
University of Newcastle upon Tyne
School of Computing Science

An Algebra of Petri Nets with Arc-based
Timing Restrictions

by

Apostolos Niaouris

PhD Thesis

NEWCASTLE UNIVERSITY LIBRARY'
---------------------------- .

204 26771 6
---------------------------- .

December 2005

Contents

Acknowledgements iv

Abstract v

Introduction vi

1 Basic notions 1
1.1 Multisets.................. 1
1.2 Elements of an algebra of Petri nets. . . 2

1.2.1 Labelled nets and their semantics 2
1.2.2 Equivalence notions. 5
1.2.3 Plain boxes 8
1.2.4 Net refinement 9
1.2.5 Place and transition names of operator and plain boxes 10

1.3 An algebra of process expressions 10
1.3.1 Syntax......... 10
1.3.2 Operational semantics . 12

2 Petri nets with time restrictions 15
2.1 Time Petri nets 15
2.2 Petri nets with arc-based time restrictions . 16
2.3 Research on Petri nets with time restrictions 19

2.3.1 Timed-arc Petri nets 19
2.3.2 Relation with process algebras. 20

3 Algebra of process expressions 24
3.1 Static at-expressions 24
3.2 Dynamic at-expressions.. 26
3.3 Operational semantics of at-expressions. 26
3.4 SOS rules 27

3.4.1 Urgent labels of at-expressions. 29
3.4.2 Time moves 30

3.5 Reachability trees of at-expressions 31
3.6 Examples 31

CONTENTS

4 Algebra of at-boxes
4.1 Net refinement

4.1.1 Composite at-nets
4.2 Transition based operational semantics of at-expressions

4.2.1 Urgent transitions of at-expressions
4.2.2 Time moves

4.3 Interface regions.
4.3.1 Example.. " .

5 A new type of timed-arc petri nets
5.1 Token based timed-arc Petri nets

5.1.1 Representing global behaviour of at-boxes
5.2 Preparing for the main result proof

5.2.1 Why reach ability trees? .
5.2.2 Clusters
5.2.3 Pre-clusters of a transition .
5.2.4 Intuition behind the cluster-based approach

5.3 Cluster-based timed-arc boxes
5.3.1 Representing global behaviour of cat-boxes.
5.3.2 An algebra of cat-boxes ...
5.3.3 Static properties of cat-boxes
5.3.4 Structural equivalence
5.3.5 Structural execution of transition steps
5.3.6 Structural characterisation of urgent transitions
5.3.7 From at-expressions to cat-boxes

6 Behavioural Relationships
6.1 Relationship between at-expressions and

cat-boxes
6.2 Relationship between at-boxes and

cat-boxes
6.3 Relationship between at-expressions and at-boxes

7 Applications and Extensions
7.1 Overview of possible extensions
7.2 Introduction of local clocks ...

7.2.1 Time moves with soft deadlines
7.2.2 Time moves with hard deadlines.

7.3 Introduction of reset moves .
7.3.1 Unconditional case ..
7.3.2 Controlled reset moves

Conclusions

Bibliography

ii

33
33
36
37
38
39
40
42

44
44
46
46
46
47
50
56
56
58
58
61
73
75
76
77

78

78

79
81

83
83
84
86
87
89
90
92

94

96

iii

CONTENTS
102

Index

Acknowledgements

To begin with, I would like to thank my supervisor, Maciej Koutny, for inspiring
me to work on Petri nets and process algebras. Actually, I cannot find the right
words to express my gratitude for him and I am pretty sure that without his
constant guidanc~ and support the work presented in this thesis would not be
Possible. I am also very grateful to the members of my research committee,
Alex Yakovlev and Victor Khomenko for our' fruitful discussions and for their
comments on the improvement of this thesis. I want to express my gratitude
to the School of Computing Science at Newcastle and EPSRC for giving me the
opportunity and the necessary funds to complete this research. Furthermore, I
am grateful to my parents Nikolaos .and Evanthia for their unconditional love
and continuous moral and financial support. Finally, I want to thank, from the
bottom of my heart, my partner in life Tina for always being there for me.

iv

Abstract

Human beings from the moment they understood the power of their brain tried
to create things to make their life easier and satisfy their needs either physical or
mental. Inventions became more and more complicated, covering almost every
aspect of human life and satisfying the never ending human curiosity. One of
the reasons for this complexity is that an increasing number of systems exhibit
concurrency. The development of concurrent systems is generally challenging
since it is more difficult to fully understand their exact behaviour. In this thesis
We present and investigate two of the most widely used and well studied theories
to capture concurrent behaviour. Based on the results of PBC, we develop two
algebras, one based on term re-writing and the other on Petri nets, aimed at the
Specification and analysis of concurrent systems with timing information. The
former is based on process expressions (at-expressions) and employs a set of SOS
rules providing their operational semantics. The latter is based on a class of
Petri nets with time restrictions associated with their arcs, called at-boxes, and
the corresponding transition firing rule. We relate the two algebras through a
compositionally defined mapping which for a given at-expression returns an at­
box with behaviourally equivalent transition system. The resulting framework
consisting of the two algebras is called the Timed-Arc Petri Box Calculus, or
atPBC.

v

Introduction

Human beings from the moment they understood the power of their brain tried
to create things to make their life easier and satisfy their needs either physical or
mental. They were building all sort of contraptions, starting for example from
simple and comm~n nowadays but really fundamental things like the lever or the
wheel. But the human mind did not stop when the need to raise something with a
lever was satisfied or when it became possible to carry big piles of stone in order to
bUild a shelter. Inventions became more and more complicated, covering almost
every aspect of human life and satisfying the never ending human curiosity. It
is impossible to measure the increase in complexity of systems from the simple
'sort of round' wheel till the latest space exploration shuttle, the state of the
art electronic microscope possible to ~each subatomic levels or even the internet.
One of the reasons for the increased complexity is that the number of systems
that work concurrently is increasing extremely fast.

The meaning of the term 'concurrently' is that the system can perform a
number of its specified actions at the same time. An external observer may
not be able to distinguish any particular order of these actions. Amongst other
reasons that led to concurrent systems' design is the need for extra speed. In
an oversimplified example, let us assume that there are four numbers that need
to be added and there is a calculator with one 'computing' element arid another
one with two 'computing' elements. The first one will take the first two numbers
add them together, then add the third to the existing sum and finally add the
forth number to the sum and complete the computation. It is obvious that there
is a specific order of events in the first calculator and three steps are necessary
to complete the computation. The second, more advanced, calculator can take
the first two numbers in its first processing unit, the other two in the second
processing unit, compute the two sums and then add these two sums. Again,
three computations are necessary but the first two computations can happen in
any order or even in parallel. Let us consider that each addition consumes one
time unit. In the latter case, the elapsed time for the complete computation will
be two time units instead of three. In an optimum situation (constantly feeding
data and no dependencies between computations), a computer that uses two
microprocessors in parallel may be able to finish its computations in half time
compared to a computer that uses only one microprocessor. On the other hand,
extra care is need from the modeler when building such concurrent systems to
compensate the massive increase in complexity. It is generally more difficult to

vi

INTRODUCTION vii

fully understand the exact behaviour of a concurrent system, even in a relatively
simple one, since there exists no specific order in its actions. Therefore, avoiding
bugs in system's design is a challenging process and several techniques and tools,
for example [19,29]' have been introduced in order to identify and capture these
errors.

The need to build correct and reliable concurrent systems is one of the main
reasons that fueled this research. It can be understood from this informal pre­
sentation that concurrency theory is one of the most challenging and open areas
of research in computing science. In the past years, several theories have been
introduced in order to capture concurrent behaviour and computation. Two
of the most widely used and well studied are process algebras and Petri nets.
Process algebras, e.g., ACP [4], CCS [45,46] and CSP[32], provide a formal
framework for dealing with large and complex concurrent computing systems by
employing specific operators corresponding to commonly used programming con­
structs. The way of representing a system's structure is given through suitably
defined set of process expressions, and their behaviour is typically captured by
a (structured) set of sequences of executed actions. Furthermore, since process
algebras are compositional by definition it is possible to compose large systems
from smaller ones in a structured way. A variety of logics is present in process
algebras helping the modeler to reason about. the properties of the system. Fi­
nally, process algebras come with a wide selection of algebraic laws which can
be used to prove correctness with respect to the specification. On the other
hand, Petri nets [47,57] represent a natural framework for capturing concurrent
behaviours. There is a clear distinction between (local) states and changes of
states (local actions) through the distinction between places and transitions. The
global state of the system is not shown explicitly but it can be derived from their
local counterparts. Although formal, they support a graphical representation of
concurrent systems which is simpler to understand compared to other approaches
and therefore Petri nets can be easily adopted by practitioners. Petri nets are
based on the theory of partial orders and as a result it is possible to capture
explicit asynchrony. For example, the simultaneous execution of several actions
can be easily modeled and there is no need for interleaving semantics. Finally,
since they are closely related to graph theory and linear algebra, they provide an
additional means to verify the correctness of the modeled system efficiently and
a way of expressing properties related to causality and concurrency in system
behaviour.

We can get back to the simple calculator example to visualise some of the
advantages of Petri nets and understand the increased complexity in a system's
behaviour. In figure 1 we have the Petri nets corresponding to the two calculators
together with their reachability graphs. It can be seen in the reach ability graphs
that there is only one execution scenario for the first calculator but, even though
we are not considering alternative feeding of the four numbers, there are three
different scenarios (every scenario is giving the same result) for the calculator
with the two processing elements.

INTRODUCTION viii

i
+a,b

t
+ab,c

t
+abc,d

!

,~
+a,b +c,d +a,b, +c,d r (1

T T +r
+ab,cd +ab,cd

1 1

Figure 1: Petri nets corresponding to two different calculators and their reacha­
bility graphs.

These two kinds of formalisms treat the structure and semantics of concurrent
systems in different ways, which in the past meant that it was almost impossible
to take full advantage of their relative advantages when used in isolation. Several
approaches have been proposed in order to resolve this situation by providing a
translation of process algebras into nets, for example in [12,13,21,22,25-27,65].
This list is not complete and a more precise list of the previous research in the
area can be found in [18J. This thesis is based on a different approach presented
in the Box Algebra [8-1O,38J and its precursor, the Petri Box Calculus (PBC) [7J.
To a significant extent, these two research proposals addressed the problem at
hand. Both models provided a framework where Petri nets and process algebras
could co-exist, and thus established a bridge between these two approaches.

INTRODUCTION ix

A large number of real world applications can be considered where most ac­
tions are associated with some kind of time restrictions. In standard Petri nets,
there was no consideration for time variables. As a result, such an extension was
necessary to accurately model this type of concurrent systems. Furthermore,
since its conception, the original PBC has been also extended towards the direc­
tion of timing restrictions. In particular, it was necessary to cover concurrent
systems with timing restrictions [37,39], where the timing restrictions were asso­
ciated with transitions, effectively specifying for how long an enabled action (or
transition) can delay/prolong its execution as well as what a minimum delay or
execution time is. Another way in which timing assumption could be introduced
is to associate clocks (or age) with the resources (or tokens). More precisely,
one can specify how old/young a given resource consumed by an action must be.
This approach haS been extensively studied in the past, see, e.g., [1,15,51), both
as a model for dealing with complex concurrent systems such as communication
protocols, and as a framework for verifying their properties. It is precisely this
kind of time modeling which has been adopted in this thesis.

We will introduce and investigate two different models for the specification
of concurrent systems including explicit timing information. Both models have
an algebraic structure based on operators present in the standard PBC. The
first algebra is based on process expressions, called at-expressions, and a system
of rewriting rules providing structural operational semantics of at-expressions
in the style of [54J. The second algebra is based on a class of Petri nets with
arc-based timing restrictions, called at-boxes, and their execution rules. This
means, in particular, that: (i) each arc from a place p to a transition is given
two time bounds, e and l, representing the earliest consuming time and the latest
consuming time, respectively, for a token which has arrived at place p; (ii) the
local clock of a token is started at the very moment it has been created; and (iii)
time is discrete. It is important to point out that property (i) suits particularly
well the intended compositional setting we are aiming at since the handshake
synchronisation of two transitions basically amounts to gluing them together,
and no special consideration of their timing restrictions is needed. On the other
hand, gluing two transitions in the other time framework we mentioned requires
combining their timing intervals which can be done in several different ways.

The two algebras are related through a compositionally defined mapping
which, for at-expression returns a corresponding at-box (its denotational seman­
tics). The main result is that the denotational and operational semantics of an
at-expression are behaviourally equivalent. The resulting framework first re-. ,
ported in [48] and further developed in [49), consisting of two algebras is called
the Timed-Arc Petri Box Calculus, or a tPB C.

Although there will be a concise presentation of the basic concepts of PBC
and the Box Algebra, throughout this thesis we assume that the reader is some­
how familiar with the work presented in [7-10,38] on which the compositional
treatment of nets is based.

INTRODUCTION x

Organisation of the Thesis

The thesis is organized as follows.

Chapter 1. provides the basic notions concerning Petri nets and a presentation
of basic concepts of Petri Box Calculus and the Box Algebra.

Chapter 2 provides a presentation of possible time extensions of Petri nets and
the existing research achievements on the combination of this type of Petri
nets with process algebras. .

Chapter 3 describes the syntax of atPBC and the operational semantics of
process expressions corresponding to at-boxes.

Chapter 4 extends the box algebra to at-boxes by the definition of a composi­
tional mapping from at-expressions to at-boxes.

Chapter 5 introduces a new type of timed-arc Petri nets together with a trans­
lation from at-expressions to this new type of boxes.

Chapter 6 presents the main results of this thesis which have to do with the
behavioural relationships between expressions and the two different type
of timed-arc Petri nets.

Chapter 7 describes several possible extensions of the proposed framework that
can increase the modeling power of atPBC.

Chapter 1

Basic notions

In this chapter, we present the basic notions which will be used throughout the
thesis.

1.1 Multisets

Throughout this thesis N denotes the set of non-negative integers, Z denotes
, 'df

the set of integers, N°O ~ N U {oo} and Zoo = Z U {oo}. A multiset over a set
X is a function J-L : X --+ N. Note that any subset of X may be viewed (through
its characteristic function) as a multiset over X. We denote x E J-L if J-L(x) ~ 1,
and for two multisets over X, J-L and J-L/, we write J-L :5 J-L' if J-L(x) :5 J-L' (x) for all
x E X. We will use 0 to denote the empty multiset defined as 0(x) ~ 0, for all
x E X. Moreover, a finite multi set may be represented by explicitly listing its
elements between the { ... } brackets. For example {a, a, b} denotes a multiset J-L
such that, for every x EX,

~(x) = U if x = a
if x = b
otherwise.

The sum of two multisets J-L' and J-L" over X is given by (J-L' + J-L")(x) ~ J-L'(X) +
J-L" (x), the difference by (J-L' - J-L") (x) ~ max{ 0, J-L' (x) - J-L" (x)}, and the intersection
by (J-L' n J-L") (x) ~ min {J-L' (x), J-L" (x)}, for all x EX. A multiset J-L is finite if there
are finitely many x E X such that J-L(x) ~ 1. In such a case, the cardinality of J-L
is defined as IJ-LI ~ EXEX J-L(x). The set of all finite multisets over a set Z will be
denoted by mult(Z).

The notation {P(x) I x E J-L}, where J-L is a multiset and P(x) is constructed
from x E X and will be used to denote the multiset J-L' such that

'() df J-L Y = L J-L(x).y,
xEX AP(x)=y

1

CHAPTER 1. BASIC NOTIONS 2

where J.L(x), y is the multiset consisting of exactly J.L(x) copies of y. Furthermore,
for a mapping h : X -+ Y and a multiset J.L over X, we denote h{J.L} ~ {h(x) I
x E J.L}. For example, {x2+1 I x E {-1, 0, 0, 1}} = {1, 1,2, 2}.

If f : X -+ Z is a function and J.L is a multiset over X then

~ f(x) ~ ~ J.L(x) '. f(x)
xEJ.I xEX

if the latter sum is defined.

1.2 Elements of an algebra of Petri nets

We will introduce Petri nets as in [17,47,57], and present their semantics as in [8,
10] as necessary, choosing from concurrency semantics such as: step semantics
[24], trace semantics [42], process semantics [6,28], or partial word semantics
[30,64,66].

Furthermore, there will be a concise description of the general composition­
ality mechanism for combining nets. Composition of nets will be driven by
labellings of both places and transitions. Such labellings indicate the border (in­
terface) between a net and its (potential) surroundings, the resulting combinable
objects will be called boxes.

1.2.1 Labelled nets and their semantics

A marked net with place and transition labels (labelled net, for short) is a tuple

E = (P, T, W,>.,M)

such that: P and T are disjoint sets of respectively places and transitions; W is
a weight function from the set (PxT) U (TxP) to the set of natural numbers N;
>. is a labelling function for places and transitions such that >.(s) E {e, i,x}, for
every place PEP, and >.(t) is a relabelling U of the form

U ~ mult(A) x A

such that (0, a) E U if and only if U = {(0, a)} for every transition t E T.
Moreover, A is a fixed set of communication actions (serving as transition labels)
~uch that for every a E A, there e:l.{ists its conjugate, a E A, satisfying a t= a and
a = a. Also, there is a silent (or internal) action z ~ A. In the algebra of nets (as
well as in the process algebra), it will be assumed that a synchronisation of two
conjugate communication actions always gives rise to the silent action ~. Finally
M is a marking, i.e., a multi set over P.

Nets can be represented as directed graphs. We adopt the standard rules
about drawing nets, viz. places are represented as circles, transitions as boxes,
the weight function by arcs with the indicated weight (we do not draw arcs

CHAPTER 1. BASIO NOTIONS 3

whose weight is 0, and we do not indicate the weight if it is 1), and markings are
shown by placing tokens within circles. To avoid ambiguity, we will sometimes
decorate the various components of E with the index E; thus, TE denotes the set
of transitions of E, etc. A net is finite if both P and T are finite sets.
. If the labelling of a place p in a labelled net E is e then p is an entry place, if
I then p is an internal place, and if x then p is an exit place. By convention, °E,
!;o and t denote respectively the entry, exit and internal places of E. For every
place (transition) x, we use -x to denote is pre-set, i.e., the set of all transitions
(places) y such that there is an arc from y to x, W(y, x) > O. The post-set x- is
defined in a similar way. The pre- and post-set notation extends in the usual way
to sets R of places and transitions, e.g., -R = U{-r IrE R}. In what follows, all
nets are assumed to be T-restricted, i.e., the pre- and post-sets of each transition
are non-empty.

A labelled net E is ex-restricted if there is at least one entry and at least one
exit place, °E =I 0 =I EO. E is e-directed (x-directed) if the entry (respectively,
exit) places are free from incoming (respectively, outgoing) arcs, i.e., -(OE) = 0

(respectively, (EO)- = 0). E is ex-directed if it is both e-directed and x-directed.
!; is marked if ME =I 0, and unmarked otherwise.

We will use three explicit ways of modifying the marking of E = (P, T, W, A,
ME). We define LEJ as (P, T, W, A, 0); typically, this operation is used when
ME =10, since it erases all tokens. Moreover, we define E and E as, respectively,
(P, T, W, A, °E) and (P, T, W, A, EO). We will call °E the entry marking, and EO
the exit marking of E. Note also that l.J, nand (.) are syntactic operations
having nothing to do with derivability (reachabilitYf in the sense of the step
sequence semantics defined next.

Step sequence semantics

We adopt finite step sequence semantics for a labelled net E = (P, T, W, A, M),
in order to capture the potential concurrency in the behaviour of the system
modelled by E. A finite multiset of transitions U, called a step, is enabled by E
if for every place PEP,

M(p) ~ 2: W(p, t)· U(t) .
tEU

We denote this by E[U), or M[U) if the net is understood from the context. An
enabled step U can be executed, leading to a follower marking M' defined, for
every place pEP, by

M'(p) = M(p) - 2: W(p, t) . U(t) + 2: W(t,p) . U(t) .
tEU tEU

We denote this by M[U)M' or E[U)8, where 8 is the labelled net (P, T, W, A, M').
Transition labelling may be extended to steps, through the formula

A(U) = 2: U(t) . {A(t)} E mult(A).
tEU

CHAPTER 1. BASIC NOTIONS 4

Although we will use the same term 'step' to refer both to a finite set of transitions
and to a finite multiset of labels, it will always be clear from the context which
one is meant. The notation for label based steps will be E [r)lab 8, where
r == '\(U). '

A finite step sequence of E is a finite (possibly empty) sequence CJ = UI ... Uk
of steps for which there are labelled nets Eo, ... , Ek such that E = Eo and for
every 1 :5 i :5 k, Ei-I[Ui)Ei . Depending on the need, we shall then use one of
the following notations: . .

Ek E [E)

Moreover, the marking MEk will be called reachable from ME, and Ek derivable
from E. The empty step will always be enabled, but it can be ignored when one
considers a step sequence, since the empty step always relates a net to itself, i.e.,
E[0)8 if and only if E = 8.

Safeness, cleanness and exclusiveness

The marking M of E is safe iffor all pEP, M(p) E {a, I}. As already indicated,
a safe marking can and will often be identified with the set of places to which it
~ssigns 1. A marking is clean if it is not a proper super-multiset of °E or EO, i.e.,
If °E ~ M or EO ~ M implies °E = M or EO = M, respectively. A marking M is
eX-exclusive if it does not simultaneously mark an entry place and an exit place,
Le., if M n °E = 0 or M n EO = 0. A labelled net is called safe (respectively,
clean) if all its reachable markings are safe (respectively, clean).

Partial order semantics

To model partial order behaviours of nets and expressions, we use Mazurkiewicz
traces [42].

Let A be a set and ind ~ A x A be an irreflexive symmetric relation on A.
The idea here is that A represents the set of all possible events in a concurrent
system, and ind is an independence relation which asserts which events can be
executed concurrently. With every sequence CJ = AI ... Ak , where each A is a
finite subset of A such that (a, b) E ind for all distinct a, b E Ai, we associate a
partial order (poset), denoted by posetind(CJ), in the following way.

The set of event occurrences of CJ, OCCO' , comprises all pairs (a, l) E A x N
Such that a E Al U ... U Ak and 1 is less or equal to the number of times a occurs
Within CJ. Moreover, we denote by idx(a,l) the index m such that Am contains
the I-th occurrence of a in CJ, and define a precedence relation on OCCO', -<0', by
stipulating that (a, l) -<0' (b, n) whenever (a, b) rJ ind and idx(a,l) < idx(b,n)' Then
posetind (CJ) = (occO" -<;) where -<; is the transitive reflexive closure of -<0"

For a labelled net ~, let indE be a symmetric relation on its transitions,
defined by:

CHAPTER 1. BASIC NOTIONS 5

This relation is called the independence relation, because two distinct transitions
belonging to indE have no impact on their respective environments. If they are
both enabled individually, then they are also enabled simultaneously. Then, with
every finite step sequence (1 of a safe labelled net E, E[(1)8, we can associate
a partial order, posetindI; ((1), in the way described above, and after taking A
to be the transition set, A = TE • The presence of a path between two nodes
is interpreted as causality, and the lack of ordering as concurrency. Whenever
E[a)8, we will write E [posetindI; ((1))po 8 to indicate that e arises from E through
the execution of the poset between the brackets [. .'.).

1.2.2 Equivalence notions

One may consider various behavioural equivalences for labelled nets. It may
first be observed that the whole set of step sequences of a labelled net may be
specified by defining its full reachability graph, whose nodes are all reachable
markings (or equivalently, all derivable nets) and whose arcs are labelled with
steps which transform one marking into another.

E

i
{a}

!

Oe

8

i
{a}

!

'l!

i
{b}

!

ED'l!

~
{a} {b}

~

8D'l!·

i
{a}

!

Figure 1.1: Five nets and the corresponding (labelled) full reachability graphs
demonstrating that isomorphism of reachability graphs is not preserved by choice
composition.

Transition systems

Using the full reach ability graph to represent the behaviour of a labelled net leads
to problems in a compositional setting. In particular, isomorphism of reachabil­
ity graphs is not preserved by, e.g., choice composition of nets, as demonstrated

CHAPTER 1. BASIO NOTIONS 6

informally in figure 1.1. One can address this problem by augmenting the be­
haviour of a labelled net E with two auxiliary moves, skip and redo, which can
transform its initial state into the terminal state, and vice versa. The desired ef­
fect is achieved by adding to E two auxiliary transitions, skip and redo, in such a
way that: ·skip = redo· = °E, skip· = ·redo = EO, "\(skip) = skip, ..\(redo) = redo,
redo, skip t/. A, and all arcs adjacent to skip and redo have weight 1. The net E
augmented with skip and redo will be denoted by Esr .

The transition system of a marked net E is defined as tSE = (V, L, A, vo)
:,~ere: V = {e I skip, redo t/. Te 1\ esr E [Esr)} is the set of states; Vo = E is the
InItial state; L = mUlt(A U {redo, skip}) is the set of arc labels; and

A = {(e,r, w) E V x L x V I e sr [r)lab wsr }

is the set of arcs. In other words, tSE is the labelled reachability graph of Esr with
all references to skip and redo in the nodes of the graph erased. The transition
system of an unmarked net E is defined as tSE ~ tSIj.

The full transition system of a marked net E is defined as ftsE = (V, L', A', vo)
where: V is the set of states and Vo is the initial state, both defined as above; L'
is the set of all finite multisets of transitions of Esr; and

A' = {(e, U, w) E V X L' x V I 8 sr [U)w sr }

is the set of arcs. In other words, ftSE is the reachability graph of Esr with all
references to skip and redo in the nodes of the graph erased. For an unmarked
net E, ftsE = ftsIj.

Figure 1.2 shows how augmenting labelled nets with the redo and skip transi­
tions allows one to discriminate between the nets E and e depicted in figure 1.1.
In general, skip and redo allow for distinguishing the entry and exit states from
~he other ones, and modelling the fact that if a net is left (through the exit state),
It may later be possible to re-enter it (through the entry state).

r~s
e {a} ~

\ I / 0"-l-/p

tSE

Figure 1.2: Discriminating transition systems for the nets in figure 1.1.

Behavioural equivalences

Let E and e be two labelled nets which are either both unmarked, or both
marked. The nets are ts-isomorphic, denoted by E ~ e, if tSE and tSe are

CHAPTER 1. BASIC NOTIONS 7

isomorphic transition systems, and strongly equivalent (or bisimilar), denoted
by E ~ 8, if tSE and tSe are strongly equivalent transition systems, where
two transition systems, (V, L, A, va) and (V', L' , A', vb), are strongly equivalent if
there is a relation R ~ V x V', itself called a strong bisimulation, such that
(vo, vb) E R, and if (v, Vi) E R then . .

(v,I,W)EA

(Vi, l, w') E A'

3w' E V'

3w·EV

(Vi, l, Wi) E A' A (w, Wi) E R

(v, l, w) E A 1\ (W, Wi) E R.

Figure 1.3 shows two strongly equivalent labelled nets which are, however, not
ts-isomorphic.

!t\
r j 5 e k
d .
o I

~p

tSq>

Figure 1.3: Two strongly equivalent, but not ts-isomorphic, labelled nets.

Structural equivalences

As tS-isomorphism and strong equivalence are behavioural notions, it may be
difficult to check whether two nets are indeed equivalent. But, since we are
Working with nets, it is also possible to define equivalences based on their graph
theoretic structure of nets rather than on their behaviour.

Arguably the strongest structural equivalence, other than equality, is net
isomorphism. Two labelled nets, E and 8, are isomorphic if there is a bijec­
tive mapping 'IjJ: SE U TE --+ Se U Te such that for all SESE and tETE,
1jJ(s) ESe, 'IjJ(t) E Te, Ae('IjJ(S)) = AE(S), Ae('IjJ(t)) = AE(t), Me('IjJ(s)) = ME(S),
We ('IjJ(s) , 'IjJ(t)) = Wds, t) and We ('IjJ(t) , 'IjJ(s)) = WE(t, s). We will denote this
by E iso 8, and call 'IjJ an isomorphism for E and 8.

A weaker equivalence is obtained by allowing the two nets differ only by
duplicating places and transitions. Two places s and s' are duplicating in a
labelled net E if Ads) = AE(S'), Mds) = Mds'), and for every transition t,
WE(s, t) = Wds' , t) and WE(t, s) = WE(t, S'); then, in any evolution of the net,
the two places do not add/remove anything with respect to each other. Similarly,
two transitions t and t' are duplicating if AE(t) = AE(t'), and for every place s,

CHAPTER 1. BASIC NOTIONS 8

WI:(s, t) = WI:(S, t') and WI;(t, s) = WI;(t', s); then, in any label based evolution
of the net, the two transitions do not add/remove anything with respect to each
other.

. The relation of duplication is an equivalence relation for places and transi­
~Ions, and two labelled nets, E and e, are duplication equivalent if they lead to
Isomorphic nets when their places and transitions are replaced by their duplica­
tion equivalence classes which inherit the labels, connectivity and markings of
their elements. We will denote this by E isosT e. For the nets in figure 1.4, we
have El isoST E2 isoST E3. Moreover, E4 is not duplication equivalent to any of
the other three nets since, intuitively, E4 has no reachable terminal state (the
x-places cannot be marked concurrently).

~3

r/~s
d' \ ~
o~p

tSE4

Figure 1.4: Four labelled nets and their transition systems.

1.2.3 Plain boxes
A box is an ex-restricted (and T-restricted) labelled net E. A box is plain if its
transitions are all labelled by constant relabellings (or labels, according to our
convention of identifying constant -relabellings with labels). There are two main
classes of plain boxes.

An unmarked plain box E will be called static if each marking reachable from
°E or EO is safe and clean.

A marked plain box E is dynamic if each marking reachable from ME or °E
or EO is safe and clean. Note that if E is a static box and e is derivable from E
then e is a dynamic box.

CHAPTER 1. BASIO NOTIONS 9

When a box ~ or ~sr is marked, its reachable markings are always non-empty
(due to T-restrictedness and ex-restiictedness). On the other hand, the empty
marking of a box has no successor markings except itself. Thus, the distinction
between static and dynamic boxes is invariant over behaviour. Moreover, if ~ is
a static box then both ~ and ~ are dynamic boxes, and if ~ is a dynamic box
then l ~ J is a static box.

Proposition 1.1. If ~ is a dynamic box then. every net derivable from it is
a dynamic box. Moreover, if U 'is a step enabled by the marking of ~ then
U x U ~ indI: U idTr; and WdU x SI:) U WI:(SI: x U) ~ {O, 1}.

Moreover, there are two special classes of dynamic boxes, called the entry and
exit boxes, which comprise all dynamic boxes ~ such that MI: is, respectively, o~
and EO. The sets of plain static, dynamic, entry and exit boxes will, respectively,
be denoted by Box8

, Boxd , Boxe , and Box!!:. The entire set of plain boxes will be
denoted by Box.

Static boxes ~ (or, equivalently, the entry boxes ~) provide the denotational
semantics of the static expressions. Two behavioural conditions were imposed
on the markings M reachable from the entry or exit marking of~. First, Mis
required to be safe in order to ensure that the semantics of the boxes is as simple
as Possible, in order to directly use the partial order semantics of Petri nets in
the style of Mazurkiewicz (cf. section 1.2.1). The second condition, that M is
always a clean marking, is a consequence of the first condition in order to use
iterative constructs in the algebra of nets. Finally dynamic boxes are necessary
to represent intermediate markings. By definition, they include all marked nets
e such that e is derivable from ~, for some static box~. Dynamic boxes will
provide the denotational semantics for the dynamic expressions.

A box ~ will be called ex-exclusive if each marking reachable from MI: or
or: or ~o is ex-exclusive. Moreover, for every pair of non-empty disjoint sets of
place.~ Se and Sx, the ex-box ex(Se, Sx) is a box ~ such that o~ = Se, ~o = Sx
and E = TI: = 0. The simplest ex-box has two places and no transitions.

1.2.4 Net refinement

The mechanism for providing plain boxes with an algebraic structure is a gen­
eral simultaneous refinement and relabelling meta-operator (net refinement, for
Short). It is defined for an operator box Sl (see the following subsection) with
n transitions. The transition refinement part of net refinement serves as a pat­
tern for gluing together an n-tuple of plain boxes r: - one plain box for every
transition in Sl - along their e and x interfaces. The relabelling part of net re­
finement combines (synchronises) transitions from 1: and changes the interface
of the resulting transition(s) according to the transformations prescribed in Sl's
transition labels.

CHAPTER 1. BASIC NOTIONS 10

Operator boxes

An operator box is a simple finite unmarked box n all of whose transition la­
bellings are transformational. We will assume that the set of transitions of n
is implicitly ordered, Tn = {VI, ... , vn }. Then any tuple L= (EV1 ' ••• ' Evn)
consisting of plain boxes is called an n-tuple: For T ~ Tn, we will denote
tT == {Ev I VET}.

1.2.5 Place and transition names of operator and plain
boxes

Example of net refinement

Although this may be the right place to include a section about net substitution
and the formal definition of net refinement, we decided against this. Instead, in
figure 1.5 we give two small examples of net refinement together with the linear
notation for the place and transition tree names and with a graph for a place
and a transition tree. This decision was driven for the following reasons. First of
~1I, we want to avoid several repetitions of the basic theory. Since, this research
IS actually an extension of Petri Box Calculus it is obvious that a large portion
of the theory and ideas will be common in both cases. In order to increase the
readability of this thesis, we decided to put the net substitution section in the
?eginning of chapter 4 and the formal definition of net refinement can be found
In section 4.1. Furthermore, net refinement for standard boxes can be easily
obtained from the definition of net refinement for at-boxes.

1.3 An algebra of process expressions

In this section we present the syntax and operational semantics of the Petri Box
Calculus, according to [9].

1.3.1 Syntax

Static expressions

A (standard) static PEG expression is a word generated by the syntax

E .. - EIIE $OE EjE

E sy a E[jj E rsa Esca
(1.1)

possibly with parentheses, used - if needed - to resolve ambiguities. In the syn­
tax, O! is a constant called basic action or multiaction and is an element of the
Set of labels LabpBc = mUlt(A) as defined in [9]; a is an element of A and [j] is a

CHAPTER 1. BASIC NOTIONS

e

PI = e. <l{ V! <lea, V! <lxa, V~ <l.eb}

P2 =X. <lV~<lXb
tl =(v!,a)<lVa

t2 = (V~ , b) <l Vb

Figure 1.5: Two net refinements.

11

i;

1I~(Iv~ . .
Xc ed

S2

relabelling function from A to A. -It is sometimes required, as in the ees frame­
work, that such a function preserves c~njugates. Moreover such an f commutes
with and that itself is a relabelling function preserving conjugates.

PBe operators can be split into two groups. The three binary operators, i.e.,
II (disjoint parallelism), 0 (choice), and';' (sequence), together with the ternary
operator [**] (iteration with explicit initialisation and termination) are control
flow operators. The two unary (classes of) operators, i.e., [J] (basic relabelling),
and sc a (scoping, a combination of synchronisation and restriction) are com­
munication interface operators. Finally, static boxes are the net counterparts of
static expressions. .
To avoid excessive bracketing, we will often replace in expressions and the cor­
responding Petri nets, a singleton multiaction {a} E A by a.

Dynamic Expressions

A (standard) dynamic PEG expression is a word generated by the syntax:

G "- E E GOE EOG ,,-

G[J] Gsca G;E E;G (1.2)

GIIG [G*E*E] [E*G*Ej [E*E*Gj

where E stands for a static expression defined by the syntax 1.1.

CHAPTER 1. BASIC NOTIONS 12

The first two clauses of 1.2 concern a static expression E in its entry (or initial)
~tate, E, and exit (or terminal) state, E. Both are valid dynamic expressions,
Irrespective of whether or not the final state is reachable from the initial state. An
expression G j H is not dynamic since dynamic composition does not allow both
its components to be active at the same time. The markings of the corresponding
boxes are assumed to be safe and this is already built into the theory. The shape
of dynamic expressions depends on that assumption. The syntax for sequence
is therefore split into two clauses. The first one, G j E means that the first
component of the sequential composition is currently active, while the second
component is currently dormant. The second, clause, E j G means exactly the
opposite. Similar remarks hold for choice and iteration; both require syntactically
that only one of the parts of choice or iteration expression is ever active. Note
that in parallel composition both components are required to be active. Finally,
dynamic boxes are the net counterparts of dynamic expressions.

1.3.2 Operational semantics

In this section, we' present the operational semantics of dynamic expressions,
as defined in [9J. Operational semantics are divided in structural equivalence
relation on expressions and rules of structural operational semantics (SOS) in
the style of [54J.

Structural Equivalence

The structural equivalence relation on expression aims to capture the most fun­
damental correspondence between expressions. For example, E j F == E j F states
that a sequential system in which the first component terminated is the same
as that in which the second component is in its initial state. Formally, == is the
least equivalence relation on dynamic expressions such that rules in table 1.1 are
satisfied.

SOS Rules

!he rules of the label and transition based operational semantics, are presented
III table 1.2.

CHAPTER 1. BASIC NOTIONS

EIIP= EIIF

EDF= EDF

EDF=EDF

Esca = Esca

EjF=EjF

EjF=EjF

[D * E * F] = [D * E * F] ..

[Q * E * F] = [D * E * F]

Elf] = Elf]

EIIF=EIIF
EDF= EDF

EDF=EDF

Esca = Esca

EjF=EjF

[D * E * F] = [D * E * F]

[D*E*F] = [D*E*F]

[D * E * F] = [D * E * F]

E[f] = E[f]

Table 1.1: Rules of the structural equivalence.

13

CHAPTER 1. BASIC NOTIONS 14

_ {o:} {Va}

O--f! a--f!

r A U . w
G--G' H--H' G--G', H--H' ,

r+A v 1 ... U U v2 ... W

GIIH--G'IIH' GIIH II II I G'IIH'
r U

G--H G----+H
r

GDE----+HDE GDE
v6"'U

IHDE
r U

G----+H 'G----+H
r EDG __ EDH EDG

v~ ... U
IEDH

r U

G--H G--H

r
G;E--H;E G;E

v~ ... U
I H;E

r U

G--H G--H
r

E;G----+E;H E;G
v~"'U

IE;H
r

G----+H
U

G--H

[G*E* Fj ~ [H*E*Fj [G*E*Fj
v! ... U

I [H*E*Fj
r

G--H
U

G--H

[E*G*Fj ~ [E*H*F] [E*G*F]
v~"'U

I [E*H*F]
r

G----+H
U

G--H

[E*F*Gj ~ [E*F*H] [E*F*G]
v~ ... U

I [E*F*H]
r U

G--H G--H

G[J] !!2. H[J] G[Jj
(vlf]·f)"'U

I H[J]

G
r1+ ... +r"

IH G
U11tJ ... ItJU/c

IH

[G sc a]
{O:l. O:k}

I [Hsca]
{(VIC" .0:1) <l U1 (VIC ".O:k) <l Uk}

. [Gsca] I [Hsca]
where (ri,Oi) E gsca where (lab(Ui), Oi) E gsca

Table 1.2: PBC operational semantics rules.

Chapter 2

Petri nets with time restrictions

The main ingredients of this chapter are Petri nets that have been extended with
different time restrictions. There will be a concise presentation of several kinds
of possible time extensions and a more extensive analysis of the timed-arc Petri
nets and their applications since this type of Petri nets will be used throughout
this thesis. Finally, a section of this chapter will cover the existing research
achievements on the combination of process algebras with Petri nets that have
time restrictions in the sense of Petri Box Calculus.

2.1 Time Petri nets

Petri nets is a strong and efficient tool used in the description and analysis of
concurrent systems. They support a graphical representation of concurrent sys­
tems and since they are based on a theory of partial orders (capturing explicit
asynchrony), provide an additional means of verifying their correctness efficiently.
Furthermore, they can be used to express properties related to causality and con­
currency in system behaviour. On the other hand, in the real world concurrent
systems, most of the actions are time related. There was no consideration for
timing variables in the standard Petri net model and it was necessary to intro­
duce some to precisely model concurrent systems. Several models that use timing
assumptions have been presented in the literature, for a survey see [16,68]. Ac­
cording to [68] they have the same form as standard Petri nets but their labelling
consists of assigning numerical values or intervals to their places, transitions, arcs
or even on combination of these. The newly introduced time variables (restric­
tions) will affect the enableness and execution of transitions and the firing rules
of standard Petri nets must be altered to reflect these changes. Moreover, since
these time variables have been introduced, it is necessary to actually being able
to count the passage of time. Clocks can be global (counting the age of the whole
system) or local (for example, counting the age of tokens). All possible combi­
nations are feasible and the modeler can decide the best possible combination
according to the modeling needs. Some interesting approaches will be mentioned
here without getting into many details. One of the first attempts to introduce

15

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS 16

time variables in Petri nets was made on [56]. In this approach, time labels were
placed at each transition, denoting the fact that actions are not instantaneous.
This type of Petri nets are called Timed Petri nets. A different approach for
timing restrictions on transitions was proposed by Merlin and Farber in [44] and
this time, two values have been attached to each transition that correspond to
the minimum and maximum time an enabled transition has to wait before it
can actually fire. These extended Petri nets are called Time Petri nets. Time
Petri nets have been been used in protocol and real-time system modelling and
verification in [67]. An approach with time labels on places was made in [20,63]'
modelling processes that consume time. This type of nets was used to analyze
the time dependence of all places in the class of "time-driven" systems. Timed­
~rc Petri nets [15,31,50] is timed extension of Petri nets where a time interval
IS associated with each place outgoing arcs and time passing affects the age of
tokens. It is precisely this kind of time modelling which has been adopted in this
thesis and will be presented in the following section.

Basic definitions

TQ model timing restrictions throughout this thesis, we use the following nota-
tion: .

ID>OO df {el leE N /\ 1 E N°O /\ e ~ l}
ID> df {el E][)loo Il i- oo}
ID>J. df ID> U {1.}
N 1. df N U {1.} .

Let n EN, En... E ID> and el E ID>oo. Then n satisfies the timing restriction el if
e :::; n ~ l, and En... satisfies the timing restriction el if e ~'E and n... ~ l. We
denote this by n tsat el and En... tsat el, respectively. Moreover, for every pair
e, II E j[J)J., we denote

{

1-

eEBII~ En...

min{E, E'} max{n..., ll..'}

.if e=II=1.

if {e,lI} = {1.,En...}

if e = En... /\ II = E'll..' .

2.2 Petri nets with arc-based time restrictions

A timed-arc Petri net (or at-net) is a tuple E ~ (P, T, F, A, M) such that:

• (P, T, F) is a net and F is a flow relation such that F ~ (PxT) U (TxP).

• A is a mapping with the domain PUT U ((P x T) n F) such that, for every
place pEP and transition t E T, A(P) is a symbol in {e,i,x}, A(t) is an
action in A U {~}, and if (p, t) E F then A(P, t) is a time constraint in][)loo,

• A1: P -+ N is a marking.

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS 17

Essentially this is a Petri net with time annotations in the place outgoing arcs
but its marking is the same as in standard Petri nets.
. Since the main topic of this research is the translation of 'timed' expressions
mto 'timed' boxes in the sense of PBC and in order to improve the readability
of the thesis, it is necessary to present a simplified definition for timed-arc Petri
boxes. A more detailed definition will be presented in a following chapter.

A timed-arc box (or at-box) is an at-net with interfaces for applying compo­
sition operators and is defined as a tuple e ~ (P, T, F, >., J.t) such that:

• P, T and F are as in the definition of aPT-net.

• >. is a mapping with the domain PUT U ((P x T) n F). For every place
PEP and transition t E T, we have the following: >.(p) is a symbol in
{e, i, x}; >.(t) is an action in AU {z}; and if (p, t) E F then >.(p, t) E j[J)oo.

• J.t : P --+ Nl. is the initial token timing mapping of e (in general, any such
mapping is a token timing of e).

Note that token timing mappings of at-boxes are interpreted differently from
~arkings of PT-nets, namely, J.t(P) = k means that p holds a single token which
IS k units of time old, and J.t(P) = 1. means that p is empty.

As before, we adopt the standard rules concerning the drawing of diagrams. In
t~e diagrams, the empty local state 1. will not be represented, and otherwise J.t(p)
wIll be displayed. Other drawing conventions are the same as for the standard
Petri nets.

The 'time-less' version of e is defin'ed as aPT-net l e J ~ (P, T, F, LJ.tJl) such
that, for every PEP,

df { 1 lJ.tJl (p) = 0
if J.t(P) EN
if J.t(p) = 1. .

In what follows, L e JI will be called the underlying net of e, and we will assume
that it is always safe. It is worth stressing out that at-boxes are nothing but
ordinary nets with time annotations on the input arcs and a different kind of
token mapping. Since the underlying net is essentially the same, every prop­
erty concerning nets (e.g., ex-directedness) presented in the previous chapter for
standard Petri nets will continue to hold.

In the at-box model, time restrictions are associated with the arcs incoming
to transitions. For example, if >'(p, t) = el, then the interval el = (e, l) gives the
waiting time for the tokens flowing from place p to transition t. This interval
identifies the time for which a token has to wait in place p before it can be used
to fire transition t on this occasion. The left bound, e, is called the minimum
waiting time and the right bound, l, the maximum waiting time. A token on p
cannot be used to fire t when it is younger than the minimum waiting time and
must be used to fire an enabled transition before the maximum waiting time has
finished (unless the transition has been disabled in the meantime). If t is not

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS 18

enabled and the maximum waiting time has passed, the token can no longer be
used to fire transition t. The age of tokens is represented through a token timing
which returns, for each place containing a token, its age (.l is returned if a given
place is empty). When a token arrives to a place, its age is set ,to zero. After that
the age can be increased due to the passage of time. It should be emphasized
that a token does not need to enable any transition in order for its clock to start
'ticking' . '

A finite set of transitions U = {tl,"" tk}, called a step, is enabled by a token
timing J.L if it is enabled at the marking lJ.L JI in the safe underlying PT-net and,
moreover, if t E U and p E ·t then J.L(p) tsat >,(p, t). Such a step may fire leading
to a follower token timing v such that, for every place PEP,

v(p) ~ { ~
J.L{p)

if p E ·U \ U·
if p E U·
otherwise.

We denote this by J.L[U)v.
Another kind of dynamic changes is effected by time moves. A token timing

J.L can change into token timing v by the passage of one time unit if, for every
tranSition t enabled at J.L and for every place p E ·t we have J.L(P) < l, where
el == >'(p, t). The change results in a new token timing v such that, for every
place PEP,

()
2! { J.L(p) + 1 if J.L{p) EN

v P - J.L(P) otherwise .

We denote this by J.L[..j}v. Intuitively,' at-boxes' time deadlines are assumed to
be hard, i.e., when a transition is ready to fire and even if only one of its input
tokens has reached the maximum waiting time, then this transition must fire (or
become disabled) before further passage of time.

The overall behaviour of e is captured by its reachability tree with nodes
labelled by token timings and arcs annotated by labelled moves, denoted by
RT e. More precisely, the root node is labelled by the initial token timing and, if
a node is labelled by J.L, then for every move J.L[x)v there is a unique descendant
labelled by v; the arc leading to it is labelled by V if x = V, and by the multiset
of communication labels

>'(U) ~ L U(t) . {>,(t)}
tEU

if x == U is an executed transition step. Figure 2.1 shows an at-box e and the
corresponding reachability tree RT e. The use of reachability trees instead of
reach ability graphs may be quite surprising at the moment but will be explained
later in this thesis together with the considerations that led to this decision.

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS

e

(O,.1,O)T

..;
(1,.1,I)t

{a}

(.1,O,l)~
{b} ..;

~O,.1, O)t 1(.1,1,2)

..; {b}

(1,.1,1)~ ~(O,.1,O)

RTe

Figure 2.1: An at-box E> and a part of its reachability tree RT E).

19

2.3 Research on Petri nets with time restric-
tions

2.3.1 Timed-arc Petri nets

From the definition of timed-arc Petri nets it is clear that timing variables has
been introduced to associate clocks (or age) with resources. More precisely, one
can specify how old/young a given resource consumed by an action must be.
This approach has been extensively studied in the past, both as a model for
dealing with complex concurrent systems such as communication protocols, and
as a framework for verifying their properties.

Standard Petri nets cannot simulate a Turing machine and in [14J, it is proved
that the same holds for timed-arc Petri nets, since they cannot simulate a counter
with zero testing. With such a result in mind, showing rather 'weak expressive­
ness', one could expect that the reach ability problem would be decidable like for
the standard Petri nets. But in [59J it has been proven that reach ability is unde­
cidable for this type of nets. On the other hand, cover ability and boundedness is
decidable as shown in [1,23J. The suitability of timed-arc Petri nets for the de­
scription of concurrent systems and the preference of software engineers to work
with formalism close to programming languages led to an interesting approach
presented in [60J. In this paper, a timed algebraic language (TPAL) [52J was
automatically translated into timed-arc Petri nets. The specifications of a com­
plete train-gate controller was presented using TPAL and the resulting timed-arc
Petri net is presented in figure 2.2. In a different context, timed-arc Petri nets
have been used for the performance analysis of a real life algorithm for video

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS 20

processing, the MPEG-2. The MPEG-2 [33] is a standard intended for a wide
range of applications such as Video-on-Demand, High Definition TV(HDTV) and
video communications via broadband networks. In [53,61,62]' the specification
of the algorithm has been modelled with timed-arc Petri nets. The analysis of
the algorithm showed that the performance of the encoding algorithm for a single
Group-of-Pictures (GoP) can be improved by taking into account the potential
parallelism in the encoding process of GoPs (a video sequence can be considered
as a sequence of GoPs, for more info see [33]). The results showed that perfor­
mance has increased by 50% when two processors were used. A further increase
around 90% was also possible when the necessary number of processors was used
to exploit all possible parallelism. The timed-arc Petri nets that models the
~PEG-2 algorithm is presented in figure 2.3. In this figure, the time intervals
WIll not be shown for arcs that have interval (0,00). .

2.3.2 Relation with process algebras

Petri Box Calculus provided the necessary framework to combine and take full
~dvantage of the reiative advantages of process algebras and Petri nets. The orig­
Inal framework didn't allow to specify timing restrictions for the actions employed
by a Concurrent system. In order to explicitly represent this kind of information,
two extensions of the PBC with (discrete) time restrictions have been defined,
namely tPBC [37] and TPBC [39]. These two approaches are different in several
aspects. The most important difference is the way that timing information is
captured in these two models. In [37L time Petri Nets [44] have been used. In
this type of nets, the timing information is represented with an interval attached
t? each transition of the net. This interval represents the earliest and latest firing
tIme for the given transition and the local clock for every transition starts the
moment this transition becomes enabled in the usual Petri nets sense. In [39],
the model is based on timed Petri nets [56]. The timing restrictions in timed
Petri nets are again attached to each transition but they are different than be­
fore. Instead of a firing interval, in this case each transition has been associated
with a number denoting the fact that transitions are used to represent actions
and actions take time to complete. The duration of actions makes this model
somehow more complicated but this was necessary to avoid the illegal action
occurrences that were present in [37]. Moreover, TPBC has been extended fur­
ther in [40,41]. Beside duration, now each action is associated with an interval,
that constrain the execution to start within the given interval (like in [37]). New
constructs have been introduced to support time-out and delays, which allows
to give an alternative continuation to processes where time bounds have been
exceeded as well as semantics for maximal parallelism, that forces all actions to
?e executed the very moment they become available. In both approaches there
IS a strong result about the consistency between denotational and operational
semantics. In [37] there is strong bisimulation between the transition systems of
t-expressions and ct-boxes, while in [39-41] the main result states that every step

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS 21

sequence of the operational semantics of an expression is also a step sequence of
any time box that corresponds to the expression and vice versa. Although these
two approaches seem to be in competition, they are complementary to each other
and provide a more complete solution of the problem at hand.

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS 22

TRAIN CONTROL GATE

circulating

0,00

approach(r)

P9

1,3

0,0

Pl5

Figure 2.2: Marked timed-arc Petri net model of the Train-Gate Controller.

CHAPTER 2. PETRI NETS WITH TIME RESTRICTIONS

o

673,673 298,358

o,o~

23

Figure 2.3: Timed-arc Petri net model of the MPEG-2 encoding process of a
Gop

Chapter 3

Algebra of process expressions·

In this chapter, we begin o~r contribution by defining the syntax of the new
~tPBC followed by the operational semantics of process expressions correspond­
mg to at-boxes.

3.1 Static at-expressions

The fOllowing is the syntax for the static timed-arc box expressions (or static
at-expressions), E, which correspond to at-boxes without tokens (below A is a
finite subset of A, and Z is an auxiliary subset of static at-expressions which is
needed to ensure that the nets corresponding to at-expressions are always ex­
exclusive, and due to the standard box algebra theory, the at-nets corresponding
to the expressions E are safe and clean (see proposition 4.1).

E

Z

::=

.. -.. -
ael

ZscA

EscA EOE

ZOZ EjE

EIIE I E j E I ((E ® Z ® E))

((E®Z®E)) .
(3.1)

The only real modification, when compared with the standard PBC syntax,
is that a different type of constant expression is used, viz. ael where a E Au {z}
is a basic action el E JI}oo is a timing restriction. Moreover, the actions employed
by the syntax allow two-way rather than multi-way synchronisation. Similarly
as in the case of at-boxes, e denotes the minimum, and l the maximum waiting
time.

Sequence E j F and choice EOF compositions are standard; the 0 is used to
denote what is essentially the + in CCS [46] and the comma (,) in COSY [34].
The iterative construct ((D ® E ® F)) means 'perform D once, then perform zero
or more repetitions of E, then perform F once'. The basic expression ael means
'Upon its activation, execute a single action with communication capabilities a
and terminate, waiting at least e units of time and no more than l units of time
to do so'. The concurrent composition operator is basically a disjoint union

24

CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS 25

and hence differs from its counterparts in CCS and COSY, and is similar to the
JI0 ~n. TCSP [58]. For instance, aOO llCiOO can perform the {a} and {a} actions
IndIVidually (as well as a two-action step {a, a}), but no synchronised action (in
contrast to a.nilla.nil in CCS). Finally, scoping Esc A implements a combination
of synchronisation and restriction. In essence, it applies the CCS synchronisation
mechanism over all the concurrently enabled pairs (a, a), for a E A, of conjugate
action names but it prevents the individual actions a and a from occurring.

Static expressions describe structural characteristics of concurrent systems.
Their behaviour will be modelled using dynamic at-expressions, introduced next.

Example

FolloWing the introduction of the syntax for the static at-expression, it is now
Possible to model the timed~arc Petri net depicted in figure 2.2 and show the
Usefulness of the process algebra part of our approach. In this example, there
are three components, namely the Train, the Control and the Gate. These
three components work in parallel and there is also some communication between
them. This communication will be achieved by the usage of the scoping operator
in actions tn and their conjugates~. The silent (in the standard case) action
Coming from the synchronisation of tn and ~ is denoted in the timed-arc Petri
net by tn. Furthermore, all of the components are in a constant loop. To model
~his, the Use of the iteration operator is necessary. The choice we made about the
Iteration operator in our syntax forces us to have an entry (set of) action(s) and
~lso an exit (set of) action(s). In the 'train-gate controller' example as presented
In figure 2.2 only the iterative part is present. The entry action will be a silent
r action that is not adding anything to the model and the exit action will be
a~ action stop that is scoped and thus cannot be executed. To begin with, we
wlll provide the at-expression for each of the three components and then we'll
present the final model for the 'train-gate controller'.

• Train

((r ® tl (10,20) ; t3 (0,0) ; t6(5, 5) ; ts (4,4) ; tlO(O, 0) ® stop))

• Control

((r ® t; (0,00) ; t4 (1,1) ; t2(0, 0) ; ~(O, 00) ; tn (1,1) ; t7(0, 0) ® stop))

• Gate
((r ® t; (0,00) ; ts (1,2) ; t;(0, 00) ; tg(l, 3) ® stop))

• Train- Gate Controller

(((r ® tl (10,20) ; t3(0, 0); t6(5, 5) ; ts(4, 4) ; tlO(O, 0) ® stop)) II
((r ® t; (0,00) j t4 (1,1) j t2 (0,0) j ~ (0,00) j tll (1,1) j t7(0, 0) ® stop)) "

((r ® £;(0, 00) j ts (1,2) j t;(0, 00) j tg(l, 3) ® stop))) SC{t3, tlO, t2, t7, stop}

CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS

3.2 Dynamic at-expressions

26

The syntax of (standard) dynamic PBC expressions is changed by adding time
related annotations to the over- and underbars. Each such annotation isa pair of
two non-negative integers that correspond to the age of the 'youngest' and 'oldest'
~oken that might be consumed. For example, E 00 is an expression E which is in
Its initial state and all tokens present are zero time units old. Another example,
E 35 j F, is a sequential composition where the first component has terminated,
and produced some tokens. The exact number (and clock values) of these tokens
is not represented by the annotation, but what is represented is the age of the
youngest token (3 time units), and the age of of the oldest one (5 time units).
Effectively, this means that the annotation gives an age range for the tokens
in the state which is represented by the expression. This, in general, provides
less information than that conveyed by the token timings provided by at-boxes.
However, it will turned out that this reduced (or abstracted) view is sufficient to
reason about the behaviour. We will re-visit this issue later on.

The dynamic at-expressions, G, are defined below, where E and Z denote
static at-expression as in the syntax (3.1) and ElL E ID>.

G ::= EEL GjE EjG((E®K®E))

EEL GOE EOG ((G ® Z ® E))

GscA

GjEI BjG

KOZ I ZOK

((G® Z ®E))

((E®K®E))

((E® Z ® G))

GIIG

((E®Z®G)) I
KscA

(3.2)
Given that we are primarily interested in at-expressions that can be derived

f -00 rom expressions of the form E ,the above syntax may appear to be too per-
missive. For example it admits expressions like a03

55
which has an inconsistent

timing information (~he enabled action cannot wait for more than 3 time units
before being executed, yet the age of the enabling tokens is already 5). How­
ever, such an expression may be a part of another, fully consistent expression,
e.g., (a03

55
) sc{a}, and thus cannot be excluded. In addition, for any dynamic

at-expression G, we denote by l G J, the static at-expression obtained from G by
remOVing all the overbars and underbars. As a final comment we have to stress
that parallel composition is not allowed inside the iterated part of the iteration
operator. The reason for this choice is that we want to preserve safeness in our
expressions in order to keep our time semantics as clean as possible.

3.3 Operational semantics of at-expressions

We follow the way through which the semantics of the standard PBC was de­
fined, with appropriate modifications in order to address timing restrictions. We

CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS 27

EIIFEL - EELIIFEL EELIIFE/L' - EIIF min{E,E/}max{L,L'}

EOFEL
- EELOF EELOF - EOFEL

EOF EL
- EOF

EL EOFEL - EOFEL

EscA EL
- EELscA EELscA - EscAEL

E;FEL - EEL;F E;FEL - E;FEL

EEL;F - E;FEL

«n ® E ® F)) EL - ((DEL Ii! E ® F))

((DEL Ii! E ® F)) - ((D ® EEL ® F))

((D ® EEL ® F)) -EL
- ((D ® E® F))

((D ® EEL ® F)) - ((D Ii! EEL ® F))
((D ® F ® F' EL)) - ((D ® E ® F))EL

Table 3.1: Rules of the structural equivalence for at-expressions.

first define a structural equivalence relation on at-expressions which aims to cap­
ture the most fundamental corre~pondence between expressions. For example,
EEL; F == E; FEL states that a sequential system in which its first component
has terminated is the same as the system in which the second component is ready
to begin its operation. The time annotations are not changed since the entire
~tate produced by the first component is passed to the second one. Formally, ==
IS the least equivalence relation on dynamic at-expressions such that the rules in
t bl . -EL -E'L' a e 3.1 are satisfied. Note that we do not gIve any rule for E II F with
ElL =f. E'lL' as such an expression can never be derived from initially marked
static expressions, which are the only at-expressions we are interested in.

Proposition 3.1. Assuming that we treat the rules in table 3.1 as term rewriting
rules, if G == Hand G is an at-expression, then so is H.

Proof. Follows from a similar result in the standard box algebra. 0

3.4 SOS rules

Similarly as at-boxes, at-expressions can perform two kinds of operational se­
mantics moves, namely action moves and time moves. A time move has the
form

.;
G ---+ H

, CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS 28

and an action move has the form

r
G ---+ H

where r is a finite multiset of communication actions. 'We now define various
types of moves of the structural operational semantics of dynamic at-expressions.

Empty moves

The folloWing rules deal with the empty ~ction moves.

Basic action

G:=H

G~H

A basic action can occur if its timing restrictions are satisfied by the age range
of its over bar:

ElL tsat el
-EL {a}'
ael ---+ ru400

Note that the age range of a newly created underbar is always set to (00).

SCoping

There is a single rule for scoping:

G {aload+"'+{a/c,ak}+r, H , (A U .4) n r = 0 , all"" ak E A

k·{t}+r
GscA , HscA

Other operators

There is no real difference in the rules for the remaining operators when compared
with the standard PBC [8,9J.

, CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS

r r' G _ G' H ---+ H' ,

GIIH ~ G'IIH'

r
G ---+ H

r
EOG ---+ EOH

r
GOE ---+ HOE

r
G ---+ H

r.
((G ® E ® F)) ---+ ((H ® E ® F))

r
((E ® G ® F)) ---+ ((E ® H ® F))

r
((E ® F ® G)) ---+ ((E ® F ® H))

r
G;E ---+ HjE

r
EjG ---+ EjH

3.4.1 Urgent labels of at-expressions

29

To identify cases when time moves can be applied, we need the notion of urgent
labels which can be executed by an at-expression. Urgent labels of dynamic
at-expressions are defined by

urgent,ab(H) ~ {a I aD E enabledau.x(H)},

where enabledau.x(H) is a set defined by induction on the structure of H. There
are two kinds of objects which enabledaw:(H) can contain, namely a cS and a,
~here a E A u {~ }, a E A and 6 E {O, 1}. Intuitively, aD means that the label a
IS enabled and urgent in the expression H, at means that the label a is enabled
~ut non-urgent, and a means that there is a pair of conjugate labels (a, a) enabled
sImultaneously and at least one of these labels is urgent. In more detail, for the
base case, we have:

{

{aD}

enabledau.x(ael
EIL

) ~ ~al}

enabledau.x(aelEd ~ 0

if JEIL tsat el and l = IL
if JEIL tsat el and l > IL

. otherwise.

For more complicated expressions H, we defi~e enabledau.x(H) as the smallest set
SUch that, whenever H == G then

enabledau.x(G) = enabledau.x(H)

and then the following hold for individual s.,ases of composition operators. For
SCoping, if a E enabledau.x(G) and a E (A U A) then:

~o E enabledau.x(GscA) ,

CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS

as well as

{aO E enabledaux(G) I a ~ (A u A)} ~ enabledaux(Gsc A)

{a E enabledaux(G) I a ~ (A U An ~ enabledaux(GscA).

For concurrent composition,

enabledaux(G) U enabledaux(J) ~ enabledaux(GIIJ)

30

{a I aO E enabledaux(G) A O!' E enabledaux(J) A 6·6' = O} ~ enabledaux(GIIJ) .

For the remaining operators, we have that:

enabledaux(G) ~ enabledaux(((G ® E ® F))) n enabledaux(((E ® G ® F)))
,n enabledaux (((E ® F ® G)))

enabledaux(C) ~ enabledaux(COE) n enabledaux(EOG)

enabledaux(C) ~ enabledaux(G; E) n enabledaux(E; G) .

Now one can consider the following example expression (E; (a II 12.)) to enhance
the intuition behind the calculation of objects contained in the equivalence class
of enabled aux.

enabledaux((E; (a II 12.)) = enabledaux(a II 12.) =

3.4.2 Time moves

There is a single time rule:

enabledaux(a) U enabledaux(Q) = {a} U 0 = {a}.

urgent1ab(G) = 0

../
G --+ G../

where C../ is G with each time annotation JElL at an over- or under bar changed
to (E + l)(lL + 1). Notice that a time move can only be applied at the topmost
level of an expression as it cannot be 'propagated' through the expression using
action rules. This ensures that time progresses uniformly.

Note also that to capture the urgency of enabled label, one cannot use a
definition of the following kind: a E urgent1ab(G) if a is enabled by G but
not by C../. The reason is that enabling alone cannot find out precisely which
~tion cannot wait any longer. Take for, instance, the following at-expression:
aOODa01 00. We have here two possible occurrences of a leading to the the same
expression aOODa01 00 ' However, one of them should be considered urgent, even
though we still have that a is enabled by aOOOa0111.

It can be seen that the rules of the operational semantics do not lead outside
the set of dynamic at-expressions.

CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS 31

Proposition 3.2. Assuming that we treat the rules of the operational semantics
~s term rewriting rules, and H has been derived from an at-expression, then H
ts also an at-expression.

Proof. Follows from a similar result in the standard box' algebra. o

3.5 Reachability trees of at-expressions

As already mentioned, we are ultimately interested in those at-expressions that
can be reached, through the rules of the structural operational semantics, from
static at-expressions started at zero time, i.e., we are interested in at-expressions
of the form G = E 00 executed using the operational semantics rules defined earlier
in this section. The representation that we will use to capture the behaviour of
G will again be a reachability tree, denoted by RT G. Its nodes are labelled
by equivalence classes of dynamic expressions reachable from G, and arcs are
labelled by multisets over Au { 1,} or the"; symbol. The root node is labelled by
[G];;; and, if anode is labelled by [H]=, then: for every move

r
H--+J,

there is a unique descendant labelled by [J]= and the arc leading to it is labelled
by r, and if the time move is possible for H then there is a unique descendant
labelled by [Hv']= and the arc leading to it is labelled by";.

Note that we base reachability trees (and later transition systems) of at­
expressions on the equivalence classes of =, rather than on at-expressions them­
selves, since we may have G ~ G' for two different expressions G and G',
Whereas in the domain of at-boxes, 8[0)8 always implies 8 = 8.

3.6 Examples

Our first example, in figure 3.1, shows an at-expression with two sequential
actions a, c in parallel with two other sequential actions b, c and scoping on
action c. Different execution scenarios can be followed. We choose, in line (2),
to execute action a followed by a time move in line (3) which is the only possible
move at this stage. Action b becomes then urgent and in line (4) b is executed.
~fter three time moves, in line (6), the c part of enabled synchronisation action
IS urgent, and so time move is disallowed. Synchronisation takes place in line
(7), by executing the silent synchronisation action 1,.

The second example, in figure 3.2, shows an at-expression consisting of an
action a in parallel with two sequential actions b, a and scoping on action a.
In line (2), we cannot execute a due to the restriction imposed by the scoping
operator (as well as the timing age) and b is not ready to fire. In line (3), after
one time move, action b is urgent and must be executed immediately. In line

, CHAPTER 3. ALGEBRA OF PROCESS EXPRESSIONS 32

00
(1) ((a02 ; c44) II (bll; C14)) sc{ c} -
(2) ((a02 00 ;c44) II (bll

oo
;C14))sc{c}

{a}

(3) -00 { ((a0200; c44) II (bll jC14)) sc c}
V

(4) -11 { ((a0211;c44) II (bll ;C14))sc c}
{b}

(5) ((a02 11 ; c44) II (bll 00; C14)) sc{ c} -

(6) -11 . -00 {
((a02; c44) II (bll j C14)) sc c}

VVV

(7) 44 -33 {} ((a02 j.C44) II (bll j C14)) sc c
{t}

(8) ((a02 j c44 00) II (bll jC14 00)) sC{C} -
(9) ((a02; c44) II (bll; C14)) sc{ c} 00

F' 00 Igure3.1: An evolution of the expression ((a02jc44) II (blljC14))sc{c} .

(5), action a is urgent, but its counterpart a is not enabled due to the time
restrictions. As a result, the synchronisation action of the scoping operator is
not Possible and there are no other possible action moves after that.

(1) (all II (bll jall)) sc{a} 00 -

(2) (all 00 II (bll 00 jall)) sc{a} V

(3) (all 11 II (bll ll
; all)) sc{a}

{b}

(4) (all 11 II (bll 00 j all)) sc{ a} -
(5) (all 11 II (bll j all 00)) sc{a}

Figure 3.2: An evolution of the expression (aOO II (bll j aOl)) sc{a} 00.

Chapter 4

Algebra of at-boxes

In this chapter, we extend the box algebra to at-boxes, by defining composition­
ally a mapping which, for static at-expressions, returns at-boxes.

Net sUbstitution

The identities of places and transitions will play a key role, especially when
defining the transition based SOS semantics of process expressions. As in the
st~ndard box algebra, place and transition identities will come in the form of
fillIte labelled trees retracing the operators used to construct a box.

We shall assume that there are two disjoint sets of basic place and transition
names, P root and T root. Each name T] E P root U T root can be viewed as a special
tree with a single node labelled with T], which is both a root and a leaf. (All the
transitions in figure 4.1 are assumed to be of that kind.) We shall also employ
more complex trees as transition and place names, and use a linear notation to
express such trees. To this end, an expression x<JT, where x is a basic name in
P root U T root, and T is a set of trees, denotes a tree where the trees of the multiset
are appended to an x-labelled root. Moreover,

• if T = it} is a singleton then x<JT will be denoted by x<Jt .

• x"4T denotes the set of trees {x<Jt It E T}.

• x <J (VI "4 T 1, ..• , Vk "4 T k) denotes the set of trees

{X<J{VI <Jtll"" Vk<Jtk} I tl E Tl /\". tk E Tk } •

4.1 Net refinement
The net algebra employs operators directly corresponding to (and denoted as)
t?ose used in the algebra qf static at-expressions. All the net operators are
Slmilar to those in the standard PBC with two important modifications: (i)
changing the definition of the basic net corresponding to a single action, and

33

CHAPTER 4. ALGEBRA OF AT-BOXES 34

(ii) taking care of the time restrictions associated with transition input arcs.
Essentially, the latter means that if p and t are a place and transition which are
:carried forward' by a net operator, then the associated time constraint).,(p, t)
IS also carried forward. Moreover, in the scoping operation, if t and t' are fused
together to yield a z-labelled synchronisation transition U, then we assume that
-t n -t' == 0 and t- n t'- = 0. The full definitions of the composition operators
for at-nets are given below. The relevant operator boxes are shown in figure 4.1.

~eQ"
el

n. ,
Figure 4.1: An at-net Nae/ and five operator boxes.

Seoping

Let A ~ A and E be an ex-restricted and ex-directed at-net. The result of a
substitution of the transition VscA in OseA by E is an at-net <P = OscA(E) whose
components are defined as follows.

Places. There are three kinds of places in <P:

CHAPTER 4. ALGEBRA OF AT-BOXES 35

• For every entry place p in E, q = esc A <lVsc A <lp is an entry place in <I> with
the marking Mr,(p).

• For every exit place p in E, q = XscA <lVscA <Jp is an exit place in <I> with
the marking Mr,(p).

• For every internal place p in E, q = VscA <lp is an internal place in <I> with
the marking Mr,(p).

~ansitions, arcs and timing constraints. There are two kinds of transi-
tIons in <1>: .

• For every transition t in E with a label not belonging to AUA, w = VscA<lt

is a transition in <I> with the same label as t.
There is an arc from a place q to w iff there was an arc from p to t; moreover,
in such a case, >"cI>(q, w) = >"r,(p, t).
There is an arc from w to a place q iff there was an arc from t to p.

• For all pairs of transitions t, u in E, one with a label a E A and the
other with the label a, as well as with disjoint sets of pre- and post-places,
w = Vsc A <l {t, u} is a transition in <I> with the label ~.
There is an arc from a place q to w iff there was an arc from p to t (or u);
moreover, in such a case, >"cI>(q, w) = >"r,(p, t) (or >"cI>(q, w) = >..r,(p, U)).l
There is an arc from w to a place q iff there was an arc from t or u to p.

Other operators

Let nap E {no, O®, 0" Oil} be any n-unary (n ~ 2) operator box and L =
(EI , ... , En) = (Ev1 , ... , Evn) be an n-tuple of ex-restricted and ex-directed at-

op op

nets. The result of a simultaneous substitution of the transitions v~ in Oop by
the at-nets Ev~p is a net Oop(I.:) = <I> whose components are defined as follows.

Transitions. There is one kind of transition in <1>:

• For all transitions v in Oop and t inEv, w = V<lt is a transition in <I> with
the same label as t.

Places, arcs and timing constraints. There are two kinds of places in <1>:

-

• For every transition z in Oap and every internal place pin Ez , q = Z<lp is
an internal place in <I> with the marking Mr,. (p).
There is an arc from q to a transition w iff v = Z and there was an arc from
p to t; moreover, in such a case, >"cI>(q, w) = >"r,.(p, t).
There is an arc from a transition w to q iff v = Z and there was an arc from
t to p. .

1 Note that the definition is well-formed since the pre-sets of t and u are disjoint.

CHAPTER 4. ALGEBRA OF AT-BOXES 36

• For every place 8 in Oap with -8 = {Ub ... , Uk} and 8- = {Uk+l,"" Uk+m},
we construct in <I> all the places

q = 8 <J (Ul <JPb ... , Uk+m <JPk+m) ,

where each Pi (for i :$ k) is an exit place of El.Ijl and each Pj (for j > k) is
an entry place of El.I' .
The label of q is that of s and the marking is equal to

MEu} (pd + ... + MEuk+m (Pk+m) .

There is an arc from q to a transition w iff w = Uj (for some j) and there
Was an arc from Pj to t; moreover, in such a case, A~(q, w) = AEw(Pj, t).2
There is an arc from a transition w to q iff w = Uj (for some j) and there
Was an arc from t to Pj' .

As in the standard box algebra, we will use the following notations:

OscA(E) = EseA
011 (E, E') - E/iE'
OJ(E, E') - E; E'

0 0 (E, E') - EDE'
O®(E, E', E") - ((E ® E' ® E")) .

4.1.1 Composite at-nets

To be able to take advantage of the results developed for the standard box
algebra, we introduce semantics of at-expressions into at-nets which are the same
as that in the standard box algebra if we ignore all time annotations (nets are
marked with black tokens). The mapping Box from at-expressions to at-nets is
defined so that

Box(ael) ~ Noel

Where Noel is shown in figure 4.1,

Box(E
IEL

) ~ Box(E)
Box(EEL) ~ Box(E)

and for the remaining static and dynamic at-expressions:

Box(HseA) dE Box(H) seA

Box(HDJ) dE Box(H)DBox(J)

Box(H/lJ) dE Box(H)/lBox(J)

Box(H; J) dE Box(H); Box(J)

Box(((H ® J ® j))) dE
((Box(H) ® Box(J) ® Box(I))) . -2Note that the definition is well-formed since the operand at-nets are ex-directed.

CHAPTER 4. ALGEBRA OF AT-BOXES 37

Any at-net obtained through the BoxO from some at-expression will be called
composite. Note that the above at-nets semantics of at-expressions are the stan­
dard black token semantics, with all time constraint being simply ignored.

Proposition 4.1. For every static (or dynamic) at-expression H, Box"(H) is a
static (resp. dynamic) at-net which is both ex-directed and ex-restricted. More­
over, if H conforms to the syntax for Z or K then Box(H) is ex-exclusive.

Proof. Follows from similar results in the standard box algebra. 0

4.2 Transition based operational semantics of
at-expressions

To prove our main results, we will need ~other semantics of at-expressions,
based on the transitions present in the corresponding composite at-nets. More
precisely, at-expressions can perform two kinds of operational semantics moves,
namely action moves and time moves. A time move has the form

and an action move has the form

u
G--H

where U = {t l , ... , tk} (k ~ 0) is a set of transitions in the composite at-net
BOX(E), where E is obtained from G by deleting all overbars and underbars.
. We now define various types of moves of the structural operational seman­

tICS of dynamic at-expressions (note that the relation := below is defined as in
table 3.1).

Empty moves

The following rules deal with the empty action moves.

Basic action

G:=H

G.3....H

A ?asic action can occur if its timing restrictions are satisfied by the age range
of Its over bar:

ElL tsat el
-Ell.. {Va"/}
ael -- Qrloo

CHAPTER 4. ALGEBRA OF AT-BOXES

SCoping

There is a single rule for scoping:

G {t1,Ul}I:tJ ... I:tJ{tk,Uk}I:tJU1 H , (V'i)a; - c; E A, (A'U.4) n L - 0

{Vse A<J{tbUl }, ... ,Vse A<J{tk ,1£11;} }Uvse A"'U
G~A)H~A

38

where L = ABox(LGj) (U), ai = ABoxCLGj) (ti) and C; = ABox(LGj) (Ui), for i = 1, ... , k.

Other operators

There is no real difference in the rules for the remaining operators when compared
with the standard box algebra [8,9].

U
G ---+ H

U u'
G -- G' H ---+ H' - , Vi"'U

((G®E®F)) ---+1 ((H®E®F))
v~"'u

((E ® G ® F)) 1 ((E ® H ® F))
v~"'u

((E ® F ® G)) 1 ((E ® F ® H))

V~"'UUv~"'U'
GIIH ----+1 G'IIH'

U
G ---+ H

r
G ---+ H

vb ... u
GOE ---+1 HOE·

v:"'U
GjE ---+1 HjE

v~"'u
EjG 1 EjH

v~ ... u
EOG 1 EOH

4.2.1 Urgent transitions of at-expressions

Urgent transitions of dynamic at-expressions are defined by induction on their
structure, as follows. For the base case, we have:

(-l ElL) df {{ Vael} if JElL tsat el and 1 =lL
urgent ae = 0 otherwise.

urgent(ael ElI..) ~ 0

For more complicated expressions H, we define urgent(H) as the smallest set
such that, whenever H == G then

urgent(G) = urgent(H)

and then the following hold for individual cases of composition operators. For
SCOping, if VscA <lU E enableCl(G) and un urgent(G) 1= 0 then:

VscA <l U E urgent(G sc A) .

CHAPTER 4. ALGEBRA OF AT-BOXES 39

Note: enabled(H) comprises all t such that there is an at-expression J satisfying

H~J.
For the remaining operators, if t E urgent(G) then:

v~ <ltE urgent(GIIJ)
V~<lt E urgent(JIIG)
v~ <It E urgent(((G ® E ® F)))
v~ <It E urgent({(E ® G ® F))) .
v~ <It E urgent(((E ® F ® G)))
v6<lt E urgent(GDE)
v~ <It E urgent(EDG)
v; <It E urgent(G ; E) ,
v~<lt E urgent(E; G) . ,

4.2.2 Time moves

There is a single time rule:

urgent(G) = 0

G...:!- G-I

~ote that urgent(G) is the set of all transitions enabled by G but not by G-I and,
In fact, it could be defined like that. However, we preferred to give a definition
closer to that used in the label based presentation in the previous chapter of this
thesis. Note also that the example motivating a rather complicated definition of
urgent labels there, aOODaOl 11

, no longer works. The reason is that in case of the
transition based semantics, the two a labels correspond to executing V6<lVaoo and
'IJ~ <lvaol , respectively, and so they can be distinguished by the enabling relation.

It can be seen that the rules of the operational semantics do not lead outside
the set of dynamic at-expressions. .

Proposition 4.2. Assuming that we treat the rules of the transition based op­
erational semantics as term rewriting rules, and H has been derived from an
at-expression, then H is also an at-expression.

Proof. Follows from a similar result in the standard box algebra. 0

Representing global behaviour of at-expressions

There are different, though dosely related, representations capturing the overall
behaviour of an at-expression H. The first one we already introduced is that of
reachability tree, RT H. We will also need the following.

CHAPTER 4. ALGEBRA OF AT-BOXES 40

• A full reach ability tree of a dynamic at-expression H, denoted by fRT H, is
a tree whose nodes are labelled by equivalence classes of dynamic expres­
sions reachable from H using the rules defined in this section, and arcs are
labelled by steps of transitions or the J symbol. The root node is labelled
by [H]= and, if a node is labelled by [G]=, then: for every move

u
G --+ J,

there is a unique descendant labelled by [J]= and the arc leading to it is
labelled by U, and if the time move is possible for G then there is a unique
descendant labelled by [Gv']= and the arc leading to it is labelled by J.
For a static at-expression H, fRT H ~ fRT 1100.

• Let H be a dynamic . at-expression. We will use [H) to denote all the
at-expressions derivable from H using the operational semantics defined
in this section, i.e., the least set of expressions containing H such that if
H' E [H) and H' ..!!..... H", for some step U of transitions in L cBox(H)J ,
then H" E [H). Moreover, [H]= will denote the equivalence class of ==
containing H.
The full transition system of H is then defined as fTS H ~ (V, Arcs, init),
where V !!! {[H']= I H' E [H)} is the set of states with init !!! [H]=
being the initial state, and Arcs is the set of labelled arcs of the form
([H']=, U, [H"]=) such that H', H" E [H) and H' ..!!..... H".
For a static at-expression H, fTS H ~ fTSH'0o.

• Let H be a dynamic at-expression. We will use [H)'ab to denote all the at­
expressions derivable from H using the operational semantics introduced
in the main body of the paper, i.e., the least set of expressions containing
H such that if H' E [H)'ab and H' -S H", for some multiset of communi­
cation labels r, then H" E [H) lab.
The transition system of H is then defined as TSH ~ (V, Arcs, init), where
V ~ {[H']= I H' E [H)'ab} is the set of states with init ~ [H]= being the
initial state, and Arcs is the set of labelled arcs of the form ([H']=, r, [H"]=)
such that H', H" E [H)'ab and H' -S H".
For a static at-expression H, TSH ~ TS11oo.

4.3 Interface regions

:he standard boxes have quite regular internal structure which then has a signif­
ICant impact on their behaviour. We will capture some aspects of this structure
~hrough the notion of interface regions, which will form a partition of the set of
Internal places.

. The set of interface regions HlR(E) of a composite at-net E is defined by
Induction on the structure of the at-net, in the following way.

CHAPTER 4. ALGEBRA OF AT-BOXES

B . M
aSIC Net: E = Nael . Then m~(E) = 0.

Parallel composition: E = E11/E2 . Then

2

m(E) ~ U{v~ ... Q I Q E llIR(Ek)} •

k=l

SeqUential composition: E = E1 ; E2.Then

2

llIR(E) ~ {i; <J(v;l ... El, v; ... °E2)} u U{vt ... Q I Q E m(Ek)} •

k=l

Choice operator: E = E10E2 . Then

2

m(E) ~ U{v~ ... Q I Q E llIR(Ek)} •

k=l

3

U{v~ ... Q I Q E llIR(Ek)} •

k=l

SCOping: E = El seA. Then llIR(E) ~ {VscA ... Q I Q E m(E1)} •

Proposition 4.3. Let E be a composite at-net. Then

E= ltJ Q.
QEnlR(E)

41

Proof. Follows by a straightforward induction on the way E has been constructed.
o

A crucial property of an interface region is that its marking behaves in a
monotone way, as captured by the following result.

~roposition 4.4. Let E be an initial composite at-net, Q E m(E) one of its
znterface regions, and M1U1M2U2 ••• MnUnMn+1 be a sequence of markings and
steps such that Ml = ME = °E and Mi[Ui)Mi+b for i = 1, ... , n. Moreover, let
M: == Mi n Q, for i = 1, ... ! n + 1.

CHAPTER 4. ALGEBRA OF AT-BOXES 42

1. There are indices k1 < k2 < ... < km such that k1 = 1, km = n + 2 and,
for each j < m, one of the following holds:

Case 1: O - M' C M' C ... C Mk' - kj- kj+l- - j+1-1'

Case 2: Q - M' :> M' :> ... :> M' - kj - kj+l - - kj+1-1'

Moreover the two cases strictly alternate, beginning with Case 1.

2. If M; occurs in Case 1 sequence then • Ui n Q = 0, and otherwise Ut n Q =
0.

Proof (1) This is a property of the standard box algebra. It can be shown,
for instance, by considering the isomorphism between the reach ability graphs
of such boxes and the the corresponding· process expressions. One also needs
the following property 0 E {·Ui n Q, Ut n Q}, for all i, which holds due to the
s~ntaxes (3.1,3.2); in particular, since the way in which the syntax for Z was
given guarantees that the corresponding at-net is ex-exclusive.

(2) Follows directly from part (1) and the above property. 0

4.3.1 Example

After the definition of interface regions and their technical details it seems useful
to clarify their notion and functionality and also present the interface regions for
the following example in figure 4.2. For our purposes, we need a more refined view
of the structure of algebraically.defined nets. In particular, according to their
definition interface regions are sets of internal places. These places 'behave' as if
they Were a single place in the sense that they start from being all empty, they
can be Subsequently filled in a 'monotonic' fashion (no token removal is allowed
before they are completely full), and after that emptied in a 'monotonic' fashion.
Essentially, this is described in cases 1,2 in proposition 4.4. This allows us to
have a good insight into the manner composite nets evolve. Interface regions
are created by both sequential composition and iteration, and carried forward
by every operation. Now, let us consider the following at-expression

(((ajb) II c®d®eD(fjg)))

and the at-box that corresponds to this expression is presented in figure 4.2.
Notice that time annotations have been omitted from the at-expression and the
corresponding at-box since they are not necessary for this example. We will now
compute the interface regions for this at-box. In the first part of the iteration
o~erator, we have the parallel composition of the sequence of action a and b
With action c. Like mentioned before, interface regions are created when we
ha~e sequential compositiol1. Following the definition, place P4 is an interface
~eglon. Likewise in the third part of the iteration operator, we have the choice

etween action e and the sequence of actions f and g. Place P6 is also an interface

CHAPTER 4. ALGEBRA OF AT-BOXES 43

region. Finally, places {p2,p5} are also an interface region. In this case, we can
also observe the monotonic filling and emptying of an interface region. At the
beginning both P2 and Ps are empty and then either P2 or Ps will get a token.
This token cannot be removed before both places are filled.

P2

~ ~ ~ ~
Figure 4.2: An at-box corresponding to the expression (((a j b) " c®d®eD(j j g))).

Chapter 5

Anew type of timed-arc petri'
nets

In this chapter, we will introduce a different kind of timed-arc Petri boxes, to­
gether with the reasons for this introduction. Furthermore, there will be a pre­
sentation of the translation of at-expressions to this new type of timed-arc boxes.

5.1 Token based timed-arc Petri nets

An at-box is a pair E> ~ (E, /-L) such that E = box(J), for some static or dynamic
at-expression J given by the syntax (3.1,3.2) and

, /-L : PE - NJ.

is a token timing mapping (a state) such that the following consistency conditions
hold: .

• For every P E PE, J-t(p) = .1.. iff ME(P) = o.
• For all p, p' E °E, if /-L(p) =1= .1.. =1= /-L(p') then /-L(p) = /-L(P').

We say that E> is static/dynamic if so is J and denote E> E 'I'J. We then introduce
some useful notations: .

• l E> J ~ E and l E> J ~ (lEJ, 1I), where 1I always returns .1...

• The state WI is defined so that, for every P E PE ,

if /-L(p) =1= .1..
otherwise

and the at-box E>y' is then defined as (E, /-Lv}

• E> is input-reachable if it is reachable from the at-box (lEJ,lI), where 1I

returns 0 for all the entry places, and otherwise.1... We will be interested
only in those at-boxes which are input-reachable.

44

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 45

The above notions are well-defined. Indeed, it is clear that the two consistency
conditions are satisfied in each case.

Proposition 5.1. Let 8 be an at-box in crJ.

1. l8J is a static at-box in crLJJ'

2. If 8 is static, then l 8 J ::::: 8.

Proof. Follows from the properties of the standard box algebra. o
A 'set of transitions U ~ TE is enabled by 8 if it is enabled by E and, for

ev~ry t E U and every place p E -t, we have that J.t(p) tsat >.r;(p, t). We denote
thIS by U E enabled(8). This enabling is urgent, denoted U E urgent(8), if U is
not enabled by 8v. ,

An enabled step may be executed and yield a follower at-box 8 = (E', v)
such that E[U)E' and, for every place p E PE,

v(p) ~ { ~
J.t(p)

if p E -U
if p E U-

. otherwise .

. We denote this by 8[U)8. Note that due to proposition 4.4 and the ex­
dIrectedness of E we do not need to consider the case when p E -U n U-. A
similar comment ~pplies also to the formula for marking execution in the cat­
boxes introduced in the next section.

A time move is enabled if there is no urgent enabled step; it then can be
executed and yield a follower at-box: 8[y')8v.

Proposition 5.2. Let 8 be an at-box and 8[U)8 or 8[y')8.

1. If 8 is static, then U = 0 and 8 = 8.

2. If 8 is dynamic then so is 8.

Proof. Follows from the properties of the standard box algebra and, additionally,
We need to check that the two consistency conditions from the definition of at­
~oxes are satisfied. The latter is straightforward (ex-directedness of at-nets is
Important here). 0

Proposition 5.3. Let 8 be an input-reachable at-box, 8[U)8, where U is a step
consisting of transitions t I , •• • , tk' Then there are at-boxes 8 0, ••• , 8 k such that
eo == e, ek = 8 and 8 i - 1 [ti)8i , for i = 1, ... , k.

Proof. Follows from the standard properties of safe Petri nets and proposition 4.4
~hich ensures that for each ti no time token involved in the enabling of ti is
Involved in the firing of the preceding transitions t I , ... , ti-I. 0

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 46

5.1.1 Representing global behaviour of at-boxes

As in the case of at-expressions, there are different representations capturing the
overall behaviour of an at-box 8. The first one we already introduced is that of
reach ability tree, RT e. We will also need the following. '

• A full reachability tree of an at-box 8 = (E, /-l), denoted by fRT e, has
nodes labelled by token timings and arcs annotated by executed transition
steps or time moves. More precisely, the root node is labelled by the initial
token timing /-l and, if a node is labelled by /-l', then for every move /-l'[x)/-l"
there is a unique descendant labelled 'by /1"; the arc leading to it is labelled
by V if x = V, and by U if x = U is an executed transition step.

• A full transition system of an at-box 8 is fTSe ~ (V, Arcs, init), where
V ~ [8) is the set of states with init ~ 8 being the initial state, and Arcs
is the set of all labelled arcs of the form (8', u, 8") and (8', V, 8") such
that 8',8" E [8) and, respectively, 8'[U)8" and 8'[yI)8".

• A transition system of an at-box 8, denoted by tSe, is obtained from fTSe
by replacing each arc 8'[U)8" by 8'[r) 8", where r is the multiset of
communication labels of the transitions in U.

5.2 Preparing for the main result proof

5.2.1 Why reachability trees?

In the original PBC the main result stated that the reach ability graphs of ex­
pressions and the corresponding boxes are isomorphic. Unfortunately such result
cannot hold in this case as it can be seen in theorem 6.4. The main result of
this thesis is formulated in terms of reach ability trees because the reach ability
graphs are not isomorphic, though they are strongly bisimilar [46]. Isomorphism
of reachability graphs fails to hold because, in general, there is no one-to-one
correspondence between the expressions reachable from G and the token timings
reachable from the initial token timing of Box(G). To illustrate this, we consider

-:-7'"....,....,...-:-:-:~~--:-~--::::-::-oo
the at-expression G = ((aDO II bOI) II ell); dOl and the corresponding at-box
Box(G) shown in figure 5.1.

It may be easily checked that this at-box allows the following two sequences

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

P1®-00~P4
eaT"'"

P,®-01~::~ J,p,
e b i ~

01

P3®-11~
e e i.

47

Figure 5.1: An at-box corresponding to the expression ((aOO II b01) II ell); dOl 00.

of moves, both starting from the initial token timing:

scenariol scenario2

(1) (0,0,0,1.,1.,1.,1.) [{tb t2}) (0,0,0,1.,1.,1.,1.) [{tJ})

(2) (1.,1.',0,0,0,1.,1.) [V} (1.,0,0,0,1.,1.,1.) [V}
(3) (1.,1.,1,1,1,1.,1.) [{t3}} (1.,1,1,1,1.,1.,1.) [{t2' t3})
(4) (1.,1.,1.,1,1,0,1.) [{t4}) (1.,1.,1.,1,0,0,1.) [{ t4})

(5) (1.,1.,1.,1.,1.,1.,0) (1.,1.,1.,1.,1.,1.,0)

The two corresponding execution sequences for the expression G are shown
in figure 5.2. One may further observe that the left marking in line (4) above
corresponds to the expressions in lines (4') and (4a'), and that the right marking
in line (4) above corresponds to the expressions in lines (4") and (4a"). However,
the two markings are different yet we have (4') == (4a') = (4a") == (4"), which
indicates that the expressions in lines (4', 4a', 4", 4a") represent the same state
of the system. It is therefore impossible to show that the reachability graphs of
G and Box(G) are isomorphic. This should not be treated as a cause for concern
the main results of this thesis still establish very strong relationship between
the behaviours of the at-expressions and the corresponding at-boxes. The above
discussion also means that a proof of the main results presented in this research
cannot be obtained by a simple adaptation of that used in [9] since dynamic
at-expressions cannot be unambiguously mapped to at-boxes. In the following
sections we will explain how we cope with this problem.

5.2.2 Clusters

For every composite at-net E, its clusters are defined as:

CL(E) ~ {OE, EO} U cle(E) U cli(E),

where the entry clusters cle(E), and the internal clusters cli(E), are defined com­
Positionally below.

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 48

scenariol

(1') ((aOO II bOl) II ell) idOl 00
{a,b}

(2')
-00

((aOO oo II bOl oo) II ell) idOl
..;

(3')
-11

((aOOu II bOlu) II ell) idOl
{c}

(4') ((aOO u II bOl 11) II ell 00) ; dOl -

(4a') ((aOO II bOl) II ell) i dOl 01
{d}

(5') ((aOO II bOl) II ell) idOl 00

scenario2

(I") ((aOO II bOl) II ell) idOl 00
{a}

(2")
-00 -00

((aOO oo II bOl) II ell); dOl
..;

(3")
-11 -11

((aOO u II bOl) II ell) j dOl
{b,c}

(4") ((aOOu II bOl oo) II ell 00) jdOl -

(4a") ((aOO II bOl) II ell) j dOl 01
{d}

(5") ((aOO II bOl) II ell) jdOl oo

Figure 5.2: Two execution sequences corresponding to scenario 1 and 2.

Basic Net: E = Nael. Then ele(E) ~ eEl and eli(E) ~ 0.

Parallel composition: E = E111E2 • Then

2

ele(E) df U {err <JV~ ... eI I eI E ele(Ek)}
k=l

2

eli(E) df U {V~ ... ell eI E eli(Ek)} .
k=l

Sequential composition: E = E1 j E2 • Then

,CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

Choice operator: E = El DE2. Then

ele(E) df {eo<J(v6 ~ eI,v~ ~ °E21 eI E ele(El)} U

{eo<J(v6 ~ °EbV~ ~ eI) lei E ele(E2)}

df
2
U {V~·~ ell eI E eli(Ek)} •
k=l

Iteration: E = ((El ® E2 ® E3))' Then

ele(E) df {e®<Jv~ ~ ell eI E ele(El)}

df
3

U {V~ ~ ell cl E ch(Ek)} U
k=l
{i®<J(v~ ~ El'V~ ~ eI,v~ ~ E2'V~ ~ °E3) lei E cle(E2)} U

{i®<J(v~ ~ El'V~ ~ °E2'V~ ~ E2'V~ ~ eI) lei E ele (E3)}'

Scoping: E = Else A. Then

ele(E) df {esc A <JVscA ~ eI I eI E ele(El)}

49

Visiting back the running example from figure 4.2 we will present every available
cluster in this at-box. At first, we begin with clusters coming from the entry
and exit places of at-box E, ell = {PI, P3} and el2 = {P7}. The outmost operator
is iteration and we continue with the cluster ele of the iteration which comes
from the first part of the iteration El = (a j b) II c. Since in this part we have
parallel composition, the cluster ele of El will come from both ele of the parallel
components. The first parallel component is a sequence of action a followed
by action b. The ele of sequential composition comes from the cle of the first
component which is basic action a. As a result cl3 = {P3}' Moreover from the
sequential composition, there is also a cli cluster, which is cl4 = {P4}' The second
parallel component is basic action c, so el5 = {PI}' Coming now to the cli clusters
of the iteration, to begin with we have the cluster coming from the ele cluster of
the second component of the iteration (basic action d). This is cl6 = {P2, P5}.
Furthermore to the eli clusters of the iteration, we have the cle cluster of the third
component of the iteration which is a choice composition between a basic action
e and a sequential composition of f and g. In this case, this cluster is the same
as cluster el6 . Finally, we have a cli cluster from the sequential composition in
the the third part of the iteration, el 7 = {P6}'

Proposition 5.4. Let E be (J; composite at-net. If eI E ele(E) then eI ~ °E, and
if cI E cli(E) then eI ~ E. Moreover, in the latter case, there is a unique interface
region Q E m(E) such that cI ~ Q.

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 50

Proof. Follows from the definitions of net refinement and clusters, by a straight­
forward induction on the syntax of the expression from which E has been gener­
ated. The uniqueness property follows from proposition 4.3. 0

Proposition 5.5. Let E be an initial composite at-net, cI E cli(E) be one of its
internal clusters, and M1U1M2U2 ... MnUnMn+1 be a sequence of markings and
steps such that Ml = ME = °Eand Mi[Ui)Mi+l, for i = 1, ... , n. Moreover, let
M: = Mi n cI, for i = 1, ... , n + 1.
Then there are indices kl < k2 < ... < km such that kl = 1, km = n + 2 and, for
each j < m, one of the following holds:

Case 1· 0 = M' C M' C ... C M' . kj - kj+1 - - kj+l-l'
Case 2· Q = M' :::> M' :::> ... """\ M' . kj - kj+1 - ~ kj+l-l'

Moreover the two cases strictly alternate, beginning with Case 1.

Proof. Follows from propositions 4.4 and 5.4. o

5.2.3 Pre.clusters of a transition

For every composite at-net E and a transition tETE, the pre-clusters of tare
defined compositionally below.

Basic Net: E = Nael . Then, for t = Vael, <>t ,g eE}.

Parallel composition: E= EdIE2 • Then, for t = v~ <lu (k = 1,2):

<>t,g {e~ <lV~ ... cI I cI E <>u n cle(Ek)} U {v~ ... eI IdE <>u n eli (Ek)} •

Sequential composition: E = El ; E2 • Then, for t = v~ <lu: ,

<>t ,g {e; <lV~ ... eI I eI E <>u n ele(El)} U {v~ ... eI I eI E <>u n eli(E1)}

and for t = v?<lu: ,

<>t ,g {i;<l(v~'" El'v;'" eI) lei E <>unele(E2)} U'

{v; ... eI I eI E <>u n eli(E~)} .

Choice: E = E10E2 . Then, for t = V6<lU:

<>t ,g {eo<l(v6'" eI,v6'" °E2) lei E <>Unele(El)} U

{V6 ... ell eI E <>u n eli(E1)}

and for t = v6 <lu:

<>t ~ {eo <l(v6· ... °E1,v6'" eI) lei E <>unele(E2)} U

{v6 ... ell eI E <>u n eli (E2)} •

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

Iteration: E = ((EI ® E2 ® E3))' Then, for t = v~ <Ju:

°t ~ {e®<Jv~ ell eI E Ounele(EI)}U{V~ ell eI E °uneli(EI)}

for t = v~ <Ju:

°t ~ {i®<J(v~ EI, v~ eI, v~ E2, vi °E3) lei E °u n ele(E2)} U

{V~ ell eI E 0u n eli (E2)}

and for t = vi<Ju:

°t ~ {i®<J(v~ EI, v~ °E2' v~ E2, vi eI) lei E 0u n ele(E3)} U

{vi ell eI E 0u n eli(E3)} .

Scoping: E = ElseA. Then, for t = VscA<JU:

°t ~ {esc A <JVscA ell eI E °u n ele(EI)} U {VscA ell eI E °u n eli(E1)}

and for t = VscA<J{U,W}:

0t ~ {esc A <JVscA ell eI E (Ou U Ow) n ele(EI)} U

{VscA ell eI E (Ou U Ow) n eli(EI)} .

51

Coming back in the example in figure 4.2, we will present the pre-clusters of
every transition. Once again due to compositional definition of pre-clusters we
are starting from the outmost operator and we follow the rules until we end
up with a basic net. We start with transition a. This transition belongs to
the first component of the iteration operator. Inside the first component of
iteration operator, it belongs to the first component of the parallel composition
and finally is the first component of the sequential operation between action a
and b. Consequently, the pre-cluster of this transition is °a = {PI}' Following
the same pattern for the rest of the pre-clusters, we have: 0b = {P4} , 0c = {PI},
°d = {P2,P5}, 0e = {P2,P5}, Of = {P2,P5} , Og = {P6}'

Proposition 5.6. Let E be a composite at-net, t E T~ and eI E 0t. Then eI ~ et
and >'dp, t) = >'dq, t), for all P, q E eI.

Proof. The proof proceeds by induction on the structure of the expression from
which E has been derived. Below we assume that t E T~, eI E 0t and P, q E eI.

Base net: E = Nael • Then t = Vael and the property clearly holds.

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 52

Parallel composition: E = El IIE2 •

Case 1: t = vlt <Ju where u E TEl' Then, by the definition of <>t, we have two
possibilities:

• eI = e~<Jvlt ~ e1', where e1' E <>u n e1e(El)'

By the definition of net refinement, we have: (i) eI ~ ·t {::} e1' ~ ·u. And, by
the induction hypothesis: (ii) e1' ~ ·u; and (iii) AEl (p', u) = AEl (q', u), for
all p', q' E e1'. Moreover, we have that p = ell<Jv1t<lJ' and q = ell<Jv1t<Jq' where
p', q' E e1', and by the definition of net refinement: (iv) Adp, t) = AEl (p', u)
and Adq, t) = AEl (q', u). .

Now, eI ~ ·t follows from (i) and (ii). Moreover, Adp, u) = AE(q, u) follows
from (iii) and (iv).

• eI = vrr ~ e1', where e1' E <>u n ch(E l).

By the definition of net refinement, we have: (i) eI ~ ·t {::} e1' ~ ·u. And,
by the induction hypothesis: (ii) e1' ~ ·u; and (iii) AEl (p', u) = AEl (q', u),
for all p',q' Eel'. Moreover, we have that p = v1t<Jp' and q = v1t<Jq' where
p', q' E e1', and by the definition of net refinement: (iv) AE (p, t) = AEl (p', u)
and Adq, t) = AEl (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AE(p, u) = Adq, u) follows
from (iii) and (iv).

Case 2: t = v~<Ju where u E TE2' Then we proceed similarly as in Case 1.

Sequential composition: E = El ; E2 . .

Case 1: t = vf <Ju where u E TEl' Then, by the definition of <>t, we have two
possibilities:

• eI = e; <Jvf ~ e1', where e1' E <>u n e1e (El)'
By the definition of net refinement, we have: (i) eI ~ ·t {::} e1' ~ ·u. And, by
the induction hypothesis: (ii) e1' ~ ·u; and (iii) AEl(P',U) = AEl(q',U), for
all p', q' Eel'. Moreover, we have that p = e.,<Jv~<lJ' and q = e.<Jv:<Jq' where , , ,
p', q' E e1', and by the definition of net refinement: (iv) AE (p, t) = AEl (p', u)
and Adq, t) = AEl (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AE(P, u) = AE(q, u) follows
from (iii) and (iv).

• eI = vf ~ e1', where e1' E <>u n e1 i (El)'
By the definition of net refinement, we have: (i) eI ~ ·t {::} e1' ~ ·u. And,
by the induction hypothesis: (ii) e1' ~ ·u; and (iii) AEl (p', u) = AEl (q', u),
for all p', q' E e1'. More~ver, we have that p = v f <J p' and q = vf <J q' where
p', q' Eel', and by the definition of net refinement: (iv) Adp, t) = AEl (p', u)
and Adq, t) = AEl (q', u).

,CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 53

Now, eI ~ ·t follows from (i) and (ii). Moreover, Adp, u) = Adq, u) follows
from (iii) and (iv).

Case 2: t = v~ <Ju where u E TE2 . Then, by the definition of 0t, we have two ,
possibilities: .

• eI = i;<J(v: • El , v~ • eI'), where eI' E 0u n ele (E2)'
By the definition of net refinement, we have: (i) eI ~ ·t <=> eI' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AE2(P', u) = AE2(q', u),
for all p',q' Eel'. Moreover, we have that p = i;<J(v:<JW,V~<Jpl) and
q = i;<J(v:<Jw', v~<k1') where w, Wi E El and pi, q' E el', and by the definition
of net refinement: (iv) Adp, t) = AE2(P', u) and AE(q, t) = AE2(q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AE(P, u) = AE(q, u)follows
from (iii) and (iv). .

• eI = v~ • el', where el' E 0u n el j (E2)' ,
By the definition of net refinement, we have: (i) eI ~ ·t <=> eI' ~ ·u. And,
by the induction hypothesis: (ii) eI' ~ ·u; and (iii) AE2(P', u) = AE2(q', u),
for all p',q' E el'. Moreover, we have that p = V~<Jpl and q = v~<Jq' where
pi, q' E eI', and by the definition of net refinement: (iv) AE (p, t) = AE2 (pi, u)
and AE(q, t) = AE2(q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, Adp, u) = AE(q, u) follows
from (iii) and (iv).

Choice: E = E 10E2.
Case 1: t = v5 <Ju where u E TEl' Then, by the definition of Ot, we have two
possibilities:

• eI = eo <J(v5 • eI',v~. °E2), where eI' E Ounele(El)'
By the definition of net refinement, we have: (i) eI ~ ·t <=> eI' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AEI (pi, u) = AEI (q', u),
for all p', q' E el'. Moreover, we have that p = eo <J(v5<Jp', v~<Jw) and q =
eo<J(v5<Jq', v~<Jw') where w, w' E °E2 and pi, q' Eel', and by the definition
of net refinement: (iv) AE(P, t) = AEI(P', u) and AE(q, t) = AE~ (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, Adp, u) = AE(q, u) follows
from (iii) and (iv).

• eI = v5 • eI', where eI' E 0u n eli(El)'
By the definition of net refinement, we have: (i) cI ~ ·t <=> el' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AEI(p',U) = AEI(q',U),
for all pi, q' Eel'. Moreover, we have that p = V5<JP' and q = V5<Jql where
p', q' E el', and by the definition of net refinement: (iv) Adp, t) = AEI (p', u)
and AE(q, t) = AEI (q', U)..
Now, eI ~ ·t follows from (i) and (ii). Moreover, AE(P, u) = AE(q, u) follows
from (iii) and (iv).

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 54

Case 2: t = v~ <Ju where u E TE2' Then we proceed similarly as in Case 1.

Iteration: ~ = ((~I ® ~2 ® ~3))'
Case 1: t = v~<Ju where U E TEl' Then, by the definition of Ot, we have two
possi bili ties:

• eI = e®<Jv~ ~ el', where el' E °u n ele(~I)'
By the definition of net refinement, we have: (i) eI ~ ·t {::} el' ~ ·u. And, by
the induction hypothesis: (ii) el' ~ ·u; and (iii) AEl (pi, u) = AEl (q', u), for
all pi, q' E el'. Moreover, we have that.p = e®<v~<p1 and q = e®<v~<l'l' where
pi, q' E el', and by the definition of net refinement: (iv) AE(P, t) = AEl (p', u)
and AE(q, t) = AEl (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AE(P, u) = AE(q, u) follows
from (iii) and (iv). .

• eI = v~ ~ el', where el' E 0u n Ch(~I)'
By the definition of net refinement, we have: (i) eI ~ ·t {::} el' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AEl (P', u) ~ AEl (ql, u),
for all pi, q' E el'. Moreover, we have that p = V~<Jpl and q = V~<Jq' where
pi, q' E el', and by the definition of netrefinement: (iv) Ar;(p, t) = AEl (pi, u)
and Ar;(q, t) = AEl (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, Ar;(p, u) = Ar;(q, u) follows
from (iii) and (iv).

Case 2: t = v~<Ju where u E TEll' Then, by the definition of Ot, we have two
possibilities:

• eI = i®<J(v~ ~1' v~ ~ el', v~ ~ ~2' v~ ~ O~3), where el' E 0u n ele(~2)'
By the definition of net refinement, we have: (i) eI ~ ·t {::} el' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) Ar;2(P" u) = AE2(q', u),
for all pi, q' E el'. Moreover, we have that p = i®<J(v~<!w, V~<l>', v~<Jy, V~<lZ)

d -' <J (1 <J I 2 <J I 2 <J I 3 <J ') h'E ~o I E ~o an q - 2® v® w,v® q ,v® Y,v® z were W,W "'1' Y,Y "'2'

Z, Z' E o~3 and p', q' E el', and by the definition of net refinement: (iv)
Ar;(p, t) = AE2 (p', u) and Ar;(q, t) = AE2 (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AE(P, u) = Ar;(q, u) follows
from (iii) and (iv).

• eI = v~ ~ el', where el' E 0u n Ch(~2)'
By the definition of net refinement, we have: (i) eI ~ ·t {::} el' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AE2(p', u) = AE2(q', u),
for all pi, q' E el'. Moreover, we have that p = V~<Jp' and q = V~<Jq' where
pi, q' E el', and by the definition of net refinement: (iv) Ar;(p, t) = AE2 (p', u)
and Ar;(q, t) = Ar;2(q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, Ar;(p, u) = Ar;(q, u) follows
from (iii) and (iv).

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 55

Case 3: t = v~<Ju where u E TE3 . Then, by the definition of Ot, we have two
possibilities:

• eI = i®<J(v~ EI, v~ °E2' v~ E2, v~ el'), where el' E 0u n ele(E3).
By the definition of net refinement, we have: (i) eI'~ ·t {:} el' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AE3(p',U) = AE3(q',U),
for all p', q' E el'. Moreover, we have that p = i®<J(v~<Jw, v~<Jy, V~<lZ, V~.q:J')
and q = i®<J(V~<JW',V~<Jy',V~<JZ',V~<Jq') where w,w' EEl' y,y' E °E2'
Z, Z' E E2 and p', q' E el', and by the definition of net refinement: (iv)
AI;(p, t) = AE3 (p', u) and AI;(q, t) = A~3 (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AI;(p, u) = AI;(q, u) follows
from (iii) and (iv).

• eI = v~ el', where el' E 0u n eli(E3)
By the definition of net refinement, we have: (i) eI ~ ·t {:} el' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AE3(P',U) = AE3(q',U),
for all p', q' E el'. Moreover, we have that p = V~<Jp' and q = V~<Jq' where
p', q' E el', and by the definition of net refinement: (iv) AE(p, t) = AE3 (p', u)
and AI;(q, t) = AE3 (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AI;(p, u) = AE(q, u) follows
from (iii) and (iv).

Scoping: E = Else A.
Case 1: t = VscA <Ju where u E TEl. Then, by the definition of 0t, we have two
Possibilities:

• eI = esc A <JVscA el', where el' E 0u n ele(El).
By the definition of net refinement, we have: (i) eI ~ ·t {:} el' ~ ·u. And,
by the induction hypothesis: (ii) el' ~ ·u; and (iii) AEI (pI, u) = AEI (q', u),
for all p', q' E el'. Moreover, we have that p = esc A <J Vsc A <J p' and q =
escA<JvscA<Jq' where p', q' E el', and by the definition of net refinement: (iv)
AE(P, t) = AEI (P', u) and AI;(q, t) = AEI (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AE(P, u) = AE(q, u) follows
from (iii) and (iv).

• eI = VscA el', where el' E 0u n eli(El).
By the definition of net refinement, we have: (i) eI ~ ·t {:} el' ~ ·u. And, by
the induction hypothesis: (ii) el' ~ ·u; and (iii) AEI (p', u) = AEI (q', u), for
all p', q' E el'. Moreover, we have that p = VscA <Jp' and q = VscA <Jq' where
p', q' E el', and by the definition of net refinement: (iv) AE(P, t) = AEI (P', u)
and AE(q, t) = AEI (q', u).

Now, eI ~ ·t follows from (i) and (ii). Moreover, AI;(p, u) = AE(q, u) follows
from (iii) and (iv). .

Case 2: t = Vsc A <J { u, w}. Then we proceed similarly as in Case 1. o

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 56

Proposition 5.7. Let E be a composite at-net, tETE and p E -t. Then there
is cI E 0t such that p E cI.

Proof. Follows by induction on the structure of the expression from which E has
been derived, similarly as proposition 5.6. . 0

5.2.4 Intuition behind the cluster-based approach

We are now revisiting the example presented in the previous section in figure 5.1
having in mind the new cluster-based approach. By the definition of clusters,
there are six clusters in this at-box: cl I ~ {PI,P2,P3} cl2 ~ {PI}, cl3 ~ {P2},
cl4 ~ {P3}, cis ~ {P4,P5,P6} and cl6 ~ {P7}' Assuming this ordering of clusters,
our two scenarios can be re-written as follows:

scenariol scenario2

(I"') (00,00,00,00,1., ..L) [it!, t2}} (00,00,00,00, ..L, 1.) [{tIl }

(2"') (00, ..L, 1., 00, 00, ..L) [VI (00,1.,00,00,00, ..L) [vi}
(3"') (11, ..L, 1.,11,11,1.) [{t3}} (11,1.,11,11,11,1.) [{t2,t3}}

(4"') (..L, 1., 1., 1., 01, 1.) [{t4}} (..L, 1., 1., 1., 01, ..L) [{t4}}

(5"') (..L, 1., 1., 1., ..L, 00) (..L, ..L, ..L, 1., ..L, 00)

Note that the problem encountered before with line (4) in the execution
scenarios is no longer present in line (4"'). Effectively, this means that we can
suitably adopt the proof technique used in, e.g., [9], to justify the main results
of this thesis.

We will now start the introduction of the auxiliary algebra of arc-timed boxes
Which will serve as a bridge between at-boxes and at-expressions.

5.3 Cluster-based timed-arc boxes

A cluster at-box (or cat-box) is a pair 2l ~ (E, M) such that E = box(J), for
some static or dynamic at-expression given by the syntax (3.1,3.2) and

M : GLE -+ 1IJ)

is a cluster filling (state) such that the following consistency conditions hold:

• For every cI in GLE, M(cI) = ..L if and only if ME(P) = {O}, 'tip E cI.

• For all cI and cI' in eE}Ucle , if M(cI) # ..L # M(cI') then M(cI) = M(cI').

We say that 2l is static/dynamic if so is J and denote 2l E 'I'J. We then introduce
some useful notations: .

• ~21J ~ E and L21J ~ (LEJ,N), where N always returns..L.

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For every transition t E T~ and cluster d E Ot,

,x(d, t) ~ ,xdp, t) ,

for any p E d .

• The state Mv' is defined so that, for every cluster cI in E,

Mv'(d) ~ { ~ + l)(lL + 1) if M(d) = JElL
otherwise

and the cat-box 2tv' is then defined ~s (E, Mv').

57

The above notions are well-defined. This is immediate in all but one case, namely
,x(d, t) is well-defined by proposition 5.6.

Proposition 5.B. Let 2t be a cat-box in rrJ •

1. l2t J is a static cat-box in rr LJJ •

2. If 2t is static, then l2tJ = 2t.

Proof. Follows from the properties of the standard box algebra. o
A set of transitions U ~ T~ is enabled by 2t if it is enabled by E and, for every

transition t E U and every cluster d E Ot, we have that M(d) tsat ,x(d, t). We
denote this by U E enabled(2l). This enabling is urgent, denoted U E urgent(2l),
if U is not enabled by 2t v'.

An enabled step may be executed and yield a follower cat-box X = (E', N)
such that E[U)E' and, for every cluster d in E,

N(cI) ~ { t~
M(cI)

We denote this by 2t[U)X.

if M~, ncl = 0

if cI n U· =I 0 and M(d) = JElL
if cI n U· =I 0 and M(d) = 1..
otherwise.

A time move is enabled if there is no urgent enabled step; it then can be
executed and yield a follower cat-box: 2t[y')2lv'.

Proposition 5.9. Let 2l be a cat-box and 2t[U)X or 2t[y')X.

1. If2t is static, then U = 0 and 2l = X.

2. If2t is dynamic then so is X.

Proof. Follows from the properties of the standard box algebra and, additionally,
we need to check that the tw.o consistency conditions from the definition of at­
boxes are satisfied. The latter is straightforward (ex-directedness of at-nets is
again important here). 0

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 58

Proposition 5.10. Let 2(.[U)X, where U = {t!, ... , tk}. Then there are cat-boxes
2(.o, ... ,2(.k such that 2(.0 = 2(., 2(.k = X and 2(.i-dti)2(.i, for i = 1, ... , k.

Proof. Follows from the standard properties of safe Petri nets and proposition 5.5
which ensures that for each ti no time token involved in the enabling of ti is
involved in the firing of the preceding transitions t I , ... , t i - I . 0

5.3.1 Representing global behaviour of cat-boxes

As for at-boxes, we have four different ways of capturing. the overall behaviour
of cat-boxes, namely RT!2(, fRT!2(TS2(and trS2(' Their definitions are a straight­
forward adaptation of those for at-boxes.

5.3.2 An algebra of cat-boxes

We define an algebra of cat-boxes following the syntax (3.1,3.2). To start with,
the basic at-box N~~l = (Noel, M), where for every cluster eI E CLNael we have:

M(eI) ~..l (5.1)

is a basic building block of the algebra. In what now follows, we assume that
2(. = (E, M) E '!H, X = (w,N) E '!J and m = (4), P) E '!K are cat-boxes.

Over barring and under barring: If H is a static at-expression and JElL E 1D>,

h -lEI. -
t en 2(. = (E, n) E '!1fEL where, for every cluster eI E CL,£, we have:

if eI E ele(E) or eI = °E
otherwise. . (5.2)

Similarly, 2(.1EL = (E,N) E '!Ila where, for every cluster eI E CD,£, we have:

if eI = EO
otherwise. (5.3)

Choice: 2(.DX is defined if HDJ is generated by the syntax (3.1,3.2), and then
2(.DX ~ (EDW, n) E '!HOJ where, for every cluster eI E CL,£ow, we have:

• when H is a dynamic at-expression,

n(eI) ~

M(OE)
M(EO)

M(eI')
M(O~)

M(eI')

..1

if cI = O(EDW)
if eI = (EDW)O

if eI = eO <l (V6 ... eI',v~ ... Ow)
if eI=eo<l(v6 ... o~,V~ ... eI')
if eI = V6 ... eI'
if eI = v~ ... eI'

(5.4)

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• when J is a dynamic at-expression,

n(eI) ~

N(O\Il)
N(\IlO)
N(O\Il)

N(eI')
..L
N(eI')

if eI = °p:O\Il)
if eI = (~O\Il)O

if eI = eo <l(V6 eI', v6 0\Il)
if eI = eo <l (V6 o~, v6 eI')
if eI = V6 eI'
if eI = v6 eI'

• when both Hand J are static at-expressions,

n(eI) ~ 1. .

59

(5.5)

(5.6)

Sequence: ~; X is defined if H; J is generated by the syntax (3.1,3.2), and
then ~; X ~ (~ ; \II, n) E 'I' H; J where, for every cluster eI E C LE; \[I, we have:

• when H is a dynamic at-expression,

n(eI) ~

M(OE)
1.

M(eI')
M(eI')
..L
M(~O)

if eI = O(~ ; \II)
if eI = (~ ; \II)O

if eI = e; <l (vf eI')
if eI = v; eI' ,
if eI = v? eI' ,
if eI = i; <l (vf ~o, v~ eI')

• when J is a dynamic at-expression,

n(eI) ~

1.
N(\IlO)
..L

..L

N(eI')
N(eI')

if eI = O(~ ; \II)
if eI = (~ ; \II)O
if eI = e; <l (vf eI')
if eI = V;l eI'
if eI = v? eI' ,
if eI = i; <l (v; ~o, v? eI') , ,

• when both Hand J are static at-expressions,

n(eI) ~ ..L .

(5.7)

(5.8)

(5.9)

Parallel Composition: ~IIX is defined if HIP is generated by the syntax
(3.1,3.2), and then ~IIX ~ (~lI\I1, n) E 'I'HIIJ where, for every cluster eI E CLEII\[I,

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 60

we have:
M(OE) EB N(°\It) if eI = O(EII\It)
M(EO) EB N(\It°) if eI = (EII\It)O
M(eI') if eI = ell' <lV,I, ... eI'

n(eI) ~ (5.10)
N(eI') if eI = e~ <lV~ ... eI'
M(eI') if eI = v,t ... eI'
N(eI') if eI = v~ ... eI' .

Note that when both Hand J are static at-expressions, then

n(eI) ~ '..1 . (5.11)

for every cluster eI E CLEIIW'

Iteration: ((IJ ® X ® QJ)) is defined if ((H ® J ® K)) is generated by the syntax
(3.1,3.2), and then

((IJ ® X ® QJ)) ~ (((E ® \It ® q»), n) E'r((H®J®K))

where, for every cluster eI E C L((E®W®;P)) , we have:

• when H is a dynamic at-expression,

M(OE)

..1
M(OE)

if eI = O((E ® \It ® q»)
if eI = ((E ® \It ® q»)0
if eI = e®<l(v~ ... eI')
if eI = v~ ... eI'

n(eI) ~

M(eI')
..1 if eI = v~ ... eI'

if eI = v~ ... eI' ..1
M(EO)

M(EO)

'f I . (I ~o 2 I' I C = ~®<l V® ... L. ,v® ... C ,
v~ ... \Ito, v~ ... 0q»

'f I . (I ~o 2 O.Tt 1 C =~®<l V®"'L. ,v® ... ':1',

v~ ... \Ito, v~ ... eI')

• when J is a dynamic at-expression,

n(eI) ~

1-

..1

1-

..1

N(eI')
1-

N(eI') EB N(\It°)

N(°\It) EB N(\It°)

if eI = O((E ® \It ® q»)
if eI = ((E ® \It ® q»))0

if eI = e®<l(v~ ... eI')
if eI = v~ ... eI'
if eI = v~ ... eI'
if eI = v~ ... eI'
'f I . (I ~o 2 I' 1 C = ~® <l v® ... L. , V® ... C ,

v~ ... \Ito, v~ ... 0q»
'f I . (I ~o 2 O.Tt 1 C = ~® <l V® ... L. ,v®... ':1' ,

2 .TtO 3 I') v® ... ':1' ,v® ... C

(5.12)

(5.13)

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• when K is a dynamic at-expression,

n(eI) ~

..L
P(<J?0)

..L

..L

..L

P(eI')
P(°<J?)

P(eI')

if eI = O((E ® w ® <J?))
ifel = ((E®w®<J?))O,
if eI = e®<J(v~ ~ eI')
if eI = v~ ~ eI'
if eI = v~ ~ eI'
if eI = v~ ~ eI'
if eI = i® <J (v~ ~ EO, v~ ~ eI',

vi ~ we, V~ ~ 0<J?)
if eI = i®<J(v~ ~ EO, V~ ~ ow,

V~ ~ we, V~ ~ eI')

• when H, J and K are static at-expressions,

n(eI) ~..L .

61

(5.14)

(5.15)

Scoping: I.:2tscA is defined if HscA is generated by the syntax (3.1,3.2), and
df .

then 2t.scA = (EscA,n) E '!'HscA where, for every cluster eI E CL~scA, we
have:

• when H is a dynamic at-expression,

I
M(OE)

df M(EO)
n(eI) = M(eI')

M(eI')

• when H is a static at-expression,

if eI = ° (E sc A)
ifel= (EscA)O

if cI = esc A <J(VscA ~ eI')
if eI = VscA ~ eI'

n(eI) ~..L .

(5.16)

(5.17)

Note that for each of the above operations, one can easily check that the
result is indeed a valid cat-box corresponding to the at-expression given in the
definition.

5.3.3 Static properties of cat-boxes

An important result from the point of view of developing a correspondence be­
tween cat-boxes and at-expressions is given next (see also table 3.1).

Proposition 5.11. Let 2t., X and QJ be static cat-boxes and JElL, JE'lL' E JI)). Then
the following hold.

. CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 62

1. For choice composition:

2. For iteration: '":':'::':-=---==:;;-EL - EI.
((2l ® X ® QJ)) = ((2l ® X ® QJ))

((2l ® X ® QJ)) EL = ((2l ® X ® QJ EL))
-EL . -u

((2ln®X®QJ)) = ((2l®X ®QJ)) = ((2l®XEI.®QJ)) = ((2l®X®QJ)).

3. For sequence compositi?n:

4-. For parallel composition:

5. For scoping:

--EL -EL
2l;X = 2l ;X

-EI.
2l EL ; X = 2l; X

2l; XEL = 2l; XlEi. .

2lscAEI. = 2lEI.scA

2lscAJElL = 2l EI.scA.

Proof. It follows from the standard box algebra results that the underlying at­
nets are in each case equal. Therefore, all we need to do is check whether the
cluster filling mapping are also identical.

--EL -EL -lEI. --ElL -EI.
Case 1: 2l0X = 2l OX = 2l0X . After denoting 2l0X = A, 2l OX =

-lEI. Band 2l0X = C, we have a number of sub-cases:

• For cI = ° L 2l0X J we have the following:
MA(cI) (~) JElL
and
MB(cI) (~) M~EL(OL2lj) (~) JElL
and
Mc(cI) (~) MjEL(OlXJ) (~) JElL.

. CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = ll.21OX j ° we have the following:
MA(eI) (~) 1.
and
MB(eI) (~) MQiEL(ll.21jO) (~) 1.
and
Mc(eI) (~) MXEL(lXjO) (~) 1..

• For eI = eo <J (V6 ... el', v6 ... ° l X j) we have the following:
MA(eI) (~) ElL
and
MB(eI) (~) MQiEL(eI/) (~) JElL
and
Mc(eI) (~) MxEL(OlXj) (~) ElL.

• For eI = eo <J (V6 ... ° ll.21 j ,V6 ... el') we have the following:
MA(eI) (~) JElL
and
MB(eI) (~) MQiEL(OLl.21j) (~) ElL
and
Mc(eI) (~) MXEL(eI /) (~) JElL.

• For eI = V6 ... el' we have the following:
MA(eI) (~) 1.
and
MB(eI) (~) MQiEL(eI /) (~) 1..
and
Mc(eI) (~) .L

• For eI = v6 ... el' we have the following:
MA(eI) (~) 1.
and
MB(eI) (~) 1.
and
Mc(eI) (~) MXEL(eI/) (~) 1..

63

Case 2: I.21OX ElL = I.21 ElLOX = I.21OX ElL • After denoting I.21OX ElL = A, I.21 ElLOX =
Band I.21OX ElL = C, we have a number of sub-cases:

• For eI = ° L 1.21 OX j we have the following:
MA(eI) (~) 1.
and
MB(cI) (~) M~EL(OlI.21Jj) (~) 1.
and .
Mc(eI) (~) M,IEL(OlXJj) (~) 1..

. CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = l QtDX j ° we have the following:
MA(eI) (~) JElL
and
MB(eI) (~) Mg!ElL(lQtjO) (~) JElL
and
Mc(eI) (~) MxEL(lXjO) (~) JElL.

• For eI = eo <J (V6 el', v6 ° l X j) we have the following:
MA(eI) (~) .1
and
MB(eI) (~) Mg{En..(eI /) (~) .1
and
Mc(eI) (~) Mx (OlXj) (~) .l.

-En..

• For eI = eo <J (V6 ° l Qt j , v6 el') we have the following:
MA(eI) (~) .1
and
MB(eI) (~) MQ((OLQtIl) (~) .1 _En.. .JI
and
Mc(eI) (~) MXElL(eI /) (~) .i.

• For eI = V6 el' we have the following:
MA(eI) (~) .1
and
MB(eI) (~) Mg{En..(eI /) (~) .1
and
Mc(eI) (~) .i.

• For eI = v6 el' we have the following:
MA(eI) (~) .1
and
MB(eI) (~) .1
and
Mc(eI) (~) Mx (el') (~) .i. -ElL

Case 3:
..,.,...---__ .,.,-EL -EL
((Qt ® X ® m)) = ((Qt ® X ® m)). After denoting

~--::-:--~:-:-EL - EL
((Qt ® X ® m)) = A and ((Qt ® X ® m)) = B ,

We have a number of sub-cases:

• For eI = ° L ((Qt ® X ® m)) j we have the following:
MA(eI) (~) JElL
and
MB(eI) (5,:b2) M2iEn..(OLQtj) (~) JElL.

64

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = ~ ((21 ® X ® ID)) j ° we have the following:
MA(eI) (~) 1.
and
MB(eI) (5~2) .1...

• For eI = e~ <J (v~ ~ el') we have the following:
MA(eI) (~) JElL .
and
MB(eI) (5~) M-EL(O~21j) (~) JElL.

. Ql

• For eI = v~ ~ el' we have the following:
MA(eI) (~) .1..
and .
MB(eI) (52..2) M~EL(eI/) (~) .1...

• For eI = v~ ~ el' we have the following:
MA(eI) (~) 1.
and
MB(eI) (S~) 1..

• For eI = v; ~ el' we have the following:
MA(eI) (~) .1..
and
MB(eI) (5~2) 1..

65

• For eI = i®<J(v~ ~ ~21jO,v~ ~ eI/,v~ ~ lXjO,v; ~ °lIDj) we have the
following:
MA(eI) (~) 1.
and
MB(eI) (5~2) M~ELU21JO) (~) 1..

• For eI = i®<J(v~ ~ L21Jo,v~ ~ °LXJ,v~ ~ lXJo,v; ~ el') we have the
following:
MA(eI) (~) 1.
and
MB(eI) (S~2) MQiEL(~21JO) (~) 1..

Case 4: ((21 ® X ® ID)) EL = ((21®X®ID uJ)· After denoting ((21 ® X ® ID)) lEL =
A and ((21 ® X ® ID lEL)) = B, we have a number of sub-cases:

• For eI = ° l ((21 ® X ® ID)) j we have the following:
MA(eI) (~) .1..
and
MB(eI) (S~4) .1...

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = l ((2l ® X ® m)) j 0 we have the following:
MA(eI) (~) JElL
and
MB(eI) (5~4) M~l&LamjO) (~) JElL.

• For eI = e~ <J (v~ ~ el') we have the following:
MA(eI) (~) 1.'
and
MB(eI) (5~4) 1..

• For eI = v~ ~ el' we have the following:
MA(eI) (~) 1.
and
MB(eI) (5~4) 1..

• For eI = v~ ~ el' we have the following:
MA(eI) (~) 1.
and .
MB(eI) (5~4) 1..

• For eI = v~ ~ el' we have the following:
MA(eI) (~) 1.
and
MB(eI) (5~4) M~EL(eI/) (~) 1..

66

• For eI = i@<J(v~ ~ l2ljO,v~ ~ eI/,v~ ~ lXjO,v~ ~ °Lmj) we have the
following:
MA(eI) (~) 1.
and
MB(eI) (5~4) M~EL(Olmj) (~) 1..

• For eI = i@<J(v~ ~ L2ljO,v~ ~ °lXj,v~ ~ lXjO,v~ ~ el') we have the
following:
MA(e/) (~) 1.
and
MB(eI) (5~4) M~EL(eI/) (~) 1..

Case 5: ((2lu ®X®m)) = ((2l®X
ElL

®m)) = ((2l®X lElL ®m)) = ((2l®X®m ElL
)).

-ElL
After denoting ((2l ElL ® X ® m)) = A, ((2l ® X ® m)) = B, ((2l ® X ElL ® m)) = c

-ElL
and ((2l ® X ® m)) = D, we have a number of sub-cases:

• For eI = 0 l ((2l ® X ® ~)) j we have the following:
MA(eI) (5~2) M~EL(OL2lj) (~) 1.
and

. CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

MB(eI) (5~3) .1

and
Mc(eI) (5~3) .1
and
MD(eI) (5~4) .1.

• For eI = l ((21 ® X ® QJ)) ~ 0 we have the following:
MA(eI) (5~2) .1

and
MB(eI) (5~3) .1
and
Mc(eI) (5~3) .1

and .
MD(eI) (5~4) M!UEIL(lQJ~O) (~) .1.

• For eI = e~ <l (v~ ~ el') we have the following:
MA(eI) (5~2) MQ((Ol2{~) (~) .1

-ElL
and .
MB(eI) (5~3) .1

and
Mc(eI) (5~3) .1

and
MD(eI) (5~4) .1.

• For eI = v~ ~ el' we have the following:
MA(eI) (5~) M~EIL(eI/) (~) .1
and
MB(eI) (5~3) .1
and
Mc(eI) (5~3) .1
and
MD(eI) (5~4) .1.

• For eI = v~ ~ el' we have the following:
MA(eI) (5~) .1
and
MB(eI) (5~3) MjEIL(eI /) (~) .1
and
Mc(eI) (5~3) M~EIL(eI/) (~) .1
and
MD(eI) (5':;4) .1.

• For eI = v; ~ el' we have the following:
MA(eI) (5':;2) .1
and

67

. CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

MB(cI) (5~3) .1

and
Mc(cI) (5~3) .1

and
MD(cI) (5~4) MmEL(cI') (~) .i.

68

• For cI = i®<l(v~ ... l!ljO,v~ ... cI',v~ ... lXjO,v~ ... °lmj) we have the
following:
MA(cI) (5~2) M~EL(l!ljO) (~) JElL
and .
MB(cI) (~3) max{MxEL(eI'), MxEl,(lXjO)} (~) JElL
and
Mc(eI) (5~3) max{M~Et(eI'),M~ELaXjO)} (~) JElL
and .
MD(cI) (5~4) MmEl,(Olmj) (~) JElL.

• For eI = i®<l(v~ ... l!ljO,v~ ... °lXj,v~ ... lXjO,v~ ... eI') we have the
following:
MA(cI) (1i~2) M~EL(l!ljO) (~) JElL
and .
MB(eI) (5~3) max{MxEL(OlXj),MxEl,(lXjO)} (~) JElL
and
Mc(cI) (5~3) max{M~EL(OlXj),M~EL(lXjO)} (~) JElL
and
MD(cI) (5~4) MmEl,(cI') (~) JElL.

--ElL -EL --EL' --ElL
Case 6: . !l j X =!l j X. After denoting !l j X = A and Qt j X = B, we
have a number of sub-cases:

• For cI = ° l!l j X j we have the following:
MA(cI) (~) JElL
and
MB(cI) (~) M2iEL(OLQtj) (~) JElL.

• For cI = l Qt j X j ° we have the following:
MA(cI) (~) .1
and
MB(cI) (~) .i.

• For eI = el <l (v~ ... eI') we have the following:
MA(cI) (~) JElL
and
MB(cI) (~) M 2iEl,(c1') (~) JElL.

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = v~ ... eI' we have the following:
MA(eI) (~) ..L
and
M8(eI) (~) M

2i
EL(eI') (~) ..L.

• For eI = v~ ... eI' we have the following: , .

MA(eI) (~) 1.
and
M8(eI) (g) . .L

• For eI = i; <J (V;1 ... L 2l j 0, v~ ... eI') we have the following:
MA(eI) (~) 1.
and
M8(eI) (g) MQiEL(l2ljO) (~) 1..

69

C -ElL Af d . 01 -r -ElL ase 7: 2l ElL ; X = 2l; X . ter enotmg ~ElL; = A and 2l; X = B, we
have a number of sub-cases:

• For eI = ° L 21 ; X J we have the following:
MA(eI) (g) M~EL(Ol2lj) (~) 1.
and
M8(eI) (~) 1..

• For eI = l21; X j ° we have the following:
MA(eI) (g) 1.
and
M8(eI) (~) MXEL(lXJO) (~) .L

• For eI = e; <J (V;1 ... eI') we have the following:
MA(eI) <g) M~EL(eI') (~) ..L
and
M8(eI) (~) 1..

• For eI = v~ ... eI' we have the following: ,
MA(eI) (g) M~ (eI') (~) .1

-En.

and
M8(eI) (~) .1.

• For eI = v~ ... eI' we have the following: . ,
MA(eI) <g) .1
and
M8(eI) (~) MXEU,(cI') (~) ..L.

. CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = i; <l (vf ~ l2t. j 0, v~ ~ eI') we have the following:
MA(eI) (~) M

mEL
(L2t.jO) (~) JElL

and
M8(eI) (~) MXEL(eI') (~) JElL.

70

Case 8: 2t.; :tEL = 2t.; XEL. After denoting 2t.; :tEL = A and 2t.; X
EL

= B, we
have a number of sub-cases:

• For eI = ° l2t. j X j we have the following:
MA(eI) (~) ..L
and
M8(eI) (~) ..L.

• For eI = l2t.; X j ° we have the following:
MA(eI) (~) Mx (l:tjO) (~) JElL

-EL
and
M8(eI) (~) JElL.

• For eI = e; <l (vf ~ eI') we have the following:
MA(eI) (~) ..L
and
M8(eI) (~) ..L.

• For eI = v~ ~ eI' we have the following: ,
MA(eI) (~) ..L
and
M8(eI) (~) ..L.

• For eI = v? ~ eI' we have the following: ,
MA(eI) (~) Mx (eI') (~) ..L

-EL
and
M8(eI) (~) ..L.

• For eI = i; <l (VII ~ l2t. j 0 ,v~ ~ eI') we have the following:

MA(eI) (~) M'&EL(eI') (~) ..L
and
M8(eI) (~) ..L.

C --EL -EL -EL . --EL -EL -EL
ase 9: 2t.IIX = 2t. IIX . After denotmg 2t.IIX = A and 2t. IIX = B,

We have a number of sub-cases:

• For eI = ° l2t.1I X j we have the following:
MA(eI) (~) JElL
and
M 8 (eI) (5d:

0
) min{JE, JE}max{lL, lL} = JElL.

, CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = l2t.11 XJ 0 we have the following:
MA(eI) (~) ..L
and
MB(eI) (5~O) ..L.

• For eI = e~ <lvIT ... el' we have the following:

MA(eI) (~) JElL .

and
MB(eI) (5~O) M-EL(eI /) (~) JElL.

. Ql

• For eI = e~ <lV~ ... el' we have the following:

MA(eI) (~) JElL
and
MB(eI) (5~O) MXEL(eI /) (~) JElL.

• For eI = vIT ... el' we have the following:

MA(eI) (~) J..
and
MB(eI) (5~O) M2{EL(eI /) (~) J...

• For eI = v~ ... el' we have the following:

MA(eI) (~) J..
and
MB(eI) (5~O) MxEL(eI /) (~) J...

Case 10: 2t.ELIIXE1v = 2t.IIX min{E,E/}max{L,V}' After denoting

2t.1Il'.IIX1Il'IW' = A and 2t.IIX = B ""... ""... --min{E,E/}max{L,V}'

We have a number of sub-cases:

• For eI = 0 l2t.11 X j we have the following:
MA(eI) (5~O) J..
and
MB(eI) (~) J...

• For eI = l2t.1I X j 0 we have the following:
MA(eI) (5~O) min{JE, JE/} max{lL, lL/}
and
MB(eI) (~) min{JE, JE/} max{lL, lL/}.

• For eI = e~ <lVlt ... el' we have the following:

MA (eI) (5~O) M~EL (el') .(~) ..L
and
MB(eI) (~) J...

71

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = e~ <l v~ el' we have the following:

MA (eI) (5d:,0) M,IIEL (el') (~) ..L
and
MB(eI) (~) ..L.

• For eI = V[..... el' we have the following:

MA(eI) (5d:,0) MgIlEL(eI /) (~) ..L
and
MB(eI) (~) ..L.

• For eI = v~ el' we have the following:

MA (eI) (5d:,0) M,IEJL (el') (~) ..L
and .
MB(eI) (~) ..L.

72

--ElL -ElL --ElL -ElL
Case 11: mseA =m seA. After denoting2l.seA = B andm seA = C,
we have a number of sub-cases:

• For eI = 0 l m se A j we have the following:
MB(eI) (5d:,6) M~EL(OL2I.j) (~) JEJL .
and
Me(eI) (~) JEJL.

• For eI = L 21. se A j 0 we have the following:
MB(eI) (5d:,6) M~EL(LmjO) (~) ..L
and
Me(eI) (~) ..L.

• For eI = esc A <l (Vsc A el') we have the following:
MB(eI) (5d:,6) M~EL(eI/) (~) JEJL
and
Mc(eI) (~) JEJL.

• For eI = Vsc A el' we have the following:
MB(eI) (5d:,6) M~EL(eI/) (~) ..L
and
Mc(eI) (~) ..L.

Case 12: 21.seA ElL = mElLseA. After denoting

21. se A ElL = Band m ElL se A = C ,

we have a number of sub-cases:

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

• For eI = ° l Q.l sc A j we have the following:
MB(eI) (5~6) MQ((0 l Q.lj) (~) 1.

-ElL

and
Me(eI) (~) 1..

• For eI = l Q.l sc A j ° we have the following:
MB(eI) (5~6) MQ((lQ.ljO) (~) ElL

-ElL

and
Me(eI) (~) ElL.

• For eI = esc A <J (Vsc A el') we have the following:
MB(eI) (5~) MgtE1L(eI/) (~) 1.
and
Me(eI) (~) 1..

• For eI = Vsc A el' we have the following:
MB(eI) (5~) M21 (el') (~) 1.

_EL

and
Me(eI) (~) 1..

5.3.4 Structural equivalence

73

o

We now want to capture situations where different applications of a same opera­
tor box lead to the same cat-box: We start by defining three auxiliary relations
which are the smallest equivalence relations on pairs of cat-boxes satisfying the
following (below Q.l, X and Ware static cat-boxes and ElL E JI))):

-ElL -EL) () • (Q.l , X) =0 (Q.l, X) and (Q.lEL' X =0 Q.l, X EL .

-ElL
• (Q.lEIL, X) =; (Q.l, X).

-ElL) (01) (-ElL • (Q.lEIL, X, W) =® (Q.l, X , W =® ~, X EIL, W =® Q.l, X, W)~

Moreover, =11 is the identity on the pairs of cat-boxes.

Proposition 5.12. Let Q.l, Q.l/, X and X' be cat-boxes.

1. Q.lDX = Q.l/DX' iff (Q.l,X) =0 (Q.l/, X').

2. Q.l j X = Q.l1 j X' iff (Q.l, X) =; (Q.l/, X').

3. Q.lIIX = Q.l/IIX' iff (Q.l,X) =11 (Q.l/,X').

4. ((Q.l ® X ® W)) = ((Q.l' ®. X' ® W')) iff (Q.l, X, W) =® (Q.l/, X', W').

Proof. If (Q.l, X) = (Q.l/, X') then the proof is trivial. We therefore assume that
(Q.l, X) =1= (Q.l/, X') and then consider four cases.

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

Case 1: 2l0X = 2l'OX' iff (2l, X) =0 (2l', X').
(<==) Without loss of generality

2l = 2l,EL and X' = XEL .
-EL -EL '

Then 2l' OX = 2l'oX follows from proposition 5.11(1) .
(==» We first observe that 2loX = 2l'OX' implies

L2lj OlXj = L2l'jOlX'j .

74

Hence, from the results of the standard box algebra it follows that, without loss
of generality, l2lj = l2l'j and lX'j = lXj. Consequently, 2l' and X must be of
the form:

2l = 2l,EL and X' = X
E/LI

,

for some ElL, E'lL' E Il}. All we need to show. now is that ElL = E'lL'.
hypothesis and the proof of proposition 5.11, we know that:

M2l'EiL.ox(eI) = M21/0XE/iL/(eI) ¢=:::> ElL = E'lL' ,

for the cluster cI = eo <J(V6 °i2lj,v6 °lXj). Hence ElL = E'lL'.

Case 2: 2l; X = 2l'; X' iff (2l, X) =; (2l', X').
(<==) Without loss of generality

, ,-EL
2l = 2l EL and X = X .

Then 2l' EL; X = 2l'; XEL follows from proposition 5.11(3).
(==» We first observe that 2l; X= 2l'; X' implies

l2l j ; l X J = L 2l' J ; lX' J .

From our

Hence, from the results of the standard box algebra it follows that, without loss
of generality, l2lJ = L2l'J and lX'J = lXJ. Consequently, 2l and X' must be of
the form: --

, ,-E'L'
2l = 2l EL and X = X ,

for some ElL, E'lL' E Il}. All we need to show now is that ElL = E'lL'.
hypothesis and the proof of proposition 5.11 we know that:

M211 ELI x(eI) = M2l' I XE/LI (eI) ¢=:::> ElL = E'lL'

for any cluster eI = i; <J (V;l L 2l j 0, v~ eI'). Hence ElL = E'lL'.

Case 3: 2lIIX = 2l'IIX' iff (2l, X) =11 (2l', X').
(<==) Then 2l = 2l' and X = X', and so 2lIlX = 2l'IIX'.
(==» We first observe that 2lIlX = 2l'IIX' implies

L2lJIIlXj = l2l'jlllX'j .

From our

Hence, from the results of the standard box algebra it follows that L 2l JI = L 2l' JI
and lXJ = lX'j. It is then easy to see that 2l = 2l' and X = X'.

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS

Case 4: ((2{ ® X ® 2.1)) = ((2{' ® X' ® 2.1')) iff (2{, X, 2.1) =® (2{', X', 2.1').
Without loss of generality

, d -r' -r lEL den' 21.=2{ELan ~=~ an A.I=2.1.

Then ((2{ ® X ® 2.1)) = ((2{' ® X' ® 2.1')) follows from proposition 5.11(2).
(=» We first observe that ((21. ® X ® 2.1)) = ((2{' ® X' ® 2.1')) implies

((L2{J ® LXJ ® l2.1J)) = ((L2I.'J ® lX'J ® L2.1'J)) .

75

Hence, from the results of the standard box algebra it follows that, without loss
of generality, l21. J = l2l.' J, lX' J = l X J and, moreover, l2.1 J = l2.1' J is a static
at-net. Consequently, 21. and X' must be of the form:

. -JE'L'
2{ == 2{' lEL and X' ,= X ,

for some IEIL, IE'IL' E ~, and 2.1 = 2.1'. All we need to show now is that IEIL = IE'IL'.
From our hypothesis and the proof of proposition 5.11 we know that:

M ((2(' EL®X®~) (cI) = M ((2('®XE'L' ®~) (cI) {:::=:} IEIL = IE'IL'

for any cluster cI = i®<l(v~ ~ l2{Jo,v~ ~ cI',v~ ~ lXJo,v~ ~ °l2.1J). Hence
U=~. . 0

5.3.5 Structural execution of transition steps

We now provide a characterisation of steps executed by cat-boxes which reflects
the compositional way in which they have been defined, providing a direct link
to the execution rules of the corresponding at-expressions.

Proposition 5.13. Let flop E {flo, fl®, flj! flll} be any n-unary (n ~ 2) operator
box and ij = (2{1, ... ,2tn) be a tuple of static and dynamic cat-boxes in its domain
of application.

1. If2{i[Ui)Xi (for i :::; n), then X = (Xl!"" Xn) is in the domain of applica­
tion of flop and flop(ij) [U)flop(X), where

(5.18)

2. If flop(ij) [U)Ji, then there are tuples X,2.1 of cat-boxes in the application
domain of flop as well as steps U1 , ••• , Un (some of them possibly empty)
such that (5.18) holds, ij =nop X, Xi [Ui)2.1i (for i :::; n) and Ji = flop(m).

Note: As a consequence, enabled(flop(ij)) comprises exactly all sets

(V~p~Ul) u ... U (v~~Un)

of transitions such that there is X = (Xl!' .. , Xn) satisfying X =nop ij and Ui E
enabled(Xi) (for i :::; n).

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 76

Proof. Follows from similar results holding in the standard box algebra, propo­
sition 5.12, and the fact that the age of tokens and the time annotations are
consistently inherited through the composition operation specified by nop. 0-

Proposition 5.14. Let 2l be a dynamic cat-box and A g;; A. -1. If2l[{tl,ul," .,tk,uk,Wh""Wm})X where AlQlj(ti) = AlQlj(Ui) E A for all
i ::; k and AlQlj(Wj) rt. A for all j ::; m, then n scA(2l) [U)nscA(X), where

U = {VscA <J{tb Ul}"'" VscA <J{tk, ud, VscA <JWl, ... , VscA <Jwm} . (5.19)

2. If nsc A (2l)[U).ft then there are trans'itions t l , Ul, ... , tk, Uk, Wl, . .. , Wm and
a cat-box X as in part {1} which satisfy .ft = nscA(X) and {5.19}.

Note: As a consequence, enabled(nsc A(2l)) c~mprises exactly all

U = {VscA <J{tb Ul},"" VscA <J{tk, Uk}, VscA <JWl, ... , VscA <JWm} -such that AlQlj(ti) = AlQlj(Ui) E A for all i::; k and AlQlj{Wj) rt. A for all j::; m.

Proof. Follows from a similar result holding in the standard box algebra, and the
fact that the age of tokens and the time annotations are consistently inherited
through the composition operation specified by n scA. 0

5.3.6 Structural characterisation of urgent transitions

We now provide a compositional characterisation of urgent transitions of cat­
boxes.

Proposition 5.15. Let nop E {no, n@, nj! nil} be any n-unary {n ~ 2} operator
box and 2i = (2ll , ... ,2ln) be a tuple of static and dynamic cat-boxes in its domain
of application.

1. 1ft E urgent(2li), for some i :5 n, then v~<Jt E urgent(nop(2i)).

2. If v~p <J t E urgent(nop(sit)), for some i :5 n, then there is a tuple i =

(Xl, ... , Xn) of cat-boxes in the application domain ofnop such that sit =oop
i and t E urgent(Xi).

Proof. Follows from the note in the formulation of proposition 5.13, and the
fact that the age of tokens and the time annotations are consistently inherited
through the composition operation specified by nap. 0

Proposition 5.16. Let 2l be a dynamic cat-box, A ~ A and VscA <JU E TOscA(Ql).
Then

Vsc A <J U E urgent(nscA (l2l j)) {::::} un urgent(2l) # 0 .

Proof. Follows from the note in the formulation of proposition 5.14, and the
fact that the age of tokens and the time annotations are consistently inherited
through the composition operation specified by nscA . 0

CHAPTER 5. A NEW TYPE OF TIMED-ARC PETRI NETS 77

5.3.7 From at-expressions to cat-boxes

We now provide a compositional translation from at-expressions to cat-boxes.
The mapping cBox from at-expressions to cat-boxes is defined so that: .

cBox(ael) df Neat
ael

-EL
cBox(H)

. df
cBox(H)

EL

cBox(H EL)
df

cBox(H)EL

cBox(HscA) df cBox(H) scA

cBox(HOJ) df
cBox(H) OcBox(J)

cBox(HIIJ)
df cBox(H)lIcBox(J)

cBox(H; J) df cBox(H); cBox(J)

cBox(((H ® J ® J))) df ((cBox(H) ® cBox(J) ® cBox(I))) ,

where N~~~ is Nael with the token filling mapping returning only .i. The seman­
tical mapping always returns a cat-box, and the property of corresponding to a
static or dynamic box has been captured by the syntax (3.1,3.2).

Proposition 5.17. Let H be an at-expression.

1. cBox{ H) is a static or dynamic cat-box.

2. cBox{H) is a static cat-box iff H is a static at-expression.

Proof. Follows by induction on the structure of the at-expressions, using similar
results holding in the standard box algebra. 0

Chapter 6

Behavioural Relationships

6.1 Relationship between 'at-expressions and
cat-boxes

The consistency between the denotational and the operational semantics of at­
expressions will be formulated in terms of the full transition systems they gener­
ate. We now have a fundamental result which demonstrates that the operational
and denotational semantics of an at-expression capture the same behaviour.

Theorem 6.1. For every at-expression H,

isoH ~ {([J]=,cBox(J)) I [J]= is a node offTSH}

is an isomorphism between the transition systems fTS H and fTScBox(H)'

Proof. We proceed by induction on the structure of H. The result clearly holds
when lHJ = ael. In the inductive step we do not need to consider H which is
completely overbarred or underbarred (since then a rewriting, based on the rules
in table 3.1, can be applied to push the bar inside the expression). After that
we consider various cases for executing (transition or time) steps from H as well
as cBox(H), and derive the appropriate steps in the counterpart node using the
operational semantics rules, propositions 5.13, 5.14, 5.15, 5.16 and 5.17 as well
as cBox(Hv') = cBox(H)v'. 0

From the above result, a number of immediate corollaries can be derived, as
stated next.

Theorem 6.2. For every at-expression H and the corresponding cat-box Box(H),
we have that:

1. TSH and TSBox(H} are isomorphic.

2. fRT Hand fRT Box(H) are isomorphic.

3. RT Hand RT Box(H) are isomorphic.

78

CHAPTER 6. BEHAVIOURAL RELATIONSHIPS 79

Proof. Follows from theorem 6.1 and the fact that, for both expressions and
boxes, moving from a transition-based graph representing global behaviour to a
label-based graph amounts to replacing in the original arcs all the U's by their -
multisets of communication labels (duplicate arcs are th,en deleted). 0

6.2 Relationship between at-boxes and
cat-boxes

We are now going to relate the global behaviour of at-boxes and cat-boxes. This
time, however, the main correspondence result will be expressed in terms of
reach ability trees rather than transition systems.

Let 8 = (~, J.L) be an input-reachable at-~ox. Then ¥(8) ~ (~, M) where

¥ (J.L) : C LE -+ lIJ).L

is a cluster filling mapping such that, for every d E CLE :

¥()(d) ~ {1- if Mr:.(~I) = {1-}
J.L JElL otherwIse,

with JE = min(J.L(dnME)) and lL = max(J.L(dnME)). It is easy to see that ¥(8)
is a cat-box since the two conditions from the definition of a cat-box are satisfied
due to the two corresponding conditions in the definition of an at-box.

Proposition 6.1. Let 8 = (~, J.L) be an input-reachable at-box, 2l = ¥(8) =
(~, M), and tETE,

1. t E enabled(8) iff t E enabled(2l).

2. t E urgent(8) iff t E urgent(2l).

3. V is enabled in 8 iff V is enabled in 2l.

4. If8[{t})8 then 2l[{t})¥(8).

5. If 8[J)8 then 2l[J)¥(E).

Proof. (1,2) (==?) Suppose that t E enabled(8) and d E Ot. Then, by propo­
sition 5.6, we have that eI S; ·t and A~(eI, t) = AE(P, t), for all p E d. Thus,
since J.L(p) tsat AE(P, t), for all pEel, we have M(eI) tsat A2t(d, t). Moreover, if
t E urgent(8) then t E urgent(2l) since, for any set of integers K = {kl!'" ,kl },

we have
min {1 + kl , ... , 1 + kl } = 1 + min K
max{1+k1, ••• ,1+kl } = 1+maxK. (6.1)

(¢=) Suppose that t E ·enabled(2l) and p E ·t. Then, by proposition 5.7,
there is eI S; ·t such that p E d. After that we proceed by essentially reversing
the argument for the (==?) implication.

CHAPTER 6. BEHAVIOURAL RELATIONSHIPS 80

(3) Follows from part (2).
(4) Let I:[{t})w and E = (w,v). By part (1), there is a cat-box X = (w,N)

such that 2(.[{t}) X. All we need to show is that N = ¥ (v). To this end we take -
cI E CLE • If (et Ute) n cI = 0 then

N(cI) = M(cI) = ¥(tL(cI)) = ¥(v)(cI)

clearly holds. So, we assume that (et U te
) n cI =1= 0 and then consider three cases.

Case 1: cI S;;; 0I:. Due to the ex-directedness of I:, we have that et n cI =1= 0
and te n cI = 0. Hence we have the follmying:

• If Mijt = 0 then N(cI) = 1. = ¥(v)(cI).

• If Mijt =1= 0 thenN(cI) = M(cI), by definition of a step in cat-boxes. On the
other hand, the second condition in the definition of an at-box guarantees
that ¥(v)(cI) = ¥(tL)(cI). Hence N(cI) = ¥(v)(cI).

Case 2: cI S;;; I:0. Due to the ex-directedness of I:, we have that te n cI =1= 0
and et n cI = 0. Hence we have the following:

• If M(cI) = ElL then N(cI) = alL. On the other hand, v(cI) = tL(cI) U {a}
and so ¥(v)(c1) = alL. .

• If M(c1) = 1. then N(cI) = 00. On the other hand, v(cI) = {a} and so
¥(v)(cI) = 00.

Case 3: cI S;;; E. By proceeding similarly as above, we may verify the property
when ME n cI = 0 or Mijt n cI = 0 or te n cI =1= 0 (which, by proposition 4.4
means that et n cI =1= 0). The only situation which needs consideration is when:

ME n cI =1= 0 =1= Mijt n cI and et n cI =1= 0 = te n cI .

We then have N(c1) = M(cI), and so it suffices to show that v(cI n Mijt) _
Jj(cI n ME).

From proposition 5.5 it follows that. we had Case 2 situation when t was
executed. Moreover, if we look at the tokens residing in the places of cI we
observe that they age uniformly and, crucially, if two tokens were produced by
firing of the same transition filling the cluster, and they are still present in e
then their age given by tL is exactly the same.

From proposition 5.5 it follows that we must have had Case 2 situation when
executing t. Therefore, we have that v(cI n Mijt) S;;; tL(cI n ME). Suppose now
that p E (ci n ME) \ (ci n Mijt) and that u was the transition which for the last
time filled p with a timed token. Furthermore, without loss of generality, assume
that cI (or, more precisely, its predecessor) has been formed by an application of
the sequence operator on nets, <J?; <J?/. We therefore had a number of transitions
t l , . •• , tm which were predecessors of the transitions emptying the cluster cI since
the last time it has been filled. We note that there was at least one place q in

CHAPTER 6. BEHAVIOURAL RELATIONSHIPS 81

0«1>' \ -{tt, ... , tm } because MIT! n cI of. 0. Let r E «1>0 be any output place of
a transition which was a predecessor of u. In the interface region «1> j «1>' there
existed then a place resulting from a combination of rand q. Its successor is -
then present in cI n MIT! and it has been filled for the, last time by transition
u at the same time as p. It therefore follows that J.l(p) E lI(cI n MIT!), and so
J.l(cI n ME) S;;; lI(cI n MIT!) ,

(5) By part (3), y' is enabled in ¥(<3). Moreover, we have ¥(<3) [y')¥(8) by
property (6.1). 0

Theorem 6.3. Let <3 be an input-reachqble at-box. Then the following hold.

1. fTSs is strongly bisimilar (see !46}) to fTS¥(S).

2. TSs is strongly bisimilar to TS¥(s).

3. fRT s is isomorphic to fRT ¥(S) .

4. RT s is isomorphic to RT ¥(S)·

Proof. (1) Follows from propositions 5.3, 5.10 and 6.1, using the mapping ¥ to
relate the nodes of the two transition systems.

(2) This is an immediate consequence of part (1).
(3) Follows from part (1) and the fact that both transition systems are de­

terministic (no annotation can label two different arrows outgoing from a node
of the trees; this follows from the properties of transition systems of Petri nets,
and the properties of the evolutions in the box algebra l).

(4) This is an immediate consequence of part (3). 0

6.3 Relationship between at-expressions and at­
boxes

After showing the relationships between of at-expressions with cat-boxes and
of at-boxes with cat-boxes, is now possible to formulate the main result of this
thesis showing the strong relation of at-expressions with at-boxes~

Theorem 6.4. Let G = E
OO

be an initial dynamic at-expression and <3 _
Box(E) 00 be the corresponding at-box. Then the following hold.

1. fTSc is strongly bisimilar to fTSs.

2. TSa is strongly bisimilar to TSs.

3. fRT a is isomorphic to fRT s.
l' . l'

lIn particular, that if G -- Hand G -- J then H == J, which is easily re-stated in the
at-expressions framework as well.

CHAPTER 6. BEHAVIOURAL RELATIONSHIPS 82

4. RT G isomorphic to RT e.

Proof. Follows from theorems 6.1 and 6.3. 0_

The relationships between the corresponding transition systems presented in
this chapter together with links to the supporting definitions and theorems are
depicted in the following graph

at-expression G
Definition: Syntax 3.1, 3.2

Properties: Proposition 3.1, 3.2

strong bisimulation isomorhism
Theorem: 6.4 Theorem.: 6.1, 6.2

Box cBox'--------I

strong bisimulation
Theorem: 6.3

at-box e of G cat-box 2l of G
Deflnltlon: Chapter 5.1 ~--------¥--------~ Definition: Chapter 5.3

PropertleB: 4.1, 4.3, 4.4, &.1, 5.2, &.3 Properties: 5.8, 5.9, 5.10, 5.11, 5.12

Chapter 7

Applications and . Extensions

After obtaining the main consistency result, in this chapter, we will present sev­
eral possible extensions of the newly proposed framework. Based on the existing
proofs, these extensions will be able to cover different scenarios and applications
and increase the modeling power of the timed-arc Petri Box Calculus.

7.1 Overview of possible extensions

In the original model, several assumptions have been made. These assumptions
were imposed to somehow restrict the modeling power and make it easier to
obtain the necessary equivalence results and proofs. On the other hand, these
assumptions are not that restrictive since this type of timed-arc Petri nets was
used in the past to model some interesting complex systems.

Starting the discussion about these assumptions, the time restrictions im­
posed on transition incoming arcs are supposed to be hard. Tokens that reached
their maximum waiting time must either be used to fire the corresponding tran­
sition (if their corresponding transition is enabled) or they will become dead in
the next time move (if their corresponding transition is not enabled). When a
token is 'dead' for a transition means that it cannot be used to fire this transi­
tion anymore but it is possible to be consumed by another transition. Moreover,
there was no consideration for some clock reset type of move. As a result, it is
not possible to actually revive a dead token for a specific transition. The time
is passing uniformly and the age of tokens can either increase with the help of
a time move or be set to 0 for newly created tokens. Finally, time moves were
meant to be global, meaning that by the execution of a time move, the age of all
existing tokens will be increased by one time unit.

The possible extensions will be derived directly from the existing assump­
tions. To begin with, instead of hard time restrictions and urgent transitions,
deadlines can also be soft. In this case, a time move will still be possible, even if
the maximum waiting time for a token has been reached (and the corresponding
transition is enabled) and it will lead to a disabled transition. Another interesting
extension might be to introduce local clocks. Instead of having one global clock

83

CHAPTER 7. APPLICATIONS AND EXTENSIONS 84

and forcing the age of every available token to be increased when this clock ticks,
there can be a number of different locally-based clocks. These locally-based clocks
correspond and affect a specific place or most likely groups of places. In case a -
locally-based clock ticks, then the age of tokens belongiIlg to the corresponding
groups of places will be increased and the age of the remaining available tokens
will remain unaffected. Yet another extension consists of the clock reset moves'
introduction. Several types of such moves can be added. One may consider re­
setting the clock only when no other moves are possible. In conjunction with
the soft deadlines rule, this resetting may give some new behaviours from pre­
viously disabled transitions due to the age of tokens. A different reseting move
will reset clocks at any time without any special reason. Such a move is always
possible but one has to treat this type of move with care since it is possible to
disable several currently enabled transitions at once. The final reseting move is
a very interesting one, especially when used In conjunction with local clocks. In
this case, time resets happen after a specific number of ticks of the clock (either
global or local). When local clocks are used, time resets in specific intervals for
every locality.

In the following sections, we will present the operational semantics for some
interesting combination of extensions.

7.2 Introduction of local clocks

This type of extension with locally-based clocks seems really interesting since
this way it is possible to represent Globally Asynchronous Locally Synchronous
systems, see e.g., [43]. Areas (places and transitions) that are affected by a
specific locally-based clock are grouped together and they form a synchronous
block S B. Each synchronous block can be considered to be an at-expression and
several synchronous blocks are composed in parallel to describe the complete sys­
tem. Moreover, in order to ensure communication between different synchronous
blocks, some communication (synchronisation) actions are present in each block
and it is possible to execute them via the scoping mechanism. Finally, a global
clock that will affect the age of every token in the complete system mayor may
not be present. These new at-expressions will be called lat-expressions. For an
example, we want to consider a GALS system with three synchronous blocks will
look like the one in figure 7.1 and the (simplified) corresponding lat-expression
will be

G = """(S:::-:B=-l-:':II~S:::-:B=-2-;;II~S:;-;B:::-3'") s-e""7A EL

SB/-L II SB2 EL II SB/:L seA

SB
l

ELl II SB2 IEL2 II SB
3

ELs seA

where A is the set of communication actions between synchronous blocks and
EILi E !l} is the age of the youngest and oldest token of synchronous block i that
is being affected by the corresponding locally-based clock.

, CHAPTER 7. APPLICATIONS AND EXTENSIONS 85

Figure 7.1: A simple representation of GALS system with three synchronous
blocks.

Once again, we are using the same way to define operational semantics as
in standard PBC but with the necessary modifications to address the timing
restrictions. Since the lat-expressions are essentially a parallel composition of
standard at-e;xpressions with some scoping mechanism in place, = is the least
equivalence relation on dynamic lat-expressions such that the rules in table 3.1
are satisfied.

80S rules

In the case of lat-expressions three kinds of operational semantics moves are
possible, namely action moves, global-time moves and local-time moves. A global-
time move has the form '

a local time move has the form

where SBi is the ith synchronous block and an action move has the form

r
G ---+ H

where r is a finite multiset of communication actions. We now define various
types of moves of the structural operational semantics of dynamic at-expressions.

Empty moves

The following rules deal with the empty action moves.

o r . G ---+ J ---+ H

G2:....H

CHAPTER 7. APPLICATIONS AND EXTENSIONS 86

Basic action

A basic action can occur if the timing restrictions of the synchronous block SBi
are satisfied by the age range of its overbar:

_. -EJL {a}
aeli ----+ ~oo

Note that the age range of a newly created underbar is always set to (00).

Scoping

There is a single rule for scoring:

{al,al}+"'+{ak,ak}+r ~
G IH, (AUA)nr=0, al, ... ,akEA

k·{t}+r
GscA I HscA

Other operators

There is no real difference in the rules for the remaining operators when compared
with the standard atPBC.

r r'
G ----+ G' , H ----+ H'

r+r'
. GIIH ----+ G'IIH'

r
G ----+ H

r
EOG ----+ EOH

r
GOE ----+ HOE

r
G ----+ H

r
((G ® E ® F)) ----+ ((H ® E ® F))

r
((E ® G ® F)) ----+ ((E ® H ® F))

r
((E ® F ® G)) ----+ ((E ® F ® H))

r
G--H

r
G;E--H;E·

r
E;G ----+ E;H

At this point we need to decide whether soft or hard deadlines will be present
in this model. This decision will affect the SOS rules for time moves together
with the need to define urgent labels of lat-expressions. Both approaches will be
presented in the following sections.

7.2.1 Time moves with soft deadlines

When soft deadlines are used in this model, there is no need to define urgency in
the execution of actions. The age of tokens can increase without consideration of

CHAPTER 7. APPLICATIONS AND EXTENSIONS 87

the timing restrictions. The only consequence is that the transition corresponding
to the exceeded maximum waiting time will become disabled. But even then a
time move will still be possible.

Global-time moves

We have a time rule for global-time moves:

where GV is G with each tiJ!le annotation EIL at an over- or under bar changed
to (E + 1)(IL + 1).

Local-time moves

There is a time rule for local-time moves:

Vi V
SBi ~.SBi

G~H

where SB/ is the synchronous block i with all of its time annotations EIL at an
over- or underbar changed to (E'+ 1)(IL + 1).

7.2.2 . Time moves with hard deadlines

When hard deadlines are used in the model, if a token belonging to synchronous
block i has reached its maximum waiting time for a specific enabled action then
we have the following options. Time cannot increase anymore in this synchronous
block by the execution of either a global or a local-time move to this SB. The
corresponding token must either be used to execute this action, or it can be con­
sumed by another action thus disabling the previous urgent action. Furthermore,
it is obvious that local-time moves in synchronous blocks different from i are still
possible since, these type of moves do not affect the age of tokens in S Bi and
consequently there is no violation of the hard deadlines rules.

Urgent labels of lat-expressions

To identify cases when time moves can be applied, we need the notion of urgent
labels which can be executed by a lat-expression and especially by its synchronous
blocks. Urgent labels of dyrramic lat-expressions are defined by

urgent1ab(G) ~ {a I aO E enabledaux(G)},

CHAPTER 7. APPLICATIONS AND EXTENSIONS 88

where enabledaux(G) is a set defined by induction on the structure of G. This
denotes that no further global-time moves are possible, but there may be some
local-time moves still possible. Urgent labels of specific synchronous blocks of -
lat-expressions are defined by

urgent1ab(SBi) ~ {a I aO E enabledaux(SBi)},

where enabledaux(SBi) is a set defined by induction on the structure of SBi and
this denotes that neither local-time moves nor of course global-time moves for
the SBi are possible. There are two kinds of objects which enabledaux(G) can
contain, namely a 6 and a, where a E Au {~}, a E A and 6 E {O, I}. Intuitively,
aO means that the label a is enabled and urgent in expression G, a 1 means
that the label a is enabled but non-urgent, and a means that there is a pair of
conjugate labels (a, a) enabled simultaneously and at least one of these labels is
urgent. The same two kinds of objects are also contained into enabledaux(SBi).
Similarly to the global-time case, aO means that the label a is enabled and urgent
in synchronous block SBi, a 1 means that the label a is enabled but non-urgent,
and a means that there is a pair of conjugate labels (a, a) enabled simultaneously
and at least one of these labels is urgent. This pair of conjugate labels (a, a) can
be either in different synchronous block or in the same. Since the global-time
case is contained in the local-time one, for the base case, we have:

{ {aD} if ElLi tsat el and 1 = lL
-ELi df {a1

} if ElLi tsat el and 1 > lL enabledaux(ael)
0 otherwise.

ena bled aux (ael EL)
df

0

For more complicated expressions H, we define enabledaux(H) as the smallest set
such that, whenever H == G then

enabledaux(G) = enabledaux(H)

and then the following hold for individual ~ases of composition operators. For
scoping, if a E enabledaux(G) and a E (A U A) then:

as well as

~o E enabledaux(G seA) ,

{a6 E enabledaux(G) I a ~ (AUA)} ~ enabledaux(GseA)

{a E enabledaux(G) I a ~ (A U A)} C enabledaux(GseA).

For concurrent composition,

enabledaux(G) U enabledaux(J) ~ enabledaux(GIIJ)

{a I a6 E enabledaux(G) A~' E enabledaux(J) A 6 . 6' = O} ~ enabledaux(GIIJ) .

CHAPTER 7. APPLICATIONS AND EXTENSIONS

For concurrent composition between different synchronous blocks,

enableda=(SBi) U enableda=(SBj) ~ enableda=(SBiIISBj)

{a I aD E enableda=(SBi) A (i' E enableda=(SBj) A 6·6' = O} ~ .

enableda=(SBillSBj) •

For the remaining operators, we have that:

enableda=(G) C enableda=(((G ® E ® F))) n enableda=(((E ® G ® F)))
. n enableda=(((E ® F ® G)))

enableda=(G) C enableda=(GDE) n enableda=(EDG)

enableda=(G) ~ enableda=(G; E) n enableda=(E; G) .

Global-time moves

There exists a global-time rule:

urgent/ab (G) = 0

G~G../

89

where G../ is G with each time annotation JEIL at an over- or under bar changed
to (JE + 1)(IL + 1).

Local-time moves

We have the following local-time move:

where SB/ is the synchronous block i with all of its time annotations JEIL at an
over- or underbar changed to (JE + 1)(IL + 1).

In both cases (soft or hard deadlines), both global and local time moves can
only be applied at the topmost level of an expression as it cannot be 'propagated'
through the expression using action rules. This ensures that time progresses
uniformly. Finally it can be seen that the rules of operational semantics do not
lead outside the set of dynamic lat-expressions.

7.3 Introduction of reset moves

The addition of reset moves is another possible extension to the existing model.
Like mentioned before, in the overview section of this chapter, several types of
reset moves are possible according to the modeler's needs.

CHAPTER 7. APPLICATIONS AND EXTENSIONS 90

7.3.1 Unconditional case

To begin with the most general case, it is possible to reset time (essentially
resetting the age of available tokens to zero) at any given moment. No special
conditions must be present for such move to occur and there are no restrictions
to the number of possible repetitions of such move. Based on the original model,
action moves do not increase the age of tokens (firing of transitions are supposed
to be instant) and the only way to increase their age is by the occurrence of a
time move either global or local. As a result, in order to affect the state of the
system it only makes sense for an additiona:l reset move to take place only after
the execution of either a global or a local time move. Furthermore, when local
clocks are present in the model, a reset move can either affect every available
token (global reset move) or affect a specific locality of tokens that corresponds to
a specific locally-based clock (local reset move). 'These new timed-arc expressions
with reset moves will be called rat-expressions. Since the structure of the rat­
expressions remains essentially the same as in the at-expressions model, == is
again the least equivalence relation on dynamic rat-expressions such that the
rules of structural equivalence in table 3.1 are satisfied. In the following sections,
in order to avoid as much as possible repetitions of the SOS rules from previous
sections, we only present the new different rules together with rules necessary
for the readability of chapter.

SOS rules

In the case of rat-expressions where global and local clocks are present, five
different operational semantics moves are possible, namely action moves, global­
time moves, local-time moves, global-reset and local-reset moves. It is obvious
that when no local clocks are present in the expressions, we cannot have local­
time and local-reset moves. Like before, a global-time move has the form

a local time move has the form

vi, S I SBi ----+ Bi

where SBi is the ith synchronous block and an action move has the form

r
G ----+ H

where r is a finite multiset of communication actions. The additions to these
three moves are the two reset moves. A global-reset move has the form

CHAPTER 7. APPLICATIONS AND EXTENSIONS 91

where G./ is G with every available tokens' age reset to 0 and as a consequence
each time annotation EIL at an over- or underbar changed to 00. Finally, a
local-reset move has the form

SBi ~SBt

G~H

where SBt is the synchronous block i with the age of every corresponding token
reset to 0 and as a consequence the time annotation EILi at an over- or under bar
changed to 00. .

The SOS rules for both local and global time moves are essentially the same
as in lat-expressions and thus we avoid repeating them. Some discussion is
necessary about the 'critical' case where a transition has reached its maximum
waiting time. In both soft and hard deadline cases, the transition can fire before
the occurrence of a time move. When soft deadlines are used in this model, the
age of tokens can increase without consideration of the timing restrictions and
as a result a time move is always possible. Once again the consequence is that
the transition corresponding to the exceeded maximum waiting time will become
disabled, but even then a time move will still be possible. This disabling might
be only temporary in this case since a reset move is also always possible. If the
necessary tokens are still available in the preset of the disabled transition, a reset
move and a number of time moves will make the transition active once more.
When hard deadlines are used, a time move (global or local to the corresponding
synchronous block) is possible until an enabled transition becomes urgent. At
this point we have the following options. Either the urgent transition must
fire consuming every corresponding token or the urgent transition must become
disabled by the firing of another transition or we can have a reset move. This
reset move may disable the transition if the minimum waiting time is greater
than zero. Furthermore, a reset move at this stage may not allow further time
moves if the maximum waiting time is zero. To depict these possibilities, let us
consider the following two evolution scenarios of a rat-expression:

22
00 "';"'; 2222 a 22 a ---. a ---. ~ 00

or

22 00 "';"'; 2222,/ 22 00 "';"'; 2222 a 22 a ---. a ---. a ---. a ---. ~ 00

The only available move at the initial state is a time move. Actually, two time
moves are necessary in order to reach the minimum waiting time. At this point,
no further time move is possible and we have the following options. Either
action a can fire and the expression will reach its final state or a reset move
can occur. The age of token(s) will reset to zero and now action a cannot fire
since the minimum waiting time has not been reached. After two time moves,
action is enabled and urgent once again. Now, let us consider a slightly different

CHAPTER 7. APPLICATIONS AND EXTENSIONS 92

expression aOO
oo

. In this case, a reset move is without meaning since it cannot
allow any additional time moves.

7.3.2 Controlled reset moves

In this section, we will investigate reset moves that are somehow used in a con­
trolled manner. By controlled manner we mean that this moves cannot occur at
any time but only when certain conditions are satisfied. For example, we may
include a reset move that becomes activated only when no other action moves are
possible. This type of reset moves are interesting when soft deadlines are used.
In this situation, dead tokens can be present in the system and a system that
is deadlocked because of time restrictions will be able to make some additional
moves, since some of its transitions may still be enabled in the usual Petri nets
way. This type of reset move not only occurs in situations where a system is
deadlocked because of time restrictions. There are cases where a system is not
deadlocked but only time moves are possible, for example a22 00. Before action
a becomes ready to fire, two time moves must be executed. A reset move in this
case will cause a delay in the firing of a.

In another case, we may want to model resetting the age of tokens in a system
after a specific number of time moves.

SOS Rules

Similar to the unconditional case, when global and local clocks are present, there
are five possible operational semantics moves, namely action moves, global-time
moves, local-time moves, global-reset and local-reset moves. It is obvious that
when no local clocks are present in the expressions, we cannot have local-time·
and local-reset moves. Action, global-time and local-time moves are the same as
in the unconditional case and we present only the two different reset moves. A
global-reset move has the following form

r
..,3 G ----. H

Y
G ----. GY

where GY is G each time annotation ElL at an over- or under bar changed to 00.
Finally, when local clocks are used a local-reset move is possible when no action
moves are possible in the corresponding synchronous block. A local-reset move
has the form

where S Bt is the synchronous block i the time annotation ElLi at an over- or
underbar changed to 00.

CHAPTER 7. APPLICATIONS AND EXTENSIONS 93

Example

In the example in figure 7.2, we have one evolution of the same at-expression as
the one in figure 3.2. The difference is that we now allow reset moves when no
other moves are possible. In line (5), action a is urgent,' but its counterpart a
is not enabled yet due to the time restrictions. As a result, the synchronisation
action of the scoping operator is not possible and there are no other possible
action moves after that. A global-reset move is now possible in line (6) and
after the passage of one time unit in line (7), the synchronisation action is now
possible. and the expression reaches its tern;tinal state.

(1) (all II (bll jall))sc{a} 00 -

(2) (all 00 II (bll 00 jall)') sc{a}
..;

(3) (all 11 II (bll
11

jall)) sc{a}
{b}

(4) (all 11 II (bll oo jall)) sc{a} -

(5) (-11 II (=--:-00) all bll;al1) sc{a}
y

(6) (all 00 II (bll j all 00)) sc{ a}
..;

(7) (-11 II (=--:-11) all bll j all) sc{a}
{t}

(8) (all oo II (bll jalloo)) sc{a} -
(9) (alloo II (blljalloo))sc{a} -

(10) (all II (blljall))sc{a}oo

Figure 7.2: An evolution of the expression (aOO II (bll jaOl)) sc{a} 00.

Conclusions

In this thesis, we proposed a new framework to model concurrent computations.
To be more precise, we managed to provide an extension of framework presented
in [9J to support timing restrictions on the resources of a concurrent system. This
framework introduced a new compositional model of timed-arc Petri nets, and a
corresponding process algebra of time expressions. This type of time restricted
Petri nets and the process algebra co-exist and we managed to establish the
existence of a strong relationship between them ..

In chapter 3. we presented the syntax for the new algebra of process expres­
sions which is based on the syntax of standard PBC. Furthermore, we defined
the label based operational semantics of these process expressions. In chapter 4,
we extended the algebra of expressions to an algebra of nets by the compositional
definition of mapping from at-expressions to at-boxes. Additionally, we defined
transition based operational semantics for the at-expressions since this type of
semantics were necessary for the proof of the main results. Finally, we identified
interface regions in at-boxes .. The. monotonic behaviour of these sets of places
cleared our perception about the evolution of composite nets.

In chapter 5, we have explained the nature of the correspondence between
the two newly created algebras, in terms of their respective reach ability trees.
We highlighted arguments showing that, in general, there can be no direct trans­
lation from dynamic at-expressions to at-boxes since, informally, there are fewer
of the former than of the latter. Consequently, our main result showing be­
havioural relations between at-expressions and at-boxes could not be obtained by
a simple adaptation of that used in standard PBC since dynamic at-expressions
cannot be unambiguously mapped to at-boxes. In order to prove the correspon­
dence between at-expressions and at-boxes and take advantage of existing strong
results from standard PBC, an intermediate cluster-based representation was
introduced. Following the same pattern as before, we extend the algebra of at­
expressions to cat-boxes. The main result of this thesis is presented in chapter 6
and shows the necessary strong behavioural relationship between at-expressions
and at-boxes. Since we used the intermediate cluster-based representation, a
couple of secondary results were required, in order to obtain the necessary proof
for the main result. These results revealed a strong behavioural relationship be­
tween at-boxes and cat-boxes, together with isomorphism between at-expressions
and cat-boxes. Finally, in chapter 7 several possible extensions were presented
in order to increase the modeling power of the framework and address further

94

CONCLUSIONS 95

modeling needs.

Future work

In this thesis it was possible to obtain all necessary results to support the newly
presented framework, but we also managed to reveal several new directions for
further research. The extensions presented in chapter 7 although they come
directly from the presented theory are not thoroughly explored. For the support
of these extensions, a comprehensive investigation is necessary together with the
development of complete proofs. Furthermore, several new extensions can be
considered, i.e., nested time cases. On a different front, the obtained results
made it possible to combine the verification techniques developed independently
for process algebra and Petri ,nets with timing, and to give a syntax oriented
semantics of real-time specification languages.' At this point, it must be clear
that at-expressions are more abstract than the corresponding at-boxes. This,
as we expect, can be used to improve model-checking of behaviours specified
by at-expressions, by providing an equivalence relation between reachable token
timings of at-boxes which could be used to improve the efficiency of the unfolding
of at-boxes (with the resulting unfolding being smaller). The development of
model checking algorithms and the corresponding tool support tailored to the
presented model is currently under investigation. The basis for this investigation
is the general scheme for generating net unfoldings presented in [35,36].

Furthermore as part of the future research ideas, someone may want to con­
sider different translations from the algebra of at-expression to some different
formalisms that can handle time restrictions. This way it will be possible to
take advantage of existing model-checking tools for these formalisms. One such
example is timed automata [2,3]. This is a well known formalism used for the
analysis of systems with timing information and has been extensively studied in
the past. A timed automaton is an w-automaton coupled with a finite set of
clocks recording the passage of time. Moreover, any transition of the automaton
can reset these clocks (which is similar to the model presented here) and the
timing constraints in this model are expressed by comparing clock values with
time constants found in transition enabling conditions. Essentially actions are
composed in parallel with different time annotations. The reasons behind our
choice of timed-arc Petri nets instead of a translation to timed automata are that
the structure of Petri nets is richer, the timing constraints are easier to handle in
Petri nets, and we are also losing the ability to represent concurrency explicitly.

Bibliography

[1] P. A. Abdulla and A. Nylen: Timed Petri Nets and BQOs. Proc. of
ICATPN'Ol, J.-M. Colom, M. Koutny (Eds.). Springer-Verlag, Lecture
Notes in Computer Science 2075 (2001) 53-70.

[2] R. Alur and D. L. Dill: A theory of timed 'automata. Theoretical Computer
Science 126 (1994) 183-235.

[3] R. Alur and D. L. Dill: Automata For Modeling Real-Time Systems.
Proc. of ICALP '90: Proceedings of the 17th International Colloquium
on Automata, Languages and Programming, M. S. Paterson, G. Goos,
J. Hartmanis (Eds.). Springer-Verlag, Lecture Notes in Computer Science
443 (1990) 322-335.

[4] J. Baeten and W. P. Weijland: Process Algebra. Cambridge Tracts in The­
oretical Computer Science 18, Cambridge University Press (1990).

[5] B. Berthomieu and M. Diaz: Modelling and verification of Time Dependent
Systems Using Time Petri Nets. IEEE Trans. on Soft. Eng. 17 (1991) 259-
273.

[6] E. Best and R. Devillers: Sequential and Concurrent Behaviour in Petri
Net Theory. Theoretical Computer Science 55 (1988) 87-136.

[7] E. Best, R. Devillers and J. Hall: The Petri Box Calculus: a New Causal
Algebra with Multilabel Communication. In: Advances in Petri Nets,
G. Rozenberg (Ed.). Springer-Verlag, Lecture Notes in Computer Science
609 (1992) 21-69.

[8] E. Best, R. Devillers and M. Koutny: A Unified Model for Nets and Pro­
cess Algebras. In: Handbook of Process Algebra, J. A. Bergstra, A. Ponse,
S. A. Smolka, (Eds.). Elsevier (2001) 873-944.

[9] E. Best, R. Devillers and M. Koutny: Petri Net Algebra. EATCS Mono­
graphs on TCS, Springer (2001).

[lOJ E. Best, R. Devillers and M. Koutny: The box algebra = Petri nets + pro­
cess expressions. Information and Computation 178 (2002) 44-100.

96

BIBLIOGRAPHY 97

[11J B. Bieber and H. Fleischhack: Model Checking of Time Petri Nets Based
on Partial Order Semantics. Proc. of CONCUR '99, J. Baeten and S. Mauw
(Eds.). Springer-Verlag, Lecture Notes in Computer Science 1664 (1999)
210-225.

[12J E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz:
A Class of Composable High Level Petri Nets. Proc. of Application and
Theory of Petri Nets (A TPN'1995), G. DeMichelis and M. Diaz (Eds.).
Springer-Verlag, Lecture Notes in Computer Science 935 (1995) 103-120.

[13J E. Best, H. Fleischhack, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz:
An M-net Semantics of B(PN)2. Proc. of International Workshop on Struc­
tures in Concurrency Theory (STRICT'1995), J. Desel (Ed.). Berlin (1995)
85-100.

[14J T. Bolognesi and P. Cremonese: The weakness of some timed models for
concurrent systems. Technical Report, CNUCE C89-29, CNUCEC.N.R.
(1989).

[15J T. Bolognesi, F. Lucidi and S. Trigila: From Timed Petri Nets to timed
LOTOS. Proc. of PSTV'90, L. Logrippo et al. (Eds.). North-Holland (1990)
395-408.

[16J F. D. J. Bowden: Modelling Time in Petri Nets. Proc. of the second
Australia-Japan Workshop on Stochastic Models in Engineering, Technol­
ogy and Management, Gold Coast, Australia, (1996).

[17J G. W. Brams (nom collect if de Ch. Andre, G. Berthelot, C. Girault,
G. Memmi, G. Roucairol, J. Sifakis, R. Valette, G. Vidal-Naquet): Resaux
de Petri: Theorie et Pratique. Two volumes. Editions Masson (1985).

[18J I. Castellani: Process Algebra with Locations. Chapter 5.3 in this issue.

[19J E. M. Clarke, O. Grumberg, and D. Peled: Model Checking. MIT Press
(1999).

[20J J. E. Coolahan Jr. and N. Roussopoulos: Timing Requirements for Time­
Driven Systems Using Augmented Petri Nets .. IEEE Trans. Software Eng.
9.5 (1983) 603-616.

[21] H. Fleischhack, B. Grahlmann: A Petri Net Semantics for B(PN)2 with
Procedures which Allows Verification. Technical Report, 21, Universitiit
Hildesheim (1996).

[22J H. Fleischhack, B. Grahlmann: A Petri Net Semantics for B(PN)2 with
Procedures. Proc. of 2nd International Workshop on Software Engineer­
ing for Parallel and Distributed Systems (PDSE'1997), IEEE Computer
Society Press (1997) 15-27.

BIBLIOGRAPHY 98

[23] D. de Frutos-Escrig and V. Valero Ruiz and O. MarroquIn Alonso: Decid­
ability of Properties of Timed-Arc Petri Nets .. Proc. of ICATPN'OO, Mo­
gens Nielsen and Dan Simpson (Eds.). Springer-Verlag, Lecture Notes in
Computer Science 1825 (2000) 187-206.

[24] H. J. Genrich, K. Lautenbach and P. S. Thiagarajan: Elements of General
Net Theory. In: Net Theory and Applications, Proc. of the Advanced
Course on General Net Theory of Processes and Systems, W. Brauer (Ed.).
Springer-Verlag, Lecture Notes in Computer Science 84 (1980) 21-163.

[25] U. Goltz: On Representing CCS Programs by Finite Petri Nets. Proc. of
MFCS'88, M. P. Chytil, 1. Janiga and V. Koubek (Eds.). Springer-Verlag,
Lecture Notes in Computer Science 324 (1988) 339-350.

[26] U. Goltz and R. Loogen: A Non-interleavi~g Semantic Model for Nondeter­
ministic Concurrent Processes. Fundamentae lnformaticae 14 (1991) 39-73.

[27] U. Goltz and A. Mycroft: On the Relationship of CCS and Petri Nets.
Proc. of ICALP 84, International Conference on Automata, Languages
and Programming, J. Paredaens (Ed.)~ Springer-Verlag, Lecture Notes in
Computer Science 172 (1984) 196-208 ..

[28] U. Goltz and W. Reisig: The Non-sequential Behaviour of Petri Nets. In­
formation and Control 57 (1983) 125-147.

[29] J. Goubault-Larrecq and 1. MacKie: Proof Theory and Automated Deduc­
tion. Kluwer Academic Publishers (1997).

[30] J. Grabowski: On Partial Languages. Fundamentae lnformaticae 4 (1981)
427-498.

[31] H. -M. Hanisch: Analysis of Place/Transition Nets with Timed Arcs and its
Application to Batch Process Control. Proc. of the 14th International Con­
ference on Application and Theory of Petri Nets, Springer-Verlag (1993)
282-299.

[32] C. A. R. Hoare: Communicating Sequential Processes. Prentice Hall (1985).

[33] ISO/IEC 13818-2 Draft International Standard Generic Coding of Moving
Pictures and Associated Audio. Recommendation H.262.

[34] R. Janicki and P. E. Lauer: Specification and Analysis of Concurrent Sys­
tems - the COSY Approach. EATCS Monographs on Theoretical Computer
Science, Springer-Verlag (1992).

[35] V. Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings.
School of Computing Science, University of Newcastle upon Tyne (2003).

BIBLIOGRAPHY 99

[36] V. Khomenko, M. Koutny and W. Vogler: Canonical Prefixes of Petri Net
Unfoldings. Acta Informatica 40 (2003) 95-118.

[37] M. Koutny: A Compositional Model of Time Petri Nets. Proc. of
ICATPN'OO, M. Nielsen and D. Simpson (Eds.). Springer-Verlag, Lecture
Notes in Computer Science 1825 (2000) 303-322.

[38] M. Koutny and E. Best: Fundamental Study: Operational and Denota­
tional Semantics for the Box Algebra. Theoretical Computer Science 211
(1999) 1-83.

[39] O. Marroquin Alonso and D. de Frutos-Escrig: Extending the Petri Box
Calculus with Time. Proc. of ICATPN'01, J. -M. Colom and M. Koutny
(Eds.). Springer-Verlag, .Lecture Notes in Computer Science 2075 (2001)
303-322.

[40] O. Marroquin Alonso and D. de Frutos-Escrig: Time-outs and Delays in
TPBC. Technical Report, Departamento de Sistemas Informaticos y Pro­
gramacion, Universidad Complutense de Madrid (2003).

[41] O. Marroquin Alonso and D. de Frutos-Escrig: Urgency in TPBC. Techni­
cal Report, Departamento de Sistemas Informaticos y Programacion, Uni­
versidad Complutense de Madrid (2002).

[42] A. Mazurkiewicz: Trace Theory. In: Advances in Petri Nets1986, Petri
Nets: Applications and Relationships to Other Models of Concurrency,
Part II, W.Brauer, W.Reisig and G.Rozenberg (Eds.). Springer-Verlag,
Lecture Notes in Computer Science 255 (1987) 279-324.

[43] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J.Oberg, D. Lindqvist,
H. Tenhunen and A. Postula: Evaluating benefits of Globally Asynchronous
Locally Synchronous VLSI architecture. Proc. of 16th Norchip, (1998) 50-
57.

[44] P. Merlin and D. Farber: Recoverability of Communication Protocols - Im­
plication of a Theoretical Study. IEEE Trans. on Soft. Comm. 24 (1976)
1036-1043.

[45] R. Milner: A Calculus of Communicating Systems. Springer-Verlag, Lec­
ture Notes in Computer Science 92 (1980).

[46] R. Milner: Communication and Concurrency. Prentice Hall (1989).

[47] T. Murata: Petri Nets: Properties, Analysis and Applications. Proc. of
IEEE 77 (1989) 541-580.

[48J A. Niaouris: An Algebra. of Petri Nets with Arc-Based Time Restrictions.
Proc. of ICTAC'04, Z. Liu and K. Araki (Eds.). Springer-Verlag, Lecture
Notes in Computer Science 3407 (2005) 447-462.

BIBLIOGRAPHY 100

[49] A. Niaouris, M. Koutny: An Algebra of Timed-Arc Petri Nets. Technical
Report, School of Computing Science, University of Newcastle (Mar 2005).

[50] M. Nielsen, V. Sassone and J. Srba: Towards a Notion of Distributed Time
for Petri Nets. Proc. of the 22nd international Conference on Application
and theory of Petri Nets, J. M. Colom and M. Koutny (Eds.). Springer­
Verlag, Lecture Notes in Computer Science 2075 (2001) 23-31.

[51] M. Nielsen, V. Sassone and J. Srba: Properties of Distributed Timed:-Arc
Petri Nets. Proc. of FSTTCS'Ol, R. Hariharan, M. Mukund, V. Vinay
(Eds.). Springer-Verlag, Lecture Notes in Computer Science 2245 (2001)
280-285.

[52] J. Jose Pardo, V. Valero, F. Cuartero, D. Cazorla: Automatic Translation of
a Timed Process Algebra into Dynamic State Graphs. Proc. of Eighth Asia­
Pacific Software Engineering Conference, IEEE Computer Society Press
(2001) p. 63.

[53] F. L. Pelayo, F. Cuartero, V. Valero, H. Macia, M. L. Pelayo: Applying
Timed-Arc Petri Nets to improve the performance of the MPEG-2 En­
coding Algorithm. Proc. of 10th International Multimedia Modelling Con­
ference, IEEE Computer Society Press (2004) 49-56.

[54] G. D. Plotkin: A Structural Approach to Operational Semantics. Techni­
cal Report, FN-19, Computer Science Department, University of Aarhus
(1981).

[55] L. Popova: Time Petri Nets. Journal of Information Processing and Cyber­
netics ElK 27 (1991) 227-244.

[56] C. Ramchandani: Analysis of Asynchronous Concurrent Systems by Timed
Petri Nets. Cambridge, Mass.: MIT, Dept. Electrical Engineering, PhD
Thesis (1974).

[57] W. Reisig: Petri Nets. An Introduction. EATCS Monographs on Theoreti­
cal Computer Science, Springer-Verlag (1985).

[58] A. W. Roscoe: The Theory and practice of Concurrency. Prentice-Hall
(1998).

[59] V. V. Ruiz and D. Escrig and F. Cuartero: On Non-Decidability of Reach­
ability for Timed-Arc Petri Nets. Proc. of 8th. International Workshop on
Petri Nets and Performance Models, IEEE Computer Society Press (1999)
188-196.

[60] V. V. Ruiz, J. J. Pardo and F. Cuartero: Translating TPAL Specifications
into Timed-Arc Petri Nets. Proc. of of the 23rd international Conference

BIBLIOGRAPHY 101

on Applications and theory of Petri Nets, J. Esparza and C. Lakos (Eds.).
Springer-Verlag, Lecture Notes in Computer Science 2360 (2002) 414-433.

[61] V. V. Ruiz, F. L. Pelayo, F. Cuartero and D. Cazorla: On the Improvements
of the MPEG-2 Encoding Algorithm by Timed-Arc Petri Nets. Proc. of 18th
Annual UK Performance Engineering Workshop (UKPEW'02), University
of Glasgow (2002) 211-221.

[62] V. V. Ruiz, F. L. Pelayo, F. Cuartero and D. Cazorla: Specification and
Analysis of the MPEG-2 Video Encoder with Timed-Arc Petri Nets. Electr.
Notes Theor. Comput. Sci. 6, no.2 (2002) .

[63] J. Sifakis: Use of Petri Nets for Performance Evaluation. Proc. of the Third
International Symposium IFIP W. G. 7.3., on Measuring, Modelling and
Evaluating Computer Systems, Elsevier Science Publ. (1977) 75-93.

[64] P. H. Starke: Processes in Petri Nets. Elektronische Informationsverar­
beitung und Kybernetik 17 (1981) 389-416.

[65] D. Taubner: Finite Representation of CCS and TCSP Programs by Au­
tomata and Petri Nets. Springer-Verlag, Lecture Notes in Computer Sci­
ence 369 (1989).

[66] W. Vogler: Partial Words versus Processes: a Short Comparison. In: Ad­
vances in Petri Nets1992, G. Rozenberg (Ed.). Springer-Verlag, Lecture
Notes in Computer Science 609 (1992) 292-303.

[67] B. Walter: Timed Petri Nets for Modelling and Analyzing Protocols with
Real-time Characteristics. Protocol Specification, Testing and Verification
III (1983) Elsevier Science Pub!. B.V. (North Holland) 149-159

[68] J. Wang: Timed Petri Nets: Theory and Application. Kluwer Academic
Publishers (1998).

Index

age, 26
range, 26

box, 2, 8
cluster at-(cat-), 56
dynamic, 8
dynamic at-, 45
dynamic cat-, 57
entry, 9
exit, 9
input-reachable, 44
operator, 10
plain, 8
static, 8
static at-, 45
static cat-, 57
timed-arc(at-), 17, 44

clock
global, 84
local, 84

cluster
entry, 47
filling, 56
internal, 47
pre-, 50

clusters, 47
communication actions, 2

deadlines
hard, 87
soft, 86

difference, 1

expression
dynamic PBC, 11
static PBC, 10

expressions

at-, 24
dynamic at-, 26
lat-,84
rat-, 90
static at-, 24

full r~achability graph, 5

interface regions, 40

labelled net, 2

marking, 2
clean, 4
derivable, 4
entry, 3
exit, 3
reachable, 4
safe, 4

Mazurkiewicz traces, 4
moves

action, 27, 37
global reset, 90
global-time, 89
local reset, 90
local-time, 89
reset, 89
time, 27, 37

multiset, 1
cardinali ty, 1
empty, 1
finite, 1
intersection, 1
sum, 1

net

102

directed, 3
isomorphic, 7

INDEX

marked, 3
refinement, 9, 33
restricted, 3
time Petri, 15
timed-arc Petri, 16
unmarked, 3

place, 2
entry, 3
exit; 3
internal, 3

post-set, 3
pre-set, 3

reachability tree, 18, 31
full, 40
full at-box, 46

step, 3, 18
synchronous block, 84

transition, 2
transition system, 6, 40

at-box, 46
full, 6, 40
full at-box, 46
isomorphic, 6
strongly equivalent, 7

urgent
labels, 29
transitions, 38

waiting time
maximum, 17, 24
minimum, 17, 24

weight function, 2

103

	427314_001
	427314_002
	427314_003
	427314_004
	427314_005
	427314_006
	427314_007
	427314_008
	427314_009
	427314_010
	427314_011
	427314_012
	427314_013
	427314_014
	427314_015
	427314_016
	427314_017
	427314_018
	427314_019
	427314_020
	427314_021
	427314_022
	427314_023
	427314_024
	427314_025
	427314_026
	427314_027
	427314_028
	427314_029
	427314_030
	427314_031
	427314_032
	427314_033
	427314_034
	427314_035
	427314_036
	427314_037
	427314_038
	427314_039
	427314_040
	427314_041
	427314_042
	427314_043
	427314_044
	427314_045
	427314_046
	427314_047
	427314_048
	427314_049
	427314_050
	427314_051
	427314_052
	427314_053
	427314_054
	427314_055
	427314_056
	427314_057
	427314_058
	427314_059
	427314_060
	427314_061
	427314_062
	427314_063
	427314_064
	427314_065
	427314_066
	427314_067
	427314_068
	427314_069
	427314_070
	427314_071
	427314_072
	427314_073
	427314_074
	427314_075
	427314_076
	427314_077
	427314_078
	427314_079
	427314_080
	427314_081
	427314_082
	427314_083
	427314_084
	427314_085
	427314_086
	427314_087
	427314_088
	427314_089
	427314_090
	427314_091
	427314_092
	427314_093
	427314_094
	427314_095
	427314_096
	427314_097
	427314_098
	427314_099
	427314_100
	427314_101
	427314_102
	427314_103
	427314_104
	427314_105
	427314_106
	427314_107
	427314_108
	427314_109
	427314_110
	427314_111
	427314_112
	427314_113
	427314_114

