A Framework for the Requirements
Analysis of Safety—Critical Computing

Systems

Amer Saeed

Ph.D Thesis

The University of Newcastle upon Tyne

Computing Laboratory

September 1990

Abstract

Abstract

Digital computers are increasingly being used in safety-critical applications (e.g.,
avionics, chemical plant and railway systems). The main motivations for introducing
computers into such environments are to increase performance, flexibility and efficiency.
However, the cost to safety in achieving these benefits using computing systems is unclear.
The general class of systems considered in this thesis are process control systems. More
specifically the thesis examines the class of safety—critical computing systems which are a
component of a process control system that could cause or allow the overall system to enter

into a hazardous state.

This thesis investigates the role of formal methods in safety-critical computing systems.
The phase of system development considered is requirements analysis. Experience in
safety-critical systems has shown that errors in the identified requirements are one of the
major causes of mishap. It is argued that to gain a complete understanding of such
computing systems, the requirements of the overall system and the properties of the
environment must be analyzed in a common formal framework. A system development
model based on the separation of safety and mission issues is discussed, which highlights the
essential specifications that must be produced during requirements analysis. A formal
model for the representation of these essential specifications is presented. The semantics
of this formal model are based on the notion of a system history. To structure the

specifications expressed by this formal model the concept of a mode is introduced.

This thesis suggests that for a formal model to be useful during requirements analysis a
related systematic methodology, which provides comprehensive guidelines for the analysts
who use the model must be made available. An appropriate methodology, based upon the
system development model, which incorporates some traditional system safety techniques
is described. Overall, the thesis presents a framework for requirements analysis by
providing a system development model, formal model and related development
methodology. An example of how this framework can support requirements analysis is

presented in the appendices B and C.

Acknowledgements

Acknowledgements

Firstly, my thanks go to my supervisor, Professor Tom Anderson, who introduced me to
the area of safety—critical systems, and in addition made many helpful comments upon the
content of this thesis. I would also like to thank Professor Brian Randell and Dr Maciej
Koutny for their help in the early years of my research. In particular I would like to thank
Dr Maciej Koutny for his suggestions on the formal notation.

Thanks must also go to my colleague Mr R de Lemos for our discussions on
safety-critical systems. Many other members of the Computing Laboratory too numerous
to mention individually have also made my tenure here more pleasant. Thanks to you all.

Finally the support and patience of my parents throughout the years of this research
deserves a special mention.

Financial support for the work described in this thesis was provided by a grant from the
UK Science and Engineering Research Council and an Alvey grant in software reliability

(Alvey Software Reliability Project SE/072).

i

Table of Contents

Table of Contents

1
Introductioncc il 1
1.1.Backgroundcciiiiiiiiiiiiiiiiiiinn 1
12.8afety ...ooiiiiiii e 3
1.2.1. System Safetyovieiiiiiiiiiii e 5
1.2.2. Regulation and Legislationt 6
1.3. Process Control Systemsocovivieiann 7
1.3.1. OPEIatOrcovenerurnnrereensnesaesnsriosnsensonenanas 8
1.3.2. PhySiCal PrOCESS . ..vvvvvenenreneeneontoneeneonennennoanens 8
1.3.3. Controlleroovvnevnennenrrneenennerneenennanieanens 9
1.3.4. Controller COmMPONENtscoeveerueieerierinnnioasrness 9
1.4. Safety in Computer Based Systems 11
L4 Reliabilityooviivniniiiii i 12
I B {1 P 12
1.4.3. Safety-critical Computing Systemsccoeviiineinnn, 13
1.5. Obstacles to Computers in Safety-Critical Systems 13
1.5.1. Intrinsic Obstaclescviviiiinrniiiiiiiiiiiiiernns 14
1.5.2. Application Obstaclesccovvviviviierniiieiiinions 17
1.6. System Lifecycle ..., 19
1.7 AIMS o oottt i i i i i e e 22
1.8. OVEIVIEW .. iitiii ittt iiie it iinenneanns 23

2
Requirements Analysis 25
2.1. Introductioniiiiiiiiii i 25
2.2. Role of Requirements Specification 26
2.2.1. Requirements Specification Viewpoints 28
2.3. Structured Requirements Analysis 30
2.3.1. Development Modelc.ovivieiiiiiiiiiiiiiiiiii 30
2.3.1.1. Separation Of ISSUESovvviernreenieniiniiniiin, 30
2.3.1.2. Safety-Critical System Structureoooiiiuniiia, 32
2.3.1.3. Requirements Phasescoooviiiiiiiiii 37
23.2. Formal Modelvveniiiiniiiniiiiiiiiiiiinnanaiaans 40
2.3.2.1. Advantages of Formal Modelsc.cooienlt 40
2.3.3. Development Programmecoouvneiiiieniinnanennenens 46

11

Table of Contents

2.3.3.1. Development Methodologycoovvvieiiiieineeienen. 47
2.3.3.2. Requirements Analysis Teamoin 48
2.4, Working Exampleo, 51
2.5, SUMMATY . ..ottt iiiiniiiiiseennenaeaneeeannonnn 53

3
Basic Concepts e e 55
Bl TIME ot o tee ittt tneeenesesnsanenenenannnnaenens 55
3.1.1. TIME POINTS «vvvvvvneensssssscseossennssnnnsssnasonsasses 58
3.1.2. TIME INLEIVALS « oo v v eeeetevsneoreerorsunruniosanasaneennes 58
3.1.3. System Lifetimeoeveeeerrnienneiiiiiiiiiiiiiiiine, 61
3.2.State Variablesccciiiiiiiiiiii i 61
3.2.1. Variable Rangescocveecererrioieniiuiieneineanananns 63
3.3. Variable Categoriescoovveenenieniiiinnn, 65
34.SystemHistorycoovviieiiiiiiiiiiiie 68
341 History Functionoveviiieieiiiiiiiiiiiiineee 69
3.5. History Descriptionsc.covviiiiiinn 70
3.5.1. Variable Class Relationscoceeeieeeiannnneenannan, 71
3.5.2. Invariant Relationsoovvvuenieereiossiniiciiiionneeeenns 74
3.5.3. History Relationsc.oiiivieinenenaniiiiiiinnes 77
3.5.4. Comparison of Relationscoovviieeinennniienionnn. 80
3.5.5. History Description Setscovvvrievereeaenonurroneianes 81
3.6. ClOCKS « v v vttt it it 82
3.7. Real-time Satisfaction Conditions 83
3.7.1. System Predicatesovvvevniiiniiiiiiiiiiiiiia 83
3.7.2. Point Satisfactionccoiiiiiiiiiiiiiiiiiiiiiia 84
3.7.3. Interval Satisfactionc.coviiveieiiniiiiiiiiat 85
LTy 20 T 2 1173 T T 87
3.7.5. Time Bound COnStraintscovvvriveeanncrsonnansonnans 90
3.7.6. Termination Predicatecovviivnriiinionieneneennes 91
3.8 SUMMAIY . . oo cvvvvernenrernnesseerunsoeonnennns 92

4
Mode TREOTY ..o v oo 94
4.1. MOGES + v oot evreie e snsseserneenesnnenesaesns 94
4.1.1. History Graphscoeevinienecniiunieneninnianaenns 97
4.1.2. MOde Propertiesovvvveeininenenenenenrnieiinanananes 98
4.1.3. Mode Relationshipscooviiiiiiiiiiiiiiiiiiinn, 100

v

Table of Contents

4.1.4. Mode Categoriescovvevevnnnreiinoeeennienneesnnnnsnss 101
4.1.5. Mode COnSiStencycovvveiverneieniirinnnceneaseeraanns 103
4.1.6. Mode Limitations ... coovevvrirarnioiiirersiiineieniaeneans 106
4.1 7. Mode Benefitscoivviiiiiiiiiiiiiiiiiiiiiaiiiiia 107
42. Mode SEeqUeNCESovvviiiiii it 108
4.2.1. Mode Sequence Propertiescoiiiiiiiiiiiiiin 109
4.2.2. Mode Sequence Relationshipscooiiiiiieniine 111
4.2.3. Mode Sequence CONSIStENCY +vvvevernrerereeniaraenenenenes 111
4.2.4. Mode Sequence Examplec..ooiiiiiiiiiiiiiiiint, 114
4,2.5. Mode SeqUence Setvverernretiiieiniitiiiiiiiiiiies 115
4.2.6. Mode Sequence Limitationsc.oovviiiiiiiiiiie 116
43.Mode Graphsciiiiiiiiiiiiiiii 118
4.3.1. Mode Graph Propertiesccooviviiiiiiiiiiiiin 121
4.3.2. Mode Graph COmPONEntSuveenteeenennrnenraeeneannns 121
4.3.3. Complete Mode Graphscovveviiiiiiiiiiiiiiiinenn, 123
4.3.4. Consistent Mode Graphsccooiiiiiiiiiiiiiiiiienn, 124
4.3.5. Mode Graph Relationships........coeeveeeiiiiiiiniianine 126
4.3.6. Mode Graph Categoriescoovvevrrnnnnrerreeeroennnns 127
4.3.7. Predicate Mode Graphccvveiiieenniiiiieiiianans 130
4.4, SUMMALY . ..t ittt it inerrerrainennennenns 131

5
Real World Specifications 133
5.1.Disaster Setttt i e 133
5.2. Safety Real World Description 134
5.3. Hazard Specificationcociiiiiinn, 135
5.4. Safety Real World Specification 138
5.5. Mission Real World Description 139
5.6. Mission Real World Specification 140
5.6.1. Mission Phase SpecificationcoooeviiiiiiiaL, 141
5.7. SUMIMATY « ot oo vvvrivennennesoonnassnsnesanennsns 144

6
Controller Specifications e 146
6.1. Safety Environment Description 146
6.2. Safety Controller Specification 148
6.2.1. Safety Controller Behaviour Structure 148
6.22.Start UpPhaseovniiiiiiiiiiiiiiiiiiiiiiiiinninne, 150

Table of Contents

6.2.3. MONItor Phaseovviviiennienniinieneennennnnnnnn,s 151
6.24. Recovery Phaseccivivenninnnnnnnnennnnnnnennnenns 152
6.2.5. ReSEL Phaseovuiiiuiiiiiinneeneennneennrennernnennns 155
6.26.Shut Down Phaseviiiiiniinneniiennennnnnennennns 156
6.27. ENdPhaseovviiiiiiiiiiiiniiiiiiieianraniianaaas 156
6.3. Mission Environment Description 158
6.3.1. Relation Classes «.o.ovvvvenuereennneiinieeiineseinnenenns 158
6.3.2. Monitor Relationscocvvviiniiiiiniiiiniiiniieeenn. 160
6.4. Mission Controller Specification 161
6.4.1. Mission Controller Behaviour Structure 162
6.5. Summary and Conclusions 169
7

Real World Analysis et 171
7.1. Introductionottt 171
7.2 Initial Real World Description Analysis 174
7.2.1. Production Guidelinescoovvviiiiniiiiiiieann... 174
7.3. Disaster Analysisccoiiiiiiiiin.... 180
7.3.1 Disaster Identificationcooiiiiiiiiiiiiiininn.. 180
7.3.2. Validation Guidelinescceeeievinnennnnnnnvnnnn. 181
7.4. Hazard Specification Analysis 182
7.4.1 Hazard Identificationccooviiiiiiina.ae, 182
7.4.2. Validation Guidelinesccovvvriviiennnnnnennnnn. 184
7.4.3 Hazard Eliminationo iiiiiniianiann... 185
7.4.4. Complete Hazard Assumption..........cvovvvivninenieenn.. 185
7.5. Safety Real World Description Analysis 186
7.5.1. Construction Guidelinesoooeiiiiiiiiiiiiinennnn. 186
7.5.2. Validation Guidelinescoveiivneieineiininnnnann. 188
7.6. Safety Real World Specification Analysis 189
7.7. Mission Real World Specification Analysis........... 190
7.7.1. Mission Phase Specification Analysiscovvnuunn 190
7.7.2. Mission Real World Specification Analysis 195
7.8. Mission Real World Description Analysis 199
7.8.1. Construction Guidelinesoooieiiiiiiiiiii.. 199
7.8.2. Mission Real World Specification Checks 201
7.8.3. Mission Validationccovviiiiiiiiiiiiiiiiiinninn 202
7.9. Combination of Analysis 203
7.00. SUMMATY ..ottt ittt ittt i e 203

Vi

Table of Contents

8

Controller Analysis e

8.1. Introduction

8.2. Safety Environment Description Analysis

8.3. Safety Controller Specification Analysis

8.3.1. Safety Verification.

..........................

8.3.2 Safety Controller Specification Development Methodology
8.3.3. Safety Controller Specification Methodology Theorems

8.4. Mission Environment Description Analysis

8.5. Mission Controller Specification Analysis

8.5.1 Mission Verification.

..........................

8.5.2. Mission Controller Development Strategy

8.5.3. Mission Controller Specification Theorems

8.6. Summary and Conclusions

9

Summary and Conclusions

9.1. Thesis Summary

9.2. Evaluation and Conclusions ...

References
Appendix A
Appendix B

Appendix C

vii

ooooooooooooooooo

....................

....................

oooooooooooooooooooo

..........................

..........................

206

206
208

210
211
215
226

229

231
234
245
249

251

254
254
261
263

g ¥

List of Figures

List of Figures

Figure 1.1. Process Control System Components

Figure 1.2. Controller Componentsccoveeunneeeunneennnn.

Figure 1.3. Controller Interfaces, 11
Figure 1.4. Simplified System Life Cycle 19
Figure 2.1. Role of Requirements Specification e 28
Figure 2.2. Safety-Critical System Structure 32
Figure 2.3. Safety-Critical Controller Components....................... 34
Figure. 2.4. Safety-Critical Controller Interfaces 35
Figure 2.5. Requirement Analysis Phases 37
Figure 2.6. Reaction Vesselooiiiiiiiiiiiii ... 53
Figure 3.1. An Evolution ittt 68
Figure 3.2. A Partial Ordering of Description Relations and Ranges Relations 81
Figure 4.1. History Graphs i i, 98
Figure 4.2. Graphical Argument for Lemma4.1. 99
Figure 43.Mode Graphs i i 120
Figure 4.4. Mode Graph Isomorphism 127
Figure 5.1. Reaction Vessel Mission Real World Specification Structure 142
Figure 6.1. Reaction Vessel Safety Controller 147
Figure 6.2. General Safety Controller Specification Structure 149
Figure 6.3. Reaction Vessel Safety Controller Specification Structure 157
Figure 6.5. Reaction Vessel Mission Controller 161
Figure 6.4. Reaction Vessel Mission Controller Specification Structure 163
Figure 7.1. Real World Analysisc.ocieuiiniinrniniiinan.... 173
Figure 7.2. Real World Specification Analysis 173
Figure 7.3 Initial Real World Description Analysis 179
Figure 7.4 Safety Real World Description Construction 188
Figure 7.5. High-Level Phase Grapho 0 192
Figure 7.6. Mission Real World Specification Construction 199
Figure 7.7. Mission Real World Description Construction 201
Figure 8.1. Controller Analysis i, 206
Figure 8.2. Controller Specification Analysiscoon... 207
Figure 8.3. General Structure of Safety Controller 210

vill

List of Figures

Figure 8.4. Picture of Lemma 8.1...........ot iiiiiinenn. 233
Figure 8.5. Postulated Check for Start of Sequencers 235
Figure 8.6. Postulated Check for a Typical Mode in Sequence rs............ 235
Figure 8.7. Postulated Check for End of Sequencers 236
Figure 8.8. History Graph of PS(i)ot 239
Figure 8.9. Time bounds and Delay Functionooiiiae 241

Ix

List of Tables

List of Tables
Table 2.1: Organisational Roles in Requirements Analysis 51
Table 3.1: State Variables of Reaction Vessel 62
Table 3.2: Variable Ranges of Reaction Vessel 64
Table 3.3: Class and Categories of Reaction Vessel Variables 74
Table 3.4: Reaction Vessel Description Relations 80
Table 5.1: Relations of Safety Real World Description 135
Table 5.2: Relationships of Mission Real World Description 140
Table 6.1: Controller Relationships of Safety Environment Description 147
Table 6.2: Controller Relationships of Mission Environment Description 160
Table 7.1: Disaster Analysis of Reaction Vessel 181

Introduction

Chapter 1 - Introduction

1.1. Background

Digital computers are increasingly being used in safety-critical applications (e.g., air
traffic control [Cris90], avionics [Rouq86] and railway systems [Theu86a]). A natural
reluctance to introduce complex and uncertain factors into these systems had previously
kept computers out of most safety—critical loops. However, with the massive increase in
computer processing power per dollar [Gray88] over the last decade, many organisations
now feel that the potential advantages of using computers often outweighs any
nervousness. The functions which computers perform in safety-critical systems are now
changing. Until recently when computers where found in such systems, they were only
given control over non—critical functions [Leve86]. However, computers are now being
given direct control over critical functions, in some cases without any effective back-up

facilities [Leve86]. Thus, in these cases, total reliance is placed on the computers.

The increased use of computers in safety-critical systems has lead to a growing public
awareness about the dangers of introducing computers into safety-critical systems. This

is illustrated by the topic being raised in the general media [Equ90, Morg89].

In the late 1970s the main motivations for introducing computers into safety—critical
environments were to increase performance, flexibility and efficiency [Long77, Uram77].
More recently, it has been argued that computers can also increase safety [Rous81],
however at present there is no scientific evidence to support this supposition. The main
reason for the lack of suitable evidence arises from the fact that safety—critical systems tend
to have reliability requirements in the region of 10~ failures/hour, e.g., NASA stipulates
the requirement of “at most 10~ chance of failure over a 10 hour flight” [Dunh81]. These
reliability requirements are far higher than can be currently demonstrated for complex
computing systems, the best that can be claimed for systems using current methods is of

the order 1075 failures/hour [Mose90].

Unlike processing power, there has not been a massive increase in the quality of

software produced over the last decade. This has resulted in a climate where the reliability

Introduction

of software developed using the best current methods is still orders of magnitude below

the levels required for safety—critical systems [Dunh81, Tayl89].

Safety-critical systems are kept under strict safety standards by government licensing
bodies, such as the Health and Safety Executive [Roys77, ACARS86]. This introduces a
further obstacle to the introduction of computers into safety—critical systems, for there are
currently no practical techniques which can measure high-levels of reliability for software,
of the order 10~ failures/hour. The best current techniques can only be used to certify (i.e.,
predict) software reliability in the region of 10-5 to 10~ failures/hour. In fact, the task of
accurately predicting software reliabilities may be more difficult than constructing highly
reliable systems [Tayl89, Litt85]. Most efforts to quantify software reliability usually relate
to determining the number of faults (bugs) which exist in a program. However, the
reliability of software depends not only the presence of a fault, but also on the probability
that an existing error will affect the output, and for safety the potential damage that can

be caused as a result of the fault.

A conceptual model of the software reliability process is discussed by Littlewood
[Litt85]. The model considers a program p as a mapping from an input space I to an output
space O (i.e., p: I = 0). A failure is detected whenever the output resulting from p for a
particular input violates the specification. The totality of all the inputs which the program
is unable to process correctly is considered as the subset Ir. The central assumption in most
of the existing software models is that I is encountered purely randomly when the program
runs in ts use environment. A further source of randomness in the failure process occurs
when the fault which results in a failure is fixed - hence modifying Ir. The raw data which
is used with software reliability models, will be a sequence of execution times, ty, t;, ...,
ti~1 between successive failures. The objective being to use the data to make intelligent

predictions about the future behaviour (in terms of failures) of the software. Such models

are often called reliability growth models.

One of the first reliability growth models specifically designed for software was the

Jelinski-Moranda model [Jeli72]. However, for most systems predications given by the

Introduction

model are considered optimistic, a modified version is discussed by Littlewood [Litt85].
The first model to represent both sources of error was the Littlewood-Verral model
[Litt73]. Other models include Duane [Crow77] and Keiller-Littlewood [Keil83]. Amajor
problem with the use of reliability growth models for software is that different models can
give greatly varying results; and it is very difficult to predict a priori which model is most
suitable for a given software system. The confidence that can be placed in such models

is further weakened by the difficulties of data collection.

Other software reliability model classes include: failure count models, fault seeding
models and input domain base models. Several modelsin each class are discussed in a survey

paper by Goel [Goel85].

For systems which employ design diversity, several statistical models have been
proposed for the attained software reliability [Abde86, Cha86, Scot87, Arla88, Pucc90].

However, none have been developed to the point at which there is consensus on their

practicability.

The lack of satisfactory methods to develop and certify computer controlled
safety—critical systems, together with the (economical and political) pressures to introduce
digital computers into such systems has lead to an urgent need for novel techniques which

can be used to develop and certify computer based safety-critical systems.

1.2. Safety

In this section, I will introduce some preliminary (informal) definitions of terms which
are often used in the discussion of safety—critical systems. To define the terms, informal
definitions of a system and environment are presented. A system is the total sum of all its
component parts working together within a given environment to achieve a given purpose
or mission within a given time over a given life span [Ridl83]. The environment within
which a system works is all the elements of the universe with which the system interacts.
Before considering safety issues in more detail an informal definition of safety is presented

[Rodg71].

Introduction

Definition: Safety

The confidence that the environment that personnel or major items are subjected to is free from
inadvertent or unexpected events which may result in injury to personnel or damage to the items
exposed.

The safety terms that will be defined are a disaster, mishap and hazard [Youn82]. It should
be stressed that it is not being suggested that the definitions are the best possible

definitions, rather that they clarify several issues of interest in safety—critical systems.

The first term that I will discuss is that of a disaster; this is central to the notion of
safety—critical systems, for it is the possibility of a disaster associated with the mission or

environment of a system that makes the system safety—critical.

Definition: Disaster
A state of a system constitutes a disaster if and only if the presence of the system in the state

means that loss of life, limb, significant revenue or damage to the environment has occurred,

during the lifetime of the system.

For a system to be acceptable to a regulatory body (see later), it must be demonstrated
that the probability for a system to enter a state which constitutes a disaster is negligible.
The above definition clearly specifies the undesired states of a system, this allows us to
restate safety in terms of disaster.

Definition: Safety

The confidence that the system does not enter into a disaster.

The term mishap is used to denote an unplanned event or series of events (which are
caused by the system or its environment) that result in loss of life, limb, significant revenue
or damage to the environment, during the lifetime of the system. Mishaps, for a given

system, can be simply defined with reference to the disasters of the system.

Definition: Mishap

A mishap is a sequence of changes in the state of a system (which are caused by the system

or environment) that result in a disaster of the system.

Introduction

If attempts are made to design systems which are mishap—-free (i.e., the set of states
in which the system resides during its lifetime are disaster-free), difficulties will arise from
the fact that mishaps (as defined above) involve external environmental impacts on the
system, over which the designer may have no control. Hence a stronger notion of safety

is required, which removes the involvement of external environmental impacts.

Definition: Hazard

A hazard is a system condition that can lead to a disaster under certain environmental

circumstances.

Our basic concern is to ensure that disasters do not occur, but we encountered the
problem that the system cannot directly influence all factors that could lead to a disaster.
To deal with this problem we introduce hazards as circumstances from which disasters
might ensue, but can be prevented by the system. We introduce the concept of the hazard
set of a system as the set of all hazards of that system. Hence, for a given system the absence
of hazards (from its hazard set) during the lifetime of the system implies the absence of

disasters. The notion of a hazard can be used to define a hazardous event.

Definition: Hazardous event

A hazardous event is a sequence of changes in the state of a system that result in a hazard of

the system.

The goal of safety design, stated in terms of hazards, is to design systems that are
hazard free (hazardous event free). The main advantage of building systems that avoid

hazards rather than disasters, is that all the factors which affect the former are internal

to the system.

1.2.1. System Safety

The importance of system safety, as the starting point of an engineering approach to
safety, is discussed in some detail by Leveson [Leve86]. An overview of system safety is
given in the following paragraph.

System safety became a concern in the late 1940s and was defined as a separate

discipline in the late 1950s [Rodg71, Rola83]. A major impetus was that the missile systems

Introduction

developed in the 1950s and early 1960s required a new approach to controlling hazards
associated with weapon systems [Rola83]. The “Minute Man” ICBM was one of the first
systems to have a disciplined formal safety programme associated with it. NASA soon
recognised the need to have system safety as part of their development programmes.
Eventually, the programs pioneered by the military and NASA were adopted by
commercial industry in such areas as nuclear power, oil refining, mass transportation, and
chemicals. The main contribution of the early safety programmes was the realization that
a system safety philosophy was required to tackle the development of complex
safety-critical systems. A possible definition for system safety philosophy is: “The science
which investigates the facts by logic and knowledge to assure personnel and equipment
operate harmoniously in a defined environment which will not encounter unexpected or
inadvertent events that would result in injury or damage to personnel or equipment.”
[Rola83].

System safety engineering is that part of system engineering which identifies all the
hazards associated with the system or product and ensures through design and procedures,
that these hazards are minimized or controlled. One other area of responsibility which

system safety engineering must be concerned with, is the explicit documentation required

to protect a company against public liability suits.

1.2.2. Regulation and Legislation

A key property of (conventional) safety~critical systems or hazardous products is that
they have been regulated in a legal framework. One of the most regulated industries is
the chemical industry where regulations have developed since 1922. In the United States,
the most regulated country, there are fourteen main acts which legislate the use of
chemical pollutants. Of these acts, the TSCA (Toxic Substances and Control Act) is
all-embracing, covering the regulation of both existing and new chemicals. Its implications
are far-reaching and it requires industry to furnish the EPA (Environmental Protection
Agency) with both technical and business information about production, distribution, use,
health risks and the like in relation to the manufacture of any chemical. The TSCA

illustrates the basic principle behind legislation for safety, in that it necessitates the

Introduction

identification of risks related to a legislated product and the provision of data, that
demonstrates that the risks have been minimised, in a format that can be reviewed by a
legislative agency.

For complex safety-critical systems the main impetus for regulation has come from
defence authorities. Of the military standards, one which has been widely used as a basis
for the development of safety requirements is Mil-Std-882 [Rodg71]. The purpose of the
standard is to provide provide uniform requirements and criteria for establishing and
implementing system safety programmes and to provide guidelines for preparing System
Safety Programme Plans. The standard provides clear definitions of safety-related terms,
gives both general and detailed requirements for a safety programme and gives a detailed
account of the validation of the systems (primarily based on testing).

The need for the specific regulation of safety-critical computer based systems has only
recently been recognised. In the United Kingdom the interest in a regulatory framework
was fuelled by an ACARD report [ACARS86]. In an appendix of the report entitled
“Safety—-Critical Software” a possible framework is suggested. The framework is based on
a formalised system of registration, certification and licensing of: systems, key personnel
and participating organisations. The approach is discussed in detail in a survey paper by
Barnes [Barn89], who also discusses frameworks proposed in response to the ACARD
report by the Institute of Electrical Engineers (IEE), the Health and Safety Executive
(HSE) and US Department of Defense (DOD). The main conclusion of the paper is that

the work towards regulatory standards will help to alleviate inconsistencies in the

development and assessment of computing systems.

1.3. Process Control Systems

The general class of systems considered in this thesis are process control systems
[Smit72]. In general, the term process control system covers a large class of systems, which
include blast furnaces, petro—chemical plants and avionic systems. I will consider only
those process control systems in which there is a computing system. Though each
application area has its unique problems, process control systems have significant

properties in common. In particular, there is a general relationship between the main

Introduction

components of a process control system; this relationship is illustrated by the block

diagram in figure 1.1, the components are discussed in the following paragraphs.

Operator

Controller

Physical Process or Plant

Figure 1.1. Process Control System Components‘

1.3.1. Operator

The operator, of a process control system, consists of the man (or team of men) which
directly interact with the controller. The term directly interact is used to emphasize that the
operator can affect the state of the physical process (via the controller) and react to
changes in the state of the physical process. The relationship between the process and the
operator can vary from a loosely coupled relationship (e.g., between the operator of a
chemical plant and the chemical process) to a tightly coupled relationship (e.g., between

the pilot of an aircraft and the aircraft).

1.3.2. Physical Process

The physical process, of a process control system, will be controlled by the process
control system. Since the physical process is a physical system its behaviour will be
governed (and restricted) by physical laws. As stated previously, the process can vary from
a very simple system, such as a railway gate system, to a complex chemical plant. The key
observation is that in both cases the behaviour of the process is governed by physical laws.

In the case of the railway crossing system physical laws are required to model the

Introduction

mechanics of a train, and for a chemical plant physical laws are required to model the

chemical kinetics of the reactions.

1.3.3. Controller
The controller, of a process control system, is constructed to control the behaviour of

the physical process. Typically a controller consists of a control system and a number of
sensors, actuators, buttons (selectors) and indicators. The controller interacts with the
operator through buttons and indicators; and interacts with the physical process through

sensors and actuators.

1.3.4. Controller Components
In the construction of process control systems, the computing systems considered are

those that are used in the implementation of the controller. In this section I will discuss
the main components of the controller and the role of computing systems in the controller.
The relationship between the main components of the controller is illustrated by the block

diagram in figure 1.2.

Operator Console

Control System

Actuators Sensors

Controller
Figure 1.2. Controller Components

Operator Console
The operator console is the means by which the operator interacts with the controller.

The operator console consists of dials and indicators. The complexity of the console can

Introduction

range from a simple display of a few buttons and lights to a complex display produced
by computers. The buttons are the devices by which the operator inputs information to
the control system and the indicators are the devices by which the control system outputs

information to the operator.

Actuators and Sensors

The actuators and sensors of a controller are the physical devices by which the
controller influences (via the actuators) and monitors (via the sensors) the behaviour of
the process. The actuators can be simple devices which directly control the values of
physical properties of the process (e.g., a valve which controls the rate of flow of liquid
into a vessel), or complex automatic control devices (e.g., a thermostatically controlled
regulator, that ensures that the temperature at a point in the process lies within a particular
range). The sensors can be simple devices which sense the values of physical properties
of the process (e.g., a thermometer which detects the temperature at a point in the process)
and transmit the values to the control system; or the sensors may process the values (e.g.,
a sensor may compute the rate of change in a temperature) before they are transmitted

to the control system. Collectively the actuators and sensors will be referred to as the

transducers of the system.

Control System

The control system of a controller is the component which uses the actuators and
sensors to control the behaviour, of the physical process. In particular, the control system

must ensure that the physical process exhibits the required behaviour.

Interfaces

To specify the behaviour required to be exhibited by the controller, the interface
between the controller and the controlled environment must be delineated. The interfaces

are illustrated by the block diagram in figure 1.3.

10

Introduction

Operator

Operator Interface

Operator Console

Actuatorsl Sensors

Plant Interface

Physical Process or Plant

Figure 1.3. Controller Interfaces

In the block diagram of the controller two interfaces to the control system are
illustrated: i) the operator interface, the interface between the operator console and the
operator and ii) the plant interface, the interface between the transducers (i.e., actuators
and sensors) and the plant. It is through the operator interface that the operator interacts
with the controller. The operator can view the status of the controller through the
indicators and modify the status of the controller through the buttons. It is through this
plant interface that the controller interacts with the physical process. The controller

monitors the behaviour of the plant through the sensors and modifies the behaviour

through actuators.

1.4. Safety in Computer Based Systems

In this section, a brief discussion of how safety issues have been treated in computing
systems is given. Also the class of computing systems which will be considered in this thesis
are precisely defined. Recently, safety in computer based systems has been closely related
to the attributes of reliability and security. Some researchers feel that these attributes of

safety, security and reliability have qualities which are so similar that they are facets of a

11

Introduction

single attribute — this generic attribute is referred to as dependability [Lapr85]. We will
consider dependability as being the generic term which means the extent to which the
behaviour of a system conforms to a requirement R. Clearly safety and reliability are
special cases of dependability, safety being the case when the requirement R is the “safety
requirement” of the system, reliability the case when the requirement R is the “mission
requirements” of the system; and security the case when R is the “security requirement”.
In safety-critical applications the main dependability goals for the system are: safety and
reliability. It should be recognised that a reliable system is not a automatically a safe
system. A detailed analysis [Leve83a], has shown that though high reliability, may be
necessary it is not sufficient to ensure safety. It is therefore important to distinguish
between reliability and safety. A more detailed discussion of why safety and reliability
should be considered as separate issues is given later. In the following subsections

reliability and safety are discussed in the context of computing systems.

1.4.1. Reliability

Reliability in computing systems has been investigated for many years [Ande79]. This
has lead to a situation in which reliability is a well understood concept, and most
researchers and practitioners would agree that it should be defined as a quantitative

attribute (more specifically a probability). One such definition is given below.

Definition: Reliability
The reliability of a system is the probability of accomplishment of a function under specified

environmental conditions over a specified time [Mulz85].

It should be clear from the (above) definition that reliability is oriented towards the
purpose of a system and to the intended action, it is the extent to which a system can be

expected to perform the specified task.

1.4.2. Safety

Research into safety in computing systems is relatively (to reliability research) recent.
Major research started in the late 1970s [Safe79]. A consensus on a suitable technical

definition of safety has not been reached. However, if we are willing to consider safety as

12

Introduction

an aspect of dependability then the reliability definition can be simply modified to a

suitable definition for safety.

Definition: Safety
The safety of a system is the probability the system will satisfy the safety requirements under
specified environmental conditions over a specified time.

The safety requirements of a system express the conditions that the behaviour of the

system must satisfy for the system to remain free of disasters.

1.4.3. Safety-critical Computing Systems
A precise definition of the class of safety-critical computing system which will be
considered in this thesis, is given in the context of process control systems.
Definition: Safety—critical computing system
A safety—critical computing system is a system that is a component of a process control system

which can cause or allow the overall system to enter into a hazardous state.

It should be noted that in the definition there is no reference to a failure (in the
mission), or any mission related behaviour. The definition is given solely in terms of

hazards, that is the possibility of disasters.

1.5. Obstacles to Computers in Safety-Critical Systems

In this section, I will discuss some of the obstacles to the introduction of computing
systems into safety~critical systems. The discussion is given in terms of the confidence that
can be placed in the safety of the safety—critical system. The confidence that a designer
or organization has in the safety of a system is rarely based on one piece (or type) of
evidence, rather on a collection of “facts” which indicate that confidence can be placed
in the safety of a system. The type of evidence can vary from rigorous scientific
experiments, formal mathematical proofs to comparisons with similar systems. In the
following paragraphs, I will discuss some of the reasons why greater confidence can be
placed in the safety of conventional safety-critical systems than in safety-critical
computing systems. The reasons will be placed into two broad categories intrinsic and

application dependent.

13

Introduction

1.5.1. Intrinsic Obstacles

In this section I will discuss five obstacles to the introduction of computers into
safety—critical systems, which arise from the the differences between the intrinsic nature

of computing systems and conventional (non-computer) systems.

Complex Mathematical Models

Most properties of conventional systems can be modelled and analysed using
continuous mathematics. The main advantage of these models is that they are much easier
to understand (and analyse) than the actual systems. There are some conventional systems
which cannot be modelled using continuous mathematics, such as relay systems, but for
these systems computational tools for analysis and synthesis are available. However, most
properties of safety-critical computing systems are modelled by discrete mathematics. The
main disadvantage of having to use discrete mathematics is that the complexity of the
models for discrete systems is about the same as that of the actual system. The main reason
which is usually given for the difference in the effectiveness of the models is that discrete
mathematics is less mature than continuous mathematics. Although this is true to some
extent, the inherent complexity of the computing systems being analysed will probably

always lead to complex mathematical models. Hence, some means to handle this

complexity is necessary.

Maintenance

Maintenance of conventional systems is usually straightforward, the main reason for
this is that the systems are loosely-coupled (i.e., relative to computing systems) which
allows maintenance engineers to limit the influence of their actions. It should be a
worrying fact that despite the loosely coupled nature of conventional systems many
disasters are caused by maintenance actions, in some cases even when the maintenance
was meant to enhance safety [Reas87]. Unless carefully planned, the maintenance of
conventional systems can cause problems in seemingly unrelated areas. Problems in the
maintenance of computing systems arise since the components of computing systems are
usually tightly coupled. In a tightly coupled, complex system, the consequences of

maintenance actions radiate like ripples in a pool, but too often maintenance engineers

14

Introduction

see their influence only within the narrow sector of their current concern. Given the fact
that maintenance actions have caused many disasters in conventional systems, and the
problems of software maintenance [Somm82], the maintenance problem must be of grave

concern to the designers of safety—critical computing systems.

Limited Predictability

Generally speaking, conventional systems are built from standard components, for
which good quality data on failure rates and failure modes is available. The faults which
are of major concern in conventional systems are random wear and tear faults in the
components, and not design faults. It is assumed that most design faults have been
eliminated by a careful systematic design methodology. Note this assumption does not
preclude the possibility of design faults it merely states the belief of conventional
designers, that the contribution of design faults to the unreliability of a system is negligible
to the overall unreliability of the system. (However, with the increased complexity of
conventional systems, this assumption may no longer be justifiable.) The reliability data
of the components (together with the assumption that design faults are insignificant)

allows designers to predict reliability values for the system.

Safety—critical computing systems are rarely built from standard components (e.g.,
bespoke software packages). Though some software packages are available, even for these
packages the data on failure rates and failure modes is limited by the level of reuse. The
faults which are of major concern in computing systems are design faults. Hence there are
two obstacles to accurate reliability predictions of computing systems, firstly only limited
reliability information is available on the components of the system, and secondly faults
in the design that specifies the interactions between the components can have a significant
effect on the reliability. Though reliability models have been built to predict the reliability
of software systems generally only limited confidence can be placed in their predictions.
This is largely due to the fact that information on the reliability of the components which
must be used for the parameters of the models is limited to that gained from testing during
the development of the software [Pucc90]. Furthermore since it is clearly inappropriate

for the system to be tested in the final execution environment - the system must be tested

15

Introduction

in a simulated test environment. Hence the quality of the data collected during such testing
is limited by the accuracy in which the probability distribution of the input space of the
simulated environment reflects that of the final execution environment. However for
conventional systems the components are usually standard components for which good
quality reliability data is available, hence the parameters for the reliability models of
conventional systems can be stated (based on good quality historical data) with a high

degree of confidence.

Utilization of Redundancy

When redundancy is employed in conventional systems, the fault hypothesis adopted
is that the occurrence of faults in redundant components is independent. Justification for
using this fault hypothesis is based on the nature of of the faults which are considered to
be most significant in conventional systems. Under the independence of faults assumption
the probability of mutual failure can be computed as the product of component failure
(i.e., Prob(A and B fail) = Prob (A fails) x Prob (B fails)). This allows redundancy to
be used as a powerful tool in the design of conventional systems. From the nature of faults
in software systems redundancy based on simple replication is of little use. A more useful
form of redundancy in computing systems is design diversity, that is, redundancy of design
to provide tolerance to human mistakes made in the design of the computing system. The
effect of common mode failures in diverse designs is difficult to evaluate. Experiments
have shown that common faults between different designs are likely to exist, though they
have also shown that redundancy can be useful [Bish86, Sagl86, Ande85]. However, there
is still a question mark over the true effectiveness of redundancy, and it is probably

highly-dependent on the nature of the system.

Safety Factors
The safety-critical requirements of (many) conventional systems are continuous and

this allows designers to add tolerance factors to the requirements of the components. For
example, suppose to avoid a hazard a component (vessel) in a system must be capable of
withstanding pressures up to 300 kilopascals - the designer can introduce tolerance by

using a vessel capable of withstanding 400 kilopascals. The discrete nature of the

16

Introduction

safety-requirements of computing systems makes the introduction of tolerance at a
component level more complicated. With the possible exception of timing requirements,
to introduce tolerance into the realisation of computing systems, analysis within a system

context is required.

1.5.2. Application Obstacles
In this section, I will discuss six obstacles to the introduction of computers into

safety-critical systems which arise from the nature of the application areas into which the

computers are being introduced.

Limited Experience
The application areas into which safety-critical computing systems are being

introduced are almost always novel application areas for computing systems, hence the
designers of such systems have limited experience in the construction of the systems. This
lack of experience can lead to problems in communication between the members of the
development team, and confusion over the roles of the members in the team [Leve89].
The problems in communication are most acute during the requirements analysis (i.e.,
before an overall picture of the system is available). The communication problems are of
particular concern when it comes to safety issues. For in development teams, with weak
communication between the members, it is possible for all the members to think that safety

is some other members responsibility.

Application Complexity
The application areas into which safety-critical computing systems are being

introduced have complex operator and plant interfaces. The complexity in the interfaces
makes the task of assessing the effect of the computing systems behaviour on the controller
(hence overall system) very difficult. Further problems caused by complexity of the systems
are that the requirements specifications of such safety-critical computing systems tend to

be complex leading to problems of incompleteness and inconsistency.

Complex Operator Interface
The problems caused by complex operator interfaces are of particular importance in

safety-critical systems in light of the role that humans play in mishaps [Vend80, Rous81,

17

Introduction

Perr84]. For application areas into which computing systems are being introduced, the
operator interface is usually complex, and sometimes there is dynamic allocation of tasks
between the operators and controlling system. This means that human factors must be

considered which can lead to complicated issues of ergonomics and cognitive psychology.

Manual Intervention
Most of the application areas of conventional systems have had both low complexity

and slow time constants; this has allowed the possibility of manual intervention in the
avoidance of disasters. However, the application areas in which computing systems are
being introduced have high complexity and fast time constants making manual
intervention very difficult. Even in situations where manual intervention is possible,
operator complacency (due to long periods of inactivity) make it very risky to depend on

such intervention for safety [Leve86].

Global Problem
It is well recognised and often stated that safety is a global property, that is, safety is

a property of a system in a environment, and can only be assessed in the context of the
environment [Gors86, Kell86, Reev86]. Hence global tools are required to support the
analysis and design of safety—critical systems. However, there are no global tools available

for the design and analysis of computer based systems [Leve89].

Extreme Demands
Though computers may be able to improve the overall safety of a process control

system by replacing the conventional controller by a computing system, in practice it may
be difficult to realise the improvement in safety because of the extreme demands imposed
on the functions of the overall system. The previous point is probably true for all
improvements in technology, for example Perrow [Perr84] argues: “that although
technological improvements reduce the possibility of aircraft accidents substantially, they
also enable those making decisions to run greater risks in search of increased
performance.” The key observation being that as the technology improves, the increased
safety potential is not fully realized, because of increased demands on efficiency and

functions.

18

Introduction

1.6. System Lifecycle
The phases of the system lifecycle and the relationships (in time) between them are

crudely illustrated by the block diagram in figure 1.4.

Requirements
Analysis

|

Design

l

|

Testing and
Validation

Certification

................................ t

Operation and
Maintenance

Operational Phases

Decomission

Figure 1.4. Simplified System Life Cycle

The development life cycle is represented by the first five phases, and the operational
life cycle by the last two phases. In the (minimal) model development is shown to progress

in one direction, however, in the development of most systems backtracking between the

19

Introduction

development phases will be necessary. These phases are briefly discussed in the following

paragraphs.

Requirements Analysis

The requirements analysis phase is the first phase of development, and as such at the
start of the phase there is only an informal representation of intended system behaviour.
During the requirements analysis the intended system behaviour must be analysed, so as
to construct a formal representation (the benefits of a formal representation will be
discussed later) of the intended behaviour on which an agreement can be reached amongst
all the interested parties. Since safety can only be assessed in the context of an
environment, the requirements specification must also give a specification of the
behaviour of the environment into which the system will be installed. Good requirements
analysis should allow the resolution of the complexities in the problem domain (by
modelling the interactions between the requirements), before the introduction of
complexities from a solution to the problem. If possible, the requirements should be

certified by the appropriate licensing authorities.

Design

During the design of a safety-critical computing system the tasks (which the system
must perform to satisfy the requirements) will be partitioned between the hardware and
software of the computing system. For the software subsystem, the design can be given in
terms of the behaviour which can be observed at the interfaces between the software
components. Further issues, that the design must address are what techniques should be
used to provide design redundancy, suitable techniques include N-modular redundancy
[Ande81], Recovery Block schemes[Scot83] and Deadline schemes [Camp79], and in
which areas of the design the redundancy is best employed. The design phase is linked to
the computing system requirements by a development process which refines the
requirements to construct the design, and a verification process which must ensure that

the design specification complies with the requirements specification.

20

Introduction

Implementation
The implementation of a safety-critical computing system is the construction of the

components introduced in the design specification. The implementation phase is linked
to the design by a development process which refines the design specifications of the
components, and a verification process which must ensure that the implementation

complies with the design.

Validation
The criteria for the validation of a safety—critical computing system must be derived

from the requirements specification. Two different, but not exclusive, approaches can be
used for the validation of the system: formal verification and test based strategies. During
this phase of the system an evaluation of the safety of the system must be performed. In
particular the critical components of the system must be identified; and verification and
testing criteria be formulated for the system. The criteria chosen must be stringent enough
to satisfy the licensing authorities, yet simple enough to allow confidence to be placed in

the results of the validation.

Certification
The development of safety-critical systems is usually controlled by regulatory

authorities. These authorities impose certification criteria, in accordance with the safety
standards established for different sectors, which must be satisfied before the system can
be put into service. Essentially, for a system to satisfy certification criteria it must possible
to provide evidence (usually in a specified format) to support the claim that the system will
meet the imposed safety standards. The need for certification of such systems brings the
issue of assessment to the forefront, hence special emphases must be placed on the

collection of evidence and development of models to allow accurate predication of the
achieved level of safety in a system.

The limits to a numerical assessment of software using the current technology
(discussed earlier), has meant that current practice in software quality assurance
concentrates on the software development process. This involves agreeing the procedures

necessary to complete the individual processes involved in each stage of software

21

Introduction

development and checking that each process is completed in accordance with the agreed
procedures. In the certification phase the regulatory authorities must check the evidence
produced during the development of the system, to confirm that the system can be putinto
service.
Operation and Maintenance

The operation and maintenance phase of the system should be the longest phase of
the system life cycle. Any modifications which must be performed during this phase must
be carefully considered. In particular the behaviour of the overall system, as expressed by
the requirements specification must be considered. Two important cases are modifications
in the requirements of a system, and changes in the environment of the system. If the
maintenance is in response to a modification of the requirements of the system, the
requirements specification must be modified to assess the consequences of the
modification on the critical behaviour of the system. If any changes are proposed in the
environment of the system, the model of the environment in the requirements specification

must be modified to allow an analysis of the consequences of the proposed changes.

Decomission
In this phase the computing system is decomissioned. In safety—critical systems care

must be taken that the behaviour of the system during the decomission phase will be free
of disasters. Furthermore, the experience gained during the lifetime of the system should

be 'carefully documented - to guide the design of a similar system at a later date.

1.7. Aims
Of the seven phases I will concentrate on requirements analysis, in the rest of this

thesis. The primary aim of the thesis is to provide a formal basis for the requirements
analysis of safety—critical computing systems. The basic strategy used to achieve this aim
is to provide a formal specification model which can specify all the relevant (logical and
timing) properties of the system in a structured format, and a development model which

outlines the main phases of requirements analysis.

This thesis concentrates on the provision of a framework for requirements analysis of

a specific class of systems - process control systems. The thesis shows how the adoption

22

Introduction

of a framework can provide a means to structure the specifications produced during the
requirements analysis. This structure enables a formal link to be established between the
different levels of specifications, and allows the derivation of general verification

techniques. Thus providing a means to re~-use the basic theory that links the specifications.

To demonstrate how the approach can be used for the requirements analysis of
safety-critical computing systems, a working example is presented with the development

of the approach; and a full example is given in the appendices B and C.

1.8. Overview

In chapter two a detailed discussion of the requirements analysis is presented. The
major obstacles which arise during requirements analysis are highlighted and the role of
a requirements specification in system development is discussed. A structured approach
to requirements analysis is introduced. The approach consists of three parts: a system
development model, a formal model and a related development methodology. The
development model is discussed in some detail. Finally, a simple chemical plant is
described, which will be used as a worked example to illustrate how the development

model and formal model can support requirements analysis.

Chapter three introduces the basic concepts behind the formal model. These will
include the formalisatioﬁ of the time base and the system state, and the introduction of
the semantics of the model in terms of formal system histories. Formal structures which
can be used to specify the behaviour of safety—critical computing systems are presented

and several examples are given.

Chapter four further develops the constructs introduced in chapter three, to formulate
a high-level specification construct - a mode. It is shown, by examples, how modes can
be used to concisely represent system behaviour during an interval of time. The formal
properties of the modes are discussed. This chapter also describes a construct which can
be used to compose modes in a structured format — a mode graph. Finally, some formal
tools which can be used to analyse specifications constructed using mode graphs are

discussed.

23

Introduction

Chapter five deals with how to express the specifications produced during the real
world analysis, in terms of the formal constructs introduced in chapters three and four.
Specific properties of the formal constructs of the real world specifications are discussed,
and some example specifications presented. Similarly, chapter six, deals with how to
express the specifications produced during the controller analysis, in terms of the formal

constructs introduced in chapter four.

Chapter seven presents systematic methodologies for the development of the real
world specifications (discussed in chapter five). The methodologies presented in this
chapter deal with how best to integrate traditional system safety techniques into the

general approach to requirements analysis.

Chapter eight presents systematic methodologies for the development of the
controller specifications (discussed in chapter six). The controller specification are
constructed by an analysis of the real world specifications. Since the real world and
controller specifications are specified in the formal framework, verification strategies

form an integral part of the methodologies.

The final chapter presents some conclusions from the work presented in this thesis,
discusses how far the aims of the thesis have been achieved and gives some suggestions

for future work.

24

Requirements Analysis

Chapter 2 - Requirements Analysis

2.1. Introduction

Requirements analysis plays a vital role in the development of safety—critical systems,
since any errors in the identified requirements will corrupt the subsequent stages of system
development. Experience in safety—critical systems has shown that errors in requirements
specification are one of the major causes of mishaps [Leve86].

Five reasons why the problems of requirements analysis are so acute are outlined
below, they will be discussed in more detail during the chapter.
® The elicitation of the requirements often needs to be performed by a multidisciplinary
team. Unless good communication channels and clearly defined roles and responsibilities
are associated with the team members, problems in communication and confusion over
the roles of the team members can lead to poorly constructed requirements.
® The fact that safety is a global issue can causes major problems during the requirements
analysis, since no overall picture of system behaviour may be available at the start of the
analysis.

e If the safety and mission issues of a system are intertwined during the analysis, the
elicitation of both types of requirements are complicated.

® For many systems, it can be difficult to decide the levels of abstraction at which the
analysis should be performed.

® The (logical and timing) requirements of the system and the behaviour of the
environment are usually represented in different formal frameworks; this can complicate

the analysis of total system behaviour.

Current methods for requirements elicitation for safety-critical systems are based on
a combination of system safety and software development techniques, which attempt to
overcome the five problems outlined above. An approach is the use of HAZOPS (Hazard
and Operability Studies) and FTA (Fault Tree Analysis) to identify hazards from which the
software safety requirements are produced [Leve89]. General guidelines for the

integration of system safety and software development techniques are available [Barn89,

25

Requirements Analysis

HSES87). However, the main disadvantage of the current methods, which can lead to weak
(poor) requirements, is that no unified system wide approach for requirements analysis

is available.

There are few formal methods oriented towards requirements specifications, however
the work of the Alvey FOREST project [Maib87, Pott86] developed a formalism for
representing requirements and a method for requirements capture. The formalism is an
extension of modal logic - Modal Action Logic (MAL). The method is based on structured
methods such as data flow analysis and entity relationship analysis, and incremental
formalization - structured common sense (SCS). Though this project tackled issues similar
to those considered in this thesis, there are two significant differences. Firstly the FOREST
project considers a much wider class of systems, this thesis concentrates on process control
systems. Secondly, the FOREST project did not specifically deal with safety-critical

aspects of systems, an issue which is central to the work presented in this thesis.

2.2. Role of Requirements Specification

The pervasive nature of the requirements specification can be seen from the
relationships (indicated by the paths 1 to 5 in figure 2.1) between the requirements
specification and the other phases of the system life cycle. The classification of the roles
of the requirement specification, is a modification of the roles defined by Wasserman
[Wass79] and Gorski [Gors88]. The main modifications are the inclusion of the
certification phase and an emphasis on safety~critical issues during the other phases. The

relationships are discussed in the following paragraphs.

1) The requirements specification is a means of precisely stating the requirements of the
customer. The requirements specification is compared against the system concept
(requirements definition) to confirm that the behaviour expressed by the requirements

specification is indeed the required behaviour of the system.

2) The requirements specification provides a structured representation of the problem.
The system designers can exploit this representation to guide their design. The

requirements specification also provides a formal statement against which different

26

Requirements Analysis

Requirements Analysis

Development Phases

Operational Phases

System concept

Implementation

1

Testing and
Validation

1

Certification

Operation and
Maintenance

Decomission

Figure 2.1. Role of Requirements Specification

27

Requirements Analysis

designs can be verified and evaluated. It is possible that problems in the design may force
changes in the requirements specification. In particular, issues related to conflicts between
reliability and safety may force the requirements specification to be modified. A detailed

discussion of how the requirements specification can resolve conflicts is given later.

3) The requirements specification is the statement of system behaviour against which the
implementation can be tested. The requirements specification can therefore be used to
generate test criteria for system testing. To be useful in generating the tests the
requirement specification must stipulate the required behaviour of the system in an

analysable format.

4) In section 1.6.7 it was stated that it is desirable for the requirements specification to
be certified by the licensing authorities before the system enters the design phase. The
main benefit of a certified requirements specification is that it can help the licensing
authority with the certification of the implemented system, by providing the authority with
a precise statement of system behaviour — against which the verification condition and

tests used in the verification and testing of the system can be checked.

5) The problems which can be caused by modification and maintenance were highlighted
in section 1.5. To overcome these problems a thorough understanding of the behaviour
of the controller in a system context is required; this can be provided by a clear
requirements specification. As a general rule, after the system has been certified any
modifications to the system must be preceded by the corresponding modifications in the
requirements specification. The consequences of such modifications to the requirements

specification must be evaluated before the system is modified.

2.2.1. Requirements Specification Viewpoints

Two different views of the requirements specification can be identified, the customer’s
view and the developer’s view (in some cases the developer’s view is partitioned into a

design view and verification view [Wass79]).

The customer’s view of the requirements specification is concerned with the

relationship between the requirements specification and system concept. More

28

Requirements Analysis

specifically, this view must be useful in assuring that the requirements specification
accurately reflects the intended requirements of the system. As such the customer’s view
must be a high-level specification of the requirements expressed in terms of the
“real-world” issues of concern to the customer relating to the behaviour of the system and
the environment in which the system will be installed. To facilitate good communication
during the requirements analysis, the terminology used in the specification should be
consistent with the application area[Yeh80]. In terms of the general model of the process
control system, the customer’s view is concerned with the behaviour exhibited at the

operator console and by the physical process.

The developer’s view of the requirements specification is concerned with the
relationship between the requirements specification and the subsequent phases. More
specifically the view must give a precise description of the required behaviour of the system
in terms of the components of the controller (i.e., the sensors and actuators) and the
relationships between the components and the physical properties of the plant. In terms
of the general model of process control systems, the developer’s view is concerned with

the behaviour exhibited at the operator console and the senors and actuators of the system.

For the two views of the requirements specification to be useful it must be possible
to show that both views are consistent. More specifically, it should be possible to formally
verify that if system behaviour complies with the developer’s view of the requirements
specification, then it must comply with the customer’s view of the requirements
specification.

Analysis of a system, for the construction of the customers view, is performed over
the operator console and the physical properties of the plant. Hence the customer’s view
analysis will be referred to as real-world analysis. Analysis of a system, for the construction
of the developers view, is performed over the operator console and the sensors and
actuators. Hence the developer’s view analysis will be referred to as controller analysis. A
similar partition of the requirements analysis is suggested by Bishop [Bish86] who outlines
an approach in which invariants are used to specify the behaviour of the system, at two

levels.

29

Requirements Analysis

2.3. Structured Requirements Analysis

A structured approach to the requirements analysis of safety—critical computing

systems is proposed. The basic approach consists of three main parts:
e a development model;
* a formal model and
* a development programme.

In the following sections the scheme is discussed in some detail, in terms of the three
parts. The discussion will include the benefits gained from each part of the scheme, in
particular how the scheme can help to resolve some of the general obstacles to the
introduction of computing systems (see section 1.5) which arise in subsequent

development stages, and the specific difficulties in requirements analysis.

2.3.1. Development Model

In the structured approach, system behaviour is analysed at two distinct levels of
abstraction: real world and controller. At the real world level the analysis is over the
behaviour exhibited by the physical process and at the operator console. The properties
of the environment of interest, at the real world level, are the physical laws which govern
the behaviour of the physical process, and the properties which arise from the construction
of the plant. At the controller level, the analysis is over the behaviour exhibited by sensors
and actuators of the controller and at the operator console. The properties of the
environment of interest, at the controller level, include the relationships between the
sensors, actuators and the physical process. It should be noted that the operator console
is in both levels, at the real world level it represents the role of the operator and at the

controller level it represents the information passed from and to the operator.

2.3.1.1. Separation of Issues

For safety-critical systems it has been argued that for a clear analysis of the
safety—related properties, a distinction must be made between the safety—critical and

mission-oriented behaviour of a system [Leve82, Leve84, Mulz85, Redm85]. In the

30

Requirements Analysis

structured approach, the distinction between the safety and mission issues is established
during the requirements analysis. The safety requirements of a system are the requirements
that the system must satisfy to ensure that it is free of any disaster states during its
operation. The mission requirements are the requirements that a system must satisfy to
fulfil the purpose of building the system. Clearly, if the purpose of the system is to perform
a safety function, then a separation cannot be made. Three potential benefits gained by
a separation of the safety and mission issues during requirements analysis are discussed

below.

Resolution of Conflicts

In the system requirements of safety-critical systems conflicts in the required
behaviour of the system may exist between safety and mission-related issues. To allow
trade-offs to be made between such conflicts they must be clearly identified, this can be
achieved by the separation of the system requirements into the safety and mission
requirements. The identified conflicts can then be used to analyse how increased demands
on the functions of the mission affect safety, and to identify the restrictions which would
have to be placed on the functions of the mission to construct an intrinsically safe system

(in the sense that any hazards are eliminated by modifications to the mission).

Focus on Safety-Critical Issues
By treating the safety requirements as a separate issue, the safety requirements can

be derived, and analysed, before a detailed analysis of the mission requirerpents is

performed. In doing so, a solution independent statement of safety is developed.

Clarification of Certification Criteria

The separation allows a clear distinction to be made between critical and mission
failures. This distinction allows the high reliability standards of the licensing bodies (on
the order of 1072 failures/hour) to be expressed with respect to critical failures. That is,
by standards of the form: at most 10~ critical-failures/hour, where a critical failure is a

failure which can lead to a disaster. This form is preferable since it emphasises critical

31

Requirements Analysis

failures, hence it forces the designer of safety—critical systems to precisely define the notion
of a critical-failure. It is hoped that by clarifying the certification standards, using the
notion of critical failures, it may be possible to both achieve and demonstrate that systems
satisfy the standards required by licensing bodies. This hope is based on the premise that
the task of demonstrating that the required standards have been met, will be simplified

by the availability of a precise definition of critical failures.

2.3.1.2. Safety-Critical System Structure

A general structure for safety-critical systems that emphasises the separation of safety
and mission issues is illustrated by the block diagram in figure 2.2. Separation at the
controller level is illustrated by the block diagram in figure 2.3. The safety—critical system
structure introduces two subsystems, the safety and mission subsystems. The subsystems

and the interaction between them is discussed in the following paragraphs.

Mission Subsystem Safety Subsystem

Mission Operator Safety Operator

Mission Controller

fo"~cejeccccccccdeccccncan

Physical Process or Plant

Figure 2.2. Safety-Critical System Structure

Justification for the feasibility of separation of the mission and safety controller arises
from an historical perspective and from the nature of safety. Typically, nuclear systems
[Parn88] and railway control systems [Theu86a] have been produced with separate systems
to handle the safety aspects. Safety is an invariant property, provided that the initial state

is not a hazardous state, for safety it is sufficient for the system to ensure that a hazardous

32

Requirements Analysis

event does not occur. Thus provided sufficient redundancy can be employed, by allowing
the safety controller to concentrate on preventing hazards, the safety controller can be
separated from the mission controller. However, even if a full separation between the
safety and mission controller cannot be realised, considerable benefit can be gained from

a partial separation.

Safety Subsystem

The safety operator is the operator which interacts with the safety-critical functions of
the process control system. The distinction is made between a general operator and safety
operator to emphasize the restricted access to the safety controller. In the diagram an arc
connects the safety operator to the mission operator; this is used to represent the intention
that the safety operator can influence the mission operator (and hence, the mission

subsystem).

The absence of an arc from the mission operator to the safety operator represents the
intention that the mission operator cannot influence the safety operator. The safety
controller is the control system which performs all the safety—critical functions of the
controller. This controller should be kept as simple as possible, that is the choice of
sensors and actuators of the system should be made on the basis of the minimal
functionality required to ensure safety. In the block diagram there is an arc which connects
the safety controller to the mission controller. The link is used to represent the intention
that the safety controller may influence the behaviour of the mission controller. The
absence of a link from the mission controller to the safety controller represents the

intention that the mission controller cannot influence the safety controller.

Mission Subsystem

The mission operator is the operator that interacts with the mission related functions
of the process control system. The mission controller is the controller which performs the
mission related functions of the controller. The sensors and actuators which are used to
build this system will typically be more complex than those of the safety controller. Though

the mission controller cannot directly influence the safety controller, it may be able to

33

Requirements Analysis

influence the safety controller indirectly by changing the value of properties in the physical

process which are subsequently sensed by the the sensors of the safety controller.

Mission controller

Mission Console

Mission Control System

Actuators Sensors

Figure 2.3. Safety-Critical Controller Components

Safety Controller

The components of the safety console are physical buttons and physical indicators; the
buttons and indicators of the safety console should be kept simple as should the
interactions between the safety operator and safety controller. The safety control system
is the control system that implements the control functions of the safety controller (hence
the safety-critical functions of the process control system). The sensors and actuators are
connected to the safety control system. Typically the sensors are used to monitor the state
of the physical process (or mission controller) in order to detect the presence of any
potentially hazardous states, and the actuators are used to affect the state of the physical
process to ensure that the system does not enter a hazardous state. These sensors and
actuators must be very reliable (hence they should be kept simple). The two interfaces of
the safety controller, the safety console interface and safety plant interface, are illustrated

in the block diagrams in figure 2.4. Both interfaces should be kept as simple as possible.

34

Requirements Analysis

Mission Operator

Safety Console

Interface

Mission Console

Interface

Mission Console

Actuators Sensors

Mission Plant Safety Plant

Interface Interface

Physical Process or Plant

Figure. 2.4. Safety-Critical Controller Interfaces

Mission Controller

The dials and indicators of the mission console will typically be more complex than
those of the safety operator console. The mission control system is the control system that
contains the control functions of the mission controller (hence the mission related
functions of the process control system). The sensors and actuators are connected to the
mission control system. Typically the sensors will be used to check the state of the physical
process and the actuators to modify the state to ensure that the behaviour of the physical
process complies with the mission. The sensors and actuators are likely to be more
complex than those of the safety subsystem. The two interfaces of the mission controller,

the mission console interface and mission plant interface, are illustrated by the block

diagrams in figure 2.4.

Benefits of the General Structure

The general structure for safety-critical systems can help in the resolution of several

of the obstacles (to the introduction of computing systems into safety~critical applications)

35

Requirements Analysis

that arise in the subsequent development stages. These specific areas areas are discussed

in the following paragraphs.

Restrictive Maintenance

Clearly, it is desirable that the maintenance of the non—critical components of a system
must not affect the critical behaviour of the system. In the proposed safety-critical system
structure, the mission subsystem cannot (directly) influence the behaviour of the safety
subsystem. This restriction on the influence of the mission subsystem introduces the
possibility of restricting the effects of any modification to the mission subsystem. In
particular, if the structure is rigorously adhered to any modifications to the mission
subsystem cannot directly influence the safety subsystem. However, there is the possibility
of the mission subsystem indirectly affecting the safety subsystem. For example, if the
safety subsystem of a chemical plant assumes that the maximum change in temperature
per unit time is bounded by Atemp, but the mission controller is modified by adding a
heating element which can increase the temperature at a greater rate then the assumptions
under which the safety subsystem is specified will be violated. However, it is possible to
check for this by ensuring that any modification in the mission subsystem does not lead
to violations in any assumption over the behaviour of the physical process that is made
during production of the specifications of the safety subsystem. Such checks should be

possible if all such assumptions are formally documented.

Redundancy

The proposed safety-critical system structure clearly identifies the critical components
of the process control system (hence critical computing systems of the process control
system). This distinction would allow designers to make a more effective use of redundancy

by concentrating on the critical components.

Simpler Interfaces
The proposed safety—critical system structure clearly separates the safety and mission
interfaces. This separation allows the specification of simpler critical interfaces. One of

the main benefits of a simple safety console interface is that simpler definitions of the

36

Requirements Analysis

circumstances under which manual intervention is required can be made and suitable

warning indicators specified.

2.3.1.3. Requirements Phases

The requirements analysis can be partitioned into five main phases. The phases and
the relationship between them is given in figure 2.5. The phases reflect the decision to
perform the analysis at two levels (real world and controller) and to partition the analysis

into the mission analysis and safety analysis. The phases are discussed in some detail in

the following paragraphs.
System Conception
. . . \ .
Mission Analysis Safety Analysis

Mission Real world
Analysis

Mission Controller
Analysis

Figure 2.5. Requirement Analysis Phases

System Conception

The starting point for the construction of a safety-critical system (or any system), is
the perception of a need for the services that will be provided by the system. This
perception is (in the first instance) an informal model of the desired behaviour. This model
is usually presented as an informal specification, expressed in a suitable notation. I shall

briefly describe the role of informal requirements in process control systems. The (ideal)

37

Requirements Analysis

informal requirements for a process control system should precisely specify the properties
or constraints that the behaviour of a system must satisfy to be acceptable, but not how
the behaviour will be realised [Somm82]. For most real systems, it is unrealistic to expect
that the informal requirements will satisfy the condition above - or even remain constant
during the development of the system. Nevertheless, since the informal requirements will
be used as the basis of the analysis (and synthesis) it is important that they be as complete
and precise as possible. The system concept phase should include some initial analysis
which determines the scope/boundaries of the system. This initial analysis should be
performed using a structured analysis approach, such as CORE [Mull79]. For
safety-critical systems, in addition, it is desirable for the informal requirements to specify
the potential disasters that the system must avoid. As a minimum the informal

requirements must specify the safety regulations that the system must adhere to.

Safety Real World Analysis

At the real world level, the safety analysis is performed in three stages which lead to
the production of four essential specifications: a disaster set, hazard specification, safety real
world description and safety real world specification. In the first stage, the potential disasters
of the system are identified and specified as a disaster set. The identification of the
disasters should be performed using system safety techniques, such as check-lists and
Preliminary Hazard Analysis [Rola83]. It is the identification of the disaster set which
allows a distinction between the safety and mission related issues to be made. It is essential
that the identification of the disaster set be as complete as possible, for at best disaster
avoidance precautions can be specified for only those disasters that are identified. The
second stage also deals with the identification of the possible hazards of the potential
disasters of the system. The hazards of the system should be identified by a systematic
analysis of the disasters and the possible system conditions. These identified hazards are
captured as the hazard specification of the system. The second stage also involves the
identification of all the real-world properties and laws which impinge on the safety-critical

behaviour of the system and leads to the production of the safety real world description.

38

Requirements Analysis

These properties and laws, and the assumption that the hazards specify all the conditions
under which a disaster can occur, are the safety (real world) assumptions of the system.
The third stage deals with producing a sufficient condition (the safety real world
specification) over the behaviour of the system, which if satisfied ensures that none of the

disasters can occur under the safety assumptions.

Mission Real World Analysis

At the real world level the mission analysis is performed in two stages which leads to
the production of two essential specifications: mission real world specification and mission
real world description. The first stage deals with the identification of the mission orientated
behaviour of the system, based on the behaviour specified by the system concept (informal
requirements). The mission oriented behaviour of a system has been identified it should
be formally specified as the mission real world specification of the system. The second stage
deals with the identification of all the real-world properties and laws which impinge on
the mission-orientated behaviour of the system, and leads to the production of the mission
real world description. This specification will express the real world assumptions for the

mission of the system.

Safety Controller Analysis

The analysis of the safety controller behaviour is performed in two stages which leads
to the production of two essential specifications: safety environment description and safety
controller specification. The first stage deals with the identification of the relationships
between the sensors and actuators of the safety controller and the properties of the
physical process, and leads to the production of the safety environment description. This
specification will express the safety assumptions of the system. The second stage deals with
the identification of the constraints that must be imposed on the behaviour of the sensors
and actuators, of the safety controller, for the behaviour of the physical process to comply
with the safety real world specification — under the mission assumptions. These constraints

on the behaviour of the safety controller are expressed as the safety controller specification.

39

Requirements Analysis

Mission Controller Analysis

At the controller level the mission analysis is performed in two stages which lead to
the production of two essential specifications: mission environment description and mission
controller specification. The first stage deals with the identification of the relationships
between the sensors and actuators of the mission controller, safety controller and the
properties of the physical process, and leads to the production of the mission environment
description. This specification will express the assumptions for the mission of the system.
The second stage deals with the identification of the constraints that must be imposed over
the behaviour of the sensors and actuators, of the mission controller, for the behaviour
of the physical process to comply with the mission real world specification ~ under the
mission assumptions. These constraints over the behaviour of the mission controller are

expressed as the mission controller specification.

The above model of the requirement analysis phases has been considerably simplified.
For the elicitation of the requirements of most practical systems there will be considerable
backtracking between the phases, and in the different stages of a phase. These issues are

tackled with the presentation of the development methodology.

2.3.2. Formal Model

In this section it will be argued that to gain a complete understanding of a
safety-critical computing system, the requirements of the overall system and the
properties of the environment must be analysed in a common formal framework. This
section is presented in three parts: firstly, general benefits of using formal methods are
discussed; secondly, the benefits of adopting a unified formal framework for all the

specifications are stressed; and finally, the essential attributes that a suitable framework

must possess are presented.

2.3.2.1. Advantages of Formal Models

Some of the advantages of using formal models during the requirements analysis are

discussed in the following paragraphs.

40

Requirements Analysis

Unambiguity

The importance of developing specifications that are unambiguous (and precise) has
been stressed by many researchers [Barn89] and organisations [EWIC85]. In
safety-critical systems unambiguous specifications are vital, for many different parties are
involved in the development of safety-critical systems. The different parties will have
different perspectives on the behaviour of the system; if the specifications are ambiguous
these different perspectives may lead to different interpretations of intended system
behaviour. By having a formal specification with simple straightforward formal semantics,
the possibility of a mistake being caused during the requirements analysis, by
misinterpretation is reduced. For example, a precise description of the required behaviour
is necessary for the development team to have confidence in the testing criteria derived

from the requirements.

Consistency and Completeness

Two problems which are of concern to analysts and designers of systems are those of
consistency and completeness [Wass79, Quir85, EWIC85]. A mathematical model will
allow the analysts and designers to check formally that the specifications are consistent,
in the sense that the different requirements imposed on the system behaviour do not lead
to conflicts. Though a mathematical representation can be used to check some aspects of
completeness [Jaff89] it is very difficult to show that a requirements specification has
specified everything. If we use the analogy between the requirements specification of a
system and a painting of a scene; we can infer that a painting is incomplete if it has an
incomplete object. However, if an object is missing from the painting we cannot infer this
from the painting. Similarly we can infer that a requirements specification is incomplete
if it has an incomplete requirement, however if a requirement is missing this cannot be
inferred. For safety, the notions of disasters and hazards can be utilized in checks of
completeness — by confirming that all the potential disasters of a system have been

identified and then confirming that for each disaster all the hazards have been identified.

41

Requirements Analysis

Formal Verification

By using formal models to represent the specifications the possibility of formal
verification [Davi79] is introduced. However, formal verifications of complex systems tend
to be very difficult, and in some cases the formal verification process is as complicated as
the analysis and development process. This complexity places a question mark over the
usefulness of the formal verification of entire systems in system development. A more
practical approach may be to concentrate on the formal verification of specific properties

of the system, for example the safety of the system.

Automated Development Aids

The use of a formal model in the requirements analysis introduces the potential of
automated development aids. However, at present there are no development tools in
which there is sufficient confidence for them to be used in safety-critical systems [Mose90].
In the analysis of formal specifications, development tools could be used for: automated
checks of consistency and completeness, verification between the specifications at the

different phases, simulation of the requirements specification, and the construction of

rapid prototypes [Roan86].

2.3.2.2. Disadvantages of Formal Models

Some of the disadvantages of using formal models during the requirements analysis

are discussed in the following paragraphs.

Obscure Notation

Formal notations are usually obscure, this arises from the fact formal specification
languages are usually experimental. However, if they are to be used for safety—critical
systems more attention has to be paid to the readability of specifications. Obscure
notations can lead to two problems, firstly, the formalism may create typographic errors,
and more importantly they can cause problems in communication between the analysts

and the customer.

42

Requirements Analysis

Expensive

Formal models can be expensive to use. The cost accumulates from having to teach
staff how to use these models, this arises from a shortage of skilled people; and the
increased effort that must be employed during the requirements analysis, this arises

because of the lack of suitable tools.

Lack of Guidelines

Many formal models do not provide methods or guidelines for their use, basically they
are formal notations, however formal notations do not solve the problems of constructing
specifications. Many problems arise from the inability of analysts to extract information
and handle information. Therefore to realize the potential benefits of using formal
methods, a systematic development methodology is required - to allow analysts to focus
on the realities of the system during requirements analysis and provide a link between the

constructs of the formal model and the system properties.

2.3.2.3. Common Formal Framework

In this section I will argue the importance of modelling the environment and

requirements of safety-critical systems within a common formal framework.

Communication

A common formal framework for the requirements and environment description
reduces the possibility of any errors in communication between the specialist in the
application areas and system analysts. The necessity for good communication, between
application specialists and system designers, is due to the fact that there is unlikely to be
a single person (or single discipline group) with sufficient knowledge of the application
area and system design issues to create an overall picture of the system and its
environment. The problems caused by poor communication during the elicitation of the

requirements have been a major cause in a number of disasters [Leve86].

43

Requirements Analysis

Test Environment

For safety-critical systems it is clearly infeasible for the developed system to be tested
in the physical environment. To test such systems, a simulated test environment is usually
constructed; the formal description of the environment can be used to specify the

characteristics of the test environment [Chan85].

Assumptions

By constructing a formal description of the environment, assumptions which are made
concerning the behaviour of the environment in which a system will work can be stated
in a precise notation. This allows interested parties to question these assumptions, before
they are used to determine the behaviour required from a system. The problems caused
by misunderstandings about assumptions of environmental behaviour have led to several
disasters [Leve86]. By having the environment and requirements in the same formal
framework the affect of any modifications in the behaviour of the environment (due to
a mistake in the original model, or moving the system to a different environment) can be

formally analysed.

Critical Properties

By representing the requirements and environment in the same model, the properties
of the environment can be used in the construction of the verification proofs for the system.
This is particularly important for the formal verification of the safety properties, since it
will allow analysers to identify critical assumptions about the environment. Once the

critical assumptions have been identified, they can be (formally) documented in the

certification.

2.3.2.4. Essential Attributes

In this section I will present four attributes that a formal model must possess, if it is

to be used as the basis of the common formal framework.

44

Requirements Analysis

Physical Laws

The necessity for the model to be able to express physical laws arises from the fact that
the behaviour of the environment of the system is expressed using physical laws. To reduce
the possibility of mistakes in the representation of the behaviour of the environment, the

physical laws must be expressed in a notation which is, as far as possible, the same as the

notation used in the application area.

Parallelism

The necessity to explicitly treat parallelism in specifications which include the
environment has been argued by many researchers [Gors88]. It is necessary to treat issues
related to parallelism in the formal framework during the requirements analysis, since
parallelism is present in the environment and system. The parallelism in the environment
exists since the real world consists of autonomous entities which exhibit parallel behaviour.
Parallelism is included in the requirements specification for two reasons, firstly it allows
the designers to use parallelism to meet stringent timing constraints and secondly it
simplifies the requirements specification of controllers which will be installed in a parallel

environment.

Timing Issues

Timing issues will arise in all of the stages of the requirements analysis. Timing issues
are necessary in the description of an environment, since many of the physical laws make
an explicit reference to time. Timing issues must be treated during the analysis of real
world behaviour of the system when the system must achieve a specified task in a given
duration of time. Timing issues must be explicitly handled in the specification of the
relationship between the sensors and actuators and the physical properties of the plant.
For example, to specify the relationship between the position of a valve and the change
in the volume of liquid in a vessel an explicit reference to time is required. Timing issues
can arise in the relationship between the sensors and actuators of a controller, if a detailed
analysis of the controller is required. For example, consider a valve which must be opened

when a thermometer detects that the temperature of the vessel is above a specified value.

45

Requirements Analysis

For a detailed analysis, the consequences of any delay between the temperature being
detected and the valve being opened on the behaviour of the physical process must be
determined. The timing constraints which are expressed over the behaviour of the safety
actuators and sensors may be critical in the sense that if they are not satisfied the system
may enter into a hazardous state.

The pervasive (and critical) nature of timing issues, during the requirements analysis,
makes it imperative that the formal model be able to express timing issues in a structured
and clear format. It must also be possible to (formally) relate the affect of timing

constraints on system behaviour [Dasa85].

Structured Model

A structured model is necessary to handle the specification of complex real-time
systems [Hare86]. The structure should be present in the technique used to compose the
basic constructs of the model and in the basic constructs. The basic constructs should be
represented in a clear concise notation, have clean semantics, and be able to specify the
behaviour of the system at a high level. To enhance the readability of the specifications,

a graphical representation of the specification should be available.

2.3.3. Development Programme

The development programme must guide the requirements analysis in the context of
the framework. In this section a development programme will be introduced for
safety-critical systems, in the context of the development model, for which the
requirements specifications are represented by the formal model. The necessity for a
development programme arises from the fact that there is usually only limited experience
in the elicitation of complex requirements in the application areas of safety-critical
computing systems, and if any guidelines are available they are usually given in general
terms. The major consequences of this are that the elicitation of requirements is
performed in an ad hoc way which is difficult to document and monitor; thus confusion
can arise between the roles of the different members in the requirements analysis team.

The programme will be described in two sections: firstly a development methodology will

46

Requirements Analysis

be outlined and secondly the role of the members of the requirements analysis team will

be discussed.

2.3.3.1. Development Methodology

A formal model to express specifications is only of limited use if no guidelines on how
to construct and check the specifications, represented by the model, are given.
Furthermore to increase the confidence which can be placed in the accuracy of the
requirements specifications, the process of developing the requirements specifications
must be systematic and suitable for formal reviews [Redm85]. There are three main
principles which underpin the overall requirements analysis scheme, these are:
hierarchical analysis - whenever possible the analysis of the requirements should be
performed in a hierarchical way;
early flaw detection - a flaw in the requirements specification should be detected as soon
as possible;
verification oriented specifications - the structure of the requirements specifications
produced at the end of the different phases, should simplify the formal checks that are

performed over the specifications.

Requirements Analysis Processes

Requirements analysis consists of three processes: elicitation, verification and

validation [McDe90].

Elicitation
Extraction, usually form the potential users of the system, of information about what
the system is required to do. This process is supported by providing prompts in the

guidelines which generate questions, for the extraction of information.

Verification

Checking consistency and, as far as possible, completeness of the specification. This
process is supported by providing verification conditions, and formal checks for

consistency and completeness.

47

Requirements Analysis

Validation
Checking that the specification accurately reflects the requirements of the potential
users, or some authority. This process is supported by providing validation strategies for

the real world specifications.

Development methodologies for the real world analysis will be presented in chapter

seven, and for the controller analysis in chapter eight.

2.3.3.2. Requirements Analysis Team

An important attribute of safety is that it is a global property of the system, hence
system-wide approaches to tackle it are required. Therefore it is essential that any
programme to tackle the design of safety—critical systems must be implemented by a
multidisciplinary team [Barn89, Leve89]. To ensure that the intentions of the development
programme are followed, it is necessary to clearly define the tasks of the members of the
requirements analysis team, in relation to the methodologies of the requirements analysis.
In the following paragraphs I will discuss a possible development scheme, in terms of the

main teams involved during the requirements analysis.

Customer

The customer of a system is the individual, team or organization which has
commissioned the system. The task of the customer is to supply a high-level (informal)
specification of the mission requirements and the safety requirements of the system, in the
form of a system concept. The safety portion of the system concept need only be stated
in general terms, e.g., for an aircraft, the customer may demand: “the system must satisfy
all the safety requirements imposed by the CAA’. The customer’s view of the formal
requirements specification is in two parts: i) the safety-critical specification represented
by the safety real world description and safety real world specification; and ii) the
mission-oriented specification represented by the mission real world specification and

mission real world description.

48

Requirements Analysis

Disaster Analysis Team

This is a team of of application specialists and safety experts. The task of the disaster
analysis team of a system is to identify an initial real world description of that system the

disasters set of the system by an analysis of the system concept.

Hazard Analysis Team

This team, like the disaster analysis team, consists of application specialists and safety
experts. The task of the team is to identify and specify the hazard specification, safety real
world description and safety real world specification by an analysis of the initial real world
description and disaster set. This team (together with the disaster analysts) must then verify
that if the behaviour specified by the safety real world specification is maintained then a

disaster will not occur.

Mission Real World Team

This is a team of system analysts and application specialists. The task of the mission
analysis team is to construct the mission real world description and mission real world
specification by an analysis of the system concept and initial real world description. The
team (together with application specialists and customer) must validate the mission real
world specification. If the customer wishes to confirm that the mission is safe, in terms of
the safety real world specification, the team must verify that a behaviour that satisfies the

mission real world description and mission real world specification satisfies the safety

constraint.

Safety Controller Team

This is a team of analysts experienced with the safety controller methodology (see
later). The task of the team is to construct and verify the safety environment description
and safety controller specification by an analysis of the safety real world description and

safety controller specification.

49

Requirements Analysis

Mission Controller Team

This is a team experienced with the mission controller methodology (see later). The
task of the team is to construct and verify the mission environment description and mission
controller specification by an analysis of the mission real world description and mission

controller specification.

Safety Operator

The safety operator does not play a direct role in the elicitation of the requirements,
but may suggest changes to the mission controller specification, or safety controller
specification. Any changes to the mission controller specification suggested by the safety
operator must be confirmed by the customer before being accepted. Any changes to the
safety controller requirements would have to be checked by the hazard analysis team
before being accepted. The benefits of giving the operator a formal opportunity to
influence the safety controller specification are: i) that the experience of the safety
operator can be useful in the specification of the operator interface and the specification

of schemes for manual intervention; and ii) yet any of his suggestions can be checked.

Mission Operator

The mission operator team does not play a direct role in the development
methodology, but may suggest changes to the mission controller requirements. Any
changes suggested by the mission operators must be confirmed, by the customer, before

being accepted.

Certification Body

The certification body is the regulating authority of the application area into which
the computer system will be installed. If the regulating authority has a graded certification
scheme then the authority must specify the safety grade for the system. Once the
requirements analysis of the system has been completed by the development team, the
authority must certify the specifications. The certification is performed in two stages: i) the

authority must certify that the behaviour defined by the safety real world specification

50

Requirements Analysis

precludes the possibility of a disaster, ii) the authority must certify that satisfaction of the
safety controller specification (under the safety environment description) implies

satisfaction of the safety real world specification.

Management

The management (team) are a team of individuals who are trained in the
co-ordination and management of the development methodology. The task of
management is to ensure that the development team adheres to the guidelines given in
the development methodology. In particular, to ensure that each phase is completed

satisfactorily before proceeding to the next stage.

Table 2.1: Organisational Roles in Requirements Analysis

Initial real world description
Disaster Set

Team Input Specifications Output Specifications
Customer - System concept
Disaster Analysts System Concept Initial real world description
Disaster set
Hazard Analysts System Concept Hazard specification

Safety real world description
Safety real world specification

Mission real world

System concept
Initial real world description

Mission real world description
Mission real world specification

Safety controller

Safety real world description
Safety real world specification

Safety environment description
Safety controller specification

Mission controller

Mission real world specification
Mission real world description

Mission environment description
Mission controller specification

2.4. Working Example

To clarify the main concepts of the specification model, as presented in the following
chapters, the specifications produced during the requirements analysis of a simple

chemical plant “the reaction vessel” will be discussed. The system concept for this example

control system is given below.

System Concept
“A computer system which can control the reaction vessel, illustrated in figure 2.6, is

required. Once the computer system has been installed, the reaction vessel must be able

51

Requirements Analysis

to react a specified volume of chemical A with a specified volume of chemical B, producing
a chemical C. For the reaction between A and B to take place the temperature of the vessel
must be raised above a specified activation value. To achieve a satisfactory yield the
temperature of the vessel must be kept close to the activation temperature. The operator
must be able to specify the reaction volumes (of A and B), and since the activation
temperature depends on the relative volumes he must also be able to adjust the activation
temperature. During the lifetime of the system a light indicating the status of the reaction
vessel to the operator is required. The relationship between the colour of the light and
the status of the reaction vessel should obey the following (informal) rules:
a) it should be green when the vessel does not contain the required volumes of A and B.
b) it should be amber when the vessel does contain the required volume of A and B and
the reaction has not started and
¢) it should be red while the reaction is in progress.

The mission (or safety) operator interacts with the mission controller via the plant dial
- to specify the sequences in which tasks are performed in the reaction vessel.

Furthermore it is known that the chemicals A and B are hazardous, hence the chemical
plant must be certified by a licensing authority. The computing system must ensure that
the overall chemical plant will not enter into a hazardous state. The safety operator
interacts with safety controller via the safety dial. During the lifetime of the system a light

indicating the safety status of the reaction vessel is required. ” The vessel will be referred

to as RV for brevity.

52

Requirements Analysis

InletA - - -
4 <1— Volume
Temperature
InletB OutletC
) ¥
Figure 2.6.a. Plant OutletD

ceeos{o7

Indicator Safelight
Figure 2.6.b. Operator Console

Figure 2.6. Reaction Vessel

2.5. Summary

This chapter has discussed the role of requirements analysis in the development of
safety—critical computing systems. The problems which arise during requirements analysis
were outlined, and some of the current approaches were briefly discussed. The role of the
requirements specification was discussed in relation to the subsequent development
stages. Two view points were identified: the customer’s and the developer’s. These were
related to system behaviour at two levels; the customer’s viewpoint was defined in terms

of real-world properties and the developer’s viewpoint in terms of controller properties.

A structured approach to requirements analysis was outlined. The approach consisted
of three main parts: a development model, a formal model and a development programme.

The development model outlined a general structure for safety—critical computing systems

53

Requirements Analysis

which represents a clear distinction between the safety—critical and mission-oriented
components of the system. The development model also identified the main stages during
requirements analysis and essential specifications produced by each stage. The main
attributes that a suitable formal model must possess were discussed these included: the
ability to represent the behaviour of the environment, the ability to represent timing
requirements and some means to allow specifications to be represented in a coherent
format. The development programme discussed the role of the methodologies which guide
the development of the requirements specification within the development model; and

provided an outline of the organisational roles with respect to the main stages of the

requirements analysis.

54

Basic Concepts

Chapter 3 - Basic Concepts

In this chapter, I will discuss the basic concepts of the proposed formal specification
model. An abundance of formal models have been proposed for real-time systems,
therefore a brief justification for proposing another model in this thesis, is appropriate at
this point. The aim of this thesis is to investigate the role of formal methods in
requirements analysis as opposed to determining which model is most suitable. Hence the
view was taken that by a consideration of the essential specifications; and the class of
systems under consideration an appropriate formal model to study the role of formal
methods should be constructed. Such a model should be a minimal model for the
requirements analysis of the class of systems under consideration. Firstly, I will discuss
how the time base and state space of a model of a system are defined, and give the
definition of the universal history set of a system in terms of the time base and state space.
Secondly, I will discuss the formal representation of a history description. Finally, a set of

satisfaction conditions which can be used to impose constraints over a set of histories, will

be introduced.

3.1. Time

One of the first decisions that must be made in the construction of a specification
model for real-time systems, in which timing constraints will be expressed, concerns the
representation of time in the model. Different time structures for the basis of tense
(temporal) logic have been studied in philosophy, linguistics [Bent80, Bugr84, Kuhn89]
and computing science [Bern81, Miln83, Jaha86, Reed86, Pnue88, Jose89, Ostr90]. A
basic issue of discussion is whether a discrete or dense representation of time should be
used. In the following paragraphs I will discuss some of the benefits of dense and discrete

representations of time; after which I will briefly justify the time base to be used for the

proposed formal model.

55

Basic Concepts

Dense Time

Several formalisms have chosen a dense time base, these include extensions to
qualitative Temporal Logic (TL) [Bern81, Pnue88], extensions to Communicating
Sequential Processes (CSP) [Reed86], extensions to Calculus of Communicating Systems
(CCS) [Miln83] and general models of computation [Jose89).

Four attributes of dense time which make it attractive for a time base of a general

specification model for process control systems are discussed below.

i) Physical laws. The model should be able to express physical laws which govern the
properties of the environment, that impinge on the behaviour of the system. Many of these
physical laws are defined in terms of physical time, e.g., the distance travelled by a train for

a duration of time is given by an integral over the velocity of the train.

ii) Performance measures. In the performance analysis of process control systems time has
been traditionally been treated as a continuous variable. The following quote [Ho89] gives
some justification the treatment of time as a continuous variable in a general specification
model for process control systems: “Performance measures related to Discrete Event
Dynamic Systems (DEDS) are usually formulated in terms of continuous variables, such as
average throughput, waiting time. In fact “time” (a fundamental performance measure) is
by definition and convention a continuous variable. There is little technological or
mathematical advantage in considering a discrete time or “sample-data” model of DEDS.
In fact, many tools, such as queuing network theory or perturbation analysis, explicitly rely

on the smoothing properties of the “expectation” or “average” operator to make analysis

possible.”

iii) Minimum separation. The real world of a process control system consists of many
concurrent interacting processes, for such a system it is not possible to give a minimum
separation between events in the different processes. The lack of minimum separation
makes it difficult to define a granularity of time for a discrete time base, hence a dense

representation of time is more suitable for the real world level.

56

Basic Concepts

iv) Expressiveness. In the context of this work a formalism with a dense time base, can

express the properties of a similar formalism with a discrete time base.

Discrete Time

Several formalisms have chosen a discrete time base, these include extensions to TL
[Pnue88), CCS [Miln83], fair transitions systems [Ostr90], first order predicate calculus
[Jaha86] and Petri-nets [Merl76, Ramc74].

Two attributes of discrete time which make it an attractive time base for a general
formal model for process control systems are discussed below.
i) Discrete Systems. Computers are discrete systems, for which the internal actions occur in
discrete time. Furthermore, since the observations and control commands of the system
can only occur in synchrony with the executions of commands by the control system, they
will lie in the same domain as the other actions of the system [Jose90]. Hence it can be
argued that a discrete time base is a convenient time base when we are concerned with the
behaviour at the controller level.
ii) Simpler Models. A discrete representation of time can lead to simpler models. For
example, Real-Time Logic (RTL) which is described by Jahanian and Mok [Jaha86] has a
discrete time base, this allows to transform formulas of RTL into a restricted Pressburger

arithmetic for which decision procedures are available.

Base Time

If a discrete representation of time is used the notion of a granularity of time would
have to be introduced. However events at the real world level can be arbitrary close.
Although by choosing a small enough time-grain the analysis of arbitrary close events may
be performed in discrete time, as has been suggested by Milner [Miln83], analysis at the
“real world” level would be complicated by having to treat the continuous laws of physics in
a discrete time framework. If a dense time base is used the behaviour at the real world and
controller level can be represented, in a single time framework. The base time set (BT) for
the proposed specification model will be the set of non-negative real numbers. It should be

noted that it is not being suggested that a dense representation of time is the most suitable

57

Basic Concepts

representation of time for all the development stages of any real-time system. Rather it is
being suggested that a dense representation of time (in particular the set of non-negative
reals) is a suitable representation for the requirements analysis of the class of

safety-critical systems considered in the thesis.

3.1.1. Time Points

A time point is an element of BT, the base time set and will be denoted by t; if more
than one time point is required in an expression then the time points will be subscripted as:
tg, t1, From the properties of real numbers we can infer the following four properties of
time points in the base time.
i) The binary relation of temporal precedence (<, less than) over the time set is transitive
(ie., vig, ty, t2 € BT: (to < t1 < tz = tg < t) and irreflexive (i.e., vt € BT: |(t < t)).
ii) The binary relation of weak temporal precedence (<, less than or equal to) over the time
set is transitive (i.€., vto, t1, t2€ BT: (to < t; S tp = ty < 1), reflexive (i.e., vt e BT: t < t)and
antisymmetric (i.e., vto, 1 € BT (< t1 At1< tg= tg = ty).
iii) The property of linearity (i.e., vto, t; € BT: (tg < t1 v t1 < tg v t;=t) holds for the time
set.

iv) The property of denseness (i.e., vtg, t; € BT tg < t; = 3t; € BT: ty < t; < t;) holds for the

time set.

3.1.2. Time Intervals
Within BT various kinds of intervals may be defined, all the intervals will be subsets of
BT. An interval will be denoted by Int; and if more than one interval is required in an

expression then the intervals will be subscripted as: Inty, Inty,

Definition: Time intervals

A subset of BT is a time interval if and only if for any two time points in the subset all time points
from the set BT which lie between the two time points are elements of the subset.
More precisely, Int C BT is a time interval iff vtg, t1 € Int: vt; € BT: (tp < tz < t; = t; € Int).

The following corollary follows from the definition of time intervals.

58

Basic Concepts

Corollary 3.1
A time interval of BT satisfies the temporal precedence, weak temporal precedence, linearity
and denseness conditions. (Clearly BT is itself a time interval).

Proof

The temporal precedence, weak temporal precedence and linearity conditions hold for a time
interval, since a time interval is a subset of BT. The denseness property holds for a time
interval since for any two time points in the set all time points which lie between the two

time points are elements of the interval.

With two time points ty and t;, four classes of intervals of BT can be defined:

Open intervals: (to t1) =% {t e BT| tg < t < t3}, 19, t; € BT, tg < t3;
Closed intervals: [to, t1] =% {t e BT| ty< t <ty}, to, t; € BT, ty < t;;
Half-open intervals: (tg, t1] =9 {t € BT| tg < t < t1}, tg, t; € BT, tg < t; and
Half-closed intervals: [to, t1) =% {t e BT| ty< t < t;}, tg, t; € BT, tg < t;.
For an interval Int, we define a set SI(Int) which is the set of all closed time intervals,

included within Int. From the definition of a time interval we can infer the following two

properties of the set SI(BT),

i) The temporal precedence relation can be extended to cover the intervals in this set as
follows: vintg, Int; € SI(BT): Inty < Int; iff vty € Inty, vt; € Inty: ty < t;.
ii) Similarly we can define the notion of weak (interval) temporal precedence as:

vinty, Int; € SI(BT): Intg < Int; iff vtg € Intg, wt; € Inty: tp < t3.

Unless otherwise stated interval should be understood as a closed one. It should be
clear, that the temporal precedence and weak temporal precedence conditions hold for

SI(BT). However, the linearity condition does not hold for SI(BT).

Boundary Points
For any interval, two boundary points can be defined: the start and end points. Roughly
speaking, the start point is the first time point of the interval and the end point is the last

time point of the interval. The formal definitions are given below.

59

Basic Concepts

Definition: Start point

The start point of an interval Int (denoted by s(Int)) is the earliest time point in the interval.

More precisely, s(Int) = ts.t. vty € Int: t < t,.

Definition: End point
The end point of an interval Int (denoted by e(Int)) is the latest time point in the interval.

More precisely, e(Int) = ts.t. vip € Int: t > to.

Duration

We will define a measure of the length of any interval called the duration of the
interval. Roughly speaking, the duration of an interval is the length of the period of time

represented by the interval. The formal definition is given below.

Definition: Duration

The duration of an interval Int (denoted by dur(Int)) is the difference between the end point and

start point of the interval.

More precisely, dur(Int) = e(Int) - s(Int).

Intersection and Unions
The intersection (and union) of two time intervals will only be an interval if they overlap as

expressed in the following lemmas.

Lemma 3.1
The set given by the intersection of two intervals (say Intg, Inty) is a interval if and only if the

intersection is non—empty.
More precisely, vintg, Int; € SI(BT): (Intg n Int;) € SI(BT) iff (Inty n Int; # 0).

Proof, Immediate.

Lemma 3.2

The union of two intervals (Intg, Int;) is ainterval if and only if their intersection is non—-empty.
More precisely, vintg, Int; € SI(BT): (Intg u Int;) € SI(BT) iff (Inty n Int; 7 @).

Proof. Immediate.

60

Basic Concepts

3.1.3. System Lifetime

The system (operational) lifetime is the time interval of BT given by T(SY), where
s(T(SY)) represents the time point at which the system starts operation and e(T(SY)) is the
time point at which the system is finally closed down. In other words, the system lifetime is
an interval of the time set, which represents the operational lifetime of the system. If the
system is obvious from the context the system lifetime will be denoted by T. For example,
the system lifetime of the reaction vessel is given by the T, where s(T) is the time point at

which the reaction vessel starts operation and e(T) is the time point at which the reaction

vessel is finally closed down.

3.2. State Variables

The state of a system will be given by the values of its state variables. These are the
(time varying) quantities which either have a significant effect on, or measure factors which
affect, the mission or the safety of a plant, e.g., pressures, temperatures and valve settings.
The vector of all the state variables for a system will be referred to as the state vector and
referred to as Sv. A state vector with n state variables, for the system SY, is denoted by:
SY.Sv= (py, ..., Pn)s Piz* Pj» foris j, where p;, pj represent state variablesi, j€ {1,...,n}. The
set of the state variables for a system will be referred to as the state set. The number of
state variables in the state vector is referred to as the state number and is denoted by SY.n.
A state set with n variables, for the system S, is denoted by SY.S = {p, ..., pn}. For a given
system (SY) SY.Sv and SY.S are the same except the former is an ordered sequence and the
latter is a set. Both the state vector and state set represent the variables (i.e., names,

identifiers etc), and not the actual values (these will be defined later).

State Variables Table

The state variables of a system can be concisely represented in a tabular format - as the
state variables table. For each state variable of the system there must be a row in the state
variables table. The table has four columns; the headings and a brief description of the
content of each column is given below.

i) Variables: specifies the notation used to represent the variable, of the form p;.

61

Basic Concepts

ii) Units: specifies the units in which the values of the variable are measured.
iii) Name: specifies the name to be used in informal discussions.

iv) Comments: briefly justifies the introduction of the variable.

For example, in the specification of the reaction vessel twenty nine state variables are
required, the state vector is denoted by RV.Sv = (pj, ..., p29), and the corresponding state

set by RV.S={py, ..., P29} A detailed description of the reaction vessel’s state variables is

given in table 3.1.

Table 3.1: State Variables of Reaction Vessel

Notation | Units Name Comments

P1 seconds (s) Clock A perfect clock of the system.

) dm3 VolA select | The selector on the operator interface for the volume of A
set point.

P3 dm3 VoIB select | The selector on the operator interface for the volume of B
set point.

P4 oK Temp select | The selector on the operator interface for the liquid
temperature set point.

Ps Op_setting | Plant select | The selector on the operator interface that allows the
operator to control the sequence of operations of the
reaction vessel.

Ps oK Temperature | The temperature of the contents of the vessel.

p7 dm3/s FlowA The flow rate of liquid A into the vessel.

Ps dm3/s FlowB The flow rate of liquid B into the vessel.

Po dm3/s Flow The flow rate into the vessel.

P10 dm3 VolumeA | The volume of liquid A in the vessel.

P11 dm3 VolumeB | The volume of liquid B in the vessel.

P12 dm3 VolumeC | The volume of liquid C in the vessel.

P13 dm3 Volume The volume of liquid in the vessel.

P14 dm3/s OutflowC | The flow rate out of the vessel, via OutletC.

P15 dm3/s OutflowD [The flow rate out of the vessel, via QutletD.

P16 dm3/s Outflow | The flow rate out of the vessel.

P17 Sa_setting | Safety select | The selector on the operator interface that allows the
operator to set the VolA set point.

P18 L_state Indicator | The indicator light on the mission operator interface.

P19 L_state Safelight The indicator light on the safety operator interface.

P20 Ex_rating Explosion | The state of the system in terms of the presence or absence
of an explosion.

p21 Lock_set LockA The lock for InletA.

P22 Lock_set LockB The lock for InletB.

62

Basic Concepts

P23 mm ValveD The valve which controls the flow rate out of OutletD.

P24 °K Thermometer { The thermometer which measures the temperature of the
contents of the vessel.

P25 mm ValveA The valve which controls the flow rate through InletA.

P26 mm ValveB The valve which controls the flow rate through InletB.

p27 mm ValveC The valve which controls the flow rate through OutletC.

P28 Reg State | Regswitch | The device which controls the state of the regulator.

P29 Reg_Set Regtemp | The device which is used to set the working temperature of
the regulator.

3.2.1. Variable Ranges

The set of possible values, for a state variable, will usually be determined by physical
laws or construction limitations. This set will be referred to as the variable range and for
variable p; will be denoted by Vp;.

For example, consider the following two cases from the specification of the reaction vessel.
i) Suppose that the temperature of the liquid (in the reaction vessel) must be between T;
and T,°K. Then the range set of the corresponding states variable (pg) is given as:
Vpg = {xe R|T) <x<Ty}. Thisis an example of a constraint imposed by the physics of the
environment.

i) The state variable (p24) representing the digital thermometer must represent only the
values the thermometer can read. Let us suppose the thermometer can read values in the
range 7 to 7 + ILA®°K, with a granularity of Aw°K

The range set is given as: Vpy = {m, m + Am, m + 2.Am, ..., 7 + ILAw}.

This is an example of a constraint imposed by the construction of the plant.

Ranges Table

The ranges of the state variables of a system can be concisely represented in a tabular
format - as the ranges table. The ranges table has three columns; the headings and a brief
description of the content of each column is given below.
i) Variables: specifies the variables.

ii) Range: specifies the range of the variables.

63

Basic Concepts

iii) Comments: briefly justifies the range of the variables.

For example, the ranges of the state variables of the reaction vessel are described in detail

by table 3.2.
Table 3.2: Variable Ranges of Reaction Vessel
Notation Range Comments
P1 T The range of this clock is the system lifetime.

P2 P3 {0, Al, 2.A], ..., L.Al} Where Alisanumber (Al>0) that represents the granularity
of the volume selectors and L.Al represents the maximum
value.

P4 {k1, .. e} Where kj, ..., ky represents the r possible values of the
temperature selector.
ps {off, on, start, collect, end} | The range set represents the five possible states of Plant
select.
Pé {xe RITIS x< Ty} T and T, are the upper and lower limits of the temperature
of the liquid in the vessel.
P {(xeR|0<x < FmaxA} | FmaxA is the maximum flow rate of liquid A into the vessel.
Ps {x€ R| 0 < x< FmaxB} | FmaxB is the maximum flow rate of liquid B into the vessel.
Po {x€ R| 0< x< Fmax} |Fmax is the maximum flow rate into the vessel.
P10, P11, {x € R| 0 < x< Vmax} Vmax is the maximum level of liquid that the vessel can
P12, P13 contain.
P14 {x€ R| 0 < x< OmaxC} | OmaxC is the maximum flow rate out of the vessel, via
OutletC.
P15 {(xeR|0<Sx< OmaxD} | OmaxD is the maximum flow rate out of the vessel, via
OutletD.
P16 {xeR|0<x < Omax} | Omax is the maximum flow rate out of the vessel.
P17 {off, reset, on} The range represents the three possible states of the safety set
switch.
P18s P19 {g.a,r} Where g: green a: amber and r: red
P20 {false, true} False represents the absence of an explosion; and true
represents the presence of an explosion.
P21, P22 {on, off} The locks can be in two states on or off.
P23 {xeR|0<Xx < Dmax} | Where Dmax is the maximum width to which ValveD can be
opened.
P24 {w, m+Am, ... ,m+TLAw} | Where m is the minimum temperature reading, 7 +ILAT is
the maximum temperature reading and Aw the granularity.
p2s {(xeR|0Z<x< Amax} | Where Bmax is the maximum width to which ValveB can be
opened.
P26 {xe R| 0< x< Bmax} | Where Bmax is the maximum width to which ValveB can be
opened.
p27 {x€ R| 0 < x< Cmax} | Where Cmax is the maximum width to which ValveC can be
opened.

64

Basic Concepts

p28 {on, off} On and off are the two states of the regulator,
P29 {k1, .y ke} As in ps.
State Space

The state space of a system SY is denoted as SY. I', and is given by the cross product of
the variable range set. That is, for a system with n state variables, the state space (T') is given

as: T' = Vp; x Vp2 X ... X Vpn_1 X Vpn. An element of the state space is referred to as a

state value (or state) and denoted by V (Vy, V3, ..).

3.3. Variable Categories
One of the main differences between the customer’s and developer’s view of the
requirements specification is in the state variables over which behaviour is specified. To

clarify this distinction, in terms of the states space, three broad variable categories are

introduced.

Physical Variables
The physical variables are the state variables which represent the physical properties of

the plant. The set of physical variables is denoted by P and the vector by Pv.

Definition: Physical variables

The physical variables of a system are those state variables which represent the state of the

physical process.

For example, in the reaction vessel we have: Pv = (py, pg, ..., P16, P20)-

Operator Variables
The operator variables are the state variables which represent the selectors and

indicators of the operator console. The set is denoted by Op and the vector by Opv.

Definition: Operator variables

The operator variables of a system are those state variables which represent the state of the
operator console.

For example, in the reaction vessel we have: Opv = (py, p3, p4, Ps, P17 P18, P19)-

65

Basic Concepts

Transducer Variables

The transducer variables are the state variables which represent the sensors and
actuators of the controller. The set is denoted by Td and the vector by Tdv
Definition: Transducer variables
The transducer variables of a system are those state variables which represent the state of the
sensors and actuators.

For example, in the reaction vessel we have: Tdv = (pj;, ... , p2o).

Real World Variables

The customer view of the requirements specification is given by the specification of
constraints over the physical and operator variables. Collectively, the physical and
operator variables will be referred to as the real world variables. The real world variable
set is denoted by R and the vector by Rv. The real world variables can be partitioned into
two categories which reflect the partition of safety and mission issues in the safety—critical

system structure. These are discussed below.

Safety Real World Variables

The safety real world variables are the real world variables of a system over which the
safety real world specification is imposed. As such the set (or vector) of safety real world
variables is defined during the safety real world analysis. The set is denoted by SR and the
vector by SRv.

Definition: Safety real world variables

The safety real world variables of a system are those state variables which represent the critical

behaviour of the process or the state of the safety operator console.

For example, in the reaction vessel we have: SRv = (p¢, p7, Ps, P9, P10, P11> P17 P19, P20)-

Mission Real World Variables
The mission real world variables are the real world variables of a system over which the
mission real world specification is imposed. As such the set (or sequence) of mission real

world variables is defined during the mission real world analysis. The set is denoted by MR

66

Basic Concepts

and the vector by MRv.
Definition: Mission real world variables

The mission real world variables of a system are those state variables which represent the
mission-oriented state of the process or state of the mission operator console.

For example, in the reaction vessel we have: MRv = (py, ..., P16, P18)-

Controller Variables

The developer’s view of the requirements specification is given by the specification of
constraints over the transducer and operator variables. Collectively the transducer and
operator variables will be referred to as the controller variables. The set is denoted by C
and the vector by Cv. The controller variables can be partitioned into two categories which

reflect the partition of safety and mission issues in the safety—critical system structure.

Safety Controller Variables

The safety controller variables are the controller variables of a system over which the
safety controller specification is imposed. As such the set (or sequence) of safety controller
variables is defined during the safety controller analysis. The set is denoted by SC and the
vector by SCv.

Definition: Safety controller variables

The safety controller variables of a system are those state variables which represent the state of

the safety console or safety transducers.

For example, in the reaction vessel: SCv = (p17, p19, P21, P22, P23, P24)-

Mission Controller Variables

The mission controller variables are the controller variables of a system over which the
mission controller specification is imposed. As such the set (or sequence) of mission
controller variables is defined during the mission controller analysis. The set is denoted by
the set MC and the vector by MCv.
Definition: Mission controller variables

The mission controller variables of a system are those state variables which represent the state

67

Basic Concepts

of the mission console or mission transducers.

For example, in the reaction vessel: MCv = (p;, p3, P4, Ps, P18, P25, P26 P27 P28> P29)-

Variable Relationships

In this section I will present the relationships between the subsets of the state variables.
The physical, operator and transducer variable subsets are:
i) complete with respect to the system state variables set (i.e., Py Op u Td= S);
ii) mutually disjoint (i.e., Pn Op=0,P n Td=¢ and Td n Op = ¢).

The subsets of the real world set (R = P u Op) are complete with respect to the real
(i.e., SR uMR = R). The subsets of the controller set (C =Op u Td) are complete with

respect to the controller set and are disjoint (i.e., SC u MC = C and SC n MC = 9).

3.4. System History

Given the lifetime T and the state space I of a system, a model of the behaviour of a
system during an interval of time can be constructed as an evolution. An evolution through
the states of a system during an interval is a mapping from each time point in the interval to
a system state. For example, the evolution Ev during the interval [t, t;] is a mapping of the

form Ev: [tg, t;] — I (the mapping is illustrated in figure. 3.1).

T S sy >

Ev is a mapping from
an interval to the state
Ev

space.

Figure 3.1. An Evolution

An evolution of the system which starts at the start point of the system (s(T)) and ends
at the end point of a system (e(T)) is referred to as a history of the system. Most process
control systems are unpredictable, in the sense that the history of the system is not known in

advance. Therefore when reasoning about such systems all “possible” histories must be

68

Basic Concepts

considered. This set of histories is called the universal history set of a system, and specifies

all possible behaviours of the system.

3.4.1. History Function

For every possible history (H) of the system, the sequence of values taken by a state
variable p; can be represented as a function H.p;: T — Vp;. Hence a history itself is the
mapping H: T — T, such that H(t)= (H.pi(t), ..., H.px(t)). With every history H there is an
associated set (denoted by H as well): H= {ts,t): t e T As = H(t)}. The set H consists of a
set of snapshots. A snapshot is a tuple consisting of an evaluated state vector and the time of
the evaluation, for a given history. For example, the snapshot at time t, for history H, is
given by the vector (H.py(t), ..., H.pa(t), t). The snapshot space is denoted asT' (=T x T).
The universal history set of a system is denoted by 'H and is the set of all functions H: T —

T. Arbitrary subsets of the universal history set will be refereed to as history sets and
denoted by HH.

To simplify references to the histories it will be assumed that a labelling function
(LFH(H)) which maps a history to a label can be defined. More precisely the function is
such that LfH: 'H — {labels} and LfH(H) ¢ LfH(H’) for all H 5¢ H' (i.e., LfH is an injective
function). The histories can then be referenced by using the labels as indices. The indexed

histories (Hy, x € {labels}) can be defined using the labelling function, where Hy sy = H,

for all H e TH.

Restricted History Functions
In some cases, for a particular history, we may only be interested in the snapshots

during a specified interval of the system lifetime (i.e., a particular evolution). Or

alternatively, we may only be interested in the value of a particular subvector during the

system lifetime.

A restricted domain version of the history function, for a specified interval, can be

stated using the (standard) restriction operator. For example, the restricted version of a

69

Basic Concepts

history H, for the interval Int, is denoted by H | nt, where H | s Int — T, and vt € Int: H | 1
(t) = H().

A restricted range version of the history function which returns only the values of a
specified variable sequence will be defined using a “.” notation, where the subvector of
interest is specified after the “.”. For example if we are only interested in the vector pv (=
(P1, P2, p3)) the restricted history function would be stated as H.pv:
where H.pv: T —+ Vp; x Vpz2 x Vps, and vt: H.pv(t) = (H.py(t), H.p(t), H.ps(t)).

The restricted range and restricted domain functions may, of course, be combined. For
example, the condition that for history H during the interval Int the variables in vector pv must
be equal to (x, y, z) may be formally stated as H.pv|1y = (x, y, z). (A neater construct to

express such conditions is defined later.)

3.5. History Descriptions

In this section I will introduce the formal construct which will be used to define the
environment descriptions, in terms of the universal history set. The construct will be
explained by discussing how it can be used to specify restrictions imposed on system
behaviour, by the physical laws which govern the physical process; and the relationship

between the sensors, actuators and physical process which follow from the construction of
the controller.

Recall that the universal history set of a system specifies the set of all possible histories
of the system, given two fundamental constraints over the behaviour i) the system lifetime
and ii) the variable range constraints. However, if we consider the behaviour of the system
in the context of its environment then many of the histories in the universal history set
could not occur due to the laws of physics and the construction of the machinery. Some of
these restrictions can be formally expressed using the variable ranges, but to formally
express most of the restrictions, more flexible (in terms of expressive power) constraints
(relations) are required. In the model three description relations are provided: i) variable

class relations, ii) invariant relations and iii) history relations.

70

Basic Concepts

The formal semantics of the relations will be so formed, that for every relation we are
able to say whether a particular function H: T — I satisfies it or not. These relations will be

used in the construction of a history description.

Definition: History Description

A history description Desc is a six-tuple Desc = (T, Sv, VB, CB, IR, HR), where T is the system
lifetime; Sv is the state vector; VP is the sequence of variable ranges; CP is the sequence of
variable class relations, {Cpj, ..., Cp,); IR is the sequence of invariant relations, {Iry, ..., Irn)

and HR is the sequence of history relations, (Hry, ..., Hry).

In the following sections, for each relation, I will discuss the motivation for introducing
it and the formal semantics of the relation. Examples of the relations will be given by

illustrating how they can be used to specify properties of the reaction vessel.

3.5.1. Variable Class Relations

In the verification of specifications which are defined over a history set it may be
necessary to assume certain properties of the restricted history functions, representing the
behaviour of a variable during the system lifetime. To capture these properties constraints
are imposed over the functions, by placing them into classes which have the same
mathematical properties. These properties are defined as variable class relations. (It

should be noted that the variable ranges can be considered as a very simple class relation.)

Definition: Variable Class relations

A variable class relation for a variable p; (denoted by Cp;) is a predicate built using standard
relations and logical connectives, and one free function variable p;. No other free variable may
be used.

Semantics

The semantics of a variable class relation will be defined in termé of the satisfaction
condition. We will say that a history H satisfies a variable class relation Cp; if and only if the
substitution of the function H.p; for the function p; results in a well-defined expression

which evaluates to true. This satisfaction will be denoted by H sat Cp;.

71

Basic Concepts

Although all possible class relations cannot be covered here, some of the more common

ones (which should be adequate for most systems) will be discussed.

Data Variables

v

These are variables which possess the property that if their value changes they must
pass through a sequence of values which includes all intermediate values. A typical

example is a variable representing a simple selector on the operator console.

Definition: Data variables
Data variables possess the property that when their value changes from, say, Ky to K; from time
points ty to t] respectively, then for all values k in the range K to K; there must be a time point

during the interval [ty, t;] when the variable takes the value k.

More precisely, if p; is a data variable then

vy, t1 € T: [(to < t1) A (Pi(to) = Ko) A (pilt) = Ky) = vk € K: at € [ty, t1]: pi(t) = k],
where K = {k € Vpi: Ko < k < K;}.

This property is a “generalisation” of the intermediate value theorem (for continuous
functions), it extends the theorem to include discrete functions. To check the classification

for a variable the ordering relation (<) must be defined over the values in the range set.

Non-decreasing Variables

These are variables which represent quantities that can never decrease during the
lifetime of the plant. A typical example is a variable representing the total energy output

from a plant since it was started up.

Definition: Non—decreasing variables

A non-decreasing variable is a variable which can never decrease in value as time increases.
More precisely, if p; is a non~decreasing variable then vInt € SI(T): pi(s(Int)) < pi(e(Int)).
Similarly we can have the non-increasing, increasing and decreasing variables. To check
the classification for a variable the ordering relation (<) must be defined over the valuesin
the range set.

For example in the reaction vessel, the variable pyy (explosion) is non-decreasing.

72

Basic Concepts

Continuous Variables

The class of continuous variables includes most physical variables. They are those
variables for which the restricted history function is continuous during the systems
lifetime. Typical examples are the volume of liquid in a vessel and the flow rate of liquid
into a vessel.

Definition: Continuous variables

For a continuous variable p; the corresponding restricted history function H.p; is a continuous
function over the systems lifetime.

More precisely, for a continuous variable p; the following three conditions hold:

vt € (s(T), e(T)): lim pi(x) exists;
vt € (S(T), e(T)): lim pi(x) = H.pi(t);

lim H.pi(x) = H.pi(s(T)) A 1im pi(x) = pi(e(T)).
x—s(T) x~e(T)

For example, of the real world variables of the reaction vessel the following are continuous
variables: py, ps, ..., p16- (Continuous variables are, of course, integrable over the closed

interval T.)

Free Variables

The class of free variables, are those variables for which the null constraint is imposed

on the restricted history functions. Typical examples are switches at the operator console.

Definition: Free variables

For a free variable the class relation is true.

For example, of the real world variables of the reaction vessel the following are free

variables: py, p3, Pss Ps, P17, P1s, P1o-

We will say that a history H of a system satisfies the variable class relations of a system if

and only if the function H sat Cp;, for all i € {1, ..., n}. This will be denoted by H sat CP.
For a particular application it may be necessary to specify additional classes. For

example, if fluid mechanics are used to reason about the environment then a class of

differentiable variables would be required. From the above examples it should be obvious

73

Basic Concepts

how to define a class of variables. From the definition of a variable class relation, it must

be possible to determine whether or not a history satisfies the restrictions imposed by the class.

Class Table

The category and classes of the variables of a system can be represented concisely in a

tabular format - as a class table. A class table has four columns; the headings and a brief

description of the content of each column is given below.

i) Variables: specifies the variables.

ii) Category: specifies the category of the variables.

iii) Class: specifies the class of the variables.

iv) Comments: briefly justifies the category and class of the variables.

The categories and the classes of the reaction vessel are given in table 3.3.

Table 3.3: Class and Categories of Reaction Vessel Variables

Variables | Category Class Comments
P1 Physical Perfect clock | This variable represents the perfect clock of the system
(see later).

P2, P3, P4, Operator Free No restrictions are imposed on the histories of the
Ps, P17 variables which represent quantities on the operator
P18, P19 interface.

P65 +++s P16 Physical Continuous The variables which represent the physical properties of
the reaction vessel have continuous histories.
P20 Physical Catastrophe | Once an explosion has occurred in a history the explosion
variable remains true for the rest of the history. (see
chapter 5)

P21, P22, Controller Free No restrictions are imposed on the histories of the values

P24, P28, of the lock, thermometer or regulator.
P29

P23, P25, Controller Continuous These variables represents the extent to which a valve is

P26, P27 opened, hence they are all continuous variables.

3.5.2. Invariant Relations

In a system state the possible values of a state variable will be constrained by

relationships with each other. Invariant relations are used to concisely express

relationships which hold during the entire system lifetime. These relations are formulated

as system predicates.

74

Basic Concepts

Definition: System predicate

A system predicate (SysPred) is any predicate built using standard logical connectives; standafd
mathematical functions and relations; and n free value variables py, ..., p, of type Vpy, ..., V.
No other free variables can be used.

Semantics

The semantics of a system predicate will be defined in terms of the satisfaction
condition. A state value V (= (xi, ..., Xp), where x; is of type Vp;) satisfies a system predicate
if and only if substitution of each x; for p; within the system predicate results in a
well-defined Boolean expression which evaluates to true. (The evaluation of such an

expression is done in the usual way.) We denote this by writing: V sat SysPred.

Definition: Invariant relation
A system predicate SysPred is an invariant relation for a history H iff (H.p; (t), ..., H.p,(t)) sat
SysPred for all t € T. This satisfaction will be denoted by H sat SysPred.

Real World Invariant Relations

Two examples of real world invariant relations are presented below, where the first
property is derived from a physical law, and the second property is derived from the
construction of the machinery.

i) In a system which contains N moles of an ideal gas the variables which represent the
pressure (py), volume (py) and temperature (p,) of the gas must always satisfy the ideal gas
law. This can be precisely stated as a simple invariant relation: (px.py) =N.R.p;.

ii) In the description of the reaction vessel an invariant relation is used to describe the
relationship between the flow rates into a vessel. That is, the flow rate (pg) into the vessel is

the sum of FlowA (p7) and FlowB (ps). This can be precisely stated as: pe = p7 + Ps-

Controller Invariant Relations

Invariant relations can be used to state simple relationships between sensors,
actuators and the physical process. An example of how invariant relations can be used to
specify the relationship between the actuators of a controller and the physical properties

of a plant, drawn from the reaction vessel, is presented next. In the reaction vessel the flow

75

Basic Concepts

rate out of the outlet valve (p14) is given by a function over the volume of liquid (p;3) in the
vessel and the outlet valve setting (p27): P14 = foc(p13, P27), where foc(pi3, p27) gives the

flow rate as a function of the valve setting and the volume of liquid in the vessel.

Two examples of how invariant relations ‘can capture special properties of
safety—critical systems (those of imprecision and redundancy) are discussed in the

following paragraphs.

Imprecision

In process control systems, the value of a continuously changing variable is sampled
only at discrete time points determined by a sampling interval. Thus the “measured” values
are (at best) the “real” values at these time instances. However, even at the time point at
which the system senses the real value the measured value can only be an approximation of
the real value - due to measurement errors. From the above discussion we can infer that it
is unlikely that the real variables and the measured variables will be equal during a history.
Nevertheless, assuming that the sensor is working as required, the real variable (p;) will
always be related to the measured value (p;); the relationship should be expressible in the
form of a bound on the difference in the two values (i.e., the imprecision). Such
relationships can be expressed simply by an invariant relation.
For example, in the reaction vessel, suppose the temperature (pg) is measured by a
thermometer (py). The two sources of imprecision are i) the maximum error in the
thermometer, which is say ATp;, and ii) the maximum error due to discrete sampling,
which is say ATp; (for a given sampling frequency). By combining the two error constants
the following invariant relation can be defined: | pg— ps| < ATp; + ATp,. Of course, if we

define ATp = ATp; + ATp,, the invariant can be stated concisely as:|pg— pas| < ATp.

Redundancy

In many safety-critical systems redundancy is employed at the component level, to
achieve the required high level of reliability. Therefore it is reasonable to expect that a

model for safety—critical systems should be able to represent redundant systems simply. In

76

Basic Concepts

particular the modification of a non-redundant description to a description with

redundant components should be straightforward.

As an example of how invariant relations can be used to specify some issues of
redundancy, the introduction of redundant sensors in the reaction vessel is considered
below. Suppose that in the safety controller specification a condition is imposed on the
thermometer (p,4) in the form p,4 > temp;, which is a trigger to a recovery event, that is:

If p2s4 = temps Then recovery actions

Further, let us suppose that the safety controller analysts decide that the single
thermometer test is too unreliable, and he wishes to improve the probability that the
recovery actions are initiated by adding a redundant thermometer (say, psp). The
component description can be simply modified by replacing the invariant relation over the
thermometer (py4) by the following invariant relation: |pys — ps| < ATp v |p3g - ps| <
ATp. The confidence which can be placed in the second invariant relation being much
greater (i.e. the probability that the invariant holds for an arbitrary history of the system).
The trigger condition can then be restated as Min(py4, p3g) = temps, that is:

If Min(pa4, p30) = temps Then recovery actions.

3.5.3. History Relations

Some of the relationships over state variables cannot be expressed using invariant
relations. A typical example is the relationship between the change in the liquid level over
a given interval of time and the flow rate into and out of the vessel during the interval. The
main reason why these sorts of relationships cannot be specified by invariant relations is
that the relationship, between the variables, must be imposed over all evolutions (partial
histories) of a history; whereas invariant relations can only impose constraints over all the
states of a history. For relationships which hold for all evolutions a more powerful relation
is required - this is referred to as a history relation; these relations are formulated as

history predicates.

77

Basic Concepts

Definition: History predicate |
A history predicate is a predicate which is built using standard mathematical functions,
relations and logical connectives; and two free time variables Ty, T1, 2.n free value variables
P10, s Pn0s P11 Pn1 (Where p;; has type Vp;), n free function variables p, ..., pn (where p; is
a function of class Cp;). No other free variables may be used. |

Semantics

We will say that a history H satisfies a history predicate HistPred for an interval (open or
closed) Int if and only if the expression resulting from substituting: i) s(Int) for Ty, ii) e(Int)
for Ty, iii) H.pi(s(Int)) for p;,g, for all i, iv) H.p;(e(Int)) for p;,; for all i, v) H.p; for p; for all i,
is 5 well- defined expression which evaluates to true. We will denote this satisfaction by

writing: H sat HistPred@Int.

Definition: History relation
A history predicate HistPred is a history relation for a history H if and only if H sat
HistPred@Int for all Int € SI(T). This satisfaction will be denoted by H sat HistPred.

Real World History Relations

Two examples of history relations, drawn from the history description of the reaction

vessel, are discussed below.

Temperature relation

Let us suppose that an analysis of the derivative of the temperature (pg), shows that the
maximum rise in the temperature per second is bounded by ATm. This can be formally
expressed by the following history relation: pg; < pso + ATm x (T - Ty). To simplify
history relations which are expressed in terms of the duration of an interval, an
abbreviation convention is adopted in which dur represents T; - Ty in a history relation.

The abbreviated version of this relation is: ps; < pso + ATm x dur.

Volume relation
For the reaction vessel the volume of liquid in the vessel (p3) at the end of any interval
Int is the volume at the start point of Int minus the integral of the flow rate out of the vessel

during Int, provided the flow rate into the vessel is zero during Int. To simplify the history

78

Basic Concepts

relation which describes this property, an abbreviation convention is adopted in which the
limits for an integral over the interval are omitted. The (abbreviated) history relation for

the volume relation is: (vt: po(t) =0) = (p13,1 = p130 - [P16(t) dt).

Controller History Relations

History relations can be used to specify the relationship between complex sensors,
actuators and the physical process, typical examples are automatic control devices. An
investigation into the construction of several specifications, showed that they can become
involved and difficult to understand. Though the abbreviations discussed in the previous
section can simplify some expressions, the specification of relationships between
transducers and the physical process can still lead to complicated history relations. To
further simplify the expressions an abbreviation convention is introduced. If the universal
quantifier is imposed over a variable t on the interval [Ty, Ty], the interval will be omitted.
Furthermore if the universal quantifier is imposed over the variable t on the interval
[To+ Ax, T1-Ay]), the interval will be denoted as (Ax, —Ay), both Ax and Ay are

non-negative.

As an example of how the abbreviations can be used to simplify history relations, the
history relation for the temperature regulator of the reaction vessel is given below in full (i)

and in its abbreviated form (ii):

i) vt € [To, T1]: [(p2s(t) = on A p29 ()= p29p A Po(t)=0A T1 - Tp > ARt(p29,0)
= vt € [To+ ARt(p29), T1}:|p29 -ps| < AReg];

ii) vt: (p2g (t)=o0n A p29 (t)=p2,0 A Po(t)=0A dur > ARt(p290))
= vt: (ARt(p29,), 0): |p29 -ps| < AReg).

The history relation of the temperature regulator, states that if the regulatoris on (i.e.,
p2s = on) for an interval during which regulator set (p2o) is constant, the flow rate out of the
vessel is zero; and the duration of the interval is greater than the value given by ARt(pz9),
then after the first ARt(p29 o) seconds of the interval the temperature is within AReg of the

set value. Hence the history relation captures the fact that ARt is a function which defines

79

Basic Concepts

an upper bound on the time taken for the regulator (under the given circumstances) to

stabilize the temperature of the reaction vessel at approximately the set value (i.e., p29,0)-

Relations Table

/

The relations of a system can be concisely represented in a tabular format - as a
relations table. For each relation of the environment description there is a row in the
relations table. The table has four columns; the headings and a brief description of the
content of each column is given below.

i) Number (No.): specifies the number of the relation.

ii) Related variables: specifies the variables over which the relation is defined.

iii) Relationships: specifies the relation in the standard notation.

iv) Comments: briefly justifies the relation.

For example, an extract of a relations table over the real world variables of the reaction

vessel is given in table 3.4.

Table 3.4: Reaction Vessel Description Relations

No. | Related Relationship Comments
variables
Iy | P1,Ps; P9 | P9 = P7+P8 The flow rate into the vessel is the sum of
FlowA and FlowB.
Ir | p1o, P11, | P13 = Pro+p11+p12 The volume of liquid in the vessel is the sum
P12, P13 , of the volumes of A, B and C.
Ir3 P14, P15, | P16= P15+ D14 The flow rate out of the vessel is the sum of
P16 OutflowC and OutflowD.

3.5.4. Comparison of Relations

In this section, I will briefly compare the sort of properties that can be expressed by the
description relations and the variable ranges (for the purpose of this comparison it is
convenient to consider variable ranges as range relations RR). Firstly, it should be stated
that it is not being claimed that all possible properties can be represented by the
description relation, only that a useful set of properties can be represented by the relations.
Clearly, all the relations can be used to express the range of the variables. Furthermore,

properties expressed as variable class relations and invariant relations can be expressed as

80

Basic Concepts

history relations. However, there is no simple relationship between the properties which
can be expressed by the variable class and invariant relations. Hence, there exists a simple
partial ordering of the expressiveness of the relations. This partial ordering is illustrated by

figure 3.2.

HR

An arc exists from a sort of relations A to another sort B if
IR CP and only if any property expressed by a relation of sort B
can be expressed by a relation of sort A.

RR

Figure 3.2. A Partial Ordering of Description Relations and Ranges Relations

3.5.5. History Description Sets

A history description can be used to define a set of system histories which satisfy the

restrictions imposed by the relations of the description - as a history description set.

Definition: History Description Set
The history set of a description Desc is the subset of all universal histories which satisfy the

relations of the description. This will be denoted by Set(Desc).

Set(Desc) = {H € I'H| H sat CP A H sat C(IR) A H sat C(HR)},
where C(IR)= Ir; A ... AIr, and C(HR)= Hrj A ... A Hry.

A super set of the history description set can be defined if the restrictions imposed on
the universal history set are restricted to those specified by the invafiant relations. This set
of histories will be referred to as the invariant histories.

Definition: Invariant histories

The invariant history set of an description Desc is the set of all universal histories which satisfy

81

Basic Concepts

the restrictions imposed by the invariant relations. This will be denoted by Iset(Desc).

More precisely, Iset(Desc) = {H e TH| H sat C(IR)}.

3.6. Clocks

In the formal model clocks will be considered z;s entities which measure the absolute
time of the time base during the operation of the system (i.e., the system lifetime). Clocks
will be represented as state variables. We will mainly be concerned with two classes of
clocks, those at the real world level (perfect clocks) and those at the controller level

(controller clocks).

Perfect Clocks

Aperfect clock is a hypothetical clock which can be used to specify constraints over the
behaviour of the system at the real world level. In terms of the model a perfect clock is a
physical variable.

Definition: Perfect clock
A physical variable is a perfect clock for a description D if and only if its variable class relation
imposes the constraint that at any time point during the system lifetime the value of the variable
is equal to the time point.

More precisely, p; € P is a perfect clock for a description D iff Cpy(D)= (vt € T: p;= t).

Controller Clocks

A controller clock is a mechanical clock which can be used to specify constraints over
the behaviour of the system at the controller level. A controller clock can be viewed as a
“sensor” for a perfect clock; hence a controller clock is a controller variable. Several types
of controller clocks can be defined, but here I will define a clock for which there isa bound
on the difference between its value and the value of a perfect clock. These types of clocks
will be called bounded clocks. |
Definition: Bounded clocks
A controller variable is a bounded clock for a description D if and only if there is an invariant

relation which imposes an upper bound on the difference in the value of the variable and a

82

Basic Concepts

perfect clock.
More precisely, p; € C is a bounded clock for a description D iff there is an invariant

relation in IR(D) which is equivalent to (|p; -p1| < Av), where p; is a perfect clock.

3.7. Real-time Satisfaction Conditions

In this subsection I will introduce a set of satisfaction conditions that can be used to
specify the behaviour of the system at the real world and controller levels. It is not claimed
that all possible system behaviours can be specified by the real-time conditions, but for
many systems in the class of systems investigated in this theses they should be sufficient to
specify the required behaviour. In part this is justified by the examples presented in this
section. (Further justification is given by the specifications that are expressed in chapters 4,
5 and 6; and the appendices B and C.) In the following subsections, I will introduce the
satisfaction conditions, and give some examples of how they can be used to formally
express informal specifications. The term constrained histories will be used as a general
term for the set of description histories (DH) which satisfy these conditions; the set will be

denoted by CH.

3.7.1. System Predicates

The first three conditions will be formulated as system predicates (see section 3.5.1).
As an example, consider the following system predicate for a system with four variables:
SysPred = p; < p2 A p3 = p4. Now, if we consider the two state values V| = (4, 5, 4, 3) and
V2 = (4,5, 3, 4), we can say V] sat SysPred and V; sat 1SysPred.

Properties
In the formalisms below V stands for an arbitrary state value.

Negation: 1(V sat SysPred) =V sat 1SysPred.

Implication: (SysPred; = SysPred;) =% (vV e T: [V sat SysPred; =V sat SysPred;]).
Equivalence: ~ (SysPred; = SysPred)) =%f (vV € I': [V sat SysPred; =V sat SysPred;]).
Distributive (A): (V sat SysPred; A V sat SysPred;) = (V sat SysPred; A SysPred;).
Distributive (v): (V sat SysPred; v V sat SysPred;) « (V sat SysPred; v SysPred)).

83

Basic Concepts

System predicates will not be used directly to construct specifications, but will be used to
construct real-time satisfaction conditions which can then be used to impose constraints

over histories.

System Predicate Examples

Some examples of how system predicates can be used to express conditions over the
state of the reaction vessel are given below.
Temperature Predicate
The condition that the temperature of the vessel is less than the minimum activation
temperature, is expressed by the following system predicate: ps < Mact.
Volume Predicate
The condition that the volume of A is approximately (i.e., within AvA) of the set point value
and the volume of B is approximately (i.e., within AvB) of the set point value, is expressed by
the following system predicate: |pig- p2] < AVA A |p11-p3] < AvB.

If a system predicate is used in several constructs during the specification of a system,
to simplify the references to the predicate, an abbreviation can be used to denote it. For

example, the volume predicate of the reaction vessel is abbreviated to Dvol, where Dvol =

(Ip1o- p2| < AvA A |p11- P3| < AvB).

3.7.2. Point Satisfaction

This is used to capture the notion of a system predicate being satisfied by the state
given by evaluating a history at a specific time point. That is, point constraints are used to
impose constraints over snapshots of a history.

Definition: Point satisfaction

A system predicate SysPred is satisfied for a history H at a time point t if and only if the state
value (H.pi(t), ..., H.py(t)) sat SysPred. This is denoted by H sat SysPred@t.

Properties |

In the properties below H will stand for an arbitrary history and ¢ an arbitrary time point.
Negation: 1(H sat SysPred@t) « H sat 1SysPred@t.

Implication: (SysPred; = SysPred;)

84

Basic Concepts

= (vH € TH, vt € T: [H sat SysPred;@t = H sat SysPred;@t]).
Equivalence: (SysPred; = SysPred;

« (vH € TH, vt € T: [H sat SysPred;@t = H sat SysPred;@t]).
Distributive (7): (H sat SysPredi@t A H sat SysPred;@t)

« (H sat (SysPred; A SysPred))@t)]
Distributive (v): H sat SysPred;@t v H sat SysPred;@t « H sat (SysPred; v SysPred;)@t.

Point Satisfaction Examples

Two useful roles that point satisfaction can play in specifying a set of constrained

histories are discussed below.

At a specific time

Point satisfaction can be used as a quantitative temporal predicate to specify a set of
histories for which a system predicate holds at a specified time point. For example, suppose
we have the requirement that: “the temperature of the mixture in the vessel (pg) should be
below a specified value (temp) at a specified time (t;)”. The set of histories which satisfy the
requirement can be stated using by a point satisfaction condition as:

CH = {H e DH]| H sat (pg < temp)@t;}.

At some time

Point satisfaction can also be used as é qualitative (c.f. linear temporal logic [Emer86])
temporal predicate to specify requirements which must hold at some time point. For
example, suppose we have the requirement that: “the temperature of the liquid in the
vessel (pg) should be below a specified value (temp) at some time during the lifetime of the
system”. The set of histories which satisfy the requirement can be stated using by a point

satisfaction condition as: CH={H € DH| at € T: H sat (pg < temp)@t}.

3.7.3. Interval Satisfaction

This is used to capture the notion of a system predicate being satisfied by the set of

states given by evaluating a history at each time point of a specific interval. Thatis interval

85

Basic Concepts

satisfaction is used to impose a constraint over evolutions of a history.

Definition: Interval satisfaction

A system predicate SysPred is satisfied for a History H during an interval Int ifand only if H sat
SysPred@t for all t € Int. This is denoted by H sat SysPred@Int.
Properties

In the properties below H is an arbitrary history and Inty, Int; are two arbitrary intervals.

Negation: 1(H sat SysPred;@Intp) « 3t €lnty: H sat 1SysPred;@t.
Implication: (SysPred; = SysPred;) w

(vH eTH, vinty € SI(T): [H sat SysPred;@Inty = H sat SysPred;@Inty])
Equivalence: (SysPred; « SysPred;) «

(vH eTH, vintg € SI(T): [H sat SysPred;@Inty = H sat SysPred;@Into)).
Distributive (7): H sat SysPred;@Inty A H sat SysPred;@Int

« H sat (SysPred; A SysPred;)@Int,.
Distributive (v): H sat SysPred;@Inty v H sat SysPred;@Inty

= H sat (SysPred; v SysPred;)@Int,.
Projection (A, n): H sat SysPred;@Intg A H sat SysPred;@Int; A (Inty 0 Int;) 5 ¢

= H sat (SysPred; A SysPred;)@(Inty n Int;).
Projection (v, n): H sat SysPred;@Intg v H sat SysPred;@Int; A (Intg n Inty) 5 ¢

= H sat (SysPred; v SysPred;)@(Inty n Inty).
[Note: the condition (Intyn Int;) 5 @ ensures that Inty 1 Int; is an interval (see lemma 3.1).]
Projection (A, u): H sat SysPredi@Inty A H sat SysPred;@Int; A (Inty n Inty) 7 0

= H sat SysPred;@(Inty u Inty).

[Note: the condition (Intgn Int;) % @ ensures that Intyu Int; is an interval (see lemma 3.2).]

Interval Satisfaction Examples

Two useful roles that interval satisfaction can play in the specification of a set of

constrained histories, will be discussed below (c.f. point satisfaction roles).

During a specific interval

Interval satisfaction can be used as a quantitative temporal predicate to specify a set of

86

Basic Concepts

histories for which a system predicate must hold in a specified interval. For example,
suppose we have the requirement that: “the temperature of the liquid in the vessel (1;6)
should be below a specified value (temp) during a specified closed interval given by [t;, t;] .
The set of histories which satisfy the requirement can be specified as:

CH={H € DH]| H sat (pg < temp)@|[t;, t;]}.

During some interval

Interval satisfaction can be used as a qualitative temporal predicate to specify a set of
histories for which a system predicate must hold for some interval in the systems lifetime.
For example, suppose we have the requirement that: “there must be some interval during
the systems lifetime of duration at least At when the volume of liquid A (py) is
approximately (within Al of) VolA select (p;)”. The set of histories which satisfy the
requirement can be specified by an interval satisfaction condition as:

CH={H e DH] 3lInt € SK(T): dur(Int) > At A H sat (|p1g- p2| < Al)@Int}.

3.7.4. Events

In the specification of real-time systems a useful notion has been that of an event,
which can be described informally as a condition which holds at a particular point in time.
Though the notion of an event has often been used in the specification of real-time systems
a formal definition of an event is rarely given. In a paper by Heninger [Heni80] it is
recognised that an occurrence of an event (which is specified by a condition) is dependent
on the behaviour of the system prior to the time at which the condition holds. However, the

notion is not formalized.

In a paper by Jahanian and Mok [Jaha86] events are introduced informally as “An
event serves as a temporal marker, i.e., the occurrence of an event marks a point in time
which is of significance in describing the behaviour of the system.” Later in the paper they
formally relate the notion of an event to time by the definition of an occurrence function.
The occurrence function maps the i'* occurrence of an event onto a non-negative integer
which represents the time of the i* occurrence. In the treatment of events by Jahanian and

Mok it is implicit that the condition which must hold true for the occurrence of the event

87

Basic Concepts

does not hold at the time point just before the value given by the occurrence function, this

property is not formally expressed as a property of an event.

In the discussion which follows, an event is considered to be a time point at which a
condition holds at the end of an interval during which the condition did not hold. Thus an
event constitutes the transition of a condition becoming true after a period in which it was

false.

Event Satisfaction

The notion of an event which occurs (for the first time in an interval) at the end point of
an interval is captured in the formal framework. Such an event can be defined in terms of
point satisfaction: an event characterized by the system predicate SysPred is satisfied for a
history H on an interval Int if and only if SysPred is not satisfied for every time point up to
the end point of the interval and is satisfied at the end point of the interval.

Definition: Event satisfaction
The event characterized by SysPred is satisfied for a history H on an interval Int if and only if
H sat 1SysPred@t for all t € Int — {e(Int)} A H sat SysPred@e(Int). This satisfaction will be
denoted by H sat SysPred®Int.

Properties
Negation: 1 (H sat SysPred@Int)

= TH sat 1SysPred@Int - {e(Int)} v TH sat SysPred@e(Int).
Equivalence: (SysPred; = SysPred;)

(vH eTH, viInt € SI(T): [H sat SysPredi®Int = H sat SysPred;®Int]).
Distributive (7): H sat SysPred;oInt A H sat SysPred;oInt

= H sat (SysPred; A SysPred;)®Int.

Lemma 3.3

If a history satisfies the negation of a system predicate during any Int interval then the real-time
event which is built using the system predicate cannot be satisfied by the history for any interval
x included in Int.

More precisely, vint € SI(T): [H sat 1SysPred@Int = vx e SI(Int): TH sat SysPredox].

88

Basic Concepts

Proof
The proof is given by showing that if we assume that the event is satisfied for any inter\\zal
included in Int we have a contradiction.
Assume 3x € SI(Int): H sat SysPredox
3t € Int: H sat SysPred@t.
1(H sat 1SysPred@Int) (contradiction).

Event Satisfaction Examples

Two examples of how event satisfaction can be used to specify constraints over the
behaviour of the system are given below.
For a specific interval

Event satisfaction can be used as a qualitative temporal predicate to specify a set of
histories for which an event must hold for some interval in the system lifetime.

For example suppose we have a system which contains a lamp with two bulbs, one
green and one red. For which py and p, represent the states of the green and red bulbs
respectively. For such a system suppose we have the requirement that: “the green bulb is
on during the interval Int; and the red bulb is on at the end point of Int, but at no other time
point during the interval”. In this case we must specify the event of turning the red bulb on
at the end of the interval. The set of histories that satisfy the requirement can be formally

specified as: CH = {H € DH| H sat p, = on@Int A H sat p,= on@Int}.
For some intervals

Event satisfaction can be used as a qualitative temporal predicate to specify a set of
histories for which an event must hold for some interval in the systems lifetime.
For example suppose we have the requirement that: “... at the instant the volume of
‘liquid in the vessel becomes greater than or equal to v; the Indicator must be atred. ...”. In
this case we must specify the fact that the indicator is at red when the event that marks the
points at which the volume is greater than v, occurs. The set of histories that satisfy the
requirement can be formally specified as:

CH = {H € DHj vInt: (H sat p;3 = v; ®Int A dur(Int) > 0) = H sat p;g = r@e(Int)}.

89

Basic Concepts

3.7.5. Time Bound Constraints

Time bound constraints will be used to impose constraints over an interval in the
lifetime of a system. Since time bound constraints impose constraints over intervals, they
can be used to impose restrictions over a history set.only when they are used in conjunction

with system predicates.

Definition: Time bound constraint

A time bound constraint Tb is any predicate built using standard logical connectives; standard
mathematical functions; and a free variable Iv of type SI(T). No other free variables can be
used.

Semantics

The semantics of a time bound constraint will be defined in terms of the satisfaction
condition. We will say that an interval Int satisfies a time bound constraint Tb if and only if
the substitution of Int for Iv into Tb leads to a well-defined Boolean expression which

evaluates to true. We will denote this by Int sat Tb.

Time Bound Constraint Examples

As was stated previously, by themselves, time bound constraints cannot impose any
restrictions on the set of system histories. However, they can be used in conjunction with

the point and interval constraints.

Bounded point satisfaction
Time bound constraints can be used to impose a bound on the time between which two

point satisfaction conditions hold.

For example, suppose we have the requirement that: “... If the volume of liquid A (p1p)
“in the vessel is equal to vy at some time point (tg), there must be a time point (t;), within At
of ty, at which the volume of liquid A in the vessel is equal to v;”. Thé set of histories which
satisfy the above requirement can be given as:
CH ={H e DHi (vt: (H sat (pp = vp)@t)
= 3Int: s(Int) = t A (H sat (p1p = v1)@e(Int) A Int sat dur(lv) < At)}.

90

Basic Concepts

Bounded interval constraints

Time bound constraints can be used to impose constraints on the duration of \an
interval, during which an interval satisfaction condition must hold.

For example, suppose we have the requiremen} that: “there must be some interval of
duration at least At, during the system’s lifetime when the volume of liquid A (pyo) is
approximately (within AvA of) the required volume (p;)”. The set of histories which satisfy
the above requirement can be given as:

CH={H e DH] 3Int: H sat (|p1o- p2| < AvA)@Int A Int sat dur(Iv) > At}.

3.7.6. Termination Predicate

For most systems it will be necessary to have a predicate that will be true when a system
has shut down. This can be achieved by the construction of a special system predicate using
a perfect clock, called the termination predicate. The termination predicate holds when
the value of a perfect clock (say, p;) is the end point of the system lifetime, i.e., p; = (T);

this predicate will be abbreviated to Q.

Properties
When a termination predicate is used to specify a satisfaction condition the following
properties can be inferred. In the following formalisms H represents an arbitrary history, t
an arbitrary time point and Int an arbitrary interval.
i) The termination predicate is point satisfied for a history H at a time point ¢ if and only if
the time point is the end point of the system lifetime (i.e., H sat Q@t iff t = e(T)).
ii) The termination predicate is interval satisfied for a history H during an interval Int if and
only if the time point contains only the end point of the system lifetime (i.e., H sat Q@Int
iff Int = {e(T)}).
iii) The event characterized by the termination predicate is satisfied on an interval Int ifand
only if the end point of the interval is the end point of the system lifetime (i.e., H sat Q

©Int iff e(Int) = T).

Remark: Although, the termination predicate is defined over a physical variable it will be

used to specify system behaviour at both the real world and controller levels.

91

Basic Concepts

3.8. Summary

The chapter introduced the basic concepts of the specification model. The chapter
started with the representation of a base time set as a subset of the non-negative reals. The
notion of a time point and time interval of a system were defined as an element and subset of
the base time set, respectively. The state vector of a system was defined as a sequence of
state variables of a system and for each state variable the notion of a range set was defined
as the set of possible values for that variable. The state space of a system was defined as the
cross product of the range sets of the state variables. The structure discussed in chapter two
was reflected in the model by the definition of variables categories which are used to
classify the state variables in terms of the properties represented, that is, real-world or

controller (and safety—critical or mission—oriented).

The concept of system behaviour was formally defined in terms of histories, which are
functions from the time base of a system to its state space. For a given system the universal
hisfory set was defined, which represents the set of all behaviours of the system. The
restrictions imposed on system behaviour by the intrinsic properties of the environment
were captured by imposing constraints over the universal history set. To specify the
constraints the concept of a history description was introduced, which consists of three types

of relations: variable class relations, invariant relations and history relations.

To specify the system behaviour required a set of real-time satisfaction conditions were
introduced, and these were formulated in terms of system predicates. Several examples
which illustrated how informal requirements can be represented in terms of the

satisfaction conditions were discussed.

In conclusion, this chapter has introduced the concept of history descriptions as formal
“constructs which provide a means for the concise representation of the restrictions
imposed on system behaviour by the environment at the real-world and controller levels.
In addition, it was shown how history descriptions can be used to relate system behaviour
at the two levels. It was shown, by presenting several examples, that the satisfaction

conditions can be used to express formally, informal requirements. However, the resulting

92

Basic Concepts

specifications are quite complicated. If a full system specification was built from the
satisfaction conditions in an undisciplined way, the resultant specification would soon

become difficult to construct and check.

One approach to avoid badly structured and unreadable specifications, would be to
develop a set of guidelines for a disciplined use of the satisfaction conditions for the
expression of specifications. However, the absence of a structure to the constructs used to
express the specifications stated in terms of the satisfaction conditions, would complicate
the adoption of a suitable development methodology. An alternative approach to
overcome the problems associated with the construction of system specifications from the
satisfaction condition is to formulate a higher-level construct - specified in terms of the
satisfaction conditions. Such a construct should lead to a structure to the system
specifications and support the adoption of a development methodology. This second
approach is followed in the next chapter which introduces the concept of a mode as the

basic building block of complex specifications.

93

Mode Theory

Chapter 4 - Mode Theory

Except for the most trivial systems, if a specification is constructed by the unrestricted
use of the real-time satisfaction conditions (introduced in chapter three), it will consist of a
complicated set of point, interval and event satisfaction conditions; and time bound
constraints. Such a set of constraints would be both difficult to construct and check. It has
been appreciated by some researchers that it may be necessary to impose an “artificial”
structure on the specification, to simplify the analysis and synthesis of specifications
[Hare86, Jaha88]. In fact, the necessity of a structured specification technique, was
stressed as one of the essential attributes of a suitable model. To promote the development
of a structured specification, a simple, but not too restrictive construct which can be used to

structure specification is required. The construct which is proposed is a mode.

4.1. Modes

It is often observed that the behaviour exhibited by safety-critical computing systems
(and other real-time systems) can be partitioned into intervals, during which the behaviour
of the system depends on only a subset of the systems variables. Each of these intervals will
be associated with a particular task (e.g., loading a vessel with a given chemical). Such tasks
should be clearly defined, in particular there should be a precise statement of the
conditions which exist when the task is completed. The intervals during which a system
performs a specific task are often referred to as modes [Heni80, Jaha88). It is proposed
that modes (as defined overleaf) can be used to simplify the construction (and analysis) of
formal specifications, in a similar way that procedures can be used to simplify the
construction (and analysis) of implementations. It is not being suggested that modes are
the best way to structure specifications, only that they are a useful method. The behaviour
of a process control system is not characterized by a single task, rather as a set of tasks
which must be performed in accordance to specific ordering constraints. It is proposed that
the behaviour of each task be specified using modes, which define the behaviour of the
system at the start of the task, during the task and the behaviour that must be exhibited by

the system for the task to be completed. A graphical construct called a mode graph (see

94

Mode Theory

section 4.3) will be used to specify the transitions between the modes of the tasks of a
system, and the mode graphs of the tasks combined to produce a mode graph that speciﬁes
the behaviour of the system. The key feature of a mode is the application of system
predicates to describe the behaviour of a task.

o/

Definition: Mode
Amodeis a five-tuple, Mode = (Start, Inv, End, LB, UB), where Start, Inv and End are system

predicates, and LB and UB are time values (or time valued functions).

Semantics

The semantics will be defined using the sat, @ and ® notation.

Mode = (Start, Inv, End, LB, UB).

H sat Mode@Int iff

H sat Start@s(Int) A H sat Inv@Int A H sat End@Int A

Int sat (dur(Iv) > LB A dur(Iv) < UB).

Remark: When LB and UB are defined as functions, these functions are evaluated at the

start point of the interval Int.

Discussion

The role of each component in a mode structure is described in detail below with
reference to the semantics of a mode.

The system predicate Start is referred to as the start predicate of a mode and specifies
the condition which must hold at the start of the mode. In the definition of the semantics of
a mode, Start is used as the system predicate for a point satisfaction condition which is
imposed at s(Int) to stipulate that it holds at the start of a mode.

The system predicate Inv is referred to as the invariant predicate of the mode and
specifies the conditions which must hold while the system is in that mode. In the definition

“of the semantics of a mode, Inv is used as the system predicate for an interval satisfaction
condition which is imposed during the interval Int to stipulate that it holds throughout the
lifetime of a mode.

The system predicate End is referred to as the end predicate of a mode and specifies the

condition which must hold, for the first time since the system entered the mode, at the

95

Mode Theory

instant the system leaves the mode. In the definition of the semantics of a mode, End is
used as the system predicate for an event which is imposed on the interval Int to stipulaite
that it holds (for the first time in the interval) at the end of the interval.

The time value (or function) LB is referred to as the lower bound of the mode and
imposes a lower bound on the lifetime of the mode. In the definition of the semantics of a
mode LB is used as a constant for a time bound constraint imposed on dur(Int) which
stipulates that the lifetime of the mode must not be less than LB. The time value (or
function) UB is referred to as the upper bound of the mode and is used to impose an upper
bound on the lifetime of the mode. In the definition of the semantics of a mode UB is used
to specify a time bound constraint which stipulates that the lifetime of the mode must not
exceed UB. If UB is a constant it must be non-zero, if it is a function zero must not be in its
range. The time bound constraints constructed using UB and LB are collectively referred
to as the lifetime constraints of a mode. If no constraint is required on the lower bound of
the lifetime then LB is given the value zero; if no constraint is required on the upper bound

then UB is set to the duration of the system lifetime (i.e., dur(T)).

Notation

In a general discussion on the properties of modes, a mode will be denoted by m, if
more than one mode is used in an expression, they will be denoted as m;, my, (When
modes are used in the construction of specifications of a given system, a mode is given the
name of the task it specifies.) When reasoning about the properties of modes, it will be
necessary to refer to components of a mode. The following notation will be used: Start(m)
represents the start constraint of the mode m, Inv(m) represents the invariant of the mode,
End(m) represents the end constraint of the mode, LB(m) and UB(m) represent the lower
bound and upper bound of a mode respectively. If the mode is obvious from the context the
name of the mode is dropped, and Start, Inv, End, LB and UB are used.

Two corollaries (4.1 and 4.2) which follow from the definition of the semantics of a

mode, are given below.

96

Mode Theory

Corollary 4.1
If a history satisfies a mode for an interval then the invariant predicate and complement of t\he
end predicate must hold prior to the end point of the interval.
More precisely, vH € TH: [H sat m@Int = H sat (Inv A 1End)@Int—{e(Iht)}].
Proof. Immediate from the semantics of a mode. |
Corollary 4.2
If a history satisfies a mode for an interval then the invariant predicate and the start predicate
must hold at the start of the interval, and the invariant predicate and the end predicate must
hold at the end of the interval.
More precisely,
vH e TH: [H sat m@Int = H sat (Start A Inv)@s(Int) A H sat (Inv A End)@e(Int)].
Proof. Immediate, from the semantics of a mode.

The concept of an unified mode set is introduced to give a precise definition of a set of
modes which are specified over the same system. A set of modes is an unified mode set if

and only if all the modes in the set are defined over the same universal history set.

4.1.1. History Graphs

The formal definition of the satisfaction of a mode gives a precise statement of the
semantics of a mode. However, the definition does not provide an intuitive (visual) feeling
of the behaviour represented by histories which satisfy the mode. To visualize the
behaviour a line (which represents a history) can be labelled with the end points of the
mode, and marked with the properties of a history that can be derived from the satisfaction
of a mode. These properties are: i) the prédicate start is satisfied at the start point of the
mode; ii) the predicate start is satisfied during the lifetime of the mode; iii) the event end
- is satisfied on the lifetime and iv) the duration of the lifetime is within the time bounds.
Such graphs, will be referred to as history graphs. Pictorial repfesentations of history
graphs are illustrated and discussed in figure 4.1. These graphs allow an easier
understanding of the behaviour specified by several modes, in particular they can be used

to illustrate proofs.

97

Mode Theory

|
Start Inv A ®@End

H l o
Swe LB < dur < UB = T

Figure 4.1. History Graphs

4.1.2. Mode Properties

In this section I will introduce three properties related to the satisfaction of a mode.
Definition: Start satisfaction
We will say that a history H starts a mode m during an interval Int if and only if the history
satisfies the start predicate of the mode at the start of Int and the invariant predicate during Int;
and satisfies the negation of the end predicate during Int or the event given by the end predicate
on Int. This will be denoted by H sat $(m)@Int.

More precisely,

H sat #(m)@]Int iff H sat Start(m)@s(Int) A H sat Inv(m)@]Int A

(H sat -End(m)@Int v H sat End(m)®Int).

Definition: End satisfaction

We will say that a history H ends a mode m during an interval Int if and only if the history
satisfies the invariant predicate during Int and the event given by the end predicate on the
interval. This will be denoted by H sat 8(m)@]Int

More precisely, H sat 8(m)@Int iff H sat Inv(m)@Int A H sat End(m)®Int.

Clearly both start satisfaction and end satisfaction are weaker than the satisfaction of a
mode. However, under certain conditions the start and end satisfaction of a mode for a
history can imply the satisfaction of the mode. The conditions are given in the lemma which
follows.

Lemma 4.1

- If a history H starts a mode during an interval Inty and ends the mode during another interval
Int;, and the intervals intersect with the start (resp. end) point of Inty témporally preceding the
start (resp. end) point of Int;, and the difference between the s(Inty) and e(Int;) is within the
time bounds of the mode then the history satisfies the mode during the union of the two

intervals.

98

Mode Theory

More precisely, vH € TH: vInty, Int; € SI(T):

H sat $(m)@Inty A H sat 8(m)@Int; A (Intg n Int; 30) A s(Intg) < s(Int;) A e(Intg) < e(Intl\) A
LB(m) < e(Int;) - s(Intp) < UB(m) = H sat m@ (Intp u Int,).

Proof. The proof for this lemma is illustrated by t/he history graphs in figure 4.2.

)
Start Inv A ~End vV QEnd
l -

s(Into) e(Into) T
Inv A ®End
s(Int;) e(Inty) p -
s(Intg) LB< dur <UB e(Inty) - -

Inv A ©End
s(Into) LB< dur <UB e(Inty) T

Figure 4.2. Graphical Argument for Lemma 4.1.

Mode Residence
To capture formally what is meant by when we say a history resides in a mode during an
interval, the notion of mode residence is introduced.
Definition: Mode Residence
A system history H resides in a mode m during an interval Int if and only if Int is a subset of an
“interval for which the history satisfies the mode.This is denoted by H res m@Int.
More precisely, H res m@Int, iff 3Int; € SI(T): H sat m@Int; A Inty C Int;.

99

Mode Theory

4.1.3. Mode Relationships
Two formal relationships will be defined for modes - the equivalence and implication
relationships. Both relationships are dependent on the set of histories over which the

satisfaction of the mode is expressed.)

Mode Equivalence
The equivalence relationship between two modes will be defined in terms of the
satisfaction condition and the histories over which the modes are imposed.
Definition: Mode equivalence
Two modes are equivalent for a set of histories HH if and only if all histories in the set which
satisfy one mode during an interval satisfy the other mode during that interval.
More precisely, m; ~"H m; iff vH € HH: vInt € SI(T): [H sat m;@Int « H sat my@Int].
The relation ~M* is an equivalence relation. If two modes (say, m;, my) satisfy the
equivalence relationship for the universal history set of a system the relation is abbreviated

to my ~ my.

Mode Implication

An implication relationship can be defined between two modes, in a way that is similar
to the equivalence relation.
Definition: Mode implication
Mode m; implies mode my, for a set of histories HH if and only if all histories in the set which
satisfy my during an interval satisfy my during that interval, in which case we say mz is a
consequent of m;.

- More precisely, m; ~HH m, iff vH € HH: vInt € SI(T): [H sat m;@Int = H sat m;@Int).

Properties |

The main properties of the implication relationship are stated below.
Reflexive: m~HH m_ for all m € Mod.

((m; ~"H my) A (my ~HH my)) = my ~HH my, for all m;, m; € Mod.

100

Mode Theory

Transitive: ((my ~HH my) A (my ~MH m3)) = my ~HH m;, for all my, my, m3 € Mod.
Remark: If two modes (say, m;, my) satisfy the implication relationship for the universal

history set of a system the relation is abbreviated to m; =~ m;.

4

Mode Example
In this section, I will discuss (by example) how a set of informal requirements over the

behaviour of a system during an interval, can be expressed concisely as a mode. The

example given is from the mission real world specification of the reaction vessel; it defines

the collect mode which concerns the emptying of the vessel and the collection of the

product.

Collect Mode

The system is in this mode while the product is being collected. During this mode Plant select

must be at collect, the Temperature of the vessel must be within the activation temperature

range and the Indicator must be at red, or the vessel must be empty, and the Indicator must be at

red or green. The system must leave this mode as soon as the vessel is empty and the Indicator is

at green. The system must spend at most AC seconds in this mode.

Collect = (true, Inv, p13 =0A p1gs = 8, 0, AC),

where Inv = (ps = collect A (ST A p1s = 1) v p13 = 0) A pise {g, r}), and

ST = (0 < ps—ps < ATV).

4.1.4. Mode Categories
Modes will be divided into two disjoint categories: unbounded and bounded, based on

the time bound constraints which are imposed on the satisfaction of a mode.

Unbounded Modes
The important property of an unbounded mode is that the satisfaction of the mode
~ during an interval is independent of the duration of the interval. However, there is still a
minimal constraint on the duration of a mode because the earliest sfart pointiss(T) and the
latest end point is e(T). Furthermore, for a given history it may be possible to derive a
bound on the duration of the mode from the description relations and the system

predicates of a mode.

101

Mode Theory

Definition: Unbounded mode
An unbounded mode is a mode in which LB is equal to zero and UB is equal to the duration\ of
the system lifetime (i.e., dur(T)).

An example of an unbounded mode from tht/a mission specification of the reaction
vessel is given below; it defines the set points mode which concerns the selection of the set

poinfs by the operator., 0, dur(T)

Set points Mode

The system is in this mode while the operator selects the required set points. At the start of the
mode the plant select is at on. During the mode, Plant select must be at on or start, the vessel
must be empty and the Indicator must be green. The system must leave this mode as soon as
Plant select is turned to start.

Set points = (ps = on, ps e {on, start} A p;3 = 0 A p1g = &, ps = start).

To simplify the formal specifications of unbounded modes, the time values will be
omitted, hence they are expressed as triples. Thus, the abbreviated version of the set points

mode is as: Set points = {ps = on, ps € {on, start} A pi3 = 0 A p1g = g, ps = start).

Bounded Modes

The important property of a bounded mode is that the satisfaction of the mode during
an interval is dependent on the duration of the interval.
Definition: Bounded mode
A bounded mode is a mode which is not unbounded.

An example of bounded mode from the mission specification of the reaction vessel is
given below; it defines the set up mode which concerns the loading of the vessel with the

required volumes of A and B.

Set up Mode

The system is in this mode while the required volumes of A and B dre being loaded into the
vessel. During this mode, Plant select must be at start, Temperature must be less than the
minimum activation temperature or the vessel must be empty and the Indicator green. The

system must leave this mode as soon as the volumes of A and B are both approximately equal to

102

Mode Theory

their set point values. The system must spend at most fst(p2, p3) seconds in the mode, where fsr
is a function which defines an upper bound on the time taken to fill the vessel with the requi;ed
volumes.

Set up = (true, ps = start A (pg < Mact v p13 = 0) A p1s = & Dvol, 0, fsT(p2, p3))
where Dvol =(|p1o- p2| < AVA A |p11- p3| < AvB). '

4.1.5. Mode Consistency

Some modes will be unsatisfiable for a given history description. There are two
potential causes which can lead to a mode being unsatisfiable. The logic of a mode may be
inconsistent — for example if the start predicate of a mode implies the negation of the
invariant predicate then the mode is clearly unsatisfiable, for any possible history. The
predicates of a mode may be in conflict with the relations of a history description, for
example if an invariant relation of a history description implies the negation of the end
predicate of a mode then the mode is unsatisfiable for that history description.

The satisfaction condition can be used to define a consistent mode for a given history
description set, as a mode which is satisfiable in the invariant set of the description
Definition: Mode Ceonsistency
A mode is consistent, for a set of invariant histories of a description D, if it is possible for at least
one history of the set to satisfy the mode.This will be denoted by m con D.

More precisely, m con D iff: 3H e Iset(D): 3Int € SI(T): H sat m@Int.
Remark. The above definition does not include restrictions placed on the histories by class and

history relations.

Mode Consistency Checks

The consistency of a mode is checked by confirming the following two conditions.
i) There exists a state vector that satisfies the conjunction of the sian predicate, invariant
predicate and negation of the end predicate; and the invariant relations.
More precisely, 3V € I'(SY): V sat Start(m) A Inv(m) A JEnd(m) A C(IR(D)),

ii) There exists a state vector that satisfies the conjunction of the invariant and end predicate

103

Mode Theory

and invariant relations.

More precisely, aV € I'(SY): V sat Inv(m) A End(m) A C(IR(D)),

Mode Consistency Theorem
The mode consistency theorem (theorem 4.1) shows that if the mode consistency

checks (given above) are confirmed for a mode, against a given history description, then
that mode is consistent for the history description.
Theorem 4.1
Ifthere exists a state vector that satisfies the start predicate, invariant predicate and negation of
the end predicate of a mode and the invariant relations of a history description; and there exists
another state vector that satisfies the invariant predicate, end predicate of a mode and invariant
relations of a mode, then there exists a history in the invariant set of the history description that
satisfies the mode for an interval.

More precisely,

(aV e T'(SY): V sat Start(m) A Inv(m) A 1End(m) A CAR(D))) A

a8V € I'(SY): V sat Inv(m) A End(m) A C(IR(D)))

= 3H e Iset(SY): H sat m@Int.

Proof.
The following two lemmas are required in a proof of the theorem.

Lemma 4.2
If there exists a state vector that satisfies a system predicate then for every interval of the system
lifetime there exists a history such that the system predicate is satisfied at that time point.

More precisely,

3V e I'(Sy): V sat SysPred = vInt € SI(T): aHj« € TH: Hjy, sat SysPred@Int.

Proof.
- This result follows from the fact that the universal history set is the cross product of 'and T.
Lemma 4.3 -
For any three histories (say, Hy, Hy and Hy) and time points tp and t; (ty < t;)there is another
history (say, H,) which is equivalent to H,, up to 9 and equivalent to H, after tp and up to t; and
H, after 1;.

104

Mode Theory

More precisely, vHy, Hy, Hy e TH: vtg, t1 € T tp <ty
3H, e TH:
(H|[S(T), to] = Huw | [(T), to]) A (H|(to, t1) = Hx| (to, t1)) A (Hz|[t1, e(T)] = Hy|[t1, &(T)))-
Proof. /
This result follows from the fact that the history Hz can be defined as follows:
H, = H,iff t € [s(T), tg}

H, iff t € (tp, t1)

Hy iff t € [t, e(T)].
Next we prove theorem 4.1, using the lemmas given above.
We have 3V e I'(Sy): V sat Start(m) A Inv(m) A 1JEnd(m) A COIR(D)).
+ (lemma 4.2) vInt € SI(T): 3H;,; € TH:

Hin sat (Start(m) A Inv(m) A 1End(m) A C(IR(D))@]Int.

Similarly vint € SI(T): 3Hiy € TH: Hiy sat (Inv(m) A End(m) A C(IR(D))@Int.
Choose any t and At (> 0) such that it satisfies the lifetime constraint of the mode:

LB(m) < At < UB(m).

We have aH,, € TH: H,, sat (Start(m) A Inv(m) A JEnd(m) A C(IR(D))@t
3H, e I'H: H sat (Inv(m) A JTEnd(m) A C(IR(D))@][t, t+ At)
and 3Hy e T'H: H, sat (Inv(m) A End(m) A CIR(D))@t+ At.

- (lemma 4.3) 3H,eTH: ‘
H, sat (Start(m) A C(IR(D))@t A
H, sat (Inv(m) A C(IR(D))@][t, t+ At] A
H; sat End(m)Q[t, t+ At] A
LB(m) < At < UB(m).
3H e I'H: H sat m@|[t, t+ At] A C(IR(D))@][t, t+ At].
3H e Iset(D): H sat m@]t, t+ At].
m con D.
Remark: In the above proof and later in theorems 4.2 and 4.3, we assume that the systems
lifetime is such that it does not impose nay restrictions on the satisfaction of the time bound

constraints of a mode.

105

Mode Theory

4.1.6. Mode Limitations

In this section I will point out some limitations (in expressive power) of a mode,\ by
presenting a set of informal requirements, that describe the behaviour of a task, which
cannot be expressed by a mode. The consequences of these limitations will then be
discussed. |

Consider the following informal requirements:
Reaction task
“The purpose of the reaction task is to initiate a reaction in the vessel and then to empty some of
the contents into a different vessel; and to lower the temperature of the vessel. System behaviour
during the task is defined informally by the following conditions.
i) At the start of the task the level of liquid in the vessel (p,) must be v; (v; > 0) and the
temperature of the liquid (p,) must be temp.
ii) The level of liquid in the vessel must remain at v until the temperature of the liquid is raised
to tempy (the activation temperature).
iii) The reaction must be initiated by raising the temperature of the vessel to temp.
iv)The task is completed when the volume of liquid in the vessel is at v, and and the
temperature is lowered to temp;.”
The following system predicates can be extracted from the requirements:
Px = Vi, py = tempy, py = tempy, px = va.

As a first attempt to specify the informal requirements of a mode we could construct
the following mode:
Reaction = (py = vi A py = tempj, px = V; V Py = tempy, py = tempj A Px = V2)-
To check the mode specification it is compared with the four conditions stipulated by the
informal requirements of a task.
- Condition i). It should be obvious that the start predicate of the mode ensures that if a
history satisfies the mode this condition is satisfied at the start of the mode.
Condition ii). The start predicate and the invariant predicate ensure that ifa history satisfies
the reaction mode then this condition is satisfied during the satisfaction of the mode.

Condition iii). The invariant and end predicate ensure that if a history satisfies the reaction

106

Mode Theory

mode then this condition is satisfied at some point during the satisfaction of the mode (if we
assume that the variables py and py are continuous variables). \
Condition iv). It should be obvious that the start predicate of the mode ensures that if a
history satisfies the mode this condition is satisﬁec} at the end of the mode.

From the above discussion we can conclude that if a history satisﬁes'the reaction mode
then during the satisfaction of the mode the informal conditions of the reaction task are
satisfied.

However, a major flaw with the specification is realised when we check the consistency
of the mode - invariant predicate and end predicate are in conflict. Hence the mode as
defined above is inconsistent. (It will be shown in a later section that the informal
requirements are indeed consistent.)

In fact no consistent mode can specify the informal requirements of the reaction task.
The cause of the conflict is the fact that the behaviour of the task changes by the occurrence
of an event (characterized by the predicate, p, = temp;) which marks the start of the
reaction of the vessel. The key observation being that to ensure that the volume of liquid is
at v until a reaction is initiated the mode must impose a constraint over the temperature
and volume during the lifetime of the mode, however a constraint is required only up to the
time that a reaction is initiated. This example highlights the main restriction that should be
imposed on the behaviour that can be expressed by a mode. Specifically, it shows that if the
behaviour during a task is affected by events, then a mode should not be used to
represented the behaviour of the task. In section 4.2.4 we show how this drawback can be

overcome by introducing mode sequences.

4.1.7. Mode Benefits

The major benefit of using modes as the basis of a formal specification of a system is
that they can be used to concisely represent the behaviour of tasks. However, as was
pointed out in the previous section some tasks cannot be represenfed by modes. The class
of tasks for which the construct of a mode is most appropriate are those tasks, for which the
only events of interest are the events that mark initiation and the completion of the task.

The concept of a mode can also be used to structure the specification of a complex task

107

Mode Theory

into several modes - by an identification of simple tasks. In such an approach all events of
interest during a complex task would be determined, these events would then be used to
partition the behaviour of the tasks into simple tasks — during which there is only one event

of interest. The simple tasks of a complex task could then be specified using modes.

4.2. Mode Sequences

In this section I will introduce a formal construct, based on the concept of a mode, that
can be used to specify the behaviour of a system for an interval, during which the behaviour
is affected by (pre-defined) real-time events. The construct is a sequence of modes, called
a mode sequence.
Definition: Mode sequence
A mode sequence is a finite sequence of modes, ModeSeq = (mj, ..., m,), where m; is a mode,
forie{l,..,r}
Semantics

The semantics of a mode sequence will be defined in terms of the satisfaction
condition. We will say that a history satisfies a mode sequence of length r for an interval Int
ifand onlyifall there is a sequence of time points g, ..., t, such that m is satisfied during the
closed interval given by the i-1'" and it time points, and ty is the start point of the interval
and t, is the end point of the interval. (In other words, the modes in the mode sequence are
satisfied by the history during the interval and in the order indicated by the mode
sequence.)
More precisely, a history H satisfies a mode sequence ((my, ..., m;)) during an interval Int iff
Mg, ..., tr: to < ... <t A to=5(Int) A t;=e(Int) A H sat m@[t;_y, t;], fori=1, ..., 1.
We will denote this satisfaction as: H sat ModeSeq@Int (or H sat ModeSeq@(tg, ..., tr))

In the special case where Int = T we simply say that a history satisfies a mode sequence,
which we denote by writing H sat ModeSeq. When we wish to emphasize the difference
between this special case and the general case, the special case is feferred to as a lifetime
mode sequence and the general case as an interval mode sequence.
Notation

A mode sequence will be denoted as ms; if more than one mode sequence is used in an

108

Mode Theory

expression, they will be denoted by ms;, msy, The length of a mode sequence is simply
the number of modes in the sequence; this is denoted by Ims|. The ith mode of a mode
sequence ms will be denoted by ms(i). The sequence of modes obtained by taking the i1,
i+ 1™ to j*» modes will be denoted by ms(i, j) (i.e, ms(i, j) = (ms(i), ms(i+ 1), ..., ms(j))).
The first mode of a sequence, ms(1), will be reféned to as the start mode and will be
denoted by S(ms); ms(jms|) will be referred to as the end mode and will be denoted by
E(ms). To simplify expressions over the components of a mode the following abbreviations

will be used: Start;, Inv; and End; for Start(ms(i)), Inv(ms(i)) and End(ms(i)) respectively.

4.2.1. Mode Sequence Properties

In this section I will discuss some properties of mode sequences which can be derived
from the definition of a mode sequence, and the properties of a mode.
Lemma 4.4.
If a history H of a system satisfies a mode sequence ms for an interval then there is a unique
sequence of time points {fg, ..., {|ms|) in the interval which specify the start and end points of the
modes in the mode sequence.
More precisely,
vH e TH:[H sat ms@Int =
3! tg < ... < tyms|: to = S(INt) A tyms| = e(Int) Avi € {1, ..., |ms|}: H sat ms()@[ti-1, ti]]
Proof. The fact that a sequence of time points exists is obvious from the semantics of a
mode sequence. Such a sequence is unique since for eachinterval [t;_, t;],i e {1, ..., |ms|},
t; is the earliest time point at which the end predicate of ms(i) holds after t;_;.
Lemma 4.5.
If a history H of a system satisfies a mode sequence ms for the sequence of | ms| + 1 time points
{0, ---» tims|) then the invariant predicate and end predicate of ms(i) and the start predicate and
* invariant predicate of ms(i+ 1) must be satisfied at time point 1;.
More precisely,
vH e TH:[H sat ms@(ty, ..., tims|)
= vi € {1, ..., |[ms|-1}: H sat (Inv; A End; A Start;,; A Invj, 1)) @t;]

Proof. This result follows directly from the semantics of a mode sequence.

109

Mode Theory

Mode Sequence Residence
To capture formally what is meant by when we say a history resides in a mode sequerice
during an interval, the notion of mode residence is introduced.
Definition: Mode sequence residence)
A system history resides in a mode sequence during a specified interval if and only if the

interval is a sub interval of an interval in which the history satisfies the mode sequence.

More precisely, H res ms@Inty iff (3Int; € SI(T): H sat ms@]Int; A Inty C Int)).

Sequence Components

For a mode sequence we will define a start predicate, invariant predicate and end
predicate. The start predicate is defined as the start predicate of the start mode, the
invariant predicate as the disjunction of all the invariant predicates of the modes of the
sequence and the end predicate will be defined as the end predicate of the end mode. For a
mode sequence (ms) the start predicate will be denoted by SeqStart(ms), the invariant
predicate by SeqInv(ms) and the end predicate by SeqEnd(ms). When the mode sequence
is obvious from the context the following abbreviations will be used, SeqStart, SeqInv and
SeqEnd. The formal definitions of the components are:
SeqStart =9I Start(S(ms)); SeqInv =% Inv; v ... v Inv|pe| and SeqEnd =9%f End(E(ms)).
Lemma 4.6.
If a history satisfies a mode sequence during an interval, then the history satisfies the mode
sequence invariant during the interval.
vH € T'H: vint € SI(T): H sat ms@Int = H sat SeqInv(ms)@Int.
Proof.
This result follows from the semantics of mode sequence satisfaction and the definition of

a sequence invariant.

Satisfaction Set
The behaviours of a system that are specified by a lifetime mode sequence for a given
history description can be captured by the concept of a satisfaction set, which is the set of

all possible behaviours from a history description which satisfy the mode sequence.

110

Mode Theory

Definition: Satisfaction set

The satisfaction set of a mode sequence ms for a history set HH is the set of histories in I:IH
which satisfy the mode sequence during the system lifetime.This is denoted by Hset(HH, ms).
More precisely, Hset(HH, ms) = {HeHH: H sat ms}.

4.2.2. Mode Sequence Relationships

Equivalence and implication relations can be defined over a set of mode sequences, in
the same way as was done for modes.
Definition: Mode sequence equivalence
Two mode sequences are equivalent for a set of histories HH if and only if all histories of the set
which satisfy one mode sequence during an interval satisfy the other mode sequence during the
interval.
More precisely, ms; " ms, iff vH € HH: vInt € SI(T): [H sat ms; @Int = H sat ms,@Int].
Definition: Mode sequence implication.
A mode sequence ms; implies another mode sequence ms; for a set of histories, HH if and only
if all histories in the set which satisfy ms; during an interval satisfy ms> during that interval (in
which case we say that ms; is a consequent of ms;).

More precisely, ms; ~HH ms, iff vH € HH: vInt € SI(T): [H sat ms; @Int = H sat ms,@Int].

4.2.3. Mode Sequence Consistency
The notion of consistency introduced for modes in section 4.1.5 can be extended to

modes sequences. The satisfaction condition of a modes sequence can be used to define a

consistent mode sequence for a given history description set, in the same way as was done

for modes.

Definition: Mode Sequence Consistency

A mode sequence ms is consistent, for a set of invariant histories of a description D, if it is
| possible for at least one history of the set to satisfy the mode sequence.This will be denoted by:

ms con D.

More precisely, ms con D iff: 3H € Iset(D): 3Int € SI(T): H sat ms@]Int.

111

Mode Theory

Mode Sequence Consistency Checks

The consistency of a mode sequence is checked by confirming the following th;'ee
conditions.
i) There exists a state value that satisfies the start predicate, invariant predicate, negation of the
end predicate of the start mode of the mode sequence and the invariant }elations.
More precisely, 3V e I': V sat Start(S(ms)) A Inv(S(ms)) A TEnd(S(ms)) A C(IR(D)).
ii) For the ith mode (fori = 2, ..., |ms|) of the mode sequence there exists a state value that
satisfies the conjunction of the invariant and end predicate of the i~1" mode and the start
predicate, invariant predicate and negation of the end predicate of the i mode and the
invariant relations.
More precisely,
vi € {2, ..., |[ms|}: 3V e T: [V sat Inv(ms(i-1)) A End(ms(i-1))

A Start(ms(i)) A Inv(ms(i)) A JEnd(ms(i)) A C(IR(D))].

iii) There exists a state value that satisfies the conjunction of the invariant and end predicate of
the end mode of the mode sequence and the invariant relations.

More precisely, 3V € I': [V sat Inv(E(ms)) A End(E(ms)) A C(IR(D))].

Mode Sequence Consistency Theorem
The mode sequence consistency theorem shows that if the mode sequence consistency
checks (given above) are confirmed for a mode sequence, against a given history
description, then that mode is consistent for the history description.
Theorem 4.2
If the mode consistency checks hold for a description D then the mode sequence is consistent
for that history description.
More precisely,
~ (aV e I'(Sy): V sat Start(S(ms)) A Inv(S(ms)) A 1End(S(ms)) A C(IR(D))) A
(vie {2, ..., |[ms|}: 3V e T: [V sat Inv(ms(i-1)) A End(ms(i-1)) A
Start(ms(i)) A Inv(ms(i)) A 1End(ms(i)) A CAR(D))]) A
(3V € I'(Sy): [V sat Inv(E(ms)) A End(E(ms)) A C(IR(D)))).

=+ ms con D.

112

Mode Theory

Proof.
We have 3V e I'(Sy):V sat Start(S(ms)) A Inv(S(ms)) A TEnd(S(ms)) A C(IR(b)).
- (lemma 4.2) viInt € SI(T): 3Hj, € TH:
Hiy sat (Start(S(ms)) A Inv(S(ms)) A 1End(S(ms)) A C(IR(D)))@Int
Similarly vi € {2 .., |ms|}: vint € SI(T): sy € TH:
Hip sat (Inv(ms(i-1)) A End(ms(i-1)) A
Start(ms(i)) A Inv(ms(i)) A JEnd(ms(i)) A CIR(D)))@Int.
Also vint € SI(T): 3H;; € TH:
Hip sat (Inv(E(ms)) A End(E(ms)) A C(IR(D)))@Int.
Choose ty, ..., tjms| Such that the lifetime constraints of the modes are satisfied
LB(ms(i)) < (t; - ti-1) < UB(ms(i)).
Suppose H, sat (Inv(ms(i-1)) A End(ms(i-1)) A
Start(ms(i)) A Inv(ms(i)) A JEnd(ms(i)) A CIR(D)))@t;_;
Hy sat (Inv(ms(i-1)) A End(ms(i-1)))@[t;-1, ti]
and H, sat (Inv(ms(i)) A End(ms(i)) A
Start(ms(i+ 1)) A Inv(ms(i + 1)) A JEnd(ms(i + 1)) A CAR(D)))@t;
- (lemma 4.3) 3H;eTlH:
H; sat (Start(ms(i)) A Inv(ms(i-1)) A End(ms(i-1)
A C(IR(D)))@t;-1 A
H; sat (Inv(ms(i)) A C(IR(D)))@[t;-1, ti] A
H; sat ©End(ms(i))@[t;-1, ti] A
H; sat Start(ms(i+ 1)) A Inv(ms(i+ 1))@t; A
LB(ms(i)) <t - ti-1)) < UB(ms(i)).
3H; e TH: H; sat ms(i)@][t;-1, ti] A
H; sat (C(IR(D)))@[t;-1, ti] A
H; sat Inv(ms(i-1)) A End(ms(i-1)@t;_; A
Hi; sat Start(ms(i + 1)) A Inv(ms(i + 1)) @t;.
Define a history H as follows:
H(t) = Hy(t) iff t € [ti-,), for i= 2, ..., |ms]-1,

113

Mode Theory

= Hy(t) iff t € [s(T), t1)

=Hjms|(t) iff t € [t|ms|-1, &(T)]-
3H e TH: H sat ms@|tg, t|ms|] A
H sat (CAR(D))@Ito, t{ms|]
3H e Iset(D): H sat ms@]tg, t|ms|]

ms con D.

4.2.4. Mode Sequence Example

In this section I will discuss (by example) how informal requirements over the system
can be expressed concisely as a mode sequence. The example given is that of the reaction
task (introduced in section 4.1.6).
Reaction task
“The purpose of the reaction task is to initiate a reaction in the vessel and then to empty some of
the contents into a different vessel; and the lower the temperature of the vessel. System
behaviour during the task is defined informally by the following conditions.
i) At the start of the task the level of liquid in the vessel (p,) must be v; (v; > 0) and the
temperature of the liquid (p,) must be temp.
ii) The level of liquid in the vessel must remain at v; until the temperature of the liquid is raised
to temp, (the activation temperature). |
iii) The reaction must be initiated by raising the temperature of the vessel to temp.
iv)The task is completed when the volume of liquid in the vessel is at v, and and the
temperature is lowered to temp;.”.
The following system predicates can be extracted from the requirements:
- Px=Vj, py=temp;, py=temp; and py=va.
There are two events of interest during the reaction task:
py=temp; and py=v; A py=temp;.
These events can be used to partition the reaction task into two simpler tasks: Activate and

Empty.

114

Mode Theory

Reaction = (Activate, Empty),
where Activate = (py=v] A py=temp;, px=Vj, py=tempy),
Empty = (true, true, py=Vvz A py=tempsj).

To check the mode sequence it is compared with the four conditions stipulated by the
informal requirements of a task.)
Condition i). The start predicate of the Activate mode ensures that if a history satisfies the
mode sequence this condition is satisfied at the start of the mode.
Condition ii). The invariant predicate and the end predicate of the Activate mode ensure
that if a history satisfies the mode sequence then this condition is satisfied during the
satisfaction of the mode.
Condition iii). The end predicate of the activate mode ensures that if a history satisfies the
mode sequence then this condition is satisfied at some point during the satisfaction of the
mode sequence.
Condition iv). The end predicate of the empty mode ensures that if a history satisfies the
mode sequence this condition is satisfied at the end of the mode.

It should be obvious that both modes will be consistent, for some history description.
Comments

Recall that the reaction task could not be specified, because the event which marks the
start of the reaction (we will refer to this as the reaction event) influences the behaviour of
the task. The mode sequence given above was able to overcome the problem caused by the
reaction event by splicing the task into two simpler tasks. By splitting the task the invariant
over the volume of liquid in the vessel can be imposed up to the start of the reaction,

without having to impose it during all of the reaction task.

4.2.5. Mode Sequence Set

The specifications produced during the requirements analysis may be expressed as a
set of mode sequences. The mode sequences of the set must be {mposed over a common
history description.
Definition: Mode sequence set

A mode sequence set (MSS) is a set of mode sequences, in which all the mode sequences are

115

Mode Theory

imposed over a common history description.

Semantics

We will say that a history H satisfies a mode sequence set MSS (denoted by H sat MSS) if

and only if it satisfies a mode sequence of the set (i.e., H sat MSS « 3ms € MSS: H sat ms).
Equivalence and implication relations can be c;eﬁned over a set of mode sequence sets,

in the same way as was done for mode sequences. Formally, these relations are defined as:

MSS; «HHMSS; iff vH € HH: [H sat MSS; « H sat MSS;]; and

MSS; ~HH MSS, iff vH € HH: [H sat MSS; = H sat MSS;].

4.2.6. Mode Sequence Limitations

We normally start from an intuitive informal requirements, and need to build a mode
sequence set MSS to express these. Then we need to check MSS against our intuition.

Three drawbacks of representing a requirements specification as a set of mode
sequences are pointed out below.
i) Concise specifications

A mode sequence, can only represent a linear sequence of tasks. Each possible
sequence of modes (tasks) that reflects the informal requirements, must be represented by
a mode sequence in the mode set. Consider a system with many possible mode sequences,
the mode sequence set specification of such a system would be large and unstructured.
Such a representation would be difficult to develop and check, since much of the
information would be repeated and there would be no overall structure to the
specification.
ii) System Structure

A mode sequence set does not clarify the relationship between the modes. For example
if we wish to check the modes that can precede a specific mode, all mode sequences of the
set would have to be checked. The major reason why the relationship is not explicit, is that
the development and representation of a specification in terms of mode sequences leads to
a linear perspective over the system.

A major consequence of the absence of an explicit relationship between the modes is

116

Mode Theory

that the structure of the system, in terms of the events, is not made apparent during the
development of the specification. \
iii) Consistency and Completeness

Checks for consistency are complicated since fhe consistency of each mode sequence
would have to be checked. There seems no obvious intuitive definition of completeness for
a mode sequence set (a formal definition of completeness for an alternative representation

will be given later).

Alternative Representation

Itis a generally acknowledged fact that the usabﬂity of a specification technique can be
greatly enhanced if an intuitive feeling of the required behaviour can be deduced from a
suitable presentation of the specification [Hatl87, Pete84]. In the next section a graphical
representation of a mode sequence set — mode graph - is proposed. The nodes of a mode
graph will represent the modes and the arcs will represent the transitions between the
modes. In the following paragraphs, I will point out how mode graphs can help to

overcome the drawbacks of a mode sequence set are discussed.

i) Concise representation.

Mode graphs are a more concise representation of a mode sequence set (as opposed to
a set of sequences), since a mode graph will have only one node for each mode. Consider a
system with many possible mode sequences, but a few modes, the formal mode graph
representation of the requirements specification would be concise - in the sense that only
the necessary information would be represented. Furthermore the picture of the
specification makes it easier to obtain a feel for the behaviour of the system.

ii) System structure.

The relationship between the modes is explicitly represented by a mode graph. For
example, the modes which may follow a given are apparent from tﬁe structure of the graph.
The structure of the graph reflects the structure of the system as formed by the events (that
mark the completion of tasks) and makes it possible to identify and represent closely

related events (i.e., events associated with a high-level task). A further benefit is gained

117

Mode Theory

during the development of the specification - since to the development of a mode graph
leads to a more structured approach to the analysis of the informal requirements. \
iii) Consistency and Completeness

As will be shown in the next section it is posisible to develop simple checks for the

consistency and completeness of specifications represented by mode graphs.

4.3. Mode Graphs

In this section I introduce a (formal) graphical representation of a requirements
specification for which the semantics are based on the concept of a mode sequence set.
Roughly speaking, the formal graph is specified over a unified set of modes, in which the
modes are represented by nodes and the arcs represent the transitions between modes.
These graphs will be referred to as mode graphs. A formal definition of a mode graph is
given below.
Definition: Mode graph
A mode graph (MG) is a four-tuple MG = (M, A, S, E), where M is a (finite) set of unified
modes, A is a set of mode pairs (i.e, A M x M), S and E are non-empty subsets of M (i.e., S,
EC M, S, E # 0). The members of set S are referred to as start modes and the members of set
E as end modes. (Thus, MG can be viewed as a digraph with nodes M and edges E).
For a mode graph MG the following conditions must hold.
(To simplify the conditions it will be assumed that the mode set (M) is a set of indexed
modes represented as: {my, ..., mjmMG)| }-)

i) A must be irreflexive, i.e., v(mj, m;)) € A:i 5 j.

In the definition of the following two conditions we will make use of the reflexive transitive
closure set (RTC(MG)) of the mode graph; roughly speaking (m;, m;) € RTC(MG) if and
only if there exists a path from m; to m;in MG. More precisely, (x, y) € RTC(MG) iff there
exist modes wy, ... , Wg such that x= wg Aw; Aw;... Wg.1 AW = y The reflexive transitive
closure of a mode graph can be constructed by using Warshall’s algorithm [Gers87].

ii) For any mode there is a path to it from a start mode,

i.e., vmj € M: 3m; € S: (m;, m;) € RTC.

118

Mode Theory

iii) For any mode there is a path from it to an end mode,

i.e., vm; € M: 3m; € E: (m;, m;) € RTC.

Semantics

To define the semantics of a mode graph, a precise definition of the set of mode
sequences specified by a mode graph is required. These mode sequences are specified by
paths in the mode graph which start at a node labelled by a start mode and end at a node
labelled by an end mode. For a mode graph (MG) this set will be referred to as the graph
sequence set and denoted by Seq(MG). More precisely,
Seq(MG) =
{ms e M(MG)* |
(ms(i), ms(i + 1)) € AMMG) A ms(1) € S(MG) A ms(|ms|) € E(MG), fori= 1, ..., |ms|-1}
We will say that a history H of a history description satisfies a mode graph MG during an
interval Int if and only if the history satisfies a mode sequence in the graph sequence set, of
MG, during Int. That is, a history H satisfies a mode graph MG during interval Int if and
only if: ams € Seq(MG): H sat ms@]Int; this satisfaction is denoted in the normal way by
writing H sat MG@Int. Similarly we can define mode graph satisfaction for a history H

during the system lifetime as: H sat MG iff ams e Seq(MG): H sat ms.

Notation

The mode set, set of arcs, start set and end set of a mode graph MG will be denoted by
M(MG), AMG), S(MG) and E(MG) respectively.
Pictorial Representation

A picture of the mode graph MG = (M, A, S, E) is a diagram of nodes (annotated
ellipses) corresponding to the members of M, and arrows corresponding to the members of
A, such that if (m;, m;) is a member of A then there is an arrow which goes from the node
labelled by m; to the node labelled by m;. To emphasize the start and end modes, the start
modes will have a broken boundary and the end modes will be shaded.

From the conditions on the structure of a mode graph we can make the following two

observations of the picture: i) there are no self loops in a mode graph (from condition 1);

119

Mode Theory

and ii) there are no multiple arcs in the mode graph (from the representation of the arcs).

In figure 4.3, three graphs are drawn and the (mode graph) structural conditions are
used to check if the graphs could be mode graphs. The first graph (graph a) is not a
well-defined mode graph since the graph does not satisfy conditionsii) and ii). The second
(graph b) and third (graph c) graphs are well—deﬁn;d mode graphs. The second graph is an

example of an unconnected mode graph; whereas the third is a connected mode graph.

"'.-.~‘~

' my s

.

- 4
~..-."

Graph a

Cms (3
Graph b

. ms Y

D
Graph ¢

{ms (D

Figure 4.3. Mode Graphs

120

Mode Theory

4.3.1. Mode Graph Properties

In this section, I will discuss some properties which follow from the definition of the
semantics of a mode graph.
Lemma 4.7)
If a history satisfies a mode graph during any interval then there is a mode sequence in the
graph sequence set, and a unique sequence of time points at which that mode sequence is
satisfied.
More precisely,
vH e TH: vint € SI(T): H sat MG@Int =
3ms € Seq(MG): 3! to, ..., t|ms|: H sat ms@ty, ..., tjms|) A to =s(Int) A tms) =e(Int).

Proof. This result follows from lemma 4.3 and the satisfaction condition of a mode graph.

Satisfaction Set

The concept of the satisfaction set of a mode sequence (i.e., the set of histories satisfying
the mode sequence) can be extended to a mode graph, as the set of all possible behaviours
from a history description which satisfy the mode graph.

Definition: Satisfaction Set

For a given set of histories HH we can define the satisfaction set of a mode graph MG as the
set of histories which satisfy the mode graph. This is denoted by Hset(HH, MG).

More precisely, Hset(HH, MG)=9%f {H e HH: H sat MG}.

4.3.2. Mode Graph Components

For a mode graph we can define a start predicate, an invariant predicate and an end
predicate. The start predicate is defined as the disjunction of the start predicates of the
modes in the start set, the invariant predicate is defined as the disjunction of the invariant
predicates of the modes in the mode set and the end predicate is defined as the disjunction
of all the end predicates of the modes in the end set. For a mode graph (MG) the start
predicate will be denoted by GStart(MG), the invariant predicate by GInv(MG) and the
end predicate by GEnd(MG). When the graph is obvious from the context the following

abbreviations will be used, GStart, GInv and GEnd. The formal definitions are:

121

Mode Theory

GStart(MG) = Ve sovo)y: Start(m); GInv(MG) = Ve mvc): Inv(m) and GEnd(MG) =

Vaue emc): End(m).

Lemma 4.7

If a history satisfies a mode graph then during the I;istory the invariant predicate of the mode
graph must hold (i.e., vH € TH: H sat MG = H sat GInv(MG)).

Proof. Immediate from the semantics of a mode graph; and the definition of a graph

invariant.

Graph Functions
In this section I will introduce some functions which can be used to reason about the

relationship between modes as specified by a mode graph.

Predecessor Function

The predecessor function is a function which defines an immediate predecessor
relationship between the modes of a graph. Roughly speaking, a mode is a predecessor of
another mode in a mode graph if the mode can immediately precede the other mode in a
mode sequence of the graph.
Definition: Predecessor function
The predecessor function of a mode graph MG (denoted by MG.pr(m)) is a function from a
mode (say, m) of the mode graph to the set of all modes connected to m by an arc, in which the
mode m is the second mode of the arc.
More precisely,

MG.pr: M(MG) — Powerset(M(MG)); MG.pr(m) = {m’' € M(MG) | 3(m’, m) e AMG)}.

Successor Function

The successor function is a function which defines an immediate successor relationship
between the modes of a graph. Roughly speaking, a mode is a successor of another mode in
a mode graph if the mode can immediately succeed the other mode in a mode sequence of

the graph.

122

Mode Theory

Definition: Successor function

The successor function of a mode graph MG (denoted by MG.sr(m)) is a function from a mode
(say, m) of the mode graph to the set of all modes connected to m by an arc, in which the mode
m is the first mode of the arc.

More precisely,

MG.sr: M(MG) —+Powerset(M(MG)); MG.sr(m) = {m’ € M(MG) | 3(m, m') € AMG)}.

4.3.3. Complete Mode Graphs

In this section a formal notion of what constitutes a complete specification (in terms of
a mode graph) is presented. The notion of completeness, for a given set of histories HH,
can be stated roughly as: if a mode of the mode graph is satisfied by a history from the set
HH for an interval then a successor of the mode must be start satisfied at the end of the
interval. Hence, the behaviour that must be exhibited by the system after the satisfaction
of a mode has been completely specified (i.e., it has been specified for all system conditions
that can exist at the end point of the satisfaction of a mode).
Definition: Mode graph completeness
We will say that a mode graph (MG) is complete for a history description D if and only if the
satisfaction of any mode during any interval implies the satisfaction of the start predicate and
invariant predicate of a mode in the successor set of the mode at the end of the interval, or the
mode has no successors.This is denoted by MG cmp D.
More precisely,
MG cmp D iff
vm € M(MG): vH € Set(D): vint € SI(T):
[H sat m@Int = 3x € MG.sr(m): H sat (Start(x) A Inv(x))@e(Int)] v MG.sr(m)=g.
Remark. A mode m from M(MG) that satisfies the following condition:
vH € Set(D): vInt € SI(T):
[H sat m@Int = 3x € MG.sr(m): H sat (Start(x) A Inv(x))@e(Int)] v MG.sr(m)=g,

will be referred to as a complete mode.

123

Mode Theory

4.3.4. Consistent Mode Graphs

The notion of consistency introduced for modes in section 4.1.5 can be extended to
mode graphs. The satisfaction condition of a mode graph can be used to define a consistent
mode graph for a given history description set, in the same way as was done for modes (and
mode sequences). /
Definition: Mode Graph Consistency
A mode graph MG is consistent, for a set of invariant histories of a description D, if all the
mode sequences of the graph are consistent.This will be denoted by: MG con D.
More precisely, MG con D iff vms € Seq(MG): ms con D.

Mode Graph Consistency Checks
The consistency of a mode graph is checked by confirming the following three
conditions.
i) For each start mode there exists a state value that satisfies the start predicate, invariant
predicate, negation of the end predicate and the invariant relations.
More precisely,
vx € S(MG): 3V eI [V sat Start(x) A Inv(x) A 1End(x) A C(IR(D))].
ii) For each arc in the mode graph there exists a state value that satisfies the conjunction of the
invariant and end predicate of the first mode and the start predicate, invariant predicate and
negation of the end predicate of the second mode and the invariant relations.
More precisely,
v(x, y) € AMG): aV e T
[V sat Inv(x) A End(x) A Start(y) A Inv(y) A 1End(y) A CAR(D))].
iii) For each end mode there exists a state value that satisfies the conjunction of the invariant,
end predicate and the invariant relations.
More precisely,
vx € E(MG): 3V e I'(Sy): [V sat Inv(x) A End(x) A CAR(D))]-
Remark. An arc (x, y) from A(MG) that satisfies the following condition:
aV e I': [V sat Inv(x) A End(x) A Start(y) A Inv(y) A 1End(y) A C(IR(D))],

will be referred to as a consistent arc.

124

Mode Theory

Mode Graph Consistency Theorem

The mode graph consistency theorem shows that if the mode graph consistency check
(given above) is confirmed for a mode graph, against a given history description, then that
mode graph is consistent for that history description.
Theorem 4.3 “
If the mode graph consistency checks hold for a history description then the mode graph is
consistent for that history description.
More precisely,
(vx € S(IMG): 3V eI [V sat Start(x) A Inv(x) A JEnd(x) A CAR(D))]) A
(v(x,y) € AMMG): 3V eT: [V sat Inv(x) A End(x) A Start(y) A Inv(y) A ITEnd(y) ACAR(D))]) A
(vx € E(MG): 3V eI [V sat Inv(x) A End(x) A C(IR(D))])
= MG con D.
Proof.
A proof can be given by showing that the mode graph consistency condition ensures that
the mode sequence conditions must hold for any mode sequence of MG.

Consider an arbitrary mode sequence ms of MG.

We have vx € S(MG): 3V eT: [V sat Start(x) A Inv(x) A JEnd(x) A C(IR(D))]
3V e T': [V sat Start(S(ms)) A Inv(S(ms)) A TEnd(S(ms)) A C(IR(D))]
We have v(x,y) € AMG):3VeT:

V sat Inv(x) A End(x) A Start(y) A Inv(y) A 1End(y) A C(IR(D))]
For all i, the pair (ms(i-1), ms(i)) must be in the arc set of the graph.

vi € {2, ..., |ms|}: aV e I': [V sat Inv(ms(i-1)) A End(ms(i-1)) A

Start(ms(i)) A Inv(ms(i)) A 1End(ms(i)) A C(IR(D))].
We have (vx e EMG): a3V el [V sat Inv(x) A End(x) A C(IR(D))].

3V e I': [V sat Inv(E(ms)) A End(E(ms)) A CIR(D))].
.. (theorem 4.2) ms con D

vms € Seq(MG): ms con D

MG con D.

125

Mode Theory

4.3.5. Mode Graph Relationships

Equivalence and implication relations can be defined over mode graphs, in the same
way as was done for modes and mode sequences. In addition, two relations over the
structure of a graph will be defined: mode graph isomorphism and mode graph
congruence. / '
Definition: Mode graph equivalence ,
Two mode graphs are equivalent (for a set of histories HH) if and only if all histories of the set
which satisfy one mode graph satisfy the other mode graph.
More precisely, MG, ~H MG; iff vH € HH: H sat MG; « H sat MG,.
Definition: Mode graph implication.
A mode graph implies another mode graph (for a set of histories HH) if and only if all histories
in the set which satisfy the first mode graph also satisfy the second mode graph (in which case
we say that the second mode graph is a consequent of the first mode graph).
More precisely, MG ~HH MG, iff vH € HH: H sat MG; = H sat MG.

Mode Graph Isomorphism

Two mode graphs which have an equivalent structure (i.e., possess the same
mathematical structure) will be said to be isomorphic.
Definition: Mode graph isomorphism
A mode graph MG is said to be isomorphic to a mode graph MG, if there is a bijection
awM(MG;) - M(MGg,) such that the following conditions hold:
i) (uy) isin AMG;) if and only if (a(u), v)) is in AMG), and
ii) wis an element of S(MG;) ifand only if cu(w) is an element of S(MG,) and x is an element of
E(MG;) if and only if afx) is an element of E(MG3).
Such an ois called the isomorphism of MG; onto MG;. The isomorphism relation is denoted by
MG; =() MG; (or simply MG; = MG3).
The usual isomorphic relation for digraphs is defined in terms of a bijection only (i.e.,
condition i of mode graph isomorphism). However, for mode graph isomorphism an
additional condition is imposed over the start and end modes. It should be noted that the

satisfaction of the first condition does not imply the satisfaction of the second condition

126

Mode Theory

this is illustrated by the examples in figure 4.4. We can construct a bijection from MG; to
MG; that satisfies the condition i) of the mode graph isomorphism relation but no
bijection can be constructed that satisfies conditions i) and ii). However, MG; and MG;3;

are isomorphic mode graphs.

MG;

MG;

Figure 4.4. Mode Graph Isomorphism

Properties
The isomorphism relation is reflexive, symmetric and transitive. Thus the relation =is an
equivalence relation on a set of mode graphs. The equivalence classes are called

isomorphism classes.

4.3.6. Mode Graph Categories

In this section I will discuss the constructs (which are based on mode graphs) that will
be used to express some of the essential specifications produced during the analysis of a
system. There are two variants of mode graphs a restricted class of mode graphs single entry
exit mode graphs; and an informal version of a mode graph referred to as a phase graph.

For each construct I will describe the general characteristics of the specifications that
can be expressed by it; and point out some interesting properties that can be derived from
its structure. Detailed discussions of the role the constructs play during the analysis will be
presented later. The roles of the constructs concerning the specifications produced during

the real world analysis are discussed in chapter 5, and those produced during the controller

127

Mode Theory

analysis in chapter 6. In these chapters the benefits gained from adopting the constructs

will also be pointed out.

Single Entry Exit Mode Graphs

Single entry exit mode graphs (SEMG) are mode graphs for which their is an unique start
mode and an unique end mode, and for which the start and end modes can occur only once
in the mode sequence given by the graph. The class of behaviours that can be described by
these graphs are those which have an unique start task and unique end task; and for which
the start and end tasks are performed only once.
Definition: Single entry exit mode graph
A mode graph is a single entry exit mode graph if and only if the following conditions hold.i)
there is only one mode in the start set, ii) there is only one mode in the end set; iii) the
predecessor set of the start mode is empty; and iv) the successor set of the end mode is empty.
More precisely, a mode graph MG is a single entry exit mode graph iff:
i) SMG)I = 1;ii) [E(IMG)| = 1; iii) vimn € S(MMG): MG.pr(m) = ¢
and iv) vm € EIMG): MG.sr(m) = ¢.
To simplify analysis of single entry exit mode graphs the start and end modes of the graphs
will be defined as modes (as opposed to sets); hence for an SEMG MG, S(MG) and E(IMG)
will return modes.
Lemma 4.10 .
From the conditions imposed on an SEMG we can infer the following graph-theoretic
properties:
i) SEMGs are connected (from SEMG condition i and mode graph condition ii);
ii) the is exactly one source node in an SEMG (from SEMG conditions i and iii and mode
graph condition ii).
iii) There is exactly one sink node in the graph (from SEMG conditions ii and iv and mode
graph condition ii).
Lemma 4.11
Any set of behaviours which can be represented by a mode graph can also be represented by an
SEMG.

128

Mode Theory

Proof
The lemma can be proven by the construction of an algorithm which modifies a mode
graph (say, MG) to an equivalent SEMG. The algorithm is given below by the definition of
the transformation Mtrans.
Algorithm 4.1
Function Mtrans(MG: ModeGraph): SEMGraph;
Var G: SEMGraph;
S, E: Modes;
1: S : = (true, true, SStart(S(MG)));
2: E := (Q, true, Q);
3: M(G) := M(MG) u {S, E};
4: A(G):= AMG) U {(u,v) € M(G) x M(G)| (u=S Ave S(G))v (ue E(G)Av=E)};
5:8(G):=S;
6: E(G) :=E;
7: Mtrans := G;
7: Stop.

Phase Graphs

A full formal analysis should not be conducted until preliminary work has identified
the basic structure of the system and the variables of interest. This preliminary work
follows the same pattern as formal analysis, but uses informal substitutes for modes and
state variables. Thus instead of modes we work with phases which set out the same
information, but in English (as opposed to mathematics). These phases are structured in
phase graphs, which are a dual of mode graphs but with phases replacing modes. Hence, a
phase graph can specify informally the same class of behaviours as a mode graph. More
precisely, we define a phase graph as a four-tuple, PHG = (PH, A, S, E), where PHis a
(finite) set of Phases, A is a set of phase pairs (i.e, A € PH x PH), S and E are non-empty
subsets of PH (i.e., S, E C PH, S 5 ¢ and E 5 ¢). The phase graph representation of the
requirements (system concept) acts as a bridge between an informal requirements

specification and a formal specification (expressed as a mode graph).

129

Mode Theory

4.3.7. Predicate Mode Graph

In this section, I will introduce the concept, of a predicate mode graph, as a tool to
simplify the verification of the real world specifications against the controller
specifications. Predicate mode graphs are constructed for mode graphs that specify system
behaviour at the controller level. Typically, a fun::tion is defined from the set of modes of a
mode graph to a set of system predicates which are defined over the real world variables
such that the system predicate given by applying the function to a mode is satisfied at the
start of the mode.

Definition: Predicate mode graph
A predicate mode graph is represented as a pair PG = (MG, PF), where MG is an SEMG and
PF is a function from the mode set of MG to a set of system predicates.

Predicate mode graphs will be used to represent a relationship between the
satisfaction of the mode graph MG and the system conditions at the start point of the mode
in MG. The relationship is captured by the definition of a complete predicate mode graph.
Definition: Complete predicate mode graph
A predicate mode graph PG (= (MG, PF))is a complete predicate mode graph for a history
description D and a system predicate SP if and only if:

i) for any pair (x,y)in A(MG), any history H from Set(D) and any interval Int, H satisfies PF(x)
at s(Int) and x during Int and the start and invariant predicates of y at e(Int) implies H satisfies
PF(x) at e(Int); and

ii) for any history H and any time point t if H satisfies SP at t then H satisfies PF(S(MG)) at t.
The fact that a predicate mode graph PG is complete for a history description D and a system
predicate SP will be denoted by PG cmp (D, SP).

More precisely, PG cmp (D, SP) iff '

i) v(x, y) € A(MMG): vH € Set(D): vInt € SI(T):

[H sat PF(x)@s(Int) A H sat x@Int A H sat (Start(y) A Inv(y)) @e(Int) =

H sat PF(y)@e(Int)]

and ii) vH € Set(D): vt € T: [H sat SP@t = H sat PF(S(MG))@t].

130

Mode Theory

Complete Predicate Mode Graph Theorem

The complete predicate mode graph theorem (theorem 4.4) shows that if a predicate
mode graph (MG, PF) is complete for a given history description D and system predicate
SP, it follows that if a mode sequence ms of MGMis satisfied by a history from Sez(D) for a
sequence of time points fy, ..., #|ms| and SP satisfied at £y then precondition of mode ms(i) is
satisfied at the time point 4_;, fori = 0, ..., |ms|.
Theorem 4.4
If a predicate mode graph PG is complete for a history description D and a system predicate SP
then for any history H from D and any ms of Seq(MG(PG)) if H is satisfies ms for any sequence
oftime points ty, ..., t|ms| and SP satisfied at ty then PF(ms(i)) is satisfied at the time point ;, for
i=0,.. |ms|
PG cmp (D, SP) =
vH € Set(D): vms € Seq(MG): wvty, .., tjms) € T:
[H sat ms@(tp, .., tjms|) A H sat SP@ty = vi € {1, ..., |ms|}: H sat PF(ms(i))@s;-1]-
Proof. (By contradiction).
Assume:
PG emp (D, SP) A
3H e Set(D): ams € Seq(MG): 3t, .., tjms| € T
[H sat ms@(ty, .., tyms]} A Hsat SP@ty A 3i € {1, ..., |ms|}: H sat IPF(ms(i))@t;-1].
Firstly, we make the observation that since ms(1) = S(MG) from clause ii of PG cmp (D,
SP), it follows that H sat PF(ms(1))@ty.
If i=1, that is, H sat JPF(ms(1))@ty we have a contradiction. If i>1, since H sat
ms(i-1)@[t;-2, ti-1), from H sat IPF(ms(i))@;i-; and clause i of PG cmp (D, SP), it follows
that H sat 1PF(ms(i-1))@t;_,. Hence ifi> 1, it follows that H sat JPF(ms(1))@ty, which

leads to a contradiction.

4.4. Summary
This chapter, introduced the concept of a mode as a construct which can be used to
specify the behaviour that must be exhibited by the system during an interval for it to

perform the specified task. The formal semantics of a mode were specified in terms of a

131

Mode Theory

history and the satisfaction conditions (discussed in chapter three). Several examples were
used to illustrate how modes can be used to specify tasks. The notion of a consistent mode
was introduced and the conditions to determine the consistency were presented. Mode
sequences were introduced as a means to compose modes; and the notion of mode
consistency was defined. ’

A graphical notation called a mode graph was used to represent the transition between
modes. It was shown how a mode graph defines a set of mode sequences; then the
semantiés of the mode graph were defined in terms of the set. The notion of a complete
mode graph was introduced, as a mode graph for which at the end point of the satisfaction
of a mode a successor of that mode must be start satisfied. Consistent mode graphs were
defined as those mode graphs for which the all the modes in its sequence set are consistent.

To simplify the comparison of mode graphs the notion of predicate mode graphs was
introduced. Predicate mode graphs are used to augment mode graphs, that specify
behaviour at the controller level, with the behaviour that is exhibited at the real-world
level at the start of the modes - for a history that satisfies the mode graph. Predicate mode
graphs are used in verification strategies discussed in chapter 8.

This chapter (and chapter three) has set up the apparatus (i.e., the formal model) that
will be used during the requirements analysis of a system. In the remainder of this thesis a
role for the formal model and system development model (chapter two) during the

requirements analysis will be explained in detail.

132

Real World Specifications

Chapter S - Real World Specifications

In this chapter the essential specifications that are produced during the real world
analysis are discussed; for each specification its role in the description of system behaviour
is discussed. These roles are exemplified by presenting the essential specifications of the

reaction vessel.

S.1. Disaster Set

A disaster of a system is formulated as a Boolean state variable. The disaster,
represented by the state variable, is said to occur in a system history if and only if there is a
time point during the system lifetime at which the system predicate (given by the state
variable) is satisfied, for that history. The disaster set of a system is the set of all of the
disasters (i.e. state variables that represent disasters) of the system. The disaster set of a
system SY, is denoted by Dis(SY). The disaster predicate of a system is the system
predicate given by the disjunction of the disasters of the system. The disaster predicate of a
system SY, is denoted by Dip(SY). The role of the disaster set of a system is to represent all
potential disasters of that system as a set of system predicates, to facilitate a systematic
analysis of the hazards of the system. The role of the disaster predicate of a system is to
represent all system conditions in which a disaster has occurred.
Definition: Disaster-free histories
The set of disaster free histories of a system SY (denoted by DFH(SY)) is the set of all histories
that satisfy the negation of the disaster predicate of the system.
More precisely, DFH(SY) = %f{{H e I'H| H sat 1Dip(SY)}.

Example Disaster Set

Let us suppose that a disaster analysis of the reaction vessel shows that there is a risk of
an explosion. In the formal framework there must therefore be a system predicate
representing this disaster (i.e., the explosion). The simplest approach is to introduce a new
state variable to directly label this. For the reaction vessel we have py as the elementary

predicate representing an explosion. Since the disaster analysis indicates that there are no

133

Real World Specifications

other potential disasters we have Dis(Rv) = {px} and Dip(Rv) =pa.

The formalization of the disasters of a system provides formal markers which label the
potential disasters of the system, on their own the disaster sets are of limited use in the
safety analysis, we are more concerned with the system conditions (hazards) that can lead
to the disasters. However, the main reason for’ introducing the disaster set is that, the
knowledge of the disasters allows us to focus the hazard analysis on the potential disasters

of the system.

Catastrophe Class

For a state variable that represents a disaster, we wish to assert the property that once
that start variable is satisfied for a particular history H at a time point ¢ it will be satisfied for
all time points after 7 for H. To formally capture this property we introduce the notion of a
catastrophe class.
Definition: Catastrophe variable
A catastrophe variable is Boolean variable which is true at the start point of the system lifetime,
right continuous and can never be false once it becomes true.

More precisely, if p; is a catastrophe variable then:

Pis(T))=true Avtp € T lim pi(t) =Ppi(to) Avt € T: [pi(t) = vt'>t: pi(t’)]

5.2. Safety Real World Description

The safety real world description of a system is formulated as a history description over
the safety real world variables; for a system SY it is denoted by SRD(SY). We define the set
of safety real world description histories (SRDH(SY)) as: SRDH(SY) = Set(SRD(SY)).
The role of the safety real world description is to specify the behaviour of the (real world)
environment that impinges on safety-critical behaviour of the system, by using the

description relations.

Example Safety Real World Description
The class relations of the safety real world description of the reaction vessel are

specified by table 5.1. The tables are obtained by a careful systematic analysis of the

134

Real World Specifications

environment of the system at the real world level which focuses on the safety-critical
behaviour of the system (the analysis process is detailed in chapter 7).

The safety real world description is defined as: SRD(Rv) = (T, Sv, VP, CP, IR, HR),
where

Sv = (py, ..., P1ok;

VP = (Vpy, ..., Vp1o)k

CP = (Cpy, ..., Cpo);

IR = (Iry, Iry, Ir3) and HR = (Hry).

The safety real world description history set is defined as: SRDH(Rv) = Set(SRD(Rv)).

Table 5.1: Relations of Safety Real World Description

No. | Related Relationship Comments
variables

Iy | PPs.P9 | P9 = P7 + Ps The flow rate into the vessel is the sum of
FlowA and FlowB.

Ir P14, P15, | P16 = P14 + P15 The flow rate out of the vessel is the sum of

P16 OutflowC and OutflowD.

Ir3 | p1, P13, P19 | P1 = S(T) = p13=0 At the start of the system lifetime the vessel
is empty.

Hry Pé P61 S Pso + ATm X dur ATm is the maximum rise in temperature
per second.

S.3. Hazard Specification
The hazards of a system are normally also characterized by predicates [Gors86,
Leve87]. With this approach a hazard is present during a history of the system if the
predicate that characterizes the hazard is satisfied at some time point during the history.
Such hazards can be captured in the specification model by system predicates. The role of
the hazard specification of a system is to represent all system conditions (i.e., hazards) that
can lead to a disaster, as a system predicate over the real world variables
For example, consider the following hazard in system EX: “An explosion may occur if the
concentration of X in a mixing vessel (denoted by py) is greater than the concentration of Y
(denoted by py)”. We can easily express this with the predicate: p, > py. The hazard which is
characterized by px > py is said to be present in a history H iff at € T: H sat p, > p,@t.

135

Real World Specifications

The identification of hazards will normally be performed by considering the set of all
possible disasters. We will define the hazards of a disaster as a system predicate which
specifies all the (identified) conditions over a system history that can lead to the disaster;
for a disaster x we call this predicate the hazard predicate of x and denote it by HZ(x).
Roughly speaking, such a system predicate HZ():) is complete for the disaster x, if for any
possible history H the disaster x is satisfied at a time point t only if HZ(x) is satisfied at
some time point prior to t. That is a hazard is a prerequisite of a disaster. Of course, for a
particular system there is no way of being certain that all the hazards of a disaster have
been identified. The statement that a hazard predicate of a given disaster is complete, is in
essence an assumption that all the hazards of that disaster have been captured by the
hazard predicate. The notion of the hazard of a disaster can be extended to cover all

disasters and this leads to the definition of a hazard specification.

Definition: Hazard specification
The hazard specification of a system is a system predicate which specifies all the (identified)
conditions over a system history which can lead to any disaster. For a system SY this will be

denoted by HS(SY).

Definition: Complete hazard specification assumption

For any possible history and any time point t, if the disaster predicate is satisfied at t then H
must satisfy the hazard specification at some time point prior to t.

More precisely, for any possible histbry H,

vt € T: [H sat Dip(SY)@t = 3t’ € [s(T), t): H sat HS(SY)@t']

Hence, we define the set of histories for which the above assumption holds as follows:
HA(SY) = .

{H e TH(SY)| vt € T: [H sat Dip(SY)@t = 3t’ € [s(T), t): H sat HS(SY)@t']}.

We will refer to the set of histories HA(SY) as the hazard analysed histories of the system
SY. The complete hazard assumption is a formal statement of the assumption that the

hazard analysis has identified all possible hazards, for the disaster set of the system.

Lemma 5.1
For any history H from HA(SY) if H satisfies the negation of the hazard specification of SY then

136

Real World Specifications

H does not satisfy the disaster predicate of SY.

More precisely, vH € HA(SY): H sat THS(SY) = H sat 1Dip(SY).
Proof. By contradiction.

Assume: 3H € HA(SY): H sat THS(SY) A 3t € T: H sat Dip(SY)@t.
From the definition of HA(SY) we have:) '
at € T: H sat Dip(SY)@t = 3t’ € [s(T), t): H sat HS(SY)@t'.

This contradicts the antecedent H sat THS(SY).

The consequence of lemma 5.1, is that if the absence of hazardous states can be ensured

during a hazard analysed history, then a disaster cannot occur during that history.

Lemma 5.2
For any history H from HA(SY) if for all time points t H satisfies the negation of the disaster
predicate during [(s(T), t] implies H satisfies negation of the hazard specification during [s(T),
t] then H satisfies the negation of the hazard specification.
More precisely,
vH € HA: [vt € T: H sat 1Dip(SY)@[s(T), t] = H sat THS(SY)@[s(T), t]
= H sat JHS(SY)].
Proof.
Firstly, we make the observation that this lemma holds if the following condition holds.
vH € HA: [vt € T: H sat Dip(SY)@[s(T), t] = H sat THS(SY)@[s(T), t]
= H sat 1Dip(SY)].
Next, we prove the above by contradiction.
Assume: 3H € HA: [vt € T: H sat 1Dip(SY)@[(T), t] = H sat THS(SY)@[s(T), t]
A 3t € T: H sat Dip(SY)@t].
If Dip(SY) s satisfied at a time point ¢, there must be a time up to (and including) # at which
it is satisfied for the first time.
3t € T: H sat Dip(SY)@t = at’ e [s(T), t]: H sat Dip(SY)®[s(T), t'].
From the definition of event satisfaction we have:
H sat Dip(SY)®[S(T), t'] = H sat 1Dip(SY)@[s(T), t’).
From vt € T: H sat 1Dip(SY)@[s(T), t] = H sat THS(SY)@[s(T), t] we have:

137

Real World Specifications

H sat 1Dip(SY)@][s(T), t’) = H sat THS(SY)@[s(T), t).
Since H is from the set HA we have:
H sat Dip(SY)®[S(T), t'] = at”’ e [s(T), t’): H sat HS(SY)@t"’.

But this leads to a contradiction.

o~

The consequence of lemma 5.2, is that for any history from HA, if assuming the
absence of a disaster up to any time point implies the absence of a hazardous state up to

that time point, then a hazardous state cannot be present for that history.

Once the complete hazard assumption has been confirmed for a system. We adopt the
convention that the complete hazard assumption holds for the history sets of the history
descriptions of the system. This convention avoids the necessity to explicitly state the

complete hazard assumption for each history set.

Hazard Specification Example

Let us suppose that the hazard analysis for the disaster of the reaction vessel identifies
the following (simple) hazard. An explosion may occur if the temperature of the contents
of the vessel rises above a specified value (Eact °K) during the reaction. This hazard can be

specified as: pg = Eact A p13 # 0.

S5.4. Safety Real World Specification

The role of the safety real world specification is to specify the conditions that must be
maintained during a history for that history to be free of any of the (identified) disasters.
The safety real world specification for a system SY is denoted as SRS(SY) and is
formulated as a system predicate imposed over the safety real world variables of the
system.
Definition: Safety real world histories
The set of safety real world histories of a system SY is the subset of safety real world description
histories of a system that satisfy the safety real world description. This set will be denoted by
SRH(SY).
More precisely, SRH(SY) = {H € SRDH(SY)| H sat SRS(SY)}.

138

Real World Specifications

For a system SY the safety real world specification SRS(SY) is defined as the negation
of the hazard specification HS(SY) (i.e., SRS(SY) = THS(SY)). For any system SY clearly
any system history H, under the hazard specification assumption, that satisfies the safety

real world specification (as defined above) is a disaster free history.

o

Example Safety Real World Specifications
In the section below, we present the safety real world specifications of the example
hazards from section 5.3.
For the system EX we have, HS(EX) = px > py, thus SRS(EX) = py < py.
For the system Rv we have, HS(Rv) = pg > Eact o p13 # 0, thus
SRS(Rv) =p¢ < Eact v py3 = 0.

S.5. Mission Real World Description

The mission real world description of a system is formulated as a history description
over the mission real world variables; for a system SY it is denoted by MRD(SY). We
define the mission real world description histories (MRDH(SY)) as: MRDH(SY) =
Set(MRD(SY)). The role of the mission real world description is to specify behaviour of
the (real world) environment that impinges on the mission-oriented behaviour of the

system, by using the description relations.

Example Mission Real World Description

The relations of the mission real world description are specified by table 5.2. Table 5.2
is obtained by a careful systematic analysis of the environment of the system at the real
world level which focuses on the missien-oriented behaviour of the system (the analysis
process is detailed in chapter 7).

The mission real world description is defined as: MRD(Rv) = (T, Sv, VP, CP, IR, HR),
where '

Sv = (py, ..., P1sk

VP = (Vpy, ..., Vpisk

CP = (Cpy, ..., Cpis);

139

Real World Specifications

IR = (Iry, ..., Irs); and HR = (Hry, ..., Hrs).
The mission real world description set is defined by MRD: MRDH(Rv) = Set(MRD(RV)).

Table 5.2: Relationships of Mission Real World Description

No. | Related Relationship - Comments
variables
Iy | pP8,P9 |P9=PpP7+ P8 The flow rate into the vessel is the sum of
FlowA and FlowB.
Ir; P14, P15» | P16 = P14 + P15 The flow rate out of the vessel is the sum of
P16 OutflowC and QutflowD.
Ir3 | p1, P13, P19 | P1 = S(T) =+ p13=0 At the start of the system lifetime the vessel
is empty.
Iry P10» P11, | P13 = P1o+P11+P12 The volume of liquid in the vessel is the sum
P12, P13 of the volumes of A, B and C.
Irs | P1, P13, P18 | P1=S(T) = P18=¢ At the start of the system lifetime the
indicator is at green.
Hry P P61 Pp6o + ATm X dur ATm is the maximum rise in temperature
per second.
Hry | p2, p3, p4, | Wt: ps(t)=start vV ps(t)=collect =+ The set point selectors must remain constant
ps vt: pat)=p2z0 A p3t)=pso A | While the Plant select is at start or collect.
P4(t)=P40
Hr3 | pe» P7» P10s | Vt: ps(t) < Mact A p16(t)=0 A p12,0=0 | Provided the temperature remains below
P12 P16 | = p1g1 = Min(f p7dt + po,0, Vmax) | Mact, the outflow rate is zero during an
interval, and at the start of the interval there
is no C in the vessel, then VolA is equal to
the smaller of the sum of the volume the
integral of the flow rate over the interval and
the maximum level.
Hry | pe, P8, P11, | Vt: p6(t) <Mact A p1 (t)=0 A p12,0=0 | This relation is the VolB equivalent of the
P12 P16 | = above relation.
P11,1 = Min(J pg(t)dt + p11,0, Vmax)
Hrs | pg, P13, P16 | Vt: po(t) =0 =+ Provided the flow rate is zero during an
P131 = P130- J P1e(t)dt interval the volume of liquid in the vessel at
the end of the interval is the volume at the
start of the interval minus the integral of
outflow over the interval.

S.6. Mission Real World Specification

The mission real world specification of a system SY is formulated as an SEMG; and for

a system SY it is denoted by MRS(SY). The system predicates used to construct the mode

specification of a mission real world specification are imposed over the mission real world

variables. We define the mission real world histories of a system SY (denoted by MRH(SY))

140

Real World Specifications

as the set of mission real world description histories that satisfy the mission real world
specification (i.e., MRH(SY) = {H € MRDH(SY)| H sat MRS(SY)}. The role of the
mission real world specification of a system SY is to specify the behaviour that must be
exhibited by the (mission) real world variables for the system to fulfil its mission, as an

SEMG.

5.6.1. MiSsion Phase Specification

The role of the mission phase specification is to structure the system concept, before a
detailed formal analysis is performed. The mission phase specification of a system SY is
expressed by a phase graph, and denoted by MPS(SY) The formal analysis is performed
over the mission phase specification by studying the behaviour of each of the phases; the
behaviour expressed by the informal specification of the phases is then formally expressed
by an SEMG. As a result of the formal analysis a formal description for each phase of the
phase graph is defined. An approach which supports the construction of a mission real

world specification from a mission phase specification is presented in chapter 7.

Example Mission Real World Specification

In this section I will show how the mission of the reaction vessel can be formally
expressed as an SEMG. Recall that the mission real world variables for the reaction vessel
are: {py, ..., P16, P18)- The structure of the mission real world specification and the mode
specifications are produced by a systematic analysis of the mission phase specification and

the system concept (the general process is discussed in chapter 7).

Mission Real World Specification Structure

The structure of the mission requirements specification of the reaction vessel is:

M = {Closed, Set points, Set up, Amber, Activate, Production, Collect, Operator, End};

A = {(Closed, Set points), (Set points, Set up), (Set up, Amber), (Amber, Activate),
(Activate, Production), (Production, Collect), (Collect, Operator), (Operator, Set points),

(Operator, End)};

S =Closed; and E=End. The picture is given in figure 5.1.

141

Real World Specifications

Figure 5.1. Reaction Vessel Mission Real World Specification Structure

Mode Specifications
The specifications of the modes of the reaction vessel (mission specification) are given

in the following paragraphs.

Closed Mode

The system enters the closed mode at the start of the system lifetime. During this mode, the
vessel must be empty and the Indicator must be green. The system must leave this mode as soon
as the Plant select is turned to on.

Closed = (true, p13 = 0 A p1s = g, ps = on).

Set points Mode

The system is in this mode while the operator selects the required set points. At the start of the
mode the plant select is at on. During the mode, Plant select must be at on or start, the vessel
must be empty and the Indicator must be green. The system must leave this mode as soon as
Plant select is turned to start.

Set points = {ps = on, ps e {on, start} A p13 = 0 A p1g = g, ps = start).

Set up Mode
The system is in this mode while the required volumes of A and B are being loaded into the
vessel. During this mode, Plant select must be at start,Temperature must be less than the

minimum activation temperature or the vessel must be empty and the Indicator green. The

142

Real World Specifications

system must leave this mode as soon as the volumes of A and B are both approximately equal to
their set point values. The system must spend at most fs(p2, p3) seconds in the mode, where fs
is a function which defines an upper bound on the time taken to fill the vessel with the required
volumes.

Set up = (true, ps = start A (ps < Mact v p1; = 0) A p1g = & Dvol, 0, fs(p2, p3))
where Dvol =(|p1o- p2| < AVA A |p11- p3| < AvB).

Amber Mode
The system is in this mode while the Indicator is being set to amber. During this mode, Plant

select must be at start, the Temperature must be less than the minimum activation temperature,
the volumes of A and B must be approximately at the set point values and the Indicator must be
at green or amber. The system must leave this mode as soon as the Indicator is at amber. The
system must spend at most AA seconds in the mode.

Amber = (true, ps = start A p¢ < Mact A Dvol A pjg € {g, a}, pig = a, 0, AA).

Activate Mode

The system is in this mode when the temperature of the vessel is being raised to the activation
temperature. During this mode, Plant select must be at start, the Temperature of the vessel must
be less than (or equal to) the set point value plus a small tolerance (ATv), no liquid must enter
or leave the vessel and the Indicator must be at amber or red. The system must leave this mode
as soon as the Temperature of the vessel is within the activation temperature range(i.e. the
temperature is greater than or equal to the set point value, but less than the set point value plus
ATv) and the Indicator is at red. The system must spend at most frr(ps) seconds in this mode,
where frr(pe) is a function that defines an upper bound on the time taken to raise the
temperature to its set point value.
Activate = (true, Inv, ST A p1g = 1, 0, fRT{(p4)),
where Inv = (ps = start A pg<ps + ATvApy = 0Apis = 0 Apis € {a,T});

and ST = (0 < ps—-ps < ATv).

Production Mode

The system is in this mode while the reaction is taking place. During this mode, Plant select

must be at start or collect, the Temperature of the vessel is within the activation range, no liquid

143

Real World Specifications

must leave or enter the vessel and the Indicator must be at red. The system must leave this mode
as soon as the Plant select is turned to collect.

Production = (true, ps € {start, collect} A ST Apg = 0A p1s = 0Ap1g = 1, ps = collect).

Collect Mode .
The system is in this mode while the product is being collected. During this mode Plant select

must at collect, the Temperature of the vessel must be within the activation temperature range
and the Indicator must be at red, or the vessel must be empty, and the Indicator must be at red or
green. The system must leave this mode as soon as the vessel is empty and the Indicator is at
green. The system must spend at most AC seconds in this mode.

Collect = (true, Inv, P13 =0Api = g 0, AC),

where Inv = (ps = collect A (ST A pis =1) vpi3s = 0) A pige {g 1}).

Operator Mode

The system is in this mode while the operator decides whether another batch of C is to be
produced or operation is to be ceased. During this mode Plant select must be at collect, off or
on, the vessel must be empty and the Indicator must be at green. The system must leave this

mode as soon as the Plant select is at off or on.

Collect = (true, ps € {collect, off, on} A p13 = 0 A pig = g, ps € {off, on}).

End Mode

The system is in this mode when no more C will be produced. At the start of the mode the Plant
select is at off. During this mode, the vessel must be empty and the indicator must be at green.
The system remains in this mode for the remainder of the system lifetime.

End = (ps = off, p;3 = 0A psg = g, Q).

3.7. Summary

The chapter discussed the specification model in the context of the specifications
produced during the real world analysis. The formal representétions of the specifications
produced during the analysis, were presented. The concepts introduced during the chapter
were illustrated by several examples - the real world specifications of the reaction vessel

(introduced in chapter two) were given in full.

144

Real World Specifications

It was shown how the disasters of a system can be represented as a set of system
predicates and the safety real world description encoded as a history description. The hazard
specification and safety real world specification were also expressed as system predicates.
The safety—critical behaviour of a system SY at the real world level is expressed as a pair
(SRD(SY), SRS(SY)).)

It was shown how the mission real world description is encoded as a history description.
The formal representation of the mission real world specification, as an SEMG was
discussed. The concept of a mission phase specification was introduced as informal (but
structured) representation of the system concept, that is expressed as a phase graph. The
mission~oriented behaviour of a system SY at the real world level is expressed as a pair
(MRD(SY), MRS(SY)). |

The clarification of the role of the essential specifications produced during the real
world analysis; and the identification of the relationships between the constructs of the
formal model and these essential specifications provides a useful support to the real world
analysis. However, for the analysts to improve the confidence of the analysts that the
essential specifications produced during the real world analysis fulfil there roles, a related
systematic methodology is required for the productions of these specifications. A suitable
methodology should exploit the general structure of the constructs which will be used to

express the real world specifications.

145

Controller Specifications

Chapter 6 - Controller Specifications

In this chapter the essential specifications that are produced during the controller
analysis are discussed; for each specification its role in the description of system behaviour
is given. These roles are exemplified by presenting the essential specifications of the

reaction vessel.

6.1. Safety Environment Description

The role of the safety environment description of a system to represent the relationship
between the behaviour of the sensors and actuators of the safety controller of a system and
the real world variables, in addition to any relations defined by the safety real world
description of that system, by using the description relations. The safety environment
description is defined, in terms of a history description; for a system SY this is denoted by
SED(SY). The safety environment description is produced as an extension to the safety
real world description. To the the sequence 01; safety real world variables we add the
sequence of safety controller variables. The ranges and classes of the safety controller
variables are added to the range sequence and class sequence of the safety real world
description. Any invariant (resp. history) relations involving the safety controller variables
are added to the invariant (resp. history) relation sequence of the safety real world
description. We define the safety environment description histories of a system SY

(denoted by SEDH(SY)) as: SEDH = Set(SED(SY)).

Example Safety Environment Description

The safety environment description of the reaction vessel is an extension of the safety
real world description of the reaction vessel (see section 5.2). The relations involving the
safety controller variables and real world variables are defined by table 6.1. The table is
obtained by a systematic analysis of the properties of the sensors and actuators of the safety
controller (the general analysis process is detailed in chapter 8).
The safety environment description is defined as: SED(Rv) = (T, Sv, VP, CP, IR, HR),

where

Sv = (py, ..., P24);

146

Controller Specifications

VP =(Vp;, ..., Vpu); CP = (Cpy, ..., Cpau);
IR = (Iry, Iy, Ir3, Iry, Irg, Iry, Irg) and HR = (Hry, Hrg).
The safety environment description history set is defined as: SRDH(Rv) = Set(SRD(RV)).

Table 6.1: Controller Relationships of §afety Environment Description

No. | Related Relationship Comments
variables

I, | pnp2a1 |p21=on= py=0. If LockA is on, FlowA is zero

Ir; | psp22 [p2=on= pg=0 If LockB is on, FlowB is zero.

Irg Pé» P24 [p24 -ps| < ATp The inaccuracy in the Thermometer is

bounded by ATp.

Hrs |po, p13, p23 [dur = ET A If no liquid is flowing into the vessel and
Vt: po(t)=0 A p23(t)=Dmax ValveD is open (to its full width) for an
- interval of duration greater than ET then

-0 the vessel will be empty at the end of the

P13,1=0 interval.

The safety controller is illustrated in figure 6.1.

| Safety operator |

Q
e Fs

| Safety control system |

Key
a: Safety select b: Safelight c: ValveD d:LockB e: LockA f: Thermometer

Figure 6.1. Reaction Vessel Safety Controller

147

Controller Specifications

6.2. Safety Controller Specification

The role of the safety controller specification is to specify a behaviour over the sz\lfety
controller variables that will ensure (under the safety controller description) that the
conditions expressed by the safety real world specification are maintained. The safety
controller of a system SY is formally expressed as an SEMG, and denoted by SCS(SY). The
system predicates used to construct the mode specifications of a safety controller
specification are imposed over the safety controller variables. These mode specifications
express the behaviour that the control system (i.e., the computing system) must ensure is
exhibited by the safety controller. The invariants of these mode specifications must be
imposed only over those safety controller variables over which the control system or safety
operator has direct control, since the control system or safety operator must be able to
ensure that these invariants are satisfied during the modes. In particular, an invariant must
not be imposed over the safety controller variables that represent sensors, since the control
system has no direct control over the value of a sensor (the value of a sensor is governed by
the value of the real world variable being sensed). We define the safety controller histories of
a system SY (denoted by SCH(SY)) as the set of safety environment description histories
that satisfy the safety controller specification (i.e., SCH(SY) = {H e SEDH(SY)| H sat
SCS(SY)}.

6.2.1. Safety Controller Behaviour Structure

To guide the analysis and verification of the safety controller specification, a general
structure is proposed for the behaviour of any safety controller. The structure is
represented by a phase graph (see figure 6.2).
The phase graph can be characterized by the following general phase sequence:
(start up, monitor, {recovery, reset, monitor)", recovery™, shut down, end),

where n> 0, m € {0, 1}.

In the following sections I will give a description of the role of each phase in the
behaviour of any safety controller, and discuss the formal constructs that will be used to

specify the behaviour of the safety controller during these phases.

148

Controller Specifications

ShutDown "1 End
[}

Start Up F—————» Monitor ./ Recovery

[

Reset

Figure 6.2. General Safety Controller Specification Structure

Example Safety Controller Specification

To illustrate how the general structure can be used to specify the behaviour of a safety
controller, the specifications of the reacﬁon vessel will be given for each phase. Recall that,
in addition to the behaviour specified by the safety real world specification (see chapter 5),
the behaviour of the safety controller should comply with the (informal) requirements on

the Safelight.

Safelight Requirements

The informal requirements over the Safelight can be restated in terms of the general
phases of the safety controller.
a. The Safelight should be green when the safety controller resides in the end phase;
b. The Safelight should be green or amber when the safety controller resides in the start up
or reset phases;
c. The Safelight should be amber when the safety controller resides in the monitor phase;
and '
d. the Safelight should be red soon after the safety controller enters the recovery phase or
shut down phase; and remain at red until the safety controller has completed the recovery

or shut down actions at which point the Safelight should be green.

149

Controller Specifications

Specification Condition

In the safety environment description of the reaction vessel, constants were used in the

specification of description relations. For example, in the history relation Hrg:

[dur > ET A wt: po () =0 A pa3 (t)=Dmax A dur > ET] = py3; =0,
the constant ET is used to define an upper bOlll;d on the time taken to empty the vessel
when the flow rate is zero and ValveD is open. Such constants will be referred to as
description constants.

The formulation of several mode specifications is dependent on the value of the
description constants. For such mode specifications, constants and functions are used in
the formulation of the system predicates and time bounds. These constants and functions
are related to the description constants by specification conditions. For example, the mode
specification of the empty mode (see later) is defined using the constants L; and Us:
Empty = (p4 < temps, pig € {g, r} A Vset, pig=g, Ly, U3),

The specification condition for L1 ensures that the safety controller stays in the mode long

enough to empty the vessel so we must have: Ly > ET.

6.2.2, Start Up Phase

The start up phase of a system lifetime is the interval during which the safety controller
is set up. Typically, during the start up phase the safety controller will set up the initial
conditions of the physical process an'd set the safety controller variables to their initial
values. Roughly speaking, the initial conditions of the physical process are chosen to
ensure that the system cannot enter into a hazardous state for an interval after the start up
phase. The system enters the start up phase at the start of its lifetime and leaves when the
Start event occurs. The required behaviour of the safety controller during the start up phase

should be specified by an SEMG, referred to as the start up graph (denoted by SU(SY)).

Example Start Up Graph
The start up graph, of the reaction vessel, is a simple SEMG of two connected modes.The

structure is drawn below and the modes are specified in the following paragraphs.

150

Controller Specifications

SU(Rv) = ({Low, Release}, (Low, Release), Low, Release).

o

Low Mode

The safety controller starts in this mode. During this mode, Safelight is green, LockA and
LockB must be on, and ValveD must be closed. The safety controller leaves this mode as soon
as the Safety select is turned on, and the Thermometer is less than (or equal to) temp.

Low = (true, pi9 = g A P21 = On A p2 = on A pz3 = 0, p17 = on A py < tempy).

Release Mode

The safety controller is in this mode while it is setting up the actuators for the monitor phase. At
the start of the mode the Thermometer must be less than (or equal to) temp;. During this mode
Safelight is green or amber and Valve D must be closed. The safety controller must turn Safelight
to amber, Release LockA and LockB; and then leave this mode. The safety controller must not

spend at most U; seconds in the mode.

Release = (py < temps, pr9 € {g, a}.A pz3 = 0, p19 = a A pa1 = off A p2 = off, 0, Uy).
Specification condition

The temperature during the release mode must be below the minimum activation temperature.
So temp; and U; must be chosen in accordance with the inequality:

temp; + ATm.U; + ATe < Mact- ATp.

6.2.3. Monitor Phase

A monitor phase is an interval of the system lifetime during which the safety controller
monitors the behaviour of the physical process. Typically, during a monitor phase the safety
controller will monitor the behaviour of the physical process to detect any recovery events.

Roughly speaking a recovery event is an event after which the safety controller must enter

151

Controller Specifications

the recovery phase. The system enters a monitor phase after the start up phase or after the
reset phase (see later); it leaves when a recovery or shut down event occurs. During the
monitor phase the behaviour of the actuators of the safety controller are specified by a
System predicate — the monitor invariant of the controller - denoted by MonInv(SY). The

behaviour of the safety controller during a monitor phase is specified by an SEMG referred

to as the monitor graph (denoted by MN(SY)).

Example Monitor Graph

The required behaviour of the safety controller of the reaction vessel is specified by a
trivial graph: MN(Rv) = ({Monitor}, 8, Monitor, Monitor).

Monitor Mode

The safety controller is in this mode during the monitor phase. At the start of the mode the
Thermometer reading must be less than temp,. During this mode Safelight must be at amber,
LockA and LockB must be released; and ValveD must be closed. The safety controller must
leave this mode as soon as the Safety select is at off or the Thermometer reading is greater than
(or equal to) temps;.

Monitor = (pys < tempy, MInv, pj7 = off v pys > temp),

where MInv = (pjg=a A p21=0ff A pp=off A p3=0).

Specification condition

The thermometer reading at the end of the release mode must comply with the start predicate of
the monitor mode, the start predicate of the monitor mode must imply the negation of the end
predicate of the monitor mode; and the temperature during the monitor mode must be below
the explosion temperature.

So temp; and temp; must be chosen in accordance to the inequality:

(temp; + ATm.U; + ATe < temp;) A (temp, < temps) A (temps + ATe < Eact - ATp).

6.2.4. Recovery Phase
A recovery phase of a system lifetime is an interval during which the safety controller
takes over the main control of the system in order to prevent the system from entering into

a hazardous state. Typically, during a recovery phase the safety controller will manipulate

152

Controller Specifications

its actuators to avoid a hazard. A system history enters a recovery phase from a monitor
phase when the safety controller detects a recovery event and leaves when a shutdown or
reset event occurs. A recovery event can occur in any mode of the monitor graph; and the
recovery events of different modes can initiate different recovery actions. Hence, a safety
controller could have a recovery graph for each n;ode of the monitor graph. The behaviour
of the safety subsystem during a recovery phase is specified by a set of SEMGs, referred to
as recovery graphs. The recovery graphs are denoted by the function REC(SY), where
REC(m) gives the recovery graph of mode m. The function REC(SY) will be used in the

definition of a function which connects the recovery graphs to the safety controller

specification (see chapter 8).

Example Recovery Graph

The safety controller enters the recovery phase when there is risk of the temperature
becoming too high. Let us suppose that both the collection vessel for OutletC and the
collection vessel for OutletD maintain the temperature of their contents below Eact. (In
the analysis of a real system the previous assumptions would have to be added to the safety
real world description by introducing variables for the temperature and volume of liquidin
the collection vessels.) Hence, provided the vessel can be emptied before the temperature
reaches Eact the hazard will be avoided.
The recovery function for the reaction vessel is defined as: REC(Rv)(Monitor) =

({Detect, Empty, Cooling}, {(Detect, Empty), (Empty, Cooling)}, Detect, Cooling).

Detect Mode

The safety controller enters this mode after the recovery condition of the safety controller has
been detected, and remains in it until the actuators are set up for a recovery. At the start of this
mode the Thermometer reading is less than tempy. The safety controller must turn Safelight to
red, lock LockA and LockB, open ValveD; and then leave this mode. The safety controller must

spend at most U seconds in the mode.

153

Controller Specifications

Detect = (py4 < tempy, true, pijg = I A P21 = ON A p22 = on A py3 = Dmax, 0, Uy).
Specification condition

The thermometer reading at the end of the monitor mode must imply the start predicate of the
detect mode; and the temperature during the detect mode must be below the explosion
temperature.)

So temp4 and U, must be chosen in accordance to the inequality:

(tempsz + ATe < tempy) A (tempy + ATm.U; + ATe <Eact -ATp).

Empty Mode

The safety controller is in this mode while the vessel is being emptied, via OutletD. At the start
of the mode the Thermometer reading is less than temps. During this mode, Safelight must be
at green or red, LockA and LockB must be locked, and ValveD must be open. The safety
controller must turn the Safelight to green, and then leave this mode. The safety controller must
spend between L; and U; seconds

Empty = (py < temps, p1g € {g, r} A Vset, pig=g, L;, U3),

where Vset = (pz; = on A pzz = on A p3 = Dmax).

Specification conditions

i) The thermometer reading at the end of the detect mode must imply the start predicate of the
empty mode; and the temperature during the empty mode must be below the explosion
lemperature. So temps and U; must be chosen in accordance to the inequality:

(tempy + ATm.U, + ATe < temps) A (temps + ATm.Us + ATe <Eact -ATp).

ii) The safety controller must stay in the mode long enough to ensure that the mode is empty.
So L; must be chosen in accordance to the inequality: L; > ET.

Cooling Mode

The safety controller is in this mode while the vessel is cooling down after it has been emptied.
During this mode, the Safelight is green, LockA and LockB are locked and ValveD is open. The
safety controller must leave this mode as soon as the Safety select is at off or the Thermometer

reading is less than tempg and the Safety select is at reset.

Cooling = (true, p1g = g A Vset, p17 = off v (p2 < temps A p17 = reset)).

154

Controller Specifications

6.2.5. Reset Phase

A reset phase is an interval of the system lifetime which occurs after a recovery pilase
after which the safety controller is allowed to return to the monitor phase. That is, during
the reset phase the state of the real world chimges to a state from which the safety
controller can enter the monitor phase, with the assurance that a recbvery condition will
not be satisfied at the instant the safety controller enters the monitor phase. The reset
phase is introduced to improve the availability of the system rather than system safety. The
safety controller enters a reset phase when a reset event occurs and leaves when a monitor
event occurs. Typically, during a reset phase the safety controller will reset the actuators to
allow the mission controller to proceed with the mission, by returning to the monitor

phase.

The safety controller may also perform safety checks before entering into the monitor
phase if any of the checks are not passed the controller will remain in the reset phase. A
safety controller may enter the reset phase from the end mode of any recovery graph. The
behaviour of the safety subsystem during the reset phase is specified by a set of SEMGs,
referred to as reset graphs. The reset graphs are denoted by the function RG(SY), where
RG(SY)(m) gives the reset graph of mode m. The function RG(SY) is used in the definition
of an algorithm which connects the recovery graphs to the safety controller specification

(see chapter 8).

Example Reset Graph

The reset function is defined over the cooling mode as follows:

RG(Rv)(cooling) = ({Reset}, 8, Reset, Reset).

Reset Mode

The safety controller is in this mode while valves are being reset. At the start of the mode Safety
select is at reset and the Thermometer is less than tempg. During this mode, Safelight must be at
green or amber. The safety controller must turn Safelight to green, release LockA and LockB
close ValveD, and then leave this mode. The safety controller must spend at most Uy seconds in

this mode.

155

Controller Specifications

Reset =

(P17 = reset A py < temps, P € {8 a}, Py=8 A pu1=0ff A p=off A p3=0, 0, Us).
Specification Condition

The thermometer reading at the end of the reset mode must comply with the start predicate of
the monitor mode. So tempg and Uy be chosen in accordance to the ‘inequality:

tempg + ATm.Us < tempy).

6.2.6. Shut Down Phase

A shut down phase of a system is an interval of the system lifetime after which the
safety controller can no longer enter the monitor phase. Typically, at the end of the shut
down phase, the state of the real world is such that provided the value of the safety
controllers actuators are unchanged the system cannot enter into a hazardous state. The
safety controller enters the shut down phase when a shut down event occurs and leaves
when an end event occurs. A safety controller may enter the shutdown phase from the end
mode of any recovery graph or from a monitor mode. The behaviour of the safety
subsystem during the shutdown phase is specified by SEMGs, referred to as shut down
8graphs. The shut down graphs are denoted by the function Sh, where Sh(m) gives the shut
down graph of mode m. The function Sh is used in the definition of an algorithm which

connects the shutdown graphs to the safety controller specification (see chapter 8).

Example Shut Down Graphs

The shutdown graph of the cooling mode is the empty graph, since no tasks need be
performed after the recovery to allow the controller to be shut down (i.e., the vessel is
empty and ValveA and ValveB are locked). The shut down graph of the monitor mode is

simply the recovery graph.

6.2.7. End Phase
The end phase of a system is the interval of the system lifetime after a shutdown phase
up to the end of the systems lifetime. The safety controller enters the end phase after an

end event occurs and leaves when the termination predicate is satisfied. The behaviour of

156

Controller Specifications

the safety controller during the phase is specified by an unbounded mode, referred to as a

end controller mode (denoted by EC(SY)).

Example End Controller Mode

End control Mode

The safety controller is in this mode during the end phase of the safety controller. At the start of
the mode the Safety select is at reset and the vessel is empty. During this mode, Safelight must be
8reen, LockA and LockB must be locked and ValveD must be open. The safety controller leaves
this mode as soon as the termination predicate holds.

End control = (p17 = reset, pjg = g A Vset, Q).

Safety Controller Specification Example

The formal structure of the safety controller specification of the reaction vessel is:
M = {Low, Release, Monitor, Detect, Empty, Cooling, Reset, End Control};
A = {(Low, Release) (Release, Monitor), (Monitor, Detect), (Detect, Empty), (Empty,
Cooling), (Cooling, Reset), (Cooling, End Control)};
S =Low; and E= End Control.

A diagram of the safety controller specification structure is given in figure 6.3.

Figure 6.3. Reaction Vessel Safety Controller Specification Structure

157

Controller Specifications

6.3. Mission Environment Description

The role of the mission environment description of a system is to represent\ the
relationship between the behaviour of the sensors and actuators of the safety controller of
a system and the real world variables, in addition to any relations defined by the mission
real world description of that system, by using the description relations. The mission
environment description is defined, in terms of a history description; for a system SY this is
denoted by MED(SY). The mission environment description is produced as an extension
to the mission real world description. To the sequence of mission real world variables we
add the sequence of mission controller variables and some safety controller variables
(roughly speaking these are the safety controller variables which have an influence on the
effect of the mission controller on the real world, referred to as the external controller
variables). The ranges and classes of the mission controller variables and external
controller variables are added to the range sequence and class sequence of the mission real
world description. Any invariant (resp. history) relations involving the mission controller
variables, external controller variables and real world variables are added to the invariant
(resp. history) relation sequence of the mission real world description. We define the
mission environment description histories of a system SY (denoted by MEDH(SY)) as:
MEDH(SY) = Set(MED(SY)).

6.3.1. Relation Classes

One of the main reasons for partitioning the controller (into safety and mission
controllers) was to minimise any relationships between the mission-oriented and
safety—critical functions of the controller. For the systems considered, relationships
involving the mission controller and safety controller variables will be severely restricted -

by defining two sorts of relations: mission and dependent.
Mission Relations

A mission relation is a description relation that is specified over the real world
variables and the mission controller variables only. Clearly, a mission relation cannot

describe any relationship between the safety and mission controller variables.

158

Controller Specifications

Dependent Relations

For some systems it will not be possible to express all relevant relationships as mis\sion
relations. In particular, a relationship between the behaviour of mission controller
variables and real world variables may be dependent on the value of some Safety controller
variables. A class of relations which can capture this property is referred to as dependent
relations, these are defined next.

Definition: Dependent relation

A dependent relation is an invariant relation formulated using two system predicates SP and
ME, as SP = MP. SP is defined over the safety controller variables and MP is defined over the
mission variables. The value of the predicate SP must be under the control of the safety control
system, and the predicate MP describes a relationship between a mission controller variable

and the real world which cannot be controlled by the mission control system.
As an example of a dependent relation consider the following relation of the reaction
vessel: if LockA is released FlowA is given by a function over ValveA, this is captured by

the following dependent relation p;; = off = p7 = fia(p2s).

Example Mission Environment Description

The mission environment description of the reaction vessel is given as an extension of
the mission real world description (see section 5.5). The relations involving the mission
controller variables are defined by tabie 6.2. This table is obtained by a systematic analysis
of the properties of the mission controllers actuators and sensors (the general analysis
process is detailed in chapter 8).
The mission environment description is defined as: MED(Rv) = (T, Sv, VP, CP, IR, HR),
where '
Sv = (py, ... , p2oY; VP = (Vpy, ..., Vpxo); CP = (Cpy, ..., Cpok;
IR = (Iry, ..., Ir;3) and HR = (Hry, ..., Hrs, Hry, Hrg, Hrg).
The mission environment description history set is defined as: MEDH(Rv) =

Set(MED(Rv)).

159

Controller Specifications

Table 6.2: Controller Relationships of Mission Environment Description

No. | Related Relationship Comments

variables

Irg | p7, P21, P2s | p21 = off = p7 = fia(p2s). If LockA is released FlowA is given by a
function over ValveA.

Ir1o |ps, P22, P26 | P22 = off = pg = fip(p26)- If LockB is released FlowB is given by a
function over ValveB.

Iri1 | P13, P15, | P14 = foc(p13, P27) OutflowC is given by a function over

P27 Volume and ValveC.

Iri2 | P6» P13, P28 | P13 = 0 A p23=off = pg < Mact If the vessel is empty and the regulator of
then the temperature is less than the
minimum activation value.

Ir;3 | p1s,p2s, [p1= S(T) = At the start of the system lifetime the

P26, P21, [pig = g A p2s=0A pg=O0A indicator is at green ValveA, ValveB and
p2s p27 = O A p2so = off. ValveC are closed; and the regulator is off.

Hry |pe, P28, 29 | Vt: (P2s = on A pzs = prso]) If the regulator is on for an interval during

A dur > Rt(px) which regulator set is constant and the
= Vi:(ARt 0 - AReg) | duration of the interval is greater than the
(R, 0% 1pm - pel < 2 value given by Ri(pzo) then after the first
Rt(pz9) seconds of the interval the

temperature is approximately the set value.

Hrg | p6 p2s | P60 Mact A Vt: pag(t)=off == If the temperature is below Mact at the start

vit: pe(t) < Mact of the interval and the regulator is off during
the interval then the temperature is below
Mact during the interval.
Hrg | p13,p2s, |Vt p2s(®)=0 A p2s(t)=0 A If the inlet valves are closed and ValveC is
P26, P27- | p27(t)=Cmax] A dur > ETC = open for an interval of duration at least ETC
= then the vessel will be empty at the end of
p13,1 =0 X
the interval.

The mission controller is illustrated in figure 6.4.

6.3.2. Monitor Relations

For safety—critical systems the customer is concerned with the satisfaction of the mission

requirements only when the safety controller does not override the mission controller. The

safety controller does not override the mission controller when it is in the monitor phase.

In the approach presented here, the mission controller need only satisfy the mission while

the safety controller is in the monitor phase. Hence, any relations which hold during the

monitor phase can be included in the mission environment description.

160

Controller Specifications

| Mission operator |

O O O O
Lbc/d

Mission control system |

Key
a: VolA select b: VoIB select c: Temp select d: Plant select e: Indicator
f: ValveC g: ValveB h: Regswitch i: Regtemp j: ValveA.

Figure 6.4. Reaction Vessel Mission Controller

Example Monitor Relations

For the reaction vessel we can add the invariant relation which follows from the
monitor invariant of SCS(Rv) to MED(Rv). That is we add the invariant relation Iry:
P21=o0ff A p22 = off A p23 =0. The main cc;nsequence of adding this invariant relation is that
for the set of histories described by the modified MED(Rv), the mission controller has full

control over the flow rates into and out of the vessel.

6.4. Mission Controller Specification
The role of the mission controller specification of a system SY is to specify the

behaviour that must be exhibited by the mission controller that will ensure that the mission

161

Controller Specifications

real world specification of the system will be satisfied. The mission controller specification
of a system SY is expressed formally as an SEMG, and for a system SY it is denoted by
MCS(SY). The system predicates used to construct the mode specifications of a mission
controller specification are imposed over the mission controller variables. These mode
specifications express the behaviour that the cont;ol system and the mission operator must
ensure is exhibited. The invariants of these mode specifications must be imposed only over
those mission controller variables over which the control system or operator has direct
control. As for the safety controller specification an invariant must not be imposed over the
sensor variables. We define the mission controller histories of a system SY (denoted by
MCH(SY)) as the set of mission environment histories that satisfy the mission controller

specification (i.e., MCH(SY) = {H € MEDH(SY)| H sat MCS(SY)}.

6.4.1. Mission Controller Behaviour Structure

The strategy for the construction of the mission controller specification is based on a
Systematic analysis of the modes of the mission real world specification. For each mode of
the mission real world specification, an SEMG is constructed that specifies the behaviour
that must be exhibited by the mission controller to perform the task specified by the mode
of the mission real world specification; such an SEMG is called the controller graph of the
mode. As a result of this analysis a function is developed from the mode set of the mission
real world specification to a set of SEMGs - the controller function. The mission controller
Specification would then be constructed by combining the graphs obtained form the
controller function. A technique for the analysis of the mission controller based on the

Strategy outlined above is presented in chapter 8.

Mission Controller Specification Example

The mission controller specification of the reaction vessel is presented next. A
relationship between the mission controller specification is also presented by defining the
controller function of the reaction vessel. In this section, the mission controller
Specification is simply presented. A methodology to construct and check this specification

is detailed in chapter 8.

162

Controller Specifications

Mission Controller Specification Structure

The structure of the mission controller specification is: MCS(Rv) = (M, A, S, E). \
M= {Turn on, Select, Open in, Fill vessel Close in, Indicator, Reg on, Heat up, Reaction,
Open out, Empty, Close out, Wait, Turn off};

A = {(Turn on, Select), (Select, Open in), (Obén in, Fill vessel), (Fill vessel, Close in),
(Close in, Indicator), (Indicator, Reg on), (Reg on, Heat up), (Heat up, Reaction), (Open
out, Empty), (Empty, Close out), (Close out, Wait), (Wait, Select), (Wait, Turn off)};

S = Turn on and E =Turn off.

The diagram of the mission controller specification is given in figure 6.5. The boxes in the
diagram illustrate the relationship between the modes of the mission real world

specification and the mission controller specification (i.e., the controller function).

.

...

ccecocsea

(Close out

[T

Key
a: Closed b:Set points c: Set up d: Amber e: Activate

f: Production g: Collect h: Operator i: End.

Figure 6.5. Reaction Vessel Mission Controller Specification Structure

163

Controller Specifications

Mode Specifications
The modes used in the mission controller specification of the reaction vessel are
presented in the following paragraphs. The specification conditions play the same role as

they did for the safety controller specification

Closed Mode

CF(Closed) =

Turn on Mode

This is the start mode for the mission controller specification. During this mode, the Indicator
must be at green; ValveA, ValveB and ValveC must be closed and the regulator must be off. The
mission controller must leave this mode as soon as Plant select is at on.

Turn on = (true, p1g = g A VC A p2s = off, ps = on),

where Ve = (p2s = 0 A p = 0 A p27 = 0).

Set points Mode

CF(Set points) =

Select Mode

The mission controller is in this mode while the operator selects the set points. At the start of the

mode, Plant select is at on. During this mode, Plant select must be at on or start, the Indicator

must be at green, ValveA, ValveB and ValveC must be closed and the regulator must be off. The
mission controller must leave this mode as soon as Plant select is at start.

Select = (ps = on, ps € {on, start} A pig = g A VC A pzs = off, ps = start).

Set up Mode

CF(Setup) =

Open in Mode

164

Controller Specifications

This is the mode in which the valves are opened to fill the vessel with liquids A and B.. During
this mode, Plant select must be at start, the Indicator must be at green, ValveC must be closed
and the regulator must be off. The mission controller must open ValveA to the extent required by
the function f4 and ValveB to the extent required by the function fg and then leave this mode.

The mission controller must spend at most OT units of time in the mode.

Open in = (true, Fv, Ov, 0, OT),

where Fv = (ps = start A pig = g A p27 = 0 A pag = off);

and Ov = (p2s = fa(p2, P3) A p2s = fa(p2, P3))-

Specification Condition

The increase in the volume of A (resp. B) during the open in mode must be bounded by half of
the volume A (resp. volume B) tolerance. So we must choose OT to satisfy the inequality:

fia(Amax).0OT < AVa/2 A fig(Bmax).OT < AVp/2.

Fill vessel Mode

The mission controller is in this mode while liquid A and liquid B are being loaded into the
vessel. At the start of this mode, ValveA and ValveB must be open to the extent required by the
Junctions f4 and fg. During this mode, Plant select must be at start, the Indicator must be at
green, ValveC must be closed, and the regulator must be off. The mission controller must start to
close the inlet valves; and then leave this mode. The mission controller must spend between

Jr(p2, p3) and fr(pa, p3)+ OT seconds in this mode.
Fill vessel = (Ov, Fv, ~Ov, fr(ps, p3), fr(p2, p3) + OT).

Specification Condition

The volume of A (resp. volume of B) in the vessel at the end of the fill vessel mode must be at
least the set point value minus the volume A (resp. volume of B) tolerance.

So we must define the functions fa, fg and ft to satisfy the inequality:

VX € Vp: vy € Vps: | '

[(Brafa(x, y))-f(x, y) =y - AVa) A (fis(fa(x, y))-fr(x, y) = y - AVp)].

Close in Mode

The mission controller is in this mode when the inlet valves are being closed. During this mode

Plant select must be at start, the Indicator must be at green, ValveC must be closed, and the

165

Controller Specifications

regulator must be off. The mission controller must close ValveA and ValveB and them leave this
mode. The mission controller must spend at most OT seconds in this mode.

Close in = (true, Fv, ps = 0 A p2s = 0, 0, OT).

Amber Mode

CF(Amber) =

Indicator Mode

The mission controller is in this mode when the Indicator is being set to amber. During this
mode, Plant select must be at start, the Indicator must be at green or amber, ValveA, Valve B and
ValveC must be closed, and the regulator at off. The mission controller must turn the Indicator
to amber, and then leave this mode. The mission controller must spend at most At seconds in
this mode.

Indicator = (true, ps= start A pig € {g, a} A Vc A pg= off, pig = a, 0, At).

Activate Mode

Reg on Mode

The mission controller is in this mode while the regulator is being set up. During this mode,
Plant select is at start, ValveA, ValveB and ValveC are closed and the Indicator must be at
amber. The mission controller must switch the regulator on and set it to the required
temperature (i.e. the set point value), and then leave this mode. The mission controller must
not spend more then Ro seconds in this mode.

Reg on = (true, ps= start A Vc A pig = a, Rset, 0, Ro),

where Rset = (pyg = on A pz9 = pa).

Heat up Mode

The mission controller is in this mode while the contents of the vessel is being raised to the

activation temperature. During this mode, Plant select must be at start, the Indicator must be at

166

Controller Specifications

amber or red, ValveA, ValveB and ValveC must be closed, and the regulator must be set. The
mission controller must turn the Indicator to red, and then leave this mode. The mission
controller must spend between RT(py) and RT(p4) + Aht seconds in the mode.

Heat up = (true, ps= start A pig € {a, r} A Vc A Rset, pig = 1, RT(ps), RT(ps) + Aht).

Specification Condition

The upper bound of the controller graph for the activate mode must be less than (or equal to) the
upper bound of the Activate mode.

So we must choose Ro and Aht to satisfy the inequality: Ro + RT(ps)+ Aht < frr(pas)-

Production Mode

CF(Production)

Reaction Mode

The mission controller is in this mode while the reaction is in progress. During this mode Plant
select must be at start or collect, the regulator must be at red, ValveA, ValveB and ValveC must
be closed and the regulator must be set. The system must leave this mode as soon as Plant select

is at collect.

Reaction = (true, ps € {start, collect} A pig = r A Vc A Rset, ps = collect).

Collect Mode

CF(Collect) = ¢

Open out Mode

The mission controller is in this mode when ValveC is being opened. While the mission
controller is in this mode the Plant select must be at collect, the Indicator must be at red, ValveA
and ValveB must be closed and the regulator must be set.The mission controller must open
ValveC, and then leave this mode. The mission controller must not spend more than Oc

seconds in the mode.

167

Controller Specifications

Open out = (true, ps = collect A p1ig = 1 A IVC A Rset, py7 = Cmax, 0, Oc), - .

where IVc = (pas = 0 A p = 0).

Empty Mode

The mission controller is in this mode while thé product is being collected. During this mode,
Plant select must be at collect, the Indicator must be at red, ValveA and Valve B must be closed
and the regulator must be set. The mission controller must start to close ValveC and then leave
this mode. The mission controller must spend between ETC and ETC + Aet seconds in this
mode.

Empty = (true, ps = collect A p1g = r A IVc A Rset, p»7 < Cmax, ETC, ETC+ Aet).
Close out Mode

The mission controller is in this mode when ValveC is being closed. During this mode Plant
select must be at collect, the Indicator must be at green or red and ValveA and Valve B must be
closed. The mission controller must turn the Indicator to green, close ValveC, switch the
regulator off, and then leave this mode. The mission controller must spend at most Co seconds

in this mode.
Close out = (true, ps = collect Apig € {g, 1} AIVc,p27 = 0 A p1g = g A p2s = off, 0, Co).

Specification Condition

The upper bound of the controller graph for the collect mode must be less than (or equal to) the
upper bound of the collect mode.

So we must choose Oc, Aet and Co to satisfy the inequality: Oc+ETC+ Aet+Co < AC.

Operator Mode

CF(Operator) =

Wait Mode

The mission controller is in this mode while the operator decides if another batch of Cis to be
produced or the (mission) system should be shutdown. During this mode, Plant select must at
collect, off or on, the Indicator must be at green, ValveA, ValveB and Valve C must be closed and

the regulator must be off. The mission controller must leave this mode as soon as the Plant

168

Controller Specifications

select is at off or on.

Wait = (true, ps € {collect, off, on} A pig = 8 A Vc A pg = off, ps € {off, on}).
End Mode

CF(End) =

Turn off Mode

The mission controller enters this mode when no more C will be produced. At the start of the
end mode the Plant select is at off. During this mode, the Indicator must be at green, ValveA,
ValveB and ValveC must be closed, and the regulator must be off. The mission controller

remains in this mode to the end of the system lifetime.

End = (ps = off, pig = g A Vc A p2s = off, Q).

6.5. Summary and Conclusions

This chapter has discussed the formal constructs that will be used to express the
descriptions and specifications produced during the controller analysis. The concepts
introduced during the chapter were illustrated by examples from the reaction vessel
(discussed in chapter two).

The safety environment description, is expressed as a history description. The safety
controller specification is expressed as an SEMG. To structure the production of the safety
controller specification a general structure is introduced, in terms of phases. There are five
such phases: start up, monitor, recovery, reset, shut down and end. The general

representation of each phase in the formal model is discussed.

The mission environment descriptién is expressed as a history description. To describe
the restrictions over the mission-oriented behaviour at the controller level it is necessary
to specify relations that are imposed over all the state variables of a system. This introduces
the possibility of imposing relationships in which the mission controller could influence the
affect of the safety controller on the physical process. To prevent this, a restricted class of
relations, called dependent relations, was defined. The mission controller specification is

specified as an SEMG. A basic strategy for the development of the mission controller

169

Controller Specifications

specification was discussed in which an SEMG is constructed for each mode in the-mission
real world specification, was briefly discussed

Simply representing the behaviour of the safety controller in terms of the formal model
will contribute little to the safety of the systent. The analysis followed to produce the safety
controller specification or safety controller description may be incomplete; or the
formulation of these specification or description may be flawed (i.e., from simple errors in
the notation, misunderstandings in the semantics).

For the formalism to make a significant (positive) contribution to the safety of the
system, we must be able to provide a concrete argument for the assertion that the
behaviour expressed by the safety controller specification is adequate to ensure that the
safety real world specification will be maintained. Two ways for providing evidence for this
argument are by: i) following a systematic step-by-step technique for the analysis of the
safety controller and safety real world specification to produce the safety controller
description and safety controller specification; and ii) performing a verification of the
safety controller specification and safety controller description against the safety real
world specification (the validation of the real world specification is discussed in the next
chapter).

Similarly, simply representing the behaviour of the mission controller in terms of the
formal model will contribute little to the reliability (in terms of the mission) of the system.
As for the safety controller, a systematic analysis technique and verification technique
should be used to provide evidence for the assertion that the mission controller

specification is adequate for the mission real world specification.

Systematic analysis techniques and verification techniques for the specifications (and
specification conditions) produced during the controller analysis are discussed in detail, in

chapter 8.

170

Real World Analysis
Chapter 7 - Real World Analysis

7.1. Introduction

The formal structures for the representation of the specifications produced during the
real world analysis, were discussed in chapter 5. In this chapter guidelines for the analysis
of the system at the real world level are discussed in detail. To illustrate how these
guidelines can help during the real world analysis of a particular system, a case study is
presented in appendix B. The case study describes the real world analysis of a
safety—critical chemical plant. During this chapter, simple examples from the reaction

vessel are given to illustrate some parts of the methodology.

At the start of the real world analysis we have a system concept (see chapter 2). The
system concept of a system is a model of the behaviour required from that system,
presented as an informal specification, expressed in a suitable notation. As such the system

concept suffers from the drawbacks of an informal specification, discussed in chapter 2.

The task of a real world analysis is to analyse the system concept in order to produce a
formal requirements specification and to formally capture the restrictions imposed on
system behaviour by the environment. Simply representing the system concept as a set of
formal constructs would be of limited help. In fact, a messy and unstructured formal
requirement specification would probably be less useful, as a description of system
behaviour to the subsequent analysis of the system, than the system concept. Hence, a
structured approach to the production of a structured set of formal requirements

specifications from a system concept is necessary.

As a result of the real world analyéis four formal specifications will be produced: the
safety real world description, the safety real world specification, the mission real world
description and the mission real world specification. Thereby, allowing a distinction between
the restrictions imposed on system behaviour by the environment and the system

behaviour required; and the safety—critical and mission-oriented behaviour of the system.

Most requirements engineering techniques have attempted to transform a system

concept to a formal requirements specification - using iterative methods [Rzep85]. These

171

Real World Analysis

methods are usually based on an iterative process of analysing system behaviour asdefined
by the current specification (initially, this is the informal specification), documenting the
requirements insights (thus producing a new specification), and checking the accuracy of

the understanding (new specification) so gaiﬁed.

The guidelines for the real world analysis will be presented as systematic techniques for
the development of the four real world formal specifications. These systematic methods
provide a set of step-by-step guidelines for the analysis needed to produce a formal
specification; and a set of guidelines for the validation of the specification produced. Two
reasons why the disciplined approaches (presented in this chapter) will improve confidence
in the accuracy of the formal specifications are: i) the systematic analysis increases
confidence in the completeness of the analysis and ii) the validation guidelines provide a

means to systematically review the produced formal specifications.

The real world analysis starts with the construction of an initial real world description.
After the initial analysis, the real world analysis is partitioned into safety real world analysis
and mission real world analysis, these are performed in two main stages, the stages and the
interactions between them are shown by figure 7.1.In this diagram, the boxes represent the
stages, the downward arcs represent the order in which the analysis should be performed;
and the upward arcs represent backfracking. The hazard specification analysis and mission
real world specification analysis is performed in two main stages, the stages and the
interactions between them are shown by figure 7.2. The main teams involved in the real

world analysis are the customer, disaster analysts, hazard analysts and mission analysts.

172

Real World Analysis

>
System
Concept
Initial Real World
Description
Safety Real World o
Analysis Mission Real World
Analysis
Hazard
Specification
Mission Real World
Specification
Safety Real World
Description
Mission Real World
Description
Safety Real World
Specification
Y
Figure 7.1. Real World Analysis
Hazard ' Mission Real World
Specification Analysis Specification Analysis
Disasters — Mlssu?n. Ph.ase
Specification
Hazard Mission Real World
Specification Specification
Safety Real World Mission Real World
Description Description

Figure 7.2. Real World Specification Analysis

173

Real World Analysis

7.2 Initial Real World Description Analysis

Before proceeding to a detailed analysis of the safety and mission issues of the system, a
history description that specifies the real world variables of interest and the restrictions
imposed on those variables by the environment should be produced. This history
description will be called the initial real world description (denoted by IRWD). In this
section a simple set of guidelines, are presented for the construction of an initial real world
description. It should be recognised that the real world description produced at the end of
the analysis will probably be incomplete (in the sense that some real world variables and
relations will not be identified), but it should provide a useful basis for further analysis.
This incompleteness will not affect the safety of the system, since a more thorough analysis

will be performed later.

The formal structure of a history description ((T, Rv, VP, CP, IR, HR)) can be used to

derive guidelines for the production of the initial real world description.

7.2.1. Production Guidelines

The steps (given below) act as a simple guide to the disaster analysis team for the
production of the IRWD from an analysis of the system concept, and knowledge of the

application area.

Step 1
The time base is simply a representation of the lifetime of the system. In this elementary
step, the main issues of concern to the analysis team would be the units, that is, seconds,

milliseconds etc.

Step 2

Areal world variable is a time varying quantity which represents a part of the state of the
physical process or operator console. The task of the analysis-team is to identify the real
world variables of interest in describing system behaviour, the analysis proceeds in two
stages.
a. All the real world variables that are mentioned in the system concept must be identified.

This can be performed by identifying all the phrases that are used to describe a property of

174

Real World Analysis

the physical process, or a component of the operator console, in the text or tables of the
system concept. Any diagrams used in the system concept should be inspected for any real

world variables. For each of the identified variables the units must be determined.

The results of this analysis are recorded as a state variables table, that contains a row for

each identified variable.

For example, let us suppose that performing the analysis indicated in step 2 for the
reaction vessel leads to the identification of a state variable which represent the volume of
liquid in the vessel, with the units dm?’. These results should be recorded as a row in the
state variables table, for the reaction vessel this was recorded as: variable p;3, with the units
dm?3, the name Volume; and comments which state that it represents the total volume of

liquid in the vessel.

Step 3

Avariable range represents the set of possible values for a real world variable. The task of
the analysis team is to identify the range of each identified real world variable. This can be
achieved by investigating the restrictions imposed on the value of the variable by the
environment or the construction of the plant. The results of the analysis performed in this

step are recorded as a variable ranges table.

For example, let us suppose that performing the analysis indicated in step for the state
variable Volume, identifies that the volume of liquid is represented by a real number, with
a lower bound of zero representing no liquid in the vessel; and an upper bound of Vmax
representing the vessel being full of liquid. These results should be recorded as a row which
contains the state variable (p;3) for the volume in the variables column, theset {xeR|0<
x < Vmax} in the ranges column, and comments which state that Vmax represents the

volume of the vessel.

Step 4
A variable class describes the restrictions imposed on a variable during the system
lifetime. The task of the team is to check the standard classes to identify which describes

the properties of the function, if none is appropriate the team must introduce a new class.

175

Real World Analysis

The results of the analysis performed in this step are recorded as a category and class table.

For example, let us suppose that performing the analysis indicated in this step for the
state variable Volume leads to the result that volume is a continuous variable. This result
should be recorded as row which contains the state variable (p;3) in the variables column,
Real World in the category column, continuous in the class column and comments which
state why it is a continuous variable.

Step 5

An invariant relation represents a relation between a set of real world variables which
must hold for all the system states due to restrictions imposed by the environment on
system behaviour. The task of the team is to identify all relevant relations and specify them.
Invariant relations can be identified by systematically checking the real world variables, in

two stages.

a. Check all real world variables with the same units (or dimensions), for any relations. This
check can be performed by partitioning the set of real world variables into groups with the
same units. Then within each group we identify relations, which follow from the
construction of the plant. If relations do exist between the identified groups, they will

usually be simple relations which are obvious from the system concept.

b. Check all real world variables with the same class, for any relations. This check can be

performed in a similar way to that of step 5.a.

¢. Check physical laws which govern the behaviour of the real world variables, to see if
there are any such laws which are invariant relations. This can be achieved by
systematically identifying all physical laws (that are used in the application area) which

involve a particular real world variable.

If some variables, mentioned in the physical laws (identified above), are not in the
variable sequence of the IRWD the analysis team should investigate if those real world
variables should be added to the variable sequence (i.e. are they of interest for the
particular system). If some variables are added to the variable sequence then the ranges

and classes of the variables must be identified as indicated by steps 3 and 4. If a physical law

176

Real World Analysis

can be expressed as an invariant relation the appropriate invariant relation should be
added to the sequence of invariant relations. If a physical law cannot be expressed as an
invariant law it should be recorded and marked as requiring further analysis (in step 6, the

law should be expressed by a history relation).

d. Identify initial conditions. This can be performed by checking if there are any initial
conditions which can be stated over the real world variables, by systematically checking

each variable.
The results of this analysis must be recorded in a description relations table.

For example, let us suppose that as a result of the analysis in step 5.a for the reaction
vessel the variables VolumeA (p1g), VolumeB (p11), VolumeC(p12) and Volume (p13) are
placed in the group for variables with the units dm3. Furthermore the analysis concludes
that volumes of intermediate products of A and B can be regarded as C, hence at any time
the volume of liquid in the vessel is the sum of the volumes of A, B and C. This result must
be recorded as a row in the description table for which: column No. contains the number of
the relation, Related Variables the state variables p;g, p;;, p12 and p;3, column Relationship
the system predicate p;3 = pjo + p1; + pi2; and Comments that the volume of liquid in the
vessel is the sum of chemicals A, B and C.

Step 6

A history relation represents a relation between a set of real world variables which must
hold for all intervals of the system lifetime for the set of histories given by the description.
The task of the team is to identify all such history relations and specify them. History
relations can be identified by systematically checking the real world variables, in four
stages. '

a. Check all real world variables with the same class, for history relations which follow from
the construction of the plant.

b. Check derivatives. In this stage the analysis team should check if there are any relations
over the derivatives of the real world variables. Common relations being upper and lower
bounds on the first derivative of a real world variable. A relation involving the second

derivative of a real world variable p; (for which a state variable that represents its first

177

Real World Analysis

derivative is not defined) cannot be expressed directly by an history relation. However,
such a relation can be expressed by a pair of history relations, firstly a new real world
variable (say, pj) must be introduced and a history relation that expresses the fact that p; is
the first derivative of p; formulated (i.e. pir = pio + Jpjq dt). Secondly, the relation
involving the second derivative of p; formulated in terms of p;. Obviously, if a real world
variable is introduced into the real world variable sequence of the initial description the

range and class of the variable must be defined as indicated by steps 3 and 4.

¢. Any physical laws that were marked as requiring further analysis in step 5, should be

represented as history relations.

The analysis process of steps 2, 5 and 6 continue until the analysis team believe that all
the real world variables of interest (in step 2) all invariant relations (in step 5) and all history
relations (in step 6) have been identified. The initial real world description is an
intermediate specification, it is not essential that all the real world variables or relations be
identified at this stage, a deeper analysis of the real world will be performed later. Hence
no validation guidelines are provided. Nevertheless, the analysts should attempt to capture
as many real world variables and relations as possible.

Step 7

The IRWD is defined as IRWD(SY) = (T, Sv, VP, CP, IR, HR), where
Sv is the sequence of real world variables identified in step 2;

VP is the ranges of Sv identified in step 3;
CP is the classes of Sv identified in step 4;
IR is the invariant relations identified in step 5; and

HR is the history relations identified in step 6.

A pictorial description of the initial real world description analysis guidelines is shown in
figure 7.3. The two clouds represent the information available at the start of the analysis
(i.e., the system concept and the application area knowledge). The large box represents the
process of identifying and encoding the components of the initial real world description.
The small boxes represent the guidelines for the construction of the components of the

IRWD (e.g., the box labelled by the invariant relations represents the process of identifying

178

Real World Analysis

and encoding the invariant relations). The arcs represent the interactions between the

processes.

Initial Real World Description Analysis

System Time Base
Concept 1

Real World
Variables

Variables Ranges

4
Variables Classes

Application area
knowledge

Invariant
Relations

]
History
Relations

Figure 7.3 Initial Real World Description Analysis

179

Real World Analysis

7.3. Disaster Analysis

The strategies presented in this section are guides to the construction of the disaster set
from the system concept and knowledge of what constitutes safety—critical behaviour in the
application area (such as possible disasters in the application area and the risks associated

with the materials used).

7.3.1 Disaster Identification

There are several traditional techniques which are used in the identification of disasters.
These techniques are usually based on check-lists of possible disasters, either general or

for particular types of physical process [Rodg71, Chem77].

Step 1

Choose (or construct) an appropriate check-list. A general check-list of the possible
disasters associated with the application area of the system being produced should be
available. If a check-list is not available then the disaster analysts would have to construct a
check-list based on general check-lists; and the physical properties of the plant and its
materials (e.g., for a chemical plant if a highly toxic material is being used, then release of
such chemical may be a potential disaster). A typical check-list might include the following
disasters:

1. Fire.

2. Explosion.

3. Uncontrolled toxic vapour or fluid release.
4. Personnel exposure to excessive heét.

5. Electrical shock to personnel.

The terms of the check-list should be defined as precisely as possible. For instance, the
word “explosion” is sometimes used to describe incidents where there is just a loud noise.
However, in the chemical industry the word properly describes incidents where there is a
rapid release of energy with an accompanying blast wave capable of causing damage

[Khar88]. To facilitate precise communication between the different members of the team,

180

Real World Analysis

agreement should be reached on the definition of the technical terms. Comprehensive and

precise definition of terms which are commonly used are available [TRS83, ICES85].

Step 2

For each disaster on the check-list the disaster analysts must determine if the disaster is
possible in the system or not. The results of the analysis should be recorded in a tabular
format - as a disaster analysis table. A disaster analysis table has two columns; the headings
and a brief description of the content of each column is given below.
a. Possible Disasters: specifies the disaster of the check-list.
b. Results: briefly summarise the results of the analysis on the disaster. If the disaster
analysts believe that the disaster is not possible a brief justification should be given. If the
disaster is recognised as a potential disaster, it should be represented in the formal model.
Usually this can be achieved by simply introducing real world variables which can model
the occurrence or non-occurrence of the disaster (see chapter 5).
For example, an extract of the disaster analysis table of the reaction vessel is given in table
7.1.

Table 7.1: Disaster Analysis of Reaction Vessel

Possible Disasters Results
Toxic vapour or fluid The release of toxic vapours or fluid is not regarded as a potential disaster
release since the chemicals present (and their possible derivatives) in the system are
non-toxic. .
Explosion An explosion is a potential disaster, the occurrence of which is denoted by
P20-
Step 3

The state variables, that represent the disasters identified in step 2, must be described in
a state variables table. The range of these variables will be the set {true, false}; and the

class Catastrophe.

7.3.2. Validation Guidelines

It is very difficult to verify that all the potential disasters associated with a system have

been identified. There are two possible causes for an incomplete disaster set: i) the disaster

181

Real World Analysis

analyst may reject potential disasters that are mentioned on the check-list; and i) some

potential disasters may not be mentioned on the check-list.

The approach suggested for the validation is based on two independent disaster analyses
of the system. The approach is outlined below.
Step 1

Two disaster analysis teams should be formed (say, team A and team B). These team
should perform a disaster analysis, to produce two disaster sets (SetA and SetB).
Step 2

Team A must check SetB by checking the justification given for rejecting possible
disasters on the check-list of team B. Any possible additions to disaster set SetB must be
noted. Similarly team B must check SetA.
Step 3
Any discrepancies between the analyses should then be resolved as follows:
a. Disasters included in SetA and SetB should be given common identifiers; these disasters
represent an initial disaster set.
b. The remaining disasters of SetA, SetB and the additional potential disasters (produced
in step 3) should be investigated; and those which are regarded as potential disasters by

both teams added to the disaster set defined in step 3.a.

The disaster analysis task is completed when both teams agree that the check-lists used
in the analysis have covered all possible disasters in the general application area of the
system; and all potential disasters for the particular system under analysis, that are

mentioned on a check-list, have been identified.

7.4. Hazard Specification Analysis

The hazard specification of a system is produced by identifying the hazards of the system,

by a systematic analysis of the real world variables.

7.4.1 Hazard Identification

Step 1

In this step an analysis is performed over the real world variables, to determine those

182

Real World Analysis

variables that affect the disasters of the disaster set; and under what circumstances. This
analysis proceeds by systematically answering the following questions for each state
variable.

a. Can the variable influence the possibility of a disaster of the disaster set?

b. If the answer to a is yes, under what circumstances does the variable constitute a hazard?
The answer to question b may require the definition of additional real world variables, in
which case the additional variables must be added to the real world variables under
investigation.

If an analysis of the system concludes that for a particular state variable the answer to
question a is no, a brief justification of why that variable cannot affect a disaster is

required.

The results of this analysis should be recorded in a tabular format — as a hazard analysis
table. A tabular format should be used, since it provides a structure for the recorded data;
and by following the guidelines for the columns given below ensures that only essential

information is recorded.

A hazard analysis table has three columns; the headings and a brief description of the
content of each column is given below.
Variable: specifies the real world variable(s) under investigation.
Comments: informally describes the results of the analysis.
Hazard: System predicates that define the conditions under which the real variables under

analysis constitute a hazard.

Step 2

In this step an analysis of the hazard analysis table constructed in step 1 is performed to
determine the hazard predicate of each disaster. This analysis is performed, for a particular
disaster, by systematically checking the analysis table, to identify those system predicates
that describe a hazard for that disaster. The disjunction of these system predicates defines

the hazard predicate for that disaster.

Step 3

183

Real World Analysis

In this step the hazard specification of the system is constructed. The- hazard
specification is constructed by the disjunction of the hazard predicates for each disaster of

the system.

Remark: The hazard specification of a system can, of course, be constructed directly from
the table as the disjunction of the system predicates. However, introducing the
intermediate step 2, improves the visibility of the link between the hazard specification and

the disasters.

7.4.2. Validation Guidelines

There are three possible reasons why the hazard set of a system produced by following
the guidelines in 7.4.1 may be incomplete, for a given set of disasters: i) that not all
(relevant) real world variables have been checked, ii) that not all system conditions over
the real world variables have been identified; and iii) that a mistake has occurred in the
derivation of the hazard specification from the hazard analysis table. The validation
scheme (like that of the disaster analysis) is based on an independent hazard analyses. The
approach is outlined below.

Step 1

Two hazard analysis teams should be formed (say, team A and team B). These team
should perform two independent hazard analyses; and produce two hazard analyses tables
(TableA and TableB).

Step 2

Team A must check the analysis performed by team B, by checking TableB. Any
differences, between the system predicates (Hazards) defined in TableA and TableB must
be noted; and if team A identifies some additional potential hazards these must be
recorded in a hazard analysis table. Similarly team B must check the analysis performed by

team A.

Step 3
Any discrepancies between the analysis should then be resolved as follows:

a. Hazards included in TableA and TableB represent an initial combined table - TableC.

184

Real World Analysis

b. The remaining hazards of TableA, TableB and the additional potential hazards
(identified in step 2) should be investigated; and those which are regarded as potential

hazards by both teams added to TableC.

The advantage of performing the check over the hazard analysis table, rather than the
hazard specification, is that it would be possible for two teams construct two different
hazard analysis tables, but the same hazard specification. The significance of this is that by
checking the the hazard analysis tables, we avoid the possibility of the hazard specification
masking any difference in the analysis. Once a combined table (TableC) has been
constructed the two teams can, of course, independently construct hazard specifications

which can be compared.

7.4.3 Hazard Elimination

Once the hazards have been identified the hazard analysis team must decide if any of the
hazards can be eliminated. That is, the first question the hazard analysts must ask is: “is
their a safer process route?”. For example, if the hazard analysis of a chemical plant
identifies a hazard caused by mixing two chemicals, which can lead to the release of toxic
fumes. The hazard analysts must enquire if it possible to use different chemicals for which
the hazard is not present. Since such solutions are clearly heavily application dependent,
they are not treated in detail. However, as a final remark elimination of the hazard, should
always be attempted before devices to minimize the possibility of a hazard are introduced
to the (safety) controller.

If during the hazard analysis process, the hazard analysts identify some disasters which
(they believe) were overlooked by the disaster analysts these should be recorded. The
disaster analysts should consider these disasters. If as a result of a disaster analysis the
disaster analysts agree that a disaster identified by the hazard analysts is possible, it must be

added to the disaster set; and a hazard analysis performed for that disaster.

7.4.4. Complete Hazard Assumption

The hazards analysis task is completed when both teams agree that the complete hazard

assumption holds for the system. Roughly speaking, the complete hazard assumption is

185

Real World Analysis

confirmed if the hazard analysts agree that for a disaster to occur during a history of the
system at a time point ¢, the hazard specification must have been satisfied at a time point ¢’
prior to t.

Three pieces of evidence for the argumerit that the hazard specification assumption
holds, are provided from the systematic guidelines.

a. Complete disaster set. It can be argued that all the potential disasters have been
identified, from the facts that an appropriate check-list was used to identify the disasters
and two independent disaster analysis were performed.

b. It can be argued that all relevant safety real world variables have been identified from
the facts that the SRD is constructed by an iterative process of checking all the real world
variables against the hazard specification.

c. It can be argued that all the system conditions that can lead to a hazard have been
identified from the fact that the hazard specification is constructed by a systematic and

iterative process which ensures that all relevant variables have been considered.

7.5. Safety Real World Description Analysis

The safety real world description is constructed from the initial real world description;

and the knowledge of the safety—critical behaviour gained from the hazard analysis.

7.5.1. Construction Guidelines

The steps (given below) act as a simple guide to the construction of the safety real
description for the hazard analysts from the initial description and the hazard specification.
Step 1

The first task of the analysis team i's to identify the safety real world variables of the
system. This is performed in three elementary stages.
a. Define an initial set of safety real world variables as the variables over which the hazard
specification is defined or those that represent the disasters of the system.
b. Identify all variables that are related to the above, by the relations of the IRWD. These
can be identified by simply looking up the variables of the set defined in step a, in the

related variables column of the relations table.

186

Real World Analysis

c. This step simply involves checking the ranges and classes of the variables identified in
steps a and b, as defined by the IRWD.
Step 2
The task of the team is to identify those invariant relations, that impose restrictions on
the safety-critical behaviour of the system. This task is performed in three steps.
a. Identify all relations over the safety real world variables in the IRWD. This elementary
step can be performed by looking up the variables identified in step 1 in the related
variables column of the relations table.
b. Check if any relevant invariant relations were missed by during the IRWD analysis.
This step can be performed by systematically investigating if the behaviour of a safety real
world variable is is influenced by any other real world variables, in the form of an invariant
relation. This step may introduce new safety real world variables. If these variables are also
new real world variables then the ranges and class of the variables must be defined.
The analysts have completed this step when all the safety real world variables have been
checked for possible invariant relations.
Step 3
The task of the team is to identify those history relations, that impose restrictions on the
safety—critical behaviour of the system. This task is performed in two stages, that are
similar to those of step 2.
a. All history relations over the safety real world variables in the IRWD. This elementary
step can be performed by looking up the variables identified in step I in the related
variables column of the relations table.
b. The analyst must systematically check all the safety real world variables to determine if
there are any history relations involving them which have not been identified in step 3.a.
The analysts have completed this step when all the variables have been checked for

possible history relations.
Step 4

The SRD is defined as SRD(SY) = (T, Sv, VP, CP, IR, HR), where

Sv is the sequence of variables of IRWD and those identified in step 1;

187

Real World Analysis

VP is the ranges of Sv;
CP is the classes of Sv;
IR is the invariant relations identified in step 2; and

HR is the history relations identified in step 3.

A pictorial description of the safety real world description construction guidelines is

shown in figure 7.4.

System Safety Real World Description Construction
Concept

Safety Real
®| World Variables

1

Invariant
Relations

|

History
Relations

Application area
knowledge

Hazards

Figure 7.4 Safety Real World Description Construction

7.5.2. Validation Guidelines

Assafety real world description, may be inadequate for three main reasons: i) some safety
real world variables which are missing; ii) the ranges and classes of some variables do not
capture the restrictions imposed on the variable accurately and iii) some relations may be
missing or inaccurate representations of the restrictions imposed on system behaviour. A

validation scheme is outlined below.

188

Real World Analysis

Step 1
Two analysis teams should be formed (say, team A and team B). These teams should
perform safety real world description analysis as indicated in section 7.5.1; and produce

two safety real world descriptions (DescA and DescB).

Step 2

Team A must check DescB, by inspecting the tables of DescA; and should note any ?.
Similarly. TeamB must check DescA.
Step 3

Any discrepancies between the results of the analyses should then be resolved as follows:
a. Common safety real world variables and relations of DescA and DescB form an initial
safety real world description.
b. The remaining safety real world variables and relations of DescA, DescB should be
investigated; and those which are regarded as safety real world variables and relations by

both teams added to the initial safety real world description.

This validation task is completed when both teams are satisfied that all safety real world
variables have been identified and all relevant relations specified.

If new real world variables are introduced during the safety real world description
analysis a hazard analysis must be performed over these new variables. If the revised
hazard analysis in turn identifies any new variables the safety real world description

analysis should be repeated for these new variables.

7.6. Safety Real World Specification Analysis
Step 1 |
An initial safety real world specification is simply produced as the negation of the hazard
specification,
Step 2
The safety real world analysts must check that imposing the safety real world

specification (produced in step 1) over the histories of the system will allow the mission to

be fulfilled.

189

Real World Analysis

Step 3

For systems with complex safety real world specifications, the production and
verification of the safety controller specification can become difficult. The safety analysts
should investigate the relations of the SRD todetermine if it is possible to define a simple
safety real world specification that is stronger than the negation of the hazard specification.
Of course, this new safety real world specification should also allow the mission to be

fulfilled.

For most systems, the three steps given above should be straightforward. However, if

necessary two safety real world specifications can be produced and compared.

7.7. Mission Real World Specification Analysis

The mission real world specification is produced by a systematic analysis of the system
concept and IRWD. As was pointed out in chapter 4, a formal analysis should not be
attempted until a preliminary informal (but structured) analysis has been performed.
Hence the mission real world analysis is performed in two main stages. During the first
stage the the mission phase specification is constructed; during the second stage the

mission phase specification is analysed to produce the mission real world specification.

7.7.1. Mission Phase Specification Analysis

The structure of a phase graph ((PH, A, S, E)) can be used to guide the analysis. The
strategy given in this section guides tl_1e construction of the mission phase specification
from an analysis of the system concept, safety real world specification and initial real world
description. At the end of the mission phase specification analysis, the basic structure of
the system (i.e. the relationship between the main tasks of the system) should be reflected
by the mission phase specification; and the system concept should be structured into a set
of documents such that each document is related to a phase. The guide to the production of
the mission phase specification is presented in three stages: high-level phase analysis, phase

analysis and phase check.

190

Real World Analysis

High-Level Phase Analysis

In this stage a high-level phase graph is produced consisting of three phases: start phase,
mission phase and end phase. The main purpose of this stage is to structure the system
concept into three documents related to the start up of the mission subsystem, the mission

to be achieved by the mission subsystem and the shut down of the mission subsystem.

Step 1

The start phase is an informal specification of the start up procedure of the mission
subsystem. The mission analyst must specify the start phase by giving: i) an informal
description of the behaviour at the start of the system; ii) informal description of the
behaviour of the system during the start phase; iii) informal descriptions of the events
which specify the completion of the phase and iv) any constraints imposed on the duration
of the start phase. In the informal descriptions any real world variables are referred to by
the name given in the variables table.

Those parts of the system concept that are related to the start phase must then be
identified; and recorded as a separate document. This can be achieved by checking the
informal specification of the start phase against the system concept to identify related
requirements. These requirements are referred to as the phase requirements of the start up

phase.

Step 2
The mission phase is an informal specification of the mission to be performed by the
system. The mission analyst must specify the mission phase in the same format as that of the

start phase. Then identify and record the phase requirements of the mission phase.

Step 3
The end phase is an informal specification of the shut down procedure of the mission
subsystem. The mission analyst must specify the end phase in the same format of the start

phase. Then identify and record the phase requirements of the end phase.

The (trivial) phase graph produced by the high-level graph analysis is shown in figure 7.5.

191

Real World Analysis

Figure 7.5. High-Level Phase Graph

Phase Analysis

In this stage the high-level phases are analysed, by checking their requirements and the
phase specifications, to identify a phase graph that decomposes the requirements of the
phase. To keep the complexity of the analysis low, the phase sequences of the graphs
should be kept small (up to five phases). During this analysis the mission analysts must
maintain a formal representation of the structure of the current phase specification. The
analysts must select a phase (initially this will be the start phase); and then proceed with the

following five steps.

Step 1

Identify a phase graph that specifies a set of possible behaviours during the selected
phase. This can be defined by identifying the tasks that must be performed during the
selected phase for the requirements of the phase to be fulfilled. These tasks are then
represented as phases; and connected to perform a phase graph that specifies a set of phase
sequences that perform the task defined by the selected phase. The analysis team must
clearly identify the requirements of the selected phase that are captured by the defined
phase graph.
Step 2

The analysis team must modify the bhase graph, produced by the analysis in step I, to
capture any requirements of the selected phases. This step should be repeated until the
analysis team are satisfied that all the requirements of the selected phase have been
captured, by the current phase graph.
Step 3

The phase graph formed by the decomposition of the selected phase is linked to the

mission phase specification (from which the phase was selected) by adding arcs from all the

192

Real World Analysis

predecessors of the selected phase to the start phases of the phase graph; and adding arcs

from the end phases of the phase graph produced to the successors of the selected phase.

Step 4

The detailed analysis of the phases may higﬁlight some problems in the requirements of
the phases, such as ambiguities and inconsistencies. These problems should be noted and
discussed with the customer before the analysis proceeds. Any changes, to the
requirements of the phase should be reflected in the phase graph.
Step 5

The phase requirements of the selected phase should be structured in accordance to the

phases, produced in steps 1 to 3.

After phase graphs have been produced for the high-level phases, the mission analysts
must check the new phases to identify those phases which require further analysis. The
identified phases are then analysed by following the guidelines given in steps 1 to 5. This is

then repeated until the phases no longer require further analysis.

There are no strict rules for when a phase no longer requires further analysis, the mission
analysts must use their judgement to decide when a portion of the system concept has been
sufficiently structured to allow a detailed formal analysis to proceed. General speaking, a
phase does not require further analysis when its behaviour can be represented by a closely
related set of tasks (as a rough guide line, when the associated part of the system concept is
one page). Hence the mission phase specification analysis is complete when the mission
analysts believe that the phases of the mission phase specification no longer require further

analysis.

In essence, the phase analysis process produces a sequence of mission phase
specifications starting form the high-level phase specification to the final mission phase
specification. If the final mission phase specification is a compiex graph (i.e., with a large
number of phase sequences) the mission analysts should record an intermediate mission
phase specification (IMPS) and the relationship between the phases of the intermediate
phase specification and the final phase specification. This relationship is recorded as a

function which maps the phasés of the IMPS to a phase graph that forms part of the final

193

Real World Analysis

mission phase specification. A suitable intermediate mission phase specification, would be
one that consisted of a small number of phase sequences (say, about twenty); and for which
each phase is represented by a phase graph with a small number of phase sequences, in the
final mission phase specification. Such an intermediate mission phase specification will be

used check the final mission phase specification.

Mission Phase Specification Check

Any ambiguities or inconsistencies highlighted during the production of the mission
phase specification are checked by the customer (step 4). However, a check should still be
performed over the completed mission phase specification. A simple two step check is

presented.

Step 1

Check that the developed graph is a single entry exit phase graph. For many mission
phase specifications this check can be confirmed by simply inspecting the graph. If the
graph is too complicated (for a visual inspection) then the formal representation should be
checked.
Step 2

Check that behaviour expressed by the phase graph captures the intentions behind the
system concept. The two main causes for a phase graph being an inaccurate representation
of the mission requirements of the system concept are: i) some phase sequences that
comply with the system concept are not defined by the mission phase specification; and ii)
some phases that are defined by the mission phase specification do not comply with the

system concept.
A mission phase specification (MPS) is checked in three stages.

a. If the MPS defines a small number of phase sequences, then the analysts proceed directly
to step 2.b. However, if the MPS defines a large number of phase sequences the IMPS
should be presented to the customer to check if the customer agrees with the identification
of the main phases of system behaviour. Once the IMPS has been confirmed the mission

analysts proceed with steps 2.b and 2.c for the phase graph of each phase of the IMPS.

194

Real World Analysis

b. The structure of the phase graph should be presented to the customer. The
consequences of the structure are presented by discussing the phase sequences defined by
the graph. However, if the customer disagrees with the inclusion of a phase sequence, or

the exclusion of a phase sequence the discrepancy should be noted.

If the discrepancy is caused by the inclusion of a phase sequence then the mission
analysts should justify the inclusion of the phase sequence by referring to the system
concept. However, if the customer disagrees with this justification then the phase graph
should be modified by removing (or modifying) the phase sequence and (if necessary) the
system concept modified td remove the cause of the discrepancy.

If the discrepancy is caused by the exclusion of a phase sequence then the customer
should indicate which requirements are not captured by the phase sequence; and if
possible how they can be captured. If the mission analysts believe that requirements
mentioned by the customer are captured elsewhere they should explain how they are
captured. If the customer is satisfied with the explanation of the mission analysts then the
check can continue. However, if the customer is not then a phase sequence which captures
the requirements should be included; and the cause of the discrepancy in the system
concept removed.

c. The phase specifications and the requirements of the phases should be presented to the
customer. Basically, this is used to check that the customers and the mission analysts view
of the role of the task represented by the phase is in agreement. The check is performed by
the mission analyst presenting the phase and ensuring that there is general agreement over

the phase specifications.

7.7.2, Mission Real World Specification Analysis

To produce the mission real world specification, the phases of the mission phase
specification are replaced by modes (or SEMGs), which are then combined to develop the

mission real world specification of the system.

A function can be defined from the structure of a mission phase specification to the

SEMGs that will be constructed for its mission real world specification, this function is

195

Real World Analysis

called a behaviour function (denoted by BF).

Definition: Behaviour function

The behaviour function (BF) of a mission phase specification is a function from its phase set to
a set of SEMGs, such that for a phase p BF (p) returns the SEMG that formally expresses the
behaviour expressed by p; and for which the mode sets of the mode graphs given by the

behaviour function are disjoint.

Behaviour Analysis

A two step guide to the construction of a behaviour function, by a formal analysis of the
behaviour that should be exhibited by a phase, is presented. The following two steps must
be performed for all the phases of the mission phase specification.

Step 1

The analysts must decide whether the behaviour specified by the phase and its associated
requirements can be represented by a mode imposed over the real world variables, or
whether an SEMG is required. A mode should be used if the only events of interest during
the phase are the start and end event of the phase. This can be determined by systematically
checking the phase requirements against the real world variables in order to identify any
events of interest.

a. If a mode can represent the behaviour of the phase then the mode is constructed by an
analysis of the phase as outlined in step 2.

b. If an SEMG is needed to represent the behaviour of the phase then a suitable mode
graph must be sketched. This sketch should specify the interactions between the modes
that are required in the formal specification of the phase, and provide informal

specifications of the modes.

Step 2

For convenience, the structure of a mode is recalled: Mode = (Start, Inv, End, LB, UB).
a. The start predicate of a mode is constructed by systematically checking the informal start
condition against each real world variable to determine the constraints imposed on the real

world variables at the start of the mode.

196

Real World Analysis

b. The invariant predicate of a mode is constructed by systematically checking the informal
invariant condition against each real world variable to determine the constraints imposed
on the real world variables during the mode

c. The end predicate of a mode is constructed by systematically checking the informal end
condition against each real world variable to determine the constraints which must be
imposed on the real world variables for the task defined by the mode to be completed.
d. The time bounds of a mode are constructed by checking the informal specifications to
determine the lower and upper bounds of the mode. This is performed in three steps.

i. The analysts must determine if any timing constraints are required. Two broad classes of
timing constraints are recognised. The first relates to timing constraints which are related
to the continuity of the mission. For example, a task that is completed when a vessel
contains a specified amount of chemicals, requires an upper bound to ensure that the
mission controller will ensure that the task is completed once it has started. The second
class relates to the behaviour that will be observed in the physical process. For example, a
task that must maintain the temperature of the system within a specified range until a
reaction is completed, requires a lower bound to ensure that the mission controller will
maintain the temperature long enough for the reaction to be completed.

ii. If constraints are required the analysts must determine if they are time values or
time-valued functions. Unless it is obvious that a time-value is required, the analysts must
systematically check the real world variables (in particular those variable that represent
part of the state of the operator console), to see if they can affect the timing constraints.
iii. Specify the appropriate value or functions. If a function is required then the relationship
between the variables identified in ii and the timing constraint must be investigated.

e. Informal specification. Once the formal specification of a mode has been constructed an

informal specification which describes the behaviour of the mode should be stated.

Behaviour Function Connection

The SEMGs given by a behaviour function are connected to form an SEMG by the
function SEM.

197

Real World Analysis

Algorithm 7.1
Function SEM(PG: PhaseGraph, BF: BehaviourFunction): SEMGraph;
Var MG: SEMGraph;
IA, EA: SetOfModes; ’
m, w, X: Mode;
y, z: Phase;
1: M(MG) : = Um e M(PG): M(BF(m));
2: 1A := Um € M(PG): A(BF(m));
3: EA :={(w, X) e M(MG)? 3(y, z) € A(PG) A w = E(BF(y)) A x=S(BF(2))};
4: AMG) := IA U EA;
5: S(MG) : = S(BF(S(PG)));
6: E(MG) := E(BF(E(PG)));
7: SEMG := MG;
8: Stop.
Comments
1: The mode set of MG is the union of the mode sets of the mode graphs given by the

behaviour function.

2: The internal arc set of MG (i.e. the arcs of the graphs given by the behaviour functions) is
the union of the arc sets of the mode graphs given by the behaviour function.

3: The external arc set of MG (i.e. the arcs which are used to connect the graphs given by the
behaviour functions) is constructed as the set of all pairs of modes (w, x) for which there is
an arc (, z) in the phase graph such that the end mode of the behaviour graph of wis y; and
the start mode of the behaviour graph of z is x.

4: The arc set of MG is the union of the internal and external arc sets.

5: The start mode of MG is the start mode of the behaviour graph of the start phase.
6: The end mode of MG is the end mode of the behaviour graph of the end phase.

A pictorial description of the mission real world specification construction guidelines is

shown in figure 7.6.

198

Real World Analysis

System
Concept

Application area
knowledge

Figure 7.6. Mission Real World Specification Construction

Mission Real World Specification Construction

Highi-Level
Phase Analysis

l

Phase Analysis

l

Mission Phase
Specification
Check

Behaviour
Analysis

Behaviour
Function
Connection

7.8. Mission Real World Description Analysis

The mission real world description is-constructed from the initial real world description;
and the knowledge of the mission-oriented behaviour gained from the mission phase

specification and mission real world specification analysis.

7.8.1. Construction Guidelines

The steps (given below) act as a simple guide to the construction of the mission real

description for the mission analysts from the initial real world description and the mission

real world specification.

199

Real World Analysis

Step 1

Identify the mission real world variables of the system. This is performed in three
elementary steps.
a. Identify, all the variables over which the niission real world specification is defined.
b. Identify all variables that are related to the above, by the relations of the IRWD. These
can be identified by simply looking up the variables identified in the related variables
column of the relations table.

¢. Check the ranges and classes of the variables, as defined by the IRWD.

Step 2
Identify those invariant relations, that impose restrictions on the mission-oriented
behaviour of the system. This is performed in two steps.
a. Identify all relations over the mission real world variables in the IRWD or SRD. This
elementary step can be performed by looking up the variables identified in step I in the
related variables column of the relations table.
b. The analyst must systematically check all the mission real world variables to see if there

are any invariant relations involving them which have not been identified.

Step 2 is completed when all the variables have been checked for possible invariant

relations.

Step 3

Identify those history relations, that impose restrictions on the mission oriented
behaviour of the system. This is performed in two steps.
a. All history relations over the mission real world variables in the IRWD. This elementary
step can be performed by looking up the variables identified in step I in the related
variables column of the relations table.
b. Systematically check all the mission real world variables to determine if there are any
history relations involving them which have not been identified.

Step 3 is completed when all the variables have been checked for possible history

relations.

200

Real World Analysis

Step 4

The MRD is defined as MRD(SY) = (T, Sv, VP, CP, IR, HR), where
Sv is the sequence of variables of SRD and those identified in step 1;
VP is the ranges of Sv; ’

CP is the classes of Sv;
IR is the invariant relations identified in step 2; and

HR is the history relations identified in step 3.

A pictorial description of the mission real world description construction guidelines is

shown in figure 7.7.

System
Concept

Mission Real World Description Construction

Mission Real P

: World Variables
Application area
knowledge 1
Invariant

Mission Relations
Real World p—>
Specification

History

Relations

Figure 7.7. Mission Real World Description Construction

7.8.2. Mission Real World Specification Checks

After the mission real world description of a system is constructed, the mission analysts

must confirm the completeness and consistency of the mission real world specification of

201

Real World Analysis

that system against this description. The checks which must be performed are given in

chapter 4, for completeness see section 4.3.3., and for consistency see section 4.3.4.

7.8.3. Mission Validation

Mission validation is concerned with the validation of the mission real world
specification. The validation must provide some evidence that the mission real world
specification accurately reflects the intentions of the system concept. Recall that the
mission phase specification has been checked, hence at this stage the validation should
concentrate on the formalization of the phase of the mission phase specification. Before
the validation proceeds, a cross check between the informal and formal specification of
each mode should be performed, by the mission analysts. Even if it is confirmed that the
mission real world specification has accurately captured the system concept, the customer
may still requires changes due to omissions in the system concept that are highlighted by

the increased understanding gained by checking the specification.

Step 1

The detailed behaviour of a phase as expressed by the behaviour graph is assessed. The
assessment is performed by presenting the mode sequences of the behaviour graph to the
customer and demonstrating how the mode sequences reflect the behaviour of the phase.
The demonstration is performed by showing the following, for each phase sequence.
a. The start predicate of the start mode of the sequence ensures that the informal start
condition of the phase is satisfied, at the start of the sequence.
b. The invariant predicate of the sequence ensures that the informal invariant condition of
the phase is satisfied, during the sequence.
c. The invariant predicate of the sequence and the end predicate of the end mode ensure
that the informal end condition of the phase is satisfied, only at the end of the sequence.
d. The timing constraints over the sequence ensure that the timing constraints over the
phase are satisfied.
e. The sequence is in compliance with the phases requirements. This can be demonstrated

by performing a dry run through the mode sequence; and showing how each mode and its

202

Real World Analysis

position in the mode sequence is derived from the phases requirements. Any discrepancies

identified during step 1, should be clearly recorded.

Step 2

This step is entered for a phase, if the customer identifies any discrepancies between the
requirements of a phase and the behaviour expressed by the behaviour graph of that phase.
The customer should point out the cause of the discrepancy, e.g., the customer may say it
was due to an oversight in the system concept. These discrepancies should then be resolved
by modifying the phase requirements, behaviour graph or both.

A mission real world specification passes the validation stage when the customer and
mission analysts are convinced (and can provide some evidence) that the mission real

world specification accurately represents the intentions of the system concept.

7.9. Combination of Analysis

The real world analysis has considered the analysis of the safety and mission behaviour
in isolation. Here the best way to combine the analysis is considered. It is suggested that
the safety real world analysis should be performed before the mission real world analysis.
The main advantage of performing the safety real world analysis first, is that the
identification of potential disasters and hazards may lead to changes in the system concept,
in some cases it may even stop development of the system. However, a drawback of
performing the safety real world analysis first is that any changes made to the system
concept must be reconsidered. Hence, the disaster table and hazard table must be checked
after mission real world analysis. An example of how the mission real world specification
of a system can be compared against the safety real world specification, is given in appendix

B.

7.10. Summary

This chapter has introduced some guidelines for the development of the specifications
produced during real world analysis. The real world analysis was presented in three main
stages, firstly a preliminary analysis stage which leads to the production of an initial real

world description, secondly a safety real world analysis which leads to the production of the

203

Real World Analysis

safety real world specification and safety real world description; and thirdly the mission
real world analysis which leads to the production of the mission real world specification

and mission real world description.

o~

A strategy for the safety real world analysis was presented in four main stages: disaster
analysis, hazard analysis, safety real world description analysis and safety real world

specification analysis.

The strategy for the identification of the disasters, was based on constructing an
appropriate check-list of disasters for the system, then systematically analysing the
check-list and system to identify the potential disasters of the system. A systematic strategy
for the identification of the hazards based on the knowledge of the disasters, was
presented. A set of systematic guidelines for the production of the safety real world
description from the initial real world description; and the knowledge of the safety-critical
behaviour gained from the hazard analysis. Finally, a strategy for the production of the
safety real world specification was presented. It was suggested that the specifications
produced during the safety real world analysis can and should be validated, by two

independent teams performing the analysis at each stage and comparing their results.

The strategy for the production of the mission real world specification was given in two
stages: mission phase specification analysis and mission real world specification analysis.
The strategy for the mission phase specification analysis was given in three stages, in the
first stage a high-level analysis of the system concept is performed to produce a high-level
phase graph. In the second stage, the phase specification is continually decomposed until
the analysts believe it is sufficiently gtructured. In the third stage the mission phase
specification is checked. The strategy for the mission phase specification is presented in
two stages. In the fist stage an SEMG is constructed for each phase, this is represented asa
function (the behaviour function) from the phase set of the mission phase specification to a
set of SEMGs. In the second stage, the SEMGs specified by the behaviour function are
connected by applying the function SEM over the mission phase specification and the

behaviour function.

204

Real World Analysis

A set of systematic guidelines for the production of the mission real world description
from the initial real world description, and the knowledge of the mission-oriented

behaviour gained from the mission real world specification analysis, were discussed.

Guidelines for the verification of the comﬁleteness and consistency of the mission real
world specification and validation of the mission real world specification against the
system concept were also outlined. These strategies exploit the information made

available by the modular production of the specifications.

The separation of safety and mission issues simplifies the guidelines of both the safety
and mission specifications. The safety analysis is simplified by focusing only on the
potential disasters and their hazards; and the mission analysis is simplified by removing the
necessity to consider the safety-critical issues in detail with the mission. The guidelines
provide a framework in which the certification body can check the process used to develop
the specifications. In particular, the guidelines for safety real world analysis enable the
analysts to record development information, that can be used to support the validation of

the specifications produced during the safety real world analysis.

205

Controller Analysis

Chapter 8 - Controller Analysis

8.1. Introduction

In chapter 6 the formal structures for the rgpresentation of the specifications produced
during the controller analysis were discussed. In this chapter, methodologies to guide the
controller analysis are discussed in detail. These methodologies will be presented as a set
of systematic step-by-step strategies (guidelines). The case study of a safety-critical
chemical plant will be used to illustrate the methodologies (the case study is presented in

appendix C, the real world analysis for this plant is presented in appendix B).

At the start of the controller analysis we have four formal constructs which express
system behaviour at the real world: the safety real world description, the safety real world
specification, the mission real world description and the mission real world specification.
As a result of the controller analysis four formal constructs will be produced. Two of these
formal constructs express the relationship between system behaviour at the real world and
controller levels: the safety environment description and mission environment description;
the other two constructs express the system behaviour required at the controller level: the

safety controller specification and the mission controller specification.

The controller analysis is partitioned into two distinct processes safety controller analysis

and mission controller analysis.

Safety Controller Mission Controller
Analysis Analysis
Safety Environment Mission Environment
Description Analysis Description Analysis

! 3 3
Safety Controller Mission Controller.
Specification Analysis Specification Analysis
v /

Figure 8.1. Controller Analysis

206

Controller Analysis

These are performed in two main stages, the stages and the interactions between them
are shown by in figure 8.1. In this diagram the boxes represent the stages, the downward
arcs represent the order in which the analysis should be performed; and the upward arcs
represent backtracking between the stages“due to violations in checks involving the
produced specifications. The main teams involved during the controller analysis are the
safety controller analysts and mission controller analysts. An overview of the safety

controller analysis, is presented in the following paragraphs.

This chapter presents a set of guidelines, for the production of the safety environment
description, based on an analysis of the properties of the actuators and sensors of the safety
controller. Then a set of guidelines, for the production of the safety controller
specifications based on a systematic analysis of the real world specifications and safety

environment description of the system, are presented.

The situation for the mission controller analysis is the same as that for the safety
controller analysis described by the paragraph above (just replace safety by mission). The
safety controller specification analysis is performed in two main stages and the mission

controller specification analysis in three main stages, the stages are illustrated in figure 8.2.

Safety Controller Mission Controller
Specification Analysis Specification Analysis
Mode Graph — Outline
Construction Specification
Controller
Function
‘ l
Mode Graph Mode Graph
Connection — Checks

Figure 8.2. Controller Specification Analysis

207

Controller Analysis

This chapter introduces formal verification conditions and presents an approach on how
to integrate these conditions into the proposed development methodology. To justify this
approach it is necessary to introduce and prove five theorems. However, when the
methodology id being applied, the details of the theorems can be ignored this enables the
analysts to re-use the basic theory behind the approach. The sections of this chapter
concern when applying the methodology for safety specifications are 8.2 and 8.3.2, and for

mission specifications are 8.4 and 8.5.2.

8.2. Safety Environment Description Analysis
The safety environment description of a system describes the properties of the sensors
and actuators of the safety controller and the relationships involving these variables and

the safety real world variables.
Production Guidelines
The production guidelines for an initial safety environment description of a system.

Step 1

The team must identify all the safety controller variables of the system, by a systematic
analysis of the properties of the sensors and actuators of the safety controller. Some of the
variables will represent sensors and actuators of the safety controller which are already
present, others sensors and actuators which the analysts believe will be useful in the
specification of the safety controller. These latter variables are determined by inspecting
the safety real world specification to identify the real world variables for which a sensor or
actuator may be required (and is possible to construct). An informal specification of a
suitable sensor (or actuator) should then be stated. The results of this analysis are recorded

as a state variables table for the sensors and actuators of the safety controller.

Step 2
The team must specify the range and class of each safety controller variable identified in

step 1, and define the units of each variable. The results of this step are represented as a

ranges table and a classes table.

208

Controller Analysis

Step 3
The team must identify the invariant and history relations that involve actuators or
sensors of the safety controller and the real world variables. These relations fall into two

g

broad categories.

a. Relations that express the properties of sensors (or actuators) that already exist. These
relations can be determined by inspecting the specifications of the sensors (or actuators) to
determine the relationship between them and the real world variables. For most sensors
and actuators the relations should be straightforward. For example, a typical relation for a
sensor would be an invariant relation which defines an upper bound on the difference
between the value of the sensor and the real world variable being monitored. For actuators
or sensors with more complex relations an iterative process of identifying a relation and

then carefully checking the relation against the specification would be required.

b. Relations that express properties of sensors (or actuators) that will be developed for the
safety controller. These relations can also be determined by inspecting the specifications of
the sensors (or actuators) to determine the relationship between them and the real world
variables. However, unlike the sensors (or actuators) that already exist the informal
specifications can be modified if the relations highlight any shortcomings.

The team must also identify any initial conditions for the values of the sensors and

actuators. The results of this analysis are represented as a relations table.
Step 4

The initial SED is defined as SED(SY) = (T, Sv, VP, CP, IR, HR), where

Sv is the sequence of real world variables and the safety controller variables;

VP the ranges of Sv;

CP the classes of Sv;

IR the invariant relations of SRD and the invariant relations identified in step 3; and

HR the history relations of SRD and the history relations identified in step 3.
Discussion

209

Controller Analysis

The introduction of the variables that represent the properties of the sensors and
actuators lead to an expansion in the observable state space, that define the histories of the
system. In many systems the behaviour of all the sensors (or actuators) cannot be specified
without a detailed study of the safety controller requirements - a detailed study being
necessary to determine what sensors and actuators are required and the properties that
they should possess. In some cases, the sensors and actuators which must be used are
specified as part of the requirements - for example, the customer and hazard analysts may
specify that a thermometer with specific properties must be used by the safety controller.
Whether all or just some of the sensors and actuators of the safety controller are specified
before the controller analysis starts, to proceed to the safety controller analysis a SED is
required. The construction guidelines (described above) lead to an initial SED which can

be used as the basis for further analysis of the safety controller.

8.3. Safety Controller Specification Analysis
The safety controller specification of a system is expressed as an SEMG, and structured

according to the general safety controller phases (see figure 8.3).

Shut Down [End
Start Up » Monitor p—————> Recovery
Reset

Figure 8.3. General Structure of Safety Controller

Before presenting the production guidelines, we consider the verification condition that

will be used to check the produced safety controller specification. We then discuss a set of

210

Controller Analysis

suitable checks to confirm this verification condition. This discussion is followed by

production guidelines for the safety controller specification.

8.3.1. Safety Verification. .

The verification of a safety controller specification of a system against the safety real
world specification of that system, involves the construction of a proof that any safety
environment history that satisfies the safety controller specification must satisfy the safety

real world specification.

Definition: Safety verification condition
The safety controller specification of a system is adequate if and only if the safety real world
specification of that system is a consequent of the safety controller specification for the safety
environment description histories of that system.
More precisely, SCS is adequate for SRS iff vH € SEDH: H sat SCS = H sat SRS.

For a set of checks to be suitable for the confirmation of the safety verification condition

(given above), they must possess the attributes described in the following paragraphs.

It must be convenient to review the proof of the safety verification condition obtained by
confirming the checks. The necessity for a reviewable proof arises from the need for
independent certification for safety—critical systems. Moreover, the effort required to
review the verification should be considerably smaller than the effort required to perform
the original verification. This would introduce the potential of several independent checks

over the verification at little extra cost to that of producing the verification.

The verification checks should lead to structured proofs. Many formal verification
proofs are unstructured and this makes them difficult to construct and leads to narrow
thinking, but more importantly (when certification is essential) unstructured verifications
are difficult to review. The verification checks should lead. to a structured proof by

exploiting the structure of the safety controller specification.

It must be possible to derive guidelines from the checks that enable a proof for the
verification of the safety controller specification to be constructed, as the specification is

being produced. The availability of such guidelines will allow the detection of flaws (i.e.

211

Controller Analysis

modes or arcs which will invalidate the satisfaction of the checks) during the production of

the safety controller specification.

To allow a structured proof to be constructed, the relationship between the modes of
the safety controller specification and the safety real world | specification must be

investigated.

Consider the satisfaction of the safety controller specification: H sat SCS. From lemma
4.7. we can infer 3cs € Seq(SCS): 3ty, ..., t|s| € T: H sat cs@(ty, .., t|cs))-

Since SRS is a system predicate. we conclude:

H sat cs@(ty, ..., t|cs|) = H sat SRS, if

H sat ms(i)@[t;-1, t;] = H sat SRS@]t;_, t;], for all i in {1, ..., |cs|}.

In the next section we present a set of safety verification checks which confirm the
condition above; and then prove that the safety verification checks do indeed confirm the
safety verification condition. Before presenting safety verification checks, consider the
following (simple) check which also confirms the condition above.

For any mode m for the mode set of SCS, any history H from SEDH, and any interval Int if
H satisfies m during Int then H must satisfy SRS during Int.
More precisely,

vm € M(SCS): vH € SEDH: vInt e SI(T): [H sat m@Int = H sat SRS@Int].

The above check, is a simple check which allows each mode to be considered in detail,
but it is too stringent. It does not exploit fact the fact that at the the start point of a mode m
of SCS, a predecessor of m has completed. Hence, the above check does not take into
account the state of the real world at the start of a mode. The state of the safety controller
can, of course, be captured by the start and invariant predicates of a mode. It follows, that if
it is possible to have a sensor for every safety real world variable then a model of the state
of the real world could be captured. However in general, this will not be the case, that is
there will be some real world variables that the safety controller would like to measure for
which there are no sensors. In the next section, a set of verification checks are presented

which allow the safety controller analysts to capture the state of the real world at the start

212

Controller Analysis

point of a mode m - by exploiting the fact that a predecessor of m has completed at the start

point of m.

Safety Verification Checks

The safety verification checks, for a safety controller specification, are based on the
construction of a precondition function for the safety controller specification. This
precondition function defines a relationship between the modes of the safety controller
specification and the behaviour of the real world. These verification checks are presented

below; and are followed by a brief discussion which justifies their suitability.

Definition: Safety verification checks
We will say that a safety controller specification SCS passes the safety verification checks fora
safety real world specification SRS if and only if there exists a precondition function PF:
M(SCS) — PredSet, and a system predicate IP such that the following three conditions hold.
i. For any history H of SEDH, H satisfies IP at the start point of the system lifetime.
More precisely, vH € SEDH: H sat IP@s(T).
ii. The predicate mode graph (SCS, PF) is complete for the history description SED and system
predicate IP
More precisely, (SCS, PF) emp (SED, IP).
iii. For any mode m of SCS, for an} history H of SEDH and any Interval Int, if H satisfies
PF(m) at s(Int) and m during Int then H satisfies SRS during Int.
More precisely, vm € M(SCS): vH € SEDH: vInt € SI(T):

[H sat PF(m)@s(Int) A H sat m@Int = H sat SRS@Int].

The fact that SCS passes the safety verification checks for SRS will be denoted by SCS
pass SRS.

To construct the first verification proof of the safety controller specification, the analysts
must identify a suitable precondition function PF and system predicate IP. However, any
subsequent reviews of the proof can use the PF and IP provided to test the confirmation of

the three checks. Hence, the above checks are suitable for reviews.

213

Controller Analysis

The verification checks enable a structured proof to be constructed, by allowing the
proof to be broken down into small pieces. The first check is performed over the initial
predicate IP. The second check can be performed over each arc. Finally, the third check is

o+

performed over each mode.

A set of guidelines based on the verification checks, are presented in section 8.2. These
guidelines lead to a proof for the confirmation of the verification checks, as the safety
controller specification is being produced. These confirmations are performed using

production rules derived from the three clauses of the safety verification checks.

Safety Verification Theorem
The safety verification theorem (theorem 8.1) shows that if the SCS of a system passes
the safety verification checks for the SRS of that system then the safety verification

condition holds for that system.

Theorem 8.1
If the safety controller specification of a system passes the safety verification checks then the
safety verification condition holds for that system.

More precisely, SCS pass SRS = vms € SEDH: H sat SCS = H sat SRS.

Proof

This result follows from the clauses of the safety verification checks and theorem 4.4.
From clauses i and ii of the safety verification check and theorem 4.4 we have:

vH € SEDH: H sat IP@s(T) A (SCS, PF) cmp (SED, IP)

-

vH € SEDH: vms e Seq(SCS): vtg, ..., tjms| € T:

[H sat ms@(tp, ... , tims|) Atp = S(T) = vi € {1, ..., |ms|}: H sat PF(ms(i))@t;.1].

From the semantics of a mode graph we have:
vH € SEDH: [H sat SCS =
ams € Seq(SCS): 3tp, ... , tjms| € T: [H sat ms@(ty, ... , tims|) A tg = S(T) A tjms| = e(T)]].

214

Controller Analysis

~.vH € SEDH: [H sat SCS =
ams € Seq(SCS): 3tg, ..., tyms| € T
[H sat ms@(ty, ... , t|ms|) A Vi € {1, ..., |ms|}: H sat PF(ms(i))@ti1]]

o

From clause iii of the safety verification check we have:
vm € M(SCS): vH € SEDH: vInt € SI(T):
[H sat PF(m)@s(Int) A H sat m@Int = H sat SRS@Int].

-.vH e SEDH: [H sat SCS =
3ms € Seq(SCS): 3ty, .., tyms| € T
[to = S(T) A tjms| =e(T) Avi € {1, ..., |ms|}: H sat SRS@[t;-3, ;]]

-.vH € SEDH: [H sat SCS = H sat SRS].

8.3.2 Safety Controller Specification Development Methodology

The strategy outlined in this section guides the safety controller analysts in the
production of a safety controller specification, by an analysis of the safety environment
description and real world specifications (i.e. SRS and MRS) of that system. There are two

stages in the development strategy: mode graph production and mode graph connection.

Mode Graph Production

For each phase of the safety controller a mode graph is produced. To specify a mode
graph of a phase, of the safety controller, the tasks that must be performed during that
phase and the order in which they should be performed must be identified. The separation
of the behaviour of the safety controller into the general phases, enhances the modularity
of the safety controller specification and allows the provision of concrete guidelines.
(Before the development starts clause i of the safety verification check must be confirmed.)

Five production rules, are provided to check the mode graphs of the phases.

The first two rules a and b are defined below for a mode graph MG and precondition
function PF; rule a is used to confirm clause #i for MG and rule b to confirm clause iii for

MG. These rules relate to the arcs which connect the modes of a mode graph of a phase.

215

Controller Analysis

Rule a. For any arc (x, y) of A(MG), any history H of SEDH and any interval Int, if H satisfies
the precondition of x at s(Int) and x during Int and the start and invariant predicates of y at
e(Int) then H satisfies the precondition of y at e(Int).

v(X, y) € AMMG): vH e SEDH: vInt € SI(T):

H sat PF(x)@s(Int) A H sat x@Int A H sat (Start(y) A Inv(y))@e(Int) =

H sat PF(y)@e(Int).

Rule b. For any mode m of MG, any history H of SEDH and any interval Int, if H satisfies
the precondition of m at s(Int) and m during Int then H must satisfy SRS during Int.
v € M(MG): vH € SEDH: vInt € SI(T):

H sat PF(m)@s(Int) A H sat m@Int = H sat SRS@Int.

The rule c is defined below for a pair of modes (x, y) and precondition function PF; rule c is
used to confirm clause i for (x, y). This rule and rules d and e are related to the arcs that

connect the mode graphs of two phases.

Rule c. For any history H of SEDH and any interval Int, if H satisfies the precondition of x at
$(Int) and x during Int and the start and invariant predicates of y at e(Int) then H satisfies the
precondition of y at e(Int).
vH e SEDH: vInt € SI(T):
H sat PF(x)@s(Int) A H sat x@Int A H sat (Start(y) A Inv(y))@e(Int) = H sat PF(y)@e(Int).

The rulesd ande, are defined below for a pair of modes (x, y) ruled is used to confirm the

completeness of (x, y) and rule e to confirm the consistency of (x, y).

Rule d. For any history H of SEDH and any interval Int, if H satisfies x during Int then H
satisfies the the start and invariant predicates of y at e(In?).

vH e SEDH: vInt € SI(T): [H sat x@Int = H sat (Start(y) A Inv(y))@e(Int)].

Rule e. There exists a history H of Iset(SED) and a time point ¢ such that H satisfies the
conjunction of the invariant and end predicates ofx, and the start, invariant and negation of

the end predicate of y.
3H e Iset(SED): at € T: H sat (Inv(x) A End(x) A Start(y) A Inv(y) A 1TEnd(y))@t.

216

Controller Analysis

Before the analysis of the phases can start a system predicate that satisfies clause i of the
safety verification checks must be identified; and designated as the initial predicate (IP). A
suitable system predicate can be derived directly from the conditions imposed on the start
point of the system lifetime by the SEDH of the system. For, each phase the last one or two
steps require the construction of proofs for the production rules. If proofs cannot be
constructed then the specification produced, by following the preceding steps of the phase

must be modified. Guidelines on modifications are given in step 6.

Step 1 (Start up phase)
The behaviour of the safety controller during the start up phase is specified by a start up

graph, denoted by SU. There are six steps in the start up phase.

a. Define a basic strategy for the start up phase; and identify the tasks that must be

performed by the safety controller, to realise the strategy.

b. Consider, how the tasks identified above can be specified by modes; and sketch a mode
graph for the start up phase. This sketch must show the interactions between the modes;

and provide informal specifications for the modes.

c. Extend, the precondition function (PF) for the mode graph sketched in step 1.b. The
precondition of the mode graph can be determined in two stages.

i. For each mode m of the mode grdph, analyse the informal specification of m to identify
the conditions that must hold over the real world at the start of m for rule b to hold for a
formal specification constructed for m. These conditions should then be defined as a
system predicate (and denoted by PC(m)) and the assertion PF(m) = PC(m) stated.

ii. Check if a precondition function can be constructed which will satisfy the assertions
stated above and pass rule a. The precondition of a mode m can be checked by
investigating the behaviour of the state variables (over which the precondition is defined)
during the predecessors of m. This investigation is performed by an analysis which checks if
for each predecessor p the condition which holds over the real world at the end of p and the
conditions over the safety controller at the start of m are sufficient to ensure PC(m) will

hold at the start of m. (The case of the mode S(SU) is special since it has no predecessor, for

217

Controller Analysis

this mode it must be confirmed that IP = PC(S(SU)).) If this analysis determines that a
suitable system predicate SP can be defined for m, SP is suitable if SP will pass rule a for all
arcs leading to m and SP = PC(m), define PF(m) as SP. However, if the analysis determines
that a suitable system predicate cannot be défined then the specification of either m or a

predecessor of m must be modified.

d. Construct the mode graph SU. The mode specification of a mode is constructed by an

analysis of its informal specification.
e. Construct proofs for the consistency and completeness of SU.

f. Construct proofs for the rules a and b for SU and PF; and confirm IP = PF(S(SU)).

Step 2 (Monitor Phase)

The behaviour of the safety controller during the monitor phase is specified by a monitor
graph, denoted by MN, with a single start mode. The monitor graph is connected to the
start up phase by connecting the end mode of the start up graph to the start mode of the

monitor graph.

The mode graph for the monitor phase is developed in seven steps.
a. Construct a phase graph, defined over the safety real world variables. This phase graph
must specify the behaviour exhibited by the physical process as measured by the safety real

world variables, during a typical history that satisfies the MRS.

b. Modify the phase graph, defined over the sensors of the safety controller. This phase
graph PS must reflect the perception, by the safety controller, of the behaviour exhibited

by the physical process as it passes thfough the phases defined in step 2.a.

c. For each phase, of PS, construct mode graphs (that have a single start mode) which
define the behaviour of the safety controller. The mode graph constructed for a phase must
ensure that the SRS is maintained by the safety controller, regardless of the behaviour of
the mission controller, but also allow the mission controller to complete the task being
monitored by the safety controller during the phase. The construction of the mode graph

and precondition of the mode graph, for a phase consist of four stages.

218

Controller Analysis

i. Define a basic strategy for the phase; and identify the tasks that must be performed by
the safety controller, to realise the strategy.

ii. Consider how the tasks identified above can be specified by modes; and sketch a mode
graph for the phase.

iii. Extend the precondition function (PF) for the mode graph sketched in the previous
step. The precondition of the mode graph can be determined in two stages (see step 1.c).
iv. Construct the mode graph of the phase. The mode specification of a mode is constructed

by an analysis of its informal specification.

d. The mode graphs constructed in step 2.c are then combined to construct the monitor
graph MN. Roughly speaking, MN is defined by performing the next four steps.

i. The mode set is the union of the mode sets of the mode graphs for the phases of PS.
ii. The arc set is the union of the arc sets of the mode graphs for the phases of PS and for
every pair of phases (x, y) in the arc set, of PS, add an arc from each end mode of the mode
graph for x to the start mode of the mode graph for y.

iii. The start mode is the start mode of the mode graph for S(PS).

iv. The end mode set is the end mode set of the mode graph for E(PS).

In constructing the monitor graph conservative decisions must be made to ensure safety,
however care must be taken that the decisions are not so stringent that it becomes

impossible for the mission controller to achieve the mission.
e. Construct proofs for the consistency of MN.
J. Construct proofs for the rules a and b for MN and function PF,

g. Construct proofs for the rules ¢, d and e for the pair (E(SU), S(MN)) and function PF.

Step 3 (Recovery Phase)

The behaviour of the safety controller during the recovery phases is specified by
SEMGs, denoted by a function REC, the recovery graph of mode m is denoted by REC(m).
REC(m) is connected to the monitor phase by constructing an arc from m to the start mode

of REC(m). A seven step guide to the construction of the recovery graph is given below.

219

Controller Analysis

a. Identify all the monitor modes for which a recovery graph is necessary. A recovery graph
is not needed for a mode if after the end of the mode the safety controller will remain in the
monitor phase. Hence, a mode m of the monitor mode does not need a recovery graph if it
satisfies the following condition: ’

vH € SEDH: vInt € SI(T): H sat m@Int = 3x € MN.sr(m): H sat Start(x) A Inv(x) @e(Int).
(A mode that satisfies the above condition is complete, see section 4.3.3).

A recovery graph must be constructed for the set of modes that do not satisfy the above

condition, this set will be denoted by REM.

b. Specify the start predicate of the start mode of the recovery graph of each mode in the set
REM. The safety controller must enter the recovery phase at the end of a mode m only
when the start predicate of a successor of m is not satisfied at the end of m. Hence we
define Start(REC(m)) as the conjunction of the end predicate to the negation of the

disjunction of the start predicates of the successors of m.

Start(REC(m)) := End(m) A 1(Vx € MN.sr(m): Start(x) A Inv(x)) .

c. Define a basic strategy for each recovery graph; and identify the tasks that must be

performed by the safety controller, to realise the strategy.

d. The following three steps are repeated for each recovery graph (i.e. m in REM).
i. Consider how the tasks of REC(m) can be specified by modes; and sketch a mode graph.
ii. Extend PF for the mode graph sketched in the previous step (see step I.c).

iii. Construct the mode graph REC(m).
e. Construct proofs for the consistency and completeness of the recovery graphs.
. Construct proofs for the rulesa and b for REC(m) and the function PF, for all m in REM.

8. Construct proofs for the rules c,d and e for the pair (m, S(REC(m))) and the function PF,
for all m in REM. ’

Step 4 (Reset Phase)
The behaviour of the safety controller during the reset phases is specified by reset

graphs, the reset graphs are denoted by a function RG, the reset graph of mode m is

220

Controller Analysis

denoted by RG(m). The mode to which the end of RG(m) is connected will be denoted by
Con(m). Hence, RG(m) is connected into SCS by the construction of an arc from m to
S(RG(m)), and an arc from the E(RG(m)) to Con(m).

The reset graphs are constructed in six steps.

a. Identify the recovery graphs for which a reset graph will be defined. A reset graph is
constructed for the end mode of a recovery graph only if the system is allowed to enter the
monitor phase after the recovery represented by the associated recovery graph has taken

place. The set of modes for which a reset graph will be constructed are denoted by RGM.

b. Define a basic strategy for each reset graph, these strategies must also define the mode
that follows the reset graph. For each strategy identify the tasks that must be performed by

the safety controller.

c. The following three steps are repeated for each reset graph (i.e. m in RGM).
i. Consider how the tasks of RG(m) can be specified by modes; and sketch a mode graph.
ii. Extend PF for the mode graph pf the previous step (see step 1.c).

iii. Construct the mode graph RG(m).
d. Construct proofs for the consistency and completeness conditions for the reset graphs.
e. Construct proofs for the rulesa and b for RG(m) and the function PF, for all m in RGM.

f. Construct proofs for the rules c, d and e for the pairs (E(REC(m)), RG(m)) and
(E(RG(m)), Con(m)) with the function PF, for all m in RGM.

Step 5 (Shut Down Phase and End Phase)

Recall that the behaviour of the safeiy controller during the shut down phase is specified
by shut down graphs; these are denoted by the function SH, the shut down graph for mode
m is denoted by SH(m); and the end controller mode is denoted by EC. A shut down graph
for a mode m is connected into the safety controller specification by the construction of an

arc from m to SH(m) and an arc from E(SH(m)) to EC.

a. This step consists of four stages.

i. Construct the end controller mode EC. The enc controller mode must specify a task

221

Controller Analysis

during which the safety controller holds that actuators constant, and the SRS is maintained.
Such a mode should be specified.

ii. Define PF(EC). By analysing EC, to identify the behaviour necessary at the start point of
EC for SRS to be maintained during EC, PF(EC) must be defined.

iii. Define the shutdown condition. The shut down condition will usually be a state of a
selector on the safety operator console.

iv. Construct a proof for rule b for EC.

b.Identify the modes from which a shutdown graph starts. A shutdown graph is required for
amonitor mode (or the end mode of a recovery graph) if and only if the safety operator is to
have the option to start the shutdown of the safety controller while the safety controller is
performing the task described by that mode. The set of modes for which a shutdown graph
is constructed are denoted by SHM. Then the end predicates of the shut down modes must

be modified by the disjunction of the shut down condition.

c. The following three steps are repeated for each shut down graph.

i. Consider, how the tasks of SH(m) can be specified by modes; and sketch a mode graph.
ii. Extend, PF for the mode graph of the previous step (see step 1.c).

iii. Construct the mode graph SH(m).

d. Construct proofs for the consistency and completeness of the shut down graphs.

e. Construct proofs for the rulesa and b for for SH(m) and the function PF, for all m in
SHM.

[Construct proofs for the rules ¢, d and e for the pairs (m, S(SH(m))) and (E(SH(m)), EC)
with the function PF, for all m in SHM.

Step 6 (Modifications)

This step must be performed if a mode m does not pass a production rule during the
production of the mode graph for the safety controller phase P. Four options are outlined
below, in the order that they should be attempted.

a. Modify mode specification. This should be attempted first since it requires the minimal

changes, to the SCS. The mode specification of m must be checked in the light of the

222

Controller Analysis

production rule that is violated, to identify how the mode specification can be modified to
allow m to pass that rule. Once the mode specification of m has been modified any

production rules which where checked over m, must be confirmed.

b. Modify PF. The PF definition over the modes of P must be checked in the light of the
production rule that is violated, to identify how PF can be modified to allow m to pass that
rule. The main drawback of modifying PF is that those rules involving the modes for which

the precondition is modified must be confirmed again.

¢. Modify mode graph. The mode graph of P must be checked in the light of the production
rule that is violated, to identify how the mode graph can be modified to allow it to pass the
production rules of P. The main drawback of modifying the mode graph of P is that PF

must be defined over the new mode graph; and the production rules for P checked.

d. Modify SED. Unlike, the first three options, the safety controller analysts do not have
direct control over the relationships of the SED. The safety controller analyst should
identify the relations that would be required for m to pass the production rule. If the
analysts are fortunate these additional relation may hold for the sensors or actuators,
otherwise modifications to the sensors or actuators or changes to the physical process
would be required. Modifications to the SED, can lead to the need to check rules of phases

other than P.

If for a particular case, a simple fix can be seen by any of the options given above then it

should of course be performed directly.

Mode Graph Connection
The mode graphs of the phases are connected together to construct the safety controller

specification, by the transformation CSCS.

Algorithm 8.1

Function CSCS(SU, MN: SEMGraph; REC, RG, SH: GraphFunction; Con:
ModeFunction; REM, RM, SHM: SetOfModes; EC: Mode): SEMGraph;

Var MG: SEMGraph;

m: Mode;

223

Controller Analysis

MREC, MRG, MSH: SetOfModes;

AMN. AREC, ARG, ASH: SetOfArcs;
1: MREC := Um e REM: M(REC(m));
2: MRG := Um € RGM: M(RG(m));
3: MSH := Um e SHM: M(SH(m));
4: M(MG) := M(SU) u M(MN) u MREC u MRG u MSH y {EC};
5: AMN := A(MN) u {(E(SU), S(MN))};
6: AREC := Um e REM: [A(REC(m)) u {(m, S(REC(m)))}];
7: ARG := Um e RGM: [A(RG(m)) u {(m, SRG(m)))} u {(E(RG(m)), Con(m))}};
8: ASH := Um e SHM: [A(SH(m)) u {(m, S(SH(m)))} u {(E(SH(m)), EC)}};
9: AMG) := A(SU) u AMN y AREC u ARG u ASH;
10: S(IMG) : = S(SU);
11: EMG) : = EC;
12: CSCS := MG;
13: Stop.
Comments
1: The set of modes of the recovery phase (MREC) is the union of the mode sets of the
recovery graphs.
2: The set of modes of the reset phase (MRG) is the union of the mode sets of the reset
graphs.
3: The set of modes of the shut down phase (MSH) is the union of the mode sets of the shut
down graphs. _
4: The mode set of MG is the union of the mode set of the start graph and monitor graph,
and the set of modes of the recovery phase, reset phase, shut down phase and end
controller mode.
5: The set of arcs of the monitor phase (AMN) is the union of the arc set of the monitor
mode and an arc that connects the end mode of the start up graph to the start mode of the
monitor graph.

6: The set of arcs of the recovery phase (AREC) is the union of the arc sets of the recovery

224

Controller Analysis

graphs and for all m in the set REM the arcs which connect m to S(REC(m)).

7: The set of arcs of the reset phase (ARG) is the union of the arc sets of the reset graphs
and for all modes m in RGM the arcs which connect m to S(RG(m)) and E(RG(m)) to
Con(m).

8: The set of arcs of the shutdown phase (ASH) is the union of the arc sets of shut down
graphs and for all modes m in SHM the arcs which connect m to S(SH(m)) and E(SH(m))
to EC.

9: The arc set of MG is the union of the arc set of the start up graph, the set of arcs of the
monitor phase, recovery phase, reset phase and shut down phase.

10: The start mode of MG is the start mode of the start up graph.

11: The end mode of MG is the end controller mode.

Safety Production Checks.

The safety controller analysts must confirm that SED is an accurate representation of the
relationship over the real world variables and between the safety controllers sensors,
actuators and real world. This confirmation should be performed by a careful systematic
check of all the description relations. In particular, any relations which are introduced

during the confirmation of production rules should be checked.

If the guidelines for the construction of the SCS, have been followed rigoursly and all
proofs constructed for the production rules, then from theorem 8.2 (see section 8.3.3) it
follows that SCS will pass the safety yerification checks. However, it is possible that the
guidelines have not been followed completely (i.e., some proofs have been omitted and
some steps missed). Even if all the steps of the guidelines have been performed, there may
be errors in the proofs. Because of these difficulties, the SCS must be independently
verified against the SRS. This independent verification can use the PF and IP produced
during the production of SCS. In addition, the safety controller analysts must indicate the
relations that are used to confirm the productions rule for a mode or arc. The independent

verification should then attempt to confirm the safety verification checks, using this PF and

225

Controller Analysis

IP and for each mode or arc only the relations indicated by the controller analysts should

be used.

Similarly, the completeness and consistency of SCS should be confirmed independently.

8.3.3. Safety Controller Specification Methodology Theorems
In this section I will present two theorems that show the production guidelines are
sufficient to produce a safety controller specification that will satisfy the safety verification

checks, and is both complete and consistent.

Safety Production Theorem

The safety production theorem (theorem 8.2) shows that the mode graph (SCS)
produced by applying the function CSCS to the mode graphs, Graph function and sets
produced by following the production guidelines will pass the safety verification check.

Hence, (from theorem 8.1) such a SCS will satisfy the safety verification condition.

Theorem 8.2

If clause i of the safety verification checks is passed for a system predicate IP and the mode
graphs SU and MN, the functions REG (defined over REM), RG, Con (defined over RM) and
SH (defined over SHM); and mode EC pass the production rules a, b and c (as given in the
production guidelines) for the safety real world specification SRS, the precondition PF and the
initial predicate IP then the mode graph SCS =CSCS(SU, MN, REG, RG, SH, Con, REM,
RM, SHM, EC), passes the safety verification checks for SRS for PF and IP.

Proof. .

The proof is given by showing how the three clauses of the safety verification checks follow
from the production guidelines.

Clause i. vH € SEDH: H sat IP@s(T), follows from confirmation of IP by initial check.
Clause ii. (SCS, PF) cmp (SED, IP).

The definition of a complete predicate mode graph (see section 4.3.7) is recalled below.
(MG, PF) cmp (D, SP) iff

i) w(x, y) € AMG): vH € Set(D): vInt € SI(T):

226

Controller Analysis

[H sat PF(x)@s(Int) A H sat x@Int A H sat (Start(y) A Inv(y)) @e(Int) =

H sat PF(y)@e(Int)]; and

ii) vH e Set(D): vt € T: [H sat SP@t = H sat PF(S(IMG))@t].

Hence to prove (SCS, PF) cmp (SED, IP) ‘we must show the proof the following two
conditions.

i. v(x, y) € A(SCS): vH e SEDH: vInt € SI(T):

[H sat PF(x)@s(Int) A H sat x@Int A H sat (Start(y) A Inv(y)) @e(Int) =

H sat PF(y)@e(Int)].

A(SCS), is defined by step 9 of CSCS: A(SCS): = A(SU)u AMN y AREC y ARG u ASH.
The fact that the pairs (x, y) € A(SU), satisfy condition i, follows directly from the fact that
the arcs of SU pass rule a (see step 1.f of production guidelines).

AMN is defined by step 5 of algorithm 8.1: AMN := A(MN) y {(E(SU), S(MN))}.
The fact that the pairs (x, y) € AMN, satisfy condition i, follows directly from the fact that
the arcs of MN pass rule @ and the arc (E(SU), S(MN))) passes rule c (see step 2.g of
production guidelines).

Arguments similar to those given for the arcs in AMN can be given for the arcs in the sets
AREC, ARG and ASH.

ii. yH € SEDH: vt € T: [H sat IP@t = H sat PF(S(SCS))@t].

S(SCS), is defined by step 10 of algorithm 8.2: S(SCS) : = S(SU).

The fact that S(SU) is consequent of IP follows directly from step 1.f, of production

guidelines.

Clause iii. vm e M(SCS): vH € SEDH: vInt SI(T):
[H sat PF(m)@s(Int) A H sat m@Int = H sat SRS@Int].
M(SCS) is defined by step 4 of algorithm 8.2:
M(SCS) := M(SU) u M(MN) u MREC u MRG u MSH v {EC}
The fact that clause i holds for the modes in the set M(SU), follows from the fact that the
modes of SU pass rule b (see step 1.f of production guidelines). A similar argument can be

given for the modes in the set M(MN), MREC, MRG and MSH, and the mode EC.

227

Controller Analysis

Mode Graph Production Theorem
The mode graph production theorem (theorem 8.3) shows that the mode graph (SCS)
produced by applying the function CSCS to the mode graphs, graph functions and sets

produced by following the production guidelines will be complete and consistent.

Theorem 8.3

If the mode graphs SU and MN are complete and consistent and the mode graph given by
functions REG (defined over REM), RG (defined over RM) and SH (defined over SHM) are
complete and consistent, mode EC is consistent, and pass production rules d and e (as given in
the guidelines) then the mode graph SCS = CSCS(SU, MN, REG, RG, SH, Con, REM, RM,
SHM, EC), is complete and consistent.

Proof.

The proof is given by showing how the completeness and consistency follow from the
production guidelines.

Completeness

We must show that all the modes of SCS are complete modes. M(SCS) is defined by step 4
of algorithm 8.1: M(SCS) :=M(SU) u M(MN) u MREC y MRG u MSH u {EC}.
Consider the set of modes M(SU). The modes in the set M(SU)-{E(SU)} are complete
since SU is complete (see step l.e of the production guidelines), and mode E(SU) is
complete since rule d holds for the arc (E(SU), S(MN)) (see step 2.g of production
guidelines). Consider the set of modes M(MN), these modes are either complete or in the
set REM (see step 3.b of production guidelines). Those modes in the set REM are made
complete by constructing suitable recovery graphs (see step 3.g). Similar arguments can be
given for the sets, MREC, MRG and MSH. The mode EC is complete since it has no
successor.

Consistency

We must show that all the arcs of SCS are consistent arcs. A(SCS) is defined by step 9 of
algorithm 8.2:A(SCS) : = A(SU) u AMN y AREC u ARG u ASH. Consider the set of arcs

A(SU), these are consistent since SU is consistent (see step l.e of the production

228

Controller Analysis

guidelines). Consider the set of arcs AMN, AMN is defined by step 5 of algorithm 8.1:
AMN := A(MN) v {(E(SU), S(REC(m))}.

The fact that the pairs (x, y) € AMN are consistent, follows directly from the fact that MN is

consistent and the arc (E(SU), S(MN)) passestule e (see step 2.g of production guidelines).

Arguments similar to those given for the arcs in AMN can be given for the arcs in the sets

AREC, ARG and ASH.

8.4. Mission Environment Description Analysis

The MED of a system is built as an extension to the MRD of that system. The description
is extended by the introduction of the variables which represent the properties of the
sensors and actuators of the mission controller. The description must also include the
variables of the safety controller. The introduction of the mission controller variables
expands the observable state space at the controller level. To avoid relationships in which
the mission controller influences the safety controller, only two classes of relations are

allowed: the mission relations and dependent relations (see chapter 6).

Construction Guidelines
The guidelines for the production of the mission environment description of a system

are presented in two stages: basic description and monitor relations.

Basic Description
Step 1
The team must identify all the mission controller variables of the system, by an analysis of

the mission controller. The analysis process is similar to that performed for the safety
controller.
Step 2

The team must identify the range and class of each variable identified in step 1, and
define the units of each variable.

Step 3

The team must identify the invariant and history relations that involve actuators or

229

Controller Analysis

sensors of the mission controller and the real world variables. These relations are
determined in the same way as the invariant and history relations of the SED. The analysis
in this step should consider the mission controller in isolation (i.e. it is not necessary to take
into account the influence of the safety controller in this step). -
Step 4

The team must determine if any of the invariant or history relations that involve
actuators or sensors of the mission controller are influenced by safety controller variables.
This can be determined by systematically checking if an actuator of the safety controller
can influence the relationships. For each mission relation, which can be influenced by a
safety controller variable a dependent relation is constructed which replaces the mission
relation.
Step 5

The initial MED is defined as MED(SY) = (T, Sv, VP, CP, IR, HR), where
Sv is the sequence of real world variables and controller variables;
VP the ranges of Sv;

CP the classes of Sv;

IR the invariant relations of MRD and the invariant relations identified in step 3 and 4; and

HR the history relations of MRD and the history relations identified in step 3 and 4.

Monitor Relations

Step 1 (Monitor Phase Relations)

a. Make a list (denoted by DV) of all the safety controller variables that influence the
mission controller. These variables can be identified by looking up the related variables
column in MED.

b. 1dentify any invariant or history relations which hold over the variables in the list DV.
There are two main types of relations. Firstly, the relations that follow from the invariant of
the monitor graph, these will be invariant relations. The identification of these invariant
relations, involves a simple inspection of the invariant of the monitor graph. Secondly, the

relations that follow from the invariant of modes in the monitor graph, these will be history

230

Controller Analysis

relations. These relations can be identified by inspecting the invariant and end predicates

of the modes.

Step 2 (Monitor controller variables)
a. Determine if it is necessary for the mission controller to monitor the safety controller.
This can be checked by inspecting the relations of MED; and the relations identified in

step 1.

b. If the analysts determine that the mission controller must monitor the safety controller.

Then suitable sensor variables and relations must be defined.

Step 3 (Modify Description)
The MED produced by step 5 of the basic description guidelines is modified by adding the
variables identified in step 1.a and step 2.b to the variable sequence of MED; and the

relations identified in step 1.b and step 2.b to the relations of MED.

8.5. Mission Controller Specification Analysis

The mission controller of a system is expressed as an SEMG, the structure of this graph
is based on the structure of the mission real world specification of that system. As was
pointed out in section 6.4.1, a natural approach to the development of the mission
controller specification, is based on the construction of SEMGs for the modes of the
mission real world specification. The relationship between the modes of the mission real
world specification and the SEMGs is captured by the definition of a controller function for
the mission real world specification.
Definition: Controller function
A controller function CF of a mission real world specification is a function from the modes of
the mission real world specification to a set of SEMGs, such that the SEMG constructed for

mode m is given by CF(m) and the mode sets of the graphs given by the function are disjoint.

A function that connects the SEMGs which are specified by a controller function is

defined below.

231

Controller Analysis

Algorithm 8.2
Function MCGT(MG: SEMGraph; CF: GraphFunction): SEMGraph;
Var MC: SEMGraph;

m, w, X, y, z: Modes;

IA, EA: SetOfModes;
1: M(MC) := Um e M(MG): M(CF(m));

2: 1A := Um e M(MG): A(CF(m));

3: EA:= {(w,x) € M(MC)4 3(y, z) € AMG) A w = E(CF(y)) A x = S(CF(2))};
4: AMC) := IA U EA;

5: S(MC) := S(CF(S(MG)));

6: EMC) : = E(CF(S(MG)));

7: MCGT := MC;

8: Stop.

Comments

1: The mode set of MC is the union of the mode sets of the mode graphs given by CF.

2: The internal arc set of MC (i.e. the arcs of the controller graph) is the union of the arc

sets of the mode graphs given by CF.

3: The external arc set of MC (i.e., the arcs that are used to connect the controller graphs) is
the set of all pair of modes (w, x) from set M(MC)? for which there is an arc (y, z) in MG
such that the end mode of the controller graph of y is w and the start mode of the controller
graph of z is x.

4: The arc set of MC is the union of the internal and external arc sets.

5: The start mode of MC is the start mode of the controller graph of the start mode of MG.
6: The end mode of MC is the end mode of the controller graph of the end mode of MG.

Lemma 8.1

For any mode sequence cs from the set Seq(MCGT(MRS, CF)) there is a mode sequence rs of
Seq(MRS) and an increasing function k: {0, ...,|rs|}={0, ..., |cs|} such that k(0)=0 and
k(|rs|)=|cs| and cs(k(i-1) +I, k(i) is an element of Seq(CF(rs(i))), foralliin {1, ..., |rs|}.

232

Controller Analysis

More precisely,

ves € Seq(MCGT(MRS, CF)):

ars € Seq(MRS): 3k € KF: vi € {1, ..., |rs|}: es(k(i-1)+1, k(i)) € Seq(CF(rs(i)),

where KF denotes the set of functionsk:{0, ...; |rs|} ={0, ..., |cs| } such thatk isincreasing,
k(0)=0 and k(|rs|)=|cs|.

Proof.

Consider any sequence cs of Seq(MCGT(MRS, CF)) (of finite length), in the following we
show that there exists a sequence rs of Seq(MRS) and a sequence ky, ..., k|| that satisfies
this lemma. From step 5, of algorithm 8.1 we have cs(1) = S(CF(S(MRS)), in the rest of this
proof we will denote S(MRS) by r; and let kg=0. From steps 2, 3 and 4, of algorithm 8.1,
aki: es(kg, k1) € Seq(CF(S(r1)) and from step 6, of algorithm 8.2, ifk; = | cs|, r; = E(MRS),
otherwise ar, € M(MRS): (r1, r2) € A(MRS) A cs(k;+1)= S(CF(S(rp))). The previous
argument can be repeated for rj, i = {2, ..., q}, where kg = | cs|; such a q must exist since k;
>k;_; and cs is of finite length. Hence:

ary, ..., fqe M(MRS):vi € {1, ..., q-1}: (i, Ti+ 1) € A(MRS) A r;=S(MRS) A 1g=E(MRS).
7oA, .y Ig) € Seq(MRS). To complete the proof we denote {ry, ..., rg) by rs (i.e., = |rs|),
and define k(i) =k, foralli € {0, ..., [rs|}. Hence kis an increasing function, k(0)=0and
k(|rs|) = |cs|, thatisk € KE

. ars ¢ Seq(MRS): 3k ¢ KF: vi € {1, ..., |rs]}: es(k(i-1)+ 1, k(i)) € Seq(CF(rs(i))).

The relationship between k, cs and rs is illustrated in figure 8.4.

cs= ,@..+

g
.
»
L

.
rd
’
s

.

seecoenes
e emenee

-
e®
P .
i .
-
4 -

Figure 8.4. Picture of Lemma 8.1.

Before presenting the production guidelines, we consider the verification condition

that will be used to check the produced mission controller specification. We then discuss a

233

Controller Analysis

set of suitable checks to confirm this verification condition. This discussion is followed by

production guidelines for the mission controller specification, which are presented as the

stages shown in figure 8.2.

8.5.1 Mission Verification.
The verification of the mission controller specification of a system, involves the
construction of a proof that any mission environment history that satisfies the mission

controller specification must satisfy the mission real world specification of that system

Definition: Mission verification condition
The mission controller specification of a system is adequate if and only if the mission real world

specification of that system is a consequent of the mission controller specification for the

mission environment histories of that system.

More precisely, MCS is adequate for MRS iff vH € MEDH: H sat MCS = H sat MRS.
For a set of checks to be suitable for the verification condition they must posses the same

attributes that were suggested for the safety verification condition. In addition, any

verification checks should not be too stringent, since one motivation for separation of the

safety from the mission is to allow more freedom in the specification of the mission
controller.

To allow a structured proof to be constructed, the verification checks must exploit the
relationship between the mission controller specification and mission real world

specifications as captured by lemma 8.1.

Consider the satisfaction of the mission controller specification: H sat MCS. From lemma
4.7, we can infer: |
3cs € Seq(MCS): 3ty, ..., tics| € T H sat cs@(tg, ..., tjes|) A tg=5(T) A t)es) =e(T).
From lemma 8.1 we can infer ars € Seq(MRS): 3k € KF: cs(k(i-1) + 1, k(i)) € Seq(CF(rs(i)).
Hence, 3k € KF: vi € {1, ..., |rs|}: H sat CF(rs(i))@[tyg-1), tigi)l-
Postulated Checks

Next we postulate checks which will imply H sat cs = H sat rs. The general approach is

based on demonstrating that the controller graph of a mode rs(i), ensures rs(i) ends before

234

Controller Analysis

the end point of the controller graph, and that rs(i + 1) starts after the end point of rs(i). The
modes rs(1) and rs(|rs|) are treated as special cases. The controller graph of rs(1) must
ensure rs(1) is satisfied during the satisfaction of the controller graph and rs(2) starts after
the end point of rs(1), and the controller graph of rs(|rs|) must ensure that rs(|rs|) ends at
the end point of the controller graph. The checks are given below, and illustrated in figure
8.5.

From lemmas 4.7 and 8.1 we have:

3cs € Seq(MCS): aty, ..., t|cs| € Tt H sat cs@(tg, ..., tcs)) A to=5(T) A t|cs)=¢(T) and
3k € KF: vi € {1, ..., |rs|}: H sat CF(rs(i))@{txg-1) txg)l-

Next we give three conditions over the time points tg, ..., tjcs) and function K.

a. There exists a time point e, in the interval [txg), tk1)] such that H satisfies rs(1) during
[txo), €1] and H starts rs(2) during [e;, tgy)]-

More precisely,

3¢ € [tk(O), tk(l)]: H sat rs(l)@[tk(o), el AHsaty (rs(z))@[el, tk(l)]-

rs(1) | $(rs(2))
ti(o) €1 tk(1) tk(2) oo ti(|rs|-1) tk(|rs|)

Figure 8.5. Postulated Check for Start of Sequence rs

b. There exists a sequence of |rs|-2 time points denoted bye,, ..., e jrs|-1Such that for alliin
{2, ..., |rs|-1} e;is an element of [txg-1) tkG)] and (ei—€;_1) is at least LB(rs(i)) and at most
UB(rs(i)) and H ends rs(i) during [tg-1) €i] and H starts rs(i+ 1) during [e;, txg))-

More precisely, .

3€2, ..., €|s)-1€ i vie {2, .., |rs|-1}: € € [teg-1), tgi)] A LB(rs(i)) < (e; ~€i-1) < UB(rs(i))
H sat 8(rs(i)) @[txgi-1)» €i] A H sat $(rs(i+1))@[e;, tyg)-

oo | o(s@) | &rs() #(rs(i+1))

t@) by °°° ©i-l tii-1) € G *** t(msl-1) tirs))
LB(rs(i))<dur<UB(rs(i))

Figure 8.6. Postulated Check for a Typical Mode in Sequence rs

235

Controller Analysis

¢. H ends rs(| rs|) during [tx(|rs|-1) ti(|rs|)] and (tx(|rs|y~€|rs|-1) is at least LB(rs(|rs|)) and at
most UB(rs(|rs|)).
More precisely,

H sat 8(rs(|rs|))@[ti(rs|-1) tiirs)y] A LB(Es(]1s])) < (ti(rs|y-€|rsj-1) < UB(rs(|1s|)).

ces #(rs(]rs))) 8(rs(|rs|))

tk() ti() ti(|rs|-2) €|rs|-1 t(|rs)-1) ti(|rs)
LB(rs(i))<dur<UB(rs(i))

Figure 8.7. Postulated Check for End of Sequence rs

In the next section we present a set of mission verification checks which confirm the
postulated checks; and then prove that the mission verification checks do indeed confirm
the mission verification condition. Before presenting the mission verification checks,
consider the following check which confirms the postulated check.

For any mode m for the mode set of MRS, any history H from MEDH, and any interval Int if
H satisfies CF(m) during Int then H must satisfy m during Int.

More precisely,

vm € M(MRS): vH € MEDH: vInt € SI(T): [H sat CF(m)@Int =+ H sat m@Int].

MRS ¢cmp MEDH.

The above check, is a simple check which allows each mode to be considered in detail.
However this check is too stringent, since it does not exploit fact the fact that at the the start
point of the controller graph of a mode the controller graph of a predecessor mode of that
mode has ended or the possibility of allowing a delay between the end point of a mode and

its controller graph.

Mission Verification Checks

In this section a set of mission verification checks derived by using the insight gained

from studying the postulated checks, are presented next.

Definition: Mission verification checks

The controller function CF of a mission real-world specification MRS passes the mission

236

Controller Analysis

verification checks if and only if there exists a precondition function PF: M(MRS) — PredSet
and a delay function Af: M(MRS) — T(for which Af(E(MRS)) = 0) such that the following five

conditions hold.

i. All histories of MEDH, must satisfy PF(S(MRS)) at s(T).
vH € MEDH: H sat PF(S(MRS))@s(T).

ii. For any history H from MEDH, any interval Int, if H satisfies PF(S(MRS)) at s(Int) and
CF(S(MRS)) during Int, then there exists a time point t during Int at most Af(S(MRS)) before
e(Int) such that:
a. H satisfies S(MRS) during [s(Int), t]; and
b. for any x a successors of S(MRS) if H satisfies the start and invariant of S(CF(x)) at e(Int),
then H must start during [t, e(Int)] and satisfy PF(x) at e(Int).
vH € MEDH: vInt € SI(T):
[H sat PF(S(MRS))@s(Int) A H sat CF(S(MRS))@Int =
3t € Int: (e(Int)-t) < Af(S(MRS)) A
a. H sat S(MRS)@][s(Int), t] A
b. vx € MRS.sr(S(MRS)): H sat Start(S(CF(x))) A Inv(S(CF(x)))@e(Int)
= H sat $(x)@([t, e(Int)] A H sat PF(x)@e(Int)].

iii. For any arc (x, y) of A(MRS), for any history H from MEDH, any interval Int, if H satisfies
PF(x) at s(Int) and CF(x) during Int, then there exists a time point t during Int at most Afi(x)
before e(Int) such that:
a. x ends during [s(Int), t] for H; and
b. if H satisfies the start and invariant of S(CF(y)) at e(Int), then H must starty during [t, e(Int)]
and satisfy PF(y) at e(Int).
v(x, y) € AMRS): vH € MEDH: vInt € SI(T):
[H sat PE(x)@s(Int) A H sat CF(x)@Int = 3t € Int: (e(Int) - t) < Af(X) A
a. H sat s(x)@[s(Int), t] A
b. H sat Start(S(CF(y))) A Inv(S(CF(y)))@e¢(Int)
= H sat $(y)@[t, e(Int)] A H sat PF(y)@e(Int)].

237

Controller Analysis

. For any history H from MEDH, any interval Int, if H satisfies PF(E(MRS)) at s(Int) and
CF(E(MRS)) during Int, then E(MRS) ends during Int for H.

vH € MEDH: vInt € SI(T): H sat PF(E(MRS))@s(Int) A H sat CF(E(MRS))@Int =

H sat 8(E(MRS))@Int. ’

v. For any mode m of MRS the lower bound of CF(m) must be at least the lower bound of mplus
Af(m) and the upper bound of CF(m) must be at most the upper bound of m minus Amax(m),
where Amax(m) is the maximum delay for a predecessor of m.
vm € M(MRS): [LB(CF(m)) = LB(m) + Af(m) A UB(CF(m)) < UB(m)-Amax(m)],
where Amax(m) = maximum {Af(x) | x € MRS.pr(m)}, if x #S(MRS),

0, if x =S(MRS).

im|es|

Remark: LB(MG) = minimum { > LB(s()) | cs € Seq(MG)}; and

i=0

im|es|

UB(MG) = maximum { > UB(cs()) | cs € Seq(MG)}.

i=0

The fact that a precondition function PF, a controller function CFand a delay function

Af pass the mission verification checks for a mission real world specification MRS will be

denoted by (CF, PF, Af) pass MRS.

Mission Verification Checks Theorem
The mission verification checks theorem (theorem 8.4) shows that if these verification

checks can be confirmed then the mission controller specification given by MCGT will

satisfy the mission verification conditions.

Theorem 8.4

If the mission controller specification of a system passes the mission verification checks then
the mission verification condition holds for that system.

More precisely,

(CF, PF, Af) pass MRS =

vH € MEDH: H sat MCGT(MRS, CF) = H sat MRS.

238

Controller Analysis

Proof.

The proof follows from lemma 4.1, lemma 4.7, lemma 8.1 and the verification checks.
From lemma 4.7, we have:

1. H sat MCGT(MRS, CF) =

acs € MCGT(MRS, CF): ty, ... , tjcs|: H 52t cs@(ty, ... , tics)) A tg = S(T) A tyes) = e(T).
From lemma 8.1, we have:

2. ars € Seq(MRS): 3k € KF: vi &{1, ..., |rs|}: cs(k(i-1)+ 1, k(i)) € Seq(CF(rs(i))).
From the mission verification checks we make the observation that the ith mode of rs is
satisfied during an interval contained within the interval [ty;-z), tyg). Hence we can
conclude that by time point ty) the first i modes of rs have been satisfied. Based on this
observation we make an assumption of the form that at a time point t prior to tyj) the
sequence rs(1, i) is satisfied and the mode rs(i+ 1) is start satisfied during [t, tii)l-

Next we show vi € {1, ..., [rs|-1}: PS(i), where PS(i) is:

H sat es(1, k(D) @lto, tigy] =

3¢; € [to, tx)]: 0 <(txg) — i) < Af(rs(i)) A

H sat rs(1,))@][to, &i] A H sat #(rs(i+ 1))@[e;, ti)] A H sat PF(rs(i + 1)) @ty -

This property is is illustrated in figure 8.8.

rs(1, (i)) #(rs(i+ 1)) PF('rs:(i +1))

]
ty Iei 0<dur<Af(rs(i)) tic(i)

Figure 8.8. History Graph of PS(i)

PS(1), follows from clauses i and ii of the mission verification checks.

PS(1) is:

H sat cs(1, k(1)@lto, tiqr)] =

3e1 € [to, tiny): 0 <(tiqr) — €1) < Af(rs(1)) A

H sat rs(1)@][to, e1] A H sat £(rs(2))@[e1, tin)] A H sat PF(rs(2)) @ty -

From 2, cs(1, k(1)) € Seq(CF(rs(1)) and since MRS is an SEMG rs(1) =S(MRS)
- H sat CF(S(MRS))@[to, ti))-

239

Controller Analysis

From clause i of the mission verification checks, H sat PF(S(MRS))@t.

Therefore from clause ii (part a), we have:

3e; € [to, typ)]: 0 <(txq) - €1) < Af(rs(1)) A H sat rs(1)@]ty, e4].

Since cs(k(1)+ 1, k(2)) € Seq(CF(rs(2)), we'have H sat CF(rs(2))@]ti(1), tyz))

= H sat S(CF(rs(2)))@[txq) tkay+1]

= H sat Start(S(CF(rs(2)))) A Inv(S(CF(rs(2))))@ti(1).

Therefore from clause ii (part b) we have: H sat #(rs(2))@[e;, ty1)] A H sat PF(rs(2)) @ty (y).

Next we show that assuming PS(i), we can prove PS(i+ 1), using clauses iii and v of the
mission verification checks. We show, vi € {1, ..., |rs|-2}: PS(i) = PS(i + 1).

H sat cs(1, k(i +1))@[ty, tug+1)] =

H sat cs(1, k(i))@][to, tx)] A H sat cs(k(i)+ 1, k(i + 1)) @[txg), tig+ l-

From 2, cs(k(i)+ 1, k(i+ 1)) € Seq(CF(rs(i+ 1)).

From PS(i), we have: H sat cs(1, k(i))@[to, txg)] =

3e; € [tg, tig)]: 0 < (tgy) - &) < Af(rs(@)) A

H sat rs(1, i)@[ty, €i] A H sat #(rs(i+ 1))@[e;, ty)] A H sat PF(rs(i + 1)) @tyg).

Hence, from clause iii, part a of the mission verification checks with x = rs(i+ 1) we have:
3ei+1 € [tg) trg+ D) 0 < (tei+ 1) — i+1) < Af(rs(i+1)) A H sat g(rs(i + 1)) @[t €i+1).
Since cs(k(i+ 1)+ 1, k(i +2)) € CF(rs(i+ 2)) we have H sat CF(rs(i +2))@[tx(i+ 1), tkG+2))-
= H sat S(CF(rs(i +2)))@[txg+ 1)» teii+1)+1]-

= H sat Start(S(CF(rs(i+2)))) A Inv(S(CF(rs(i +2)))) @ty + 1y,

Hence, from clause iii, part b of the mission verification checks with y = rs(i+2) we have:

H sat s(rs(i+2))@[ei+ 1, trg+1)] A H sat PF(rs(i +2)) @ty + 1).

From clause v of the mission verification check we have:

LB(CF(rs(i + 1)) = LB(rs(i+ 1)) + Af(rs(i+ 1)) A

UB(CF(rs(i+ 1) < UB(rs(i + 1))-Amax(rs(i + 1)).

In the following we denote: LB(CF(rs(i+ 1)) by LB, UB(CF(rs(i + 1))) by UB, LB(rs(i + 1))
by LB’ and UB(rs(i+ 1)) by UB’.

We wish to show that: LB’ < (ej+1 —€j) < UB’.

240

Controller Analysis

We have: 0 < (txg+1) - €i+1) < Af(rs(i+1)) -3
and 0 < (tig) —€i) < Af(rs(i)) 4.
By subtracting 3 from 4

=Af(rs(i+ 1)) < (ty) —€i) - (teg+1) — €i+1) £ Af(rs(i)).

Which can be rewritten as:

-Af(rs(i+1)) < ty) —teg+1) + €i+1-€ < Af(rs(i)).

By subtracting ti;) and adding ty+ 1) we have:

(tei+ 1) —tigy) —Af(rs(i+1)) < ei+1-€i < (tug+1) ~tigy + Af(rs(i)).
Using LB < (tyg+ 1) —tkg)) < UB, we get:

LB -Af(rs(i+ 1)) < (ej+1 -€j) < UB+ Af(rs(i)).

From the definition of Amax we can infer:

LB -Af(rs(i+ 1)) < (ej+1 -€;) < UB+ Amax(rs(i+ 1)).

From clause v of the mission verification checks we can infer the following:
LB -Af(rs(i+ 1)) > LB’ and UB+ Amax(rs(i+ 1)) < UB".

5 LB’ < (ej+1 -€j)) < UB’.

This situation is illustrated in figure 8.9

|
LB<dur<UB
1
€ tk(@i) €i+1 tGi+1)
0<dur<Af(rs(i)) 0<dur<Af(rs(i+ 1))
e—— LB-Af(rs(i + 1)<dur<UB + Af(rs(i)
i

Figure 8.9. Time bounds and Delay Function

Therefore, from lemma 4.1, we can state:

H sat 9(rs(i + 1))@[e;, tgi)] A H sat 8(rs(i+ 1))@[ti), €i+1] A LB’ < (ei+1-¢€;) < UB’
= H sat rs(i+ 1)@[e;, ei+1]-

H sat rs(1, i)@[to, €;] A H sat rs(i)@[e;, €+ 1] = H sat rs(1, i+ 1)@][tg, €+ 1].

S PS@+1).

241

Controller Analysis

From PS(|rs|-1) we have: 3 |r5|-1 € [to, ti((ms|-1)]: 0 < (ti(|rs|-1) ~ € rs|-1) < Af(rs(]1s|-1)) A
H sat rs(1, k(|rs|-1))@[to, €|rs|-1] A H sat (rs(|1s|))@[€ /151, ti(jrs)] A
H sat PF(rs(|s))@ti(|s))-
From clause iv of the mission verification cliecks, rs(|rs|) =E(MRS) and
cs(k(|rs|-1)+1,k(|rs|)) € Seq(CF(rs(|rs|)), we have: H sat &(rs(|rs| D@ tic(|rs]-1p» tie|rs])]-
Next we show LB(rs(|rs|)) < (ti(|rs|) —€|rs]-1) < UB(rs(]rs])).
Since Af(E(MRS))=0 we show: LB(CF(rs(|s]))) < (tx(|rs|) ~€|rs|-1) < UB(rs(|rs|)).
From the definition of Amax, we have: 0 < (ti(rs|-1) — €r5)-1) < Amax(rs(|rs])).
(teqrs|) —€|ms)-1) < tijrs|) — (tiirs]-1) — Amax(rs(|rs|)))

< ti(irs}) — ti(|ms|-1) + Amax(rs(|rs]))

< UB(CF(rs(|rs]))) + Amax(rs(|rs|))

< UB(rs(|rs])).
(tqrs)) —€prsj-1) = tirs|) ~ti(|rs]-1)

> LB(CF(rs(|rs))).
Hence, we have: H sat rs(|1s|)@[€|rs|-1, tk(|rs|)]-
- H sat rs(1, |rs|)@][to, tx(rs)))s k(I1s]) = [cs|, tirsjy) =€(T), hence H sat rs.

Mission Production Rules

In this section I will discuss the production rules that can be derived from the mission

verification checks; and their applicability for the development strategy.

Rule a. This production rule ensures that clause v holds for a mode m.
The lower bound of the CF(m) is at least the lower bound of m plus the delay of m; and the

upper bound of CF(m) is at most the upper bound of m minus the maximum delay of m.
LB(CF(m)) > LB(m) + Af(m)) A UB(CF(m)) < UB(m)-Amax(m).

Remark: To check the above rule for a mode m the delay function must be specified for all
predecessors of m.

Rule b'. This is simply clause ii.

Rule ¢’. This construction rule ensures that clause iii holds for all arcs in which mis the first

mode.

242

Controller Analysis

For any history H from MEDH, any interval Int if H satisfies PF(m) at s(Int) and CF(m)
during Int then there exists a time point ¢ during Int at most Af(m) before e(Int) such that m
ends during [s(Int), t]; and for any successor x of m if the start and invariant of S(CF(x)) are

satisfied at e(Int) then x starts during /¢, e(Int)] and the precondition of x issatisfied ate(Inz).

vH € MEDH: vInt € SI(T):

[(H sat PF(m)@s(Int) A H sat CF(m)@Int = 3t € Int: (e(Int) -t) < Af(m)
H sat 8(m)@[s(Int), t]) A

(vx € MRS.sr(m): H sat Start(S(CF(x))) A Inv(S(CF(x)))@e(Int) =

H sat #(x)@[t, e(Int)] A H sat PF(x)@e(Int))].

Rule d. This is simply clause iv.

To check the rule b’ and ¢’ for a mode m the precondition and controller function must
be specified for all successors of m. The dependency of the checks on the controller
function of other modes, reduces the usefulness of the check during the production of the
mission controller specification. To allow a similar check to be performed after the analysis
of each mode the notion of a template function is introduced, as a function that allows the
mission controller analysts to specify the state of the mission controller at the start of a
controller graph. A template function is used to define rules b, ¢ and e which are based on
rules b’ and c’.

Definition: template function

The template function of a mission real world specification is a function from the set of modes
of the mission real world specification to a set of system predicates imposed over the mission
controller variables.

TF: M(MRS) — PredSet, where PredSet is a set of system predicates over the mission

controller variables.

Rule c. This rule together with the rule e confirms that clause ii holds.
For any history H from MEDH and any interval Int, if H satisfies PF(S(MRS)) at s(Int) and
CF(S(MRS)) during Int then there exists a time point ¢ during Int at most Af(S(MRS))

243

Controller Analysis

before e(Int) such that m ends during [s(Int), t]; and for any successor x of m for which TF(x)

is satisfied at e(Int), x starts during [t, e(Int)] and PF(x) is satisfied at e(Int).

vH € MEDH: viInt € SI(T):)

[Hsat PF(S(MRS))@s(Int) A H sat CF(S(MRS))@Int = 3t & Int: (e(Int)~t) < Af(S(MRS))
H sat 8(S(MRS))@[s(Int), t] A

(vx € MRS.sr(S(MRS)): H sat TF(x)@e(Int) = H sat $(m)@[t, e(Int)] A H sat
PF(x)@e(Int))].

Rule c. This rule together with the rule e confirms that clause iii holds for the arcs that start

with mode m.
For any history H from MEDH and any interval Int, if H satisfies PF(m) ats(Int) and CF(m)
during Int then there exists a time point ¢ during Int at most Af(m) before e(Int) such that m

ends during [s(Int), t]; and for any successor x of m for which TF(x) is satisfied at e(Int), x

starts during ft, e(Int)] and PF(x) is satisfied at e(Int).

vH € MEDH: vInt € SI(T):

[H sat PF(m)@s(Int) A H sat CF(m)@Int = 3t € Int: (e(Int) -t) < Af(m)

H sat 8(m)@[s(Int), t] A

(vx € MRS.sr(m): H sat TF(x)@e(Int) = H sat $(m)@([t, e(Int)] A H sat PF(x)@e(Int))].

Rule e.
The conjunction of the start and invariant predicate of S(CF(m)) imply TF(m) under the

normal histories.

vH € MEDH: vt € T: [H sat Start(S(CF(m))) A Inv(S(CF(m)))@T = H sat TF(m)@t].

Lemma 8.2

If production rules b, c and e are confirmed for all the modes thgn production rules b’ and ¢’

must hold for all the modes.

Proof. This result follows simply from the fact that we can can substitute Start(CF(m)) A
Inv(CF(m)) for TF(x), since YH e MEDH: vt € T: [H sat Start(S(CF(x))) A Inv(S(CF(x)))@t
= H sat TF(x)@t] (using the transitive property of =).

244

Controller Analysis

8.5.2. Mission Controller Development Strategy

The development strategy follows the three stages shown in figure 8.2. In the first stage
an outline of the mission controller specification is constructed by defining the
precondition function, template function and delay function of the mission real world
specification. In the second stage, the controller function is constructed Finally, in the third
stage, the completeness and consistency of the mission controller specification is checked

and the transformation MCGT used to construct the mission controller specification.

Construct Outline Specification
Step 1 (Precondition Function)
Construct a precondition function PF for MRS. As an initial guide the precondition of a

mode m of MRS should be defined as: PF(m) = Start(m) A Inv(m).

Step 2 (Template Function)

Construct a template function TF for MRS. The template predicate of a mode m of MRS is
defined by a systematic analysis of PF(m) and the sensors and actuators of the mission
controller. This systematic analysis consists of the following three steps.

a. Make a list (PV) of all the variables over which PF(m) is imposed.

b. Make a list (CV) of all sensors and actuators of the mission controller that are related to
the variables in PV; and the relevant relations (RV). These variables and relations can be
identified by looking up the related variables column in the relations table of MED.

c. Identify the constraints (by inspecting the relations in RV) which must be imposed over

the variables in the list CV for the condition defined by PF(m) to be maintained.

Step 3 (Delay Function)

Construct the delay function Af for MRS. A full definition of the delay function of MRS can
be given only after the controller function has been defined. In'this step a partial definition
is given, by identifying those mode with a delay of zero; and assigning variables to those
mode with non-zero delays. The delay function of a mode is defined as zero if the end

predicate of the mode involves a state variable of the operator console, and the delay

function of the end mode is zero (i.e. Af(E(MRS)=0).

245

Controller Analysis

Construct controller function

In this section, a set of guidelines for the construction of a controller function for the
MRS of the system under analysis, is given. The guidelines are defined in two steps. Firstly,
the controller graph of a mode m is constructed by a systematic investigation of the
behaviour defined by m. This mode mode graph which defines constraints over the sensors
and actuators of the mission controller and the variables of the operator console. Secondly,

this mode graph is checked against the production rules for m.

Step 1 (Controller graph)

a. Identify the sensors and actuators of the mission controller that are related to the system
predicates of the mode m. These sensors and actuators can be identified by simply
checking the related variables column of the description relation table of MED. Make a
list (denoted by MV) of all the related sensors and actuators and a list of the appropriate
relations (RV).

b. Informally, state the basic strategy that will be used to perform the task specified bym, by
manipulating the variables on the list MV.

c. Identify the tasks (that must be performed by the mission controller) which must be
specified to formulate the strategy; and the relationships between these tasks. Check that
the invariant predicate of m will hold during the tasks.

d. Identify the invariant of CF(m), 'by checking the list MV to determine those variables
that can be constrained by an invariant during CF(m).

e. By analysing the informal specification of the tasks construct modes that specify the tasks
(and state informal specifications fo; each mode). Then use these modes to construct
CF(m).

f. Check the completeness and consistency of CF(m).

& If m is the start mode of MRS, then the following condition must be checked (it confirms
clause i of the mission verification checks):

vH € MEDH: H sat PF(m)@s(T) A H sat $(m)@s(T).

246

Controller Analysis

Step 2 (Verification checks)

In this step CF(m) constructed in step 1 is checked against production rulesa ande. Then
if m is S(MRS) check CF(m) against rule b, 1f m is E(MRS) check CF(m) against rule d,
otherwise check CF(m) against rule c. If CF(m) passes the relevant rules, the analysts

proceed to the next mode, otherwise CF(m) must be modified. Possible modifications are

suggested in step 3.
Step 1 and step 2 must be repeated until the controller function is defined for all the modes.

Step 3 (Modifications)

This step must be performed if the controller graph of a mode m does not satisfy a

production rules. Four options are outlined below, in the order that they should be

attempted.

Modify controller graph specification. This should be the first option attempted since any

changes are restricted to the mode graph of m.

Modify outline specification. The analysts must modify the precondition function, template
predicate or delay function. The main drawback with this option is, that some of the

production rules of the previously checked controller graphs must be checked again.

Modify environment description. Unlike, the first three options, the mission controller
analysts do not have direct control over the relationships of the MED (i.e., they can only
specify the properties of the sensors and actuators that are provided). The mission
controller analyst should identify the relations that would be required for m to pass the
production rule. If the analysts are fortunate these additional relations may hold for the
sensors or actuators, otherwise modifications to the sensors or actuators or changes to the

physical process would be required. Modifications to the MED, can lead to the need to

check rules of modes other than m.

Modify mission real world specification. As for the the third option, the controller analysts
cannot modify the MRS. The analysts can suggest changes to the mission analysts (who

should then consult the customer).

247

Controller Analysis

If for a particular case, a simple fix can be seen by any of the options given above then it

should of course be performed directly.

Mode Graph Checks
These guidelines are given in three steps. The first two steps concern the completeness
and consistency checks of the mission controller specification; and the fourth the

combination of the graphs defined by the controller function

Step 1 (Completeness)

A check for the completeness of the mission controller specification obtained by applying
the function MCGT to the controller function CF of a mission real world specification
MRS is given below.

External completeness check

For any mode m of MRS, if any history H of MEDH satisfies E(CF(m)) during any interval
Int there exists a mode x (a successor of m) such that H satisfies the start and invariant
predicate of S(CF(x)) at e(Int).

vm € M(MRS): vH € MEDH: vInt € SI(T): 3x € MRS.sr(m):

[H sat E(CF(m))@Int = H sat Start(S(CF(x)) A Inv(S(CF(x))@e(Int)]

The above assertion will be referred to as the external completeness check, and will be
denoted by (MRS, CF) Ecom MED. If the completeness of the controller graphs have been

confirmed, then the external completeness check is sufficient to confirm that the mode

graph given by MCGT is complete.

Step 2 (Consistency)

A check for the consistency of the mission controller specification obtained by

applying the function MCGT to the controller function CF of a mission real world

specification MRS is given below.

External consistency check

For any arc (x, y) of MRS, there exists a state value V' from the universal state space such that
V satisfies the invariant predicate and end predicate of E(CF(x)), the start predicate,

invariant predicate and negation of the end predicate of S(CF(y)); and the invariant

248

Controller Analysis

relations of MED.

v(x,y) € AMRS). s3Vel:

[V sat Inv(E(CF(x))) A End(E(CF(x))) A Start(S(CF(y))) A Inv(S(CF(y))) A TEnd(S(CF(y)))
A CAR(MED))].

We will refer to the above assertion as the external consistency check. It will be denoted by

(MRS, CF) Econ MED.

If the consistency of the controller graphs have been confirmed, then the external
consistency check is sufficient to confirm that the mode graph given by MCGT is
consistent.

Step 3 (Construction of Mission Controller Specification)
The mission controller specification is constructed by applying the transformation

MCGT, over MRS and CE

8.5.3. Mission Controller Specification Theorems
In this section I will present a theorem and two lemmas that show the production
guidelines are sufficient to produce a mission controller specification that will satisfy the

mission verification checks, that is both complete and consistent.

Mission Production Theorem
The mission production theorem (theorem 8.5) shows that if the production rules are

passed then CE, PF and Af pass the mission verification checks.

Theorem 8.5.

If each controller graph passes the relevant production rules for a mission real world
specification then the controller function CF, precondition function PF and delay function Af
pass the the mission verification checks.

Proof.

This result is proven by showing how each clause of the mission verification checks is

satisfied.

249

Controller Analysis

Clause i.
vH € MEDH: H sat PF(S(MRS))@s(T) A H sat $(S(MRS))@s(T).

Follows directly from step 1.g.

Clause ii.
vH e MEDH: vInt € SI(T):
[H sat PF(S(MRS))@s(Int) A H sat CF(S(MRS))@Int = at € Int: (e(Int)-t) < Af(S(MRS))
A H sat S(MRS)@[s(Int), t] A
vx € MRS.sr(S(MRS)): H sat Start(S(CF(x))) A Inv(S(CF(x)))@e(Int)
= H sat (x)@][t, e(Int)] A H sat PF(x)@e(Int)].

From rules b and e we can infer that rule b’ holds for all m of MRS (see lemma 8.2):

Clause iii.
v(x, y) € AMRS): vH € MEDH: vInt € SI(T):
[H sat PF(x)@s(Int) A H sat CF(y)@Int = 3t € Int: (e(Int) - t) < Af(X) A
H sat s(x)@[s(Int), t] A
H sat Start(S(CF(y))) A Inv(S(CF(y)))@e(Int)
= H sat 5(y)@[t, e(Int)] A H sat PF(y)@e(Int)].
From rules ¢ and e we can infer that rule ¢’ holds for all m of MRS (see lemma 8.2):
vin € M(MRS): vH € MEDH: vInt € SK(T):
[H sat PF(m)@s(Int) A H sat CF(m)@Int = 3t € Int: (e(Int) ~t) < Af(m)
H sat ¢(m)@[s(Int), t] A
(vx € MRS.sr(m): H sat TF(x)@e(Int)
= H sat #(m)@][t, e(Int)] A H sat PF(x)@e(Int))].

Hence clause iii, follows directly from the definition of the successor function of a mode

graph.

Clause iv.
vH € MEDH: vint € SI(T): H sat PF(E(MRS))@s(Int) A H sat CF(E(MRS))@Int =

H sat (E(MRS))@Int.
Follows directly from rule d.

250

Controller Analysis

Clause v.
vm € M(MRS): [LB(CF(m)) > LB(m) + Af(m) A UB(CF(m)) < UB(m)-Amax(m)].

Follows directly from rule a.

Lemma 8.3

If all the controller graphs given by a controller function CF of a mission real world
specification MRS are complete for MED and the controller function satisfies the external
completeness check for MED then the graph obtained by applying MCGT to MRS and CF is
complete for MED.

(vin € M(MRS): CF(m) com MED) A (MRS, CF) Ecom MED

= MCGT(MRS, CF) com MED.

Proof. This result follows from the fact that the first condition ensures that the non-end

modes of the controller graphs are complete, and the second condition ensures that the

end modes of the controller graphs are complete.

Lemma 8.4

If all the controller graphs given by a controller function CF of a mission real world
specification MRS are consistent for MED and the controller function satisfies the external
consistency check for MED then the graph obtained by applying MCGT to MRS is consistent
Jor MED.

(vm € M(MRS): CF(m) con MED) A (MRS, CF) Econ MED

= MCGT(MRS, CF) con MED.

Proof. This result follows from the fact that the first condition ensures that the arcs of the
controller graphs satisfy the mode graph consistency checks, and the second condition

ensures that the arcs that connect the controller graphs satisfy the mode graph consistency

checks.

8.6. Summary and Conclusions
This chapter presented methodologies for the production of the controller

specifications. The specifications are derived from the formal real world specifications

251

Controller Analysis

Verification conditions were stated for the specifications; and verification checks that can
be used to confirm the specifications derived. The notion of production rules was
introduced, as a means to steer the production of a specification towards the verification
conditions; and to check the specifications diiring their production. Roughly, speaking the

production rules allow checks to be performed over the modes and arcs of the controller

specifications, as they are being produced.

A systematic strategy for the production of the safety controller specification of a system
was presented, this strategy was based on the general (phase) structure for the behaviour of
a safety controller (discussed in chapter 6). For each phase a mode graph is constructed,
these mode graph were checked against five production rules. The safety controller
specification is then produced by the connection of these mode graphs, as defined by the
function CSCS. A theorem (theorem 8.2) that shows a safety controller specification

produced by following the guidelines will satisfy the safety verification condition is

presented.

The strategy for the production of the mission controller specification of a system was
given in two stages. In the first stage an outline of the mission controller specification of a
system is produced by defining the precondition function, template function and delay
function of the MRS of that system. In the second stage a mode graph is constructed for
each mode of the MRS, these mode graphs are checked using three production rules. The
mission controller specification is then produced by the connection of these mode graphs,
as defined by the function MCGT. A theorem (theorem 8.5) that shows a mission controller

specification produced by following the guidelines will satisfy the mission verification

condition is presented.

The methodologies, described in this chapter, give a formal treatment of the
environmental, logical and timing issues of a system. The specifications produced by
following the guidelines comply with the real world specifications. However, these
specifications will probably require further refinements, since the guidelines do not take

into account issues related to maintainability, reliability of components, cost~effectiveness

252

Controller Analysis

and ease of operation. In particular, the analysis should be extended to considet faults in
the safety controller. This should include faults in the actuators and sensors which result in
their relationship to the real world variables deviating form that described by the relations
of SED, and faults in the control system which results in the behaviour of the controller
variables deviating from that specified by the safety controller specification. Despite these
drawbacks the specifications provide an useful basis for subsequent controller
specifications.

The main benefits from the general strategy are that the analysis required to produce the
specifications follows a systematic approach, and production rules allow a proof to be
constructed in parallel with the production of the specification. The systematic approach
enhances the confidence that can be placed in the analysis; and the production rules
improve the confidence that can be placed in the formal constructs produced by the
analysis. The benefits gained from establishing a distinction between the safety and
mission issues during the real world analysis are reflected during the controller analysis,
since a proof of the adequacy of the the safety controller specification can be obtained
without considering the behaviour of the mission controller. A further benefit of this
distinction is that maintenance of the mission controller of a system (provided it does not

change the SED) will not affect the safety of the system.

253

Summary and Conclusions

Chapter 9 - Summary and Conclusions

In this chapter I will summarize the material that has been presented in this thesis,
discuss some of the conclusions that can be drawn from the material and indicate some of

the possible areas of future work.

9.1. Thesis Summary

The general class of systems considered in the thesis are process control systems
[Smit72]; typical application areas include chemical plants and avionic systems. The main
reasons for concentrating on such systems are that i) process control systems have
significant properties in common, in particular, a process control system can be modelled
as three interacting components: operator, controller and physical process; and ii) many
safety—critical applications are in the area of process control systems. The key component,
of a process control system, is the controller; this is constructed to control the behaviour
of the physical process. The controller consists of four main components: operator

console, control system, sensors and actuators.

This thesis has concentrated on the requirements analysis of safety—critical computing
systems. Requirements analysis plays a vital role in the development of systems, since any
errors in the identified requirements will corrupt the subsequent stages of system
development. Experience in safety—critical systems has shown that errors in the
formulation of requirements can and do cause accidents [Leve86, Jaff89]. Current
methods for requirements elicitation' are based on a combination of system safety and
software development techniques. A common approach is the use of HAZOPS (Hazard
and Operability Studies) and FTA (Fault Tree Analysis) to identify hazards from which the
software safety requirements are produced [Leve89]. General guidelines for the
integration of system safety and software development techniques are available [HSE87].
However, a framework which enables and guides a formal analysis of the system from the

real world issues through to the system requirements is not available [Mose90].

254

Summary and Conclusions

It was asserted that to gain a complete understanding of a safety-critical computing
system, the requirements of the overall system and the properties of the environment
should be analysed in a common formal framework. The benefits of using formal methods
during requirements analysis include uriambiguity, checks-for completeness and
consistency, formal verification, and the potential for using automated aids [Jaff89;
Roan86]. A unified framework is needed for the analysis because safety is a global issue
that can only be addressed by analysing the consequences of system behaviour in the
context of the environment [Gors86; Leve86]. The benefits gained from the adoption of
a common framework include: i) improved and precise communication between the
members of the analysis team; ii) the ability to perform a rigorous assessment of the effect
of the inherent properties of the environment on system behaviour; and iii) the ability to

assess the impact of the system on the environment.

The essential attributes that an appropriate formal model must possess are that it must
be able to express physical laws, parallelism and timing issues in a coherent (structured) form.
The necessity for the model to be able to express physical laws stems from the fact that
the behaviour of the environment is governed by such laws. The necessity to treat
parallelism explicitly in specifications which include the environment has been argued by
some researchers [Gors88]. Timing issues will arise in all of the stages of requirements
analysis. Timing issues are present in the description of the environment, since physical
laws make an explicit reference to time, and in many cases the relationships between the
sensors, actuators and the physical process are dependent on time. A structured model is
necessary to handle the complexity of these systems. The structure should be present in

the techniques used to compose the basic constructs of the model and in the basic

constructs themselves.

The approach to requirements analysis, adopted here is concerned with system
behaviour at two distinct levels of abstraction: real world and controller. At the real world
level it addresses the behaviour exhibited by the physical process. At the controller level,
it is concerned with the behaviour that must be exhibited by the sensors and actuators of

the controller for the physical process to behave as required.

255

Summary and Conclusions

For safety-critical systems it has been suggested that, to obtain a clear analysis of the
safety-related properties, a distinction must be made between the safety-critical and
mission-oriented behaviour of a system [Leve84; Mula86]. In this thesis, the distinction
between the safety and mission issues is €stablished during requirements analysis, by
partitioning the analysis at each level into safety and mission analyses. This distinction is
reflected in a general structure for safety-critical systems which decomposes the
components of a process control system. This structure is realized by partitioning the
operator function into the safety and mission operator, the controller into the safety and
mission controller, and by defining two viewpoints over the physical process: one for the
safety—critical behaviour and the other for the mission-oriented behaviour. A system
development model that reflects the decisions to perform the analysis at two levels and

maintain a distinction between the safety and mission issues is presented.

At the real world level, the safety analysis is performed in three stages which produces
four essential specifications. In the first stage the potential disasters associated with the
mission of the system or the environment are identified. The second stage involves the
identification of the hazards which can lead to potential disasters. It also involves the
specification of the behaviour of the environment which impinges on the safety-critical
behaviour of the system by producing the safety real world description (SRD). The safety
real world description, and the assumption that the identified hazards specify all the
conditions under which a disaster can occur, comprise the safety (real world) assumptions
of the system. The third stage involves the construction of a safety real world specification
(SRS) which specifies a behaviour that, if maintained by the system, will ensure that no

identified disaster can occur - under the safety assumptions of the system.

At the real world level, the mission analysis is performed in two stages which produces
two essential specifications. In the first stage the mission real world specification (MRS) is
produced which specifies the mission oriented behaviour of the system. The second stage
involves specifying the behaviour of the environment which impinges on the
mission-oriented behaviour of the system by producing the mission real world description

(MRD).

256

Summary and Conclusions

At the controller level, the safety analysis is performed in two stages which produce
two essential specifications. In the first stage the relationship between the sensors and
actuators of the safety controller and the physical process must be specified in the formal
framework. This specification together, with the SRD is referred to as the safety
environment description (SED). In the second stage, the behaviour that must be exhibited
by the sensors and actuators and at the operator console to ensure that the behaviour
complies with the safety real world specification, for the histories obtained from SED, is
specified as the safety controller specification (SCS). This specification is produced by an
analysis of the SED and SRS.

At the controller level, the situation for the mission analysis is the same as that for the
safety analysis, just replace safety by mission. This analysis leads to the production of the

mission environment description (MED) and the mission controller specification (MCS).

In chapte‘r three, the thesis presented a specification model for requirements analysis.
The semantics of the model were defined in terms of formal histories (functions from the
system lifetime to the state space). Three sorts of relations were introduced to specify
properties that are invariant over histories: class relations, invariant relations and history
relations. To describe the restrictions imposed on system behaviour from the environment
the concept of a history description was introduced, this is a construct which is used to
specify a set of histories that satisfy the properties described by the relations of the

description.

To specify the required behaviour of a system a set of satisfaction conditions was
introduced, it is shown how these conditions could be used to specify the behaviour of a
system at a time point, during an interval and formally captures the notion of an event as
a “temporal marker”. Several examples of system behaviour expressed using the
conditions were presented. It was concluded that though the expressive power of the
conditions was sufficient (for the systems to be studied), a drawback was that the
undisciplined use of the conditions could easily lead to badly structured and unreadable

specifications. Two possibilities were considered to overcome this potential drawback, 1)

257

Summary and Conclusions

develop a set of guidelines for a disciplined use of the conditions and ii) devise a
higher-level construct based on the conditions which can be used to structure the

specifications. This thesis followed the second route.

In chapter four, the structured construé/ts of the formal model were presented. The
main construct is that of amode. Amode of a system is used to specify a task of the system;
it specifies the behaviour of the system at the start of a task, during the task and the
behaviour which must be exhibited by the system for the task to be completed. The key
feature of a mode is that it can be used to specify system state during a task, the event that
marks the completion of a task, and the timing constraints over a task, in a coherent format.
A graphical notation, a mode graph, was introduced to specify the transitions between the
modes of a system. An informal dual of mode graphs, phase graphs, and a restricted class

of mode graphs single entry exit mode graphs (SEMG) were also introduced.

Though the expressiveness of formal models has received a lot of attention from
researchers, the relationship between a formal model and a production methodology has
rarely been extensively examined [Wing90] (a detailed study has been performed for a
structured method [Hatl88]). However, a recent survey of formal methods [Stru89]
concludes that most so-called formal methods are not formal methods at all, but merely
formal languages or notations. The thesis took the view that for a formal model to be
useful during requirements analysis, a set of systematic guidelines for the production of

the essential specifications must be provided.

In chapter five, a relationship between the formal model and the essential
specifications of the real world analysis was identified, by discussing the formalization of
the essential specifications. For the safety analysis, the disasters, hazards and safety real
world specification were formulated as system predicates, and the safety real world
description formulated as a history description. For the mission analysis, the mission real
world description is formulated as a history description. To structure the development of

the mission real world specification an intermediate (less formal) specification called the

258

Summary and Conclusions

mission phase specification is introduced - this is expressed as a phase graph. The mission

real world specification is formulated as an SEMG.

The safety-critical behaviour of a system SY at the end of the real world analysis is
described by the pair (SRD(SY), SRS(SY)) and the mission-oriented behaviour by the pair
(MRD(SY), MRS(SY)).

In chapter six, a relationship between the formal model and the essential specifications
of the controller analysis was identified, by discussing the formalization of the essential
specifications. For the safety analysis, the safety environment description is formulated as
a history description and the safety controller specification is formulated as an SEMG. To
guide the analysis of the safety controller, a general structure is presented in terms of five
phases: start up, monitor, recovery, reset, shut down and end. The structures which will be
used to specify the phases were described in detail. For the mission analysis, the mission
environment déscription is formulated as a history description and the mission controller
specification formulated as an SEMG. The structure of the mission controller specification
is based on the mission real world specification. A general strategy for the production of
the mission controller specification form the mission real world specification by the
construction of SEMGs from the modes of the mission real world specification is briefly

discussed.

The safety—critical behaviour of a system SY at the end of the controller analysis is
described by the pair (SED(SY), SCS(SY)) and the mission-oriented behaviour by the pair
(MED(SY), MCS(SY)).

The realisation of an explicit relationship between the specifications produced during
requirements analysis and the formal model, provides a useful basis for development. A
brief overview of the work presented in the first six chapters will soon be published
[Saee90]. However, to ensure that the development proceeds in a systematic way which
best utilizes the support provided by the development model and formal model, systematic
step-by-step guidelines are required. Methodologies that describe such guidelines are

presented in chapters seven and eight.

259

Summary and Conclusions

Chapter seven introduced some guidelines for the development of the essential
specifications of the real world analysis. The real world analysis was presented in three
main stages, a preliminary analysis stage, safety real world analysis and mission real world
analysis. The strategy for the safety real ‘world analysis consisted of a set of (iterative)
systematic guidelines for the identification of the disaster set, hazard specification, safety
real world description and safety real world specification. Validation guidelines, based on
independent analysis were also presented. The strategy for the mission real world analysis
consisted of a set of systematic guidelines for the development of the mission phase
specification, mission real world specification and mission real world description.
Guidelines for the verification of the completeness and consistency of the mission real
world specification and validation of the mission real world specification against the
system concept were also outlined. These guidelines exploit the modular development of

the specifications.

The separation of safety and mission issues simplified the guidelines of both the safety
and mission specifications. The safety analysis is simplified by focusing only on the
potential disasters and their hazards; the mission analysis is simplified by removing the

necessity to consider the safety-critical issues in combination with the mission.

Chapter eight presented methodologies for the development of the essential
specifications of the controller analysis. It was shown how these specifications are derived
from the formal specifications produced during the real world analysis, hence the potential
for formal verification exists between the real world specifications and the controller
specifications. Verification conditions were presented for the safety and mission controller
specifications. The notion of production rules was introduced to steer the specifications

produced by following production guidelines towards the verification conditions.

Overall this thesis has highlighted requirements analysis as an important (but
neglected) phase of system development. It has been suggested that for the analysis to be
performed in a systematic way a general structure of the system being specified should be
available, and the role of the essential specifications produced during requirements

analysis clearly defined. A general strategy was suggested in which a distinction is made

260

Summary and Conclusions

between the specifications at the real world level and controller level, and at each level
between the safety-critical and mission-oriented issues. Furthermore this thesis has shown
that formal methods can play an important role during requirements analysis, in the
representation of the essential specifications and perhaps more significantly in providing

a systematic approach to the production of these specifications.

9.2. Evaluation and Conclusions

The implicit representation of time in the semantics of the formal model enables a
precise specification of timing constraints to be given and provides a means of relating the
timing constraints at the controller level to the behaviour exhibited at the real world level.
The encapsulation of the behaviour of the environment and system in the same framework,
allows a rigorous assessment of the effect of the inherent properties of the environment
on system behaviour to be performed and enables the impact of the system on the

environment to be assessed.

The development model clarifies the roles that the members of the development team
play during requirements analysis, thereby leading to improved and precise

communication within the team.

The two level approach leads to a full understanding of system behaviour at the real
world level, before any complexities are introduced from the controller; this is particularly
relevant for the safety requirements since a “solution” independent statement of safety is
developed. The separation of safety and mission issues allows the formal analysis to be
targeted at the safety—critical issues of the system. A drawback to the use of formal
methods in complex systems is that during a complex formal analysis it is possible to lose
sight of the realities of the system being analysed. The explicit relationship between the
formal and development models helps to keep track of the formal analysis and the
properties of the system. A further benefit of identifying an explicit relationship between
the specification and development models is that it allows the identification of general

verification and development strategies.

261

Summary and Conclusions

The methodologies presented in chapter seven steer the development process through
several intermediates stages, the documents (tables) produced at the intermediates stages
act as “diaries” of the development. These diaries can be used in the certification of the
development process; the diaries are also useful in the verifications of the different
specifications. For the controller level specification the use of production rules allows the
construction of proofs for the verification of the controller specifications in parallel with
their production.

Six basic principles for a requirements analysis scheme for a safety-critical (process
control) system are summarised below.
Separation. The safety and mission issues of the system should be separated during the
early stages of the analysis, and the distinction maintained during the analysis. However, it
is usually impossible to maintain a complete dichotomy between the mission and the
critical requirements, because it would be futile to impose critical requirements that are so
stringent that the system could not satisfy its mission. Some aspects of the mission
requirements must be considered in the analysis of the critical requirements, to ensure that
the behaviour of the safety controller will (under fault-free circumstances) permit the
satisfaction of the mission requirements as well as ensuring the absence of system hazards.
The analysis should be performed at two levels, the real world and controller levels. A
distinction between the restrictions imposed on system behaviour (by the environment)
and the required system behaviour should be made at both levels.
Simplicity. The safety controller and its interfaces should be kept as simple as possible.‘
Systematic. The analysis should follow a systematic step-by-step approach, which can be
monitored. Verification conditions should be provided for the controller specifications;
and production rules devised which steer the production of the controller specifications
towards the verification conditions.
Roles. The members of the development team must be assigned clearly defined roles. In
particular, those responsible for the safety analysis should be known to all members of the

development team.

Targeted. Complete formal analysis should be carefully targeted to the safety-critical issues

262

Summary and Conclusions

of the system. Limited formal analysis should be performed over the mission-oriented
issues.
Fault tolerance. More than one mechanism should be included in the (safety) controller to

avoid a potential hazard.

9.3. Future Work

This thesis has concentrated on how a development model, formal model and a related
development methodology can be used to improve requirements analysis. It is not claimed
that the approach presented here is the best solution to the requirements analysis of all
safety—critical systems, rather that it is a useful approach for an important class of
safety—critical systems. However, the basic principles that underpin the approach could be
used to provide a more complete approach for requirements analysis. Essentially, the work
set out in this thesis should be considered as experimental work which provides a basis for
further investigation, as opposed to a self-contained solution to the problem of

requirements analysis.

The best way to check the usefulness of the framework for requirements analysis
presented here is to perform worked examples. A worked example (of a simple
safety—critical system) was presented which illustrated how the essential specifications can
be expressed in the formal model. In appendices B and C the requirements analysis of a
simple chemical plant is presented, which illustrates how the framework supports the
analysis of a safety-critical system. However, for a more thorough test of the usefulness
of the framework a large system must be analysed. An attractive candidate is a model
railway system which the Computing Laboratory has recently acquired for experimental
work on real-time systems (some preliminary work, has been performed, and the results
seem encouraging). It remains to be seen how useful the framework can be for large

complex systems.

After an evaluation of the proposed framework there are two possible approaches to
future work. In the first approach, the framework would be extended to consider important

issues in the development of safety-critical systems that were not explored by this thesis.

263

Summary and Conclusions

The second approach would be to apply the basic principles behind the framework to
different formalisms. Both approaches are considered below, and possible ways forward

are indicated.

9.3.1. Extensions to the Framewoyk

The framework provided by the scheme provides guidelines for the detailed
consideration of the relevant physical laws, the construction of the plant, timing issues,
required system behaviour and safety critical issues. However, there are several important
issues which have not been considered in detail, these issues are briefly discussed below

with possible extensions to the framework for their inclusion.

Fault analysis. This could be incorporated into the framework by extending the analysis
methodologies at the controller level to cover the possibilities of faults occurring in the
safety or mission controller. In fact, it is essential to consider the effects of faulty behaviour
in safety-critical systems. The necessity to deal with faulty behaviour makes it essential
to have well structured systems, so that the influence of faults can be localized. Faults are
of no consequence, for the safety of the system, unless they lead to the system exhibiting
hazardous behaviour. The structure imposed by partitioning the controller into a safety
and a mission controller, allows the (safety) fault analysis of a system to concentrate on
the safety controller (provided faults in the mission controller cannot influence the
properties captured by the SED of that system). A fault analysis of the safety controller
should consider faults in the actuators and sensors which could adversely influence real

world behaviour and faults in the control system which could impact the behaviour of the

controller variables.

Methodologies for fault analysis should also incorporate traditional safety techniques,

such as HAZOPS, FTA and FMECA.

Probabilistic analysis. This could be incorporated into the framework by introducing a
probabilistic dimension into the formal model. A possible approach for the inclusion of
probabilities into the formal model would be to associate probabilities with the relations

that reflect the degree of belief that the relation is satisfied by an arbitrary system history.

264

Summary and Conclusions

The methodologies should then be extended to exploit the extra information provided by
the introduction of the probabilities, for example, to make comparisons between different

controller specifications.

Employment of redundancy. The separation of the safety and mission issues suggests that
redundancy is best employed in the safety controller. Methodologies could be added to
determine whether for a given system redundancy should be employed at the component
level or as redundant safety controllers. The knowledge obtained from fault analysis and

probabilistic analysis should be exploited by such methodologies.

Broaden system class. A detailed consideration of systems for which the safety controller
monitors the behaviour of the mission controller, to prevent the mission controller from
performing hazardous actions, should be performed. For such systems, it is up to the safety
controller to monitor the operating conditions of the mission controller and then to issue
appropriate control commands. Hence the influence of the mission controller is under the
control of the safety controller. Furthermore, the properties of the “sensors” used by the

safety controller to monitor the mission controller must be captured by the safety

environment description.

The framework could be extended to consider systems in which a clear distinction
between the safety and mission issues cannot be made. In particular, it was assumed that
separate sensors and actuators could always be provided for the safety controller and
mission controller. The approach could be extended to cover systems for which this
assumption does not hold. One possible approach would be to introduce “shared”
actuators and sensors, that is actuators and sensors that are used by both controllers, but

where the safety controller restricts access of the mission controller to the “shared”

actuators.

The framework should be extended to allow a detailed study of distributed systems.
A possible approach s to classify distributed systems into two classes, according to whether
communication between the different nodes of the system is required for safety. The first

class being those for which communication is required between the safety controllers of

265

Summary and Conclusions

the nodes and the second those systems for which communication is not required. For the
second class the investigation could proceed by identifying protocols for the

communication between the safety controllers.

Subsequent development. The analysis could be extended to consider the control systems
of the controllers. That is, the development of the control system specifications. If possible,
verification conditions should be formulated from which production rules can be derived

to guide the analysis and production of the specifications at the control system level.

Automated support. For the framework to be useful in practical systems some automated
tools that support the methodologies of the framework should be available. A first
generation of support tools should provide means to concisely handle the information
produced by the analysis. A second generation of tools should provide automated support

for the confirmation of the verification, completeness and consistency checks.

9.3.2. Investigation of Other Formalisms

It would be interesting to investigate how the development methodology could be used
to enhance the role of other formalisms during requirements analysis. It is believed that
the basic principles of the framework would be applicable to different formalisms. In

particular, the framework may support the use of more than one formalism during

requirements analysis.

Some preliminary work in this area suggests that logical formalisms (some form of
real-time temporal logic) would be most suitable for real world specifications, since the
behaviour could be expressed in terms of all possible runs (c.f., semantics of the
satisfaction conditions). However, the lack of a structuring concept (such as that of a mode)
may cause problems during thé production of the mission real world specification. It is also
indicated that graphical formalisms (such as a form of timed Petri-nets) are more suitable
for controller specification, since they can better represent the interactions between the
components of the controllers. However, the lack of a structure in the mission real world
specification (expressed using temporal logic) may cause difficulties in the verification of

the controller analysis.

266

Summary and Conclusions

To define verification conditions for the controller specification and derive
construction rules for the controller analysis, a scheme to connect the two formalisms
would be required. From a theoretical perspective, it would be interesting to discover if
two different formalisms can be incorporated into an integrated formal method in such
a way that the most appropriate features of each formalism are exploited at each stage of

the analysis.

The primary aim of the research, presented in this thesis, was to investigate the role
of formal methods in requirements analysis. This thesis has shown that formal methods
can play a useful role in requirements analysis. But to play a useful role a formal method
must provide a framework for requirements analysis as a related system development
model (i.e. what specifications should be produced), development methodology (i.e. how
the specifications should be produced) and a formal model (i.e. a means to precisely state

the specifications and allow formal analysis).

267

References
References

[Abde86] A. A. Abdel-Ghaly, P. Y. Chan and B. Littlewood, “Evaluation of Competing
Software Reliability Predictions”, IEEE Transactions on Software Engineering, Vol. 12, No.
9, pp. 950-967. September 1986. |

[ACAR86] ACARD, “Software — A Vital Key to UK Competitiveness”, an ACARD report,
1986.

[Ande79] T. Anderson and B. Randell, “Computing Systems Reliability”, Cambridge
University Press, England, 1979.

[Ande81] T. Anderson and P. A. Lee, “Fault Tolerance: Principles and Practice”,
Prentice-Hall Englewood Cliffs, New Jersey, 1981.

[Ande85] T. Anderson, “Software Fault Tolerance, an Evaluation” IEEE transactions on
Software Engineering, Vol. 11, No. 12, pp. 1491-1500, December 1985.

[Arla88] J. Arlat, K. Kanoun and J. C. Laprie, “Dependability Evaluation of Software
Fault-Tolerance”, Proceedings of FTCS-18, pp. 142-147, Tokyo, Japan, June 1988.

[Barn89] M. Barnes, “Dependable Computing in the UK”. International Working

Conference on Dependable Computing For Critical Applications, pp. 7-14, Santa Barbara,
CA, August 1989.

[Benh80] J. Van Benthem, “Points and Periods”, in: Time, Tense and Quantifiers,
Proceedings of the Stuttgart conference on the Logic of Tense and Quantification, pp. 40-57
Max Niemeyer Verlag, 1980.

[Bern81] A. Bernstein and P. K. Harter, “Proving Real-Time Properties of Programs with
Temporal Logic®, Proceedings of the 8th symposium on operating principles, pp. 1-11,
December 1981.

[Bish86] P. Bishop, “Invariants as an alternative to Petri Nets for safety design”, EWICS TC7,
WP 498, 1986.

[Bish86] P. G. Bishop et al. “PODS - A Project on Diverse Software” IEEE transactions
on Software Engineering, Vol. 12, No. 9, pp. 929-940, September 1986.

R-1

References

[Boeh75] B.W. Boehm, R.L. McClean, and D.B. Urfig, “Some Experiences with
Automated Aids to the Design of Large-Scale Reliable Software”, IEEE transactions on

Software Engineering, Vol. 1, No. 2, pp. 929-940, February 1975.

[Bugr84] J.P. Burgess, “Basic tense logic”, in: Handbook of Philosophical Logic, eds. D.
Gabbay and F. Guenther, D.Reidel, pp. 89-113, 1984.

[Camp79] R. H. Campbell, K. H. Horton and G. G Belford, “Simulations of a Fault
Tolerant Deadline Mechanism”, Proceedings of FTCS-9, Madison, USA, pp. 95-101, June
1979.

[Cha86] S. D. Cha, “A Recovery Block Model and its analysis”, Proceedings of the IFAC
Workshop on Safety of Computer Control Systems 1986, pp. 21-26, Sarlat, France, October
1986.

[Chan85] M. Chandrasekharan, B. Dasarthy and Z. Kishimoko, “Requirements based

testing of real-time systems: modelling for testability”, IEEE computer, Vol. 18, No. 4, pp.
71-80, April 1989.

[Chem77] Chemical Industry Safety and Health Council, “4 Guide to Hazard and
Operability Studies”, Chemical Industry Safety and Health Council of the Chemical

Industries association Limited, 1977.

[Cour89] M. Courvoisier, R. Valette, A. Sahraoui and M. Combacau, “Specification and
Implementation Techniques for Multilevel Control and Monitoring of EM.S”, in:
Computer Applications in Production and Engineering, eds. F. Kimura and A. Rolstadas,

Elsevier Science Publishers B. V. (North-Holland) IFIP, pp. 509-516, 1989.

[Crow77] L. H. Crow, Confidence Interval Procedures for Reliability Growth Analysis, Tech.
Report No. 197, US Army Material Systems Analysis Activity, Aberdeen, Md, 1977.

[Cris90] F. Cristian, “Fault Tolerance in the Advanced Automation System”, Proceedings

of FTCS-20, Newcastle upon Tyne, UK, pp. 6-17, June 1990.

[Culi88] W. J. Cullyer, “High-Integrity Computing”, in: Formal Techniques in Real-Time
and Fault-Tolerant Systems, LNCS 331, ed. M. Joseph, Springer-Verlag, pp. 1- 35, 1988.

R-2

References

[Dasa85] B. Dasarathy, “Timing Constraints of Real-Time Systems: Constructs for

Expressing them, Methods of Validating them”, IEEE Transactions on Software
Engineering, Vol SE-11, No. 1, pp. 80-86, January 1985.

[Davi79] A. M. Davis, T. G. Rauscher, “Formal techniques and automatic processing to
ensure correctness in requirements Specifications”, Proceedings of the conference on

specifications of reliable software, IEEE computer society, pp. 15-35, 1979.

[Dunh81] J.R. Dunham and J.C. Knight (editors), “Production of reliable flight-crucial
software”, Proceedings of Validation Methods Research for Fault-Tolerant Avionics and
Control Systems Sub—Working-Group Meeting, Research Triangle Park, North Carolina,
November, 2-4, 1981, NASA Conference Publication 2222.

[ECFES85] ECFE, “Risk analysis in the process industries”, The Institution of Chemical

Engineers, 1985.

[End75] A.B. Endres, “An analysis of errors and their causes in software systems”, IEEE

transactions on Software Engineering, Vol. 1, No. 2, February 1975.

[Emer86] E. A. Emerson and J. Y. Halpern. “ ‘Sometimes’ and ‘not never’ revisited: on
branching versus linear time temporal logic. Journal of the Association for Computing

Machinery, Vol. 33, No. 1, pp. 151-178, January 1986.
[Equ90] Equinox, “Fly by Wire II”, Channel 4, September 1990.

[Eric81] C. A. Ericson, “Software and system safety”, Proceedings of the fifth International
System Safety Conference, Vol. 1, Part 1, pp. III-B-1 to III-B-11 Denver, 1981.

[EWIC85] EWICS TC7, “System Requirements Specification for Safety Related Systems”,

January 1985.

[Fore90] T. Forester and P. Morrison, “Computer Unreliability and Social Vulnerability”,
Futures, pp. 462-474, June 1990. '

[Gers87] L. J. Gerstein, Discrete Mathematics and Algebraic Structures, W. H. Freeman,

1987.

R-3

References

[Goel85] A. L. Goel, “Software Reliability Models: Assumptions, and Applicability”,
IEEE transactions on Software Engineering, Vol. 11, No. 12, pp. 1411-1423, December
1985.

[Gors86] J. Gorski, “Design for safety using temporal logic”, Proceedings of the IFAC
Workshop on Safety of Computer Control Systems 1986, Sarlat, France, pp. 149-155,
October 1986.

[Gors88] J. Gorski, “Formal specification of real time systems”, Computer Physics

Communications, Vol. 50. No. 1-2, pp. 71-88, 1988.

[Grig81] J. G. Griggs, “A method of software safety analysis”, Proceedings of the fifth
International System Safety Conference, Denver, 1981, Vol. 1, Part 1, pp. lII-D-1 to
II1-D-18.

[Hare87] D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of

Programming 8, 1987.

[Hatl87] D. J. Hatley and L. A. Pirbhai, “Strategies for Real-Time System Specification”,
Dorset House Publishing, New York, 1987.

[Heni80] K.L. Heninger, “Specifying Software Requirements for Complex Systems: New
techniques and their applications”, IEEE transactions on Software Engineering, Vol. 6, No.

1, pp. 2-13, January 1980.

[HSE87] HSE. “Guidelines on Programmable Electronic Control Systems in Safety-Related
Applications, PARTS 1 & 2”. Her Majesty’s Stationery Office, London, 1987.

[Ho89] Y. Ho, “Dynamics of Discrete Event Systems”, Proceedings of the IEEE, pp. 3-6,
January 1989.

[Hope83] S. Hope, “Methodologies for hazard analysis and risk assessment in the
petroleum refining and storage Industry” Hazard prevention (Journal of the System Safety

Society), pp. 24-32, July/August 1983.

R-4

References

[Jaff89] M.S. Jaffe. and N.G. Leveson, “Completeness, Robustness, and Safety in

Real-Time Software Requirements Specification”, Proc 11th International Conference on
Software Engineering, Pittsburgh, PA, pp. 302-311, May 1989.

[Jaha86] F. Jahanian and A.K. Mok, “Safety Analysis of Timing Properties in Real-Time
systems”, IEEE transactions on Software Engineering, Vol. 12, No. 9, pp. 890-904,
September 1986.

[Jaha88] F. Jahanian and D. A. Stuart, “A Method for Verifying Properties of Modechart
Specifications”, Proceedings of IEEE Real-Time Systems Symposium, pp. 12-21,
December 1988.

[Jara88] J. Jaray, “Timed Specifications for the development of real-time systems”, in:

Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 331, ed. M. Joseph
Springer-Verlag, pp. 67- 83, 1988.

[Jeli72] Z. Jelinski, Z. and P .B. Moranda, “Software Reliability Research”, in: Statistical
Computer performance Evaluation, ed. W. Frieberger, Academic Press, New York, pp.
465-484, 1972.

[Jose89] M. Joseph and A. Goswami, “Relating Computation and Time”, Proceedings of
the Joint University of Newcastle upon Tyne and ICL seminar on Real-Time Systems,

University of Newcastle upon Tyne Computing Laboratory pp. III.1- III.15, September
1989.

[Kell86] A. Keller, “Safety and Reliability engineering advances”, Control and
Instrumentation, vol. 18, pp. 135-136, June 1986.

[Keil83] P. A. Keiller, B. Littlewood, D. R. Miller, A. Sofer, “Comparison of Software
Reliability Predictions”, Procéedings of FTCS-13, Milan, Italy, pp. 128-134, 1983,
[Knig86] J.C. Knight and N.G. Leveson, “An Experimental Evaluation of Software
Fault-Tolerance”, IEEE transactions on Software Engineering, Vol. 12, No. 1, pp. 96-109,
January 1986

[Kuhn89] S. T. Kuhn, “Tense and Time”, in: Handbook of Philosophical Logic (iv), D.
Gabbay and F. Guenther (Eds), pp. 513-532, 1989.

R-5

References

[Lapr85] J. C. Laprie, “Dependable computing and fault tolerance: concepts and
terminology”, Proceedings of FTCS-15, Ann Arbor, Michigan, pp. 2-11 June 1985.

[Leve82] N.G. Leveson and P.R. Harvey, “Software safety”, ACM Software Engineering
notes, Vol. 7, No. 2, pp. 21-26, April 1982.

[Leve83a] N.G. Leveson and T. Shimeall, “Safety assertions for process control systems”,

Proceedings FTCS-13, Milan, Italy, 1983.

[Leve83b] N.G. Leveson and PR. Harvey, “Analyzing Software safety”, IEEE transactions
on Software Engineering, Vol. 9, No. 5, pp. 569-579, September 1983.

[Leve84] N.G. Leveson, “Software safety in computer-controlled systems”, IEEE

Computer, Vol. 17, No. 2, pp. 48-55, February 1984.

[Leve85] N. Leveson, “Software Safety”, in: Resilient Computing Systems, ed. T. Anderson,
Collins, pp. 122-143, 1985.

[Leve86] N.G. Leveson, “Software Safety: Why, what and how”, ACM Computing Surveys,
Vol. 18, No. 2, pp. 125-163, June 1986

[Leve87] N.G. Leveson and J.L. Stolzy. “Safety Analysis Using Petri Nets“. IEEE
Transactions on Software Engineering, Vol. 13, No. 3, March 1987.

[Leve89] N.G. Leveson, “Safety-Critical Software Development”, in: Safe and Secure

Computing Systems, ed. T. Anderson. Blackwell Scientific Publications, pp. 155-162. 1989

[Litt73] B. Littlewood and J. L. Verral, “A Bayesian Reliability Growth Model for
Computer Software”, J. Royal Statist. Soc., pp. 332-346, 1973.

[Litt81] B. Littlewood, “Stochastic Reliability Growth: a model for fault removal in

Computer Programs and Hardware Designs”, IEEE Transactions on Reliability, Vol. 30,

No. 4, April 1981.

[Litt85) B. Littlewood, “Software reliability Prediction , in: Resilient Computing Systems,
ed. T. Anderson, Blackwell Scientific Publications, pp. 144-162, 1985.

R-6

References

[Long77] A. B. Long, “A methodology for the development and validation of critical
software for nuclear power plants”, Proceedings of Compsac 1977, Chicago, Illinios, pp.

620-627, November 1977.

[McDe90]J. A. McDermid, “Skills and Technologies for the Development and Evaluation
of Safety Critical Systems”, Proceedings of the IFAC Workshop on Safety of Computer
Control Systems 1990, Gatwick, London, November 1990 (to be published).

[MacE88] G. H. MacEwen, David B. Skillcorn, “Using Higher-Order Logic for Modular
Specification of Real-Time Distributed Systems”, in: Formal Techniques in Real-Time and

Fault-Tolerant Systems. Springer—Verlag, LNCS 331, ed. M. Joseph pp. 36— 66, 1988.

[Maib87] T. S. E. Maibaum, “A Logic for the Requirements Specification of Real-Time
Embedded Systems”, FOREST project report, Imperial College of Science and
Technology, London, UK, 1987.

[Merl76] P. M. Merlin and D. J. Farber, “Recoverability of Communication

Protocols-Implications of a Theoretical Study”, IEEE Transactions on Communications,

pp. 1036-1043, September 1976.

[Miln83] R. Milner, “Calculi for Synchrony and Asynchrony”, Theoretical Computer
Science, Vol. 25, pp 267-310, 1983.

[Mok85] A. K. Mok, “SARTOR - A design environment for real-time ”, Proceedings of
Compsac 85, Chicago, Illinois, pp. 174-182, October 1985.

[Morg89] A. Morgan and R. Matthews, “French reactor threat to UK”, The Sunday
Correspondent, pp 3-3, December 3 1989,

[Mose90] Moser and Melliar-Smith, “Formal Verification of Safety-critical Systems”,

Software Practice and Experience, Vol. 20, No. 8, pp. 799-821, August 1990.

[Mull79] G.P. Mullery, “CORE - A Method for Controlled Requirement Specification”,
Proc. 4th International Conference on Software Engineering, Munich, Germany, pp.

126-135, September 1979.

R-7

References

[Mulz85] M. Mulzanni, “Reliability versus Safety”, Proceedings of the IFAC Workshop on
Safety of Computer Control Systems 1985, Como, Italy, pp 149-155, October 1985.

[Nagi83] J. Nagle and S. Jhonson, “Automatic program proving for real-time embedded
software”, Proceedings of the 10th annual symposium on principles of programming

languages, pp. 48-56, 1983.

[Nunn86] S. R. Nunns, D. A. Mills and G. C. Tuff, “Programmable Electronic Systems
Safety: Standards and Principles — An Industrial Viewpoint”, Proceedings of the IFAC
Workshop on Safety of Computer Control Systems 1986, Sarlat, France, pp. 17-20, October

1986.

[Ostr87] J. S. Ostroff and W. M. Wonham, “Modelling, specifying and verifying real-time
embedded computer systems”, Proceedings of the 8th IEEE Real-Time System Symposium,
San Jose, CA, pp. 124-132, December 1987.

[Ostr89a] J. S. Ostroff, “Temporal Logic for Real-Time Systems”. Advanced Software

Development Series, Research Studies Press Limited. England Wiley, 1989.

[Ostr89b] J. S. Ostroff, “Synthesis of controllers for real-time discrete event systems”,

York University, Ontario, Canada, Technical Report No. CS-89-09, June 1989.

[Ostr90] J. S. Ostroff, “Deciding Properties of Timed Transition Models”, IEEE
transactions on parallel and distributed systems, Vol. 1. No. 2, pp. 170-183, April 1990.

[Parn88] D.L. Parnas, A.J. van Schouwen, Shu Po Kwan, “Evaluation Standards for Safety

Critical Software”, Technical Report 88-220, Queens University, Kingston Ontario,

Canada, May 1988.

[Perr84] C. Perrow, Normal Accidents: Livingwith High Risk Technologies, New York: Basic
Books, 1984.

[Pnue86] A. Pneuli, “Specification and Development of Reactive Systems”, IFIP 86, pp.
845- 857, 1986.

References

[Pnue88] A. Pnueli and E. Harel, “Applications of Temporal Logic to the Specification of
Real Time Systems”, in: Formal Techniques in Real-Time and Fault-Tolerant Systems.

Springer-Verlag, LNCS 331, ed. M. Joseph, pp. 84- 97, 1988.

[Pott86] C. Potts, A. Finkelstein, M. Aslett, J. Booth, “Structured Common Sense: A
Requirements Elicitation and Formalization Method for Modal Action Logic”, FOREST
project report, Imperial College of Science and Technology, London, UK, 1986.

[Pucc90] G. Pucci, “On the Modelling and Testing of Recovery Block Structures”,
Proceedings of FTCS-20, Newcastle upon Tyne, UK, pp. 356-363, June 1990.

[Quir85] W.J. Quirk. “Verification and validation of real-time software”, Springer Verlag,
1985.

[Quir86] W. J. Quirk, “Engineering Software Safety”, Proceedings of the IFAC Workshop
on Safety of Computer Control Systems 1986, Sarlat, France, pp. 143-147, October 1986.

[Ramc74] C. Ramchandani, “Analysis of Asynchronous Concurrent Systems by Timed Petri

Nets”, TR 120, Project MAC, MIT, February 1974.

[Reas87] J. Reason, “The Chernobly errors”, Bulletin of the British Psychological Society,
April 1987.

[Reed86] G. M. Reed and A.W. Roscoe, “A timed model for communicating sequential

processes”, LNCS 226, Springer-Verlag, 1986.

[Reev86] P. Reeves, Control and Instrumentation, pp. 49, Feb. 1986.

[Redm85] E Redmill, “Proposals for designing for safety”, EWICS TC7, WP 438, 1985.
[Rid183] J. Ridley, Safety at Work, Butterworths, London, 1983.

[Rodg71] W. P. Rodgers, “Introduction to System Safety Engineering”, New York, Wiley,
1971.

[Rola83] H. E. Roland and B. Moriarty, “System Safgty Engineering and Management”,
John Wiley & Sons, 1983.

[Rom85] G.C. Roman, “A Taxonomy of Current Issues in Requirements Engineering”,

IEEE computer, Vol. 18, No. 4, pp 14-23, April 1985.

R-9

References

[Rouq86] J. C. Rouquet and P. J. Traverse, “Safe and Reliable Computing on Board the
Airbus and ATR aircraft”, Proceedings of the IFAC Workshop on Safety of Computer Control
Systems 1986, Sarlat, France, pp. 17-20, October 1986.

[Rous81] W. B. Rouse, “Human-computer interaction in the control of dynamic systems”,

ACM computing surveys, Vol. 13, No. T, pp. 71-100, March 1981.

[Roys77] H. S. Royston, “The content and Implications of the ACT”, The Health and Safety
at Work act and its effect on Industry, pp 1-8, 1977.

[Rung86] B. Runge, “Quantitative Assessment of Safe and Reliable Software”,
Proceedings of the IFAC Workshop on Safety of Computer Control Systems 1986, Sarlat,
France, pp. 7-11. October 1986.

[Rzep85] W. Rzepka and Y. Ohuno, “Requirements Engineering: Software Tools for
Modelling User Needs”, IEEE computer, Vol. 18, No. 4, pp. 9-12, April 1989.

[Safe79] Proceedings of the IFAC Workshop on Safety of Computer Control Systems 1979.

[Saee90] A. Saeed, T. Anderson and M. Koutny, “A Formal Model for Safety-Critical
Computing Systems”, Proceedings of the IFAC Workshop on Safety of Computer Control
Systems 1990, Gatwick, London, November 1990 (to be published).

[Sagl86] F. Sagletti and W. Ehrenberger, “Software Diversity - Some Considerations
about its Benefits and Limitations”, Proceedings of the IFAC Workshop on Safety of
Computer Control Systems 1986, Sarlat, France, pp. 27-34, October 1986.

[Scot87] R.K. Scott, J. W. Gaultand D. F. McAllister, “Fault-Tolerant Software Relaibility
Modelling”, IEEE Transactions on Software Engineering, Vol. 13, No. 5, pp. 96-109, May
1987.

[Scot83] R.K. Scott, J. W. Gault and D.F. Mc Allister, “The Consensus Recovery Block”,
Proceedings Total Systsems Reliability Symposium, Gaithersburg, pp. 74-85, December
1983, |

[Smit72] C. L. Smith, “Digital Process Control”, Intext Educational Publishers, London,

1972.

R-10

References

[Stru89] N. Strutt, “4 Survey Of Formal Methods”, Report from the Ministry of Defence,
ARE TM (AXC) 89001, January 1989.

[Somm82] 1. Sommerville, “Software Engineering”, Addison-Wesley Publishers, London,
1982.

4

[Tayl89] J. R. Taylor, “Very High Reliability Computer Systems”, in: Safe and Secure
Computing Systems, ed. T. Anderson, Blackwell Scientific Publications, pp. 244-248, 1989.

[Theu86a] N. Theuretzbacher, “Using AI-Methods to Improve Software Safety”,
Proceedings of the IFAC Workshop on Safety of Computer Control Systems 1986, Sarlat,
France, pp. 99-105, October 1986.

[Theu86] N. Theuretzbacher, “VOTRICS: Voting Triple Modular Computing System”,
Proceedings of FTCS-16, Vienna, Austria, June 1986.

[Uram77] A. B. Long, “Computer control in a combined cycle power plant”, Proceedings

of Compsac 1977, Chicago, Illinios, pp. 608-614, November 1977.

[Vend80] V. E Venda and B. F. Lomov. “Human factors leading to engineering safety
systems”, Hazard Prevention (Journal of the System Safety Society), pp. 6-13, March/April
1980.

[Vese81] W. E. Vesely, E F. Goldberg, N. H. Roberts and D. E Haasl, “Fault Tree
Handbook”, NUREG-0492, U.S. Nuclear Regulatory Commission, January 1981.

[Wass79] A. Wasserman, S. K. Stinson, “A specification method for Interactive
information systems”, Proceedings of the conference on specifications of reliable software,

IEEE computer society, pp. 68-79, 1979.

[Wing90] J. M. Wing, “A specifiers introduction to formal methods”, IEEE Computer, Vol.
23, No. 9, pp. 8-21, September 1990.

[Wupp88] H. Wupper and J. Vytopil, “A Specification Language for Reliable Real-Time
Systems”, in: Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 331,
Springer-Verlag, ed. M. Joseph. pp. 84- 97, 1988.

R-11

References

[Yeh80] R.T. Yeh and R. T. Mittermeir, “Conceptual Modeling as a Basis for Deriving

Software Requirements”, International Computer Symposium, Taipei, Taiwain, Dec. 1980.

[Youn82] R. E. Young, “Control in hazardous environments”, IEE Control Engineering

Series, no. 17, 1982.

R-12

Appendix A

Appendix A - Glossary of Symbols and Definitions

Time

BT

t, tg, tg, ...

Int, Intg, Inty, ...

SI(Int).

s(Int)

e(Int)

dur(Int)

T(SY)

System State
P1, P2 -
SY.Sv

SY.n

SY.S

Vpi

SY.r

V, V1, V,

Base Time. The time set for the specification model (the set of

non-negative reals).
Time Points. t € BT.

Time Intervals.
Int € BT is a time interval iff

vtg, t1 € Int: vty € BT: (tp < t2 < t; = t; € Int).
Interval Set. The set of all intervals within the interval Int.

Start Point.

s(Int) = ts.t. vtg € Int: t < tg A (vt (vtp € Int: t] < tp) = t1 < tp).

End Point.

e(Int) = ts.t. vtg € Int: t > tg A (vtg: (vtp € Int: t > tg) = t; > t).
Duration. dur(Int) = e(Int) - s(Int).

System Lifetime. The interval of time that represents the lifetime of

system SY.

State Variables. The variables that define the state of the system.
State Vector. The vector of all the state variables of system SY. |
State Vector Number. n = |Sv(SY)].

State Set. The set of all the state variables of system SY.

Variable Range. The set of possible values for state variable p;.
State Space. The set of possible values for state vector of system SY.

State Values. Values from the state space of a system.

A-1

Appendix A

SY.P, SY.Pv

SY.Op, SY.Opv

SY.Td, SY.Tdv

SY.R SY.Rv

SY.SR, SY.SRv

SY.MR, SY.MRv

SY.C SY.Cv

SY.SC, SY.SCv

SY.MC, SY.MCv

Physical Variables. The set (resp. vector) of variables of system SY

that represent the state of the physical process.

Operator Variables. The set (resp. vector) of variables of system SY

that represent the state of the operator console.

Transducer Variables. The set (resp. vector) of variables of a system SY

that represent the state of th sensors and actuators.

Real world Variables. The set (resp. vector) of physical and operator

variables of system SY.

Safety Real world Variables. The set (resp. vector) of real world

variables which affect the critical behaviour of system SY.

Mission Real world Variables. The set (resp. vector) of real world

variables which affect the mission oriented behaviour of system SY.

Controller Variables. The set (resp. vector) of transducer and operator

variables of system SY.

Safety Controller Variables. The set (resp. vector) of controller

variables which affect the critical behaviour of system SY.

Mission Controller Variables. The set (resp. vector) of controller

variables which affect the mission oriented behaviour of system SY.

Remark: If the system is obvious from the context, or the discussion is for any system SY is

omitted from the notation.

System Behaviour

H, H,, H,, ...

'"H

HH

Histories. Functions from the lifetime of a system to its state space.

Universal History Set. The set of ali functions of the form H: T - T, for

a given system.

History Set. HH c TH.

A-2

Appendix A

HlInt

H.pv

Cpi

H sat Cp;

SysPred

H sat CP

V sat SysPred

Ir1, Ir2,

HistPred

Restricted Domain History. The domain of H is restricted to Int.

Restricted Range History. The range of H is restricted the possible

values of vector pv.

Variable Class Relafion. A predicate over a free function variable p;.
Class satisfaction. The fact that a history H satisfies the class relation
Cpi.

System Predicate. A predicate over n free value variables py, pa, ..., pn
of type Vpy, ..., VPn.

Variable class satisfaction

H sat Cp iff H sat Cp;, for alli e {1, ..., n}.

System Predicate Satisfaction. The fact that a system predicate is

satisfied for a state V.

Invariant relation. A system predicate Ir is an invariant relation for a
history H iff Ir is satisfied for all states given by H. This is denoted by
H sat Ir.

History Predicate. A predicate over two free time variables Ty, Ty, 2.n

free value variables p1, ..., Png, P11 Pn,1 (Where p;j has type Vp)),

n free function variables py, ..., p, (Where p; is a function of class Cp;).

H sat HistPred@Int History Predicate Satisfaction.The fact that a history H satisfies a

HI‘1, Hrz, .

Desc

history predicate HistPred for an interval Int.

History Reélation. A history predicate Hr is a history relation for a
history H iff vInt € SI(T): Hr sat@Int. This is denoted by H sat Hr.

History Description.
A six-tuple Desc = (T, Sv, VP, CP, IR, HR), where T is the system
lifetime; Sv is the state vector; VP is the sequence of variable ranges;

CP is the sequence of variable class relations, {(Cpy, ..., Cpy); IR is the

A-3

Appendix A

D, Dy, Dy, ..

Set(Desc)

Iset(Desc)

Perfect clock

H sat SysPred@t
H sat SysPred@Int

H sat SysPred®Int

Time Bound

Constraint

Int sat Tb

sequence of invariant relations, {Iry, ..., Ir,) and HR is the sequence of

history relations, (Hry, ..., Hry)
History Descriptions.

History Description Set.
Set(Desc) = {H € TH| H sat CP A H sat C(IR) A H sat C(HR)},
where CAR)= Ir; A ... AlIrp, CHR)= Hr; A ... A Hry.

Invariant Description Set.

Iset(Desc) = {H € TH| H sat C(IR)}.

Perfect Clock Class.

A variable p;e P is a perfect clock for a description D iff :

Cp;i (D)= (vt e T: p;=t).

Point Satisfaction.

H sat SysPred@t iff (H.p;(t), ..., H.py(t)) sat SysPred.

Interval Satisfaction.

.H sat SysPred@Int iff H sat SysPred@t for all t € Int.

Event Satisfaction.
H sat SysPred@®Int iff
H sat 1SysPred@t for all t € Int - {e(Int)} A H sat SysPred@e(Int).

Definition.
A time bound constraint Tb is any predicate built using standard
logical connectives; standard mathematical functions; and a free

variable Iv of type SI(T). No other free variables can be used.

Time bound constraint satisfaction.
.We will say that an interval Int satisfies a time bound constraint Tb if
and only if the substitution of Int for Ivinto Tb leads to a well-defined

Boolean expression which evaluates to true.

A-4

Appendix A

Q

Mode Theory
Mode

m, my, my, ...
Start(m)
Inv(m)
End(m)
LB(m)
UB(m)

H sat m@]Int

H sat #(m)@]Int

H sat ¢(m)@Int

H res m@]Int

mj zHH my

Termination Predicate. Q = (p; = e(T)), where p; is a prefect clock.

Definition.
A five-tuple, Mode = (Start, Inv, End, LB, UB), where Start, Inv and

End are system predicates, and LB and UB are time values (or time

valued functions).

Modes.

Start Predicate. The predicate Start of the mode specification of m.
Invariant Predicate. The predicate Inv of the mode specification of m.
End Predicate. The predicate End of the mode specification of m.
Lower Bound. The time value LB of the mode specification of m.
Upper Bound. The time value UB of the mode specification of m.

Mode Satisfaction.

H sat m@]Int iff

H sat Start(m)@s(Int) A H sat Inv(m)@Int A H sat End(m)®Int
A Int sat (dur(Iv) > LB A dur(lv) < UB).

Start Satisfaction.

H sat $(m)@Int iff

H sat Start(m)@s(Int) A H sat Inv(m)@Int A
(H sat JEnd(m)@Int v H sat End(m)@®Int).

End Satisfaction.
H sat 8(m)@Int iff H sat Inv(m)@Int A H sat End(m)®Int

Mode Residence. H res m@]Intg iff 3Int;: H sat m@Int; A Inty C Int;.

Mode Equivalence.
mj zHH mp iff

vH € HH: vInt € SI(T): [H sat m;@Int = H sat m,@Int].

A-5

Appendix A

mg ~~HH myp

mcon D

Mod

ModeSeq

ms, msy, ..
|ms|

H sat ms@]Int

H sat ms
ms(i)
ms(i, j)
S(ms)
E(ms)

H res ms@Int

SeqStart(ms)
SeqInv(ms)

SeqEnd(ms)

Mode Implication. m; ~HH m, iff

vH € HH: vInt € SI(T): [H sat m;@Int = H sat m,@Int].

Mode Consistency.
m con D iff 3H e Iset(D): 3Int € SI(T): H sat m@Int.

Modes Set. A set of modes.

Definition.
A finite sequence of modes, ModeSeq = (my, ..., m;), where m;is a

mode, forie {1, ..., 1}.
Mode Sequences.
Mode sequence Length. The number of modes in mode sequence ms.

Mode Sequence Satisfaction.
H sat ms@]Int iff
3tg, - tyms|: t0 < oo < tyms) A to=s(Int) A ;s =e(Int) A

H sat m;+ 1@[t;, ti+ 1), fori=0, ..., |ms|-1.

Mode Sequence Lifetime Satisfaction. H sat ms iff H sat ms@T.
Mode sequence index function. The it" mode of mode sequence ms.
Mode sequence slice. ms(i, j) = (ms(i), ms(i+ 1), ..., ms(j)).

Start mode. S(ms) = ms(1).

End mode. E(ms) = ms(|ms]|).

Mode Sequence Residence.

H res ms@Int iff (3Int; € SI(T): H sat ms@Int; A Inty C Int,).
Sequence Start Predicate. SeqStart(ms) = Start(S(ms)).
Sequence Invariant Predicate. Seqlnv(ms) = Invy v ... v Inv|p|.

Sequence End Predicate. SeqEnd(ms) = End(S(ms)).

A-6

Appendix A

Hset(HH, ms)

HH

msj o~ msp

HH

ms; s msp

ms con D

Mod*

MSS, MSS;,
H sat MSS

MSS; =HH MSS,

MSS ~HH MSS,

MG

MG, MGy, ...
M(MG)
AMG)

S(MG)

Satisfaction Set. Hset(HH, ms)= {H € HH: H sat ms}.

Mode Sequence Equivalence.
ms; =" ms, iff

vHeHH: vint € SI(T): [H sat ms;@Int « H sat ms,@Int].

Mode Sequence Implication.
mj ~HH mp iff

vH € HH: vInt € SI(T): [H sat ms;@Int = H sat ms,@Int].

Mode Sequence Consistency.

m con D iff 3H € Iset(D): 3Int: H sat m@]Int.

Universal Sequence Set.

The set of all sequences on Mod which have positive length.
Mode Sequence Set. A set of mode sequences.
Mode Sequence Set Satisfaction. H sat MSS iff 3ms € MSS: H sat ms.

Mode Sequence Set Equivalence.

MSS; ~HH MSS,; iff vH € HH: [H sat MSS = H sat MSS].

Mode Sequence Set Implication.
MSS, ~HHMSS,; iff vH € HH: [H sat MSS; = H sat MSS;].

Mode Graph
A four-tuple MG = (M, A, §, E), where M is a (finite) set of
modes, A is a set of mode pairs (i.e, A €M x M), S and E are

non-empty subsets of M (i.e.,S, ECM,S#¢andE % ¢).
Mode Graphs.

Mode Set. The set M from the specification of MG.

Arc Set. The set A from the specification of MG.

Start Set. The set S from the specification of MG.

A-7

Appendix A

E(MG)

RTC(MG)

Seq(MG)

H sat MG@Int

H sat MG
HH(set, MG)
GStart(MG)
GInv(MG)

GEnd(MG)

MG. pr(m)

MG. sr(m)

MG cmp D

MG con D

End Set. The set E from the specification of MG.

Reflexive Transitive Closure.

(x y) € RTC(MG) iff awy, ... , Wn: X=wg AW AW, ... W1 AWp=Y.

Mode Graph Sequence Set.
Seq(MG) = {vms € M(MG)* |
(ms(i), ms(i+ 1)) € AMG) A ms(1) € S(MG) A ms(|ms|) € E(MG),

fori= 1, ..., |[ms|-1}

Mode Graph Interval Satisfaction.
H sat MG@Int iff ams € Seq(MG): H sat ms@Int.

Mode Graph Satisfaction. H sat MG iff H sat MG@T.

Satisfaction Set. Hset(HH, MG)= {HeHH: H sat MG}.
Graph Start Predicate. GStartMG) =V, ¢ sMG)y: Start(m).
Graph Invariant Predicate. GInv(MG) = V,, ¢ mMmG): Inv(m).

Graph End Predicate. GEnd(MG) = Vp, € gmey: End(m).

Predecessor Function.

MG.pr(m) = {x e M(MG) | a(x, m) € AMG)}.

Successor Function.

MG.sr(m) = {x € M(MG) | 3(m, x) € AMG)}.

Mode Graph completeness.

MG emp D iff

vm € M(MG): vH € Set(D): vInt € SI(T):

ax € MG.sr(m): [H sat m@Int = H sat (Start(x) A Inv(x))@e(Int)] v
MG.sr(m) =4.

Mode Graph Consistency
MG con D iff vms € Seq(MG): ms con D.

A-8

Appendix A

MG; =HH MG,

MG1 ~HH MG2

MG; =(o) MG,

MG =() MG,

SEMG

Phase Graph

Predicate Mode
Graph

PG cmp (D, SP)

Mode Graph Equivalence.
MG ~HH MG, iff yYHeHH: H sat MG; = H sat MG,.

Mode Graph Implication.
MG, ~HH MG, iff vH € HH: H sat MG ;= H sat MG,.

Mode Graph Isomorphism.

A mode graph MG is said to be isomorphic to a mode graph MG, if
there is a bijection :xM(MG1) - M(MGy) such that:

i) (u,v) is in A(MG,) if and only if (a(u), a(v)) is in A(MGy), and
ii) w is an element of S(MG) if and only if o(w) is an element of
S(MG3) and x is an element of E(MG,) if and only if o(x) is an
element of E(MG,).

Mode Graph Congruence.
MG; =(o) MG; iff MG; = (o) MG; and vin € M(MG): o(m) =~ m.

Single Entry Exit Mode Graph.

MG is a SEMG iff

IS(MG)| = 1 A [E(MMG)| = 1 A vm € S(MG): MG.pr(m) = ¢ A
vm € E(MG): MG.sr(m) = g.

Definition

A four-tuple, PHG = (PH, A, S, E), where PH is a (finite) set of
Phases, A is a set of mode pairs (i.e, A € PH x PH), S and E are
non-empty subsets of PH (i.e., S, EC PH,S# ¢ andE % ¢).

Definition
Apair, PG = (MG, PF), where MG is an SEMG and PF is a function

from the mode set of MG to a set of system predicates.

Complete predicate mode graph
PG cmp (D, SP) iff
vm € M(MG): vx € MG.sr(m): vH € Set(D): vint € SI(T):

A-9

Appendix A

[H sat PF(m)@s(Int) A H sat m@Int A H sat Start(x)@e(Int) = H sat
PF(x)@e(Int)] and
vH € Set(D): vt € T: [H sat SP@t = H sat PF(S(MG))@t].

System Specifications
Dis(SY) Disaster Set.

The set of system predicates that specify the disasters of system SY.

Dip(SY) Disaster Predicate.
The disjunction of the system predicates in the set Dip(SY).

DFH(SY) Disaster—free History Set.
DFH(SY) = {H € I'H| vx € Dis(SY): TH sat x}.

HS(SY) Hazard Specification.
A system predicate that specifies the identified hazards of system SY.

HA(SY) Hazard analysis histories
The set of histories that satisfy the complete hazard assumption for
Dip(SY) and HS(SY)

SRD(SY) Safety Real World Description.

A history description that specifies the restrictions imposed on

safety—critical behaviour of a system SY by the real world..

SRDH(SY) Safety Real world Description Histories.
SRDH(SY) = Set(SRD(SY)).
SRS(SY) Safety Real world Specification.

The negation of the hazard specification of system SY.

SRH(SY) Safety Real wold Histories.
SRH(SY) = {H € SRDH(SY)| H sat SRS(SY)}.

MRD(SY) Mission real world description.

A history description that specifies the restrictions imposed on

mission-oriented behaviour of a system SY by the real world.

A-10

Appendix A

MRDH(SY)

MPS(SY)

MRS(SY)

MRH(SY)

SED(SY)

SEDH(SY)

SCS(SY)

SCH(SY)

SU(SY)

MN(SY)

MonlInv(SY)

REC(SY)(m)

Mission Real World Histories.

MRDH(SY) = Set(MRD(SY)).

Mission Phase Specification.

A phase graph that specifies the mission requirements of SY.

Mission Real Worlc/i Specification.

An SEMG that specifies the mission requirements of system SY.

Mission Real World Histories.
MRH(SY) = {H € MRDH(SY)| H sat MRS(SY)}.

Safety Environment Description.
A history description that specifies the relationship between the
safety controller and safety real world variables, and the relationships

of SRD(SY), of system SY.

Safety Environment Description Histories.

SEDH(SY)= Set(SED(SY)).

Safety Controller Specification.

An SEMG that specifies the behaviour that must be exhibited by the
safety controller, to ensures that the behaviour described by SRS(SY)

is maintained, for system SY

Safety Controller Histories.
SCH(SY) = {H e SEDH(SY)| H sat SCS(SY)}

Start Up Graph. SEMG that specifies the behaviour of safety

controller of system SY during the start up phase.

Monitor Graph. SEMG that specifies the behaviour of safety

controller of system SY during the monitor phase.

Monitor Invariant. MonInv(SY) = GInv(MN(SY)).

Recovery Graph. SEMG that specifies the behaviour of safety

controller of system SY during the recovery phase of mode m.

A-11

Appendix A

RG(SY)(m)

SH(SY)(m)

EC(SY)

MED(SY)

MEDH(SY)

MCS(SY)

MCH(SY)

Reset Graph. SEMG that specifies the behaviour of safety

controller of system SY during the reset phase of mode m.

Shutdown Graph. SEMG that specifies the behaviour of safety

controller of system SY during the shutdown phase of mode m.

End controller mode. Unbounded mode that specifies the behaviour

of safety controller of system SY during the end phase.

Mission Environment Description.
A history description that specifies the relationships for the

mission controller, and the relationships of MRD(SY), of system SY.

Mission Environment Description History Set.

MEDH(SY) = Set(MED(SY)).

Mission Controller Specification.
An SEMG that specifies the behaviour that must be exhibited by the
mission controller, to ensure that the behaviour described by

MRS(SY) is maintained.

Mission Controller History Set.
MCH(SY) = {H € MEDH(SY)| H sat MCS(SY)}.

A-12

Appendix B

Appendix B - Real World Analysis

\

B.1. Introduction

In this appendix, the real world analysis of a safety—critical chemical plant is described.
This case study is presented to illustrage in more detail how the guidelines of chapter 7,
provide a systematic approach to the real world analysis of a system. The specifications
produced at each stage of the analysis are presented. To keep the example manageable,
only illustrative portions of the analysis are discussed. In particular, the case study

concentrates on the safety real world analysis.

B.2. System Concept

“A (computer based) controller is required for a simple chemical plant, illustrated in figure
B.1. The chemical plant must react a specified volume of chemical A with a specified
volume of chemical B, to produce chemical C. After the production of C is complete a
specified volume of D must be added, to produce chemical E. The operator must be able to
specify the volumes of A, B and D. For the reaction of a mixture of A and B to start, the
temperature of the mixture must be raised to at least Y°K. For the reaction to progress
efficiently the temperature of the mixture of A and B must remain at approximately Y°K.
For the reaction of a mixture of C and D to start, the temperature must be at least Z°K; and
for the reaction to progress efficiently the temperature must remain at about Z°K during
the reaction. Furthermore, the product E is unstable, hence the temperature must remain
at about Z°K until E is collected. The reactants are loaded via three Inlets, chemical A via

InletA, chemical B via InletB and chemical D via InletD. The product E is collected via
OutletE.

During the lifetime of the system a light (RLight) that indicates the status of the chemical
plant, in terms of the presence or absence or a reaction, to the operator is required. The

relationship between the colour of the light and the status of the reaction vessel should

obey the following (informal) rules:
it should be green when a reaction is not in progress;

it should be amber when a reaction is about to start or has just started; and

B-1

Appendix B

it should be red while the reaction is in progress, or a reaction has just completed.
The mission (or safety) operator interacts with the controller via a selector at the operator
console (Plant select) - to specify the sequence in which reactions are to be performed in

the reaction vessel; and when the product should be collected.

Furthermore, the chemicals A, B, C, D and E are known to be hazardous, hence the
chemical plant must be certified by a licensing authority. The safety subsystem must ensure
that the overall chemical plant will not enter into a hazardous state. The safety operator
interacts with safety controller via a selector at the operator console (Safety select).
OutletS is a safety outlet which is used to empty the vessel. During the lifetime of the
system a light (SafeLight) indicating the safety status of the chemical plant isrequired. The

relationship between the colour of the light and the status of the reaction vessel should

obey the following (informal) rules:

it should be green when a reaction is not in progress;

it should be amber when a reaction may be in progress; and

it should be red when the safety controller must override the mission controller to prevent

the system entering into a hazardous state.” This chemical plant will be referred to as CP

for brevity.

Appendix B

Volume InletD
InletA - - - nle >
4 rd §
.. Temperature
InletB OutletE
¥ ¥

Plant
f¢&— OutletS

Plant Safet
I

RLight SafeLight
Operator Console

Figure B.1. Chemical Plant

B.3. Initial Real World Description Analysis.

The first stage of the real world analysis is the identification of an initial real world
description for the chemical plant. The description produced as a result of this analysis, is
not verified since it provides a basis for further analysis - it is not a safety-critical

specification. The analysis of the real world variables of the chemical plant, by following

the guidelines of section 7.2.1 is presented below.

Step 1

The time base will be measured in seconds.

Step 2

In this step the state variables of the chemical plant are identified.

B-3

Appendix B

The system concept contains the phrase “volume of chemical A”, in the formal model we
capture this notion by the introduction of the state variable p,. This state variable
represents the volume of chemical A in the vessel”, we give this the name VolA; and the
units dm?>. A similar analysis identifies and describes the state variables: VoIB, WoIC, VoID,
VolE, Volume, Temperature, RLight, Plant select, SafeLight, Safety select, VolA select, VolB

select and VolD select.

The system concept contains the phrase “ reactants are loaded via three Inlets, chemical A
via Inlet A, in the formal model we capture this notion by the introduction of the state
variable p;s. This variable represents the rate at which chemical A flows into the vessel (via
Inlet A), we give this the name FlowA and the units dm3/s. A similar analysis identifies and

describes the state variables: FlowB, FlowD, Flow, OutFlowE, OutFlowS and Outflow.
The variables are recorded in table B.1

Table B.1: Real World State Variables

Notation | Units Name Comments

p1 seconds (s) Clock The perfect clock of the system.

p2 dm3 VolA The volume of chemical A in the vessel.

P3 dm3 VoIB The volume of chemical B in the vessel.

P4 dm3 VolC The volume of chemical C in the vessel.

ps dm3 VolD The volume of chemical D in the vessel.

P6 dm3 VoIE The volume of chemical E in the vessel.

p7 dm3 Volume The volume of chemicals in the vessel.

ps °K Temperature | The temperature of the liquid in the vessel.

P9 dm3 VolA select | The selector for the volume of A.

P10 dm3 VoIB select | The selector for the volume of B.

P11 dm3 VoID select | The selector for the volume of D.

P12 Op_setting | Plant select | The selector that allows the operator to control the sequence
of operations of the mission controller.

P13 Sa_setting | Safety select | The selector that allows the safety operator to control the
sequence of operations of the safety controller.

P14 Colour RLight The indicator which informs the operator of the current
status of the plant.

P15 Colour SafeLight | The indicator which informs the safety operator of the
current safety status of the plant.

P16 dm3/s FlowA The flow rate of chemical A into the vessel.

P17 dm3/s FlowB The flow rate of chemical B into the vessel.

B -4

Appendix B

P18 dm3/s FlowD The flow rate of chemical D into the vessel.

P19 dm3/s Flow The combined flow rate of chemicals into the vessel.

P20 dm’/s OutFlowE | The flow rate of chemicals out of the vessel via OutletC.

P21 dm3/s OutFlowS | The flow rate of chemicals out of the vessel via OutletD.

p22 dm3/s Outflow | The-combined flow rate of chemicals out of the vessel.
Step 3

The ranges of the variables are defined by systematically analyzing the variables. For

example, let us suppose that an analysis of the selector represented by VolA select, shows

that the minimum value that selector can be used to select is V1, the granularity of the

selector is Av and the selector can be used to select V+ 1 different values. The range of

VolA is given by the set Vpg =

{V], VI+ Ay, , ..

, VI+V.Av}. A similar analysis is

performed over the rest of the variables, the results of this analysis are recorded in Table

B.2.
Table B.2: Real World Variable Ranges
Variables Range Comments
P1 T The range of the clock is the systems lifetime.
P2, - P7 {xe R| 0< x< Vmax} | Vmax is the maximum volume of liquid that the vessel can
contain.
P8 {xe RIS x< Ty} Tj and T, are the upper and lower limits of the temperature of
_ the contents of the vessel.
P9, P10 {V], VI+Av,, .., VI+V.Av} | Vlis the minimum value that can be selected, Avisanumber
P11 (Av>0) that represents the granularity of the selector and
V1i+V.Av represents the maximum value.
P12 {off, on, start, collect} | Where off, on, start and collect are the states of Plant select.
P13 {off, on} Where off and on, are the states of Safety select
P14, P15 {g a1} Where g: green, a: amber and r: red.
P16 {xeR|0<xZ FmaxA} | FmaxA is the maximum flow rate of chemical A into the vessel.
P17 {xeR|0LZx<Z FmaxB} | FmaxB is the maximum flow rate of chemical B into the vessel.
P18 {x€ R| 0 < x< FmaxD} | FmaxD is the maximum flow rate of chemical D into the vessel.
P19 {x€ R| 0< x < Fmax} |Fmax is the maximum flow rate of chemicals into the vessel.
P20 {xe R| 0< x< OmaxE} | OmaxE is the maximum flow rate of chemicals out of the vessel,
via OutletE.
P21 {x€ R| 0 < x< OmaxS} | OmaxS is the maximum flow rate of chemicals out of the vessel,
via OutletS.
P22 {x€ R| 0 < x< Omax} | Omax is the maximum flow rate of chemicals out of the vessel.

B -5

Appendix B

Step 4

The categories and classes are determined by a systematic analysis of the variables. For
example, consider the following (typical)/analysis of the variable Plant select. Since the
variable represents part of the state of the operator console it is clearly an Operator
variable. Let us suppose that an analysis of the selector represented by Plant select, shows
that this selector consists of a set of buttons (one for each state); the state of the selector
being given by the depressed button. Further let us suppose that the buttons, can be
pressed in any order. Hence the class of Plant select is free. A similar analysis is performed

over the other state variables, the results of this analysis are recorded in Table B.3.

Table B.3: Real World Variable Categories and Classes

Variables | Category Class Comments
p1 Physical Perfect clock | The variable p; represents the perfect clock of the
system.
P2, - P8 Physical Continuous | The variables which represent the physical properties of
P16 s P22 the reaction vessel have continuous restricted histories.
P9, +-es P15 Operator Free No restrictions are imposed on the behaviour of the
selectors.
Step §

In this step we identify the invariant relations.

a. In this step we investigate variables of the same units (dimensions) to identify invariant
reactions.

There are three types of units, that are common to more than one state variable these are:
dm?3, Colour and dm?/s. Next we présent the three groups; and identify relations over them,
by analyzing the relationship between the variables of the group in the context of the
construction of the plant.

Volume variables (dm3). The group of volume variables are: ps, ..., p7, ps, P10» P11-

The variables po, p1g and p1; represent the state of the volume selectors, let us suppose that
an analysis of the plant shows that no invariant relation is imposed over them. The

variables p;, ..., p7, represent the volumes of the different chemicals in the vessel. Let us

B-6

Appendix B

suppose that any intermediate products from the reaction of A and B can be regarded as C;
and any intermediate products from the reaction of C and D can be regarded as E. Hence,
since the vessel can contain only A, B, C, D or E, at any time the volume of chemical in the
vessel is the sum of the individual volumes. This is captured by the invariant relation:
p7 = p2+p3+pstpstps.

Light variables (colour). The group of light variables are: py4 and p;s. Let us suppose that an
analysis shows that no relation is imposed over them.

Flow variables (dm?/s). The flow variables are: psg, ..., p2.

Since there are only three inlets into the reaction vessel the total flow rate into the vessel is
the sum of the flow rates through the three inlets. This is captured by the invariant relation:
P19 = pi1s + P17 +pis- Similarly we can derive the following invariant relation for the

OutFlow: p»2 = p2 +DP21.

b. In this step we investigate variables of the same class to identify invariant relations. Let
us suppose that the analysis over the variables in the two classes Continuous and Free does

not identify any new invariant relations.

c. In this step we investigate any physical properties of the application.
Let us suppose that a property of the reactions is that there is no change in volume caused
by a reaction. The consequences of this property cannot be expressed by an invariant

relation, since it effect is over an interval.

d. Let us suppose that an analysis of the state of the real world variables, at the start point of
the system lifetime, identifies the fact that the vessel is empty and the temperature below

Stemp (see Iry).
Step 6

a. In this step we investigate variables of the same class to identify history relations.

As an example consider the Continuous class, this contains the variables py, ..., pg and pig,

.ess P22.

An analysis of the variable VolA and the construction of the plant shows that its value is

influenced by FlowA. This influence can be stated informally as, for any interval the value

B -7

Appendix B

of VolA at the end of the interval is bounded by the sum of VolA at the start of the interval
and the integral of the FlowA during the interval. This relation can be stated as: p,1 < p2,0

+ Jpie(t) dt. Similar relations can be formulated for the volumes of B and D.

b. In this step we investigate relations over the derivatives of a variable.
Let us suppose that an analysis shows that the only relevant relation is an upper bound on

the rise of the temperature. Hence we conclude the history relation: pg ; < pgo—ATm.dur.

c. In this step we investigate properties identified in step 5.c, that were not expressed as
invariant relations.

Recall that we identified the property “that no change in volume caused by a reaction”. The
main consequences of this are that changes in volume depend only on flow rates into and
out of the vessel; and the maximum volume of the vessel. Hence we conclude the history

relation: p7,; = min(p7,p +J (P19(t)-p22A(t)) dt, Vmax).

The relations are summarised in table B.4. It should be noted that this table represents only
an initial attempt at capturing the real world properties (some of the relations may change

during later stages of the analysis as the understanding of the system improves).

Table B.4: Relations of Initial Real World Description

No. | Related Relationship Comments
variables
Iry | p2,P3% P4 |P7 = P2+P3+P4+Ps+pe The volume of liquid in the vessel is the sum
Ps; P6, P7 of the volumes of A, B, C, D and E.
Irz P16, P17» | P19 = P16 +DP17+P18 The flow rate into the vessel is the sum of the
P18, P19 . flow rates of A, B and D.
Ir3 P20, P21, | P22 = P20+ P21 The flow rate out of the vessel is the sum of
P22 the flow rates out of QutletE and OutletS.

Irys | pi,pnps |P1=S(T) = p7=0Apg <Stemp | At the start of the system lifetime there are
no cheimcals in the vessel and the
temperature is below Stemp.

Hry | p7n P19, P22 (P11 = The volume of liquid in the vessel at the end
min(p7,0+ J(P19(y-P22y)dt, Vmax) | of any intervalis the smaller of Vmaxandthe
sum of the volume at the start of the interval
and the integral of the difference of the flow
rate into the vessel and out of the vessel
during that interval.

Appendix B

Hrp P2 P16 | p21 < p2o + Jpis(t)dt The volume of A at the end.of any interval
is at most the sume of the volume of A at the
start of the interval and the integral of the
the flow rate during the interval.

Hr; P3 P17 | p31< pao + Jp1r(t)dt The equivalent relation to Hr; for B.
Hry Ps> P18 P51 ps.0 t+ Ipaydat - The equivalent relation to Hry for D.
Hrs ps ps,1 < pso + ATmXdur ATm is the maximum rise in the

temperature per second, during any interval.

Step 7

The initial real world description of the chemical plant is given as:

IRWD(CP) = (T, {p1, ..., P22, {VP1, - VP22), (Cp1, ..., Cp2o), (Iry, Irg, I3, Trg), (Hry, ..., Hrs)).

B.4. Safety Real World Analysis
In this section we show, how SRD(CP) and SRS(CP) are produced by performing a disaster
analysis, hazard analysis, safety real world description analysis and a safety real world

specification analysis.

B.4.1 Disaster Analysis

In this section we show how Dis(CP), is produced by following the guidelines of section 7.3.

Disaster Identification
Step 1

Let us suppose that the disaster analysts of the chemical plant select a suitable check-list.

Step 2
Let us suppose that the disaster analysts analyse the check-list of step 1, and record the
results in a disaster analysis table. An extract of this disaster analysis table, that shows the

two potential disasters of the chemical plant is given below (table B.5).

Table B.5: Disaster Analysis of Chemical Plant

Possible Disasters Results
Toxic vapour or fluid The release of toxic vapours is a potential disaster, the occurrence of which
release is denoted by the predicate p;3.

B-9

Appendix B

Explosion An explosion is a potential disaster, the occurrence of which.is denoted by
the predicate p2g4.
Personnel exposure to This is not a possible disaster, since no radioactive materials are used in the
radiation. chemical plant.
Step 3 -

The state variables, that represent the disasters are described in the following table.

Table B.6: Real World State Variables

Notation Units Name Comments
p23 Tx_rating Toxic The occurrence or non-occurrence of the release of toxic
fumes.
P24 Ex_rating Explosion | The occurrence or non-occurrence of an explosion.

The range of Toxic and Explosion is the set {true, false}, their catgeory Physical and their

class the Catastrophe class.

Validation
For simplicity we will assume that an independent analysis has been conducted which
identifies the same disaster analysis table. Hence the disaster set of the chemical plant is

simply: Dis(CP) = {p23, p24}; and the disaster predicate Dip(CP) =py; v pa-

B.4.2. Hazard Specification Analysis

In this section we show how HS(CP) is produced by following the guidelines of section 7.4.

Hazard Identification

Step 1

In this step we perform a hazard analysis, over the real world variables of the chemical
plant. The hazards of the chemical plant are identified by a systematic analysis of the
variables to identify the system conditions (if any) involving each variable that canlead to a
disaster. The hazard analysis table of the chemical plant (produced by the systematic

analysis of the real world variables) is given in table B.7. .

Table B.7: Hazard Analysis of Chemical Plant

Variables Comments Hazards
P2, P8 An explosion, can occur if there is some A in the | p; 7% 0 A pg > Eacta.
vessel and the temperature is above Eacty.

B-10

Appendix B

p3, P8 An explosion, can occur if there is some B in the | p3 ¢ 0 A pg > Eactp.
vessel and the temperature is above Eactp.

P4, P8 An explosion can occur if there is some C in the | ps # 0 A pg > Eactc.
vessel and the temperature is above Eactc.

ps, Ps An explosion can occur if there is some D in the | ps# 0 A pg > Eactp.
vessel and the temperature is above Eactp. .

Ps, P8 Toxic fumes are released from the vessel if the | pg >Tvol A pg > Eact.
volume of E in the vessel is greater than Tvol and
the temperature is above Tact.

p7, In the absence of the conditions above, these
P9, .., p22 | variables do not define any hazards

Remark: For simplicity we have assumed that hazards can only occur, while their are some
chemicals in the reaction vessel. That is, for the purposes of this example, we have ignored

the possibility of hazards while the reactants are stored or the product(s) are collected.

Step 2

By the inspection of table B.7, we construct the hazard predicates for the release of toxic

fumes and the occurrence of an explosion. These hazard specifications are then used to

derive the hazard specification of the chemical plant.

The hazardous states for release of toxic fumes are captured by the system predicate:

HZ(p3) = (ps >Tvol A pg > Tact).

The hazardous states for an explosion are captured by the system predicate:

HZ(py4) =(p2 # 0Apg > Eacta) v (p3 # 0 A ps > Eactp) v (ps# 0 ps > Eactc) v
(ps # 0 A pg > Eactp).

Step 3

The release of toxic fumes and an explosion are the only two disasters of the chemical plant

(see disaster analysis). Hence the hazard specification of the chemical plant is:

HS(CP) = HZ(py3) v HZ(p24). .

HS(CP) = (pg >Tvol A ps > Tact) v (p2 # 0 A pg > Eactp) v (p3 # 0 A pg > Eactp)
v (ps# 0 A pg > Eactc) v (ps % 0 A pg > Eactp).

Validation Guidelines

Appendix B

For simplicity we will assume that an independent analysis has been conducted which

identifies the same hazard analysis table.

Hazard Elimination)

Let us suppose that a safer (economical) process route does not exist for the production of

E.

Complete Hazard Assumption.
Let us suppose that the hazard analysts confirm that for any possible history H of the
system, the following holds: vt € T: [Hsatp;3v py @t = 3t’ € [S(T), t): Hsat HS(CP)@t' |.
Roughly speaking, if a history H satisfies the above condition then a disaster can occur ata
time point ¢ during H if and only if H satisfies the hazard specification at some time point
before ¢t. We define the set of hazard analysed histories as:

HA(CP) = {HeTH| vte T:[Hsatpx;v pu@t = 3t’ € [S(T), t): Hsat HS(CP)@t'] }.
Where T'H is set of all functions H: T —» Vp; X ... xVpaa.

From lemma 5.1 we infer that: vH € HA(CP): H sat THS(CP) = H sat 1(p23 vV pP24)-

B.4.3. Safety Real world Description
In this section we show how SRD(CP) is produced by following the guidelines of section

1.5.

Construction Guidelines

Step 1

In this step we identify the safety real world variables of the chemical plant.

a. From the hazard specification and disaster set we can define the initial set of safety real

world variables as: p2, P3, P4 Ps» Pé» Ps» P23 and pos.
b. We investigate the relations of IRWD(CP), to identify the variables related to those
identified in step l.a.

From invariant relation Ir; we identify p7, and from history relations Hry, Hr3 and Hry we

identify p16, p17 and pis.

Appendix B

Next we investigate the relations of IRWD to identify those related to p7, p16,.p17 and pis.
From history relation Hr; we identify p1g and p,; and from invariant relation Ir; we identify

P19-

Hence the set of safety real world variables is: {pa, ..., pg, P16, ---» P22}

Step 2 (Invariant relations)

a. The invariant relations (of IRWD(CP)) involving the safety real world variables are: Ir;,
Iry, Ir; and Irg.

b. Let us suppose an analysis of the safety real world variables shows that their are no other

relevant relations.

Step 3 (History relations)

a. The history relations (of IRWD(CP)) involving the safety real world variables are: Hry,
w., Hrs.

b. Let us suppose that an analysis of the reaction between A and B, shows that to produce 2x
dm? in the vessel, the vessel must contain at least x dm3 of B. Hence we can infer the
following relation (Hre): ps1 + 2.p3,1 < pap + 2.p30 + piA(t) dt. Let us suppose that a
similar relation is defined for the reaction involving C and D (see Hr).

The description relations are summarized in table B.8.

Table B.7: Additional Relations of Safety Real World Description

No. | Related Relationship Comments
variables
Hrg | p3, P4 P17 {Pa1 + 2p31 < For any interval Int, the sum of VoIC and
Pao + 2.p30 +Ip17(t) dt twice VoIB at e(Int) is at most the sum of

VoIC and twice VoIB at s(Int) and the
integral of FlowB during Int.

Hr; | ps, pe P18 | P6,1 + 2.p51 < The equivalent relation to Hrg for VoID,
P60 + 2.p50 + fpls(t) dt VoIE and FlowD.

Step 4

The safety real world description of the chemical plant is given as:

SRD(CP) = (T‘, <p1’) P24>, (Vplv aeny Vp24>’ <Cp1v ooy Cp24)9 (Irla Ir27 II'3, Ir4>a (Hrl, ooy Hr7»'

Validation Guidelines

B-13

Appendix B

Again we assume that SRD(CP) is validated by an independent analysis.

B.4.4. Safety Real World Specification

In this section we show how SRS(CP) is produced by following the guidelines of section 7.6.

Step 1
The safety real world specification is defined as the negation of HS(CP).
SRS(CP) = 7HS(CP).
= 1 (ps >Tvol Apg > Tact) v (p2 # 0Apsg > Eacta) v (p3 # 0 A pg > Eactp)
v (P47 0 A pg > Eacte) v (ps = 0 A pg > Eactp)]

1

[(ps <Tvol v pg < Tact) A (p2 =0v psg < Eacta) A (p3 =0 v ps < Eactp)

v (p4 =0V pg < Eactc) A (ps=0 v pg < Eactp) |.

Step 2

We must check that a history that satisfies SRS(CP) may also satisfy the mission. Let us
suppose that Eactc is less than Eacta, Eactg and Eactp, and Eactc is greater than Y.
Further let us suppose that Tact is greater than Z, but less than Y.

SRS(CP) will allow the reaction of A and B (provided there is no C in the vessel); and allow

the reaction of C and D.

Step 3
SRS(CP) is quite complex, here we investigate if the relations of SRD(CP) can be used to
define a simpler version.
Consider the following system predicate:
SC = [(ps <Tvol vpg<Tact) A((p2=0Ap3 =0Aps =0Aps=0)vpg<Eactc)]
We can say for any history H of SRDH, H sat SC = H sat SRS(CP) since Eactc < Eacta,
Eactc < Eactg and Eactec < Eactp.
Consider the system predicate (p; =0Ap3 =0 A ps =04 ps=0), the relation Ir; states that
the p7 = p2 +p3 +ps + ps + pe. Hence, for any history H of SRDH:

vte T: Hsat (p7 =0 = p; =0Ap3 =0 A ps =0 ps=0)@t.
Hence, we simplify SRS(CP) to: (ps < Tvol v pg < Tact) A (p7=0 v pg < Eacte).

Hereafter, we will refer to Eactc as Eact.

B-14

Appendix B

B.S. Mission Real World Analysis

In addition to the requirements given by the system concept the customer adds the
requirement that a hazard should not occur for any behaviour that satisfies the mission.
That is, the safety controller need not, in fact, need to override the mission controller, if
the mission controller ensures that the behaviour at the real world complies to the mission
real world specification. In this section we present an overview of how MRS(CP) and

MRD(CP) are produced by following the guidelines of sections 7.7, 7.8 and 7.9.

B.S.1. Mission Phase Specification
In this section, we present an overview of the analysis performed over the system concept

to construct MPS(CP). By following the guidelines of section 7.7.1.

High-Level Phase Analysis

The analysis starts with the standard high-level phase graph (shown in figure B.2).

Figure B.2. Chemical Plant High-level Phase Graph

.: Select ‘,'-—-—

Select phase
At the start of this phase, the vessel will be empty. During this phase the vessel must remain
empty. By the end of the phase the operator must have selected the required volumes of A,

B and D.

Produce phase
At the start of this phase, the required volumes of A, B and D will be selected. During this
phase the system must not be in a hazardous state. By the end of the phase the plant must

have produced the chemical E.

Collect phase

At the start of this phase, chemical E must have been produced. During this phase the

B-15

Appendix B

system must not be in a hazardous state. By the end of the phase, the collection.of chemical

E, must have been completed.

Phase Analysis -

For the chemical plant, it is not necessary to decompose the high-level phases any further.

Mission Phase Specification Check
The mission phase graph is is presented to the customer, who raises the following (new)

point to the analyst: “The system should be able to perform a sequence of reactions”.

To allow multiple reactions during the system lifetime, the analyst modifies the phase
graph, to that given in figure. B.3. The specification of the new phases is also refined by

introducing the real world variables.

-: Power up ,‘—@ Collect

Figure B.3. Chemical Plant Mission Phase Specification

Power up phase
At the start of this phase the vessel will be empty. While the system is in the phase the vessel

is empty and RLight is at green. The system leaves the phase as soon as Plant select is at on.

Select phase

At the start of this phase the vessel will be empty and Plant select at on. While the system is
in this phase the vessel is empty and Plant select is at on or s-tart and RLight is at green. The
system leaves the phase as soon as the requested volumes of A, B and D have been

selected.

Produce phase. As before.

B-16

Appendix B

Collect phase
While the system is in this phase the temperature must be approximately at Z; and RLight

at amber. The system leaves this phase as soon as the product E has been collected.

End phase -
While the system is in this phase the vessel is empty and the indicator at green. The system

remains in this phase until the system is shut down.

Mission Real World Specification Analysis
In this section we present an overview of how MRS(CP) is produced by following the

guidelines of section 7.7.2.

BF(Power up) =

Power on mode
The system starts in this mode. At the start of this mode Plant select is at off. During this mode,
the vessel must remain empty, Plant select at off or on and RLight is green. The system leaves

this mode as soon as Plant select is at on.

Power on = (p12= off, p;=0 A p12 € {off, on} A puy=g, pr2= on).

BF(Select) =

Select Vol mode

The system is in this mode while the operator selects the required volumes of A, B and D. At the
start of this mode Plant select is at on. During this mode, the vessel must be empty, Plant select
at on or start and RLight is green. The system leaves this mode as soon as the operator has
selected the required volumes, which he signals by setting plant select to start.

Select vol = (p1p = on, p7=0 A p12 € {on, start} A piy=g, pi2= start).

B-17

Appendix B

BF(Produce) =

-

Set AB mode
The system is in this mode while the requested volumes of A and B are being loaded into the
vessel. At the start of this mode the vessel is empty. During this mode, there is no D or E in the
vessel, the Temperature is less than Y+ AR, Plant select is at start, RLight is green or amber.
The system leaves this mode as soon as the volumes of A and B are approximately at the
requested values and RLight is amber; and chemical flow into and out of the vessel is zero. The
system must spend at most Su(py, p1o) seconds in this mode, where Su defines an upper bound
on the time required to load the requested volumes of A and B into the vessel.
Set AB =
(p7=0,ZDE Aps<Y+ AR A p12 = start Apis€ {g, a}, RS Ap14 = a A ZF, 0, Su(po, p10))»
where ZDE = p5s=0 A pg=0;

RS = (|p2-p9|< AVA A |p3-puo|< AVp); and

ZF= (p19= 0 A p2= 0).

React AB mode

The system is in this mode while the temperature of the mixture of A and B is being raised to Y,
to initiate the reaction. At the start of this mode the Temperature is less than Y and RLight is at
amber. During this mode, there is no D or E in the vessel and the Temperature is at most
Y+ AR, Plant select is at start, RLight is amber or red, and chemical flow into and out of the
vessel is zero. The system must leave this mode as soon as the Temperature is in the range Y to
Y+ AR and RLight is red. The system must spend at most Ru seconds in this mode, where Ru
is an upper bound on the time required to initiate a reaction between A and B.

React AB =

Appendix B

{ps <YAP14 = 3, ZDEApg<Y + AR A P12 = start Apus € {a,1} AZF, RY Ap14 =1,0,Ru),
where RY =(Y <pg< Y+ AR).

Produce C mode

The system is in this mode while the reaction involving A and Bisin progress. During this
mode, there is no D or E in the vessel, the Temperature is in the range Yto Y+ AR, Plant select
is at start, RLight is amber or red and chemical flow into and out of the vessel is zero. The
system leaves this mode as soon as the reaction is complete and RLight is set to amber. The
system must spend between CL(pg, pjo) and CL(pg, p19) + AC seconds in the mode. Where CL
defines an upper bound on the time needed for reaction of the required volumes of A and B to
be completed.

Produce C =

{true, ZDE A RY A py2 = start A puue{a, r} A ZF, p14 =a, CL{p9, p10), CL(po, p10) + AC).

Cool mode

The system is in this mode while the temperature of the product Cis cooled below Z. At the start
of this mode the Temperature is in the range Yto Y+ AR. During this mode, there is no D or E
in the vessel the Temperature is at most Y + AR, Plant select is at start, and RLight is green or
amber, and chemical flow into and out of the vessel is zero. The system leaves this mode as soon
as the Temperature is below Z and ‘RLight is green. The system must spend at most Cu seconds
in this mode, where Cu is a fixed maximum upper bound on the time required to cool C after it
has been produced by the reaction of A and B.

Cool = (RY,ZDEApg <Y+ ARApi2 = start Apse{g,a} AZE pg < ZAp1s = 8,0, Cu).

Set D

The system is in this mode while the required volume of D is being entered into the vessel. At the
start of this mode there is no D in the vessel. During this mode, the temperature is below Z,
Plant select is at start, RLight is green or amber, no A or B flows into the vessel, and no chemical
flows out of the vessel. The system leaves this mode as soon as the vessel contains
approximately the required volume of D and RLight is amber. Furthermore, the system must

not spend more than SDu(p;;) seconds in this mode, where SDu is defines an upper bound on

B-19

Appendix B

the time required to load p;; dm? of D.
Set D = (ps=0, Inv, |ps - p11| < ADv A p14 = a, 0, SDu(pn)),

where Inv = (pg < Z A p12 = start A pys € {g, a} Ap1s= 0 A p17= 0 A p22= 0).

React CD

The system is in this mode while the temperature of the mixture of C and D is being raised to Z.
At the start of this mode the volume of D is approximately the required volume and RLight is
amber. During this mode, the Temperature is below Z+ AR, Plant select is at start, RLight is
amber or red, and chemical flow into and out of the vessel is zero. The system leaves this mode
as soon as the Temperature is in the range Z to Z+ AR and RLight is red. Furthermore, the
system must not spend more than Ru seconds in this mode, where Ru is an upper bound on the
time required to initiate the reaction between C and D.

React CD = (|ps - p11] < ADv A pis = a,Inv, RZ A pu =1, 0, Ru),

where RZ = (Z<pg<Z+ AR)andInv = (pg<Z+ AR Apyp = start Apis € {a,1} AZF).

Produce E

The system is in this mode while the reaction involving C and D is in progress. During this
mode, the temperature is in the range Z to Z + AR, Plant select is at start, and RLight is green
or red, and chemical flow into and out of the vessel is zero. The system leaves this mode as soon
as the reaction has completed and RLight is at red. The system must spend between DL(p11)
and DL(p;;)+ AD seconds in the mode. Where DL defines an upper bound on the time
needed for reaction of the required volume of D to be completed.

Produce E = (true, RZ A p1z = start A pi4 € {g, r} A ZF, pia=r, DI{p11), DL(p11) + AD).

-
- -~

BF(Select) = ."éet Collect)

L4
.....

Set Collect
The system is in this mode while the operator sets plant select to collect. During this mode the
Temperature is in the range Z to Z + AR, Plant select is at start or collect, RLight is green, and

chemical flow into and out of the vessel is zero. The system leaves this mode as soon as Plant

B-20

Appendix B

select is at collect.

Set Collect = (true, RZ A p13 € {start, collect} A p1a = g A ZF, p12 = collect).

Empty

The system is in this mode while the final product (i.e., E) is being collected. During this mode
the Temperature is in the range Z to Z+ AR, Plant select is at collect, RLight is at green,
chemical flow into the vessel is zero, and the only outflow is via OutletC. The system leaves this
mode as soon as the product has been collected (i.e., vessel is empty). Furthermore, the system
must not spend more than Eu seconds in this mode, where Eu defines a maximum upper
bound on the time required to empty the vessel.

Empty =(true, RZ A p1; = collect A pi4 = g Ap19= 0 A p2=p21, p7= 0, 0, Eu).
Rerun

The system is in this mode while the operator decides if another batch of C will be produced or
the system will be shutdown. During this mode the vessel is empty, Plant select is at off, on or

collect, and RLight is green. The system leaves this mode as soon as Plant select is at off or on.

Rerun = (true, p7= 0 A p12 € {off, on, collect} A p1s = g, p12 € {off, on}).

BF(End) =

End

The system is in this mode when no more reactions will be performed. While the system resides
in this mode the vessel is empty and RLight is green. The system remains in this mode until it is
shutdown.

End = {p;p = off, p7= 0 Ap1s = g, Q).

Appendix B

Behaviour Function Connection

MRS(CP) is produced by applying function SEM to MPS(CP) and BF (see figure B.4).

Cool

>

React CD

Figure B.4. Mission Real World Specification of Chemical Plant

Mission Real World Description Analysis

In this section we present an overview of how MRD(CP) is produced, by following the

guidelines of section 7.8.1.

The mission real world variables are: py, ..., p12, p14> P16» ---» P22- Let us suppose that the
analysis of the mission real world variables and mission real world specification,
determines that all the relation of SRD(CP) are also relevant for MRD(CP). In addition six

new description relations are introduced, these are summarised in table B.8.

Table B.8: Additional Relationships of Mission Real World Description

No. | Related Relationship Comments
variables
Irs | p1, p12, P14 | P1 = S(T) = p12= off Apra=g. At the start of the system lifetime Plant

select is at off and RLight at green.

Hrg | po,... p12 | Vt: p12 € {start, collect} = The set point selectors must remain constant
vt Po=p9,0 A P10=P10,0 A P11=P11,0 | While Plant select is at start or collect.

B-22

Appendix B

Hro | p2, P4 P8, | P40=0 A Vt: pg(t)<Y A p22(t)=0 = | Provided the temperature remains below Y
P16, P22- | pa1 = Min(f p1e(t) dt + p20, Vmax) and the outflow rate is zero during any
interval, and at the start of the interval there
is no C in the vessel, then VOIA is equal to
the smaller of the sum of the integral of the
flow rate over the interval and the maximum
level.

Hrig | D3 P4 P8, | P4,0=0 A Vt: pg(t) <Y A p22(t)=0 = | This relation is the VoIB equivalent of Hry.
P17, P22 | p31 = Min(f py7(t) dt + p3,, Vmax)

Hri1 | ps. P6> P8 | P6,0=0 A Vt: pg(t) <Z A pz2 (t)=0 = | This relation is the VolD equivalent of Hrg.
P18 P22 | ps,1 = Min(f pig dt + ps,o, Vmax)

HR12 | p13. P18 | To=S(T) = p7,0 = O A p12,0 = off A | At the start of the system lifetime the vessel
D140 = & is empty, Plant select is at off and RLight is
at green.

The mission real world description of the chemical plant is given as:

MRD(CP) = <rrv (pl, eooy p24)a <Vp1,) Vp24), (Cplv veey Cp24)7 <Ir1’) IrS)v <Hr1, eeey Hr12»‘

Mode Graph Verification

In this section, an examples of a completness check and consistency check are presented.

Completeness Check

The completeness of MRS(CP) is checked by confirmation of the following condition.
MRS(CP) cmp MRD(CP) iff

vx € M(MRS(CP)): vH € Set(MRD(CP)): vInt € SI(T):

[H sat x@Int = 3y € MRS(CP).sr(x): H sat (Start(y) A Inv(y) v Q)@e(Int)].

The completeness of the rerun mode is checked below.

We have: Rerun = (true, p;= 0 A p12 € {off, on, collect} A p1s = g, p12 € {off, on}); and
MRS(CP).sr(Rerun) = {Select Vol, End}.

End = (p1p = off, p7= 0 Apus = g Q).

Select vol = {p12 = on, p7=0 A p12 € {on, start} A pya=g, pr2= start).

vH € Set{MRD(CP)): vInt € SI(T):

[H sat Rerun@Int = Hsat p;= 0 A pi4 = g A p12 € {off, on}@e(Int)].

.. vH e Set(MRD(CP)): vInt € SI(T): H sat Rerun@Int =

H sat (Start(Select vol) A Inv(Select vol)) v (Start(Close) A Inv(Close))@e(Int).

R -_2%

Appendix B

Consistency Checks

The consistency of MRS(CP) is checked by confirmation of the following three conditions.
i) vx € SOMRS(CP)): 3V e I': [V sat Start(x) A Inv(x) A TEnd(x) A C(IR(MRD(CP)))].
ii) v(x, y) € AMMRS(CP)): 3V e T': [V sat-Inv(x) A End(x) A Start(y) A Inv(y) A TEnd(y) A
C(IR(MRD(CP)))].

iii) vx € E(MRS): 3V e I': [V, sat Inv(x) A End(x) A CAR(MRD))].

In this study, we sketch the proofs for the confirmation of condition i) and condition ii).
Condition i
S(MRS) = Power on, Power on = (py»= off, p7=0 A p12 € {off, on} A p1a=g, pi2= on).
We must show: 3V e T: [V sat py;= off A p7=0 A pia=g A CAR(MRD))].

The above assertion, holds since no constraints are imposed over p; and py4 by the
invariant relations., and the invariant relation over py, only restricts its value only at the
start point.

Condition ii

A sketch of the proof for the arc (Produce C, Cool) is presented next.

We must show:

avVel:

[VsatRY Ap12 = start Apyy =a AZDE Apg< Y+ ARAZF Apg > Z A CIR(MRD))].
The above assertion, holds since RY = pg< Y+ AR, and Y + AR >Z no invariant relation

is imposed over the variables, involved in this assertion.

Safety Verification of Mission

For the safety verification of the mission it must be verified that for any history that satisfies
the mission specification a hazardous states will not occur.

Formally, we must show: vH € Set(MRD): H sat MRS@Int = H sat SRS@]Int.

The safety verification condition for the mission can be resfated in terms of the modes as:

vm € M(MRS): vH € Set(MRD): vInt e SI(T): [H sat m@Int = H sat SRS@Int].

Next an illustrative portion of the safety verification of the mission is presented. This

condition is proven for the Produce C mode, the proofs for the other modes can be

B-24

Appendix B

constructed in a similar way.

We must prove: vH € Set(MRD): vInt e SI(T): [H sat Produce C@Int = H sat SRS@]Int].
We have: SRS = (ps < Tvol v pg < Tact) A (p7=0 v pg < Eact).

Produce C = _ _

(true, ZDE A RY A p12 = start A pigae{a, r} A ZF, p1s4 =a, CL(py, p10), CL(p9, p10) + AC).
vH € Set(MRD): vInt € SI(T): [H sat Produce C@Int = H sat ps =0 @Int].

This follows from the factor ZDE of the invariant of Produce C.

vH € Set(MRD): vInt € SI(T): [H sat Produce C@Int = H sat pg <Y + AR@Int].

This follows from the factor RY of the invariant of Produce C. Hence SRS is satisfied

during the Produce C mode, if Y+ AR < Eact.

Mission Validation

Let us suppose that the customer confirms that MRS(CP) accurately captures the mission
requirements of the system. However, the customer (after consultation with the operator),
imposes an additional requirement: “The fact that a batch of E has been collected should
be indicated to the operator. This should be achieved by an indicator that is turned on after

E has been collected. ”

This requirement change introduces another real world variable and two additional
modes. The new variable (p,s) répresents the state of the indicator for the collection of E
(referred to as ELight); this variable has range {on, off} and is in the class Free. The
invariants of the modes of MRS(CP) must be modified by the conjunction of the predicate
p2s = off. The additional modes are the signal on and signal off modes; these are defined

below. The structure of the modified mission real world specification is given in figure B.5.

Signal on mode

The system is in this mode while ELight is being set. At the start of this mode ELight is off.
While the system resides in this mode the vessel is empty, Plant select is at collect and RLight is
green. The system leaves this mode as soon as ELight is on. The system must spend at most

SGu seconds in this mode, where SGu is an upper bound on the time required to change the

B-25

Appendix B

status of ELight.

Signal on = (pys=off, p7=0 A pi2=collect A p14=g, p2s=on, 0, SGu).

Signal off mode

The system is in this mode while ELight is being reset. At the start of this mode ELight is on.
While the system resides in this mode the vessel is empty, Plant select is at on and RLight is
green. The system leaves this mode as soon as ELight is off. The system must spend at most

SGu seconds in this mode.

Signal off = (pzs=on, p7=0 A piz=o0n A pis=g, pas=off, 0, SGu).

- Poweron

Cool
Set D
G <>
1
1

Figure B.5. Validated Mission Real World Specification of Chemical Plant

Appendix B

B.6 Summary

As a result of the analysis presented in this appendix, the four real world specification have
been produced. The safety real world analysis of the chemical plant resulted in the
formulation of the hazards as HS(CP), the safety real world requirements as SRS(CP); and
the restrictions imposed on the safety—critical behavior as SRD(CP). The mission real
world analysis of teh chemical plant resulted in the formulation of the mission real world
requirements as MRS(CP) and the restriction imposed on mission-oriented behaviour as
MRD(CP). In appendix C, the derivation of the controller specifications from these real

world specifications is illustrated.

Appendix C

Appendix C - Controller Analysis

C.1. Introduction

In this appendix the controller analysis of the safety—critical chemical plant, introduced in
appendix B, is described. This case study is presented to illustrate how the guidelines of
chapter 8 provide a systematic approach to the controller analysis of a system. The
specifications produced at each stage of the analysis are presented. To keep the example
manageable, only illustrative portions of the analysis and proof are discussed. Inparticular,
the case study concentrates on the proofs which are necessary to confirm that the safety

controller specification is adequate for the safety real world specification.

At the start of the controller analysis, the safety-critical behaviour of the chemical plant is
expressed formally by SRD(CP) and SRS(CP); and the mission-oriented behaviour by
MRD(CP) and MRS(CP). These formal constructs were developed by performing a real

world analysis of the chemical plant (see appendix B).

C.2. Safety Controller Analysis

In this section, I will describe the safety controller analysis of the chemical plant. This

analysis will lead to the production of SED(CP) and SCS(CP).

C.2.1. Safety Environment Description

The analysis performed to prodhce SED(CP) follows the guidelines given in section 8.2.

Step 1

Let us suppose that the actuators of the safety controller consist of a lock on each inlet
and a valve for OutletS, and the sensors are a thermometer and a volume sensor. The
variables that model the state of these actuators and sensors are given in table C.1.

Table C.1: Safety Controller Variables

Notation | Units Name Comments
P26 Lk_pos LockA The position of the lock for InletA.
P27 Lk_pos LockB The position of the lock for InletB.
p23 Lk_pos LockD The position of the lock for InletD.
P29 mm SValve The extent to which the valve for OutletS is open.

C-1

Appendix C

P30 °K Thermometer | The thermometer reading for the contents of the vessel.
P31 dm3 VolSensor | The volume sensor reading for the vessel.
Step 2 -

A systematic analysis to identify the ranges and classes of the variables identified in step

1 is performed. The results of this analysis are presented in the following two tables.

Table C.2: Ranges for Safety Controller Variables

Variables Range Comments
P26, P27 {off, mid, on} Where off, mid and on are the states of the locks.
p28
P29 {x€ R| 0 < x < Smax} | Where Smax is the maximum width to which SValve can be
opened.
P30 {T, Ti+Aq, .., T;1+Q.Aq} | Where T is the lower limit of the thermometer, Aq the
granularity and T} + Q.Aq the upper limit.
p31 {0, Av, ..., V.Av}) Where Av is the granularity and V.Av the upper limit of the
volume sensor.
Table C.3: Categories and Classes for Safety Controller Variables
Variables | Category Class Comments
P26, P27 Controller Free An analysis of the locks and the thermometer shows that
P28, P30 they are in the class free.
P31
P29 Controller Continous SValve is a continous variable.
Step 3

The basic relationships involving a sensor (or actuator) are formulated by inspection of

its specification. For example, let us suppose that the specification of the lock for InletA

states that no chemical can flow through InletA when the lock is on, hence the relation

Irg is added to the description relations table.

As another example, let us suppose that an analysis of the state of the system at the start

of the system lifetime shows that SafeLight is green, and the locks are all on this leads

to relation Iry;. The basic relationships of the actuators and sensors are summarised in

table C.4.

Table C.4: Controller Relationships for Safety Environment Description

C-2

Appendix C

No. | Related Relationship Comments -
variables

Irg P16, P26 | P26= on=pis=0 If LockA is on, no A flows into the vessel.

Irq P17, P27 |p27=on=p17=10 If LockB is on, no B flows into the vessel.

Irg P18, P28 | p28= on=p1g=0 - If LockD is.on, no D flows into the vessel.

Irg | p7, P21, P29 | P21= Fos(p7, p29) Outflows is the result of applying Fog to Vol
and Svalve.

Irio P8, P30 | |Ps-p3o| <ATp The imprecision of the Thermometer is
bounded by ATp.

Irny P7 P31 Ip7-p31]1<AVp The imprecision of the volume sensor is
bounded by AVp.

Irr2 | pP1s, | P1=5(T) = At the start of the system lifetime SafeLight

P26, P27, | pis=g A paps=on A pzr=on A |isatgreenand the locks are all on.
P28 p2g=on.
Step 4

The safety environment description of the chemical plant is given below:

SED(CP) = (T, {p1, +-» P31), {Cp1, .., Cp31), (Iry, .., Irg, Ir, ..., Irpa), (Hry, ..., Hrs)).

The interactions between the components of the safety controller, the safety operator and

plant are illustrated in figure C.1.

C-3

Appendix C

Safety Operator

O

a b
[Safety control system _ |

Key

a: Safety select b: SafeLight c: SValve d:LockB e: LockA f: LockD g: Thermometer h: VolSensor.

Figure C.1. Chemical Plant Safety Controller

C.1.2. Safety Controller Specification Analysis

Here the production of the safety controller specification, by following the guidelines of

section 8.3.2, is discussed.

The safety real world specification of the chemical plant is recalled:

SRS(CP) = (ps <Tvol v pg < Tact) A (p7 = Ov pg < Eact).

Also recall that the relationship between the colour of SafeLight and the status of the
reaction vessel should obey the following (informal) rules:.

it should be green when a reaction is not in progress;

it should be amber when a reaction may be in progress; and

it should be red when the safety controller must override the mission controller to prevent

the system from entering into a hazardous state.

C-4

Appendix C

Mode Graph Production

Here, the mode graphs are produced for the six phases of the general safety controller
structure (i.e. Start up, Monitor, Recovery, Reset, Shut down and End phases) by following
the guidelines for the phases. This case study concentrates on the production rules derived
from the safety verification checks; these rules are recalled below. (In the following the

clause numbers refer to the safety verification check.)

The rulesa and b are defined below for a mode graph MG and precondition function PF;

rule a is used to confirm clause ii for MG and rule b to confirm clause iii for MG.

Rule a. For any arc (x, y) of AMMG), any history H of SEDH and any interval Int, if H satisfies
the precondition of x at s(Int) and x during Int and the start and invariant predicates of y at
e(Int) then H satisfies the precondition of y at e(Int).

v(x, y) € AMG): vH e SEDH: vInt € SI(T):

H sat PF(x)@s(Int) A H sat x@Int A H sat (Start(y) A Inv(y))@e(Int) =

H sat PF(y)@e(Int).

Rule b. For any mode m of MG, any history H of SEDH and any interval Int, if H satisfies
the precondition of m at s(Int) and m during Int then H must satisfy SRS during Int.

vm € M(MG): vH € SEDH: vInt € SI(T):

H sat PF(m)@s(Int) A H sat m@Int = H sat SRS@Int.

The rule ¢ is defined below for a pair of modes (x, y) and precondition function PF; rule c is

used to confirm clause ii for (x, y).

Rule c. For any history H of SEDH and any interval Int, if H satisfies the precondition of x at
s(Int) and x during Int and the start and invariant predicates of y at e(Int) then H satisfies the
precondition of y at e(Int).
vH e SEDH: vInt € SI(T):
H sat PF(x)@s(Int) A H sat x@Int A H sat (Start(y) A Inv(y))@e(Int) = H sat PF(y)@e(Int).

In the proofs of the production rules, H will be used to denote an arbitrary history from
SEDH(CP) and Int an arbitrary interval from SI(T). In the construction of these proofs, it is

shown how the time bound constraints for the bounded modes are related to real world

C-5

Appendix C

behaviour. The proofs also allow the safety controller analysts to identify any assumptions

which cannot be derived from the relations of SED(CP).

Initial Predicate

The initial predicate follows directly from Ir4 and Irq,.

IP = p7=0 A pg<Stemp A p1s=g A P26=0n A p27=0n A pg=o0N.

Step 1 (Start up Phase).

a. Firstly, we define a basic strategy for the Start up phase. This is simply, that the safety
controller must wait until Safety select is on and then release the locks on InletA and

InletB. This strategy can be specified by two simple tasks: Safe on and Release.

b. These simple tasks can be specified by modes, which would result in the mode graph
below (figure C.2). During the Safe on task the safety controller must keep the locks on,
and the task is completed when Plant select is set to on. During the Release task the safety

controller must release the locks on InletA and InletB, within a small duration Ul.

Figure. C.2. Start up Graph

c. In this step, we define the precondition function PF for Safe on and Release.

i. In this step we investigate the preconditions which are necessary for a mode to pass
production rule b.

At the start of Safe on, the vessel is empty (from IP) and during Safe on the locks are on,
therefore the vessel is empty during Safe on. Hence Safe on would pass rule b. From Hrs,
the maximum rise in temperature during Release is ATm.UI. Hence Release will pass rule

b, if PF(Release) = pg < Eact- ATm.U1. We define PC(Release) = pg < Eact—- ATm.U1.

ii. In this step, we consider if the preconditions identified in the above step will pass rule a.
This check is performed by the investigation of the behaviour of pg during the predecessors
of Release. Release has only one predecessor Safe on. At the end of Safe on no constraint is

imposed on pg. Hence a suitable PF(Release) will not pass rule a for the arc (Safe on,

C-6

Appendix C

Release).

An obvious solution is for the safety controller to remain in Safe on , until Safety select is at
on and the Thermometer reading is below a safe value Stemp-ATp. In this case, it would
follow (from Iryg) that the temperature is below Stemp at the start of Release.

By inspecting the behaviour of the physical process during the Safe on mode we define
PF(Release) = p7 =0 A pg <Stemp. Hence Release will pass rule b, if Stemp < Eact -
ATm.Ul

d. As a result of the analysis performed above, the mode specifications, for the Safe on and
Release modes are given below. These mode specifications also include the necessary

conditions over SafeLight.

Safe on mode

The safety controller is in this mode while it is waiting to be switched to the monitor phase.
During this mode, SafeLight must be at green and the locks on. The safety controller must leave
the mode as soon as Safety Select is on and Thermometer is less than Stemp-ATp.

Safe on = (true, p1s=g A LRset, pj3=on A p3y<Stemp-ATp),

where LRset = (P26 =0n A p27=0n A pg=o0n).

Release mode

The safety controller is in this mbde while LockA and LockB are being released (to allow
chemicals A and B to be loaded into the vessel) and SValve is being closed. At the start of this
mode Safety select will be at on. During this mode, SafeLight must be at green or amber and
LockD on. The safety controller must set SafeLight to amber, release LockA and LockB, close
SValve and then must leave the mode. The safety controller must spend at most Ul seconds in
the mode.

Release = (p13=on, p1se{g, a} A pas=on, pjs=a A Vset, 0, Ul),

where Vset = (pas=0ff A p27=o0ff A p2o=0).

e. In this step we should confirm that SU is consistent and complete. For this example, we

will simply assume that this is the case.

C-1

Appendix C

f. Proofs for production rule a, for the arc (Safe on, Release), and rule b for the Safe on and

Release modes are given below.

Safe on, Release arc
For rule a we show: H sat p7=0 £ pg <Stemp@s(Int) A H sat Safe on@(Int)

= H sat p7=0 A pg < Stemp@e(Int).
Proof. Since the vessel is empty (p7=0) at s(Int) and from the invariant of Safe on the locks
are on during Inf then, from relations Iry, Irg, Ir7, Irg and Hry, H sat p;=0@]Int. From the
end predicate the thermometer reading is less than Stemp-ATp at e(Int), hence from Iryg

we have H sat pg < Stemp@e(Int)

Safe on mode
For rule b we show: H sat p;=0@s(Int) A H sat Safe on@(Int) = H sat p;=0@Int.

Proof. Follows from proof of rule a (see above).

Release mode.

For rule b we show: H sat (p7=0 A pg < Stemp)@s(Int) A H sat Release@(Int)
= H sat (pg=0 A pg <Eact)@Int.

Proof. Since the vessel is empty (p7 = 0) at s(Int) and from the invariant of Release, LockD is

on (pyg =on) during Int then, from relations Ir;, Irg, and Hrs, H sat ps=0@]Int. From the

upper bound of Release and relation Hrs the maximum rise in the temperature from s(Int)

to e(Int) is bounded by UL.ATm. Hence, since pg is a continuous variable, H sat pg

<Eact@Int, if Ul < (Eact -Stemp)/ATm.

Step 2 (Monitor Phase)

a. In this step, we construct a phase graph that specifies the behaviour of the physical
process as measured by the variables of the safety real world specification.

A phase graph of the safety-critical behaviour of the physical process during a mission of
the chemical plant is shown in figure C.3, and the behaviour during the phases is discussed

below.

Load AB. The required volumes of A and B are loaded into the vessel; the end of this phase

is marked by the temperature rising to at least Y.

C-8

Appendix C

Figure C.3. Safety—Critical View of Mission

Produce C. The reaction to produce C is in progress; the end of this phase is marked by the
temperature dropping below Z.
Produce E. The required volume of D is loaded into the vessel; the reaction to produce E is

completed and the product collected; the end of this phase is marked by an empty vessel.

b. In this step, we construct a phase graph over the safety controller that monitors the
behaviour of the graph identified above.
A phase graph over the sensors of the safety controller that monitor the mission as it passes

through the phases defined in step 2.4, is shown in figure C.4.

Figure C.4. Safety-Controller View of Mission

The behaviour monitored by the phases of the above graph and the conditions which hold
at the end of these phases are discussed next.

Temp Y. This phase monitors the behaviour characterized by the Load AB phase. At the
end of this phase the thermometer is at least Y-ATp.

Temp Z. This phase monitors the behaviour characterized by the Produce C phase. At the
end of this phase the thermometer is below Z-ATp.

Vol Zero. This phase monitors the behaviour characterized by the Produce E phase. At the

end of this phase VolSensor is at most AVp.

c. The monitor graph MN is constructed by considering how the safety controller can

maintain the SRS in a phase of the phase graph of step 2.b, while allowing the mission

controller to achieve the task monitored by that phase.

C-9

Appendix C

Temp Y

i. The basic strategy for this phase is for the safety controller to hold the actuators constant
and leave this phase when the thermometer reading is at least Y-ATp.

ii. The above strategy can be defined by the mode: No React. Roughly speaking, during No
React the safety controller must keep Lock A and LockB off, LockD on and SValve Closed;
the safety controller must leave this mode as soon as the thermometer reading is at least
Y-ATp.

iii. In this step we define PF(No React).

Firstly we identify the condition necessary for No React to pass production rule . The
safety controller must leave this mode as soon as the thermometer reading is at least
Y-ATp. Hence, if the temperature isbelow Y at the start of No React, from relation Iryg the
temperature will be below Y (and so, below Eact) during this mode. During this mode no
D enters the vessel, hence from relation Hry provided pg + 2.ps is less than Tvol at the start
of this mode, ps <Tvol during this mode. Hence this mode will pass rule b if PF(No React)

= ps <Y A ps+2.ps <Tvol. We define PC(No React) = pg <Y A pg+2.ps <Tvol

Secondly, we check if the precondition defined in the step above, will pass rule a or c.
This check is performed by investigating the behaviour of ps, ps and pg during the
predecessor of No React (since No React will be the start mode of MN it must pass rule ¢ for
the arc (Release, No React). 'At the end of Release we have ps =0 A pg=0 A
ps <Stemp+ U1.ATm. Hence, we conclude that PF(No React) will hold at the end of
Release, if Stemp+U1.ATm <Y.

We define PF(No React)= pg <Y A pg+2.ps < Tvol-AV, where AV is a small tolerance.

iv. In this step, we construct the mode specification of No React; this specification also
includes the necessary condition over SafeLight.

No React mode

The safety controller is in this mode while the vessel is being loaded with the volumes of A and
B. During this mode, SafeLight is at amber, LockA and LockB are off, SValve is closed and

LockD is on. The safety controller must leave this mode as soon as Thermometeris at least Y -

C-10

Appendix C

ATp
No React = (true, p;s=a A Vset A pag=on, p3g =Y-ATp).

Temp Z

By following the four steps for the construction of a mode graph and definition of
precondition for the Temp Z phase (as was done for Temp Y phase) we conclude that the
behaviour of the safety controller can be defined by the React C mode, and identify the

precondition given below.
PF(React C) = pg+2.ps <Tvol-AV A pg <Y;

React C mode

The safety controller is in this mode while a reaction for the production of C may be in progress.
During this mode, Safelight is at amber, LockA and LockB are off, SValve is closed and LockD
is on. The safety controller must leave this mode as soon as Thermometer is at least
Eact-(ATp+ ART) or less than Z-ATp.

React C = (true, pis=a A Vset A pxg=on, p3g = Eact-(ATp+ ART) v p3 < Z-ATp).

Vol Zero

By following the four steps for the construction of a mode graph and definition of
precondition for the Vol Zero phase (as was done for Temp Y phase) we conclude that the
behaviour of the safety controller can be defined by the mode graph given in figure C.5,

and identify the preconditions given below.

Figure C.5. Mode graph for Vol Zero

PF(Release D)= pg < Z;
PF(React E)= ps < Z+U2.ATm;
and PF(Lock)= p7< 2.AVp A pg < Stemp.

C-11

Appendix C

Release D mode

The safety controller is in this mode while the Lock on Inlet D is being released. At the start of
this mode the Thermometer is less than Z-ATp. During this mode, SafeLight is at amber,
LockA and LockB are off and SValve is closed. The safety controller must release LockD and
then leave this mode and can spend at most U2 seconds in this mode.

React E = {p3p < Z-ATp, pis=a A Vset, pyg=off, 0, U2).

React E mode

The safety controller is in this mode while a reaction for the production of E may be in progress.
During this mode, Safelight is at amber, the locks are off and SValve is closed. The safety
controller must leave this mode as soon as Thermometer is at least Tact—(ATp+ ART) or less
than Stemp-ATp and VolSensor at most AVp.

React E =

(true, p1s=a AVset A pg=off, p3p=> Tact-(ATp+ ART) v (p3g < Stemp-ATp Ap31 <AVD).

Lock mode

The safety controller is in this mode while LockD is being locked. At the start of this mode,
Thermometer is less than Stemp-ATp and VolSensor at most AVp. During this mode,
Safelight is at amber, LockA and LockB are off and SValve is closed. The safety controller must
turn LockD on, then leave this mode. The safety controller must spend at most U3 seconds in
this mode.

Lock = {p3 <Stemp-ATp A p3; <AVp, pis=a AVset, pyg=on, 0, U3)

d. The monitor graph MN for the chemical plant is obtained, by combining the mode graph
constructed for the three phases Temp Y, Temp Z and Vol Zero. MN is given in the figure
C.6.

.Q

Crest —(aease

Figure C.6. Monitor graph

C-12

Appendix C

e. In this step we must check the consistency of MN. Let us suppose that by performing the

consistency checks it has been shown that MN is consistent.

f. In this step, we must confirm that production rules a and b hold for the monitor graph.
Proofs of production rule a are given for the arc (No React, Redct C) and (Release D, React

E) and (Lock, No React), a proof of rule b is given for Lock.

No React, React C Arc

For rule a we show:

H sat (pg+2.ps <Tvol-AV A pg< Y)@s(Int) A H sat No React@(Int)

= H sat (ps+2.ps <Tvol-AV A pg <Y)@e(Int).

Proof. Since ps+2.ps <Tvol-AV at s(Int) and from the invariant of No react Lock D is on
(p2g=on) during Int, then from Irg and Hry: H sat pg+2.ps < Tvol-AV@e(Int). The end
predicate of No react is p3y > Y-ATp, hence H sat p3g < Y-ATp@ Int-{e(Int)}, hence,
from Iryp, H sat pg < Y@Int-{e(Int)}. If dur(Int) > 0, H sat pg < Y@e(Int) since pgis a

continuous variable and if dur(Int) =0 then H sat pg < Y@e(Int) since e(Int)=s(Int).

Release D, React E Arc
For rule a we show: H sat pg < Z@s(Int) A H sat Release D@(Int)
= H sat pg < Z+ U2.ATm@e(Int).
Proof. From the upper bound of Release D and Hrs the maximum rise in the temperature

from s(Int) to e(Int) is bounded by U2.ATm. Therefore H sat pg < Z+ U2.ATm@e(Int).

Lock , No React Arc
For rule a we show: H sat p; < 2.AVp A pg < Stemp@s(Int) A H sat Lock@(Int)

= H sat ps+2.ps <Tvol-AV A pg < Y@e(Int).
Proof. From the upper bound of Lock and Hrs the rise in the temperature from s(Int) to
e(Int) is bounded by U3.ATm. Hence, H sat pg < Y@e(Int), if U3 < (Y-Stemp)/ATm.
Similarly, H sat pg+2.ps <Tvol-AV@e(Int), if U3 < (Tvol-AV - 2.AVp) /FmaxD.

Lock mode.
For rule b we show: H sat pg < Stemp@s(Int) A H sat Lock@]Int
= H'sat pg < Tact@e(Int).

C-13

Appendix C

Proof. From the upper bound of Lock and Hr; the rise in the temperature from s(Int) to
e(Int) is bounded by U3.ATm. Hence, H sat pg < Tact@e(Int), if U3 < (Tact-Stemp) /ATm.
(It should be noted that pg < Tact = SRS)

The proofs for production rule a for the atcs (React C, Release D) and (React E, Lock) are
outlined below.

React C. The fact that predicate pg < Z holds at the start of Release D follows from the start
predicate of Release D and relation Irg.

React E. The fact that p;<2.AVp Apg < Stemp holds at the start of the Lock mode follows

from the start predicate of Lock and the relations Irqg and Iry;.

The proofs for production rule b for No React, React C, Release D and React E are briefly
outlined below. For No React and React C it is argued that the volume of E in the vessel is
below Tvol and the temperature is below Eact. For Release D and React E it is argued that

the temperature is below Tact.

No React and React C. At the start of these modes pg+2.ps < Tvol-AV; since Lock D is on
during the modes, from relations Irg, and Hr; we have pg+2.ps<Tvol-AV during these
modes. At the start of No React, pg<Y and up to the end point pg< Y. Hence, since Y <
Eact and pgis a continuous variable, pg < Eact during No React. At the start of React C, pg
<Y and up to the end point pg < Eact —-ART. Hence, since ART >0, Y <Eact and pgis a

continuous variable, ps< Eact during React C.

Release D and React E. From proof for rule a of Release D, ps < Z+U2.ATm during the
mode. Hence pg < Tact, if U2 <(Tact-Z)/ATm. At the start of React E pg< Z.From the
end predicate of React E and relation Irg we have that pg < Tact- RT up to the end of React

E.Hence, since RT >0, Z <Tactand pgis a continuous variable, ps < Eact during React E.

g. In this step we must confirm production rulesc, d and e for the arc (Release, No React). A

proof for rule c is given below.

H sat (p7=0A ps < Stemp)@s(Int) A H sat Release@(Int)
= H sat (ps+2.ps <Tvol-AV A pg < Y)@e(Int).

Proof. Since p7=0at s(Int) and from the invariant of Release Lock D is on (p,g = on) during

C-14

Appendix C

Int then, from Irg, Hry: H sat pg = 0@e(Int). From the upper bound of Release and Hrs the
rise in the temperature from s(Int) to e(Int) is bounded by U1.ATm. Hence, H sat pg <
Y @e(Int), if Ul <(Y- Stemp)/ATm.

Step 3 (Recovery Phase)

a. In this step, we identify all the monitor modes for which a recovery graph is necessary.
These modes are recorded in set REM. A recovery graph is not needed for a mode if after
the end of the mode the safety controller will remain in the monitor phase. Hence, a mode
m of the monitor mode does not need a recovery graph if it satisfies the following
condition:

vH e SEDH: vInt € SI(T): H sat m@Int = 3x € MN.sr(m): H sat Start(x) A Inv(x) @e(Int).
Next we must check the modes No React, React C, Release D, React E and Lock against the

above condition.

No React. The successor of this mode is React C. The conjunction of the start and invariant
of React C gives the system predicate: p;s=a A Vset A pag = on. This system predicate is, in
fact, the invariant of No React. Therefore No React satisfies the above condition. Hence No

React does not require a recovery graph.

React C. The successor of this mode is Release D. The conjunction of the start and invariant
of Release D gives the system predicate: p3g < Z-ATp A pis=a A Vset. However, the only
constraint over the thermometer is given by the end predicate of React C: p3 =
Eact-(ATp+ ART) v p3p < Z-ATp. Clearly, this system predicate does not imply p3p <
Z-ATp. Therefore React C does not satisfy the above condition. Hence React C requires a

recovery graph and is included in the set REM.

As aresult of similar analyses for Release D, React E and Lock, we conclude that Release D

and Lock do not require Recovery graphs, but React E does.
Hence, we define REM as: {React C, React E}.

b. In this step we define the start predicate of the start modes of the recovery graphs.
Start(REC(React C)) = p3p = Eact-(ATp+ ART).
Start(REC(React E)) = p3 = Tact-(ATp+ ART).

C-15

Appendix C

c. In this step, we define the basic recovery strategies for the modes of REM.

For the sake of simplicity, we only consider the recovery graph for React C. The basic
recovery strategy is to lock all Inlets and empty the vessel before the system enters a
hazardous state. The vessel must then remain empty until the safety operator selects the

reset option by setting Safety select to on.

d. In this step we construct the mode graph for REC(React C) and extend PF to cover the
modes of this mode graph.

i. We can identify three tasks for the safety controller: Lock AB, Drain, Empty. During the
Lock AB task the safety controller must lock the Inlets and open SValve, within a duration
U4. During the Drain task, the safety controller must keep the Inlets locked, and SValve
open, long enough to empty the vessel, and then signal the completion of the recovery,
within a duration US. During the Empty task the safety controller must keep the Inlets
locked until the safety operator decides to select the reset option. These simple tasks can

be specified by modes, and this would result in the mode graph below (figure C.7).

REC(React C) = «

Figure C.7. Recovery graph

ii. In this step, we extend PF to cover the mode graph REC(React C).

An analysis similar to that for the start up graph gives the following preconditions:
PF(Lock AB) = pg < Eact-U4.ATm A pg +2.ps < Tvol-2.U4.FmaxD.
PF(Drain) = (ps < Eact-(RT -U4.ATm) A pg +2.ps < Tvol).

PF(Empty) = p7=0.

iii. In this step we construct the mode graph REC(React C).

Lock AB mode

The safety controller is in this mode while LockA and LockB are being turned on, and SValve is

being opened. At the start of the mode the Thermometer reading will be at least

C-16

Appendix C

Eact—(ATp + RT). During this mode SafeLight is at amber or red and LockD is on. The safety
controller must set SafeLight to red, close the locks, open SValve and then must leave the mode.
The safety controller must spend no more than U4 seconds in this mode.

Lock AB= -

(p30 = Eact-(ATp+RT), pss € {a, r} A pg=on, p1s = r A LRset A pyo=Smax, 0, U4).

Drain mode

The safety controller is in this mode while the vessel is being drained. At the start of the mode,
SafeLight will be red. During this mode, SafeLight is at green or red, the locks must remain on,
and SValve open. The safety controller must set Safelight to green and then leave the mode. The
safety controller must spend between L1 and U5 seconds in the mode.

Drain = (p15=T1, P15 € {g, r} A LRset A pyo=Smax, pis =g, L1, U5).

Empty mode

The safety controller is in this mode while the vessel is empty. During this mode, Safelight is at
green and the locks must remain on. The safety controller must leave this mode as soon as
Safety select is at reset or off.

Empty = (true, p;s =g A LRset, py3 € {reset, off}).

e. In this step the completeness and consistency of the recovery graph must be confirmed.

In this example, we skip this step.

f- The proofs for production rule a for the (Lock AB, Drain) and (Drain, Empty) arcs are

sketched below.

Lock AB, Drain arc.

For rule a we show:

H sat (pg<Eact-U4.ATmAps+ 2.ps < Tvol-2.U4.FmaxD)@s(Int) A H sat Lock AB@Int
= H sat (pg < Eact-(RT -U4.ATm) A pg+2.ps < Tvol) @e(Int).

Proof. ps+ 2.p5s < Tvol-AVp@s(Int) and since LockD is on during Lock AB, from relations
Irg and Hry, H sat pg+2.ps < Tvol-AVp@s(Int). From the upper bound of this mode and

Hrs the temperature at e(Int) can be at most U4.ATm greater than the temperature at

s(Int), if U4 < RT/ATm.

C-17

Appendix C

Drain, Empty arec.

For rule a we show: H sat Drain@Int = H sat p;=0@e(Int).

Proof. From the lower bound of Drain dur(Int) must be at least L1; from the invariant of
Drain the Inlet valves are locked and SValve is open during Int. Hence, from Iry, Irg, Ir7, Irg
and Hry, H sat p;=0@e(Int), if the following history predicate is a history relation: dur >

L1 A vt: p19(t) =0 A pog(t) =Smax = p7,1=0.
The proofs for production rule b for the Lock, Drain and Empty modes are given below.

Lock AB mode.

For rule b we show:

H sat (pg < Eact A pg +2.ps< Tvol-AVp) @s(Int) A H sat Lock AB@Int
= H sat (pg < Eact A pg < Tvol)@Int.

Proof. This result follows from the arguments given for production rule a of Lock AB.

Drain mode.

For rule b we show:

H sat (ps < Eact-(RT -U4.ATm) A ps +2.ps<Tvol) A H sat Drain @(Int)

= H sat (pg < Eact A ps <Tvol) v (pg < Tact)@(Int).

Proof. Since LockD is on during Int, if pg +2.ps<Tvol@s(Int) from Irg and Hry, ps
+2.ps < Tvol during Int, hence H sat pg < Tvol@Int. From the upper bound of Drain and
the relation Hrs the maximum rise in the temperature from s(Int) to e(Int) is bounded by
U4.ATm. Hence, H sat pg < Eact-(RT -U4.ATm)@s(Int) = H sat pg < Eact@e(Int), if
RT > (U4+US). ATm.

Empty mode.
For rule b we show:
H sat p; =0@s(Int) A H sat Empty@Int = H sat py=0@(Int).

Proof. This result follows from the invariant from the fact that the locks are on during

Empty.

g. Production rule ¢ holds for (React C, Lock AB) since PF(Lock AB) holds during React C.

C-18

Appendix C

h. In this step, we step we check that the modes of set REM are complete. However, since

we only constructed one recovery graph we will skip this step.

Step 4 (Reset phase)

a. Let us suppose that for this example no reset phase is required. Hence we skip Step 4.

Step 5 (Shut Down Phase and End Phase)

a. Let us suppose that an analysis of the end phase of the chemical plant leads to the

definition of the following mode, precondition and shut down condition.

End Control Mode

The safety controller is in this mode when it will no longer enter the monitor phase. At the start
of this mode Safety Select will be at closed. During this mode, Safelight is at green and the locks
are on. The safety controller leaves this mode as soon as the termination predicate is satisfied.
End Control = {pi3=off, p;s=g A LRset, Q).

PF(End Control) = p7=0.

The shut down condition is py3 = off.

b. In this step, the shut down modes must be identified. For simplicity we assume that there

is only one shut down mode: Empty.

c. For the chemical plant no shutdown graph is required — we can simply add an arc from

Empty to End control.
Since no shut down graph is necessary we can skip the steps d, e and f.

g. Production rule ¢ holds for the paif (Empty, End Control) since the vessel is empty at the

end of the Empty mode.

Mode Graph Connection

The SCS of the chemical plant is produced by connecting the mode graphs of the phases of

the safety controller, by applying the function CSCS (see algorithm 8.1). The resultant
graph is given in figure C.8.

C-19

Appendix C

Lock

\Z

No React React C

>

Figure C.8. Safety Controller Specification

C.3. Mission Controller Analysis

In this section, I will provide an overview of the mission controller analysis of the chemical

plant. This analysis will lead to the production of MED(CP) and MCS(CP).

C.3.1 Mission Environment Description

Here the production of the mission environment description, by following the guidelines of

section 8.4, is discussed.

Step 1
Let us suppose that the actuators of the mission controller consist of a valve for each inlet,

a temperature regulator with power and temperature settings and a valve for OutletE. The

variables that model the state of these actuators are given in table C.5.

C-20

Appendix C

Table C.5; Mission Controller Variables

Notation | Units Name Comments

P32 mm ValveA The extent to which the valve for InletA is open.
P33 mm ValveB As p32, for InletB.
P34 mm ValveD As pi3, for InletD.
P35 Reg_Set RegSwitch | The position of the switch for the regulator.
P36 Reg_Temp RegTemp | The setting of the regulator control temperature.
P37 mm EValve As p3p, for OutletE.

Step 2

An analysis to identify the ranges and classes of the actuators of the mission controller is
performed; the results of this analysis are given in tables C.6 and C.7.

Table C.6: Ranges of Mission Controller Variables

Notation Range Comments
P32 {x€ R| 0 <x <Amax} | Where Amax is the maximum width to which the valve for Inlet
A can be opened.
P33 {x€ R| 0 <x <Bmax} | As p3;, for InletB.
P34 {x€ R| 0 <x <Dmax} | As p3p, for InletD.
p3s {off, on} Where off and on are the two states of the regulator switch
P36 {CL,Y,Z} Where CL, Y, Z are the three settings of the regulator.
p37 {x€ R| 0 <x <Emax} | As p3,, for OutletE.

Table C.7: Categories and Classes of Mission Controller Variables

Variables | Category Class Comments
P32, P33 Controller Continous | The valves are continous variables.
P34, P37
P35, P36 Controller Free No restrictions are imposed on the regulator.
Step 3

An analysis to identify the basic relationships is performed; the results of this analysis are

given in table C.8.

Table C.8: Relationships of Mission Controller Variables

No. | Related Relationship Comments
variables
Iri3 | P16 P32 | P16 = Fi(p32) The flow rate of A into the vessel is given by
applying the function Fp to the value of
ValveA.

C-21

Appendix C

Iriq P17, P33 | p17 = Fi(p33) As Ity 3, for ValveB.
Iry;s | P18, P3a | P18 = Fi(p3s) As Iry3, for ValveD.
Irie P, P12 | p1 =8(T) = At the start of the system lifetime the vessel
P32, P33, | pra=off A p32=0 A p33=0 A p34=0 | Plant select is off and the valves closed.
P34, P37 A P37 =0.) .
Hrys | ps, P35, P36 | Vt: (P36()= on A p3s(t)= p35,0) If the regulator is on for an interval during
A dur > RS which regulator set is constant and the
= duration of the interval is greater than RS
) _ then after the first RS seconds of that
VE(RS): |p3s(t) - ps(t)| < AR) interval the temperature is approximately
the set value.
Step 4

By inspecting the relations of the mission controller (table C.8) and those of the safety

controller (table C.4) we infer that the relationships involving the flow of liquid into the

vessel are influenced by the state of the locks of the safety controller. The dependent

relations are given in table C.9. Hence the relations Iry3, Iry4 and Irys (of table C.8) are

replaced by the corresponding relations of table C.9.

Table C.9: Dependent Relationships of Mission Controller Variables

No. | Related Relationship Comments
variables
Iry3 P16s P26, | P26 =off = p1g = Fi(p32) The flow rate of A into the vessel is given by
P32 applying the function Fj to the value of
ValveA, provide LockA is off.
Ir4 P17 P27, | P27 =off = p17 = Fi(p33) As Iry3, for ValveB.
P33 ‘
Irys P18, P28, | P28 =off = p1g = Fi(p34) As Irq4, for ValveD.
P34

The mission environment description of the chemical plant is given below:

MED(CP) = (T, {py, -, p37), {Cpy, :.., Cpag), (Iry, ..., Irg, Iry3, ..., Irgg) (Hry, ..., Hrig)).

C.3.2. Monitor Relations

In this section the guidelines to identify the monitor relations are followed.

Step 1 (Monitor Phase Relations)

a. The safety controller variables that influence the mission controller are the three locks.

Hence DV = pa, P27 and pag.

C-22

Appendix C

b. The behaviour of the safety controller during the monitor phase is investigated to

identify any relations over the locks. The relations are given in table C.10.

Table C.10: Monitor Phase Relations over Locks

No. | Related Relationship - . Comments
variables
Iry7 | P26, P27, | P26 =Off A p27 =0ff A p2g =0 LockA and LockB are off and SValve is
P29 closed during the monitor phase.
Hry4 P7. P28 p28,0 =off A Wt: p7(t) > 2.AVD During the monitor phase if LockD is off at
= Vt: pog(t)= off the start of an interval and for any time point

in that interval the volume of liquid in the
vessel is greater than 2.AVp then for any
time point in that interval LockD is off. This
relation follows from an analysis of the
React E mode.

Step 2 (Monitor Controller Variables)

a. For the mission controller to perform its mission, it must be able to load chemicals A, B
and D into the vessel. The relation Ir; allows the mission controller to have full control of
the flow of A and B into the vessel. However, the mission controller will have full control
of the flow of D into the vessel only during the intervals that satisfy the antecedent of
relation Hry4 (since when lockD is closed no D can flow into the vessel). Hence to “detect”
such intervals a sensor which allows the mission controller to monitor the status of LockD

is required.

b. Let us suppose that analysis of the system shows that it is feasible to have a sensor which
detects the position of LockD without interfering with the behaviour of the safety
controller.

We introduce a variable LkSensor (p3g) which allows the mission controller to monitor the
status of LockD. This variable has the range {off, mid, on} and the class free. We capture

the fact that LkSensor monitors LockD with the following invariant relation (Irq7):

P38 = P2s.

Step 3 (Modify Environment Description)

The modified mission environment description of the chemical plant is given below:

MED(CP) = <T|a (pl’ seey p38>, <Cp1’ eeey Cp38)7 (Irla seey Ir8’ Ir13a seey Ir17>, (Hrl, ceey Hr14))'

C-23

Appendix C

The interactions between the components of the mission controller, the mission operator,

safety controller and plant are illustrated in figure C.9.

| Mission operator]

O B8 B

OO

l Mission control system]]q—l_[Safety Controller |

Key

a: Plant select b: Indicator c: ELight d:ValveB e: ValveA f: RegSet g:RegTemp h: ValveD i: ValveE
j: LkSensor

Figure C.9. Chemical Plant Mission Controller

C-24

Appendix C

C.3.3. Mission Controller Specification Analysis. -

Here the production of the MCS, by following the guidelines of section 8.5.2, is discussed.

The structure of MRS(CP) s given in figure C.10. The specifications of the modes are given

in appendix B.

Cool
>
G |
Signal off
5 Rea@
]
1
Caern Do y—Comm D —Gcod—(ome?

Figure C.10. Mission Real World Specification of Chemical Plant

Construct Outline Specification

In this preliminary analysis stage, a precondition function, template function and delay

function are constructed for MRS(CP).

Step 1 (Precondition Function)

The precondition of a mode is defined by an analysis of the start and invariant predicates of

that mode, to identify the conditions which must hold at the start of the mode. A typical

C-25

Appendix C

example, the Power on mode, is discussed next. -

Power on = {p1p= off, p7=0 A p12 € {off, on} A pla=g A p2s=off, pi2= on).

From the start predicate p1; = off is satisfied by the state at the start of this mode and from
the invariant predicate p;=0 A p14=g A p2s= off is satisfied by the state at the start of the
mode. Hence, PF(Power on) is defined as p;=0 A pi2= off A pia=g A pas=off.

A similar analysis can be performed to derive the preconditions of the other modes. As
another example, the precondition of Set AB is presented.

PF(Set AB) = p7=0 A pg<Y A pp=start A pi4=g A p1g=0 A pas=off.

Step 2 (Template Function)

The template predicate of a mode is defined by an analysis of the precondition of that
mode and the relations of the mission controller variables. A typical example, the Set AB
mode, is discussed next.

PF(Set AB) = p7=0 Apg<Y A ppa=start A pia=g A pig=0 A pas=off.

Firstly, we consider the state of the valves. Since p;=0 the inlet valves must be closed, but
no constraint is imposed on EValve. Secondly, we consider the regulator since the vessel
contains no liquid, and the temperature is less than Y, the regulator should be off. Hence

TF(Set AB) = IVC A p3s=off, where IVC = p3=0 A p33=0 A p34=0;

Step 3 (Delay Function)

The delay of a mode is defined by an analysis of the end predicate of that mode. At this
early stage the analysis can only determine if the delay will be zero (or non-zero). A typical
example of a mode with a zero delay, Power on is discussed next.

Power on = {p2= of, p7=0 A plzé {of, on} A p1a=g A p2s=off, pi2= on).

The end predicate of Power on is pj;= on; since the mission controller specification can
define an end predicate over py,, a controller graph with a zero delay can be defined for

this mode (see Control on, below).

C-26

Appendix C

Construct Controller Function -

In this section, the controller function is defined over the modes of MRS(CP). With the
mode specifications, conditions over the time bounds of the controller graph (which arise

from the time bounds of the modes of MRS(CP)) are also presented.
Power on

CF(Power on) =

Control on Mode

The mission controller starts in this mode. At the start of this mode, Plant select will be at off.
During this mode, Plant select is at off or on, RLight is at green, ELight is off, the inlet valves
are closed and Regulator is off. The mission controller must leave this mode as soon as Plant
select is at on.

Power on= (p12=off, pjoe{off, on} A p1y=g A pas=off A IVC A p3s=off, pjz=on),

where IVC = (p32=0 A p33=0 A p34=0).
Select Vol

CF(Select Vol) =

Required Vol Mode

The mission controller is in this mode while the operator selects the volumes of A, B and D
required for the production of C and E. At the start of this mode Plant select is at on. During
this mode, Plant select is at on or start, RLight is green, ELight is off, the inlet valves are closed
and the Regulator is off. The mission controller must leave this mode as soon as Plant select is
at start.

Required Vol = <p12 =on, plZe{on, Start} AP1a=E8AP2s= off AIVC A p3s= off, P12= start).

Set AB

- - o
- .o

CF(Set AB) =« Valve AB\’_"’

C-27

Appendix C

During this mode graph, Plant select is at start, ELight is at off, ValveD is closed and the
regulator off. Inv(CF(Set AB))= pip=start A pas=off A p34=0 A p3s=off. This will be
abbreviated to InvRAB.

Valve AB Mode

The mission controller is in this mode while ValveA and ValveB are opened to fill the vessel with
A and B, and EValve is closed. At the start of this mode ValveA, ValveB and ValveD are closed.
During this mode, InvAB holds and Indicator is at green. The mission controller must open
ValveA to the extent required by function f4 and ValveB to the extent required by the function fp,
close EValve and then leave the mode. The mission controller must spend at most Ul seconds
in the mode.

Valve AB = (IVC, InvAB A pys =g, SV, 0, U1),

where SV = pa2=fa(P9, P10) A P33 =1B(P9, p10) A p37=0.

Load AB Mode

The mission controller is in this mode while the required volumes of A and B are being loaded
into the vessel. During this mode, InvAB holds, the Indicator is at green and EValve is closed.
The mission controller must start to close the valves and then leave this mode. The mission
controller must spend between Lt(py, p1g) and Lt(po, p1g) + AL seconds in the mode.

Load AB=(true, InvAB A p1s=g A p37=0, CAB, Lt(py, p10), Lt(po, p10) + AL),

where CAB = pn7#fa(P9, P10) v P33#fB(P, P19)-

Reset AB Mode

The mission controller is in this mode while the valves are being reset. At the start of this mode
the Indicator is at green. During this'mode, InvAB holds, the Indicator is at green or amber,
EValve is closed, and ValveA and ValveB are not both closed or the indicator is at amber. The
mission controller must close ValveA and ValveB, set the Indicator to amber and then leave this
mode. The mission controller must spend at most U2 seconds in the mode.

Reset AB =

(p14=g, IVAB A puc{g, a} A p37=0 A (P30 v p337£0 v pra=a), VC A p1a=a, 0, U2),
where VC = (IVC A p37=0).

C-28

Appendix C

Timing Constraint: U1+ U2+ Lt(py, p1g) + AL < Su(py, p1g)- -

React AB

During this mode graph, Plant select is at start, ELight is at off and ValveA, ValveB,
ValveD and EValve are closed. Inv(CF(React AB)) = pjp=start A pys=off A VC. This will
be abbreviated to InvRAB.

Reg on Made

The mission controller is in this mode while the regulator is being set. At the start of this mode
the Regulator is off. During this mode, InvRAB holds and RLight is amber. The mission
controller must set the Regulator to Y and then leave this mode. The mission controller must
spend at most U3 seconds in this mode.

Reg on ={p3s=off, InVRAB A pyy=a, RY, 0, U3), where RY = (p3s=on A pzs =Y).

React C Mode

The mission controller is in this mode while a reaction to produce C is being activated. During
this mode, InvRAB holds, RLight is amber or red, and the Regulator is set at Y. The mission
controller must turn RLight to red and then leave this mode. The mission controller must spend
between RS and RS+ ARS seconds in the mode. (Hr;3 ensures the temperature is at Y.)

React C = (true, InvRAB A pjge{a, r} A RY, pis=r, RS, RS+ ARS).

Timing Constraint: U3 +RS+ ARS < SH.

Produce C

CF(Produce C) =

Reaction C Mode
The mission controller is in this mode while a reaction to produce C is in progress. During this

mode, InvRAB holds, RLight is amber or red and the regulator is set at Y The mission

controller must set RLight to green and then leave this mode. The mission controller must

C-29

Appendix C

spend between CL(po, p19) and CL(po, p1g) + AC seconds in this mode.

Reaction C = (true, InvRAB A p1s € {a, r} A RY, pia=a, CL(p9, p10), CL(p9, p19) + AC).
where RC = (p3s=on A p3s =CL).

Cool

CF(Cool) =

RegC on Mode

The mission controller is in this mode while the regulator is being set to C. During this mode,
InvRAB holds, RLight is amber and the Regulator is set at CL or Y. The mission controller
must set the regulator to CL and then leave this mode. The mission controller must spend at
most U4 seconds in the mode.

RegC on = (true, InvRAB A pig=a A RC v RY, RC, 0, U4),

where RC = (p3s=on A p3s =CL).

Cool down Mode

The mission controller is in this mode while the vessel is being cooled down after a reaction.
During this mode, InvRAB holds, RLight is green or red and the Regulator is set at CL. The
mission controller must turn RLight to green; and then leave this mode. The mission controller
must spend between RS and RS+ ARS seconds in the mode.

Cool down = (true, InvRAB A pse{g, 1} A RC, pia=g, RS, RS+ ARS).

Timing Constraint: U4+RS+ ARS < Cu.

Set D

During this mode graph, Plant select is at start, ELight is off, ValveA and ValveB are
Closed, Regulator is set at CL and EValve is Closed.

Inv(CF(Set D)) = ppp=start A pss=0ff A p32=0 A p33=0 A RC A p37=0. This will be
denoted by InvD.

C-30

Appendix C

Wait D Mode -

The mission controller is in this mode until LkSensor is at off. During this mode, InvD holds
and RLight is green. The mission controller must leave this mode as soon as LkSensor is at off.
The mission controller must spend at most U5 seconds in this mode.

Wait D = (true, InvD A p14 =g, p3s=0, 0, U5).

Valve D Mode

The mission controller is in this mode while ValveD is opened to fill the vessel with the required
volume of D. At the start of this mode LkSensor is at off. During this mode, InvD holds and
RLight is green. The mission controller must open ValveD and then leave the mode. The
mission controller must spend at most U6 seconds in this mode.

Valve D = (psg=off, InvD A p14 =g, p3¢=Dmax, 0, U6).

Load D Mode

The mission controller is in this mode while the required volume of D is being loaded into the
vessel. At the start of this mode ValveD is open. During this mode, InvD holds and RLight is
green. The mission controller must start to close ValveD and then leave this mode. The mission
controller must spend between Ld(p;1) and Ld(p;;) + AL seconds in this mode, where Ld(p1;)
gives the time required to load py; dm? of D into the vessel (i.e. Fi(Dmax).Ld(p;;)= p11)-
Load D= (p34=Dm, InvD A p14=g, p34<Dm, Ld(p11), Ld(p1;) + AL).

Reset D Mode

The mission controller is in this mode while the valves are being reset. During this mode, InvD
holds and RLight is green or amber, ValveD is not closed or RLight is amber. The mission
controller must close ValveD, then switch RLight to amber and then leave this mode. The
mission controller must spend at mbst U7 seconds in the mode.

Reset D = (true, InvD A pue{g, a} A (p337#0 v pa=a), VC A puu=a, 0, U7).

Timing Constraint: U5+ U6+ U7+ Ld(p;1)+ AL+ ARS < SD.

React CD

--
- -y

C-31

Appendix C

During this mode graph, Plant select is at start, ELight is off, ValveA, ValveB and EValve
are closed.

Inv(React CD) = piz=st A pas=off A VC A p3s=on. This will be abbreviated to InvCD.

RegE on Mode -

The mission controller is in this mode while the regulator is being set to Z. At the start of this
mode the Regulator is set at CL. During this mode, InvCD holds, RLight is amber, and the
Regulator is set at CL or Z. The mission controller must set the Regulator to Z and then leave
this mode. The mission controller must spend at most U8 seconds in this mode.

RegE on = (RC, InvCD A pyy=a A (RZ v RY), RZ, 0, U8),

where RZ = (p3s=on A p3s =Z).

React E Mode

The mission controller is in this mode while a reaction to produce D is being activated. During
this mode, InvCD holds, RLight is amber or red and the Regulator is set at Z. The mission
controller must set RLight to red and then leave this mode. The mission controller must spend
between RS and RS+ ARS seconds in the mode.

React E = (true, InvCD A pyse{a, r} A RZ, pyy=r, RS, RS+ ARS).

Timing Constraint: U8 +RS+ ARS < Ru.

Produce E

CF(Produce E) =

Reaction E mode
The mission controller is in this mode while a reaction to produce E is in progress. During this
mode InvCD holds, RLight is green or red and the Regulator is set at Z. The mission controller

must set RLight to green and then leave this mode. The mission controller must spend between

DL(p;;) and DL(p1;)+ AD seconds in this mode.
Reaction E = (pia=r, InvCD A pue{g, 1} A RZ, p1a=g, DL(p11), DL(p11)+ APd).

Set Collect

C-32

Appendix C

CF(Set Collect) =

Collect mode

The mission controller is in this mode until the operator selects collect. At the start of this
mode, Plant select is at start. During this mode Plant select is at Start or Collect, the Indicator is
at green, ELight is off, ValveA, ValveB, ValveD and EValve are closed and the Regulator is set at
Z. The mission controller must leave this mode as soon as Plant select is at collect.

Collect = {pi2=start, pjp € {start, collect} A pia=g A VC A RZ, p;; =collect).

Empty

During this mode graph, Plant select is at collect, RLight is at green, ELight is off, ValveA,
ValveB and ValveD are closed.

Inv(CF(Empty)) = pia=collect A pi4=g A pas=off A IVC. This will be abbreviated to
InvEM.

Release E mode

The mission controller is in this mode while EValve is being opened. At the start of this mode,
EValve is closed. During this mode InvEM holds and the Regulator is at Z. The mission
controller must open EValve and then leave this mode. The mission controller must spend at

most U9 seconds in the mode.

Release E = (p37=0, InvEM A RZ, p3;=Emax, 0, U9).

Drain E mode

The mission controller is in this mode while the vessel is emptied. At the start of this mode
Evalve is fully open. During this mode, InvEM holds and the.Regulator is at Z. The mission
controller must start to close EValve and then leave this mode. The mission controller must
spend between EM and EM + AE seconds in the mode, where EM is the maximum time
required to empty the vessel when EValve is open and Inlet valves are closed.

Drain E = (p37=Emax, InvEM, p3;<Emax EM, EM+ AE).

C-33

Appendix C

Reset E mode . -

The mission controller is in this mode while EValve is closed. During this mode, InvEM holds.
The mission controller must close EValve and turn the Regulator off and then leave this mode.
The mission controller must spend at most U10 seconds in this mode.

Reset E= (true, InvEM, VC A p3s=off, 0, U10).

Timing Constraint: U9+ U10+EM+ AE < Eu.

Signal on

CF(Signal on) =

ELight on mode

The mission controller is in this mode while ELight is being turned on. At the start of this mode
ELight is off. During this mode, Plant select is at collect, RLight is at green, ValveA, ValveB,
ValveD and EValve are closed and the Regulator is off. The mission controller must switch
ELight on and then leave the mode. The mission controller must spend at most SGu seconds in
this mode.

Signal on = (pzs=off, prz=collect A piy=g A VC A p3s=off, p2s=on, 0, SGu).

Rerun

CF(Rerun) =

More E mode

The mission controller is in this mode while the operator decides if more E will be produced. At
the start of this mode Plant select is at collect. During this mode, Plant select is at collect, off or
on, RLight is green, ELight is on, ValveA, ValveB, ValveD and EValve are closed and the
Regulator is off. The mission controller must leave this mode when Plant select is either off or
on.

More E =

{p12=co, p1z € {collect, off, on} A p1a=g A pzs=on A VC A pzs=off, p1» € {off, on}).

C-34

Appendix C

Signal off .

CF(Signal off) = %

ELight off
The mission controller is in this mode while ELight is being turned off. At the start of this mode
ELight is on. During this mode, Plant select is at on, RLight is green, ValveA, ValveB, ValveD
and EValve are closed and the Regulator is off. The mission controller must switch ELight off
and then leave the mode. The mission controller must spend at most SGu seconds in this
mode.

Elight off = {p2s=on, pz=on A pia=g A VC A p3s=off, ps=off, 0, SGu).

End

CF(End) =

Closed Mode

The mission controller is in this mode when no more E will be produced. During this mode,
Plant select is at off, RLight is green, ValveA, ValveB, ValveD and EValve are closed and the
Regulator is off. The mission controller must leave this mode as soon as the termination
predicate holds.

Closed = (true, p12 = of A pia=g A VC A p3s=off, Q).

Controller Graph Connection

The mission controller specification of the chemical plant is produced by applying the
function MCGT to the function CF and mode graph MRS(CP). The resultant graph is
given in figure C.11.

C-35

Appendix C

g = = = o
fé\
N =
=
(=}
=]
- & o = 4

a: Power on b: Select Vol c: Set AB d: React AB e: Produce C f: Cool g: Set D
h: React CD i: Produce E j: Set Collect k: Empty I: Signal on m: Rerun n: Signal off.

o: End
Figure C.11. Mission Controller Specification

C-36

Appendix B

system must not be in a hazardous state. By the end of the phase, the collection of chemical

E, must have been completed.

Phase Analysis -

For the chemical plant, it is not necessary to decompose the high-level phases any further.

Mission Phase Specification Check
The mission phase graph is is presented to the customer, who raises the following (new)

point to the analyst: “The system should be able to perform a sequence of reactions”.

To allow multiple reactions during the system lifetime, the analyst modifies the phase
graph, to that given in figure. B.3. The specification of the new phases is also refined by

introducing the real world variables.

0: Power up ,‘—@ Collect
.....) [

Figure B.3. Chemical Plant Mission Phase Specification

Power up phase
At the start of this phase the vessel will be empty. While the system is in the phase the vessel

is empty and RLight is at green. The system leaves the phase as soon as Plant select is at on.

Select phase

At the start of this phase the vessel will be empty and Plant select at on. While the system is
in this phase the vessel is empty and Plant select is at on or st-art and RLight is at green. The
system leaves the phase as soon as the requested volumes of A, B and D have been

selected.

Produce phase. As before.

B-16

