Managing Active Object Scalability
on Distributed Memory

With a Case Study in Parallel VRML

Thomas Rischbeck
Advisor Prof. Paul Watson

201 28530 ©

Thesis 7338

UNIVERSITY OF
NEWCASTLE

Department of Computing Science
University of Newcastle upon Tyne

Thesis submitted to the University of Newcastle upon Tyne in partial fulfilment of the
requirements for the degree of Doctor of Philosophy in Computing Science, January 2003.

Abstract

Abstract

The de-facto standard for programming distributed memory parallel architectures
are the PVM and MPI message passing libraries. While they are geared towards
maximum efficiency, their low level of abstraction makes the programmer’s task
etrot-prone and reduces application portability. SODA is a novel programming
model that presents a much higher level of abstraction and manages most low-level
distribution and parallelism details implicitly. SODA is based on an extension of
the active objects paradigm.

This work is structured into two main parts. In the first part we present a novel
data-flow synchronisation mechanism for active objects that increases ease-of-use,
efficiency, liveliness and correctness compared to previous approaches. SODA
active objects are the units of concurrency and distribution and they make the
underlying parallelism largely implicit. Details, such as mapping, communication
and decomposition are transparent. This reduces programming overheads and
increases portability. SODA is supported by a source-to-source translator and a
Java runtime library. A set of micro-benchmarks is used to evaluate efficiency
trade-offs.

The second part is a demonstration of SODA’s benefits in the light of a complex,
real-world application. It shows how SODA’s active object concept can support
object-oriented programming paradigms and therefore becomes a viable solution to
large-scale real-world programs. Our example application is a parallel VRML
execution engine implemented on top of SODA. We can observe a gain in
productivity and programmability that outweighs the performance trade-off
introduced by SODA’s high level of abstraction. Beyond a proof-of-concept for
SODA, the examination of potential parallelism in the VRML execution model is
valuable in its own right. Since this is novel work, it is explored in more detail than
would have been required for a mere case study.

Acknowledgements

Acknowledgements

This work would not have been possible without the encouragement and help of
many other people. First and foremost I'm extremely grateful to my supervisor
Prof. Paul Watson. He spent unbelievable amounts of time and patience to help me
find the right way forward. There was always some freshly brewed tea in his office
and room for discussion of the newest ideas. He took my constant pushing of
deadlines with a very stoic mood, often spending his weekends with cotrections
and revisions. Thanks also to Prof. Pete Lee and Dr John Lloyd, who were
providing regular feedback on the work and pointing out new directions to me.
John was also instrumental in ensuting I could stay on in Newcastle after my initial
ERASMUS exchange year. Hinar Vollset provided great compatative work by
developing a parallel VRML server on the basis of MPI. Bin Qu developed VRML
models to test with the system.

My friends Dr. Budi Arief, Dr. Arnaud Simon, Richard Achmatowicz, Sam Aaron,
Ram Chakrabarti, Dr Savas Parastatidis, Dr. Jim Webber and Dr. Denis Besnard
provided continuous support, encouragement and many fruitful discussions. Estelle
Chatard was another important contributor to my success, always there when
needed and she never failed to motivate me and push me forward when I was
desperate. Thanks for the fun time and the nice environment to everybody at
Leazes Terrace, especially the co-wardens Chew, Celine Fitzmaurice, Mel Whewell
and Ehsan Mesbahi. I’'m indebted to everybody at HP Arjuna Labs where I worked
for the past year. Dave Ingham was a great team leader, always supportive of my
work. Not only could I access the infrastructure for my research work, but I also
received support and flexible spare time to finish my PhD work.

In addition I would like to express gratitude to my parents and family in Germany.
My uncle Hans Steigenberger was frequently donating financial assistance for the
“poor researcher” and great to discuss every aspect of life-except for computers.
My sister and her family were unbeatable for delivering bad jokes.

This work was funded for three years by the Engineering and Physical Sciences
Research Council.

ii

Table of Contents

Table of Contents

Chapter 1 — INtrodUCHON ..cucuerersesimsirssssssssssisssisssssisssssssssssnsasssassssssasssssasassssaes 1
1.1 Parallel COMPULALON c.cuvuvucrvssusesssssmmimsisssssssssssmssssssisissmsssisssmmssinmmisssssssssssssssssssssssassssssss 1
1.2 . Patrallel ALChitECIULES vuiuunsiussossessensersenssosssusprasaressssnsssasenssssssssssiissssisasessitsisasonsorsbasonsansss 3
1.3 Towards Scalable and Affordable Supercomputing ..., 4
1.4 Explicit vs. Implicit Parallelismccoccuimemiimiiimmiin, 6
1.5 Object-Oriented Programming ... 8
1.6 Concutrent Object-Oriented Programming ... 9
1.7. .. Thesis CONMIDUHONS 1usicrssirssricassssisibirisnsssnsssusissdssossvonsoss nichstsacionsatinesssssonssstorsssasioasys 10
1.8, . Dissertation OULHIIE custssssessrsasusesssessssssivmasiisitoatusisividagibisessonsisissbussessoniisiseovessosn 12
Chapter 2 — Review of Related Work......ccccerueriininnnniiisnisinnnsinnnsnnnssninieien. 14
2.1 Parallel Programming Models.......c.cvuummrsenissnsinssmsssisssissmsssinmmssissiasssisscssamsismsnnes 14
2.1.1, . Skillicotn’s ClassifiCation...... sustiidiis. b duiiicsvins it doevissbsdisstborasossiisoossy 14
2.1.2 . Convetting Sequential into Parallel Progtamsccsisisisimmmamsnmmsenssisssssens 15
213 Lleclarative LAGOUBIES iismoinconssesorsiinbebbiiiossditiidis slibshsmtbiihoesssassposviethayosors 16
2.1.4 Distributed Memory — Message Passing..........c.cocvcevreniennuninieriennasnsssnssissssns 17
2.1.5 . . Shaged MOMOEY = THICAS ...ocrmmsvrrrssisttiidibriistoshbsdisietafostortssosmtirisorsessasrs 18
2.1.6 Concurrent Object-Oriented Programming (COOP)c.ccvvuvirsirsrnsessarinses 20
2.7 . Disteibuted Cbject Modeis . rammaabEtimmled St it bt dinse 21
2.1.8, Formal Modelling of COMIP, i ldit bt i aimt NGk bivnistonihassssssbostissss 21
2.2 . Exploting the Active Objects Design Space..asiiiuibiiaiiniimbmiimn s 21
a2 DI ANEOAOIIN oscisssssssecssoremmin s A M ST A S cesvinbrheabinessinss 21
22.2... . Clyect TletetOgensily .. .cimsiapsvivss il MR RS S NOSTH A chuserssorsivetis osssy 24
2.2.3 .. Jotra-Obtect CONCHELPTIOT saevisssrmmrsis it seiibeisss dromtssirorss 26
224 ;. Message Acceptance PONCICS ..vimwesiiurmmeStabiTe it ddAbitimnssisbesbesinssvisy 28
2.2.5 . 5 Comtumcation PIOIOCOLS v s misirbamemond i A T s ssn S s e ot 33
2.3.. Runtithe Tssues for Active ODIECHE o e ihiGiiln b it A B s tione 38
2.3.1 - Gramalanity Comttal < emmemsonsmoein i b btistoms b sbiss et ssvioskiiboserssssises 38
2.3.2. Object Mepping. Lok .. iaisnuiih bl iRt in il b Bt cosvilldbessoosss 40
233 OO E I OICTOR . isionsiinsiisiinsmicsisssimishosbARAR T D AR Skoba b seviad b o244 42
24 .. Sumraaty aa L oRCImMON.. o wmmrsisssimmsteont sl AR R s et ihssusess 42
Chapter 3 — The SODA Model and Languagec..ocvvernevisisnsucsnssnssnseseesense 46
3.1 . Motivation anyd Cettienr. e il Sustlh VSRl A AEIRA L st siiarinss 46
3.2 . Object H etetmgenmits . oo b immssssriir s s o ST ket ssomodnsbissesesis 48
3.2.1 . SODA Kctive CODSEI ottt S SR L fadcaens 48
3.2,2 . SODA Passive CBEcts i i s, B W fe st errarsintibiaes 50
3.2.3. . Programumning MethotOlogy w.wwsmmmimibiisisistinimbetimtine st 50
3.24 Dual Semantics of Active and Passive ODbJects ...c.iiaitimmmismmsinsrmisons 52
3.3 . Intra-Ohiject COnCULIBHCT v s MaiRm Tk DRkt SR o MR v o3
3.3.1. . . Atonmic Active LIDIOCIB. o ummimnsimmbledbriiRasi b o i s s Rarsissnss btasssss 54
3.3.2. Detached Methods...ouabtiliastt moniiive sl ardiial sl tilasminme 55
3.4 Inter-Object Concurrency and Synchronisation ..., 58

341 FULULES ittt ssssssssssssssssssssssssssssssssossesssassssssssessssssans 59
3.5 FUNNEIS st sisssssssesssssessssssssnessses 63
3.5.1 Design Patterns in FUNNESc.cvvrrvnnsrssnrisnssiinnsnssinesssnssssessssssssssisesssssssssenns 66
352 Custom FUNNELS w.cciiiitircesniiisesssssiscsssssssssssssssissssssssssssssssssssesssssssssenns 67
3.6 Message AcCEPLance POUCY ...ierrrmrimssisssismmssssssmesssssssesssssssisossssssssssssssens 68
3.6.1 SODA Method GUALASuceurererimssresmeissssisssssissssssssssssisssssssssisssssassssassssass 68
3.6.2 Absence of the Inheritance ANOMAlY...ccuvvvcveemsreceesmesnsivnsecssessmessesssssssnnaes 70
363 Expressive Power according to Bloom’s Cntena ... 73
3.6.4 Self-Invocation and GUALAS ... 74
3.7 Parameter Copying OptimiSations . 74
3.8 Evaluation....cimmsssmissessssssissns et 75
3.8.1 Types of Parallelism Suppotted...cmmmmmssssismsssssmmnsssssssssssssssssmmmsassionss 15
3.82 Example Problems....iimmnimmmssmsiiios 78
3.9 CONCIUSION i tttttieecrmrresirassssssrssssissssrssstesesssssssssssesstssssssssimssssssmsssbasssssssssmsssssassatsssssasss 84
Chapter 4 — Implementing SODA....... sassessnsoasenes ..85
A1 OVEIVIEW..ouitromrrririerissnssessssssisssssissssssssssaisssamssssssmssmmissstsssssissssmsss e sasisssssssssssssssssasssss 85
411 The Application Progmmrmng Language: SODAoiconnnnscinresnnnns 85
412 The System Implementation Language: Java...cerinmmmnsmssssissinssoninins 86
4.1.3 The SODA Abstract Machine ... 88
4.1.4 Object Factories and Bases ..o, 89
41,5 PU-inl SEIVICES...cuvvvirrrmrncerssssmssseessmsssssssssssssssmsssstssisesssssssmsssmssssssssssssssesssnrssss 89
4.1.6 Program EXecution.....rsermrsisisssismimsssssmssssssmsssisnsmsssimsssssesens 91
4.2 SODA Source-to-Source Translator ... 91
42.1 Simple Translation EXample .t 92
4.2.2 Skeletons and BodIes.......ommrimmmmmmssissimmissnsisssssssssssins 93
423 ActiVe ODJect PLOKIES.ccoirvverrrummrmsermsessssessnessssnmsssssismmsssssessssssssssssssasssssssssnssssess 9%
4.2.4 Request Meta-Classes .., 95
4.2.5 . Dynamic Object Creation. s 95
42.6 Dealing With INheritance. ...t 96
4.3 Method Invocation in SODA........ccormmnmmimmmssmmssssssmmsssssssssssssismmsssssinssssssses 97
4.3.1 Remote INVOCALON wvivicrerssmssessiosiensmsssrsssss sasssssssssasssssimssmmssrissssmsns 99
43.2 Implementation Of FULULES ...oerersmsnsisrmsssmssssssssssmssssssmsssmssssssssssssisassns 101
4.3.3 Funnel Implementation ... 103
4.3.4 Local InVOCAtHON. ciruerissnsrrsssssressssssssssssinmissises b s s s arasens 104
4.3.5 Inlined InVOCAHOM. . ceimuimseessrisssseassssssnsmssssssssssssssessssssssssssssstssssanassassssssssans 105
4.3.6 Self-INVOCALON wuuuurvvcrsissriesissensssssisssssssssssss s ssasssssssisssssssssssssssssssssssssses 108
44 Active Object MUltipleXingcoeumcsismmnnisssmismsssssmsssssmsmsisissnssmsssssssssses 108
441 Base-Local Scheduling.....coccuveeuccmnismmmmesmsssssinsensmssss 109
44,2 Guarded Methods and Delay QUEUESouvurerrermssmsssmsssssssssssssssscsmsmmanssasssss 110
443 Detached Methods..... s s 113
4.4.4 LIVENESS ISSUES.covimmiisninssscsssssssmsemnrissssssssssstsssssasssssssssssssssssssssssssssssssass 114
4.5 Improved Object SerialiSation i 114
45.1 Overview of Java Object Serialization ... 115
452 Other APProaches v g 117
4.5.3 SODA SetialiZatioN.miimecsrairssmmisssssessisossssssssmsstssssssssisssmse 117
4.6 TCP/IP TIANSPOLE SEIVICE covvvvvrrrsrsssrsesssssssssssisssssssssssssssssssessasessssssssssssssssssssssssassssses 118
47 Load Balancing SEIVICE wuwmmmmmmmmmmssssssimmssssssssssssssssmnssssssssssssssssins 119
4.8 Future Work and ConclusionS ... 121
Chapter 5 — Performance Results.... 123
51 Experimental Environment s 123
52 Remote Method Invocation Overheads ... 124

v

5.3 Collocated Method INVOCAHOMNvmersimiesirensiressarissssssssssssssssesssssssssessessassesssssssens

127

5.4 Active Object Data SHUCLULES ...uuurvursmmimmssssmssssisssssimsssssssssssmmsssssimsens 129
5.5 Serialisation Performance ... mrrmmessssessssss versnesrennens 133
5.6 Guarded Method INVOCAOMN «...evcesrerssrsnssssssssssssisemssmsssssissassassessssssassrssssosssseas 134
5.7 CONCIUSION uurtrierirerrsensenississsssssssssessassssssssessssssssssssssessessssssssssinessssssssssssstonsonsessens 135
Chapter 6 — Scalable VRML Executlon in SODA 137
6.1 OVEIVIEW e srrerersssesssssssssssssssssssssssosetsessssssssssssssssessssnsssessossstsssasssssassssssnssnsssssnssass 137
6.1.1 Problem StatemEnt .oeevereeversssensaionsersssssisississssisssssssssorsessssenmmssarsssessassssssess 138
6.1.2 A Client-Server based Usage Model for VRMLcouuvcirecinsreenmersens 140
6.1.3 SUMMALY urvessesmmmsssmmmssssssssisisssnsssssssssnsasessssssssmssssssssssssssssssssssismsssssssssssssssssasssss 142
6.1.4 Systemn Scalabilitycvisererirmnssremsmssssssisssssssiesssssssirmsssssisss—s 143
6.2 Parallel VRML Execution........vernes O 144
6.2.1 Fundamental VRMLI7 CONCEPLS couvrrerensrimmmsimmmsmssssssessssssssssssisarsssssesssssssens 144
6.2.2 Potential Parallelism in the VRML Execution Model......coomvveeeevererrssesenns 155
6.2.3 Mapping of the VRML Execution Model onto SODAc.uvuceeiniiinns 157
6.3 Client-Server ArChitECIULE covnvmmisirrsiissrsssenmessssnsssssressssresesessessrsesens 160
6.3.1 Requirements and APProach ..t ssssssssenssssens 161
6.3.2 Server-side CUllNg ..o 161
6.3.3 PROTO encapsulation............ e b st s s s ra bR aes 162
6.3.4 Update Accumulation AlZOLithiM..iseesimssssecnnssssssessssssnnsessssssssssssssssnes 165
6.4 Client-side implementation.....sississress rerereeereeansenasnes rr 165
6.4.1 BAT errrervssrenesssssssssessnsssssssssssssssssssssessensessens e bt basren 166
6.5 Performance RESUILS..ccccrvvsrrrimemrenserencsssesersessaseseresesesssssssssnssenenesesssnns rrererseseessasans 166
6.5.1 Parallel EVent CascadeS.rmmrmmmsnssessessersesssssesessssssessessesssseesnsesnes 166
6.5.2 Client-Server Update MeChanismucucmccmenerenemnniscsssseessesssssssenees 168
6.6 Summary and Conclusion .. esssesesseres 170
Chapter 7 — Conclusion ' 172
Appendix A — NET-VE Related WorK......oovsueessnsassssasseesersasasessssasssssssonsessens 175
A1 SCAIADIHLY..ovvveeursmsusssmsssssmsssssmssssssssmmmsssssassssssssssssesssssssessssssosssssssssssstsssssemesessssssssssssssans 175
A2 ENOUES ovverriererriesmesessasssssassassssssssasssens e e s besesene rersteresnsennsaesens 176
A3 Area of Interest (AOI) i 177
A4 Levels of Detail (LOD) mmimmmmmmmssssisssssssmnsssssns 178
A5 CommuNICation SHUCLULE wvrinirierssisissssirsssnissessessnesssssossessessesssnesseness 180
A6 Multi-user VRML...ocovviossinmmnissiississssssisssnssssssnssssssesmsesssssssessessssensessesessens 183
BibHOGIaphy ...covsscscsssssassesssssssnsasaesesssasassesssssnsasassasaesesssnssnsnsassass . 185

List of Figures

List of Figures

Figure T-1MINIEY Rasiwpte architeehines ... ussinmomsisissosssrisassssnismsmsanssionssossssaseioss 3
Figure 1-2 A “Recipe” for Explicit Parallel Programming..........ccccoouvuvveiincnrinniineenns T
Figure 2-1 Skillicorn’s Classification of Parallel Programming Models 15
Figure 2-2 Orthogonal vs. Integrated Object Model...........ccouuvermninnrinssrenrinnsinnnnnn, 23
Figlite 2-3- Tl A ciOR MO, &3 Jiari cveonssissstataitinaions s pumsenssmsisisispassssibssssagepssiss 24
Fiptite 28 Cantiitiabins BT i & oieirsisisctotoasiiaitsnsnsossss sossenss smeomsirshesisssssorssspssasses 35
Figure 3-1 SODA ATHYE OBt BOROMY .uvoerusssmimerssssssirsesmmsissssmssassasasssonsssssasssssssss 48
Figure 3-8 Inteitate 0B anACTVE ClaES, .. neitnmsiimmssmnistisisiormiossssssmgrssins 49
Figute 3G ALHve LIDIEEE EnSOaftation. o immmiismnessimimaise s tmssissenipsnssssigesss 50
Figure 3-4 SODA Programming Methodology ... 52
Figure 3-5 A Timer Active Object with Detached Method. ..o, 58
Figure 3-6 Request-Reply Message Passing between Client and Server Active

) T e e L e e R e S e el S 59
Fiprive 357 Dard Deavtind @ Tmmel. . oo miumsmstamdsiitssuassssiom ittt 64
Figute B PUGTETIICIREION | ivixscisisamsson cthrtissassmleieirnssstesias issnsstisstinssomstibesss aismEbsaomonss 65
Figure 3-9 Dynamics of a SODA Active ODBjJECL.ccocvumrimmiininmmnsisissssessssssissessse 66
Figure 3-10 Priority of Message Processing at an Active Object..coouvverrvenrrennn. 69
Figure 3-11 Pipeline Parallelism with Active Objects.........c.ooc.umisisnsscessssissssnnee. 77
Figure 3-12 Recursion with Future Subcallsc.ccovvmrvirivinisivnninivcnncssisisnnneiees 83
Figure 3-13 Merging of Sublists through Funnel Operationcccocvvvvininvvivinnen, 83
Figure 4-1 SODA Runtifme Systemm StruCtUIC. .uemrsremssssssrsssnssssssssrssasmmassosssssorsssosssess 89
Figure 4-2 Transport Service Interface Class Diagram.........covveesssiinincsicsssnsnnss 90
Figure 4-3 Meta-class Generation by the SODA Translatorccoovivviivnissinnnnn, 93
Figure 4-4 Relation between Proxy, Skeleton and Body........ccccovevviviiiinriiiinnncisininen, 94
Figure 4-5 Inheritance Support in the SODA Compilerococovvvvivviirinsccrnriiinnnnnne 97
Figure 4-6 Activity Diagram for an Active Object Method Invocation. 99
Figure 4-7 Request path for method execution from client to server active

OBIOEE iih stk asatssinsransss AT A SRS R S o ER A Rntp o spp s RO HEFODS 99
Figure 4-8 Reply from server to client after method termination..........c.cvveeerees 100
Figure 4-9 Client-side view Of A LEOLE IVOCATION . c1rsusrsisni serarmarissetosisitas iisiisisses 101
Figure 4-10 Server-side Future controlled by a Funnel..........cccooovmniinnsmiiine: 102
Figure 4-11 Sequence diagram for an inlined inVoCation. ... 106
Figure 4-12 Base-Local Thread-Multiplexing of Active ODbjectscccouumimrvmmuisnne: 109
Figure 4-13 SODA FastSerializable Intetface ... 118
Figure 5-1 Remote method invocation Jatency...........nsssssssssssiss, 126
Figure 5-2 Effect of Nagle’s algorithm and buffered sending on remote

AT OCNIOI BALOIIGY .sos i3 i¥s risbussmtsessmsesosnssssssnssssbasataiabsisassraanmson rensspasariansasinansssssssss 127
Figure 5-3 Overheads for Different Invocation Techniques.........coovovvviininniiinnnn. 129
Figure 5-4 Round-robin distributed active object array ... 130

vi

Figure 5-5 Tree recutsion for random distributed nodes. ... 132

Figure 5-6 Pipeline Performance.......curvensnesrssssonsennns Snivsssessnssesnssssssrssssnsssssste 133
Figure 6-1 Conventional usage mMOdel. ..., 140
Figure 6-2 Client-server based usage model. ... 142
Figure 6-3 Specification and Example Instantiation of the Box node.....coocconenns 145
Figure 6-4 Specification and Example Instantiation of the Cylinder node............. 146
Figure 6-5 Specification of the Transform node ... 146
Figure 6-6 A simple VRML file. v 147
Figure 6-7 Several Shape nodes and Transform nodes.......umeneninssisnns 148
Figure 6-8 Simple key-framed animation in VRML. c...ccouurunmmisrsssssmmmnmssssmsnssenss 150
Figure 6-9 Fan-out and fan-in routing configurations. ... 151
Figure 6-10 An example event cascade ... 152
Figure 6-11 Simple Event Cascades for different Sensor EVents. wemmemmmmmsrmsens 153
Figure 6-12 Event Cascade with a single initial Event E. ... 155
Figure 6-13 Several Event Cascades with Initial Events E7, that all have the

SAME tMESTAMP FE. vvvvcrrseierrmsrimssminimssnisssssmssssissisissssssissssssssssssssss 156
Figure 6-14 Mapping of the VRML execution model onto Active Objects.......... 159
Figure 6-15 Client-Server CommUNICAHON. vimuirsrssssmsmrsssssimstsissssssssssssssisnssss 160
Figure 6-16 Server ArChiteCture.. .o, 164
Figure 6-17 Screenshot of the brOWSEr INtErfaCe wrrmrrrsessmmmmmmssssssessssssssssssssssess 166
Figure 6-18 Routing Graph for Testing the Event Cascade Evaluation

PerfOrmance ..o 167
Figure 6-19 Parallel Event Cascades .. 168
Figure 6-20 Loading TIMEScoimimemmmmmsiermmssesisssssissesssssssssssesssssssssssnsssssssssesssses 169
Figure 6-21 Client Frame Rate....cucriummecrmmmmesssssrmmsmsmsssssssssssnsessssssassssssssessesss 170
Figure 6-22 Dimensions of Scalability.......ceimsssesseerssssmrsssesssssssssssessssssrsssscses 17
Figure 7-1 Distance based AOI vs. View Frustum AOL........cveeeurmvrermmsssnmrsnessesenss 178
Figure 7-2 Three different levels of detail for a car ObJEct ..uureermeressesnssresnes 179

List of Tables

List of Tables

Table 1-1 Human-Computer Analogy to Achieve Higher Performance. 2
Table 1-2 Explicit Parallelism Issues (see Figure 1-2) addressed in SODA............. 12
Table 2-1 State Partition Anomaly with Accept Sets........ccouvvnniurecrsrisenisssesnesssnienes 31
Table 2-2 Overview of Active Object Languagesocvvevmiiisnsinricronsisiinnsesssssesesinnse 4t
Table 2-3 Overview of Active Object Languages (continued)covvceuninrivennne. 45
Table 5-1 Overview of experimental systems and software configurations. 124
Table 5-2 Minimum Execution Overheads.......ouiieiisineiisinnmsmmmnsssisse 129
Table 5-3 Serialisation Overheads (IMERR) ..u.iimisiissmisenssoninssnsssasossvsfissiossonsssersassinese 134
Table 5-4 Cost for Guarded Method Invocations. ... 135
Table 7-1 Criteria for Dynamic LOD SeleCtion..........cciuissmsisssmsisasssorssisinsessasessessons 180

viii

List of Codes

List of Codes

Code 2-1 Sequential Bounded Buffer. ..o 29
Code 2-2 Passive Bounded Buffer with MONIOL.c.vveviiciismsimimsissnsrnssissssnsses 29
Code 3-1 Detached Methot Interfachis dite s &-Aahtiiusmaismmsmsenomssssiartphos 56
Code 3-2 Intetface of the Future Class. .osmsmsisinssissassssmosssms inssssiisinssgisg s 60
Code 3-3 Asynchronous Calls on an Active Object with Blocking Futures............ 61
Code 3-4 Active Buffer Class Implementation (no protectection against

overflow OF UNAELHlOW).c.uiumiumssirssrmssssosmmsnsssssinamatississmsssessuassssssansssssrsssssasinsssasssssss 62
Code 3-5 Active Buffer Class (with exceptions to signal

OVetflow/UOACLION): s iserisipemassressossisssisbsssivsie outsrstyssosrpipbrssssaisasact iossisbafosboses 62
Code. 36 FUaRa] TARPIacE. it rilakiiriisrat bt oes) et il WATe S e iasinsisss ensigsionses 66
Code 3-7 Aggregate Funnel as coud be used in the Node of a Binary Tree............ 67
Code 3-8 Original Bounded Buffer Class with Method Guards ... 70
Cade 3-9 Revised Methiod Guard O£ PUE. . bl bl o Biliauissoissmondinsiatonsis 70
Code 3-10 X-Bounded Buffet in SODA ... dnmmssnicmimmietiibatinponammissssoblistbasiroms 3!
Code 3-T1.G-Bovnded Boffet i SOBIX v b ahvipsestissssmseisosssiiopsinisines 72
Code 3:12 1 Boutided Butferdq SODIRL . b it issiesiisiseiisuimssins 13
Code 3-13 A DiskHeadScheduler ACtVE ODbJECt......commicommisrmnsisrssssimmisserssssasssssnsgins 79
Code 314 A Timer Active Obscli ST U R R LR o ssssissestuetsmasions 80
Code 3-15 A Fotk Active Objeettamaimas Lt Beiamiaallo o s teene Kikesss 81
Code 3-16 A Philosopher ACtVE ObJECt .uvvuvvviviieiesivsiviirsssiisssisssssssminssssssssssssssssses 82
Code 4-1 SODA Guatd Definition (as in €.g., Test.S50da).......ccccvvrrmreverssmreeresensenes 94
Code 4-2 Guard Definition translated into Java (as in e.g,, Test_Body.java) 94
Code 4-3 Body for the G-Bounded Buffer after translation into Java.......c.eeeee. 112
Code 4-4 Body for the Bounded Buffer superclass after translation into Java113
Code 5-1 The empty active object method used for call latency

T Tae T n . TRV o SO MRS R e e TR 0 W M RS B S 125
Code 5-2 Call batching and blocKing get.ccoimmminiimsismsssmsssmsississes 125
Code 6-1 Sequential VRML97 1577018 (o ColooTe [el el L i e ol £ Sy s O 154
Code 6-2 Event Cascade Evaluation for a sensor Event E ... 155
Code 6-3 Excerpt of the Positioninterpolator elassimial sl didi., 158
Code 6-4 Excerpt of the Field class ..uimmiissisisemmiunssorsmsisstosssmsmmsasnseniveiisiiors 159
Code 6-5 An example PROTO node definition ... 163

x

AOI
BSP
COOP
CORBA
COTS
Ccow
DSM
FIFO
HPC
HTML
JDK
JNI

LRU
MIMD
MPP
NET-VE
NOW
NUMA
oor
RAID
RMI
RTS
SAM
SIMD
SISD
SMP
SODA
SSI
VRML

XML

Glossary

Glossary

Area-Of-Interest (Management)
Binary Space Partitioning
Concurrent Object-Oriented Programming
Common Object Request Broker Architecture
Commodity-Off-The-Shelf

Cluster of Workstations
Distributed Shared Memory
First-In First-Out

High Performance Computing
Hypertext Mark-up Language

Java Development Kit

Java Native Interface

Java Virtual Machine

Local Area Network

Least Recently Used
Multiple-Instruction, Multiple-Data
Massive Parallel Programming
Networked Virtual Environment
Network of Workstations
Non-Uniform Memory Access
Object-Oriented Programming
Redundant Arrays of Independent Disks
Remote Method Invocation
Runtime System

SODA Abstract Machine
Single-Instruction, Multiple-Data
Single-Instruction, Single-Data
Symmetric Multi-Processor

Search of Decaffeinated Acronym
Single System Image

Virtual Reality Modelling Language
Extensible 3D Language
Extensible Mark-up Language

1.1

Chapter 1

Introduction

The use of computers is becoming increasingly ubiquitous in our society. Farly use
of computers was restricted to scientific computation and data processing, but
application fields are now wide open. We expect computer systems to solve more
complex problems more efficiently. This leads to an increased demand on

computational resources.

In theory, parallel processing across a cluster of workstations is one way to address
this demand. In practice however, the development of efficient, maintainable,
correct and affordable parallel applications has proven to be a non-trivial task. Part
of the challenge lies in the distributed nature of the execution platform and
inadequate programming methodologies. Frequently, programmers have to
concentrate on the management of parallelism rather than on algorithm issues.

This dictates the need for novel programming methodologies that help to
decompose large and complex programs and run them efficiently on a parallel
machine. Concurrent object-oriented programming (COOP) is a strong contender
in this regard. The object-oriented abstraction and information hiding principles
have the potential to mask underlying complexities. The stimulus behind this work
has been to make distributed-memory programming a less daunting task and
expose a cluster as a unified resource to the developer. For this purpose we address
the shortcomings of existing programming systems and provide solutions to some
of the problems encountered.

Parallel Computation

The motivation to solve problems faster has been a central issue throughout the
history of computing. Pfister [136] identifies three possible approaches, each of
which gave rise to a major field of research. He explains these by drawing an

b ETY

analogy of “working harder”, “working smarter” or “getting help” (see Table 1-1).

Chapter 1 - Introduction

Table 1-1 Human-Computer Analogy to Achieve Higher Performance [136].

Human Approach | Computer Analogy Requirements
Use faster hardware, e.g. processors with shorter

Work cycle times that can e i i Faster

Harder y Xecute more instructions per | o
Btk rocessors
Express the original problem with optimised

;W::;l:tet algorithms to utilise available hardware resources Expest Kn owledg.e,
more efficiently. Suboptimal Algorithms
Use several resources at the same time and in .

gﬂ parallel, e.g., use parallel processing to solve the bigidpts

elp problem. Processors

In the 1970s and 80s it was believed that computer performance was best improved
through “working harder” [31]. Indeed, over the last decades we have witnessed an
exponential increase in processor speed, well known as Moore’s /aw. This trend
driven by shrinking component size and increasing transistor count, is predicted t(;
continue for some years to come [115]. Nevertheless, physical limits, such as the
speed of light, quantum effects and heat dissipation, will ultimately set a barrier to
furth::r gains. Economic considerations could set feasibility limits even earlier
[115]".

Often, the lack of fast hardware was seen as an encouragement to develop
optimised algorithms or to “work smarter”. As many standard algorithms that are
important in performance-sensitive applications tend to be very well coded
nowadays, only marginal performance gains can be expected from this approach.
This indicates that neither “working harder” nor “working smarter” is likely to yield
a long-term development path.

“Getting help” augments the other two approaches and revolves around
combining the power of multiple processors. Parallel processing is generally seen as
the basis for high performance computing (HPC) and as key enabler to yield future
Petaflops performance [161]. Impressive results have been demonstrated on
numerical applications in science and engineering [65]. Parallelism has also proven
successful in the database domain; many vendors nowadays provide parallel
versions of their products.

Despite these successes and the conviction that “the future is parallel” [61],
general-purpose parallel processing has not yet reached the mainstream. One
reason is that massively parallel computers tend to be very expensive as they are
largely built from proprietary components. The other reason is that program
development is more difficult.”

! The Second Law of Moore states that development costs for each new chip generation grow
exponentially with processor performance.

2 On a more philosophical note, Briaunl’s observation [28] is interesting: Parallel programming is
difficult because humans tend to think sequentially in terms of cause and effect. However, while our

2

1.2 Parallel Architectures

The following section will give a brief overview of basic concepts of hardware
parallelism, before we focus on clusters of workstations as a low-cost alternative to

conventional massively parallel supercomputers.

1.2 Parallel Architectures

Parallel architectures are distinguished in their multiplicity of zustruction streams—i.e.,
simultaneous activities or threads of control~they support. Either the processors can all
work in synchronous parallelism or the processors can work in agynchronous parallelism.
Synchronous parallelism is supported by single-instruction multiple-data (SIMD)
systems, such as vector or array computers. SIMD is restricted to regular, mainly
numeric problems, where the same algorithm is applied to a large number of
different data elements. All processors work in lock-step fashion steered by a
central control unit. In multiple-instruction multiple-data (MIMD) systems, the
processors function independently in asynchronous parallelism® MIMD is more
flexible, in that every processor can perform a different activity.

MIMD can be further subdivided into systems with shared memory (Figure 1-1(a))
and distributed memory (Figure 1-1(b)). In a shared memory MIMD (also called SMP
ot multi-processor), all processors have access to the same memory with a single address
space. I a distributed memory MIMD (also called multi-computer) every processor has its
own local memory, i.e., the machine consists of autonomous processor-memory
pairs (so-called processing elements) connected through a network. Access to remote
memories is significantly more expensive than to the processor’s local memory.

Figure 1-1 MIMD hardware architectures

Shared memory Distributed memory

processin
M| [M] [M] [M] [M] | eclement iy (MMM} m

or nOdE\
Network (p Cp Cp Cp> P

CPE & memory bus
@ C) Network

(a) multi-processor, SMP (b) multi-computer, cluster

-

stream of consciousness appears to be sequential, it is the massive parallel processing power of
billions of neurons in the human brain, which generates its astounding potential, despite the low
firing rate of the switching clements. This can be seen as a biological “proof of concept” for parallel
processing,

* In Flynn’s Classification, SISD is equated with conventional sequential computers, while MISD
does not have any practical implementations.

Chapter 1 - Introduction

1.3

MIMD programs need to provide separate activitées, in order to keep all processors
busy. In operating system terms, activities can be implemented as eithet processes or
threads. Processes have a private memory address space, protected by the operating
system. Threads can only exist within a process and have no private memory. As a

result, threads have a much lower context switching overhead than processes.

The number of activities in a parallel program is referred to as its potential parallelism.
The number of available processors, in contrast, is the hardware’s physical parallelism.
Parallel slackness is defined as the ratio of potential parallelism to physical
parallelism. Of course, this value is dependent on the target machine. A parallel
program with sufficient parallel slackness, can achieve an overlapping of computation -
and communication.* through activity multiplexing. This is useful, since in parallel
programs, blocking is more frequent, due to increased communication and
synchronisation needs [157]. On the other hand, if parallel slackness of a program
is too high, individual processors will waste too much time on context switching
between activities. Ideally, the parallel slackness should be constant across
architectures, i.e., the program should expose adaptive parallelism at runtime.

We will now turn our attention to clusters of workstations as a particularly
interesting exemplar of a distributed memory MIMD architecture.

Towards Scalable and Affordable Supercomputing

Clusters of workstations (COW) with high-bandwidth low-latency interconnects
are becoming increasingly ubiquitous in today’s networked computing
environments. This trend has generated much interest in using a cluster as a
unified resource for tackling large-scale and complex compute problems
[12;19;30;31;136;183]. Theoretically, a cluster could deliver supercomputer
petformance at the same economic cost/performance ratio as a standard
standalone workstation. Furthermore, clusters can “grow” incrementally to meet
unanticipated performance demands. In the future, with the advance of Grid
technologies [62;71], one can even envisage world-wide resource shating over the
Internet. This would make possible the solution of computationally intensive
problems in the commercial and scientific application domain in a fraction of the
time that would otherwise be taken. Before we expand on the challenges to make
this a reality, the following gives an overview of the factors behind the popularity
of clusters [136]:

Performance. As aforementioned, the main motivation behind parallel cxecuuon
is to overcome the spccd bottleneck of single processors.

Availability. Clusters are built from autonomous, independently failing
components. This natural redundancy can be exploited to provide high
availability systems. On the other side of the coin, the probability of a single
node failure increases exponentially with the cluster size.

. *ie, remote communication of one activity can be overlapped by useful computation of another

activity.

1.3 Towards Scalable and Affordable Supercomputing

'Cost/Petformance Ratio. Clusters are built around commodity hardware
(COTS). They can therefore extend the cost/performance ratio of current
workstations into the area of high performance computing.

Incremental Growth. The éntry price for a COW, depending on the number of
nodes, is small, while at the same time leaving the potential for growth.

Scalability. A size of a cluster seems virtually unrestricted; there are no theoretical
limits of how many workstations can be combined through a network. This
has led to the vision of a “global supercomputer”, pooling together millions
of participating hosts, o

Scavenging. In many otganisations base hardware is often readily available and
not fully utilised. Systems are conceivable that spread work over a local
network and use the spare time of otherwise idle workstations. This is
extensively studied in the NOW project [12].

Over the next years, we can expect cluster-based HPC to take a pervasive position

-throughout industry and academia [30;31]. We expect that the growing recognition
of clusters will lead to two developments: More novice and inexperienced users will
want to develop HPC programs. In addition, we expect a huge diversification in the
range of applications. By contrast, conventional supercomputer programming has
been geared towards highly skilled programmers and the support of numerically
intensive, regular and transformational applications. The challenge now is to provide
an easy-to-use programming environment, which simplifies cluster programming
and enables a larger user base to effectively use parallel architectures.

Despite recent advances, clusters still have significant communication latencies
caused by COTS networking hardware. Programs must compensate for this latency
through an increased computation| communication ratio. In other words, the
computational grain sige between communications must be relatively large for an
efficient system utilisation. This is exemplified by recently popular distributed
computations over the Internet. Such embarrassingly parallel computations have a large
grain size and can therefore amortise high WAN latencies. Hybrid clusters, which are
composed of SMP nodes, take a special position, as they can exploit parallelism at
various grain sizes: fine-grain parallelism inside a multiprocessor node and larger-
grain parallelism across node boundaries.

Another obstacle to harnessing the power of a cluster is software-related: Programs
are harder to design, implement, debug and maintain than stand-alone applications,
due to the additional architectural complexities. Developers must address issues
that are not relevant for sequential applications: Where and when activities should
be started, how data is communicated and how asynchronous processing is
coordinated. As a result, it is difficult to build programs that are correct, portable,
efficient and inexpensive [153]. The full potential of clustets as an inexpensive and
powerful computing platform is not realised.

5 ie., converting a set of input values into a set of output values, without further runtime-
interaction. Reactive programs, in contrast, deal with dynamic values only available at runtime.

Chapter 1 - Introduction

As Pfister notes, “hardware ohly provideé the potential for high performance, the
fulfilment lies in software.” [136]. This raises the need for a programming
methodology that simplifies development by shielding a programmer from

. implementation details. Ideally, a high-level programming methodology would

1.4

make architectural artefacts transparent while still providing satisfactory runtime
efficiency. Many traditional parallel programming techniques have been inadequate
in this respect: they are process-centtic, non-modular and expose the underlying
parallelism, requiting the developer to take detaﬂcd decisions over whete and when
to perform parallel activities.

To this end, parallel software development is increasingly being addressed with
implicit and object-oriented solutions. These approaches are introduced in the
following three sections. As will be shown, this combined approach strikes a
successful balance between extraction of massive parallchsm high performance,
and ease of use.

Explicit vs. Implicit Parallelism

A programming model is an interface separating high-level properties from low-level
machine details. A programming model provides the image of an abstract machine to
developers. The aim of such abstraction is to simplify program development while
hiding underlying architectural complexities. Developers can so focus on program
development for the abstract machine, whereas it is the implementers’ task to

‘provide an efficient abstract machine layer over the physical hardware. This reduces

programming overhead and can provide better portability, since the abstract
machine can conceal heterogeneity.

Parallel programming models can be classified into the two categories of explicit
parallelism and implicit parallelism. In explicit parallelism the programmer is
responsible for controlling all aspects of parallelism at a low level of abstraction. In
the implicit model, parallelism is completely transparent. i.e., a sequential program
is automatically converted into a parallel version and fed to the hardware.

Briunl [28] describes the common programming “recipe” for explicit parallelism:
find subtasks, allocate- them to processors and define their communication
structure and synchronisation points (see Figure 1-2). Practitioners following this
recipe are forced to constantly “reinvent the wheel”. They spend more time
focussing on parallelism management than on high-level algorithms. As a result,
development becomes cumbersome, etror-prone and inefficient [135], “effectively
[tuhng] out scalable parallel programming.” [157]. These problcms are exemplified
in the message passing model (see §2.1.4).

1.4 Explicit vs. Implicit Parallelism

Figure 1-2 A “Recipe” for Explicit Parallel Programming

Partitioning

e % ~ Mapping
SSER

=)

Communication

Processor 2
| JO0ssa%0.d

Synchronisation

Higher-level, implicit programming techniques, try to remove the burden of explicit
parallel programming from the programmer. Here, the user does not specify and
thus cannot control, underlying parallelism in the physical architecture. While ideal
for the programmer, this approach has its limitations, especially in the context of
non-declarative languages and clusters as target architectures. Parallelising
compilers commonly only manage to extract very fine-grain parallelism more suited
to shared memory systems [28]. The challenge therefore is to find a model that is
sufficiently abstract to simplify programming but at the same time not too abstract
that it becomes difficult to provide efficient implementations on real architectures
[157].

While explicit parallelism gives programmers a high degree of control over the
hardware, it is inadequate for tackling medium to large-size or irregular problems,
or any realistic software projects for that sense. In sequential computing, the same
could be said of assembler languages in the days before efficient compilers.
Assemblers offered detailed control over every processor register and direct
exposure to the hardware. In spite of this, high-level languages are now the
preferred choice for sequential software development as they hide complexity and
provide modularity. Similarly, if parallel programming is to become mainstream, it
needs to be made easier for the average programmer. Otherwise it will remain
relegated to few high-value applications for which investment of great development
efforts can be amortised. ;

A further advantage of implicit parallelism is that an implementation has
considerably more flexibility in terms of compile-time or runtime optimisations.
This is important for reactive applications, where optimal decisions to mapping and
decomposition often depend on the execution environment, such as runtime
parameters and target architecture. Unpredictable processing times of subtasks, for

Chapter 1 - Introduction

~ instance, make every static allocation suboptimal. In this situation, optimum

1.5

processor utilisation may only be obtained through dynamic load balancing of tasks
at runtime,

If parallel programming for a variety of applications is to become commonplace,
we need a model where application developers can become productive and
successful without becoming experts in the underlying infrastructure. In short, it is
a prerequisite for an easy-to-use programming model to conceal the steps of
decomposition, mapping, communication and synchronisation, while at the same
time providing opportunities for efficient implementation. Object-oriented
concepts ate a powerful and promising technological stepping stone in that -
direction. '

Object-Oriented Programming

Curtently, OO plays the role of a leading technology for development, analysis and
software engineering. OO is widely regarded as the sine gua non for the construction
of high-level and reusable software because of its excellent modularity [158]. The
object-oriented programming paradigm encourages modular design and knowledge
sharing (in particular code reuse). The concept of object-oriented programming has
its roots in SIMULA,® developed in the late 60’s in Oslo [48] (see also [142] for an
introduction). Since then it was further developed as an important software
engineering methodology [180] [117]. In the following sections we highlight the
mainstays of the OO model as these are important for the further discussion.

Classes and Encapsulation

An OO program consists of a dynamic collection of objects that communicate with
each other to drive the computation forward. Each object is an instance of a class
(ot abstract data type, ADT) which serves as an object template. The class
describes instance variables and methods that operate on them. These internals are
encapsulated through the method interface and not directly visible from the outside.
Such encapsulation or information hiding minimises interdependencies among
separately written classes and allows class-internal changes to be made safely
without affecting existing clients. The user of an object need not be concerned with
the class itself or its instance objects but only with the abstract interface.

Message Passing

Computation proceeds as objects invoke methods on other objects. In the
following we will use the terms client and server for the two objects engaging in a
method call. A message is sent from client to server object when a method should
be invoked on the server. This process is known as passing messages in the OO
terminology. A message contains a method identifier and a set of parameters that
are consumed by the server’s -method. However, the nomenclature of

6 SIMULA was designed for simulations, and the needs of that domain provided the framework for
many of the features of object oriented languages today.

8

1.6 Concurrent Object-Oriented Programming

communication is misleading in a sense that it does not imply any asynchronous
communication. In fact, the invocation model is identical to procedure activation in
imperative languages and is fully synchronous and blocking. '

-~ Reusability: Inheritance and Delegatipn o

-OO languages typically adopt a rewsability mechanism to facilitate knowledge sharing

between classes or instances. A natural modelling classification for kinds of objects
is given through the inberitance mechanism. Through inheritance a class may derive a
common set of behaviours from another class. The initial class in an inheritance
relationship is called the superclass, whereas the inheriting class is called swbelass. The
subclass may add methods and instance variables to the superclass or overwrize
already existing methods. Based on inheritance it is possible to define pohymorphic
behaviours: An abstract superclass may factor out all general behaviour whereas a
set of subclasses provide specific behaviour for the lower level of the type
hierarchy.

An alternative reuse mechanism is delgation, pioneered by actor languages and

several Lisp-based object-oriented systems. Delegation is orthogonal to the class

concept. When an object does not know how to respond to a message, it can
delegate this message to one of a set of designated objects. The original server
adopts the role of a client for the selected delegate object.

Dynamic Binding

In general, which method is to be invoked is not known until the message’s

- dispatch time because a method in an object may share the same name with one in

1.6

another object. Depending on the runtime type of the destination object, the
appropriate method definition is chosen dynamically. The exact semantics of such
dynamic binding may vary from language to language, depending on how the dynamic
method lookup is implemented. :

Concurrent Object-Oriented Programming

Object-orientation is a useful methodology to attack program complexity.
However, most object models do not address concurrency and distribution.
Despite adaptation of a message passing metaphor and the implied autonomous
activity of each object, most OO languages remain sequential. One object is active
at a time and activity is transferred from one to another, piggy-backed onto
message-passing. This is for historical reasons, which mapped OO programs onto
sequential target architectures. In this sense, COOP appears as a generalisation of

- OO programming by giving further autonomy to objects.

The active object or actor paradigm identifies objects as the unit of concurrency and
distribution and associates synchronisation between objects at the message passing
level. This integration is fruitful because it preserves the modulatity and simplicity
of OO while enforcing self-containedness and autonomy of objects. Autonomous
activity of each object exhibits inherent concurrency between them

Chapter 1 - Introduction

1.7

© [6;10;29;37;130;188]. This paradigm also makes it very natural for humans to reason

about programs [80;101]. The active object paradigm also serves as a foundation
for higher-level agents systems [76].

At the design level, the operational view of an application as a collection of
cooperating and communicating objects has clear advantages; it provides a clean
conceptual model that can express the components of an application and their
interaction at a high level of abstraction. However, the marriage between object-
orientation and concurrency has been difficult [113] [91;133] [116]). A notable
integration obstacle is the seeming incompatibility of inheritance and concurrency,
an observation for which Matsuoka and Yonezawa [113] coined the term inberitance -
anomaly. '

In addition, active object systems rely on duster middleware for their implementation.
Such a software layer should reflect the natural hardware scalability. This means
that software overheads should not grow with the number of the nodes; central
components must be avoided, as they could become potential bottlenecks. Finally,
the potential parallelism of a program should dynamically adapt to physical
parallelism available in the cluster. No changes to a program should be tequired
whether it is run on just a single node, or a cluster of 10 or 10,000 workstations; all
available processors and network interconnects should be used to optimum
efficiency and the program should yield speedups if the program is sufficiently
complex and long-running _

In the past, implementations have often failed to make a distincdon between
activities in the programming model and in the execution model. Existing active
object implementations are therefore often heavy-weight and do not expose
adaptive parallelism. Insofar, implementations were not well suited to scalable
distributed memory architectures. We address these shortcomings with the
development of a new programming model, called SODA. The operational
semantics of SODA are provided by a runtime system that aims at maximum
efficiency in adaptation to available hardware parallelism. A detailed description of
the contributions of the presented work is given in the following section.

Thesis Contributions

This thesis introduces a set of contributions that address the problems identified
above. These aim at the provision of an implicit and object-oriented programming
model for the efficient utilisation of cluster installations.

¢ The novel SODA Programming Model and Runtime System as a basis

for further research and development built on an extended active object

model. SODA combines ease-of-use through a combination of COOP and

implicit parallelism concepts (see Table 1-2). Features of the programming
model and RTS are closely interrelated and include:

o . Futures and Funnels. Funnels are a novel mechanism to support data-

driven implicit synchronisation of asynchronous Future-based calls.

10

1.7 Thesis Contributions

Funnels avoid cyclic deadlocks in the context of atomic active objects and
can express data dependencies in a straightforward manner. This
overcomes the limitations of atomic active objects while maintaining their
ease-of-use advantages.

e Detached Methods as a means to increase liveness of atomic active
objects while keeping the benefits of their mutually exclusive invocation
semantics.

® Ferenczi Guards. To our knowledge, SODA is the only active object
system to implement Ferenczi Guards [59], a mechanism to circumvent
the inheritance anomaly. ,

e Implicit Decomposition. Active - objects are pofential/ units of
concurrency. The implementation therefore has considerable freedom for
runtime optimisations, such as inkining of invocations and thread-multiplexing of
active objects. This approach allows a dynamic adaptation to the physical
parallelism available at runtime.

o Implicit Mapping. Location-Transparent Active Objects allow the portability
of SODA programs over a range of different cluster configurations. This
is also a prerequisite for dynamic load balancing through the Migration of
Active Objects.

Case Study: Parallel VRML Execution Engine. In this case study, a large

irregular server application is built on top of SODA to examine its ease-of-

use and performance for real-world applications. Attendant contributions

include: }

¢ Analysis of Parallelism inherent to the VRML97 Execution Model.

¢ Implementation of a Scalable VRML Server on the basis of parallel
event cascade evaluation. ‘ o)

® A novel, Client-server based approach to VRML. Allows multiple
users with varying hardware configurations access to the scalable
simulation server. This is based on view frustrum culling and dynamic
level of detail selection.

11

Chapter 1 - Introduction

Table 1-2 Explicit Parallelism Issues (see Figure 1-2) addressed in SODA.

Issue Soda Approach
Ga Dynamic matching of potential to physical parallelism through adaptive
Decomposition inlining of active method calls and multiplexing of active objects onto
threads (lightweight active objects)
Mapping Active Objects in SODA are location-transparent. Dynamic load balancing
through migration of active objects is designed, but not implemented.
g Object-oriented model, communication only through messages to objects
Communication | (ie., method calls). All communication is based on the well-established call-
reply model (i.e., every method call returns a result or an exception).
Synchronisation | Futures and Funnels, based on a dataflow abstraction.
Dynamic decomposition (see above) allows varying degrees of scalable
Scal ability parallelism in adaptation to the availability of resources in the underlying
runtime environment. The cluster can be grown without change to the
program.
Portability Java based runtime system to accommodate platform heterogeneity

1.8 Dissertation Outline

The scope for the remaining chapters is as follows:

Chapter 2 gives a brief overview of some popular parallel programming models
and their level of abstraction. We identify the active object approach as
reflecting our goals of scalable, easy-to-use parallelism. We then discuss
various models in this category and their implementations on distributed
memory architectures, focussing on a combination of features, which we
believe to be critical to widespread user acceptance.

Chapter 3 introduces the SODA programming model and its novel features, which
combine active objects with a dataflow-like, non-blocking synchronisation
mechanism. We illustrate, by example, how SODA is used for highly
implicit and object-oriented parallel programming. Further, we explain
design choices taken and give the reasons for doing so.

Chapter 4 covers the implementation of the runtime system, which is responsible
for mapping the SODA programming model onto a real distributed
memory architecture. This contains a detailed analysis of the protocols and
algorithms used within SODA and shows how adaptive parallelism is

exposed.

Chapter 5 then presents a performance evaluation of SODA, which serves as
justification of the design choices in SODA. We present a set of micro-
benchmarks that cover typical application patterns.

12

1.8 Dissertation Outline

Chapter 6 presents a case study into building a large-scale, irregular and interactive
server application on top of SODA. The case study focuses on the design
and implementation of a parallel execution engine for the VRML event
model. The algorithms exploit parallelism inherent to the VRML execution
model. This allows the execution of large-scale VRML scenes with many
participating users. We examine SODA’s ease-of-use for developing this
system and give some performance figures.

Finally, Chapter 7 concludes the thesis with a summary and a discussion of some
open-ended issues.

13

2.1

Chapter 2

Review of
Related Work

In this chapter we analyse related work, which aimed at combining of object-
orientation and concurrency. To that end, we focus on the ease of use of existing
programming models and systems as well as on the possibility of their efficient
implementation on distributed memory. To put object-oriented concurrency into a
wider context we briefly examine alternative programming methodologies. The
object-oriented models can be seen as an approach “from the middle”, neither
explicitly exposing parallelism nor making it completely implicit. One main focus of
our review lies on integrative approaches that merge the concepts of concurrency
and objects into active objects. We explore the associated design space and populate it
with evaluations of existing work. This review is by no means exhaustive. For a
more complete survey of more than 100 languages in the concurrent object-
oriented category, see [137;138].

Parallel Programming Models

We want to provide a more general backdrop for the discussion of concurrent
object-oriented programming. This section therefore gives a general overview of
the different fundamental approaches to achieve parallel processing.

One fundamental distinction relates to the degree to which physical parallelism is
transparent. Explicit parallelism requires a programmer to specify in detail every
aspect of parallel execution. Implicit parallelism simplifies programming but relies
on complex compiler technology. Another classification can be taken according to
the memory access concept. Each of the two possible memory arrangements for
patallel machines (see §1.2) have led to a different programming paradigm. One is
based on the view of distributed memory access, the other one uses shared
memory. We return to this second case later. First we focus on the tension between
explicit and implicit models.

2.1.1 Skillicorn’s Classification

Skillicorn and Talia [157] present a classification that places explicit and implicit
parallelism at the extremes of a spectrum (see Figure 2-1). This spectrum is
structured by increasing responsibilities of a parallel programmer. From explicit to
implicit direction, these encompass synchronisation (e5), communication (e4),
mapping (e3), decomposition (¢2) and “parallelism awareness” (¢1) (analogous to
Figure 1-2, A “Recipe” for Explicit Parallel Programming). A model’s ease-of-use is
increasing the further it is placed towards the implicit end of this scale. In the most

14

2.1 Parallel Programming Models

attractive world, a programmer leaves all low-level details to a parallelising compiler
(0), while being able to fully concentrate on algorithms. This is beneficial to a
programmer, but has practical limitations, especially in the context of distributed
memory machines. Explicit parallelism (e5), on the other hand, exposes undetlying
interactions at great detail, which can limit its portability and usability for large or
irregular applications. We will examine the two extremes of implicit and explicit
parallelism and then focus on active objects, which we consider an approach “from
the middle”.

Figure 2-1 Skillicorn’s Classification of Parallel Programming Models

Handled by Programmer

(AT AT
explicit explicit

All-explicit

2.1.2 Converting Sequential into Parallel Programs

The parallel solution for a given problem is much harder to develop than the
equivalent sequential application. Moreover, much existing code is in sequential
form, not targeted at parallel architectures. These observations prompted much
research into the development of automatically parallelising compilers. Such
compilers implement an algorithmic way of transforming a sequential, imperative
program (e0) into a semantically equivalent parallel version.’

Most of this work is based on the idea of extracting implicit parallelism from loops
or multi-way recursive methods. For example, techniques have been devised to
extract SIMD parallelism from “dusty deck” FORTRAN programs into vector-
parallel form [7;102;112].

Similar ideas have been exploited in the High Performance Java project [23;24].
Sequential programs are (semi-) automatically converted into parallel code using the
standard Java multithreading mechanism. JAVAR [24] is a source-to-source
restructuring compiler that relies on explicit annotations. JAVAB [23] goes a step

7 Pfister [136] also talks humorously about “AMO compilers” in this context: “You stuff in a
sequential program on one end, A Miracle Occurs and a parallel program comes out at the other
end.”

15

Chapter 2 - Review of Related Work

© further and extracts implicit loop parallelism without programmer intervention
directly from Java bytecode. No access to the program’s original source code is
required. '

Parallelising compilers construct a data dependency graph of the program based on
dependency analysis. Parallel execution is safe when two pieces of code are not
interdependent. For languages that allow mutation of shared variables dependency
analysis can be quite complex and oppottunities for parallelism may be missed. A
compiler does not have sufficient domain level knowledge to determine whether
insolvable data dependencies are inherent to the application or just an artefact of
the sequential representation [75;157]. To achieve good performance, the compiler -
must create tasks of sufficient granularity, based on an estimation of the cost of
various pieces of code. However, when execution paths are highly data-dependent,
the cost of a piece of code may not be known at compile time. Object-orientation
is detrimental to automatic parallelisation, because of the typically high number of
run-time dependent and non-deterministic object references [137]. To reach
sufficient degrees of performance, semi-automatic parallelisation is now seen as the
most promising approach. This can be guided by both, profiling information
obtained during test runs and programmer interrogation to solve data dependencies
[125].

While automatic parallelisation can obtain speedups on shared memory
multiprocessors, this technique is largely unproven for current distributed memory
architectures. The reason is that auto-parallelising compilers expose mainly loop-
level parallelism, which is too fine-grained to be efficiently exploited [75;136;155].
" In addition, programs for which these techniques are effective are often restricted
to the domain of very regular, numerical applications [16;137;157] (p. 89). For
general sequential algorithms, they lack the developer’s domain-level knowledge to
generate efficient parallel algorithms. Philippsen gives the example of a sequential
sorting algorithm: It would be impossible for a tool to automatically generate one
of the well-known parallel algorithms without “understanding” the program
specification. By the same token, Skillicorn argues that responsibility for parallelism
awareness trests best with the developer, whereas the implementation takes over
lower-level tasks (i.e., category e1). In fact, some algorithms might be expressed

“more naturally in a parallel fashion; Briunl, for instance, gives the example of a
vector dot product [28].

A different approach is taken by High Performance Fortran (HPF). In this
language, the programmer first writes a sequential algorithm. As a second step,
compiler directives are added that specify opportunities for parallelism. Based on such
explicit parallelism annotations, the compiler can generate highly performing
parallel code.

2.1.3 Declarative Languages

Besides automatically parallelising compilers, another approach to all-implicit
parallelism is given through declarative languages, with the subcategories of
dataflow, logic and functional languages. Most of these are, at least to some degree,
side effect free, which means that the result of a function call depends solely on the
values of its input parameters. This precludes the concept of state. The absence of

16

2.1 Parallel Programming Models

side effects makes analysis and reasoning about a program much easier. In
particular, data dependencies are immediately obvious from the program
specification. Impressive performance results have been demonstrated for dataflow
languages on shared memory systems [34]. However, declarative languages are less
practical for developing programs that are either best expressed or more efficiently
expressed by using mutable data, or can bénefit from the advanced concepts of
inheritance and encapsulation used in OOP [14].

Dataflow languages [55;78] describe a program as a set of data-driven operations,
linked together by a directed dataflow graph. Data “flows” along the edges of this
graph, forming input tokens.for the operations they encounter. An operation can
“fire”, if all its input tokens are available. It will then perform some function on the
input tokens. The result is then sent “downstream”, following the dataflow graph
and can serve as an input token for subsequent operations. In this way, the initial
set of input values is reduced to a root operation that delivers the final result.

Dataflow languages [78], like Sisal or Id [55], represent vertices in the dataflow
graph through single-assignment variables. Once variables are assigned, they can
serve as parameters to other operations. Thereby, dependency relations between
token producers and consumers become obvious. Loops can be expressed by
associating a new context (refreshed variables) with each iteration so that

dependencies can be resolved.

Despite their potential as alternative to and departure from the conventional von
Neumann programming model [17], declarative languages have not gained
significant impetus [157). Skillicorn explains this reluctance of adaptation with two
factors: first, human cognition appears as a sequentially ordered process; one aspect
of this is the concept of state and sequential modifications to this state. This
concept cannot be matched adequately by declarative constructs. A second point is
the “inertia” of programmers and the related difficulty of achieving a “critical
mass” of available software, programmers and language implementers.

2.1.4 Distributed Memory — Message Passing

The de facto standard programming environments for clusters and other
distributed memory machines are doubtlessly PVM [68;165] and MPI [53;143).
Both use an execution model based on processes that communicate by way of
message passing. The message-passing model exposes all-explicit parallelism at a
low level of abstraction from the physical hardware (¢5). An application is
expressed as a set of communicating tasks, which are mapped onto the available
hosts (usually in a round-robin fashion). Tasks can engage in peer-to-peer or
collective communication by sending discrete messages to each other. Fundamental
send and receive operations are provided in both blocking and non-blocking
variants. Characteristically for explicit parallelism, decomposition, communication
and synchronisation are major parts of the algorithm. While the message passing
model is conceptually extremely simple in practice its explicit parallelism proves
error-prone and places a huge burden on the programmer. '

17

Chapter 2 - Review of Related Work

Blocking communication allows the definition of explicit synchronisation points
amongst tasks. This is problematic, because whenever a task is blocked waiting on a
communication event, valuable processor resources are lying idle. To avoid this
situation, efficient message passing schemes aim at hiding communication time
with other useful computation. This strategy of overlapping computation and
communication can be implemented by multi-threading on every host. However,
current implementations of PVM [68] and MPI [53] are not thread-safe and map
tasks onto heavy-weight operating system processes, which incurs high context-
switching overheads. An alternative to such multi-tasking or multi-threading is
given through active-waiting schemes. Fot example, a task could engage in independent
computation until it is notified through an asynchronous signal about the
termination of a communication event. This approach requires considerable
sophistication in the control program.

Object-Oriented MPI (OOMPI) [159] is an approach to encapsulate the
functionality of MPI in a C++ class library. This is done via member functions of
data, communicator and message objects while preserving MPI semantics at a
lower level. Through class wrappets, simpler access to sends and receives is
possible and convenient C++ stream interfaces can be used. MPIJava [18] and
JPVM [60] are Java libraries, which wrap message passing layers using JNI [163].
JMPI [52] is an implementation of MPI in Java.

2.1.5 Shared Memory Threads

Distributed memory prograrnrmng is hard, because remote memory locations must
be explicitly controlled and updated. It is widely believed that shared memory
_provides an easier programming model, since communication is much simplified
through the use of shared variables. A set of threads operate on these variables,
each defining a scparate flow of control.

In multithreaded programs it is necessary to protect critical regions from being
entered by more than one thread at a time. Such a violation of critical regions
would lead to data corruption and non-deterministic program behaviour. Multi-
threaded programming systems provide mechanisms, such as semaphores, conditional
regions, mutexes and monitors [82] for this purpose. Since the programmer is in total
control of synchronisation, this approach is quite efficient. However, a drawback
stems from the low level of abstraction. While easier to use than message passing,
the explicit synchronisation "still makes programming difficult if one wants to
develop an efficient, predictable, scalable and robust program [101;153].
Synchronisation mistakes are common and a program’s synchronisation constraints
are often difficult to understand. Bugs due to race conditions are extremely difficult
‘to trace, since threads can interleave in a large number of event combinations
[75;134]. Other hazards in multi-threaded programming are deadlock, starvation
and lost updates.

The shared memory model is merely conceptual and does not necessarily reflect the
physical memory arrangement in the actual target hardware. Distributed shared

18

2.1 Parallel Programming Models

memory (DSM) systems [131] provide the illusion of shared memory on top of
distributed memory systems.® Internally, the DSM implementation maps remote
memory segments on demand onto the local machine. Necessary network data
transfers are transparently initiated by the DSM system. DSM systems have been
implemented both in software and in hardware. Object-based DSM systems (e.g.,
NIPDSM [135]) use objects as unit of allocation, instead of fixed-size memory
pages or segments. This can reduce false sharing, where distributed processes
compete for the same memory segment. ‘

Distributed JVM implementations can be built on top of DSM. Distributing the
JVM itself is one approach to. run unmodified Java programs in a distributed
fashion. This provides a single system image of a traditional JVM on a cluster.
Examples are Hypetion [95] cJVM [15] and Java/DSM [189]. The latter is based
on the Treadmarks DSM system and therefore relies on a special JVM that allocates
Java objects onto the heap. Titanium [184] extends Java with features for high-
petrformance patallel scientific computing, such as fast multidimensional array
classes and an explicitly parallel SPMD model of communication. The Titanium
compiler translates Titanium into C. Titanium emulates a global address space on
both shared-memory and distributed-memory architectures, and is built on the
Split-C/Active Messages back-end. The problem for all these systems is that they
require special JVMs and therefore give up Java’s portability advantage.

The Linda model [41;69] is another DSM variation, where shared memory appears
as tuple space; activities can insert and remove data items from the tuple space.
Internally, activities are sequential and have their own private memory. Parallelism
occurs only between activities with tuple space being the only means of
communication. Since activities can be programmed in different languages, Linda is
often considered a coordination language. BaLinda [190] and JavaSpaces [154] use
" objects to populate the tuple space. In addition, JavaSpaces provides persistence for
the tuple space. However, as the granularity of activities shrinks, the
communication medium catries more and more of the computing burden [42].

The scalability of software DSM implementations to large numbers of nodes has
not been proven [157]. Programs should therefore be created with data locality in
mind [146]. The main performance deficit comes from guaranteeing cache
consistency after updates to shared data. Some distributed memory computers
therefore employ special hardware to facilitate more efficient and transparent
NUMA access to remote memories. Most software systems release strict cache
coherence guarantees and the cost overhead of the associated network protocols.
We will return to the shared memory problem, from an OOP point of view during
the discussion of passive objects in §2.2.1.

8 A shared memory layer on top of physically distributed memory will provide non-uniform memory
access (NUMA) characteristics. Programs will experience large differences in memory access times.
If data on remote nodes is accessed, the necessary network transfer will cause massive latencies
compared to local data access. Such an asymmetry does not exist for multi-processor systems with
physical shared memory (SMP), except for the effect of processor-local caches. Some DSM
implementations give up strict cache coherence for performance reasons (ncc-NUMA).

19

Chapter 2 - Review of Related Work

2.1.6 Concurrent Object-Oriented Programming (COOP)

Another approach to parallel execution is to hide its details behind abstract
interfaces of objects. For many years researchers have attempted to integrate the
concurrent and object-oriented programming paradigms and make their combined
benefits available to the programmer. Work in this area aims at an integration of
the flexibility of object-oriented programming (see §1.5 and [117;180]) for
harnessing the increased power of parallel machines. For an overview, see
[6;29;46;133;171;188]; Philippsen lists more than 100 languages in a survey of
concurrent object-oriented programming [137;138]. More than half of the surveyed
languages however, do not address distribution and locality at all. The reason is that
they have often only been implemented as prototypical proof-of-concept studies or
are targeted at shared mcmory systems.

In the next section we will mainly focus on the COOP subcategory of active object
models. Here, a process or thread is associated with every object instance, which
makes the model inherently concurtent. It also increases modularity, since it gives
further autonomy to objects. Method invocations do not imply the flow of control
between objects, as is the case in sequential OOP. Instead, the message passing
metaphor is honoured to a much greater extent. A program is expressed as a
collection of objects which act as umits of concurrensy and communicate through
message passing. This often allows a very natural modelling of many real-world
objects as self-contained and active entities [130], while preserving the OOP
benefits of rapid prototyping, reusability and modularity The sequential OOP
model can even be seen as a technological restriction of these more general
concepts of COOP.

COOP models can span categories el - €3 in Skillicorn’s scale. Communication is

“always implicit, defined by asynchronous message passing’ between active object
instances. Synchronisation is either completely implicit (e.g., actors) or simple to
express in terms of request/reply abstractions built atop of asynchronous message
passing (see §2.2.5). This means that active object models belong at least to
category €3. If active objects are location-transparent and implicitly mapped onto
processors at runtime, this brings a model into category 2. A RTS may also
implement implicit decomposition (e1) by treating active objects as potential units of
parallelism. This can be achieved by multiplexing active object instances onto
threads. However, parallelism is always explicit, since it is exprcssed in terms of
active objects. We will explore the active ob]ect design space in detail in the next
section.

9 In the context of OOP, message passing is different from the message passing approach to
distributed memory programming as mentioned above. It is 2 communication metaphor between
objects, rather than tasks and is independent of assumptions of distributed or shared memory.
Message passing in sequential OOP usually implies the flow of control moving between objects.
This guarantees balanced request/reply chains. In COOP message passing is independent of control
flow and asynchronous: the request message contains a method identification to be executed by the
destination plus a list of parameters. The request can also contain a return addrcss for the result of
the method call.

20

2.2 Exploring the Active Objects Design Space

2.1.7 Distributed Object Models

Distributed object technologies, such as CORBA [176], RMI [162] see objects as
large-grain and heavy-weight entities with an explicit mapping to machines; the aim
of these systems is client-server communication and application integration, not
HPC. Interaction is synchronous, based on RPC_semantics. In contrast, we are
concerned with using lightweight and location-transparent concurrent objects that
are implicitly mapped (¢2) on a machine.

2.1.8 Formal Modelling of COOP

2.2

COOQRP has been initially defined conceptually, but not formally. There is currently
much activity to provide more formal descriptions. This is a non-trivial challenge,
because COOP is highly dynamic while computer theory has mainly focused on
statically definable and synchronous systems. A computation model for actors has
been based on transitions by Gul Agha [3] and a theory of communicating
concurrent objects has been proposed by Robin Milner [119]. One of the
important issues is how to express object references (or communication labels) and
behaviours of active objects. This is important for objects to dynamically acquire
and reconfigure their acquaintances and to possibly change behaviour. Some recent
work in this direction is the n-calculus [120].

Exploring the Active Objects Design Space

When integrating objects with concurrency and distribution, a number of design
choices exist. These are related to how issues of inter-object communication and
synchronisation, intra-object concurrency and message acceptance policies,

. including the inheritance anomaly are addressed. Possible choices are outlined in

the following sections.

2.2.1 Object Autonomy

Concurrent object-oriented languages differ in how processes are related to objects.
Parallelism can either be added as a separate concept orzhogonal to objects or it can
be integrated within objects. These two approaches correspond the passive and active
object models, respectively [46;133]. :

The Orthogonal Approach: Passive Objects

In sequential OOP, objects are viewed as passive entities with an operational
interface. A single thread of control traverses the objects as determined by method
calls. The traditional approach to introducing concurrency in this model is the
addition of secondary threads. Threads communicate through accessing shared
objects. Such access must be synchromscd to avoid violation of the cass invariant
[117]. Furthermore, 2 mechanism is requited for spawning new threads.

Smalltalk-80 and the extension Concurrent Smalltalk [185] provides processes
through a fork command. Mutual exclusion and synchronisation for access to

21

Chapter 2 - Review of Related Work

shared objects is provided through (non re-entrant) semaphores.” A deadlock
potential exists in the situation of (direct or indirect) self-invocations. Further,
semaphores are not an implicit part of method calls on objects; i.e., it is the client’s
responsibility to perform correct synchronisation.

In Emerald [83;89] an object can be associated with an opﬁonal process that runs
in parallel with invocations of object operations. This process starts its execution as
soon as the object is instantiated. Objects with a process are active; those without a
process are passive. Synchronisation is achieved via monitors (several can be
associated with an object, e.g., to allow multiple reader-one writer semantics).
Monitots in Emerald are non re-entrant, which can lead to deadlock.

DOWL [2] provides mutexes and wait queues for synchronisation between
processes. Together they function very similar to monitors: processes can wait on a
queue and notify it.

A more recent example for the orthogonal approach is Java [72]. The pre-defined
class Thread has methods run and start. When start is called, a new thread is
created, which executes run. Communication and synchronisation is achieved by
allowing any method of any object to be specified as synchronized. Synchronised
methods execute with a mutual exclusion lock that is implicitly associated with
every object instance. All classes in Java derive from the Object class that has
methods wait and notify, which implement a simple form of condition
synchronisation. This provides functionality similar to the monitor [82] abstraction.

The orthogonal approach gives tremendous flexibility in specifying fine-grained
concurrent access to objects; no maximum is imposed on the number of
simultaneously active threads. However, explicit intra-object synchronisation can
be the source of subtle errors as mentioned in §2.1.5. Motreover, classes that work
in a sequential setting can often not be directly deployed into a concurrent
environment [49;116]. This limits the reuse potential.

The Integrative Approach: Active Objects

A second approach is the tight integration of objects and activities. Active objects, like
passive objects, encapsulate state (instance variables) and behaviour (methods). In
addition, they encapsulate an activity behind the well-defined interface membrane.
In a sense, evety active object instance encompasses virtual memory and processing
resources within the object boundaries. At the hosting machine, these are mapped
onto the locally available physical resources. One or several threads of control are
bound to objects and cannot “leave” the object like in the orthogonal approach.
Instead, method invocation is more along the lines of the object-oriented message
passing paradigm'® [180]. Objects as autonomous and active entities interact with
other objects by sending messages. Messages must conform to the interface of the
methods an active object exposes.

Active objects typically maintain a message queue into which incoming messages
ate spooled. When the active object becomes idle, messages are picked from this

- 10 This should not be confused with the message passmg style of parallel programming, as
mentioned in §2.1.4.

22

2.2 Exploring the Active Objects Design Space

queue and mapped onto method invocations. This approach separates method
excecution from method invocation, which increases modularity and object autonomy.
An early example of a language supporting active objects is POOL [10]. Other
examples in this category are Orient84/K [86] and DRAGOON ([16], Eiffel//,
C++// [38] and ProActive PDC [39].

Figure 2-2 Orthogonal vs. Integrated Object Model

~[

Pot4ntial Paralleliigm = Potential Parallelism =

| Number of Threads Number Ebf Objects
(a) Orthogonal — Passive Objects and Threads (b) Integrated - Active Objects
Actors

Actors [3;4;79] are a special type of active object. An actor system consists of a
collection of actors, each of which has an incoming message queue or mail queue.
Messages are delivered asynchronously and processed in FIFO at the destination
actor.

An actor repeatedly executes the sequence: read the next incoming message, send
messages to other actors whose mail address it knows and define a replacement
behavionr (become) that governs its response to the next message (see Figure 2-3).
As soon as the replacement behaviour is specified, processing of the next message
can take place. Since this can take place before the processing of the previous
message has been completed, actors are internally concurrent. To avoid race
conditions, the actor’s state can only be modified before the replacement behaviour

is specified.

23

Chapter 2 - Review of Related Work

Figure 2-3 The Actor Model

(Gul Agha: A Model of Concurrent Computation in Distributed Systems [3], p. 26).

1 2 n n+l

mailqueuel I I- . .l l l

7/
creates tasks

Send: asynchronously send a
message (also called task) to
another actor.

¥ \ Create: create a new actor.
o \ specifiea replacement

\ Become: specify a replacement
task \ behaviour that is used to

\creates actors
\
\

respond to the next message
in the mail queue; the old
behaviour is not allowed to

\ perform changes to local data
N1 after this point. This allows
concurrency between the
original and the replacement
behaviour.

mail queue " g e

Concurrent Aggregates (CA) [45] extends the Actor model with aggregates. An
aggregate is a group of actors of the same kind that share the same name. A
message sent to an aggregate is processed by only one constituent actor. This
reduces unnecessary sources of serialization on the mail queue, since each aggregate
may process several messages simultaneously. Delegation in CA allows the
behaviour of an aggregate to be constructed incrementally from that of many other
aggregates. CA is geared towards exploiting parallelism on fine-grain massively
parallel computers.

2.2.2 Object Heterogeneity

A system that is purely based on active objects is called homageneons. While
theoretically elegant, the unification of activities and objects often leads to runtime
inefficiencies. This provides the stimulus for heterogeneons models in which active and
passive objects coexist

Homogeneous Models
Homogeneous models provide a unified object representation for a system
developer. Many Actor languages, such as ABCL/1 [186] and Actl [103] fall in this

category. In the POOL language, active object are comprised from non-active,
primitive data types. If such primitive types are not supported, homogeneous

24

2.2 Exploring the Active Objects Design Space

models become very fine-grained; even an Integer is then represented by an active
object. As a result, much message passing between objects takes place at runtime.
This causes much context switching and overheads for queue management and call
scheduling. This creates a serious efficiency problem for naive implementations.

Most purely homogeneous models therefore rely on compilers that reduce
concurrency by clustering fine-grained actors to larger runtime entities (see 2.3.1).
Heavy compiler optimisation is required to generate code with sufficient granularity
from an actor program. This means that active objects are “compiled away” for
efficiency considerations, effectively reducing the program’s potential parallelism.
When the program’s potential parallelism is fixed at compile-time, deployment to
target architectures with varying degrees of parallelism is unlikely to be efficient.

Heterogeneous Models

Despite runtime optimisation, method execution overhead is significant in most
active object RTS. Fine-grained objects do not warrant this overhead, since the
potential benefit of parallel execution is outweighed by the extra costs of
* maintaining the active object abstraction. Thus, since not evetry operation need be
concurrent, it is common to mix active and passive objects in a heterogeneons model.
Nested passive objects increase the granularity of the active object that contains
them.

Examples in this category are Eiffel// [37], C++// [38], ProActive PDC [39],
Mentat [74;75], Act++ and Concurrent Smalltalk. Mentat, uses contained and
independent objects, which are similar to passive and active objects. To prevent
unintended sharing by several objects, MC++ prohibits passing passive objects as
~ arguments to messages. Eiffel, C++//, ProActive PDC and Karaorman’s Eiffel

extension [92] in contrast, adopt different message passing conventions depending
on the type of the parameter: passive objects are passed by desp copy whereas active
objects are passed by reference.

Hybrid [129;133] defines domains as units of concurrency and distribution.
Domains encompass 2 single process and a collection of related passive objects, so-
called parts. Domains communicate through the exchange of messages following
RPC semantics (the calling domain is blocked until the result arrives). Every
domain has a message queue. The thread of control given by a sequence of calls is
called an activity. Domains can be either active, blocked (waiting for reply) or idle.
Since RPC semantics are strictly followed, every message is associated with exactly
one activity. Domains can therefore keep track of the activity that blocked them
and allow direct or indirect recursive self-invocations without deadlock.

Instantiation-Based Activation
One argument against heterogeneous models is that it could require an active and a
passive version of essentially the same class. To circumvent this problem, some

systems (e.g., ProActive PDC, C++//) provide the ability to create an active
instance from a conventional passive class through instantiation-based activation.

25

Chapter 2 - Review of Related Work

“Activated” objects are supplied with a message queue which serializes method
invocations in FIFO order. However, this approach does not honour the
fundamentally different semantics between active and passive objects. This leads to
a set of drawbacks that affect ProActive PDC and C++//:

e It is not possible to override the default FIFO message acceptance policy.
This reduces flexibility. As an example, consider the bounded buffer object
in 2.2.4. In a concurrent setting, it would be desirable to delay requests until
they can get served. This is not possible with instantiation-based activation.
A method can only throw an exception if it is not serviceable in the object’s
current state.

e Existing passive objects typically adopt a by-reference parameter passing
convention. If such an object becomes “activated”, it will subsequently
receive passive object parametets by value. This is inherently unsafe: The
object is used with parameter passing semantics for which it was not
designed. For example, state updates to a parametet could be lost.

® A related problem occurs when an “activated” object is used as drop-in
replacement for a previously passive object. The activated instance has
different synchronisation guarantees: for example, when a method on the
activated instance returns, the client cannot assume that the call already
completed. However, this is the case for the previous passive instance that
was replaced by the activated instance.

¢ In ProActive PDC, it is possible to create a passive instance of an object
and then “turn it active” duting runtime. However, some clients might still
hold on to the original (passive) reference. Therefore the same object could

+ - incorrectly be accessed to through both the passive and active interface.

Summary

Active objects have a high runtime overhead because they require a thread context
switch and heap allocation. For efficiency, most active object implementations
therefore rely on techniques to “merge” fine-grained active objects into larger-grain
runtime entities. The possible approaches are outlined in §2.3.1.

In the heterogeneous model, the programmer must identify objects that warrant
the active object overhead through sufficient method granularity. The main
drawback of this approach is that active and passive objects form different type
hierarchies that could contain objects with similar or identical functionality [133].
On the other hand, the model fosters reuse of existing passive (and possibly non-
thread-safe) objects, since these can be tied in with containing active objects.

2.2.3 Intra-Object Concurrency

Autonomous activity of each object exhibits concurrency between them. This is
called inter-object concurreny. Finer grain concurtency can be obtained by allowing an
object to handle several messages concurrently. This is called Zntra-object concurrency.
In this case, a mechanism is needed to specify the allowed interleavings of
ovetlapping method invocations.

As mentioned in §2.2.1, passive objects do not have any associated concurrency;
they rely on external threads to invoke their methods. If a passive object is accessed

26

2.2 Exploring the Active Objects Design Space

by several threads in mutual exclusivity, Wegner calls this a guasi-concurrent object
[180]. In contrast, active objects have an encapsulated activity. If there is exactly one
encapsulated thread of control in the active object, it is called atomic [126].
Otherwise, the active object is concurrent. .

Atomic Active Objects

Atomic active objects process messages sequentially and in mutual exclusion. The
advantage of this approach is that the encapsulation boundary of the object (its
message interface) acts like a monitor (see the monitor design pattern [152]). This
effectively eliminates the need for intra-object synchronisation. Nonetheless, it can
still be beneficial to have a message acceptance policy (see §2.2.4) to alter the execution
order of incoming messages.

Atomic active objects can make it easier to reason about formal proofs [116;157].
However, they reduce liveness. For example, it is not possible to implement a
CREW protocol (concurrent read, exclusive write). As an aside to the liveness
problem, a further disadvantage is that a blocking operation can block the object’s
- internal thread; in this situation, the object is prevented from serving any further
messages.

Yonezawa et al. [187] illustrate this problem through the example of a team of
problem solver objects, working in parallel on the solution of a very hard problem.
If the first finds a solution, it would be desirable to interrupt processing of the
other solvers. However, due to the one-at-a-time message acceptance
characteristics of atomic objects, this is not possible. In ABCL/1 they address this
issue with express messages. Ordinary activities in an atomic object can be suspended
through the arrival and expedited processing of express messages. To avoid
interleaving inconsistencies, an object can explicitly specify which messages it wants
" to receive in express mode. However, as Meyer [116] points out, it is easy for
express messages to violate the “design by contract” responsibility [117] of an object:
the expedited call might interrupt the active object, while its state is inconsistent.
He proposes a mechanism whereby an ordinary method can be interrupted through
controlled exceptions. These are handled by the server to “clean up” the object’s
state before yielding control to the expedited message.

Another advantage of atomic active objects arises in conjunction with a
heterogeneous model. They can form an ideal environment for passive objects. For
example, in ProActive PDC and C++// every passive object is restricted to the
context of an “embedding” atomic active object; this protects passive objects from
receiving concurrent requests and shields them from the concurrent environment.
- Consequently, there is no need for synchronisation of passive objects. Hybrid uses
single-threaded domains and embedded parts (passive objects) in a similar fashion.

Concurrent Active Objects
Atomic active objects order incoming messages into some sequence of method
invocations. In contrast, concurrent active objects can serve several messages at

once: they have intra-object comcurrengy. This increases overall concutrency and
liveness. However it brings with it all the challenges of concurrent software design,

27

Chapter 2 - Review of Related Work

such as potential race conditions when multiple threads have access to the same
object. As a consequence, additional coordination mechanisms are mandatory to
coordinate concurrent invocations on the same object and to protect the object’s
internal consistency. This causes extra work and introduces extra oppotrtunities for
error; the problems are similar as they are encountered for passive object
synchronisation in an orthogonal environment (see §2.2.1, passive objects). For
example, Jade [99;146] synchronises concutrent calls on a very fine-grained
statement level, whereas other approaches distinguish between readers and writers
(semantic locking). CEiffel [107] separate objects are atomic by default, but this
strict property can be relaxed through compatibility annotations. Each operation can
specify a list of other methods that are compatible for concurrent execution.
Conversely, Concurrent Smalltalk objects are concurrent by default but
concurrency can be restricted through method relations. Method relations allow the
definition of sets of methods that can only be executed in mutual exclusion.
Concurrent Smalltalk uses monitors to control the fine-grained overlapping of
methods. ')

Early reply [105] is another mechanism to increase an active object’s internal
- concurrency. A reply is sent back to the client, before termination of the method
call. Statements following the early reply are processed gffer returning a value;
therefore, concurrency between client and server is obtained. ACT++ integrates

" early reply in an actor model. Any object can become an Actor through subclassing.
Otherwise, objects are passive and can only be used within an Actor instance. The
drawback of early reply is that it is difficult for a client to find out about server
exceptions that happen past the early reply. This defies good softwate engineering
practice.

A further difficulty arises in the context of formal program validation. A proof of
correctness must take into account all possible interleavings between concurrent
method calls in a concurrent active object. This leads to a combinatorial explosion;
atomic active objects are better suited for this endeavour since they reduce the state
space [116]. '

2.2.4 Message Acceptance Policies

Method invocations cannot interleave in atomic active objects. Yet, in some
situations it is beneficial to evaluate incoming messages in an order that is different
from the order in which they are received. Such a mechanism allows the selective
delay of certain messages according to the object’s state.

One research challenge is to find specifications for the control of message
scheduling that are optimal in the sense of generality and reusability. A particular
problem in this regard is the inheritance anomaly [113] ~ the seeming
incompatibility between inheritance and message acceptance policy. We examine
various schemes that have been introduced in the past. These schemes differ in
their expressive power and flexibility, but mainly in their impact on inheritance as
discussed below.

28

2.2 Exploring the Active Objects Design Space

Message Acceptance for Passive Objects

We will motivate the need for a message acceptance policy with an example case on
passive objects. Consider the bounded buffer object in Code 2-1 with methods
put () and get () to add and retrieve integer values. In a sequential environment,
invocations of get and put are sequentially ordered. The only correct response to
an invocation of get() in empty buffer state is to raise an exception
(BufferFullException). In a concurrent setting the situation is different: here it
is possible and more appropriate to temporarily suspend the get call until new
items become deposited in the buffer by a concutrent activity. In a multi-threaded
environment this would be achieved as shown in Code 2-2. However, since this
solution relies on the temporary blocking of external accessor threads it does not
function with active objects.

Code 2-1 Sequential Bounded Buffer.

class SequentialBoundedBuffer {
int[] buf: int.in =.0:int.oute=.0;
BoundedBuffer (int size) { buf = new int[size]; }

void put (int x) throws BufferFullException {

}

if (in >= out+size) throw new BufferFullException();
buf [in++%buf.length] = Xx;

int get() throws BufferEmptyException ({

if (in < out+l) throw new BufferEmptyException();
return buf [out++%buf.length];

Code 2-2 Passive Bounded Buffer with Monitor.

class ConcurrentBoundedBuffer {
ing] buf; dntoin.=. 07 antout =0
BoundedBuffer (int size) { buf = new int[size];)}

void synchronized put (int x) {

}

while (in >= out+size)

try {wait();} catch (InterruptedException e) {}
buf [in++%buf.length] = x;
notifyAll () ;

int synchronized get () ({

while (in < out + 1)
try (wait();} catch (InterruptedException e) {}
int result = buf[out++%buf.length];
notifyAll () ;
return result;

29

Chapter 2 - Review of Related Work

Inheritance Anomaly

Many researchers have pointed out that inheritance is in conflict with message
acceptance policies' [113;133;180]. Depending on the message acceptance policy in
use, the subclass author may need to know the implementation of methods in the
superclass. The introduction of new methods in the subclass may also necessitate
overriding seemingly unrelated superclass methods. Sometimes it may even be
necessary to completely redefine the message acceptance policy as a result of
extending that class. These effects compromise encapsulation and reusability.

- The problem is that the lines of code that implement message acceptance policies
(or synchronisation constraints) may be spread across all methods of a class. If a
subclass has slightly different synchronisation needs, inheritance anomaly is likely
to occur: then instead of inheriting methods from the parent, neatly all methods
must be recoded in the subclass. However, in the re-implementations the
algorithms themselves remain unchanged; just the synchronisation code lines are
modified. Code duplication results in higher maintenance efforts.

The reason lies in the fact that methods introduced in subclasses are not controlled
by the synchronisation constraints inherited from the parent class. This severely
limits knowledge sharing through inheritance. This phenomenon is known in the
literature as snberitance anomaly and has been extensively studied [9;11;113;133].
Matsuoka and Yonezawa [113] describe three instances of inheritance anomaly:

(TIA-1) Partitioning of States. The addition of methods in a sub-class requires
the acceptance sets of the parent to be changed. This problem is caused
through lack of access to local state. As Matsuoka and Yonezawa [113]
point out, this instance does not apply for message acceptance policies
based on guards.

(IA-2) History-only Sensitiveness of State. This applies to methods whose
execution depends on the history of events in the object’s past. As a result,
- the parent’s methods must be redefined to collect this history information.

(IA-3) Modification of Acceptable States. This refers to additional methods in a
subclass altering the acceptable states of superclass methods. As an
example, a lock mix-in class prevents message processing until an unlock
message is received. Consequently, synchronisation constraints for existing
methods require modification to account for the execution history of lock.

Due to these circumstances, many COOP languages, such as POOL-T, Emerald
and Actors, do not provide inheritance features. Other languages, such as
ABCL/1, Concurrent Aggregates (CA) and Hybrid, provide delegation as a
replacement for inheritance.

11 In the related literature, the term “synchronisation code” is often used for what we refer to as
“message acceptance policy”.

30

2.2 Exploring the Active Objects Design Space

Accept Sets

An accept set [169] is a collection of method names. Multiple accept sets can be
defined per object. At any time only a single accept set is applied. Messages
belonging to the current accept set may be accepted while the other messages are
delayed. Every method specifies a new accept set to use, typically as the last
statement in its execution.

Languages based on accept sets [91], [169] define for every object a set of abstract,
named behaviours that this object may assume. Corresponding to every abstract
behaviour is a set of acceptable methods. At any moment during its lifetime, an
object can be in exactly one of the abstract states, which determines the set of
invocable methods at that moment. After processing an invocation, the abstract
behaviour of the object may be updated to reflect its new invocation restrictions.
For example, ACT++ [91] specifies behaviours within C++ classes through the
behaviour keyword.

Table 2-1 State Partition Anomaly with Accept Sets

State Methods State Methods
Empty put Empty put
Singular put, get
Partial put, get
XPartial put, get, get2
Full get Full get,get2
Lgai (b) buffer with inherited get2
(a) original bounded buffer o

Accept sets lead to state partitioning inheritance anomaly (IA-1), as explained in
Table 2-1. The left hand side (a) of this table shows a bounded buffer base class
and accept sets associated with it. This class is extended to accommodate an
additional method get2 that removes two elements from the buffer (b). This
creates a new relevant state, which partitions the previous accept sets. As a result,
accept sets must be modified. The subclass must also override all superclass
methods in order to incorporate the redefined accept sets.

Delay Queues

Hybrid [129] provides another decentralised control mechanism: Fach method of
an active object is associated with a delay quene. Synchronisau'on control for
accessing an object is achieved by cxphcxtly closing and opening delay queues. A
message which requests the execution of a method is blocked if the delay queue
associated with the method is chsed. The message is deferred for later processing
when the delay queue is gper again. This mechanism allows simple coordination
(e.g. close the delay queue for get () messages when the buffer becomes empty).
However, delay queues exhibit inheritance anomaly for active objects: Consider a
subclass that adds an additional method. Since the method was not present in the

31

Chapter 2 - Review of Related Work

superclass its delay queue is not controlled by superclass methods. Consequently,
all superclass methods that need to open or close the delay queue must be revised.

Explicit Message Acceptance

Some active object languages (usually atomic) use a dedicated thread per object,
which is in charge of managing messages sent to the object. This thread is bound to
a special method, called body. The body explicitly accepts messages and answers
them through method invocations. This is a message acceptance policy that is
centralised in one location rather than being distributed over the object’s methods.

One example of this approach is the POOL family of languages[8;10;11;13).
POOL has an answer statement to accept messages. Karaorman [92] describes an
Eiffel library with a CONCURRENCY class, from which active objects can
inherit by providing a scheduler method, which plays the role of the body.
Eiffel//, C++// and ProActive PDC define a body, called Jve routine, which is
started at object instantiation time and used to monitor the message queue and
dispatch incoming requests to method invocations on its stack. Several primitives
-are provided that allow various request serving policies to be implemented. For
example, in ProActive PDC, serveoldest (op) can be used to accept pending
invocations for a method named op. Since C++// and ProActive PDC can
“examine their message queue, declarative synchronisation mechanisms, such as
path expressions, guards, etc. can be built on top of the body. Runtime
performance is limited, though, because of the heavy use of reflection.

The explicit message acceptance approach exhibits all three forms of inheritance
anomaly; as a result, POOL-T does not support inheritance. For Eiffel//, C++//
and ProActive PDC a complete reimplementation of the live-routine in the
inherited class is suggested.

Method Guards

Method guards [50] are a decentralised, per-method approach to specify message
acceptance policies. A Boolean expression is attached to every method which
specifies the preconditions under which corresponding messages can be accepted.
If a guard evaluates to false, 2 message is delayed for later execution. Guard
expressions are usually based on the object’s internal state, but can sometimes
include the value of request parameters for added flexibility. As an example why
this might be useful, consider a method getN(int n), which retrieves n elements
from a bounded buffer.

Guards can be combined with synchronisation counters. Synchronisation counters were
first introduced in Guide and DRAGOON [16]. Associated with every operation
in an object, they record the number of started, pending, ongoing and completed
operations. Therefore, they can serve as a basis to express synchronisation
constraints and guard conditions. Synchronisation counters are also called Deonsic
logic. Method guards suffer from the inheritance anomaly (IA-2) and (IA-3) [59].

32

2.2 Exploring the Active Objects Design Space

Circumventing the Inheritance Anbmaly

DRAGOON [16] presents an innovative approach to circumventing the
inheritance anomaly, based on the Ada language. Guided by the observation that
inheritance is incompatible with synchronisation, Atkinson proposes the separation
of synchronisation constraints from the inheritance tree. Segwential classes in
DRAGOON do not define any synchronisation mechanism and can exploit the full
power of inheritance. Abstract, generic synchronisation schemes are defined
separately from the sequential classes by means of so-called bebavioural classes.
Multiple inheritance, called bebavioural inberitance, is exploited to associate
behavioural classes with sequential classes. Formal method names of the
behavioural class are mapped onto actual method names at behavioural inheritance
time. Thereby, synchronisation constraints as expressed in the behavioural class are
imposed on the resulting behavioured class. The most relevant limitation of
behavioural inheritance is that neither behavioural classes, nor behavioured classes
can be further sub-classed. This limits reuse and modularity, which are of
paramount importance in any object-oriented system.

SODA implements an approach proposed by Ferenczi [59]. This is based on the
interpretation of gwards as conditional critical regions. Ferenczi notes that this avoids the
inheritance anomaly for atomic active objects in an elegant way. In Ferenczi’s
proposal, inherited guards represent nested conditional critical regions. Guards are
then acquired successively along the inhetitance hierarchy. If at any point a guard
condition cannot be fulfilled, the thread of control relinquishes all critical regions in
scope so that another pending message can be processed (see 3.6.1).

2.2.5 Communicatibn Protocols

Message acceptance policies as described in the previous chapter, govern the
response of a server object to incoming requests. There is also scope for various
policies on the client side during interaction with a server object. This is related to
the extent of integration that an object model provides. For example, remote
procedure calls (RPC) are inappropriate in conjunction with active objects, since
they cannot recover concurrency between client and server active objects: ‘A client
is blocked over the duration of the server’s activity. To efficiently exploit the active
object model, it is desirable to find call abstractions that do not block the client
during the call, but still provide a way of obtaining the return value and possible
exception at a later stage.

Remote Procedure Call

Remote procedure call (RPC) [25] is a standard communication abstraction for
distributed systems. It is used in Java RMI [162] and CORBA [175]. In these
systems a pair of sib and skekton objects transparently marshall the remote
communication using lowet-level transport mechanisms. For every invocation on
the stub a request message is sent via the skeleton to the server. A return value or
possible exception is then propagated back to the original client via the stub, RPC
calls transfer control from client to server in a strictly synchronous manner,
blocking the client until the call has terminated. RPC therefore provides great safety

33

Chapter 2 - Review of Related Work

and ease-of-use at the expense of performance and flexibility. Since pure RPC-style
communication cannot tecover concurrency between client and server, this
technique is inappropriate for active-object based systems.

An RPC-style communication mechanism is used in Hybrid for communication
between domains. If a2 method in a remote domain (remote active object) is called,
the calling (single-threaded) domain is blocked until it receives the cortesponding
return message. Otherwise, a domain may be either acize, executing a method call,
or idle. If a2 domain is blocked, incoming messages are queued till they can be
accepted. One exception are messages related to the blocking activity. In order to
avoid deadlock through self-invocation, these can proceed in a quasi-concurrent
fashion. This quasi-concurrency within a domain however, makes programming
more difficult, since internal consistency can be easily compromised.

Multi-threaded RPC

Falkner et al [58] propose an extension to RMI which supports asynchronous calls
through stub modification, thereby retaining interoperability with standard Java
RMI objects. Additional threads are embedded into the stub that monitor RMI
calls in progress and support a Future (see below) return mechanism. ARMI [144]
takes a similar approach, using mailboxes to collect return values as does the light-
weight Java ORB, HORB [81]. Each remote method invocation performed by any
of the local objects is reflected through a separate thread. Insofar, concurrency
inherent to the active object model is not exploited; in contrary, many additional
threads are created on the client side. This scheduling of fine grained threads
introduces inefficiencies, especially if objects engage in frequent communication.

Asynchronous Message Passing

RPC-based communication mechanisms are not well suited for active object
interaction, since they cannot recover inter-object concurrency. An appropriate
interaction technique must be asynchronous, in order to allow the client to proceed
independently with some other useful computation whik the call is in progress. As
Beust [22] notes, “[...] asynchronism is critical in a distributed world, If you want efficiency
and scalability, yon need asynchronism.”’

To this end, the Actor model [3] introduced asynchronous message passing as sole
communication mechanism between objects. All inter-object communication is
based on the one-way sending of request messages, which effectively decouples the
client from the method execution on the setver side. The request initiator can
proceed independently with other useful computation while the call is in progress.
While this approach provides flexibility and efficiency it comes at the expense of
safety and ease-of-use. In order to send back a result of a message, a programmer
needs to explicitly specify the reply destination and save the necessaty data to
handle the reply. For a programmer it becomes difficult to retrieve the result of an
invocation or to synchronise on its termination. This does not encourage
"modularity and structured programming and can be compared to the goto
statement in sequential programs [166].

34

2.2 Exploring the Active Objects Design Space

Join continuations [5] associate a continuation actor (see Figure 2-4) with a method
invocation and pass its mail address as parameter. Operations dependent on the
result of these calls are delegated to the continuation actor, which is then executing
these upon reception of all required results.

Figure 2-4 Continuation Actor
The Actor A sends a request to Actors B and C and, once the replies are available, sends a message
to Actor D. Without a continuation actor this requires explicit matching of the replies by A (a). This
is done independently by the continuation actor E, which knows how many replies to expect (b).

~.. request1

N ‘\

\\

rep|y1 \\\\
“async
request2 - message
’ /
Il’
_-~Teply2

(a) before: asynchronous request/reply

Continuation
request1

v
’
’

\
\
(¢
.
N

request2 N o }---=7

(b) after: a continuation actor manages the reply

NexusJava [63] provides asynchronous communication for Java. The
communication scheme is based on global pointers which allow addressing objects
in remote memories. However, the programming interface is very low-level and
verbose and distributed interactions are limited to the invocations of methods
explicitly registered as handlers.

Futures
Futures were originally introduced in MultiLisp [77] to identify potentially
concurrent computations: The expression (future X) is a hint to the RTS that

expression X can be computed safely in parallel. At runtime, additional threads may
be created eagerly or through /agy task creation [121).

35

Chapter 2 - Review of Related Work

Since concurrency already exists between active objects, we are interested in a more
recent interpretation of Futures. In this interpretation Futures are a mechanism to
implement asynchronous but structured method calls. They act as placeholders for
partially computed values and decouple method execution from method
invocation. This allows a client to proceed past the method call and perform other
computations concurrently. At a later stage, and only when required, the Future’s
value can be picked up. Compared to one-way message-passing, the Future
mechanism allows the retention of a balanced request-reply structure, which is
important from a software engineering point of view.

In Concurrent Smalltalk, asynchronous method invocation is performed through
the & suffix. Such a call yields a CBox object that is a proxy to a Future. The
receive method automatically suspends the client until the Future has a value.

In Karaorman’s Eiffel extension [92] the operation remote_invoke invokes a
method and returns a unique request number asynchronously. Via the method
claim_result the result of a2 method can be retrieved given its request number. A
programmer must explicitly handle and map request numbers.

ABCL/1 [186;187] is an extension of the Actor model that associates every
asynchronous message with a Future object that is explicitly created to save its
reply value'”. The Future’s value is obtained in a blocking manner via the next-
value primitive, CEiffel [107] uses proxies to access return values for asynchronous
functions (i.e., operations that return results).

Promises [106] extend Futures with the ability to record exceptions which are
thrown during the (asynchronous) setver-side execution of a request. This
exception is then rethrown on an attempt to access the promise’s value. This
mechanism allows clean integration of failure handling with non-blocking RPC.

Responsibilities [51] are proxies which can be used as first-class objects, i.e., they
have global identity and may be passed around by reference. Clients create
responsibilities and pass them as by-reference arguments in method calls to the
server. The server explicitly provides a value for a responsibility via the
supply (val) primitive. Therefore, several responsibilities can be attached to a
single method call. While this approach increases flexibility, it also makes
implementation on a distributed memory architecture more difficult. If not-yet-
available responsibilities are exported to remote nodes, how can they be informed
about availability of results? In addition, no context for exception handling is
defined. '

The message-answering semantics of active objects is distinctly different from the
message-answering semantics of passive objects with respect to self-invocation.

12 ABCL/1 actually provides three different call semantics: now type supports RPC semantics; past
type supports one-way message passing; future type returns a Future variable.

36

2.2 Exploring the Active Objects Design Space

Namely, to answer a message, an active object must interrupt its own activity. Yet,
if an atomic active object sends a message to itself and blocks on the returned
Future, we have a situation of deadlock. Direct self-invocation, of course, can easily
be detected, but indirect self-invocations require an analysis of the complete
method invocation graph, which is generally expensive (although this approach is
taken in databases). Languages with atomic objects and blocking Futures therefore
often require the absence of direct or indirect self-invocations [39].

Wait-by-Necessity

Wait-by-necessity is an extension of the Future concept mtroduced by the Eiffel//
language [37] and later used in C++// and ProActive PDC. Whereas Futures
must be explicitly queried for their result, wait-by-necessity makes asynchronous
calls and Futures transparent. Calls on active objects return Futures, which are
implemented as subclass of the expected result and are therefore transparent to the
client. Even legacy code can use them normally. When the Future is used without
yet being available, the client is automatically suspended. Wait-by-necessity allows
the transparent instantiation-based actlvatlon (see §2.2. 2) of previously passive
objects.

This mechanism is vety elegant and promotes reuse, but it does have a set of
drawbacks. Firstly, wait-by-necessity is incompatible with exceptions. In
synchronous calls, when an exception is thrown, the stack is unwound until a
suitable exception handler is found in one of the frames. For asynchronous calls,
this is impossible, since the server frame is effectively detached from the client. In
wait-by-necessity, no well-defined client-side context exists in which the exception
could be caught, since the client may have already proceeded past the method call.
Therefore, CJava [47], ProActive PDC and C++// forbid exceptions thrown by
* active object methods.

Secondly, wait-by-necessity cannot support primitive values which cannot be
subclassed. Finally, the result of a wait-by- neccssity invocation is in a different level
of the inheritance tree than the client might antlclpate This might break legacy
code by throwing unexpected casting exceptions.

Summary

In the presence of active objects, asynchronous calls are required in order to obtain
concurrency. Completely asynchronous calls defy good software engineering
practice, since there is no guarantee that return values or error conditions are ever
checked. This opens Pandora’s Box and leads to an error-prone programming style.
Wait-by-necessity is elegant, but has the disadvantage of not being able to deal with
exceptions. With Futures, on the other hand, asynchronous calls are not
transparent, but they are safer than wait-by-necessity. One problem in the
combination of Futures with atomic active objects is that a blocking Future
temporarily stops the client active object from accepting further invocations. As a
result, deadlock can occur, for example through cyclic invocations.

37

Chapter 2 - Review of Related Work

2.3

The previous paragraphs were concerned with various design choices for an
abstract programming model based on active objects. We now go on to consider
the various routes that have been taken in the past to implement such a model.

Runtime Issues for Active Objects

We finish this chapter with an examination of the implementation issues involved
in active object systems. This section is mainly focussed on Java-based systems,
because that is the language we use for system implementation. Message-passing
systems, such as PVM or MPI require the programmer to explicitly specify the
placement and scheduling of computations and the communication between them.
They do not provide facilities for dynamic creation of tasks, in adaptation to
available hardware parallelism, and therefore restrict the extent of automatic
optimisations. In contrast, active object programs involve irregular data-driven
computations, dynamic creation of tasks and asynchronous communication. A RTS
has considerably flexibility in choosing strategies for granularity control and placement
(mapping of objects onto processors). Thus, opportunities and challenges for
automatic optimisations are greatly increased.

Active object algorithms are often expressed at a finer level of granularity than
distributed memory machines can exploit efficiently. Granularity control is the
process by which the granularity of such algorithms is increased. We explore this
technique in the following section before turning to issues of object placement.

2.3.1 Granularity Control

A fine-grained active object model holds great potential for high-performance
computing, since it inherently exposes large amounts of concurrency. Target
architectures will typically offer a vatiable degree of physical parallelism. One
challenge is the reduction of concurrency exposed at runtime to a degree that
efficiently matches the target architecture’s physical parallelism.

Typically an active object runtime system will expose a set of threads on every
participating machine. The total number of threads is called a program’s posential
parallelism. For systems that are based on explicit decomposition, active obijects are
directly represented by threads. This prevents the advantages of fine-grained active
object models from being realised, since granularity control is a design-time
decision. In heterogeneous models, for example, the granularity of an active object
can be increased by embedding more passive objects. Example systems in the
category of explicit decomposition are ProActive PDC, C++// and

- ActorFoundry [132].

More advanced implementations remove decomposition decisions from the
programmer’s domain. For example, it’s common to multiplex several active
objects onto a small number of threads in order to achieve implicit decomposition. We
can classify three different approaches that have been explored in the past:

38

2.3 Runtime Issues for Active Objects

Compile-time Approach

Homogeneous models often employ a compiler-based approach to “compile away”
active objects [5;56;96]. The aim is to convert “superficial” active object instances
into sequential structures. Compiler-based techniques lead to efficient code but fix
the potential concurrency in a program. It is possible to parameterise the compiler
with details of the target architecture. Any such parameters, however, require
experimentation to calibrate and cannot accommodate for unpredictable runtime
conditions, such as different data sets or varying resource availability. Furthermore,
this process may need to be repeated for a different target architecture.

Profiling-Feedback Approai:h

Charm++ [98] is a runtime system based on C++ and targeted at dynamic and
irregular app]icau'oﬁs in the parallel object-oriented domain. It uses a post-mortem
analysis tool that allows runtime optimisations without programmer intervention.
Based on traces and analysis of previous execution, the code is interspersed with
calls to the Charm++ runtime library to improve parallel execution efficiency.
Besides granularity control, the results are also used to control object placement
and to optimise communication efficiency.

The Finesse tool [125] uses a similar approach, based on profiling information
collected through example runs of the program. Finesse also relies on programmer
feedback to identify and resolve potential bottlenecks to efficient parallel execution.

The drawbacks are similar as for the compiler-based approach: profiling cannot
accommodate for highly dynamic and data-dependent problems and repetition of
the profiling process may be required for different target architectures.

Runtime approach

In the most flexible granularity control mechanism, concurrency is dynamically
adapted to physical parallelism at runtime. A common method is the inkining of
calls, when target objects reside locally. Instead of petforming a heap-based
invocation or using the loopback network interface, calls are converted into stack-
based invocations where appropriate. This reduces the overhead for location-
transparent objects. For example, JavaParty [140] exploits unexpected locality by
accessing local objects at the cost of a pointer inditection instead of performing
expensive network loopback communication. Target objects in JavaParty are
passive and multi-threaded. In ABCL1/AP1000 by Taura [167] calls are normally
heap-based to support the mail queue semantics of actors. However, messages sent
to idle actors on the same processor are changed into stack-based, /n/ined function
calls for performance.

With actors (or atomic active objects) the inlining approach could lead to deadlock
as a result of parent-child welding [54]. Client and server (or parent and child task) are
effectively welded-together through inlining into a single task. If an inlined call
becomes blocked waiting for a Future to resolve, the client is blocked as well and is
not available for executing other requests. To avoid the resulting deadlock
potential, ABLC1/AP1000 copies the stack frame of a blocking method execution
into a heap-allocated frame and saves it in a global scheduling queue for later

39

Chapter 2 - Review of Related Work

execution. The stack is unwound and the execution of the previous method
continues as if the message had been sent asynchronously.

Lagy task creation [121] is an alternative to inlining. It goes the other way by
retroactively exposing more concurrency when processing tesources become
available. Calls are inlined by default but can be converted into heap-allocated
invocations in order to allow merk stealing through other processors. This
mechanism is used in the NIP RTS [177;178].

2.3.2 Object Mapping

Distributed objects must somehow be allocated onto the nodes of a distributed
memory system. Efficient object mapping revolves around two conflicting issues.
On the one hand, frequently interacting objects should be collocated on a node in
order to reduce inter-node communication ovetheads, ie., beality should be
exploited. On the other hand, /ad balancing is required so that objects are balanced
over all nodes in the cluster to optimise processor utilisation. To strike a balance
between these two requirements represents an unportant challenge to efficient
exploitation of active object programs. .

The object placement is either explicitly controlled by the programmer (explicit
mapping—e3) or handled transparently by the runtime system and/or compiler
(¢mplicit mapping—2). Further, an allocation scheme can be static or dynamic. In a
static scheme, an object remains at the node it was instantiated at. In a dynamic
scheme, migration of objects can take place at runtime.

Static Explicit Mapping

Distributed object systems built around Java RMI or Corba, are often based on an
explicit mapping. Objects ate created at a fixed location in the network and looked
up via a central name server. In ProActive PDC, a configuration file maps virtual
host names onto real host names on the target architecture. This is inflexible, since
it requires programmer interaction for every new target architecture and possibly
several cycles of experimentation. Another problem is that a static mapping cannot
accommodate for objects that significantly change their activity patterns during
runtime. Objects should then be dynamically reallocated to avoid load imbalance
and/or the physical separation of tightly coupled objects, which engage in heavy
communication. '

Static Impliclt Mapping at Instantiation-Time

Some systems implicitly take allocation decisions at object instantiation time. In
DOOM [13] objects are placed according to the system’s load situation and their
locality at creation. After the initial assignment, no dynamic migration is possible.
Allocation decisions may also be taken at compile-time. However, this carries
problems similar to compile-time granularity control. A compiler may have
difficulties in predicting runtime overheads and communication patterns, especially
for reactive programs that are strongly dependent on runtime data. Neither can
. compilets deal with unpredictable resource availability, for example in non-

40

2.3 Runtime Issues for Active Objects

dedicated clusters. One solution to these problems is the dynamic migration of
objects according to runtime conditions.

Dynamic Object Migration

Optimum allocation strategies ate often not known a priers, rather they are runtime
dependent and can therefore only be established during execution. Especially for
applications with highly dynamic behaviour any static mapping is likely to petrform
poorly [173], p. 228. Object migration is essential for the scalable execution of
dynamic, irregular applications over sparse data structures [96]. However, few
Active Objects systems offer support for dynamic object migration and if so, rely
on the programmer to initiate migrations explicitly [89;96]. -

The positive effects of dynamic object migration have been studied in the Emerald
project [83;84;89]. In Emerald, objects can migrate between nodes. Objects can be
declared immutable, which simplifies sharing. There is both inter-object and intra-
object concurrency. Objects can be declared as monitors, which simplify handling
intra-object concurrency. Objects with a process (executing in parallel with the
monitor) are active; those without a process are passive. All method calls are
synchronous; new threads of control arise by creating a new active object.

Objects are location-transparent in JavaParty [140;191]. At instantiation time they
are placed onto some machine chosen according to a strategy that can be
dynamically modified at runtime. The RTS deals with locality and communication
optimisation automatically triggers object migration. Migration decisions are based
on communication patterns collected at runtime or on hints given by the
progtammer. Migration is implemented by locking the object and using Java
_ serialization to move it to a new address space.’A forward-pointer is left behind that
informs any subsequent callers about the new location of the target object so that
references can be updated. This is problematic, as it could degenerate to #-1 call
attempts for updating a single outdated reference where # is the number of hosts in
the cluster. If migration occurs frequently or if many references exist to the object,
this would be very inefficient.

An alternative to forward-pointers is used in the NIP DSM system. Every object
has a master node. An object reference contains the cutrent (or last known) location
of the target object as well as information about the target object’s master node. If
the current location is stale, it can be updated from the master node. Since every
participating machine in a cluster can act as master node, this is a decentralised
name server approach, which does not create a centralised bottleneck.

Function Shipping vs. Data Shipping

In DSM, objects are allocated in a software-emulated global address space that
extends over physically disjoint memories. When client and server objects that
engage in a method call are not physically collocated, the server object is
transparently moved to client-local memory. This usually involves acquiring a lock

41

Chapter 2 - Review of Related Work

on the server object and copying its state into the client-local memory before
executing the desired method, a technique called data shipping.”

In contrast, most distributed object models are based on the idea of function shipping
when remote objects engage in a method call, target method name and parameter
values are encoded in a request message. This request is sent to the server object,
processed remotely and a reply is sent back.

Active object implementations are generally based on function shipping™ If objects
ate Jocation transparent, a runtime system can use a mixture between function
shipping and data shipping to operate between the goals of improved locality and
load balancing. Due to this hybrid paradigm, dynamic object migration brings
flexibility advantages. However, it also relies on runtime analysis of object
interaction patterns and processing requirements. This incurs a profiling overhead
for recording computational and communicational patterns of objects.

~

2.3.3 Garbage Collection

2.4

Distributed garbage collection is an important topic for active object runtime
systems. However, we do not want to examine this in detail or provide a solution
for our runtime system, since a large amount of literature and working systems
already exist [100;141]. Each of the previous solutions has strengths and
weaknesses. Reference counting cannot reclaim garbage cycles [141]. Mark-and-
sweep is difficult to implement on distributed memory. RMI uses reference-
counting based on leases. It keeps track of all remote JVMs that have references to
the locally kept object. Active objects add another dimension of difficulty to this
problem [90]. ‘

Summary and Conclusion

While message passing and shared memory are the two predominant parallel
programming models in use today, they make parallel programming rather tedious
and error-prone, because of their low abstraction level. The active object model is
an alternative born from the marriage of object-orientation and concurrency.
Active objects can expose a high degree of concurrency and allow the natural
modelling of many real-world problems. Parallelism is expressed at a much higher
level and is highly implicit. Communication and synchronisation are expressed
naturally through method calls. As units of distribution, active objects can provide
implicit mapping and implicit -decomposition. However, many current
implementations suffer from the large runtime overhead of active objects, which
forces a programmer to explicitly adjust active object granularity to each particular
target platform. Another obstacle is the inheritance anomaly, caused by the seeming

13 In most cases, DSM system will create or update cached copies of the target object for improved
locality. |
14 Unless some DSM system is used that provides a global address space for all active objects.

42

2.4 Summary and Conclusion

incompatibility of inheritance and message acceptance control. While Fetenczi’s
proposal circumvents the inheritance anomaly, the implementation of the
undetlying conditional critical regions has previously been considered runtime-
expensive. A further issue is the problem of providing balanced request/reply
chains in the presence of asynchronous message passing between objects.

The subsequent chapter presents the design and implementation of the SODA
abstract machine and highlights how runtime mechanisms based on the
programming model propetties, achieve implicit decomposition and mapping.

43

L4

Lahtas Approach/Model Object Intra-Object Intra-Object Client-Server
i of Concurrency Heterogeneity Concurrency Coordination Interaction Protocol

Concurrent Objects and Only passive objects | yes semaphores Synchronous and

Smalltalk processes asynchronous

method calls

POOL Active object with | homogeneous no Live method, using |Synchronous (early
autonomous body accept statement return, rendezvous-

like); one-way in
POOL2

Pure Actors Active object homogeneous Concurrent, reactive | Become primitive | One-way messages
(Actor)

ABCL/1 FIFO atomic actors,| Homogeneous (only| Atomic, reactive Live method using |3 types: now (RPC),
can contain primitive members select statement, past (asynchronous),
primitive values allowed) delegation Future (Future)

ACT++ Active objects heterogeneous concurrent thread creation Asynchronous one-

(hased on C+4) derived from Actor | using become way request; CBox
class objects to collect

reply (Future
semantics)

Act 1 [103] Actors homogeneous Futures serializers continuations

sagdenguery 102(qQ 2ANOY JO MIAIIAQ Z-Z AqEL

Y4041 poropry Jo aanary - 7 4ardoq)

SP

T Approach/Model Object Intra-Object Intra-Object Client-Server
guag of Concurrency Heterogeneity Concurrency Coordination Interaction Protocol
Eiffel/ / »C++//, | Active object with | heterogeneous Atomic, Explicit acceptance | Wait-by-necessity,
ProActive PDC autonomous body autonomous exceptions
unsupported

Hybrid Concurrent domains| Domains and con- |Concurrent Delay queues and | Synchronous RPC,
as collections of tained objects delegation no exception
objects are handling

Emerald Optional processes |Active (opt process)| processes monitor Synchronous RPC
attached to objects. |and passive objects

Dragoon Passive objects and [no yes Behavioural classes, | Synchronous RPC
processes Deontic logic

CORRELATE [93] | active objects Active and passive | Atomic, “interface” | Guards on Synchronous and

objects methods in operations asynchronous (one-

exclusion with an
“autonomous’
behaviour (live
routine)

way) calls

(panunuood) safenFuer] 102(qQ 2ANOY JO MIIAIIAQ) €-T L],

uosHpu0”) puv vuuns 'z

3.1

Chapter 3

The SODA Model
and Language

SODA has been designed to overcome limitations encountered in previous active
object systems (see Chapter 2). The SODA model introduces three extensions to
active objects that address the problems of deadlock, inheritance anomaly and
restricted object-internal concurrency: These are 1) a novel mechanism for inter-
object synchronisation, called Futures and Funnels; 2) implicit intra-object
synchronisation based on Ferenczi guards and 3) detached methods to control intra-
object concurrency. We highlight how Futures and Funnels are relevant to achieve
implicit communication and synchronisation. We also demonstrate the model’s
usability by giving example solutions to a set of real programming problems.
SODA is implemented as an extension of the Java language. This language is
supported by a runtime-library that presents a virtual machine view of a muld-
computer system (see Chapter 4). SODA’s abstraction level occupies a middle
ground between simple actor models [3;5] and high-level agent-based systems [97].

Motivation and Overview

In the previous chapter we gave an overview over the current state of research in
the area of concurrent object-oriented programming. The motivation behind most
languages and models in this family is the straightforward and efficient expression
of parallel and distributed programs. The category of active object systems is of
particular interest for distributed memory architectures: Objects as the unit of
concurrency and distribution can be transparently allocated onto physically disjoint
address spaces. Fach active object strongly encapsulates its variables and confines
external access to its method interface. For the runtime-system implementer this
has the advantage that no virtual shared memory abstraction is required. SODA
uses function shipping instead of data shipping: the state of foreign active objects
can only be retrieved through method invocations. Such invocations are
transparently mapped onto message sending across the network if client and server
active object happen to be located in different physical address spaces at runtime.
This circumvents problems of scalability and cache consistency which are often
encountered by virtual shared memory runtime-systems [43;131].

Despite the potential of active object systems, Chapter 2 identified a set of trade-
offs involved in their design. Tensions exist along various dimensions of the design
space: for example, the degree of intra-object concurrency is associated with a
trade-off between efficiency and ease-of-use. Another example is synchronous vs.
asynchronous call semantics, which represents a trade-off between safety and
potential concurrency.

46

3.1 Motivation and Overview

To overcome some of these tradeoffs, we propose three extensions to the active
object model. These address the problems of deadlock, inheritance anomaly and
restricted object-internal concurrency in the context of atomic active objects:

Futures and Funnels: The SODA model offers a novel dataflow-based return
mechanism, called Fausures and Funnels. This mechanism bridges the gap
between synchronous and asynchronous method invocations. Funnels
allow asynchronous method invocations while guaranteeing balanced
request-reply chains. Funnels also avoid deadlock when used with atomic
active objects. Parallelism is the default execution mode in the SODA
model; sequencing occurs only for successive method invocations on an
active object and in the case where Funnels describe implicit data
dependencies between active objects.

Ferenczi Guards: An active object’s servicing policy for incoming messages is
FIFO by default. SODA implements Ferencgi guards [59] to conditionally
override this behaviour. Ferenczi’s proposal circumvents the inheritance
anomaly and, to our knowledge, has not previously been integrated with
active objects. L :

Detached Methods: Detached methods in SODA are an integration of the haff
async/ balf-sync partern [152] with active objects. This concept combines the
efficiency benefits and expressive power of multi-threaded active objects
with the convenience and encapsulation advantages of atomic objects.

We demonstrate that these extensions improve the usability of active object
systems and that an efficient implementation is possible. SODA programmets
concern themselves with an object-oriented design for the problem at hand. On a
. pet-class basis, the activity semantics have to be decided (see §3.2). Low-level tasks,
however, are handled transparently at runtime. For example, the assignment of
object instances onto processors is dynamically adjusted by the runtime-system in
order to balance load and netwotk utilisation. This allows the execution of SODA
programs on a variety of architectures without change. SODA programs are best
suited to distributed memory architectures. Multiprocessors or single-processor
machines are alternative target architectures. However, SODA programs will not be
able to compete with the performance of other programming models that are
geared towards these architectures.

SODA adopts an active object concurrency model. As such it inherits the well-
known benefits of object-orientation, like rapid prototyping, reusability, modularity
and maintainability [158]. Concurrency is implicitly created by asynchronous
method invocation. Method invocations are translated into requests. These are
queued at the target active object until they can be processed. Unprocessed
requests are the driving force behind all computation in the system. The
computation is initiated by the runtime system that sends a request to the main
method of the primordial active object"”. Further active objects and requests can be

15 The main method is in fact a detached method, as outlined in §3.3.2.

47

Chapter 3 — The SOD.A Model and 1_anguage

3.2

created dynamically. In this section, based on the taxonomy described in §2.2, we
outline the design choices underlying SODA.

Object Heterogeneity

The SODA model is heterogeneous: active and passive objects coexist. Active
objects reside in a global address space. This address space can transparently extend
over several physically distributed address spaces. The identity of passive objects is
only valid within the scope of a single, owning active object. The following
definitions are similar to those that appear in the definitions of such languages as
Java [72] and C++ [26].

3.2.1 SODA Active Objects

Definition 3-1 (SODA Active Object). An active object in SODA is a state and
activity container with globally valid identity. The state is hidden from the
outside world, or encapsulated. An active object has external methods (or
operations) which provide the only means of accessing the state. All
invocations of one of the external methods are handled asynchronously by
the active object’s encapsulated activity. The internal state of an object may
consist of references to other active objects, passive objects and primitive
data types, or some combination of these.

Figure 3-1 SODA Active Object Anatomy

Public method
interface

Passive

Note that Definition 3-1 excludes the possibility of accessing the fields (or state) of
an object directly. All external access is via method calls. This approach provides a
strong degree of encapsulation and avoids internal state inconsistencies through
concurrent updates. This is not a restriction, since simple getter/setter methods for

48

3.2 Obyject Heterogeneity

every field can be provided. In fact, the consequent usage of the JavaBeans pattern
is a good software engineering principle.

By the same token, SODA does not support class variables. Class variables are
shared amongst all objects of the same class. This language feature makes
centralised assumptions about the environment that conflict with the implicit
distribution model. Maintaining a consistent state of such variables would be a very
costly operation in a distributed system and we therefore decided not to directly
support this in the programming model.

Definition 3-2 (SODA Active Object Method). An active object method is a
function that is externally exposed to access an active object and perform
computations based on the object’s state. Each method takes zero or more
arguments, and possibly returns a value. Invocations are asynchronous: a
client is not blocked waiting on their completion. Instead, method
invocations in SODA implicitly create concurrency by committing the
internal activity of the target active object to their asynchronous processing.

Note that constructors are treated as active object methods in SODA (see below).
Object instantiation is therefore an asynchronous operation. This has the advantage
that a client may instantiate several active objects concurrently. Each of the
constructors can potentially run in parallel.

Active objects support access modifiers for active object methods as follows:

e private: internal calls only (self-invocation).
e protected: access only from within the active object and its package.
e public: default visibility, allows global access.

Active Object Declaration and Instantiation

Figure 3-2 shows the interface of an active class in SODA. Active classes are
marked with the active keyword, which by default allows public access. The
signature of all active object methods is based on a Future return value. This
enables the asynchronous calling of these methods as described in detail below.
Methods with the special name init declare the constructors for the active object
class.

Figure 3-2 Interface of an Active Class.

active class Bufferl (
public Future init (String name) ; // constructor
public Future put (int element) ;
public Future get();
public Future getName () ;

Figure 3-3 demonstrates the instantiation of an active object instance of class
Buffer. Note that the constructor invocation acts like a normal active object

49

Chapter 3 — The SOD.A Model and 1.angnage

method, ie., it returns immediately with a Future as a placeholder for the actual
active object reference. Via the get () operation the actual value can be obtained
from the Future. This is discussed in detail in §3.4.1.

Figure 3-3 Active Object Instantiation

Future f = Bufferl.init ("myBuffer"));

try
{

}

Bufferl bufl = (Bufferl) f.get();

catch (Exception e)

{
}

// when the instantiation failed

3.2.2 SODA Passive Objects

Definition 3-3 (SODA Passive Object). A passive object in SODA does not
have a global identity, but is always private to the scope of a single active
object. Within the context of its owning active object, a passive object can
be used with the conventional Java syntax and semantics. i.e. calls are
synchronous. Passive objects cannot be referenced from foreign active
objects. Instead, access must always be mediated through the owning active
object. Together with its private passive objects, an active object forms a
single concurrency unit.

Definition 3-3 implies that passive objects cannot be passed by reference between
active objects. If passive objects are used as parameters for method calls they are
therefore passed using deep-copy semantics. This involves recursive copying of the
complete object graph, i.e., the state of the passive object and all referenced objects.
Deep copying is necessary, regardless of whether the client and server share a
physical address space at runtime. SODA offers a set of optimisations that relax the
strict deep-copying of passive parameters if these fulfil certain criteria (see §3.7).

3.2.3 Programming Methodology

Heterogeneous models have previously been chosen for performance
considerations. In some systems active objects can cause significant overheads due
to synchronisation and thread management costs. Only objects with a certain
granularity threshold warrant this overhead. Passive objects are a means to reduce
the number of active objects and to increase their granularity. However, the
programmer carries the burden of assessing object granularity and identifying
suitable active objects in a design. This is difficult, because the granularity threshold
is influenced by hardware characteristics (such as processor performance and
network latency) and may also depend on the value of runtime parameters.

50

3.2 Object Heterogeneity

" SODA offers a different programming methodology: active objects in SODA have
a comparatively small runtime overhead® (see Chapter 4). Consequently,
programmers can create large numbers of active objects without having to worry
about the performance impact.”” The SODA runtime-system adjusts the grain size
dynamically in response to runtime conditions., This has the advantage that on
highly parallel platforms more concurrency can be exposed, while still allowing
efficient execution when physical parallelism is restricted.

The choice to adopt a heterogeneous model in SODA was therefore motivated not
so much by performance considerations, but rather by flexibility and convenience
factors. In SODA the following are suitable use cases for passive objects:

Legacy classes. Firstly, passive objects allow the instantiation of legacy classes.
Since an active object can shield a contained passive object from
concurrent invocations, this allows the reuse of a legacy class, even if such a
class was not intended for usage in a concurrent setting.

Operating system classes. Secondly, operating system resources, such as sockets,
" are supported as passive objects. This has consequences for the mobility of
the owning active object (see §3.2.4).

Data Containers. Thirdly, passive objects are effective in modelling structured
data containers. They should not have complicated compute-logic. This can
be useful to reduce the frequency of (remote) inter-object communication:
As a method call argument, passive objects are passed by value and
therefore effectively cached at the server object. This is more efficient than
querying a foreign active object repeatedly for its state via methods that

* return primitive data types. Where active objects are not collocated, this can
lead to drastic performance improvements. Data containers provide some
form of data shipping in the otherwise function-shipping oriented SODA
model.

The following ate use cases for active objects:

“Computational” Objects. All objects that have one or more methods that are
more significant than just simple setter/getter methods. Although the
overhead for active objects is relatively small in SODA, methods must have
a certain minimum granularity to amortise this (see §5.3).

Shared Data Containers. Since SODA lacks a distributed shared memory
abstraction, copies of a passive object data container will run out of the
synchronisation. Sometimes it is desirable to have a data container which

16 SODA chooses at runtime between a set of techniques to implement active object method
invocations. In the most optimised case, active object overhead in SODA is only marginally higher
compared to conventional passive object calls. This is the case, if the server object (1) resides on the
same node of the distributed architecture, (2) is idle and (3) the method guard evaluates to true.

17 However, there is also the issue of memory consumption for the active object state infrastructure
management. This cannot be avoided by runtime-based systems.

51

Chapter 3 — The SOD.A Model and 1anguage

gives identical views to a set of active objects. If such “shared object”
semantics are required, they can only be modelled through an active object
wrapper.

Figure 3-4 SODA Programming Methodology

contain

Passive
Objects

Active
Objects

Operating
System
Objects

Legacy
~ Objects

“Computati
onal”
Objects

contain

Shared Data
Data Containers
Containers

3.2.4 Dual Semantics of Active and Passive Objects
No Active-Passive Polymorphism

Instantiation-based activation is used in some object models in order to avoid a
programmer having to provide multiple versions of a class according to use.
However, this concept is inherently error-prone as it does not fully honour the dual
semantics of active and passive objects as shown in §2.2.2. To avoid these
problems, SODA active and passive objects form strictly separate class hierarchies
and do not support polymorphism. Since in SODA the use cases for each object
type are so different, the need for creating multiple versions of a class should not
normally arise.

Synchronised Passive Objects

One problem with the integration of legacy objects deserves mention in this
context: while unsynchronised passive objects can be embedded without
restrictions into active objects, care has to be taken for passive objects that define
object-internal synchronisation constraints. If a synchronised object was embedded as
private passive objects into an active object, any blocking in this passive object
would deadlock the owning active object. For example, the embedded object could
be a single-space buffer, which needs to be accessed in alternation by a producer
and consumer. The passive object’s internal blocking condition can only be
removed through another thread, but the single thread of the owning active object

52

3.3 Intra-Object Concurrency

3.3

is already tied to the waiting condition in the embedded passive object. The
solution is to use detached methods (see §3.3.2) and allow them access to the
synchronised passive object. \

Blocking synchronised objects are infrequent, as an examination of the Java 1.3.1

. standard class API revealed. Most synchronized objects only enforce mutual

exclusion between their operations according to the monitor pattern (i.e. enforce
mutual exclusion of all method invocations, but contain no wait statements, in
which case this problem does not arise [152]).

Operating System Classes and Mobility

Some passive objects, which encapsulate local operating system resources, cannot
be moved to another host without violating their internal consistency. For example,
a Socket object is meaningless if its reference into the operating system no longer
exists. The same is true for objects that interoperate with local files or databases.
To account for this situation, active objects can be marked as fixed to be exempt
from the automatic migration mechanism. Such objects then act as services, e.g. a
file service or a database service (comparable to services in the Grid [62;71]). This
mechanism should also be used to mark large-volume shared data containers for
which migration would be very expensive.

Alternatively, active objects can implement the interface MigrateControl, which
defines two methods prepareMigrate and migrateDone; these can be used to
perform low-level handling of passive objects.

Per-Host Active Object Instances

By default, active objects are location-transparent: a programmer has no influence
over where an instance is created. Some active objects, however, have special

" requirements on their execution environment. As an example, consider an active

object, which provides database access or interoperates with a non-shared file-
system. SODA allows allocating active objects onto hosts, which fulfil certain
criteria. It is also possible to instantiate an active class on every host participating in
the cluster. This is achieved through obtaining host meta-objects, which can then
be used as a parameter for instantiating new active objects on an explicit location.
With the exception of per-host active object instance, distribution is completely
implicit in the logical model of an application.

Intra-Object Concurrency

SODA uses an atomic active object model. This means that only a single internal
thread handles all method invocations and state changes. We explain the
motivation for this design decision. We then turn to the concept of detached
methods, which allows active objects to encapsulate additional threads in a manner
that does not remove the benefits of atomic active objects.

53

Chapter 3 — The SOD.A Model and Langnage

3.3.1 Atomic Active Objects

SODA active objects are atomic. They only have a single internal thread that is
tesponsible for serving incoming requests. Every method invocation on the active
object is translated into a request. Requests are queued until the internal thread
becomes idle for their processing. Incoming messages are processed in FIFO order
by default. A different servicing policy can be specified through Ferenczi guards
(see §3.6.1). Once activated, methods run in mutual exclusion, without interruption
or blocking. This absence of object-internal locking mechanisms makes
programming easier and avoids infinite delays during execution of a method. With
individual methods having non-blocking semantics, the active object can never
block subsequent method invocations. As long as new requests arrive and they
fulfil the corresponding method guards, the active object guarantees to process
them. In detail, atomic active objects offet the following benefits:

Better Design. From a design point of view, atomic active objects have the
advantage of complete encapsulation of state, behaviour, and single activity
on a per-object basis. '

Mutual Exclusion of Methods. The undisciplined use of mutexes ot semaphores to
implement mutual exclusion on non-atomic active objects is prone to error.
It is easy to misplace wait and signal operations, or even omit them
altogether. Data inconsistencies are a likely result when shared data is
accessed concurrently. Atomic active objects effectively implement the
monitor pattern. All methods are guaranteed to run in mutual exclusion. The
atomic active object model makes programming easier, since the effects of
concurrent access to an active object need not be considered by a
programmer. Fine-grained intra-object synchronisation mechanisms are
superfluous. For example, a programmer does not need to identify
compatibility sets for methods that may proceed concurrently.'

Enable Ferenczi Guards. Single-threaded active objects enable the use of method
guards with semantics of concurrent critical regions as suggested by
Ferenczi. This provides a high-level synchronisation constraint while
avoiding the inheritance anomaly. Guards for superclasses are acquired
consecutively. ’

Weak Mobility Support. Atomicity of method invocations makes the provision of
weak mobility [32] easier on the part of the runtime-system: an object can be
migrated to a new physical address space, whenever execution of the
current request finishes and before execution of the next queued request
commences. The active object can then be transferred with its complete
internal state and the queue of unprocessed requests.

Transactional Active Objects. Atomic method execution could be extended to
provide fransactional active objects. A transactional active object would

18 While a compiler could perform this task for simple methods, it would be difficult in the presence
of embedded passive objects being updated.

54

3.3 Intra-Object Concurrency

petform the following actions under transactional control: (1) remove a
request from the pending request queue, (2) processing of the request and
all state changes caused to the active object and (3) request sending to
foreign active objects. If a failure occurs during the processing of a request,
the object’s state and queue can be rolled back to the last consistent state.
Otherwise modifications to queue and state are committed and all created
requests sent to foreign active objects. Programs built on this principle can
be resilient to non-catastrophic failures by maintaining an object-store in
non-volatile memory. For example, a program could recover from the crash
of a machine in the cluster. Another approach that could be taken to
provide Fault Tolerance and High Availability is the replication of active
objects. However, these issues are not explored any further in this
dissertation. v

In the literature review we exposed a trade-off related to the degree of intra-object
concurrency. Although atomic active objects are easier to use, they restrict potential
concutrency. For example, an atomic active object cannot implement the classic
CREW (concurrent read, exclusive write) pattern. However, if we consider read-
opetations to be of relatively short duration, then this does not amount to a
significant loss of parallelism. This problem can be further mitigated by nesting
active objects: because complex systems are almost always constructed of
subsystems several levels deep before getting to leaf-level components, it is a
natural extension to the active object model to permit active objects to contain
other active objects. Although atomic active objects do not support true intra-
object concurrency, delegation to contained active objects is a reasonable substitute
for many applications. More powerful however, is the concept of SODA detached
methods: these allow intra-object concurtency while retaining the advantages of
atomic active objects.

3.3.2 Detached Methods

Definition 3-4 (Detached Method). A detached method is a special active object
method that is not executed on the active object thread. Instead, a new
concurrent activity is spawned for every invocation, Detached methods are
not externally visible and always return a void result. By default, they do
not have access to the state of the active object in which they are declared.

As a result of this definition, detached methods allow concurrency within an active
object. To prevent state inconsistencies through concurrent access, detached
methods are not granted direct access to the active object state. This is required to
presetve atomic active object semantics. If a detached method nevertheless requires
access to the object state, this can be premeditated through conventional active
object methods. Such calls are then normally queued and handled asynchronously
by the active-object thread in mutual exclusion with all other active. object
invocations. This mechanism retains the consistency benefits of atomic active
objects while allowing more flexibility and increased concurrency where required.

Since detached methods are not on the critical path of the active objcét thread,
blocking calls are allowed. In particular, the Future.get () operation is allowed

55

Chapter 3 — The SOD.A Model and Language

within the context of a detached method since there is no risk of blocking the
active object thread.

Declaration of Detached Methods

A detached method is encapsulated by a Detached object instance. Code 3-1
shows the Detached class interface which must be extended for the declaration of
detached methods. The active object can then spawn invocations of the class by
calling the start() method. Additional parameters can be passed in subclass
constructors. Within the detached method, the two sleep operations can be used
to cause infinite or timed-out delays. The active object can interrupt such delays by
calling wakeup ().

Code 3-1 Detached Method Interface.

protected abstract Detached (

/** constructors */
Detached () ;
Detached (String name) ;

/**
* overridden by the subclass' call implementation method
x/

abstract void

run() ;

/**
* Start this detached method.
i

void

start();

/**

* gleep infinitely.
*/

void

sleep();

*
sleep for a given number of milliseconds.

/

* ¥ % *.%

@param millis the sleeping time.

@return true if the sleeping time was completed without
¥ interruption.
* 4

boolean

sleep(long millis) ;

/**
* wake up a sleeping Detached
"

void

wakeup () ;

56

3.3 Intra-Object Concurrency

Use Cases
The use cases for detached methods are as follows:

Legacy Objects. Detached methods can support legacy passive objects, which are
known to be blocking. Examples are objects, which are used to access
operating system resources, e.g., a network socket. Without detached
methods, invocations on such objects would shut down the overall active
object for invocations during the blocking time. Blocking may also be
caused by a synchronised legacy object that has internal blocking conditions
to guarantee correctness in a concurrent environment. References to such
thread-safe objects may be passed as arguments to the detached method to
allow concurtent access from the active object.

Long-lasting Computations. Atomic objects in SODA have only a single thread;
long-lasting operations will therefore delay all other incoming requests.
Detached methods can mitigate this problem by moving the long-lasting
computation off the critical path of the active object thread.

Asynchronous Activities. For some active objects it can be useful to petform
asynchronous background activities while still being able to accept
incoming requests. As an example, consider a Timer active object that
would be used by other active objects to schedule callbacks (see Figure 3-5).
In the background, this Timer object would have a detached method that
just sleeps until the earliest callback is due. However, the Timer is still able
to accept requests for further callbacks since the sleeping is not performed
by the active object thread. The active object can interrupt a sleeping
detached method via the wakeup operation in order to schedule new
callback times. This occurs in Figure 3-5 for the scheduling of a callback for
time #3, where #1 < £2 < /3.

Bootstrap Method. The bootstrap method, which is invoked by the runtime
system to start up a SODA program, is a detached method. This is
required, since the Funnel return mechanism (see below) would not be
available in this primordial active object method.

57

Chapter 3 — The SOD.A Model and 1_anguage

Figure 3-5 A Timer Active Object with Detached Method.

Callback requests
(all at 20)

(22, wakeable)
>

(#3, wakeable)

L
(#1, wakeable)

3.4

>

<t <2<ip

Detached methods impinge on active object mobility: during their execution, weak
mobility is not applicable, because the active object state is not check-pointed. As a

Timer Active Object

/

v

\ 4

v

e
\ wakeup()

Active Detached
Object method
method

—p Add to list

——p Add to list

— Add tolist

-

\

sleep
1110
sleep
1241 Y-

sleep

result, an object cannot be migrated during the execution of a detached method.

Inter-Object Concurrency and Synchronisation

Every active object method invocation conceptually entails asynchronous message
exchange: The client sends a request message to the server. This contractually binds
the server to eventually process the request and send back a rep/y message that
contains the method’s result. The client can proceed past the method call
immediately without the need to wait until the arrival of the reply. SODA provides
Futures as a mechanism to nevertheless enable coordinated and structured method

execution by matching incoming replies to the appropriate client.

58

3.4 Inter-Object Concurrency and Synchronisation

Figure 3-6 Request-Reply Message Passing between Client and Server Active Objects.

Client Object Server Object

request

"3 R0LE BT,
Method | Euture |-—mmm—
call (empty) Request
aueue
Other ;'!—J —
processing
: reply
4 Future
Get Future| (available) —
result Active
Object
v thread

3.4.1 Futures
Client-Side

Definition 3-5 (SODA Future). A Future in SODA acts as a placeholder for the
result of an active object method invocation until the reply is received. A
Future object is #immediately returned by every method invocation on an
active object. This allows the client to proceed past the call although it has
not yet terminated. Futures also record exceptions at the server or during
network transmission of request or reply messages. Such exceptions are
raised when the client tries to establish a Future’s value at a later stage.

Purely asynchronous method invocation, as for example in the Actor model, is in
conflict with the principles of structured programming, It is difficult to obtain the
results or possible exceptions of method calls. The Future mechanism in SODA
allows coordinated asynchronous method execution with the guarantee of balanced
request-reply chains. Once the client obtains a Future, the exchange of request and
reply messages as well as the servicing of the request by the server can occur
asynchronously. Active object method calls therefore implicitly create concurrency.
In SODA Futures are explicit in order to circumvent problems which are
encountered with transparent Futures, e.g., by the wait-by-necessity approach (see
§2.2.5).

59

Chapter 3 — The SOD.A Model and 1anguage

Code 3-2 Interface of the Future Class.

class Future ({
public Object get() throws Exception;
public void putResult (Object o) ;
public void putException (Exception e);
public void setFunnel (Funnel funnel) ;
public void setFunnel (Funnel funnel, Object loopThrough) ;

Code 3-2 shows the method interface of a Future object. Relevant for the client
are the methods get and the overloaded setFunnel. These give access to the
Future’s result or exception in two ways:

Blocking Get: The get () operation directly retrieves the result or exception of
the associated method invocation. If the result is not yet available, the client

is blocked.

Non-blocking Funnels: Funnels provide a non-blocking, data-driven way of
handling a Future. This is fundamental to the SODA model and described
in detail in the next section.

If an exception was recorded on the server-side, this is re-thrown during a blocking
get. Exceptions may also be caused by network failures, which is an artefact of the
underlying distribution model. The blocking semantics of get introduce a
significant liveness and deadlock hazard:

e Over the duration of a blocking get () all further pending requests on the
initiating object are suspended. This is undesirable, since the initiator object
is idle, waiting for replies, while it could do other useful work meanwhile.
This reduces liveness and efficiency. Code 3-3 shows how Futures are
used to invoke methods on an instance of the Buffer class. The result is
not necessarily "10, 20", since other clients might use the buffer
concurrently.

e An atomic active object is not able to accept further invocations while it is
blocked on a Future. Deadlock may occur in the presence of direct or
indirect self-invocation.

For these reasons, SODA allows blocking gets only in detached methods.

60

3.4 Inter-Object Concurrency and Synchronisation

Code 3-3 Asynchronous Calls on an Active Object with Blocking Futures

Future f1 = bufl.put(10); // store two values in the

Future f2 = bufl.put(20); // buffer

Future f3 = bufl.get():; // retrieve two items from

Future f4 = bufl.get(); // buffer (not necessarily
// successive!)

try | // get the Future values...

fl.get(); f2.get();

(Integer) f3.get();

Integer vl

i
Vi

id

this raises exceptions if
the put operations failed

retrieve the Future

Integer v2 = (Integer) fd4.get(); // values (or exceptions)
System.out.println(vl + ", " + v2); // and print them out
} catch (Exception e) { ... }

In the current implementation Futures are generic. This is not a restriction of the
programming model per se, but an implementation detail. As a result, primitive
data types must be encapsulated by Object wrappers (e.g., java.lang. Integer
instead of int). It would be a desirable feature to provide typed Futures instead.
This could increase performance and also improve program correctness, since the
compiler could perform static type checking. Typed Futures could be implemented
as parameterised classes. For example, an int-type Future would be declared as
Future<int>. Parameterised classes are not supported in the current version of
the Java language specification. However, this feature will probably be included in
version 1.5 and experimental implementations already exists, for example the Pizza
compiler.

Server-Side

In the SODA model, Futures are also visible on the server-side. This is different to
Future-based models reviewed in the previous chapter. This design choice is a
mainstay for the runtime-system’s inlined call optimisation. It is also the basis for
the Funnel mechanism. The server gains flexibility, since the Future can be shared
with or produced by one of its passive objects.

Any active object method must explicitly create and return a Future. In the simplest
case, the active object method makes a result or exception directly available to the
Futute. This s done via putResult (Object result) or
putException (Exception exc) as shown in Code 3-4 and Code 3-5.

61

Chapter 3 — The SOD.A Model and 1_anguage

Code 3-4 Active Buffer Class Implementation (no protectection against overflow or underflow).

active class Bufferl {

private String name = null;
int[] buf = new int[1000];
int in = 0; 4ntiont. = 0;

public Future init (String s) {
Future £ = new Future();
name = s;
f.putResult (null) ;
return f£;

}

public Future put (int x) {
Future f = new Future();
buf [in++%buf.length] = x;
f.putResult (null) ;
return f£;

}

public Future get() ({
Future f = new Future();
int x = buf[out++%buf.length];
f.putResult (new Integer (x));
return £;

Code 3-5 Active Buffer Class (with exceptions to signal overflow/underflow).

active class Buffer2 ({
intl] buf; int in.=:0; dnt-ouk = 0;

public Future init (int size) ({
Future £ = new Future();
buf = new int[size];
f.putResult (null) ;
return f£;

}

public Future put (int x)
Future f = new Future();
if (in >= out + size)
f .putException (new OverflowException());
else
buf [in++%buf.length] = x;
f.putResult (null) ;
}
return £;

}

public Future get () {
Future f = new Future();
Tl < ont! #-1)

62

3.5 Funnels

f.putException (new UnderflowException());
else {
int x = buf[out++%buf.lengthl;
f.putResult (new Integer(x));
}

return f£;

3.5 Funnels

In a more realistic scenario, a method might want to petform calls on other active
objects before it returns. In this situation, the server becomes the client for a set of
nested subcalls. Each of the active object subcalls will return a Future F,, However,
the server has still a contract with the original client to hand back a Future F. A
result for this Future should only become available when all the F, are available,
since F; depends on these (see Figure 3-7). Blocking Future.get () operations
could be used to retrieve the results of these subcalls. However, this would
introduce a significant deadlock hazard in the context of atomic active objects, as
explained above. For example a direct or indirect self-invocation would deadlock
the active object.

The Funnel mechanism du:cctly addresses this problern Funnels can effectively
avoid deadlock despite direct or indirect self-invocation and they increase liveness
by reducing the waiting time for pending requests (as shown in the pipeline-
example in §3.8.1).- With Funnels an active object never gets suspended as long as
pending requests are queued.”

'Definition 3-6 (SODA Funnel). A Funnel is a return mechanism available to
active object methods that perform subcalls. The Funnel asynchronously
collects the Futures of the method’s subcalls as their values become
available. Once all required results have been retrieved, the Funnel makes a
result available to the method’s original client via the server-side Future.
Funnels may perform some aggregate function to determine this result.
Funnels have full, mutually exclusive (with active object methods) access to
the active object’s state. By default, if any subcall throws an exception, the
Funnel ignores further outstanding subcalls and makes the exception
immediately available to the original client.

¥ This statement assumes that the guards associated with the pending requests/methods
invocations evaluate to true (see §3.6.1).

63

Chapter 3 — The SOD.A Model and 1_anguage

Figure 3-7 Dataflow in a Funnel.

Future Fg; Future Fs2 Future Fss Futures returned

O\ CE by subcalls
G gt VY gt Yl Fires when the

Futures Fs;forall
Funnel subcalls are
available

Future
returned to
Future F¢ original caller.

An active object method with subcalls never makes a result available to its Future
directly. This is the responsibility of the Funnel. As Figure 3-7 shows, a Funnel
connects together a set of client-side Futures from nested subcalls with a single
server-side Future that is handed back to the method’s original client. This
collection of subcall Futures into the server-side Future is performed by a Funnel
in a non-blocking, data-driven manner that resembles dataflow: Funnels become
activated in a data-driven manner when all the Futures it is set on become available
or an exception is thrown.” Funnels are therefore similar to nodes in a dataflow
graph: they represent aggregate instructions that are triggered by the arrival of
relevant data. Each subcall Future acts as a token. The Funnel fires when all the
tokens are available. However, while pure dataflow is a very fine-grained approach,
treating nodes as individual instructions, this is more in line with recent macro
dataflow ideas.

Futures in combination with Funnels avoid unnecessary sequencing among
invocations of successive methods. As soon as the original client has issued
successive calls and set up corresponding Funnels, it is free to start processing of
the next message queued without waiting for a result (see Figure 3-8).

2 It is not currently possible to “cancel” outstanding subcalls collected by a Funnel, when one of
the subcalls throws an exception. Therefore, all subcalls will be executed. In the case of several
exceptions thrown in different subcalls, only the first one is by default passed back to the client.
However, this behaviour may be overridden to account for all exceptions and perform some
aggregate functionality (see 3.5.1 and 3.5.2 below).

64

3.5 Funnels

Figure 3-8 Funnel Operation

A B3 B2 B1

e T
original request !

Request
accepted for
processing by A;
subcalls issued.

subcall 1

subcall 2

subcall 2

subcall 3 reply l
reply

Funnel receive
subcall 1

reply

Funnel receive
and termination

Fut}xre made E Activities related 7 Active object free for
av?.Qable for ! to the original “{ other computations
original caller i request

An active object method has a contract with its client to make available a result (or
exception) to the Future it hands back. This responsibility is taken over by the
Funnel for this method. The single client Future is given as argument to the Funnel
constructor. Subcall Futures are associated with this Funnel via the operation
Future.setFunnel (Funnel f).

Funnels are processed in mutual exclusion with method requests on the active
object; they can therefore access object-local data without creating inconsistencies.
Funnels are given priority over pending requests in order to minimise servicing
latency for clients. Requests and replies traverse an active object in opposite
directions (see Figure 3-9).

65

Chapter 3 — The SOD.A Model and Langnage

Figure 3-9 Dynamics of a SODA Active Object,
Request queue for new method invocations, Incoming reply queue for results of subcalls. The
outgoing reply queue is provided for Futures that are controlled by Funnels.

Pending
Requests : Subcalls 2
Request __, J Processing © Y
’ e | N

Active

Object /|
Reply < < - -l
processing Band Subcall
Pending Re" NG Replies
Funnel eplies

3.5.1 Design Patterns in Funnels

Code 3-6 Funnel Interface.

class Funnel {

protected void receive (Object result, Exception exception,
Object loopThrough) ;

protected void terminated() ;

protected Object getResult();

protected Exception getException();

Funnels can implement a set of design patterns for collecting a set of subcalls. In
the default case, the Funnel simply waits on availability of all subcall Futures. Once
all subcall Futures become available, the Funnel produces a null result for the
client Future.

This default behaviour implies a synchronisation on complete termination of
subcalls. In contrast, a PartialFunnel might synchronise on the partial availability
of Futures. Consider for example a search operation in a tree. If the query is
successful in one of the branches, there’s no need to continue evaluation of the
other branches or to wait on their result. Partial availability of results might also be
useful to implement replicated active objects, where one reply of a replicated object
is sufficient for program continuation.

A useful feature in this context would be the ability to cancel outstanding subcalls,
which are queued as requests at foreign active objects, but not yet evaluated. An
operation Future.cancel () could invalidate calls which do not have side-effects.
This would save processing resources. This mechanism is not currently
implemented in the SODA runtime-system.

66

3.5 Funnels

Code 3-7 Aggregate Funnel as coud be used in the Node of a Binary Tree.

active class Node (
private Node right, left;
private int value;

Future getSum() {
Future fSum = new Future();
Funnel fun = new Funnel (fSum) {
private int sum = value;
void receive(Object res, Exception exc, Object loopThr) {
sum += ((Integer) res).intValue();
}
public Object getResult() {
return new Integer (sum);
) .
};

if (right != null) right.getSum().setFunnel (fun);
if (left != null) left.getSum().setFunnel (fun);
fun.activate() ;

return f£Sum;

Other frequently used patterns in Funnels are aggregate operations. Code 3-7
above shows how an aggregate funnel is created as anonymous inner class [72] of
the active class Node. The getSum operation recursively sums all elements in a tree
of Nodes. As the getSum operations of the right and left sub-tree return, their
values are added to the Node’s value. getResult then returns the accumulated
result once all outstanding futures have returned (and the Funnel has been
activated).

By default the first subcall exceptions that a Funnel encounters is propagated
towards the root of the call hierarchy immediately, without waiting on the result of
further pending subcalls. This behaviour can be modified to provide a context in
which to catch and handle the asynchronously encountered exception. This
mechanism can be used to handle the situation where more than one exception is
raised by a subcall.

3.5.2 Custom Funnels

Funnel functionality can be further customised if the above predefined design

patterns are not sufficient. For this purpose, Funnel subclasses can override the
interface in Code 3-6:

e receive(Object result, Exception ex, Object loopThrough) is
called whenever a subcall Future becomes available. result and
exception are determined by the subcall An optional loopThrough
parameter can be used on a per-subcall (i.e., per-Future) basis. This allows a
Funnel to disambiguate between a set of subcall results that it collects. To

67

Chapter 3 — The SOD.A Mode! and Language

~set up a loopThrough parameter the ovetloaded = operation
setFunnel(Funnel funnel, Object loopThrough) is prowded

¢ terminated() is called when all subcalls have terminated.

¢ Finally, getResult() and getException() are invoked after
terminated, to retrieve a result and exception for the original client’s
Future underlying this Funnel, respectively.

3.6 Message Acceptance Policy &

The class in Code 3-5 throws an exception when a buffer underflow or overflow
would occur. For example, the put () method throws an OverflowException
when the buffer space is exhausted. This is appropriate when the buffer object is
accessed sequentially. Active objects, however, exist in a concurrent environment
where they may be used by multple clients more or less simultaneously. Therefore
it makes sense to delay the put () request until after buffer space becomes available
as a result of a concurrent get () request. Such a reordering of method invocations
increases the number of successfully served requests. An acceptable reordering or
servicing policy is implicitly defined in SODA through method guards.

3.6.1 SODA Method Guards

Definition 3-7 (SODA Method Guards). A SODA method guard is optionally

- attached to an active object method. A guard is a side-effect free Boolean

~ expression that can be based on the active object’s state or on the value of

the request parameters. At runtime, a call to a guarded method is suspended

until the guard expression evaluates to true. Subclass methods may call the

superclass only once and as their first statement. Such a method can only

proceed, if the logical conjunction of all guard expressions along the
inheritance hierarchy evaluates to true.

It is not predictable how often a method guard will be evaluated at runtime.
Therefore, the guard expression must be free of side-effects, ie., it should not
cause changes to the active object’s state. If guard exprcss1ons are overly complcx
this also has negative conscquenccs on performance.

In an inherited class, an invocation of a guarded superclass method must be the
first statement in a subclass method. This guarantees that the invocation of the
subclass method and the overridden method occurs as an indivisible operation.
Guards are acquired successively along the inheritance hierarchy. If at any one level
a guard evaluates to false, the overall method invocation is abandoned and the
request is rescheduled. Since up to this point only side-effect free guard expressions
~ have been evaluated, the active object’s resource invariant is stll intact because it
has not yet been modified. With these semantics, method guards avoid the
~ inheritance anomaly (see next section).

If a request does not fulfil its guard in the cutrent object state, it is enqueued in a
special delay quene (see Figure 3-10). A request in the delay queue is served with

68

3.6 Message Acceptance Policy

higher priority than a conventional request once its accumulated guard evaluates to
true. Only pending subcall replies take precedence over the delay queue.

Figure 3-10 Priority of Message Processing at an Active Object.
Pending incoming Replies take priority over pending Requests. Pending Outgoing replies are sent
whenever their Funnel has collected the incoming Replies of all subcalls. If the Delay Queue has
entries, these are processed after every Request and every Reply.

Delay
Queue
ek Priority 2
Queue Subcall
Request ___ 4
"R Active
Priority 3 Object Priority 1
Reply < I > |
Pending i
Funnel e

Syntax

Guards are declared with the keyword when as a suffix to the method signature.
Code 3-8 shows an example bounded buffer class with method guards. The guards
in this class prevent buffer underflow and overflow based on the object’s internal
state. Code 3-9 shows an alternative method guard for the put method that is based
on the value of a request parameter: in addition to checking for availability of
buffer space, this modified guard only accepts a request when the value to be
stored is less than 100.

69

Chapter 3 — The SOD.A Model and 1angnage

Code 3-8 Original Bounded Buffer Class with Method Guards

active class BoundedBuffer {
int[] buf; int gize =-0;
int i = 0y 1int ovutl="0;

public Future init (int size) {
Future f = new Future();
this.size = size;
buf = new int([size];
f.putResult (null) ;
return f£;

}

public Future put(int x) when (in < out + size)

Future £ = new Future();
buf [in++%buf.length] = x;
f.putResult (null) ;

return f;

}

public Future get() when (in >= out + 1) {
Future £ = new Future();
int x = buf[out++%buf.length];
f.putResult (new Integer (x));
return f;

Code 3-9 Revised Method Guard for put

public Future put(int x) when ((in < out + size) && (x < 100))

}

{

3.6.2 Absence of the Inheritance Anomaly

SODA method guards can be subclassed without causing inheritance anomaly,
since their semantics follow Ferenczi’s proposal. Subclass methods can call on
superclass methods that are guarded. Guards are evaluated recursively for every
level of the inheritance hierarchy and acquired as conditional critical regions. If at
any stage a guard evaluates to false, the overall request is aborted and rescheduled

into the delay queue.

Based on the bounded buffer class from Code 3-8 we show derived classes that
provide a solution to all three instances of the inheritance anomaly:

State partition anomaly (IA-1). According to Matsuoka [113] state partition
anomaly does not affect method guards. Guards can be composed directly
on the object’s state space independently of each other, rather than relying

70

3.6 Message Acceptance Policy

on pre-defined subsets of object state space. Code 3-10 shows an example
solution for the X-B#f subclass that has a method get2 to retrieve two
elements atomically from the buffer.

Code 3-10 X-Bounded Buffer in SODA

active class XBoundedBuffer extends BoundedBuffer
public Future init (int size) { return super.init(size); }

// this method removes two elements from the buffer atomically.
public Future get2() when (in >= out + 2) ({
Future f = new Future();
int x1 = buf [out++%buf.length];
int x2 = buf [out++%buf.length];
f.putResult (new Integer[] {new Integer(xl), new Integer (x2)});
return f;

History-Only Sensitive Anomaly (IA-2). Matsuoka demonstrates this instance of
the inheritance anomaly with an additional method gget () which cannot
be executed immediately after put(). Matsuoka notes that guarded
methods put and get must be completely reimplemented in the derived
class [G-Buf] as a result. Code 3-11 shows an alternative which avoids
inheritance anomaly, following Ferenczi’s proposal. In this example, pre-
existing code is reused and the effective guard conditions are accumulated
along the inheritance hierarchy. i.e. method gget of the subclass can only
proceed if the combined condition (!afterPut) & (in >= out + 1)

holds.

7

Chapter 3 — The SOD.A Model and Iangnage

Code 3-11 G-Bounded Buffer in SODA

active class GBoundedBuffer extends BoundedBuffer ({
private boolean afterPut = false;
public Future init(int size) { return super.init(size); }

// this method cannot execute as immediate successor to put().
public Future gget() when (!afterPut) (
return get () ;

}

public Future put(int x) when (true) ({
Future f = super.put(x); afterPut = true;
return f;

}

public Future get () when (true) ({
Future f = super.get(); afterPut = false;
return f;

State Modification Anomaly (IA-3) occurs as a result of modifying the set of
states under which the original methods can be invoked. In the example of
the L-Buf class, the addition of a lock method introduces finer-grained
distinctions for the set of states under which methods put and get can be
invoked. Again, Matsuoka proposes a complete reimplementation of the
method guards. However, as Code 3-12 shows, this problem can be solved
without causing inheritance anomaly, when guards are accumulated along
the inheritance hierarchy.

72

3.6 Message Acceptance Policy

Code 3-12 L-Bounded Buffer in SODA

active class LBoundedBuffer extends BoundedBuffer ({

private boolean locked = false;

public Future init(int size) { super.init(size); }

public Future lock(boolean lockState) ({

}

Future f = new Future();
locked = lockState;
f.putResult (null) ;
return f£;

public Future get() when (!locked) {

}

return super.get();

public Future put(int x) when (!locked) ({

}

return super.put (x);

As these examples show, SODA method guards, based on the semantics proposed
by Ferenczi do not expose inheritance anomaly for the example cases identified by
Matsuoka.

3.6.3 Expressive Power according to Bloom'’s Criteria

Bloom [27] developed several criteria for evaluating the expressive power of
synchronisation constraints. She suggested a set of five criteria by which a server
object could be allowed to define its servicing policy. SODA guards fulfil only the
last three of Bloom’s criteria:

Type of Request. The server object should be able to select messages for
execution, depending on the method called (e.g., “calls to hold must be
serviced before calls to allocate”). This constraint cannot be expressed with
SODA guards, since it would require direct access to the pending request
queue in order to determine which request types are available.

Order of Request. An object should be able to accept requests in FIFO order, or
priority of caller order. In SODA, invocations for a given method are
always accepted in FIFO order, given that their guards evaluate to true.
Priority of caller would require a direct manipulation of the pending request
queue which is not supported in SODA.

Request Parameters. A method’s parameters should be a criterion for acceptance
by the server object. This is possible with SODA guards as shown in Code
3-9.

3

Chapter 3 — The SODA Mode! and Langnage

Local State. Message acceptance should be in relation to the object’s internal state.
Again, this can be achieved via SODA guards.

History Information can be used to allow only certain patterns of subsequent
message invocations. Since such history constraints can be expressed
through local state (see as an example the G-Baf class in Code 3-11), this
can be expressed in SODA. '

Type-of-request constraints could be supported by counters that keep track of all
pending invocations for a given method, similarly to the operators undetlying
Deontic logic. Method guards could then be based on the value of these counters,
which could be implemented without significantly impacting on performance.

Similarly, priotity-of-caller could be implemented. This would entail the sending of

priority information with every request. Active objects should then have a priority-
queue that would serve highest-priority requests first.

3.6.4 Self-Invocation and Guards

Self-invocation occurs when an active object calls a method recursively on itself.
Two forms of self-invocation are possible in SODA: Immediate calls take priotity
over conventional requests; they are performed within the context of the original
method. In contrast, indirect calls follow normal queuing patterns.

Immediate calls are achieved via the reference this; however, this mechanism is
problematic since it bypasses the object’s request queue and leads to unfair
scheduling. External pending requests could be delayed for a long time, until the
object-internal recursion is finished. The other issue with immediate calls is that
they effectively call another method before the current method invocation is
finished, which could lead to inconsistencies.

Indirect calls guarantee fairness for external clients and mutual exclusion of active

" object method invocations. Calls behave like external invocations and are merged

3.7

into the active object request stream. Such invocations are possible via the self-
reference thisActive that is implicitly defined in all active objects. Guards can be
used to lock the active object for other invocations until the recursion is finished
(see the merge-sort example below). :

Parameter Copying Opfimisations

The SODA model is based on deep-copying semantics for passive objects when
these are passed as parameter or result of an active object method call. This is
necessary, because passive objects cannot be shared between active object
instances. They can only be referenced from within the context of a single owning
active object.

Depending on the object structure, deep-copying can cause significant performance
overheads. In some situations where active objects are collocated in the same
physical address space it is semantically equivalent to pass passive objects by
reference. The runtime-system relies on compile-time information to perform this
optimisation. For this purpose, two hints related to the passing of passive objects
between active objects can be given to the SODA compiler.

74

3.8 Evaluation

Immutable Objects. If a passive object never changes its value, it can be marked
as immutable. An immutable object can then be transferred by-reference
between active objects within the same physical address space; the
semantics are equivalent to deep-copying. Immutability can be defined on
class-basis or instance-basis.

Hand-Over Parameters. Another optimisation is available when a passive object
is relinquished after it has been passed in a request or reply. For example, a
passive object could be created simply as an argument for a method
invocation and then be discarded by the client. Vice versa, a return value
might not be used by the server once it has been handed back to the client.
In this situaton, it is unnecessary to deep-copy the passive object at
runtime when client and server are collocated. Such parameters can be
marked as hand-over parameters.

3.8 Evaluation

This section aims at a brief empirical evaluation of the concepts underlying the
SODA programming model. While some authors criticise object heterogeneity for
its reduced reuse potential (in rare cases two versions of a class may need to be
developed) we think that the opposite is the case: the heterogeneous model enables
the reuse of already existing classes written for sequential settings, which actually
increases reuse. :

3.8.1 Types of Parallelism Supported

Buyya [31] summarises the following as main paradigms of parallel programming.

‘Based on some examples we will examine how well these paradigms can be
supported by the SODA model. While SODA supports divide-and-conquer type
parallelism in a natural way, it has considerable flexibility for the support of other
types of parallelism.

Task-Farming (or Master/Slave). This is the typical message-passing model,
based on a set of communicating concutrent processes. This paradigm
creates concurrency through the definition of processes and therefore does
not map onto SODA’s call-based concurrency. Neither does SODA
support one-way message passing,

Single Program Multiple Data (SPMD). SPMD or data parallelism can be
supported in SODA by creating multiple instances of the same active
object. A central controller object can then invoke the same operation on

- all objects, which would perform slightly different computations as
determined by their state. There are two problems with this approach:
Firstly, the controller is a central communication bottleneck. Secondly, the
SODA model does not currently provide a means to perform a multicast
invocation of a set of data-parallel active objects. Thirdly, the transport
mechanism for remote calls does not provide an efficient and direct
multicast mechanism for requests.

75

Chapter 3 — The SOD.A Mode! and Langnage

_ Data Pipelining Data pipelining can be modelled as chained invocation of a set
of active objects as demonstrated below. Note that this is not equivalent to
hardware plpehmng where every pipeline stage has the same cycle time.

Divide and Conquer. Divide-and-conquer type parallelism can be captured by a
recursive subdivision of the problem domain into active objects. A call to
the root object would then recursively span the tree of active objects.

Speculative Parallelism. Speculative parallelism is not really a structural approach
like the othet paradigms mentioned above. For example, a program could
devote effort to speculatively trigger active object invocations when
resources are idle. One problem here is that SODA Futures do not
currently support a functionality that would allow cancellation of pending
requests if these are no longer relevant. Such a feature could also be useful
for parallel search algorithms: If the element to search for is found in some
pattition of the search set, the search in other branches could be cancelled.

Pipeline Parallelism

It is straightforward to express pipeline-style parallelism across a set of active
objects. A chain of active objects is formed, with the leader triggering off a pipeline
cycle any invocation is recursively passed on as a subcall to the right follower
active object. Conventional blocking Futures combined with atomic active objects
would render such a structure very inefficient. For example, in ProActive PDC, the
header object would block all further invocations until the recursive subcalls have
terminated.

In SODA, the Futures and Funnels mechanism can be used to ach1eve parallel
processing across all objects in the pipeline for different sets of invocations. Each
object sets up a Funnel to collect the result of its subcall and to hand it back to the
object on its left. In contrast to blocking Futures, the leader is not blocked, after it
has passed off data to its right. Instead, it can immediately accept new data to be
processcd through the pipeline (see Figure 3-11). Leader and followers can thereby
work in parallel, as long as the data stream provides new inputs: in mutual
exclusion, each pipeline element handles new requests from the left and replies
from the right. ~
Of course, the same degree of concurrency can be achieved with non-atomic active
~ objects. However, consider the problem of providing mutual exclusion of the
invocations for each object in the pipeline. It would then be necessary to provide a
monitor that only encloses the section of the method before the subcall occurs.

76

3.8 Evaluation

Figure 3-11 Pipeline Parallelism with Active Objects.

A B C D E
Request 1 E E i i i
i i | | |
| i i i
i i i i
T | 1 1
Request 2 ! ‘] | H
' : :
i] i
i 2 |
Request 3 i i |
i : 1
] I
i |
Request 4 ! i .
| | |
i
|
Request 5 i
|

;

Functional Parallelism (Divide-and-Conquer)

Again, Funnels can be used to program functional parallelism corresponding to a
divide-and-conquer strategy. This is demonstrated in Code 3-7, where subcalls to
the left and right branch of a binary tree are processed in parallel. Functional
parallelism is exploited at every branching level of the tree. In addition, to this
horizontal parallelism, multiple invocations on the root can take advantage of
vertical parallelism, similar to the above pipelining scenario. This means that
multiple tree traversals can be in flight concurrently (vertically), while every single
traversal can be internally concurrent (horizontally).

Data Parallelism

Multicasting to Objects is not supported yet in the SODA run-time system. Data
parallelism would be easy to integrate into the programming model, using active

77

Chapter 3 — The SOD.A Model and Langnage

object arrays as destination for method calls. Results could be collected using
Funnels. This functionality could be implemented using Futures and Funnels.
However, this does not allow for overhead optimisation. e.g., the runtime system
could avoid repeated transfer of parameters between physical address spaces.

3.8.2 Example Problems

The aim of this section is to make the reader more familiar with some of the more
advanced features of the SODA model. A random collection of programming
problems is presented for which a solution is not immediately obvious. This also
serves as an informal evaluation of the modelling capabilities of SODA.

Disk Head Scheduler

A disk head scheduler object should be programmed to serve requests for reading
sectors from a hard disk. The scheduler should follow some strategy for reordering
requests according to some optimisation strategy. For example, it is common to
first read sectors that are closest to the current head position. This requires that the
object can “browse” pending method requests in order to pick the best one.
SODA’s method guards are insufficient for programming such a constraint directly.
However, the problem can be solved elegantly via a detached method and the haif-
agync/ balf-sync pattern (see [152] and Code 3-13). Every request for a sector returns a
Future immediately. Instead of making a result available in the Future, it is stored
together with the required disk sector identifier in a table of pending read requests.
-This table is passed as an argument to the detached method and can therefore be
accessed concurrently by the detached method as well as by active object methods.
The detached method removes the most appropriate request from the table of
pending read requests according to the strategy in use. It then hands back the
resulting data to the correspondmg Future object.

78

3.8 Evaluation

Code 3-13 A DiskHeadScheduler Active Object

active class DiskHeadScheduler ({

}

private SortedList readLocations; // sector read requests

public Future readAt (ReadLocation rl) ({

}

Future f = new Future();
readLocations.insert (new ReadRequest(rl, f));
return f;

class Dispatcher extends Detached {

public void run() {

do { :
ReadRequest r
ReadLocation rl
Future f
try {
Sector s = getSector(rl);
f.putResult (s);
} catch (Exception e) {
f.putException(e) ;

(ReadRequest) readLocations.getFirst();
rr.getLocation() ;
rr.getFuture() ;

}
}

A Timer Object

A timer object provides a wake-up service for client objects. Clients can register
with the timer in order to receive a callback notification at a certain time in the
Future. Such a timer can be implemented in SODA as an active object according to
the half-async/half-sync pattern, similar to the disk head scheduler above.

An active object method (the asynchronous part) accepts a reference to the
callback object together with the wakeup time. These two elements constitute an
event. The method returns a Future result immediately and inserts the event into a
scheduling list. A detached method (the synchronous part) operates on this list.
The method waits until the wakeup time of the most imminent event is reached
and then invokes the callback method. If during the waiting time another event is
scheduled with an earlier time, the wait is interrupted and the list re-evaluated. An
example Timer object is provided in the class uk.ac.ncl.soda.util.Timer.
Client objects must implement the uk.ac.ncl.soda.util.Wakeable interface
for callback notification.

79

Chapter 3 — The SOD.A Model and 1_anguage

Code 3-14 A Timer Active Object

active class Timer

private Detached det; // reference to an instance of Wait
private LinkedList events; // scheduling list

public Future scheduleAbsolute(long millisAbs, Wakeable wa) ({
((ActiveProxy) wa).setOwner (thisActive) ;
WakeUpCall wuc = new WakeUpCall (millisAbs, wa);
events.add (wuc) ;
Collections.sort (events) ;
if (wuc.equals(events.getFirst())) {
det .wakeup () ;
}

Future £ = new Future();
f.putResult (null);
return f;

}

protected Future getFirst() ({
Future f = new Future();
Object wuc = events.getFirst();
f.putResult (wuc) ;
return £;

}

public Future removeFirst() {

}
}

class Wait extends Detached (

public void run() {
try {
do {
do |
Future f = thisActive.getFirst();
WakeUpCall wuc = (WakeUpCall) f.get();
// sleep infinitely if there are no wake-up calls scheduled
if (wuc == null) sleep(-10);
} while (wuc == null);

long millis = wuc.millis - System.currentTimeMillis();
boolean succeeded = sleep(millis);

if (succeeded) {
thisActive.removeFirst().get () ;
wuc .wa.wakeUp () ;
}
else continue;
} while (true);
} catch (Exception e) ({

}
}
}

80

3.8 Evaluation

The Dining Philosophers

Model each philosopher (see Code 3-16) and each fork (see Code 3-15) as an active
object. Forks can be picked up and put down (lock and release). Every philosopher
sends a lock request to the forks on his left and on his right. A Funnel (declared s
anonymous inner class [72]) is used to control the results of the lock requests. If
both requests succeed, the philosopher can eat. Finally, both forks are released
again. One interesting thing here is that Future subcalls are issued not only by the
active object method itself, but also by the Funnel. For this reason, the activate
call is not done in the eat method but in the Funnel, after the calls to
Fork.release().

The receive method in the Funnel is now responsible for collecting results of the
two lock methods and the two release methods. To distinguish which type of
response is expected, we introduce an additional variable state that has either the
value ACQUIRING_LOCKS or the value RELEASING_LOCKS. Depending on that
value, the receive method behaves differently. Extra complexity is therefore
introduced in an attempt to restrict concurrency (release calls should only be issued
after lock calls). This is appropriate and desirable for a programming strategy that
fosters the exposure of concurrency rather than its restriction.

Code 3-15 A Fork Active Object

active class Fork { //must be active, because shared
Philosopher current = null;

public Future lock (Philosopher p) {

Future f = new Future();
if (current == null) ({

current = p;

f.putResult (new Boolean (true)) ;
} else {

f.putResult (new Boolean (false)) ;
}
return f;

}

public Future release(Philosopher p) ({
Future £ = new Future();
if (current.equals(p)) {
current = null;
}
f.putResult (null) ;
return f;

81

Chapter 3 — The SOD.A Model and 1_anguage

Code 3-16 A Philosopher Active Object

active class Philosopher {
private Fork right, left;

public Future init (Fork right, Fork left) {
this.right = right;
this.left = left;

}

public Future eat () ({
Future f = new Future();

Funnel fun = new Funnel(f) (
private int received = 0;
int state = ACQUIRING_LOCKS;
receive (Object result, Exception exc, Object loopThrough) ({
if (state == RELEASING_LOCKS) return;
received++;
if (((Boolean) result).boolvValue()) locked++;
if (received == 2) {
if (locked == 2) (
L/ ORE 5 ee'seie
state = RELEASING_ LOCKS;
} // end if locked == 2
left.release (thisActive).setFunnel (this);
right.release (thisActive).setFunnel (this);
this.activate();
} // end if received == 2
}
};

left.lock(thisActive) .setFunnel (fun) ;
right.lock(thisActive) .setFunnel (fun) ;
return £;

Finite Element Simulation

Every cell in a finite element simulation can be modelled as an active object.
However, the programmer needs to decide on the optimum cell size. Sometimes
results at various granularities are required. It is then best to choose the minimum
granularity that could be exploited on the lowest-latency distributed machine this
algorithm was ever to run on.

Merge-sort Example
How can an active object representing a list of numbers implement a parallel

sorting algorithm? We describe the SODA solution based on the merge-sort
algorithm. Merge-sort recursively divides the list into two halves and calls sort ()

82

3.8 Evaluation

on these halves. The two halves are then merged. When a certain threshold size is
reached, the remainder lists are sorted via quick-sort and recursion terminates.

We implement lists as active objects. A list object is subdivided by removing half of
its entries and creating a new list object based on these entries. This minimises
active object creation and copying overheads. Since the shortened list object does
not require access to the second half after subdivision, entries can be passed as
hand-over parameters.

The original list object (A) is in an inconsistent state until the sorting operation
terminates. It is therefore necessary to introduce an additional locking mechanism
(through method guards) that prevents concurrent access to the list while sorting is
in progress.

Figure 3-12 Recursion with Future Subcalls

original list
quick-sort
A A et B T
quick-sort

quick-sort

quick-sort

Figure 3-13 Merging of Sublists through Funnel Operation

sorted list

oy o

Of course, one issue here is the finding of a correct threshold value for switching
from active object merge-sort to quick-sort. Once the threshold is reached, no
further sublist active objects are created. As mentioned before, SODA active
objects are very lightweight. Nevertheless, they carry a higher method call overhead
that can only be amortised by sufficient method call granularity. Insofar, the

83

Chapter 3 — The SOD.A Model and Langnage

3.9

programmer has to be aware of this dual-stage processing and find an appropriate
threshold value, based on object granularity and system performance.

Summary
This informal collection of examples showed that the SODA model can address a
range of programming problems in an easy-to-use manner. Funnels increase

concurrency, while maintaining the benefits of atomic active objects. Detached
methods can provide functionality similar to early-reply.

Conclusion

The SODA model allows a programmer to directly write object-oriented, parallel
and distributed applications. A programmer must be aware of the fact that active
objects serve as unit of concurrency and that parallelism is created through
asynchronous method invocation on active objects. However, the actual
distribution, allocation and scheduling of active objects is done transparently at
runtime. Due to this high level of implicit parallelism, programming is simplified
compared to more explicit approaches, such as message-passing.

Every active object is associated with a single thread; however, the thread makes its
presence only manifest when a request message is scheduled. Once all pending

~ requests are evaluated, an active object returns into a dormant state. Method

invocation in SODA is asynchronous, but follows balanced request/reply chains.
Replies are received asynchronously using Future variables. Futures may be
tesolved in a blocking manner, which however is not safe since a deadlock potential
is introduced. Alternatively, Futures and Funnels can be used as non-blocking,

- data-driven continuation mechanism. Requests arriving at an active object are

queued and processed in a sequential order. This order is FIFO by default but
reordering constraints may be imposed if method guards are declared. Method
guatds follow Ferenczi’s semantics to avoid inheritance anomaly for active objects.

SODA trades off some efficiency against ease-of-use. For very regular, numerical
algorithms SODA programs cannot compete due to the overheads caused by the
high level of abstraction. However, the model’s -ease-of-use enables the
construction of programs that would be extremely complex to manage with more
traditional approaches.

84

4.1

Chapter 4

Implementing SODA

SODA has been implemented as a source-to-source translator and a runtime
system. In this chapter, we illustrate the design choices made in this system. The
main concern was to correctly implement the model desctibed in Chapter 3. The
secondary concern was to implement the model efficiently. The purpose of our
implementation is to serve as a vehicle for further research and development. It
also serves as a proof-of-concept for the SODA approach on a real distributed
memory architecture. This chapter gives a detailed overview of the algorithms used
in the prototype implementation of the runtime system.

Details of the parallel execution that are not specified by the programmer (due to
implicit parallelism) are automatically adjusted to the target platform. This includes
issues, such as scheduling, allocation and load balancing of active objects as well as
adaptation of potential to physical parallelism. SODA makes informed decisions on
these issues at runtime in response to program characteristics and hardware
capabilities. In particular, Jghtweight and location-transparent active objects are used as a
means of implicit decomposition and mapping. Lightweight active objects are
supported through thread-multiplexing and an optimised stack-based inlined invocation
technique that is used in the case of wnexpected locality. Location-transparency is
provided through #ransparent proxies. Further optimisations reduce the marshalling
costs for remote method invocations.

Overview

The major components of the SODA system, and their relationship to one another,
are shown in Figure 4-1. We will cover each of these components in the following
sections. All components have been implemented, with three exceptions. The Java
Virtual Machine (JVM) has not been implemented by us; instead, any standard JVM
can be used. The dynamic load balancing via object migration module has been
designed on paper only. The distributed garbage collection scheme has not been
implemented.

4.1.1 The Application Programming Language: SODA

The SODA programming model is not tied to a particular application
programming language. However, we have implemented it through the SODA
language. This language does not invent an entirely new syntax. Instead it adds a
few keywords to Java as a host language in order to reuse existing technology as
much as possible. The keywords active and when as outlined in chapter 3 are
used to declare active objects and guards.

85

Chapter 4 — Implementing SODA

A source-to-source translator has been built that converts the SODA language into
Java. For every active object declaration, a set of Java classes are generated that call
into the SODA runtime system library. The resulting Java class declarations can
then be compiled using a standard Java compiler.

At an early stage during this project, we experimented with runtime reflection,
especially dynamic proxies, to implement SODA. However, we switched to the
translation approach because the overheads of reflection were found to be too
high. Alternatively, SODA could also have been implemented through a library-
based approach. However, we decided for a language-based approach based on the
following factors: :

¢ Direct use of a library would require detailed knowledge of the active object
implementation and would make programming more error-prone. The
translator can hide many of these difficulties and automatically enforce
correct library usage.

® A language based approach retains a clear mapping between design and
implementation. Active objects can be directly expressed at the soutce code
level, which provides a clean conceptual model and hides repetitive house-
keeping code from the programmer. Therefore, the active object
environment is easier to understand and the programmer can think at a
higher level of abstraction.

e Code is a more abstract specification of the required computation.
Therefore, changes to the underlying runtime system library can be more
easily introduced, since they are restricted to modification of the
cornpllatlon process. This proved especially useful during the experimental
phase in which the runtime system underwent frequent modification.

e It is still possible to program directly against the runtime library if so
desired. In this case the SODA translation step can be skipped.

4.1.2 The System Implementation Language: Java

Since the SODA model is object-oriented, an object-oriented or object-based
language is preferable for the system implementation. Also, support for
heterogeneity is desirable, to make the system portable. For these reasons, we
selected Java as the system implementation language and as the target for the
SODA translator. The advantage of Java is that the language features are rather
streamlined and that object-orientation is followed throughout. In contrast,
languages that include non-object oriented features, such as C++, pose difficulties
for the SODA model. For example, features such as global variables and pomters
could not be supported in SODA.

It is true that the performance of Java has not been very good in the past. In HPC,
petformance is by definition of paramount importance. At a first glance, the
combination of Java and HPC therefore appears to be an oxymoron. However, it
must be noted that execution-inefficiency is a property of the language
implementation, not of the language per se. Java programs are compiled into byse-

code for a Java Virtual Machine (JVM) [104]. On most microprocessors, the JVM is

86

4.1 Overview

emulated in software, which introduces additional run-time costs compared to
native execution. Other costs are incurred by the JVM’s automatic memory
management. Most authors in [1] however contend that Java’s weaknesses are
surmountable and that it has a significant potential for HPC. They trace Java’s past
efficiency problems to naive implementations and illustrate several HPC
applications. Java is a promising vehicle for HPC due to a unique set of properties
(see also [1;94] for a detailed discussion):

o Java byte-code is secure and portable between heterogeneous platforms,
removing the need to explicitly compile to different target architectures.”

¢ Java has built-in thread support and low-level synchronisation primitives,
which yield portable results across all supported platforms; multiprocessor
systems can be utilised effectively. : , , 4

® Strong static typing is guaranteed by the Java compiler and also required by
the byte-code verifier built into the JVM before code is accepted for
execution. ‘
Automatic memory management with asynchronous garbage collection.
Finally, Java programs are much easier, faster and safer to produce than

- their C/C++ counterparts. One example is the removal of pointer

manipulations and explicit memory allocation, a source of many subtle bugs
in C/C++ programs, such as buffer overflows,

® Programmers have ready access to an extensive set of libraries that exist for
graphics and networking.

We expect to ride the Java technology curve, reaping better performance in SODA
as the Java technology platform matures. Improved compilers (especially JIT and
native compilers) have already begun to remove Java’s performance deficit [94]. JIT
compilers perform a partial compilation of Java byte-code into native code for
frequently called methods (hotspots) of the program. Native compilers go further
and generate native executables ahead-of-time at the cost of giving up Java’s
compile once, run anywhere, advantage. Examples are the Free Software
Foundation’s GNU-GCJ compiler [66], Towet] VM [170], Excelsior JET [57].
These systems usually provide a built-in Java interpreter in order to support
dynamic class loading. Unfortunately, the performance advantage does not extend
to such dynamically loaded classes. '

Another requirement for efficient HPC is the support for high-performance
communications. To this end, Java version 1.4 offers a complete reimplementation
of the I/O package, with support for socket channels. This allows asynchronous,
non-blocking network communication (NIO), greatly improving networking
scalability [87]. o .

Amendments to the Java language have been proposed that would allow run-time
performance close to FORTRAN for numerically intensive applications [1 22;123).
For a few years, the Java Grande Forum [88;160;168] has been representing the

2 This is necessary, ¢.g,, in MPI and PVM if programs are to be run on a heterogeneous cluster, A
different executable for every architecture is then required. ‘

87

Chapter 4 — Implementing SODA

interest of HPC programmers for the development of future versions of Java. They
have succeeded in adding improved floating-point support into Java 1.2 and
continue to provide further proposals for improving Java’s efficiency for numerical
operations. Due to the activities of the Java Grande Forum and other groups more
efficient JVMs can be expected in the future, leveraging Java’s benefits without
significant performance costs. While some JVM improvements require the
rewriting of programs to fully exploit their benefits, others will transparently
leverage existing code. Other projects which examine Java for HPC are [40] and
[64;70). Welsh and Culler [181] propose modifications to the JVM and native
compilation to interface Java with high-performance networking interfaces and to
improve communication between distributed JVMs. Hyde [85] lists a set of patrallel
programming models which can be implemented on top of Java.

4.1.3 The SODA Abstract Machine

The SODA model has been integrated into a portable, efficient and flexible
middleware infrastructure, implemented as a Java library. This runtime system
library allows to write object-oriented, parallel and distributed applications and to
implement higher-level programming systems. SODA applications are executed by
a SODA abstract machine (SAM) built on top of a variable collection of
heterogeneous computets communicating by means of a multi-protocol transport
layer. The SAM appears as a logically fully-interconnected set of bases, each one.
wrapping a Java Virtual Machine. Each physical computer may host more than one
base. This is useful for testing purposes, if a cluster is not available.

Externally, the physical distribution of active objects is transparent to ' the
programmer—the SAM provides a global namespace for active objects across the
cluster and automatically mediates remote method invocations if client and server
objects are not collocated on the same base. The transport layer attaches a globally
unique VMID? identifier to every participating base in the system. An active object
is uniquely referenced through a combination of VMID and object identifier OID.

On every base, the SAM efficiently schedules active objects and multiplexes them
onto available threads in order to match potential and physical parallelism.
Lightweight active objects are provided through two mechanisms: Optimised
stack/heap-based SODA method invocation (§4.3.4-§4.3.5) and multiplexing of
active objects (§4.4).

The SAM is completely decentralised. No central component, such as a naming
service, exists. All bases work in symmetric peer-to-peer fashion, which avoids
centralised scalability bottlenecks. The absence of any central points of failure
could also provide a strong basis for a future fault-tolerant version of SODA. For
example, active objects could be replicated on different SODA bases. However, no
such fault-tolerance is provided in the current version of SODA.

2 The implementation of VMID depends on the transport implementation in use. As an example, in the TCP/IP
transport implementation, a VMID comprises an [P address and a port number.

88

4.1 Overview

4.1.4 Object Factories and Bases

The SAM enables the location-transparent invocation of active object methods.
However, we also need a mechanism for the dynamic creation of active objects.
For such bootstrap purposes, every base provides a factory object, which is an
active object itself. The factory method for creating new active object instances has
the signature Future makeNew(ConstructorCall). A ConstructorCall is
manufactured through one of a set of static, overloaded methods in the proxy’s
interface, which take the place of constructors. These constructors do not follow
the pattern of conventional Java constructors. The exact semantics and usage of

such constructors is explained in §4.2.4 below.

A program can explicitly request a list of all factories through the call
RTS.getAllBases (). However, this makes the physical distribution explicit to
the application level. Therefore, a user program should employ the load balancing
service (see below) to determine a new active object’s allocation. This is achieved
through the call RTS.newActive (ConstructorCall). The load balancing service
will then select an appropriate base according system load and allocation policy.

Figure 4-1 SODA Runtime System Structure

SODA base

' e
SODA Application
SODA RTS Core

Transport Control Httpd Lbb £ Services
JVM
S J
Network
< >

4.1.5 Plug-in Services

The SAM is built in a modular way using plug-in services for the implementation of
various subcomponents. Services are defined in terms of their interface and can
easily be replaced by alternative implementations. This allows an easy
experimentation and quick evaluation of different strategies. Fach service
implementation resides in a separate package and is instantiated through a Sactory
class (see [152]). These services are now described.

89

Chapter 4 — Implementing SODA

Transport Service. The transport service implements inter-base communication.
It is responsible for the set up and management of connections. Three
implementations of the transport service currently exist: they are using
TCP/IP sockets, unicast datagrams and Java RMI as a transport protocol,
respectively. Other implementations could use CORBA, MPI or other any
other protocol for the network communication, possibly even using native
code to interoperate with high-performance network interfaces (such as
ATM or VIA). Most important is the method send, which allows the
transfer of an object msg to a remote active object identified by
<VMID:0ID>. At the receiver side, the object msg is handed over to a
Receiver object together with the destination active object’s local o1D.
The Receiver is then responsible to despatch msg to the correct active
object. The type of msg is either Request or Reply.

Figure 4-2 Transport Service Interface Class Diagram

interface
Service
implemented by the RTS co implementation-dependent
+activate():void addressing of SODA
+deactivate():void daemons.
| |
| |
| |
| |
interface | |
Transport | |
interface interface
Receiver VMID
+send(vmid: VMID,oid:int, msg:Object):voi}
+getLocal VMID():VMID : :
+setReceiver(receiver:Receiver):void +receive(oid:int, msg:Object).vo|

Load Balancing Service. The purpose of this service is to enable the run-time
system to make an informed choice for initial object placement and for
dynamic object migration. To this end it must maintain cluster load
information and define criteria for initiating load balancing operations.
Currently, only a rudimentary implementation of this service exists; no
dynamic object migration is supported. The current implementation can
only deal with a static list of bases and uses a round-robin strategy for
allocating active objects.

Control Service. This service allows external control of the SAM, e.g., through an
applet downloaded via the HTTPD service. This can be used to menitor
the available bases and to control program execution. Currently, only
monitoring functionality is provided and the standard output stream of the
base can be examined. Future implementations could provide the ability to
select a subset of available hosts for the execution of a program and
support for several concurrent programs (see §4.1.6).

HTTPD Service. This is used to provide an administrative interface to the SODA
runtime system via a conventional web browser. An embedded Java applet

90

4.2 SOD.A Source-to-Source Translator

communicates with the control service and allows the user to perform
administrative and auditing functions via the control service. The
administrative interface could be improved to include the deployment of
JAR files over all participating machines in the SAM.

FastSerialisation. This is not a service per se, but rather a set of helper classes
used by some implementations of the transport service. It provides an
effective means of serializing Objects into byte atrays and therefore
reducing overheads when transferring rich data types across the network

(see §4.5.3).

4.1 .6 Program Execution

Execution of 2 SODA program starts with a single active object that has a method

| public void main(String([] args). This is the primordial detached method (see

3.3.2). This is not a class method as is the case in Java. Instead, the SVM will first
create an active object instance of the bootstrap class and then invoke its main as

" an instance method. Since main does not return a Future, it is treated as a detached

4.2

method (see §4.4.3). The main method can then spawn secondary active objects
which are allocated across the set of available SODA daemons. The allocation
policy is defined by the load balancing service. The primordial method defines the
lifecycle for a SODA program. Two options exist for the start-up of main:

® A SODA base can take the name of the bootstrap class as a command line
parametet. This should be done on the last daemon process started.

e Alternatively, a program can be started through the control service. For
instance, this can be done through the HTTPD service.

It is not currently possible to run several programs simultaneously on the SAM. -
Such “multi-tasking”, where different program instances share the same SAM
would be desirable. For example, this could lead to better resource usage due to
improved overlapping of computation and communication between different
program instances. However, this requires a level of protection between
simultaneously executing programs, which the current implementation does not
provide. A future version of SODA could do so by including unique program
identifiers (PID) with every active object. This would allow a single base to
multiplex sevetal SODA programs without interference. No further locks or other
synchronisation mechanisms would be needed. This feature could be supported
without change to existing programs. ’

SODA Source-to-Source Translator

SODA programs ate converted into Java source code through the SODA
translator; in a second stage, the resulting Java source code can then be compiled
into bytecode using a standard Java compiler. The source-to-source translator has
been written with the JavaCC compiler-generating tool [179]. This makes SODA
independent of Java compilers, in the same way that it is independent of Java
Virtual Machines.

91

Chapter 4 — Implementing SODA

The result of the translation process is a collection of Java classes for every SODA
active object declaration. These include a Proxy and a Body class and meta-classes
for every active object constructor and every active object method. A Proxy appears
like an instance of an active object: their class name matches that of the active
object declaration and the Proxy replicates the active object interface. The Proxy is
the only object that is directly accessible to application code. All other generated
Body classes and meta-classes are only used mternally by the SODA runtime
system.

4.2.1 Simple Translation Example

As an example, consider Figure 4-3 below. The SODA translator converts an active
object definition Test.soda into a set of Java classes. The result comprises the
proxy class, Test.java and the body class Test_Body.java. The body class
contains only slight modifications compared to the original Test . soda file.

The class name and method interface of the proxy class definition, Test.java,
match that of the active object class definition in Test.soda. The Test proxy can
therefore be used as drop-in replacement for the active object. All classes in a
system can use the Test class, as if it were an active object with an interface as
defined in Test.soda. For example, passive objects can create and use active
objects through Proxy classes, without requiring any translation step. Of course,
Test.java must be generated and compiled before any code depending on that
class can be successfully linked.

In addition to proxy and body, a set of call meta-classes and constructor meta-
classes come into existence. There is one meta-class for all every method and every
constructor that is defined in the public interface of Test.soda. These meta-
classes are used internally by the SODA runtlme system for network transmission
and queuing purposes.

92

4.2 SODA Source-to-Source Translator

Figure 4-3 Meta-class Generation by the SODA Translator

Defined in <<active>>
Test.soda ? Test soda

-value:int
+init():Future
+init(value:int):Future ConstructorCall
ouNnIu-(v;luo:lnl):Futu
+getValue():Future
ActiveBody . mau(thllAcﬂw:Acﬁanxy)Aaivi
| +init(i ActiveBody):Future
| " TestCC1
|
o e e e >
Tost Body |
| create(proxy:Test): Test_Body
-value:int } sl desti Test_Body):Futurd
Test_Body(thisActive:Test) || | meta-classes
+init():Future | — TestCC 2
+init(value:int):Future |
active obje +setValue(value:int):Future | ~param1:int
body — | +getValue():Future |
i o o s e > create(proxy:Test):Test_Body R T
I +init(destination:Test_Body):Futurd il
: ~futProxy:FutProxy
ActiveProxy | ilid PP
| y):Future
| Teostd +setFutProxy(futProxy:FutProxy):void
(e o e e e iy >
: -param1:int
Test | it A
1 call - Test_Body):Futur
€ —| | meta-classes
+_():ConstructorCall | ~ Test4
+_(value:int):ConstructorCall |
;::‘:y' obj _ | +setvalue(value:int):Future | e e >
HSVALIR0E I <<translated>> +call(destination:Test_Body): Futur|

4.2.2 Skeletons and Bodies

At runtime, an active object instance is comprised of a body and a skeleton. The
body in our example is Test_Body. The skeleton class Activeskeleton is generic
and performs various maintenance activities on the skeleton’s behalf. This includes
provision of request queue, delay queue and reply queue. Also, scheduling and
synchronisation is the responsibility of the skeleton. The skeleton’s activities and its
interplay with the body are described in detail in §4.4. All application access to an
active object is through its proxy. Passive objects are contained within the body, as
specified in the Test . soda file. They are owned by the Test active object.

93

Chapter 4 — Implementing SODA

Figure 4-4 Relation between Proxy, Skeleton and Body.
Test_Body is the “owning active object” for the passive objects; thisActive is a self-
reference proxy to the active object, with type Test. In a method invocation, the skeleton-body
pair is the server, whereas the active object owning the proxy is the client.

__________________________ Active
Skeleton Hrnenact
ActiveSkeleton
Body
..... Test_Body
Proxy Ny @\ | Passive
Test (..‘) Objects

th!.lM’t ive

The translation process for a body introduces a set of modifications compared to
the original SODA source file. The first of these changes is the provision of a
variable thisActive, which acts as a self-reference. thisActive is implemented
as a proxy, matching the body’s type and pointing to the body’s skeleton. The
variable is initialised by the object factory through a special translator-generated
Java constructor in the body. For example, the body Test_Body contains the
constructor Test_Body (Test thisActive) for this purpose.

The only other modification in Test_Body.java compared to Test.soda is
related to method guards. The translator extends every method signature with a
GuardException throw-clause. This is important for SODA’s implementation of
Ferenczi guarded methods (see §4.4.2). In addition, if a method in Test.soda
defines a guard, evaluation of this guard is inserted as the method’s first statement
in Test_Body.java (see Code 4-1 and Code 4-2). SODA’s init-style active
object constructors are adopted without modification from Test . soda.

Code 4-1 SODA Guard Definition (as in e.g., Test.soda)

public Future method ({params}*) when (cond) ({
//method body
}

Code 4-2 Guard Definition translated into Java (as in e.g., Test_Body.java)

public Future method ({params}*) throws GuardException {
if (!cond) throw guardException;
//method body

4.2.3 Active Object Proxies

The SODA programming model requires the ability to dynamically create active
objects and pass them by reference to other active objects. This is useful to create

94

4.2 SODA Sounrce-to-Source Translator

complex, distributed data structures and to write programs that operate on these
structures in a homogeneous, uniform fashion, independent of object location.

In SODA, this is achieved through active object proxies. For example, the proxy
class Test above acts as globally valid pointer to Test_Body’s skeleton located
anywhere in the SVM. This distribution is completely transparent to the
programmer who only uses the active object (or proxy) interface. A proxy
<VMID:0ID> is a unique reference, consisting of a combination of base identifier
(vMID) and object identifier (0ID). Since the object location is encoded in the
proxy, there is no need for a central naming service.

4.2.4 Request Meta-Classes

Beyond the body and proxy classes, the SODA translator generates a Request
meta-class for every public method and every init-constructor in the interface of
Test.soda. A Request class wraps method name, parameters and a Future proxy.
Requests may be used for passage over the network or queuing within the
destination skeleton’s request queue ot delay queue. To minimise transport latency,
every Request object implements the FastSerializable (see §4.5.3) interface,
which allows an efficient marshalling of objects into byte streams. Once the request
is due for evaluation at the destination object, the Skeleton invokes the Request
object’s polymorphous call object, giving the active object body as parameter. If
this throws a GuardException, then a method guard was not satisfied. Once the
request completes successfully, the skeleton will wrap the resulting Future into a
reply. It then sends the reply to the Future given in the request’s Future proxy.

4.2.5 Dynamic Object Creation

Conventional Java constructors do not have return patameters per se. The result,
instead, is a reference to the defining class. If this concept is transferred to active
objects, a problem emerges: no asynchronous subcalls are possible. This makes the
usage of Funnels impossible, since they rely on Future type returns in the calling
method. Without Funnels no asynchronous subcalls can be programmed.

Blocking subcalls would lead to deadlock whenever the constructor was to perform
direct or indirect recursion, since SODA active objects are atomic, This approach is
therefore inherently unsafe. We also reject the idea of simiply disallowing subcalls in
constructors, as this is an important concept required to set up complex data
structures. While the task of constructors could be delegated into dedicated
initialisation methods, there would be no way to enforce once-only semantics for
the execution of these methods at object creation time.

The approach adopted in SODA abandons the conventional Java constructor
syntax in favour of init methods. A set of ovetrloaded init-methods behaves
exactly like constructors, except that they return Future type results. Therefore,
asynchronous subcalls are possible, as for any other SODA method. The init
methods are not directly exposed at the proxy’s interface. Instead, the execution
time of init methods is managed by the object factory from which the active
object is created. This allows SODA to enforce the execution of exactly one init
method immediately after active object allocation time.

95

Chapter 4 — Implementing SODA

As an example, consider our example class Test.soda with overloaded
constructors init (int a) and init(double a). The SODA translator maps
these onto corresponding static methods in the proxy class Test with signatures
ConstructorCall _(int a) and ConstructorCall _(double a). An
instance of Test 1is created through RTS.newActive(Test._(5)) or
RTS.newActive (Test._(5.0)). As a result, 2 ConstructorCall object of type
Test_CC_1 or Test_CC_2 is created, respectlvely As a result, the object factory of
the destination base performs the following actions:

e Create a new active object skeleton and a generic prox& p to that skeleton
Call constructorcall’s create method, which will initialise a new active
object - body using the translator-generated constructor
Test_Body (ActiveProxy p). This initialises the thisActive variable in
the body with the proxy p obtained above. - '

Wrap the body in the previously created skeleton.

e Call ConstructorCall’s init method, which invokes one of the
ovetloaded init methods in the active object body as approptiate.

e Set up a Funnel on termination of this init method.

The Funnel sets the result to the newly created proxy and catches any
exceptions from init, before handing back a reply to the original client.

4.2, 6 Dealing with Inheritance

The SODA compﬂer fully supports dynarmc binding and inheritance of active
objects, which are important concepts in object-oriented programming. As an
example, consider an active object class SpecialTest which inherits from Test. In
this case, the proxy class SpecialTest inherits from Test, while the body class
SpecialTest_Body inherits from Test_Body. Therefore, proxies of type Test
can be used to invoke methods on SpecialTest active objects. However,
SpecialTest’s additional functionality is only available through the
. SpecialTest proxy. Casting between Test and SpecialTest is supported.
One particular feature of SODA’s inheritance support is that it circumvents the
inheritance anomaly. The approach we take is based on Ferenczi’s proposal for the
semantics of guarded methods (sec §3 6 for a detailed description of the
mechanism). : ,

96

4.3 Method Invocation in SOD.A

Figure 4-5 Inheritance Support in the SODA Compiler

"rm soda _I Defined in Test. 305

-value:int

+init(value:double):Future
+init(value:int):Future

+setValue(value:int):F
+getValue():Future I

<<active>> defined in
g SpecialTest soda |- ——| gpecialTest.soda
ActiveB

Test Body

+addValue(val:int):Future
+resetValue():Future

T SpecialTest Body Request

~futProxy:FutProxy

i

|

i

|

=
SPOUNITUC AU FINGACVe: SIS | +call(destination:ActiveBody):Fut

+addValue(val:int):Future
+reseNalu£)():Futere :_ ________ Test 1 +setFutProxy(futProxy:FutProxy);
: -param1:int
AcivePro : all _| *call(destination: Test_Body):Fut
Test | meta-classes
SpecialTest { 1 Test 2
e - >
Q +addValue(val:int):Future <<translated>> +call(destination; Test_Body):Futy
+resetValue():Future

4.3 Method Invocation in SODA

In this section, we focus on active object calls from the client’s point of view.
Essentially, this is a discussion of the proxy’s algorithms. Section 4.4 discusses the
implementation of the active object skeleton, which represents the server-side of a
call.

In the SODA runtime system, method invocation is the only communication path
between active objects. Method invocation is always initiated through a proxy,
which forwards the call to the active object body. The proxy is transparent, since its
interface matches the active object’s interface as defined in the SODA source files.
This also enables location transparency for active objects, since only the proxy need
be concerned about distribution. The proxy further guarantees SODA parameter-
passing semantics by preventing a client from handing out private objects to a
server by enforcing by-copy semantics. The execution model must provide this
guarantee, regardless of whether or not proxy and body (client and server) reside in
the same physical address space (same JVM). This allows uniform, homogeneous
access to local and remote objects, transparently to the programmer.

A proxy can use one of three different invocation techniques. Each proxy contains
an algorithm to choose the most appropriate technique according to current
runtime conditions. We discuss these invocation techniques, from the most general
to the most efficient and we give an approximate cost measure for empty method
calls on our test platform.

97

Chapter 4 — Implementing SODA

Remote Invocation. In the most general (and least efficient) case, where client
and server reside on distinct machines, a remore invocation (see §4.3.1) is
petformed. This involves creation of a request meta-object and its transfer
over the network.

Local Invocation. When client and server are collocated, SODA exploits
unexpected locality (see [140]) with a more optimised heap-based bca/ invocation
(see §4.3.4) that uses pointer indirection instead of local loopback
communication” for transfer of request and reply.

Inlined Invocation. The most optimised call technique is stack-based infined
invocation (§4.3.5). Depending on the availability of the destination object, an
inlined call can take place when the destination object is idle. This yields
performance within an order of magnitude of standard Java method calls

(~1ps).

Inlined calls are performed optimistically. However, there are two fallback
situations where inlined calls must be reverted to other invocation techniques (see

§4.3.5):

Guarded Local Invocation. The method does not fulfil its guard condition. It is
then reverted to a local invocation.

~ Splice-Off Inlined Invocation. When an inlined subcall is blocking there is a risk
of parent-child welding [54). In this situation, SODA “splices off” the invocation
to proceed asynchronously and avoid deadlock.

In the following sections, these invocation techniques are explained in detail,
interspersed with the description of client- and server-side Futures.

B As Java RMI does for calls to a collocated RMI object. Pointer indirection is several orders of magnitude faster
than local loopback communication.

98

4.3 Method Invocation in SOD.A

Figure 4-6 Activity Diagram for an Active Object Method Invocation.

Target Active Object (~ Parfarm a Remate Call
Lacal? g 8 |

na

yes

Targat active abjact f
and inactiva?

.~ Parfarm aLacal Call
N

na
yas

Attampt an Inlinad Call

Far an Inlined Call, the
target abject must have na
pending raquests and na
methad invacatian must be

currently active (GuardExcaptian?
na
Is the Future far the:
Inlined Call Available?

Parfarm a Guarded Lacal
Call

Splice-Off Inlined Call

Inlined Call Camplete:
Hand back Future

4.3.1 Remote Invocation

For distributed active objects, the method invocation, along with its parameters and
results, is transferred across the network, to and from the serving object on a
remote JVM. The method call is performed in two phases: first the proxy creates a
pending Future in the client and transmits a request to the remote JVM where the
server resides (Figure 4-7). In the second phase, the destination object on the
remote JVM turns back a reply containing result and exception of the terminated
call (Figure 4-8). The transport service handles the transfer of Request and Reply
objects between different JVMs.

Figure 4-7 Request path for method execution from client to server active object

Client Server

Skeleton

1

Body

99

Chapter 4 — Implementing SODA

Figure 4-8 Reply from server to client after method termination

Reply
Client \\ Server
[Skeleton| | [[Skeleton |
[Body | | Body
............................... f ‘
Future FutureProxy

An Example

Figure 4-9 shows an example of a remote invocation, from a client point of view.
The client has a proxy testProxy that references a remote active object Test.
When a method is invoked, the proxy creates a Request object req (sequence ID
1.1), as an instance of the meta-class Test_3. In addition, it sets up a pending
Future within the client object and a corresponding Future proxy fp (ID 1.2).
The Future proxy fp is included in the request (ID 1.2.3), and then the request is
dispatched via the Transport service (ID 1.3). At this stage the client can proceed
asynchronously past the method call.

Eventually, a Reply is received back from the server (ID 2) and added to the
client’s reply queue. The evaluation of the reply is serialized in the client active
object’s activity stream (i.e., in exclusion with the processing of other requests or
replies). When the body becomes available, the skeleton client_skeleton
removes the reply from the reply queue and deposits the result and possible
exception of the call to the client-side Future using the put method (ID 3).

100

4.3 Method Invocation in SOD.A

Figure 4-9 Client-side view of a remote invocation

client_skele! client estProxy transport
ActiveSkelet ActiveBody Test The request Transport
object

i | | I i
|
| | 1 setValue(int): future req |
| 1.1: create Request Test_3 |
| |
| |
| L |
| ~
: '2: tagRequest(req);Futute Tt :
| 1.2.1; create Future ! | Future i
| i | lsynd'l_ror)oua
| | | transmission o
Yol 1.2.2: qetFutProxy(fut):Fultrdxy - | [‘J : :g: ?;‘3::’;; ;"

1.2.3: selFutProxy(FulPro' y fp):void | |

SI0K
| | S
: 1.3: send(VMID,OID.req) vaic : gt Lo
| et) AT N I e — i PR :l
: TS ' 1 i
| at this point, the client : | |
| proceed asynchronous | | |
: serving other requests : : :
i and replies | 1 | reception of
e] | 2. receieReply(Reply):vdid Reply by the
T | T Transport
until the —Lr ——————— Tt ..l

body is
idle

execution of
Funnels if set up
for this Future

4.3.2 Implementation of Futures
Client-Side Usage

Futures allow asynchronous local and remote calls. While the proxy creates a
pending Future and hands it back to the client, a request is queued for later
execution at the server’s skeleton. The client can deal with a Future in one of two
ways: either it queries for a result in blocking fashion, using get or it sets a Funnel.

Blocking Get. get blocks as long as isPending is true. Since get waits on the
Future’s monitor, it will be notified when the Future becomes available. If
an exception is deposited by put, this will be re-thrown. Otherwise, the
result is returned. A blocking get is only allowed in detached methods (see
§3.3.2).

Asynchronous Funnel. More commonly, the client will set up a Funnel, using
setFunnel on the Future. This creates a contract between Funnel and
Future. When a result and exception are placed in the Future, the Future
will propagate these to the Funnel via receive(Object result,

Exception exc). Every Funnel can collect a set of pending subcall
Futures in this data-driven manner.

101

Chapter 4 — Implementing SOD.A

Server-Side Usage

On the server-side, every active object method must create and return a Future.
When a Future is returned, this can be either in pending or in available state.
Futures on the server-side are made available through one of the following two
mechanisms.

Explicit putResult or putException. In the simplest case, a return value is
available at the server immediately and placed into the server-side Future
via putResult. This is the case when there are no nested subcalls. If an
exceptional situation occurs, putException is invoked instead. The server-
side Future is handed back to the skeleton in available state.

Funnel-Controlled Future. In the more complex case, the server will become a
client for nested subcalls itself. Since these subcalls are potentially
asynchronous, it is not possible for the body to hand back an available
Future. Instead, the Future will be given back in pending state to the
skeleton. When a new Funnel is created, this takes over responsibility for
eventually calling putResult or putException on the underlying Future,
once it has collected results of all asynchronous subcalls it is attached to
(see Figure 4-10).

Figure 4-10 Server-side Future controlled by a Funnel

Future
Funnel
-fun:Funnel
-result:Object -issuedCalls:int
-exc:Exception -retumedCalls:int
-loopThrough:Object -isActivated:boolean
-future:Future
+get():Object
+setFunnel(fun:Funnel).void +Funnel(f:Future)
+setFunnel(fun:Funnel loopThrough:Object):void " 1 | *activate():void
+put(result:Object exc: Exception):void . #receive(result:Object,exc:Exception,loopThrough:Objec
+putResult(result:Object).void rver-side future #terminated():void
+putExcep E 1):void #getResult():Object
+setFutureProxy(fp: FutureProxy):void #getException(): Exception

Once the skeleton obtains the Future, it will call setFuturepProxy on it, giving the
Future proxy contained in the original request as argument. Only when the result
(or exception) has been set on the server-side Future, the Future is converted into a
reply object and sent back immediately. Otherwise, the Future remains at the
skeleton until putResult or putException is invoked on it by the Funnel.

Futures Implementation

Futures cannot exist independently, but are always attached to a single “owning”
active object. They behave like passive objects, except that they do not have “first-
class object” status. The reason for this lies in the implementation of Future
identities. Such identities, called Future proxies, are a combination of active object
proxy and Future identifier <FID>. A Future proxy <VMID:0ID:FID> uniquely
identifies a Future within the owning active object <VMID:0ID>. Since Futures do

102

4.3 Method Invocation in SOD.A

not have an identity outside of the context of their owning active object, this
explains why they cannot be passed as parameters between active objects. If
Futures were implemented as fully qualified objects, this would require
synchronisation of distributed Future instances, which would be hard to implement
in a scalable way. :

When the body invocation on the remote JVM terminates, a reply is sent back to
the client active object (as encoded in the Future proxy that came with the request).
This reply contains the <FID>, as well as the result or exception of the call. Replies
are queued in the reply queue for sequential processing, however they take
precedence over pending requests. When a reply is due for evaluation, the Future
<FID> will receive any result or.exception. If a Funnel was set up, this Funnel will
run (with exclusive access to object data, since other requests are still blocked).
Otherwise, if no Funnel exists, the request evaluation terminates. However, this
gives the chance to any detached methods waiting on the pending Future, to
proceed with their get () calls. Internally, the Future’s state is reflected through the
variable isPending. This is set to true at Future creation, but flipped to false after
put.

Network Exceptions

Every active object request-reply pair can potentially cross JVM boundaries and
travel over the network. In this case, problems may be sparked by failing network
connections. If the transport layer encounters a network exception, this is encoded
into the client’s Future and re-thrown on access to the Future. The client can then
take appropriate action, e.g., retrying, abandoning overall program execution or
delegating the call to another server.

There is still an outstanding problem: if the server’s JVM crashes after receiving the
request, the Future would never receive an exception, since requests are one-way
messages. In a future version of SODA, a timeout-mechanism should be
integrated, which puts an exception in the Future of a call which does not return
for a long time.

4.3.3 Funnel Implementation

A Funnel collects the client-side Futures of several asynchronous subcalls which a
server performs and deposits them into a server-side Future. This server-side
Future is given to the Funnel at instantiation time. Internally, 2 Funnel keeps track
of the number of asynchronous calls that it set up through setFunnel. A Funnel
can produce a result/exception for the server-side Future, as soon as the number
of asynchronous calls made on it and the number of replies it received match; in
addition, the Funnel must have been activated. Activation is necessary, since
otherwise a subset of completed asynchronous calls may already fire the Funnel.

setFunnel accepts an optional parameter Object loopThrough. This is attached
to the Future and later made available to the Funnel when the associated method
returns. This is useful for distinguishing between a set of Futures that are
controlled by a Funnel.

The default Funnel will issue a null result to the underlying server-side Future, as
soon as it is activated and all asynchronous calls have been collected. This
behaviour can be modified in Funnel subclasses by overriding receive,

103

Chapter 4 — Implementing SODA

terminated and getResult/getException methods (see Figure 4-10 and
§3.5.2):

e receive is called whenever a reply from an asynchronous subcall arrives.
This could be used to program aggregate functions, e.g. summation of
results. The loopThrough parameter is set to null if no loopThrough
object was set up. '

e terminated is called whenever the Funnel fires, e.g., when all results are
available and the Funnel has been activated. By default, this is an empty
method.

® getResult returns null by default, but can be programmed to prowde a
different result for the underlying Future.

¢ getException returns null by default, but can be programmed to provide
a different result for the underlying Future.

4.3.4 Local Invocation

If both, client and server reside in the same physical address space (same JVM), no
network communication is required and the above approach can be optimised. In
this case, the proxy performs a local invocation, bypassing the transport service.

. Otherwise, the invocation sequence is identical to Figure 4-9. The client’s proxy

- will invoke receiveRequest on the destination skeleton directly, which enqueues
the request and then gives back control to the client. The server then handles the
invocation asynchronously. Since only a simple pointer indirection occurs, local
calls are faster than loop-back network calls. When the result of the method call
becomes available, the server skeleton will notify the client skeleton through a call
to receiveReply.

Parameter Cloning and Hand-Over Parameters

In a local or inlined call, client and server are located in the same address space.
Therefore, the proxy must take care of creating deep copies of passive object
parameters to enforce SODA parameter passing conventions. Similarly, results
from the server are deep-copied before being wrapped in the reply. These deep
copies are created by calling the clone () method of the relevant parameter.

Deep-copying is necessary, as otherwise both client and server may modify the
same instance of a passive object. For example, if a parameter object is modified by
the setrver, this modification would be visible to the client. This would obviously
violate the SODA programrmng model which does not allow shanng of
information between active objects. A problem here is that deep-copy operauons
can be very cost-intensive, depending on object size.

In the case of handover parameters (see §3.7) this copying overhead can be
avoided. Consider a situation where a client creates a passive object for the sole
purpose of using it as an argument for the server invocation. After the
asynchronous method invocation such a parameter object is abandoned. In this
situation inconsistencies through false sharing cannot occur since once the
parameter has been transmitted to the server, it is not modified any more by the

104

4.3 Method Invocation in SODA

client. Changes by the server do not affect correctness, since the client does not
have any interest in the parameter after passing it to the server. It is the
programmer’s responsibility not to use handover type parameters on the client past
the method call. It would be good practice to invalidate the client’s reference by
setting it no null after the call.

Handover is speclﬁed on a pet-parameter basis. Other optnmsatmns are posslble
on a per-passive-class basis. For example, a passive object that never changes its
state does not need to be copied; neither client nor server can change such an
immutable object. This is detailed in §4.5.

In a remote call, an accidental sharing of private data is largely evaded, since client
and server reside on physically disjoint memory areas. Still, thete is a risk, that
parameters are modified affer the request in which they are contained is handed
over to the transport service, but before the transport service had a chance to
actually serialize and despatch their internal data representations over the network.
It is the responsibility of the transport service implementation to protect data from
modification after it has been passed to the transport service. This guarantee must
be observed when designing a transport service implementation that maintains a
queue of outgoing messages for batched, asynchronous transmission in larger
network packets.

4.3.5 Inlined Invocation

An active object is 74l if its request queue, reply queue and delay queue are all
empty. In this situation, the first arriving request can be executed immediately
without queuing. SODA exploits this situation with a third invocation mechanism:
the so-called inlined invocation bypasses queuing algorithms for idle server objects.
SODA aims to perform every invocation between collocated client and server as an
inlined execution as this is the most efficient of the three invocation mechanisms.
Inlined calls are 2 mainstay of SODA’s lightweight active object support, since they
greatly reduce the method call overhead compared to queued local invocations.
Overhead is within an order of magnitude of conventional Java method calls.
Therefore, inlined invocation encourages a developer to utilise a large number of
active objects in a program.

In an inlined invocation the proxy performs execution of the request directly and
synchronously on the destination body (Figure 4-11). This stack-based invocation
on the client thread appears like an asynchronous invocation to a programmer. The
semantics are indistinguishable from queued, local method calls. This condition is
based on the premise that SODA Future calls are non-blocking? An inlined
invocation does not rely on request or reply objects and bypasses the server’s
skeleton. Instead, the proxy delegates a call directly to the body. For this purpose,
the proxy contains code for direct access to a body of matching type. This code is
compiled into the proxy during the Soda-to-Java translation phase. In remote and
local calls, two Future instances exist on the client and server side, respectively. For

Only detached methods (see §4.4.3) may be blocking.

105

Chapter 4 — Implementing SODA

inlined calls, no client-side Future exists; instead, the body’s Future is directly
handed back to the client.

Figure 4-11 Sequence diagram for an inlined invocation

ActiveSkelet ActiveBody| Test Test_Body

I I I
| l 1: sotValue(im):Futuré

.1: clone object parameters

|
}
[the client's ,
skeleton doe: 1.2: lock :
not participat L
in ::mnod 1.3: setValue(int):Future ks :
calls. -

the serverBody. No
client-side Future is create

[Future retumned directly frd™
|
I
I
I
I

Additional costs for inlined compared to standard Java method calls are caused by
two factors:

e As for the local invocation mechanism, non-primitive parameters must be
deep-copied to guarantee SODA call semantics for passive, mutable objects
(v, sequence ID 1.1). For this purpose, the proxy applies clone on every
non-primitive parameter as well as on the result.

e Thread synchronisation is tequired to prevent concurrent client access to a
body. The body’s skeleton serves as synchronisation monitor (Figure 4-11,
sequence ID 1.2 and 1.4). Future objects are also synchronised to control
access by client (put result/exception) and server (obtain result/exception).

Preconditions for an Inlined Call

In summary, an inlined call can take place if a/ the following preconditions are

fulfilled:

¢ Client and server objects are collocated on the same base. Otherwise a
remote call is performed.

e The server object is not busy (e.g., not currently evaluating another
request or a reply). This is guaranteed by acquiring a monitor on the
server’s skeleton and locking the busy variable for the duration of the
inlined call (see also §4.4.1).

e The server has no requests in its delay queue. This is necessary to
guarantee the processing of the delay queue after every state change, which
is not triggered by inlined calls.

e No additional concurrency is needed on the base. eg, on a
multiprocessor system, all processors are busy. If base-local parallel

106

4.3 Method Invocation in SODA

slackness has to be increased, inlined calls revert to locally queued
invocation technique in order to employ more worker threads on the local
base (see also §4.4).

When the above preconditions are fulfilled, an inlined call is performed
optimistically. However, there are two circumstances where a fallback technique is
necessary.

Fallback to Guarded Local Invocation

The first situation relates to method guards. If a method guard evaluates to false
the inlined invocation reverts to a guarded local invocation. While the monitor
on the skeleton is maintained, the request is added directly to the server’s delay
queue. This is possible, because guard expressions appear as the first statement in a
method and are side-effect free. Therefore, the method can be rescheduled without
inconsistencies.

Fallback to Spliced-Off Invocation

The second situation occurs when the server itself becomes a client for a set of
nested subcalls. This is fine as long as all subcalls are performed as synchronous
inlined calls. However, if at one point in the invocation chain a subcall is reverted
to an asynchronous (local or remote) call, the server hands back a pending Future
to the client. Without any further precautions, a set of problems would arise:

o The server could asynchronously put a result or exception in the Future
that is shared between client and server. If a Funnel is set up on this Future,
it would then execute without serialization on the client’s other activities.
This is a violadon of the SODA programming model that guarantees
mutual exclusion of request and reply processing at active objects.

® Neither server nor client could be migrated until the asynchronous call
terminated, since they share the same Future instance. If the client was
moved, the server would not be able to notify it about the Future’s
availability. If the server was moved, the link is severed in a similar way.

® There would be a conflict between setup of a server-side Funnel and client-
side Funnel on the same shared Future instance.

e In a stack-based inlined call, a blocking server would result in a blocking
client. This is an instance of parent-child welding [54]. In SODA, active objects
are atomic. Therefore, the client would not be able to accept any further
requests, with a deadlock as likely outcome.

To avoid these problems, SODA adopts the following solution: When an inlined
call returns with a pending Future, this is not directly given back to the client.
Instead, the proxy-having access to the client skeleton—creates a new client-side
Future and sets the corresponding Future proxy on the existing (setver-side) Future
via setFutureProxy. In this way, an inlined invocation reverts to an asynchronous
reply. This is propagated up towards the root of the invocation chain and affects all
Futures from the original inlined caller down to the asynchronous caller.

107

Chapter 4 — Implementing SOD.A

'SODA splice-off calls allow a decoupling of the client and reversion of an

: attempted inlined call into a heap-based call. Parent-child welding (see §2.3.1)

therefore does not affect SODA. Splice-off calls are similar to the optimised
heap/stack invocation scheme implemented in ABCL1/AP-1000 [167]. The
difference is that their technique reschedules a call 1nto the mail queue and is
therefore likely less efficient.

Limitations and Trade-Offs

Inlined calls are processed in an expedited fashion. This increases efficiency, but it
also introduces a problem of fairness. While requests and replies are usually
scheduled in order of their arrival across the base, inlined calls take precedence. i.e.,
an object which satisfies the conditions for inlined calls is taking precedence over
other active object invocations on this base.

This trade-off of efficiency against fairness is accepted, since the SODA
programming model does not make any fairness guarantees towards the order in
which active objects receive processing power. FIFO semantics for a set of
invocations are observed between the same client/server pair. :

- Any active object method may be invoked as an inlined call. This explains the

requirement in the SODA programming model for active object methods to be
non-blocking. If this is not the case, an inlined call is blocked for the duration of
the method execution. This could delay a2 whole invocation chain and a set of active
objects. It is therefore the programmer’s responsibility to ensure this property. If
blocking calls are required, these can be isolated in detached methods (see §4.4.3).

4.3.6 Self-Invocation |

4.4

As mentioned before, all active objects in SODA define a variable thisactive
that implements a self-reference, similar to the keyword this in Java and C++.
thisActive points to the active object’s skeleton and is automatically created
during the compilation process and initialised upon active object instantiation.
thisActive can be used to hand out references to the current instance to other
active objects. It can also be used for an active object to perform indirect self-
invocation and iteration within an active object.

When an active object performs an indirect self-invocation, client and server object
are identical. Consequently, the server will be busy with the current level of
iteration. As a result, self-invocation is therefore always performed as a local
invocation, qucued on the server’s skeleton. No inlined call can be performed. The
current iteration will run to completion with a Future, setting up a Funnel on the
subcall, which represents the nested iteration. .

Active Object Multiplexing

Many other Java-based active object systems [39;132] map active object instances
onto threads in a one-to-one manner. This incurs 2 high overhead if a large number

108

4.4 Active Object Multiplexing

of active objects happen to be located on a single base. It also fixes a program’s
potential parallelism to the number of active objects. To avoid these problems,
SODA uses a multiplexing scheme to associate active objects with system
resoutrces. Besides inlined invocation (§4.3.5), this is the second mainstay for
SODA’s lightweight active objects.

Multiplexing is based on a fixed number of worker threads per daemon. These are
allotted to active objects on a round-robin basis. The number of threads can
statically be adapted to a daemon’s physical parallelism.” The skeletons cooperate
locally to handle scheduling and multiplexing of the daemon’s active objects. This
includes queuing of incoming requests and replies as well as temporary suspension
for requests whose guard conditions are not currently satisfied. If a request can be
serviced, the skeleton collects the resulting server-side Future object and returns it
to the client skeleton to be despatched to the client-side Future.

4.41 Base-Local Scheduling

Active objects that are non-idle are scheduled in a round-robin manner per base.
This is possible through a work queue. Active objects enter this work queue if they
have pending requests or replies to execute. If no further activities are pending for
an active object, it is removed from the work queue. A pool of worker threads
operates on the scheduling queue (see Figure 4-12). Each worker thread locks the
next active object in the work queue and devotes processing power to it. This
guarantees that worker threads access objects in mutual exclusion as is required for
atomic active object semantics. Under the control of a worker thread, the active
object then performs the following actions:

Figure 4-12 Base-Local Thread-Multiplexing of Active Objects

Worker Pool

executing

scheduled

/ Active Obiject

VMisrkar *' Active Obiect

vy OF idle
Threads bow:rc Active Object
ork Queue
_ ' J

® For example, a daemon’s multiplicity of worker threads could be chosen to be twice the number
of available processors on that host. This would guarantee that the potential parallelism is higher
than the physical parallelism without overwhelming local resources through the creation of an
excessive number of threads.

109

Chapter 4 — Implementing SOD.A

(1a) If the reply queue is not empty, a reply is removed from it and the
contained result and exception made available to the client-side Future. If a
Funnel has been set up on the Future, then the Funnel’s receive method
is executed.

(1b) Otherwise, a request is removed from the request queue and executed on
the body. After execution terminates the skeleton is responsible for sending
the Future result back to the client. However, this is only possible when
the Future has an actual value set, either explicitly by setResult() or
setException() or implicitly through a Funnel.

(2) Since activity (1) or (1b) may have changed object’s internal state, the next
step lies in rechecking the guards of any delayed requests. If any of the
queued requests are satisfied, they are processed. -

(3) If any of the requests in the delay queue have been processed in (2), the
object’s internal state may have changed. Therefore, other queued requests
might have their guards fulfilled. Therefore, repeat (2) until no delayed

~ requests can be processed any more.

(4) Reinsert the active object into the work queue unless both the reply queue
and request queue are empty. If reply queue, request queue and delay queue
are empty, the skeleton’s busy flag is set to false which is an indication
that inlined calls are acceptable. Finally, control is given back to the worker

- thread, which joins back into the pool of idle workers.

Fairness and Synchronisation

The SODA model does not make any fairness assumptions towards the scheduling
of active objects. It is just an artefact of our implementation that scheduling is
round-robin amongst active objects on a single base. An earlier version of SODA
made the scheduling order dependant on the request arrival order. However, this
approach was abandoned as it was found to give an unfair advantage to frequently
invoked objects.

Skeleton driven scheduling must be synchronised with inlined calls to prevent
concurrent access to the body. This coordination is achieved through the busy flag
mentioned above. This flag is true as long as any of queues contain pending
messages. Only if request queue, reply queue and delay queue are empty, inlined
messages may proceed. Of course, inlined active object invocations violate the
round-robin scheduling protocol, since they are executed on the client’s thread.

44.2 Guarded Methods and Delay Queues

The SODA model provides guarded methods so that active objects can change the
default FIFO message processing order. For maximum efficiency, the evaluation of
guards is embedded into the compiler-generated body methods. In particular, the
guard condition is directly copied into the body’s method as the first statement.
The body throws a GuardException if the guard’s condition is not satisfied. This

110

4.4 Active Object Multiplexing

setves as a signal for the skeleton. In this case, the request is appended to the delay
queue for later re-evaluation. Java’s exception handling mechanism gives good
‘efficiency here, since try/catch blocks carry a near-zero overhead in most JVM
implementations [150].

In the current implementation, all requests in the delay queue are re-evaluated every
time the active object undergoes a change of internal state. This is the case after
successfully serving a request, a reply or another delayed request, as outlined in the
previous section. Although guard evaluation is cheap, this is not an optimal
solution, since it could lead to frequent guard re-evaluation cycles (see §5.6).

Since SODA guard conditions are not allowed to have side-effects, a re-evaluation
of the guard does not cause any inconsistencies to the object state. It is also
negligible in terms of performance, if the guard is based on a simple Boolean
expression, based on the object’s state or on the value of any of the request’s
parameters.

Support for Ferenczi Semantics in Guards

In §3.6.2 we gave an overview of how the three instances of inheritance anomaly
are circumvented following Ferenczi’s proposal of guard semantics of inherited
objects [59]. We will now go on to describe how these semantics are implemented
in SODA.

In chapter 3, Code 3-11, we gave an example solution for history-only sensitive
anomaly (IA-2) Code 4-3 shows the class GBoundedBuffer_Body as created by
the SODA source-to-source translator. The method gget cannot be executed as an
immediate successor to a put method. This history information is recorded
through an additional variable afterPut in the subclass. Code 4-4 is the equivalent
body for the original bounded buffer class, BoundedBuffer_Body.

Consider the following sequence of invocations on a newly created instance of the
GBoundedBuffer active object: put, put, gget, get.

put GBoundedBuffer’s method guard is true; super.put (x) is invoked. The
superclass guard is true because buffer space is still available and the item x
is stored in the buffer. Finally, the variable afterPput is set to true and the
Future received from the superclass is returned.

put as above, a second item is stored in the buffer.

gget The guard (!afterPut) is false and a GuardException is thrown. This
results in the request being moved to the skeleton’s delay queue.

get GBoundedBuffer’s method guard is true; super.get () is invoked. The

superclass guard (in >= out + 1) is true because two items are in the
buffer. Finally, the variable afterpPut is set to false and the Future

111

Chapter 4 — Implementing SODA

received from the superclass (containing the first item deposited by put
above) is returned.

Since the get call did succeed without being moved to the delay queue, it is
assumed that the active object state has changed. Therefore, the delay
queue is re-evaluated. This only concerns the previously queued request to
gget. The guard (tafterPut) is now false and the get method is
invoked. This results in a call to super.get (). The corresponding guard is
true, because there is still one remaining item in the buffer.

Code 4-3 Body for the G-Bounded Buffer after translation into Java

public class GBoundedBuffer_Body extends BoundedBuffer_ Body ({
private boolean afterPut = false;

< ... initialisation of thisActive, and other householding >
< .,. constructors >

// this method cannot execute as immediate successor to get ().
public Future gget() throws GuardException ({

if (! (lafterPut)) throw guardException;

return get();
}

public Future put (int x) throws GuardException {
if (!(true)) throw guardException;
Future f = super.put(x); afterPut = true;
return f;

}

public Future get() throws GuardException ({
if (!(true)) throw guardException;
Future £ = super.get(); afterPut = false;
return f;

112

4.4 Active Object Multiplexing

Code 4-4 Body for the Bounded Buffer superclass after translation into Java

public class BoundedBuffer_ Body extends ActiveBody (

int[] buf; int size = 0;
int in = 03 int out'='0;
< ... initialisation of thisActive, and other householding >

public Future init(int size) {
Future f = new Future();
this.size = size;
buf = new int[size];
f.putResult (null) ;
return f£;

public Future put(int x) throws GuardException {
if (!(in < out + size)) throw guardException;
Future f = new Future();
buf [in++%buf.length] = x;
f.putResult () ;
return £;

}

public Future get () throws GuardException {
if (!(in >= out + 1)) throw guardException;
Future £ = new Future();
int x = buf[out++%buf.length];
f.putResult (new Integer (x));
return £f;

As this example shows, if at any level of the inheritance hierarchy a guard evaluates
to false, the overall invocation is abandoned and rescheduled. The SODA
translator inserts the guard exptession as the first statement in a method. Superclass
method invocations must be the first statement after that. A call can be abandoned
at any point during guard evaluation, because no side-effects to the active object
state have occurred yet.

4.4.3 Detached Methods

Active object methods recruit threads from the base-local worker pool to process
incoming requests and replies in a multiplexing fashion. The execution of detached
methods may be long-lasting and blocking. In order not to tie up active object
worker threads, a separate thread pool is used for detached methods. This allows
blocking activities, such as timers, blocking operating system call and integration of
legacy passive objects which perform blocking synchronisation. During execution
of a detached method, the associated active object cannot be migrated. This would
require strong mobility, which is difficult to implement [32].

113

Chapter 4 — Implementing SODA

- Detached methods are implemented as separate classes. This restricts detached

methods to their own private data but prevents direct access to the active object’s
data. This guarantees that no inconsistencies through concurrent access to the
declaring active object’s data can occur. The only communication path is given
through an active object proxy, which allows the invocation of active object
methods like for any other client.

4.4.4 Liveness Issues

4.5

SODA active object methods are not allowed to invoke a blocking get on a
Future. This ensures that an active object instance does not enter a livelock where
it cannot receive further requests, due to blocking of its allocated worker thread.
Instead, Funnels are provided as a non-blocking, data-driven mechanism to collect
the results of Futures as they become available.

Thetefore, 2 SODA program is free of deadlock, except if one of the folloﬁng
situations occurs:

(1) A detached method (not the prunordlal method) uses a blockmg
Future.get call.

(2) Guards can cause livelock, where all active objects in a system are idle while
all pending requests are bound to delay queues.

(3) Deadlock ot blocking can occur in a contained passive object that is used
by the active object. If a private, passive object blocks the active object’s
thread, this temporarily suspends the owning active object instance from
" processing any more requests or replies.

Situation (3) can occur, when the passive object performs some internal
synchronisation and suspends the active object thread while in a monitor. Such a
passive object is not compatible with SODA, since it is designed as a
synchronisation point for several threads. Since in SODA, only a single thread can
enter an active object at any time, a deadlock is inevitable. Another example is a
blocking call into the operating system, performed by the passive object. For
instance, a receive call could query a socket’s input stream for further data from
the network. If no data arrives on the stream, this call may timeout; still it delays
the owning active object for the timeout interval. In the worst case, receive () has
an infinite timeout, rendering the owning active object useless.

To avoid such situations, potentially blocking calls in SODA are restricted to
detached methods of an active object. Detached methods have a separate thread

“allocated to them and therefore cannot interfere with the owning active object’s

operation.

Improved» Object Serialisation

An invocation on an active object may use passive objects as parameters. These can
be of primitive or any complex data type. Any such invocation may potentially
cross network boundaries, wrapped in a request or a reply. Therefore, we require

114

4.5 Improved Object Serialisation

the ability to flatten complex data typAcs (i.e., any type of Java Object) into an
_equivalent byte array for network transmission.

Java object serialization [164] provides this capability. Java Object serialization is a
powerful and very flexible technique that requires little extra coding from a
programmer. However, this flexibility comes at the price of a large amount of
ovethead, a serious impediment for high performance cluster computing. For
example, object serialization takes about 25% to 50% of the time needed for a
method invocation in RMI [139;174]. Since all this overhead is in software, the
relative overhead increases as networks become faster.

We will examine object setialization in the following sections and present an
alternative serialization mechanism, called SODA fast serialization, which provides
more specialised serialization but significantly better performance. This is achieved
through more explicit encoding and decoding routines and stateful streams that can
cache previously-sent information.

4.5.1 Overview of Java Object Serialization

Java Object serialization [164] is a mechanism that allows the “flattening” of Java
objects onto byte streams and vice versa. This is a significant functionality that
enables the transmission of objects across the network or their persistent storage
on file. The byte array representation of an object includes all its primitive instance
variables and the complete graph of objects to which its non-primitive instance
variables refer.

Usage

A class must implement the Serializable marker interface in order to be
considered for serialization. A Serializable object can then be passed to the
writeObject method of the class ObjectOutputStream. This method can deal
with complete object graphs, even if these contain cyclic references. Multiple
references to the same instance are encoded as back references to prevent infinite
loops during serialization.

The ObjectInputStream class provides a matching readobject method for
deserializing the object. Serialisation does not transmit the byte code of the class,
which must be available to the receiving JMV’s class path. If this is not the case, a
ClassNotFoundException is thrown. However, the version of the class may be
different at the receiver and sender JVM, since serialization can gracefully deal with
evolving classes as explained below.

Serialization Overheads
Class evolution is supported by a unique version identifier contained in the

serialization wire protocol. Newer class versions can be explicitly compatible with
their predecessors. In addition, the name, type and value are encoded for every

115

Chapter 4 — Implementing SODA

instance variable®. Information about an instance’s type and variable structure is
discovered at runtime, using Java’s introspection features. This operation however,
carries a SIgmﬁcant runtime cost and moreover, must be repeated for every instance
sent.

The design of Java serialization is cleatly focussed on ease-of-use and ﬂexibility
rather than high performance. In fact, [139] contend that object serialization yields
“catastrophic performance”. This is not tolerable in a HPC environment. Usually,
the lifetime of an object in HPC programs is shorter than the runtime of a parallel
program; no long-term persistence is required. It is also fair to assume that identical
versions of every class are available on every participating base. Therefore, the full
generality default Java object serialization is not necessary This yields room for the
following optimisations to serialization:

(1) No class metadata, such as structural and versioning information, is
required in a byte stream. Therefore, it is sufficient to transmit an object’s
class name and the values of all primitive types in order. No name ot type
information for primitive values is required. This process is repeated
recursively for nested objects, using back references where necessary.

(2) Instead of using introspection, the values of all primitive variables can be
written out in an explicit marshalling routine and read back by a matching
unmarshalling routine. Such routines can be generated manually for every
class, or automatically by a compile-time tool. Another approach is to use
load-time class transformation.

| The Externalizable Inteﬁace

Java provides the Externalizable interface that can yield the functionality of (1)
and (2) above. Externalizable defines the writeExternal and readExternal
method to give complete control over the format and contents of the stream for an
object. These methods must explicitly coordinate with the superclass. If an
Externalizable object is passed to an ObjectOutputStream, only its identity is
written to the stream, before the writeExternal method is called. On the receiver
side, an Externalizable object is reconstructed by creating an instance of the
transmitted class identity, using the public no-atgument constructor.”

Since no reflection is required to find the names, types and values of all fields, the
serialization process for Externalizable objects is much faster than for
Serializable objects. In addition, the stream representation is more compact.
However, introspection is still used to a small degree: on the sender side, to get an
instance’s class name, and on the receiver side, to create a new instance based on
the received class name. The required methods Object.getClass().getName
and Class. forName (<name>) .newInstance () have relatively high overhead on
most JVMs due to the internal use of native methods. Therefore, these types of
introspection are not well suited for performance sensitive code.

%6 Static fields and transient fields are excluded.

77 'This constructor must be provided by every class that implements java.io.Externalizable.

116

4.5 Improved Object Serialisation

4.5.2 Other Approaches

Several authors have examined alternatives to Java’s default serialization scheme.
The JavaParty project has produced an improved setialization scheme [128;139]
for Java that can yield a performance gain of up to 97% over standard Java
serialization. The implementation is based on ‘explicit serialization/deserialization
routines that manage byte buffers explicitly. This reduces the runtime overhead for
reflection; however, the routines are tedious to write. Also, the implementation is
not portable across different JVMs, since a change to the standard class files is
required.

Manta [108;172] implements an RMI that is a further improvement over that of
JavaParty. Much of Manta’s performance improvement detives from their
implementation of a native compiler, and the whole-program analysis used by that
compiler. Furthermore, the compiler takes special actions when compiling RMI
code so that JNI (Java Native Interface) calls are avoided. In fact, communication

is inlined into the code, increasing the speed and responsiveness of the system still
further.

Matt Welsh’s Jaguar system [181] is based on a JVM extension that enables direct
access to native memory regions outside of the Java heap.” This functionality can
be used to allocate Java objects, so called pre-serialized objects, into the native heap.
All state changes to the Java object are transparently replicated to this memory area.

4.5.3 SODA Serialization

Common to all the above serialization mechanisms is that they require changes to
either the JVM or the standard class libraries. In contrast, SODA" provides a
serialization scheme that can run on an unmodified JVM. In addition, further
optimisations are exploited by caching serialization streams. Efficiency arises in large
part from abandoning the official Sun protocol in favour of a more compact, but
less versatile, protocol. SODA Serialization is based on explicit encoding and
decoding routines, similar to Externalizable. In the current implementation,
these methods must be explicitly coded, but it is possible to generate these
automatically at compile-time.

The Fastserializabile Interface

SODA Serialization is supported through the FastSerializable interface which
extends Externalizable (see Figure 4-13). For FastSerializable objects,
runtime reflection is almost completely avoided. To determine the class a virtual
method getClassName () is provided that returns the fully qualified class name.
Only for the first occurrence of a previously unencountered class is the
Class.newInstance() method invoked on the receiver side. The returned
instance is then stored as a “prototype” by the receiving stream and all further
transmissions use this prototype’s makeNew() method to manufacture new

% A similar functionality is provided by the nio package in Java version 1.4.

117

Chapter 4 — Implementing SODA

instances. This virtual method dispatch yields much better performance than
introspection.

Figure 4-13 SODA FastSerializable Interface

4.6

interface interface
Externalizable Cloneable

+writeExternal(out: ObjectOutput). vol
+readExternal(in:Object/nput):void

I I

interface
FastSerializable If an object is immutable, th
overall object graph reachab
_____| from this object does not

+getClassName():String change its state after
+makeNew():Object Instantation.
+isimmutable():boolean
+clone(): Object

If a FastSerializable object is immutable, it guarantees not to change state over
the course of its lifetime. This guarantee includes the instance’s primitive variables
as well as all recursively referenced objects.

Caching Serialization Streams

At the core of SODA serialization are stateful, caching serialization streams. The
usage of these streams is identical to default Java object streams. However,
FastOutputStream and FastInputStream improve performance by indexing
frequently sent information via receiver-side caches. If an object to be serialized
implements FastSerializable, these streams offer a vast performance
improvement over default Java Object serialization. As a fallback mechanism the
Externalizable and Serializable are still supported, albeit with lower, default
performance.

The caching streams avoid repeated transmission of frequently sent information.
Data which has already been sent before is cached at the receiver side. For
example, the fully qualified class name of an object is cached, as is the state of any
immutable object. If a set of objects of the same type is sent, the second and
subsequent transmissions therefore carry only very slim type information. Circular
references are correctly resolved as back-references, using hash-tables to identify
already sent instances.

TCPI/IP Transport Service

The transport service is responsible for exchanging request and reply messages
between participating bases in a SODA system. This is a crucial and extremely
performance-sensitive component of the runtime system. The overriding design
concern was the absolute minimisation of remote method call overhead for typical

118

4.7 Load Balancing Service

4.7

workstation clusters. Here we describe the default transport service, built on

'TCP/IP sockets.

The TCP/IP transport implements the VMID interface as a combination of IP
address and port number. Several bases can therefore be collocated on the same
host, bound to different port numbers. Messages are transferred as a result of a call
to send (VMID, OID, msg). The SODA serialization protocol described above is
used for serialization of VMID and msg, whereas OID is just an integer. Socket
connections to remote bases are acquired lazily and released on an LRU basis. Race
conditions, where a pair of bases tries to connect to each other simultaneously are
resolved correctly. This dynamic connection management allows better scalability
than a fully-connected approach and better reflects the SODA design philosophy
which aims at creating localised clusters of activity without global communication.
One reason is that, prior to version 1.4, Java sockets do not support the select ()
call. Therefore, a separate thread must be attached to each open socket.

SODA can perform batching optimisations, if a set of calls is in flight
simultaneously between a pair of machines. In this situation, several request/reply
messages are combined into a single network packet, which reduces overheads in
the operating system’s TCP/IP stack. For this purpose, a double buffering scheme
is used. While one buffer is being filled, the second one is written onto the TCP/IP
network socket by an asynchronous thread. When the second buffer has been
written completely, the two buffers are swapped. This is beneficial if many small
messages are sent since the number of required network packets is reduced.

One limitation of the current transport service implementation is that only a single
transport layer can be used at any time. Modern networked systems often have
several network interfaces at their disposal. Therefore, multi-path communication [19)
would be a valuable future addition to the runtime system. Multiple networks or
transpott mechanisms could then be used for simultaneous data transfer between
communicating bases. This would increase overall bandwidth and reduce the
number of collisions in non-switched networks.

A further improvement would be useful for SODA systems that extend over a
WAN network. Here, it would be useful to define a hierarchic communication
structure. For example, it would be sufficient if only a single socket connection
existed between two bases in geographically separate clusters. Messages exchanged
by other bases could then be multiplexed and de-mult1plcxcd over the single WAN
socket by the gatekeepers.

Load Balancing Service

SODA facilitates load balancing through dynamic object migration through the
autonomy and location transparency of SODA active objects. The current
implementation of the load balancing service is at a rudimentary stage. Currently,
only instantiation-based assignment according to system load is supported.
Dynamic object migration has only been designed on paper.

119

Chapter 4 — Implementing SODA

For object allocation purposes, every base reads a list of the available bases from a
configuration file (conf/basefile). An identical version of this file must be
available to all bases. At regular intervals, every base sends out a multicast packet
that conveys local load information to other bases. Based on the incoming
multicast packets, every base can assemble a picture of the system’s load situation.

A load balancer implementation can currently get a rich vatiety of information
about the active objects and their interaction on the local node. This information is
obtained from both base meta-object and active ob]ects located on that base. The
following information can be accessed:

Number of active objects on the node.
Number of pending messages overall on the node.

e Load of the node (obtained by measuring the time needed for performing 2
small benchmarking loop). : . .

o Average message queue length for an active object.

e An active object’s acquaintances and interaction frequency.

Object Mlgrétion

‘Two possibilities exist for support of object migration. If an object can be migrated
while a method call is in progress, this is called strong mobility. In contrast, weak
mobility allows migration only at certain points during the lifetime of an active
object. Weak mobility is much easier to implement, since no activity information of
the object (such as thread stacks, etc.) need to be transferred [32].

Active objects in SODA support weak mobility; possible migration points exist
whenever processing of the currently active method has terminated. At this point,
the object migration algorithm suspends further pending messages. The object can
now be transferred to another base. The full information required for the transfer
includes the following:

Request queue, delay queue and reply queue.
Any pending Futures that have not yet been sent back to their clients and
associated Funnels.

e The active object’s state (i.e., member vatiables)

When an active object is migrated, it is necessary to update the stale proxy
references so that they point to the new location. One way of doing so is for the
active object to keep track of all its proxies and explicitly update them upon
migration. This approach requires newly created proxies to register with the active
object and vice versa. This can create a large amount of communication and
therefore impede on scalability.

A lazy approach to updating stale proxies when they are used seems more
appropriate. One solution is given through forward pointers [140] left behind at the
original location after an active object migrates away. However, if an object
migrated several times, the forward chain could be very long.

To avoid this problem, we propose the concept of a master locator for every active
object. This solution is similar to the one implemented in the NIP runtime system

120

4.8 Future Work and Conclusions

4.8

[177]. The master locator is located on the original location where an active object
was instantiated and is referenced through a tuple <VMID_master, OID_master>.
Whenever an active object migrates, it informs the master locator about the new
location. If the client proxy points to a stale location the master locator can be
queried for the new location. For this approach, client proxies must be updated to
include information on the destination * object’s master locator, e.g,
<VMID_current, OID_current, VMID master, OID_master>. A stale client
proxy is detected if the server object is not found at the location <VMID_current,
OID_current>. In this case, the client object receives an exception and in response
blocks all further requests and queries the master locator for the new location. The
master locator will only reply when the new location of the server active object is
known. The client proxy then updates its <VMID_current, OID_current> tuple
and resends the queued requests to the new location. For a client proxy of a newly
instantiated active object (which has not yet migrated), the following is true:
VMID_current ='VMID_master and OID_current = OID_master.

When an active object migrates from its current base to another base, it takes the
following steps:

(1) Wit dill the last invocation has terminated and then suspend the pending
requests queue.

(2) Invalidate the master locator (i.e., all further requests to the master locator
will be blocked until it receives the updated location).

(3) Remove object from the base dispatcher (i.e., any incoming requests to the
current <VMID:0ID> will cause exceptions in the original clients

(4) Serialize the obiect state and the queue of pending messages and transfer to
the new base.

(5) Find a free 01D on that base and register with the base dispatcher.
(6) Update the master locator with the new position.
(7) Schedule processing of any queued method invocations in the pending

IchCStS qucue.

After step 6, any client proxies that tried to send a request to the active object
during migration, will receive the new location from the master locator. They can
then resend any queued method invocations to the new location.

Future Work and Conclusions

While the SODA programming model is similar to ProActive PDC [39], its
implementation is geared towards exploitation of more fine-grained parallelism.
Since active objects have comparatively small overheads, this encourages a
programmer to write programs with a large number of active objects. This is
beneficial, because programs become more portable across parallel architectures
with different degrees of parallelism. If little physical patallelism is available, client
and server active object will be collocated in most cases. This yields a high
probability for low-latency inlined invocations. Of course, this depends on an

121

Chapter 4 — Implementing SODA

efficient runtime allocation of active objects that collocates fréquently interacting
objects. In a large system with many bases and high physical parallelism, the
available active objects can be spread out more widely and the program can make

full use of all available processors.

The RTS described hete is by no means the most efficient implementation of the
SODA model. It has been explicitly designed to allow easy experimentation and
inclusion of new ideas which we find useful. Nevertheless, the experience gained
shows that the model is easy to use and can capture a wide range of problem
domains. Future versions of the runtime system should address the following
issues.

Load Balancing. Load balancing through dynamic object migration as described
in §4.7 above is only designed on.paper. However, this is an important
feature for a runtime system that supports active objects with changing load
characteristics. This would require monitoring and analysis of object
interaction and activity patterns and heuristics that decide on object
migration based upon this information.

Statically Typed Futures. Statically typed Futures are not yet supported, although
this would be possible. For example, using a version of Java with support
for parameterised classes, Future classes could be generated that match the
return type of the associated method. Also, Futures do not directly support
primitive data types at current.

Heuristic Inlining. Currently all local, non-guarded method invocations on idle
active objects are performed as inlined call. This stack-based invocation is
efficient for single-processor nodes. However, when multiple processors
are available per node, potential concurrency is lost.

Distributed Garbage Collection. SODA does not cutrently implement garbage
collection. This could be provided through an additional plug-in service
(see §4.1.5). Various hooks in the master locator and in the active object
proxies exist to retrieve information about new proxy/reference generation,
etc. This could be used eg., to create a reference counting garbage
collector. The garbage collector can register handlers for the hooks in the
proxies/master locator. :

122

5.1

Chapter 5

Performance Results

The SODA runtime system provides a high-level abstraction layer on top of the
physical distributed-memory hardware. This incurs efficiency loss compared to a
lower-level programming model. The aim of this chapter is to determine estimates
for these runtime costs. Based on these, we can assess the ease-of-use vs. efficiency
trade-off and to determine SODA’s practical value.

A number of micro-benchmarks are devised to obtain estimates for the overhead
of basic SODA operations. These include the cost for the various active object
invocation techniques and serialization of passive object parameters. We also
examine the performance of invoking calls on various types of complex data
structures that are composed from active objects. The results obtained are useful to
predict SODA’s scalability and to give design guidelines for more complex SODA

programs.

The experiments presented in this chapter do not attempt to evaluate SODA’s
ease-of-use benefits. This point is deferred to the next chapter, which presents a
large-scale real-world application built with SODA.

Experimental Environment

Two separate test bed environments were used for the performance analysis. The
first was Mill, a network of workstations, consisting of 40 nodes. The second was
Mega, a dedicated rack-mounted cluster with 16 dual-processor nodes. Table 5-1
gives a detailed description of the hardware and software. Unless otherwise
mentioned, we only use a single worker thread per node, onto which all local active
objects are multiplexed. This avoids node-internal speedup on multi-processor
nodes, such as those of Mega.

Our main interested lies in the speedup that can be achieved by a SODA program
compared to a sequential Java program for the same problem. All speedup
measurements cited in the following sections are compared to the fastest possible
sequential implementation in Java, rather than running the parallel algorithm on
just a single processor. This gives a more realistic assessment of the benefits of
SODA. In most experiments we use an active object with a method that has
adjustable granularity as a test target object. Based on the execution time for this
method, and the number of times it is invoked, it is simple to obtain a lower bound
for the sequential execution time. Sometimes we also describe efficiency. This is
the speedup divided by the number of processors in use.

123

Chapter 5 — Performance Results

Execution time for the experimental programs was measured based on readings of
the system time. However, these can only be obtained in millisecond resolution. To
measure very short times, we therefore use a loop that repeatedly executes the code
to measure and automatically calibrates the number of iterations until they span
over at least a 10 second interval. The exact runtime can then be divided through
the number of iterations to obtain the atomic execution time. All measurements
were done repeatedly, in order to obtain a 95% confidence interval. This is
represented through error bars in the following diagrams.

The current version of the SODA runtime system has prototypical character. More
efficient implementations of the programming model are feasible. Nevettheless, the
experiments show good speedup values and therefore validate the SODA approach
for the chosen example benchmarks.

Table 5-1 Overview of experimental systems and software configurations.

Mill cluster Mega cluster
Nodes 40 desktop type 16 node rack-mounted Dell PowerEdge 1550
Processor Pentium IIT 650 MHz, 256 kb cache | Dual Pentium III 866 MHz, 256 kb cache
Memory 256 Mb 512 Mb
Network 10Mbit Ethernet, shared 100Mbit Fast Ethernet, switched
Op/System Linux 2.4.18 Linux 2.4.7-10smp
JVvM Sun JVM 1.3.1 (b24) Sun JVM 1.3.1 (b24)
heap settings -Xms256Mb ~Xmx640Mb -Xms256Mb —Xmx640Mb

5.2 Remote Method Invocation Overheads

The cost of remote method invocation is crucial to any distributed object system.
This is closely related to the minimum computational granularity that can amortise
the overhead of network communication. Therefore, our first interest is to obtain
the roundtrip latency for a SODA method call. We are only interested in the
overheads of Future creation, data marshalling and demarshalling, queuing at the
server, method dispatch, synchronisation and network latency for sending request
and reply. Therefore the target method does not perform any work and has an
empty parameter list (see Code 5-1).

124

5.2 Remote Method Invocation Overheads

Code 5-1 The empty active object method used for call latency measurements

/** an empty active object method.
*
* @return a null-valued Future without any processing.
*./
public Future testCall() {
Future f = new Future();
f.putResult (null) ;
return f;

}

We measure the time from Proxy method invocation until the blocking get ()
operation on the corresponding Future returns. For this we obtain a value of ~800
us on the Mill cluster and ~350 us on Mega. On both systems, this corresponds to
approximately twice the network roundtrip latency (see Figure 5-1). This overhead
is relatively small compared to other Java-based distributed object systems. For
example, the same call using RMI takes ~1.3 ms on the Mega cluster. This
improvement is due to the more efficient serialization technique used in SODA
compared to standard Java object serialization.

When several messages are sent between a pair of hosts, SODA’s default TCP/IP
transport service will attempt to collate several messages into every exchanged
network packet. This is done through a buffering scheme. A buffer of accumulated
messages is written asynchronously over the wire. To measure the benefits of this
buffering mechanism in terms of network efficiency, we modified the above
experiment to perform a batch of calls (see Code 5-2). As expected the average per-
call latency decreases as the batch size increases. At a batch size of four, the average
per-call latency already drops below network latency. For very large batches we
asymptotically reach a latency of 110 us for the Mega cluster and 120 us for the Mill
cluster (see Figure 5-1). Of course, the wire cost can’t decrease; instead, the cost for
sending and receiving network packets is shared between several messages.

Code 5-2 Call batching and blocking get.

Future calls[] = new Future[nrBatches];

for (int i = 0; i < nrBatches; i++) {
calls[i] = remoteObject.testCall();
}
for (int i = 0; i < nrBatches; i++) ({
calls[i].get();
}

We repeated these experiments with a combination of different settings on the
TCP/IP transport: the buffering (asynchronous writing) as well as Nagle’s
algorithm [127] can be controlled independently. Disabled buffering significantly
decreases batch performance on the Mill (asymptotically 360 us for batched calls).
Surprisingly, the effect is negligible on Mega. This could be explained with a

125

Chapter 5 — Performance Results

multithreaded TCP/IP stack that makes efficient use of the nodes’ second
processor. On neither system could we detect a noticeable performance impact
when disabling Nagle’s algorithm. One exception is the Mega cluster, for a batch
size of 32-256 calls. Here the combined use of Nagle’s algorithm and unbuffered
writing yields the best results.

In general, however, latency is smallest with Nagle’s algorithm and buffered writing
both switched on. This is therefore the default setting for the TCP/IP transport
service.

Figure 5-1 Remote method invocation latency

latency [ms]

Remote Invocation Latency Remote Invocation Latency
(TCP-Sockets, Mill) (TCP-Sockets, Mega)

0.9+ 0.4-}

0.8+
—— Nagle/unbuffered —— Nagle/buffered

0.74 - TCP_NO_DELAY/unbuff —+—TCP_NO_DELAY/buffer
—=— Nagle/buffered 8 ——TCP_NO_DELAY/unbuff

0.6 ——TCP_NO_DELAY/buffer ,_2, -~ Nagle/unbuffered

= Ping Latency E =

aft \M 3

0.3 ' : ping latency

A Tty

0.2

0.1+

0.0 44—+ r . . 0.0 — T T ,

1.6%10°® 1 64 4096 262144 1.6%10® 1 64 4096 262144

batches batches

126

5.3 Collocated Method Invocation

Figure 5-2 Effect of Nagle’s algorithm and buffered sending on remote invocation latency

Method invocation latency Method invocation latency
[unbuffered vs. buffered] [unbuffered vs. buffered]
(Mill) (Mill)
1.00 : . : 1.00 ; e
) s ,;hg‘dunbuﬁe,ed | ——TCP_NO_DELAY/unbuff
7 geraln el . ~eu Hinciofbttatedt -~ | Fo7er -y —=—TCP_NO_DELAY/huffer
E‘ 0.501 - - - - LAY Bl M L E 0501 - - - - Lhg——d-- - s
E : “Wl"k‘w S E :
0284~ =51 L P U TS S 0.254 =~ - = & - ==
) MRS A SRS ¢ 0.00+— : - !
1.6x10® 1 84 4096 262144 1.6x10 1 64 4006 262144
batches batches
Method invocation latency Method invocation latency
[unbuffered vs. buffered] [unbuffered vs. buffered]
(Mega) (Mega)
0.4 t } t 0.4 : L |
—— Nagle/buffered !
| ; ELAY/unbuff
-g 0.3\ o= Nagle/unbuffered . | .E 0.3 _BELAY/b .
‘ ,
e ‘ — .
gOZ— srTe g 0.2
i | i
0.1+ et 0.14- s e
\ | ! ~
0.0 1 R S 0.0 ! I |
1.6x10® 1 64 4096 262144 1.6%10"@ 1 64 4096 262144
batches batches

5.3 Collocated Method Invocation

Whereas the latency for remote invocation is in the order of 100 us at best, calls on
a collocated active object yield much better values. When the client and server are
collocated in the same JVM, SODA has two invocation techniques at its disposal,
each optimised for a different runtime situation. In decreasing order of overhead,
these are local and inlined method invocation (see section 4.3).

Local Method Invocation

In the local invocation technique, request and reply messages are created and
exchanged between client and server object. Both messages are queued in the
request and delay queue respectively and the client and server active object run in
separate threads. In order to enforce a local method invocation we manually
modified the object’s proxy.

As shown in Figure 5-3, the results are similar on both systems. The latency initially
drops from about 30(Mega)/50(Mill) us to 15 ws, then increases again. The
statement block in Code 5-2 is executed within a detached method (this is the
primordial method of the test active object). Therefore, the initial latency drop can

127

Chapter 5 — Performance Results

be explained by a reduced amount of context switches. A set of calls can be
generated before delegating work to the active object worker thread. Starting from
a batch size of about 2000 the call latency increases again. This increase is due to
the cost of managing the data structure for mapping a large number of pending
Futures onto client active objects. '

Local method invocation is also used for guarded calls. e.g., when the guard of a
method does not cutrently evaluate to true, this will always result in a local method
invocation as the fallback mechanism. It is difficult to obtain direct measurements
for the cost of a guarded call, since it depends on the target object’s message
acceptance policy. However, in section 5.6 we experiment with a bounded buffer
object that uses guarded methods.

Inlined Method Invocation

Inlined invocation is the most efficient call technique in the SODA runtime system.

We petformed our previous experiment on two collocated objects and ensured that
the server could accept inlined calls at any time. As the graphs in Figure 5-3 show,
the cost of an inlined invocation is only about an order of magnitude larger than
the cost of a conventional Java call on the system. The other observation is that
with a growing batch size the latency per inlined call increases. This is due to the

management of Future objects, which becomes increasingly expensive, as more
calls are batched.

In the best case, inlined method invocation carries an overhead of only about 1.5
ps. This measure is useful for finding a lower efficiency bound for method call
granularity. If we assume that most calls in a program are inlined calls, and we
would be prepared to waste 5% on overheads of the SODA runtime system, the
minimum method granularity would then be in the region of 1.5 us / 5% = 30 ps.
Of course, the potential for performing inlined calls is influenced by active object
location at runtime. For example, if the object distribution creates much collocated
communication, then method call granularities of 30 ps could not be amortised.

At some stage during the development of the runtime system we experimented
with object pools for frequently created and then garbage-collected objects, such as
Futures and Funnels. However, this was abandoned since the overhead of
maintaining the object pool could not be amortised with the savings in garbage
collecion and object creation time. This is due to the aggressive runtime
optimisation of modern JVM implementations, which renders object pools
inefficient for everything but very heavy-weight objects, such as threads or database
connections.

128

5.4 Active Object Data Structures

Figure 5-3 Overheads for Different Invocation Techniques

Invocation Overheads (Mill)

Invocation Overheads (Mega)

4096 4 t ! 4096 } 4 }
! | | ! | I
I | | | |
5124 - - - - - 1-\ ------ m-=-=- === - - 5124 - - - -~ - - e = -
\ e~ Remote Call \ | |
! I o S P | \ —— Remote Call
1 T i ol g ; AP e i e s _
— I I [~ |] 1
| B' I
R el R R o et
5 | ——Inlifed Call 3 | ——Inlined Call_j~
14+-=-=-=- pm————— |= === : —————— - 1+ -=-=-- e ———— [= o : ------ +
| 1 I |] 1
| 1 | | 1 1
+— synchronized Java Call |~ synchronized Java Call
1.3%1094- - - - - - === == —==— === = = - - RO e e]
—E- unsyncleonized Jélva Call - unsynchronized Java Call
1.6x10® y — T 1.6x10® t —+ ~—t
1.6x10@ 1 64 4096 262144 1.6x10®@ 1 64 4096 262144
batches batches
Table 5-2 Minimum Execution Overheads
Mill Mega
absolute Relative to * absolute Relative to *
Remote Call 328 ps ~2000 115 ps ~920
Local Call 12.0 ps 75.5 14.3 ps 114
Inlined Call 1.50 ps 9.4 1.41 ps 11,3
Synchronized Java Call* 0.159 ps 1.0 0.125 ps 1.0
Unsynchronized Java Call 0.091 ps 0.57 0.069 ps 0.55

5.4 Active Object Data Structures

The previous experiments were based on a pair of active objects: a client (and
primordial) active object and a server active object. The subsequent experiments
focus on more complex data structures, comprising large sets of active objects.

Object Array

The first experiment involves an array of active objects. The objects in the array are
round-robin distributed across nodes in the cluster. A single client object then
invokes a method on each of the objects in the array. The granularity of this
method can be adjusted. We also vary the number of participating cluster nodes.
This experiment therefore gives an indication of potential speedup in relation to
the method call granularity. Most method invocations in this experiment are

129

Chapter 5 — Performance Results

remote. However, for a size » of the array, 7/n invocations will be inlined
invocations. As the basis for the speedup value we took a lower bound on the
execution time: This is the product of method call granularity and array size. The
chosen array size of 1000 elements guarantees a balanced distribution over the
available cluster nodes. Further increase in the array size does not significantly
influence the graphs shown in Figure 5-4.

As expected, good performance can be achieved if the granularity of active object
methods is moderately high. It must be noted that this experiment suffers from a
central bottleneck: All invocations are initiated by a single active object; therefore,
the location of this object becomes a communication hotspot. Further, there’s no
batching of calls; e.g., blocking get () is invoked after every cycle around the atray.

Figure 5-4 Round-robin distributed active object array

Speedup

Speedup vs. Call Granularity Efficiency vs. Call Granularity
(Mega, 1000-object array, (Mega, 1000-object array,
round robin) round robin)

10+ —— 2.95ms 1.0+

81 0.8
—o—1.47ms

6+ g 0.6+

iy —— 73708 b .

2 ——369us 0.2

—— 02U
0 3 : e 0.0
0 5 10 15 20 0

130

5.4 Active Object Data S'tructures

Speedup vs. Call Granularity Efficiency vs. Call Granularity
(Mill, 1000-object array, round (Mill, 1000-object array, round
robin) robin)
304
28+ —+86.7ms
26 / —»—43.3ms ——t —— 86.7ms
24 ' e Vi ——43.3ms
221 —o—21.7ms
oy 10.8ms
S 18 4 E —o—10.8ms

16-: S
1:". ‘ —o-5.42 ms &] b v
10 :

. i =

o g 5"?8 el ns

% B AT

2 -~ ——189ns Rg

0+ ns

0 10 20 30 40 0 10 20 30 40
nodes nodes
Object Tree

In the next experiment, we try to mitigate the effect of having a single bottleneck in
the program’s communication structure. For this purpose, we arranged a set of
active objects in a binary tree. The tree nodes were randomly distributed across the
available cluster nodes. This should more evenly balance the inter-host
communication actoss the cluster. Again, we modified the granularity of the test
method and we could also vary the depth of this tree. For the mega cluster, we only
allocated a single worker thread per node to all active object instances. This is
important to avoid parallelism on the dual-processor nodes.

The results show an improved speedup with growing tree size. Figure 5-5 shows
the results for tree depth of 10 and 14 levels respectively. With the array structure,
we only reached a maximum speedup of ~6 for a method call granularity of 1.47
ms. For the tree arrangement, a speedup of more than 13 could be obtained. Even
on the Mill cluster with its high communication latency, a speedup of more than 10
can be obtained for method call granularities of less than 1 .

The graphs in Figure 5-5 show some anomaly when almost all nodes in the cluster
are used. This sudden loss in performance for large system configurations was
examined through profiling tools; however, it was not clear why it occurred. Before
the anomaly occurs, the speedup curves are behaving extremely well. They show
almost linear speedup for growing cluster size.

These values are surprisingly good, considering the non-optimal distribution of
active objects over the cluster nodes: Much communication between nodes takes
place at every level of the tree due to the random allocation of active objects onto
cluster nodes. Ideally, no remote calls should take place below a certain tree depth,
but only local or inlined ones. This could be achieved by distributing the tree-nodes
breadth-first until saturation of all machines, and then do a local depth-first
expansion for each node. This should further improve the speedup values
obtained.

131

Chapter 5 — Performance Results

Figure 5-5 Tree recursion for random-distributed nodes.

Binary Tree Binary Tree
(Mega, 1 worker thread, (Mega, 1 worker thread,
depth 10 = 2047 objects) depth 14 = 32676 objects)
14 14
—o—5.90ms
124 124 ——1.47ms
——737us
104 —o— 5.90ms 10-
- ——1.47ms a ——369us
i A —— 737us g 8-
@ @ ———
6 —— 3698 A 184us
4- 4+
2 2
G T T T 1 o T T T 1
0 5 10 15 20 0 5 10 15 20
nodes nodes
Binary Tree Binary Tree

(Mill, depth 10 = 2047 objects)

(Mill, depth 14 = 32676 objects)

20
184
y —o—7.80ms
—o—7.80ms
~+ 1.95ms
fy ——1.95ms
1 ——Q76ps
—— 976ps
—— 488us

Pipeline

50

The advantage of the Futures and Funnels mechanism in SODA is that atomic
active objects that perform subcalls are not blocked during the time of the subcall.

132

5.5 Serialisation Performance

The active object method will proceed past any subcalls immediately and returns a
Future to the original client. The value of this Future depends on the subcall
results, which are asynchronously collected by a Funnel. To measure the benefits of
this approach compared to blocking Futures we set up an experiment based on a
pipeline of active objects. An invocation on the leader object is propagated along
all follower elements of the pipeline as a subcall after the local processing is
finished. The result of this call becomes available when the invocation on the tail
element terminates. Several such invocations to the leader can be staged
concurrently, leading to parallel processing across the pipeline’s active objects (see
Figure 3-11).

We used a chain of 4000 active objects that were distributed in equal-sized chunks
over the cluster nodes. Then we executed a variable number of batched invocations
on the leader object. The results for the Mega system are shown in Figure 5-6.
Even for a small method granularity of 92ps, the speedup is significant as long as a
sufficient number of batched calls are executed. Speedup gains are insignificant
when the granularity is increased to 370us. The reason is that most invocations are
local and therefore the remote invocation overheads are amortised.

Figure 5-6 Pipeline Performance

Speedup

Pipeline (Mega, size 4000, Pipeline (Mega, size 4000,
granularity 92us) granularity 370us)
10.0+ 10.0+
- 256 batches —— 256 batches
7.5 7.5
- 64 batches —— 64 batches

5.0

o
2
Speedup

—— 16 batches

—=— 16 batches
2.5 2.5 —— 4 batches

—— 4 batches

P —«— 1 batch
0.0 . y 2] batch 0.0
0 5 10 15 20 0 5 10 15 20
nodes nodes

5.5 Serialisation Performance

In this section we compare the serialization performance of SODA Serialisation
with the overheads of the standard Java object serialization mechanism. For this
purpose, we used a locally connected loopback stream provided by the Java APL
Any data sent in through this stream is buffered and can be read out by another
thread. We measured the passage time for various object types through this
construct. This time includes object serialization and deserialization. We compared
the performance of standard Java object serialization with SODA serialization. We
experimented with various classes. These were an object containing 32 integer
values and object with 4 integers and two 10-character Strings. Finally, we also

133

Chapter 5 — Performance Results

tested a data structure that consisted of 15 objects arranged in a binary tree. Each
of these objects had a private integer value. The results are shown in Table 5-3.

The last column of this table shows the start-up overhead for SODA fast
serialization. This overhead is due to the cost of establishing the cache at the
receiver side of the data transfer. For example, class names are cached and indexed
the first time they are encountered. Objects that are marked as immutable can be
cached by the stateful SODA serialization streams. This means, that after an initial
deep-copy transfer of the object, every Future transfer is only an index value into
the receiver-side cache.

The performance of SODA serialization is not as good as Ninja [181] Manta [172],
or UK A-serialization [128;139]. The advantage of our approach, however is, that it
does not require any modifications to the JVM or class libraries.

As Table 5-3 shows, the efficiency gain compared to standard Java serialization is
still significant. Columns (a) and (b) show the values for sending a single instance
using standard Java serialization and SODA serialization, respectively. The
performance gains are a direct result of using explicit serialization/deserialization
routines. For the complex 15-node tree object, SODA serialization time is actually
slower than default Java serialization. However, further improvements can be
achieved when several instances of the same class are sent repeatedly. In this case,
the SODA Object streams can cache repeatedly sent information (such as class
names). This leads to a further reduction in the average transfer time per instance
as shown in column (c).

Table 5-3 Serialisation Overheads (Mega)

Java Serialisation SODA Serialisation
Single Instances (a) Single Instances (b) Several Instances (c)
32 int 269 ps 152 ps 89.8 ps
4 int, 2 String 250 ps 98.2 us 374 ps
15-node tree 629 ps 1020 ps 127 ps
Immutable n/a n/a 7.6 ps
Object (dep. on object size) (dep. on object size)

5.6 Guarded Method Invocation

In order to assess the runtime cost of invoking guarded methods, we use a
bounded buffer active object. The buffer has a capacity of 10 cells and supports the
guarded methods put and get as shown in Code 3-8. We instantiate one such
buffer object and perform # put invocations, followed by # get invocations. The
buffer accepts the first 10 put invocations, but then runs out of capacity and must
delay the following #-10 invocations. Afterwards, » get requests arrive at the
buffer. After each get request, buffer capacity becomes available and one of the
pending put requests in the delay queue can be scheduled.

134

5.7 Conclusion

Table 5-4 shows the performance of the guard implementation in the SODA RTS.
The measurements are based on a varying number » of put/get requests. As long
as a guard expression evaluates to true, the extra overhead for guarded methods is
limited to guard evaluation. This is the case for »=10; since the buffer capacity is
never exhausted, all guards evaluate to true. The call overhead is therefore
negligible compared to inlined calls.

For n > 10, #-10 put requests will be accumulated in the delay queue before they
can be removed by corresponding gets. The current implementation is clearly not
optimised for larger values of # as Table 5-4 shows. The reason is that a// messages
in the delay queue are re-evaluated, after a state change occurred to the active
object. This is the case each time after a request, delayed request or reply is
processed by the active object. A more optimised scheme would group together
requests with identical guard conditions and only re-evaluate guards once per

group.

In the current RTS, exceptions are used internally to signal invalid guards. When
such an exception is caught, an attempted inlined call reverts to a local invocation: a
request object with the call’s parameters is created and queued in the object’s delay
queue. This involves extra synchronisation and thread context switching overhead
as well as the creation of additional objects. These circumstances, together with the
repeated re-evaluation of delayed method guards explain the overheads of methods
that have invalid guards.

Table 5-4 Cost for Guarded Method Invocations.

put/get Max Delay Queue Avg Guard Evals Total Time Time/Call
() (n-10) /call ® (t/ 21)
1000 990 233 499 ms 249 ps
500 490 121 130 ms 130 ps
250 240 56.0 339 ms 67.8 s
125 115 22.0 9.54 ms 38.2 ps
60 50 11.2 2.79 ms 23.2 us
20 10 3.55 571 ps 14.3 ps
15 5 3.00 359 ps 12.0 ps
1 1 1.05 151 ps 6.87 ps
10 0 1.00 28.3 us 1.42 ps

5.7 Conclusion

We presented a performance analysis for a set of benchmark programs designed to
measure various basic operations of our prototype runtime system. The example
programs yield real speed-ups over the best sequential algorithm even for method
call granularities below the network latency. This is due to SODA’s efficient
transport service that bundles several requests and replies into network packages.

135

Chapter 5 — Performance Results

Due to the limits of the available platforms, scalability has only been examined up
to a maximum of 40 hosts. However, there is no indication in the empirical results
obtained or in the theoretical foundation, why appropriate SODA programs could
not scale to much larger systems. One precondition for such scalability is the
absence of program designs that require global lockstep processing, for example a
central controller object. In this situation, communication with the controller will
eventually become a bottleneck and outweigh the benefit of higher processing
power. Therefore, high scalability can only be expected for loosely coupled
programs which form “clusters” of active objects and only rarely engage in global
communication.

Altogether, we conclude that the SODA programming model and implementation
is a valid tool for parallel programming in a distributed memory, off-the-shelf
environment. In particular, SODA’s advantages become obvious for large-scale,
object-oriented programs with complex patterns of interaction. Traditional
approaches would make the management of parallelism increasingly complex,
errot-prone and ultimately inefficient. Performance trade-offs compared to more
traditional parallel programming techniques become more and more negligible as
the complexity of a program increases. Further evidence for this argument is given
in Chapter 6 (VRML server). In order to gain more confidence in our findings and
their relevance for real-world applications, we implement a large-scale application
on top of SODA in this chapter. The communication structure and computational
requirements of this application are unprcdictable at compile-time. It will therefore
demonstrate the scalability of the programming model as well as scalability of the
prototype unplcmentauon for a real-world application.

136

6.1

Chapter 6

Scalable VRML
Execution in SODA

The primary goal of this chapter is to evaluate SODA’s usability in the light of a
real-world application. To amortise SODA’s overhead, an appropriate target
application must be sufficiently complex in terms of communication and module
structure. In this chapter we present the design and implementation of a scalable,
parallel VRML server that has been built on top of SODA. This server can support
large-scale VRML worlds and through efficient information filtering techniques
make these accessible to low-powered clients. Parallelism is exploited in the VRML
execution model as well as in the client-server communication.

Overview

SODA is geared towards the support of object-oriented applications with irregular
communication structure and modular architecture. Traditional test suites for
parallel programming prototypes would not capture SODA’s benefits, since they
are commonly based on regular, numerical transformations with a rather simple
program structure. Low-level tools, such as PVM or MPI are more appropriate for
this domain, since they allow an extremely efficient mapping onto the physical
hardware.

In comparison, SODA induces extra performance overheads due to its high degree
of abstraction over the hardware. These overheads can only be justified in the
context of a large-scale application with complex communication patterns between
its constituent modules. SODA’s ease-of-use advantages then outweigh the loss in
runtime performance. An appropriate choice of example application is therefore
vital for a successful demonstration of SODA’s benefits. For this purpose we have
chosen to implement a parallel execution engine for VRML97 on top of SODA.

In this chapter we give some background information on VRML97; opportunities
to exploit parallelism in the underlying execution model are identified. Finally, we
describe a mapping of the parallel VRML execution model onto SODA. The
VRML-related findings presented in this chapter are relevant in their own right.
The examination of parallelism in VRML is novel and enables the scalability of
VRML to larger and more dynamic worlds. This overcomes a set of limitations
currently hindering VRML. Appendix A gives further background information on
related work.

137

Chapter 6 — Scalable VRML Execution in SODA

6.1.1 Problem Statement

The Virtual Reality Modelling Language (VRML) [35;36] is a platform-independent
and standards-based scene description language. It was designed to allow “3D wor/ds” to

- be delivered over the Internet. VRML files are analogous to HTML in the sense
that they are simple ASCII text files, which are interpreted by browsers. A VRML
browser parses the VRML file and delivers an audio-visual rendering of the world.
Typically, VRML browsers make a set of navigation paradigms available, which
describe physical constraints, such as degrees of freedom, on the uset’s movement.
For example, a “walk” paradigm would allow two-dimensional world exploration,
binding a user to the ground with simulated gravity. Within the limitations of the
active navigation paradigm, users can freely explore 2 world, zoom in and out,
move around and interact with the virtual environment. Rendering of VRML
content occurs in real-time according to the user’s point of view. Graphical quality
is therefore lower than what can be achieved with pre-processing techniques, such
as ray-tracing or radiosity solutions. For example, shading is typically based on flat-
-or Gouraud-shading.

The first version of VRML provided only static and non-interactive worlds, but the

later VRML97 ISO standard supports “moving worlds™ that ate responsive to both

user interaction and the passage of time. It is thetefore possible to envisage the

creation of huge, complex worlds with thousands of interacting users. For example,

models of cities could be built to include moving vehicles as well as static buildings.

In the future, with advances in traffic sensing technology, it may even be possible
* to build models of real cities that show accurate traffic flows in real-time.

A primary design aim for VRML was the delivery of worlds over the Internet.
Conventional web setvers can be used to host a world description, which is then
downloaded into the VRML browser. Despite the obvious potential, however,
VRML wotlds available on the Internet have so far been relatively limited in their
behavioural and geometrical complexity (dynamic and static complexity). The
teason can be attributed to the monolithic nature of the VRML usage model. All
VRML content is downloaded to the browser and the browser carries the sole
responsibility for audio-visual rendering. In addition, the browser must also
_ petform behavionr evaluation necessary to drive the dynamics of a world, for example
‘a physics-based simulation. A set of scalability limitations arises from this
* conventional usage model: S ‘ : :

Bandwidth Requitements. Downloading the world description into the VRML
browser takes a long time for large worlds. Even if the user evet only sees 2
~small fraction of the world, the complete world description must be
downloaded to the client. Available network bandwidth therefore limits
wotld size; this is of particular significance for mobile devices, such as
wirelessly connected PDAs. VRML addresses download time through the
partiion of a world over separate files, which can be downloaded

138

6.1 Overview

inc.ﬁvidua.lly.29 However, this is insufficient, since behaviours cannot span
multiple files.

Memory demands. Once downloaded, the client must store the world’s
geometrical state locally. The possible extent of a world is therefore limited
by the client-side available memory size.

Parsing and Rendeting time. Once downloaded, the VRML browser is
responsible for parsing the VRML file and performing the audio-visual
presentation of the wotld. Rendeting can be prohibitively expensive for
large scenes, despite the culling optimizations performed by most VRML
browsers.

Behaviour execution costs. The browser must continually update the state of the
wotld-as objects move and the user interacts—and also render a view of the
world in the browser window. If processing power is insufficient for
behaviour evaluation, this will slow down the client frame rate, resulting in
a low-fidelity presentation.

Multi-user interaction and persistence of changes. Because the world runs
locally—in the user’s browser—there is no possibility of interaction between
different users in the same world. This precludes both, direct interaction
between users who have visible contact, but also indirect interaction. For
instance, one user cannot permanently introduce a new object in the world
to be seen by a later passer-by. The VRML usage model does not allow
persistence of state: 2 world reverts to its initial state every time it is

downloaded.

External updates. It is difficult to arrange for the world to change in response to
external events. For example, if a virtual world models the current state of
part of the real world (e.g., traffic flow in a city, footballers on a pitch) then
we would wish to move objects in the virtual world to reflect real-time
changes in the real world.*

2 As controlled by Anchor, Inline and LOD nodes.

3 [20] points out another limitation in VRML, which is the limited precision of 32-bit coordinate
values. However, this does not influence the generality of the approach presented here, since it
would be easy to support 64-bit values instead.

139

Chapter 6 — Scalable VRMIL. Execution in SOD.A

Figure 6-1 Conventional usage model.

Single user

No persistence

Download time

Execution
costs

Rendering cost

Memory

usage

6.1.2 A Client-Server based Usage Model for VRML

This chapter presents the design of a system that has been built with the aim of
directly addressing the above problems, and so supporting huge, active worlds filled
with large numbers of interacting users. Our design provides a novel usage model
for VRML that is based on a client-server paradigm. In this usage model, the server
assumes a2 much more active role, maintaining the evolving state of the world and
communicating bi-directionally with the client. This is a major deviation from the
conventional usage model, where the web server remains essentially passive, once a

VRML. file has been downloaded to the VRML browset.

In the new usage model, all world state is held at the server, encapsulated as values
of VRML object attributes. Behaviour evaluation on the server-side affects the state
of these attributes. The server expends the computational effort required for the
evaluation of behaviours. Clients, relieved from the task of computing the world
dynamics, can therefore expend more resources towards the rendering of a view

onto the world.

The design decision to leave rendering on the client side is motivated by two
factors. Firstly, it makes sense to perform rendering in hardware. In recent years,
high-performance graphics cards have become commonplace in desktop PCs. We
therefore reduce server load. Secondly, we assume that the geometrical description
of a client’s area-of-interest (see the following paragraph) is more compact than
equivalent bitmapped frames. This is a measure to conserve bandwidth
consumption compared to rendering frames on the server and sending these to the

client.

It would be inefficient to dispense exhaustive information on all world objects to
the client. In the real world, perceptual limitations reduce our visual awareness to

140

6.1 Overview

the near-by spatial area. This concept of limited spatial awareness can be exploited in
computer-generated worlds and is a fundamental component of most networked
~ virtual environment systems. In a sufficiently large virtual world, most objects are
beyond the client’s visibility or interest range. Therefore, a client can cull objects
beyond its area-of-interest (AOI)*, without significantly impeding visual perception.

Our client-server protocol allows an incremental download of objects. This is
useful so as to dynamically manage a client’s area-of-interest and to add and
subtract objects from it as required. Download occurs only for objects that
intersect with the client’s area-of-interest. This can be triggered by two conditions:
either a client moves about and new, stationary objects become visible; or an object
autonomously changes its position and therefore moves into the client’s visibility
range. When objects leave the client’s AOI they are removed from the client-side
partial world replica. ' :

Beyond client AOI management, further exchange of information between client
and server is required. This is necessary for the following (see also Figure 6-16):

AOI Replication is required to update the client-specific AOI fraction of the
server-side world state. This allows a client to participate in the dynamic
state of a large world without being aware of the world’s overall extent.

Notification Messages enable the propagation of client interaction to the server.
For example, a notification message would be sent when the client presses a
button in the client-view of the world. This event can then be fed into the
server-side behaviour evaluation and it can also be made available to other
clients.

Frustum Updates are sent from client to server when the client’s area-of-interest
changes. Typically, this would occur as a result of the client moving or
rotating.

3t According to the aura/nimbus model [21;73] the area-of-interest is dependent on the medium
type. For example, while objects behind a viewer are not visible, audio sources can be perceived. In
this case study we are only interested in the visual medium. Therefore, we define the AOI as the
client’s view frustum onto the geometric content in the world.

141

Chapter 6 — Scalable VRMIL. Execution in SOD.A

Figure 6-2 Client-server based usage model.

6.1.3

Behaviour
evaluation

World Incremental

state download

Multiple
users
Rendering of
a view frustum

Summary

In summary, the proposed usage model with its decoupling of rendering and
behaviour execution can overcome the limitations inherent to the conventional,
monolithic VRML usage model:

Bandwidth Requirements. Download time is reduced to the fraction of the

world that lies within the client’s area-of-interest (AOI). Relevant
geometry is downloaded to the client on a fine-grained per-object basis.
Further improvements are possible by making an object available at
multiple levels-of-detail (LOD)™.

Our design requires replication of the area-of-interest state from the client
to the server. The frequency with which AOI replication occurs is affected
by the available network bandwidth and latency between client and server.
If network quality is insufficient, the AOI replication rate will be reduced.
This will be lead to noticeable visual artefacts, in particular for objects that
undergo continuous changes, such as a car travelling along a road. This
problem is well-known and can successfully be addressed by dead reckoning
techniques. However, for simplicity, dead reckoning is not implemented in
our system.

Memory demands and Parsing and Rendering time. The client’s knowledge of

a world is restricted to objects within its area-of-interest at any given time.
Moreover, few of these objects will be available at the highest level of

32 The level-of-detail technique [145] is based on the observation, that in the real physical world,
objects far away from a viewer are perceivable in less geometric detail than objects close by. This
circumstance is exploited in virtual environments by providing low-detail versions of distant objects
without significantly compromising their visual appearance.

142

6.1 Overview

“detail. This greatly reduces the amount of geometrical information known

to the client. The benefits are threefold: Reduction of parsing time for
VRML objects, reduction of information that is sent down the rendering
pipeline and reduction of memory consumption on the client. By
modulating their area-of-interest, low-powered clients can participate in
complex worlds; the server is responsible for tailoring a view adapted to
their capabilities (see next section).

Behaviour execution costs. The setver carries the bulk of behaviour execution
costs. If resultant changes affect a given client’s area-of-interest they are
propagated to this client’s AOI. The replication frequency adapts to
available network latency and bandwidth. '

Multi-user interaction and persistence of changes. The setver maintains all
world state. Driven by user interaction and behaviour execution this state
evolves over time. Multiple clients can connect concurrently and interact in
a world; the presence of other clients is conveyed through avatars.

External updates. The server-side behaviour evaluation may sample the readings
of real-world sensors in order to reflect part of the state of the real world
within the virtual world

6.1.4 System Scalability

Out system leads to a concentration of activities at the server. This includes world
behaviour execution, maintenance of world state and area-of-interest filtering and
replication for connected clients. As a result of this architecture, the server can
easily become overloaded when supporting large worlds with many users and
complex behaviours. We do not want to just move the bottleneck from the client
to the server. In order to achieve system scalability, our server is implemented as a
SODA parallel program

This consideration is the justification for implementing our server as a parallel
program, based on the SODA programming system. Parallelism is exploited in the
following areas:

Behaviour computation according to the VRMIL97 execution model is performed
in parallel. We examine in §6.2.2 how parallelism can be exploited while
remaining compliant with the VRML97 specification.

Area-of-interest management amongst multiple clients is performed in parallel.
For every client a dedicated chent-proxy object performs the task of
maintaining a view on the world, tailored to the client’s performance
characteristics and fidelity requirements.

Due to the abstraction layer provided by SODA, the VRML server can run across a

workstation cluster or other distributed memory architecture. The benefit of this
centralised, scalable VRML execution is that much larger and more dynamic worlds

143

Chapter 6 — Scalable VRML. Execution in SODA

can be generated. The cluster’s overall memory and computational performance is
available for maintaining and updating the evolving wotld state.

The VRML specification does not encompass low-powered clients. VRML does
not scale to the combined requirements of small screen size and limited processot,
graphics and network performance. The limitations of the VRML usage model
become exacerbated. By contrast, the scalability of our usage model extends to
devices, such as wirelessly connected PDAs. In our usage model the following
measures are available to compensate for limited client-side resources:

Area-of-interest Modulation. An effective means to shrink the number of objects
known to a given client lies in the contraction of this client’s area-of-
interest. This reduces client load and bandwidth consumption at the
expense of a reduced number of visible objects.

Level-of-detail degradation. To further conserve bandwidth, the client can
request sub-optimal levels of detail. The trade-off here is a less-detailed

object presentation.

Replication frequency adaptation. As noted in §6.1.3 (1), AOI changes are
propagated from server to client at a variable replication frequency. This
allows adaptation to client power and networking quality as a fidelity trade-
off.

6.2 Parallel VRML Execution

This section describes potential parallelism in the VRML execution model, which
can be extracted in full compliance with the VRML97 specification [124;147;148].
A mapping of this new, parallelised execution model onto SODA active objects is
described. Additional parallelism can be obtained between multiple client-proxies
(see §6.3).

6.2.1 Fundamental VRML97 Concepts

We begin with a brief overview of the VRML97 specification, pertaining to static
and dynamic world description. This includes a discussion of VRML’s scene graph
“structure and its event execution model.

Scene Graph Structure

VRML comes with a pre-defined set of building blocks that are fundamental to all
worlds. These building blocks, or nodes, serve as abstractions for a variety of real-
world objects and concepts. For example, node types exist that describe simple 3D
geometry, sound data, a light source description, a JPEG image, and so on. Nodes
are defined by their type and their fie/d values. The type is a name, such as Box,
Color, Group, Sphere, Sound, SpotLight and so on. Field values define a node’s
state and they distinguish node instances of the same type. For example, each

144

6.2 Parallel VRML. Execution

Sphere node might have a different radius, and different spotlights may have
different intensities, colours and locations.

The acceptable fields for a node are defined in a node specification. For each field, a
name, type and default value are supplied. The default value is used if a value for
the field is not specified in the VRML file instantiating the node. Figure 6-3 to
Figure 6-5 show some examples of node specifications and their instantiation. An
analogy can be drawn between VRML nodes and object-orientation concepts.
Node specifications and their instances are analogous to classes and objects. Fields
in a node specification correspond to member variables in a class declaration.

These examples reveal a variety of field types, such as 3D float vectors, Boolean
values, float scalars, and quaternion rotations. The SF and MF prefixes distinguish
between fields that contain single-field and multi-field types”. The SFNode/MFNode
type can reference other nodes in the scene. This self-reference type is fundamental
to the structural description of the scene graph. This is a directed, acyclic graph which
binds all nodes in a world into a hierarchy. A node’s position in the scene graph
defines its scope and describes which child nodes are influenced by any of its
transformations.

Figure 6-3 Specification and Example Instantiation of the Box node

Box { Box {
field SFVec3f size 2 2 2 giza-lvqee
} }

The Box node specifies a rectangular parallelepiped box in the local coordinate system centered at (0,0,0)
in the local coordinate system and aligned with the coordinate axes. By default, the box measures 2 units
in each dimension, from -1 to +1. The Box's size field specifies the extents of the box along the X, Y, and
Z axes respectively and must be greater than 0.0.

» Single-field types contain scalar values, multi-field types are arrays.

145

Chapter 6 — Scalable VVRMIL Execution in SOD.A

Figure 6-4 Specification and Example Instantiation of the Cylinder node

Cylinder { Cylinder {

field SFBool bottom TRUE height 2.0

field SFFloat height 2 radius 1.5

field SFFloat radius 1 }

field SFBool side TRUE

field SFBool top TRUE # default values are used for
} # the omitted fields.

The Cylinder node specifies a capped cylinder centred at (0,0,0) in the local coordinate system and with a
central axis oriented along the local Y-axis. By default, the cylinder is sized at -1 to +1 in all three
dimensions. The radius field specifies the cylinder's radius and the height field specifies the cylinder's
height along the central axis. Both radius and height must be greater than 0.0.

The cylinder has three parts: the side, the top (Y = +height) and the bottom (Y = -height).
Each part has an associated SFBool field that indicates whether the part exists (TRUE) or does not exist
(FALSE). If the parts do not exist, they are not considered during collision detection.

Figure 6-5 Specification of the Transform node

Transform (

eventIn MFNode addChildren

eventIn MFNode removeChildren
exposedField SFVec3f center 000
exposedField MFNode children k]
exposedField SFRotation rotation 0031 0
exposedField SFVec3f scale 1 T
exposedField SFRotation scaleOrientation 0 0 1 O
exposedField SFVec3f translation 000
field SFVec3f bboxCenter 000
field SFVec3f bbox8ize -1 -1 -1

A Transform is a grouping node that defines a coordinate system for its children that is relative to the
coordinate systems of its parents. The bboxCenter and bboxSize fields specify a bounding box that encloses
the Transform's children. The transiation, rotation, scale, scaleOrientation and center fields define a geometric 3D
transformation consisting of (in order) a (possibly) non-uniform scale about an arbitrary point, a rotation
about an arbitrary point and axis, and a translation. The center field specifies a translation offset from the
local coordinate system's origin, (0,0,0). The rotation field specifies a rotation of the coordinate system. The
scale field specifies a non-uniform scale of the coordinate system - scale values must be >= 0.0. The
sealeOrientation specifies a rotation of the coordinate system before the scale (to specify scales in arbitrary
orientations). The scaleOrientation applies only to the scale operation. The translation field specifies a
translation to the coordinate system.

VRMILI97 defines more than 50 built-in node types; further types can be defined
through the PROTO extension mechanism (see section 6.3.3). Important for the
static description of a world are geometry nodes and grouping nodes:

Geometry nodes define visible artefacts in a scene. Examples are the Box, Cone,
Cylinder, Sphere, ElevationGrid, IndexedFaceSet, Extrusion and

146

6.2 Parallel VVRML Execution

Text nodes. In order to become visible, geometry nodes must be
embedded in a Shape node that describes the geometry’s visual appearance,
such as texture, material or reflectivity. Figure 6-6 shows a simple VRML
file and the visual result when viewed with a VRML browser. A material
with default field values is applied to the surface, which renders as uniform
matt grey colour. '

Grouping nodes do not render visible results; however, they describe
transformations for a set of nested children nodes within their scope. Every
grouping node has a MFNode children field that contains all associated
children nodes. For example, the Transform node defines a coordinate
system for its children nodes while the Anchor node attaches a hypetlink to
its children. Figure 6-7 shows a more complex VRML scene graph. Various
Transform nodes are used to position and scope nested geometry nodes.

Figure 6-6 A simple VRML file.

#VRML V2.0 utfs8
Shape {
appearance Appearance {
material Material { }
}
geometry Cylinder ({
height 2.0
radius 1.5
}
}

147

Chapter 6 — Scalable 1VRML. Execution in SODA

Figure 6-7 Several Shape nodes and Transform nodes.
The head consists of three spheres and one cone. Field names are not shown in the scene graph.

= B
= {) Shape Body
E 0 Appearance
& Material
{3 Cone
= & Transform Head
= <> shape Skul
+ @@ appearance
> Sphere
& Transform Nose
= <> Shape
+ @ Appearance
£y Cone
= ¢ Transform Right_Eve
=< Shape Eye
+ @ Appearance
& sphere
& Transform Left_Eye e . .
&> Shape Eve Mistwte . ! © intomet

2 HAWork\Chapters\vrmheylinder wrl - Microsoft Internet ... = |61 8K
Fle Edt View Favorkes Tooks Help ks B

Growp Borbwrmine

i

The VRML Execution Model

The first version of VRML was limited to purely static worlds. With VRML97 an
event model was designed, which allows VRML worlds to send and receive events
along given routes. Every field has an attribute that controls whether the node can
send or receive events. There are four types of attributes:

e eventIn: the field can receive events; event consumet.
eventout: the field can send events; event producer.
exposedField: the field can receive and send events; combines the
properties of an eventIn and eventout field.

e field: the field can neither receive nor send events. Its value is constant.

An eventout field of one node may be routed to an eventIn field of another node
with matching type. A route propagates any value-change of the eventout field in
the form of an event to the connected eventIn field. This affects the state of the
receiving node. In addition, event receptdon may trigger off some internal
processing at the receiver. The nature of such activity is dependent on the node’s
type. The total of all eventIn-eventOut routes in a world is called the rowting
graph.

The routing graph mediates one-way event notification between the nodes in a
scene, as governed by the VRML execution model. An event is produced whenever
an eventout field’s value changes. The event is a tuple, containing the eventoOut
field’s new value and a timestamp. The timestamp indicates the event’s generation
time (see event cascades below).

148

6.2 Parallel VRML. Execution

The following VRMLI7 node types act as controllers for the dynamics of a VRML
world:

Sensor nodes take a unique role in the VRML execution model as drivers of all
world dynamics. They have the ability to spontaneously generate events in
response to external stimuli. When ttiggered by user interaction or the
passage of time, Sensors act as initial event generators. Non-Sensor node
are limited to producing secondary events in response to incoming Sensor
events. When stimulated, a Sensor node dispatches an event on one or
more of its eventout fields. For example, the TouchSensor node
produces an event whenever it is “clicked” by a user. Other types of sensor
nodes are sensitive to mouse drag, user proximity, visibility, etc.
TimeSensor nodes are triggered according to the passage of simulated
world time. For example, a TimeSensor can be used to generate events in
regular time intervals or continuously, i.e. with every rendering frame.

Interpolator nodes provide linear interpolation of a scalar value in the interval
[0;1[onto a positional, rotational or other value. The result of such an
interpolation can then be passed on to another node. Interpolator nodes
are often coupled with TimeSensors to program key-framed animations.
For example, a PositionInterpolator could be programmed to map
scalar values produced by the TimeSensor onto a set of line segments and
therefore describe an object’s movement over time. Similarly, an
OrientationInterpolator can progressively rotate an object (see
complete example in Figure 6-8).

Script nodes. Interpolator nodes perform only fine-grained event processing, in
the form of linear interpolation. Script nodes are much more powerful,
since they allow atbitrary, programmatic event processing: A Java or
JavaScript method can be attached to each of its eventIn fields. This
method is executed whenever an event arrives and can be used to perform
complex world update logic. The results of such processing can be made
available on the Script node’s eventout fields. The potential use cases for
Script nodes are virtually unlimited. For example, a Script may drive a
physics-based simulation, contain some artificial intelligence algorithm,
sample external instruments, or perform database queries, e.g., to access
data for knowledge visualisation [114]. The disadvantage to the Script
nodes’ flexibility is that they can incur high processmg costs and therefore
slow down rendering frame rates.

149

Chapter 6 — Scalable 1VRMIL Execution in SOD.A

Figure 6-8 Simple key-framed animation in VRML.
This rotates the Transform node and all its children geometry every 20 seconds.

DEF Geometry Transform ({
rotatien 0l 0 "0

children [«....]
}
TimeSensor
DEF Sensor TimeSensor {
cycleInterval 20
}
U
DEF Interpolator OrientationInterpolator Orientation
(Interpolator
key [0S0]
keyValue [0 A al-= Sg)
010 3.14186,
} il Oiiab . 28321 O
Transform

ROUTE Sensor.fraction_changed
TO Interpolator.set_fraction
ROUTE Interpolator.value_changed
TO Geometry.rotation

Since the scene graph structure is described via MFNode or SFNode fields, a
dynamic modification of the scene graph is possible. For example, the set of
children nodes for a Transform node is exposed via the node’s children field
(see Figure 6-5). addCchildren and removeChildren are “convenience” eventIns
provided to successively add and remove children nodes.

Event Cascades

The routing graph provides the communications backbone for a VRML world.
Events flow along the edges of the routing graph, from eventout fields to
eventIn fields. If a single eventout is connected to multiple eventins, this is
called a fan-out. As a consequence, events produced by the eventout field are
replicated to all connected receivers: the receiving eventIns will take on identical
values when the eventout fires. Similarly, an eventIn may be the destination for
more than one incoming route. Such an eventIn is the destination of a fan-in (see
Figure 6-9).

150

6.2 Parallel VRML. Execution

Figure 6-9 Fan-out and fan-in routing configurations.

Sending
Node

Sending
Node

Sending
Node

Sending Node

A

Receiving
Node

Through fan-out a single initial Sensor event can update multiple connected
nodes. These nodes can iteratively spawn secondary events by changing the value
of their own eventouts in turn. The set of events which are fited as the result of a
given initial sensor event is referred to as an event cascade. An event cascade may
comprise a large number of events, if many fan-out routes are traversed. All events
in an event cascade are associated with the initial Sensor event.

Event cascades with many fan-outs and complex processing within nodes can
induce significant activity: a large subset of the routing graph’s edges may fire and
trigger event processing throughout the scene graph. The processing burden on the
VRML browser can be significant, especially if performance-intensive Script nodes
are involved. In the conventional execution model a world designer must
consequently take care to put a ceiling on the complexity and number of Script
nodes in a world in order not to overload the VRML browser.

151

Chapter 6 — Scalable VRML Execution in SOD.A

Figure 6-10 An example event cascade

Sensor Node

l Node Il Node I

In the VRML execution model all events in an event cascade are considered to
occur simultaneously. Therefore they carry the same timestamp as the initial Sensor
event that triggered the event cascade. This timestamp is used to prevent infinite
loops in the routing graph: a /logp-breaking rule prevents cycles by limiting each
eventout field to a single firing per timestamp. i.e., an event can fire at most once
per event cascade.

Discrete and Continuous Events

Most events produced during wotld execution are diserete: they happen at well-
defined world times, e.g. as determined by the time of user interaction. However,
TimeSensor nodes also have the capability to model continuous changes over
time: A browser generates sampling events on the fraction_changed and time
eventout fields of TimeSensors. The sampling frequency is implementation
dependent, but typically samples would be produced once per frame, e.g., once for
every rendering of the user's view on the world.

The VRML specification also requires that continuous changes be up-to-date
during the processing of discrete events. i.e., continuous changes that are occurring
at the discrete event's timestamp shall behave as if they generate events at that same

timestamp" ([36], §4.11.3.).

Example 1. Figure 6-11(a) depicts a simple event cascade. The TouchSensor's
isOver eventOut sends <true, touchTime> when the user moves the
pointing device over the associated geometry and <false, retractTime>
upon retraction. These events are routed to a Script node, which

152

6.2 Parallel VRML. Execution

performs author-defined event processing, in this example resulting in
colour value being sent to a Material node. A world author might employ
such a scenario to provide user feedback, e.g., a button could change its
colour when activated.

Figure 6-11 Simple Event Cascades for different Sensor Events

(circles depict field types: filled+eventOut, empty*eventln).

TouchSensor

isOver

| <8FBool, timestamp>

J Set colour to

TimeSensor

fraction_changed

?

I <SFFloat, timestamp>

L<arrlon:, timestamp>

O O

chanae blue when set_fraction set_fraction

Script change is Positioninterpolator Positioninterpolator
true tored

colour_changed

j

I <8FColor, timestamp>

otherwise,

N
set_diffuseColor

Script

value_changed

value_changed

2

?

I<Brvoc!£, timestamp>

| <8FVec3f, timestamp>

Fan-In

\J
set_translation
Transform

(a) Example 1: Discrete Initial Event

(b) Example 2: Continuous Initial Events driving an
Animation

Example 2. The TimeSensor in Figure 6-11(b) produces continuous events

containing a number in the range [0; 1[on its fraction_changed field
with the passage of time. These continuous events are passed to a
PositionInterpolator that animates the translation vector of a
Transform node. This is an example of a linear key-framed animation;
continuous events are typically sampled once per rendering timeframe. A
fan-in situation can arise in this example for the Transform node, if both
PositionInterpolators send events with identical timestamp.

Sequential Implementation

Code 6-1 shows the pseudo-code algorithm of a typical VRML97 browser. If no
discrete events are scheduled, continuous events are sampled as quickly as possible.
The sampling frequency is influenced by hardware capabilities.” This event
evaluation is alternated with frame rendering of the new geometric layout.

3 Some VRML browser implementations allow the definition of a target frame rate in order to

conserve CPU power.

153

Chapter 6 — Scalable VRMI. Execution in SODA

Scheduled discrete events force the evaluation of all continuous events at that same
time (see up-to-date requirement above). If any discrete events have not yet been
evaluated, no rendering takes place.

Code 6-2 shows the evaluation of the event cascade for each initial Sensor event Ci
or Di (mapped to E). The loop breaking rule prohibits cyclic loops by limiting each
eventOut to at most one event per timestamp. Otherwise, Ro contains all edges of
the routing graph pointing out of E. Ros fan-out destinations In: are evaluated in
turn. Possibly, event processing at the destination Iz may result in the creation of
further events Fo;j and therefore recursive invocations of Code 6-2 until the
complete event cascade is evaluated.

Fan-Out Rule. Code 6-2 represents only one possible way of ordering event
processing for conceptually simultaneous fan-out events. Beyond the
requirement that events be evaluated in timestamp order, VRML does not
specify any ordering of event processing. i.e., a browser’s evaluation order
of branches in a fan-out configuration is implementation dependent.

Fan-In Rule. It is possible that during a single event cascade, several events are
received by the same eventIn field, in a fan-in configuration. These events
will all have the same timestamp as determined by the initial sensor event.
The VRML specification demands that all these events be honoured by the
receiving node. However, no ordering is imposed on the processing of
these events.

Code 6-1 Sequential VRML97 Pseudocode

lasttime « 0;
loop
now « Browser.getW orldlime();
if any discrete sensor eventOuts S; scheduled with lasttime < tp, < now, e.g.,
asynchronous user input, or finished TimeSensor cycle then
tp « time of most imminent S;;
D — {Djltn, = to};
C + sample of all continuous eventOuts at time £p;
evaluate event cascade for each C; ¢ (; [*algorithm 2%/
evaluate event cascades for each D; ¢ D; [*algorithm 2%/
lasttime = tp:
else
C « continuous events sampled from all active and enabled TimeSensors at
time now;
evaluate event cascades for each C; = [Halgorithm 2%/

lasttime = now:
rendering of the new geometric world layout;

end if
end loop

154

6.2 Parallel VRML. Execution

Code 6-2 Event Cascade Evaluation for a sensor Event ¥

if eventOut E has already ‘fired’ for time tg then
stop; |Toop breaking rule]
else
R' — {(Out,In;) C R|Out = E}
process all I'n;, potentially generating a set of new events Ej; for each In;

evaluate event cascades for all EY; produced by using this algorithm recursively:
end if

6.2.2 Potential Parallelism in the VRML Execution Model

As worlds become more complex, the main loop of Code 6-1 takes more time.
This will result in a reduced sampling frequency for continuous events, and
therefore jerky scene updates. The system may also become over-saturated with
discrete events if they are generated more frequently than the associated event
cascades can be processed. Simulated time would then lag behind real time. These
circumstances explain why VRML worlds currently available on the Internet have
rather limited dynamics and interactivity. In this section we examine opportunities
for overcoming this limitation by parallelising the VRML execution model.

Figure 6-12 Event Cascade with a single initial Event E,

Parallelism within a Single Event Cascade

The VRMLI7 specification does not impose an execution order for the branches of
a fan-out configuration (Fan-Out Rule). In Code 6-2, if a single initial sensor event
E has a fan-out configuration, all eventIn fields Iz linked to it can be processed in
parallel (see Figure 6-12). Recursive fan-out configurations in an event cascade can
lead to a high degree of potential parallelism. The grain size is only determined by
the complexity of event processing in the participating nodes. Parallelism can be
exploited without affecting VRML97 semantics: Nodes can only communicate via
event notification; otherwise they are isolated from each other. Therefore no
undesirable interference can occur between two execution paths in an event
cascade.

155

Chapter 6 — Scalable VRMI Execution in SOD.A

A restriction of parallelism is necessary when the event cascade contains fan-in
configurations. During fan-in, two events of the same event cascade (therefore with
identical timestamps) arrive at a single eventIn (for example In1,3, In14, and In37 in
Figure 6-12). The Fan-In Rule specifies that event processing must occur in some
sequential order. In a parallel implementation, some form of synchronisation is
therefore necessary. For example, incoming events could be queued in a buffer for
sequential processing. The semantics of VRML nodes are therefore very similar to
SODA active objects.

Parallelism between Event Cascades

Several event cascades that occur at identical times can be executed in parallel. For
example, continuous events might be produced for a set of sensor nodes. Any
interference between the branches of these initial events (e.g., In1, In3 in Figure
6-13) is governed by the VRML event model: Several initial sensor events that are
scheduled with the same timestamp are treated by VRML as if they were members
of the same event cascade. Fan-ins of events with the same timestamp are handled
according to the Fan-In Rule (e.g., all events must be processed, but the ordering of
event processing is implementation-dependent). VRML’s loop breaking rule is
applied to prevent multiple writes to a single eventout field. All events Djand Ci
scheduled in the main loop of Algorithm 1 can therefore be evaluated in parallel”,

Figure 6-13 Several Event Cascades with Initial Events Ej, that all have the same timestamp ¢£.

Routing Graph Partition

One would expect most large and complex worlds to be built from relatively
simple, localised and autonomous behavioural units (e.g., a conversation amongst
some people somewhere, a physical simulation somewhere else). Such units would
be modelled by largely independent event cascades. If we assume a fixed routing
graph, then the corresponding routing graph could be statically split into a set of
disjoint partitions. Within each partition, event cascades with different timestamps
can run in parallel without interference. Within a partition, non-simultaneous event
cascades have to be serialized in order of timestamps.

% j.e., by spawning several instances of Code 6-2 for each event.

156

6.2 Parallel VRML. Execution

It is p0551blc that a user slmultaneously views geometry nodes that are in disjoint
partitions of the routing graph. Out-of-order processmg of partitions could lead to
noticeable visual artefacts: a user would see an incorrect event ordering. However,
this is unimportant for almost all worlds, unless non-simultaneous event cascades
are more than a few milliseconds apart. Causally related behaviour will always be
visualised in the cotrect order as this must be in the same routing graph partition.

Further parallelisation within a routing graph partition is more intricate. There is a
risk that the VRML specification is violated when event cascades with different
timestamps share a fan-in node. It could happen that an event with later timestamp
is received first by the fan-in node. This is in conflict with the requirement that a
node processes events in order of their timestamp. However, if it can be
established that some routes within the partition do not fire for a given event
sequence, the partition can be safely subdivided. Such subdivision relies on a
dynamic evaluation of the firing of routes which is likely to be expensive. This
feature is not implemented in the current server version.

Further Parallelism
Beyond parallel event cascade evaluation, further opportunities for parallelism exist:

Evaluation of Ssensor nodes can be done in parallel if their required sensor
information is available (e.g. current time, user location, etc)). Sensor
nodes may then register discrete events with a Scheduler.

Scheduler. The whole of Code 6-1 may be replicated for each partition of the
routing graph. Again, synchronised time must be available at each location.

6.2.3 Mapping of the VRML Execution Model onto SODA

We have already seen that the semantics of VRML nodes and SODA active objects
are very similar. Both provide some degree of object encapsulation, since
communication can only take place through a well-defined event-interface. In both
systems, incoming messages trigger the asynchronous execution of some activity.

We applied a mapping between VRML and SODA as follows: VRML nodes are
directly represented by active objects. Those nodes may then petform parallel event
generation or processing, which is the mainstay for parallel event cascade
evaluation. Asynchronous VRML event passing is mapped onto active object
method calls. Figure 6-14 shows how all elements of the VRML execution model
map onto a valid equivalent in SODA.

SODA Funnels are used to implement subcalls in event cascades. This is useful so
that a Sensor can be informed about the termination of an event cascade. For
example, the TimeSensor implementation might create a new continuous event as
soon as processing for the previous one has completed. Code 6-3 shows how the
PositionInterpolator deals with the processEvent method. After receiving a
(set-)fraction event, a new position value is computed and made available on

157

Chapter 6 — Scalable VRMIL Execution in SODA

the value field which is then propagated along all attached routes via a call to
route. route takes the funnel as an argument and uses this to collect the results of
a set of future subcalls (see Code 6-4), one for each outgoing route. The funnel is
then activated in Code 6-3.

Code 6-3 Excerpt of the PositionInterpolator class

active class PositionInterpolator {

SFVec3f value

= new SFVec3f (Field.EVENT _OUT, 0.0f, 0.0f, 0.0f);

public Future processEvent (Event e) ({

}

Future fut = null;
if (e.getName().equals("fraction")) {
if (setIndexFract(((ConstSFFloat) e.getValue()).value)) {

// compute the new position values given the fraction
ase = 1L * 3;

int vOB
int v1B
v1[0]
L[L]
v1[2]
v2[0]
v2([1]
v2([2]
b'd (vl
v (vl
Z (vl

1]

0o en

nounn

ase = (iL
keyValue
keyValue
keyValue
keyValue
keyValue
keyValue
[0] *af) +
{1)*af) +
[2]*af) +

e) R R

.mvalues [v0Base] ;
.mvalues [vOBase+1] ;
.mvalues [vOBase+2] ;
.mvalues [vlBase] ;
.mvalues [vlBase+l];
.mvalues [vlBase+2];

(v2[0] *£) ;
(v2[1]1*£f);
(v2[2] *£) ;

value.setValue (new ConstSFVec3f(x, vy, z), e.getTimeStamp());
fut = new Future();
Funnel fun = new Funnel (fut);

value.route (fun);

fun.activate();
return fut;
}
} else if (e.getName().equals("keyValue")) {
} else if (e.getName().equals("key")) {

}

158

6.2 Parallel VRML Execution

Code 6-4 Excerpt of the Field class

public abstract class Field {

public void route(Funnel fun)

// only route eventOuts and exposedFields.
if ((fieldType & Field.EVENT_OUT) == 0) return;

// no routes attached to this eventOut?
if (routes.size() == 0) return;

// 1f this eventOut has already been routed with the same
// timestamp and the VRML97 loop breaking rule shall be applied,
// then ignore this repeated firing.
if (APPLY_LOOP_BREAK_RULE) {
if (lastUpdate <= lastFireTime) return;

}

// currently routed value is the latest event on this field now.
lastFireTime = lastUpdate;

// send the event to all routes attached to this eventoOut.
Iterator i = routes.iterator();
while (i.hasNext()) {
Route connect = (Route) i.next();
Event ev = new Event (connect.destEvent, lastUpdate,
(ConstField) this.toConst());
Future f = connect.destNode.processEvent (ev);
f.setFunnel (fun);

Figure 6-14 Mapping of the VRML execution model onto Active Objects

VRML behaviours and one-way event VRML
Nodes environment routing execution
evaluation model
L 4 ¥ ¥
active objects member asychronous active objects
functions method programming
invocation model

The scheduler described by Algorithm 1 could be implemented as an additional
active object. It could then be used to register continuous and discrete events and
fire the corresponding event cascades. This would allow the spawning of event
cascades in timestamp order with parallel execution of simultaneous event

159

Chapter 6 — Scalable VRML Execution in SODA

cascades. However, one problem of such a scheduler object is that it represents a
central bottleneck and impacts on scalability.

For this reason, our implementation does not use a central scheduler. Instead,
server events are immediately evaluated as they are triggered. This is an optimistic
implementation that renders correct results in respect to the VRML execution
model under two preconditions:

e A world’s routing graph must be split into a set of partitions so that fan-in
cannot occur for events with non-identical timestamps. This is the
responsibility of the world designer. The world designer must ensure that
fan-in routings do either not occur at all or only occur for simultaneous
events. However, this requirement can be given up if it is not important
that VRML semantics are exactly followed.

e The system clocks of individual hosts in the cluster must be synchronised.
This is important, because TimeSensor events are based on the local system
time.

Note that the first requirement is only necessary if the VRML specification is to be
strictly observed. This is not always necessary. Our implementation can therefore
handle a more relaxed interpretation by ignoring out-of-order events at any node.
e.g., events that do not follow a monotonously increasing order of timestamp at
their arrival are not processed.

6.3 Client-Server Architecture

So far we have described how the server implements a powerful, scalable execution
engine, which maintains evolving world state and evaluates world dynamics on a
distributed memory architecture. This removes from the clients the need to
compute world changes, so reducing their required processing power. We will now
focus on how this server can support multiple, heterogeneous clients. In particular,
the server exploits information filtering techniques, reducing a client’s bandwidth,
storage and processing requirements. Clients with limited resources can therefore
participate in highly complex, virtual worlds.

E_gute 6-15 Client-Server Communication

Clients @ @
- 7 1

I
£ | Client-server
'} communication
i

Server

Nodes VRML event passir

6.3 Client-Server Architecture

6.3.1 Requirements and Approach '

The following is a list of minimum requirements which we demand of the client-
server communication scheme:

Near Real-time Requirement. A state change to the server-side scene graph
should be replicated as fast as possible to the AOI of all affected clients.
This means that clients with overlapping AOI perceive near state equality.
It is also impossible to provide real-time interaction, exact equality of
dynamic shared data and scalability, simultaneously. The handshaking
required to insure exact equality between more than a few shared copies
adds latency that makes real-time interaction impossible. To achieve fast
interaction, one must allow temporary disagreements between clients about
the state of the shared data. Fortunately, if such disagreements are below
the frame refresh interval, they will be unnoticeable for a user.

Scalability Requirement. Hundreds of simultaneous users and hundreds of
thousands of objects should be supported. The main technique to fulfil this
requirement is information filtering by view frustum culling on the server
side, which is performed in parallel.

Low Bandwidth Requirement. Operation over low-bandwidth links (e.g., mobile
devices on wireless networks) is desirable. This can be achieved through
dynamic level of detail switching and adaptation of the frequency in which
AOI replication occurs.

Information must be sent from the server to the client so that a user can view the
world. For example, the server could render each client’s view of the world and so
only send clients a stream of frames, represented as bitmaps. This limits the wotk
of the client to teading frames from the network and displaying them. However, it
would place a large load on the server and the network. Further, many clients have
specialized graphics hardware and can render 3-D scenes efficiently. It was
therefore decided that each client should render its own view of the world.

This approach requires the world’s objects to be sent from the server to each client
for rendering. At one extreme, all the wotld’s objects could be sent to a client when
it connects to the server, and then any subsequent updates could be forwarded (for
example when objects move). This would create three problems for very large
wotlds: firstly they would take a very long time to download; secondly, every client
would need sufficient memory capacity to store them, and thirdly rendering could
take a very long time. In order to avoid this, it was decided to design a client server
interface that limited the amount of world information sent to the client. This is
achieved through view frustum culling, and dynamic level of detail selecnon both
petformed on the server side.

6.3.2 Server-side culling

When a client initially connects to the server, one host is chosen to act as a proxy
for it, handling all subsequent client-server communications. A load-balancing

161

Chapter 6 — Scalable VRML Execution in SODA

scheme can be used to spread the set of client proxies evenly across the parallel
server’s processors, to promote scalability.’* Once connected, the client negotiates
its desired LOD quality level as well as its maximum viewing distance. Further on,
the client reports to the proxy any changes to its position and otientation. Based on
this information, the server updates the position and orientation of the avatar that
represents the user, so that other online users can see those movements. The client
proxy also computes the four planes describing the client’s view frustum. This is
then used to determine which objects in the world are visible to the uset, as only
these objects are sent to the client.

Two options were considered for selecting objects. In the first, the world is
represented as an unstructured set of objects. Therefore, every time a client
connects, or moves in the wotld, all the worlds’ objects must be compared with the
client’s view frustum to determine which need to be sent to the client for
rendering. While this can be done in parallel, with each machine comparing the
frustum with the objects held in its own memory, for a large world, this requires a
very large amount of processing, and this would limit the scalability of the system.
Therefore, an alternative was designed.

In this scheme, the VRML world is structured as a set of complex objects. It makes
use of VRML’s “PROTO” statement that enables the encapsulation of a partial
scene graph, with a well-defined interface of fields and events [35][36]. In addition,
this allows a world programmer to move responsibility for repetitive and low-
granularity behaviours to the client side.

6.3.3 PROTO encapsulation

The client-server interface revolves around PROTOs as atomic shared units. In our
system, PROTOs contain a set of mandatory fields that are accessed both by the
client and server (see Code 6-5 for an example PROTO node definition). Whereas
the client deals with the contents of the PROTO, the server sees it as a “black
box”. The mandatory fields are: the node’s position, orientation and scale; the size
and position of its bounding box; and, references (in the form of URLs) to files
that contain the encapsulated scene graphs at different Levels of Detail (LOD). As
is described in detail below, the setver determines the appropriate level of detail for
every PROTO and only the corresponding LOD file is downloaded to the client.

It is important that a client’s copy of a PROTO is synchronized with the server’s
version of the same PROTO. Thetefore, if the server-side state of the PROTO is
updated, the client is notified of the change by the server. Vice versa, a notification
message is sent to the server if the user interacts with the PROTO, leading to an
eventOut being generated on one of the exposed fields. All behaviour
encapsulated in the PROTO is evaluated on the client side, which is more efficient
in terms of network utilization for e.g.,, simple animations. Complex and non-
tepetitive behaviour however should be defined outside of PROTOs, so that
evaluation takes place on the server. This gives a world designer control over the
location of behaviour evaluation.

3% Load-balancing is not provided in the current implementation. It is the clients’ responsibility to
balance their connection requests.

162

6.3 Client-Server Architecture

Code 6-5 An example PROTO node definition

PROTO House002 [

#mandatory fields for shared PROTOS

field SFVec3f bboxCenter o N
field SFVec3f bboxSize 5 5 5
field MFFloat levels [100,200,300]
field MFString urls [

]

"http:////www.cs//vrml//House002_LODO.wrl",
"http:////www.cs//vrml//House002_LOD1l.wrl",
"http:////www.cs//vrml//House002_LOD2.wrl",

exposedField SFVec3f position 0. 0-:0
exposedField SFRotation orientation 0 1 0 .5
exposedField SFVec3f scale 0 00O

#optional shared eventIn/eventOut fields, specific
#to the described object
exposedField SFBool doorOpen FALSE

b

Structuring the world in terms of complex nodes defined by PROTO descriptions
is the key to an efficient client-server interface. Performing culling is reduced to
checking if the bounding box of each PROTO is visible to the client. For a typical
world, this reduces the number of comparisons by a factor of 10 to 1000 when
compared to culling every individual node that makes up a scene.

When a client connects to the server, the set of PROTOs that are visible to a client
are determined, and the server sends the contents of all mandatory and optional
fields. The server knows the distance of each object from the client’s viewpoint,
and so can determine the appropriate LOD level for a PROTO, which it
communicates to the client. LOD levels for a PROTO can change dynamically as a
result of the client navigating in the world. On the basis of URLs the client can
perform efficient and easy to implement caching of LOD files, as is now explained.

The client sends requests to the server for the files whose URLs are contained in
the PROTO it has been sent to render. The requests go through the standard Web
browser cache running on the client and so when the server (which runs a Web
server for this purpose) returns the files, they are stored in the cache. This has the
advantage that all instances of the same complex object at a particular LOD level
required by a client can share the same cached file, and so a server request is only
required for the first access to a file. Of course, if the cache fills and the file is
rejected then it will have to be re-fetched on its next access. A further advantage is
that if a client disconnects from the server and then connects again later then many
of the files it requires may still be cached, so reducing load time, and network
bandwidth. By using the client’s Web cache to store the LOD files, the benefits of
cache management were obtained without any extra development being required. It
is important to note that the client handles all PROTO downloads and additions to

163

Chapter 6 — Scalable VRMIL Execution in SOD.A

the client scene asynchronously and without blocking the uset’s navigation.
PROTOs are streamed on demand into the client scene.

The client proxy on the server keeps a record of all the PROTOs that it has sent to
the client. If the state of the complex object is changed on the server, as the result
of an event, then the changes are propagated to the client. Similarly, if a user
interacts with an object on the client, then all resulting events are routed to the
server so that they can cause the necessary change in the world. Consequently, all
other users will observe a change to the world made by one user.

After the initial loading of objects into the client, further objects are transmitted if
the client moves, so that new objects are visible, or if moving objects come into the
client’s field of view. Similarly, if objects move out of visibility then the server
informs the client so that the client can remove PROTOs from the local scene
graph.

One disadvantage with this approach is that the world has to be represented in a
particular, structured format in the VRML file. This means that existing large-scale
VRML scenes need to be manually reworked to represent the scene as a collection
of PROTO nodes at the server. For each of these components, bounding boxes
must be created and, for optimum performance, a set of LODs should be

provided. Tools exist to automatically create LODs from a high-polygon-count
VRML model, e.g.,, LODESTAR [151].

_Ei_gute 6-16 Server Architecture
i prey)
p /Q " Sensors

/ \

o Parallel
\ > Event

Scripts Cascade

\ Evaluation

'\

\
'l
|
|

Bt

i

i??ztd Protd Protd (Prb;cd Protos

: ,: Client-
\ / Server
\/ Notification / ’ :J Z(r’;feel

Messages Client > P

. amongst
i Proxies several
AOI Replication B clients)

Client Client J/

o

164

6.4 Client-side implementation

6.3.4 Update Accumulation Algorithm

6.4

Our protocol achieves low bandwidth operation by using reliable communication
of object update messages. This allows the use of compact differential messages
and eliminates the need for keep-alive messages, as e.g., in DIS. For each client, the
server maintains a separate FIFO queue of update messages that the client can
retrieve at its own pace. The consistency requirement for every client is relaxed
somehow: it is sufficient to have “eventual” consistency, ie., once all pending
messages have been received by all clients. We do not currently provide a priotity
scheme for different update messages. However, this would be feasible, e.g., based
on an object’s distance from the viewer or a client’s particular interest in a world.

The client proxy is responsible for generating update requests to all PROTOs in a
scene. These requests contain information about the client’s AOI. Every PROTO
compates whether its bounding box intersects with the new AOI and if so, returns
recent field updates. To optimise this algorithm, every PROTO field on the server
has a timestamp that indicates when its value last changed. Based on this
information, updated field values are only propagated once to every client.

All updates are queued at the client proxy for batched delivery to client (flow-
control). While field updates are pending delivery to the client they might still be
overwritten by newer values as they become available. As mentioned above, instead
of having a FIFO queuning scheme, it would be more appropriate to support
different delivery priority. These could be negotiated based on what aspect of the
world the client is interested in (e.g., a given client might be interested in air traffic,
but not in vehicle traffic, etc.).

Client-side implementation

The client-side implementation of this system is based around a VRML97 browser
component controlled and monitored by a lightweight application layer. Three
client versions exist: a Java applet, using the VRML browser as plug-in on a web
page, a Java stand-alone application and a Visual Basic implementation. The Visual
Basic client uses the ParallelGraphics VRML browser that acts as 2 Windows COM
component. Figure 6-17 shows a screenshot of the browser interface.

165

Chapter 6 — Scalable VRML Execution in SODA

Figure 6-17 Screenshot of the browser interface

Other online users are represented through their Avatars.

B ettt
/ eE L L RS e

l ~ Seevedinfo 1 " Local Info
Bl severName [romaimeen || HowName: [T

[mewer Driouh || Ihaneee - [TSG
Cooying: l Disvorned l Lipeiate Rale [ine) [0

6.4.1 EAI

6.5

The External Authoring Interface (EAI) was developed as an extension to VRML
[111]. It provides an interface for programmatic manipulation of a VRML world to
an external application. For example, it is possible to modify the values of
eventOut or eventIn fields or to set up event listeners that receive callback
notification when a field value changes. A Java binding of EAI exists in the
vrml.external package, which comes with many VRML browsers.

The capabilities of the EAI are useful for the implementation of our VRML client.
Since EAT allows manipulation of the scene graph, it is possible to dynamically add
and remove VRML PROTOs to the client’s AOI. In addition, event listeners are
used to receive callback notification for user interaction with sensor nodes in the
AOI. This mechanism is used to inform the server about client interaction.

Performance Results

The performance of our implementation was measured separately for parallel event
cascade evaluation and client-server communication (see Figure 6-16).

6.5.1 Parallel Event Cascades

To measure the performance of the server-side event cascade evaluation
mechanism, we use a test world with a simple routing graph that is automatically
generated by a script. This world consists of a variable number of Script —
PROTO node pairs. The script nodes each have a granularity of 500us (on the

166

6.5 Performance Results

Mega platform). They are all connected to the fraction_changed eventOut of a
single TimeSensor as shown in Figure 6-18. To measure the maximum attainable
update rate for evaluating events along the associated event cascade, the detached
method of the TimeSensor implementation is modified for this experiment to
produce continuous samples as frequently as possible. After synchronisation on the
termination of the current event cascade, a new event will be triggered immediately
on the TimeSensor. We then measure the frequency with which the associated
event cascades can be evaluated in relation to the number of Script-Proto pairs in
the routing graph.

Figure 6-18 Routing Graph for Testing the Event Cascade Evaluation Performance

TimeSensor

The results shown in Figure 6-19 were taken without any clients attached to the
server. We varied the number of scripts from initially 16 up to 2048. For 16 scripts,
the maximum theoretically attainable framerate is 1 / (16 * 0.5ms) = 125/s. The 1-
base run reaches 62 frames per second (fps), which is about half of this.
Considering the extra overheads for maintaining the routing graph and updating
the Proto nodes, this is a good value. As the number of scripts increases, still good
framerates can be achieved; for example, with 2048 scripts, a framerate of 8.2 fps is
possible on 16 bases. The speedup compared to the single-base run is 8.5 in this
case and 8.7 compared to the theoretically best attainable framerate 1 / (2048 *
5ms) = .98/s. These results are very good, considering that the routing graph
structure in Figure 6-18 leads to a central bottleneck at the initiating TimeSensor.

167

Chapter 6 — Scalable VRML. Execution in SODA

Figure 6-19 Parallel Event Cascades

Event Cascade Framerates

200 —e— 16 bases

—— 4 bases

—— 8 bases

FPS

100 —— 2 bases

—=—1 base

1600

16 160
nr of scripts (500 us granularity)

Event Cascade Speedup

—— 16 bases

—+— 8 bases

/ p—
|~ ——4 bases
25 _/—'-——"—'—'

— # i 2 bases
—=— 1 base

00 1 1 1 1 I I 1
16 32 64 128 256 512 1024 2048

nr of scripts (500 us granularity)

6.5.2 Client-Server Update Mechanism

A second experiment is concerned with the performance of the server-client
update mechanism. As client-machine, a dual-processor PIII-500Mhz with
hardware-accelerated graphics card was used. Again, a script-generated world was
used, this time with a parameterised number of PROTO nodes. Each PROTO
embedded a scene graph description of 23kByte (uncompressed, without textures).
With a growing number of PROTO nodes, also the total world size was increased

168

6.5 Performance Results

to distribute them at the same density. No routing graph was defined in order to
only measure the performance of the client-server interface.

Figure 6-20 shows the loading times in relation to world size, as a compatison
between a conventional VRML browser and a client on the parallel server. As the
world grows, these increase dramatically for a conventional browser. For more than
1000 PROTOS, the total scene size reaches more than 20 MByte. In this situation
the conventional browser crashes after a delay of several minutes.

In contrast, a client on the parallel VRML server can participate in scenes that are
much larger and we successfully tested a scene with more than 100000 PROTOs.
Load times are similar to the conventional browser for up to 100 PROTO nodes.
However, for larger worlds, load time remains almost constant at roughly 1400 ms.
This is a result of server-side view frustum culling: since PROTO nodes are
positioned in the same density, the number of client-visible nodes remains
essentially constant, independent of the total number of PROTOs in the world.
However, we can notice a slight growth in the curve, starting from 10.000
PROTO:s. This is related to the server-side culling operation, which currently uses a
non-optimal O(n) algorithm.

Figure 6-20 Loading Times
World Loading Times
100000+ 1
—s— conventional
browser
£
— 10000+
©
E
B
o
£
©
8 1000]
= —— client of
parallel
server
100 T : }
1 100 10000 1000000

number of PROTOs

View frustum culling is also beneficial, once the client starts to navigate through a
world. Since much less geometry is loaded into the navigation is much smoother
and can deliver high framerates of 45 fps. Figure 6-21 shows the comparison with a
conventional browser presenting the same VRML wotld; for worlds larger than 100
PROTOs, these become non-interactive in the case of the conventional browser.

169

Chapter 6 — Scalable VRMI. Execution in SOD.A

Figure 6-21 Client Frame Rate

Client-Side Framerates

60+
%5 —— client of
] parallel
server
40
4
w 30
—=— conventional
20+ v browser
10
0 |l 1 1
1 100 10000 1000000

number of PROTOs

6.6 Summary and Conclusion

During the case of developing the parallel VRML example application it became
clear that this was much more than just a case study for SODA. In fact, the
techniques presented in section §6.2.2 are useful in their own right. The scalable,
parallel execution of VRML event cascades as described in this section is novel. We
consider such parallelisation as fundamental for achieving large-scale behaviour in a
VRML world without negatively affecting frame rate as is the case for
conventional, serial VRML browsers.

We have shown how our client-server based implementation of VRML can
overcome a set of scalability limitations associated with VRML. The clients that
browse the world are protected from the costs required to support a large, complex
world by the server, which carries the burden of progressing the state of the world,
and determining the fraction of the world that is visible to each client. The work of
the client is restricted to rendering the visible world fraction whenever it receives
updates from the server. Insofar, the techniques presented in this chapter can be a
stepping stone towards future, standards-based networked virtual environments
(NET-VE) that are scalable along four different axes: the world size, the number of
simultaneous users, the complexity of world behaviour/simulation, and the
capability of access devices.

170

6.6 Summary and Conclusion

Figure 6-22 Dimensions of Scalability

World
World Dynamics
Size
ey Access
umber o ;
S0y Devi
Participants ot

Experience in building the VRML server has shown the power of the SODA active
object model for parallel, object-based software design. Extraction of parallelism
was facilitated at the level of the event execution model, in the information filtering
and traffic shaping of client proxies and in the evaluation of sensor nodes. The
results demonstrate that real performance gains can be achieved.

Future work should address the issue of “nested” PROTOS. Currently, the
description of large-scale objects with smaller embedded objects is difficult.
Consider the VR model of a ship. It would be useful to describe the ship’s hull,
engine room and control bridge at various levels of detail. However, the LOD at
which the hull is rendered be independent from the LOD at which the engine
room is displayed, unless the view is in close proximity to the smaller components.
Currently, it would be possible to describe such a situation through a set of
separate PROTOs. However, this breaks modularity and makes it awkward to
apply e.g., geometric transformations to the ship as a whole.

Another important shortcoming that should be addressed in the near-term future is
the currently suboptimal culling algorithm. Instead of checking every PROTO for
membership to a given client’s view frustum, it would be more appropriate to
arrange the PROTOs in an octtree structure that reflects spatial arrangement.
Whole branches of the tree could then easily be pruned by the culling algorithm,
resulting in reduced algorithmic complexity.

171

Chapter 7

Conclusion

The suspicion that software development for clusters—and distributed memory
machines in general-is one of the bottlenecks preventing their widespread use has
been confirmed in the literature survey. The current level of software support was
found to make it difficult to harness the power of a cluster for novice users or
large-scale, real-world applications. In most systems, the burden of managing
details of the parallel execution, such as allocation of data and activities,
synchronisation and inter-machine communication rests with the developer. With
growing program complexity, such low-level issues become increasingly difficult to
manage and can easily become a main task in the design and implementation of a
parallel program. As a result, the potential of clusters is not yet fully realised.

The aim of this thesis was to examine the viability of combining COOP and
implicit parallelism address this problem. Especially the integration of both
paradigms into the active ob)ect concept appeared very promising. We
expenmentcd with many existing active object systems, focussing on their usability
in the context of large-scale real world applications. Since they were all inadequate
at some point, we developed the SODA programming environment as a basis for
experimentation and proof of concept. The SODA programming model implicitly
hides details of decomposition, allocation, synchronisation and communication
behind the object fagade, while active object instances make parallelism explicit. A
SODA program can expose large amounts of parallelism; the SODA runtime
system is then responsible for limiting this parallelism and adapting it to platform
characteristics based on thread-multiplexing and aggressive inlining of most active
object method invocations. This expose-and-then-reduce approach was found well
suited for irregular, dynamic programs where static compile-time analysis is of
limited value.

The development of the SODA programming model went hand-in-hand with the
design and implementation of test programs. Especially useful in this aspect was
the case study in Chapter 7 capturing the requirements of a real-world large scale
server application. The experience gained was invaluable for making design
decisions in SODA. Many features not originally intended or though of were added
as a result of this early testing and exposure to real-world requirements. For
example, the need for detached methods became obvious when implementing
Timer objects and TimeSensors in the VRML execution engine. The example
programs were also an important test-bed for measuring the trade-offs between
ease-of-use and runtime efficiency. Experience also showed that makes it easy to
expose concurrency, but more difficult to programmatically restrict it (for example,

172

see §3.8.2, Dining Philosophers). We see this as a desirable property for a parallel
programming model.

Our test programs also showed that atomic active objects have usability advantages
and are easier to implement than their fully synchronous counterparts. The
deadlock hazard of atomic active objects in the face of direct ot indirect recursion
is removed through Funnels as non-blocking handlers for Future sub-calls. The
reduced liveness of atomic active objects can be compensated for through detached
methods. A long-time worry throughout the development of SODA was the
inheritance anomaly. Ferenczi’s proposal [59] on circumventing the inheritance
anomaly came as a great help here. Previously unimplemented it showed the value
of monitors in the context of atomic active objects and when mterpreted as
conditional critical regions.

We explored the associated trade-offs between ease-of-use and runtime efficiency.
The performance results show SODA’s practical value and the absence of
fundamental performance limitations in its programming model. We also showed
that SODA programs can execute efficiently across different distributed-memory
architectures and achieve significant speedups. In the future, we wish to experiment
with largcr platforrns since performance results on up to 16 nodes have been
promising.

Most future work should address current limitations of the runtime system. One
main shortcoming is the lack of support for dynamic migration of active object.
This restricts the currently supported application domain. Objects with highly
varying processing and communication requirements would lead to load imbalance
in the system. Work in this direction must also provide a mechanism to detect load
imbalance in a decentralised and scalable manner and initiate compensating object
migrations. This mechanism must also take into account the communication
bandwidth between active objects in order to improve locality. A huge body of
research work exists in the area of dynamic load balancing and it would be
interesting to experiment with various proposed techniques in the context of
SODA. A related issue is the inappropriate support for multiprocessor nodes.
Currently, aggressive inlining does only exploit single processor nodes and should
be assisted by heuristics to expose further machine-local parallelism.

Another issue the implementation should address is the instability of the underlying
hardware platform. Currently, a SODA program aborts if any of the cluster nodes
it is running on fails. With increasing size of the cluster the likelihood of such an
incident increases rapidly. If a single node fails with probability p, then a #-node
cluster fails with probability 1-(1-p)”. Possible approaches include the use of

transactional active objects or replicated active objects as mentioned in §3.3.1.

In summary, our work has shown that the SODA programming model can
combine ease-of-use with efficient execution on distributed memory machines.
This confirmed our original thesis that the integration of COOP and implicit
parallelism is viable and worth pursuing. With its novel features, SODA can bridge

173

Chapter 7 — Conclusion

the gap between previous active object systems and all-implicit programming
approaches. It is the author’s hope that SODA will be used as the basis of further

research and experimentation.

174

A.1

Appendix A

NET-VE Related Work

The new usage model for the presentation of VRML (see §6.1.2), draws heavily on
the topic of networked virtual environments (NET-VEs), so we will discuss the
relevant background literature in this area. A NET-VE can be defined as a
distributed computing system, which allows several participants to interact and
navigate in a virtual, simulated, three-dimensional space, or wor/d [156]. Typically
every participant is on a separate host or c/ent, which is responsible for rendering
the participant’s view on the shared world. The overall aim of NET-VEs is to
“transform today’s computer networks into navigable and populated 3D spaces that support
collaborative work and social play’ [21]. The metaphor of spatial interaction is readily
adoptable for humans and many new and exciting applications could be based on
NET-VE systems, going beyond what is currently possible in the field of
computer-supported cooperative work (CSCW). Example applications include
education, large-scale visual simulation, entertainment, collaborative design [114],
analysis and decision support, and human-computer interfaces.

At the low end of the price range, standard desktop workstations with 2D mice can
be used for the graphical presentation and navigation. Advanced systems will
provide specialised hardware devices to increase a participant’s perceived realism.
Examples are head-mounted displays (HMD), that offer stereoscopic viewing or
Cave Automatic Virtual Environment (CAVE) hemicubes, which provide total
immersion and possibly tracking of a participant’s head or limb movements. With
forthcoming developments in the area of wireless networking, even low-powered
PDAs could be used to increase the reach of NET-VEs into the area of mobile,
potentially location-based applications.”

Aural presentation can be just as important to the illusion of reality as is the visual
presentation. As you approach sound sources, they get louder. However, in this
work, we will not consider other media types than visual content.

Scalability

Improvement of scalability is a2 major thrust in the area of virtual reality research.

We distinguish four dimensions of scalability:

37 There are many potential applications for wirelessly connected PDAs, possibly fitted with GPS
positioning systems. Examples include augmented reality (e.g., visualisation of cabling or piping
behind a wall), tourist guides pointing out nearby restaurants or attractions, military applications and
“dating” services.

175

Appendix A — NET-VE Related Work

Wortld size. There is a natural desire to make NET-VEs large in spatial extent, in
the number of entities populating this space and in the model quality of
these entities. Ideally one would want to model every entity with high
geometrical precision, for example using a large number of polygons and
detailed textures, to improve the degree of realism.

Behaviour. For some applications it is sufficient to have purely static worlds.
Examples include virtual architectural Walkthroughs [67] and cxtyscape
visualisation. However, we are interested in worlds which expose a certain
degree of dynamicity and interactivity, e.g., the entities populating the world
exhibit some kind of behaviour. To make such worlds realistic, we rcqulre a
world update logic, which describes the world’s behaviour over time. For
example, some artificial intelligence algorithms or physics-based simulation
might be used to drive entities populating a world (see §A.2). An example is
a traffic light button which can be pressed by a participant and which in
turn influences the traffic over a crossroad section. A large, realistic world
will have lots of interaction and therefore, the world update logic may be a
delimiting factor. However, it is important to note that behaviour will often
be locally confined, e.g.,, a discussion between some pedestrians in one
‘corner of the world, a traffic light somewhere else. This means that there is
some form of behavioural locality common to many worlds.

Numbets of simultaneous participants. The number of simultaneously
connected participants is another factor of interest. If this number is
growing, latencies and inconsistencies are becoming more and more
important.

Device heterogeneity. In a general-purpose system there might be a range of
heterogeneous access devices with which users would want to access the
system. These devices will have different capabilities in terms of processing
powers and network bandwidth. A participant with a low-powered device
will want to trade graphical complexity against increased frame rate and
update frequency. '

The scalability issue is further exacerbated through the real-time requirements of
NET-VEs. The reduction of lag is important to increase a participant’s comfort
and perceived realism. e.g., changes to the shared world brought about by one
participant should be visible to another partlc1pant with minimum delay. One key
factor to guarantee scalabﬂlty, implemented in virtually all NET-VEs to date is
based on viewer locality: in a sufficiently large virtual world, a participant’s
perceptible space is limited due to occlusion and distance. Information about the
world outside the perceptible volume is not of interest to any participant. On the
basis of locality powerful information filtering schemes can be adopted (see §A.3 -
Area of Interest).

A.2 Entities

A world is populated by entities, which are graphical representations of real-world
objects. An entity is described in terms of its geometry and other visual

176

A.3 Area of Interest (AOI)

characteristics, such as colours, textures, etc. The granularity of entities is usually
established by the NET-VE designer. The state of an entity is described by
attributes, such as its position and orientation, its colour, shape and size, etc. While
most entities wﬂl be static, a subset of entities may exhibit a temporal behaviour.
For example, a “car” entity might change its posmon and onentatlon the colour of
its indicators, the rotational degree of its tyres, the “open” state of a door, and so
on. Entities rmght be atomic or hierarchically composed of sub-entities.

Avatars are a special type of dynamic entities. They provide participants with a
graphical embodiment that conveys their identity, presence, location and activities
to other participants. Any navigational movements of a participant are directly
reflected by the associated avatar. Avatars may also convey further state
information about a uset, for example body movements or facial gestures, such as
smiling or frowmng

An entity’s state will be maintained at some master location in the network. To
reflect changes to a remotely kept entity, interested participants will typically create
a local replica. The state of such replicas must reflect updates to the original entity
with minimal lag. This is critical to provide a near real-time view to all participants
and to keep information consistent across participants. One approach, for example,
is to broadcast every entity’s update information to every patticipant [33;118].

In addition to update messages, interested clients must also know about an entity’s
fixed state (e.g., geometrical description, size, shape, etc.) before they can render it.
Since such information tends to be very complex, it should be transmitted
infrequently. To avoid this problem altogether, some systems assume the fixed
state of all entities to be available locally 4 priori to starting the client. However, this
makes systems rather inflexible and makes it difficult to deploy extensions to a
world (compare, for example, the universal media description). Another solution is
to use area of interest schemes to only download partial views of the world to a
given participant (see §A.3).

A.3 Area of Interest (AOIl)

In the real world, human perceptual and cognitive limitations prevent us from
perceiving details, which are far away, occluded or outside of the viewing angle (as
aforementioned, this discussion is limited to the visual medium). The same is true
for a sufficiently large virtual world; most of what a single participant can observer
at any time is local in nature to the participant’s location. This lcality of perception is
exploited in most NET-VE systems to filter data that is of no interest to a given
participant. Every participant is ascribed an area of interest (AOI). This might be a
sphere centred on the participant’s viewpoint or a view frastum, a pyramid with apex
at the viewpoint and the four side planes determined by the display edges. Entities

38 Of course, the difficulty lies in how a participant can control such extended state of their avatar. It
is common to see interfaces with buttons that allow the participant to select various predefined
behaviours, e.g. “walk”, “fump” or “wave”,

177

Appendix A — NET-VE Related Work

and their updates are irrelevant to a client if they are outside of the area of interest.
They can therefore be filtered out from the participant’s view on the wotld. This
exploitation of locality can be a powerful basis for schemes to reduce network
traffic and participant-local graphical complexity and therefore allow scalability. Of
course, the AOI must be adapted dynamically as a participant navigates the world.

As an example, consider a virtual model of an entire city, where hundreds of people
are interacting and many simulations are active to compute dynamic world
behaviour in response to user interaction and passage of time. In this situation, the
world model contains a huge number of objects and because many activities are
happening, there are lots of objects that are moving or otherwise changing their
properties. If an individual user attempts to maintain a complete picture of the
dynamically evolving world, he will have to receive and process a torrent of
information about changes happening in the world. The client requirements would
therefore grow linearly with the world size/number of connected participants. In
the absence of interest management, such a system prohibits scalability, since
demands would eventually overwhelm the resources available to any one
participant. The main difficulty for AOI mechanism stems from the heterogeneity
and the dynamics of the clients, not only in terms of bandwidth and processing
power, but also in terms of data interest and virtual and physical locations. AOI
management and information filtering is useful beyond the reduction of message
bandwidth between participants. In particular, it can dramatically reduce the
number of entities kept in participant local memory.

ﬂ_gure 7-1 Distance based AOI vs. View Frustum AOI

A.4 Levels of Detail (LOD)

One could imagine a large cityscape being studied by a participant flying high above
the terrain and therefore seeing the world from a bird’s eye view. It is then possible
that all entities in the world are within the AOI; however, such entities can only be
perceived at a very low level of fidelity, due to the distance from the ground. Ina
NET-VE system simulating such a situation, it is therefore sufficient to send low-

178

A4 Levels of Detail (1.LOD)

fidelity update information for such entities (Of course, a user could use binoculars
to get a better view, but this would restrict the necessary update information to the
much smaller viewing angle).

Entities that are far from the observer and cover a small area on the screen can be
drawn with less detail without compromising significantly the appearance of the
model (see Figure 7-2). Applying this technique to all objects in the world can
dramatically reduce the rendering time of complex models and allows the creation
of virtual worlds with a lot of detail while limiting the rendering costs to those
details that are visible. Five criteria have been proposed to modulate an entity’s
level of detail (see Table 7-1) [145]. It seems likely that a combination of two or
more of these is the best approach for the requirements of a general-purpose NET-
VE system. One major issue of research is the automatic creation of various LOD
levels for a given entity. Possible methods include geometry removal (of vertices
and polygons), sampling (determine a simplified model, that fits a sample of the
original) and adaptive subdivision (refine a crude model through subdivision where
it varies from the original).

Figure 7-2 Three different levels of detail for a car object

179

Appendix A — NET-VE Related Work

Table 7-1 Criteria for Dynamic LOD Selection [145]

Criterion Description Assumption
. according to the distance | All users have the same quality requirements. However,
Distance from the viewer this might not be true for different display resolutions
(e.g., PDA vs. graphics workstation).
) according to the pixel size | To compensate for the problems of the distance-based
Size on the display device technique, chose the LOD according to the pixel size
on the screen.
. according to the degree to | A user will focus his interest in the centre of the screen.
Eccentricity | which the entity exists in the | Off-centre imprecisions can therefore be traded off
periphery of the display against better quality in the centre of the view.
differential velocity between | The detailed perception of quickly moving entities is
Velocity viewer and entity limited (e.g., in fast flying sequences). They can
therefore be rendered with less detail.
Fixed Maintain a constant frame | Frame rate is more important than accurate geometrical
Frame Rate | rate for the viewer modelling.

A.5 Communication Structure

According to their communication structure, Net-VEs can be broadly classified
into two categories: cient-server systems vs. peer-fo-peer systems. In peer-to-peer
systems, communication occurs directly between participant’s machines. In client-
server systems, entity state is maintained at the server and the communication
topology is restricted to single client-server connections.

Peer-to-Peer Broadcast

Peer-to-peer systems divide the world state and its update logic over all
participant’s hosts in order to achieve scalability. Successful examples in this
category include military battlefield training simulations, such as SimNet [33;118]
and NPSNet [109;192]. These systems were designed to support many dynamic
entities, simulated or controlled by real users. Every entity is hosted on a single
machine and represented by a single task processes. ‘

Every machine participating in a SimNet simulation uses a best-¢ffort broadcast
protocol to communicate the state of locally kept entities to all other remote
participants. The Disttibuted Interactive Simulation (DIS) protocol [33] defines a
simple packet format for describing updates to an entity’s state. The set of entities
and possible states is fixed and known a-priori to all participants, which is suitable
for the application domain. To minimise bandwidth requirements and the
frequency of update messages, remote entities are simulated locally using dead
reckoning. Dead reckoning extrapolates a remote entity’s movement from the last
known position and first (or higher order) derivation (e.g., speed vector,
acceleration vector, etc.). When the sending entity deviates from the previous
trajectory, it will broadcast this updated information. As a result, the trajectory will

180

A.5 Communication Structure

be gradually adjusted to match the parameters of the new movement equation.
Dead reckoning works well for entities which perform regular movements. Erratic
movements, however, are unlikely to benefit from dead reckoning.

Entity broadcast packets must then be examined at every host, even if the
information is not intended for that participant’s AOI. This information filtering at
the application level can cause major performance penalties for that host, especially
if the rendering module is already processor intensive. Moreover, the network can
become flooded with unwanted traffic. These circumstances make a broadcast
approach non-scalable.

In SimNet, distance-based AOI filtering is performed at the receiver. This
endpoint-based filtering scheme, however, incurs unnecessary network load with
messages that are irrelevant to most receivers. In addition, all receivers must
expend processing power to determine whether a packet relates to an entity within
their AOIL This endpoint-based filtering does not scale well to large numbers of
participants [110].

Peer-to-Peer Multicast Based on Isomorphic Regions

In an effort to increase scalability, some systems use region-based multicast instead of
broadcast. The world is divided into spatial regions and each region is associated
with a separate multicast group to disseminate information about updates to that
region. Participants interested in a region attend to the relevant multicast group.
Thetefore, a single host’s load does not grow lineatly in relation to the overall
number of connected users, but only in proportion to the number of nearby users.
This means that a multi-user NET-VE can become extremely large as long as the
users are sufficiently spread out. Filtering is therefore taking place at the hardware
level, since a participant only joins the multicast groups of regions it is interested in.

In NPSNET, for example, 2 world terrain is divided into fixed-size hexagonal cells,
which are mapped onto separate multicast addresses. Cells are embedded in a
global coordinate system; every participant is a-priori aware of the layout and the
mapping onto multicast addresses. Every participant sends update packages to the
multicast group of its current cell, while at the same time subscribing to many
surrounding hexagonal cells to fully cover the AOI radius. A major problem is
finding the right cell size. Larger cells mean that participants receive much
irrelevant information; smaller cells mean that they need to subscribe to many more
multicast groups. Also, since the cell size is fixed, this approach fails if entities are
not distributed evenly over the world area, e.g., if “clumping” occurs within some
cells.

For cell-based multicast, a participant must identify the cell it is located in and send
updates to the associated multicast group. To receive data from other participants
included in its area of interest, each participant has to join the multicast groups
associated with the cells that intersect with its area of interest. The main difficulty
with the cell-based approach is finding of the right cell size.

Peer-to-Peer Multicast Based on Variable-Sized Regions
Spline [20] is another example of a cel-based multicast peer-to-peer NET-VE. A

wotld is comprised of a set of chunks called /Acales, with disjoint sets of entities and
explicit lists of neighbouring locales. Every locale is owned by a single machine, but

181

Appendix A— NET-VE Related Work

may be copied onto other interested clients. However, only the owner can change
an entity’s state in order to avoid writers/writers conflicts. Locales in SPLINE can
be of any (fixed) size or shape. This allows the NET-VE designer to partition the
wortld so as to try and avoid clumping of too many entities within the same locale.
However, clumping can still occur, since a designer can never know in advance
how many dynamic entities might enter a locale during execution time and the size
of locales is fixed. The set of all locales available over a network provides the
illusion of a large, continuous world. Interestingly, the “glueing” of locales does not
need to follow Euclidian geometry (e.g., the interior of a building may be larger
than its external dimensions; space might be warped, shrinked, etc.). This gives
interesting opportunities to link locales it might also confuse users navigating
through such a world. No machine maintains a complete copy of the wotld. A
participant’s AOI is based on predetermined wvisibility constraints of the
participant-current locale. e.g., locales can be used to omit the rendering of the
interiors of buildings when they are not visible from the outside. While every locale
is hosted by a participant’s machine and replicated on the machines of other,
interested participants. ‘

Another issue is that activities cannot span several locales. e.g., a button in one
locale cannot control a bulb in another locale. Moreover, locales cannot be nested
(e.g., with the top locale providing a low-detail overview of a city from far away,
containing several levels of finer-grained locales).

Participation as a content provider in this system is very simple. One just designs a
new locale and “stitches” it to some already existing locales on the Internet. Due to
the non-Euclidian properties of Spline-space, it is easy to create hubs which link
many different locales from a space (portal). Spline has recently been
commercialised by Mitsubishi in the Schmoozer software
(http://www.schmoozer.net).

One problem with region-based multicast communication is finding the right size
for regions. In SPLINE and NPSNET, if cells/locales are too small, a client would
have to subscribe to too many multicast groups, and if the cell/locale were too
large, a client would have to listen to other clients it did not care about. This makes
it difficult for a designer or implementer to find the “right” size for a region.
Scalability is impeded if too many users gather in the same region, e.g., a football
stadium.

Centralised Server with Multiple Clients

While peer-to-peer systems allow low-latency communications between
participants, they frequently rely on network multicast, which is not yet supported
on an Internet-wide scale.

In client-server systems, all communication is relayed through a central server. This
has the advantage of providing better state equality, since the server can impose a
global ordering on all events occurting in the world. The disadvantage is that
communication is slower than in peer-to-peer systems, where participants are
directly connected. However, this method allows a server to do processing and
filtering of messages before propagating them to other participants; a central server
can better control the quality and type of information sent to a given client and
thetefore adapt better to heterogeneous clients. Moreover, broadcast or multicast

182

A.6 Multi-user VRML.

as required by peer-to-peer systems is not yet deployed on an Internet-scale. In
addition, setvers can determine if a client has made an illegal move (e.g., into a wall)
ot it can decide to limit sending the user’s message to a subset of other users.

The scalability of a client-server system is limited by the load that the server can
handle, as every update message is unicast through the server. Therefore, a
centralised server can act as a bottleneck that prohibits scalability We will focus on
the client-server model and prov1de a parallel server in order to guarantee
scalability.

Intermediate Servers

Systems can also use a hybrid scheme, where intermediate servers interact in peer-
to-peer fashion, with clients connecting to a geographically nearby server. This
helps to make the server less of a bottleneck. The intermediate servers can also
detect, which user is near to which other one and dynamically route messages
accordingly and therefore scale better to large numbers of users.

A.6 Multi-user VRML

A number of VRML-based multi-user NET-VEs exist. Typically these are
implemented as client-server systems. VNET [149;182]for example, makes use of
the EAI interface on the client-side to collect information about a user’s
movements and update the avatar state of other simultaneous participants. Unlike
the system described in this paper, the VNET server acts merely as a
communications relay for such updates to avatars. Commercially available
implementations of VRML multi-user systems extend this scheme with
authentication and simple, server-controlled entities, so called robots (e.g. blaxxun,
ParallelGraphics). These systems are neither scalable to large-scale worlds, nor to
complex behaviours as both scene graph and behaviour evaluation are actively
replicated on all clients. i.e., the complete scene graph is downloaded to all clients
and the server is responsible for the replication of avatar movements across all
clients.

ActiveWorlds (http://www.activeworlds.com) is also based on the idea of a central

server to broadcast avatar movements. In addition, the ActiveWorlds server
performs distance based culling: clients are only informed about entities and other
client avatars that are in their respective proximity. Therefore, ActiveWorlds is
scalable in terms of world size and number of participants. Participants can upload
VRML files as new entities to the server and thereby actively “build” the world.
Besides entities addition and avatar movement, dynamics support is limited to
simple animations. Unlike the servers described in this paper, the ActiveWorlds
server does not perform any behaviour evaluation.

Chenney et al. [44] examine dynamics culling for invisible parts of a scene. While
this approach is useful for physics-based simulations, which can’ easily be
extrapolated over time, this method cannot be used for general, unpredictable
behavior evaluation.

In the domain of computer games, BSP traversal with pre-computed visibility sets
and portal rendering are frequently used to greatly reduce rendering time for large
worlds. These techniques work well for mainly static worlds with movement

183

Appendix A— NET-VE Related Work

restricted to simple animations and human or computer controlled actors. In multi-
player network games, such as Quake or Doom, the dataset describing the world
and avatars is available to the client a-priori; no dynamic download takes place. The
server (usually one of the player’s machines) performs replication of client state
(e.g, position, weapons usage) across all participants. This scheme restricts
maximum wotld size to the clients’ storage capacity. Levels are therefore rather
small and uniform

184

10.

1415

12,

’ Bibliography

Bibliography

Communications of the ACM. Vol. 44, 2001.

Achauer, Bruno. The DOWL Distributed Object-Oriented Language.
Communications of the ACM. 1993 Sep; 36(9):48-55.

Agha, Gul. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press; 1986.

Agha, Gul and Hewitt, Carl. Actors: A Conceptual Foundation for
Concurrent Object-Oriented Programming. Shriver and Wegner,
editors: MIT Press; 1987; pp. 49-74.

Agha, Gul; Kim, W., and Panwar, R. Actor Languages for Specification of
Parallel Computations. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. 1994.

Agha, Gul; Wegner, Peter, and Yonezawa, Akinori. Research Directions
in Concurrent Object-Oriented Programming. MIT Press; 1993.

Allen, Randy and Kennedy, Ken. Automatic Translation of Fortran
Programs to Vector Form. ACM Transactions on Programming
Languages and Systems. 1987; 9(4):491-542.

America, P. H. M and Rutten, J. J. M. M. A Parallel Object-Oriented
Language: Design and Semantic Foundation. de Bakker, J. W,
editor. Languages for Parallel Architectures - Design, Semantics,
Implementation Models. 1989; pp. 1-49.

America, Pierre. Inheritance and Subtyping in a Parallel Object-Oriented
Language. ECOOP '87 Conference Proceedings: Springer Verlag;
1987pp. 234-242.

America, Pierre. POOL-T: A Parallel Object-Oriented Language.
Yonezawa, Akinori and Tokoro, Mario. Object-Oriented
Concurrent Programming. MIT Press; 1987; pp. 199-220.

America, Pierre and van der Linden, Frank. A Parallel Object-Oriented
Language with Inheritance and Subtyping. OOPSLA/ECOOP '90
Proceedings, ACM Sigplan Notices. 1990; 25(10):161-168.

Anderson, Thomas; Culler, David, and Patterson, David. A Case for
Networks of Workstations: NOW. IEEE Micro. 1995; (February).

185

Bibliography

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

Annot, J. K. and den Haan, P. A. M. POOL and DOOM: The Object
* Oriented Approach. Treleaven, P. C,, editor. Parallel Computers,
Object-Oriented, Functional, Logic. John Wiley & Sons; 1990; pp.
47-80.

Aridor, Yariv; Cohan, Shimon, and Yehudai, Amiram. SYMPAL: A
Software Environment for Implicit Concurrent Object-Oriented
Programming. Object Oriented Systems. 1997; 4:53-81.

Aridor, Yariv; Factor, Michael, and Teperman, Avi. cJVM: A Single
System Image of a JVM on a Cluster. 1999 International
Conference on Parallel Processing ; Wakamatsu, Japan. 1999.

Atkinson, Colin. Object-Oriented Reuse, Concurrency and Distribution.
ACM Press; 1991.

Backus, John. Can Programming be Liberated from the von Neumann
Style? A Functonal Style and its Algebra of Programs.
Communications of the ACM. 1978; 21(8):613-641.

Baker, M.; Carpenter, B.; Fox, G.; Ko, S. H., and Li, X. mpiJava: a Java
MPI Interface. First UK Workshop, Java for High Performance
Network Computing (within EUROPAR '98); 1998.

Baker, Mark and Buyya, Rajkumar. Cluster Computing: The Commodity
Supercomputing. Software Practice and Experience. 1999 May;
29(6).

Barrus, John W.; Waters, Richard C., and Anderson, David B. Locales:
Supporting Large Multiuser Virtual Environments. IEEE
Computer Graphics and Applications. 1996 Nov; 16(6):50-67.

Benford, Steve; Greenhalgh, Chris; Rodden, Tom, and Pycock, James.
Collaborative Virtual Environments. 2001 Jul; 44, (7): 79-86.

Beust, Cedric (beust@jilog.fr). Re: Synchronous vs. Asynchronous. E-mail
to: Mailing List for Discussion of JavaSoft's Remote Method
Invocation (RMI-Users@javasoft.com). 1997 May 12.

Bik, Art and Gannon, Dennis. javab - A Prototype Bytecode
Parallelization Tool. Technical Report. Computer Science
Department, Indiana University; 1998.

Bik, Att. javar - A Prototype Java Restructuring Compiler. Technical h
Report. Computer Science Department, Indiana University; 1998;
487.

Birrell, A. and Nelson, P. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems. 1984 Feb; 2(1).

186

. 26.

27.

28.

29.

30.

31.

.32,

33.

34.

35.

36.

37.

38.

39.

40.

Bjarne, Stroustrup. The C++ Programming Language. 3rd. ed. Addison-

Wesley; 1997.

Bloom, T. Evaluating Sychronisation Mechanisms. Proceedings of the
Seventh Symposium on OS Principles; 1979: pp 23-32.

Briunl, Thomas. Parallel Programming - An Introduction. Prentice Hall;
1993.

Briot, Jean-Pierre; Guerraoui, Rachid, and Lohr, Klaus-Peter.
Concurrency and Distribution in Object-Oriented Programming.
ACM Computing Surveys. 1998; 30(3).

Buyya, Rajkumar. High Performance Cluster Computmg Prentice Hall;
vol. 1 1999.

Buyya, Rajkumar. High Performance Cluster Computing. Prentice Hall;
vol. 2, 1999.

Cabri, Giacomo; Leonardi, Letizia, and Zambonelli, Franco. Weak and
Strong Mobility in Mobile Agent Applications. Proceedings of the
2nd International Conference and Exhibition on The Practical
Application of Java (PAJAVA 2000); Manchester, UK.

Calvin, J. et al. The SIMNET Virtual World Architecture. Proceedings of
the IEEE Virtual Reality Annual International Symposium; Seattle,
WA. IEEE Computer Press; 1993: 450-455.

Cann, D. C. Retire Fortran? Commumcanons of the ACM. 1992
35(8):81-89.

Carey, lek and Bell, Gavin. The Annotated VRML 2.0 Reference
Manual. Addison-Wesley; 1997.

Carey, Rikk; Bell, Gavin, and Martin, Chris. ISO/IEC 14772-1: 1997
Virtual Reality Modelling Language (VRML97). 1997.

Caromel, Denis. Towards a Method of Object-Oriented Concurrent
Programming. Communications of the ACM. 1993; 36(9):90-102.

Caromel, Denis; Belloncle, Fabrice, and Roudier, Yves. The C++//
System. Wilson, G. and Lu, P., editors. Parallel Programming Using
C++. MIT Press; 1996; pp. 257-296.

Caromel, Denis and Vayssiere, Julien. Towards Seamless Computing and
Metacomputing in Java.Concurrency: Practxcc and Experience;
1998; 10(11-13); pp. 1043-1061.

Carpenter, Bryan; Chang, Yuh-Jye; Fox, Geoffrey; Leskiw, Donald, and

Li, Xiaming. Emperiments with 'HP Java'. Concutrency, Practice
and Experience. 1997; 9(6):633-648.

187

Bibliography

41.

42,

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

Catrriero, N. and Gelernter, D. How to Write Parallel Programs. A First
Course. MIT Press; 1990.

Catriero, Nicholas and Gelernter, David. A Computational Model of
Everything. CACM. 2001 Nov; 44, (11): 77-81.

Cartet, John B. Design of the Muning distributed shared memory system.
Journal of Parallel and Distributed Computing. 1995 Sep; 29(2):219-
227.

Chenney, Stephen; Ichnowski, Jeffrey, and Forsyth, David. Dynamics
Modelling and Culling. IEEE Computer Graphics and
Applications. 1999; 19(2):79-87.

Chien, Andrew and Karamcheti, Vijay. Concert - Efficient Runtime
Support for Concurrent Object-Oriented Programming Languages
on Stock Hardware. Conference on Supercomputing '93; 1993pp.
598-607. ‘

Chin, Roger and Chanson, Samuel. Distributed, Object-Based
Programming Systems. ACM Computing Surveys. 1991; 23(1):91-
124.

Cugola, Gianpaolo; Ghezzi, Catlo; Picco, Gian Pietro, and Vigna,
Giovanni. Analyzing Mobile Code Languages. Vitek, Jan and
Tschudin, Christian, editors. Mobile Object Systems: Towards the
Programmable Internet. Springer Verlag; 1997; pp. 93-110.

Dahl, Ole-Johan and Nygaard, Kristen. SIMULA - An ALGOL-based
simulation language. CACM. 1966 Sep; 9(9):671-678.

de Bruin, Hans. BCOOPL: Basic concurrent object-oriented
programming language. Software Practice and Experience. 2000;
30:849-894. |

Decouchant, D.; Krakowiak, S.; Meysembourg, M.; Riveill, M., and
Rousset de Pina, X. A Synchronzation Mechanism for Typed
Objects in a Distributed System. ACM SIGPLAN Notices. 1989
Apr; 24(4):105-107.

Detmold, Henry and Oudshoorn, Michael J. [Technical Report].
Responsibilities: Linguistic Support for Safe and Flexible Remote
Communication. Department of Computer Science, University of
Adelaide; 1994 Nov; 94-12.

Dincer, K. Jmpi and a Performance Instrumentation Analysis and

Visualisation Tool for Jmpi. First UK Workshop on Java for High
Performance Network Computing; Southhampton. 1998.

188

53.

54.

55.

56.

57.

. 58.

59.

60.

61.

62.

63.

64.

65.

Dongarta, Jack; Otto, Steve; Snir, Marc, and Walker, David. An
Introduction to the MPI Standard [Technical Report]. University
of Tennessee; 1995; CS-95-274,

Eager, Derek; Lazowska, Edward, and Zahotjan, John. Adaptive Load
Balancing in Homogeneous Distributed Systems. IEEE
Transactions on Software Engineering. 1986; SE-12(5):662-675.

Ekanadham, K. A Perspective on Id. Szymanski, B., editor. Parallel
Functional Languages and Compilers. ACM Press 1991; pp. 197-
254.

Ellis, C. A. and Gibbé, S.J. Active Objects: Realities and Possibilities.
Kim, W. and Lochovsky, F. H,, editors. Object-Oriented Concepts,
Databases and Applications. ACM Press; 1989; pp. 561-572.

Excelsior, LLC. Excelsior JET [Web Page]. 2002; Accessed 2002.
Available at: http://www.excelsior-usa.com/jet.html.

Falkner, Katrina E.; Coddington, Paul D., and Oudshoorn, Michael .
Implementing Asynchronous Remote Method Invocation in Java.

Proc. Parallel and Real-Time Systems (PART'99); Melbourne. 1999.

Ferenczi, Szabolcs. Guarded Methods vs. Inheritance Anomaly -
Inheritance Anomaly Solved by Nested Method Calls. ACM
SIGPLAN Notices. 1995 Feb; 30(2):49-58.

Ferrari, Adam. JPVM: Network Parallel Computing in Java. ACM
Workshop on Java for High-Petformance Network Computmg,
Palo Alto. University of Virginia; 1997,

Flynn, M. J. and Rudd, K. W. Parallel Architectures. ACM Computing
Surveys. 1996 Mar; 28(1):67-70.

Foster, Ian and Kesselman, Carl. The Grid: Blueprint for 2 New
Computing Infrastructure. Motgan Kaufmann Publishers; 1998 Jul.

Foster, Ian; Thiruvathukal, G. K., and Tuecke, S. Technologies for
Ubiquituous Supercomputing: A Java Interface to the Nexus
Communication System. Concurrency: Practice & Experience. 1997
Jun.

Fox, Geoffrey and Furmanski, Wojtek. Java for Parallel Computing and
as a General Language for Scientific and Engineering Simulation

and Modeling. Concurrency, Practice and Experience. 1997
9(6):415-425.

Fox, Geoffrey C., Roy D. Williams, and Paul C. Messina. Parallel
Computing Works! Morgan Kaufmann Publishers; 1994 Apr.

189

Bibliography

66. Free Software Foundation, Boston, USA. The GNU Compiler for the
Javatm Programming Language [Web Page]. 2001; Accessed 2001.
Available at: http://gcc.gnu.org/java/.

67. Funkhouser, Thomas A.; Sequin, Carlo H., and Teller, Seth J.
Management of Large Amounts of Data in Interactive Building
Walkthroughs. ACM SIGGRAPH (Special Issue on 1992
Symposium on Interactive 3D Graphics, Cambridge, MA). 1992;
25(2):11-20.

68. Geist, Al; Beguelin, Adam; Dongarra, Jack; Jiang, Weicheng; Manchek,
Robert, and Sunderam, Vaidy. PVM: Parallel Virtual Machine. A
User's Guide and Tutorial for Networked Parallel Computing.
Cambridge, MA: MIT Press; 1994.

69. Gelernter, David. Current Research on Linda. Metayer; Banatre, J. P., and
Le, D., editors. Research Directions in High-Level Parallel
Programming Languages. Springer Verlag; 1991; pp. 74-76.

70. Getov, Vladimir; Flynn-Hummel, Susan, and Mintchev, Sava. High-
Performance Parallel Programming in Java: Exploiting Native
Libraries. ACM 1998 Workshop on Java for High-Performance
Network Computing; 1998.

71. Global Grid Form. Grid Computing Info Centre [Web Page]. Available
at: http:/ /www.gridcomputing.com/.

72. Gosling, James; Joy, Bill, and Steele, Guy. Java Programming Language.
Addison-Wesley; 1996.

73. Greenhalgh, Chris. Large Scale Collaborative Virtual Environments [PhD
Thesis]: University of Nottingham; 1997 Oct.

74. Grimshaw, Andrew. Easy-to-Use Object-Oriented Parallel Processing
with Mentat. IEEE Computer. 1993; (May):39-50.

75. Grimshaw, Andrew. Object-Oriented Parallel Processing with Mentat.
1998. available online as http://legion.virginia.edu/papers/is.ps.

76. Guessoum, Zahia and Briot, Jean-Pierre. From Active Objects to
Autonomous Agents. IEEE Concurrency. 1999 Jul-1999 Sep 30;
7(3):68-76.

77. Halstead, Robert jr. Multilisp: A Language for Concurrent Symbolic
Computation. ACM Transactions on Programming Languages and
Systems. 1985; 7(4):501-538.

78. Herath, J.; Yuba, T., and Saito, N. Dataflow Computing. Parallel
Algorithms and Architectures. 1987 May; 269:25-36.

190

- 79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Hewitt, Carl . Viewing Control Structures as Patterns of Passing
Messages. Artificial Intelligence. 1977, 8(3):323-364.

Hilderink, Gerald; Broenik, Jan; Vervoort, Wiek, and Bakkers, Andre.
Communicating Java Threads. WoTUG-20 conference; Enschede,
The Nethetlands. IOS Press; 1997: pp. 48-76. ISBN: 90 5199 336
6.

Hirano, Satoshi; Yasu, Yoshiji, and Igarashi, Hirotaka. Performance
Evaluation of Popular Distributed Object Technologies for Java.
ACM Java Grande Conference; Stanford University, Palo Alto, CA.
1998. ISBN: http://ring.etl.go.jp/openlab/horb.

Hoare, C. A. R. Communicating Sequential Processes. CACM. 1978 Aug;
21(8):666-677. ' :

Hutchinson, Norman. Emerald: An Object-Based Language for v
Distributed Programming [PhD Thesis]: University of Washington;
1987.

Hutéhinson, Norman; Raj, Rajendra; Black, Andrew; Leyv, Henry, and
Jul, Eric. The Emerald Programming Language [Technical Report].
Dept. of Computer Science, University of British Columbia; 1991
Oct.

Hyde, Daniel C. Java and Different Flavors of Parallel Programming
- Models. Buyya, Rajkumar, editor. High Performance Cluster
Computing. Prentice Hall; 1999; pp. 274-290.

Ishikawa, Yutaka and Tokoro, Mario. Orient84/K: An Object-Oriented
Concurrent Programming Language for Knowledge Representation.
Yonezawa, Akinori and Tokoro, Mario. Object-Oriented
Concurrent Programming. MIT Press; 1987; pp. 159-198.

Java Community Process. JSR 51: New I/O APIs for the Java Platform
[Web Page]. 2002 May. Available at:
http://jcp.org/jst/detail /51 jsp.

Java Grande Forum. Available at: http://www.javagrande.org.

Jul, Eric; Levy, Henri; Hutchinson, Norman, and Black, Andrew. Fine-
Grained Mobility in the Emerald System. ACM Transactions on
Computer Systems. 1988; 6(1):109-133.

Kafura, Dennis; Washabaugh, Doug, and Nelson, Jeff. Garbage
Collection of Actors. Proceedings of the European Conference on
Object-Oriented Programming on Object-Oriented Programming
Systems, Languages and Applications : 126-134.

191

Bibliography

91,
92.
93.
94,
95.
96.
97.
98.
99.

100.

101.

102.

Kafura, Dennis G. and Lee, Keung Hae. Inheritance in Actor-Based
Concurrent Object-Oriented Languages. ECOOP '89 Conference
Proceedings: Cambridge University Press; 1989: 131-145.

Karaorman, M. and Bruno, J. Introducing Concurrency to a Sequential
Language. Communications of the ACM. 1993 Sep; 36(9):103-115.

Katholieke Universiteit Leuven. Correlate home page [Web Page].
Available at: '
http:/ /www.cs.kuleuven.ac.be/ ~distrinet/projects/ CORRELATE
/index.html.

Kazi, Iffat H.; Chen, Howard H.; Stanley, Berdenia, and Lilja, David J.
Techniques for Obtaining High Performance in Java Programs.
ACM Computing Surveys. 2000 Sep; 32(3):213-240.

Kielmann, Thilo; Hatcher, Philip; Bouge, Luc, and Bal, Henri E. Enabling
Java for High-Performance Computing. CACM. 2001 Oct;
44(10):110-117.

Kim, Woo Young and Agha, Gul. Efficient Support of Location
Transparency in Concurrent Object-Oriented Programming
Languages. Supercomputing 1995; San Diego, CA USA. ACM;
1995: pp. 39-es.

Kiniry, J. and Zimmermann, D. A Hands-on Look at Java Mobile Agents.
IEEE Internet Computing. 1997 Jul-1997 Aug 31; 1(4):21-33.

Kirishnan, Sanjeev. Automatic Runtime Optimizations for Parallel Object-
Oriented Programming: University of Illinois at Urbana-
Champaign; 1996.

Lam, Monica [Technical Report]. An Efficient Shared Memory Layer for
Distributed Memory Machines. Stanford University, CA; 1994;
CSL-TR-94-627.

Le Fessant, Fabrice; Piumatta, Ian, and Shapiro, Marc. An
Implementation of Complete, Asynchronous, Distributed Garbage
Collection. Conference on Programming Language Design and
Implementation (PLDI); Montreal, Canada. ACM SIGPLAN;
1998.

Lea, Doug. Concurrent Programming in Java - Design Principles and -
Patterns. second ed. Addison Wesley; 2000.

Lewis, Ted and El-Rewini, Hesham. Loop Scheduling and Parallelising
Serial Programs. In Introduction to Parallel Computing. Englewood
Cliffs, NJ: Prentice Hall; 1992; pp. 283-346.

192

103.

104.

105.

106.

107.

108.

109.

110.

111.
112,

113.

114.

Lieberman, Henry. Concurrent Object-Oriented Programming in Act 1.
Yonezawa, Akinori and Tokoro, Mario. Object-Oriented
Concurrent Programming. MIT Press; 1987; pp. 9-36.

Lindholm, Tim and Yellin, Frank. The Java Virtual Machine
Specification. second ed. Addison-Wesley; 1999.

Liskov, B.; Hetlihy, M., and Gilbert, L. Limitations of Synchronous
Communication with Static Process Structure in Languages for
Distributed Computing. Proceedings of the 13th ACM Symposium
on Principles of Programming Languages; St. Petersburg, FL; 1986.

Liskov, B. and Shira, L. Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed Systems. Proceedings
of the SIGPLAN '88 Conference on Programming Language
Design and Implementation; 1988 Jun; pp. 260-267.

Loehr, Klaus Peter. Concurrency Annotations for Reusable Software.
CACM. 36(9):81-89.

Maassen, Jason; Nieuwpoort, Rob van; Vcldéma, Ronald; Bal, Henri;
Kielmann, Thilo; Jacobs, Ceriel, and Hofman, Rutger. Efficient
Java RMI for Parallel Programmmg Vrije Universiteit Amsterdam;
2000 Mar.

Macedonia, M. R.; Brutzman, D. P.; Zyda, M. J; Pratt, D. R.; Bartham, P.
T.; Falby, J., and Locke, J. NPSNET: A muld-player 3D virtual
environment over the Internet. Proceedings of the 1995
Symposium on Interactive 3D Graphics; Monterey, CA. ACM
SIGGGRAPH.

Macedonia, Michael R. and Zyda, Michael J. A Taxonomy for Networked
Virtual Environments. IEEE Multimedia. 1997 Jan-1997 Mar 31;
48-56.

Marrin, Chris. Proposal for a VRML 2.0 Informative Annex, External
Authoring Interface Reference. 1997.

MasPar VAST-2 [User's Guide, MasPar System Documentation]. MasPar
Computer Corporation. Version 1.2. 1992 FebDPN 9300-9035.

Matsuoka, Satoshi and Yonezawa, Akinori. Analysis of Inheritance
Anomaly in Object-Oriented Concurrent Programming Languages.
Agha, Gul; Wegner Peter, and Yonezawa, Akinori. Research
Directions in Concurrent Object-Oriented Programming. MIT
Press; 1993; pp. 107-150.

Maybury, Mark; D'Amore, Ray, and House, David. Expert Finding for

Collaborative Virtual Envitonments . CACM. 2001 Dec; 44(12):55-
56.

193

Bibliography

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

Meieran, Eugene. 21st Century Semiconductor Manufacturing
Capabilities. Intel Technology Journal. 1998; Q4.

Meyer, Bertrand. Systematic Concurrent Object-Oriented Programming.
Communications of the ACM. 1993; 36(9):56-80.

Meyer, Bertrand. Object-Oriented Software Construction. second ed.
Prentice Hall, Englewood Cliffs, NJ; 1997.

Miller, D. and Thotpe, J. A. SIMNET: The advent of simulator
networking. Proceedings of the IEEE. 1995 Aug; 83(8):1114-1123.

Milner, Robin. Communication and Concutrrency (International Series in
Computer Science). Prentice Hall; 1989.

Milner, Robin. The Polyadic n-Calculus: A Tutorial. Hamer, F. L; Brauer,
W., and Schwichtenberger, H., editors. Logic and Algebra of
Specification. Springer-Verlag; 1993.

Mohr, Eric; Kranz, D. A, and Halstead, R. H. jr. Lazy Task Creation: A
Technique for Increasing the Granularity of Parallel Programs.
IEEE Transactions on Parallel and Distributed Systems. 1991;
2(3):264-280.

Moreira, Jose. Closing The Petformance Gap between Java and Fortran
in Technical Computing. First UK Workshop on Java for High
Performance Computing (within EUROPAR '98); Southampton,
UK. 1998.

Moreira, José E.; Midkiff, Samuel P.; Gupta, Manish; Artigas, Pedro V.;
Wu, Peng, and Almasi, George. The NINJA Project.
Communications of the ACM. 2001 Oct; 44(10):102-109.

Motgan, Graham and Rischbeck, Thomas. Implementing Scalable
Networked Virtual Environments Using Replicated VRML Servers.
Workshop on Object-Oriented Reliable Distributed Systems
(WOODS 2000); Nuremberg, Germany.

Mukherjee, Nandini. On the Effectiveness of Feedback-guided
Parallelisation. Manchester: University of Manchester; 1999 Sep.

Murata, Kenichi; Horspool, R. Nigel; Manning, Eric G.; Yokote,
Yasuhiko, and Tokoro, Mario. Unification of Active and Passive
Objects in an Object-Oriented Operating System. Proceedings of
1995 Int. Workshop of Object Orientation in Operating Systems
IWO00Ss'95).

Nagle, John. Congestion Conttol in IP/TCP Internetworks. Ford
Aerospace and Communications Corporation; 1984 Jan; RFC896.

194

128.

129.

130.

131.

132.

133.

134,

135.

136.

137.
138.

139.

Nester, Christian; Philippsen, Michael, and Haumacher, Bernd. A More
Efficient RMI for Java. Proceedings of the ACM 1999 Conference
on Java Grande; Palo Alto, CA USA. ACM Press; 1999: pp. 152-
159.

Nierstrasz, Oscar. A Tour of Hybrid .
A Language for Programming with Active Objects. Mandrioli, D.
and Meyer, B., editors. Advances in Object-Otiented Software
Engineering. Prentice-Hall; 1992; pp. 167-182.

Nierstrasz, Oscar. Composing Active Objects - The Next 700 Concurrent
Object-Oriented Languages. Agha, Gul; Wegner, Peter, and
Yonezawa, Akinoti, editors. Research Directions in Concurrent

- Object-Oriented Programming. MIT Press; 1993; pp. 151-171.

Nitzberg, Bill and Lo, Virginia. Distributed Shared Memory: A Survey of
Issues and Algorithms. IEEE Computer. 1991 Aug; 52-60.

Open Systems Laboratory, Department of Computer Science, University
of Illinois. The Actor Foundry home page [Web Page]. Available at:
http:/ /www-osl.cs.uiuc.edu/ foundry.

Papathomas, Michael. Concurrency Issues in Object-Oriented
Programming Languages. Tsichritzis, D. C., Editor. Object-
Oriented Development. Geneva, CH: Université de Genéve, Centre
Universitaire d'Informatique; 1989; pp. 207-245.

Papathomas, Michael and Nierstrasz, Oscar M. Supporting Software
Reuse in Concurrent Object-Oriented Languages: Exploring the
- Language Design Space. Tsichritzis, D., editor. Object
Composition. Geneva: Centre Universitaire d'Informatique; 1991
Jun; pp. 189-204.

Parastatidis, Savas. Run-time Support for Parallel Object-Oriented
Computing [PhD Thesis]. Newcastle Upon Tyne, UK: University of
Newcastle Upon Tyne; 2000 Jan.

Pfister, Gregory F. In Search of Clusters. second ed. Prentice Hall; 1995.

Philippsen, Michael. [Technical Report]. Imperative Concurrent Object-
Oriented Languages. Berkeley, CA: International Computer
Science Institute; 1995 Aug; TR-95-050.

Philippsen, Michael. [Technical Report]. Imperative Concurrent Object-
Oriented Languages: An Annotated Bibliography. Berkeley, CA:
International Computer Science Institute; 1995 Aug; TR-95-049.

Philippsen, Michael and Haumacher, Bernhard. More Efficient Object
Serialization. Lecture Notes in Computer Science. 1999; 1586:718-.

195

Bibliagraphy

140.

141.

142.

143.

144,

145.

146.

147.

148.

149.

150.

151.

152.

Philippsen, Michael and Zenger, Matthias. JavaParty - Transparent
Remote Objects in Java. Concurrency: Practice and Experience.
1997; 9(11):1225-1242.

Plainfosse, David and Shapiro, Marc. A Survey of Distributed Garbage
Collection Techniques. Proc. Int. Workshop on Memory
Management; Kinross, Scotland. 1995.

Pooley, R. J. An Introduction to Programming in SIMULA. Blackwell
Scientific Publications; 1987. '

Pramanick, Ira. MPI and PVM Programming, Buyya, Rajkumar, editor.
High Performance Cluster Computing. Prentice Hall; 1999; pp. 48-
86. ,

Raje, Rajeev R.; Williams, Joseph I., and Boyles, Michael. An
Asynchronous Remote Method Invocation (ARMI) Mechanism for
Java. Concutrency: Practice and Experience. 1997; 9(11):1207-1211.

Reddy, Martin. Perceptually Modulated Level of Detail for Virtual
Environments [PhD Dissertation]: University of Edinburgh; 1997.

Rinard, Martin C.; Scales, Daniel J., and Lam, Monica S. Jade: A High-
Level, Machine Independent Language for Parallel Programming.
IEEE Computer. 1993; 26(6):28-38.

Rischbeck, Thomas and Watson, Paul. A Parallel VRML97 Server Based
on Active Objects. Palma, Jose M. L. M.; Dongarra, Jack, and
Hernandez, Vincente. VECPAR'2000 Selected Papers and Invited
Talks from the 4th International Conference on Vector and Parallel
Processing. FEUP, Porto, Portugal: Springer Verlag; 2001; pp. 47-
60.

Rischbeck Thomas and Watson Paul. A Scalable, Multi-user VRML
Server. IEEE VR2002 Conference; Orlando, FL. 2002.

Robinson, John L.; Stewatt, John A., and Labbe, Isabelle. MVIP-Audio
enabled multicast VNet . Proceedings of the Web3D-VRML 2000

fifth symposium on Virtual reality modeling language ; Monterey,
CA, USA. 103-109.

Roulo, Mark. Accelerate your Java apps! Javaworld. 1998 Sep.

Schmalstieg, Dieter. LODESTAR - An Octree-Base Level of Detail
Generator for VRML. SIGGRAPH Symposium on Virtual Reality
Modeling Language (VRML'97); Monterey CA, USA. 1997.

Schmidt, Douglas; Stal, Michael; Rohnert, Hans, and Buschmann, Frank.
Pattern-Oriented Software Architecture: Patterns for Concurrent
and Networked Objects. John Wiley & Sons; 2000.

196

153.

154.

155.

156.
157.

158.

159.

160.
161.

162.

163.

164.

165.

166.

Schmidt, Douglas C. and Fayad, Mohamed E. Lessons Learned Building
Reuseable OO Frameworks for Distributed Software.
Communications of the ACM. 1997 Oct; 40(10):85-87.

Shah, Apu. JavaSpaces: An Object Sharing Framework That May
Redefine Distributed Computing [Web Page]. 1997 Oct 21.
Available at:
http:/ /www.developer.com/journal/techfocus/n_tech_javaspaces.

html.

Silva, Luis Moura E and Buyya, Rajkumar. Parallel Programming Models
and Paradigms. Buyya, Rajkumar, editor. High Performance Cluster
Computing. Prentice Hall; 1999; pp. 4-27.

Singhal, Sandeep and Zyda, Michael. Networked Virtual Enviroments.
ACM Press; 1999,

Skillicorn, David and Talia, Domenico. Models and Languages for
Parallel Computation. ACM Computing Sutveys. 1998; 30(2).

Sommerville, Ian. Software Engineering. sixth ed. Addison-Wesley; 2001.

Squyres, Jeffery M.; McCandless, Brian C., and Lumsdaine, Andrew.
Object Oriented MPI: A Class Library for the Message Passing
Interface. Parallel Object-Oriented Methods and Applications
(POOMA '96); Santa Fe, NM.

Steinberg, Daniel. The Java Grande Forum Pushes Java Toward New
Heights. Javaworld. 1999; (September).

Stetling, Thomas; Messina, Paul, and Smith, Paul. Enabling Technologies '
for Petaflops Computing. MIT Press; 1995.

Sun Microsystems. RMI [Web Page]. 1998.

Sun Microsystems, Inc. Java Native Interface Specification [Web Page].
1997 May 16. Available at:

http:/ /java.sun.com/products//jdk/1.2/docs/guide/jni/spec/jniT
OC.doc.html. :

Sun Microsystems, Inc. Java Object Serialization Specification [Web
Page]. 1998 Nov. Available at:
ftp:// ftp.javasoft.com/docs/jdk1.2/serial-spec-JDK1.2.pdf.

Sunderam, V. S. PVM: A Framework for Parallel Distributed Computing.
Concurrency: Practice & Experience. 1990 Dec; 2(4):315-339.

Tada, Yusuke. Tara: Actor-Based Object-Oriented Language for Efficient
Distributed Software Development: Kyoto University; 1998.

197

Bibliography

167.

168.

169.

170.

171.

172

173.

174.

175,

176.

177.

Taura, Kenjiro; Matsuoka, Satoshi, and Yonezawa, Akinori. An Efficient
Implementation Scheme of Concurrent Object-Oriented Languages
on Stock Multicomputers. ACM SIGPLAN Notices. 28(7):218-228.

. Java Grande Forum Report: Making Java work for high-end
ComputingThiruvathukal, George K. ; Breg, Fabian; Boisvert,
Ronald; Darcy, Joseph; Fox, Geoffrey C.; Gannon, Dennis;
Hassanzadeh, Siamak; Moreira, Jose; Philippsen, Michael; Pozo,
Roldan, and Snir, Marc. Supercomputing '98: International
Conference on High Performance Computing and
Communications; Orlando, FL. panel handout.

Tomlinson, C. and Singh, V. Inheritance and Synchronization with
Enabled Sets. Proceedings of the OOPSLA '89 Conference on
Object-oriented Programming Systems, Languages and
Applications: 103-112.

Tower Technology Corporation. Towet] Java Virtual Machine [Web
Page]. 2001; Accessed 2001. Available at: http:/ /www.towerj.com.

Tripathi, Anand; van Oosten, James,v and Miller, Robett. Object-Oriented
Concurrent Programming Languages and Systems. JOOP. 1999;
(November/December):22-29.

van Nieuwpoort, Rob; Maassen,]asoh; Bal, Henri E.; Kielmann, Thilo,

and Veldema, Ronald. Wide-Area Paralle]l Computing in Java.
Proceedings of the ACM 1999 Conference on Java Grande; Palo -
Alto, CA USA. ACM PressPalo Alto, CA USA; 1999.

Van Oeyen, Johan; Bijnens, Stijn; Joosen, Wouter; Robben, Bert; Matthijs
Frank, and Verbaeten, Pierre. A Flexible Object Support System as
Runtime for Concurrent Object-Oriented Languages.
Zimmermann, Chris, editor. Advances in Object-Oriented
Metalevel and Reflective Architectures. CRC Press, Inc.; 1996; pp.
219-236.

Veldema, Robert; Nieuwport, Rob van; Maassen, Jason; Bal, Henri E.,
and Plaat, Aske. Efficient Remote Method Invocation. Vrije
Universiteit Amsterdam, The Netherlands; 1998 Sep; IR-450.
Technical Report.

Vinoski, Steve. CORBA: Integrating Diverse Applications within
Distributed Heterogeneous Environments. IEEE Communications.
1997 Feb; 14(2).

Vinoski, Steve. New Features for CORBA 3.0. CACM. 1998; 41(10):44-
52,

Watson, Paul and Parastatidis, Savas. [Technical Report]. NIP: A
Parallel Object-Oriented Computational Model. University of
Newcastle Upon Tyne; 1998 Nov; CS-TR-658.

198

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

Watson, Paul and Parastatidis, Savas. [Technial Report]. An Optimised
Lazy Task Creation Technique for Iterative and Recursive
Computations. University of Newcastle Upon Tyne; 1999.

Webgain. Java Compiler Compiler (JavaCC) - The]ava Parser Generator
[Web Page]. Available at:
http:/ /www.webgain.com/products/java_cc/.

Wegner, Peter. Dimensions of Object-Based Language Design. ACM
SIGPLAN Notices. 1987 Dec; 22(12):168-182.

Welsh, Matt and Culler, David. Jaguar: Enabling Efficient
Communication and I/O from Java. Concurrency Practice and
Experience. 1999 Dec.

White, Stephen. VNet website:
http:/ /www.csclub.uwatetloo.ca/u/sfwhite/vnet/ [Web Page].
Accessed 2000 Apr. Available at:
http://www.csclub.uwaterloo.ca/u/sfwhite/vnet/
http://ariadne.iz.net/ ~jeffs/vnet/.

Wilkinson, Barry and Allen, Michael. Parallel Programming: Techniques
and Applications Using Networked Workstations and Parallel
Computers. Prentice-Hall, Inc.; 1999.

Yelick, Kathy; Semenzato, Luigi; Pike, Geoff, and Miyamoto, Carleton.
Titanium: A High-Performance Java Dialect. ACM Java Grande
Conference; Stanford University, Palo Alto, CA. 1998.

Yokote, Yashuhiko and Tokoro, Mario. Experience and Evolution of
Concurrent Smalltalk. OOPSLA '87; Orlando, FL. ACM Press;
1987: pp. 406-415.

Yonezawa, Akinori. ABCL: An Object-Oriented Concurrent System --

Theory, Language, Programming, Implementation and Application.
MIT Press; 1990.

Yonezawa, Akinori; Shibayama, Etsuya; Takada, Toshihiro, and Honda,
Yasuaki. Modelling and Progamming in an Object-Oriented
Concurrent Language: ABCL/1. Yonezawa, Akinori and Tokoro,

Mario. Object-Oriented Concurrent Programming. MIT Press;
1987.

Yonezawa, Akinori and Tokoro, Mario. Object-Oriented Concurrent
Programming. MIT Press; 1987.

Yu, Weimin and Cox, Alan. Java/DSM: A Platform for Heterogeneous
Computing, Concurrency: Practice and Experience. 1997;
9(11):1213-1224.

199

Bibliography

190. Yuen, C. K. and Feng, M. D. Adding Objects to Parallel Languages.
Software’Concepts & Tools. 1995; 16:95-105.

191. Zenger, Matthias. Transparente Objektverteilung mjava University of
Karlsruhe, IKA; 1997 Feb.

192. Zyda, Michael J.; Pratt, David R.; Monahan, James G., and \Wilson, Kalin

P. NPSNET: constructing a 3D virtual wotld. Proceedings of the
1992 Symposium on Interactive 3D Graphics; 1992: 147-156.

200

	270789_001
	270789_002
	270789_003
	270789_004
	270789_005
	270789_006
	270789_007
	270789_008
	270789_009
	270789_010
	270789_011
	270789_012
	270789_013
	270789_014
	270789_015
	270789_016
	270789_017
	270789_018
	270789_019
	270789_020
	270789_021
	270789_022
	270789_023
	270789_024
	270789_025
	270789_026
	270789_027
	270789_028
	270789_029
	270789_030
	270789_031
	270789_032
	270789_033
	270789_034
	270789_035
	270789_036
	270789_037
	270789_038
	270789_039
	270789_040
	270789_041
	270789_042
	270789_043
	270789_044
	270789_045
	270789_046
	270789_047
	270789_048
	270789_049
	270789_050
	270789_051
	270789_052
	270789_053
	270789_054
	270789_055
	270789_056
	270789_057
	270789_058
	270789_059
	270789_060
	270789_061
	270789_062
	270789_063
	270789_064
	270789_065
	270789_066
	270789_067
	270789_068
	270789_069
	270789_070
	270789_071
	270789_072
	270789_073
	270789_074
	270789_075
	270789_076
	270789_077
	270789_078
	270789_079
	270789_080
	270789_081
	270789_082
	270789_083
	270789_084
	270789_085
	270789_086
	270789_087
	270789_088
	270789_089
	270789_090
	270789_091
	270789_092
	270789_093
	270789_094
	270789_095
	270789_096
	270789_097
	270789_098
	270789_099
	270789_100
	270789_101
	270789_102
	270789_103
	270789_104
	270789_105
	270789_106
	270789_107
	270789_108
	270789_109
	270789_110
	270789_111
	270789_112
	270789_113
	270789_114
	270789_115
	270789_116
	270789_117
	270789_118
	270789_119
	270789_120
	270789_121
	270789_122
	270789_123
	270789_124
	270789_125
	270789_126
	270789_127
	270789_128
	270789_129
	270789_130
	270789_131
	270789_132
	270789_133
	270789_134
	270789_135
	270789_136
	270789_137
	270789_138
	270789_139
	270789_140
	270789_141
	270789_142
	270789_143
	270789_144
	270789_145
	270789_146
	270789_147
	270789_148
	270789_149
	270789_150
	270789_151
	270789_152
	270789_153
	270789_154
	270789_155
	270789_156
	270789_157
	270789_158
	270789_159
	270789_160
	270789_161
	270789_162
	270789_163
	270789_164
	270789_165
	270789_166
	270789_167
	270789_168
	270789_169
	270789_170
	270789_171
	270789_172
	270789_173
	270789_174
	270789_175
	270789_176
	270789_177
	270789_178
	270789_179
	270789_180
	270789_181
	270789_182
	270789_183
	270789_184
	270789_185
	270789_186
	270789_187
	270789_188
	270789_189
	270789_190
	270789_191
	270789_192
	270789_193
	270789_194
	270789_195
	270789_196
	270789_197
	270789_198
	270789_199
	270789_200
	270789_201
	270789_202
	270789_203
	270789_204
	270789_205
	270789_206
	270789_207
	270789_208
	270789_209
	270789_210
	270789_211
	270789_212

