UNIVERSITY OF
NEWCASTLE

5%

The Effect of Diverse Development Goals on

Computer—Based System Dependability’

Anthony Thomas Lawrie

Spring 2006
NEWCASTLE UNIVERSITY LIBRARY

204 26768 1

’Y\“O.S\S \\g \ b3

IPresented to the School of Computing Science at The University
of Newcastle upon Tyne. In part fulfilment of the requirements for a
degree of a Doctorate of Philosophy.

Acknowledgments

I would like to thank, first and foremost, my PhD supervisor Professor Clifford
Jones for his invaluable guidance in producing this thesis. Secondly, I would also
like to thank my family, friends and colleagues for their encouragement during this
time. Thirdly, I would like to acknowledge the funding sponsors EPSRC for pro-
viding the practical financial means to conduct this work. Fourthly, I would like
to take this opportunity of thanking my reviewers, Professor Brian Randell and
Professor Bev Littlewood for their helpful advice and comments that improved
the quality of this thesis. Last, but not least, I would also like to formally recog-
nise the positive research environment afforded to me by the Centre for Software
Reliability department, within the school of Computing Science, at Newcastle
University where I was based throughout this period.

Abstract

Society’s increasing dependence upon software control and information process-
ing provision has demanded comparable increases in software dependability. While
the existing software dependability approach has resulted in significant improve-
ments, its focus is heavily aimed towards achieving software dependability via
redundant fault—tolerant mechanisms built into the software artifact to provide
error—control in the presence of activated faults. Less emphasis appears to have
been placed upon how software dependability can also be promoted through a
fault-avoidance approach in the software creation process by incorporating hu-
man redundancy and diversity. In this thesis, a process intervention which can
potentially improve fault-avoidance is considered. This involves the setting of
diverse development goals within important generic computer—based system con-
texts in order to increase detection of potentially harmful assumptions which can
result in subtle systemic conflicts that can undermine the dependability of the re-
sultant artifact during the early development phases of requirements, specification
and design. A search theoretic simulation model is progressed and developed to
capture some of the important dynamics involved. The eventual outputs of the
simulation model indicate that increased fault coverage and sensitivity can be ob-
tained through the setting of diverse development goals during the early phases of
software development.

Contents

1 Introduction 12
1.1 FocusoftheThesis« o o v v v v v oo 13
12 NatureoftheThesis v v v v v v v vt oot 13
1.3 Overviewofthe Thesis v oo 14

1.3.1 Chapter2 it 14
132 Chapter3 o i 14
133 Chapterd e 15
134 ChapterS i e 15
135 Chapter6o 15
136 Chapter7 e 16
137 Chapter8o e 16
1.3.8° Chapter9 e 17
139 Chapter10 17
1.3.10 Chapter 11 oo 17

2 Dependable Software Artifacts 18
2.1 ChapterIntroduction 19
2.2 The Dependability Framework 19

2.2.1 Threats to Dependability 19
2.2.2 Attributes of Dependability 21
2.2.3 Means by which Dependability is Attained 21
2.3 The Dependability Process 23
2.3.1 The Software Creation Process 24
2.3.2 The Created Software Artifact 25

CONTENTS

24

2.5

2.3.3 Process and/or Artifact Responsibility Issues
Software Artifact Redundancy
2.4.1 Software Error Control
2.4.1.1 Passive Buffering Error Control .
24.1.2 Feed-Forward Error Control . . .
2.4.1.3 Feedback Error Control
2.4.14 More Sophisticated Error Control .
2.4.2 Broader Software Artifact Redundancy Issues

.......

.......

.......

.......

2.4.2.1 Computation Redundancy Classification(s)

2.4.2.2 Structural Redundancy Issues . . .
2.4.3 Limitations of Software Artifact Redundancy
2.4.3.1 Limitations of Error Control
2.4.3.2 Increasing Artifact Complexity . .
Chapter Summary

3 Dependable Software Processes

3.1
3.2

33

Chapter Introduction
Problems in The Software Development Process . .
3.2.1 The Software Creation Task
3.2.2 HumanResources
323 Process Technology
3.2.3.1 Suitability of Process Technology .
3.2.3.2 Effectiveness of Process Technology
3.2.4 The Process Environment
3.2.4.1 Application Domain
3.2.42 ManagementIssues
3243 Planning
3244 Coordinating
3245 Tracking
A Dependable Process View
3.3.1 Process Attributes
3.3.1.1 Environmental Process Attributes
3.3.1.2 Internal Process Attributes

.......

.......

.......

.......

......

.......

.......

.......

.......

.......

.......

.......

26
27
27
29
31
33
38
40
40
45
48
48
50
50

CONTENTS 3

332 ProcessThreats 76
3.3.2.1 Environmental Process Threats 77

3.3.2.2 Internal Process Threats 77

3.3.2.3 Threat Propagation 78

333 ProcessMeans, 79

3.4 Process Redundancy and Diversity 79
3.4.1 Fault-Avoidance and Fault-Tolerance 82
3.4.1.1 The Software Creation Task 82

3.4.1.2 Human Resource Redundancy 83

3.4.1.3 Process Technology Redundancy 85

3.42 Justifying Process Redundancy 85

35 ChapterSummary e 88
4 Computer-Based Systems 90
4.1 ChapterIntroduction 91
42 SystemView e 91
4.3 Computer-Based System View 96
4.3.1 A Holistic Perspective 97
43.2 TheGenericCBSContexts 98
4.3.2.1 The Utility Context 100

4.3.2.2 The Deployment Context 101

4.3.2.3 The Engineering Context 104

4324 TheEvolutionContext. 105

44 ChapterSummary e 107
5 ATM Case-Study 108
5.1 ChapterIntroduction 109
52 ATMContexts« . v v v i e e e e 109
5.2.1 TheUtilityContext 110

5.2.2 The Engineering Context 115

5.2.3 The DeploymentContext 122

524 Specific ATM Environment Adaptation 126

53 ChapterSummary e 128

CONTENTS

6 Assumptions

6.1 ChapterIntroduction
6.2 AssumptionsinReasoning
6.2.1 DeductiveReasoning

6.2.2 InductiveReasoning
6.2.3 Suppositions and Presuppositions

6.2.4 AssertionsandBeliefs
6.24.1 Beliefs

6.2.4.2 Formal Argumentation

6.2.5 Enthymemes or Suppressed Premises

6.3 Assumptions in Communication
6.4 Assumptions in Problem-Solving
6.5 AssumptionsinContexts
651 Culture
652 Knowledge

6.6 ChapterSummary

7 Purpose and Function
7.1 ChapterIntroduction
7.2 Teleology e
7.2.1 Origins e
7.2.2 Rejection of Teleological Explanations
7.2.3 Types of Teleological Processes
724 TheFourCauses
7.3 Goal-Direction 0.
73.1 SingleGoals
732 MultipleGoals
74 ChapterSummary

8 Discussion of a Goal-Diversity Process Intervention
8.1 Chapter Introduction
8.2 A Goal-Diversity Process Intervention
8.3 Non-Functional Notation

130
131
131
131
134
136
139
139
140
142
144
147
153
153
157
160

162
163
163
163
165
166
173
175
175
177
179

CONTENTS

8.3.1 Non-Functional Attributes
8.3.2 The Non-Functional Framework
8.3.3 Suitability of the Non—functional Framework
8.3.4 Important Differences Between Approaches
8.4 Goal-Diversity — Analysis and Synthesis
8.4.1 AnalysisExamples
8.4.1.1 First Stage — Individual Goal Promotion
8.4.1.2 Second Stage — Separate Inspection
8.4.2 Synthesis Examples — Using ATM Case Study
8.4.2.1 EncryptionPolicy —Issuel
8.4.2.2 Authorisation Policy —Issue2
8.4.2.3 Human Error Analysis —Issue3
8.4.2.4 Opportunistic Theft —Issue4
8.4.2.5 Obscure Security Flaw Conflicts — Issue 5 . . .
8.4.2.6 Interaction Consistency and Completeness —
Issue6
8.4.2.7 State Representation Completeness — Issue 7
8.4.2.8 Environmental Adaptation Issues 8 and 9 . . .
85 ChapterSummary v v v it i

Software Inspections and Physical Searching
9.1 ChapterIntroduction
9.2 Software Inspections e
9.2.1 TheInspectionProcess
9.2.1.1 The Technical Dimension
9.2.1.2 The Managerial Dimension
9.2.2 Software Inspection Process Loss Issues
93 SearchTheory
9.3.1 BriefHistory
9.3.2 One-SidedSearches
9.3.3 Two-SidedSearches
9.3.4 TheSearchProcess
9.4 ChapterSummaryo

217

. 219
. 220

224

CONTENTS

10 Search Simulation Model

10.1 Chapter Introduction
10.2 DesignRationale
10.2.1 ModelGoals
10.2.2 Model Scoping Decisions
10.2.3 Level of Model Detail Decisions
10.2.3.1 Coverage Dimension

10.2.3.2 Sensitivity Dimension

10.2.3.3 Distribution Dimension

10.3 Search Simulation Model

10.3.1.2 Validation
10.3.2 About the Simulation
10.3.2.1 The Simulation approach
10.3.2.2 The Simulation process

10.3.2.3 Brief Overview of the Simulation Model . .
10.4 Configuration of the Simulation Model
10.4.1 Predispositioning
10.4.1.1 Differing Dimension Dynamics
10.4.1.2 Predispositioning
10.4.2 Sensitivity Analysis
10.4.2.1 Object Detectability
10.4.2.2 ObjectDensity
10.4.2.3 SearcherMemory
10.5 Simulation Experiments
10.5.1 ModellingGoalOne
10.5.1.1 Search Strategy Comparisons.
10.5.1.2 Object Type Detection Performance
10.5.2 ModellingGoal Two
10.5.2.1 Under Representation of Goals
10.5.2.2 Over Representationof Goals
10.6 ChapterSummary

CONTENTS

11 Conclusions

11.1 Summaryof Work
11.2 Limitationsof Work
11.3 Future Work

Bibliography

A Non-Functional Requirements Key

Al

Existing NFR Framework

A.2 Additions to NFR Framework

B Statistical Significance Test

B.1
B.2
B.3
B.4

Overview
More Locations Types Than Searchers
More Searchers Than Locations
OverallComment

346
347
355
356

362

380
380
382

List of Figures

2.1
22
2.3
24
25

2.6
2.7

3.1
3.2
33
34

4.1
4.2
4.3

6.1
6.2
6.3

8.1
8.2
83
8.4

The Dependability Tree [source: [1]: p5] 20
The Dependability Process 24
Three Forms of System Control [source [5]: p14] 28
Triple Modular Redundancy [adapted from source: [4]] 30

Exception Handling Example [adapted from source : [6]: pp 649-

60] . . 31
Recovery Block Example [adapted from source : [12]: pp 410-13] 35
Redundant Structure and Comprehension [source: [25]: pp. 6-7] 46

Abstract View of The Software Process 55
Process Dynamics 69
Attributes of A Dependable Process 71
Uniformity and Diversity Contributions 86
SystemView 95
GenericCBS Contextsuvuo.... 99
Emergent CBS Dependability 105
The Nine Dots Problem 148
Example of an Artificial Limit (source: [143] p.83) 150
Overlapping Contexts [source [[128):p. 78] 156
Differences in Approaches 195
EncryptionPolicy Issue 1 208
Authorisation Policy Issue2 210
Human Error —1Issue3 212

LIST OF FIGURES 9

8.5 Opportunistic Theft —Issue4 214
8.6 Obscure Security ConflictIssue 5. 215
8.7 Interaction Consistency — Issue 6 218
8.8 State Representation—1Issue 7 221
8.9 Attack and Fraudulent Access Concerns — Issues 8and 9 223
8.10 Assumption Types and Evaluated Causes 224
9.1 Software Inspection Taxonomy [source [157]} 229
9.2 Three Group Performance Functions 240
9.3 Probability of Detection Functions 244
9.4 Essential Factors in Search Process 246

10.1 Influence Diagram Notation Used [source: Robson [168]: p. 14] . 260

10.2 Influence Diagram Analysis of Coverage Dimension 262
10.3 Diversity/Uniformity Focus of Reading Techniques 265
10.4 Influence Diagram Analysis of Sensitivity Dimension 278
10.5 Influence Diagram of Distribution Dimension 293
10.6 Main SimulationLogic 309
10.7 Main Menu Screen Options 311
10.8 Searcher Sub Menu ScreenOptions 313
10.9 Configuration Settings Screen 315
10.10The Nine Possible Search Strategis 317
10.110bject Detectability Sensitivity 327
10.120bject Density Sensitivity 329
10.13Searcher Memory Sensitivity 330
10.14Comparisons of Search Strategies 333
10.15DC and DS Object Type Performance 335
10.16SC and SS Object Type Performance 336
10.17UC and US Object Type Performance 337
A.1 Non-Functional Requirements Framework KeyOne 381
A.2 Non-Functional Requirements Framework Key Two 382
A3 NFRAdditions 383

B.1 Searchers to Locations Comparisons 385

LIST OF FIGURES 10

B.2 10Location Typesand 2to 9 Searchers 386
B.3 9 Location Typesand 2to 8 Searchers 386
B.4 8 Location Typesand 2to 7 Searchers 386
B.5 7 Location Types and 2to 6 Searchers 386
B.6 6 Location Typesand 2to 5 Searchers 386
B.7 5 Location Typesand 2to 4 Searchers 386
B.8 4 Location Typesand 2to 3 Searchers 387
B.9 2 Location Types and 3to 10 Searchers 387
B.10 3 Location Types and 4 to 10 Searchers 388
B.11 4 Location Types and S to 10 Searchers 388
B.12 5 Location Types and 6 to 10 Searchers 388
B.13 6 Location Types and 7to 10 Searchers 388
B.14 7 Location Types and 8 to 10 Searchers 388

B.15 8 Location Types and 9to 10 Searchers 388

List of Tables

5.1 ATM fraud in the UK [source: [112]]. 113
6.1 Audience AnSWErs i i ot e 157
6.2 Biased vs Random Guessing 158
7.1 Teleological Classifications [source:[146]: p. 38] 169
7.2 Aristotelian Causal Typology Example [source: [149]: p. 12] . . 174
10.1 Reading Technique Classification 264
10.2 Equivalent Object Detection Effectiveness 320
10.3 Diverse Mid—Case for Analysis 322
10.4 Uniform Coverage Characterisation 323
10.5 Uniform Sensitivity Characterisation 324
10.6 Systematic Coverage Characterisation 324
10.7 Systematic Sensitivity Characterisation 324
10.8 Diverse Coverage Characterisation 325
10.9 Diverse Sensitivity Characterisation 325
10.10Searcher and Location Comparison Results 340
10.11Under Representation Example 340
10.12Under Representation of Goals Results 342
10.130ver Representation of Goals Results 342

11

Chapter 1

Introduction

12

CHAPTER 1. INTRODUCTION 13

1.1 Focus of the Thesis

As society becomes increasingly dependent upon information technology and in-
formation processing provision there has been an increasing concern about the
trustworthiness of software. Such concerns have given rise to the need to im-
prove the dependability in the service that software systems deliver. In response
to such concerns, the dependability community has been focused upon increasing
the dependability of software systems through the introduction of redundant com-
putation and structure in the software artifact to improve the software system’s re-
silience to residual design and implementation faults that are considered inevitable
in any real-world complex software system. Whilst such approaches have resulted
in significant increases in software dependability, the ever—increasing pervasion of
information technology systems has resulted in a recognition that such approaches
have limitations. It is therefore now becoming increasingly apparent that a wider
and more encompassing view of computer—based system dependability is needed
that includes the influencing role played by humans and how they can both com-
promise and improve the dependability of such computer systems is needed.

Subsequently, whilst there has been a reasonable amount of effort focused on
how humans and human error can compromise the dependability of computer
systems during operation, there has been comparatively much less focus upon
how humans, in the creation process, can be better resourced and deployed to
improve the dependability of the created software artifact.

The focus of this thesis is to consider how a socio—technical process interven-
tion utilising diverse goal setting in the context of a computer—based system per-
spective can help improve the dependability of the creation process through the
increased dependability means of fault-avoidance.

1.2 Nature of the Thesis

This thesis is interdisciplinary in nature. In no small part this has been directly in-

fluenced by the interdisciplinary approach of a large multi—university site EPSRC

CHAPTER 1. INTRODUCTION 14

research programme that the author has been involved in from late September
2000 until the present day, which has been focused upon exploring how the fields
of Psychology, Computer Science, Mathematics and Sociology can help improve
the dependability of computer—based systems.

1.3 Overview of the Thesis

To help the reader obtain an understanding of the thesis structure, this section
provides a brief overview of the chapters.

1.3.1 Chapter 2

Chapter 2 focuses upon the dependability of the software artifact and covers the
existing dependability framework that has been progressed and advanced over
recent decades. The framework provides a high-level guidance on: the desired
attributes of the software artifact; the threats that undermine such attributes; and
the means by which the threats can be controlled and the attributes promoted. The
approach taken by the dependability community is to accept that, in any real-
world software development, residual faults are inevitable. Therefore the primary
focus of the dependability community is to rationalise how redundancy, in the
form of additional computation and structure, can be introduced into the software
artifact to control the activation of residual faults during operational execution,

from resulting in judgements of delivered service failures by the user.

1.3.2 Chapter 3

Chapter 3 focuses upon the dependability of the software creation process through
increased fault-avoidance. So far, less emphasis has been placed upon how to
improve the dependability of the software creation process, by the dependability
community. In this chapter a dependable process view is discussed, that attempts
to define what attributes, threats and means would such a mature and predictable
software creation process possess. It is argued that to achieve such a dependable
software creation process would require an integrated understanding of the many

CHAPTER 1. INTRODUCTION 15

process dynamics. The role of process redundancy and diversity is then discussed
along the process dimensions of: the software task; human resources; and process
technology. Finally, two measures of the benefits of justifying the inclusion of
such process redundancy and diversity are briefly covered.

1.3.3 Chapter 4

Chapter 4 focuses on the need for a more holistic computer-based system con-
ception. In this computer-based system view, the boundaries of the system are
extended to include not only the technical computer system, but also the interfac-
ing roles, responsibilities, and motivations of humans as a subsystem. With this
system conception dependability is viewed as a super ordinate high-level system
goal that requires a greater bottom—up holistic view that integrates the different
meanings and purpose ascriptions that different context stakeholders will make
during the creation process. The inability to achieve such an holistic view can
not only result in faults and vulnerabilities, but can also lead to technically de-
pendable systems failing through non-technical aspects. For these reasons, the
computer—based system conception incorporates important context classifications
of: the utility context; the engineering context; the deployment context; and the

evolution context to help achieve such a holistic dependability perspective.

1.3.4 Chapter S

Chapter 5 follows on from chapter 4 to provide a case study of faults and vulner-
abilities from a computer—based system perspective, based upon factual problems
reported over many years in the Automatic Teller Machine (ATM) domain. A total
of nine issues that resulted in faults and vulnerabilities are analysed and charac-
terised in terms of a computer—based system perspective of dependability.

1.3.5 Chapter 6

Chapter 6 focuses on assumptions. Assumptions are a necessary reasoning and
communication mechanism in many decision—making situations. However, par-

ticularly in the software creation process, flawed assumptions represent an im-

CHAPTER 1. INTRODUCTION 16

portant fault-phenomenology that can undermine both the dependability of the
creation process and the eventual created artifact. This chapter therefore reviews
some of the known literature on assumptions in order to get a better understanding

of their nature and what factors influence their occurrence.

1.3.6 Chapter 7

Chapter 7 focuses upon the role of purpose and function ascription. Since differing
ascriptions of purpose and meaning can result in non—technical judgements of
dependability failure from a computer—based system perspective, it is necessary
to understand the underlying philosophy and empirical evidence of how purpose
and goal-setting affects human performance. It can be seen from the literature
that goal-setting offers a dual complementary approach of instituting diversity
into the creation process and promoting a more holistic conception required by a
computer—based system viewpoint.

1.3.7 Chapter 8

Chapter 8 focuses upon pulling many of the issues of the previous chapters into a
rich discussion of how a combination of diverse goal—setting and diverse computer—
based system contexts can help detect assumptions that can undermine the de-
pendability of a computer—based system when dependability is viewed as a holis-
tic super ordinate goal. The chapter discusses the nature of non-functional at-
tributes and the existing ways in which these are considered during software de-
velopment. The chapter then goes on to introduce and justify an existing non—
functional analysis notation along with its merits and differences for graphical
illustration of how the proposed Goal-Diversity process intervention can help
identify harmful assumptions within a computer-based system conception. This
adapted notation then reuses the nine issues raised from the Automatic Teller Ma-

chine case study of chapter 5 as an illustration.

CHAPTER 1. INTRODUCTION 17

1.3.8 Chapter 9

Chapter 9 focuses at drawing upon two longstanding and complimentary areas
of knowledge and literature from Search Theory and Software Inspections as a
preliminary guide to the important concepts, terminology, and processes involved
in searching and detection type tasks. These concepts, terminology, and processes
are then used in Chapter 10 to help inform and structure a design rationale for a
search simulation model.

1.3.9 Chapter 10

Chapter 10 focuses upon the design, implementation, configuration, and simula-
tion of a search simulation model. It does so by first utilising the notions, ter-
minologies and conceptions from both the areas of Search Theory and Software
Inspections covered in chapter 9. These concepts, terminology and processes are
then discussed and justified into a design rationale that is structured upon a basis
of desired simulation goals, modelling scope, and modelling detail. The design ra-
tionale employs a visual diagrammatic technique known as influence diagrams to
help illuminate and explain the many related design decisions discussed and jus-
tified in determining the simulation models design. The chapter then goes on to
discuss the verification, validation and implementation issues before providing a
justification for the configuration of the simulation experiments. Lastly, the results

of the simulation experiments are discussed, analysed and statistically evaluated.

1.3.10 Chapter 11

Chapter 11 provides a summary of the work contained in this thesis along with
recognised limitations of the work and potential future areas of work that this

thesis stimulates.

Chapter 2

Dependable Software Artifacts

18

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 19

2.1 Chapter Introduction

Society’s increasing dependence upon computerised software control and infor-
mation processing has resulted in an increasing demand for the dependability of
software in safety—critical and mission—critical applications in recent years. De-
pendability can be promoted in both the creation process via a means of fault—
avoidance and by including additional redundancy directly into the created artifact

via a fault-tolerance approach.

This chapter primarily focuses upon the fault—tolerant approach to increase the
the dependability of the created artifact.

2.2 The Dependability Framework

The dependability approach to constructing software artifacts makes the assump-
tion that, no matter how professional and disciplined the development process is,
any real-world software system will contain residual defects that can compromise
the trust and confidence a user will be prepared to place in the service it delivers.

In order to facilitate a systematic approach to the dependable construction of soft-
ware artifacts, the dependability community has refined and progressed a concep-
tual framework [1, 2, 3]. At the highest conceptual level, this includes the three
categories of: a) the threats that undermine promotion of these system attributes;
b) an integrated view of required system attributes; c) the essential means to the
promotion of these system attributes. These are illustrated in figure 2.1 on the
following page and are presented and discussed in turn in the subsections that

follow.

2.2.1 Threats to Dependability

The threats to dependability represent, at the most general level, a three phase
causality chain that captures the failure pathology of software artifacts. A fault is
the adjudged or assumed cause of an error state when the fault becomes activated

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 20

— FALLTS
——— THREATS —— ERRORS

‘— FAILURES
— AVAILABILITY
l— RELIABILITY
— SAFETY

DEPENDABILITY ——1—— ATTRIBUTES—

| CONFIDENTIALITY
— INTEGRITY

— MAINTAINABILITY

— FAULTPREVENTION

}— FAULT TOLERANCE

L—— MEANS —

|— FAULT REMOVAL

L FAULT FORECASTING

Figure 2.1: The Dependability Tree [source: [1]: p 5]

by some combination of computation input conditions (activation pattern). How-
ever, the presence of a fault in a software artifact does not necessarily result in an
error state, this only occurs when input conditions result in its activation. A fault
that is present in the artifact, but is non—active is a dormant fault. Failure occurs
when the fault is activated and creates an error state which then permeates through
the service interface and results in a judgement of incorrect service delivery. A
failure is thus a visible event occurence that results in a transition from correct to
incorrect service delivery. The presence of an error state (due to an activated fault)
may not necessarily result in a failure transition from correct to incorrect service
delivery, as this may be due to: a) some control or containment of the error state
before it permeates the service interface; or b) the error state permeates through
the service interface but is not detected or judged to result in a transition from
correct to incorrect service. An error state that goes undetected or judged to not

result in a failure is a latent error.

It should be noted that the labelling of the threats is particularly important for two
reasons [3]. Firstly, the fault labelling represents a finality of causal considera-
tions. No further explanation is sought to ask such questions as "Why or how did

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 21

the fault occur in the software artifact?” This is to prevent endless retracing or
recursion to explain the presence of faults in the software artifact. Secondly, the
inclusion of error between fault and failure in the causality chain is important to
emphasise the possibility of intervention that can be enacted in the form of de-
pendability means to forecast, prevent, remove, and tolerate the fault and ensure
that its activation does not necessarily result in a system failure transition.

2.2.2 Attributes of Dependability

Dependability is an integrative system concept that requires the promotion of im-
portant non-functional system properties to be achieved — if the service a soft-
ware artifact provides is to be trustworthy. These include: a) availability — the
readiness for correct service delivery; b) reliability — continuity of correct ser-
vice delivery; c) safety — the absence of catastrophic consequences of incorrect
service delivery on the user(s) or the system environment; d) confidentiality —
the absence of unauthorised disclosure of information; ¢) integrity — the absence
of improper software artifact state alterations; and f) maintainability — the abil-
ity to undergo repair, change, and alterations.

It is important to point out that other important secondary software artifact prop-
erties are often a combination of the six primary attributes. For example, security
is argued to be the synergy of availability + confidentiality + integrity. Another
example is performability which often relates to the fact that a software artifact
delivers more than one mode of service. Performability captures a measure of
service delivery quality in terms of timeliness of delivery that may range from
full capacity to emergency service delivery. Furthermore, the priority placed upon
any one (or more) of the six primary or secondary system attributes can vary from
one particular application or domain to another depending upon the criticality of
service demands expected from the artifact.

2.2.3 Means by which Dependability is Attained

In order to help ensure attainment of important dependability attributes a number
of techniques can be employed. These are: 1) FAULT PREVENTION — how to

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 22

prevent the occurrence or introduction of faults into the software artifact. Essen-
tially, this dependability means relates to the professionalism, discipline, or qual-
ity of the creation process of the software artifact. In particular, to process tech-
nology — in the form of development assistance tools, development methods, and
development techniques (e.g. structured programming, information hiding, mod-
ularisation, etc, etc); 2) FAULT TOLERANCE — how to deliver correct service
in the presence of faults. This dependability means is provided by a combination
of error detection and error recovery. Error Detection first initiates an error sig-
nal within the system. Two classes of error detection are possible. The first is
concurrent error detection — which occurs during actual service delivery. The
second is preemptive error detection — which takes place when service delivery
is (temporarily) suspended and checks the software artifact for latent error states
and dormant faults. Error Recovery is then used to transform the detected error
state(s) into a state that is not considered to be erroneous. This can be achieved in
three ways: a) Rollback — the recovery operation returns the detected error state
back to a prior saved error—free state. The saved error—free state is often referred
to as a checkpoint; b) Compensation — the erroneous state possesses sufficient
redundancy to enable error elimination; and c) Rollforward — a state substitution
occurs where a new error—free state is substituted for the previously detected error
state; 3) FAULT REMOVAL — how to reduce the number or severity of faults.
This dependability means relates to both the creation process and operational life-
time of the software artifact. During the creation process, fault removal involves
three steps; a) Verification is the process of ensuring that the software artifact
functions according to verification conditions. If verification fails Fault Diag-
noses occurs. This involves determining the fault(s) that resulted in verification
failure. Once the offending fault(s) are determined Fault Correction takes place to
remove the fault(s) from the software artifact. After correction it is appropriate to
reiterate a verification phase known as Regression Verification to ensure that the
first verification phase has not resulted in introducing new fault(s) that can cause
verification to fail again. Verification techniques can be categorised by whether
they result in dynamically exercising the software artifact or not. Static Verifica-
tion occurs without dynamic execution of the software artifact (e.g. inspections,

walk—throughs, model checking, or theorem proving, etc). Dynamic Verification

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 23

involves exercising the software artifact. This can either involve symbolic in-
puts or actual inputs being supplied; b) Validation — relates to determining the
adequacy or appropriateness of the specification. Specification fault(s) relate to
detection of any behavioural situation where the software artifact will not perform
its required function in a complete, consistent, or correct manner; c) Fault Main-
tenance — relates to the fault removal process during the operational lifetime of
the software artifact. Two approaches are recognised: a) Corrective Maintenance
— aimed at removing fault(s) that have been reported; and b) Preventive Main-
tenance — is focused on detecting and removing faults before they cause error
states during usual operational use; 4) FAULT FORECASTING — involves a fore-
cast evaluation of the dependability requirements of the software artifact concern-
ing the fault potential for fault occurrence or fault activation. This dependability
means has two main facets: a) Qualitative or Ordinal Evaluation — which
includes the identification, classification, and ranking of potential failure modes
along with the environmental conditions that can result in system failures; and b)
Quantitative or Probabilistic Evaluation — which includes the forecast evalu-
ation in terms of fault probabilities of activation or occurrence. The probabilistic
evaluations attempt to capture the degree to which the attributes of dependability
have been satisfied. These are then considered measures of dependability. Exam-
ples include: a) reliability — mean time to failure (MTTF); and b) maintainability
— mean time to change (MTTC).

2.3 The Dependability Process

Before discussing specific examples of how software artifacts can be made more
dependable, it is important to distinguish the software creation process from the
created software artifact — in terms of the dependability framework discussed
in section 2.2. A view of a dependable process incorporating: a) the creation
process; b) the static software artifact; c) the dynamic execution of the software
artifact; and d) the operational process, is illustrated in figure 2.2. This view
explicitly incorporates into these process phases the threats to dependability (i.e.
faults, errors, and failures) along with the essential means by which dependability
can be attained or improved. In doing so, it provides a greater insight into where

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 24

__

CREATION CAUSES o Fl‘\l.'LT')
PROCESS RECASTING E
)

h

'

+

'

\ FAULT CAUSE STATIC
| PHENOMENOLOGY SOFTWARL ACTIVATES
K ARTIFACT
" . RESIDUAL
Vo FAULT 4o~ FAULTS 1
| PREVENTION i
i
,
M DYNAMIC PERMEATES
! SOFTWARE
’ ARTIFACT
| FAULT —— '
: REMOVAL <@ -« __ N ERRONEOUS :
, STATE(S) L .
i .
H DELIVERED JUDGES :
i
SERVICE
; FAULT
: TOLERANCE o FAILURE EVENT Y
L T e TRANSITION
.
H
! DEPENDABILITY OP'"‘R"T'_O‘\"‘"
__ REQUIREMENT(S) PROCLSS

Figure 2.2: The Dependability Process

each threat (or impairment) and means most importantly relates — in terms of
whether the dependability means and threat belong to the creation process, the
created artifact, or a hybrid of both in some way.

2.3.1 The Software Creation Process

It can be seen from figure 2.2 that the means of fault prevention is solely the re-
sponsibility of the creation process. By this it is meant that in order to prevent a
fault ever being introduced into the process, it must either never occur, or its poten-
tial occurrence is detected and prevented prior to creation. This may be achieved
through human detection, some form of process technology (i.e. development
tools, methods, or techniques) or some interaction of both. It can be seen that fault
forecasting is solely the responsibility of the creation process — in terms of lever-
aging human experience and knowledge to understand the operational demands
and constraints to accurately predict the failure modes possible and dependability
requirements demanded in that particular domain.! The effectiveness of how well
this is done will have a major bearing upon the types of redundancy mechanisms
that are deemed most feasible, effective, and advantageous to incorporate into the

I'This could also be facilitated by process technology

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 25
software artifact (see section 2.4) [4].

As mentioned in the dependability framework in section 2.2, the fault cause phe-
nomenology is strictly a concern of the creation process — in terms of process
approaches to the prevention of such causes occurring.? However, the issue of
residual faults being introduced into the artifact also reveals that fault removal is
also an important responsibility of the creation process — in terms of detecting
and correcting them at some prior development stage (i.e. inspection or testing
etc) in the software artifact before it is placed into operational use. This of course
mandates consideration to both the static and dynamic software artifact and in-

volves detection and removal of dormant faults and error states.

2.3.2 The Created Software Artifact

1t can be seen from the dependability process view in figure 2.2 that the means of
fault tolerance is the sole responsibility of the created software artifact if residual
faults become oblivious to both human and process technology detection in the
creation process. In such a situation either the residual fault (once activated into
an error state) will need to be controlled before it permeates the service delivery
interface, or the risk of judgements of failure by the operational domain may re-
sult. In order to achieve this, additional redundant mechanisms will need to be
incorporated directly into the created software artifact (see section 2.4). However,
the means of fault removal is often also an important software artifact responsibil-
ity of fault tolerance — during operational execution usage. This is often referred
to as Fault Handling. Fault handling is geared towards preventing located resid-
ual faults in the static artifact, once activated, from ever being activated again.
It involves four stages [3]: 1) Fault diagnoses — which detects and records the
causes of the error state(s) in terms of both artifact location and type; 2) Fault
isolation — which conducts logical exclusion of the residual fault(s) in the soft-
ware artifact from any possibility of further participation in service delivery; 3)
System reconfiguration — which can switch into action redundant mechanisms

2The dependability framework does go into more detail on the generic classification of poten-
tial faults that may be introduced — such as accidental, malicious, interaction faults etc, but does
not hypothesize how these are caused or overlooked etc

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 26

or reassign processing tasks among other non-failed components; and 4) System
reinitialisation — that can check, update, and record a new configuration along

with updates to internal data structures (i.e. databases, tables, records etc).

2.3.3 Process and/or Artifact Responsibility Issues

It can be seen therefore, that a delineation can be made between dependability
responsibilities for promoting software dependability in both the software creation
process and the created software artifact. Fault forecasting and fault prevention are
sole considerations and responsibilities of the software creation process — along
with issues of fault causality phenomena. Fault tolerance is the sole consideration
and responsibility of the created software artifact — along with error state control
to prevent activated residual faults permeating through the service interface.

However, an overlapping of responsibilities is shared between the creation pro-
cess and created artifact when we consider issues of a) the dependability means
of fault removal; and b) responsibility for detecting faults. In the creation pro-
cess, responsibility lies with detecting and removing faults prior to delivery of the
system, whereas fault tolerance mechanisms, in the created artifact, are often re-
sponsible for handling residual faults that have eluded detection (either by human,
process technology, or both) in the creation process. It should be further noted,
that although fault forecasting is essentially the responsibility of the creation pro-
cess, its impacts (good and bad) — in terms of how effective it is can propagate
through to have a corresponding consequential effect upon the effectiveness of the

fault tolerance mechanisms incorporated into the created artifact.

Finally, for the benefit of simplicity in discussing broader issues of redundancy in-
troduced in the creation process of chapter 3, a strict delineation of responsibilities
between the creation process and the created artifact will be represented by two
labels. To capture the fault forecasting, fault prevention, fault removal responsi-
bilities of the creation process — along with its responsibility for considerations
of fault cause phenomenology and detection of residual faults, the label of soft-

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 27

ware FAULT AVOIDANCE will be used.® To capture the fault toleration and fault
removal responsibilities of the created artifact — along with threats of residual
fault, error, and failure control, the label of software FAULT TOLERANCE will be

used.*

2.4 Software Artifact Redundancy

Having discussed and established the differing and overlapping responsibilities of
the creation process and the created artifact in terms of a view of the dependabil-
ity process in section 2.3, this section will expand on the issues and techniques
involved in achieving software dependability via fault tolerance in the created
artifact. In this section artifact redundancy concerns: a) the addition of system
functionality — over—and-above that required to provide required functionality
needed to deliver correct service in normal operating conditions; and b) additional
system structure — to facilitate other creation process or operational process (i.e.
maintenance) activities. A broader discussion on redundancy and related issues
of how software dependability can be promoted via a fault avoidance approach in
the creation process will be covered in chapter 3.

This section will first discuss fault tolerance from a broader system control ap-
proach by considering fault tolerance as system error control in subsection 2.4.1.
Next broader issues of software artifact redundancy will be discussed in subsec-
tion 2.4.2. Finally, some limitations of software artifact redundancy will be dis-
cussed in subsection 2.4.3.

2.4.1 Software Error Control

In order to provide successful fault tolerance, the software artifact must be capable

of intervening between fault activation and permeation of the error state through

3This is similar to labelling by the dependability community — such as definitions given by
Laprie in [1, 2). However, in this thesis the process consideration of fault forecasting and fault
cause phenomenology are also included in the term.

4This labelling is likely to be less controversial and is more in-keeping with traditional views
held by the dependability community. In this label issues of fault removal are interpreted as fault
handling techniques which are subsumed under the label of fault tolerance

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 28

1) PASSIVE BUFFERING 2) FEEDFORWARD CONTROL 3) FEEDBACK CONTROL

Figure 2.3: Three Forms of System Control [source [5]: p 14]

the service interface causing a potential failure transition from correct to incorrect
service delivery. In essence the error state(s), once detected, must be controlled.
Consideration of broader system control from systems theory approaches show
that there are three ways in which a system can be regulated [5]. These are:
a) buffering control; b) feed-forward control; and c) feedback control. A visual
depiction is provided in figure 2.3. In each form of regulation control, the effect
of disturbance (labelled D) on the essential variables (labelled E) is reduced by
either a passive buffer or by an active regulator (labelled R). 3

To return to issues of software artifact redundancy — in view of these three basic
forms of system control, it can be seen from figure 2.3 that in the absence of dis-
turbance (equivalent to faults in the software artifact) the additions of the passive
buffer or active regulators (shaded in figure 2.3) are not necessary (hence the term
"Redundant”). However, in the presence of residual faults in the artifact, which,
with real world software artifacts, is the more realistic case, the passive buffer(s)
or active regulators are no longer unnecessary but in fact critical to ensuring the
system’s stability (equivalent to ensuring continued correct service delivery). Ar-
tifact redundancy is therefore only redundant (classical meaning) to the extent of
artifact functionality required to provide service delivery in the absence of non-
active residual artifact faults (of whatever type).

51t is noted by Heylighen and Joslyn [5] that systemic disturbance can originate externally or
internally. However, these external/internal influences can be combined and abstracted away to
represent either external or internal disturbance.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 29

In the subsections that follow, each of the basic error control forms are discussed
— along with more specific used forms of artifact redundancy they characterize
which are used to provide fault tolerance.

2.4.1.1 Passive Buffering Error Control

Passive buffering error control of systems have many everyday examples. A water
reservoir acts as a buffer against variations of rainfall over the seasons to ensure a
stable supply of water — in spite of seasonal variations. In manufacturing, an or-
ganisation may often deliberately build-up and store dormant stocks of produced
goods to absorb variations in demand (i.e. sales) and supply (i.e. production) in
order to ensure a reliable (or stable) supply of goods — even if there are problems
in purchasing raw materials/components or the production process. In both these
examples, and generally with passive buffering error control, variations can be
tolerated without any direct intervention being necessary (hence the qualification

of the term "passive”).

A specific example of such error control with fault tolerance is Triple Modular
Redundancy (TMR) architectures (also called n-version redundancy) [4]. A vi-
sual illustration is provided in figure 2.4.5 With TMR designs, each of the three
channels are independently created diverse implementations (i.e. white box data
structures and logics) of the same functionality (i.e. black box functionality) and
to ensure absolute separation of failure are best operated upon individual com-
puter processing units and associated hardware (if required). Input data is passed
to each of the three independent and diversely implemented module channels. The
output from each independent module channel is then compared by a voting mod-
ule (sometimes called an adjudicator). If all three channels produce the same data
outputs a very high level of confidence can be placed in the correct computation
of the output data.

6While not shown in the figure, it should be noted that in many TMR schemes the voters
are also triplicated to increase fault—tolerance, and independent TMR modules vote across and
compare from redundant voters also.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 30

OUTPUT

VOTING DATA
, MODULE —————

Figure 2.4: Triple Modular Redundancy [adapted from source: [4]]

If, on the other hand, there is a disagreement between the independent module
channel’s data output — where one module channel produces a different compu-
tation result from the other two module channels, then a 'majority—rules’ protocol
is enforced by the voting module and it accepts the computational output data of
the two agreeing module channels. This is a clear example of how TMR is a spe-
cific software artifact form of passive buffering, as sufficient computational redun-
dancy exists to absorb erroneous computation in one module channel without any
direct or active intervention being required (in the fault tolerance literature; this
is often referred to as fault-masking [3]). Fault-masking approaches to fault tol-
erance can be particularly important when the criticality (or safety) of the system
has performability or timeliness of control response requirements. For example
fly-by—wire aircraft are not only safety critical systems (by applicational defini-
tion), but the timeliness of control responses are also safety critical — due to the
speed at which aircraft travel.” In such applicational domains fault masking, like
TMR, with the ability to provide sufficient computational redundancy to absorb

"Even the delay of a fraction of a second in active error regulation at super sonic speeds could
increase the potential for a collision or accident under emergency or combat conditions.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 31

ABSTRACT EXAMPLE C++ IMPLEMENTATION EXAMPLE

(X NN]
FAULT STATE ACTIVATED 4 While (cin >> x >>
OUTPUT : (¥)
’ DATA s |
§oey |
.
H

z2=20 *x*y/(x+y)
if (x == —y)

BYPASSED

caich (const char * s) -

- - -
. - - -
K
.
.

TRY BLOCK CATCH BLOCK
({

) } cout << s << "\n";

s,

> s, cout << "Enter a new pair of numbers: ";
g * continue;
> & }
g o | THROW g .,) . . i
FAULT | STATEMENT —— cout << Ha:momc me:m of "<<x<<"and " <<y
- <<"is" <<z << "n";

cout << "Enter next set of numbers <q to quit>: ";

}

';--' throw "Bad harmic mean arguments; x = ~y not legal!!";

Figure 2.5: Exception Handling Example [adapted from source : [6]: pp 649-60]

error states without direct regulation intervention, helps ensure timeliness of error

control without losing critical response time.

2.4.1.2 Feed-Forward Error Control

The concept of system error control via feedforward control relies upon prior
knowledge of the disturbance in order to anticipate its effects before the distur-
bance actually destabilizes the system. Such approaches are often referred to as
"anticipatory—control” and place a great demand upon the system to collect infor-
mation and knowledge of its internal states and external environmental conditions
before such disturbance can cause a serious deviation from its intended stable
state ranges. Feed-forward control therefore presumes some prior system goal as
an important facet of effective control — as without it, the system would not know
what to consider and categorise as disturbance. Feed-forward control is therefore
limited to controlling only prior known internal/external disturbance, with known

or anticipated effects it can have upon the system’s stability.

A good example of such an error control approach within the fault tolerance lit-
erature is exception handling [7]. Since studies have shown that as much as

66% of all software crashes can result from failures that could have been con-

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 32

trolled/prevented by exception handling {8], exception handling error control rep-
resents an important contribution to software artifact robustness from predictable
software faults — such as wrong data type input formats, dividing—by—zero, read-
ing past end—of—file etc. Furthermore, it does so in a much more structured and
modular fashion than ad-hoc error code checking or defensive programming tech-
niques. This aids other dependability properties also, such as maintainability (i.e.
decoupling and code comprehension) and reliability, as a more structured error
control approach helps reduce all round complexity of the software artifact and its
consequent implications for potential side—effects (cf subsection 2.4.3.2).

In the abstract example illustrated in figure 2.5, it can be seen how feed-forward
control is enacted. First some data input or computation is placed within the
“try block”. Once data computations are placed within this block, this informs
the system that the statements, data, or computations may result in exceptions
occurring. If no exceptions are raised by the data or computations, then control
passes out of the try blocks, ignores the "catch block”, and control flow progresses
as normal. However, in the event that input data or computations do raise or
‘throw’ an exception (due to the activation of an anticipated residual fault in the
software artifact) then control passes to the “catch block”. The catch block then
bypasses the error state and outputs an appropriate error message (and possibly
passes control to either retrieve from the error state or returns control back to
re—input data). This is in contrast to when no exception handling is performed
(indicated by the straight dashed portion of the line in the abstract example of
figure 2.5) which would result in the dormant fault state becoming activated into

an error state.

In the C++ implementation example in figure 2.5 a specific computation of the
harmonic mean of two numbers is illustrated. The harmonic mean of two num-
bers is defined as the inverse of the average of the inverses and represents math-
ematically the formula: f—f”}y. With this formula it can be seen that when y is the
negative of x the computation will result in a division by zero error. This error can
be bypassed by utilizing exception handling and placing the computation into a

try block and throwing an exception when x = -y. This then invokes the handler of

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 33

the catch block which outputs an appropriate error message before passing con-
trol flow back to the beginning of the loop for re—entry of input data — thereby
bypassing the error state. The lines shown in the C++ implementation example of
figure 2.5 indicate how control flow progresses. The solid line shows how control
flow passes from the harmonic mean computation to the end of loop output mes-
sages when no activated fault is anticipated. The dashed lines, on the other hand,
show how control flow passes from the try block once an exception is thrown to
the catch block and then back to the start of the loop.

With the progress of programming paradigms (e.g. object oriented), program lan-
guages now offer sophisticated inclusion for exception handling — including cus-
tomised exception handling classes to relate exception handling to accommodate
for specific applicational domain conditions [cf.[9]: pp 907-920]. However, as
indicated earlier, feed-forward control relies heavily upon fault—forecasting to an-
ticipate the types of faults that can occur — whether internal computation or cus-
tom application domain based. Exception handling fault tolerance therefore, as in
many other aspects of software engineering [10], places great demands upon in-
dividual human ability, experience, and domain knowledge acquisition to ensure
effective error control.

'

2.4.1.3 Feedback Error Control

The concept of feedback control is based upon compensating the system after the
disturbance has resulted in a serious deviation from the system’s intended stable
state ranges. Therefore, like feed-forward control, feedback control is active con-
trol that also relies upon knowledge of a desired goal state in order to take action.
However, unlike feed-forward control, feedback control is not reliant upon high
levels of knowledge and information of internal states and external conditions in
order to function. Instead, it relies upon information directly from the disturbance
effects to enact regulation. A well known example used is that of a thermostat
which records the temperature of the room. When the room temperature deviates
beyond the thermostat’s desired goal range temperature (i.e. this low—end devia-
tion is representative of disturbance) then the thermostat switches on the heating.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 34

Again, when the temperature deviates beyond the thermostat’s desired goal range
(i.e. high—end disturbance) the thermostat switches off the heating. Because feed-
back control is reliant upon information from the actual disturbance experienced,
feedback control is often referred directly to as "error—controlled regulation" [cf.

(51}

Feedback control, however, has its own disadvantages. Firstly, it is only as good
as the sensitivity of the regulator to detect disturbance quickly enough to enact ac-
tive regulation before the system becomes irretrievably unstable (i.e. very serious
deviation(s) from desired stable goal state ranges). Senge [11] provides a cruel
example of where feedback control can fail due to a lack of disturbance sensitiv-
ity in the feedback regulation mechanism — which he entitles "THE PARABLE OF
THE BOILED FROG." cf. pp 22-23. He notes that if you place a frog into a pan of
boiling water, then the frog will immediately try and escape. However, if, instead,
you place a frog into a pan of water at room temperature and don’t scare the frog,
then it will stay in the pan. If the pan is already on a heat source and is gently
turned on, then, as the temperature approaches 70 to 80 degrees, the frog is very
likely to stay in the pan — and may even give indications and signs that the frog
is quite enjoying being in that temperature of water. But as the temperature of the
water rises above this, the frog will become groggier, until it is so weakened that it
will eventually become unable to climb out of the pan. Senge notes that although
there is nothing physically restraining the frog, it will actually sit there in the pan

and boil. Senge points out the reason why this can happen, stating [p. 22]:

"The frog’s internal apparatus for sensing threats to survival is
geared to sudden changes in its environment, not to slow, gradual

changes.”

Secondly, the impact of system disturbance may be so great that feedback control
is completely inappropriate for this form of systemic disturbance. For example, in
general system considerations of feedback control, Heylighen and Joslyn [5] note
that:

"...if you see someone pointing a gun in your direction, you would

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 35

ABSTRACT EXAMPLE IMPLEMENTATION OF SORTING EXAMPLE

iriond e DATA SuperSortAlgorithm

1f SortRecoveryBlockExample
FAULTS ACCEPTANCE NO MODULE FAULTS ouTPuUT

CheckAcceptanceTest

MODULE

If Check AcceptanceTest Fails

| state RestoreSoriStates
ki @— QuckSorgctm
| \J

L—J - o CheckAcceptanceTest

™ - {-7 1f Check AcceptanceTest Fails

MODULE RestoreSortStates
‘% PREFERENCE 2 [****} -
% i SelectionSortAlgorithm

K CheckAcceptanceTest

)
A MoouE | | 1f Check Acceptance Test Fails
\ PREFERENCE 3 [RestoreSortStates

“ BubbleSortAlgorithm
[y CheckAcceptanceTest

MIAR ‘...- If Check AcceptanceTest Fails
PREFERENCE N r

RecoveryBlockFailure
RestoreSortStates
Until Check AcceptanceTest Pass XOR RecoveryBlock Fails

Figure 2.6: Recovery Block Example [adapted from source : [12]: pp 410-13]

better try and move out of the line of fire immediately, instead of wait-

ing until you feel the bullet making contact with your skin.” 8

Therefore, although, unlike feed-forward control, feedback control can be very
useful in controlling unanticipated system disturbance. The nature of the distur-
bance, however, must be of a recoverable nature for that particular system, in order

to enact this form of error control successfully.

A good example of feedback error control in the fault tolerance literature is the
recovery block architecture [cf. [13, 4, 7, 12]]. An abstract example is illustrated
in figure 2.6. It can be seen that, like the TMR architecture in subsection 2.4.1.1, it
utilizes multiple module channels. However, unlike TMR, these are not activated
in parallel with an adjudicator module to provide fault-masking, instead, they are
activated in a sequence hierarchy — often based upon a performability/reliability
preference protocol. For instance, input data is first passed to the module channel
with the highest preference. The output data from this (highest preferred) mod-
ule channel is then checked against some general acceptance criteria (more often

81n this example, the damage a bullet can cause is clearly anticipated and (often) unrecoverable
from, therefore, feed-forward control is a much more attractive control mechanism to employ.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 36

known as "acceptance checking”) in the acceptance test module. If the output
data passes the acceptance test criteria, the output data is used within the wider
software artifact for further processing, etc. In the event, however, that it fails the
acceptance test criteria, control is then passed to another module that: first, re-
stores the computation states back to a state before the highest preference module
performed its (presumed erroneous) computations; second, selects an alternative
(i.e. next highest preference on performability/reliability etc criteria) to carry out
the desired computations. The output data from this (next best) module channel is
then tested against the acceptance criteria. If it passes the acceptance criteria, the
output data is used within the wider software artifact for further processing etc. In
the event that this output data also fails, then, once again, control passes to another
module which restores the computation states and selects a different computation
module channel (third best choice). Once again the input data is then passed to
this particular module channel for computation processing. The output data is
then checked against acceptance criteria and if it passes the output data from this
module channel is used within the wider software artifact for processing. This
cycle continues through however many recovery block channels are included (in
figure 2.6 four recovery block channels are illustrated) until either one passes the
acceptance test criteria, or all recovery block channels have failed.

In figure 2.6 a pseudo—code implementation example of a recovery block archi-
tecture is also given. In this case, the recovery blocks provide different sorting al-
gorithms. The overall recovery block is enclosed within a "Do-Until" loop which
will iterate at least once (assuming no faults in the actual acceptance test mod-
ule and state restorer module). In this example selection of alternative recovery
block module channels is handled by the sequence logic — instead of a sepa-
rate activated module. The highest preference sorting algorithm is the ‘SuperSor-
tAlgorithm’ (probably because of its performance in sorting data very quickly).
Providing this algorithm results in no dormant fault state activation that fails the
’CheckAcceptanceTest’ module, its sorted output data will be utilized in the wider
program (not shown in figure 2.6). If this sorted output data does fail, then the se-
quence logic will result in the ’RestoreSortState’ module being called to provide
the initial computation states prior to the 'SuperSortAlgorithm’s’ execution. The

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 37

"QuickSortAlgorithm’ will then be used to sort the data. If the 'QuickSortAlgo-
rithm’ passes the criteria in the 'CheckAcceptanceTest’ module, its sorted output
data will be utilized in the wider program. If it fails, then the sequence logic will
result in the 'RestoreSortState’ module being called to re—initialise the data to that
which it was prior to the 'QuickSortAlgorithm’. The 'SelectionSortAlgorithm’
will then be used to sort the data. If the ’SelectionSortAlgorithm’ passes the crite-
ria in the "CheckAcceptanceTest’ module, its sorted output data will be utilized in
the wider program. If, however, it should also fail to pass the acceptance criteria,
the sequence logic will, once again, result in the 'RestoreSortState’ module being
called to re—initialise the data to that which it was prior to the 'SelectionSortAl-
gorithm’ module being executed on the data. Finally, the 'BubbleSortAlgorithm’
will be used to sort the data. If the 'BubbleSortAlgorithm’ data outputs passes the
"CheckAcceptancelest’s’ criteria, then the 'BubbleSortAlgorthim’s’ output data
will be utilised in the wider program. If it fails, however, with this four block re-
covery example in figure 2.6 on page 35, then there is no more redundant module
channels to enact feedback recovery. In this situation the flow of control passes
to the 'RestoreSortState’ and records that the overall recovery block error control
mechanism’s status has failed. Depending upon a) the overall criticality of service
delivery of the software artifact; and b) the specific criticality of the data sorting
operation in the program on service delivery, the recovery block failure status may
just result in a failure report outputted to the user(s), or some other software fault
tolerance mechanisms may be employed to handle this particular recovery block

failure situation.

A number of issues are raised by this recovery block example — in relation to
feedback error control and redundancy in software artifacts. Firstly, it is possible
to see how a particularly critical component of the recovery block mechanism is
the sensitivity of the acceptance test criteria to detect when a error state occurs in
any one of the executed sorting module channels. Failure to be sensitive enough
to all the possible error states that could occur in a sorting algorithm will quickly
result in a false positive acceptance of the (erroneous) data sorting output and this
could, if undetected elsewhere in the software artifact, lead to an accumulation

and propagation of fault, error, failure in the wider system artifact — right up to

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 38

the service interface potentially resulting in judgements of incorrect service de-
livery (i.e. system failure). Secondly, sequential, instead of parallel execution,
along with the active feedback nature of the recovery block architecture, means
that, unlike fault-masking, it is less desirable for systems and applications where
timeliness of error control are critically important — as the recovery block ap-
proach involves carrying—out acceptance checking, restoration of data states, and
re—execution of another algorithm increases processing overhead. Thirdly, an im-
portant feature of the recovery block approach to achieving fault tolerance allows
a gradual degradation of service delivery. In the fault-tolerance literature this is of-
ten referred to as a failure mode of "graceful” degradation of service [1], whereby,
in the presence of faults, a system fails in a gradual, predictable, and controllable
manner. This can be seen from the example of different sort algorithms in figure
2.6, each one lower down in the preference hierarchy performs (or sorts data) in
a less and less efficient manner (assuming large amounts of data are involved).
Finally, the recovery block architecture, unlike exception handling, allows for the
toleration of unanticipated residual faults in the software artifact.

2.4.1.4 More Sophisticated Error Control

The three basic forms of error control can be combined to produce more sophis-
ticated error control when the system in question is more complex. A good ex-
ample of combined feed-forward and feedback control in software fault tolerance
is Co-ordinated Atomic Actions (CAA) [4]. CAA fault tolerance architecture is
often used to co—ordinate error recovery control along multiple independent and
concurrent processing threads of required computation. When a dormant fault
state is activated and an error state is subsequently detected in one (or more) of
the concurrent processing threads, internal control intervention can be enacted in
two ways. Firstly, feed-forward error control may be attempted by bypassing the
anticipated error state (much like exception handling) and substituting the error
state with a future non—error state in a single processing thread, providing it can
be coordinated at some future check point with the other concurrent processing
threads. Secondly, if feed-forward error control is not possible (i.e. the fault
was unanticipated, etc), then feedback error control will be attempted. This in-

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 39

volves coordinating all of the independent and concurrent processing threads by
employing backward recovery to a past check point state and allowing concurrent
processing to continue from there.

These control theoretic explanations of established fault-tolerant mechanisms,
whilst useful for situating the software fault—tolerant literature within a broader
category of system control theory, are not part of the normal terminology used
within computing science. Therefore it is appropriate to highlight the compar-
isons between the two:-

o Fault Masking relates to the broader system theory of buffering control
whereby possible causes of disturbance of the system—of-interest can be
automatically prevented without any direct active control by the system tak-
ing place. In achieving software fault tolerance this is exemplified by such
mechanisms as triple modular redundancy that can automatically filter out

any computation fault by a voting adjudicator;

e Forward Recovery relates to the broader system theory of feedforward
control whereby prior knowledge of possible causes of disturbance of the
system—of—interest and its environment allow anticpatory control to prevent
the cause of disturbance before it is experienced by the system. In achiev-
ing software fault—-tolerance this is exemplified by exception handling tech-
niques and other such mechanisms (i.e. defensive programming) that can
anticipate such error states before computation takes place and substitute
these for error—free states;

e Backward Recovery relates to the broader system theory of feedback con-
trol whereby knowledge of possible causes of disturbance of the system-—
of—interest and it’s environment are not possible in advance, but only subse-
quent detection of a disturbance once it has occurred within the system. In
achieving software fault—tolerance this is exemplified by such mechanisms
as recovery blocks which can only detect a fault once it has been computed
through some acceptance criteria and then must restore the system before
providing some alternative processing module.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 40

As we have seen with the case of coordinated atomic actions, more sophisticated
fault—tolerant mechanisms may incorporate more than one of the general system
control approaches (i.e. feedforward and feedback control) in providing greater
dependability of the system.

2.4.2 Broader Software Artifact Redundancy Issues

Whilst the examples of buffering, feed-forward, and feedback error control rep-
resent well known usages of software artifact redundancy in the fault tolerance
literature, a number of other classifications of fault tolerance and goals of soft-
ware artifact redundancy also need mentioning. In the subsections that follow,
an important classification and related software artifact redundancy issues will be
discussed in subsection 2.4.2.1. In subsection 2.4.2.2 some broader purposes of
software artifact redundancy, and how they contribute to the promotion of depend-
able artifacts, will also be considered.

2.4.2.1 Computation Redundancy Classification(s)

1t can be seen from the software redundancy examples in section 2.4.1 that, broadly,
redundancy can be categorised into either [14]: a) Multi—version redundancy —
such as the examples of TMR and Recovery Blocks; or b) Single—version redun-
dancy — such as exception handling. Each of these categories present their own
issues and implications for employing software artifact redundancy, and these are

covered below.

Multi-Version Redundancy

Multi-version fault tolerance is essentially the incorporation of two or more vari-
ants of a software algorithm that is either executed in sequence (i.e. Recovery
Blocks) or in parallel (i.e. Triple Modular Redundancy) [14]. The underpinning
justification for multiple versions of the same required computation(s), in a single
software artifact, is that should one variant fail, then at least one (and possibly
more) variant(s) will be able to continue computation and provide the necessary

outputs.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 41

While multiple version redundancy pre—dates its usage in software fault toler-
ance in improving the reliability of computer hardware via replication of hardware
components [15], physical replication of hardware components demonstrate truly
independent (or random) failure behaviour [16]. Therefore, its usage in achieving
software fault tolerance is essentially based upon the assumption that if different
individuals or teams develop individual versions in isolation then these algorith-
mic variants will also, like replicated hardware components, fail independently
(or randomly) ensuring that, through the independence law of probability theory,
the overall reliability of the multi—version computation function will be the prod-
uct of the individual reliability of each algorithmic variant [17]. This assumption
with software, however, was later exposed to be flawed since, although multiple
algorithmic variants do provide reliability gains over any single algorithmic vari-
ant [18], a number of studies [cf. [19, 20, 21]] have shown that the assumption of
truly independent failure between multiple software variant versions is limited in
its ability to provide truly independent failure to tolerate design faults. This limita-
tion can result in dependent failures due to multiple versions containing common
faults whereby all (or some) of the algorithmic variants can fail simultaneously
(e.g. two (or more) independent TMR module channels produce the same (erro-
neous) data output(s)).

A final consideration with multi—version redundancy, is the additional develop-
ment cost involved in producing multiple algorithmic variants for certain com-
putations in the software artifact [14]. Even for safety—critical software artifacts,
complete development duplication (i.e. requirements, specification, design, cod-
ing, testing, etc) would prove to be extremely costly, however, studies have indi-
cated that the cost of developing two versions is not equal to twice the costs [22].
Furthermore, it is often found that even in safety—critical software, only a subset
of the software system’s functioning or computations are considered sufficiently
safety critical to justify multiple—version redundancy. In these circumstances, de-
velopment costs can be reduced by only applying diverse development for those
parts of the software.’

% Although it should be noted that other uniform or homogeneous software artifact(s) — such
as a common requirements document, specification, architecture, etc do increase the likelihood of

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 42

Single—Version Redundancy

As the term implies, in contrast to multi-version redundancy, single-version re-
dundancy is focused on improving a given piece of software’s ability to detect the
presence of residual faults [14]. Therefore, one of the primary purposes of includ-
ing additional redundancy in a single version is to enhance fault state sensitivity
during computation. This can be achieved in a number of ways [23]:-

o Reverse—checking. Providing that the computation function is ’transpar-
ent’ [9] — in that no information loss occurs between input data and re-
quired output data, then an alternative computation can double check that
the used computation has not produced erroneous output by comparing
computed outputs with actual inputs provided to the computation function.
For example, the denomination algorithm for converting required total cash
amounts at an Automatic Teller Machine (ATM) into available denomina-
tion amounts (e.g. £20, £10, £5 amounts) represents a transparent function
— where no information loss occurs, as the actual input total cash amount
can be reproduced by multiplying the denomination types by the total num-
ber of each denomination of each type and then summing.'°

e Check-Digits. Check digits may often be used in single version redun-
dancy to detect transcription and transposition errors in important data and
computations during software execution. A longstanding example of check-
summing is MODULUS 11, which will detect all transcription and trans-
position errors — as well as 91% of random errors [24]. MODULUS 11
is performed as the following example shows: a) Original code number =
4214; b) Multiply each digit by the weights 5432 giving (4x5) = 20, (2x4)
= 8, (1x3) = 3, (4x2) = 8; ¢) Sum the products, giving 20 + 8 + 3 + 8 =39;
d) Divide by modulus 11, giving 39 mod 11 = 3 remainder 6; e) Subtract

common mode failure between subsequent algorithmic variants in the eventual software produced.

19For example, the actual data input amount required to be dispensed is (say) £100.00. And the
the denomination algorithm computes output amounts of two £20 notes, four £10 notes, and four
£5 notes. The computed outputs can be compared by reverse checking computation with the actual
inputs by the computation (2x20) + (4x10) + (4x5) = 100 to ensure that they are of equal value.
In the event that they do not equal each other, then some error has occurred in the denomination
algorithm.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 43

the remainder, giving 11 - 6 = 5; f) 5 now becomes the check digit which
is then added as redundant data to the end of the code number 4214 to be
stored giving 42145. The check digit is then used to detect if any corruption
to the code occurs through faulty future computation(s). This is carried out
as follows and the checking result of the number should yield zero. 42145
is calculated (from the least significant digit) by the the weighting 54321,
giving (4x5), (2x4), (1x3), (4x2), (5x1). This gives the sum 20 + 8 + 3 +
8 + 5 = 44. This is then divided by mod 11, giving the remainder 0 —
demonstrating to a high level of confidence that no fault corruption during
computation(s) has occurred.

e Assertion Checking. Assertions are additional conditional software state-
ments coded into the software artifact to define what should always be true
about the computation states concerning some particular function [12]. As-
sertions are often placed:-

— At the beginning of a function and are often called preconditions. They
define what the are the allowable state ranges in procedure or function
parameters;

— At the end of a function or procedure and are often called postcon-
ditions. These assertions determine what are the allowable exit state
ranges that can result from the computation(s) within the function or
procedure;

— Within a control loop. Such assertions define an allowable and invari-

ant state range before, and after each iteration of the control loop;

— At the head of classes in object oriented languages. These are some-
times referred to as class invariants, and define what are allowable state

ranges before and after any public method calls of the class.

e Anexample of a class assertion upon a stack class is provided by Bell [[12]:
p. 401]. With a stack structure data can be added to the stack by calling the
method push, and taken off the stack structure by calling the method pop.

Assuming the stack structure is of a fixed size defined by a constant named

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 44

capacity, and the number of data items at any time placed onto the stack
is defined by the variable count, it is possible to increase the class’s fault
state sensitivity to be able to detect activated faults (i.e. error state(s)) by
employing the following class assertions:-

— In the stack class, the class invariants can be defined as: 1) ASSERT
(COUNT >= 0); and 2) ASSERT (CAPACITY >= COUNT). Assertion
number one ensures that any value count has must be greater than or
equal to zero, meaning that count can never be a negative number as
a negative amount of data items on the stack is a nonsense and such a
value would indicate some error state situation. Assertion number two
captures the fact that because the stack is of a fixed size (defined by
the constant capacity), the number of data items placed onto the stack
(defined by count) must never exceed this fixed size.

— Individual procedure based assertions for calling each of the class
methods push can also be defined as: 1) as a precondition to calling
the method the assertion, ASSERT (COUNT < CAPACITY) is used; and
2) as a postcondition of the method the assertion, ASSERT (COUNT’ =
COUNT + 1) is used. The precondition assertion number one ensures
that the method push is not invoked unless the size of the data items
presently on the stack is, at least, one less than the maximum number
of data items that can be placed onto the stack. The postcondition as-
sertion on exit from the push method, ensures that for every call of the
push method, only one extra data item can be placed onto the stack.!!

Anything other than this is considered an error state.

The examples provided above are not intended to be a complete coverage of how
single-version redundancy can be used to increase error detection, instead, they
are used as a subset of examples to emphasise how extra system structure can
improve fault state computation sensitivity. In fact, often, multi—version redun-
dancy approaches may often need to incorporate some aspects of single—version

HFor example, if through some fault, a single method call could place two data items onto
the stack when the size of count = capacity, or count = capacity-1, then this would result in the
maximum size of the stack being exceeded.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 45

redundancy in some parts of the overall architecture to ensure sufficient fault state
sensitivity in such components responsible for check points (i.e. CAA) and accep-
tance checking (i.e. Recovery Blocks), etc. There is always the concern, however,
of how adding extra software redundancy to the artifact can result in increasing
overall software complexity (with its potential for side—effectual fault causation)
and how this could mitigate the overall performability of the software artifact
during operational usage [14]. These are facets of dependability requirement de-
cisions that have to be taken into consideration and compared with the expected
dependability benefits of employing such redundancy in the artifact.

2.4.2.2 Structural Redundancy Issues

It can be seen from subsection 2.4.2.1 on computational redundancy classifica-
tions that the categories of multiple and single version redundancy were primarily
focused on introducing redundancy to either duplicate computational functional-
ity, or to provide additional redundancy to increase fault state sensitivity to check
computation. Therefore, both of these forms of redundancy were concerned di-
rectly with contributing fault toleration during computation. However, other soft-
ware artifact redundancy incorporated into the software artifact is concerned with
promoting fault control or promoting certain dependability attributes without be-
ing directly involved in the computational functionality of the software artifact. In
this regard, such redundancy is directly related to either: a) preventing, protecting,
and/or containing software faults via stronger system structure; or b) promoting
other important dependability attributes through improving the system structure.
These issues of structural redundancy are discussed in the subsections that follow.

Improving Security of Data

Under normalisation rules in relational databases, it has long been the goal of
database design to remove redundant storage of data by applying a number of
normal forms (i.e. first normal form, second normal form ... etc). This removes
repeating groups of data, etc — with many—to—many correspondence. Whilst this
is generally regarded as good relational database design practice, the dependabil-

ity attributes of security can be promoted by violating this practice and ensuring

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS

1) IMPROVING INTERPRETATION

A) BAD EXAMPLE
if (! (block_id < actblks) ! H(block_id >= unblocks));

B) GOOD EXAMPLE :

2) IMPROVING COMPREHENSION

A) BAD EXAMPLE

*x += (*xp= (2 * k < (n-m) ? c[k+1] : d[k—-]));

B) GOOD EXAMPLE :

46

if(2*k<n-m)
*xp =c[k+1];
else
*xp = dk—];
*X += *xp;

if ((block_id >= actblks) Il (block_id < unblocks));

Figure 2.7: Redundant Structure and Comprehension [source: [25]: pp. 6-7]

that highly sensitive data (e.g. a bank customers address details, personal identi-
fication number (for credit cards and ATMs), and bank card number, etc, which
could all be used to commit fraud or card cloning) are placed into a separate table
with increased permission access restrictions. In this case, usual rules of normal-
isation are dispensed with as such data and information will result in repeating
groups of data (i.e. one-to—one correspondence), however, by doing so, the at-
tribute of security (i.e. availability, confidentiality, and integrity of the sensitive
information and data) is promoted through introducing redundant software struc-
ture to increase protection and prevention from malicious unauthorised access.

Improving Reuse and Maintainability of The Artifact

Since many real world software artifacts must be maintained and evolved, an im-
portant dependability attribute is maintainability of the software artifact — in
terms of corrective, adaptive, and enhancement changes that become necessary.
System structure, in this regard plays a big part in how easily a software artifact
can be corrected, altered, and improved [cf. [26, 27, 28]]. In this regard, system
structure, in terms of its degree of information hiding, coupling, and cohesion,
has not only a part to play in protection against unintended side—effects that can
cause faults, but also how easily the software artifact can be reused and its logical
structure comprehended:-

1. Improving reuse and extension: Riel [29] highlights that introducing re-

dundant artifact structure(s) — in the form of decoupling containers in

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 47

an object oriented language promotes ease—of-reuse and future extension
through ensuring that necessary class methods retain message passing au-

tonomy;

2. Improving understanding: Kerningham and Pike [25] provide numerous
examples of how incorporating (essentially) redundant structure(s) into the
software artifact can greatly improve understandability of the code. In fig-
ure 2.7 two of their examples are illustrated. The first example 1) improving
interpretation illustrates how conditional logic can be improved by using
positive forms of conditional logic that is more clearly and natural to inter-
pret. Kerningham and Pike note that in the top example (i.e. A) that the
conditional logic uses a negative form which is always more difficult and
less intuitive to interpret correctly, whereas, in the second example (i.e. B)
the logics have been transformed into positive conditional forms that are
more intuitive and natural to interpret. The second example 2) improving
comprehension is a clear indication of how additional redundant structure(s)
can greatly aid comprehension of the code. In the top example (i.e. A) the
code is obfuscated within the rich C syntax where all the conditionals, op-
erators, and statements are crammed into (what at first glance looks like)
one line statement. Whereas, in the lower example (i.e. B) the structure
of the code is spread over several lines and explicitly uses the more normal
if-else conditional statements which reveals that the processing required is
actually a number of different statements and, because of these (essentially)

redundant coding structures, now becomes far easier to understand.

The examples provided here were not intended to be exhaustive, but to illustrate
that the incorporation of additional redundant structuring of the software artifact
can greatly improve both fault toleration — in terms of fault prevention, protec-
tion, and containment of faults, as well as facilitate and promote other important

dependability attributes of, for example, security and maintainability.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 48

2.4.3 Limitations of Software Artifact Redundancy

Whilst there is little doubt that the introduction of redundancy into the software
artifact to improve fault tolerance has significantly increased the dependability of
software systems, software redundancy — in the form of fault tolerance, also has
limitations that are worth mentioning. These are briefly discussed in the subsec-
tions that follow.

2.4.3.1 Limitations of Error Control

If we look deeper into the essential three forms of system regulation, upon which,
in one form or another, all fault tolerant mechanisms are based, it is possible to
highlight a number of restrictions. Firstly, in terms of passive buffering error
control — such as triple modular redundancy (TMR) fault tolerant schemes, it is
possible to see that such control is really only effective against purely random sys-
tem disturbance. This has introduced controversial claims that such mechanisms
of TMR, whilst effective against accidental development faults, are likely to be
much less effective against intelligent and informed malicious faults — such as
those that undermine the security of a software system [30]. Secondly, in terms of
feedback error control mechanisms, there are three main concerns for such fault
tolerant mechanisms — such as recovery blocks:-

1. Failure Prohibitive. As mentioned earlier in subsection 2.4.1.3, one of the
main problems of feedback error control is that the disturbance must be of
a type which the system can recover from. For example, in the Therac—
25 accidents [31], even if there had been some feedback error control fault
tolerance (i.e. Recovery Blocks, etc) that detected lethal doses of radiother-
apy doses after they had been administered and then recovered to prescribe
the correct doses, it would have been of no real value, as it is not possible
to de—administer a lethal dose after it has taken place. This is an exam-
ple of system deviation of service that is unrecoverable from (in terms of
the patient). With such heavily safety critical systems, it is preferable that
they have fail-silent failure modes [1]. However, contrast this serious and
unrecoverable failure with that of a wrong dispensation of cash from an au-
tomatic teller machine (ATM). Here, feedback error control is feasible, as

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 49

the ATM, after dispensing the wrong cash and detecting so, can either a)
make—up the short—fall immediately; or b) inform the customer that it (the
ATM) is aware of the short—fall cash dispensation and assure the customer
that they will only be debited for that reduced amount. In this case, the

unanticipated error can be recovered from in a satisfactory manner.

2. Time Prohibitive. Even when the system disturbance is of a type that the
system can recover from, there is still the issue of whether there sufficient
time, in the wider system the feedback error control regulates, to enact
feedback error control? For example, in many real-time computer con-
trol domains, such as Air Traffic Control Systems (ATCS), a residual and
unanticipated fault, error, failure chain propagation occurrence that could
(at least temporarily) wrongly direct, stack, or queue waiting aircraft (per-
haps travelling at speeds of 200 plus mph) may not allow the fault toler-
ant system sufficient time to detect, restore, redirect, process, and test ac-
ceptance of another (say) recovery block alternative and then provide the
correct(ed) airspace co—ordinates before a mid—air collision occurred. As
mentioned earlier in subsection 2.4.1.1 passive buffering error control (such
as TMR) that provides sufficient parallel computation redundancy to (in-
actively) mask—out such an error state is more appropriate for time/safety
critical software control systems.

3. State Prohibitive. In order to provide feedback error control the regulation
component of the system must have sufficient state representation to be able
to enact such recovery of unanticipated residual fault activations. For exam-
ple, if due to incompleteness in the original software artifact specification,
an ATM’s controlling embedded software did not provide for a physical and
digital state representation of the amount of cash present in the physical cash
magazines, then once the cash magazines have been emptied (or insufficient
cash left to fulfil a customers cash request) then there is no possibility of de-
tecting or recovering from such an unanticipated residual fault activation —
as the up—stream fault phenomenology results in undermining detection of
the system deviation.

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 50

It can be seen from these three examples, that they present some limitations and
concerns of feedback error control. In order for these issues to have become more
amenable to feedback error control it would have been necessary to enact prior
detection at a deeper level within the software hierarchy (e.g. prior detection of
lethal dosage administering data indicators, etc). However, as mentioned earlier,
with feed-forward error control in subsection 2.4.1.2 this places a heavier reliance
upon the effectiveness of the fault—forecasting means in the creation process. To
an extent, this also would defeat the purpose and value of feedback error control,
as its value and contribution, in a broader and general system control sense, is used
to control unanticipated system disturbance (or unanticipated residual faulits in the
software artifact) and other error control approaches — such as feed-forward con-
trol, would be more appropriate once such disturbance had become more antici-

pated.

2.4.3.2 Increasing Artifact Complexity

As has already been indicated, there is a trade—off between incorporating addi-
tional computational or structural redundancy into the software artifact and in-
creasing the overall complexity and its consequential potential for also increasing
more residual faults. Therefore, the expected benefits of increased dependabil-
ity and associated development costs involved with a particular application by
employing certain fault tolerance mechanisms must also be compared with the
potential it presents for increases in systemic complexity and its consequential
possible effects on undermining the achievement of dependability status required.

2.5 Chapter Summary

This chapter has considered the many ways in which software dependability can
be improved via a fault—tolerant approach. The existing dependability framework
provides an encompassing generic framework for capturing the desired goals to
be achieved; the means by which these goals can be attained; and the threats to un-
dermining software dependability. A crucial issue in achieving fault-tolerance is

the introduction of computational and structural redundancy to aid continuance of

CHAPTER 2. DEPENDABLE SOFTWARE ARTIFACTS 51

correct service delivery in the presence of faults. Essentially, fault-tolerant mech-
anisms can be categorised in a broader system theory sense as error—control. This
chapter has discussed three ways to achieve error—control, namely: passive buffer-
ing; feedforward control; and feedback control. Each error—control approach has
its own advantages and weaknesses which need careful consideration and knowl-
edgeable analysis of the particular failure modes, domain criticality, and opera-
tional demands if dependability requirements are to be correctly unearthed. In the
next chapter, dependability will be sought in terms of the creation process with a
focus upon the fault—avoidance means of promoting software dependability.

Chapter 3

Dependable Software Processes

52

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 53

3.1 Chapter Introduction

Whereas chapter 2 focused upon improving software dependability via a fault—
tolerant approach, this chapter considers how software dependability can be im-
proved via a fault-avoidance approach in the creation process to prevent, detect,
remove, and forecast faults.

The chapter first considers some major problems that the software development
process suffers from before progressing to a view of a dependable software cre-
ation process that is in keeping with the existing approach adopted by the depend-
ability community.

3.2 Problems in The Software Development Process

There are many longstanding issues that surround the software process. Software
projects have proved to be amongst the most difficult projects to manage — with
many projects being abandoned, delivered over—schedule, delivered over-budget.
In addition, even if software is delivered on time and budget, the software system
may not provide the expected benefits envisaged, or suffer from rejection by its
intended users. It is possible to list, broadly, the types of failure that the software
process can experience as follows:-

e Process Failure:-

- Software delivered over planned schedule (i.e. project management
failure);

- Software delivered over planned budget (i.e. project management fail-

ure);

- Software abandoned due to economic infeasibility (i.e. economic fail-

ure);

e System Failure:-

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 54

— Delivered software does not provide envisaged strategic benefits (i.e.
expectation failure);

* Delivered software was delivered too late to exploit the potential
benefits (i.e. opportunity failure):!

* The optimism placed in delivery of the software was misplaced
(i.e. conceptual failure);?

— Delivered software does not provide the essential functionality required
(i.e. functionality failure);

— Delivered software is rejected by the intended users (i.e. deployment
failure);

— Delivered software is abandoned due to the infeasibility of the tech-
nology to be created (i.e. technology failure);?

While process failure and system failure are separated, in the listing above, the
view taken in this chapter is that all of these failures are inherently connected with
the software process, since, as the proverb goes — "product always follows pro-
cess". Furthermore, it should be noted that these failure types are not isolated, but
often have a cyclic causality dynamic (i.e. technical complexity or infeasibility
is likely to cause schedule/budget failure, which in turn can result in economic
failure, etc). Issues surrounding such failures as expectation failures and deploy-
ment failures require an expansion of the overall system boundaries — concerning
the software creation process, these are introduced and discussed in more detail
in chapter 4. In this section, directly associated complexities — concerning the
software creation process, and how it can increase the potential for such failures

This is not to be confused with a budget overrun, as the software system may have been
delivered to planned schedule, but (for instance) a competitor had already seized the advantage
before the software system could be delivered;

2This is not to be confused with some form of functionality failure or deployment failure, as
the essential envisaged functionality may have been delivered as required, and the intended users
enthusiastic about its usage, but the overall beliefs in its strategic advantages were misunderstood
or poorly conceived.

3This is not to be confused with the dependability consequences of technical failure to deliver
the service once in operation, instead it is referring to misunderstanding the sheer technical com-
plexity involved in creating the system that results in failure to deliver the software system. A
good example was the U.S. Governments’ "Star Wars" project in the 1980s cf. {32].

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 55

.....
oo"®
.

Y
N
\
\
\
\
\
A
s
\
\
\
\
3
\
\
1
%
\
\
\
A
‘
'
\
\
'
ALl
S
\:/
Y
A,
3

’ o i N Seeu
MANAGEMENT W AN IR
: #7000 \
J A R \ e
) / 4 . ;
l' : s l' “‘ l'
' b
g et) > HVPUTS * <
il 7 J 1 .
SN i HUMAN RESOURCES SOFTWARE CREATED Yot
] N H CREATION = SOFTWARE .-}
' b . S ARTIFACT 1
: % H 1 ‘“,\y(TASK H
' s ' I y
' ~ . f K
: TR —7 .
: K
!
:

S
s
.e”
-
.

NEW TECHNIQUES,
TOOLS, & METHODS
THE PROCESS ENVIRONMENT

Figure 3.1: Abstract View of The Software Process

will be discussed. The essential areas covered are illustrated in figure 3.1. The
diagram captures the essential entities and relationships involved in the software
process. The entities are: a) management; b) human development resources; c)
the process technology (e.g. tools, methods, techniques and programming lan-
guages); and d) the applicational domain. The relationships are represented by
the dashed arrows. It can be seen that management has responsibilities for such
entities as the human resources, process technology and overall planning, coordi-
nating, and controlling these entities (as resources) in the software creation task.
The double headed dashed arrow between human development resources and the
applicational domain represents the respective responsibilities for eliciting and re-
fining requirements. In a more scoping manner, it can be seen that the software
creation task (dashed elipse) encompases the entities of human resources and pro-
cess technology as inputs to the software creation task that produces the eventual
software artifact. Furthermore, new process technology is (like the applicational
domain) considered as an environmental influence that indirectly influences the

software creation process as new techniques, methods, etc become available —

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 56

which management will have responsibility for evaluating thier utility.

This view, in contrast to the many software engineering process models — that
describe the phases and degree of formality or informality that characterises the
nature of the activities involved [27, 28], is an abstract conception that seeks to
capture the essential elements, relationships, and influences involved. These ele-
ments and influences upon the software creation process are discussed further in
subsections 3.2.1, 3.2.2, 3.2.3, and 3.2.4.

3.2.1 The Software Creation Task

Software, as a construction medium, is used to create highly sophisticated data
processing logical structures to provide effective and efficient information han-
dling, control, and acquisition in many different situations (c.f. subsection 3.2.4.1).
However, this makes software development amongst some of the most complex
systems a person or group of people could ever attempt to construct [33, 34].
Complexity, however, is a vague and overused term in many areas and software
complexity can be also interpreted in many different ways, such as the number
of operations an algorithm performs, the space/time complexity (i.e. as denoted
by O notation), or the number of routes possible through a program. Here, to
provide one specific type or measure of software complexity, it is possible from
considerations of software testing to highlight the huge data space complexity of
software by showing that even a small software program can possess extraordinary
large numbers of possible data states. Firstly, it should be noted that with many
other construction mediums, the complexity of a structure (such as, for example
a building) only increases linearly with the size of the structure being created.
One of the distinctive aspects to the nature of software, is that although, like other
construction mediums, its complexity also increases with its size, this can do so
exponentially. A piece of software ten thousand lines of code long, is not necessar-
ily ten times more complex than a piece of software one thousand lines long — its
complexity, in terms of possible achievable data states, could be up to (say) a hun-
dred times more complex. In fact even in relatively small software programs, the
data state complexity can be enormous. This is clearly indicated by Pressman [27]

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 57

who indicates that a hundred line program can be written in the C language that
contains only two nested loops that executes (a maximum) of only twenty times
each contains a combinatorial data state complexity of 10'. Pressman puts the
software complexity, and exhaustive testing infeasibility, of this trivial program
into perspective, by noting [p. 470]:

"...assume that some magical test processor ("magical” because
no such test processor exists) has been developed for exhaustive test-
ing. The processor can develop a test case, execute it, and evalu-
ate the result in one millisecond. Working 24 hours a day, 365 days
a year, the test processor would have to continually work for 3,170

years to exhaustively test the program.”

Real-world software systems are vastly more complex that this trivial example.
When this complexity is combined with the human potential to make mistakes,
slips, and oversights, in the software creation task, it is not suprising that software
development is an inherently error prone activity. This not only effects the de-
pendability of the eventual delivered artifact (and therefore the necessity of fault—
tolerance, covered in chapter 2), but can also play havoc upon issues of managing
and controlling the actual development work (cf. subsection 3.2.4.2).

Another problem involved with software is that it is intangible by nature [35].
The only physical form software really takes, is as a pattern of high or low volt-
ages stored on temporary or permanent magnetic computer hardware [15]. As a
result, there is an unusual representation, interpretation, and communication prob-
lem — whereby the various phases of the software creation process (i.e. require-
ments, design, etc) need to capture, characterise, and communicate the required
behaviour of the software artifact in many different ways and levels of abstrac-
tion — suitable for that particular phase. This causes a number of difficulties.
First, interpretation can be highly error—prone, whereby interpretations of one
representative form at a certain process phase and abstraction level can become
incomplete or misinterpreted — this can not only directly result in residual faults
that, subsequently, compromise the dependability of the software artifact during

operational usage, but the reworking, revising, and corrective maintenance it can

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 58

cause presents serious management problems and project risks. Second, the extra
workload introduced in representation can extend project budgets and schedules.
Whilst professional software engineering wisdom advocates careful technical doc-
umentation and traceability in the software development process, there is often a
serious separation between theory and practice [12]. Not only do developers often
not document their work, but when they do, it can sometimes be conducted after
the development work for that phase has already been performed [32], or done in
a hurried and incomplete fashion. Additionally, as project budgets and schedules
come under increasing pressure to meet milestones and delivery targets, there is
also the temptation amongst management to view the documentation work as of
secondary importance. Finally, in contrast to many other engineering disciplines,
the intangibility of software makes the necessary measurement for planning and
control over the creation process extremely difficult. With other engineering dis-
ciplines (i.e. civil engineering), even when lower levels of formal project planning
and tracking of progress are introduced [36], management can often retain accept-
ably high levels of control over the project via regular visual inspection of the
work.*

3.2.2 Human Resources

As figure 3.1 indicates, within the software creation process, human resources are
one of the two essential inputs to the actual software creation task. As Constantine
emphasizes [[37]: p. 17]:

"Good software comes from people. So does bad software."

“While doing my masters thesis I had the opportunity of reviewing a number of different
projects. Most were 1.T. related, but one was a building refurbishment project. While interviewing
the project manager on this project I was surprised to find both the level of informality in planning
and controlling the project and yet the overall satisfaction of the levels of process control claimed
by the project manager. After commenting about this to him, he informed me that in tracking the
progress and exercising overall control of the project he operated a policy of "control-by-walking—
around” the building three to four times every day. He recited numerous occasions of how this
allowed him to assess the progress of the work and detect and prevent problems early before they
had time to have a serious impact. In contrast, although there was often more attempts made to
formally plan and track the L.T. projects, most of the project managers commented that they felt
heavily reliant upon only individual progress reporting by the developers involved — which often
proved overly optimistic and frequently contributed to missed milestones and delivery overruns.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 59

This comment actually highlights an ongoing issue regarding the variability of
human performance — regarding software development. Amongst programmers
there have been many studies on productivity that have found enormous perfor-
mance variability measures upon code production between individual program-
mers. Studies of over three hundred software organisations, conducted by De-
marco and Lister [38], led them to conclude that, over a sample of any software
programmers using any productivity metric, the following productivity perfor-
mances tend to prevail [p. 45]:

e Count on the best people outperforming the worst by approximately a ratio
of 10:1;

e Count on the best performer being approximately 2.5 times better than a
median performer;

e Count on the half that are better—than—median performers out—performing
the other half by more than a ratio of 2:1;

However, large individual performance variability not only occurs in the program-
ming task. Brooks [34] has long argued, from his experiences of managing the
production of the IBM 360 operating system in the late 1960s, that, during the
design phase, to help ensure the conceptual integrity of the software, the archi-
tecture should be the product of (at most) one or two talented software designers.
In fact, to accommodate such human performance variances, and help ensure the
eventual quality of the product in software development, Baker [39] and Baker
and Mills [40] proposed a custom—based team composition especially for soft-
ware development, characterised as "The Chief Programmer Team" . With this
team composition, only (at most) two talented designers were allowed to take on
the design and coding roles, whilst other team members fulfilled supportive roles
of administration, documentation, etc. The rationale being that, in terms of both
software quality and productivity, two talented designers/programmers can pro-
duce better software faster, than a group of designers/programmers of mixed abil-
ity. This, however, goes against conventional view of the benefits of team work,
and suggests that the nature of the software creation task is not additive, in nature.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 60

Social Psychologists have identified that, in group work, there are essentially four
types of task natures that can be identified [cf. [41]]):-

1. Additive Type Tasks: in which the contributions of each group member
can be predictably combined into an overall group performance. Examples
include a) brick laying; b) moving a heavy object; and c) selling a product,
etc. In all these examples, the group’s output is determined by the sum of
the individual efforts;

2. Conjunctive Type Tasks: in this case, the group’s final product is largely
determined by the weakest individual performance(s) of the group. A good
example includes a mountaineering group. In this situation, the overall
group can only progress as fast as its slowest group member(s). This is
an example of the "weakest link" effect;

3. Disjunctive Type Tasks: with this type of task, the overall group’s perfor-
mance is largely dependent upon the performance of the strongest or most
competent individual group member(s). With this type of task, it is not only
necessary for the most competent group member to identify a viable solu-
tion, but he/she must also be able to convince the other group members of
its viability. In a survey of group dynamics, by Hill [42], it was revealed that
often: a) the verifiability characteristics of a particular task; b) socialising
effects — such as pressure for conformity; and c) individual assertiveness
(i.e. emergent leaders), often play an important influence in the ability of
the most competent group member being able to attain solution acceptance,

by the rest of the group. This is an example of the "strongest link" effect;

4. Compensatory Type Tasks: in this case the contributions of the individ-
ual group members are averaged together to form a single group outcome.
The limitation here is that it is only feasible for tasks that can be reduced to
an average — such as forecasting, estimating, etc. In such task situations,
the benefit of averaging the overall group efforts is that optimistic predic-
tions are off-set by pessimistic predictions and the average prediction or
estimation tends to be more accurate than any single prediction of a group
member.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 61

With regards to the nature of the software task, such findings and team compo-
sitions indicate that software development is either a) a conjunctive type task —
i.e. lower end performers limit overall group performance; or b) a disjunctive type
task — i.e. team composition interventions need to take place to permit the best
performers to reduce errors, and increase quality and productivity.

The intangible nature of software also appears to have negative group performance
effects. Brooks [43] first illustrated that, unlike many other types of engineering
projects, the nature of software development in group-work cannot be factored out
to accelerate project work to expedite project schedules or reduce fixed projects
costs by increasing the manpower [cf. [36]]. He noted that the software task
places a heavy reliance upon learning and interpersonal communication to co—
ordinate the work between developers. Once extra manpower is added to an exist-
ing project, exponential increases in communication overhead actually results in
slowing down activities on productive tasks. This was also reinforced by Gordon
and Lamb’s [44] analysis of such production losses in analysing the effects of the
‘learning—curve’.> However, they argued that such slowing down effects are only
temporary learning effect delays that include: a) "coming up to speed” on the task;
b) acquisition of specific knowledge; c) having to teach/train other (new) group
members; and d) the need for task(s) coordination and communication. After a
time, these learning—curve effects diminish and the group will start performing at
a greater collective productivity level. Gordon and Lamb [44] therefore argued
for adding extra developers early on in the project before schedule acceleration
was required — in order to accommodate for such learning effects before project

acceleration was needed.

3.2.3 Process Technology

Due to the essential complexity, error—prone nature, and intangibility of software,

there is an increasing need placed upon assistive process technology — in the

3Gordon and Lamb note that the "learning—curve’ relates to either a) the acquisition of essential
task skills; or b) the acquisition of specific knowledge for a particular task. In referring to Brooks
Law of software projects, they are concerned primarily with the latter (i.e. the acquisition of
specific knowledge required).

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 62

form of tools, methods, and techniques. However, there are a number of concerns
surrounding: a) the suitability of process technology; and b) the effectiveness of

process technology. These are briefly considered in the subsections below.

3.2.3.1 Suitability of Process Technology

An indication of software engineering process immaturity is that it suffers from a
saturation of tools, methods, and techniques — each of which proposes to be the
answer to developing high quality software in a predictable manner. While, many
of these make certain improvements and have certain strengths and weaknesses,
appraising their suitability — in terms of advantages and disadvantages for a par-
ticular software development system and application domain is very difficult and
can be the cause of problems in the software development process. Unfortunately,
management often believe that greater productivity, quality, and project control
can be achieved simply by the employment of some new tool, method, or tech-
nique. For instance, from his experience in managing large information system
(IS) projects, Hallows [45] argues against the temptation of management buy-
ing and employing new and revolutionary process technology (i.e. CASE tools,
methods, and techniques) as the learning overhead they present, under tight sched-
ule/budgeting duress, is often not accommodated for explicitly within the project
planning scope and can result in serious project delays and artifact defects being
introduced. Such issues, concerning process technology, have began to suggest
that instead of improving developer productivity, software quality, and project
control — process technology is potentially becoming subtle causalities of failure
of software projects [46].

3.2.3.2 Effectiveness of Process Technology

The traditional approach to software engineering has been to concentrate primar-
ily upon achieving fault-avoidance in the software development process through
increasing the sophistication of tools, methods, and techniques that both guide
and constrain the developer from introducing faults into the software artifact or
which improve detection and removal. While, by comparison to earlier genera-
tion ad-hoc approaches [47], these have no doubt raised the level of both software

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 63

engineering and software dependability,® this progress is more than matched by
the pace of technological advancement and associated commercial drivers that
demand software controlled systems that involve unprecedented increases of ap-
plication novelty and technical complexity [cf. [48, 49]].

An over reliance upon process technology in software engineering has been criti-
cised on three fronts. Firstly, it has been argued that is has never (or is ever likely
to have) solved the fundamental problems that software engineering has always
presented [34]. Secondly, improved methods, tools, and techniques, can actually
act as drivers themselves to the development of vastly more complex software
controlled systems — cancelling out any process support technology gains origi-
nally expected [48]. Finally, an over emphasis of systematic tools, methods, and
techniques in the development process has been criticised for motivating a "one—
size—fits—all” solution—orientated paradigm that can often stifle rigorous problem
analysis in many cases [50].

3.2.4 The Process Environment

The software development process does not take place in an environmental vac-
uum, direct process environmental influences upon the software development pro-
cess include the management of the process and the complexity of the application
domain into which the eventual software artifact will be deployed.

Other, less direct influences, such as the wider organisational structure and culture
can also impact (positively or negatively) upon the dependability of the software
process [cf. [51, 52, 53]], however, such influences are considered to belong to
the realms of organisational development (OD) and are considered out of scope of
this thesis.”

This is particularly true of improved language design, formal approaches, computer—assisted
software engineering (CASE) tools, and integrated development and debugging environments [cf.
[12,27, 28, 48]]

"This is a practical consideration, not a principle one, and the reader should not infer that the
wider organisational structure and culture of the software engineering organisation are considered
unimportant.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 64

3.24.1 Application Domain

Software is the ultimate isomorphic machine [54]. By this, it is meant that soft-
ware functionality can be created in a universal manner to emulate or simulate
almost any behaviour required. This means that its context of application extends
way beyond the limits usually imposed by other engineering disciplines such as
civil or mechanical engineering, etc that have definite applicational limitations. In
the early years of business computing, software was often used to automate well-
established existing systems — such as centralised payroll systems, etc [55]. With
the combination of increases of processing power and reduced costs of hardware,
over the last twenty years or so, the value that can be realised from incorporating
software control or processing of information in ever more novel applications has
ensured that software systems have become increasingly complex and ubiquitous
in society.

This facet places a heightened dependence upon software engineers to fully un-
derstand the particular nature of the application domain in the software creation
process. This phase has often been referred to as the requirements engineering
phase. Jackson [35] notes that natural language, if not carefully used, can intro-
duce many interpretations that can result in erroneous definition(s) of application
requirements. Furthermore, he notes that there are essentially two types of appli-

cation requirements:-

1. Domain Requirements: these refer to indicative properties that a particular
domain possesses — irrespective of the additional behavioural requirements
that the software system will be designed to provide;

2. Software Requirements: these refer to the optative properties that the soft-
ware system, itself, is to provide.

Failure to elicit and capture these requirements can result in a) incomplete require-
ments documents; b) inconsistencies being introduced; c) incorrectness — in the
required behaviour of the software system; and d) ambiguities due to different
emphasis and/or interpretations of the desired software behaviour. All of these

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 65

requirements failures can seriously undermine the eventual dependability of the
deployed software system.

Advances in process technology, particularly precise formalism and modelling of
requirements specifications [cf. [56, 57, 48]], with their increases of precise se-
mantics, and validating proof techniques, have helped reduce ambiguities, incon-
sistencies, and incorrectness of requirements. However, such process technology,
is not a panacea for solving all requirements problems, as such heavily mathemati-
cal modelling approaches are still vulnerable to incompleteness concerns through
assumptions made upon the scope of the application’s requirements. For such
reasons, the value of, user—centered development, iterative prototyping and do-
main expertise in the requirements phases are also considered to be crucial [cf.
[58, 55, 10]].

3.2.4.2 Management Issues

Management can be defined in many ways. In a broad interpretation, management
involves many activities relating not only to the structure and decision-making of
the organisation (i.e. strategic, tactical, and operational) [59], but also in ’softer’
terms — relating to the political and cultural climate of the organisation [60, 61].
Additionally, vague definitions often exist between the sociological and task dif-
ferences of what distinguishes management from leadership. Kotter [62] argues
that the essential differences between leadership and management relate to deal-
ing with complexity versus dealing with change. He further divides this distinction
into three dimensions, as follows:-

¢ Direction vs Planning: Direction is a leadership responsibility which in-
volves gathering large amounts of information to assess patterns, relation-
ships, and linkages in order to provide a vision to explain things. By con-
trast, planning is a management responsibility designed to establish order
and produce predictable and orderly results;

e Aligning people vs Organising or Co—ordinating people: Alignment of
people is a leadership responsibility and involves ensuring that everyone
moves towards common goals of the organisation — in times of change.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 66

Organising or coordination of people is a management responsibility and
relates to ensuring that established plans can be resourced as precisely and
efficiently as possible. Typically, this involves complex decision~making
relating to the process structure, task structure, matching of skills to tasks,
and training;

e Motivating People vs Controlling: Human Motivation is a deep psycho-
logical and social psychological area of study [cf. [63]]. Nevertheless, lead-
ership plays an important role. It is not sufficient to provide directive visions
and collective alignment, in times of change, without also ensuring enthusi-
astic interest and support and preventing barriers to change and resistance.
Likewise, in terms of management, it is not sufficient to establish effective
plans and suitable organisation of resources without effective monitoring
and tracking mechanisms to detect when deviations from established plans,
target, and goals occur.

In the context of this thesis, although there are many issues and arguments for how
such managerial aspects of culture, organisational structure, political climate, and
leadership can improve or undermine the effectiveness of the software creation
process [cf. [37, 38, 64]], this subsection focuses upon direct managerial influ-
ences relating to process control, namely: a) planning; b) organising or coordina-
tion; and ¢) monitoring or tracking. Drawing upon issues and problems already
raised in this section, with the software creation process, these essential manage-
ment elements are considered in terms of how the nature of the software creation
process can result in undermining their effectiveness in achieving process control.
These are briefly discussed in subsections below.

3.2.4.3 Planning

Planning, is predictive, by nature. It relates to acquiring as much relevant infor-
mation and data to deconstruct and order the work so that its progression can be
reconstructed into an orderly scheme of work so that relevant tasks can be se-
quenced and appropriate types and levels of resources applied. Two particularly
important aspects concern: a) in order to realistically assess the entire scope of

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 67

work to begin with; and b) estimate the amount of duration and costs involved
in the performance of required tasks. Only by achieving a sufficiently accurate
assessment of both of these aspects can a realistic and useful plan be determined.
Two particular problems that the software creation task presents — relating to
these two essential planning features, concerns: c¢) the problematical nature of
ensuring adequate definition of the requirements scope — in its totality. Any
omissions, inconsistencies, etc fundamentally undermine the integrity of the plan
— resulting in unrealistic deadlines, budgets, and resourcing levels; and d) esti-
mating task performance is another critical aspect of achieving a realistic plan.
However, as discussed in subsection 3.2.2, the individual variability of software
developers can lead to grossly optimistic task performance assessments — result-

ing in planned resource allocation levels being seriously inadequate.

3.24.4 Coordinating

Coordinating tasks, people, and process technology is essentially an intervention-
ist managerial activity which will frequently occur in order to keep a project
on-track. It is often a response to problems experienced during the project —
such as unexpected staffing shortfalls, lack of adequate staff skills, budgeting or
scheduling overrun predictions, etc. In order for process coordination to be ef-
fective, predictable effects of human performance, training, and the effectiveness
of employed process technology is needed to be present. However, as has been
discussed in previous subsections, the suitability/effectiveness of process technol-
ogy, the variability of individual human performance, the unpredictable additive
nature of collective or collaborative group performance, etc seriously undermines
the manager’s ability to achieve predictable effects.

3.24.5 Tracking

Project tracking (or monitoring) of project progress is essentially a goal—orientated
activity. It, first and foremost, depends heavily upon the initial integrity (in terms
of realism) of the original planning phase — as this is used to establish the time—
scales, costs, and resourcing projections, against which, project progress will

be tracked. An unrealistic or inadequate overall scheme of work will result in

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 68

early beliefs of serious problems with schedule overruns, budget overruns, re-
source allocation shortfalls, and missed milestone stages. Additional problems
that the software creation task presents are: a) that of invisibility of work under-
taken by developers. This firstly, seriously restricts the sensitivity of the tracking
mechanism to adequately represent the extent of work to be progressed. Without
such visible ’yard-sticks’ the project manager will be heavily dependent upon re-
ported progress by the individual developers which can result in deviant practices
that report either overly optimistic progress assessments, or deliberately incor-
rect progress reports.® Both of these can result in progress tracking becoming
ineffective and preventing the project manager from taking remedial action — un-
til serious (and potentially unrecoverable) schedule/budget/resourcing problems
have become manifest; b) the complexity, novelty, and error—prone nature of the
software task can all combine to result in project progress tracking losing sight
of what constitutes progress. This occurs when faults and errors or requirements
incompleteness/inconsistencies’® etc result in so much and frequent reworking of
tasks and phases (i.e. specification, design, coding, testing) that the whole shape
and structure of the project renders the initial planning and (subsequently) tracking

meaningless. As a consequence, a serious loss of overall process control results.

3.3 A Dependable Process View

In section 3.2 some fundamental problems associated with the software creation
process were considered. To provide a more holistic perspective of these many
problems and issues figure 3.2 shows them in terms of how these dynamics influ-
ence one another within the software creation process. The diagram is a graphical
summary of section 3.2 and shows how the creation process and its process en-
vironmental elements illustrated in figure 3.1 interact and influence the overall
dependability of the creation process. The lines reflect the many interacting dy-
namic influences that are implicit in the descriptive text of section 3. Further

8Such reporting progress dependency problems are synonymous with such issues as the
SNAFU principle, and Parkinson’s Law : "A task will spend ninety nine percent of it’s time ninety
nine percent complete.”

9These could be also called faults — but they may not be the type that are so easily detected or
can be tolerated.

69

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES

oo
L0y

N NS

o _
L0k

™ SRR

ALY
AT
e
i
AT
NI
~ RUDE -
- SO
)
- OSSN
— A
L O —
0]
SO0

| SOn
SLBAeY
0
%Eg%ge .ﬁ mr
SRR NIVt
i r
; = OO S0
SYNBALIN — DD — r
S — LT % TRV
W 4.5%|
L . VALK -
i
rw. SRENH

Figure 3.2: Process Dynamics

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 70

examples of such subtle process influences are given and explained in this section

as a dependable process view is progressed.

From this perspective it is possible to see that many of the essential elements of
the abstract view of the software creation process in figure 3.1 interact in complex
cause/effect relationships which can improve or undermine the dependability of

the process.

For example, improving comprehension of the application domain would not only
help improve the dependability of the produced artifact — in technical terms, it
would also greatly improve the overall process control of the process in two funda-
mental ways. Firstly, it would help reduce unnecessary rework when omissions,
ambiguities, or inconsistencies were detected later in the downstream phases of
the development process. Secondly, it would ensure that the estimation and plan-
ning of the work initially was based upon a more complete and consistent require-

ments set.

Figure 3.2 of an initial set of process dynamics, therefore, allows a considera-
tion of what inter-related factors would need to be addressed in order to achieve
a more mature and dependable software creation process. The idea of improv-
ing the maturity of the software creation process is not new in any way, however,
The Software Engineering Institute at The Carnegie Mellon University has pro-
gressed a structured software development process improvement initiative called
"The Capability Maturity Model" (CMM) for over a decade [cf. [65]]. The CMM
approach to improving the maturity of the software creation process is for the
software development organisation to gradually increase its process maturity in
stages, each of which provides the foundations for the next level or stage upward.
Overall, the CMM approach provides five progress stages or levels:-

1. Initial CMM — Level 1: The software process is characterised as being ad—
hoc, and occasionally chaotic. Few process phases are defined, and success
largely depends upon individual effort and heroics;

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 71

DEPENDABLE PROCESS ——{

| [COVERAGE :
DOMAIN COMPREHENDABILITY H H H

i L EXPRESSION R T A

: | ENVIRONMENTAL | :

[~ ENVIRONMENT ATTRIBUTES ! 7 PROCESS THREATS | !

| [PLANNING

PROCESS CONTROLLABILITY —1 COORDINATING

Pa zzz: B et L e
3 (~ INDIVIDUAL VARIABILITY |
HUMAN PERFORMANCE PREDICTABILITY —H

| = COLLECTIVE ADDITIVITY 2

| [COMPLEXITY

- : i INTERNAL 1
L — INTERNAL ATTRIBUTES SOFTWARE TRACTABILITY —tet I~ PROCESS THREATS !

+ L vismwmy

| [~ TASK SUITABILITY

TECHNOLOGY APPLICABILITY —1

i = HUMAN LEARNABILITY

Figure 3.3: Attributes of A Dependable Process

. Repeatable CMM — Level 2: Basic project management processes are es-
tablished to track budgets, schedules, and functionality. The necessary pro-
cess discipline is in place to repeat earlier successes on projects with similar

applications;

. Defined CMM — Level 3: The software process for both management and
engineering activities is documented, standardised, and is integrated to sup-
port the standard software process for the organisation. Projects apply a
customised and approved version of the organisation’s processes for creat-
ing and maintaining software;

. Managed CMM — Level 4: Detailed measures of the software process and
associated quality of software are provided and collected. The software pro-
cess and the products produced are quantitatively appraised and controlled;

. Optimising CMM — Level 5: The process is continually improved — aided
by quantitative feedback in the process and from piloting new and innova-
tive technologies and suggestions for improvement.

While empirical studies into CMM process improvement initiatives have been

positive for improving the maturity of the software process and software product

‘ § THREAT PROPOGATION | — MEANS

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 12

quality — especially for organisations improving their processes from level 1 to
level 3 [66], however, the CMM approach is not without its problems and crit-
ics that claim there is little evidence for indicating that such an approach actually
results in higher quality software artifacts. Firstly, introducing a CMM initiative
requires high levels of strategic management support if the initiative is to be suc-
cessful and prevent resistance to changes in the work place [66]. Secondly, some
have argued that the CMM approach introduces too much unnecessary bureau-
cracy and quality software is more reliant upon the quality and skills of the in-
dividuals involved than notions of better organised and supported processes [67].
Thirdly, there is the assumption that all the different capabilities in each level are
achievable without other capabilities at higher levels. For instance, at CMM —
Level 2, there is the assumption that rigorous formal project management can be
implemented to improve the process in isolation from detailed measurement of
the work (i.e. CMM level — 4). However, as has been discussed in section 3.2
(and illustrated in the dynamics of figure 3.2), effective process control — in terms
of planning, coordinating, and tracking has antecedent task, human resource, and
process technology requirements. Without improvements in these, it could be ar-
gued, merely introducing a formal project management approach will be likely to
be inadequate to achieve effective overall process control.

The view taken in this chapter section is that improving the maturity and depend-
ability of the process requires an holistic, not hierarchical, approach whereby mul-
tiple process attributes, and relationships between each other, must be understood
and improved. Drawing upon issues and problems raised in section 3.2 and re-
sulting process dynamics in figure 3.2 subsections 3.3.1, 3.3.2, and 3.3.3 employ
a dependability approach to provide an initial view of the attributes, threats, and
means by which to improve the dependability of the process. This view is illus-

trated in figure 3.3.

3.3.1 Process Attributes

In figure 3.3 a tree view of a set of dependable process attributes is provided —
based upon the issues raised in section 3.2. These are separated further into: a)

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 73

process environment attributes — that introduce a direct influence upon the de-
pendability of the software process; and b) internal process attributes — in terms
of the essential inputs of the software process, and the actual transformational
characteristics presented by the software task. It should also be noted that, as the
process dynamics of figure 3.2 exemplified, cyclic cause/effect relationships ex-
ist between the environmental and internal process attributes (e.g. the influence
upon human performance variability upon planning and coordinating etc). These
could be referred to as inter—process dynamics. Furthermore, within each of these
categories cause/effect relationships also exist (e.g. unsuitable methods, tools, or
techniques for a given software task and its consequent potential for increasing the
occurrence of faults, or insufficient domain knowledge resulting in incomplete or
inconsistent requirements definition(s), etc). In subsections 3.3.1.1 and 3.3.1.2

these environmental and internal process attributes are further discussed.

3.3.1.1 Environmental Process Attributes

In this thesis the process attribute of domain comprehendability is essentially con-
sistent with the definition provided by the dependability community in [68] [p. 29]
and relates to the "...representativeness of situations to which the computer system
is subjected during its analysis compared to the actual situations that the com-
puter system will be confronted with during its operational lifetime". With regard
to domain comprehendability, it can be seen that unless sufficient coverage is pro-
vided, this can not only result directly in undermining the eventual dependability
of the software artifact(s), through omissions, but also can directly result in lack
of understanding through such omissions that lead to incomplete coherence of re-
quirements demands and lead to ambiguities, inconsistencies, and incorrectness.
Even if complete coverage is achieved'? the requirements may be misunderstood,
over/under emphasised, or mis—communicated in some way — leading to erro-
neous interpretations. Therefore, expression of covered requirements in a clear,
unambiguous, and consistent manner is also critical to achieve correct compre-

hension of an application domain.

10Which, with any real world complex application domain, is unlikely.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 74

Process controllability is also a critical attribute of a mature and dependable pro-
cess, as, without process control, the resulting chaotic effects can easily result
in increasing fault introduction in the eventual software artifact(s) (i.e. over—
emphasis upon over—time working cf. [69] and its potential for increasing human
error via fatigue and monotony) or reducing the creation process’s ability to detect
and remove faults introduced (i.e. through cutting or omitting important develop-
ment phases such as validation, verification, etc to expedite project schedules,
reduce project budgets, or meet phased delivery milestones etc). As section 3.2
and the process dynamics in figure 3.2, highlighted, process control is achieved
via: a) effective planning to arrive at a realistic baseline of work scope, work
sequencing, and effort allocation; b) effective coordination to intervene with pre-
dictable effects when problems are identified; and c) tracking or monitoring of
work, in order to detect early deviations from overall project goals of time, cost

and quality, so that effective remedial action can be enacted.

Therefore, these two environmental process attributes are defined as follows:-

e Domain Comprehendability: The ability to adequately cover and clearly
express relevant domain, software, and user requirements in a complete,

consistent, and correct manner;

e Process Controllability: The ability to produce accurate project plans and
monitoring mechanisms, and enact corrective project coordination in a ef-

fective and efficient manner.

As stated earlier, however, while these are important environmental process at-
tributes, they also rely upon other internal process attributes being accomplished,

in order to be feasibly achievable.

3.3.1.2 Internal Process Attributes

To begin with, human performance predictability, it has already been discussed
in section 3.2 that both uncertainties surrounding the individual variability and
collaborative additivity can result in reducing process control — through inade-
quate effort estimation during planning and uncertain performance effects with

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 75

teams during project co—ordination. This can be seen as an instance of propa-
gation effects via inter—process dynamics between the process environment and
the creation process. However, as subsection 3.2.2 indicated, there are additional
internal process performance concerns about human resources during collective
team decision—making regarding sociological influences that can undermine col-
laborative performance. Furthermore, as indicated in the process dynamics in
figure 3.2, on an individual performance level, there are also the concerns of how
faults and errors are introduced with other internal process attributes — such as
the complexity and invisibility of the software task, and the suitability of process
technology for a software task. Therefore, human performance predictability is
an important attribute towards both undermining and improving the dependability

of the overall process.

The software task is also a major process factor that has characteristics of com-
plexity and intangibility, that, combined, can directly undermine both the depend-
ability of the resultant artifact (in terms of residual faults) and also seriously desta-
bilise the software process control. Furthermore, as the process dynamics in figure
3.2 indicate, the nature of the software task can also combine with other internal
process factors of process technology and/or human resources to further com-
plicate this situation (e.g. developers not familiar with process technology, etc).
Therefore, reducing the complexity of the task and increasing the software tasks’
visibility is an important single and interrelated factor for improving both the de-
pendability of the software artifact and the software creation process.

Process technology, in the form of the many tools, methods, and techniques that
can be applied has, for along time, been perceived as a fundamental process factor
that improves both the dependability of the resultant artifact and raise the maturity
and dependability of the creation process. Like the other internal process attributes
of human resource performance and the essential nature of the software task, it can
have propagation effects via inter—process dynamics (i.e. unsuitability of use for
a particular application domain can result in increasing incompleteness, incon-
sistencies, etc). However, as shown in figure 3.2, it also has important internal
interaction dynamics within the software process — such as improving/reducing

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 76

the complexity/intangibility of the software task or aiding/undermining individual
or collaborative human performance. As a consequence, process technology, and
its usage as an input to the creation process, also plays an important part in both
improving the dependability of the resultant software artifact and increasing the
maturity and dependability of the creation process.

These three internal process attributes can therefore be defined as follows:-

o Human Performance Predictability: The ability to forecast both individ-
ual and collaborative task performances in an accurate measurable manner;

o Software Tractability: The ability to employ, as process inputs, human re-
sources and/or processes technology to reduce task complexity and increase

development work visibility in an effective and efficient manner;

e Technology Applicability: The ability to appraise the suitability and de-
termine the learnability of process tools, methods, and techniques in the
context of a given application domain and software task in an efficient and

effective manner.

Again, attainment (or at least improvement) in the state of these internal process
attributes, influences, and is influenced by, attainment (or improvement) of the

environmental process attributes mentioned earlier. !!

3.3.2 Process Threats

Threats to achieving a dependable process, as indicated in figure 3.3, are divided
into three categories of: a) Environmental Process Threats; b) Internal Process
Threats; and ¢) Threat Propagation. These are briefly discussed in subsections
3.3.2.1,3.3.1.2, and 3.3.2.3.

IEor example, if no attempt is made to formally control a real-world complex development
process, then this will undermine, in turn, the achievement and the benefit of those achievements,
of the other internal process attributes. The result (most likely) is both a less dependable software
artifact, and a less dependable process.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 77

As discussed earlier in chapter 2, the view taken here is that the creation process is
concerned with promoting dependability in the software artifact through a fault—
avoidance approach. The existing dependability approach stops at the level of a
fault in the fault—error—failure chain, and is not concerned with the many and var-
ied ways of how faults occur (i.e. fault phenomenology). However, in considering
the creation process, the view taken here is that greater understanding and respon-
sibility of the fault phenomenologies is crucial in both promoting the attributes of
a dependable process and improving the means by which fault-avoidance, in the
software artifact(s), can be achieved. Therefore, in the subsections that follow, is-
sues relating to how, in an undependable creation process, faults can be introduced
into the software artifact are considered.

3.3.2.1 Environmental Process Threats

Environmental threats to achieving a dependable process relate to the direct influ-
ences of the process environment upon: a) management; and b) the application
domain has upon both the dependability of the creation process and the depend-
ability of the resulting software artifact — in terms of how these can cause fault in-
troduction or ameliorate the creation processes’ ability to subsequently detect and
remove faults introduced. Two obvious threats are: a) violations and workarounds
of legitimate software activities and phases in the creation process — by manage-
ment deviancy prioritising economic or timescale factors over software artifact
quality factors; and b) completeness, consistency, and correctness issues — due
to the novelty of the application domain. However, these are only suggested as
some of the main direct process environment fault phenomenology influences that
can undermine both process and artifact dependability.

3.3.2.2 Internal Process Threats

Internal process threats to achieving a dependable process relate to problems that
occur inside the creation process — namely, the inputs of human resourcing and
process technology as well as the nature of the software task that can undermine
the dependability of the process and introduce faults or undermine subsequent
detection and removal of introduced faults. The possible fault phenomenologies

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 78

that can occur are many and varied and can result from one internal process fac-
tor source or through some combined relationship influences between two or all
three of them. Some obvious examples include: a) insufficiently trained or skilled
developers; b) inappropriate application of process technology for a particular
software creation task; and c) the increase of human error (i.e. slips and lapses)
due to insufficient experience with the process technology employed. The last
example indicates how faults can occur from a combination of internal process
factors. Again, these examples are by no means intended to be complete, but to
merely indicate how the dependability of the process and the dependability of the
resultant software artifact can be undermined through fault phenomenologies that
occur through one or more internal process factors.

3.3.2.3 Threat Propagation

Threats can also propagate between the two levels of the process environment and
the creation process. This is where a) environmental influences act as a negative
causal influence upon the other internal creation process factors that increases the
potential for fault introductions or undermine the ability of the process to sub-
sequently detect and remove faults introduced. Some examples of this type of
propagation were given in subsection 3.3.2.1; or b) where the internal process
factors (i.e. human resources, etc) act as negative causal effects upon the process
environment which then, in turn, results in negative causal influence back upon
the creation process factors. An example would be inadequately covering all of
the requirements, which then, invalidates the planning, which then results in a
loss of process control which in turn results in omissions of important process
activities and phases being properly conducted. Consequently, this can ultimately
result in both introducing faults into the software artifact and undermining sub-
sequent detection and removal following introduction. This would indicate that
the underlying cause/effect relationships are cyclic, in nature, whereby feedback
effects throughout the levels of the process result in negative reinforcement of any
failure(s) of the creation processes’ factors of management, application domain,

human resources, process technology, and the software creation task(s).

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 79

3.3.3 Process Means

It was highlighted in chapter 2 that the view taken is that the creation process
is responsible for the fault-avoidance means of : a) fault—prevention; b) fault—
removal; and c) fault forecasting. From the process dependability issues already
discussed in this section, it can be appreciated that in order to promote the matu-
rity and dependability of the process, and also increase the dependability of the
eventual software artifact, relies heavily upon greater understanding of the fault

phenomenology.

Firstly, in terms of the means of fault prevention, in order to preclude faults be-
ing introduced in the software artifact, a greater understanding of how human
resources and/or process technology can be developed and employed in such a
way as to preclude fault introduction. Secondly, in terms of the means of fault—
removal, in order to remove faults already introduced into the software artifact,
it is first necessary, in order to remove faults, to understand how to human re-
sources and/or process technology can be employed and developed to increase the
sensitivity to detecting such faults. Following detection, it is then important to
understand how human resources and/or process technology can be employed and
developed in such a way so as to preclude or prevent further introduction of faults
during the corrective activities of removing detected faults. Finally, in terms of
fault—forecasting it is important to understand how human resources and process
technology can be employed and developed in such a way as to increase coverage
and prediction of the types of fault, errors, and failures that the eventual software
artifact could be subjected to, during its operational lifetime, in order to both gain
a greater domain understanding and rationalise what fault-tolerant mechanisms
will be most suitable to be employed.

3.4 Process Redundancy and Diversity

Chapter 2 discussed how dependability can be achieved in the software artifact
through the inclusion of additional computational and structural redundancy. Whilst
replication and duplication redundancy is a well established method for improving

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 80

the dependability of physical structures, it was also mentioned that toleration of
faults, in the software artifact, against design faults, required the introduction of
diversity also. However, apart from the problems of achieving random failure and
independence in software design, the nature of some design faults'? are caused
directly through erroneous human interpretations and judgements during require-
ments engineering and specification. This category of design fault often results in
inadequate state behaviour representation — in terms of not providing the neces-
sary state, logic, or functional behaviour which means the system is less amenable
to software fault-tolerant approaches and relies upon improving software depend-
ability through the means of fault-avoidance in the process that creates the soft-
ware system [70]. Such intolerable design faults may often propagate into errors
of inadequate software control over the system being controlled and emerge as
failures of user expectations about how the system should behave. If this occurs,
it will directly undermine the attributes of dependability upon which judgements
of user confidence and system trustworthiness are ultimately based'® [71, 4, 1].

This raises the question of how can human redundancy — in the form of human
diversity, in the development process, be employed in as effective manner as in
using it in the artifact to avoid and detect the introduction of such faults. In this

I2Flawed assumptions made in the requirements engineering, specification, and conceptual de-
sign phases will result in errors-of-omission or errors-of-commission that result in the absence of
desirable data, function, and/or structural representation. For example, an assumption is made that:
“There is always cash in the ATM.” This will result in the state of the physical cash in the cash
magazine(s) not being represented in the software control of the ATM. If the ATM dispenses all of
its cash, then the next customer to use the ATM will receive no cash (or be short-changed) but wiil
still have their account debited for the full amount. This is due to the assumption there is no con-
sideration of such a situation to begin with and therefore no provision for data, logic conditions or
functional behaviour to accommodate it. Such a design fault is not amenable to recovery or treat-
ment during operational execution and will result in judgements of failure by the user even though
any comparison of the ATM specification and implemented system reveal isomorphic behaviour
(i.e. correctness).

3For example, a design assumption that, “Up to a final commit stage, the user should always
be allowed to cancel the initiated ATM transaction without data change side-effects” (i.e. data
alteration), results in the (usual) banking security policy of only allowing three PIN entry viola-
tions before reclamation of card becoming violated, since a fraudster with a cloned or stolen card
can now potentially enumerate all possible 10* PIN combinations by cancelling the unauthorised
transaction after two failed attempts. This is again due to the absence of some desirable persistent
data state and functional computation that records and retrieves the number of previous failed PIN
attempts independent of the current ATM transaction.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 81

section, a number of approaches that incorporate the employment of human redun-
dancy and diversity will be discussed. However, before doing so, it is important to
distinguish between notions of classical and engineering interpretations of redun-
dancy. The classical meaning of redundancy in normal usage refers to someone or
something that is no longer required, needed, or wanted.'* In contrast, the mean-
ing of the term redundancy used in engineering contexts refers to the provision
of additional components in a system, over and above the minimum required to
perform the function, for the purpose of achieving reliability or robustness of the
system.!> The two interpretations bring into consideration whether only the mini-
mum function of something is required or whether other properties of something
are considered sufficiently important to justify unproductive functional additions.
This comparison clearly indicates that the engineering interpretation is congru-
ent with the classical definition in terms of recognising that components will be
functionally unproductive, but departs from that classical definition in as much
as that the functionally unproductive additions are critical in contributing to some
other desired purpose, property or output (i.e. reliability) of the system. This is
made explicit in Lewin and Noaks’ ([15]: pp 413) discussion of the purpose of en-
gineering redundancy in contrast to the classical definition for achieving greater

computer system reliability, noting:

' “..enhancing the reliability of a computer system is to use the principle of redun-
dancy by duplicating various parts or functions of the system. Note that the ad-
ditional equipment is redundant only when considered in the sense of providing
the basic system requirements: it is, of course, essential if increased reliability is

required.”’

In this section the issue of process diversity will be discussed in terms of the
essential elements of the software process from section 3.2: a) the software cre-
ation task in section 3.2.1; b) the human resources in section 3.2.2; and c) process
technology in section 3.2.3. These will be discussed in terms of how human re-
dundancy and diversity can promote the dependability attributes of the process

discussed earlier in section 3.3.

14This is the definition provided by the Oxford Dictionary.
15This is the definition provided by the Oxford Computing Dictionary.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 82

3.4.1 Fault-Avoidance and Fault-Tolerance

So far, from chapter 2, the discussion may have appeared to present fault-avoidance
and fault-tolerance as contrasting approaches to achieving increased software de-
pendability. This is not actually the case as both approaches are required in pro-
moting software dependability, since, intuitively, the fewer residual faults a fault-
tolerant mechanism must detect, treat, and recover from, the less potential there
is for a residual fault occurrence which the mechanism cannot tolerate. There-
fore, although a quite strict delineation of dependability responsibilities between
the creation process and created artifact was provided in section 2.3.3 of chap-
ter 3, the creation process can also be viewed as a particular system—of—interest
in its own right (i.e. a system that creates another system). When viewed in
this way the question of: "How can the system that creates another system be
made more fault—tolerant in avoiding the introduction of faults into the created
artifact?” can be posed. In this respect we can see that a creating system also re-
quires process redundancy to prevent, detect, and remove faults in order to tolerate
the presence of imperfect management, human resources, and process technology
within the creation process. Finally, improvements of fault-avoidance in the pro-
cess improves the reliability of the individual redundant fault-tolerant components
employed [15] — thereby directly raising the overall dependability of software
synergistically through both fault-avoidance and fault-tolerant means.

In the following subsections the issue of how human diversity via human redun-
dancy has been used to promote fault-avoidance will be discussed.

3.4.1.1 The Software Creation Task

It has already been presented in chapter 2 how providing redundant diverse de-
signs and implementations of required artifact functionality can increase the over-
all dependability of the eventual software artifact via design diversity and forced
diversity. It can be seen, therefore, that such approaches can be focused at also

improving the fault-tolerance in the software artifact, not fault-avoidance in the

actual creation process.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 83

3.4.1.2 Human Resource Redundancy

Although, it appears, that the software engineering community has placed signif-
icantly less emphasis upon the role of human diversity in the software process a
number of exceptions do however exist. One notable exception is the considera-
tion of many individual, collaborative, and organisational error vulnerabilities in
the requirements engineering phase to promote fault-avoidance from an interdis-
ciplinary perspective of psychology and computer science [72]. Another long-
standing example is Weinberg’s advocacy of open and informal code reviewing to
improve fault detection and correction at the coding phase in order to help avoid
coding faults into the eventual deployed product [64]. Finally, the recent rise of
open-source software development (OSSD) is another example where greater em-
phasis has been placed upon the role of humans, rather than process technology,
to achieve fault-avoidance through large scale deployment of human resources for
massive code reviewing [73]. OSSD has directly motivated others to consider and
experiment with the increased fault-avoidance benefits on other process phases
(i.e. requirements engineering) to reduce security specification vulnerabilities and

incompleteness through employing a similar parallel approach of human resources
[74].

However, many of the approaches make the assumption that employing multi-
ple human resources for a given task will provide sufficient levels of diversity to
explore the requirements space and/or subsequently detect faults introduced. A
number of approaches to achieving process and product diversity through the use
of human-redundancy currently exist in the software engineering and dependabil-
ity communities and each of them are based upon some assumption about the
diversity of humans and the manner in which achieving diversity in the process

can be achieved, as follows:

1. Natural Diversity: This approach is primarily used to achieve process-
diversity for fault-avoidance (examples are: [74, 73, 64, 75]). The approach
makes the assumption that functionally redundant human resources are suf-
ficiently diverse to promote a dependable process through the means of the

extra fault-avoidance they provide.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 84

2. Forced Diversity: This approach is primarily used to achieve product-
diversity for fault-tolerance. Unlike the natural diversity approach, it does
not accept the assumption that functionally redundant human resources are
sufficiently diverse. Therefore, in its simplest form (often referred to as
design-diversity) interaction and collaboration between functionally redun-
dant human resources is prevented to preclude any design copying or solu-
tion influencing that could result in common faults in diverse channels or
algorithms (examples are: [7, 76]). In its more sophisticated form (often
referred to as forced-diversity) developers will also be forced to use differ-
ent process support means (i.e. tools, methods, and techniques and some-
times different specification representations and designs) to further reduce
the likelihood that by using the same process support technology the same
common faults could result in diverse channels or algorithms (examples
are: [77, 78, 79]). However, some forced—diversity approaches are more
creation process orientated. One such example is provided by Littlewood et
al [16] who demonstrate through both statistical modelling and statisically
analysed empirical data that there are strong arguments for the fault detec-
tion benefits of factoring out fault detection project effort over a range of
diverse fault detection techniques (e.g. inspection, testing etc) than using

all of the project effort utilising only one fault detection technique.

3. Composed Diversity: This approach has been little used to improve fault-
avoidance directly in promoting dependability (exceptions are: [80, 81])
and has essentially been the preserve of psychology and social psychology
to study human diversity performance effects on group problem-solving
(examples are: [82, 42, 83, 84, 85, 86, 87]). Again the assumption that
functionally redundant human resources are sufficiently diverse to promote
a dependable process through the means of greater fault-avoidance is re-
jected. However, unlike forced-diversity, the approach is to influence diver-
sity in the performers (not the task) by composing teams/groups of individ-
uals who are intrinsically diverse on some pre-tested human dimension (e.g.
personalty, cultural background, attitude, values, intelligence, etc).

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 85

It can be seen from these categories that while adding redundant human resources
can improve the levels of human diversity, increases in human diversity through
human redundancy can be achieved by direct intervention in the creation process.

3.4.1.3 Process Technology Redundancy

Process technology is also another dimension of the creation process which can
improve fault avoidance through diverse application of tools, methods, and tech-
niques. A good example of utilising diverse process technology during develop-
ment was experimented by Kelly et al [77]. In this research they wanted to explore
the fault-avoidance benefits of employing three diverse formal specification meth-
ods (using Estelle, LOTOS, and SDL) which were then ’back—to-back’ tested to
compare for coincident faults. Kelly et al found that the redundant (and diverse)
application‘of multiple formal specification languages found 25 of the total 40
(62.5%) faults early in the development life—cycle at the end of the specification
stage. Furthermore, during back—to-back testing phases, the diversity introduced
into the specification stages avoided any co-incidental or common-mode faults.

3.4.2 Justifying Process Redundancy

As discussed in the previous section on process—redundancy, for human-redundancy
to be viable, the nature of the task must be additive in nature or capable of being
made more additive through some form of process intervention. With natural di-
versity the assumption is made that the task is naturally additive,'® while the other
two approaches do not accept this assumption and intervene in the process in an

attempt to increase the additivity of the task.'’

Another consideration with respect to employing human redundancy to gain greater
diversity in the development process is to attempt to determine the contribution

16By ‘additive’ it is meant that the human resources are (to a satisfactory level) considered
factorable in the performance they collectively produce on a given task. An example wood be
brick laying as defined in section 3.2.2 by social psychological studies of group performance.

17Forced diversity uses social interaction and process support technology constraints to stimu-
late diversity, and composed diversity uses intrinsic performer characteristics constraints to gener-

ate diversity.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 86

UNIFORMITY AND DIVERSITY CONTRIBUTIONS

—

-y /\ \m

L 3

,__\\>\ ;]

A =COMMON AREA
B = SHARED AREA
C = SHARED AREA

D = SHARED AREA

DIVERSE AREAS
:3: DASTINCT ,\A:EAA RESOURCE 3
G =DISTINCT AREA

Figure 3.4: Uniformity and Diversity Contributions

that diversity makes, since, while diversity within the task itself is always required
— when employing human-redundancy, the desirable outcomes from the task may
consider diverse output not to be additive.'® This distinction between the task and
the desirable output of the task is necessary in determining the additive contri-
bution that is made by employing functionally unproductive human resources in
promoting dependability. For example, consider the set diagram in figure 3.4.

If the task nature is a searching task, then the desirable output contributions by the
three resources employed in the diagram is generation or identification of different
things. In this case, the more things that lie in the areas of E, F; & G the better (i.e.
they increase the additivity between the resources as a performance of the group
of resources). However, if the desirable output from employing human diversity
is uniformity (such as a calculation task), then the more things that lie in the area
A the better (i.e. confidence in the correctness of the calculation is additive in this

18For example, if the task nature is a searching task, then the desirable and additive output from
the task is generation and recognition of different things (i.e. diverse requirement consideration,
diverse design criteria generation, or diverse fault detection). However, if the task was a complex
calculation task to compare outputs then although the task nature still requires diversity, the desir-
able output from the task is corroborated answers — not diverse answers. Therefore, in beginning
to propose some form of measurement of diversity, it is important to make a distinction between
the nature of the task and the desirable additive output required from the task.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 87

type of task)."

This example does raise one final consideration that is important in determining
the additivity of the task or the effectiveness of any process intervention to im-
prove task additivity. Up until now, it has been assumed that achieving diversity
as a desirable output of such a task, as a searching task, is ultimately a good thing.
However, this is not entirely the case. For example, in design or code review-
ing a high level of diversity may be desirable (i.e. detecting different faults) but
the differences may be of an incorrect or superficial nature which contributes lit-
tle (if anything) in terms of promoting dependability.?’ Therefore, two measures
of the output are required in determining the contribution made from any human
redundancy and diversity employed:

1. Productivity effect. This is a measure of the desirable additive output from
the task. So in a searching type task this would be a measure of difference;

2. Quality effect. This is a measure in purely value or fitness-for-purpose in
terms of promoting dependability. No consideration to difference is made
— just its contribution in promoting dependability.

The two measures combined provide a good indication of how effective human
fedundancy has been in promoting dependability on a task, or how effective some
process intervention has been in promoting dependability through employing human-

redundancy on a task.?!

19To give a more traditional example, consider a TMR scheme: it has three components (re-
sources, 1, 2 & 3) two of which at any one time are functionally redundant or unproductive (in
the classical sense), but essential in masking out faults if a safety-critical system function is not
to fail (i.e. dependability contribution). The nature of the task they provide requires computa-
tional diversity (achieved through process intervention to stimulate greater potential of achieving
computational diversity). The desired additive output, however, does not require difference but
corroborating (and preferably identical) data. Using the set diagram, the most desired additive
output is area A while any of the shared areas B, C or D are also desirable for fault-masking
through consensus voting by the adjudicator. If areas E, F and G result then drastic alternative
actions are required.

20Worst case would be the identification of false-negative faults during the inspection/review
that could result in needless rework, time, and cost. Therefore, some qualitative measure is also
necessary.

217t should be noted though that a low productivity effect means that the redundant human
resources employed were contributing little and in terms of their dependability contributions were

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 88

3.5 Chapter Summary

In this chapter the issue of promoting software dependability via a fault—avoidance
in the software creation process has been considered. Software development suf-
fers from a number of ongoing problems that can undermine the dependability
of the created artifact. These essential problems have been condensed down into
a number of essential process and process environment factors. The view taken,
in this chapter, is that a dependable software artifact is dependent upon a mature
and dependable creation process. An approach to achieving a dependable process,
that is consistent with the existing dependability framework, has been presented
and discussed. It has been argued that, improving the dependability of the pro-
cess, requires an holistic and integrated view that captures the goals that must be
achieved in order for a creation process to be considered dependable. The threats
mandate, unlike the existing dependability framework, a greater understanding of
the fault phenomenology — in order to better understand how process technology
can be effective, and how it should be resourced so that faults can be prevented
or faults introduced can be better detected and removed. Finally, the issue of
process redundancy to improve fault-avoidance was introduced. It was discussed
how process redundancy means employing extra effort, that, while not function-
ally productive, are considered crucial in promoting other dependability properties
through some means of achieving greater levels of fault-avoidance in the process
or fault-tolerance within the product. For process redundancy to be justified, how-
ever, the nature of the task must either be sufficiently additive to extra effort or be
capable of being made sufficiently additive through some form of direct process
intervention. The purpose of employing process redundancy, in the process, is to
gain greater levels of diversity to improve the fault—tolerant nature of the creation
process through increasing fault—forecasting, fault-prevention and detection (i.e.
fault—avoidance via human and/or technology diversity) and thereby increase the
dependability of the software artifact produced. A number of approaches already
exist to achieve human diversity in the process. These either accept that the nature

of a task is sufficiently additive or attempt to make it more additive through direct

classically redundant. A low productivity effect may only be justified on safety-critical systems,
as even though little diversity is actually achieved, the extra diversity may have resulted in the
avoidance of a fault that could have resulted in a high consequence failure.

CHAPTER 3. DEPENDABLE SOFTWARE PROCESSES 89

process intervention. Determining the additivity of process diversity requires two
measures that 1) measure the degree of diversity achieved — in terms of a produc-
tivity effect; and 2) measure the value or fitness-for-purpose of the contributions
made — in terms of a quality effect. These combined measures are suggested
as an indication of how effective the process redundancy involved has been in

promoting dependability through fault-avoidance.

Chapter 4

Computer-Based Systems

90

CHAPTER 4. COMPUTER-BASED SYSTEMS 91

4.1 Chapter Introduction

Chapter 3 discussed the many issues involved in the software creation process
along with a view of characteristics of a dependable software process. In this
chapter the broader system considerations involving a computer-based system

(CBS) viewpoint will be introduced and discussed.

The chapter first examines in section 4.2 what is meant by a system view by il-
luminating the many established issues involved in analysing and perceiving sys-
tems. Next, in section 4.3, a wider computer system conception of a computer as
a computer—based system is provided using the many system analysis issues from

section 4.2.

4.2 System View

Before discussing the issue of a computer-based system, it is necessary to con-
sider what is typically meant by the term "system”, as loose reference and usage of
the term is widespread and has often resulted in some computer scientists avoid-
ing the term altogether to prevent vagueness [cf. [50]]. A systems viewpoint is a
generic conception that attempts to explain and understand the workings of some
natural or artificial entity of interest. It is sometimes loosely applied to refer to
a legal system, an ecological system, an economic system, or a computer system
etc. However, implicitly in all these usages and references, the term "system” im-
plies some degree of organisation (i.e. as a verb to organise). Therefore, we can

list the characteristics of a system as follows:

1. System Environment. Unless the system is closed from its environment,
the environment of the system will often exert indirect influences upon the
system — forcing the system to respond and/or adapt to changes. The na-
ture of the environment is an important facet in systems theory. Cooke and
Slack [59] highlight that there are two aspects to consider with respect to
the environment of a system. Firstly, is the system environment complex or

simple? Simple environments are those that exert only a few well known

CHAPTER 4. COMPUTER-BASED SYSTEMS 92

disturbances and influences upon the system. By contrast, a complex envi-
ronment will exert a large number of relatively unknown disturbances and
influences. Secondly, is the system environment static or dynamic? A static
environment is one that is largely stable and unvarying. Whereas, a dy-
namic environment will demand much larger influences upon the system to
adapt and change. Together, these two system aspects introduce a 2 x 2
matrix in which to characterise a system’s environment: Static/Simple —
where the perceived uncertainty surrounding the system is very low; Dy-
namic/Simple — where the perceived uncertainty surrounding the system
is moderately high; Static/Complex — where the perceived uncertainty is
moderately low; and Dynamic/Complex — where the perceived uncertainty
is very high.

2. System Boundary. Defining the system boundary is critical to determin-
ing, communicating and understanding the system—of-interest. Two differ-
ent people may often view the same entity at different levels of abstraction
— through viewing one person’s entire system as only a part of their sys-
tem viewpoint. Sometimes two system viewpoints may overlap — and one
person will only perceive part of the other’s system view, while both are

oblivious to certain aspects of the other person’s system viewpoint.

3. System Inputs and Outputs. Unless the system is closed to its environ-
ment the system will receive inputs and deposit outputs back into its envi-
ronment. The manner, effectiveness, and efficiency, by which the system
converts these inputs into outputs will largely be determined by its purpose,
and influence the system’s ability to survive within that environment.

4. System Interfaces. Systems will often be composed of other parts or sub-
systems when viewed from a particular level of abstraction. Within the
perceived system boundary, the manner in which these parts of subsystems
communicate information is via a system interface. If these interfaces are
altered or corrupted, then the system may be quite different in nature or fail

to fulfill its intended purpose.

5. System Control. Systems that posses survivability characteristics are those

CHAPTER 4. COMPUTER-BASED SYSTEMS 93

systems that can protect their identity. To achieve this quality requires ef-
fective control subsystems as a part of the system’s internal organisation.
Chapter 2 discussed the three essential means of achieving control in a sys-
tem using either passive buffering, feed-forward, or feedback control. In
essence, this involves blocking, anticipating, or correcting samples of in-
puts from either the environment or at the internal system interfaces.

6. System Emergence. Emergence, while a definitive attribute of a system,
is also a deep and somewhat controversial system aspect. Fundamentally,
it is the view of what properties the entire system possesses,! but which no
individual part or subsystem of the system possesses. It is this that gives
a system view an holistic attribute. Ashby [54] reveals that a system may
be considered to have emergent properties because the parts or subsystems
are either not completely understood, or do not reveal sufficient knowledge
about their behaviour under study. In this sense, the creator or observer
of the system in question only has a homomorphic understanding of the
system’s possible state space when subsystems are coupled or observed at
that level.*> The essential point that Ashby wished to make was that while
a system viewed at a certain level will contain behavioural properties not
possessed by the parts or subsystems, these are only emergent (or unantic-
ipated) system behaviours if the creator or observer of the system at that
particular level cannot discriminate the subsystem parts and interface link-
ages that result in those behaviours. Otherwise, if an omniscient view of the
state space and interface linkages is provided, then there will be no unantic-

IThis of course depends often upon how the system boundaries are set.

2Ashby gives the examples of a) the gases Ammonia and Hydrogen Chloride — both are
gases, but when mixed form a solid — a property not possessed by either; b) Carbon, Hydrogen,
and Oxygen are all tasteless, but the compound of sugar possesses a taste — which none of the
elements do; ¢) The twenty amino-—acids in a bacterium have no "self—reproducing" property of
there own. Yet the bacterium they make—up possesses this property.

3A point that highlights how a particular system or view of a system may seem to possess
emergent properties when there is incomplete knowledge of the subsystems is also given by Ashby
with the property of elastic, which for years confounded chemical scientists as to why elastic had
a stretching quality, when the molecules that made it up possessed no extension properties at all.
It was later realised that during the composition process the individual molecules jostled tightly
for position resulting in each molecule taking a length that was less than its maximal length.

CHAPTER 4. COMPUTER-BASED SYSTEMS 94

ipated behavioural properties of the system as a whole.* Other references to
emergence are often considered in terms of "self-organisation" [cf. [88]].
In self-organising systems, emergence is defined as a survivability prop-
erty, not based upon some top—down command and control subsystem, but
instead based upon a non-hierarchical bottom up emergent order that em-
ploys local rules and interactions to represent the important macro—level
emergent properties critical for a system to maintain its identity and adapt

to its environment.’

In the context of this thesis, the view of emergence relevant to a dependability
perspective (and particularly the wider view of a computer-based system depend-
ability) relates to the potential for unexpected behaviours of the system (that will
be judged to be undesirable by another judging system) that, in essence, results
from an inability to completely comprehend and/or construct the system to prevent

such unanticipated and undesirable behaviour.

An additional aspect of a system view is that systems exhibit goal-directed be-
haviour [5].% This purposive view, as discussed above, often is influenced by the
particular viewer or creator of the system and connected to the system boundaries
that are set. Furthermore, while a system may have a primary macro-level purpose
— as a super—ordinate type goal, it can also have many secondary micro-level pur-
poses — as sub—ordinate goals. The latter is often referred to as a system having
latent functionalities. Merton [89] makes a clear distinction between manifest and

latent functionalities of systems to remove the confusions often introduced in the

It is important to point out that emergence in this context is viewed as something inexplicable
about the system when observing an existing (say natural) system, or is considered an undesirable
system behaviour that is unintentional and defeats or undermines the purpose of the system when
creating a (say artificial) system. However, in either case, it can still be ascribed to an incomplete
understanding of the system’s total state space.

3Johnson {88] provides examples of harvest ant colonies where the local chemical rules and
physical interactions between individual ants accumulate, in a representational manner, to ensure
that sufficient ants are involved in the colonies critical activities of nest building, food foraging,
nest cleaning, nest defence, etc activities. This order is achieved without any top—-down command
and control hierarchy being present in the colony.

SThis is a controversial aspect with natural systems that are often given material and efficient
causal explanations [cf. chapter 7]. However, it is an obvious aspect when considering artificial

systems.

CHAPTER 4. COMPUTER-BASED SYSTEMS 95

. IMEN
ENVIRONMENT ENVIRONMENT

EMERGENT MANIFEST
PURPOSE

LATENT FUN('HON/_\ | \“ / f [PE——— LATENT FUNCTION
| ' \ 4
/ \ \
H / : B S \ ;
Virn o - = - I
[N S
leanS ’ | ’
S ’\ / o
3

INTERFACES

OuUTPUTS

SYSTEM BOUNDARY

ENVIRONMENT ENVIRONMENT

ENVIRONMENT

Figure 4.1: System View

sociological literature to distinguish between conscious intentional actions and
motivations and unconscious, unintentional actions and motivations that are of-
ten found in explanations of entities, processes, or system views. Checkland and
Wilson [90] provide two good examples and distinctions between manifest and
latent functional explanations, when considering human—activity systems, from a
sociological perspective, as follows [p. 53]:-

"...various tribal rain-making ceremonies do not in fact serve
their manifest — in this case, meteorological — function; but they
do serve the latent function of reinforcing the group identity. Nearer
home, the purchase of an expensive car may serve not only the man-
ifest purpose of providing a means of transport but also the latent

function of declaring, claiming or reaffirming social status."

It is important to note here, that in the first case the primary or manifest purpose
was actually completely ineffective, while in the second case both manifest and
latent functions of the system (i.e. car) are present. Moreover, purpose of even

CHAPTER 4. COMPUTER-BASED SYSTEMS 96

a simple activity can often be very subjective, relevant, and representational to
only an individual’s self interest. A good example of this is provided by Drucker
[91] with the story of the three stone—cutters. Drucker takes the scenario of ask-
ing three stone—cutters individually what they are doing. The first stone—cutter
replies "I’'m making a living cutting stone.” The second stone-cutter replies "I'm
practising the skilled art of stone—cutting, of which I'm one of the most talented in
the land."” The third stone—cutter replies "I'm building a Cathedral.” The point to
note in this story is that each stone—cutter ascribed a different purpose to what they
were doing. To the first stone—cutter the activity was merely an end in itself (i.e.
making a living). To the second stone—cutter the purpose of the activity was also
an end in itself — in terms of reinforcing his sense of self-identity through being
recognised amongst his peers as a highly talented stone—cutter. To the third stone—
cutter however, the activity of stone—cutting was only a means to a greater end.
Whilst we could simply ascribe latent functionality of stone—cutting to both the
first and second stone—cutter, and manifest functionality to the third stone—cutter,
this story also highlights the potential for conflict to emerge between manifest
and latent functionalities of entities, activities, or systems. For instance, optimis-
ing stone-cutting by, for instance, introducing some machine to semi-automate
the stone—cutting process to improve productivity and/or quality would quickly
bring conflict with the first and second stone—cutters — as the first would poten-
tially perceive it as a threat to his livelihood, while the second may perceive it as
a personal attack upon his status and sense of social identity. However, the third
stone-cutter would most likely be content and agreeable with the new situation —
as such activity optimising is in perfect alignment with the purpose ascription he

attaches to stone—cutting.

Figure 4.1 provides a visual depiction of the system view issues provided in this

section.

4.3 Computer-Based System View

Before providing a specific computer-based system view, it is important to stress
that perceiving some aspect of the world as a system is very different from claim-

CHAPTER 4. COMPUTER-BASED SYSTEMS 97

ing it is a system. Checkland and Scholes [92] emphasise this, stating:-

"....it is perfectly legitimate for an investigator to say "I will treat
education provision as if it were a system,” but that is very different
from saying that it is a system...Claiming to think about the world as
if it were a system can be helpful. But this is a very different stance
from arguing that the world is a system, a position that pretends to

knowledge that no human being can have."

This does not imply that a systems view always has no substance — as a car or a
computer are physical entities that can be touched and objectively observed. Only
that it is often a matter of subjective interest what different individuals choose to

select and emphasise as a system view.

Having stated this explicitly, the following subsections provide the system aspects

of interest in determining a computer—based system view.

4.3.1 A Holistic Perspective

As discussed in section 4.2, the single most influencing aspect of determining a
system viewpoint is in the definition of the system boundaries. Instead of consid-
ering a computer system as primarily a technical construction of an artifact and
associated activities — as chapters 2 and 3 have focused upon, the system view
proposed here is to expand the system boundary outward to include not only the
technical system, but also the human system with which it must interface with. By
the term "human subsystem’ it is meant to not only encompass the role of people
involved in the direct creation process, but also a wider inclusion of the impor-
tant influences of people involved in its strategic and operational exploitation. In
this system viewpoint both the technical computer system and the human system
are considered subsystems of interest at a higher level of system conception. In
principle, this is what is to be interpreted by the term "Computer—Based System”.’

TThis system view is consistent with that defined by the DIRC research programme cf.
www.dirc.org.uk

http://www.dirc.org.uk

CHAPTER 4. COMPUTER-BASED SYSTEMS 98

As hardware, network, and software technology advances at an increasingly fast
rate, it is becoming ever more necessary to gain a more complete and inclusive
systemic view of information technology. It has been traditional for profession-
als to specialise in certain areas (i.e. hardware, networks, software) and build
computer systems in relative isolation. As computer systems undertake more and
more control of complex and novel information processing situations that can af-
fect everyday lives, the weaknesses of such specialist and isolated approaches are
becoming ever more apparent. This view has long been reinforced and advised
by Neumann [93] noting that long-standing failures of the Hubble telescope, the
ARPANET collapse, and the AT&T long—distance slow down where all directly
attributable to "...a lack of suitable systems perspective on the part of the devel-
opers, administrators, users, etc." Furthermore, Neumann advises that process
technology alone is insufficient to provide such a holistic perspective where dif-
ferent dependability attribute requirements (i.e. reliability, integrity, security, etc)
need an integrative representation — in order to appraise their particular impor-
tance in a given application domain and identify conflicts that can result later in

the form of obscure system flaws.

4.3.2 The Generic CBS Contexts

In this section I introduce the notion of four generic computer—based system
contexts—of—interest that have been interpreted from a variety of information sources
that are cited within this section. However, such an inter-related computer-based
notion is different in the way that this relates the usual major influences and re-
lationships to be found. As this section and future chapters (e.g. chapter 5 and
chapter 8) will show this can be useful in representing and discussing a wider,

holistic, and integrative view when considering computer-based systems.

This section provides an initial system viewpoint of the important subsystem con-
texts that can often affect the success and failure of a computer system. In chapter
3 it was noted that a number of ways in which the creation process can be judged to
have failed would be expanded upon in this chapter and this would require a wider
computer-based system perspective. It was briefly highlighted in chapter 2 that

CHAPTER 4. COMPUTER-BASED SYSTEMS 99

- -
- -

- S~ WIDER
-
R e S . APPLICATION
v S DOMAIN
e ~
& .
el N
R4 [N
X4 \\
& & ", .
‘ N3 QA v
’ <« ¥ bo \

/) S 1 74'0 1, \

A & r’s \

INGAWNODITY
IVIDOS

STRUCTURAL
CHANGE

EVOLUTION
CONTEXT

-
-
il

L T
- -

~ -

- -
- -

Figure 4.2: Generic CBS Contexts

a number of other judgements of failure — such as a) expectation failure; and b)
conceptual failure require a wider computer-based system explanation. However,
it should be pointed out, that such a wider computer-based system view should
not be considered a panacea for discussing, thinking about, and developing all
computer systems, as some computer system developments may not require such
a system view. This is particularly true of 'systems’ software and "middle-ware’ —
where the domain is much more limited to, essentially, technical considerations.?
Therefore, such a computer—based system view is more associated with ’applica-
tions’ software. With applications software, however, a number of non—technical
considerations — can often be responsible for judgements of failure. The generic
computer-based contexts, discussed below and illustrated in figure 4.2, can of-
ten be viewed as 'sources’ of interest from which such judgements may be made.
The actual technical computer system development is an assumed technical sys-
tem that influences (and is influenced by) all four of the generic computer-based

8Good examples of 'system’ software are operating systems, and peripherals. Examples of
‘middleware’ software are web server and network communication software.

CHAPTER 4. COMPUTER-BASED SYSTEMS 100

system contexts discussed.

4.3.2.1 The Utility Context

This computer-based system context of interest embodies the high—level, and
overriding, justification for the computer system’s existence to begin with. From
the late 1970’s to present day, the advances of information processing technology,
along with the ongoing reductions in the cost of such technology — has resulted
in information technology occupying an increasingly strategic role within many
organisations [94]. Information technology (IT) has been continually recognised
as a strategic organisational resource which can be exploited to provide a given
organisation with competitive advantage. A number of strategic analysis frame-
works have been developed to aid in the the strategic planning of organisational
information systems, the most widely known and enduring of which has been [cf.
[95, 96]]: a) the "value—chain" model for assessing an organisations’ primary and
secondary functions — and how IT can be used to improve the organisations’
effectiveness and efficiency; b) associated and adapted with other longstanding
strategic analysis frameworks — such as the "five—forces model"” and the "generic
positioning model” to determine how the information content of a service or prod-

uct can add value and act as competition barriers.

What all the above strategic issues of IT imply, is that there will always be some
high-level strategic value or utility rationale for justifying a computer-system’s
existence to begin with. The nature of the organisation itself will often have a
fundamental influence in determining what this strategic justification is. For in-
stance, in a commercial organisation this will often be closely connected with cost
savings, quality of service improvement, greater market penetration projections,
etc, whilst in a non—commercial organisation, such strategic IT value or utility
considerations may well have wider macro sociological, economic, or political
objectives to satisfy. The term of importance here is "satisfaction”, as strategic
planning and analysis considerations are, by definition, of a predictive and fore-
castive decision-making nature [cf.][59]], emphasising utility or value judge-
ments that reflect forecasts and predictions of strategic importance benefits envis-

CHAPTER 4. COMPUTER-BASED SYSTEMS 101

aged with the system. In this regard, it is possible to make clearer what was meant
in chapter 3 — regarding considerations of expectation failure judgements. For
example, in order for the envisaged IT system to satisfy the strategic utility and
value judgements made, the expectations (i.e. actual predictions) of strategic util-
ity and value must be matched by subsequently deployed strategic performance of
the IT system. It can be appreciated that, expectation failure occurs, when either
the original expectations are unrealistic in some way, or the expectations were re-
alistic but subsequent performance of the deployed IT system during operational
deployment was less than the potential that the system could have achieved. Both
of these will result in dissatisfaction with the strategic utility or value that was
expected initially. Amongst the major strategic problems that have compromised
satisfaction with IT investments, by organisations, has been a lack of alignment
between strategic plans (i.e. business etc — depending upon the organisation
type), the information systems necessary to support such plans, and the suitabil-
ity of the actual IT systems deployed and developed to produce such information
[cf. [96]]. Analysis of such expectation failures have often been 'rooted’ in non—
technical problems — such as inadequate strategic linkage and representation of
technical know-how at the board level, etc [cf. [94]].

4.3.2.2 The Deployment Context

If the utility context represents strategic value considerations and judgements, then
the deployment context reflects the ’lived—in’ day-to—day judgements and experi-
ences of how well the deployed computer system supports the many individual’s
own occupational, career, and work requirements. Failure of the IT system to be
effective in aiding people to perform their work commitments and responsibilities
can quickly result in a perfectly capable (i.e. technically) IT system not fulfill-
ing its envisaged strategic benefits. Again, this highlights that, within a wider, and
holistic, computer-based system viewpoint, judgements of failure may result from
non—technical problems. A very good example of such non—technical deployment
failure, is given by Lynne-Markus and Keil [97]. The computer system’s strate-
gic aims (i.e. utility) was to reduce the cost inefficiencies and improve customer

service through reducing computer parts configuration errors when creating and

CHAPTER 4. COMPUTER-BASED SYSTEMS 102

fulfilling customer orders. But despite the computer—systems technical capabil-
ity to produce error—free configurations more dependably than the average sales
personnel, two usage surveys carried out in 1986 and 1989 revealed that only, at
best, 25%, and, at worst, 10% of the sales personnel reported using the computer—
system. Despite redesign attempts that significantly improved the usability of the
computer system, usage did not improve. It was finally revealed, that, although
the computer system was technically well designed, the computer systems’ under-
lying organisational design conception failed because of the non-technical issues
of being fundamentally mismatched with the responsibilities, roles, and motiva-
tions of its intended users — the sales—force personnel. As Lynne-Markus and
Keil stress, the system failed because of [p.14]:-

"No Motivation: Sales reps were simply not motivated to produce
error—free configurations...CompuSys’s organisational structure and
reward systems...did not give any incentive to the sales department to
prevent configuration errors but rewarded reps on the basis of their
sales volume....Furthermore, the sales reps believed that verifying the
accuracy of the configurations they specified on the sales orders was
not their responsibility. Although the redeployment effort removed
many barriers to the use of CONFIG, it did nothing to attack the
users’ basic lack of motivation or incentives, without which they were
highly unlikely to use CONFIG...Disincentives: The sales reps actu-
ally had disincentives to using CONFIG; it made it harder for them to
do what they had the motivation to do — make sales. Its developers
had the goal of optimizing the configuration process. But, from the
sales reps’ perspective, creating the configuration is actually a sub-
process: it’s only a means to the end of the true goal — getting the

customer a price quote in the course of making a sale.”

This example of a conflict of notions of the frue’ purpose of the computer system
resonates with the earlier example of Drucker in section 4.2 and the scenario of the
three stone—cutters. The manifest strategic goal of the computer system (i.e. cost
efficiencies and customer service) conceived within the utility context—of—interest,
fundamentally conflicted with "other’ (say) latent deployment sales goals of the

CHAPTER 4. COMPUTER-BASED SYSTEMS 103

sales department personnel — in the way they perceived their responsibilities and
roles in connection with the computer system. Such a system purpose conflict
is not an isolated occurrence either — as Kirby [98] reveals in his analysis of a
failed Information System (IS) project called IRIS. IRIS’s strategic utility or value
rationale was as an Integrated Requisitioning Information System to re—engineer
the requisitioning, purchasing, receiving and disbursement of employee reporting
processes. It was expected that streamlining business functions and eliminating
reporting inefficiencies would result in reduced costs and increased profits — this
justified the system’s existence. Furthermore, IRIS also had competitive advan-
tage expectations, as it was believed that IRIS would bring suppliers on-line, and
thereby increase their dependence upon, and commitment to, the organisation.

However, it quickly became apparent to the managers, employees, and intended
users of the computer system that it would radically alter their roles, responsi-
bilities, and work content of their jobs. Furthermore, many began to see that, if
not in the immediate short—term, then in the longer—term, IRIS could threaten their
livelihoods within the organisation. Eventually, they viewed IRIS as headquarter’s
way of increasing their domination and control of their workforce and automating
and reducing the richness of their present roles, responsibilities, and jobs. Kirby
highlights that the two views of IRIS (i.e. utility context vs. deployment con-
text) was underpinned by the attribution of different meaning interpretations to
the same set of design rationales and computer system issues, stating that such

differing perspectives about the same things can [pp. 210-11]:

" ...be thought of as a set of underlying assumptions and beliefs about
the way in which the world operates. Depending upon the assump-
tions adopted in analysing IRIS, different conclusions can be reached.
Any one perspective supplies only a partial view of the world, and no
perspective can hope to explain everything...In each case, the individ-
uals involved saw the same events as management, but attributed dif-
ferent meanings to them....management saw things from one perspec-
tive, that of economic rationality and cost-benefit analysis, whereas
others ascribed meanings such as self-preservation, domination, and

power acquisition...management made the mistake of assuming that

CHAPTER 4. COMPUTER-BASED SYSTEMS 104

everyone saw things from the same rational, economic perspective.
It never occurred to them that the same events could be interpreted
so differently...The best way to recognize that people are ascribing
different meanings to events is to be aware of the possibility of it hap-

pening."

From these examples we can see that, in terms of a wider computer—based system
view, it is necessary to be aware that different meanings, views, assumptions, and
beliefs from different contexts of interest can result in non—technical judgements
of failure in spite of the computer systems ’actual’ technical capability — due
to different views of the computer—systems perceived purpose. Furthermore, as
briefly discussed in chapter 3, such conflicts can result in a deployment failure —
a situation, as described above, where a technically capable computer system fails
for non—technical organisational reasons like organisational mismatches, informal
rejection, or covert rejection due to conflicts of meaning and purpose between the

two contexts—of—interest.

Finally, just as the strategic utility must be in alignment with the eventual actual
design rationale and infrastructure of the computer system to avoid expectation
failure, the strategic utility must also be in alignment with deployment issues of
latent purpose ascription — if its expected strategic performance is not to be un-
dermined by non—technical deployment problems. This is illustrated as a context
interfacing issue between the utility and deployment contexts in figure 4.2 on

page 99.

4.3.2.3 The Engineering Context

The engineering context issues have already, largely, been covered in chapter 3.
Essentially, as discussed there, the engineering issues relate to the technical con-
struction of the computer system and its supporting infrastructure to both realize
the strategic utility expectations and ensure that the eventual deployed computer
system results in a system that the users are motivated in using. However, as issues

of deployment discussed in subsection 4.3.2.2 indicate, although ergonomic and

CHAPTER 4. COMPUTER-BASED SYSTEMS 105

Figure 4.3: Emergent CBS Dependability

usability factors can greatly improve the likelihood of the deployed system be-
ing used [cf. [55]] through such approaches as User—Centred—Design (USD), this
alone will not guarantee adoption if there exists fundamental conflicts of notions
of purpose and meaning, etc due to a lack of representation of important socio-
logical and organisational issues. This requires greater coverage of the strategic
and deployment situation than is usually associated with elicitation of functional
requirements found in many software engineering texts [cf. [27, 28]], and, as al-
ready discussed in subsection 4.3.1, requires a much greater holistic contextual
integration — if such aspects of strategic alignment, sociological alignment, and
functional requirements are to be more completely covered and considered.

4.3.2.4 The Evolution Context

All open systems must change and adapt to environmental pressures if they are to
persist their identity over time. A computer system is no different in this respect.

CHAPTER 4. COMPUTER-BASED SYSTEMS 106

Pressure for change can result from both internal and external sources. Firstly,
it has long been recognised as a law by Lehman and Belady [99] that IT sys-
tem usage stimulates users to request and require more functionality. Therefore,
from a deployment perspective, IT system introduction invokes a reinforcing set
of system dynamics which continually promotes situational evolution. Secondly,
from a strategic utility or value perspective Earl [96] notes that the strategic IT
planning process is also a reinforcing dynamic whereby the strategic introduc-
tion of IT systems can often, over time, stimulate new strategic IT opportunities
in the future — again invoking a set of reinforcing system dynamics that require
constant evolution of IT at the strategic utility level. Both of these examples rep-
resent how evolution is stimulated internally — within the application domain by
both the strategic utility and deployed state of IT systems. However, evolution
can be stimulated externally also — good examples of such external evolution-
ary influences, in regard to IT systems, is in the wider commercial and political
environment. Firstly, Porter and Miller [95] have long argued how, strategically,
the value of greater informational provision, within an organisational situation,
can result in creating whole new ways by which competition is defined — in ex-
treme cases whole new industry sectors can be created where the strategic use of
IT systems has become a prerequisite for competition. Secondly, many public or-
ganisations are often influenced by government political strategies that mandate
fundamental utility or deployment changes to new and pre—existing IT systems —
this is particularly true of the National Health Service (NHS) in the UK where the
government actually provides periodic IT strategies at both the national and local

level.

Lastly, the engineering context is tasked with the problems associated with evolv-
ing IT systems. Research has highlighted the extent of such problems of changing,
correcting, and adapting existing IT systems, it reveals that as much as 80% of the
total lifetime costs associated with IT expenditure can be used up in the evolu-
tion. maintenance, and adaptation of IT systems [cf. [100, 101, 12]]. Failure to
do so, however, can often result in IT systems losing their usefulness and becom-
ing legacy systems, these are systems that the organisation still relies upon for
their strategic and operational viability, but which can no longer be evolved [cf.

CHAPTER 4. COMPUTER-BASED SYSTEMS 107

[101, 28]].

4.4 Chapter Summary

In this chapter the view of dependability has been extended to consider what de-
pendability means in the wider view of a computer—based system — where the
boundaries of the system—of—interest are widened to include the interfacing roles,
responsibilities, and motivations of the human subsystem — in its many forms
(i.e. strategic, engineering, deployment, and evolution). It can be seen from fig-
ure 4.3 that dependability is an emergent super—ordinate goal which is dependent
upon an emphasis of a bottom-up and integrated view of the contexts—of-interest
that ascribe often different and subjective notions of what constitutes the meaning
and purpose of the computer system. Identifying and reconciling these subjective
context—of—interest views is crucial, as, within a wider holistic computer—based
system conception it can be seen that judgements of failure, satisfaction, and suc-
cess, with the computer system, can be determined by non—technical aspects of
the system. If these differing views are not identified then different interpreta-
tions, meanings, assumptions, and purpose ascriptions can be fundamentally in
conflict with each other. When this occurs, as has been discussed, the overall per-
ceived dependability of the computer—based system can often be compromised.

In the next chapter a more specific example of applying a wider computer—based

system view of dependability is provided with an analysis of the Automatic Teller

Machine domain.

Chapter 5

ATM Case-Study

108

CHAPTER 5. ATM CASE-STUDY 109

5.1 Chapter Introduction

In this chapter the domain of the Automatic Teller Machine (ATM) is used to
emphasise a computer—based system view of dependability issues. The Automatic
Teller Machine is chosen as it is a well exposed domain — spanning almost 25
years of wide-scale deployment. This chapter raises and discusses a number of
failures and vulnerabilities that have been reported over this period. The chapter
ultises these issues to show how ATMs can be more broadly conceptualised as
a computer-based system and by taking this view demonstrates the need for a
broadening of the system—of—interest to help understand the fault phenomenology

of harmful assumptions that can result in computer—based system failures.

5.2 ATM Contexts

In the following subsections a variety of failures of ATM’s will be discussed.
These are based upon a wide number of literature sources — some going back
to the early/mid 1980s. The purpose is not to provide a complete coverage, but
to illuminate some varied ways in which ATM’s can fail or be exploited. To be
consistent with chapter 4 the subsections will be divided into the computer—based

system contexts—of interest of:-

e The Utility Context — in terms of the strategic IT strategy issues that have
influenced such failures and vulnerabilities;

e The Engineering Context — in terms of the IT development issues that
have resulted in failures and vulnerabilities;

e The Deployment Context — in terms of operational IT issues that have
resulted in failures and vulnerabilities;

e The Evolution Context — in terms of the changing and environmental is-
sues that have resulted in failures and vulnerabilities.

It should be noted, however, that each failure or vulnerability, while originating
from a particular context, often manifests in another context. As a consequence,

CHAPTER 5. ATM CASE-STUDY 110

each context often refers to related ATM contexts in which the consequences of

failures and vulnerabilities manifest.

5.2.1 The Utility Context

This subsection relates to the strategic IT policy issues and oversights that can
result in failures and vulnerabilities becoming manifest in other contexts. While
ATMs have offered banks and financial institutions advantages, these have of-
ten been short-lived as ATMs represent a purely technological differentiation ap-
proach to achieving competitive advantage that has been easily replicated by com-
peting banks and financial institutions [55]. In real terms, the ongoing ubiquity
of ATMs is due to their indispensable industry influence for banks and financial
institutions to maintain competitive market standing with their competition [102].

ATMs were among the first commercial systems to utilize information transfer
protection via data encryption [103]. Some believe that the 56 bit encryption
algorithms, often used in ATMs were deliberately limited for national security
reasons [104], or economic reasons — rather than purely technological reasons
[cf. [105]]. Nevertheless, banking ATM security policies often employ hardware
encryption modules of the Intel 8751H, Intel 8752H, or AMD 9761H standard for
deriving and verifying PINs in off-line ATM designs' [106]. With later on-line
ATM designs? a more sophisticated form of data encryption utilized a Unique Key
Per Transaction (UKPT) format which signifactly reduced access by unscrupulous
third-party’s either internally (i.e. banking staff, maintainers, etc) or externally
(i.e. line-tapping) as the terminal hardware UKPT hardware module translates
the PIN information into an irreversible internal form so the customers PIN never
appears again, either within the ATM or central accounting banking systems in an

unencrypted format [107].

10ff-line ATMs formed most of the earlier ATMs used. These designs did not have ’live’
network links to the banking account systems or credit clearing houses. Consequently, Personal
Identification Numbers (PINs) and Daily withdrawal limits had to be enforced through the ATM
card with only periodic batch-style updating between the ATM and the banking account systems.

20p-line ATM designs have a ’live’ direct link with the banking account systems. Conse-
quently, PIN, card, and Daily Withdrawal Limits can be directly verified in (practically) real-time
with a bank customers account information.

CHAPTER 5. ATM CASE-STUDY 111

Encryption Policy - Issue 1. A particular dependability issue that
can arise from such banking encryption policy decisions is where
technically uniformed decisions subsequently result in vulnerabilities
being introduced via the Engineering context. In this specific example
the preference for utilising proprietary software encryption over pro-
fessionally developed hardware encryption modules has been partic-
ularly criticised, for three reasons [cf. [103, 104]]: a) Unintentional
software faults can seriously undermine the sophistication of the data
encryption — resulting in them being more readily translated; b) The
bank’s programmers are presented with an opportunity to introduce
malicious code for: i) ’back-door’ access; ii) corrupt the algorithm
and keys so it produces a vastly reduced set of encrypted codes; or
iii) use their knowledge of the encryption algorithm and PIN Veri-
fication Values (PVV with off-line ATMs) maliciously to gain illegal
unauthorised access to bank customers’ accounts. In such a situa-
tion, because PINs offer only a small set of combinations (i.e. usually
4 digits — so 10* combinations), all that is required by the ’knowl-
edgeable’ programmer is to tabulate the data into ’look-up’ tables.
This method of attack is usually referred to as data—inversion; and c)
Systemic flaws can be introduced into the encryption algorithm un-
wittingly — due to inexperience, that then allows the encryption code
to be subsequently compromised. For instance, Clough [104] argued
that proprietary encryption methods are unlikely to have been sub-
jected to professional independent reviewing — which only a handful
of people outside the National Security Agency (NSA) in the USA can

really provide.

The serious dependability implications, of such a decision, are exemplified by An-
derson [108] where he reveals how proprietary software encryption was compro-
mised by software programmers being able to extract encryption keys that resulted
in a sustained fraud in a large London clearing house during 1985-86.

CHAPTER 5. ATM CASE-STUDY 112

One of the most controversial issues in ATM banking policies is the view taken
by the banks and financial institutions (i.e. credit companies) that card and PIN
authorisation is impervious to making unauthorised withdrawals at ATMs without
carelessness or collusion by the card and PIN holder [103, 104]. Carelessness
means that the card and PIN holder has been neglectful in their responsibility to
prevent a third—party gaining access to their cards and PINs. Examples include
writing down their PINs on the cards itself [cf. [109]]; telling their PINs to some
third—party (i.e. friends and family members), or allowing some third-party to
use their cards or PINs to make ATM withdrawals on their behalf. Collusion
refers to ATM card-holders deliberately attempting to defraud the banks or gain
money by deception through nefarious collaborations or coalitions with a third—
party (i.e. friends or family members) that allow them to make withdrawals upon
their account(s) which they then claim to the banks have been made unlawfully

by persons unknown.

While there are examples of carelessness and collusion by bank customers {110],
there also exists a plethora of ways in which the ATM authorisation policies of
separate card and PIN identification can be (and have been) undermined to al-
low fraudulent access and unauthorised withdrawal(s) of money from a bank cus-
tomer’s account(s). Such withdrawals have become known as ’Phantom With-
drawals’ [cf. [103, 104]]. Phantom withdrawals have become one of the most
controversial issues surrounding ATMs. In order to maintain customer confidence,
public spokesmen/women (such as the Association of Payment Clearing Systems)
have continued to publicly deny the possibility of such fraud taking place [111].
As Clough [[104]: p 59] argues, banks have frequently and officially stated:-

“Banks do not make mistakes, and there are no such things as phan-

tom withdrawals.”

Clough goes on to explain that the banks and financial institutions fear that if
they were to admit the possibility of phantom withdrawals then this would open
the floodgates for financial compensation to every customer who genuinely forgot
making a particular ATM transaction. Secretly, however, banks and financial in-
stitutions refer to unauthorised phantom withdrawals as "white card fraud" [113].

CHAPTER 5. ATM CASE-STUDY 113

| Year | Cost in millions £ |

1997 £8.2
1998 £9.7
1999 £12.2
2000 £18.3
2001 £21.1
2002 £29.1
2003 £39.0

Table 5.1: ATM fraud in the UK [source: [112]]

The vast majority of reported ATM fraud to the UK Banking Ombudsman relates
to unauthorised or phantom withdrawal complaints [104].

Table 5.1 shows the recent annual cost of ATM fraud in the UK over the last seven
years to 2003.% It is clear from these figures that ATM fraud, whilst only a small
percentage of wider credit card fraud [114], is clearly on the increase in the UK.

Authorisation Policy — Issue 2. The maintenance of this strategic
policy view by banks and financial institutions, while to an extent un-
derstandable, also fails to recognise the subsequent deployment de-
pendability context considerations — in terms of potential safety con-
sequences® it presents for individual customers. While ATMs don’t
represent critical safety concerns like other IT/Software systems (i.e.
embedded control of aircraft or nuclear power stations, etc), their us-
age can result in undesirable consequences — with regard to wrong-
ful (or potentially unreliable) criminal convictions that have occurred
from bank customers claiming to have been victims of phantom with-
drawals. Notable cases include [cf. [108, 103]]: a) In 1985 a teenage
girl was charged and convicted of obtaining money by deception by
using her fathers ATM card to make an unauthorised withdrawal. She

3 At the time of writing, recent statistics reported for 2004 in the press estimate that this figure
has further doubled in two years to approx. £85 million.

4This is not the usual interpretation of safety — in dependability terms of catastophic dam-
age or loss, etc. Rather, in the context of computer-based systems in this chapter, it should be
interpreted in a more general manner to mean some Jjudgement of an undesirable consequence has

occurred.

CHAPTER 5. ATM CASE-STUDY 114

was advised to plead guilty by her legal representation to ensure a
lighter sentence. It later transpired that no theft had ever taken place
and the £40 deficit resulted from a clerical banking error which the
bank then tried to cover-up; b) In two separate incidents, an elderly
woman from Plymouth and a taxi driver from Great Yarmouth were
both charged with attempting to obtain money by deception through
ATMs . Both charges were later dropped when it was revealed that
in both cases the banks security systems were unacceptably vulner-
able; and c) In 1994 a police constable was charged and convicted
of attempting to obtain money by deception when he complained of
six phantom withdrawals being made to his building society account.
The conviction went ahead despite serious concerns over the build-
ing society’s quality assurance and security practice. Additionally, a
number of other technical anomalies existed, including: i) the card
issued by the building society was issue number 2 — without any ex-
planation of why a second card issue had to be raised; and ii) one
of the phantom withdrawals had been made from an ATM in Omagh
Ireland — which the police constable had never visited. An appeal

against his conviction was later successful.

While these instances are rare they nevertheless represent a severe consequence
for the individuals concerned — in terms of everyday risks of using ATMs in their
deployed state. Anderson [108] captures this sentiment in his comment:-

...the idea that complaining about a computer error could land me in

prison is beyond my tolerance limit.

Less consequential safety risks of ATMs, related to this strategic policy issue in-
clude: a) financial loss; b) extra bank charges due to unknowingly going over-
drawn through a phantom withdrawal; c) loss of bank interest that is due; and ¢)
unavailability of cash dispensing services. It is for such consequences that in the
early 1990s approximately 400 aggrieved bank customers filed law suits through
J. Keith Park Solicitors against UK banks and building societies claiming that

CHAPTER 5. ATM CASE-STUDY 115

their ATMs are in breach of contract due to their susceptibility to fraud [115]. In-
dividual claims ranged from £90 to £13,000, and when aggregated, totaling nearly
£500,000.

5.2.2 The Engineering Context

The Engineering context relates to the process by which ATMs, as artificial sys-
tems, are created. This context is responsible for providing a system to the cus-
tomers’ required technical specifications within cost and timescale estimates, which
may be reinforced by legal contractual agreements. However, it should be noted
that if the Engineering context involves an external organisation, the created ar-
tifact may also constitute a product of that organisation itself (i.e. the reader
should read the scenario quote by Malan and Bedemeyer [116] from subsection
on page 184 in chapter 8 for an example of this kind). This may fundamentally
influence the development criteria for the artifact, as the organisation attempts to
maximise its product base through modular or object-based product lines. Such
issues, specifically relating to ATMs are presented in [117, 29] where the func-
tional software design of such devices as card-readers, keypads, and printing de-
vices are generalized so that they can be quickly used for other related products
like security doors, EFTPOS equipment, etc.

Nevertheless, whether acting as an internal function of an organisation, or as an
external organisation itself, the important issue that the engineering context plays
is the management of the many resources, as inputs (i.e. human resources and
process technology), towards the creation of an ATM. Importantly, this involves a
great deal of specific and definite technical decision-making in the artifacts’ cre-
ation that places an emphasis upon communication, elicitation and interpretation
of large amounts of information. This is a prerequisite to providing a depend-
able product, which is often made much harder when providing a product for
an external customer — due to the complexities of access to, and understanding
of, information about another specific application domain. More precisely, the
engineering context must integrate and balance issues presented from the other
contexts such as strategic utility concerns (i.e. ATM banking policies already

CHAPTER 5. ATM CASE-STUDY 116

discussed), deployment concerns (i.e. bank staff and bank customer operational
issues) and evolution concerns (i.e. for example evolution issues presented by

inter-banking and inter-credit merges over time as large credit card institutions

like Visa emerged).

A more specific complexity of the Engineering context, is that it must consider
a further complicating facet, (more specific to development of an ATM) that
the software provided constitutes an embedded control component of the actual
physical ATM system (like firmware mechanisms) as well as a client informa-
tion processing component of the central banking accounting system and/or clear-
ing house credit system [cf. [118, 110]]. Roberson [119] argues that a lack of
sufficient knowledge representation during the engineering is the cause of many
faults, omissions, and inconsistencies between software, hardware, and firmware
involved in ATM designs. In particular he stressed that this significantly reduces
the potential for accurate fault hypothesis, fault detection, and subsequently error
handling as each area of concern is separated with often little communication and
many questionable assumptions being made about another area of concern.® For
example, the early designs of ATMs omitted to consider the potential for an ATM
user to make a cash withdrawal and forget to take their cash from the cash dis-
pensing slot [104]. As a consequence, the amount was debited to the ATM user’s
account with the cash often then stolen by passers-by or subsequent ATM users.
This left the absent-minded ATM user with a financial loss for their error.

Human Error — Issue 3. Whilst the responsibility for fault of the
loss from such errors and the ability to have anticipated such prob-
lems earlier in the development and deployment of ATMs could be
debated, over time, it was recognised that such human-errors of this
kind with ATMs are part of a broader set of known human operational
pathologies that can occur [120]. The increased frequency of such
human error with ATMs resulted in ATM cash dispensing slots be-
ing fitted with sensory devices, cash—retracting firmware mechanisms,

and time-out software control that would retain cash forgotten by the

5Such comments and views reinforce the need for a more inclusive, integrated and holistic
viewpoint, as mentioned in chapter 4.

CHAPTER 5. ATM CASE-STUDY 117

ATM user after a certain time period. It is clear from this historical
fact of early ATM development that, in error—forecasting terms, the
original development undertaken in the engineering of many ATMs
failed to consider the human reliability deployment issues surround-

ing the day-to-day usage and operation of ATMs by bank customers.

While later ATM development considered human reliability issues (such as issue
3 above) in ATM deployment, subsequent ATM designs often failed to identify
(what may be called here) Opportunistic Theft by legitimate ATM users attempt-
ing to steal money during a bona fide transaction interaction with an ATM.

Opportunistic Theft — Issue 4. A good example of this is reported
by Kristiansen [121]. Some customers worked out that when for-
gotten cash was retracted back into the ATM the whole transaction
record was undone to leave the customers account unchanged. There-
fore, if, instead of removing all of the cash dispensed at the dispens-
ing slot, they removed only some of the money, by teasing some notes
out, then, after a certain time period the rest of the money would
be retracted back into the ATM and the shortfall would become un-
traceable to a particular ATM customer. While only a small amount
of cash appears to have been lost by the banks through this secu-
rity vulnerability, the potential for this security hole to be spread by
‘word-of-mouth’, by unscrupulous bank customers, has the potential
to increase losses if it is not identified early. Also it does, in principal,
reveal another example where, in dependability terms, the engineer-
ing context failed to anticipate the deployment security vulnerabilities
involved in the dispensing of cash, and its subsequent retraction func-

tionality — following some human error.

Some security flaws in ATMs can be particularly obscure. One in particular is
due to the (quite justifiable) human interaction principle of allowing a computer
system user to cancel a current computer interaction at any time during the trans-
action stage. With regard to ATMs this allowance has proved important in pre-

CHAPTER 5. ATM CASE-STUDY 118

venting customers entering erroneous data, losing their cards, or leaving an ATM
exposed to subsequent theft or fraud, as the following two cases exemplify:

1. Colville [122] reports on a situation where because the hardware keypad
of the ATM was not registering the input data, or was 'bouncing’ the input
data twice, it would be a desirable feature to cancel the whole transaction
with that ATM and use another rather than risk losing your card during PIN
entry, withdraw too much money, or transfer too little, etc;

2. Chiasson [123] reports on a personal experience where a state inconsistency
fault between the software and hardware device (i.e. card-reader) would
have allowed a subsequent ATM user or passer-by access to his account if
the ATM had not allowed him to cancel the entire transaction and restore a

consistent state between the software and hardware.

While both of these examples clearly indicate the dependability advantages of
providing transaction undo features with ATM designs, Naggs [113] reveals a
subtle flaw in allowing an ATM user to completely undo the entire transaction
before the ATM user has satisfactorily completed the authentication process by
both inserting the card and entering the correct PIN. Naggs inserted his card and
entered two (known) incorrect PIN numbers before cancelling and repeating the
process for a second time. In his own words he noted:

"If you reinsert the card into the ATM it does not remember your

previously failed attempts.”

Such a security flaw clearly compromises the PIN protection offered with ATMs.
It is normal for ATMs to only allow the user three attempts at correctly entering
the PIN. With a four digit PIN (which is most usual) this would give any fraudu-
lent person only a 1 in 3333.33 (recurring) chance — even if they had access to a
customer’s ATM card or had the ability to clone that ATM card (10* = 10,000 pos-
sible combinations divided by 3 PIN attempts). However, this flaw allows many
more than just three attempts and when it is combined with other fraudulent tech-
niques such as covert observation or surreptitious 'shoulder-surfing’ to (at least)

CHAPTER 5. ATM CASE-STUDY 119

gain partial knowledge of an ATM user’s PIN, then it clearly makes unauthorised
or phantom-withdrawals much easier to achieve.® For instance, assuming that a
fraudulent third-party had the ability to get access to a bank customer’s ATM card,
or had the ability to create a cloned version of that ATM card, then with partial
knowledge of that same customer’s PIN (via covert surveillance or “shoulder-

surfing”) he/she could:

e Gain access with a maximum of 4 reinsertions of the card and PIN when
only one of the four digits were unknown e.g. users PIN is 4965 so if 1
unknown, 7965, or 4765, or 4975, or 4967;

e Gain access with a maximum of 49 reinsertions of the card and PIN when
only two of the four digits were unknown e.g. users PIN is 4965 so if two
unknown — such as 7765 would range from 0065....9965. With this partic-
ular pin (i.e. 4965) it would only require 22.5 reinsertions (or 45 continuous

PIN enumerations).

The combination of this security flaw initiated from within the engineering con-
text, along with fraudulent techniques to gain (at least) partial PIN knowledge
from within the deployment context, clearly undermines strategic issues such the
authorisation policies expected to be in force. When the two techniques are com-
bined, it makes ATM theft and fraud much easier.

Obscure Security Flaw Conflicts — Issue 5. The specific problem
that makes this issue harder to detect is that there is a conflict between
what constitutes, generally in computer—system development, as good
usability and interaction and the specific application requirements of
what constitutes a dependable ATM deployment. In this case it would
require the engineering context to integrate and emphasise the bank’s
authorisation policy in force together with anticipating the shortcom-

ings above in order to identify that every ATM user must authorise

6The latest covert observation ‘scams’ is to insert a minature pin-hole type camera to the top
underside of the ATM, allowing fraudsters to then remotely (and covertly) observe a particular

ATM customer’s PIN entry.

CHAPTER 5. ATM CASE-STUDY 120

themselves with a correct card and PIN entry before a complete trans-
action undo feature can be initiated. Otherwise any incorrect PIN en-
tries should be retained in the ATM/banking system as a permanent
(i.e. memorised) state across different ATM authorisation attempts if

the integrity of the PIN protection is to be maintained.

As discussed earlier, a specific issue of ATM designs includes the problem of
how embedded control software used to co—ordinate the inputting, processing, and
outputting of data (e.g PIN data, withdrawal amounts, etc) and physical artifacts
(e.g. ATM cards, money, print receipts, etc) interfaces with the hardware and
physical firmware mechanisms that make-up an ATM. The danger in this case,
perhaps emerges from the flexible or malleable nature of software, in contrast
with fixed and definite physical constraints imposed by hardware and firmware
mechanisms with which it is composed. As the following two examples indicate,
when these components are considered in isolation, the overall reliability of the

ATM system can be seriously undermined.

In the first example:-

Interaction Consistency and Completeness — Issue 6. Robertson
[119] reports on the reliability problems that can result from the flexi-
bility that is offered by the embedded software control becoming out—
of—step with the more definite physical constraints of hardware de-
vices and firmware mechanisms. In this case Robertson wanted to
use an ATM to make a large withdrawal of $700.7 After entering this
amount to be withdrawn he noticed that the ATM seemed to delay in
outputting his cash at the dispensing slot and eventually made some
strange noises and appeared to be struggling to do so. Eventually it
only outputted $220 in eleven § bills. Subsequent investigations by
Robertson with his bank revealed that he had been debited for the
full amount of 3700 and that the problem had occurred because the

71t should be noted here that it is implicit from the Robertson’s report that this large amount
of $700 appears to be within his ATM Daily Withdrawal Limit (DWL) allowed by his banking

institution.

CHAPTER 5. ATM CASE-STUDY 121

ATM'’s cash magazine had run out of the larger money denomination
of $50 bills. The ATM had attempted to fulfill the withdrawal request
by outputting thirty five $20 bills — which was more than could be

passed, at one time, through the cash dispensing slot.

The second example is similar to Issue 6 above, but relates to a common and more
general complaint about ATMs:-

State Representation Completeness — Issue 7. This is when an
ATM user’s account is debited for an entered withdrawal amount,
but the cash dispenser dispenses (at best) less money than requested
and debited, or, (at worst) no money at all. Amongst the many possi-
ble causes of such ATM failures is the possibility that the embedded
software control does not represent the physical state of the internal
cash magazines that contain the physical money to be outputted (cf.
[124] for an example of when this issue was explicitly included into
a formal ATM specification in VDM). For a variety of usage, opera-
tional and/or maintenance reasons the replenishing of these internal
money magazines may be delayed or prevented.® If the physical state
of the cash magazines is not accurately represented by the embedded
software control, and the ATM’s money magazine becomes empty, or
beneath a level that can fulfill a particular ATM user’s withdrawal
request, then the ATM user will be debited without having their with-
drawal request satisfactorily fulfilled.® A good indication of how ATM
manufacturers perform differently in identifying such embedded con-
trol software issues is reported by Minow [125]. Minow reveals that
in comparing IBM and Diebold ATMs in the 1980s, many complaints

were made against IBM designed ATMs dispensing incorrect amounts

8For instance, there may be unusual peak—demand usage for ATM services — such as just
before a holiday period. Alternatively, there may be a temporary shortage of money or certain
denominations at the bank, or remotely located ATMs dependent upon outsourced organisations
for re—stocking, may be delayed for a variety of logistical reasons (such bad weather, traffic-jams,
etc

)9The best or worst case may well be dependent upon which, and how many, money denomina-
tion magazine(s) actually go empty or low (i.e. £20, £10, or £5).

CHAPTER 5. ATM CASE-STUDY 122

to ATM users. However, Diebold were considered much more reliable
in this regard as they were capable of determining how much money
existed in the internal magazines. In situations where there existed
less money in the magazines than would fulfill an ATM user’s with-
drawal request, the ATM would dispense what money was left in the

cash magazine and only debit the customer to that (lesser) amount.

While both of these issues above relate to how inconsistencies arise between
interfaces and separation—of—concerns of embedded software control, that con-
trol/coordinate physical devices such has hardware components and firmware mech-
anisms from the engineering context, they also reveal that faults and vulnerabil-
ities can result from other CBS context concerns. Issue 6 above reflects a need
to recognise that while software can be designed with generality and flexibility or
later enhanced to evolve the ATM system to meet future utility demands, this must
not exceed the physical constraints into which it is embedded.!® The problems re-
ported in Issue 6 above therefore relate to a need to consider the evolutionary
context (in terms of functional flexibility/generality and adaptation) in a holistic
sense that includes recognition of the more restrictive (and less flexible) hardware
and firmware devices and mechanisms of the ATM — into which the software be-
comes embedded.'' Issue 7 is a more local context fault that occurs largely within
the engineering context but becomes self-evident (sooner or later) once the ATM

is deployed.'?

5.2.3 The Deployment Context

The deployment context involves the many day—to—day operational issues and in-
fluences the ATM system (as a whole) is subjected to as its envisaged utility and

10For example, Daily Withdrawal Limits (DWL) vary from bank to bank, customer to customer,
and account type to account type. Not only this, but as the spendable value of money progressively
reduces over time, banks and financial institutions operating ATM networks will need to extend
DWL.
17t is obvious from Issue 6 that enhancements of firmware mechanisms (internal cash transfer
and counting mechanisms) and hardware devices (size of cash dispensing slot) would also have
needed to have been enhanced if this problem were to be avoided.

2By "self-evident” it is meant that sooner or later, for a variety of reasons, the internal cash
magazines will become insufficient to fulfill an ATM user’s withdrawal request or become empty.

CHAPTER 5. ATM CASE-STUDY 123

value is exploited over its lifetime. This includes such situational operational is-
sues as organisational practices and procedures of the bank, within which the ATM
is situated, and ATM bank customer issues (some of which have already been dis-
cussed in earlier subsections). A particular facet of ATM deployments is that they
physically interface directly into the wider public environment. In fact, this is at
the heart of the intended strategic utility of ATMs — that they can provide conve-
nient 24-hour access to primary banking services of cash-withdrawals, account
balances, and payment transfers, etc for banking customers. As a result, it has
been an ongoing strategic policy of banks and financial institutions to offer more
and more access to such services in more remote/diverse geographical locations
[cf. [126, 102]]. However, this also makes ATMs, ATM users, and confidential
bank customer information more vulnerable to attack, theft, and fraud.

From a computer—system perspective, ATM deployments are also 'walk-up—and-
use’ (WUAU) systems — meaning that greater consideration must be given to the
usability of such systems in terms of intuitiveness, learnability, and simplicity, as
ATM users will be provided with little, if any, prior training in how to operate
them. High levels of usability across a wide public user—base is easier to state
than achieve as the survey of 1,530 ATM users by Rogers et al [127] revealed.
They found that across many age groups improvements in training and design are
required to make ATMs more user-friendly, useful, and attract more patronage.
With regards to training they argue that:-

e Existing pamphlets on ATM usage are insufficient;

e Older users would be more willing to use ATMs if some prior training were

provided,

e In particular, as more complex ATM features are added to the design of
ATMs (e.g. account transfers, money depositing, bill payments, and ticket-
ing acquisition, etc), training should be focused on these more sophisticated

functions;

e The transfer of training knowledge over time and across different ATM de-

signs was also highlighted as a particular area in which to focus future train-

CHAPTER 5. ATM CASE-STUDY 124

ing programmes.

With ATM design improvements, Rogers et al distinguish the hardware and firmware
mechanisation with the label “surface—level” improvements, while referring to
embedded software as “conceptual-level” improvements. With surface—level im-
provements they advised that:-

e Better (anti-glare) screens, bigger text, and better physical alignment of
keypad and screen buttons would improve usability;

e Hardware and firmware mechanisms were too slow in functioning, and fu-
ture design should focus upon improving the turnaround times at ATMs;

o Greater thought should be given to the physical environmental context that
ATMs are deployed into. A particular example stated was better location
in respect to the sun to reduce glare and improve readability of on screen

information.

With regards to conceptual-level improvements, Rogers et al advise:-

e Older users expressed concerns about remembering transactions made that
raise challenges to future ATM designers;

e Future ATM design should attempt to reduce emphasis on technology and
become more user—centred — in terms of the personal and interactive nature
of ATMs.

While all of these recommendations are of value in improving future dependability
of ATMs, the general public (which ATM users make up) present such a heteroge-
neous set that it is rarely possible to accommodate every different user’s cognitive
model, learnability style, or intuition — influenced by distinct knowledge, bias,
personality, or past experience etc. This problem is indicated explicitly by Delvin
[128] from a situational information theoretic standpoint. Delvin sought to high-
light that it is very difficult (and impossible — in terms of all eventualities) to antic-
ipate how each different individual will respond in a certain interaction (whether

CHAPTER 5. ATM CASE-STUDY 125

human—to—human or human—to—machine). He retold, as an example, the expe-
rience his wife had one day while interacting with an ATM. His wife wished to
deposit a cheque for $100 and make a withdrawal of $50 directly on that deposit
transaction.'® The interaction proceeded as follows:-

1. She inserted her card and PIN;

2. ATM asked her which service was required;

3. She selected “Make a Deposit”;

4. ATM responded “Do you want cash back from your deposit?”;
5. She answered “Yes”;

6. ATM responded with the command “Enter amount”;

7. She entered $50;

[0 ¢]

. ATM responded with the command “Enter amount you want to withdraw”.

At this point Delvin noted that his wife realised she had assumed that step 6 meant
enter the amount she wished to withdraw. At this point she cancelled the whole
transaction,'* removed her card and tried again. The point Delvin made from this,
from a situational information theoretic perspective, is that he had used the same
ATM “transaction—splitting” features without any trouble for some time. Delvin
[pp. 108-109] himself explains why his wife, and not he, had experienced such a

problem:-

"As a mathematician and computer scientist, I automatically viewed
the preplanned, artificially staged “conversation” with the machine
as a machine transaction, and as a result I had always taken the ma-
chine’s instruction “Enter Amount” to refer to the first decision point

in the process, namely my choice to make a deposit. In technical

13 A feature sometimes called “Transaction—Splitting” with ATMs.

14Note how, in comparison to the issues raised earlier with Obscure Security Flaws (issue 5) that
again cancelling an entire transaction is a useful error-recovery option. However, note also that in
this particular case, it wa a post—authorisation, not a pre—authorisation, transaction cancellation.

CHAPTER 5. ATM CASE-STUDY 126

terms, I assumed (correctly) that the machine operated using a simple
model of what computer scientists call a queue — first—in—first—out.
My wife, on the other hand, viewed the transaction as a highly con-
strained human interaction, where reference would generally be to
the thing mentioned last. Since the instruction “Enter amount” came
immediately after reference to wanting cash back she took the instruc-
tion to refer to the amount of cash she wanted back. The model she
was assuming (incorrectly) was that of a computer scientist’s stack

—- last—in—first—out."

The above issues taken together clearly show that the ATM deployment context
presents many dependability issues that were not easily anticipated, or that can
be easily designed for — without unearthing such ’hidden’ assumptions. The
following issues echo some of these points, although to prevent needless repetition
with CBS context issues already discussed (i.e. engineering context and utility
context), the focus will be upon more evolutionary context issues.

5.2.4 Specific ATM Environment Adaptation

As already discussed earlier, an ongoing strategic policy of banks and financial
institutions has been to promote 24-hour availability of basic banking services
which has resulted in the deployment of higher numbers of ATM services in in-
creasingly diverse and remote locations. While this no doubt offers greater con-
venience for banking customers — especially in countries, states and provinces
where bank opening is restrictive [129], it is also possible to recognise that there
is a potential conflict, in dependability terms, between attributes of availability of
service and security and safety of these services. These conflicts are the focus of
the last two issues raised in this chapter below.

First the safety related issue:-

Environmental Adaptation — Safety Issue 8. Safety concerns ap-
pear, from a number of research surveys, to be a general concern of
many ATM users when using ATMs [cf. [127, 130]]. However, when

CHAPTER 5. ATM CASE-STUDY 127

ATMs are remotely located, then this general concern appears to be
even more relevant — especially during off-peak times. These fears
are further reinforced by reports that (both in the US and UK) usage
of ATMs can leave customers vulnerable to physical attack. In the
worst cases police have believed that ATM users have been even mur-
dered for their ATM card(s) and PIN information while using ATMs
[131, 114].

Secondly, the security related issue:-

Environmental Adaptation — Security Issue 9. Security concerns
also exist with the situation of remotely located ATMs. Fraudsters,
who have obtained stolen ATM cards or have been able to clone ATM
cards are much more likely to carefully choose which ATMs they use
to make illegal or unauthorised withdrawals. It is obvious that these
will most likely be remotely located ATMs during off-peak times as
this allows them then to circumvent visual detection devices provided
by ATMs (i.e. VCRs and CCTV) by wearing masks or disguises etc [cf.
[132]].'% Furthermore, sophisticated fraud, that results in the cloning
of many ATM cards would require fraudsters to target remote ATMs
during off-peak times as it would require the reinsertion of many ATM

cards which would quickly attract suspicion by passers-by and other
ATM users [cf. [133]].

These conflicting issues, between service availability, safety, and security result
in ATM dependability vulnerabilities due to the commercial policy of 24-hour
remote access not reflecting how dependability is undermined (in terms of cus-
tomer safety and banking security against fraud) by not considering how ATMs,
and their services offered, must be appropriately adapted to the particular envi-
ronment in which they are deployed and operated. Remote ATMs, such as those

deployed on industrial estates, colleges/universities, supermarkets, etc experience

15Tt was recently reported in the press that "skimming’ devices fitted to the ATM card-reader
device were primarily used on remote ATMs in villages, etc — as, unlike like those in towns and
cities, such ATMs are not commonly under the surveillance of Close Circuit Television (CCTV).

CHAPTER 5. ATM CASE-STUDY 128

high usage only during certain times (i.e. working hours). During off-peak times,
legitimate demand for such services will be greatly reduced anyway, so they could
restrict their services — such as reduced withdrawal amounts being available as
in the example reported by Curry [134], or completely shutting ATM services
down in the interests of customer safety and bank security which would dissuade
both customers and fraudsters from using them in preference for: a) a more safer
ATM for legitimate services; and b) preventing opportunities for fraud, or forcing

fraudsters to use ATMs that will increase thier capture and detection.!®

Vulnerabilities discussed in these two issues reflect an inability to consider the
Evolution context, in terms of ensuring that ATM services (or service restrictions)
are adapted dependably (specifically — safety and security) to their environments

(both geographically and temporally in these cases).

5.3 Chapter Summary

In this chapter a more detailed and specific exemplification of a computer—based
system perspective has been provided. As stated in chapter 4, a computer-based
system perspective expands the boundaries of the system to encompass and con-
sider both the technical and human systems as subsystems—of—interest. When this
view is adopted both types of subsystems are viewed as interfacing systems—of—
interest. This chapter has used the specific application domain of the Automatic
Teller Machine (ATM) to illuminate a much more hollistic and integrative per-
spective of a ATMs as computer—based systems than is normally the case. This has
been achieved by breaking the analysis and considerations of the ATM into four
generic computer—based system contexts—of—interest. These are: a) the strategic
utility context — that ecompasses the strategic value justifications for the sys-
tems existence; b) the engineering context — that is challenged with the creation
of the technical system; c) the deployment context — that is directly responsi-

16For example, where 1 work the University has an ATM on-site which is very remote during
out-of-hours, but would make an ideal target for a mugger or a fraudster to use. Conversely, in
Consett Co. Durham there is an ATM virtually outside the town police station. If I had to use an
ATM during the early hours, I would use the latter ATM. Equally, it is more probable a mugger or
a fraudster, would seek to use the former ATM.

CHAPTER 5. ATM CASE-STUDY 129

ble for its day-to—day operational requirements; and d) the evolution context —
that is concerned with maintenance and future adaptation considerations. The
ATM application domain was therefore analysed within this computer—based sys-
tem conception as it is a long—established domain that provides interesting and
insightful examples of how computer—based system dependability can become
compromised. A total of nine such issues have been presented, analysed, and
discussed from a computer—based system viewpoint in detail. It can be seen that
many failures of computer—based systems are holistic, in nature, and a good way
of improving holistic understanding of these failures is by achieving a balanced
emphasis and interpreting them into the generic contexts. Such a computer-based
system view illuminates how vulnerabilities, faults, errors, and failures are often
a matter of how contextual interests are often over/under represented or subse-

quently promoted.

Chapter 6

Assumptions

130

CHAPTER 6. ASSUMPTIONS 131

6.1 Chapter Introduction

In this chapter the issue of assumptions is explained. Assumptions are often char-
acterised as "unstated reasons” used for a basis of argument or activity. While,
broadly, this is true, it doesn’t reflect the many possible ways assumptions can oc-
cur or the underlying influences that can often give rise to them. This chapter first
focuses upon reasoning and assumptions. In doing so, both formal deductive and
informal inductive reasoning is discussed, as these both have interesting implica-
tions for how assumptions are used or emerge. Next the role of communication
and assumptions is discussed. In communication, assumptions can result from a
number of influences that can result in ambiguities and inconsistent meaning inter-
pretations. Assumptive influences in problem solving activities are then covered.
It will be indicated that effective problem solving can sometimes be undermined
by artificial constraints and limits we impose upon our thinking during problem
solving activities. Finally, the importance of context and assumptions is discussed.
It can be seen that a contextual situation (however this is interpreted) often results
in collective or shared assumptions being made. While these can result in effective
collaboration, there is also the danger that unquestioned assumptions can result in
erroneous actions and judgements when the context changes, overlaps, or places

serious knowledge acquisition limitations upon us.

6.2 Assumptions in Reasoning

As will be seen in the various subsections in this section, reasoning provides a
good insight into the nature of assumptions. Before going into more detail, how-
ever, it would be beneficial to discuss broadly the established nature of reasoning.
The particular facets of reasoning covered in the following sections relate to de-

ductive and inductive reasoning.

6.2.1 Deductive Reasoning

Deductive reasoning has its origins in ancient Greek philosophy and is essentially
concerned with the truth—preserving structure(s) of human reasoning [135]. In

CHAPTER 6. ASSUMPTIONS 132

essence it is the validity of the conclusions that can be inferred from the premises
that is of major concern. In deductive reasoning structures, it is not possible to
have a true conclusion from false premises. This can be shown as follows [cf.
[136]: p. 109]:

If inflation is receding, the government’s economic policies are sound.
Inflation is receding.

Therefore, the government’s economic policies are sound.

What is important in this piece of deductive reasoning is the structure. The first
two lines provide the premises — the truth validity of which, ultimately deter-
mines the validity of the conclusion. In the reasoning structure above, the struc-

ture is a form of deductive reasoning known as Modus Ponens, which has the

structure:

If A, Then B.
A is true.
Therefore B is true.

Another valid deductive reasoning structure — based along similar lines, using

the same structure as above is as follows:

If inflation is receding, the Government’s economic policies are sound.
The Government’s economic policies are not sound.
Therefore, inflation is not receding.

Again, this deductive reasoning structure ensures the validity of the conclusions
— depending upon the truthfulness of the premises. In this case the conclusion
that inflation is not receding can be inferred from the lack of soundness of the
Government’s economic policies. This form of deductive reasoning is known as
Modus Tollens and has the structure:

If A, then B.
B is not true.
Therefore, A is not true.

CHAPTER 6. ASSUMPTIONS 133

A number of invalid deductive reasoning inferences also exist — based upon this
deductive structure. The first is commonly known as Affirming the Consequent as

follows:

If inflation is receding, the Government’s economic policies are sound.
The Government’s economic policies are sound.

Therefore, inflation is receding.

In this case the conclusion is not necessarily true — even if both premises (A
and B) are true as inflation may or may not be receding for many other reasons
quite apart from the quality of the Government’s economic policies. In such cases
the conclusion results in a non sequitur — meaning that it doesn’t necessarily
follow from the premises. Such an invalid reasoning has the following deductive

structure:

If A, then B.
B is true.
Therefore, A is true.

Another invalid deductive structure is know as Denying the Antecedent as follows:

If inflation is receding, the Government’s economic policies are sound.
Inflation is not receding.
Therefore, the Government’s economic policies are not sound.

Again, in this case the conclusion that the Government’s economic policy is not
sound does not follow from the premises in a deductive sense since although in-
flation is not receding the Government’s economic policies may (or may not) be
sound for a wide variety of other reasons irrespective of the inflation rate. This

invalid reasoning has the following deductive structure:

If A, then B.
A is not true.
Therefore, B is not true.

CHAPTER 6. ASSUMPTIONS 134

Although there exist other deductive reasoning structures not covered here [cf.
[136]: pp. 108—133] the main point is that the structure of the reasoning, in
deduction, is all important in ensuring that: a) a true conclusion cannot be de-
duced from false premises; or b) a false conclusion cannot be deduced from true
premises. Although to say that an argument is deductively valid is to say some-
thing strong and positive about its structure, as can be seen from some of the sec-
tions that follow, the validity of the premises themselves can often be an important

pragmatical concern.

6.2.2 Inductive Reasoning

While deductive reasoning can inform us of the truth—preserving nature of rea-
soning structures, much of our reasoning in everyday situations is not so much to
establish the truth of something as it is to reinforce our beliefs or provide extra in-
formation about something of interest [137]. This form of reasoning is essentially
probabilistic, in nature, and reflects a reasoning process that is essentially moving
from specific knowledge, based upon experience, observation, and understanding
to generalisations that reinforce our belief system(s) (at whatever level) and our

comprehension of the world we live in [135].

A good example of this inductive reasoning process is exemplified, within a problem—
solving context, by Polya [138] using a characterisation of the famous journey of
Christopher Columbus in 1492, as follows [p. 178]:

"As Columbus and his companions sailed westward across an un-
known ocean they were cheered whenever they saw birds. They re-
garded a bird as a favourable sign, indicating the nearness of land.
But in this they were repeatedly disappointed. They watched for other
signs too. They thought that floating seaweed or low banks of cloud
might indicate land, but they were again disappointed. One day, how-
ever, the signs multiplied. On Thursday, the 11th of October, 1492,
they saw sandpipers, and a green reed near the ship. Those of the
caravel Pinta saw a cane and a pole, and they took up another small

pole which appeared to have been worked by iron; also another bit

CHAPTER 6. ASSUMPTIONS 135

of cane, a land-plant, and a small board. The crew of the caravel
Nina also saw signs of land, and a small branch covered in berries.
Everyone breathed afresh and rejoiced at these signs. And in fact the
next day they sighted land, the first island of a New World."

The point Polya wished to make from this is that in unknown situations we often
use past experience and knowledge in an analogous reasoning manner to inter-
pret signs that we are making progress towards something (be it a solution to a
problem, or discovering new lands). Polya goes on to show the inductive reason-
ing process, using the above example, with the well known ’if, then’ deductive
reasoning structure discussed in section 6.2.1, as follows:

If we are approaching land, we often see birds.
Now we see birds.

Therefore, it becomes more credible that we are approaching land.

It can be seen, from section 6.2.1, that in a purely deductive reasoning context,
this structure represents a formal fallacy of Affirming the Consequent. However,
Polya notes that the conclusion is written in the following manner:

If A, Then B.
B is true.
Therefore, A Becomes More Credible/Probable.

Polya argues, that while, within a deductive evaluation, this structure is fallacious,
in a inductive/heuristic reasoning context, this structure is both fair and reasonable
— providing the conclusion(s) are stated in probabilistic inductive terms and not
in a formal deterministic deductive manner. Polya also notes that in using an in-
ductive reasoning approach, the more data or more frequent the signs are then the
more these reinforce the probabilistic conclusions. From a wider computer—based
system standpoint it can be argued that inductive reasoning can result in faults and
errors through one computer—based system context making (seemingly quite) rea-
sonable associations that are well established and common within that particular
context—of—interest in terms of past experience, training etc. Such an example was

CHAPTER 6. ASSUMPTIONS 136

the (seemingly quite reasonable) implicit assumption that an ATM user should al-
ways be allowed to completely undo a transaction (i.e. pre authentication undo) —
as this is widely considered to be a good usability principle. This computer—based
issue (i.e. Obscure security flaw conflict — issue 5) was discussed in section 5.2.2
of chapter 5. However what was overlooked in this specific issue was the security
vulnerability that this introduces that allows a fraudulent enumeration of an ATM
customer’s PIN code. What is actually needed is for the system to either enforce
authentication before the ATM user can completely undo the transaction or record
any failed PIN code verification attempts between distinct ATM accesses.

6.2.3 Suppositions and Presuppositions

Suppositions are premises used for progressing a particular line of argumentation
or reasoning [135]. A particular facet of suppositions is that the person making
them does not necessarily believe in the premise(s) themselves. Two examples of
suppositions is provided by Warburton [[135]: p. 116]:-

...[police inspector] "Had the murderer entered the house by the
window. Surely we would expect to find some evidence of a forced
entry.”

...[prosecuting lawyer cross—examining the defences’ expert wit-
ness] "Even if we believe that you are right that watching video nas-
ties can trigger violence in a small percentage of viewers. Can you
be sure that they wouldn’t have found other triggers if video nasties

didn’t exist?”

It can be seen from both these examples that the emboldened text represents ex-
plicitly stated premises that are "supposed”. In neither cases does the person(s)
making them necessarily believe in the truth of the premises, instead, they are used
only as an informal reasoning mechanism —- much like a hypothesis, in order to
continue a particular avenue of argumentation, reasoning, or thinking. Because
of this explicit hypothetical nature, suppositions are ’internal’ to the structure of
argumentation, thinking, or reasoning and therefore they usually represent an ex-
plicitly stated form of assumption(s). Such informal reasoning mechanisms are

CHAPTER 6. ASSUMPTIONS 137

widespread in the software engineering literature [cf. [56, 9]] and although they
can be useful reasoning mechanisms thier informalness can often turn out to be
a weakness. Such an issue was discussed within chapter 5 (i.e. State represen-
tation completeness and consistency — issue 7). It can be seen that the physical
cash magazines were never assumed or supposed to become empty or contain
insufficient money to fulfil an ATM customer’s withdrawal request, but such an
informal and assumed justification can easily prove to be false if not investigated

and verified.

Presuppositions are somewhat different, in that a presupposition is a proposition
of another statement, which, if the presupposition is false, makes the statement
(for which it is a presupposition) irrelevant, or pointless [139]. By contrast with
suppositions, presuppositions tend to be, by nature, 'external’ to the argument,
reasoning, or thinking process. This is exemplified by Ennis [[139]: pp. 76-
77] who also stresses that in everyday usage people are particularly susceptible to
accepting and becoming committed to the external and unstated assumptive nature

of presuppositions, noting:-

"...I find myself less resistant to believing the [unstated] proposi-
tion that there is a missile gap when I am told, "The missile gap will
take five years to eliminate." than when I am told, "There is a missile

1"

gap and it will take five years to eliminate.

In the first statement there is an increased compulsion to assert (see subsection
6.2.4) the presupposition of "a missile gap exists” due to this proposition being
"pre—supposed” to be true and externalised (i.e. unstated). Whereas, in the second
statement form, this proposition is explicitly asserted and internalised (i.e. stated).
As a consequence, there is an increased likelihood that someone may seek to ques-
tion the truthfulness or falsity of the premise part of this proposition by asking "Is
there a missile gap?" In some cases, pre—suppositions can be used maliciously
and deliberately, in order to get people to commit to a particular argumentation
line or reasoning position. This is particularly the case with asking and answering
questions — as questions include positive information in the form of propositions

CHAPTER 6. ASSUMPTIONS 138

[136]. The answerer who responds directly to a question based upon presuppo-
sitions risks committing to any (or even all) the presuppositions it is based upon.
Walton [[136]: p. 29] provides the classic loaded question based upon harmful
pre—suppositions for the directly agreeing respondent, as follows:-

"Have you stopped beating your spouse?”

No matter which way the answerer directly responds by answering "yes" or "no"
they become committed to the "pre—supposed” (and prejudicial) proposition that

"You have beaten your spouse”.

Therefore, in stark contrast to suppositions, pre-suppositions contain an implicit
hypothetical characteristic that tend to be "external’ to the structure of argumenta-
tion, reasoning, answering, or thinking and can often result in people unwittingly
believing in, or committing too, the unstated propositions they are based upon.
This is indeed a flaw in the structure of deductive reasoning since in both the
examples of correct forms (e.g. modus ponens and modus tollens) in subsection
6.2.1 the causal relationship between (to take the example given there) inflation
and the soundness of the government’s economic policies is presupposed. With
deductive structures there need not be any causal nature to provide deductively
valid argument structures. The following example demonstrates this:-

If it is Monday, I’'m a millionaire
It is Monday

Therefore I’m a millionaire.

It can be easily appreciated that although this structure is a deductively valid case
of modus ponens there is clearly no causal relationship between the day of the
week and someone being a millionaire. Such deductive type structures are ubig-
uitous in reasoning and implementing (i.e. IF/THEN condition branches in pro-
gramming languages) software systems and presupposed completeness of subtle
causal relationships between such things can often be the source of faults, errors,

and failures.

CHAPTER 6. ASSUMPTIONS 139

6.2.4 Assertions and Beliefs

Unlike suppositions and pre—suppositions, assertions represent an explicit, yet un-
supported, statement of belief by the individual making the assertion [135]. In this
case, an assertion is not some externalised or implied proposition in the argumen-
tation, reasoning, or thinking process that someone unknowingly believes in, or
commits to. Rather, it is a stated explicit statement of belief in the truthfulness or
validity of something.

However, simply asserting something, does not necessarily make it true in itself,
as the following influences can undermine or help establish the validity of some-

thing asserted:

6.2.4.1 Beliefs

Our beliefs, while important in establishing our sense of identity with the world
around us, are, at best, changing incomplete co—creations and constructions which
have been heavily influenced, biased, and formed by our social, cultural, and in-
dividual experiences [140]. Therefore, even though we may genuinely believe in
something we have explicitly asserted as being true or valid, the underlying beliefs
upon which it is generated may be based upon incomplete knowledge or some
(largely) unchallenged assumption(s) about something(s). O’Conner & McDer-
mott [[140]: pp. 62-81] characterise human beliefs as a cognitive mental model

and reveal four main ways in which humans create, maintain, and change their

belief systems:-

1. Deletion: Every day our senses are inundated with massive amounts of
information which we could not possibly hope to accommodate. Therefore
we need to selectively filter this information which is usually dependent
upon our moods, interests, values, and preoccupations. Although there is
always other information which we could have chosen, our belief system
is formed and maintained through the deletion of other information that

accords with our (believed) notions of what is, and what is not, important to

us;

CHAPTER 6. ASSUMPTIONS 140

2. Construction: Is the inverse of ’deletion’. We often have the compulsion to
construct things that actually don’t exist at all through trying to link (what
we consider to be) "...probable cause with possible effect.” Uncertainty will
invariably result in 'gap’ construction, whereby we fill-in gaps so that our
pre-existing beliefs are reinforced so that the world still makes sense to us;

3. Distortion: Is when we change our actual experience by increasing some
aspects while reducing others. While this can be a healthy thing to do, it can
also be done as a protective measure to preserve our existing values, beliefs,
and conceptions about our world;

4. Generalisation: Is when we "...take one experience and make it repre-
sent a group." It has very close links with inductive reasoning. While it
is, in many cases, a valid mental conception which allows us to learn and
build knowledge, the risks are that we take unrepresentative experiences and
over—generalise them to all similar situations — becoming oblivious to the
extent at which we have done so. As O’Conner & McDermott warn: "Gen-
eralisation combined with prejudice...is the basis of all racial and sexual

discrimination.”

As will be seen from other sections and subsections, in this chapter, such traits
that influence our beliefs (and resulting mental models) can have a direct bearing
upon the assumptions we make in any given situation.

6.2.4.2 Formal Argumentation

In formal argumentation, a careful separation of assumptive beliefs and explicitly
stated assertions are made. A good example of this careful separation is provided

by Velleman [[141]: pp. 82-85], advising:-
"Never assert anything until you can justify it completely.”
By this Velleman argues that in proof-writing techniques, based upon the logical

deductive form of the conclusion, often involves transforming the problem to be
solved into an equivalent, but easier one. Frequently they involve steps in which

CHAPTER 6. ASSUMPTIONS 141

the prover must assume, for the sake of the proof, that some statement is true
without providing any justification for that assumption. Whilst this, at first, ap-
pears to conflict with the above rule that assertions must always be justified, it is
again pointed out, that to assert something is different from assuming something
in formal argumentation. Assertion means to claim that a particular statement is
true, while the purpose of making an assumption in a proof is not to make a claim
about "what is true”, instead it is used to help determine "what would be true" if
the assumption involved was to be correct. This is why it is necessary to be aware
that any conclusion that may be arrived at based upon an assumption may well
turn out to be false if the assumption is incorrect. For instance, if during some
proof to establish the truth of statement Q, someone assumes that a statement P
is true, and then uses this assumption to later conclude that another statement Q
is true, it would be false to believe that this is a proof of Q as they have not es-
tablished that the assumption P (upon which the proof of Q is truth dependent) is
true. The proof of Q would be (at best) incomplete. However, if the conclusion of
the proof was a composite proof to prove P => Q then the proof is complete as the
following is a well established proof strategy [cf. [141]: pp. 85-91]:-

To prove a conclusion of the form P => Q:

Assume P is true and then prove Q.

The following proof is a specific simple example of the form P => Q [cf. [141]:
pp. 86-87]: a and b are real numbers. Prove thatif 0 < a < bthena® < b*-

e Given(s): is that @ and b are real numbers;
e P:isthe statement) < a < b;
e Q: is the statement a® < b?%;

Prove: Conclusion is P => Q;

e Assume: 0 < a < band make a® < b? the goal;

Multiply both sides of inequality a < b by a and b;

e Gives: witha a? < aband withb ab < b

CHAPTER 6. ASSUMPTIONS 142

e Givesa? < ab < b?%

e Proved: Therefore, if: 0 < a < bthena? < b2

It can be seen, therefore, that, due to the analytical reasoning power offered by
mathematical proofs, assertions are more than just unsupported explicit statements
of belief. They are statements, the truth validity of which, should be established
through formal reasoning before being employed as such statements of truth. Ad-
ditionally, there is a sharp distinction made between assumptions and assertions.
Assumptions are used in formal reasoning, much like suppositions are used in in-
formal argumentation, as a reasoning mechanism which is not believed to be true
but only taken as being true to pursue a specific line of argumentation (in this case
mathematical). In this regard we can appreciate the benefits of formal argumen-
tation over informal argumentation as formal argument provides a more rigorous
proof mechanism to formally verify the integrity of assumptions used in reason-
ing about systems, once they have been identified as such. As mentioned earlier
in subsection 6.2.3 (on suppositions and presuppositions) the assumed physical
state of the cash magazines' can be more rigorously investigated using formal ar-
gumentation to ensure this is, in fact, the case. Indeed this ATM consideration
was explicitly covered in a formal ATM specification using VDM [124].

6.2.5 Enthymemes or Suppressed Premises

Enthymatic reasoning is an argument with a suppressed premise. During everyday
speech and interaction it is largely unnecessary to have to make explicit every
premise of an argument or line of reasoning — as many people will share and
understand the suppressed premises. In some cases, however, if this premise is
not realised then the conclusion of the argument can often result in a non sequitur
(which means "It does not follow") [135]. Because of the suppressed premises in
enthymatic reasoning they often have the structure of: a) premise, so conclusion;
or b) premise, therefore conclusion. This is shown in the following two examples.
First example is a full deductive reasoning structure:-

1State representation completeness — Issue 7. "That there will always be sufficient money in
the physical cash magazines to fulfil an ATM customers withdrawal request.”

CHAPTER 6. ASSUMPTIONS 143

All Sundays are days when I don’t have to go to work.
Today is Sunday.
Therefore, I don’t have to go to work today.

The second example is the same reasoning , but this time as an enthymeme:

Today is Sunday.
Therefore, I don’t have to go to work today.

This second example is an enthymeme where the premise: "All Sundays are days
when I don’t have to go to work" has been left out. This is not a problem in

argumentation providing that everyone understands which premises has been sup-

pressed.

However, Warburton [135] reveals that when either the premise is not clearly un-
derstood from the context or when there are multiple possible suppressed premises
that could be inferred, then, in informal argumentation terms, the enthymatic rea-
soning structure of: premise, so conclusion; or premise, therefore conclusion, is
deemed to be spurious and is considered to be a subtle case of non sequitur rea-
soning. Two examples indicate this. The first example is a case where a person is
not familiar with the particular context,> and would therefore be confused by the

following enthymatic reasoning structure:

This cereal contains wheat.

Therefore you should not eat it.

Now if this line of reasoning was used within a group of people — many of whom
were not aware of a particular person suffering from celiac® absorption disorder
(or even worse have never even heard of such a disorder) then they are very likely
to think that the person making the reasoning had made a conclusion that simply
did not follow (i.e. non sequitur). They would quite naturally become inquisitive

2The context in this case can be thought of as a knowledge context.

3people affected by this disease experience damage to the villi which shorten and flatten in
the lamina propia in the intestines when they consume certain foods that contain toxic amino acid
sequences. Such amino acid sequences are found in wheat and barley [cf. www.celiac.com]

CHAPTER 6. ASSUMPTIONS 144

and perhaps ask somthing like: "what does wheat have to do with not being able
to eat the cereal?” However, the person making the reasoning, and the absorption
disorder sufferer, would clearly understand the knowledge context and therefore

the suppressed premise that “You should not eat wheat products”.

The next example is where multiple possible suppressed premises could be in-
ferred. In such enthymatic reasoning situations, others may believe that either the
reasoning is a disguised assertion of belief (see subsection 6.2.4) or that the rea-
soner’s claims are confusing or spurious — resulting in another subtle case of non
sequitur reasoning [cf.[135] : p. 113]:-

Boxing often causes brain damage, so it should be banned.

Several suppressed premises could be installed with this enthymatic reasoning
structure: a) "Any activity which often causes brain damage should be banned",;
b) "Sports which often cause brain damage should be banned"; and c) "If boxing
often causes brain damage then it should be banned". There is obviously more
that could be listed, but the point is that, with enthymatic reasoning structures,
the suppressed premise should be made explicit in situations where others cannot
detect the intended premise to install and comprehension is therefore lost.

6.3 Assumptions in Communication

It should be obvious from the discussion earlier on enthymatic reasoning in sub-
section 6.2.5 that assumptions are important to communication — on the condition
that the suppressed assumptions are clearly understood or made explicit so they
can be questioned. During communication, we all have to make assumptions a lot
of the time. The important aspect is to be aware of the assumptions that are being

made and to ensure that they are true [135].

This is easier said that done, however, as misunderstandings in communication
can have, at their root, underpinning assumptions that result in false interpreta-

tions. Such well known ambiguities where multiple interpretations are possible
include [cf. [135]: pp. 9-11]:-

CHAPTER 6. ASSUMPTIONS 145

o Lexical Ambiguity: This is when a word with two or more potential inter-
pretations is used in a statement so that the format in which it occurs could
be comprehended in different ways. A good example, is in the case of hu-
mour when a word is used as a pun that invokes two relevant meanings in
that given context. The example given by Warburton is: "Dr. Johnson saw
two women standing on their doorsteps arguing. He quipped that the two
women will never be able to agree because they were both arguing from dif-
ferent premises.” Obviously the dual meaning of the word 'premise’ in this
case has two pertinent meanings in this particular context. Awareness and

appreciation of this provides the particular humour intended by Dr Johnson;

e Referential Ambiguity: This is a situation where a word is used that could
be understood to refer to two or more objects. Referential ambiguities tend
to happen when using a pronoun such as ’it’, her’ , ’him’ and ’they’. In
such pronoun usages the pronoun does not make it precisely clear what the
pronoun is referring to. While in many situations the usage of such pro-
nouns will be made clear from the context, even when not using pronouns
within a context, referential ambiguity may still occur. Such a situation
is also exemplified by Warburton: "If two people are in a room and both
are called John, then just walking in and saying: "There’s a phone call for
John" will be confusing to both of the people called John." In such a situ-
ation other cues (i.e. looking at the John for whom the phone call is for)
would be required in addition to the above statement. If, of course, the per-
son making the statement didn’t know which John it was for, or didn’t know
that there were two people called John in the room, then this is a situation
where extra information and perhaps subsequent inquiry would be clearly

required;

e Syntactical Ambiguity: This is sometimes called amphiboly. It occurs
when the ordering of words can invoke two or more interpretations. A good
example of syntactical ambiguity provided by Warburton is: "I heard about
what you got up to at work yesterday.” This statement has syntactical am-
biguity in two ways: Firstly, the statement could mean either they heard
what you got up to when you were at work, or they were at work when they

CHAPTER 6. ASSUMPTIONS 146

heard what you got up to. In this case there is ambiguity about where the
two people involved were when they heard about it; Secondly, the statement
is ambiguous because the order of the words makes it vague as to when the
person heard about what happened or when the incident actually occurred.
Was it yesterday that they heard about the person doing something, or was
it something that the person did yesterday?

Although it is hard to remove all ambiguity in communication, when there is the
potential for serious misinterpretations, it is better to make the intended meaning
as clear as possible [135]. This is particularly true in some contexts, situations,
or activities, as not ensuring consistent meanings can have disastrous results. A
good example is provided by Delvin [{128]: pp. 76-79]. In December 1995,
American Airlines Flight 965 from Miami to Columbia was on its final approach
to Cali airport when it crashed into a nearby mountain range, killing all the 159
passengers and crew on board. When the final crash investigation report was
published the following August it was obvious that the crash was not the result
of some mechanical failure or the consequence of bad weather. Instead it was the
result of a decision based on the meaning of information represented by the on-
board computer system and another meaning being interpreted on that on-board
computer information by the flight crew.

What actually happened was that the air controller at Cali instructed the crew to
fly toward the nearby beacon called "Rozo". This was identified on the naviga-
tional charts by the letter "R". The crew entered that letter into the on-board flight
management computer system and the screen presented a list of six navigational
beacons. To the flight crew, such a list presents the beacons on a ranking from
nearest to farthest from the plane. Therefore, the crew naturally accepted that the
top ranked entry on the screen denoted by "R" was the "Rozo" beacon nearest to
them. However, the air traffic control and the flight crew on-board were operating
with different listings and meanings connected with the top ranked letter “"R". The
air traffic control computer system ranked the beacons from farthest to nearest
(not nearest to farthest) and the top ranked beacon denoted by "R" referred to the
beacon "Romeo” in Bogota airport more than 100 miles away in a direction more

CHAPTER 6. ASSUMPTIONS 147

than 90° off the required course. As a result, when the flight crew selected and
entered the top ranked letter "R"” into the on-board flight management system, the
autopilot silently turned the plane more than 90° to the left toward Bogota airport.
By the time the flight crew and ground air traffic control crew realized what had

gone wrong it was impossible for the aircraft to avoid crashing into the mountains.

Clearly we can see that the flight crew and air traffic control crew attributed and
therefore interpreted different meanings as to which beacon was being referred
to by the letter "R". These meaning attributions and interpretations were under-
pinned by different assumptions built in the form of context conventions concern-
ing the ranking order of the beacon listing contained within the ground crew’s
computer system. The on-board flight crew (in an out—of—context manner) as-
sumed the beacon listing ranked beacons from top to bottom to represent the near-
est to farthest beacons, whilst the air traffic ground control crew worked with the
(known in—context valid) assumption that the beacon listing always ranks the bea-

cons farthest to nearest.

Here then, we can see that many ambiguities can arise in communication due to
one or more meanings that can be attributed to something. In such situations the
criteria for choosing a particular meaning from the set of possible other meanings
is usually underpinned by some assumption. It is obvious from the examples pro-
vided that the particular context (context is broadly meant e.g. physical, cultural,
knowledge, etc) possesses both the potential to provide cues that can clarify and
result in a consistent meaning during communication, or, conversely, obscure and
result in (potentially disastrous) inconsistent meanings being interpreted during

communication. These contextual influences will be returned to in section 6.5.

6.4 Assumptions in Problem-Solving

Assumptions often play an important role, also, in problem—solving. For exam-
ple, Delin et al [142] wished to gain a more psychological understanding of the
nature of assumptions in the context of problem-solving. To do this, Delin et al

CHAPTER 6. ASSUMPTIONS 148

P---- -0 | S ®------ oo
. .
: '
, .
°) ® °))
: o
oo Sel
O -9 ----- 4 ° e %
Lo
] e
4
STAYING WITHIN ARRAY EXTENDING BEYOND ARRAY
SOLUTION 1S IMPOSSIBLE SOLUTION IS POSSIBLE

Figure 6.1: The Nine Dots Problem

deliberately chose a range of problems which people were prone to make assump-
tions about. Furthermore, the problems selected were impossible to solve unless
the particular assumption was identified. One of the many problems chosen was
(what I will call) ’the nine dots problem’ . This problem is illustrated in figure 6.1.
The task is to join up all nine of the dots in the array with four straight lines while

not removing the pen from the paper.

The difficulty with solving this problem is that if the person attempting to solve the
problem tries to stay within the length of the dots array then the minimum number
of lines required to join up all of the nine dots requires five lines (i.e. shown on
the left hand side in figure 6.1). The only way the problem can be solved is to
become aware of the implicit assumption that people often make when reasoning

about this problem of:-

"I must stay within the area of the nine dots array."”

However, Delin et al’s contention was that it is widely believed that people can
somehow become aware of the assumption. Over a number of controlled experi-
ments using (what we may call) assumption—seeking’ problems, Delin et al split
the problem solvers into two groups: the control group would not be told in ad-
vance that they need to be aware of making some assumption in solving the prob-
lem; while the experimental group was explicitly told, before starting, that they

CHAPTER 6. ASSUMPTIONS 149

needed to be aware of making some assumption in order to solve the problem.
The results from the experiments showed no significant performance increase of
the experimental group over the control group. This Delin et al took to indicate
that although common usage of the term "assumption” leads us to believe that it
is something we carry around with us in our heads while thinking, reasoning, or
arguing, Delin et al argued that it is more like a constraint acting upon our partic-
ular thinking episode about something at any particular time. In their own words

Delin et al state:

"Most assumptions tend to correspond more to the absence of con-

ception than its presence."

They further argue that the only way to finding such assumptions would be to
examine one’s own thinking to try and observe in what ways it was becoming
constrained. However, the shortfall they recognise in this kind of ‘meta-thinking’
or cognitive reflection approach is that in searching for such assumptions the indi-
viduals conceptual searching would be limited by the same conceptual constraints

that enforced the assumption to begin with.

These views that assumptions are constraints upon the mental conception about
something are consistent with DeBono’s [143] long-held views about assump-
tions within the ’Lateral Thinking’ philosophy. With this type of thinking the
purpose is to deliberately restructure an individuals mental conception about how
they think about something. DeBono argues that constraints upon the mental con-
ception about something results from long-held conventions or traditional ways
about looking at something. He notes that such stereotypical views not only con-
strain how we may think about something but also these cliche mental patterns

restrict our ability in even trying to re-think about them.

DeBono recognises that in problem—-solving a person always has to assume certain
boundary conditions. While this is a necessary thing to do, otherwise we would
become ineffective and indecisive in doing so, he warns that the danger is that
we often impose such boundary conditions without knowing we have done so or
lazily impose them for no better reason than that it is convenient to do so. In this

CHAPTER 6. ASSUMPTIONS 150

1) THE PROBLEM 2) THE ARTIFICIAL LIMIT (i.e. ASSUMPTION)

Il —
‘Il

3) THE SOLUTION

Figure 6.2: Example of an Artificial Limit (source: [143] p. 83)

respect DeBono refers to such assumptions that impose unnecessary boundaries

upon our thinking as "artificial limits."”

In figure 6.2 is a reproduced example, from DeBono [p. 83], of a problem that
people often find unsolvable because they impose upon themselves an artificial
conceptual limit (i.e. an implicit assumption) which prevents them from finding

the solution.

The task is to arrange the shapes in (top left portion 1 in figure 6.2) to give a
single well identifiable shape that is easy to describe that has only four straight
sides. It is impossible to accomplish by just adding the existing shapes together,
but, if instead of trying to fit the existing shapes together, the person decided to
actual question and re—examine the existing shapes and consider actually splitting
the large black square into two equal half’s (top right portion 2 in figure 6.2) then
it follows quite quickly to arrange the (now) four shapes into a simple rectangle
with only four straight sides (bottom portion 3 in figure 6.2).

CHAPTER 6. ASSUMPTIONS 151

DeBono used this visual problem analogy to demonstrate how often a problem
is impossible to solve by merely accepting the given shapes as fixed. Only by
questioning that the shapes must remain fixed will the person stand any chance in
solving the problem. He notes, however, that if someone was set this problem and
after not being able to solve it they were told the solution, then there would more
than likely be claims that this would be ’cheating’ as it would have been implicitly
assumed that the given shapes could not themselves be altered. Such a situation is
what DeBono characterises as an artificial limit in the mind of the person solving
the problem.

In order to help identify such implicit assumptions DeBono advises that a person
must take nothing as sacred and challenge the underlying assumptions by chal-
lenging the necessity of the boundary limits and the validity of the individual
concepts that may underpin them. In his own words DeBono states [pp. 84-85]:

"As in lateral thinking in general, there is no question of attacking
the assumption as being wrong. Nor is there any question of offer-
ing better alternatives. It is simply a matter of trying to restructure
patterns. And by definition, assumptions are patterns which usually

escape the restructuring process."

To help ensure that assumptions do not escape the restructuring process, DeBono
advices using the "Why Technique". DeBono notes that while this is similar to a
young child continually asking an adult "why" in order to understand something
or gain additional knowledge, the purpose of this technique, in lateral thinking,
is to ask "why" when the person does understand something and perhaps already
knows the answer. The purpose is to deliberately restructure all possible thinking
patterns to help ensure that any artificial limits (i.e. implicit assumptions) upon
a person’s mental conceptions about something is strongly challenged. DeBono
does highlight, however, that although the technique seems easy it is much harder
to perform properly as there is the natural tendency to run out of explanations or
circle back on oneself and provide an answer that has already been used before. In
addition there is a compulsion to just answer "well because” if something seems
completely obvious. To avoid such problems DeBono advises that any "why"

CHAPTER 6. ASSUMPTIONS 152

questions should be directed to some particular aspect of any previous explanation
rather than a general response. DeBono demonstrates this with the object of a

blackboard, as follows:

e Question: Why are blackboards black?
— Answer: So that the white chalk marks can be easily seen;
e Question: Why do you want to see the white chalk marks?

— Answer: So that students in the class can see examples written by the

teacher;
¢ Question: Why do students want to see the examples by the teacher?

— Answer: So that they can better understand what the teacher is teach-
ing them;

e ctc, efc.

In each case the "why"” question is focused upon some aspect of the previous

answer.

The ultimate purpose of employing the "why" technique is to elicit more informa-
tion. But to work, the technique should not at any point be comfortable, instead,
at every stage a feeling of discomfort and tension should be felt in posing the
questions and replying with answers. This is to attempt to force one to explain
things and think about things in a different way. Only then is there a possibility in
restructuring the thought patterns in such a manner that could unearth "hidden’ or
implicit assumptions. As an example of how implicit or "hidden’ assumptions in
computer-based system contexts—of—interest can result in flaws, vulnerabilities,
and faults is exemplified in chapter 5 issue 4 (i.e. Opportunistic theft). A distinct
possible contextual assumption made by the engineering context during develop-
ment could have been of the nature "Forgotten cash is the result of human error
only." Such a ’cliche’ mental pattern, in the mind of the developer, indicates an

CHAPTER 6. ASSUMPTIONS 153

unquestioned conventional representation that a legitimate ATM customer will ei-
ther take all of the money, or in error, forget to take thier cash withdrawal and the
implicit assumption acts as a constraint in considering that a legitimate ATM cus-
tomer would be deviously motivated to remove only some of the dispensed cash
— circumventing the retraction protection if additional account tracing and cash
auditing functionality is not provided. As noted by DeBono earlier in this section,
in order to break such artificial limits requires a more enquiring and challeng-
ing process that provides more information of the real influences present. Such
assumptive cases vindicates the need for a more challenging computer—based sys-
tem conception — that provides the potential for such implicit assumptions to be
detected by interfacing different contexts—of—interest.

6.5 Assumptions in Contexts

It has already been inferred in section 6.3 that context — whether this be knowl-
edge, culture, or some characteristic of the physical environment, etc, can result
in individuals making different assumptions. In this section the role(s) that culture
and knowledge plays in generating assumptions is discussed.

6.5.1 Culture

In a prolonged study that researched the national differences of cultures, Hofst-
ede [144] likened culture to a "software of the mind". By this, Hofstede didn’t
mean that humans are literally programmed in the same way a computer can be
programmed, as humans still retain the ability to deviate from these influences
and think in new ways. Rather Hofstede was using the analogy to mean that hu-
mans experience a significant amount of pre—conditioning right from their early
childhood to adulthood, that hold a large influence upon how individual(s) react
in certain situations. Such influences include family values, the particular neigh-
bourhood a person grows up in, the particular school(s) they attend, the particular
workplace they are employed in, and the wider community values that are formed
around such institutions and influences. Hofstede also noted, from his research,
that culture is always a collective phenomenon claiming [p. 5]:

CHAPTER 6. ASSUMPTIONS 154

"..it is at least partly shared with people who live or lived within
the same environment, which is where it was learned. It is the col-
lective programming of the mind which distinguishes the members of

one group or category of people from another.”

Handy [60] provides additional justification for these views in his studies and
experiences of organisational settings. He argued that assumptions affect, not
only our institutions and organisations, but additionally, at a higher national so-
cial level, they have a significant influence upon the whole shape of our political
structures, the design of our educational systems, along with the management and
leadership of such institutions and organisations.

Such collective (and often unquestioned) belief structures can often result in prob-
lems and errors of judgement being made in a collective fashion. A good example
of this is provided by Scholes and Johnson [145]. In the 1970s consumer goods
organisations were very powerful, but lost a massive market share to grocery re-
tail chains — which became larger and more organised. The consumer goods
companies continued with the assumption that it was 'they’ that exercised a large
influence over consumer buying patterns as this had been the case for many years
prior. However, from the 1970s onwards, retailers become more organised, many
mergers took place, and as a consequence, these organisations became much larger
and exerted greater influence directly over consumer buying patterns. Both buy-
ing power and influence over the market structure passed over to the retailers and
by the time consumer goods organisations realised the change many had lost their
buying power and market place advantage which resulted in many going out of
business or being taken over. Scholes and Johnson note, in particular, such collec-
tive organisational assumptions (i.e. consumer goods companies have the power
and influence over consumer buying patterns) are not like explicit values of the or-
ganisation’s culture, instead they are deeply held collective beliefs that are rarely
talked about, made explicit, or thought to be problematic in any way.

A further point to note from the last example, and one that connects with sys-

temic views from chapter 4, is that it highlights how the changing environment

CHAPTER 6. ASSUMPTIONS 155

can invalidate previously valid assumptions. A good example that exemplfies how
previously viable assumptions about an ATM system can subsequently (over time)
become invalidated is provided by issue 6 in chapter 5 (i.e. Interaction consistency
and completeness). Here, although the assumption that the physical firmware dis-
pensing mechanisms were capable of dispensing maximum amounts allowed by
the embedded software DWL were originally viable, over time, with increases
in the allowable DWL by embedded software control, the original assumptions
made about the physical cash dispensing firmware limits was eventually invali-
dated. The result was an inability to physically dispense legitimately allowable
DWL to the ATM user in certain circumstances.

From a situational information theory perspective, Delvin [128] explains how such
collective problems and errors of judgement occur within contexts. Delvin pro-

vides the following formula to explain the concept of situational information the-

ory [pp. 32-34]

Information = Representation + Constraint

With regards information, Delvin makes a distinction between data and informa-
tion. Data is simply a number of signals, signs, or symbols that contain no real
information themselves. Information, on the other hand, refers to signs, signals,
or symbols that contain or convey some meaning about something. Data therefore
only acts as a representation for something. Because such representations can be
interpreted in many ways there needs to be something else that converts a given
representation into a particular interpretation. Once this representation conveys
a particular interpretation then we can attribute meaning to some data. We often
attribute a particular interpretation (i.e. meaning) to a given representation via sys-
tematic regularities or conventions we have long associated with particular signs,
signals, and symbols (i.e. data representation). Delvin provides the following ex-
amples as cases where we attribute specific interpretations from such conventions

and systematic regularities [p. 30]:

"There is systematic regularity between the existence of smoke and

the existence of fire and a systematic regularity between dark clouds

CHAPTER 6. ASSUMPTIONS 156

ROZO BEACON ROMEO BEACON

z s
<o @ &~

e 4

CONTEXT A CONTEXT B

Figure 6.3: Overlapping Contexts [source [[128]: p. 78]

in the sky and rain. Human beings and other creatures that are able
to recognize those systematic regularities can use them in order to
extract information. The person who sees dark clouds can take an
umbrella to work, and the animal that sees smoke on the horizon can
take flight.”

Such conventions, systematic regularities, rules, guidelines, and (natural or human
made) laws all constitute constraints that are placed upon a given data represen-
tation in order that it conveys meaning and hence information to us. However, the
nature of the particular context in which the representation occurs therefore places

the overriding selection of what constraints we attribute to a particular represen-

tation.

To return back to the role of Culture in generating assumptions, Delvin notes
that such conventions and systematic regularities, based essentially on the same
representations, can vary widely between countries, regions, organisations and
institutional settings. In such situations problems and errors of judgement can
occur when contexts overlap. Such an example was the tragic aircraft crash of

CHAPTER 6. ASSUMPTIONS 157

| Possible Answer | % of Audience |

Pacific Ocean 53%
Atlantic Ocean 32%
Indian Ocean 9%
Arctic Ocean 6%

Table 6.1: Audience Answers

American Airlines Flight 965 in Cali Columbia discussed in section 6.3.

This tragic situation is illustrated in figure 6.3. It can be seen that the flight crew
(Context A) found themselves in an overlapping context—of-meaning situation
where different constraints applied to the data representations of "R"”. The con-
vention (or constraint) the flight crew were accustomed to was that the top ranking
letter "R" represented the nearest landing beacon "Rozo”. However, unaware to
them was that the context they were now operating in meant that the top ranked
letter "R" really referred to (shown by a dashed line) the "Romeo" landing bea-
con 100 miles away (and 900 off course) in Bogota. Meanwhile, the ground crew
(Context B) were operating in a local convention of representing the top ranked
letter "R" as the farthest landing beacon "Romeo"”. The confusion over these over-
lapping contexts of meaning resulted in the death of 159 people on-board. From
a computer—based system viewpoint such meaning constraints that emerge from
different contextual influences underlines the need to more thoroughly represent
and make explicit different contextual meaning attributions as, at thier root, they
are frequently underpinned by implicit assumptions. Failure to do so, as has been
seen, can result in (potentially) serious flaws, vulnerabilities, faults, errors, and

failures that ameliorates the overall dependability status of computer—based sys-

tems.

6.5.2 Knowledge

Limited knowledge, or limited means of knowledge acquisition can also result in
collective assumptions being made. A good example of this was provided on a
very popular television game-show in the UK in early April 2003. The question
posed to the contestant was as follows: "Which world ocean is 5.5 million square

CHAPTER 6. ASSUMPTIONS 158

[Possible Answers | Actual Answer % | Expected ad-hoc Answer % |

Pacific Ocean 53% 25%
Atlantic Ocean 32% 25%
Indian Ocean 9% 25%
Arctic Ocean 6% 25%

Table 6.2: Biased vs Random Guessing

miles in size?"” The possible four answers (of which one was correct) were: a) the
Pacific ocean; b) the Atlantic ocean; c) the Indian ocean; or d) the Arctic ocean.
Not being sure of the answer himself, the contestant decided to get the views of
the live studio audience. Their responses is shown in table 6.1 on the preceding

page.

The contestant selected, as his answer, the most popular studio audience answer,
but lost when he was informed that the correct answer was actually the Arctic
ocean. This represented the least popular studio audience answer — the view of
only 6% of the live studio audience.

Now what makes this interesting is two things: a) that the vast majority (i.e. 94%)
of the live studio audience incorrectly answered the question; and b) such knowl-
edge already exists to answer the question correctly (i.e. size of the world’s oceans
exists in encyclopaedias, etc). However, the live studio audience only had approx.
20 seconds or so to make their selections. In such time constraints, either a person
knows (and can remember) the answer or they will have to make a guess at the
answer. It is important at this point to distinguish between ’informed’ guessing —
where each individual interprets the information available in the question in some
rational way, and random (or ’blind’) guessing — where each individual simply
accepts that they don’t possess the knowledge necessary to ensure a correct an-
swer and therefore makes an ad-hoc selection of one of the four possible answers

without thought or supporting rationale.

If the majority of the members of the live studio audience had just made a random
guess then the aggregated answer percentages would have been very unlikely to

CHAPTER 6. ASSUMPTIONS 159

have resulted in the percentage amounts shown in table 6.1. Given the highly
specific knowledge required to know the answer, it is much more likely that the
studio audience answered in an informed guessing manner and some information
in the question collectively biased a large section of the studio audience members
to answer in a very homogeneous intuitive manner. In fact in table 6.2 we can
perform a two-tailed Chi-Squared statistical assessment — based upon the actual
answering percentages of the studio audience that night, and what would have
been (approximately) expected if the vast majority of the studio audience had
simply made an ad-hoc (i.e. random) guess.

In such an assessment z? results in an obtained value of 30.9. Given the number of
rows and columns the degrees of freedom is 3 (i.e. rows = (4-1) = 3 and columns
= (2-1) = 1, so 3 x 1 = 3 degrees of freedom). Any z? value greater than 16.27
represents a statistical significant probability of p < 0.001. Meaning, in statistical
terms, that we can be confident that there is only a 1 in 1,000 chance that the live
studio audience, answering in an ad-hoc random fashion to this question, would
have produced the answer percentages shown in table 6.1.

It is therefore reasonable to assume that the vast majority of the audience, not
knowing the highly specific knowledge required and not having time to consult a
suitable information source, attempted some intuitive interpretation of the infor-
mation contained in the question : "Which world ocean is 5.5 million square miles
in size?"” While it is impossible to ascertain exactly what this collective informed
intuitive reasoning actually was, a reasonable suggestion, given the statistically
significant bias, is that the vast amount of the studio audience members inter-
preted 5.5 million square miles as a lot of water and therefore intuitively assumed
or rationalised that this very large amount of water must represent one of the two
largest oceans in the world (i.e. either the Pacific or the Atlantic). This would
at least go a long way to explaining the significant bias (i.. 85%) of the studio
audience answering either the Pacific or Atlantic oceans.

The fact that the collective intuitive view was completely wrong (all of the other

three oceans had much larger water volumes) indicates that not only can peo-

CHAPTER 6. ASSUMPTIONS 160

ple make collective assumptions when knowledge is lacking, but the particular
knowledge context in which such assumptions are made can sometimes result in

collective biased judgements and interpretations that are completely incorrect.

This section has attempted to show that the context plays a significant role in indi-
viduals making certain assumptions. Not only this, but within a context of under-
standing, collective assumptions are often prevalent. While, as indicated earlier
with enthymatic reasoning, this can facilitate communication and understanding,
such collective assumptions can be the source of problems and error. This is par-
ticularly true if: a) the context undergoes change — resulting in long—established
contextual assumptions becoming invalidated (i.e. consumer goods organisations
in the 1970s); b) when different contexts are overlapping (i.e. American Airlines
Flight 965); or ¢) when contextual knowledge is lacking (i.e. game show ques-
tion) and people base decisions upon knowledge bounded intuitions to ’fill-in’

those gaps.

6.6 Chapter Summary

In this chapter the issue of assumptions has been discussed. It can be seen that
assumptions can occur from many causes. The manner in which we reason can
often be subject to assumptions — in fact making assumptions are necessary in
many circumstances if we are to avoid needless repetition and explanation which
would stifle communication and activity. Furthermore, assumptions are useful
mechanisms in progressing a line of thinking or reasoning in both a formal and
informal reasoning manner. However, it is important to identify assumptions in
certain situations as these are often unspoken, implicit, and unquestioned limita-
tions placed upon our thinking and reasoning which can have potentially adverse
affects. This is particularly true when such assumptions represent part of our belief
systems. In such instances unidentified assumptions can act as serious constraints
and artificial limits upon our thinking episodes. It has also been recognised that
the context, while often providing additional information cues that help us iden-
tify assumptions, can also result in collective or shared assumptions being made
that can become invalidated over time, cause confusion when contexts overlap,

CHAPTER 6. ASSUMPTIONS 161

or can result in a kind of flawed ’group—think’ type paradigm when knowledge is
bounded or knowledge acquisition is difficult. It can be seen from the issues and
computer—based system examples given in this chapter that, broadly, assumptions
could be categorised into:-

e Implicit Assumptions: in the form of unconscious constraints and limits
placed upon our representation and reasoning about something;

o Explicit Assumptions: in the form of conscious reasoning mechanisms
that allow us to progress a particular line of reasoning — either formally or
informally;

e Shared Assumptions: in the form of those made collectively in a unques-
tioned manner — usually from some common context—of—interest;

o Invalidated Assumptions: in the form of either unconscious constraints
or conscious reasoning in an individual or shared manner that, although
are originally viable when made, can become invalidated as circumstances,

demands and/or influences change over time.

Undetected assumptions can result in either inconsistent or incomplete compre-
hension of the true influences that pertain in any particular situation. Detect-
ing assumptions then, is critical if greater dependability coverage of computer—
based systems is to be achieved as such shortfalls of reasoning, thinking, and
problem-solving have potentially major implications when our thinking, reason-
ing, and problem-solving becomes a pre-requisite activity to creating dependable

computer—based systems.

Chapter 7

Purpose and Function

162

CHAPTER 7. PURPOSE AND FUNCTION 163

7.1 Chapter Introduction

In this chapter the issues of goal-setting are raised. Developing computer-based
systems is a definite purposeful act. Artifacts embody the goals of those who
conceive, develop, and deploy them. However, the issue of goal-directedness in
this activity is very important when we consider the interrelatedness of system
structures. Such systems often need to promote many goals, many of which, may
not be promoted — or adequately promoted, during development.

This chapter first considers the controversial area of teleology and related cau-
sation before focusing upon the benefits and concerns raised by goal-setting and

multiple goals.

7.2 Teleology

Teleology is a deep philosophical area which requires a greater coverage than
is possible to provide in this chapter. In this section, however, the underlying
philosophical topic of teleology is discussed to provide a theoretical background
to the later associated issues of purpose, function ascription, and the psychological
effects of goal-setting upon human task performance. In this section the origins
of teleology, the reasons for its scientific rejection, and the types of teleology
recognised from more contemporary theories is covered.

7.2.1 Origins

The origins of teleology date back to ancient Greek philosophy. The term ’telos’
means an end or goal, and the complete term ’teleology’ means to be end directed.
The two philosophers, from ancient Greece, who established its essential founda-

tions were Plato and Aristotle.

Although the foundational principles of teleology, between the two founders, are
essentially consistent they, do depart in significant ways with regards to determin-
ing how any given entity’s end state is conceived and achieved. Platonic concep-

CHAPTER 7. PURPOSE AND FUNCTION 164

tions of teleology relates to ’external’ teleology [146]. With external teleology
the ends to be satisfied (or desired to be attained) will be accomplished by some
external agent essentially outside the system—of—interest that is to be created, de-
signed, or modified. The value or utility envisaged in attaining the desired goal
is also subjectively determined from that external agent’s perspective. Although
Plato’s own usage for this definition was to characterise a divine artisan who cre-
ated the universe, it can be utilised to mean any creative act that results in an
artifact. External teleology captures the notion of a creative entity being moti-
vated into action and producing pre—existing notions and ideas of what the results

of the creative act will (or should) be.!

By contrast, Aristotle, while acknowledging the relevance of Plato’s teleological
conceptions, was primarily interested in the biology of living things [147]. As a
direct consequence, he preferred to extend teleological interpretations to accom-
modate an ’internal’ conception also [146]. With Aristotle’s conception, the ends
or goals belong to the entity or system itself and not those of any external agent.
Additionally, any notion of value, good, or utility of attaining the desired end or
goal is to be determined from the perspective of the entity or system itself. With
such a conception, the purposiveness is subsumed, in any thinking or reasoning
manner, and there need not be any pre-existing notions or ideas of the end or goal
that will (or should) result. Instead, such an end or goal state is provided by the in-
ternal processes or structures of the entity or system itself. Delbruck [148] claims
that Aristotle’s principle of an internal ‘unmoved mover’ that provides for change
to an end or goal state without ever changing itself is probably one of the greatest
conceptual innovations as it perfectly describes DNA that acts, creates, and de-
velops a living organism — and yet remains itself unchanged in the process. The
very existence of DNA, however, was not to be discovered until well into the 20th

century.

In comparing the two originating conceptions of teleology McLaughlin [[146]: p.

17] notes:

Such original teleological ideas are fundamentally related to a formal causation cf. subsection
7.24.

CHAPTER 7. PURPOSE AND FUNCTION 165

“The reality of external teleology can scarcely be denied: the re-

ality of internal teleology is what is really at issue.”

Mayr [147] explains that due to Aristotle’s essential interest in biological sys-
tems he, in error, over extended teleological conceptions to include the non-living
world, and, in part, it was this that subsequently resulted in teleological interpre-
tations of scientific phenomena being vehemently rejected during the scientific
revolution of the 17th, 18th and 19th centuries.

7.2.2 Rejection of Teleological Explanations

In addition to teleological explanations being rejected through Aristotelian at-
tempts to explain non-living phenomena, teleology, by the 17th century, was
intrinsically linked with vitalistic explanations that provided religious and meta-
physical theories to explain nature [149]. This was due to much earlier attempts
by the Catholic church to provide Christian interpretations of Aristotle’s teleolog-
ical philosophies (particularly idealistic causation of finalistic and formal causes
see subsection 7.2.4). This resulted in reinforcing rejection by the scientific com-
munities (in particular by prominent natural philosophers such as Francis Bacon

and Renae Descartes).

By the late 17th century, mechanism had become the dominant scientific paradigm
championed by (Sir) Isaac Newton that described the universe in purely physical
causation terms. This would subsequently be further reinforced in biology by
Charles Darwin in the 18th century that portrayed the origin of all life on earth in
terms of purely materialistic causation terms of natural selection and adaptation.
Both of these cases alluded to only explain "how" the universe and life on earth
worked using materialistic and efficient causation explanations. This is in con-
trast to "why" explanations that would require reference to finalistic and formal
causation, which, by then, had become scientifically discredited.

It was not until the early 20th century with the advent of relativistic and sub-
atomic physics discoveries that the limits of the mechanistic world-view would

CHAPTER 7. PURPOSE AND FUNCTION 166

became exposed and questioned.

7.2.3 Types of Teleological Processes

Despite these shortfalls in teleological explanations biologists have long argued
for the heuristic and empirical merits of posing teleological questions of the "why"
persuasion. It has been therefore widely recognised in philosophy that in or-
der to meaningfully apply teleological explanations, a careful categorisation of
valid teleological definitions are necessary to avoid the confusion presented when
teleological explanations unwittingly ’criss—cross’ issues of vitalism, holism, and

reductionism.

To begin with Mayr [[147]: pp. 19-20] argues that such definitions must be im-

mune to any of the following objections:

e Teleological statements and explanations must not imply the endorsement

of unverifiable theological or metaphysical doctrines in science;

e Explanations for biological phenomena that are not equally applicable to
inanimate nature must not constitute a rejection of a physiochemical expla-

nation.

o The assumption that future goals were the cause of current events must not

seem to be in complete conflict with any concept of causality.

To uphold these criteria Mayr [147] introduces two definitions of teleological pro-

CESSES.

The first is termed Teleomatic processes. Teleomatic processes are processes
where causation is simply the consequence of natural laws. One such example
is where gravity provides the natural end state for a rock that is dropped into a
well. Another is where a heated bar reaches its natural end state (under thermo-

dynamic laws) when its temperature with the prevailing environment reaches the

CHAPTER 7. PURPOSE AND FUNCTION 167

point of equalibrium. In teleomatic processes, systems and entities, the end di-
rected causation is only in a passive manner — controlled deterministically by
external forces and boundary conditions. In this sense it is an automatic process.

The second is termed Teleonomic processes. With Teleonomic processes the be-
haviour of the entity owes its causation towards a definite end or goal state to the
execution of some internal program that can both anticipate the desired end or goal
state and can regulate the organism’s executive mechanisms and functions towards
achieving that end or goal state. An obvious example would be the genetic DNA
coding of a hen’s egg that will transform into a chicken (and ultimately, in time,
into a mature hen). Another example is where a computer’s electronic circuitry
and hardware devices acts in a determined manner when it is provided with the
appropriate programmed instructions (i.e. software). An interesting extension to
this definition is also to note that the internal program may be a 'closed’ or ‘open’
program. For instance, the hen’s egg represents a closed genetic program that
determines the ultimate end or goal state (i.e. a chicken/hen) whilst the encoded
computer program may be either a closed or an open program. It is closed if it’s
program does not need or cannot acquire other information. Alternatively, if it re-
quires certain information input parameters, or is capable of intaking information,
then it is an open program. Mayr notes that most behaviour of higher organisms
is controlled by open programs which require or can incorporate additional in-
put information in the form of learning, conditioning, experience, etc. Once such
open programs have been ’filled-in’ with additional information it then becomes

the equivalent to the closed program in its regulation of teleonomic behaviour.

An important point to note with these two definitions (and one that will be made
more clear in the discussion to follow below) is that in both teleological defini-
tions no reference can be made to an intentional purposeful act. The rock never
intended to fall down to the bottom the well, the metal bar did not intend to be
the same temperature as the room, the hen’s egg never intended to become a
chicken/hen, and (say the closed) computer program never intended to print on
the screen "Hello World". Such statements are silly and inappropriate teleolog-
ically for these type of processes. As Rosenblueth et al [[150]: p. 19] noted in

CHAPTER 7. PURPOSE AND FUNCTION 168

their cybernetic considerations of teleology:

"The basis of the concept of purpose is awareness of "voluntary
activity.” Now, the purpose of voluntary acts is not a matter of ar-
bitrary interpretation but a physiological fact. When we perform a
voluntary action what we select voluntarily is a specific purpose, not
a specific movement or act. Thus, if we decide to take a glass con-
taining water and carry it to our mouth we do not command certain
muscles to contract to a certain degree and in a certain sequence; we

merely trip the purpose and the reaction follows automatically.”

What we can see from the examples of teleomatic and teleonomic behaviour is
that, whilst end or goal directed, in every case there was no voluntary behaviour
present. The systems in the examples had no control of the process and therefore
had no freedom to choose what acts will be performed. Therefore, these examples
of teleomatic and teleonomic processes, discussed by Mayr [147], represent non-

intentional forms of teleological processes.

McLauglin [146] includes, but also, extends Mayr’s [147] teleological defini-
tions by including into the definitions: a) classifications of intentional and non-
intentional processes; b) making distinctions between teleological processes and
teleological entities (in terms of artifacts, organisms, traits, and human institu-
tions); and c) by providing subclassifications within these classifications and dis-
tinctions (i.e. a and b). He does this by providing a range of (considered) gram-
matically valid teleological statements, as follows:

1. The man ran in order to catch the train;
2. The cat opened the door in order to get the cream;
3. The wasp hunts bees in order to feed its larvae;

4. The function of the thermostat in the furnace is to keep the water from going
above a certain temperature — and thus to help it provide steady heat;

CHAPTER 7. PURPOSE AND FUNCTION 169

[] Processes | Entities
Intentional (1) Human Actions (7) Simple Artifacts
(2) The Behaviour of Higher Animals (4) Parts of Complex Artifacts
Non-intentional (3) Behaviour of Lower Animals (10) Invertebrate Artifacts
(8) Organic Development (6) Biological Traits
(9) Historical Chiliasm (5) Social Institutions and Cultural Practices

Table 7.1: Teleological Classifications [source:[146]: p. 38]

5. The (latent) function of witchcraft persecutions among the Navaho’s is to
lower intra-group hostility;

6. The function of the heart is to circulate the blood;
7. The purpose (or function) of knives is to cut;
8. The cell became specialised in order to develop into a lung;

9. The Second Dutch War was necessary in order for England to become a
world power;

10. Spiders spin webs in order to catch food.

The above teleological statements of McLauglin are entered into their appropriate
teleological categories in table 7.1.

Examples (1) and (2) represent the classification of intentional teleological pro-
cesses. This category deals directly with final causation in terms of some aspect
of mental representation of a desired end or goal state is responsible (i.e. a cause)
for the current human or animal behaviour (i.e. the effect) of running for the train
or opening of the door. The two important considerations are: firstly, future an-
ticipated goals are the cause of present events (i.e. running and opening) which
runs in reverse to the traditionally accepted sequence of causality (i.e. the effect
precedes the cause instead of the cause preceding the effect); secondly, both the
man and the cat demonstrate voluntary behaviour (i.e. the man chose to run for the
train, and the cat chose to open the door) which, as discussed earlier, is essential
to ascribe consciously purposeful actions or activity.

CHAPTER 7. PURPOSE AND FUNCTION 170

Examples (4) and (7) represent the classification of intentional teleological enti-
ties. This category is particularly interesting because purposeful ascriptions at-
tributed to artifacts blurs the distinctions between final and formal causation de-
pending upon the complexity of the artifact and the context in which it occurs.
For instance, if we consider first the simpler artifact of the knife in example (7)
we can see that the functional identity of a knife can easily have many possible
"functional propensities” [cf. McLaughlin [146]: p. 51]. It can be used (as it
was designed for) as an implement for cutting. However, it could also be used
as a screwdriver, a wall scraper, a lever, etc, etc. This multi—functional ascription
is particularly common for simple artifacts where the function is completely ex-
ternalised in a holistic way. The possible use functionalities that a simple artifact
like a knife could be put to also introduces interesting issues surrounding final and
formal causation. We can see that functional ascription with the knife relies on
no more than a formal representation of conceiving that particular function of the
knife to perform a different function without ever having to redesign or modify
it at all. This is what McLaughlin terms a "virtual” functional ascription . How
well the knife performs when ascribed other functional ascriptions — other than
which it was designed brings into focus the tension (and possible mismatch) be-
tween its intended designed purpose and its (now new) ascribed usage function.
For example using the knife as a lever may result in very poor performance (and
be potentially dangerous). Here we can see that with such simple artifacts the
final causation — in terms of the functional goal (or purpose) for which it was
conceived, created, and designed (i.e. to cut with), in no conceptual way, restricts
a re—conception of how it could be used. The fact that this, by some, may be
judged to be a misuse of the artifact is a side—issue when considering teleological
explanations. This led McLauglin [[146]: p 206] to concede:

"....functions of artifacts are, in the last analyses, based on men-
tal events: beliefs and pro attitudes... Paradigmatically, we actually
design and make the artifacts, the artifacts actually have the effects
intended, and the effects are beneficial as expected. However, none of
these need necessarily be the case for an item to have an artefactual

function."”

CHAPTER 7. PURPOSE AND FUNCTION 171

The point McLaughlin wished to make with this comment is that with simple arti-
facts we can change the purpose and function relationship of the artifact as quickly
as we can change our mental representation (i.e. formal cause) irrespective of its
originally intended function (i.e. final cause) for which it was designed or cre-
ated. With complex artifacts like example (4) however, the functional identity
of the artifact is slightly more objective and identifiable. This is because, unlike
simple artifacts, its functional contribution is both highly specialised and inter-
nalised within a broader system boundary. With simple artifacts the function can
be changed as quickly as our intentionality towards it, without necessarily any
structural change of the artifact needing to take place. Whilst this may also be the
case with systemically intentionalised artifacts, it is so, to a lesser extent. How-
ever, it is still quite possible, even with complex artifacts, to ascribe a different
purpose to an already existing function — in order to derive latent functionalities
(in terms of intended design). A good example of this, from a computer—based
system perspective, was given in chapter 5 (section 5.2.2) as issue 5 (Obscure se-
curity flaw conflict). Here we can appreciate that although the intended designed
(i.e. manifest) function is to ensure an authorisation function for an ATM user
via PIN code while allowing at all times a complete undo facility. The facility
of allowing the ATM user to completely undo the transaction without recording
any failed PIN code authentication attempts actually leaves open the possibility
for a fraudster to completely enumerate a targetted ATM customer’s PIN code.
Therefore, while the design intention is to provide a flexible authentication PIN
code function which promotes the well established usability principle of always
allowing the user to undo a transaction, the unintended freedom within the de-
signed function allows a fraudster with the purpose of gaining illegal access to an
ATM customer’s account, to ascribe an additional (i.e. latent) function to this PIN
code authentication function as having the additional functionality of a complete
PIN code enumerator. This ability to ascribe latent functionalities to manifest
functions that they are not intended or designed to satisfy is at the heart of many
security vulnerabilities in computer-based systems and further reinforces the need
for a wider holistic and integrative consideration of both the technical and human

systems as subsystems—of—interest within a computer-based system perspective.

CHAPTER 7. PURPOSE AND FUNCTION 172

Examples (3) (8) and (9) represent the classification of non-intentional teleolog-
ical processes. Examples (3) and (8) are cases of teleonomic teleological expla-
nations discussed earlier. This is where the end or goal states are determined by
an internal program execution. Example (3) is an interesting distinction between
examples (1) and (2) mentioned earlier. By contrast to examples (1) and (2), ex-
ample (3) represents a much lower order of organism sophistication. Whereas
the man and the cat represents voluntary purposive intelligent behaviour (i.e. in-
tentional), example (3) of the wasp represents a limited level of internal program
execution that constitutes involuntary instinctive behaviour (i.e. non-intentional).
Example (8) is also teleonomic, but this time, represents an internal (and closed)
program execution of a physiological nature. Example (9) is more of a teleomatic
process. Teleological explanations can only be offered with the benefit of hind-
sight that then reveal the external material causation that the Second Dutch War
had subsequently upon the end state of England’s world position.

Examples (5) (6) and (10) represent the classification of non-intentional teleologi-
cal entities. Example (5) can be very confusing as organisations are often thought
of as having desired objectives and goals, etc. In this case it is, at first glance,
very appealing to assert that organisational structures have intentionality. How-
ever, what is of interest here in this classification is the latent functional causation
that cultural practices have upon the organisation itself. What must be understood,
however, is that the cultural climate of the organisation or institution may not be
in alignment with the formal or primary intentions of the organisation. Classic
examples include a blame culture climate that can lead to emergent (and uninten-
tional) behaviours of the organisation that are in direct conflict with its formal or
primary goals (e.g. a blame culture in an organisation that requires high levels of
safety). As will be seen in chapter 8 where the ATM case study issues of chap-
ter 5 are analysed within a more suitable computer-based system dependability
representation, assumptive reasoning involved in promoting one particular goal
can often result in unintentional and undesirable interdependencies that compro-
mise and undermine the promotion of other goals. When this occurs, during the
creation process, the compromised goals in the eventual artifact can also be un-
derstood in terms on non-intentional teleological entities and reinforces the need

CHAPTER 7. PURPOSE AND FUNCTION 173

for a more holistic and integrative representation to help prevent this occurence
during the creation process.

7.2.4 The Four Causes

As can be seen from the previous sections, causation is inherently related to is-
sues of teleology. In the following subsections Aristotle’s four types of causation
are considered. Despite the scientific criticisms of Aristotle’s views of teleology,
his ideas of causation are more complex and sophisticated than at first glance.
Aristotle identified that causation could take any one (or more) of four essential

forms:
1. Final causation:
2. Formal causation:
3. Material causation:

4. Efficient causation:

The textbook example often used is that of building a house that illuminates the
roles of each causation factor in reaching or achieving a required or desired end—
state (or goal).? The material cause in house building relates to the stone, brick,
timber and tiles that go to make up the physical structuring of the house. This in-
cludes the tools, methods, and techniques employed in putting the actual materials
together in such a manner as to construct a house. The efficient cause represents
the labourers, joiners, bricklayers, and plumbers involved in the actual construc-
tion. The formal cause is not as clearly categorised, however. As mentioned
earlier, Aristotle’s conception of the ‘unmoving mover’, recognised that there is a
necessity for abstract intervention that precedes actual attainment or achievement
of the intended goal. The formal cause represents some preceding conception or
control of what is to be created. In this sense the formal cause relates to a blueprint
or model of what is to be built, and in the example of building a house, the nearest
role that fulfills this causation is that of the architect who first designs and refines

2Whether this is intentional or unintentional.

CHAPTER 7. PURPOSE AND FUNCTION 174

| Causal Type | House Building | Military Battle |
Material Stone, bricks, mortar, etc Guns, swords, tanks, etc
Efficient Labourers, joiners, electricians Soldiers
Formal Plans, drawings, models, etc Military strategy, etc
Final Need / purpose for house Political / economic reasons etc

Table 7.2: Aristotelian Causal Typology Example [source: [149]: p. 12]

a model, plan, scheme, or blue print of what the house will look like etc. The
final cause represents the purpose for wanting to build the house in the first place.
This could be for any number of utility reasons such as shelter, luxury, necessity,

commercial gain, or social reasons.

Ulanowicz [149] provides another example which he believes overcomes some
of the blurring between formal and final causation. Ulanowicz uses a military
campaign as an example. In this case, the material cause represents the weapons
and ordnance used by each side. The soldiers fighting on the battle field represent
the efficient cause. The final cause relates to the broad reasons why each side
became involved in the conflict to begin with (i.e. imperial ambitions, economic,
etc). Ulanowicz argues that it is the generals who provide the formal causation,
through strategic military planning and decision making that influences not only
the shape of the battle as it unfolds but can affect the success or failure of the
eventual outcome of the whole endeavour.

Table 7.2 captures the two examples of causation. Ulanowicz goes on to point
out that Aristotelean notion of causalities is hierarchical — in that all the causal
forms participate at different levels and influence the eventual outcomes at dif-
ferent scales. For example, the generals enact an immediate influence over the
success of the entire campaign through the quality of their experience, intuition,
and foresight (i.e. formal cause) in strategic military planning. The soldiers (i.e.
efficient cause) also influence the campaign, but only on a smaller subfield scale.
The same could be said for the quality and quantity of guns, ordnance, etc. Heads
of state (i.e. final cause), on the other hand, exert an influence that goes way
beyond the issues of the campaign itself.

CHAPTER 7. PURPOSE AND FUNCTION 175

It is pointed out, by Ulanowicz, that although material and efficient causes tend
to exert their influence at a subset or subfield level, their effects, if severe enough,
can propagate up the scales in some cases. Furthermore, it is noted that the formal
cause acts at the "focal” level of observation and its alignment with that of the final

cause is the most crucial in determining successful attainment of the end goal.

7.3 Goal-Direction

In the preceding sections teleological and causation issues have been considered.
It can be seen that designing and developing dependable computer-based systems
represents a straightforward external and intentional teleological activity. In this
activity the goals and purposes of the computer—based system artifacts are what
we, as their creators, envisage and embed into them. However, although true, this
is not so clear as it may at first seem. A dependable computer—based system ar-
tifact must be reliable, secure, usable and maintainable. All of these well known
attributes represent goals of the artifact, yet, firstly, these goals cannot be directly
promoted in any structural or architectual sense, and, secondly, this means that a
single artifact may need to contain, embody, and promote many goals. Further-
more, how can we assure that such goals are acceptably represented in the first
place? These issues are raised and discussed in the following two subsections.

7.3.1 Single Goals

The influence of single goals on human performance has been extensively studied
by industrial psychologists over nearly four decades. In a comprehensive survey
of experimental findings on goal-setting effects upon human performance Locke
& Latham [151] argue that the findings represent one of the most reliable and
replicable areas of psychology.

Goal-setting research focuses on the relationships that consciously set task goals
have upon human task performance. The core findings over the years concerns
the relationships that exist between the difficulty of the goal set and the speci-
ficity. Difficult goals regularly produce more effort — however this levels off

CHAPTER 7. PURPOSE AND FUNCTION 176

once an individual reaches the limits of their ability. Specific goals set often lead
to higher human performance than "do your best goals" and specific and difficult
goals consistently produced higher human task performance and reduced variabil-
ity between human performance.

Four positive mechanisms related to goal-setting have been consistently found
during experimentation. Firstly, goal-setting provides a directive function through
focusing activity and attention towards goal relevant activities and away from goal
irrelevant activities. Locke and Latham noted that this mechanism of goal-setting
influences at both the behavioural and cognitive level. Secondly, goal-setting
provides an energizing function. Higher goals tend to motivate people to em-
ploy greater effort than lower performance goals. Thirdly, goal-setting influences
persistence towards achieving the goal. It has been observed a number of times
during experimentation that when participants control the time they can spend on
a task, they spend longer on the task when explicit goals were set. Finally, goal-
setting promotes an arousal and discovery function. It has been found on a wide
range of tasks that setting goals stimulate the thinking process resulting in them
searching out task relevant knowledge and information appropriate to achieving
the goal. When individuals are confronted with a task they will automatically
employ knowledge, information, and skills directly relevant to attaining the goal.
In task situations which require knowledge, information or skills that people do
not already posses then they will deliberately draw upon previous experience they
deem relevant to that particular goal-setting context and apply it. In completely
novel goal-setting situations where they do not possess even relevant previous ex-
perience then they will deliberately plan and develop new task strategies that will
enable them to achieve the goal.

Despite these very positive and longstanding findings of goal-setting influences
upon human performance, Locke and Latham did find a number of moderating ef-
fects upon goal-setting research. Firstly, is the issue of the particular individual(s)
natural commitment towards achieving the goal. Factors that were considered crit-

ical include:

o The importance of the goal itself. Locke and Latham noted that public

CHAPTER 7. PURPOSE AND FUNCTION 177

announcement of commitment can often increase perceptions of importance

of the goal to an individual;

o Leadership can often increase commitment. In particular Locke and
Latham emphasised the importance of increasing confidence in a persons

ability to be capable of achieving the goal;

o Self-assignment and participative assignment. These were also consid-

ered important in getting commitment from an individual;

o Reasoned rationale. The wider contextual importance of being able to

achieve the goal has also been found to instill commitment.

Secondly, feedback upon performance, in terms of progress made is also an im-
portant consideration. Locke and Latham recognise that goal-setting, by nature,
is a discrepancy creating process that requires careful feedback on task progress.
Lastly, the intrinsic complexity of the task itself can act as a moderating influence.
As complexity of the task increases higher levels of skills, experience, and knowl-
edge is demanded whereby goal-attainment becomes dependent upon the individ-
ual’s ability to plan and seek out new task strategies. Locke and Latham report on
two important aspects of goal-attainment with intrinsically complex tasks. One
aspect relates to assigning only learning type goals rather than definite or specific
outcome goals when the nature of the task is inherently complex. When learn-
ing goals are set on complex tasks it has been found that performance is signifi-
cantly higher. The second aspect relates to the careful structuring and alignment
of proximal (sub) goals with distal (overall) goals. Studies on goal-setting on
complex tasks have shown significant performance increases when overall distal
and sub proximal goals are intelligently structured over just a distal or "do your

best" generic goal

7.3.2 Multiple Goals

While goal-setting research has provided robust human performance increases it
must be remembered that the vast majority of the research involved tasks with
only one explicit goal to be achieved. The development and deployment of a

CHAPTER 7. PURPOSE AND FUNCTION 178

dependable computer—based system, on the other hand, involves an artifact and
context which introduces and requires many goals to be simultaneously satisfied

and attained. This introduces issues of multiple goal attainment.

To begin with, multiple goal attainment introduces issues of cognitive limits in
terms of ability to focus and have sufficient knowledge, skills, and experience
to consider many goal-related issues when performing a task. This was the is-
sue Shallice [152] considered in developing and analysing a cognitive model of
consciousness based upon previous psychological research. His resultant analysis
argued that only one goal, plan. or mental scheme can be maximally activated at
any one time during cognitive reasoning. This suggests that, in situations where
multiple goals need to be promoted and attained, a single individual will be (at
worst) oblivious to the non—activated goal attainment issues or (at best) be inca-
pable of simultaneously providing sufficient consideration of important multiple
goal-related issues. This theory reinforces Weinberg and Schullman’s [153] find-
ings of multiple goal-setting influences upon human performance in computer
programming. In a number of studies to attempt to understand the huge perfor-
mance variations in computer programming, Weinberg and Schullman set industry
programmers primary and secondary quality and productivity goals on a number
of programming tasks. What they found was that programmers tended to focus
exclusively on their primary goal while treating secondary (or unstated) goals as
"free variables" to be traded—off in pursuing their main goal.

Within a system development context multiple goals introduce a problematic in-
terdependency problem where in promoting or focusing mainly/solely upon one
goal, relationships between goals can be subtly created. The nature of these rela-
tionships can be of one of three types:

1. Complementary. This is where promoting one goal inadvertently also re-

inforces or promotes another related goal within the system;

2. Compatible. This is where promoting one goal inadvertently does neither

promote nor compromise another related goal within the system;

CHAPTER 7. PURPOSE AND FUNCTION 179

3. Conflicting. This is where, in promoting one goal, another related goal

within the system is inadvertently compromised.

1t can be seen from these three inter—goal relationships that conflicting interde-
pendencies are of a major concern in compromising the system. This is especially

true if it occurs or results without detection.

7.4 Chapter Summary

The development of computer-based systems is an intentional teleological activity
whereby the creators who conceive and construct the functionality do so purpose-
fully. Artifacts therefore embody the goals of their creators — even though, in the
case of simple artifacts, their purpose context can be altered merely by the con-
ception of the user. In the case of more complex artifacts, such as computer-based
systems, this is much less likely to occur, but can be at the core of many security
vulnerabilities etc when it does. A particular problem with such complex artifacts
as computer-based systems is that they require many goals to be promoted simul-
taneously — such as maintainability, reliability, security etc. Despite the fact the
goal-setting research has shown that setting individuals explicit conscious goals
can have a significant positive effect upon human performance (in both behaviour
and cognition), it is also recognised that, with such complex artifacts, people can-
not be expected to have the knowledge, experience, skills, or cognitive capacities
to consider all possible inter—goal relationships that can occur in multi-goal pro-
motional situations. If representation and promotion of multiple goals is to be
achieved, therefore, some other way of resourcing and organising development
teams will need to be considered. In the next chapter the ATM issues from chap-
ter 5 will be revisited and reformatted to show how by setting different developers
different goals can help unearth conflicting inter-goal relationships that can un-
dermine computer—based system dependability. Furthermore, it will be shown that
often these relationships occur because of some assumptions that are made about

the goal being promoted and/or context being considered.

Chapter 8

Discussion of a Goal-Diversity
Process Intervention

180

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 181

8.1 Chapter Introduction

In this chapter considerations for a process intervention that attempts to enhance
computer—based system dependability via improved assumption detection by means
of forcing diversity into a development team through diverse goal-setting is dis-
cussed. Section 8.2 provides a justification for considering the setting of diverse
goals to attempt to achieve diversity. This is done by drawing upon the literature
and arguments already presented in the preceding chapters of the thesis. Sec-
tion 8.3 then introduces and justifies the usage of an already established notation
that employes a non—functional analysis and synthesis of computerised systems.
Lastly, in section 8.4.2 this notation is then utilised, in its slightly adapted form, to
provide an insight into the expected benefits a goal-diversity process intervention
may yield in obtaining a greater assumption detection coverage.

8.2 A Goal-Diversity Process Intervention

Chapter 3 provided an initial view of the important attributes one might expect
in a dependable software creation process. From this viewpoint, it is possible to
begin to consider: a) the inter—related dynamics of process technology inputs (e.g.
tools, methods, and techniques), human resource inputs, the nature of the software
creation task, the particular application domain, and overall process management;
and b) how latent and active fault-phenomenologies can occur in both the cre-
ation process and its immediate process environment — as threats to achieving a
dependable process. Viewing the creation process as a system—of—interest in its
own right, it is possible to begin to consider how this creating system could utilize
these elements to increase its fault—tolerance in avoiding the introduction of faults
into the system it creates. As chapter 2 highlighted, the employment of redun-
dancy and diversity into a software artifact has provided substantial increases in
dependability in the presence of residual software faults, following this lead then,
it is reasonable to consider how process redundancy can also aid dependability
increases in tolerating imperfect creation process elements to increase avoidance
of faults into the software artifact. Focusing upon human resources, it can be

seen from chapter 3 that the employment of human redundancy to achieve human

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 182

diversity to increase fault-avoidance already exists in many guises. Examples
provided in chapter 3 include: i) ad—hoc or natural human diversity approaches
— such as pair—programming, egoless programming, and, more recently, open
source development; ii) forced—diversity approaches — whereby diverse process
technology is applied to aid fault-avoidance; and iii) to a lesser extent, composed
diversity approaches — whereby diverse human resources are carefully composed
into groups and teams based upon some uncontrollable psychological dimension

such as personality or culture, etc.

Improving the dependability of the software creation process through some di-
verse human resource process intervention is further complicated, however, when
considerations of a computer—based system are to be included. As discussed in
chapter 4, a computer-based system perspective expands the system boundaries
outwards to include the technical computer system and its interacting human sys-
tem(s) as subsystems—of—interest. This wider systemic view is more complex as
it becomes clear that sociological, organisational, and situational influences can
combine to result in judgements of undependability for strictly non—technical rea-
sons. Such examples, considered in chapter 4 include where notions of system
purpose of the system vary in potentially conflicting ways in contextual areas of
responsibility, motivations, and values etc. To help unearth such differing system
purpose perspectives and judgements it is necessary to recognise that computer—
based systems require a higher holistic and integrative understanding of depend-
ability from important, but often conflicting, stakeholder contexts—of—interest. For
this reason four generic contexts—of—interest of: a) the utility context; b) the en-
gineering context; c) the deployment context; and d) the evolution context were
devised as a guiding integrative understanding framework for computer—based
system conceptions. When this computer-based system conception was applied
to understanding a number of reported failures in the long—standing domain Au-
tomatic Teller Machine (ATM), it was indicated that many of the flaws, vulnera-
bilities, etc resulted from various assumptions being made.

In reviewing the literature on assumptions in chapter 6 and relating this literature
to the ATM case study in chapter 5, four broad categories of assumptions can

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 183

be appreciated. These are: i) Implicit assumptions; ii) Explicit assumptions; iii)
Shared assumptions; and iv) Invalidated assumptions. It was highlighted in the
literature of assumptions in chapter 6 that often assumption identification can be
extremely difficult and requires a significant level of conflict, challenging, and
tension to detect them. Therefore a particular question of the thesis was: "What
form of human diversity process intervention could help improve assumption de-
tection coverage during software creation?” In answering this question diverse
goal-setting was accepted for a number of reinforcing reasons. Firstly, from the
literature on goal-setting in section 7.3.1 in chapter 7, industrial psychologists
have found, over the last 30 years of studies, that goal-setting represents one
of the most robust and replicable ways of increasing human task performance.
Secondly, from both a computer—based system and psychological research per-
spective, goal-setting influences and focuses human cognition and behaviour —
effecting peoples’ values, reasoning, and priorities, which is considered crucial
for unearthing different stakeholders’ notions of purpose (and the underlying as-
sumption set supporting them). Thirdly, because of these cognitive influences,
setting different goals offers a more practical, feasible, and controllable way for
an organisation to employ human redundancy/diversity than other less control-
lable forms of (say) composed diversity. Fourthly, because of these practicalities
of goal-setting, and the fact that software development is a clear case of external
teleology (cf. section 7.2.1), satisfactory levels of dependability representations,
during the creation process, can be promoted. Finally, different goals inevitably
result in higher levels of conflict, challenges, and tension. Diverse goal-setting

therefore provides the necessary task climate for helping unearth assumptions.

A more detailed and specific example of the stages and assumption identifica-
tion benefits of the proposed goal—diversity process intervention is discussed and
exemplified in section 8.4.

8.3 Non-Functional Notation

In this section the nature of non—functional attributes will first be discussed in
section 8.3.1. It will be noted that non—functional attributes have dependability

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 184

consequences for both the creation process and the created artifact. Next, a well
established non—functional requirements framework will be introduced in section
8.3.2 before its merits and suitability of application to demonstrate the anticipated
benefits of a goal-diversity process intervention (documented and illustrated in
section 8.4.2) is provided in subsection 8.3.3. Lastly, some important differences
between the established non—functional framework and the goal-diverse process

intervention is discussed in subsection 8.3.4.

8.3.1 Non-Functional Attributes

In this subsection the nature of non—functional attributes is briefly discussed.
However, before doing so, let’s provide a suitable context via a quote from Malan
and Bredemeyer [116] [p. 2] that is (perhaps) all too similar and frequent in many
large—scale software development projects:-

"One development team, being close to its function—complete check-
point, was frantically scrambling to meet benchmark targets that the
marketing team was just then putting together for system test. An
architecture assessment revealed that some of these quality require-
ments could not be met by the current architecture without signifi-
cant rework. This problem of attempting to work quality in at the
end of the development phase has been around as long as we have
been doing software development...Another team started out with the
goal of creating a system that would satisfy current user requirements
and provide the basis for quickly developing other applications. After
putting the engineers through object—oriented training and spending
months on analysis and design, the project started to feel the pressure
of the impending release date. As this pressure intensified, design re-
views and code inspections were scuttled and key architects and engi-
neers left the team disgruntled by the long workdays and corruption
of the vision of creating a reliable, extensible and evolvable system
that would solve the development pressure problem in future releases.
More and more engineers were added to the team to make up for this
attrition. Under this pathological cycle, the design degenerated and

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 185

was going to be pretty much abandoned. Quality problems emerged
and excalated out of control. Somehow, through sheer heriocs on the
part of the engineers, the application was eventually released. It met
the critical customer requirements, but came nowhere close to the
organisation’s goal of reducing the time—to-market of follow—on re-
leases...Simply put, either the non—functional requirements were not
specified (in time), or compromised without explicit attention to the
trade—offs involved. Not paying attention to eliciting, documenting
and tracking non—functional requirements makes it harder to priori-
tize and make trade—offs between quality of the product, the cost to
develop and enhance it, and the time—to—market of current and future
releases. Without quality targets to guide the architects and engi-
neers, design choices are arbitrary, and it is hard to assess the system

during architecture and design reviews and system test."

This quotation is all too reminiscent of chapter 3 in that it demonstrates quite
clearly how the software creation process is made up of a complex interrelated set
of dynamic influences that can cyclically undermine dependability.! More impor-
tantly, and in specific relation to non—functional attributes, while non—functional
attributes are often thought of as desirable properties of the created software ar-
tifact, it can be appreciated that the explicit presence of non—functional attributes
are not only important in providing a dependable software artifact, but their pres-
ence in driving the creation process is critical to promoting a dependable process.
In the context of this thesis, it is their presence for driving the requirements and

Note in particular :- 1) How loss of process controllability, as a desirable process attribute, can
act as a latent process environment error that then further introduces faults into the artifact through
fatigue and monotony of heavy overtime working to accelerate project schedules; 2) How subse-
quent reduction of fault detection of the process then occurs via violations of important design
reviews and code inspection stages; 3) How the combination of these two influences then result
in further loss of process control due to unnecessary rework; 4) Also note how desirable process
attribute of technology applicability was undermined — in the form of not knowing the neces-
sary methods (object-oriented) within the creation process also led to a loss of process control
— through the project schedule then having to accomodate learning (which few project managers
ever include within the work scope during planning); 5) Lastly, note the lack of desirable process
attribute of human performance predictability — in that after losing project schedule control the
work remaining could not be factored out for schedule acceleration by increasing the number of
engineers involved in the software creation task.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 186

design decision-making of the software creation process that is primarily focused
upon. In this respect the thesis is focused upon process—oriented non—functional
attributes in a qualitative reasoning manner, rather than product-oriented non—
functional attributes in a quantitative verificational way.

Functional requirements relate to 'what’ the system does in terms of transforma-
tional behaviour of how inputs are processed into outputs and can be further bro-
ken down into states and structural elements that enable or constrain those states.
By contrast non—functional requirements are holistic integrative properties of the
entire system and are therefore often referred to as properties or attributes of the
system as a whole. Locally satisfied non—functional properties of a subsystem
may not mean globally optimal assurance of that non—functional property or at-
tribute in the entire system—of—interest as there exists the potential for many subtle
interdependencies (as discussed in chapter 7) between distinct parts and subsys-
tems that can, when combined, result in conflicting or antagonistic relationships
between them that result in an emergent compromisation of various involved non—

functional attributes.

When viewed in a qualitative process—oriented perspective, it can be appreciated
that non—functional attributes have three fundamental characteristics, as follows

[cf. Chung et al [154]]:-

1. Subjectivity. Non—functional attributes can be percieved, viewed and val-
ued in different ways by different people;

2. Relativity. Non-functional attributes can, depending upon the particular
system type and domain characteristics, have a relative importance and pri-
ority attached to them;

3. Interactivity. Within a system, as a whole, attempting to promote one non—
functional attribute can subtly compromise and undermine other important

non—functional attributes.

A further issue that is worth considering in respect to the relationships that exist
between functional requirements and non—functional properties or attributes, is

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 187

that, unlike functional requirements, non—functional attributes cannot be directly
promoted within the system. Instead, when qualitatively reasoning about them,
they exist only in the form of desired goals to be achieved (i.e. non—functional
goals) and require (as chapter 7 emphasised in focusing upon the relationships
between purpose and function) a functional realisation step — in the form of a
functional ascription, in order to promote them. Such an example is discussed
by Chung et al [154] in respect to promoting the non—functional attribute of per-
formability. They note that the performance attribute in a accounting system may
be the goal of achieving a fast response time for customer accounts. As they high-
light, this non—functional goal, in itself, cannot be directly promoted, but requires
some functionalisation to promote fast response time. One such functional as-
cription that could help promote this perfomance attribute for customer accounts
could be the use of indexing of customer accounts. This would provide some di-
rect functionalised means for achieving the non—functional goal of fast response

time for customer account.

Therefore, we can add one more characteristic of non—functional attributes, that
is implicit in Chung et al’s [154] framework, but becomes more explicit in respect
to chapter 7, and this is the characteristic of:

4. Indirectivity. Non-functional attributes cannot directly be pro-
moted but require some functional ascription selection in order to be

realised.

As we will see in section 8.4.2 with the analysed and synthesised ATM case study
examples from chapter 5, it is this characteristic of indirectivity combined with the
subjectivity, relativity and intertactivity a given functional ascription can create
that makes the promotion of non—functional attributes difficult and problematic
— in terms of promoting the wider super—ordinate goal of dependability.

8.3.2 The Non-Functional Framework

The non—functional requirements framework proposed by Chung et al [154] is
the result of both theoretical and field research that has been progressed by the

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 188

authors over approximately fifteen years. In this section the essential components
and the process stages are described. Their particular suitability for consideration
of providing exampled envisaged benefits of a goal-diverse process intervention
will be discussed in subsection 8.3.3, later.

The essential main component involved in the non—functional requirements frame-
work involves the notion of a soft—goal. This concept implicitly captures the in-
direct nature of non—functional attributes — in that they are desirable properties
of the software artifact, but ones that, during the creation process, cannot be di-
rectly implemented. Chung et al identify four main types of soft-goals in the

non—functional requirements framework, as follows:-

e Main soft—goal. These are the familiar non—functional attributes that are
commonly known about in connection with software artifacts and the de-
pendability community and include such top—level desirable attributes as:
safety; security; usability; reliability; maintainability, etc;

e Sub soft—-goal. These soft—goals are a refinement decomposition of non—
functional attributes and illustrate the more specific contribution that can be
made to the main soft-goals by thier achievement. A familiar example from
the dependability literature would be how the sub soft—goals of achieving
integrity, confidentiality and availability directly contributes to the achieve-
ment of the main soft—goal of security [cf. [68]];

e Operationalising soft—goals. These soft—goals relate to the harder func-
tionalisation design decisions that are made to promote non—functional at-
tributes. In the framework, they are illustrated in a heavier emboldend form
to visually indicate this. However, the authors still refer to them as soft—
goals as they are used as a analysis representation for exploring interde-
pendencies and trade-offs they create, and do not represent fixed design
decisions. Furthermore, as Chung et al [154] highlight, operationalisations
do not always involve functionalisation in the form of design and imple-
mentation components and can include, more broadly, such things as rules,
constraints, data, and information. Therefore, operationalisation soft—goals,

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 189

while considering more definite non—functional promoting aspects, still are
represented as soft—goals to demonstrate their fluid and changeable nature

as development progresses;

e Claim soft-goals. These soft—goals capture the thinking and reasoning
components of the framework as the developer considers non—functional
attributes. They can be attached to any relationships that the other three
types of soft—goals may create (i.e. upward direct contributions or im-
plicit/explicit interdependencies across non—functional attributes detected).
They are often in the form of justifications and priority interpretations that
are provided by the developer in consideration and promotion of non—functional

attributes.

Having described the essential components of the non—functional framework (NFR),
it is now possible to complete this brief introduction of the framework by dis-
cussing the process stages employed in using this non—functional requirements

approach. In total six stages are identified, as follows:-

1. Domain and System Type Consideration. At the top level, the process es-
sentially begins with careful consideration of the particular domain charac-
teristics and system type to be created. This is particularly important for the
consideration of non—functional attributes because, as mentioned in subsec-
tion 8.3.1, non—functional attributes have a relative characteristic that helps
unearth thier particular importance and priority in a particular development

situation;

2. Functional Requirements Definition. These are also critically important
as it is only through gaining a good understanding of the particular infor-
mational, data, and transformational elements required, can the developer
later get to grips with the interactive nature of non—functional attributes and
detect important interdependencies between possible function ascriptions in
deciding, selecting and promoting particular non—functional attributes;

3. Identifying Relevant Non-Functional Attributes. Here, the developer
must identify which non—functional attributes are most important. The com-

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 190

bination of how well stages 1 and 2 above are performed will directly impact
on how well the developer succeeds in this stage;

4. Decomposition of Non-Functional Attributes. It is at this stage when
the developer decomposes the main soft-goals down into more specific sub
soft—goals by identifying them and determining and justifying the particu-
lar, more specific, direct contribution they make. It is noted by Chung et
al [154] that the direct upward contributions may require all sub soft-goals
to be contributing or just a subset of them to contribute. The two cases
can be exemplified as: i) All contributing is an AND restriction whereby all
sub soft—goals must be contributing so for example with security it may be
deemed that the sub soft—goals of: intergity AND confidentiality AND avail-
ability must all contribute; ii) alternatively a subset contribution would be
an OR restriction, such as, for example, (again with the attribute of security)
where it is deemed that only confidentiality AND integrity OR availability

must contribute in this case;

5. Operationalising of Non-Functional Attributes. This is where, having
identified the relevant main non—functional attributes soft-goals in 3 above
and decomposed them down into more specific sub soft—goal contributions,
various functional ascriptions, in the form of design alternatives, are con-
templated that fulfil the functional requirements in order to begin to promote

and realise the non—functional attributes for the system under development;

6. Dealing With Interdependencies. A natural step that follows 5 above is
once a number of design alternatives have been contemplated, the various
interdependencies that can exist between them are analysed. As highlighted
in chapter 7, these can be of a complementary, compatible, or conflicting
nature, and all these types of relationships must be considered and recorded.
This is where claim soft—goals will more frequently be used as it becomes
inevitable in complex system development that certain soft—goals cannot be
fully achieved and therefore acceptable trade—offs with supporting priorities
and justifications will need to be documented in the form of claim soft—

goals.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 191

It is stressed by Chung et al [154] that although, when considered in this way, the
non—functional process stages may look like a linear waterfall type development
process model, this is not the case and in actual application through many studies
conducted by the authors, the non—functional process requires many iterations
with plenty of feedback between the various stages. This was also the experience
of the author in using the framework for providing examples for section 8.4.2,

below.

8.3.3 Suitability of the Non—functional Framework

In this subsection a justification for the selection of the NFR by Chung et al [154]
is provided for its utilisation in section 8.4.2 as an initial demonstration into the
assumption identifaction benefits of the proposed goal—diversity process interven-
tion. In order to do this, the underlying philosophy and benefits, proposed by the
NFR framework, are contrasted with the issues raised by such a goal-diversity

process intervention.

Perhaps the most fundamental justification for utilizing the NFR framework pro-
posed by Chung et al [154] is that, at its core, is the principle of putting non—
functional attributes as the foremost important consideration in the mind of the de-
velopers. Typically, as the quote by Malan and Bredemeyer [116] earlier demon-
strates, much lip—service may be paid to promoting quality or non—functional at-
tributes, but the lived—in experience time and again is that they are either never
considered, considered arbitrarily, or considered too late within the software cre-
ation process. The philosophy of the NFR framework is to ensure that non—
functional attributes drive the process right from the start and ensure that quality
is built into the product as it progresses through the software development cycle.
This makes the NFR framework, in essence, a consistent method for demonstrat-
ing the expected benefits of a goal-diversity process intervention, as, at its root,
this process intervention is also aimed at utilizing the psychological/performance
benefits expected from goal-setting by predisposing developers to promote de-
pendability attributes to ensure that dependability considerations also drive the

software creation process.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 192

Probably the next most fundamental justifaction for the suitability of utilising the
NFR framework for exemplifying the anticipated benfits of a goal—diversity pro-
cess intervention is the fact that it is, in principle, qualitatively process—oriented.
Not only, in trivial terms, does this make it suitable for consideration of a pro-
cess intervention, but, as we can appreciate from chapter 4 on computer-based
systems, extending the boundaries outwards to consider both the technical and
human systems as subsystems of interest introduces greater subjective sociolog-
ical, psychological, and organisational considerations as purpose ascriptions and
failure judgements can result in technically dependable systems being judged to
be undependable for non—-technical situational and contextual reasons. Computer—
based system consideration, therefore, demands that both subjectivity and relativ-
ity characteristics of non—functional attributes be handled by any applied method,
as different computer—based system contexts-of-interest will both provide differ-
ent meanings and place different priorities and importance upon non—functional
attributes. Since the goal-diversity process intervention benefits expected are
those for computer-based systems, then whatever method chosen to exemplify
those expected benefits would inherently not only need to place non—functional
attributes as a process—oriented driver, but also would need to provide a qualita-
tive representation and reasoning framework that encompasses considerations of
subjective purpose ascriptions, relative importance and priority judgements. The
inclusion of the soft—goal within the NFR framework is not only useful for ensur-
ing non—functional attributes are represented and drive the development process,
they are also fundamentally based, from a qualitative and subjective reasoning
perspective, upon a dialectical form of reasoning from Artificial Intelligence (AI)
research that inherently accommodates for subjectivity in reasoning whereby strict
AND, OR, NOT reasoning is dispensed with and contributions and interdependen-
cies are considered for how they fully/partially influence and positively/negatively
effect non-functional attributes, respectively. The form of reasoning adopted by
the NFR framework is usefully based upon the real-world situation, in consider-
ing such complex contributions and interdependencies, of achieving adequately
satisfied or satisficing promotion of non—functional attributes which is important
in unearthing and making explicit, within the creation process, the degree of de-
pendability and undependability of a computer—based system. This subjective

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 193

qualitative reasoning is therefore highly suitable for consideration of computer—
based systems as subjective sociological, organisational, strategic, and situational
interpretations of non—functional attributes can be more appropriately represented
and reasoned about when the process intervention of goal-diversity is applied for

consideration of computer—based systems.

Another fundamental benefit of using the NFR framework, by Chung et al [154],
is that it provides a holistic approach through accommodating both a top—down
analysis and bottom—up synthesis anticipated as being vital in the goal—-diversity
process intervention. As was presented in subsection 8.3.2, relevant main soft-
goals are further refined into more specific contributing sub soft—goals, which are
then further promoted by consideration of design alternatives via oparationalised
soft—goals. This stage is essentially decompositional, top—down and analytical
— in terms of promoting non-functional attributes. Following this stage, mul-
tiple relevant non-functional attributes are then considered for how subtle in-
terdependencies are created with different operationalised soft—goal alternatives
— with regards to how they positively or negatively impact upon promotion of
non—functional attributes. This is fundamentally a synthesis approach stage that
begins the representation, selection, reasoning, and justification of how different
design alternatives can be organised into a system that can be rationalised in non—
functional attribute promotion terms. In the goal—diversity process intervention
considered in this thesis, it is anticipated that the analysis stage will be performed
individually, whereby individual developers can analyse one non—functional at-
tribute and perform considerations of design alternatives that directly promote
this attribute, but the major synthesis part of indentification of subtle interdepen-
dencies between multiple non—functional attributes — in terms of reasoning and
justification of multiple non—functional attributes into an agreed rationalised even-
tual (computer—based) system will be performed in a collaborative meeting stage.
In this respect then, the goal—diversity process intervention approach demands an
two? staged holistic consideration of promoting dependability by both individual

2However, although, in analytic and synergistic considerations of the Goal-Diversity process
intervention, it can be considered as a two staged process, when considering an additional inspec-
tion stage, in chapter 10, the analytic stage is divided into two stages of: a) Individual Analysis;
and b) Individual Inspection

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 194

analysis and collaborative synthesis of non—functional attributes. Any such ap-
proach would, by definitions presented earlier in subsection 8.3.1, need to accom-
modate for the inherent indirectivity and interactivity characteristics presented by
consideration of non—functional attributes. In this regard, as can be seen from
subsection 8.3.2, the NFR framework incorporates both representation and rea-
soning about such characteristics and therefore provides another justification for
its suitability for use in exemplifying the expected benefits from a goal-diversity

process intervention.

Finally, as a last justification for the usage of the NFR framework, by Chung et
al [154], for exemplifying the expected benefits of a goal-diversity process in-
tervention, its reasoning representation is valuable in identifying various harm-
ful assumptions in promoting non—functional attributes during development. As
discussed in subsection 8.3.1, non—functional attributes, by nature of thier indi-
rectivity and interactivity characteristics often introduce subtle interdependencies
during system development. Chung et al [154] highlights that these can be of
two fundamental types: i) Explicit intentional contributions, in the form of di-
rect conscious reasoning during considerations of how direct upward specific sub
soft—goals contribute to main soft-goals, and also operationalisation soft-goals
(i.e. design alternatives) contribute to specific soft-goals; and ii) Implicit uninten-
tional interdependencies that result in the form of unconsidered positive/negative
interrelationships between multiple non—functional attributes (i.e. main and sub
soft—goals). This is where the incorporation of claim soft-goals (i.e. in subsec-
tion 8.3.2) is invaluable in forcing the developer to record these during analysis,
as claims are, by nature, defined as "Statements made as being true without be-
ing able to give proof of them being true. "3 Within the NFR framework, claims
represent the subjective and relative justifications and priorities made by vari-
ous developers which are inherently based upon their own beliefs, experiences,
values, training, preconceptions, etc. Therefore, as chapter 6 discussed, act as a
documentable source for capturing the underlying assumptions being made. From
a goal—diversity process intervention perspective, aimed at increasing assumption
detection to improve computer—based system dependability, the NFR framework

30xford Dictionary definition.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 195

Box 3 : Goal-Diversity Consideration of Non——Functional Attributes Box 4 : Goal-Diversity Consideration of Non—--Functional Attributes
INDIVIDUAL ANALYSIS STAGE COLLABORATIVE SYNTHESIS STAGE

Figure 8.1: Differences in Approaches

provides an ideal representation as often such subtle and unintentional interdepen-
dencies are the results of various assumptions that occur through over/under rep-
resentation of non—functional goals (i.e. relativity influence) or through ascribing
different meaning/purposes to non—functional attributes (i.e. subjectivity influ-
ence). Since the NFR framework structure ensures that such claim soft-goals are
attached to explicit contributions, interdependencies and operationalisation deci-
sions, made by the developer(s), this then provides a means by which, at the later
collaborative stages of goal—diversity, existing assumptions can be detected —
along with implicit assumptions that result in interdependent consequences be-
tween multiple non—functional attributes.

8.3.4 Important Differences Between Approaches

Although, as subsection 8.3.3 shows, the NFR framework has important represen-
tational and reasoning justifications for helping to illustrate the expected benefits

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 196

of a goal-diversity process intervention, a direct comparison between the two,
also reveals the existence of important differences.

In order to better understand these differences between the NFR framework, and
the proposed goal—diversity process intervention, it will be useful to first describe,
in some level of detail, the three possible ways in which non—functional attributes
can be dealt with during development (i.e. process—oriented view). These three
possible ways are illustrated in figure 8.1 and are described in the bullet points

below:-

e Ad-hoc consideration of non-functional attributes. This is illustrated
in the top-—left box (i.e. box 1) in figure 8.1. The hexagons represent the
functional requirement goals (i.e. FG) of a given development project. The
squares represent some functionalisation or functional ascription (i.e. FA)
that can help realise those functional requirement goals (i.e. FG). A to-
tal of three functional requirement goals (FG) are shown along with three
functional ascriptions (FA) to achieve them in this particular example. The
three circles illustrate the individual developers (i.e. D) whom are tasked
with fulfilling the functional goals via design and implementation com-
ponents represented by functional ascriptions (FA). The ad-hoc consider-
ation of non—functional attributes results from no systematic aspects within
the development process that ensures they are considered, promoted, and
tracked as development progresses. They are therefore either not considered
at all, considered arbitrarily or considered too late in the development life—
cycle. Often, in many real-world software development projects promotion
of non—functional attributes in the process is reliant upon an arbitrary and
implicit promotion of non—functional attributes through the particular de-
sires, expertise, experience and quality interests of the individual develop-
ers involved. This is why, in figure 8.1, the non—functional requirements
are non—distinct and are represented by an amorphous cloud. As is often re-
alised later, with such an approach, none or ad-hoc consideration like this,
of non—functional attributes during the software creation process, frequently
results in harmful negative interdependencies that are created during func-

tional ascription and implementation of functions to achieve requirements

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 197

that undermine both dependability of the process and eventual delivered
software artifact (if, indeed, it’s ever delivered that is!). These harmful in-
terdependencies are illustrated in the figure, in box 1, as dashed lines from
the functional ascriptions back to the non—functional attributes that they

compromise;

e NFR consideration of non—functional attributes. This is illustrated in
the top—right box (i.e. box 2) in figure 8.1. The hexagons again represent
the functional requirement goals (i.e. FG) of a given development project.
The squares represent some functionalisation or functional ascription (i.e.
FA) that can realise those functional requirement goals (i.e. FG). A to-
tal of three functional requirement goals (FG) are shown along with three
functional ascriptions (FA) to achieve them. The three circles illustrate the
individual developers (i.e. D) whom are tasked with fulfilling the functional
goals via design and implementation components represented by functional
ascriptions (FA). As already discussed in subsection 8.3.2, the NFR frame-
work approach, by Chung et al [154], improve upon this situation by en-
suring a systematic representation and reasoning framework that ensures
that consideration of relevant non—functional attributes (in the form of soft—
goals) drive the software development process. By doing so, developers
have more opportunity to become explicitly aware of the harmful interede-
pendency consequences of thier functional ascriptions to achieve functional
requirements — thereby reducing the possibility of undermining the overall
quality of the software artifact. In figure 8.1 this is shown by the solid lines
that lead from the developers to distinct non—functional goals (NF As) that

are considered relevant for this particular development.

e Goal-Diversity consideration of non—functional attributes. There is a
two stage process envisaged in this process intervention. The first stage is
illustrated in the bottom-left box (i.e. box 3) of figure 8.1 and involves
individual analysis of a single functional requirement goal (i.e. FG) — in
terms of considerations made about various functional ascriptions (i.e. FA)
in the form of design alternatives and implementation components to realise
them. As can be seen from figure 8.1, in comparison to the previous two

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 198

approaches, goal—diversity differs at this stage by ensuring that all three de-
velopers (i.e. D): 1) consider the functional realisation of one functional re-
quirement goal while; ii) individually promoting a single and distinct non—
functional attribute only (i.e. NFG). The second stage is illustrated in the
bottom-right box (i.e. box 4) of figure 8.1 and involves the collaborative
synthesis stage whereby after all developers have analysed individually all
three functional requirement goals (i.e. FG) individually (and considered
the most appropriate possible functional ascriptions (FA)), a meeting takes
place where all three developers, committed still to promoting only one
particular and distinct non—functional attribute goal (i.e. NF A) compare,
challenge, and argue the various merits and drawbacks in promoting the
three non—functional attribute goals while satisfying the three functional re-
quirements goals (i.e. FG). Obviously, this will result in conflicts as subtle
negative interdependencies between the various design options require re—
prioritisation and trade—offs, and as section 8.2 highlighted and suggested
earlier, this is where assumptions, in the form of various claim soft-goals,
will be potentially detected.

Contrasting the possible ways that non—functional attributes can be considered
during the development life—cycle, it can be appreciated, as discussed in subsec-
tion 8.3.3, that the NFR framework, proposed by Chung et al [154], is useful in
demonstrating the expected assumption detection benefits of a goal-diversity pro-
cess intervention. Primarily this is because it provides a representation, reasoning
and philosophy that allows the expression of associated complex information to
be illustrated and recorded in a manner superior to what could be achieved as eas-
ily in any textual way. However, within the context of things considered within
this thesis so far, the NFR framework can also be criticised on three aspects when
compared with the proposed goal—diversity process intervention in helping to un-

earth various harmful assumptions that may often compromise computer—based

system dependability.

The first criticism relates to its assumption detection capability — especially with
regards to implicit assumptions. As it was highlighted in the assumption chapter

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 199

6, implicit assumptions often relate to the absence of conception not its presence,
this is due to the fact that a single individual is unlikely to indentify an implicit
assumption by him or herself because the assumption acts as a conceptual con-
straint on that particular thinking episode and therefore, acting as a constraint,
precludes any possibility of detecting it by definition. This introduces problems
within the existing NFR framework as it expects a single developer to consider
many non—functional attributes at once and therefore inherently expects the de-
veloper to individually identify subtle unintentional interdependencies between
them that are often underpinned by such implicit assumptions related to his or her
values, beliefs, biases, etc. By contrast, the proposed goal—diversity process in-
tervention makes no such expectation as the collaborative synthesis stage, where
multiple developers (predisposed to promoting different non—functional attribute
goals) incorporates a more challenging and conflicting phase that can help identify

such implicit assumptions.

The second fundamental criticism relates to cognitive limits in performing very
complex conceptual tasks. As recognised in the literature of chapter 7, achiev-
ing multiple goals ’hits’ cognitive limitations as usually only one such goal can
be maximally activated at any one time during multiple goal problem solving.
At best, this can result in other goals being under or inappropriately emphasised,
and, at worst, can result in other important goals not even being considered at
all. Again this introduces potential problems for the NFR framework as, implic-
itly, a developer using the methodology is tasked with having to promote multiple
non—functional attribute goals simultaneously. In the context of this thesis, this
is considered to be a dubious expectation of the NFR framework methodology in
identifying explicit and implicit assumptions that can often result in unintentional
negative interdependencies that can compromise the dependability of a computer—
based system. With the proposed goal—diversity process intervention, this poten-
tial cognitive limit is accommodated for as throughout both the individual analytic
and collaborative synthesis phases a single developer is only tasked with the re-
sponsibility of promoting a single non—functional attribute. Even at the synthesis
stage, where multiple non—functional attributes need to be considered for harmful

interdependecies, trade—offs, and priorities, this is done in a collaborative manner

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 200

between developers that are considering the various arguments and justifications
of thier fellow development colleagues from only a single non—functional attribute

perspective.

The final criticism relates to the expectation of the NFR framework that a single
developer posseses the necessary experience and knowledge in promoting multi-
ple non—functional attributes — deemed relevant to that system type and domain
characteristics pertaining for particular software development project. This aspect
is only handled generally within the NFR framework. By contrast, the proposed
goal—diversity process intervention ideally expects a level of specialism of the in-
dividual developers in the particular non—functional attribute they are expected to
promote. For example, a developer tasked with the promotion of security will
have specialist knowledge and experience in security considerations, a developer
tasked with the promotion of maintainability will have specialist knowledge and
experience in maintainability considerations, etc. Within the wider perspective of
a computer—based system, the goal-diversity approach also implicitly expects that
each non—functional attribute specialist will intelligently interpret their expertise
into differing computer—based system contexts—of—interest of the utility context,
the deployment context, and the evolution context to enhance a more encompass-
ing and synergistic coverage of assumption identification during the development

process.

As a last point, and whilst not a direct criticism of the NFR framework, perhaps
the most important distinction between the NFR framework and the proposed
goal—diversity process intervention, is that the proposed goal-diversity process
intervention utilises human redundancy and human diversity within the process to
achieve an increased level of process dependability. Firstly, it uses human redun-
dancy, in terms of duplicated effort for a given task. This can be seen from box
3 (bottom-left) by comparison with both the ad-hoc and NFR framework con-
siderations of non—functional attributes in figure 8.1. Note that, by comparison,
the analysis stage employs three developers for the realisation of a functional re-
quirements goal, whereas the other two approaches in box 1 (top-left) and box
2 (top-right) employ the much more typical concurrent engineering principles of

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 201

factoring—out development effort in parrallel by ensuring a specific task is allo-
cated to a specific developer. Secondly, it can be seen, however, from figure 8.1,
that it generates human diversity by predisposing the three developers to promot-
ing three distinct non—functional attributes. From chapter 7 it can be remembered
that goal-setting introduces interesting cognitive influences that motivate individ-
uals to search—out task specific information to fulfil those goals. Furthermore, by
definition, setting an individual goal will effect thier mental model (i.e. formal
cause) thereby inherently sensitizing them to value, prioritise, and judge the same
given thing (i.e. in this case a functional requirement goal) in different ways. It
is a major expectation that when such a process intervention is employed it will
result in greater exploration and coverage that will improve the identification of
flawed assumptions that can ultimately undermine and compromise the eventual

dependability of computer—based systems.

8.4 Goal-Diversity — Analysis and Synthesis

In this section an initial set of examples, in the form of two scenarios, are used
to indicate how the envisaged and proposed process intervention of setting di-
verse non—functional goals can be employed during the software creation process.
In subsection 8.4.1, the two stages of individual analysis and separate inspection
stages are exemplified, using a simple scenario, to show how the subjective, rel-
ative and indirective aspects of non—functional attributes both cause and help de-
tect harmful assumptions. In subsection 8.4.2 the final third collaborative meeting
stage is considered. While this subsection does not consider the particular group
team dynamics and inevitable trade—off conflict and negotations involved, it does
utilise the Chung et al [154] framework and provide more extensive examples of
the ATM case—study in chapter S to provide sufficiently rich examples of how
the interactive nature of non—functional attributes can further help detect harmful
assumptions during this collaborative synthesis stage.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 202

8.4.1 Analysis Examples

The envisaged goal—diversity process intervention has three fundamental stages.
The first two of which, belong to the analysis phase. The first analysis stage in-
volves predisposing a number of developers to promote a single non—functional
attribute deemed critical to creating a dependable software artifact. The result
is a number of functional ascribed analysis of a proposed solution from each of
the non—functional predispositions. The second analysis stage involves the sep-
arate cross inspection of each of the predisposed analysis solutions so that each
developer who promoted a non—functional attribute solution in the first stage can
then compare and contrast the other predisposed analysis solutions from their own
single non—functional attribute predisposition. Each of these first two phases are
considered using a simple development scenario in subsections 8.4.1.1 and 8.4.2
below to make this clearer.

8.4.1.1 First Stage — Individual Goal Promotion

The proposition of the proposed goal-diversity process intervention, at this first
stage, is that by predisposing individual developers to promoting a single non—
functional attribute, during analysis, will sensitise them from being less likely
to make harmful assumptions that will directly mitigate their non—functional goal,
and make them more likely to make harmful assumptions that will indirectly com-
promise other non—functional goals being promoted by other developers.

To provide a simple software development scenario, let’s consider that a new cat-
alogue customer accounting system has to be produced that keeps track of tele-
phone customers’ orders and billing. Customers phone in orders to a telephonist
who then enters the orders and updates the customers outstanding bill. Customers
can also pay over the phone by a credit/debit card which the system then relays to
the credit/debit card financial institution for payment.

After the initial functional requirements, it is deemed that the non—functional at-
tributes of: a) maintainability; b) performability; c) reliability; and d) security are
critical to the overall dependability of the software system. Four developers are

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 203

therefore separately employed to produce an individual design analysis solution.
Each one is predisposed to ensure that while performing the design analysis that
the decisions they make must solely focus on prioritising only one non—functional
attribute. So for instance, developer 1 solely focuses upon promoting maintain-
ability, developer 2 solely focuses upon promoting performability, developer 3
focuses upon promoting reliability, and developer 4 focuses upon promoting se-

curity.

After each of the four developers have performed their individual analysis solu-
tions, they make three copies of them and distribute them to the other three devel-
opers ready for the second stage of separate inspection (see subsection below).

8.4.1.2 Second Stage — Separate Inspection

This stage is performed individually in separation, firstly as an important assump-
tion detection phase in itself, and secondly as a preparation stage for the collabora-
tive meeting so that each developer can gain a richer understanding of the software

development problem — in terms of the important dependability attributes.

It is at this stage that the relative characteristic of non—functional attributes be-
comes important, as each developer continues to inspect each of the other de-
velopers’ design analysis solutions — while still being predisposed to promoting
their own single non—functional attribute. It is a proposition of this second stage
that as each individual developer separately compares and contrasts each of the
other developers’ design analysis solutions, the relative undesirable consequences
for their own prioritised and promoted non—functional attribute will help unearth

potentially harmful assumptions that could compromise that non—functional at-

tribute.

To return to the simple catalogue accounting system scenario, during this second
separate inspection stage, when developer 1 (promoting maintainability) inspects
the other three design analysis solutions from the other developers, he/she notices

that to speed—up performability developer 2 has advocated that some of the more

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 204

commonly used functions should eventually be implemented inline as he/she (de-
veloper 2) has calculated that within the main execution loop these functions are
the main time—consumer of processing resources and the time spent in executing
these functions is expected to be favourable to the time spent jumping around call-
ing them if they were not inline. However, developer 1, comparing and contrasting
his/her analysis solution while still promoting maintainability, is concerned that
such a solution will compromise their goal by undermining the overall cohesion
of the classes which these particular inline functions represent. When developer
3 (promoting reliability) compares and contrasts the other three developers’ de-
sign analysis solutions, during this separate inspection stage, he/she is also not
happy with developer 2s (promoting performability) design analysis solution, as
he/she has advocated for a recursive set of functions for printing accounts, copy-
ing account lists, and searching file storage, which, while producing performance
benefits, appear to be particularly complex to developer 3 (promoting reliabil-
ity) and provides a lack of exception handling defenses against potential run—time
faults. Lastly, when developer 4 (promoting security) compares and contrasts the
other three developers’ design analysis solutions, he/she notices that developer 1
(promoting maintainability) and developer 2 (promoting performability) have both
employed very strict normalisation (up to Sth normal form) and enhanced indexing
of fields to promote future reporting flexibility and speed of information access,
respectively. However, developer 4 (promoting security) has deliberately violated
strict normalisation principles to ensure enhanced confidentiality and privacy of
customers credit/debit card details into a separate table, with 1-to—1 correspon-
dence, so that such a subset of sensitive customer information can by encrypted

and contain more restrictive access rights.

From this brief example, with the catalogue accounting system, it can be appreci-
ated, that in ensuring individual developers first perform a design analysis while
promoting a single non—functional attribute, and secondly, later compare and con-
trast each others design analysis solutions allows both the relative and integrative
characteristics of non—functional attributes to help detect potentially harmful as-
sumptions that underpin such design analysis solution decisions.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 205

8.4.2 Synthesis Examples — Using ATM Case Study

In the third stage of a collaborative meeting it is anticipated, with the goal-
diversity process intervention, that the issues raised in the second stage (in sub-
section above) will be further discussed and debated. It is in this stage that either
breakthrough solutions or trade—offs will need to be sought or agreed, respec-
tively, to determine the most appropriate or feasible solutions regarding the extent
to which the non—functional attributes can be promoted. If breakthrough solu-
tions are found then conflicting relationships (and their underlying assumptions
supporting them) can both be satisfactorily accommodated. If not, then at least
the degree of both dependability and undependability, concerning the particular
software artifact to be developed, can be made explicit — along the levels of as-
sumption validity allowable.

Rather than continue with a simple example, in this section, we draw—upon such
issues raised in section 8.3 by exemplifying the expected benefits of a goal—
diversity process intervention with the nine ATM computer-based system case
study issues raised in chapter 5 to illustrate how combining computer—based sys-
tem contexts with a multiple diverse goal-orientated approach, that includes the
subjective, relative, and interactive characteristics of non—functional attributes,
can result in greater overall assumption identification coverage. Within a computer—
based system perspective, claims and reasoning approaches often appear reason-
able when viewed from a particular computer—based system context—of—interest
or non-functional attribute goal to be promoted. However, as will be appreci-
ated, they can create harmful or conflicting relationships with other important
non—functional attribute goals necessary to create a dependable computer-based

system.

The reader should note that the illustrations attempt to capture the assumption
identification events expected during the second synergistic phase of a goal-diversity
process intervention when all the developers meet and discuss, argue, and judge
— and therefore produce more integrative system perspective.* As will be seen,

4This phase is more consistent with perceiving dependability as a super ordinate system goal
at a higher and more holistic level.

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 206

the NFR framework provides a sufficiently rich representational and reasoning
structure to capture the complex collaborative development stage situation in a
manner that would not be so easily ellaborated textually. Finally, the terminol-
ogy and icons used is adapted from Chung et al [154] methodology on the Non-
Functional Requirements Engineering approach. To aid the reader in understand-
ing the NFR framework representations, a subset of the visual modelling icons
used is explained in Appendix section A on page 380 in section A.1, along with
additional terminology and diagrams specifically used for exemplifying the bene-
fits of a goal—diversity process intervention in appendix section A.2 on page 382.

8.4.2.1 Encryption Policy — Issue 1

The first issue relates to the many security flaws that can be introduced through
employing proprietary software encryption. This is illustrated in figure 8.2. It
can be seen that there are two top-level non-functional goals involved. One
concerns the organisation’s strategic budget limitations. The other involves the
non—functional attribute of security. The organisation’s overall spending budget is
further divided into sub—goals. One of which, that is relevant to this issue, is the
ATM budget for commissioning, developing and deploying a network of ATMs.
Another important sub—goal would be the associated costs of the encryption pol-
icy to be adopted to protect the confidentiality of bank and ATM customer’s ac-
count details during transactions. The top level ATM security goal is then fur-
ther divided into important sub-goals to be achieved. One of these, relevant to
this issue, involves the sub-goal of the confidentiality of the customer’s accounts.
Correspondingly, an important sub-goal to achieving confidentiality is the partic-
ular nature of the encryption policy to be enforced or promoted. In chapter 7, the
issue of functional ascription was discussed in the context of goal-directedness
and teleological explanations. It should be pointed out that these functional expla-
nations are important in analysing the ATM problems illustrated in the diagrams.
The emboldened clouds in figure 8.2 on page 208 represent potential functional
instantiations of how to promote the security sub—goal of confidentiality. This
confidentiality goal represents a non-functional goal (what Chung et al [154] call
"soft—goals") as they cannot be directly implemented, but require some functional

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 207

implementation (Chung et al use the term "operationalize") in order to achieve
them. In this example two possible functional options exist: either the encryption

can be implemented in hardware or software.

At this point it is necessary to consider the generic computer—based system contexts—
of—interest. Two are illustrated. The utility context represents, in the ATM appli-
cation domain, the higher strategic business assessment surrounding the commer-
cial value expected from investing in an ATM network by the financial organi-
sation. It is reasonable to suggest that the budgetary goal of the ATM network
will have a major influence upon which encryption functionalisation will be em-
ployed. Since this decision will take place within the utility domain a justification
for choosing a proprietary software functionalisation over a professional (industry
standard) hardware functionalisation may employ a priority to financial criteria
over technical criteria. This may result from some uninformed (or knowledge
bounded) reasoning, or, worse still, may be politically motivated to place a pri-
ority of financial criteria over technical criteria. In either situation, it is likely to
become manifest in the assumptive claim that software encryption is as secure as
hardware encryption. In this regard, although both non—functional attributes (i.e.
goals) of ATM budget and security are considered together, the assumption that
software encyption is as secure as professionally standardised hardware encryp-
tion is used to emphasise and prioritise financial budget criteria in the form of an

explicit justifying proposition.

It is obvious from chapter 5, that such a decision undermines the dependability of
the ATM as it leaves open the potential for unintentional faults, malicious code
(i.e. intentional), or systemic design flaws that can compromise the encryption
integrity of the software. Such vulnerabilities will most likely become evident
after deployment (i.e. shown in the oval in figure 8.2 on the following page).

8.4.2.2 Authorisation Policy — Issue 2

This issue relates to the system effects of the financial institution’s disbelieving
attitude that all unauthorised withdrawals are either due to customer carelessness

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 208

LXALNOD
INIWAOTdHa

SMVTL SINHLSAS TVNOLINGLININN

JUO0D IAVMIAOS SNOIDITVIK

SLINVA 2YVMILA0S TYNOILLNILNING

NOLLdX¥ONT
HUVMLIOS

NOLLAX¥INA
AAVMAYVH

AdNI0d
NOLLJANINA

b

AINAJHS
WLy

LX41NOD
ALITILN

NOLLJA¥DNA
AAVMAAVH SV TANIAS SV SI
$1 NOLLAARONA 3V MLIOS

.

e SLSOJ ADITOd
T ALIAOI4A ¥ ST NOILJAMONA

S HALUANAXE WLV W1V
140ang
WLV
N

e WV

13oand
ONDINVE

Figure 8.2: Encryption Policy Issue 1

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 209

or collusion. The issue is illustrated in figure 8.3 on the next page. In particular
it can be seen that the two non—functional attributes of safety and security are
involved. With safety, the sub—goals of the financial institution’s safety and the
customer’s safety are further illustrated. These are then decomposed into further
specific non—functional goals of: a) protection of the institution from financial
loss; b) protection of the institution from loss of reputation or public confidence;
c) protection of the ATM customer from wrongful conviction; and d) protection

of the customer from financial loss.

It is shown from the persistent maintenance of this attitude that the financial in-
stitution acts as a kind of functionalisation (i.e. to realise the purpose). However,
while this positively protects the institution from damage to its reputation and fi-
nancial loss, it also undermines the safety goals of the ATM customer who is more
likely now to be accused of attempting to obtain money by deception or not be re-
imbursed for any unauthorised withdrawals — due to them not being believed.

This is further undermined by the vulnerabilities of the functional implementation
of achieving ATM authorisation via an ATM card and PIN — which has been
widely proved to be vulnerable to unscrupulous insiders during engineering or
maintenance of ATMs (i.e. engineering and evolution contexts) or from various
methods by external fraudsters within the deployment context such as:-

e Shoulder—Surfing

e Social Engineering Techniques

e Bogus ATMs

e Skimming Devices
In this case, as discussed in chapter 5, the assumptive claim that all unautho-
rised withdrawals must be the result of carelessness or collusion is in the form
of a deliberate public supposition made to protect the financial institution’s own

safety from loss of reputation or financial costs. However, this assumption is un-
derpinned by a lack of coverage representation of the non—functional attribute of

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 210

IXFINOD
LNAWAY WKHT

SAIALA ONINKINS (9
SWLY SNDOA (S

S.L4IDHA ONLLIFTIOO(r
ONNAANIONG—TVIOOS (€

S—AHAINOHS (T

ONILY

NOIS: ITI0.) 30 SSANSSTTHYVI(T

LXAINGD LXAINOD
NOLLYI0AS ONDHINIONT

IXALNOD
AL

ATVHAE S.44WOLS.)D FHL NO
ONINO'ID QEYD (T NOISIY II00 MO SSANSSHTIIVI

LIOHLIA TIEISSOdWNL TRV
SIVAYEAHUM KLY THSRIOHLITVA]

ANV HFAISNT

SINNGOIY
S WINOLSL 40
NOLLWISOHLIY

SNV
SR L) 30
AFIVLLNAAINO.)

WAKOIS:1)

ALMOHS
nLv ALHAVS
LY

Figure 8.3: Authorisation Policy Issue 2

CHAPTER 8. DISCUSSION OF A GOAL-DIVERSITY PROCESS INTERVENTION 211

safety — in terms of the potential undesirable consequences that maintaining this
position can have upon ATM customers.

8.4.2.3 Human Error Analysis — Issue 3

This issue is the simplest of the nine issues. It is simple because it involves only
one goal i.e. safety. It is illustrated in figure 8.4. It can be seen that the sub
goal of safety is the non—functional at