection process. As was discussed in subsection 10.2.3.1, con-
cerning the coverage dimension, these reading techniques can be classified into
predisposing inspectors over a 2 x 2 matrix of search space coverage predispo-
sitioning (coverage dimension) and/or object sensitivity predispositioning (sensi-

tivity dimension). Therefore, from these alternative dimensions, and the required

simulation modelling goals for simulating the human redundancy and human di-
versity efficacy of these possible approaches, it is necessary, in some way, to be
able to emulate a process intervention so that the simulation model user can con-
figure the model in such a way to influence an individually modelled searcher's
object sensitivity pattern to various objects as they acquire the potential to detect
objects after selecting a location that contains objects.

It is a modelling goal related design decision, then, that the input variable of Pro-
cess Intervention, on the searcher sensitivity dimension, allows any searchers em-
ployed in the search to be configured in a probabilistic manner to be more/equal/less

likely to detect some objects than others in the search. In the influence diagram of

the sensitivity dimension in figure 10.4, this sensitivity process intervention dy-
namic is modelled by the variables of Searcher, Object and Process Intervention
(input variables) and their interactive detection behaviour upon the intermediate
process variables of Sensitivity Bias, Object Sensitivity and ultimately Object De-
tection. The interconnecting relationships that exist between these variables (Le.
numbered 14, 15, 16, and 22) are all definite, in nature, as they can be reasonably
modelled as a probability profile in terms of capturing each individual searcher's
sensitivity capability of detection as a probability between zero and one. As in the
case for coverage and locations in subsection 10.2.3.1, objects hidden within the
search space, will be members of differing sets of object types that searchers can
be made more/equal/less sensitive to - over the range of those object types.

The input variable of Duration. As noted in section 10.2.1 on simulation mod-

elling goals, all the comparisons of the differing approaches to considering non-
functional attributes must be under a comparable human resourcing constraint so
that there is a baseline for comparing the efficacy of the competing search ap-



CHAPTER 10. SEARCH SIMULATION MODEL 281

proaches. In this regard, on the sensitivity dimension, the input variable of Dura-
tion plays the same role as that on the coverage dimension in subsection 10.2.3.1
to ensure that overall detection performance, by the searchers employed, is related
to the same resourcing constraints. This is captured diagrammatically in the in-
fluence diagram of figure 10.4 as a composite variable structure of Search Space
Coverage, the input variable of Duration, and Object Detection - connected by

two definite relationships (numbered 2 & 3). The composite structure captures
a simplification that has already been discussed earlier in this section, that cov-
erage is a prerequisite to actual detection that involves, itself, the investment of
human search or inspection effort in terms of searcher comprehension, searcher
learning, etc. However, on the sensitivity dimension, the input variable of Dura-
tion also plays an additional role in promoting the simulation model's goals with
regard to directly providing one of the output variables of Searcher Detection Ef-
ficiency. Detection Efficiency, as chapter 9 highlighted, is a well used measure
in both the areas of Search Theory and Software Inspections as it characterises
how productive the human search and detection resources have been during the

search/inspection process. This output variable of Searcher Detection Efficiency

will be further discussed, in terms of promoting modelling goals, below, and in
doing so directly shows how the input variable of Duration, on the sensitivity di-
mension, contributes to the simulation model's goal, in an additional way, through
allowing the comparison of different search simulations to be modelled and con-
figured. In the influence diagram in figure lOA this relationship is definite (i.e.
number 1) and shows how the input variable of Duration is directly related to
producing the output variable of Searcher Detection Efficiency.

The output variable of Searcher Detection Efficiency. As suggested above, this
output variable directly contributes to the simulation model's goals as its use is
to allow the detection productivity of search resources employed over different

competing search strategies to be compared. Calculating the detection efficiency

involves dividing the total number of objects (or assumptions, defects, faults etc)
by the Duration of time exploited in the search or inspection. This is shown in

the influence diagram of figure 1004, by illustrating how the input variable of
Duration and intermediate process variable of Object Detection is connected by



CHAPTER 10. SEARCH SIMULATION MODEL 282

two definite relationships numbered 1 and 25, respectively. The resulting number
captures how many (or what fraction of) objects were found or detected per period
of time exploited. As discussed in subsection 10.2.3.1, Duration is abstracted to
resource unit (RV) allowance for the searchers up to a theoretical 100% coverage
constraint. Therefore, the detection efficiency of each search captures the number

of objects (or fraction of objects) detected per 1 Resource Unit (RV) expended

during the search.

The output variable of Detection Effectiveness. This, like Detection Efficiency,
is also a variable that promotes the comparison goals of the simulation model, as
it also affords a measure of how to compare different competing search strategies
that will be configured in the simulation model. However, unlike Detection Ef-
ficiency, that is aimed at capturing the productivity of searching and inspection
resources employed in the format of periods of duration, instead, the output vari-
able of Detection Effectiveness captures the capability of the search or inspection
resources involved with regard to the number of objects (or assumptions, defects,

faults, etc) that are possible to find or detect within the search space. Therefore,

calculating Searcher Detection Effectiveness involves dividing the total number of
objects hidden, within the search space, by the total number found or detected by
the search resources employed. The dynamics are illustrated visually in the influ-
ence diagram in figure 1004, between the input variable of Object, the composite
variable structure of Object Density (Le. the actual number possible to detect),
the intermediate process variable of Object Detection, and the output variable of
Searcher Detection Effectiveness. These four variables are connected by three

definite relationships of 17, 23 and 24.

Scope Related Decisions.

The following simulation design decisions are justified upon the scope of the sim-

ulation model, in terms of: a) only simulating stage 2 of Individual Inspection;

b) the 'upstream' phases and products of the software development process; c)

inclusion of planning, inspection, and collection phases of the inspection process;
and d) inclusion of human roles of recorder, inspector and collector.



CHAPTER 10. SEARCH SIMULATION MODEL 283

The input variable Searcher. As discussed in subsection 10.2.2 on modelling
scope, the scope must accomodate for the inspection process phases of inspection,
and team role of the inspector. In this respect, then, the input variable of Searcher
fulfils the modelling scope of these two requirements. However, the modelling
scope section noted that the stage simulated is stage 2 of individual inspection.

Therefore, while the possible modelling alternatives could have been to model

searchers creating the objects in the search space, and/or, modelling searchers in-
teracting with each other and detecting objects in the search space, both of these
are considered out of modelling scope of the model. In terms of the sensitivity
dimension, the searcher, again, acts as an independent and non-interacting agent
that decides to direct their search governed by a process intervention probability
profile that predisposes the searcher's sensitivity to be more/less likely to detect
some objects contained within a given selected location. The flexibility, in the
search simulation model, however, also means that the predisposition probabil-
ity profile can be configured in such a manner that makes the searcher(s) equally
likely to detect an object of any type, which is important in fulfilling the configu-

ration predispostion necessary for simulating a systematic approach to promoting

non-functional attributes.

It can be seen from the influence diagram in figure 10.4 that the Searcher input
variable has relationships of both a definite and indefinite type. As previously
mentioned, one of the definite relationships relates to the process intervention
that biases object detection sensitivity in order to emulate assumption sensitivity
diversity of the real-world situation. These definite relationships exist between
the input variable of Searcher, Object, Process Intervention and the intermediate
process variables of Sensitivity Bias, Object Sensitivity, and Object Detection and
are numbered 14, 15, 16, & 22). All the other relationships from the Searcher
input variable are indefinite, in nature, and these design decisions will be further

discussed in the simplification decisions section below.

The input variable Object. In section 10.2.2 of modelling scope, it was noted
that the scope of the model should allow for: a) the inspection process phases of,
not only the inspector, but also for a certain amount of inspection planning and



CHAPTER 10. SEARCH SIMULATION MODEL 284

collection phases; and b) the team roles of, not only the inspector, but also the
recorder and collector. In terms of modelling scope, the input variable of Ob-
ject, satisfies both of these scope requirements - as an abstraction, as, although
it would have been possible to simulate the behaviour without the concept of an
Object, the object-oriented design approach of creating an Object class facilitates:

a) the recording of the number of times a searcher has detected an Object; b) the

recording of the number of times different searchers have detected an object in du-
plicate. Both of these facets clearly affords an effective and efficient way to fulfil
the modelling scope requirements of recording and collection of objects detected,
not only, uniquely and in duplicate, but also whether they were undetected etc.

In addition to this, the concept of an Object, as an input variable to the simulation
model, also fulfils the modelling scope of inspection planning, as the number of
Objects hidden within the search space, directly helps determine such fundamental
planning and user configuration issues - such as Object Density etc. Therefore,
the inclusion of the concept of Object, as an input variable, is fundamental to

satisfying the modelling scope of planning during configuration of the simulation

model.

Lastly, it can be seen from the influence diagram in figure 10.4 that the input vari-
able of Object also posseses a number of relationships with other intermediate
process variables of a definite and indefinite type. Its definite relationship (i.e.
number 15) as a member of object types helps fulfil the modelling goal of pro-
cess intervention to influence searcher detection sensitivity. Its only other definite
relationship concerns the intermediate process variable of Object Detection Diffi-
culty (i.e. number 9) which will be discussed, in terms of design decisions, in the
arbitrary related decisions section below. The only other relationship (i.e. number
7) is indefinite, in nature, and this design related decision will be discussed in the

simplification related decision section next.

Simplification Related Decisions.

The following simulation model design decisions are justified primarily upon the
indeterminate relationships identified in the influence diagram analysis in figure



CHAPTER 10. SEARCH SIMULATION MODEL 285

lOA that result in overly complicating the simulation model and, by doing so,
undermine the simulation model's objectivity.

It can be seen from the influence diagram in figure lOA that there are a number
of indeterminate relationships between the input, process, and output variables.

Again, the best way, perhaps, to discuss these is to start at the topmost input

variable, and work across to the left and downward in the influence diagram.

The first indeterminate relationship is between the input variable of Searcher and
the composite variable structure of Searcher Fatigue (i.e. numbered 5). As was
discussed in subsection 10.2.3.1, on the coverage dimension, Searcher Fatigue has
many interrelated influences that can be highly variable and difficult to model -
and which can, on an individual searcher, impact upon the overall coverage that
can be achieved. Intuitively, on the sensitivity dimension, Searcher Fatigue can
also impact upon a searcher's capability to detect an object as fatigue effects can
undermine both the necessary concentration and comprehension of what consti-
tutes a harmful assumption (or defect, fault, etc), and thereby also impact upon the

searcher or inspectors judgement. For these, reasons, the influence diagram in fig-
ure 1004 includes these indeterminate relationships from a Searcher and Searcher
Fatigue perspective, via:- a) the dual influencing indeterminate relationship (i.e.
numbered 6) between Searcher Fatigue and (the compound variable structure) Lo-
cation Comprehension, since again, intuitively, fatigue can influence comprehen-
sion and understanding, while, equally, as was discussed in subsection 10.2.3.1,

on the coverage dimension, comprehension involves learning effort which ulti-
mately, over-time, leads to fatigue effects; and b) the indeterminate relationship
from Searcher Fatigue and Object Judgement (i.e. numbered 4), as, fatigue will
ultimately impact upon a searcher or inspector's judgement of what constitutes
a flawed assumption or defect. These influences, while being relevant in both a

physical and conceptual sense, is perhaps even more influential within the domain
of conceptual searching since, intuitively, a lack of concentration and appropri-

ate representation, can quickly result in reducing a searcher's senstivity capability
to correctly judgeing the impact of some implicit, explicit, shared, or purpose
ascription assumption that can subsequently undermine the dependability of the



CHAPTER 10. SEARCH SIMULATION MODEL 286

eventual artifact during later operation. It can be seen, therefore, that the com-
pound variables of Searcher Fatigue and Location Comprehension - along with
the intermediate process variable of Object Judgement, have potentially many sub-
tle interdependent influencing relationships with one another. While, as already
stated, they, no doubt, can positively/negatively impact upon a searcher's detec-

tion capability, on the sensitivity dimension, they are of a nature that are highly
subjective, variable, and qualitative, and, in the interests of promoting the simula-

tion model's simplicity and objectivity, these influential dynamics are omitted in
the eventual simulation model's design.

The next indeterminate relationship to consider is between Object and Object
Criticality (i.e. numbered 7). It is, in a real-world fault detection situation, in-
tuitively obvious that different assumptions and faults will have different conse-
quential effects upon the overall dependability of the eventual software artifact
during subsequent operation. Therefore, in a broad and brief distinction, the de-
pendability criticality of a flawed assumption or fault can be categorised on two

dimensions:- a) in terms of the consequential impact that it may have upon the

eventual judged dependability of the software artifact during operational usage;
and b) the frequency upon which the flawed assumption or fault will manifest in
the fault=>error=>failure chain (cf. chapter 2). Consideration of faults on these
two dimensions reveals that there is a 2 x 2 matrix for categorising the criticality
nature of any such defect, fault, or flawed assumption. The most critical category
is those faults, defect or assumptions that have both a high consequential impact
and frequency of occurence during operational usage - as these will undermine
judgements of dependability of the software artifact the most. The least critical
are those faults, assumptions or defects that have both a low consequential impact
and frequency of occurrence - as these type of faults will have the least influence
upon judgements of dependability and may often be considered, by the users, to

be little more than an anoyance during operation. The other two categories re-

late to either a high/low impact and high/low frequency, and such judgements of
the eventual dependability criticality will, to large extent, be dependent upon a

number of other specific circumstances - such as the application domain, the
type of system in question, as well as the specific circumstances in which these



CHAPTER 10. SEARCH SIMULATION MODEL 287

faults and defects manifest, etc. Such issues, of fault criticality, were previously
raised and discussed in chapter 3 subsection 3.4.2 in providing some justifications
of process redundancy with the distinctions made between a productivity effect
and a quality effect of employing human redundancy and diversity. It can be seen
from these issues and those definitions discussed in chapter 3 that considerations

of Object Criticality relate directly to a quality effect measure of search or inspec-

tion detection. Additionally, from the influence diagram in figure 10.4 we can see
that Object Criticality has also a number of other indeterminate relationships with
both Object Judgement and (the composite variable structure) Location Compre-
hension (Le. numbers 8 and 10). Firstly, it is intuitively clear from what has
already been discussed in the previous paragraph that determining the negative
criticality influence (in terms of both consequences and frequency of occurence)
places a large amount of judgement upon the particular searcher or inspector -
particularly in conceptual searching/detection. Furthermore, as chapters 6, 7 and
8 on assumptions, teleology and functionalism, and ATM analysis indicates, this
judgement of what is, and what is not, a harmful assumption or fault really reflects

a relative judgement based upon the searcher's particular bias, values, knowledge,

CBS context-of-interest, and non-functional goals being promoted etc. It is for
these reasons that the indefinite relationship between Object Criticality and Object
Judgement (i.e. numbered 10) is dual influencing - in order to capture this rela-
tive issue in determining an object's criticality. Secondly, from what has already
been discussed in the previous paragraph, it is intuitively obvious that compre-
hension and understanding will have a major influence in determining a searcher
or inspector's detection capability for establishing a given assumption or fault's
criticality. For this reason, the influence diagram includes another indeterminate
relationship (i.e. numbered 8) between Location Comprehension and Object Crit-
icality. Lastly, whilst, in a real-world inspection situation, there is no doubt, that,

of all the defects that may be detected, some will be more/less critical, in terms of

dependability than others, what is at issue here is what is possible to reasonably

objectify for the simulation model. The simulation model, like all models, ne-

cessitates a generalisation and abstraction of reality, and as already discussed, not
only do issues of object criticality involve many other intederminate relationships
with other variables, but assessing the criticality of a defect or flawed assump-



CHAPTER 10. SEARCH SIMULATION MODEL 288

tion relies, to a great extent, upon the relative judgement and understanding of
the searcher or inspector, but also the specific nature of a particular applicational
domain, system type and operational circumstances. Therefore, it was decided
that such issues, influences and dynamics - in the real-world situation, would
unnecessarily compromise the simplicity and objectivity of the simulation model,

and for these reasons, the simulation model only infers a productivity effect mea-
sure of human search diversity in terms of the number of objects detected and not

the criticality of any particular detected/undetected object upon overall depend-

ability.

The last set of indeterminate relationships to consider in the influence diagram
of figure 10.4 relate to the input variable of Searcher to the composite variable
structure of Location Comprehension through to the intermediate process vari-
ables of Object Sensitivity and Object Judgement (i.e. numbers 11, 13 & 20
& 21). As stated earlier in this subsection - in consideration of the simula-
tion model's goals, the searcher's object capability, on the sensitivity dimension,

must be capable, within the simulation model, to be predisposed to different sen-

sitivity biases throughout the search simulations in order to fulfil the simulation
model's goals of comparing different non-functional attribute considerations upon

assumption detection. However, from what has already been discussed in the pre-
ceding paragraphs concerning Location Comprehension, it is intuitively clear that
the searcher or inspector's ability to apply their expertise (in both an absolute and
relative sense) and adequately understand the nature of the thing being searched
and inspected will also have an impact upon their detection sensitivity capability.
For this reason the influence diagram illustrates this highly qualitative and varying
indeterminate relationship from Location Comprehension to Object Sensitivity as
a dynamic that will ultimately influence a searcher or inspector's detection sen-
sitivity (i.e. numbered 13). Additionally, as was discussed in the previous para-

graphs, the Object Judgement involved will have a critical impact upon 'what'
the individual searcher or inspector decides what is, and what is not, a harmful

assumption or defect, etc. As was pointed out also, with regards to Object Judge-
ment, this is a highly relative consideration and is also fundamentally influenced
by such variables as Searcher Fatigue. From the influence diagram it can also



CHAPTER 10. SEARCH SIMULATION MODEL 289

be recognised that if the searcher or inspector's object detection sensitivity is im-
paired in any way, then this will also impact upon their ultimate judgement of
what constitutes a harmful assumption or defect etc. For this reason the indeter-
minate relationship between Object Sensitivity and Object Judgement is included
in figure 10.4. Finally, it can be argued, in an intuitive way, that if, for some rea-

son (e.g. via Searcher Fatigue, Location Comprehension, or Object Sensitivity), a

searcher or inspector's judgement becomes incomplete or impaired then this will
ultimately influence not only overall Object Detection measures (i.e. Detection
Efficiency and Detection Effectiveness), but, in a real-world situation, can also
result in increasing errors of judgement. It has already been discussed in subsec-
tion 10.2.2 on simulation model scope that human error in detection can result
in false positive and false negative judgements about what objects are detected,
and this aspect is included into the influence diagram of figure 10.4 as another
indeterminate relationship (i.e. number 21), since, as it was highlighted there,
such dynamics of misjudgement reflect a very SUbjective, specific, varying, and
qualitative modelling concern. Finally, then, although such influences of Object

Sensitivity, Object Judgement and Object Detection can result in erroneous detec-

tions, these are all highly subjective and have many antecendent and interrelated
dependencies which would both reduce the simulation model's objectivity and in-
crease its complexity - if introduced. For this reason the interrelated influences
of Location Comprehension, Object Sensitivity and Object Judgement upon par-
ticular Object Detections is omitted from the design of the simulation model.

Arbitrary Related Decisions.

The following simulation model design decisions are essentially justified in a
practical way - since there is no clear decision-making criterion alternatives

to compare.

There is only one arbitrary simulation modelling decision, on the object detection

sensitivity capability dimension, and this essentially concerns the intermediate
process variable of Object Detection Difficulty. From the influence diagram in
figure 10.4, it can be seen that this intermediate process variable is connected



CHAPTER 10. SEARCH SIMULATION MODEL 290

by a number of relationships of both a definite and indefinite type (i.e. numbers
9, 12 18 & 19). This is because, during the analysis of the many influences,
on the object detection sensitivity dimension, Object Difficulty contains, from
a real-world searching and inspection situation, a number of highly subjective
and interrelated influences and connections, respectively. Firstly, in terms of (the

compound variable structure) Location Comprehension, it is intuitively clear from

the previous subsection that searcher expertise, learning, and comprehension can
have an obvious positive or negative impact upon the ease or difficulty in detect-
ing any given particular assumption or defect etc. For this reason the relationship
between Location Comprehension and Object Detection Difficulty (i.e. number
12) is modelled as an indeterminate relationship. Secondly, from the influence
diagram in figure 10.4, it can also be seen that there is a dual influencing inde-

terminate relationship between Object Judgement and Object Detection Difficulty
(i.e. numbered 18). This relationship is both indeterminate and dual-influencing
because, as has already been discussed in the previous subsection on modelling
simplification related decisions, judgement is a highly subjective and relative dy-
namic. For instance, what's judged to be difficult for one searcher or inspector

to detect - may, at the extremes, be very easy for another searcher or inspector
to detect. In fact, this relative detection phenomenon is actually at the 'heart' of

such fault detection processes - such as Pair-Programming, Egoless Program-
ming, and Open-Source Software Development (cf. subsection 3.4.1.2 in chapter
3). Alternatively, however, there are also two definite relationships connecting

Object Detection Difficulty. In the influence diagram, the first one is between the
input variable of Object and Object Detection Difficulty (i.e. numbered 9). It has
been arbitrarily decided to model each object's difficulty as a probability factor
that can be in the range of p(O.OO)and p( 1.00), since, although, within the real-
world searching and detection situation, object detection difficulty is essentially a

relative dynamic, as discussed above, it has already been highlighted earlier also

in this subsection, that at least within the physical searching domain, an object

or thing can be difficult to detect in the absolute sense (Le. needle, contact lens,
etc), and, therefore, its inclusion does facilitate a richer and more real-world in-
fluence (at least in physical searches) that can be easily modelled quantitatively.
Furthermore, like the arbitrary inclusion of Searcher Memory, on the coverage di-



CHAPTER 10. SEARCH SIMULATION MODEL 291

mension in subsection 10.2.3.1, including Object Detection Difficulty within the
simulation model also permits, at least to some extent, the potential sensitivity
influence this variable may have upon various competing diverse/uniform search
configurations. It is for these arbitrary and practical issues in progressing a useful
simulation model that this intermediate process variable's influence is included

in the simulation model's design. This is why, in the influence diagram in figure

lOA, the relationships between Object, Object Detection Difficulty and Object

Sensitivity is modelled as a definite relationship (i.e. numbered 9 and 19) as it
will allow the model user to control searcher object detection sensitivity.

In Summary

From the influence diagram in figure 1004, the eventual design decisions of the
sensitivity dimension can be summarised as follows: -

• Duration, on the sensitivity dimension, contributes to the simulation mod-
elling goals directly as it is intrumental in providing a fundamental measure

in determining the detection efficiency of a particular search strategy con-

figuration;

• Searcher, on the sensitivity dimension, will not include the possibility of
object judgement. Therefore, objects reflect definite entities that are to be
detected by the searchers employed in the search and detection is devoid of
any potential for human--error on the part of the searchers (i.e. no potential
for false positive or false negative judgements). Additionally, a searcher rep-
resents, analogically, an inspector in the inspection process and is modelled
as a non-interacting agent with other searchers employed in the search;

• Object, in an abstract manner, satisfies a number of the simulation model's
scope and goals. Firstly, in terms of modelling scope, its inclusion facili-

tates important aspects of the inspection process to be modelled - in the
form of inspection planning to record the number of times an object has

been detected etc. Secondly, in terms of modelling goals, the inclusion of
an object directly facilitates the simulation model's goals through its po-

tential to be assigned to an object type that allows diverse/uniform process



CHAPTER 10. SEARCH SIMULATION MODEL 292

interventions to be incorporated into a search strategy configuration upon
the searcher detection sensitivity dimension;

• Process Intervention captures the ability to predispose searchers employed
in the search to be more/less likely to detect certain objects more/less than

other objects. This will be modelled by each searcher employed in the
search having a probability capability profile that predisposes or biases their
object detection capability to detect certain objects of a certain type more/less
than other objects of another type. Therefore, the process intervention dy-
namic along the searcher detection sensitivity dimension directly promotes
the goals of the simulation model.

Lastly, in connection with the sensitivity dimension, the output variables reflect
an important comparison measure for comparing the various diversity/uniformity
search strategy configurations envisaged. In this regard these output variables di-
rectly promote the simulation model's goals of comparing the human diversity
benefits of existing approaches to promote dependability during the creation pro-

cess.

10.2.3.3 Distribution Dimension

As in subsections of 10.2.3.1 and 10.2.3.2, a previous analysis has already been
performed and diagrammed as an influence diagram in figure 10.5 to aid explana-

tion of these design decisions.

The influence diagram shows three input variables of: Object, Types and Loca-
tion. There are four intermediate process variables of: Object Types, Number of
Objects, Number of Locations, and Location Types. Finally, there are four output
variables of: Object and Object Types Distribution, Object Density, Location and

Location Type Distribution, and Object Types to Location Types Distribution.

It can also be seen, from the influence diagram in figure 10.5 that there are 14
relationships numbered 1..14. Unlike the influence diagrams of 10.2 and 10.4 on



CHAPTER 10. SEARCH SIMULATION MODEL

OBJECr& 14 I
OBlECI' TYPES BJECTTYPES
DISTRIBUTION

13
2

I OBJECT I

3
12 r-- No. OBJECTS

OBJECI'
DENSITY

11 '-- E~

L__ No. LOCATIONS
4

~
LOCATION& 10
LOC'TYPES

ILOCATION IDISTRIBUTION
9

8 5
OBJECI'TYPES
& LOC' TYPES '----i LOC'TYPES
DlSTRlBtmON

67

293

the coverage and sensitivity dimensions, all of the relationships are of a definite

nature - in terms of being quantifiable.

Figure 10.5: Influence Diagram of Distribution Dimension

In the design rationale that follows, the simulation model's design will be framed
into the same categories as in subsections 10.2.3.1 and 10.2.3.2 of: a) design
decisions justified upon fulfilling the goal(s) of the simulation model; b) design
decisions justified by the scope of simulation model; c) design decisions justified
on removing unnecessary complexity and subjectivity from the simulation; and
d) arbitrary design decisions deemed necessary to progress the simulation model
from a more practical standpoint.

Goal Related Decisions

The following simulation modelling design decisions are justified for the purpose

of the simulation model, in terms of, comparing the various approaches of consid-
ering non-functional attributes and issues of what effect underlover representation
of non-functional attributes have upon assumption detection.



CHAPTER 10. SEARCH SIMULATION MODEL 294

The output variable of Defect Density directly supports the modelling goal of the
simulation model, as it can be seen from the influence diagram of figure 10.4 on
the sensitivity dimension in subsection 10.2.3.2 that it was imported as a com-
posite structure and is an intrinsic variable in determining detection effectivenes
- which is important for fulfilling the modelling goal(s) of comparing various

diverse/uniform search strategy configurations. From the influence diagram, in

figure 10.5, it can be seen that this output variable of the distribution dimension
requires the input variables of Object and Location, which in turn, is determined
by the intermediate process variables of Number of Objects to Number of Loca-
tions, within the search space. It can also be seen, that these input, process, output
variables are all related with definite relationships (i.e. 3, 4, 11 & 12) - since the
overall Object Density, within the search space, is calculable. For instance, 250
Objects dispersed within a 500 Location search space would result in an Object

Density of 50%.

Scope Related Decisions

The following simulation design decisions are justified upon the scope of the sim-

ulation model, in terms of: a) only simulating stage 2 of Individual Inspection;
b) the 'upstream' phases and products of the software development process; c)
inclusion of planning, inspection, and collection phases of the inspection process;
and d) inclusion of human roles of recorder, inspector, and collector.

There are two scope related design decisions to consider on the distribution di-

mension.

The first scope related design decision, as can be seen from figure 10.5, relates
to the possible distribution potential of Objects to Object Types. In the influence
diagram this output variable requires the input variables of Object and Types and

is determined by the process variable of Object Types. It can also be seen that there

are four definite relationships relating the input, process, and output variables (i.e.
numbers 1, 2, 13 & 14). All of these relationships are definite - since there
are of a quantifiable nature. For instance, Objects could be distributed over the



CHAPTER J O. SEARCH SIMULATION MODEL 295

number of Object Types unevenly such as: Object Type 1 has 25 Objects, Object
Type 2 has 50 Objects, Object Type 3 has 75 Objects, Object Type 4 has 100
Objects." Here we can see that there are 250 Objects of 4 Object Types, but
they are in a positive skewed distribution over the 4 Objects. The point worth
mentioning here, analogically, with the simulation model, is what, in essence is

this capturing, in connection with assumption detection and the proposed Goal-

Diversity process intervention? It can be argued that, intuitively, what is being
indicated is that during the first stage of Individual Analysis, developers employed
in providing independent and diverse non-functional analyses representations are
much more likely to make certain undesirable assumptions that compromise some
non-functional attribute than others. While, correspondingly, being much less
likely to make certain other undesirable assumptions that compromise some other

non-functional attribute. Not only does this need to be empirically validated, but,
in terms of the simulation modelling scope, such issues relate to the first stage
of the Individual Analysis - where assumptions are generated and manifested
within the resultant analysis solutions. It is reasonable, for now, due to the inherent

arbitrary nature of assumptions, to consider that all assumption types are equally

likely to occur during the first stage of Individual Analysis, and, therefore, the
distribution of Objects over Object Types will be kept uniform.

The second scope related design decision, as can be seen from figure 10.5, relates
to the distribution of Object Types over Location Types. In the influence diagram
this output variable requires the input variables of Object, Types and Location and
is determined by the process variable of Object Types and Location Types. It
can also be seen that there are six definite relationships relating the input, process,
and output variables (i.e. numbers 1, 2, 5, 6, 7 & 8). All of these relationships
are definite - since there are of a quantifiable nature. For instance, Object Types
could be distributed over Location Types quite unevenly so that a given Location

Type could contain more Objects of a certain type than Other Location Types -

such as Location Type 1could contain 10% of Object Type 1, 20% of Object Type

2, 30% of Object Type 3, and 40% of Object Type 4, while Location Type 2 could

5Note here, that, in comparison to Object Density in a 500 location search space, the density
would still be 50%. Distribution of objects, no matter how uneven, do not alter the density.



CHAPTER 10. SEARCH SIMULATION MODEL 296

contain 20% of Object Type 1, 30% of Object Type 2, 40% of Object Type 3,
and 10% of Object Type 4, etc. Again, the point worth mentioning, analogically,
with the simulation model, is what, in essence, is this capturing, in connection
with assumption detection and the proposed Goal-Diversity process intervention?
It can be intuitively argued that what this type of uneven distribution is argueing

for is that during stage 1 of Individual Analysis, predisposing developers to pro-

mote certain non-functional attributes results in them being more likely to make

certain harmful assumption types that compromise certain other non-functional
attributes while being much less likely to make other harmful assumption types
that would compromise another certain non-functional attribute." Once again, it
can be argued that this is a phenomenon that needs to be empirically validated.
Furthermore, in terms of the simulation modelling scope, such issues relate to the
first stage of the Individual Analysis - where assumptions are generated and be-
come manifest within the resultant analysis solutions. It is therefore reasonable, at
this point, due to the inherent arbitrary nature of assumptions, to consider that pre-
disposing a developer to promote a particular non-functional attribute, during the

first stage of Individual Analysis, will result in them being equally likely to make

assumptions that could compromise any of the other important non-functional at-

tributes. Therefore, the distribution of Objects Types over Location Types will

also be kept uniform.

Simplification Related Decisions

The following simulation model design decisions are justified primarily upon the

relationships identified in the influence diagram analysis in figure 10.5 that result
in overly complicating the simulation model and, by doing so, undermine the

simulation model's objectivity.

There is only one simplification design decision for the distribution dimension.

This can be seen from the influence diagram in figure 10.5 to be the distribution

of Locations over Location Types. In the influence diagram this output variable re-

6For example, what is being suggested by such a distribution is that (say) predisposing a devel-
oper, during stage 1, to promote Safety means that he/she is much more likely to make assumptions
that compromise Security, than (say) Availability.



CHAPTER 10. SEARCH SIMULATION MODEL 297

quires the input variables of Location - and is determined by the process variable
of Number of Locations and Location Types. It can also be seen that there are five
definite relationships relating the input, process, and output variables (i.e. num-
bers 4, 5, 6, 9 & IQ). All the relationships relating the input, process and output
variables are of a definite nature as they can be quantified quite objectively in prin-
ciple. For instance, Number of Locations can be distributed quite unevenly over

Location types such as Location Type 1 could have 50 Locations, Location Type

2 could have 100 Locations, Location Type 3 could have 150 Locations and Loca-
tion Type 4 could have 200 Locations." It can be seen that in such a distribution of
Locations, within the search space, Locations are positively skewed over Location
Types. Once again, the point worth mentioning, analogically, with the simulation
model, is what, in essence, is this capturing, in connection with assumption detec-
tion and the proposed Goal-Diversity process intervention? It can be intuitively
argued that what this type of uneven distribution is argueing for is that some non-
functional attributes, during the 2nd Stage of the Individual Inspection, requires a
greater search for harmful assumptions than some other non-functional attributes.
While this also, to a large extent, would require empirical validation, it does raise

more complex and unusual issues also for the inspection process. Firstly, if, dur-
ing the Individual Inspection stage 2, some non-functional attributes had larger
conceptual search spaces that required larger coverage than other non-functional
attributes, then this would mandate that developers inspecting analysis represen-
tations would need to be allocated different durations of time as required effort al-
location to cover these uneven Location distributions would naturally require dif-
ferent inspection/search durations. Therefore, if coverage is unevenly distributed
between the non-functional attributes to be inspected, then this would also mean
that effort allocation between the inspecting developers would also need to be
distributed unevenly. Since, in the example of Number of Locations to Location

Types given above, if all the four searchers were allocated 125 RUs each (theoreti-

cally sufficient effort allocation to gain 100% coverage of the search space i.e. 500

7Note here also, that with such a distribution of Locations over Location Types, the size of the
search space is 500 Locations in size. If 250 Objects were hidden in this search space then the
Object density would remain at 50%. This highlights again that distribution does not effect the
actual density output variable, although it may significantly alter the efficiency and effectiveness
of the search.



CHAPTER 10. SEARCH SIMULATION MODEL 298

resource units) then the searcher predisposed to searching Location Type I would
have enough RVs to gain 250% coverage of that Location Type while the searcher
predisposed to search Location Type 4 would only have enough RVs to gain 62.5%
coverage of that Location Type. Secondly, and connected directly with the first
issue, this is not what would normally happen in the actual software inspection

process - since the team members of the inspection team usually are allocated

an equal period of time to conduct an inspection. Furthermore, as was discussed
in chapter 9 and both the previous subsections of the coverage and sensitivity di-
mensions, extending inspection durations may well introduce fatigue effects that
could undermine overall detection. Therefore, although the relationships are of
a definite nature and can be quantified, such distributions are not proven and re-
quire additional search resource complexities, so, in the interests of not wanting
to overly complicate the initial simulation model and possibly compromise con-
fidence in the outputs it produces, the distribution of Number of Locations over
Location Types will be kept uniform.

In Summary

From the influence diagram in figure 10.5, the eventual design decisions for the

distribution dimension can be stated, as follows:-

• Distribution of Objects over Objects Types will be kept to a uniform distri-

bution;

• Distribution of Object Types over Location Types will be kept to a uniform
distribution;

• Distribution of Locations over Location Types will be kept to a uniform

distribution;

Lastly, in connection with the distribution dimension, the output variable of Object

Density is an important inclusion as a dynamic in the search simulation model as

it directly contributes and promotes the modelling goal(s).



CHAPTER 10. SEARCH SIMULATION MODEL 299

10.3 Search Simulation Model

In this subsection verification and validation of the search simulation model will
be discussed along with a brief overview of the actual search simulation model
that has been implemented - including the simulation modelling approach and
building process. The verification and validation issues are discussed in subsec-

tion 10.3.1 and the simulation modelling approach and process is presented in

subsection 10.3.2.

10.3.1 Model Verification and Validation

This subsection discuses the relevant simulation modelling verification and vali-
dation issues in order to: a) ensure adequate satisfaction that the actual simulation
model's behaviour operates as expected; b) to discusss relevant real-world repre-
sentational issues - in terms of the searching and detection phenomenon that the
simulation model aims to capture.

10.3.1.1 Verification

It is important to ensure that the simulation model behaves as the design ratio-
nale in section 10.2 intended. It can be seen from the previous section that there
were three dimensions of interest, namely: a) the coverage dimension, that relates
a searcher and searcher effort issues to the search space; b) the detection sensi-
tivity dimension, that relates a searcher to target objects; and c) the distribution
dimension that relates target objects and their density to the search space.

Within these dimensions, confidence in the search simulation model's dynamic
behaviour can be increased by performing a number of relating test configurations
in order to help ensure confidence that the eventual implemented model performs

properly.

First, on the coverage dimension, it is important to ensure that the searcher mem-
ory facility, discussed in the previous section, performs as expected. This can be

checked by configuring the simulation model to have only one searcher employed



CHAPTER 10. SEARCH SIMULATION MODEL 300

with 100% resource allocation units so that the searcher with perfect memory (i.e.
p( 1.00) of remembering which locations they have searched in) will cover the en-
tire search space, and will produce the equivalent of a exponential random search"
when the memory parameter is set to completely imperfect (i.e. p(O.OO)). This
test was performed, and the simulation model performed as expected: a) when the

searcher had perfect memory they performed a complete coverage of the search
space (i.e. a definite range search): and b) when set to imperfect memory (i.e.

p(O.OO))the searcher only achieved (approx) 63% coverage - as expected. An-
other test on the coverage dimension is to ensure that the coverage predisposi-
tioning is behaving as expected. To do this, the simulation model is reconfigured
so that there is a 1000 location search space made up of 500 locations of type 1
and 2. The two searchers are perfectly predisposed to ensure a partitioned search
(i.e. both are diversely set to probability of p(1.00) to select different location
types) and probability of zero in selecting the other searcher's location type. If
searcher memory is also perfect (i.e. p( 1.(0)) for both searchers, then a 100% par-
titioned search can be expected. This test was done and both searchers performed
a complete partitioned coverage of the search space - as expected.

Next, is the sensitivity dimension, the only check, on this dimension, is to ensure
that the sensitivity predispositioning is working in the simulation model as ex-
pected. This can be tested by reconfiguring the search simulation model so that
two searchers completely duplicate the search coverage of the search space, but
are diversely predisposed to two different object types with 100% (i.e. p(1.00))
sensitivity on one object type and zero (i.e. p(O.OO)detection sensitivity on the
other searcher's object type. If object density is set high to 200% and perfect
memory is also set, then when the searchers duplicate on every search space lo-
cation location (on average) they should detect only the 1 object type they have

8A random exponential search, can be defined as Exponential Search = 1-(q"r). Where q
is the probability of not searching a location within the search space for every RU allowance r.
So, for example, if a searcher searches within a 1000 location search space and is allocated 1000
RU allowance, q is the probability of not selecting a search space location = 1-111000 = 0.999
of any location during the search not being selected. Therefore. the exponential search, in this
configuration case, would be 0.999"1000=0.3677 and 1-0.3677 = 0.6323 indicating that, in terms
of coverage of the search space, there was only (approx) 63% coverage - despite there actually
being sufficient search resource effort allocation for 100% coverage.



CHAPTER 10. SEARCH SIMULATION MODEL 301

perfect sensitivity to, and never detect the other object which they are entirely
oblivious to - resulting in all of the target objects of both types being detected -
but only one type being detected by one searcher. When this test was performed,
each searcher detected all of their own object types only and collectively detected
all of the 200 hidden objects diversely - as expected.

Finally, the distribution dimension is verified. However, this dimension merely
handles the uniform distribution of target objects within the search space and in
performing the previous tests and configurations it has been highlighted that the
random/uniform allocation of target objects is behaving in the simulation model

as expected.

10.3.1.2 Validation

Like all models, the search simulation model represents an abstraction from real-
ity. The issue of model validation relates to the eventual simulation model's level
of acceptable representativeness of sufficiently important real-world influences.

In this case, the influence of diverse non-functional attributes upon assumption

identification. In section 10.2 a design rationale was justified for the model to de-
termine a reasonable and satifactory set of decisions in order to arrive at a search
simulation model's design that fundamentally and practically captures the impor-
tant real-world influences of such a searching and detection phenomenon - with
respect to employing human redundancy/diversity. In the paragraphs below these
are discussed in terms of model validation issues they raise.

Inclusions of real-world influences: In the interests of retaining additional real-
world human detection and searching influences, two additional real-world influ-
ences included in the search simulation model's design were: a) on the coverage
dimension, Searcher Memory. As discussed in section 10.2, this aspect could be

acceptably modelled in an objective quantifiable manner that aids additional as-

sociated real-world detection and searching aspects to be analysed and included
in the simulation experiments; b) on the detection sensitivity dimension, Object
Detectability. This detection and searching influence allows the simulation model



CHAPTER 10. SEARCH SIMULATION MODEL 302

to include an obvious influence that 'things' detected or searched for may intrin-
sically be more/less difficult to detect than other 'things '. Although, as mentioned
in section 10.2, that only an absolute, and not relative, interpretation can be mod-
elled, inclusion of this searching/detection influence facilitates analysis and pro-
motes a more real-world valid search simulation modelling aspect.

Defense of uniform distribution: As discussed in section 10.2, on the distribution
dimension only a uniform distribution of target objects within the search space
is modelled. Therefore, the only dimensions of uneven distributions modelled,
by the search simulation model, is: a) on the coverage dimension - in terms of
'where' a searcher searches; and b) on the detection sensitivity dimension - in
terms of 'how' good a searcher is at actually detecting objects. Although, in using
a software defect inspection analogy in the model, the validity of this simulation
modelling decision may be criticised from the point of view that, in software sys-
tems, faults are not likely to always be distributed evenly throughout the artifact,
it should be pointed out that the subject of the thesis, and explicit goal of the
simulation model, is not to focus exclusively upon the manifestations of faults,

but instead, upon the flawed assumptions that potentially cause them to become
manifest. In this regard, as chapters 5, 6, and 8 indicate, assumptions have an
intrinsically arbitrary, implicit and subjective nature that, as far as the literature
and examples indicate, in the thesis, do not necessarily have uneven distributions.
In the absence of any such empirical or experimental evidence, it seemed reason-
able, as a first search simulation modelling exercise, to design the model to simply
provide a uniform distribution of analogous object representations. Moreover, in
the wider context of human redundancy and diversity benefits, in promoting de-
pendability, if the search simulation model's results can indicate that, even with

a uniform object distribution, that human diversity can be usefully leveraged to
achieve greater defect detection, then this is, by itself a meaningful finding of the

thesis.

Future Validation Issues: real validation of the model would require extensive
research and investigation of the major influences upon assumption detection -
that goes beyond what can be feasibly achieved within the limited resources of



CHAPTER 10. SEARCH SIMULATION MODEL 303

a single PhD study. Such issues include additional influences like: a) Criticality
and Judgement issues relating to specific domains - in terms of how does the
criticality of assumptions (Le. impact and frequency) undermine dependability
and influence detection rates and what broader categories, within those identified
in chapters 6 and 8, can be usefully devised and intergrated into the simulation
model; b) Learning and Fatigue effects, upon detection related issues. There is,

within the literature of Operations and Project Management literature on learning

curves, but little, to my knowledge, directly relates its effects upon fault detec-
tion etc. In order to integrate such influences, greater empirical and experimental
knowledge is required; c) Fault/Assumption Distribution, if there were sufficient
time and research resources available then it may be possible to validate the sim-
ulation model from the perspective of being able to sufficiently persuade others
that the search simulation was providing reasonably accurate detection results by
being able to get more realistic diversity configurations and checking the resultant
outputs from real inspection related data. Such data could, for instance, provide
information on actual assumption/fault distributions to check whether these are
random, or, if not, to what extent they are unevenly distributed.

In summarising these search simulation model validation issues, it must be ad-
mitted, due to a combination of limited suitable data and finite research resources
allowed, the simulation model's design and configurations that follow this section
represent, at best, explorative indications of what human redundancy/diversity
benefits may be possible from incorporating diversity on the coverage and sensi-
tivity dimensions with a uniform target object distribution. However, I do believe,
that through careful analysis provided in the thesis and design of the eventual
simulation model the design and subsequent configurations are not widely unrep-
resentative in presenting some evidence in support of the stated modelling goals

in section 10.2.

10.3.2 About the Simulation

The search simulation model was developed in Java 2 using the Borland J-Builder

Integrated Development Environment (IDE) - version 9. Due to both time re-



CHAPTER 10. SEARCH SIMULATION MODEL 304

strictions and inexperience on the author's part with the language, it is presently
only in the form of a text-based menu design." The following subsections intro-
duce and explain the design, interaction menus, and simulation modelling process
adopted. It should be noted, however, that this section explains only the essential
features of the search simulation model used - as the actual model is much richer
with many other configurations possible.I?

10.3.2.1 The Simulation approach

Simulation modelling is used in preference to other modelling approaches for a
range of reasons [cf. [169]]. These include modelling situations where mathe-
matical analytical techniques are believed inadequate or would be overly complex
to apply. Another reason for adopting a simulation modelling approach is that its
use can provide an insight into the problem without affecting or disrupting the
actual area of interest. Finally, simulation modelling approaches are very useful
when large numbers of variables need to be considered in a timely fashion. In
such situations simulation modelling can compress time-scales and offer predic-

tive solutions ahead of decision-making schedules.

In this thesis, a simulation modelling approach was specifically adopted to: a) gain
greater understanding of diverse assumption detection and search-related issues
which appear to have received little coverage in the literature, and which cannot be
easily observed in the software development process; and b) to provide research
insights into future possible empirical studies on fault-detection tasks within the
wider DIRe Research Programme. I I

9However, it was designed so a Graphical User Interface (GUI) could be added later.
lOIn all, the search simulation model's code size was (approx.) 23,500 lines of code (LOC)

and includes simulation features that specify: a) search planning and search resource coordina-
tion of oblivious, duplicated, and unique search space regions; b) more complex effort allocation
configurations - such as sectors make further demands upon searchers allocating sufficient re-
source units; and c) individual detection capabilities of the searcher - such as searcher memory
etc. These features (with the exception of searcher memory) were not configured for the search
simulations used in this chapter.

11DIRC is an Interdisciplinary Research Programme for improving the dependability of
Computer-Based Systems ...see website: www.dirc.org.uk

http://www.dirc.org.uk


CHAPTER 10. SEARCH SIMULATION MODEL 305

10.3.2.2 The Simulation process

There are five important steps to a simulation model's construction in the mod-
elling process. These are [cf. Lucey [169]: pp.225-226]:-

1. Identify the input variables, distinguishing between controlled and non-
controlled variables;

2. Where appropriate, determine the probability distribution for non-controlled
variables;

3. Identify any parameters and/or status variables;

4. Identify the output variables;

5. Determine the simulation model's essential logic.

In the paragraphs that follow these five steps will be covered.

Input variables

Controlled variables represent those that, in a real search situation, would be under
the direct control of management. In the simulation model these correspond to the
search effort allocation dimension in figure 9.4. More specifically, they involve
the number of searchers employed and the amount of effort each searcher can
expend in searching for target objects (i.e. labelled resource units in the simulation

model).

Uncontrolled variables represent those that, in real world search conditions, can-
not be directly controlled by management. These correspond to the complexity
(or difficulty) embodied in the searching task. Such variables include such factors

as the size of the search environment (i.e. search space) and the dimension of

the number of target objects hidden in the search environment (i.e. target object

density) in figure 9.4.



CHAPTER 10. SEARCH SIMULATION MODEL 306

Probability distributions

A simplifying assumption made in constructing the simulation model was to as-
sume that target object density is random (or evenly distributedj.F Therefore, in
terms of target object density distribution, the probability distribution is fixed in
the simulation model.

Parameter variables

Parameters also represent input variables to the simulation model, but they con-
sist of input variables, that, for all simulation runs - during a given simulation
configuration, keep a constant value. In the search simulation model, parameters

reflect such factors that influence the effort allocation dimension - in terms of the
constant number of resource units that are exhausted in searching any particular
selected search environment location for target objects (in the search model this
remains at 1 resource unit per location searched). Another dimension parameter
that retains a constant value for all simulation runs concerns the target object(s)

detectability (set between 0.01 (p) (i.e. very hard object to detect by any searcher)

to 0.99 (p) (i.e. easy object to detect by any given searcher). Finally, the searcher
capability dimension from figure 9.4 also reflects an example of parameter vari-
ables concerning the introduction of: a) search space location types and/or target
object types to facilitate diversity predispositioning; and b) individual searcher
location type and object type diversity profiling. 13

Status variables

In some models, variables behave differently during simulation runs because of
additional variation status introduced into the model to promote accurate mod-
elling behaviour of the real domain under investigation - due to temporal, sea-

12This is an assumption often made in other analytical models - such as statistical modelling
approaches, although it must be identified as a modelling assumption as claims exist that, in fault
detection, faults are not equally likely to occur throughout the system but can often result in uneven
densities biased towards more complex parts, modules, objects, or subsystems of a software system
(i.e. a kind of Pareto dynamic). However, this would be a more sophisticated future simulation
modelling inclusion.

131t should be noted, however, that the searcher diversity profilinglpredispositioning to location
types and object types can also be modelled as status variables also ...see status variables section.



CHAPTER 10. SEARCH SIMULATION MODEL 307

sonal, or inherent inconsistencies the real domain invokes. In the search simu-
lation model the searcher capability dimension from figure 9.4 on page 246 by
allowing the searcher's diversity or uniformity predispositioning towards search
space locations and/or target objects to vary between individual simulation runs."

Output variables

The output variables reflect the end-state results from the simulation after cal-
culations and randomised interactions, internally modelled in the form of (con-
trolled/uncontrolled) input variables, parameters, status variables (if any), and
probability distributions, have been performed. The output variables must provide
data/information of the simulation that satisfy the original simulation model's in-
tended objectives. In the search simulation model, the two output variables are:
a) detection effectiveness - in terms of number of target objects (of whatever
type modelled) are detected as a proportion of the total target object density mod-
elled. The calculation is pretty generic and simple and reflects a common method
adopted in much of the software inspection literature. The detection effectiveness

I· '. d t et' ff ti - number of objects detected. d b) dcalcu anon IS. e e zan e ec zveness - total number of objects hidden' an e-
tection efficiency - in terms of the number of target objects detected (of whatever

type modelled) as a proportion of total effort allocation (in abstract resource units).
Again, this is quite a well accepted calculation method used in software inspec-
tion to reflect the amount of effort required to detect a single fault. The detection
ffici cy calculation is: detection efficiency = number of objects detected . Ite Clen total number of resource units

should be finally pointed out that these calculations are performed at the end of
all required simulation runs and reflect the mean average over the total number of

individual simulation runs performed.

14Such a situation is when location and/or target object predispositioning is capturing an un-
controlled team compositional type diversity (i.e. personality or cultural heterogeneity) in the
simulation. In order to accurately attempt to capture its detection effectiveness or detection effi-
ciency results over many such compositional teams, the simulation model must alter the diversity
predispositioning - in-keeping with the uncontrolled nature of actually composing many such
teams in reality.



CHAPTER 10. SEARCH SIMULATION MODEL 308

Logic of the simulation model

A final modelling construction stage in the simulation modelling process is to
define the main essential logic that underpins the calculations and randomised
interactions of the input variables, parameters, and status variables etc. This is
typically done in the form of a flow--chart that unearths the dynamic flow and

decision points involved.

In figure 10.6 the essential simulation model's logic is illustrated in the form of a
flow--chart. As mentioned earlier in subsection 10.3.2 the actual model is much
richer and contains a number of additional input variables, parameters, and sta-
tus variables etc. Figure 10.6 reflects the simplified logic view of the simulation
model's calculations and interactions relevant to the simulations adopted in this

chapter.

The logic reflects the flow of each searcher searching under diverse or uniform lo-

cation type and object type conditions. It can be seen that the simulation starts
with the random selection of a search space location number. Providing the
searcher has sufficient resource units left to search the selected location (repre-
sentative of effort allocation of time and/or cost in the 'real-world' domain), the
searcher has the potential to search the location. If not, this searcher stops search-
ing. If they have sufficient resource units, then the first consideration in the search
simulation model is to determine if parameters of location type diversity have been
included (this models the diversity dimension of coverage see subsection 10.3.2).
If this parameter is not included then the flow of the simulation model proceeds
to allow the searcher to search the search space location and decrements one re-

source unit allocated. If this parameter is included, then the searcher will have a

location diversity profile probability of selecting this type of location to search in.

Providing the randomised probability of the searcher is less than or equal to their

probability profile of searching the location then they will select this location as a
location to search and their resource unit allocation will be decremented by one.



CHAPTER 10. SEARCH SIMULATION MODEL 309

YES

NO

NO

YES

NO'''OET~,~--------------------------~~

YES

Figure 10.6: Main Simulation Logic



CHAPTER 10. SEARCH SIMULATION MODEL 310

Otherwise, if the randomised probability is greater than their probability profile of
searching the location, then the searcher will not select to this location type and
go back and randomly generate another search space location.

Once the logic flow reaches a definite search of a search space location, then it

is necessary to determine if the search space location to be searched contains any

objects.P If the selected search space location does not contain any target objects,
then the searcher has wasted their resource unit (equivalent to wasting time and
money (i.e. inspection effort) searching in a module or object for a fault when
non exist) in its selection and the flow of the model returns to randomly select
another search space location. If, on the other hand, the search space location
does in fact contain target object(s) then the issue of target object type diver-
sity/predispositioning needs to be determined. If this parameter is included then
the individual searcher will have their own target object type sensitivity profile. If
this is the case, then if the randomised probability of the searcher is less than or
equal to their probability profile for this particular target object type, the searcher

will not be oblivious to the target object and has the potential to detect the target

object. If, however, the randomised probability is greater than their probability
profile for this target object type the searcher will be oblivious to this target ob-
ject type and have no potential to detect the target object. 16 In this case, flow
will pass back to selecting another search space location. Should the target object
type diversity/predispositioning parameter not be included then the searcher will
definitely have the potential to detect the target object.

As implied in the paragraph above, even if a searcher is not oblivious to a partic-
ular target object type (if target object type diversity/predispositioning parameter
is included in the simulation), the searcher is not certain to detect the target object.

151tshould be noted that any given search space location can contain a,l ..n target objects. This is
more realistic than constraining the search space location to contain only I target object. It also is
necessary to have the option of simulating searches with higher densities than the size of the search
space environment. It also would be necessary if future simulation modelling extensions were to
include certain density distributions - so it facilitates extensibility of the simulation model.

16It needs to be mentioned that in addition to each search space location having the ability to
contain O.l ...n target objects, any single search space location can contain many target objects of
different types.



CHAPTER 10. SEARCH SIMULATION MODEL 311

.nass nqro $l'-UP SlARqI PMI' ~ .MTA

.BESS
.II&U,....
n~ Jl} 11HW ~'l(t

'Ii&S ~l $ )I .. UY $!lIIiu.n", ~
..... l~J", a.&\i .w; _, ..... )m:1J1';4

Figure 10.7: Main Menu Screen Options

This is because, independent from any target object type diversity/predispositioning,
each target object has a general detectability probability. This is why, in the flow-

chart logic, irrespective of the inclusion of target object type diversity/predispositioning,

the logic flow flows next to randomising the probability of the target object (of
whatever type) being detected by the searcher. If this is less than or equal to
the searcher's detection proficiency then the searcher will detect the target object.
The total target object detection count will then by incremented by one before flow
control passes back to randomly selecting another potential search space location
to search. Conversely, if the randomised probability is greater than the searcher's
proficiency then they will not detect the target object and flow will pass back to
randomly selecting another potential search space location to search.

This then concludes the discussion of the search simulation model's actual design
and construction within the simulation modelling process.

10.3.2.3 Brief Overview of the Simulation Model

In this subsection an overview of the actual search simulation model is provided.

As mentioned earlier in subsection 10.3.2 the simulation model is a text based
menu design. In figure 10.7 the main menu options available are shown. Menu



CHAPTER 10. SEARCH SIMULATION MODEL 312

option "P" allows the inputting of the overall search planning - in terms of allow-
ing the user options to perform a resource constrained or unconstrained search and
whether they wish to perform a randomised or coordinated search. If the user opts
to perform a resource constrained search then the maximum number of resource
units per searcher (i.e. effort allocation) is presented. Additionally, If the user

selects to perform a constrained and coordinated search then they are required to
set-up the degree to which the search should be conducted. This involves the set-
ting of a further three parameters: a) the amount of individual searcher resource
units that will search the search space uniquely; and b) the number of individ-
ual searcher resource units that will search the search space locations in duplicate
with other searchers employed. Collectively these parameters and controlled input
variables allow for the beginnings of an overall search plan.

The next main menu option "L" allows the user to define the search space envi-
ronment (see figure 9.4). Firstly the user is asked to enter the size (in search space
locations) of the entire search environment. If a coordinated overall search strat-

egy has been selected above then the user is asked to decide a) whether they wish
all the searchers to be oblivious (irrespective of diversity/predispositions) to some
subset of the search space; b) whether they wish all searchers to search part of the
search space uniquely; and c) whether they wish all the searchers to search some
part of the search space in duplicate with other searchers. If yes is selected to any
of these options then the user is prompted to enter the total number of search space
locations that are to be searched or avoided in the way desired.

Following these selections, the user is asked to input the parameter(s) of search
space location types. If some diverse predispositioning is required then multiple
search space location types can be entered. If not, then the user inputs only 1
type to be simulated. One of the richer features, not employed in simulations in

this chapter, involves the ability to determine the number of search space location
sectors within each individual search space location. This allows for a much more

complex effort allocation simulation where the individual searchers must allocate
a number of resource units on selection of a search space location to search. In
this chapter this option is precluded. This is done by allocating only one sector



CHAPTER 10. SEARCH SIMULATION MODEL 313

Figure 10.8: Searcher Sub Menu Screen Options

per search space location.!?

The next main menu option "T" allows the user to define the uncontrolled variable

inputs of target object densities. It should be noted that the simulation model

is designed to accommodate any density level.l'' These are entered as the total
number of target objects to be randomly hidden within the search environment.
Next, the user is asked to enter the parameter of target object types. If diversity
predispositioning is required then multiple target object types may be entered. If
not, then only one target object type should be entered. If multiple sectors per
search space location has been included (not used for simulations in this chapter),
then the next input option allows the user to distribute the number of target objects
among the sectors in a search space location. This can be randomly distributed

17In this more complicated model, target objects (of whatever type) can be allocated to sectors
contained by search space locations. The more sectors per location means that search situations
arise where individual searchers must allocate sufficient effort if they are to stand any potential of
detecting a target object i.e. say a location contains ten sectors, and sector nine contains a target
object, the searcher must allocate at least nine resource units to provide sufficient effort coverage
to have the chance of detecting the target object.

18Prom the software inspection literature, this allows an analogous model of artifact quality i.e.
the larger the density the poorer quality of the artifact and vice versa.



CHAPTER 10. SEARCH SIMULATION MODEL 314

or the user can specify which sector should contain target objects.'? Next, the
detectability of the target objects can be entered. This can be any probability,
as a decimal fraction, between 0.01 (i.e. very hard to detect) and 1.00 (i.e. will
definitely be detected, subject to search space and effort coverage). The simulation
model allows the user to either randomise these on every simulation run (i.e. as a

status variable) or as a constant throughout all simulations (i.e. as a parameter).

The next main menu option "S" takes the user to the searcher sub menu screen
illustrated in figure 10.8. From this sub menu the user can enter the controlled
input variable of number of searchers to employ in the search. This is cho-
sen by selecting "N". By entering "L" the user can now specify the searchers'
diversity/predispositioning profile to search space locations types. This profile
can be: a) set to a random diversity/predispositioning (i.e. as a status variable)
on each simulation; b) set to be a constant uniform predispositioning across all
searchers employed (i.e. as a parameter) across all simulation runs; or c) set to
a specific and constant profile pattern, by the user (i.e. as a parameter) across

all simulations. The next sub menu option "0" allows the user to specify the

searchers' diversity/predispositioning profile to target object types. This profile,
again, can be: a) set to a random diversity/predispositioning (Le. as a status vari-
able) on each simulation; b) set to be a constant uniform predispositioning across
all searchers employed (i.e. as a parameter) across all simulation runs; or c) set
to a specific and constant profile pattern, by the user (i.e. as a parameter) across
all simulations. Sub menu option "M" allows the user to specify the level of all
the searchers' memory - in terms of remembering which search space locations
they have already searched. This parameter can be set as a probability figure in
decimal fraction format between 0.00 (i.e. no memory of previous search space
locations searched) and 1.00 (i.e. perfect memory of previous search space loca-

tions searched). The last sub menu option "E" allows the user to determine how

much effort coverage (in terms of resource units) will be allocated to searching
a search space location. This parameter is only of any real influence when the

simulation model is configured with multiple sectors per search space location. In

19Note: Multiples of target objects can be allocated to any single sector in a search space loca-

tion



CHAPTER 10. SEARCH SIMULATION MODEL 315

Figure 10.9: Configuration Settings Screen

such a configuration, the user can: a) ensure sufficient effort coverage is allocated
to search all sectors within a search space location; b) allocate effort coverage to
only those search space locations that contain (at least) one target object. This is a

kind of partial knowledge search; or c) only allocate a specified amount of search
effort coverage per search space location as a constant parameter. In the simula-
tions, in this chapter, no search space location sectors are configured. Therefore,
effort coverage allocation is one resource unit requirement to completely search

one selected search space location.

The sub menu option "R" returns the user back to the main menu options screen

(see figure 10.7).

The next main menu option "R" allows the user to actually run the simulation.
This is entered as any positive integer (i.e. greater than or equal to one). Following

the entry of this figure, the simulation automatically starts. Main menu option

"D" allows the user to view the output variables of detection effectiveness and

detection efficiency - once the simulation has terminated. Main menu option
"C" allows the user to view all the configurations previously set-up by them -
in case the model user forgets which input variables, parameters, status variables
etc have been entered. Figure 10.9 illustrates this screen. Additionally, from this



CHAPTER 10. SEARCH SIMULATION MODEL 316

screen the user can clear all previous configuration settings if they wish.

Finally, the main menu option "Q" allows the user to quit the search simulation
model.

10.4 Configuration of the Simulation Model

In this section a clarification of both the combinations of potential search strate-
gies and degree of predispositioning will be discussed. In subsection 10.4.1 a
reasonable degree of predispositing will be discussed that allows both an insight
into the potential benefits of acheiving diversity on both the search space cov-
erage and object sensitivity capability dimensions, while attempting to retain a

feasible and realistic degree of diversity/uniformity predispositioning. Further-
more, as hinted at in providing a rationale in section 10.2, it will also be necessary
to clarify that the two dimensions capture different dynamics in their respective

predispositioning dimensions of search space coverage and object sensitivity ca-

pability. In subsection 1004.2, these configurations from subsection lOA. I will

be analysed for sensitivity to important simulation parameters maintained in the
simulation model to help retain some more realistic and real-world influences _
as discussed in the design rationale section 10.2.

Firstly, however, from what has been discussed so far in this thesis, and partic-
ularly what has been more explicitly highlighted in this chapter, we can see that
in order to fulfill the simulation model's goal(s) from section IQ.2.1, it is nec-
essary to simulate for comparison the three potential approaches to promoting
non-functional attributes during the early phases and products of the software
development process. To begin with there is the Ad-hoc approach to considering

non-functional attributes. As has already been discussed, this approach can result,

through common homogeneous and uniform influences of the the system type, ap-

plication domain, and the broader collective cultural and experiential backgrounds
of the specific developers, in their predispositions being more uniform and over-

lapping in their promotion and consideration of non-functional attributes. Next,
there is the Systematic approach to considering non-functional attributes. Again,



CHAPTER 10. SEARCH SIMULATION MODEL 317

1
I "\IH1RM SYSTL\1ATlC DIVERSE
stxsmvrrv SE."SmVHY suxsrnvrrv

& & &
DIVERSE DIVERSE DIVERSE

COVERAGE COVERAGE COVERAGE
Z
0en IT~IH)R~ SYSTE.'.IATIC DIVERSEZ
:lJ stxsrnvrrv Slc"SmVITY srxsrnvrrv::0s & & &
:lJc SYSTEMATIC SYSTBlATlC SYSTEMATIC<
'" COVERA(;I: ('OVERA<iE COVERAGEUJ
;>
0
U

USIFORM SYS1'E.\.IATIC DIVERSE

j
sixsrnvrrv srxsrnvrrv snxsrrrvrrv

& & &

USIKJRM USIFOR.'.I UNIFORM

COVERAGE COVERA(iE COVERAGE

IlSlI'OR.'.I SYSTI,MA TIC DIVERSE

SENSITIVITY D1MEr.;SION

as has already been discussed in this thesis, whilst such consideration is an im-
provement, within the development process, in an interventionist manner, it also
fails to recognise the cognitive limitations of developers who are expected to si-
multaneously promote multiple interrelated goals. As both research and anecdo-
tal evidence has shown, when multiple goals are to be simultaneously considered,
there is the inevitability that what in fact happens is that developers constantly
switch between representations and overall achieve a more shallow consideration.
Finally, there is the proposed goal-diversity process intervention of this thesis.
In this situation, not only is this interventionist to help ensure that important non-
functional attributes of dependability are considered, but this process intervention,
unlike the Systematic approach, also recognises the cognitive limitations involved

in the promotion of multiple goals at once. With this proposed process inter-

vention, as has already been discussed, a single goal is promoted throughout the

three envisaged stages allowing a more acute and deeper consideration of impor-
tant non-functional attributes that contribute to overall computer-based system
dependability - as a super--ordinate system goal.

Figure 10.10: The Nine Possible Search Strategis



CHAPTER 10. SEARCH SIMULATION MODEL 318

When we interpret these three approaches into the two critical dimensions of
search space coverage and object sensitivity capability, it can be seen that there
are in fact nine possibilities to consider. These are shown in figure 10.10. Looking
from left to right and bottom to top, it is first possible to see that it is possible to
characterise the Ad-Hoc approach as one that, at worst, results in too much over-

lapping, as the Uniform Coverage and Uniform Sensitivity influence (UC & US).

The next two along the bottom offer, at least a variation of this theme that is worth
considering, in terms of less pessimistic possibilities whereby, although coverage
is essentially overlapping and uniform, there may be less influence of this upon
object sensitivity capability. The middle case is therefore the Uniform Coverage
and Systematic Sensitivity variation (UC & SS). At the most optimistic, within
this uniform coverage, there is the variation of Uniform Coverage and Diverse
Sensitivity (UC & OS) which considers the possibility that whilst developers may
be heavily uniform and overlapping, in terms of the non-functional attributes they
consider, they do tend to be, at times, more diverse in flawed assumptions they
detect. Moving up one row, it is possible to characterise the Systematic consid-

eration of non-functional attributes - in terms of a shallow and more switching

consideration. At the far left of the middle row, it is possible to consider the
more pessimistic case that although the searchers are constantly switching their
coverage predispositioning, there is a uniform or homogeneous bias influencing
them - in terms of their likelihood to detect the same types of objects. This
is characterised by the Systematic Coverage and Uniform Sensitivity dimensions

combination (SC & US). The centre box of the middle row attempts to capture
the more middle case, that if developers or searchers keep switching their promo-
tions and considerations, then they are likely to also have a more systematic, if
perhaps, shallow sensitivity to detecting objects also. This middle case is the Sys-
tematic Coverage and Systematic Object Sensitivity combination (SC & SS). The

far right box of the middle row captures, again, a more optimistic possibility for

the Systematic consideration of non-functional attributes. Here, whilst searchers

achieve a shallow and ever-switching consideration of the search space, they are

more diverse in terms of which object types they are more likely to detect. This
more optimistic case is provided by the Systematic Coverage and Diverse Object

Sensitivity combination (SC & OS). Finally, the top row attempts to characterise



CHAPTER 10. SEARCH SIMULATION MODEL 319

the proposed goal-diversity process intervention, by offering more diversity with
respect to coverage - due to a deeper and more focused consideration of different
non-functional attributes throughout the early stages of the software development
process. At the far left, however, is the pessimistic case where, although searchers
are more likely to be diverse with regards to search space coverage, they are, for

some reason, more likely to be uniform or homogeneous in object detection sensi-
tivity to the same types of objects. This is characterised by the Diverse Coverage
and Uniform Sensitivity combination (DC & US). Next is the middle case situa-
tion, where, although the searchers are more diverse in covering the search space,
for some reason, they have only a shallow and equal object detection sensitivity
capability. This strategy combination is the Diverse Coverage and Systematic Ob-
ject Sensitivity (DC & SS). Finally, there is the optimistic diversity case for the
proposed goal-diversity process intervention, whereby, due to a more diverse cov-
erage of the search space, searchers become more diverse in their object detection
sensitivity capability. This search strategy is the Diverse Coverage and Diverse
Object Detection Sensitivity (DC & OS).

Apart from these configuration considerations, it has been decided to model five

developers to test the first simulation modelling goal from section 10.2.1 of com-
paring the three potential approaches to considering non-functional attributes.
The reasons for this are that, in consideration of dependability, within the wider
literature, five non-functional attributes are often considered fundamentally im-
portant. Therefore, five seems a reasonable number to configure the simulation
model with. However, in order to consider the second modelling goal from section
10.2.1 of the effects of under/over representation of important non-functional at-
tributes, two to ten location types (i.e. goals) will be configured to offer sufficient
insight into the over/under representational dynamics and influences concerning

the proposed goal-diversity process intervention.

Furthermore, each search strategy configuration is simulated 1000 times utilizing
a 500 location size search space with human resources factored-out to a theoret-
ical 100% search coverage effort allocation - as discussed in detail in various
parts of the design rationale in section 10.2.



CHAPTER 10. SEARCH SIMULATION MODEL 320

Sensitivity Profile Object Type I Object Type 2 Detection Effectiveness

Searcher _One 0.75 0.25 0.50
Searcher_ Two 0.25 0.75 0.50

Table 10.2: Equivalent Object Detection Effectiveness

10.4.1 Predispositioning

In this subsection there are two issues to be dealt with. Firstly, there remains the
issue of how both the uniformity/diversity dimensions of search space coverage
and object sensitivity capability capture different dynamics. This is discussed in
subsection 10.4. I.1. Secondly, there is a justification necessary for arriving at a
reasonably realistic degree of uniformity/diversity predispositioning. This is dealt
with in subsection 10.4.1.2.

10.4.1.1 Differing Dimension Dynamics

While both dimensions characterise uniformity and diversity predispositioning, it
is important to note that the two essentially capture different dynamics. On the

coverage dimension, location selection is capturing an option dynamic whereby if
one option is not taken another must i.e. 2 location types presents the searcher with

a forced either/or choice situation. Conversely, with object detection sensitivity,
the simulation model is capturing a capability dynamic i.e. given that the searcher
has covered the area where two objects are, and therefore has the potential to
detect the objects, how capable are they at detecting them is the issue.

To illuminate this further, let's provide an analogy. Imagine a man is faced with
being forced to select one of four rooms to enter by opening the door and entering.
Each room has a probability of being entered, either room 1 will be entered, or
room 2, or room 3 or room 4. The probability of anyone of the 4 rooms being

entered will have to sum to p(l.OO). Because of whatever influences, any room

may have a more or less likelihood of being selected for entry by the man but the

sum of the probabilities of the 4 rooms being entered must always sum to 1.00 as
it is a forced choice dynamic that is actually being captured. Now let's say that the
man has to wear a special pair of spectacles before selecting and entering a room,



CHAPTER 10. SEARCH SIMULATION MODEL 321

once he has entered a room a number of shapes are on the wallpaper of all the four
rooms (no matter which room is picked the wallpaper is the same and has the same
shapes in all the rooms) there is a square shape, a triangle, a circle, and a star on
different walls of each room. The spectacles are specially made to impair the man
from seeing the shapes, indeed, let's say, that the design of the spectacles are the
result of 1,000 such trials and experiments of asking people to enter a room and

report what shapes were detected. From these experiments the glasses are known
to impair detection of the triangle 10% of the time, the square 25% of the time,
the circle 50% of the time, and the star 75% of the time. Note that, in this case, the
probabilities do not add up to one, as, each shape's probability captures the single
detection capability or if subtracted from 1.00 (i.e. triangle 1.00 - 0.90 = 0.10)
its detection impairement influence over the detection of the four different shapes.
For instance, the man in my example after entering the room may walk back out
and report that he has not detected anything, or he may say "I seen a triangle and
a square, or a circle and a square" or any such combination - including all four
shapes. The important point to note is it is not like when he selected a room, in
this case he does not have to detect anything at all. It's not the case that if he

doesn't detect the triangle he must detect the square, or the circle, or star - as it
is not a forced choice situation and therefore the probability over all four shapes
in the room being detected does not have to add up to pC1.00).

However, in terms of detection effectiveness, the spectacle'S overall detection sen-
sitivity to all the shapes is important if we wish to compare two sets of different
glasses with equivalent overall detection sensitivity over the four shapes. The im-
portant issue here is that the overall detection effectiveness capability profile over
the number of object types must be the same - even though a searcher may be
more or less capable and effective at detecting certain object types than others.
So for instance, on object type 1 searcher _one may be 0.75 effective at detecting

object type 1, and 0.25 effective at detecting object type 2. Conversely, on object

type 1 searcher _two may be 0.25 effective and on object type 2 be 0.75 effective.
We can see from table 10.2 of this example that although both searchers are signifi-

cantly diverse in their detection capability over the two object types, they are, how-
ever equal in terms of their overall detection effectiveness because 2 ~b~5~~.25), 'lee ypes



CHAPTER 10. SEARCH SIMULATION MODEL 322

I Configuration I Type 1 I Type 2 I Type 3 I Type 4 I Type 5 I Check

Coverage 0.30 0.25 0.20 0.15 0.10 Prob' Dist::: p(l.OO)
Sensitivity 0.70 0.60 0.50 0040 0.30 Det' Effect::: 0.50

Table 10.3: Diverse Mid-Case for Analysis

0.50 detection effectiveness for both searcher _one and searcher _two. Ifwe don't

ensure that overall detection effectiveness is equal in comparing different predis-

position configurations, then we will not be comparing the detection benefits of
diversity, but instead, getting confused outputs influenced by the detection effects
of more/less capable individual searchers.

Therefore, the coverage dimension captures a probability selection distribution
that must always sum over the number of location types to p( 1.00). The object
detection sensitivity dimension captures a capability dynamic of a success/failure
of detection profile over the number of object types configured in the simula-
tion model, the sum of which, must always be equivalent between compared
searchers in terms of their detection effectiveness if we wish to compare the di-

versity/uniformity influences of two or more competing search strategies.

10.4.1.2 Predispositioning

This subsection considers what amount or degree of predispositioning is suitable
for conducting a sensitivity analysis in subsection 10.4.2 - in order to get an
insight into some of the realistic detection dynamic behaviour concerning the in-
fluence of: a) Searcher Memory; b) Object Detection Difficulty; and c) Object
Density. It seems reasonable, in this case, to take a mid-point in terms of both
the dimensions of coverage and sensitivity - since, so long as these different
dimensional configurations capture the nine possible uniformity/diversity cate-
gories, then a mid-case of search space coverage and object detection capability

should allow a reasonable insight into the potential influences of the three chosen

sensitivity parameters on the nine possible search strategies.

Therefore, in terms of coverage dimension, we can see that they should vary
around the 0.20 area and sum, over 5 location types to p( 1.00) as discussed above



CHAPTER 10. SEARCH SIMULATION MODEL 323

I Uniform Coverage I L1 I L2 I L3 I L4 L5
Searcher 1 0.30 0.25 0.20 0.15 0.10
Searcher 2 0.30 0.25 0.20 0.15 0.10
Searcher 3 0.30 0.25 0.20 0.15 0.10
Searcher 4 0.30 0.25 0.20 0.15 0.10
Searcher 5 0.30 0.25 0.20 0.15 0.10

Table 10.4: Uniform Coverage Characterisation

in subsection 10.4.1.1. With regards the sensitivity dimension, we can see from
subsection 10.4.1.1 that the overall detection effectiveness over 5 object types
should be 2.5 and should vary around 0.50.

It can be seen that in order to both achieve a middle case, for sensitivity analysis in
subsection 10.4.2, and still allow uniform/diverse overall detection performance
comparisons of the nine possible search strategies discussed in section 10.4 earlier,
then the coverage distribution and sensitivity profile will need to be configured as

in table 10.3.

In order to accommodate each of the nine search strategies, these mid-case fig-
ures, on both dimensions, will need to be capable of characterising: a) uniformity;
b) systematic; and c) diversity so that all nine combinations are possible for con-

figuration.

First, then, we can see, amongst 5 searchers on the coverage dimension that uni-
form coverage can be chracterised as in table 10.4. It can be seen that the proba-
bility distribution sums to p( 1.(0) and also attempts to capture coverage unformity
- since all of the searchers involved are biased to Location types 1& 2 and away

from Location types 4 & 5.

Secondly, we can see that amongst 5 searchers on the sensitivity dimension that

uniform sensitivity can be characterised and configured as in table 10.5. Again,

on this dimension it can be seen that the sensitivity results in 0.50 detection effec-
tiveness overall and the detection between the searchers is biased towards Objects
types 1& 2 and away from Object types of 4 & 5.



CHAPTER 10. SEARCH SIMULATION MODEL 324

I Uniform Sensitivity I 01 I 02 I 03 04 05
Searcher I 0.70 0.60 0.50 DAD 0.30
Searcher 2 0.70 0.60 0.50 DAD 0.30
Searcher 3 0.70 0.60 0.50 0040 0.30
Searcher 4 0.70 0.60 0.50 DAD 0.30
Searcher 5 0.70 0.60 0.50 DAD 0.30

Table 10.5: Uniform Sensitivity Characterisation

I Systematic Coverage ILl I L2 I L3 I L4 I L5
Searcher 1 0.20 0.20 0.20 0.20 0.20
Searcher 2 0.20 0.20 0.20 0.20 0.20
Searcher 3 0.20 0.20 0.20 0.20 0.20
Searcher 4 0.20 0.20 0.20 0.20 0.20
Searcher 5 0.20 0.20 0.20 0.20 0.20

Table 10.6: Systematic Coverage Characterisation

Next, with regards to 5 searchers on the coverege dimension it's possible to see
that systematic coverage can be characterised as in table 10.6. Here, the table

shows that because multiple goals are simultaneously being considered the prob-

ability distribution is equal across all Location types to capture the dynamic that

the searcher keeps switching their focus.

Next, with regards to 5 searchers on the sensitivity dimension that Systematic
sensitivity can be characterised as in table 10.7. In this case, the individual suc-
cess/failure probabilities on each Object type across the profile is also equal in
order to capture the dynamic that, because the searcher keeps switching Location
type focus, the detection also becomes equally likely and unlikely.

I Systematic Sensitivity I 01 I 02 I 03 I 04 I 05
Searcher 1 0.50 0.50 0.50 0.50 0.50
Searcher 2 0.50 0.50 0.50 0.50 0.50
Searcher 3 0.50 0.50 0.50 0.50 0.50
Searcher4 0.50 0.50 0.50 0.50 0.50
Searcher 5 0.50 0.50 0.50 0.50 0.50

Table 10.7: Systematic Sensitivity Characterisation



CHAPTER 10. SEARCH SIMULATION MODEL 325

I Diverse Coverage ILl I L2 I L3 I L4 L5
Searcher 1 0.30 0.25 0.20 0.15 0.10
Searcher 2 0.10 0.30 0.25 0.20 0.15
Searcher 3 0.15 0.10 0.30 0.25 0.20
Searcher 4 0.20 0.15 0.10 0.30 0.25
Searcher 5 0.25 0.20 0.15 0.10 0.30

Table 10.8: Diverse Coverage Characterisation

I Diverse Sensitivity I 01 I 02 I 03 I 04 I 05
Searcher 1 0.70 0.60 0.50 0.40 0.30
Searcher 2 0.30 0.70 0.60 0.50 0.40
Searcher 3 0.40 0.30 0.70 0.60 0.50
Searcher4 0.50 0.40 0.30 0.70 0.60
Searcher 5 0.60 0.50 0.40 0.30 0.70

Table 10.9: Diverse Sensitivity Characterisation

Next, with regards to 5 searchers on the coverege dimension. Diverse coverage
can be characterised as in table 10.8. In this example, because the individual

searchers maintain more focus and have been deliberately predisposed to be dif-

ferent, then each searcher is more/less likely to search certain Location types in
a complimentary diverse manner to every other searcher (e.g. Searcher 1 is 3 x
more likely to search Location type 1 than Searcher 2, and Searcher 5 is 3 x more
likely to search Location type 5 than Searcher 1, etc).

Next, with regards to 5 searchers on the sensitivity dimension, the diverse sen-
sitivity can be characterised as in table 10.9. Here, the searchers are diversely
complimentary about searching Locations of a certain type, they retain focus for
longer on that Location type and hence are more likely to be more diversely com-
plimentary on the Object sensitivity dimension - in terms of being more likely
to find Objects of different types.

These six characterisations of the three potential approaches to considering non-

functional attributes allow us to fulfil the simulation modelling Goal One from
section 10.2.1, as they can be combined in different combinations to allow the
configuration of all the 9 possible search strategies in subsection 10.4.



CHAPTER 10. SEARCH SIMULATION MODEL 326

Furthermore, as mentioned in subsection 1004.1.1, the figures are not only ar-
rived at to offer a middle-case for further sensitivity analysis on certain simula-
tion model parameters, they are specifically chosen to uphold the characteristic
natures of the two critical dimensions of coverage and sensitivity. The coverage
dimension captures a choice dynamic and therefore, over the sum of the Location

types, the added decimal fractions must always sum to 1.00, since it is a proba-

bility distribution that is being modelled. On the other dimension of object sensi-
tivity, however, the dimension captures a capability dynamic, whereby individual
decimal fractions capture the detection success/failure probability of detecting a
certain object type. In this case, the sum over the total number of object types does
not have to sum to 1.00. Instead, what is important, is that like is being compared
with like, regarding the detection effectiveness of a given searcher under a given
uniformity/diversity predisposition. Therefore, the sum averaged over the num-
ber of object types must be an equal decimal fraction to ensure that the searchers
under differing diversity/uniformity configurations represent the same overall de-
tection effectiveness. Only when these two criteria are met is the sole influence of
coverage and sensitivity uniformity/diversity being observed between competing

search strategies.

10.4.2 Sensitivity Analysis

In this subsection, the nine potential search strategies for comparison that utilize
the middle-case configurations and predispositions from subsections 1004.1.1 and
10.4.1.2 will be analysed for their absolute and relative sensitivity. The absolute
variance is the amount each strategy varies as the particular simulation model pa-
rameter is altered over a range. The relative variance provides a comparison of
whether or not anyone or more of the nine search strategies is more/less sensi-
tive by comparison to the others. The relative variance is the standard deviation
divided by the mean average (cf. [169]) of the detection distribution recorded for

each step alteration of the particular simulation model parameter being varied.

A total of three parameters are studied for their sensitivity impacts upon the nine
search strategies in this section. In subsection 1004.2.1, the parameter of Object



CHAPTER 10. SEARCH SIMULATION MODEL 327

Overall Detectability Sensitivity
100%

90%

't(
80%

QJ 70%u
t:ro 60%·cro
> 50%
QJ
> 40%'.;::1ro
QJ 30%
0:::

20%

10%

0%
Diverse Systematic Uniform
Coverage Coverage Coverage

I--------r-~_I_ - Uniform Sensitivity
Systematic Sensitivi-
ty

Diverse Sensitivity

Figure 10.11: Object Detectability Sensitivity

Detectability is studied. In subsection 10.4.2.2 Object Density is studied. In sub-
section 10.4.2.3 Searcher Memory is studied. It should be pointed out that all of
these parameters can be varied from 1.00 to 0.00 and only one at a time is varied
over the range with the others held constant.

10.4.2.1 Object Detectability

The first simulation model parameter studied for its sensitivity on the nine po-
tential search strategies is Object Detectability. As noted in section 10.2, Object
Detectability was an important searching/detection dynamic that was kept in the
simulation model's design so that, at least, some real-world complex dynamics

could be approximated for sensitivity effects upon searching predispositions. As

was noted there, however, the view taken concerning Object Detectability, is a

simplified absolute perspective that assumes that an object can be difficult to de-
tect by its own nature - rather than a relative influence that can exist between an

object and a particular searcher.



CHAPTER 10. SEARCH SIMULATION MODEL 328

In this section the nine predisposition searching strategies employing uniformity/diversity
from the previous sections are studied for there absolute and relative variability
under the influence of this simulation modelling parameter. A total of ten steps
where taken with this parameter, varying the Object Detectability from 1.00 (per-
fectly detectable) to 0.10 (very difficult to detect) in steps of0.10.

It can be seen from figure 10.11 that whilst there is a large degree of absolute
variance - with all nine search strategies varying by as much (or approx. around)
50%. There is little relative variance between the nine strategies with the least
relative variance coming from the VC and VS search strategy (i.e. 44.36%), whilst
the highest relative variance emerges from the se and DS strategy (i.e. 53.02%).

This would indicate that whilst all of the nine search strategies are highly sensitive
to the influence of Object Detectability, in an absolute way, all of the strategies
are relatively affected in the same way - meaning that while they may be some
detection performance loss by one searching strategy from one to the other, it is

anticipated that this will be marginal.

10.4.2.2 Object Density

The second simulation model parameter studied for sensitivity analysis is Object
Density. As discussed in section 10.2, the object density and the size of the search
space are important user configuration considerations that allow the user to char-
acterise the quality or dependability of the artifact in a simplified manner.

In this section the nine predisposition searching strategies employing uniformity/diversity
from the previous sections are studied for there absolute and relative variability
under the influence of this simulation modelling parameter. A total of ten steps
where taken with this parameter, varying the Object Density from 100% density

to 10% density in steps of 10%. By analogy, the fewer the objects that exist in the

search space, the higher the quality of the artifact (given an absolute simplifica-
tion), but the more likely searchers will expend resource unit (RV) effort for no
return (Le. finding/detecting) therefore the less efficient becomes the search.



CHAPTER 10. SEARCH SIMULATION MODEL 329

Ove rail De nsity Se nsitivity
100";6

90";6

~
80%

Q) 70";6uc
ttl 60";6..:::::
ttl> 50%
Q)
.<:: 40";6
~
Q) 30%0:::

20";6

10%

0";6
Diverse Systematic Uniform
Coverage Coverage Coverage

Uniform Sensitivity
Systematic Sensitivity
Diverse SensitMty

Figure 10.12: Object Density Sensitivity

It can be seen from figure 10.12 that there is a large absolute variance indicating

that all of the nine search strategies are highly sensitive to this simulation mod-
elling parameter of Object Density. However, in relation to each other, none of the
nine search strategies are more sensitive to this particular parameter than the oth-
ers, with differences between them being very marginal. This can be seen from
the fact that the least affected, in relative terms, is the UC and DS search strat-
egy (i.e. 56.34%) whilst the most affected is the UC and US search strategy (i.e.

58.80%).

As a result, it can again be reasonably concluded that, while the detection perfor-
mance of all the search strategies will be highly affected by variances in Object

Density, they will, to a large extent, all be affected relatively equally - meaning

that no one strategy is unduly affected, in relation to the others, by this modelling

parameter of Object Density.



CHAPTER 10. SEARCH SIMULATION MODEL 330

Overall Detections
100%

90"/0

80"/0

*- 70"10
Q)
uc:: 60"10rei·cres 50"/0>
Q)

40"10>''::..rg
30%Q)

a::::
20"/0

10"10

0%
Diverse Cov-
erage

\' Uniform Sensitivity
+------------- ~ Systematic Sensitivity

o Diverse Sens~ivity

Systematic
Coverage

Uniform Cov-
erage

Figure 10.13: Searcher Memory Sensitivity

10.4.2.3 Searcher Memory

The last sensitivity parameter concerns the individual Searcher's memory to indi-

vidually remember where they have searched. As section 10.2 highlighted, this
is another simulation modelling parameter that was retained in the interests of
designing a slightly more realistic simulation model that can be studied for its
sensitivity influences and it is anticipated that the individual Searcher's memory
will have an impact on both coverage and sensitivity dimensions, since the less
they can remember where they have searched the less effective and efficient the
search will become as they increasingly overlap upon themselves.

In this section the nine predisposition searching strategies employing uniformity/diversity

from the previous sections are studied for their absolute and relative variability

under the influence of this simulation modelling parameter. A total of ten steps

where taken with this parameter, varying the Searcher's Memory from a probabil-
ity of 1.00 (i.e. perfect memory) down to 0.10 in decreasing steps of 0.10 to see
both the absolute and relative sensitivity effects it has upon searching performance



CHAPTER 10. SEARCH SIMULATION MODEL 331

under the nine possible search strategies and configurations discussed in sections

1004.1.1 and 10.4.1.

It can be seen from figure 10.13 that whilst the absolute sensitivity is relatively
small, by comparison with the other two simulation modelling parameters in sub-

sections 10.4.2.1 and 1004.2.2 (i.e. the highest is 15.54%), the relative variance

does seem more pronounced indicating that the individual potential search strate-
gies are more likely to be individually affected than others. The least sensitive is
the se and SS strategy (i.e. only 3.55%) whereas the most affected strategy is the
VC and DS strategy (i.e. on 15.54%) and in relative terms approx 4 times as sensi-
tive. However, although this parameter of Searcher Memory does appear to affect
individual strategies in different ways, it should also be remembered that the ab-
solute variance is relatively small so whilst individual search strategies may well
be differently affected by this simulation modelling parameter its overall affect is
likely, on this evidence, to be also nominal.

10.5 Simulation Experiments

In this section the simulation model's configurations and predispositions from sec-
tion 1004 are employed to fulfil the goals of the model. It can be seen from that
section in subsections 10.4.1 and 1004.2 that the configurations allow a reasonable
approximation of the three approaches to considering non-functional attributes,
namely: a) Ad-Hoc Approach; b) Systematic Approach; and c) The proposed
Goal-Diversity process intervention advocated in this thesis. The sensitivity anal-
ysis performed in utilizing and comparing these possible nine combinations of
these approaches revealed that, in the main, all the search strategies are either
equally sensitive, in the absolute sense, or any relative variance between them

is very marginal (i.e. Searcher Memory). Therefore, the configuration settings

involving a middle-case, discussed in subsection 1004.1 will be utilzed for the di-

versity/uniformity detection performance comparisons. However, it will be more

realistic to also ensure that the three simulation modelling parameters analysed
for sensitivity in subsection 1004.2 are also more realistically set to give a closer
(or as close as a simulation model can expected to) approximation by integrating



CHAPTER 10. SEARCH SIMULATION MODEL 332

a more realistic configuration of these three modelling parameters.

Therefore, the three modelling parameters of: a) Object Detectability; b) Object
Density; and c) Searcher Memory will be configured for these comparison simu-
lations as follows:-

• Object Difficulty: will be set at 0.50 for all objects hidden in the search
space of all types. This is reasonable as it represents a middle case;

• Object Density: will be set at 50% so that half of the search space locations
may not contain any objects within them. Again, this appears to represent a
reasonable middle case;

• Searcher Memory: will be set to 0.75 effective, meaning that 0.25 of the
time they may mistakenly, on an individual basis, overlap with themselves.
The Searcher Memory has been set at the mid-point of the upper-level (i.e.
between 0.50 and 1.00) since even in a conceptual searching situation, the
searcher should often be capable of remembering what aspects and areas

or concepts they've already searched, covered, detected and considered. It
seems reasonable, therefore, to set the Searcher Memory someway at the

middle of the upper-level.

Additionally, it is worth reiterating from subsection 10.4.1 that the search space
size will be set to a 500 location size space of 100 location types between 1..5

and 250 objects will be hidden within this space of 5 object types - so 50 of
each. Furthermore, as mentioned in the modelling goals, each searcher will be
allocated 100 resource units, which collectively is capable, in theory, of sufficient
human resource effort allocation to achieve 100% coverage of the search space.
Finally each predisposition and configuration is simulated 1000 times and the

performance averaged.

10.5.1 Modelling Goal One

As mentioned in the modelling goals of section 10.2.1, the first goal of the sim-
ulation model is to perform a comparison between the available search strategies



CHAPTER 10. SEARCH SIMULATION MODEL

200
180

VI 160-uQ) 140B
0 120-0
0 100
Z
tiS 80-0I- 60

40
20
0

333

Search Strategy Comparisons

~--- ~UC& us
I~ UC& SS-

-: 1+ UC&DS
SC& us

I"" SC& ss
- SC&DS

/~ DC&US

I7f ~DC& ss
IIDC& DS.: • Random Search

1 Searcher 2 3 4 5
Searchers Searchers Searchers Searchers

Figure 10.14: Comparisons of Search Strategies

possible. As was discussed in section 10.4, there are a number of possible diver-
sity/uniformity predispositing variants on each of the three approaches to consid-
ering and promoting non-functional attributes. In subsection 10.5 .1.1 below these
various nine search strategies are compared. The collective searching performance
of the searchers is continually aggregated so that the process loss involved in each
strategy can be illuminated as each extra searcher, from 1 up to 5 adds an extra
100 resource units of effort. In subsection 10.5.1.2 a more specific subset of the
nine strategies which capture the extremes available is illustrated and discussed to
show what the specific performance upon detecting specific object types was.

10.5.1.1 Search Strategy Comparisons.

In this subsection the nine search strategies are compared. This is done by contin-
ually adding searcher effort under each particular uniformity/diversity coverage
and sensitivity dimensions from 1 to 5 searchers.



CHAPTER 10. SEARCH SIMULATION MODEL 334

Figure 10.14 visually illustrates the results of performing these simulations on
each diversity/uniformity predisposition. While it clearly shows how all of the
nine search strategies employed show diminishing detection effectiveness as more
searchers are added, it also clearly indicates that the Diverse Coverage and Di-
verse Object Sensitivity search strategy progressively outperforms the other search

strategies as more and more searchers are added to the search. This is because as

more searchers are employed the diversity benefits start to result in less duplica-
tion and overlap on both the coverage and sensitivity dimensions.

Furthermore, when all these search strategies are compared to a purely random
search (cf. Search Theory in chapter 9 section 9.3) the only search strategy that
statistically produces a detection distribution that outperforms a purely random
search from the nine search strategies simulated is the Diverse Coverage and Di-
verse Sensitivity (DC and DS) to a statistical confidence level of 5% achieving a
Chi-Squared value of x at 9.84. The SC strategies (i.e. pessimistic, middle case,
and optimistic) also performed well, although they did not produce a statistically
significant superior detection performance than a random search. All the VC de-

tection search strategies performed poorly by comparison, further indicating, that,
uniform or homogeneous influences increase detection process loss, this is espe-
cially more pronounced as larger numbers of searchers are added to the search.

Finally, in terms of the modelling goal one comparisons, the simulation mod-
elling analogies and corresponding simulation results begins to provide evidence
that a detection strategy that diversely predisposes searchers/inspectors on both di-
mensions of coverage (i.e. 'where' to search) and detection sensitivity (i.e 'how'
sensitive they are to relevant objects/faults/assumptions etc) provides increased
utility and benefit from human redundancy and diversity - even with a random
object distribution. By analogy, the finding, strengthens the position that the pro-

posed goal diversity process intervention may well result in improved detection
performance when applied to a detection type task.

10.5.1.2 Object TypeDetection Performance



CHAPTER 10. SEARCH SIMULATION MODEL 335

4S

ciz

• Object Type 5
oObject Type 4
DObjeaType3
• Object Type 2
IIObject Type 1

Searcher Searcher Searcher Searcher Searcher
1 2 3 4 5

Figure 10.15: DC and DS Object Type Performance

Although, as subsection 10.5.1.1 indicated, that the DC & DS search strategy
was the only search strategy that provided a statistically significant superior de-
tection performance than a random search, it can be seen from figure 10.14, in

the last subsection, that the other systematic predispositioning on both coverage

and diversity also performed reasonably well - although it did not yield a sta-
tistically significant superior search when compared to a random search. In this
subsection, the comparisons between the three different approaches to promot-
ing non-functional attributes, analogically, will be performed by contrasting the
object sensitivity performance of: a) the middle-case of the SC strategy, namely
the se and SS search strategy with the optimistic case of the DC and DS search
strategy, to get a further impressionistic view of what aspects it may present in
the wider context of the issues already raised in discussion chapter 8; and b) the
pessimistic case of the UC strategy, namely UC and US with the optimistic case of
the DC and DS search strategy to also discuss wider assumption detection issues

raised in chapter 8.

In figure 10.15 the DC and DS strategy is illustrated. It can be seen from this
figure that, in addition to producing the only statistically significant superior de-

tection performance over a random search strategy, there is a wide variation in



CHAPTER 10. SEARCH SIMULATION MODEL 336

45

• Object Type 5
oObject Type 4oObject Type 3
• Object Type 2
!illObject Type 1

oz

Searcher Searcher Searcher Searcher Searcher
1 2 3 4 5

Figure 10.16: SC and SS Object Type Performance

terms of the detection sensitivity of certain object types. For example, Searcher 1
found a significantly larger number of Objects of type 1 than Objects of type 2.
Correspondingly, Searcher 2 detected a significantly larger number of Objects of

type 2 than Objects of type 3. This pattern pervades through the entire detection

performance of all the searchers employed, whereby, each searcher was particu-
larly prejudicial for detecting certain object types than others and between them
they tended to be prejudicial to detecting more of different object types than the

other searchers employed.

If we contrast this object type detection performance with that of the SC and SS
detection search strategy in figure 10.16, it is possible to notice that, as mentioned
earlier in subsection 10.5.1.1, although the overall detection performance of ob-
jects is quite good, by comparison to the DC and DS detection strategy in figure
10.15, the detection of object types, by the various searchers employed in this

search strategy, is much less varying. In chapter 8 the overall different approaches

to promoting non-functional attributes were considered. It was highlighted there
that a particular concern of the systematic approach was that it places a poten-
tially unrealistic cognitive burden upon a developer when considering multiple

goal type promotion tasks. Furthermore, intuitively, within the stage 3 of the pro-



CHAPTER 10. SEARCH SIMULATION MODEL 337

45

40

"Cs
u
QJ

Qi
Cl
In 2
ti
QJ

:E'o

• Object Type 5
o Object Type 4oObject TVpe 3
• Object Type 2
IIObject TVpe 1

o
Z

Searcher Searcher Searcher Searcher Searcher
1 2 3 4 5

Figure 10.17: UC and US Object Type Performance

posed goal--diversity process intervention, it was envisaged that a potential benefit
of performing goal promotions in this way, was that at the collaborative meeting
stage, the human diversity generated in the previous two stages (i.e. individual

analysis and individual inspection) is that it would predispose different develop-

ers to identify and detect different assumptions - which facilitates the necessary
task climate of conflict at the collaborative meeting stage to further identify flawed
assumptions, necessary trade-offs and possibly breakthrough decisions. It can be
seen, in an intuitively impressionistic manner, that in contrasting the object type
detection performance between the two strategies of DC and DS and SC and SS,
although they both perform overall quite well, when we consider the level of vari-
ation of object type detections within and between the searchers employed, it is
the DC and DS detection search strategy that promises to provide the necessary
climate of conflict and challenge positively envisaged at the stage 3 of the goal-

diversity process intervention - since the SC and SS detection strategy increases
the likelihood that developers will derive less contrasting predispositions based

upon a more homogeneous set of assumptions from the previous stage 2 (i.e. in-

dividual inspection).



CHAPTER 10. SEARCH SIMULATION MODEL 338

The next comparison to make is between the DC and DS detection search strat-
egy and the pessimistic case of the UC and US search strategy. The UC and US
detection strategy is illustrated in figure 10.17. It can be seen, by contrast to the
DC and DS detection strategy, that there is a strong homogenizing influence upon
object type performance between the searchers employed. For example, searchers
1..5 all have detected much more of Object Type 1 than Object Type 5. Here we

can see, by contrast to the DC and DS detection strategy, that, in terms of object

type detection, while the UC and US detection strategy is also prejudicial in in-
fluencing what types of objects are more/less likely to be detected, they do so in
a homogeneous manner. It can be remembered from chapter 6 and the discus-
sion chapter 8, that assumptions can be shared. Such influences that can result in
flawed shared assumptions are common culture, past experience, training, com-
mon context-of-interest, etc. In these situations implicit/explicit assumptions can
often go unchallenged and can often act as reinforcing the installation and adop-
tion of certain assumptions in an unquestioning manner. When considering stage
3 of the proposed goal-diversity process intervention (i.e. collaborative meeting)

it can be appreciated that the situation presented by this UC and US search strat-

egy is even more concerning than in the previous case of the SC and SS detection
strategy, as such a heavily homogeneous predisposition of the same assumption

types will not only be counter-productive in establishing the right task climate
of conflict, but could easily act as reinforcing already indentified assumptions -
since they will be largely shared and hence potentially reinforcing, instead of con-

trasting and conflicting.

In summarising this particular subsection, it can be appreciated, as already men-
tioned in chapter 6, that assumptions are inevitable reasoning and decision-making
mechanisms in producing software artifacts. The point this section has attempted
to illustrate, is not to argue that assumptions should be prevented from occur-

ring, rather, it is the nature of the assumptions identified and how different and

contrasting they are that can potentially aid their detection. In applying the pro-

posed goal-diversity process intervention, it is not so much hoped that different

developers don't make assumptions, as this is inevitable, what is hoped is that the
diversity generated from predisposing different developers to promote different



CHAPTER 10. SEARCH SIMULATION MODEL 339

non-functional goals results in sufficiently diverse and contrasting assumptions
that this not only allows greater exploration and evaluation of those assumptions
- in terms of their relevance and validity, but that it provides an appropriate task
climate of conflict and challenge to identify further assumptions during stage 3
and help resolve trade-offs and stimulate breakthrough decision situations. From

the analogous simulation strategy configurations compared, the superiority of the

DC and DS detection strategy begins to indicate an impression that this level of
contrast and conflict can be possible through diversely predisposing developers on
dimensions of coverage and object detection sensitivity.

10.5.2 Modelling Goal Two

While it is clear from the simulation analysis in subsection 10.5.1 that: i) the
most superior detection performance is the DC and DS search strategy; and ii)
that this search strategy is the only one that is statistically significantly superior
to a random search strategy, there is still a further analysis that can be carried

out on this particular search strategy - in order to get a clearer indication of the

diversity detection benefits of predisposing different individuals to different goals

to achieve greater assumption-coverage. Such an analysis on the DC and DS

search strategy needs to consider the direct relationships that exist between the
number of searchers to the number of location types represented in this particular

search strategy.

Table 10.10 on the following page provides the results of such a simulation anal-
ysis, where the number of searchers and number of search space location types
are varied, in order to ascertain the diversity merits of ensuring that each indi-
vidual searcher is predisposed to cover a particular search space location type
that is different from all other searchers involved. This, therefore, implicitly as-

sumes that there is an equal number of searchers to location types. However, in

order to reinforce the diversity detection benefits of such a search strategy, it is

insightful to consider the object detection performances when: i) more searchers
(analogous to software inspectors) are involved in the search than location types

(analogous to fault inspection goals); and ii) when there are more search space



CHAPTER 10. SEARCH SIMULATION MODEL 340

Searchers/Locations 2 Loc. 3 Loc. 4Loc. 5 Loc. 6Loc. 7 Loc. 8Loc. 9 Loc. 10Loc. Same No

2 Searchers 39 40 40 37 36 34 34 34 37 39
3 Searchers 49 59 59 58 56 54 55 55 55 59
4 Searchers 70 68 80 75 77 76 76 76 72 80

5 Searchers 88 87 91 100 97 96 96 95 86 100

6 Searchers 106 103 III 109 117 113 113 113 107 117
7 Searchers 117 116 119 123 127 137 133 131 119 137
8 Searchers 132 139 140 135 136 145 153 148 151 153
9 Searchers 148 148 151 159 155 159 167 171 167 171
JO Searchers 160 162 167 168 169 171 180 182 184 184

Table 10.10: Searcher and Location Comparison Results

I SearcherlLoc. Type I Loc. 1 I Loc. 2 I Loc. 3 I Loc 4. II Loc 5. I
Searcher 1 0.75 0.0625 0.0625 0.0625 0.0625
Searcher 2 0.0625 0.75 0.0625 0.0625 0.0625
Searcher 3 0.0625 0.0625 0.75 0.0625 0.0625

Table 10.11: Under Representation Example

location types than searchers to predispose to them. As, was mentioned in section

10.2.1 concerning the goals of the simulation model, the second goal of the simu-
lation model refers to two cases of: i) the over representation of search/inspection
goals in a search/detection effort, where human resource effort exceeds the num-
ber of possible diversity predispositions possible; and ii) the under representation
of search/inspection goals in the search/detection effort, where there are more
predispositions possible than human resource effort available.

Each of the 81 individual simulations of the DC and DS search strategy were con-
figured and simulated like those in subsection 10.5.1 - with only the number of
searchers and search space location types differing." In table 10.10 it can be seen

that there are emboldened figures running diagonally across the table from top left

to bottom right. These emboldened figures represent simulation configurations

where there were an equal number of searchers to search space location type pre-

dispositions. Looking diagonally across the table, all of the other figures below the

20In subsection 10.5.1 simulations, an equal number of searchers and search space location
types were assumed.



CHAPTER 10. SEARCH SIMULATION MODEL 341

emboldened diagonal line represent simulation outputs from configurations that
resulted from more searchers employed than goals (over representation), whilst
all of the figures above the emboldened diagonal line of figures represent simula-
tion outputs from configurations that resulted from more goals than searchers (i.e.
under representation). The emboldened diagonal figures that represent equal rep-

resentation between searchers and goals are also reproduced in the last (far right)

column so that they allow an intuitive visual inspection, by the reader, for com-

parison to under/over goal representation simulation configurations when making
comparisons horizontally back across the table.

It should be clear from the example shown in table 10.11 that the location types
(analogous to goals) of 4 and 5 are under represented. By contrast, if there were
only 2 search space location types - with 3 searchers employed, then such a
predispositioning configuration would represent an over representation scenario,
where one location type would have two searchers predispositioned to searching
it at 0.75 predisposition. Both the underlover representation case figures, from

table 10.10, are statistically analysed in subsections 10.5.2.1 and 10.5.2.2. This is

done by comparing the over/under representation of search space location types
to searchers to simulation configurations when there was an equal number of both

involved in the search.

10.5.2.1 Under Representation of Goals

In this subsection the simulation configuration - when the goals were under rep-
resented is statistically analysed. This is a search situation when there were more
location types than searchers to, individually, predispose them to. In order to en-
sure that we do not rely upon direct single comparisons of figures (Le. comparing a
single equal representation with over/under representation figures in table 10.10),

groups of comparable over/under search simulation outputs to a group of equal

simulation outputs are statistically analysed. Ifwe were to look at table 10.10 we

can see, for instance, that we can compare the under representation situation when
there are (say) 10 search space location types involved and there are only 2 to 9
searchers to predispose them to - compared with the simulation outputs when



CHAPTER 10. SEARCH SIMULATION MODEL 342

Goals to Inspectors Xl\2 (Chi) I Hypothesis I Conf. Level I Conclusion

10 Goals & 2 - 9 Insp. 6.47 < 14.067 Accept HO N/A No Difference
9 Goals & 2 - 8 Insp. 1.93 < 12.592 Accept HO N/A No Difference
8 Goals & 2 - 7 Insp. 1.53 < 11.070 Accept HO N/A No Difference
7 Goals & 2 - 6 Insp. 1.56 < 9.488 Accept HO N/A No Difference
6 Goals & 2 - 5 Insp. 0.59 < 7.815 Accept HO N/A No Difference
5 Goals & 2 - 4 Insp. 0.43 < 5.991 Accept HO N/A No Difference

4 Goals & 2 - 3 Insp. 0.03 < 3.841 Accept HO N/A No Difference

Table 10.12: Under Representation of Goals Results

Inspectors to Goals XI\2 (Chi) I Hypothesis I Conf. Level I Conclusion

3 - 10 Insp. & 2 Goals 17.45> 14.067 AcceptH3 @5% Different
4 - 10 Insp. & 3 Goals 15.39> 12.592 AcceptH3 @5% Different
5 - 10 Insp. & 4 Goals 8.50 < 11.070 Accept H2 N/A No Difference

6 - 10 Insp. & 5 Goals 6.33 < 9.488 Accept H2 N/A No Difference
7 - 10 Insp & 6 Goals. 5.34 < 7.815 Accept H2 N/A No Difference

8 - 10 Insp. & 7 Goals 2.18 < 5.991 Accept H2 N/A No Difference
9 - 10 Insp. & 8 Goals 0.18 < 3.841 Accept H2 N/A No Difference

Table 10.13: Over Representation of Goals Results

there are always an equal number of search space location types to searchers in the
grouped simulation output figures between 2 to 9 searchers. The actual statistical
analysis tables of how the statistical analysis was carried out, using Chi-Squared
tests, are shown in full in appendix B, in section B.2 on page 385.

The statistical summary in table 10.12, of the Chi-Squared analysis, indicates
that there is no statistical difference in the comparisons between equal and under
representation of goals in a search effort under the configurations of the simulation

model.

10.5.2.2 Over Representation of Goals

In this subsection, the search situation when locations/goals are over represented
is analysed. This is a situation where there are more searchers than location types

to predispose them uniquely to. Again, multiple groups of simulation outputs of
the over representation search case are compared to the groups of search configu-



CHAPTER 10. SEARCH SIMULATION MODEL 343

ration outputs when there are an equal number of searchers and location types (i.e.
equal representation case). Again, the Chi-Squared statistical test is used and a
complete set of statistical analysis tables is provided in appendix B, section B.3 on
page 387 to show how this was carried out.

The statistical summary in table 10.13 on the page before, of the Chi-Squared

analysis, reveals that when there are only a small number of search space location
types and an increasing number of searchers employed, then the detection perfor-
mance is undermined. In this case, it is possible to rationalise such a finding, by
commenting that over representation of an inspection goal results in a homoge-
neous effect upon the inspectors involved - resulting in more and more process
loss, in fault-detection terms, as more inspectors are added or employed in the in-
spection effort. It appears, from this, that predisposing inspectors to consider and
pursue individual goals becomes more important as more inspectors are added, if
detection effectiveness and efficiency is to be promoted and maintained.

10.6 Chapter Summary

This chapter has introduced a search simulation model as an analogous indica-
tor of the potential human diversity benefits anticipated by the proposed Goal-
Diversity process intervention progressed throughout this thesis and explicitly dis-
cussed earlier in chapter 8. The chapter began by establishing a design rationale
for the search simulation model - drawing generally upon diversity and depend-
ability aspects already discussed in this thesis and specifically using, analogously,
the well established literature from both Search Theory and Software Inspections

from chapter 9 to guide and inform the design. The design rationale was structured
into areas of Modelling Goals, Modelling Scope, and Modelling Detail to provide
a sound and coherent bases for justifying the search simulation model's even-

tual design. The Java implemented search simulation model was then introduced.

This included considerations of: a) the verification and validation of the model

in order to both check its dynamic behaviour operated as expected and, within
the constraints of a PhD research, establish that the simulation model's eventual
design and implementation captures the satisfactory real-world representative-



CHAPTER 10. SEARCH SIMULATION MODEL 344

ness required to provide valuable insights into the benefits that may be expected
from introducing human diversity on both the coverage and detection sensitivity
dimensions in detecting uniformly distributed target objects. The simulation mod-
elling process was then presented to illuminate the more concrete aspects of the
implemented search model in terms of inputs, parameters, outputs and controlling
logic. Next a justification for the configuration of the envisaged simulation experi-

ments was presented. In this regard, categorising diversity upon both the coverage
and detection sensitivity dimensions allows nine potential search strategies to be
configured. These allow, analogously, a pessimistic, middle-case, and optimistic
categorisation of the three identified ways of promoting non-functional attributes
from chapter 8. Each of these were discussed along with diversity distribution and
profile tables to illuminate a reasonable configuration for conducting the eventual
simulations. Additionally, integrated real-world parameters were also studied for
their impact upon the nine search strategies using a sensitivity analysis reported
in the form of both their absolute and relative variance. It was found that whilst
two of the parameters resulted in wide ranges of variance - in the absolute sense,
their relative variance meant that the individual search strategies would be com-

parably affected. The other parameter, although showing differences of relative
variance, varied little between the search strategies in any absolute sense. Finally,
the two simulation experiments were performed to fulfil the search simulation
modelling goals established earlier in the chapter. Simulation experiment one was
to satisfy the human diversity assumption detection comparisons between com-
peting ways in which non-functional attributes can be considered. Of the nine
search strategies, the one most analogous to the envisaged process intervention
of Goal-Diversity proved to be the only search strategy that produced a statisti-
cally significant superior detection performance than a random search. When a
pertinent subset of these nine search strategies were further analysed upon the de-
tection sensitivity dimension, it was found that this search strategy also results in

significantly varying detection of particular object types which bodes well, in an

intuitive way, to providing the right challenging task climate of conflict for help-
ing to identify and detect additional assumptions in the last stage of the envisaged
Goal-Diversity process intervention. Simulation experiment two was to establish

the influence of over/under goal representation issues in adopting such a process



CHAPTER 10. SEARCH SIMULATION MODEL 345

intervention. It was found that, although not statistically significant, under repre-
sentation did not unduly influence search detection performance when important
goals are under represented. However, at higher levels of over representation,
a statistically significant inferior detection performance is found, indicating that
human diversity is useful for detection type tasks up to the number of beneficial
discriminating predispositions possible, but beyond that, adding extra human re-

sources produces an undesirable homogenous influence.



Chapter 11

Conclusions

346



CHAPTER 11. CONCLUSIONS 347

11.1 Summary of Work

This thesis has focused upon how computer-based system dependability can be
promoted. The existing focus of dependability has primarily aimed its attention
towards the inclusion of computational and structural redundancy to increase tol-
eration of residual software faults during operational execution to prevent software

service failures or ensure such service failures occur in a graceful and controlled

degradation of delivered service. Due to the conceptual nature of software, achiev-
ing such fault tolerance often mandates the introduction of diversity interventions
during the creation process to reduce the possibility of co-incidental or common-
mode failures. To aid this purpose the dependability community has progressed a
conceptual framework to guide practitioners in the field. The framework provides
guidance on the important attributes upon which operators and users will base
their judgements of trust and confidence in the system. The threats to achieving
such dependability attributes are also included in the framework - along with the
means by which attributes can be attained.

Although the primary focus of the dependability community on improving fault-
toleration of the created software artifact has resulted in significant increases in
software dependability, the ongoing ubiquity and pervasion of information pro-
cessing technology into everyday life places an increased demand for further soft-
ware dependability improvements. It is suggested, in this thesis, that two areas
where further dependability improvements may occur concern: i) improving the
dependability of the software creation process through the means of increased
fault avoidance; and ii) providing a more holistic computer-based system per-
spective of computer systems and recognising that technically dependable com-
puter systems can be judged to be undependable for non-technical reasons.

With regards to improving the dependability of the software creation process,

through the means of increased fault avoidance, it has been suggested, in this the-

sis, that a similar conceptual framework perspective to the existing dependability

framework should be applied that emphasises the desired attributes of a mature
dependable process - along with the threats and means to achieving it. Unlike



CHAPTER 11. CONCLUSIONS 348

some existing maturity models, that possess a hierarchical perspective, this thesis
advocates the need for an integrated understanding of the process dynamics if the
process is to become more mature and predictable. The need for a more depend-
able process also raises the issue of what role redundancy and diversity would play
in a dependable creation process to achieve the required process attributes. In this
respect, adopting a wider computer-based system viewpoint, it is possible to see

the creation process as a valid system-of-interest. When viewed in this way, like

introducing redundant and diverse structure and function into the artifact, the role
of process redundancy (Le. redundant/diverse process technology and human re-
sources) also has the purpose of increasing the fault-tolerant nature of the creation
process via strengthening the dependability means of fault prevention, fault detec-
tion, fault removal and fault forecasting. With human resources, there is already a
number of examples of how human redundancy and human diversity has been em-
ployed to increase fault-avoidance (e.g. open-source development, egoless pro-
gramming, pair programming). However, most of these make the assumption that
additional human resources are additive (Le. natural diversity), while some less

well known approaches (in the software engineering and dependability communi-

ties) to achieving human diversity through human redundancy do not make such
an assumption and directly intervene in the process to improve human diversity

(i.e. cognitive diversity and heterogeneous groups/teams). With process technol-
ogy, there are also examples of how diversity can be achieved through the appli-
cation and redundant employment of existing tools, methods, and techniques to
improve fault-avoidance in the creation process. Again, a major issue of concern
involves the additivity of these process technologies to achieve effective diversity
application. It has been suggested in this thesis, that two measures of establishing
the utility of process redundancy and diversity involves both a productivity effect
(i.e. quantitative assessment of number of faults prevented, detected, or removed)
and a quality effect (i.e. the qualitative assessment of the impact, importance, or
consequence of faults prevented, detected, or removed).

With regards to improving the dependability through a more holistic computer-

based system perspective of computer systems, this thesis has introduced a num-
ber of generic contexts-of-interest that illuminate and provide a more holistic



CHAPTER 11. CONCLUSIONS 349

perspective during the creation process. Such an approach views computer-based
system dependability as a super ordinate system goal dependent upon the inter-
pretations of purpose attributed to the computer system. It has been discussed that
there are a number of potentially conflicting stakeholder interests during the cre-
ation, operation, and evolution of a computer system. Each stakeholder interest
group can be compared to a context of interest that brings its own interpretations

of such things as the purpose, motivations, and responsibilities involved in the

creation and operation of a computer system. Failure to recognise these contexts-
of-interest has, in the worst cases, resulted in technically dependable computer
systems being judged to be undependable for non-technical reasons.

Widening out the boundaries of such a system view allows a greater holistic per-
spective of the primary and latent purpose ascriptions often made about real-world
complex computer system applications which are essential to unearthing views of
dependable and undependable judgements. A case study of the longstanding Au-
tomatic Teller Machine domain is subsequently presented to reinforce the value
of such a computer-based system perspective. This case study in broken down

into generic computer-based system contexts of: a) The utility context; b) The
engineering context; c) The deployment context; and d) The evolution context.

The value of such an holistic perspective is demonstrated in the case-study to
show how vulnerabilities and faults often result through a separation of concerns
or an over emphasis of one context of interest which is oblivious to the needs and
requirements of another context in which the failure of the vulnerability or fault

often propagates.

Itwas stressed that a particular requirement or responsibility of a dependable pro-
cess view was to provide a greater understanding of the fault-phenomenology.
This thesis has recognised that a major cause of many faults and vulnerabilities

in computer systems results from assumptions made during the creation process.

Assumptions are always prevalent in any non-routine decision-making situation,

and are often necessary if decision-making, communication, and understanding

is to be achieved in a decisive manner. However, the extreme levels of novelty and
the highly conceptual nature of software development makes flawed assumptions,



CHAPTER 11. CONCLUSIONS 350

that can result in faults due to incompleteness, inconsistencies, and incorrectness,
particularly critical in the software creation process. Assumptions can be con-
sciously or unconsciously made. Flawed conscious assumptions are often the
result of some ambiguity during communication or due to some lack of knowl-
edge about something. Flawed unconscious assumptions often result from some

hidden bias, belief, or value system of an individual which can result from past

experience or conditioning that allow a person to make unquestioned associations
about some aspect of interest. From informal pragmatics and problem-solving
literature, unconscious assumptions are often referred to as 'artificial limitations'
or constraints placed upon a particular thinking episode. It has been argued that
only through divergent or lateral thinking that creates conflict and dissonance that
challenges such biases, beliefs, and values, can such unconscious limitations be
detected. Another area of assumptions concerns situations where people are likely
to make the same flawed assumptions unconsciously. This can occur where people
are collectively conditioned in some way by past experience, training, education,
or culture. However, it can also occur when severe knowledge acquisition con-
straints are placed upon groups of people (i.e. a kind of group-think dynamic).

Finally, even when assumptions are valid their validity may only be of a tempo-
ral nature as valid assumptions can be invalidated over time as the system or its

surrounding environment evolves and changes.

Itwas emphasised earlier that an holistic computer-based system perspective that
integrates and unearths the different purpose ascriptions is important to establish-
ing the dependability and undependability judgements various stakeholder con-
texts make during computer system development. This is a purpose representa-
tion issue. Therefore, illuminating and making explicit the many goals and objec-
tives is important to promoting dependability in two fundamental ways. Firstly,
in terms of the created artifact, it is necessary to ensure that all the dependability

attributes are adequately represented (i.e. security, availability, reliability, etc), as

only when these are suitably represented will it be possible to establish the par-
ticular priorities and conflicts that the criticality of the system and the application

domain requires. Secondly, in terms of the creation process, it is also necessary
to ensure that different computer-based system contexts-of-interest are also ade-



CHAPTER 11. CONCLUSIONS 351

quately represented to ensure that different purpose ascriptions, in the form of dif-
fering motivations, values, responsibilities, are unearthed to ensure a sufficiently
holistic perspective. It can be seen, therefore, that the teleological aspect, in terms
of desired artifact goals, and the wider creation process perspectives plays an im-
portant representation role in computer system dependability. From a philosoph-
ical perspective, computer system development is a purpose driven teleological

activity. However, adequate teleological representation relies firstly upon an ade-

quate formal causation, as a blueprint, in the mind( s) of the creators of an artifact
if it is to be realised as a final causation factor or goal. This has been empiri-
cally established by industrial psychologists and software engineering researchers
who found that explicit goal-setting results in both behavioural and cognitive ef-
fects that emphasise what is important and what is not important to achieving the
goal. However, equally, psychologists have also established that complex multi-
ple goal-setting tasks introduces cognitive limitations whereby only one goal can
be maximally activated at anyone time. It can be seen therefore, that acquiring
adequate representation of desired dependability attributes (Le. goals) therefore
mandates some amount of human redundancy or effort. This will either require a

single individual to repetitively consider development pursuing different goal per-
spectives, or require multiple people to simultaneously pursue development from

different goals. It can be argued that the latter option is more advantageous as, has
already been discussed earlier, a single individual is likely to make the same un-
derlying unconscious assumptions - resulting in common assumptions pervading
through the different goal perspective attempts. Whereas, using different individ-
uals pursuing different goal perspectives allows the introduction of some initial
natural diversity - where different people bring a naturally different set of under-
lying unconscious assumptions. As we have discussed earlier, detecting assump-
tions relies upon conflict and dissonant reasoning to challenge any preconceptions.
At a later collective meeting phase, it is therefore, very likely that such underlying

assumptions each person has will be unearthed and identified. However, such an

approach also offers a more flexible way to achieve diversity as goal-setting natu-

rally influences human behaviour and cognition - resulting in different individu-
als valuing, prioritising. and generating different decision-making criteria. This is

a much more controllable way to achieve a form of focused diversity than trying



CHAPTER 11. CONCLUSIONS 352

to compose a development team on some uncontrollable diversity dimension, of
say, personality types, culture, etc, as in the human resourcing, demographic, and
economic restrictions of a normal development organisation such development
team/group compositions may not be practically feasible. Nevertheless, because
human goal-setting directly affects behavioural and cognitive performance, it will
directly result in influencing different developers - predisposed to promote a cer-

tain dependability goal to generate (knowingly and unknowingly) different sets of

assumptions. Therefore, at a later meeting phase, a rich foundation for assump-
tion conflict and detection should result. One drawback, is that, as this thesis
has discussed, assumptions can be made in a collective shared manner - due to
some homogeneous preconditioning influence of shared past experience, educa-
tion, training, or culture, etc. Furthermore, as discussed in this thesis, context of
meaning also results in people from the same context also sharing deeply held
assumptions. It is for this reason that people from different contexts of the util-
ity domain, the engineering domain, the deployment domain, and the evolution
domain, also need to be predisposed to consider the development from differing

goal-aspects - in order to help detect shared assumptions.

The discussion chapter uses a well established goal-oriented approach to require-

ments engineering to bring together the relationships between: i) a computer-
based system view; ii) assumption detection; and iii) diverse goal-setting, to sug-
gest how setting diverse goals and diverse computer-based system contexts-of-
interest can help provide a rich holistic view of dependability and detect hidden
flawed assumptions. It should be noted, that the flawedness of the assumptions
may only be appreciated from a holistic computer-based system view of depend-
ability, and may seem quite reasonable and justified from any particular individual
or computer-based system context. Therefore, the discussion chapter identifies
two types of assumptions that can be detected through the illustration of diverse

goals and different computer-based system contexts-of-interest: Firstly, intra-

context assumptions - where the application of diverse goals, within a single

context, result in identifying a fault or vulnerability within the same context-of-

interest; Secondly, inter-context assumptions - where the application of diverse
goals and diverse computer-based system contexts-of-interest, in different con-



CHAPTER 11. CONCLUSIONS 353

texts, result in identifying a hidden assumption which appears reasonable (and
potentially shared) within a single context, but the vulnerability or fault, it raises,
results in conflict and subsequent detection between two (or more) contexts-of-
interest.

To achieve a greater understanding of the potential dynamics of diverse goal-

setting, for unearthing assumptions that could result in vulnerabilities and faults, a
simulation model of the essential dynamics was constructed. A simulation model
was developed for two reasons. First, it was realised that to carry out a suitably
large-scale empirical study was beyond even the feasibility of a large research
programme - let alone the limited resources available for a Ph.D thesis. Sec-
ondly, a simulation model is ideal for exploring and manipulating different pa-
rameters and variables to allow greater understanding of the dynamics at work.

Two complementary and established areas guided the initial design of the simu-
lation model. Firstly, since the focus of diverse goal-setting is essentially to im-
prove the dependability of the software creation process through increased fault-

avoidance, the literature on software inspections was selected as an appropriate
influential area of fault detection. Furthermore, the literature on software inspec-
tions is vast and longstanding. Secondly, since fault-avoidance can be compared
directly to a searching type task, the operational research area of search theory
was also used as an influence upon the simulation model's design. Search the-
ory is a very well established area with terminology, concepts, and structure that
improved understanding of what essential factors the simulation model's design
should be included.

From the simulation modelling chapter 10 it can be appreciated that detection and
searching tasks can be difficult upon two dimensions: i) detection and search-

ing, whether in a physical or conceptual sense, can be hampered or facilitated

by effective and efficient coverage, in terms of where they search; and ii) even

when effective and efficient coverage is achieved, effective and efficient detection
of both physical and/or conceptual entities also depends upon how sensitive the

searchers/inspectors are to those physical or conceptual entities. When search-



CHAPTER 11. CONCLUSIONS 354

ing/detection is considered on these two dimensions it is possible to see that hu-
man redundancy and diversity can be characterised to provide nine interesting
categories of how uniform, systematic, and diverse searching or detection can be
resourced and deployed on a searching or detection type task. Using these cat-
egories, the various existing approaches to promoting non-functional attributes
can be usefully approximated and configured, within the simulation model, by

utilising coverage distributions and detection sensitivity capability profiles that
can capture the potentially uniform predispositioning of the Ad-Hoc approach;
the systematic multiple consideration of non-functional attributes of the System-
atic approach; and the diverse human predispositioning of the proposed Goal-
Diversity approach advocated in this thesis.

Usefully approximating these various approaches, within the simulation model,
therefore allows an important modelling efficacy test of how effective and effi-
cient the proposed Goal-Diversity process intervention is, by comparison to the
two other approaches, in terms of demonstrating the potential process depend-
ability benefits through improved assumption-detection proposed by this thesis.

Therefore the first simulation modelling goal was to provide a detection compar-
ison of the human diversity/uniformity benefits of the proposed Goal-Diversity

approach with existing approaches (i.e. Ad-Hoc and Systematic) under an equiv-
alent human resourcing constraint. The simulation model was configured and
the outputs statistically evaluated for their detection performance. The simulation
findings revealed that the analogous diversity configuration of the proposed Goal-
Diversity approach was the only search configuration that produced a statistically
significant detection distribution when utilising multiple search resources under a
constant overall search effort constraint. The simulation findings, under suitable
real-world modelling approximations, suggest that there are potential process de-
pendability benefits to be gained via increased assumption/fault detection means

that utilises human diversity via important non-functional goal predispositioning.

The next simulation modelling goal was therefore to help establish, that, given

there is a limitation to the degree of human diversity goal predispositioning that
is possible, what would be the detection effects of under/over representation of
such non-functional attributes. The simulation model was therefore configured to



CHAPTER 11. CONCLUSIONS 355

compare detections when there was: a) more diverse predispositions that human
searchers (i.e. an under representation situation); and b) fewer diverse predisposi-
tions than human searchers (i.e. over representation situation). Both these search
simulation configurations were compared to the (ideal) case where there are an
equal number of diversity predispositions as searchers diversely predisposed. The

search simulations were performed and the outputs from each of the three configu-

rations statistically evaluated. The findings suggest that if human redundancy and
diversity performance, on a detection type task, is to be maximised, then every
human resource added to the task should be appropriately predisposed to a differ-
ent goal predispositioning - since over representation of a single goal results in a
homogeneous detection effect that reduces the additivity of the human resources
employed and hence increases process loss.

11.2 Limitations of Work

One of the main limitations of the thesis is that the value of setting diverse devel-

opment goals could not be empirically tested. Whilst, as already stated above, this
was judged to be infeasible - to conduct a sufficiently large-scale experiment, it

must be explicitly stated as a limitation of the thesis, as it results in only a theoret-
ical justification for the dependability benefits of improving process dependability
through fault-avoidance utilising the promotion of diverse development goals.

Another limitation of the thesis is that, although a search simulation model pro-
vides some justification for the theory, the simulation is incapable of capturing the
assumption detection capabilities of a resolution meeting stage where conflicting
goal relations, both within and across, computer-based context-of-interest, are
exploited to detect potentially harmful assumptions.

Finally, as chapter 10, subsection 10.3.1 on verification and validation of the

search simulation model indicated, the simulation model is designed to study cov-

erage and sensitivity diversity upon a uniform distribution of objects. As stated
there, there is no empirical evidence or research that indicates, unlike fault distri-
butions, that assumptions occur or are caused in an unevenly distributed fashion.



CHAPTER 11. CONCLUSIONS 356

This highlights a particularly difficult aspect of the thesis, in that there is little
definitive research and literature on the nature of assumptions and their pathol-
ogy. The literature that does exist is largely anecdotal and sparse and results in
an inability to establish a sound set of theoretical arguments for justifying how, in
particular with this thesis, diverse goal-setting, and the inevitable goal--conflict re-
lations these create, can help create the required conflict and dissonance required

to detect flawed assumptions. Nevertheless, the finding that diverse coverage and

detection sensitivity yields potentially superior detection performances with mul-
tiple searchers under a constant search effort constraint is still a useful and encour-
aging finding in connection with the potential process dependability increases that
may be afforded via the introduction of such a human diversity process interven-

tion.

11.3 Future Work

As indicated, in the Limitations of Work in section 11.2 above, a more robust find-
ing in favour of a Goal-Diversity process intervention to increase process depend-

ability via improved assumption/fault detection, would be if it could be replicably

produced in a real-world situation. In this section of considering future work,

then, some broad suggestions on how this process intervention could be experi-
mentally researched is provided - along with some envisaged problems that may
be faced.

In order to structure this appropriately, it is necessary to briefly recapture both the
envisaged stages of the Goal-Diversity process intervention advocated, along with
the hypothesised benefits that are expected. These can be discussed as follows:-

• Stage 1: Individual Analyses: because non-functional goals introduce a

subjective and relative teleological reasoning dimension (see chapters 7 and

8) it is hypothesised that at the Individual Analysis Stage 1, predisposing in-

dividual developers to promote distinct non-functional attribute goals will
both: decrease their probability of making harmful assumptions that com-
promise their promoted non-functional goal; and increase their probability



CHAPTER 11. CONCLUSIONS 357

in making harmful assumptions that compromise other non-functional at-
tribute goals promoted by their development colleagues;

• Stage 2: Individual Inspection: Again, due to the inherently relative and
subjective purpose influence of non-functional attributes, it is hypothesised
that, during Stage 2 of Individual Inspection of other colleagues non-functional

goal promotions, a given developer promoting a given non-functional at-

tribute will be more probable in detecting other developers harmful assump-
tions that compromise their promoted non-functional attribute goal;

• Stage 3: Collaborative Meeting: due to the interactive nature of non-
functional attributes, it is hypothesised that the variety of different assump-
tions made, along with their consequent interactive positive/negative im-
pacts upon competing important dependability attributes will create the ap-
propriate task climate of conflict to: a) detect further potentially harmful
assumptions; b) facilitate appropriate dependability trade-off negotiations;
and c) stimulate creative breakthrough design decisions that reconcile such

interactive non-functional conflicts.

From this breakdown of the proposed Goal-Diversity process intervention -

along with their respective hypothesis at each stage, a number of potential mea-
sures of performance can be determined. These are: a) at Stage 1, a measure of
the variety of assumptions made between the development team; 1 b) at Stage 2, a
measure of detection sensitivity of each particular developer's capability in detect-
ing other developers' assumptions made; and c) the number of new assumptions
detected and the number of breakthrough decisions adopted.

Having considered the stages involved and the potential measures of efficacy at
each stage experimental research could be initially suggested that compares the

assumption detection efficacy of a Goal-Diversity process intervention with the

other two approaches of considering non-functional attributes. As discussed in

chapter 8 and chapter 10 there are three potential approaches. These approaches,

IThe reader should note that this was also a finding of the search simulation model in chapter
10 subsection 10.5.1.2.



CHAPTER 11. CONCLUSIONS 358

along with their benefits and drawbacks in promoting process dependability can
be briefly reviewed as follows:-

• Ad-Hoc Approach: involves no process intervention to directly promoting
dependability attributes and thus relies, largely, upon the professionalism,
knowledge, and experience of the developers concerned;

• Systematic Approach: involves the explicit consideration of multiple de-
pendability attributes by a single developer. As discussed in chapters 7 and
8 this ignores the cognitive overload complications of simultaneously pro-
moting multiple attributes in multiple goal type tasks;

• Goal-Diversity: involves an explicit process intervention to achieve human
diversity for important coverage of dependability attributes in the activity
of analysis and design of computer-based systems. It recognises and over-
comes the potential cognitive overload drawbacks associated with the Sys-
tematic approach by ensuring that each developer considers a single non-
functional attribute during analysis, design and inspection stages.

From the literature sources, arguments formed and simulation findings contained

in this thesis, it can be suggested that the following hypothesis can be initially
formed for each approach as follows: a) with the Ad-Hoc approach, there is a

greater chance that due to homogeneous influences of the system type, the applica-
tion domain, and other individual and group uniformity influences (e.g. common
culture, education, training, etc) there will be a much greater potential for harmful
unconscious and shared assumptions to be undetected during development - re-
sulting not only in a lower number of assumptions being detected, but also a lower
variety; b) with the Systematic approach, due to the cognitive limitations imposed
with this type of task, a much shallower consideration of assumptions is expected.
Therefore, while there may be more variety of assumptions considered - in terms

of their harmful consequences on certain non-functional attributes, it is expected

that a reduced number will be detected; and c) with the Goal-Diversity approach,

as mentioned earlier, it is expected, that, due to the increased efficacy of human

diversity introduced, there will be both a greater variety of assumptions made and

detected.



CHAPTER 11. CONCLUSIONS 359

Having considered these approaches, along with expected outcomes, a possible
experimental approach that could be considered would be a well established do-
main (say something like the ATM domain in chapter 5) that could be profession-
ally analysed to illuminate a significant number of assumption related faults that
have occurred over time and these could then be suitably categorised into which

dependability attributes they tend to compromise. Using three groups of four

participants this development task could be set so that each four member group

could be advised to perform an analyses under the follow conditions: a) Group
1 could be the Ad-Hoc approach and told to perform the initial analysis/design
and consider what they individually believe are important quality attributes to be
promoted in the course of the task; b) Group 2 could be the Systematic approach
and told to perform the initial analysis/design paying explicit attention to the non-

functional attributes of (say) Security, Reliability, Maintainability, and Safety dur-
ing the course of the analysis/design; and c) Group 3 could be the Goal-Diversity
approach where each individual of the four group team is told to promote a differ-
ent non-functional attribute in the course of of the analysis/design. For instance

Participant I promotes Security, Participant 2 promotes Reliability, Participant 3

promotes Maintainability, and Participant 4 promotes Safety. It is important that
each group performs this stage for the same length of time in total. For instance,

(say) that four man hours is allowed for each group. Following this stage of the
experiment, each analysis/design contribution could be professionally assessed to
see what assumptions have been made and these could be carefully categorised
into what dependability attributes they potentially compromise. From this, the
performance of this first stage could be evaluated in terms of: a) number of po-
tentially harmful assumptions made; b) the dispersion of assumption types over
the four non-functional attributes involved to ascertain the variety of different
assumptions made.

Next, the same groups individually inspect each others analysis/design contribu-

tions to evaluate them. Group I (Ad-Hoc) could be informed to highlight any

analyis/design decisions made that could compromise the quality of the system.
Group 2 (Systematic) could be informed to highlight any analysis/design decisions
that compromise the non-functional attributes of Security, Reliability, Maintain-



CHAPTER 11. CONCLUSIONS 360

ability, or Safety. Group 3 (Goal-Diversity) could be individually informed each
to highlight any analysis/design decision they believe compromises their particu-
lar goal they are promoting (i.e. Participant I would highlight any analysis/design
decision made by the other 3 participant within his/her group that he/she believed
compromised Security). Again, it is important that all groups perform the inspec-

tion stage for the same period of time for all three groups. At the end of this stage

the number and type of assumptions detected, by anyone participant, along with
the total and types for each groups will provide some indication of the assump-
tion detection efficacy of the three approaches on both an individual and group
performance level.

Finally, each group performs a collaborative meeting review where each partici-
pant in each group reviews and evaluates potential conflicts found from the inspec-
tion stage. So Group I (Ad-Hoc) are told to collaboratively evaluate any quality
conflicts, agree trade-offs and breakthrough decisions to provide an overall analy-
sis/design solution for the system being developed. Group 2 (Systematic) are told

to collaboratively evaluate any Security, Reliability, Maintainability and Safety

conflicts, agree trade-offs and breakthrough decisions to provide an overall anal-
ysis/design solution for the system being developed. Group 3 (Goal-Diversity)
are also told to collaboratively evaluate any Security, Reliability, Maintainability
and Safety conflicts, agree trade-offs and breakthrough decisions to provide an
overall analysis/design solution for the system being developed. Again, a con-
stant period of time is allocated for all three groups of participants. At the end of
this third stage the number of new assumptions and breakthrough decisions offer
an insight into the efficacy of the three approaches for the collaborative stage.

There are also a number of problems involved in performing such an experiment.

The application domain and system type chosen for the development task may

be, naturally, biased to be more relevant to the promotion of some non-functional
attributes than others. In this case, it is important to choose a domain and system

type that places a reasonably equal importance on a number of dependability at-
tributes and frame the original requirements documents/specification for the task
in such a way that does not imply that certain dependability attributes are more



CHAPTER 11. CONCLUSIONS 361

important than others. Human performance variance is always a variable that can
corrupt or produce misleading findings in such an experiment. This, as chapter 3
highlighted, is a particular concern in a software development type task. It may
therefore be necessary to be very careful in selecting the participants and a pretest
of skill, capability, and experience may be necessary so that participants can be
assigned to groups to minimise human performance variability. Categorising as-

sumptions and judging what constitutes as an assumption will be an inherently

subjective influence. The best that can be offered in this regard, is to ensure that
a thorough understanding of the domain is achieved so that assumption classifi-
cations can be as coherently relevant as possible. Finally, in studies of group be-
haviour, especially when diversity has been deliberately composed into the group
conformation, it has been noticed that conflict can occur in two ways. Task conflict

is largely seen as being desirable in increasing group/team performance - since
it increases exploration and coverage of relevant task criterion. However, con-
flict can also be of a social inter-personal nature whereby group/team members
begin to take offence of others conflicting remarks. Since, with Goal-Diversity,

it is hoped that at Stage 3 of a collaborative meeting, the variety of assumptions

identified stimulates a task climate of conflict, it may be necessary to have a group
facilitator to ensure that conflict remains related to task issues and does not degen-
erate down into inter-personal conflict between group/team members. However,
having stated this, from a purely research perspective, the finding that, for in-
stance, the Goal-Diversity approach results in undesirably high levels of social
conflict that undermines group performance is also an interesting finding.



Bibliography

[1] Laprie, J.C. Dependability: Basic concepts and terminology - in English,
French, German, Italian, and Japanese. Dependable Computing and Fault
Tolerance. Springer-Verlag, Vienna, Austria., 1992.

[2] Laprie, 1. C. "Dependable Computing: Concepts, Limits, Challanges,".
IEEE International Symposium on Fault-Tolerant Computing - Special Is-
sue. Pasadena, California. USA, pages 42-54, 1995.

[3] Avizienis, A., Laprie, J.C & Randell, B. Fundamental Concepts of Depend-
ability. Newcastle University Technical Report, Computer Science Dept,

CS-TR-739,2002.

[4] Randell, B. Facing Up to Faults. Turing Memorial Lecture. Dept of Com-
puter Science. University of Newcastle upon Tyne. January 31st, 2000.

[5] Heylighen, F & Joslyn, C. Cybernetics and Second-Order Cybernetics.
in : Meyers, R. A. (ed), Encyclopedia of Physical Science and Technology
(3rd edition). Academic Press. New York., 2001.

[6] Prata, S. C++ Primer Plus 2nd Edition. The Waite Group Press. Corte
Madera. CA., 1995.

[7] Moulding, M. R. Designing for high integrity: the software fault-tolerant

approach. : in: Sennett, C. High Integrity Software. Pitman Publishing.

London. UK., pages 39-68, 1989.

[8] Cristian, F. Exception Handling and Tolerance of Software Faults. : in :
Lyu, M.R. (ed). Software Fault Tolerance. Chichester. Wiley., pages 88-107,
1995. See Chapter 4.

362



BIBLIOGRAPHY 363

[9] Winder, R. & Roberts, G. Developing JAVASoftware. 2nd Edition. Wiley.
Chichester West Susses. UK., 2001.

[10] Curtis, B., Krasner, H & Iscoe, N. A Field Study of The Software Design
Process for Large Systems. Communications of the ACM, 31(11): 1268-

1287,1988.

[II] Senge, P. M. The Fifth Discipline: The Art and Practice of The Learn-
ing Organisation. Bantam Doubleday Dell Publishing. Century Business.
London. Great Britain., 1993.

[12] Bell, D. Software Engineering: A Programming Approach. 3rd Edition.
Addison- Wesley. Harlow, London. UK, 2000.

[13] Randell, R System Structure for Software Fault Tolerance. IEEE Transac-
tions on Software Engineering., SE-l (2):220-232, June 1975.

[14] Torres-Pomales, W. Software Fault Tolerance: A Tutorial. NASA Tech-
nical Report NASAlTM-2000-2J06J6. Langley Research Center, Hampton,

Virginia. USA., October 2000.

[15] Lewin, D., & Noaks, D. Theory and Design of Digital Computer Systems.

Znd Edition. Chapman and Hall. London. UK, 1992.

[16] Littlewood, R,Popov, P.T., Strigini, L & Shryane, N. Modelling the Effects
of Combining Diverse Software Fault Detection Techniques. IEEE Trans-
actions on Software Engineering, 26(12):1157-1167, December 2000.

[17] Littlewood, B., Popov, P & Strigini, L. Design Diversity: An Update from
Research on Reliability Modelling. Proceedings of the 9th Safety-Critical
Systems Symposium, Bristol., 200 1.

[18] Hatton, L. N-Version Design Versus One Good Version. IEEE Software,

pages 71-76, NovemberlDecember 1997.

[19] Knight, J. C. A Large Scale Experiment in N-Version Programming.
The J5th Abbual International Conference on Fault Tolerant Computing
(FrCS), pages 135-139, June 1985.



BIBLIOGRAPHY 364

[20] Knight, J.c., & Leveson, N.G. An Experimental Evaluation of the Assump-
tion of Independence in Multiversion Programming. IEEE Transactions on
Software Engineering, 12(1):96-109, January 1986.

[21] Eckhardt, D. R., Caglayan, A. K., Knight, J. C., Lee, L. D., McAllister, D.

E, Vouk, M. A & Kelly, 1. P. J. An Experiemental Evaluation of Software
Redundancy as a Strategy For Improving Reliability. IEEE Transactions
on Software Engineering., 17(7):692-702, July 1991.

[22] Kanoun, K. Real-World Design Diversity: A Case Study on Cost. IEEE
Software, pages 29-33, July/August 2001.

[23] Anderson, T & Lee, P.A. Fault Tolerance: Principles and Practice. Prentice
Hall,1981.

[24] French, C. S. Data Processing and Information Technology. DP Publica-
tions. Guernsey, Channel Islands. Great Britain., 1991. See Sections 10.17
and Appendix 3.1.

[25] Kernighan, B. W & Pike, R. The Practice of Programming: Simplicity,
Clarity, Generality. Addison Wesley Longman Inc, Reading, Massachusetts.
USA, 1999. see chapter 1: Style pp. 1-27.

[26] Parnas, D. L. On the Criteria To Be Used in Decomposing Systems into
Modules. Communications of the ACM., 15(12): 1053= 1058.

[27] Pressman, R.S. Software Engineering: A practitioner's approach. 4th Edi-
tion. European Adaptation by Darrel Ince. McGraw Hill. USA, 1997.

[28] Sommerville, I. Software Engineering. 6th Edition. Addison- Wesley. Essex.
UK,2001.

[29] Riel, A. J. Object-Oriented Design Heuristics. Addison-Wesley. Reading.
Massachusetts. USA, 1996.

[30] Littlewood, B & Strigini, L. Redundancy and Diversity in Security.
DOTSIDIRC Technical Report. Centre for Software Reliability, City Uni-
versity. Lovdon., 2003.



BIBLIOGRAPHY 365

[31] Leveson, N & Turner, C. S. An Investigation of the Therac-25 Accidents.
IEEE Computer: 26(7): 18-41, July 1993.

[32] Hoffman, D. M & Weiss, D. M. Software Fundamentals: Collected Papers
by David L. Parnas. Addison Wesley. New Jersey. USA., 2001.

[33] Brooks, EP. No Silver Bullet: Essence and Accidents of Software Engi-

neering. IEEE Computer, pages 1~19, April 1987.

[34] Brooks, EP. The mythical man month: Essays on software engineering. 25

year anniversary edition. Addison-Wesley. NY. USA., 1995.

[35] Jackson, M. Software Requirements and Specifications: a lexicon of prac-
tice, principles, and prejudices. Addison Wesley. London. Great Britain.,
1995.

[36] Kerzner, H. Project Management: A Systems Approach to Planning,
Scheduling, and Controlling. John Wiley and Sons, Inc. Canada., 1998.

[37] Constantine., L.L. The Peopleware Papers: Notes on the human side of

software. Prentice Hall. New Jersey. USA., 2001.

[38] Demarco, T., & Lister, T. Peopleware: Productive projects and teams. 2nd
Edition. Dorset House Publishing. New York. USA, 1999.

[39] Baker, T. T. Chief Programmer Team Management of Production Program-
ming. IBM Systems Journal., 1:56-73, 1972.

[40] Baker, E T & Mills, H. D. Chief Programmer Teams. Datamation, pages
58-61, December 1973.

[41] Steiner, I.D. Group Process and Productivity. Academic Press. New York.
USA.,1972.

[42] Hill, G. W. Group Versus Individual Performance: Are N + 1Heads Better
Than One? Psychological Bulletin., 91(03):517-539,1982.

[43] Brooks, E P. The Mythical Man Month. Datamation, pages 44-52, De-
cember 1974.



BIBLIOGRAPHY 366

[44] Gordon, R. L & Lamb, J. C. A Close Look at Brook's Law. Datamation.,
pages 81-86, June 1977.

[45] Hallows, J. Information Systems Project Management. Amacom Press.
USA,1998.

[46] Glass, R.L. Software Runnaways: Lessons learned from massive software

project failures. Prentice Hall. New Jersey. USA, 1998.

[47] NATO SCIENCE COMMITTEE. Software Engineering. Report on a con-
ference by the NATO SCIENCE COMMITTEE. Garmisch, Germany, 7th to
J Ith October. Editors: Naur, P., & Randell, B., 1968.

[48] Jones, C. B. Systematic Software Development using VDM. 2nd Edition.
Prentice Hall. Cambridge. UK., 1990.

[49] Leveson, N. G. High-Pressure Steam Engines and Computer Software.
Keynote Speech at the International Conference of Software Engineering.
Melbourne, Australia., 1992.

[50] Jackson, M. Problem Frames: Analysing and structuring software devel-
opment problems. Addison- Wesley. Harlow. UK., 2001.

[51] Wiegers, K. Creating a Software Engineering Culture. Software Develop-
ment Journal, 2(7):59-66, July 1994.

[52] Wiegers, K. E. Creating A Software Engineering Culture. Dorset House
Publishing. New York. USA., 1996.

[53] Duncan, W. R. A Guide To The Project Management Body of Knowledge.
PMI. Maryland. USA., 1996.

[54] Ashby, W. R. An Introduction to Cybernetics. Methuen. London. Great
Britain., 1956. available free online at: http://pcp.vub.ac.belIntroCyb.pdf.

[55] Landauer, T. K. The Trouble with Computers: Usefulness, Usability and
Productivity. MIT Press. Massachusetts. USA., 1996.

http://pcp.vub.ac.belIntroCyb.pdf.


BIBLIOGRAPHY 367

[56] Fitzgerald, J & Gorm Larson, P. Modelling Systems: Practical Tools and
Techniques in Software Development. Cambridge University Press. Cam-
bridge. Great Britain., 1998.

[57] Hall, A. Seven Myths of Formal Methods. IEEE Software., pages 11-19,

September 1990.

[58J Budgen, D. Software Design. Addison- Wesley. Guildford and King's Lynn.

UK., 1994.

[59] Cooke, S & Slack, N. Making Management Decisions. Prentice Hall.
Herts. Great Britain., 1991.

[60] Handy, C. Inside Organisations: Twenty Ideas for Managers. Penguin
Books. Middlesex. Great Britain., 1990.

[61] Handy, C. Understanding Organisations. Penguin Books. Middlesex. Great
Britain, 1993. 4th Edition.

[62J Kotter, J. P. What Leaders Really Do. Harvard Business Review., pages

103-111, May-June 1990.

[63] Vroom, V. H & Deci, E. (Editors). Management and Motivation. Penguin
Books. London. Great Britain., 1992.

[64] Weinberg, G.M. The Psychology of Computer Programming. VanNostrand

Reinhold. London., 1971.

[65] Paulk, M. C., Weber, C. V., Garcia, S. M., Chrissis, M & Bush, M. Key
Practices of The Capability Maturity Model. Technical Report. Software
Engineering Institute. Carnegie Mellon University. CMU/SEI-93-TR-25,
February 1993. Version 1.1.

[66] Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W & Paulk, M. Software

Quality and The Capability Maturity Model. Communications of the ACM.,
40(6):30-40, June 1997.



BIBLIOGRAPHY 368

[67] Bach, J. Enough About Process: What We Need Are Heroes. IEEE Soft-
ware., 12(2):96-98, 1994.

[68] Avizienis, A., Laprie, J.c., Randell, B & Landwehr, C. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on
Dependable and Secure Computing, 1(1): 11-33, January-March 2004.

[69] Yourdon, E. Death March: The Complete Software Developer's Guide to
Surviving Mission-Impossible Projects. Prentice Hall. New Jersey. USA.,
1997.

[70] Jones, C.B. Providing a formal basis for dependability notions. Dept of
Computer Science. University of Newcastle upon Tyne. UK, 2002.

[71] Neumann, P.G. Computer Related Risks. ACM Press. Addison-Wesley.
USA,1995.

[72] Viller, S., Bowers, J., & Rodden, T. Human factors in requirements engi-
neering: A survey of human sciences literature relevant to the improvement

of dependable systems development process. Interacting with Computers,
11:665-698, 1999.

[73] Raymond, E.S. The Cathedral and the Bazaar: Musings on Linux and Open
Source by an accidental revolutionary. 0'Rielly and Asscociates Inc. USA.,
1999.

[74] Anderson, R. "How to Cheat at the Lottery (or, Massive Parrallel Require-
ments Engineering)". Proceedings of Computer Security Applications Con-
ference. Phoenix. Arizona.

[75] Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. Strengthening
the Case for Pair Programming. IEEE Software, pages 19-25, July/August

2000.

[76] Voges, U. Software Diversity in Computerised Control Systems. Depend-
able Computing and Fault-Tolerant Systems. Springer-Verlag. Wien. Aus-
tria.,02, 1988.



BIBLIOGRAPHY 369

[77] Kelly, r. P. r., & Murphy, S. C. Achieving Dependability Throughout the
Development Process: A Distributed Software Experiment. IEEE Transac-
tions on Software Engineering., 16(2):153-165, February 1990.

[78] Littlewood, B. & Strigini, L. A discussion of practices for enhancing diver-
sity in software designs. DISPO Technical Report. LS-DI-TR-04. Version
I.Id. Centre for Software Reliability. City University. London. UK., 23rd
November 2000.

[79] Popov, P., Romanovsky, A., & Strigini, L. Choosing effective methods
for design diversity - how to progress from intuition to science. Technical
Report CS-TR-666. Computer Science Dept. University of Newcastle upon
Tyne. UK., March 1999.

[80] Westerman, S. r, Shryane, C. M., Crawshaw, C. M., Hockey, G. R. r.&
Wyatt-Millington, C.W. "Cognitive Diversity: A structured approach to
trapping human error". : in: Rabe, G. (Ed). SafeComp 1995: Proceedings
of the 14th International Conference on Computer Safety, Reliability and
Security. Belgirate. Italy., pages 142-155, 11th to 13th October 1995.

[81] Westerman, S. r., Shryane, C. M., Crawshaw, C. M. & Hockey, G. R.

J. Engineering Cognitive Diversity. : in : Redmill, F. & Anderson, T.
Safer Systems. Proceedings of the Fifth Safety-critical Systems Symposium,
Brighton. 1997. Springer-Verlag. London. UK. , pages 111-120, October
1997.

[82] Daily, B., Whatley, A., Ash, S. R. & Steiner, R. L. The effects of a group
decision support system on culturally diverse and culturally homogeneous
group decision making. Information and Management., 30:281-289, 1996.

[83] Hoffman, L. R. Homogeneity of member personality and its effects on

group problem solving. Journal of Abnormal and Social Psychology.,
58:27-32, 1959.

[84] Hoffman, L. R. & Maier, N. R. F. Quality and Acceptance of Problem So-
lutions By Members of Homogeneous and Heterogeneous Groups. Journal
of Abnormal and Social Psychology., 62(02):401-407, 1961.



BIBLIOGRAPHY 370

[85] Laughlin, P. R. & Blitz, D. S. Individual versus dyadic perfomance on a
disjunctive task as a function of initial ability level. Journal of Personality
and Social Psychology., 31:487-496, 1975.

[86] Triandis, H. H., Hall, E. R. & Ewen, R. B. Member Heterogeneity and
Dyadic Creativity. Human Relations., 18(01):33-55, 1965.

[87] Watson, G., Kumar, K. & Michaelson, L.K. "Cultural diversity's impact on

interaction process and performance: comparing homogeneous and diverse
task groups". Academy of Management Journal., 36(03):590-602, 1993.

[88] Johnson, S. Emergence. Penguin Books. St Ives. Great Britain, 2001.

[89] Merton, R. K. Manifest and Latent Functions. : in : Demerath, N. J. and
Peterson, R. A. (Eds). System Change and Conflict. The Free Press., 1967.

[90] Checkland, P. B & Wilson, B. Primary Task and Issue Based Root Defini-
tions in System Studies. Journal of Applied System Analysis., 1980.

[91] Drucker, P. The practice of management. Heinemann, London, Great

Britain, 1958.

[92] Checkland, P & Scholes, J. Soft Systems Methodologies in Action: Making
Sense Of The Field. John Wiley, Chichester, Great Britain., 1990.

[93] Neumann, P. G. The Not-So-Accidenta1 Holist. Communications of the
ACM., 34(9):122,1991.

[94] Currie, W. Management Strategy for IT: An International Perspective. Pit-
man ZPublishlng. London, Great Britain, 1995.

[95] Porter, M. E. & Miller, V. How Information Gives You Competitive Ad-
vantage. Harvard Business Review, pages 149-160, July-August 1985.

[96] Earl, M. Management Strategies For IT. Prentice-Hall Publishing, 1989.

[97] Lynne Markus, M & Keil, M. If we build it, they will come: Designing
information systems that people want to use. Sloan Management Review,
pages 11-25, Summer 1994.



BIBLIOGRAPHY 371

[98] Kirby, E. G. The Importance of Recognizing Alternative Perspectives: An
Analysis of a Failed Project. International Journal of Project Management,
l4( 4):209-211, 1996.

[99] Lehman, M. M & Belady, L. Program Evolution: Processes of Software
Change. Academic Press. London, 1985.

[100] Boehm, B. W. Software Engineering Economics advances in computing

science and technology.

[101] Smith, D.D. Designing Maintainable Software. Springer-Verlag. New
York. USA, 1999.

[102] Banker, R. D & Kauffman, R. J. Strategic Contributions of Information
Technology: An Empirical Study of ATM Networks. Proceedings of the
9th Conference on Information Systems, pages 141-150, 1988.

[103] Ross. J. Anderson. Why Cryptosystems Fail. Communications of the ACM,
37(11 ):32-40, November 1994.

[104] Bryan Clough. Cheating at Cards. RMDP Publication. Essex. UK,1994.

[105] Rebecca Mercuri. Computers, freedom, privacy trip report. RISKS FO-
RUM, 11(39), 1st April 1991.

[106] o. J. Makela. PIN Verification. RISKS-FORUM, 5(73), 8th March 1987.

[107] Michael McKay. Re: "little pitchers have big ears": Atm risks. RISKS
FORUM, 10(75), 3rd January 1991.

[108] R Anderson. Card Fraud and Computer Evidence. RISKS FORUM, 15(54),
14th February 1994.

[109] David Tarabar. Stolen atm card nets 345,777 dollars. RISKS FORUM,
16(81), 12th February 1995.

[110] James. Essinger. ATM Networks: Thier Organisation, Security and Future.
Elsevier International Bulletins. Oxford. UK, 1987.



BIBLIOGRAPHY 372

[Ill] John Wodehouse. How to rob a bank the cashcard way. RISKS FORUM,
14(56), 28th April 1993.

[112] Chris Summers and Sarah Toyne. Gangs preying on cash machines. BBC
News Online, 9th October 2004.

[113] Anthony Naggs. Re: How to rob a bank the cashcard way. RISKS FORUM,

14(57), 30th April 1993.

[114] Brian Randell. Court case casts doubt on cashpoint credibility. RISKS
FORUM, 15(63), 7th March 1994.

[115] Antony Upward. Ukatms = legal challenge kpmg. RISKS FORUM, 13(62),
2nd July 1992.

[116] Malan, R & Bredemeyer, D. Defining Non-Functional Requirements. Ar-
chitecture Resources For Enterprise Advantage. Bredemeyer Consulting.
Online at URL http://www.bredemeyer.com. 8th March 2001.

[117] Shimizu.Y, Fujimaki, N & Hirayuma, M. A Systematic Approach to

Domain-Oriented Software Development. International Conference on
Software Engineering. Kyoto. Japan, pages 499-502, April 19-25 1998.

[118] Dobson, J. Modelling real-world issues for dependable software. : in :
Sennett, C. T. High-integrity software. Pitman Publishing. UK, pages 274-

316, 1989.

[119] J Robertson. Even more atm risks (chisholm, risks-18.47). RISKS FORUM,
18(48), 23rd September 1996.

[120] Byrne, M.D., & Bovair, S. A Working Memory Model of a Common Pro-
cedural Error. Cognitive Science, 21(l):31-61, 1997.

[121] Erling Kristiansen. Cash dispenser fraud. RISKS FORUM, 13(89), 2nd

November 1992.

[122] Colville, A. Autoteller Problems (Re: RISKS 5.22). RISKS FORUM, 5(25),
7th August 1987.

http://www.bredemeyer.com.


BIBLIOGRAPHY 373

[123] Chiasson, D. A Non-Fail-Safe ATM Failure. RISK FORUM, 4(71), 2nd
April 1987.

[124] D, Andrews & D, Ince. Practical Formal Methods with VDM. McGraw-
Hill. Berks. UK, 1991. See chapter 10 pp 143-182.

[125] Minow M. ATM Security (from Usenet). RISKS FORUM, 4(90), 24th May

1987.

[126] Townsley, B. An ATM Report by the Building Society Association. The
Building Society Association., 1984.

[127] Rogers, W. A., Cabriera, E. F., Walker, N., Gilbert, D. K. & Frisk, A. D. A
Survey of Automatic Teller Machine Usage Across The Life Span. Human
Factors, 38(1): 156-166, 1996.

[128] Delvin, K. InfoSence: Turing Information into Knowledge. W. H. Free-
man. New York. USA, pages 108-109, 2001. see chapter 10: The Art of
Successful Conversation.

[129] Ralph Moonen. More atm anecdotes. RISKS FORUM, 12(54), 22nd Octo-

ber 1991.

[130] Rogers, W. A., Gilbert, D. K. & Cabrera, E. F. An Analysis of Automatic
Teller Machine Usage by Older Adults: A structured interview approach.
Applied Ergonomics, 3:173-180,1997.

[131] R. C. Lehman. Risks of carrying a bank card. RISKS, 6(94), 1988.

[132] Rodney Hoffman. Massive counterfeit atm card scheme foiled. RISKS
FORUM,8(84), 12th February 1989.

[133] D Weir. ATM Gangsters. RISKS FORUM, 18(70), 20th December 1996.

[134] D. Curry. ATM Ripoff. RISKS-FORUM, 2(23), 6th March 1986.

[135] Warburton, N. Thinking: from A to Z. Routledge. London. UK, 1996.



BIBLIOGRAPHY 374

[136] Walton, D, N. Informal Logic: A Handbook For Critical Argumentation.
Cambridge University Press. Cambridge. UK., 1989.

[137] BlackBurn, S. Think. Oxford University Press. Oxford. UK, 1999.

[138] Polya, G. How to Solve It. Penguin Books. London. UK, 1949.

[139] Ennis, R. H. Identifying Implicit Assumptions. Synthese, 51 :61-86, 1982.

[140] O'Conner, J & McDermott, I. The Art Of Systems Thinking: Essential
Skills For Creativity and Problem Solving. Thorsons. London. UK, 1997.

[141] Velleman, D. J. How To Prove It: A Structured Approach. Cambridge
University Press. Cambridge. UK.

[142] Delin, P. S., Chittleborough, P., & Delin, c.n. What is an Assumption?
Informal Logic, 16:115-122, 1994.

[143] DeBona, E. Lateral Thinking: A textbook of creativity. Penguin Books Ltd.

Harmondworth. Middlesex. UK, 1970.

[144] Hofstede, G. Cultures and Organisations: Intercultural Cooperation and
Its Importance for Survival. HarperCollinsBusiness. Hammersmith. Lon-
don., 1991. see chapter 1 on levels of culture.

[145] Johnson, G & Scholes, K. Exploring Corporate Strategy: Text and Cases.
Prentice Hall.Herts. Great Britain, 1997.

[146] McLaughlin, P. What Functions Explain. Cambridge University Press.

New York, 2001.

[147] Mayr, E. Teleological and teleonomic: a new analysis. : in: Plotkin, H. C.
(Ed) Learning, Development, and Culture. John Wiley & Sons. UK., pages

17-38, 1982.

[148] Delbruck, M. Aristotle-totle-totle. : in: Monod, J & Borek, E (Eds). Of
Microbes and life. Columbia University Press. New York., 1971.



BIBLIOGRAPHY 375

[149] Ulanowicz, R. E. Ecology, The Ascendent Perspective. Columbia Univer-
sity Press. New York. USA, 1997. see chapter 2: Causality in The Age of
Science.

[150] RosenBlueth, A., Wiener, N. & Bigelow, J. Behaviour, Purpose and Tele-
ology. Philosophy Of Science., 10:18-24, 1943.

[151] Locke, E. A. & Latham, G. P. Building a Practically Useful Theory of Goal
Setting and Task Management: A 35 Year Odyssey. American Psycholo-
gist, 57(9):705-717, 2002.

[152] Shallice, T. Dual Functions of Consciousness. Psychological Review.,
79(05):383-393, 1972.

[153] Weinberg, G. M. & Schulman, E. L. Goals and Performance in Computer
Programming. Human Factors, I6( 1):70-77, 1974.

[154] Chung, L., Nixon, B. A., Yu, E & Mylopoulos, J. Non-Functional Require-
ments In Software Engineering. Kluwer Academic Publishers, Dordrecht,

Netherlands.,2ooo.

[155] Fagan, M. E. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 15(3): 182-211, 1976.

[156] Fagan, M.E. Advances in Software Inspections. IEEE Transactions on
Software Engineering, 12(7):744-751, 1986.

[157] Laitenberger, 0 & Debaud, 1M. An Encompassing Life Cycle Centric
Survey of Software Inspection. The Journal of Systems and Software, 50:5-
31,2000.

[158] Gilb, T& Graham, D. Software Inspection. Addison-Wesley, Reading. MA,

1993.

[159] Martin, J & Tsai, W. T. N-Fold Inspection: A Requirements Analysis
Technique. Communications of the ACM, 33(2):225-232, 1990.



BIBLIOGRAPHY 376

[160] Bifft, S & Halling, M. Investigating the Defect Detection Effectiveness and
Cost Benefit of Nominal Inspection Teams. IEEE Transactions on Software
Engineering, 29(5):385-397, 2003.

[161] Neilsen, J & Molich, R. Heuristic Evaluation of User Interfaces. Proc. of
the CHI Conference, 1990.

[162] Benkoski, S.J., Monticino, M. G., & Weisinger, 1. R. A Survey of the
Search Theory Literature. Naval Research Logistics, 38:469-494, 1991.

[163] Morse, P. M. Bernard Osgood Koopman, 1900-1981. Operations Re-
search, 30(3):417-427,1982.

[164] Koopman, B. O. Search and Screening: General Principles with Historic

Applications. Pergamon, New York" 1980.

[165] Frost, J. R. Principles of Search Theory. SOZA Technical Report. Online
@ httpt/Zwww.soza.com, 1999.

[166] Chapagne, L., Carl, R. G., & Hill, R. Search Theory, Agent-Based Simu-

lation, and U-Boats in the Bay of Biscay. Proceedings of the 2003 Winter

Simulation Conference, 2003.

[167] Chwif, L & Paul, R.J. On Simulation Model Complexity. Proceedings of
the 2000 Winter Simulation Conference, pages 449-455, 2000.

[168] Robson, A.J. Designing and Building Business Models. McGraw-Hill.
Berks. UK, 1995. see: Chapter 2 Problem Conceptualization and Data

Analysis. pp. 10-33.

[169] Lucey, T. Quantitative Techniques. DP Publications Ltd, Guernsey. UK,
1992. see chapter 16 pp. 223-237 incl entitled "Simulation".

http://httpt/Zwww.soza.com,


Index

acceptance--checking, 36
additive function, 239

affirming the consequent, 133
antisubmarine warfare operations re-

search group (ASWORG), 242
artificial limits, 150
assertions, 139
assumptions, 131
assumptions and reasoning, 131
attributes of dependability, 21

automatic-teller machine ATM, 109,

110, 112, 114
availability, 21

beliefs, 139

chief programmer team, 59
cliche mental patterns, 149
code reviews, 228
collective assumptions, 153
Computer-Based System, 91, 97
confidentiality, 21
construction, 140

coordinated atomic actions (CAA), 38

deductive reasoning, 131
defect collection, 231
defect correction, 231

defect detection, 230

defect removal rates, 238
defect space coverage, 264
defect type sensitivity, 264
definite range search function, 243
deletion, 139
denying the antecedent, 133
dependability, 19
deployment context, 101
deployment context issue, 207, 211,

217,219

deployment context issues, 220

detection effectiveness, 238, 307
detection efficiency, 239, 307
diminishing function, 239
DIRC,97
distortion, 140
dormant fault, 20

efficient causation, 173
emergence, 93
engineering context, 104
engineering context issue, 206, 207,

211,213,217,219

enthymeme, 142
error, 19
error detection, 22

377



INDEX 378

error recovery, 22
evolution context, 105
evolution context issues, 220
exponential search function, 244

maintainability, 21
manifest function, 94
material causation, 173
means of dependability, 21
modus ponens, 132
modus tollens, 132

multiple goal-setting, 177

Failure,20

false positives, 231
fault, 19
fault forecasting, 23
fault handling, 25
fault maintenance, 23
fault prevention, 21
fault removal, 22
fault tolerance, 22
final causation, 174
formal argumentation, 140
formal causation, 173

n-version redundancy, 29
national security agency, III
non sequitur, 133, 143

one-sided searches, 241, 243
operations research (OR), 241

overlapping meaning contexts, 157

game theory, 245
generalisation, 140
generic CBS contexts, 98
goal-setting, 175

pay-off function, 245
performability, 21

presuppositions, 137
probabilistic reasoning, 135
probability of detection (POD) func-

tions,243
problem-solving, 147
process-loss, 240hollism,93

implicit assumption, 150
inspection planning, 230
inspection team roles, 232
integrity, 21
inverse-cube search function, 244

reading techniques, 234
referential ambiguity, 145
reliability, 21

latent error, 20
latent function, 94
lexical ambiguity, 145
limited knowledge contexts, 157

safety,21

search effectiveness, 246

search efficiency, 246

search effort, 247

search environment, 245, 246

search planning, 246



INDEX

search space coverage, 247
search theory, 241
searcher sensitivity, 246
searchers, 245
security, 21

simulation model's distribution(s), 306

simulation model's input variables, 305

simulation model's logic, 308
simulation model's output variables,

307
simulation model's parameters, 306
simulation model's status variables,

306
situational information theory, 155
software inspections, 228
software life--cycle documents, 232
suppositions, 136

synergistic function, 239
syntactical ambiguity, 145

target object density, 246
target object distribution, 246
target objects, 245, 246
teleology, 163
teleomatic, 166
teleonomic, 167
the dependability process, 24
the nine dots problem, 148

the why technique, 151

threats to dependability, 19

triple modular redundancy, 29
two-sided searches, 241, 245

user--centred-design, 105

379

utility context, 100

utility context issue, 206, 207, 213

validation, 23
verification, 22
virtual function ascription, 170

walk-up-and-use systems, 123

walkthroughs, 232



Appendix A

Non-Functional Requirements Key

A.I Existing NFR Framework

In this appendix section a subset of the non-functional requirements notation in
Chung [154] et aI, that is employed in chapter 8 will be explained. It can be
seen from figure A.I on the following page that the non-functional requirements

framework forms a tree in structure. The single top cloud at number (I) is the

main soft-goal to be promoted. Such a goal would correspond to a dependability
attribute to be promoted - such as availability, security, etc. The single circle at
number (2) is an AND operation and shows that both soft subgoals at number (3)
are required to be promoted to promote the main soft goal at number (I).

At number (7) is the operationalisation goal. The reason why the goals and sub-
goals at numbers (1) and (3) are called soft-goals is that they represent, in princi-
ple, non-functional goals. These soft-goals capture the desired properties or pur-
pose(s) of the software system, but they require some functionalisation in order to
implement them. The heavier lined clouds at number (7) represent a functional as-
cription to promote the soft subgoals immediately above them. The tick inside the

operationalisation subgoal at number (8) shows that this particular operational-

isation was actually implemented, while the cross inside the operationalisation

subgoal at number (9) was not actually implemented. The double circle at the
apex of the two lines at number (4) is an XOR operation and shows that either of

380



APPENDIX A. NON-FUNCTIONAL REQUIREMENTS KEY 381

(1)

(2)

(3)

+ - (6)(5) +

(7) 0
(8)

(4)

o o®
(9)

Figure A.l: Non-Functional Requirements Framework Key One

the operationalisation subgoals could be implemented to promote the soft subgoal
at number (3).

The '+' symbol on the line at number (5) is used to show that this particular op-
erationalisation subgoal is judged to fully promote the soft subgoal at number (3).
Conversely, the '-' symbol on the line at number (6) is used to show that this par-
ticular operationalisation subgoal has been assessed to to potentially undermine
promotion the soft subgoal immediately above it.

There is also a number of other notions used in chapter 8. These are shown in fig-
ure A.2 on the next page. The dashed line clouds at number (10) and (11) represent
priority claims made during analysis of a software system. Such claims often rep-

resent a belief or assertion about some aspect of the software system. It can also

be seen that they can contain a tick or a cross. The meaning of these is the same

as before and shows whether the claim was accepted or rejected, respectively.



APPENDIX A. NON-FUNCTIONAL REQUIREMENTS KEY 382

r'- ....;.··..······..·"l·····..r.···· .....
~ ;

(10)( V \
'(,..\ ) )'..)

(--/......\....\.......\
(11)( .. ~ \

( 1·····;"

•• \ 'J..•.•.••i

+
(12) ------------------------------------------ ..

(13) ------------------------------------------ ..

+
(14) --------------------~------------------- ..

~-~~-.--- _~- .~_------ ._-
I

_.J

Figure A.2: Non-Functional Requirements Framework Key Two

The dashed lines at numbers (12), (13), and (14) represent interdependency re-
lationships between soft goals, soft subgoals, and/or operationalisation subgoals.

If they contain a '+' symbol on the line like number (12) this means that the in-
terdependency relationship is considered to be a positive and reinforcing one. If
they contain a '-' symbol on the line like number (13) then the interdependency
relationship is considered to be a negative, conflicting, or antagonistic one that can
undermine the goal or subgoal it points toward. Lastly, if they contain both a '+'
and '-' symbol on the line like number (14) then the interdependency relationship

is considered to be a compatible one that neither reinforces or conflicts with the
goal or subgoal it points toward.

A.2 Additions to NFR Framework

In addition to the established non-functional requirements framework notation

discussed in appendix section A.I, adapted notation was specifically introduced

in chapter 8 which is not part of the established non-functional requirements no-
tation. These additions are illustrated in figure A.3 on the following page. The

rectangle box is used to represent the suggested assumptive reasoning that subse-



APPENDIX A. NON-FUNCTIONAL REQUIREMENTS KEY 383

Assumption
Causes

Figure A.3: NFR Additions

quently gives rise to certain priority claims and functionalisation subgoal prefer-
ences. The ellipse, on the other hand, is used to represent the suggested fault and
vulnerability consequences subsequently experienced through such assumptions
being made.

In both cases, the two boxes will be labelled with computer-based system con-

texts that: a) give rise to the assumption; and b) experience the consequences of

the assumption. Furthermore, both boxes will have arrows pointing towards var-
ious priority claims and/or operationalisation subgoals to indicate how they cor-
respondingly influence subgoals through the vulnerabilities and faults they tend

create.



Appendix B

Statistical Significance Test

B.1 Overview

In figure B.l on the next page the search simulation model has been configured
to use the Diverse Coverage and Diverse Sensitivity (i.e. DC and DS) search
strategy to compare search performance on a further two dimensions. These are

1) Number of searchers added (i.e. in rows); and 2) Number of search space

locations (i.e. in columns).' The figures in each row/column represent the search
simulation model's output with this search strategy under additional dimensions 1

and 2 above

Each searcher represents a further fifty resource units of search effort allocation up
to (a theoretical) 100% search effort allocation coverage of five hundred resource
units. Each addition of a searcher is predisposed to one search location type and
the other remaining predispositioning is divided up against the remaining search

space location types.

The purpose of this simulation experiment is to satisfy goal 2 of the thesis as stated

in chapter 10 section 10.2.1 to compare the under/over representational influences

of non-functional attributes upon assumption detection. In the statistical analysis

that follows the expected distribution that will be used will be when there are an

IThe last column (far right) represents the situation where there are the same number of search
locations configured as searchers employed in the search.

384



APPENDIX B. STATISTICAL SIGNIFICANCE TEST 385

• U HOC 3LOC 4 LOC. ~ U>C. ~U>C. 7l.OC. BLoc. », 1 .....~~. ;~ ~~ ~~ ~: ~~ ~~ ~~ ;:'_",h .. s ;~ >Y
Seaod>ers ~; 75 77 76 76 76 72 .,
_",hors 88

1~111
100 97 96 96 9S 86 JIll

SalChers 106 103 ~~; 113 113 113 107 lJ7_!Ch_
117 116 119 ~i6 131 131 119 ~gT

SealChers 132 ll9 140 llS t;; tH 148 151 JS3
_",II.rs 148 148 151 159 155 ~~ 167 In

10 SealChars 160 162 167 168 169 171 ltS' 164 lJH

Figure B.I: Searchers to Locations Comparisons

equal number of location types and searchers. The observed distributions of in-
terest will be the two search situations when: a) there is an under representation
search situation where there are more location types than searchers employed to
predispose them to; and b) where there is an over representation search situation
where there are more searchers employed than location types to predispose them
diversely to. By analysing both these searching situations statistically, it is possi-
ble to get a significance indication of the negative/positive assumption detection
effects when non-functional goal attributes are under/over represented.

B.2 More Locations Types Than Searchers

As explained in section B.I on the preceding page this section shows the statisti-
cal significance tests of the search simulation model's output when there are more
location types than there are searchers. These are compared to the (ideal) search
situation when there are an equal number of searchers to location types to indi-
cate if there is any assumption detection effectiveness losses when a search space
location type is under promoted or represented. The null hypothesis "HO" is that

there is no significant detection effectiveness difference when there are more lo-
cation types than searchers to predispose to them. Hypothesis "HI" is that there
is a significant detection effectiveness difference when there are an equal number
of location types and searchers to predispose them to.

Figures B.2 on the next page, B.3 on the following page, B.4 on the next page, B.5 on

the following page, B.6 on the next page, B.7 on the following page, B.8 on
page 387 show the Chi squared tests on the search simulation model's output
when there are more location types than searchers. They show that when com-



APPENDIX B. STATISTICAL SIGNIFICANCE TEST

rs ocaboni<l21D~ralors s.m. Numb., -E (0 - EJ' (C - ElAZJE
2 SNl'Ch_ fs ~~ ·1 • 0.1
3 SYlChers -4 16 0.27
4SHl'Chers n 80 ·8 64 0.8
5 St.lfChors 86 100 ·14 196 1.96
6SUlCh.rs 107 117 ·10 100 0.85
7 Searchers 119 117 ·18 32. 2.36
a St.lfChors 151 153 ·2 4 0.03
9Searchtis 167 In -4 16 0.09

=
X'l • lA.067 "cuP' HO

Figure B.2: 10 Location Types and 2 to 9 Searchers

ISeotchor. 9 Loc~tion5"': ~ KC ~me urn -E (O-E)"

Z S.. rchors :14 ~; .~ t~ U.M

3Ssreher. 55 -4 0.27
4 s.rchers 76 80 -4 16 0.2
5Surch~s 95 100 ·5 25 0.25
6 Searchers 113 117 ·4 16 0.14
7 SMrchers 131 137 ·6 36 0.26
.5eorch .... 148 153 ·5 25 0.16-. e•

Figure B.3: 9 Location Types and 2 to 8 Searchers

s...rchors LDaoons"2 10 Searchers me um r -E (0- E;' -
2SNrcher. :14 59 .; t~ U.M

] Se.arc:hers 55 -4 0.27
4 SMl'Chors 76 80 -4 16 0.1
5Surchon 96 100 -4 16 0.16
, Searcher. 113 117 -4 16 0.14
7 Search.,. 133 137 -4 16 0.12.

"A2. .070 Accept HO

Figure B.4: 8 Location Types and 2 to 7 Searchers

M1Chor. ..ocalio"s" 2 10 6 Searchers s.tnf Number -Iii (0- El" (0- E)'Z/E

Z !>&rehor, :14 ~~
.,

~~ 0.64
J5Nrchon 54 ·5 0.42
4 Searchers 76 80 -4 16 0.2
S s...-c.h .... 96 100 -4 16 0.16
6 Surchors 11] 117 -4 16 0.14

XA, _ L56
X"I ."._ ACcep liO

Figure B.5: 7 Location Types and 2 to 6 Searchers

urcht" 6 lIOns 10 re • SMnINum_ - -
n_rc~ I 16 j~

I
-s , U.l>

2 SMlChors 56 59 .] 9 0.15
, SMlChor. n 80 .J 9 0.115_

97 100 .s 9 0.09
XA2_ ~59

X"'l < '.113 ACcept HO

Figure B.6: 6 Location Types and 2 to 5 Searchers

ISUlChor. 5 Lo<.llions .2 10 4 SearcliiiS s.tnfNumber 0-£ (0- E)A2 (O-E)' E

1:=1 ~~ 1 " 1 -e • o.i
59 ·1 1 0.02

75 80 ·5 25 0.]1
X".= ~43... t

Figure B.7: 5 Location Types and 2 to 4 Searchers

386



APPENDIX B. STATISTICAL SIGNIFICANCE TEST 387

Figure B.8: 4 Location Types and 2 to 3 Searchers

Q~_r)ers : LOcabons '" 3 ... 10 sean:hers am4!l Number - - - .
, ~ean:nti'S ;~ ~

-lU

~~~ L.."
4S...,.,her. ·10 1.25
5 SoaKhers 88 100 ·12 144 1.44
6Surcher. 106 117 -11 121 1.03
7 Searcher. 117 137 -20 400 2.92
a Sean:hers 112 153 -21 441 2.88
9 Sean:h ... 148 171 -23 529 3.09
10 SYtc.hers 1£0 184 -24 576 s.n

".,= 1'.",. '"",cep'"'" .""

Figure B.9: 2 Location Types and 3 to 10 Searchers

pared against a search situation where there are an equal number of searchers and
location types then there is no statistical significance in the compared distribu-
tions. Therefore the null hypothesis "HO" is accepted.

B.3 More Searchers Than Locations

As explained in section B.l on page 384 this section shows the statistical signifi-

cance tests of the search simulation model's output when there are more searchers

than location types. Again, these are compared to the search simulation model's
output when there are an equal number of location types and searchers to predis-
pose to them. The purpose for doing so is to indicate the assumption detection
effectiveness in both cases - to see which is potentially more effective. The
null hypothesis "H2" is that there is no difference in detection effectiveness when
there are more searchers than location types. The alternative hypothesis "R3" is
that there is an increase in detection effectiveness when there are an equal number
of searchers and location type predispositions.

Figures B.9, B.lO on the following page, B.ll on the next page, B.12 on the fol-

lowing page, B.12 on the next page, B.13 on the following page, B.14 on the next

page, B.15 on the following page show the Chi squared tests - based on the

search simulation model's data output when there are more searchers than loca-

tion types compared to when there exists an equal number of searchers to location

APPENDIX B. STATISTICAL SIGNIFICANCE TEST 388

I!iIK rs oca ons ., rc. ers am. um er ~o-E - (Cl -E)"2{E
4 Search ... ;~ 1~0 :f~ t~ 1\~5 search~rs
6 Searchers 103 117 -14 1% 1.68
7SUKhe.rs 116 137 -21 441 3.22
II Search.rs 139 153 -14 196 1.28
9Searchers 148 171 -23 529 3.09
lQ Searchers 162 184 -22 484 2.63

=~ ce

Figure B.lO: 3 Location Types and 4 to 10 Searchers

Nrc r. .. Loca on5& to lOSearc, ers ame um er - 0- A. 0_ z
~ ~earchers

{Ill ~~~ -" ~~ ~:;:6SNrche .. -6
7 Searchers 119 137 -18 324 2.36
8 Search.rs 140 153 -13 169 1.1
9 Searchers lSI 171 -20 400 2.34
IQ Searchers 167 184 -17 289 1.57

=
A < 11. • t 0

Figure B.ll: 4 Location Types and 5 to 10 Searchers

&~nffS S Lo<anons to ~o 5earchers same NumDer o-E \U -I:JA2 O-E 2/1:
" ..earcners ~~; ~~; --1~

c- V.O>

7 SearcherI' 196 1.43
" Searcher. 135 153 -18 324 2.12
9 Searcher. 159 171 -12 144 0.84
10 Searchtrs 168 184 -16 256 1.39. -

'Z " ... 113 ACCept".

Figure B.12: 5 Location Types and 6 to 10 Searchers

Figure B.13: 6 Location Types and 7 to 10 Searchers

l$61.rchtrs Locations ., re er. ame Number -E !_U_-E}'. (0 - Er'/!:

I
8 Searcner. I ~~; I ~;: I --:2

M ~:~9 Searcher. 144
10 Searche.rs 171 184 -13 169 0.92

X'l= .1.&
_AA' <).w1 ACcept"O

Figure B.14: 7 Location Types and 8 to 10 Searchers

Figure B.15: 8 Location Types and 9 to 10 Searchers

APPENDIX B. STATISTICAL SIGNIFICANCE TEST 389

types. Overall it is indicated that when there is significantly more searchers -
such as 3 location types with 4 to 10 searchers and when there is only 4 location
types with 5 to 10 searchers, the homogeneous predispositions results in statis-
tically significant reductions (at 5% confidence level) in detection effectiveness
as searchers duplicate on target object detections. However, although the simula-
tion model's output indicates that even with higher numbers of location types and

more searchers (i.e. from 5 location types and 6 to 10 searchers and above) that
there is generally less target objects detected than when there is an equal num-
ber of searchers and location types, the statistical tests on these distributions do
not indicate a statistically significant difference. Therefore, we can accept the
hypothesis "H3" for search situations where there are only a small number of lo-
cation types and increasingly large searchers employed, but at higher numbers of
location types to searchers (i.e. 5 location types and above) we must accept "H2"
that there is no statistically significant detection effectiveness loss than when there
is an equal number of searchers and location types

B.4 Overall Comment

Relating the statistical significance tests, within the wider scope of the thesis, in-

dicates that there are reductions in inspection process loss during defect detection
if each inspector is predisposed to gain a wider coverage and assumption/fault

sensitivity of the defect space by being predisposed to promote a unique goal.
However, over promotion of a specific goal, by multiple inspectors (especially at

large numbers of overlap), results increasingly in them being sensitised to cover
the same defect space and increase the chance of them duplicating detections. Fi-
nally, the simulations and statistical analysis of under promotion or representation
of a particular goal, whilst reducing the chance of detecting related defects, does

not, in itself, directly result in significant inspection process loss.

