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ABSTRACT

When information is stored in a computer it can usually be
organised in many different ways. If the information is
used for a number of different purposes the ideal
organisation is not always obvious. It will depend on how
often various parts of the data are used, how often they are
changed, and the amount of data taking part in each
transaction. It may be difficult to predict these
parameters in advance, especially in data-base applications
where the pattern of use may change as time goes Dy.
Ultimately, one can visualise systems which can
automatically choose the optimum representation, or which
can substantially assist in the choice. A step in this
direction, which could itself find immediate application, is
to find a practical way to tailor programs to a particular
data organisation. The thesis describes an experimental
system which does this for a 1limited range of programs, and
the work which 1lead up to it. Both data retrieval and

simple updates are considered.

One prerequisite is a method of writing the program so that
it does not depend on the way that the data is stored. A
number of data-base systems achieve this independence by
describing the data as a collection of relations. These
systems and the background to them are reviewed. The

experimental system is loosely based on the use of
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relations, but some modifications have been made to make the
processing simpler and so that the characteristics of the
data organisation can be described. The system incorporates
the representation into the program and produces a tailored
version which is expressed in abstract, Algol-like code.
The result is intended to be similar to code which a human
programmer might write in similar circumstances, but as far

as possible ignoring the details of any particular

implementation.
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CHAPTER 1

INTRODUCTION

When designing a computer program, one of the factors which
must be considered is the way tﬁat the data should be
organised. This has a strong influence both on the
processing time and on the storage that the resulting

program will use.

In a simple program intended for a very specific purpose,
the logical organisation of the data is often self-evident.
In a larger piece of software, for example a commercial
compiler, operating system or data-processing suite, the
best organisation is usually much less obvious. A program
of this sort will be built from a number of smaller programs
which operate on the same data. Considering the
sub~programs individually, we may be able to determine the
data organisation that each ideally needs, but when they are
put together we often find that their requireﬁents conflict.
We may then have to decide whether a redundant organisation
of the data should be maintained, satisfying the processing
requirements at the expense of storage, whether suitable
structures should be created temporarily to suit a
particular process, or whether some of the component
programs should be adapted to work with a structure which is
less than ideal. Each of these alternatives might prove the

best compromise under some conditions,
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The problem is shown up most sharply in the design of a
data-base. For example if this were to store information on
a number of manufactured assemblies and the parts that each

contained, we might ask at different times for:

(1) a complete list of assemblies and their

component parts,

(ii) the parts used in a particular assembly,

(iii) the assemblies where a particular part
is usedqd,

(iv) whether a part is used in a particular
assembly.

In addition new assemblies may be added to the data-~base, or
an assembly may be modified so that different parts are
used. Each of these wuses of the data ideally needs a
different data-structure. We can choose to store one or
more of these to facilitate particular retrievals, but as
more redundancy is employed, so the difficulty of modifying
the data increases, and so more storage space will be

needed.

The aim of the work described here has been to take
practical steps toward an understanding of the factors which
influence the choice of data structure. There is an
emphasis on the application to data-processing, that is

retrieving data from, and modifying the data in, an on-line
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data-base. This 1is because these applications often have
quite a complex structure, examples come fairly readily to
mind and the potential benefits of machine assistance are
most obvious in this area. While the design of a systems
program like a compiler may be difficult, the job it has to
do will remain largely unchanged throughout its lifetime. A
data-base on the other hand, models some part of the outside
world. The demands made on it may vary from week to week as
the interests of its users change, it may grow in directions
which were not anticipated by its designers and it may need
to reflect organisational changes in the world at large.
Ideally one would 1like to be able to adapt the data
structures kept, and the processing methods used, to each

change in circumstances.

This thesis describes a processor which‘ will automatically
adapt a computation to a given data representation. A
practical method of adapting algorithms to work with a
particular configuration of stored data could be applied
directly in high 1level data-base systems, where existing
data can be used by people with no formal training in
programming. For example a supermarket company may have a
number of outlets and record the sales at each branch in a
central data-base by monitoring the transactions at each
check-out. The central data-base is supported by an expert
programming team, and performs stock control and provides

sales statistics for management at head office, Branch
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managers may also have their own individual information
needs, but do not have the programming expertise to provide
it. This could be overcome by providing a very high level
interface to the central data-base and a processor to
generate retrieval algorithms automatically, adapting them

to the existing data organisation.

In a research environment, for example in studying rock
samples, there may be no central programming team. In this
case the data-base system may need to take responsibility,
not only for generating detailed retrieval algorithms, but
also for organising the data representation. A number of
systems have been aimed at this broad area, for example the
Peterlee IS/1 system (Notley 1972), SQUARE (Boyce 1973) or
Woods Lunar Data System (Woods 1972). Stocker and Dearnley
in particular have considered the problems of adapting the
representation to suit the particular pattern of requests
encountered (Stocker and Dearnley 1973). However, to
successfully adapt data structures to a pattern of
transactions it is clearly necessary to understand how each
of the processes depends on the way the data is stored.
Developing a system which can reliably adapt programs to a
given storage organisation may lead to such an understanding
and so to a simple model by which the effect of a change in

data organisation can be predicted.
There are also more far-reaching efforts to automate, or to
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partially automate, the programming of complete business
applications (Goldberg 1974, Krohn 1972). It has been
suggested by Darlington, Knuth, Gerhard and others
(Darlington and Burstall 1973, Knuth 1974, Gerhard 1974)
that a good way to produce a correct, efficient program is
to write the algorithms in as clear a way as possible, so
making it easy to verify that they are functionally what is
needed, and then to transform the program to optimise its
performance on the machine., This method is particularly
suited to (and indeed may necessitate) automatic assistance.
. Some of the transformations will be concerned with questions
of data organisation, such as whether to store a structure
permanently or compute it each time it is needed. Studying
ways of adapting programs to a particular data organisation
should give insight into a large and interesting class of

such program transformations.

‘The aim therefore has been to consider a program which is
written without a knowledge of the actual data organisation,
and to investigate how it can be combined with a definition
of an actual representation, so that the result executes
reasonably efficiently. A system which automatically
adapted a program to the representation could be applied
directly to high-level data-base systems, and might, in the
longer term, assist in the development and maintainance of
large applications. The insight gained into the effect of

altering the representation might also suggest new methods
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of determining the optimum data organisation.

The following sections contain a brief introduction to the
work described in the remaining chapters. Section 1.1 gives
an example of two programs which are intended to give the
same result using different data structures. This shows the
type of transformation we are trying to achieve. Then
sections 1.2 and 1.3 introduce the abstract view of data
which is used, and the way that this reflects the properties
of a data representation which are of interest. Some
examples are then given to show how the description of the
data of interest can be compiled into a program to obtain
it. Finally, section 1.5 describes how the remainder of the

thesis is organised.

3.1 An example

Suppose that a small factory, manufacturing say electronic
equipment, wishes to keep a record of the assembled products
it makes and the components used in each. We will assume
that this "bill of materials" data is to be kept on a direct
access device, so that both sequential and random access can

be used,.

Each record in the file may contain (amongst others) four
fields:
ASSEMBLY - the name or other identification of the

finished product.

section 1.1 6



PART - - the name of one of the components used
in an assembly.

QTY T - the number of components of type PART
used in an assembly.

WEEKLY-OUTPUT - the number of assemblies produced per
week.

The format is indicated at the top of figure 1.1,

When ordering new supplies of component parts, it might be
decided that each should be ordered in just sufficient
quantity to cover a single week's requirements. For this
purpose, a list 1is needed showing each part, together with
the  total number used in all assemblies in one week.
Producing this list is quite straight-forward if the bill of
materials file were kept in PART order, that is, 'with all
records relevant to one component stored together. It is
then possible in one scan of the.file, to prdcess the parts
sequentially. For each record, the number used in an
assembly is multiplied by the number of assemblies produced
each week, and the products are summed for the batch of

records corresponding to a single component.

However, it is 1likely that other processing requirements
will demand that the records are kept in ASSEMBLY, rather
than PART order. There is then a choice between keeping the
data redundantly so that both of the orderings are

available, or effectively re=-sorting the file for this and
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similar processes, The two situations are illustrated in
the lower half of figure 1.1, When the file is kept only in
ASSEMBLY order, to find the weekly usage of all parts the
file could first be sorted into PART order, and subsequently
processed to sum the quantities used: The processing needed
is labelled "program 2", If the data is kept permanently in
PART order, only the 1last step is needed and this is

labelled "program 1",

If the. application were to be programmed using the Report
Program Generator (RPG) (Bowden 1970) and the data is not
properly sorted, it will be necessary to perform a sort and
then run the program on the newly created file, exactly as
illustrated. The file in PART order can be thought of as an
intermediate structure needed to produce the result, and
this can either be stored, or generated each time it is

needed,

If the application were instead programmed ih, say, PL/1,
more complex internal data-structures can be used. There is
no need to perform an initial sort when the data is not
correctly ordered and it will be more efficient to omit it.
The programming becomes more complicated and to illustrate
this figure 1.2 shows the outline of two programs which
might be written, the fifst for sorted data, and the second
for unsorted data. (It is not necessary to read these

programs in detail,) Pfogram 2 does not obviously perform
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DCL 1 BM RECORD,

2 TKSSEMBLY, PART) CHAR (20),2 (QTY, WEEKLY~OP) FIXLD
DCL PNAME CHAR (20), TOTAL FIXED (4);

READ FILE(BM_FILE) INTO (BM_RECORD) ;

DO WHILE (PART -= "Z222"); /*dummy last card*/
PNAME = PART; TOTAL = 0;
DO WHILE (PART = PNAME);
TOTAL = TOTAL + QTY* WEEKLY-OP;
READ FILE(BM_FILE) INTO (BM_RECORD) ;
END; -
PUT LIST (PNAME, TOTAL);
END;

a) Assuming Part order.

DCL 1 BM RECORD,
2 TASSEMBLY, PART) CHAR (20),2 (QTY, WEEKLY-OP) FIXED
/* AUXILIARY PART TABLE */
DCL PNAME (N) FIXED (4); TOTAL (N) FIXED (4):
DCL PMAX INITIAL (0); /* GIVES LAST ENTRY USED */

READ FILE(BM_EILE) INTO (BM_RECORD) ;

DO WHILE (PART —~= "22Z2");
/* LOOK FOR PART IN TABLE */
DCL FOUND BIT (1); FOUND = '0'B;
DO I = 1 TO PMAX WHILE (~FOUND) ;
IF PNAME (I) = PART THEN FOUND = '1'B;
END; .

IF —FOUND THEN
DO; /* MAKE A NEW TABLE ENTRY */
I, PMAX = PMAX + 1;
PNAME (I) = PART; TOTAL (I) = 0;
END;

/* ADD PRODUCT INTO APPROPRIATE TOTAL */

TOTAL (I) = TOTAL (I) + QTY * WEEKLY-OP;

READ FILE(BM_FILE) INTO (BM_RECORD);
END;

/* PRINT ALL TOTALS */
DO I = 1 TO PMAX;

PUT LIST (PNAME (I), TOTAL (I) );
END;

b) Assuming Assembly order.

Figure 1,2
PL/1 outlines for obtalning weekly-use.
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the same function as a sort followed by program 1, A
running total is kept for each PART during a single pass
‘down the data and the final values are subsequently printed
out. The program shown has been simplified by using a
simple linear search to locate part entries in an auxiliary
table, and by ignoring any requirement for an alphabetic
list of parts. It would be preferable to store the running
totals in a binary tree in order to achieve a logarithmic,
rather than 1linear, dependency on the number of different
parts appearing. If properly programmed this method will be

more efficient than pre-sorting the data.

One of the major concerns of this investigation has been to
find a way of reliably achieving optimisations such as

this.

With examples written in a conventionai programming
language, the relationship between programs using different
data structures to acheive the same result is often not
obvious. As Hopcroft (Aho, Hopcroft and Ullman
1975)suggests, the relationship becomes much clearer if we

take a more abstract view of the process.
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1.2 Abstract view of data

- The method of generating programs which we have adopted uses
an abstract description of the data, modelling its structure

using functions and sets.

In the example, the bill of materials data is held in a
sequential file of records. Abstractly we view this file as
a set, each member corresponding to a record in the file,
We might call this set "uses", as each member represents the

use of one part in one assembly.

The records in the bill of materials file contain four
fields, of which, for the moment, we will consider only
three, ASSEMBLY, PART and QTY. These fields are modelled
using functions. For instance, to correspond with ASSEMBLY
we use a function "assembly". Whén applied to a member of
the set "uses" it returns the value contained in the
ASSEMBLY field of the corresponding bill of materials

record.

Very informally, the situation can be shown as follows:
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uses

The large dots correspond to sets, and the 1lines joining
them are labelled by functions. For example, the function
"part" takes a member of "uses" and produces a member of the
set "parts".

A possible physical realisation of the abstract functions is
shown in figure 1.3(a). Given a sequential file like that
illustrated, we could read through all the records. This is
modelled by the‘ability to sequence through all the members
of the abstract set "uses", retrieving all the members in
turn., The members of this set correspond to fecords in the
bill of materials file. Having obtained a particular record
in the physical file, we can extract the ASSEMBLY, PART and
QTY data. This is modelled by the ability to apply to a

member of "uses" any of the functions "part", "assembly" and

"qtyn .

Although we are using functions and sets, throughout this
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Figure 1.3 Alternative representations
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thesis they are treated informa}ly. They merely provide a
»convenient way to ignore . unwanted details of a
representation. To take an extreme case, the assembly, part
and quantity data might be held in three separate arrays,
and members - of the set "uses" might merely be integer
indexes to the arrays. Our abstract description remains
unchanged because the same operations can be carried out.
In programming terms however, the representation would be

considered very different from the sequential file.

The program in section 1.1 (to find the weekly consumption
of all parts) ideally requires that the records relating to
each part can be obtained together. The simpler code

assumes that the function:
uses-of-part(p) = {b | part(b)=p}

is stored. Given a part p, "uses¥of-part(p)“ will stand for
the set of members of "uses" whose part is p. These
correspond to the bill of materials records containing part
p. If we stored all the parts as a list of records and in
each kept the result of this function, again represented as
a sequence, then a hierarchical organisation like that in

figure 1.3 (b) would be obtained.
In the figure the functions "uses-of-part","assembly", and
"quantity" are represented by the fields USES-OF-PART,

ASSEMBLY and QTY. Again the representation is only one of a
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number of possible ways of storing the data modelled by:

uses

oscs-of-r«ct a&stnb‘:,

— W*\ﬁ

parts » assemblies

V
L

q’uanh'k'u

The function "uses-of-part"™ produces a subset of (rather
than a single member of) the set "uses". The diagram merely
shows how the functions and sets are connected and how one
can get from one set to another, It does not accurately

describe the domains and ranges of the functions.

In a similar way a representation which allowed all the data
for each assembly to be obtained together might store the

function:
uses-of-assembly(a) = (b | assembly(b)=a}

together with a set "assemblies" and the functions "part"
and "quantity". Such an organisation is shown in figure 1.3
(c). Although the sorted files in the earlier example are
not quite in this hierarchical form, it would be easy to
arrange a subroutine to present them in this 1light. The
first PL/I program, for instance, is structured as .if the

data were hierarchical.
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In summary, we make the assumption that the characteristics

of the data organisation which are of interest can be

reflected by a model in terms of functions and sets. The

details of how these are stored will be ignored.

section 1.2
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1.3 Definitions.

We might also record in the data-base information about each
part and each assembly. For example we might include the

following functions:

cost (p)=n meaning the cost of part "p" is "n"

number-on-hand(p)=n meaning there are "n" of part "p"

on hand

supplies(m,p) meaning manufacturer "m" can supply
part "p"

weekly-prod(a)=n meaning "n" assemblies of type "a"

are proddced per week.

The first two functions, "cost" and "number-on-hand" will be
contained in a part file; the function "weekly=-prod" belongs
in an assembly file. In the original exémple this data was
included in the bill of matérials file as a field
WEEKLY_OUTPUT, but a problem can arise if the values are
stored here. In‘the bill of materials file there is more
than one record associated with each assembly. It is
therefore possible, perhaps as a result of an update, that
two records could give conflicting information about the
number being produced. It is to avoid probems of this sort
that Codd, in the relational treatment of data, defines

"third-normal-form". Chapter 2 expands on this point.
The function "weekly-prod" does not have this problem, as it

section 1.3 18



associates only one output with each assembly and so cannot
give inconsistent information. However, if it were more
convenient to use, the function "weekly-output" can be

introduced by defining it in terms of "weekly-prod":
weekly:output(b) = weekly-prod(assembly(b))

By storing this function in a set of £fields we get a
representation like that used in the original example. But
it is now clear that these fields are, in fact, redundant.
They depend on other values stored, and in particular are
not independent of one another. This 4is important when
considering update because all ~related fields must be

changed consistently.
Further definitions can be made using the available
functions, for example:

out-of-stock (p) = (number-on-hand(p) = 0).

This gives a predicate satisfied only by parts which are not

in stock.
cost-on-hand(p) = cost(p) * number-on-hand(p).

This logically forms an addition to the parts file, giving

the product of two other fields.
rate-used(b) = quantity(b) * weekly-~output (b)

defines the number of parts used each week in the production
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of an assembly. The part and the assembly are those

associated with the bill-of=-raterials item b.

suppliers(p) = {m|supplies(m,p)}

defines a function corresponding to a field in the parts
file containing a set of all suppliers of the part. Using

this we can define:
can't-obtain(p) = not some (suppliers(p))

Here some is a function corresponding to the existential
quantifier in predicate calculus. Its argument is a set, in
this case of the manufacturers supplying part p. Some
determines whether there is at least one value contained in

the set.

Another operator on sets is the, If the set contains a
single member it will produce that member, but otherwise is

undefined. For example:
use (a,p)=the {r:uses | part(r)=p and assembly(r)=a}

defines a function which, given a part and an assembly,
produces the unique member of "uses" which relates that part
and that assembly. The function models an index to the

"bill-of-materials™ file.

The functions or predicates defined by each of these

equivalences might be used as part of a program to extract
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data of interest from the data-base. The values they
represent could be computed each time they are needed, or,
to avoid repeated re-calculation they could be stored
permanently. The latter choice usually produces an overall
representation which stores the data redundantly, with a

corresponding update problem,

Given a program to retrieve some data, some of the functions
it uses will be supported directly by the representation.
Others will not be stored. For these, the definition must
be used to relate them to functions which are part of the
stored representation. Again returning to the example of
section 1.1, the program to find the weekly consumption of
parts assumed that it had available a representation

modelled by the functions and sets:

parts the set of all parts.
uses-of-part giving the bill-of-materials data

for a part.

weekly-output giving the number of assemblies
produced.
qty giving the number of each part used

in each assembly.

The first PL/I program shows the straightforward loop needed
to do the processing when the data is indeed stored., 1If
"uses-of-part” is not stored directly, a definition must be

provided so that its value can be computed. Given only a
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sequential file, it must be expressed in terms of the

function "part":
uses-of-part(p)= {b | part(b)=p} .

The problem then is to re-organise the computation to make
the best of the situation., As the second PL/I program
shows, it is often not the best policy to first create real
data corresponding to the defined function (performing th
preliminary sort), nor to use its definition blindly to
compute the uses of each part encountered. This latter
course would mean scanning the bill of materials file many
times, Instead we would 1like to achieve the basically

sequential program shown, using an auxiliary table.

The next section introduces the way this is done, but taking

a less complex example.

1.4 Code generation

Suppose we wished to obtain a list of the assemblies whose
production used more than 1000 4BA NUTs each week. The

assemblies of interest can be expressed:
{8 | rate-used(use(a,"4BA NUT"))>1000} .

Suppose further that "rate-used" were stored in the bill of
materials file, and that these records were kept
sequentially. It would be necessary to inspect the part and

rate-used field of each of the records, looking for the
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value "4BA NUT", and a rate greater than 1000, The code

needed, when expressed in an Algol-like language, might be:

for b in uses do

if part(b) = "4BA NUT" then

ig rate-used(b) > 1000 then

write(assembly(b))

od

The retrieval could be performed more quickly if the file
were inverted on parts. This could be reflected by keeping

the field corresponding to:

N

uses-of-part(p)={b|part(b)=p}
The code could then become:

for b in uses-of-part("4BA NUT") do
if rate-used(b) > 1000 then

write (assembly (b))

od

This makes direct use of the function "uses-of-part", giving

directly the assemblies containing each part.

If the function rate-used were not stored at all, it would

be necessary to refer to the assembly file in order to
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compute it, using the definition in the 1last section. For

example:

for b in uses-of-part("4BA NUT") do
let t1 = guantity(b);
let t2 = weekly-prod(assembly(b));
let rate-used = t1 * t2;
if rate-used > 1000 then

write (assembly (b))

od.

The process by which this code is obtained has a similar
goal to the access-path selection carried out in a data-base
system, It attempts to produce the required answer at
minimum cost, In the example the value of "p" in
uses-of-part(p) is given, so that ideally the process should
use this function to obtain tﬁe assemblies of interest
‘directly. It can do this in the second case. 1If this
function is not stored, then the system must go back to its
definition and simulate it by scanning all records and
selecting those of interest. The number of iterations
needed and so the cost of doing the calculation, will be
greater if this is necessary. The method by which the code
is produced uses, as far as possible, only structural
information to produce an optimum program. In practice
direct estimates of the cost of execution must sometimes be

used, but are difficult to make.
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UEdate

If the weekly output of an assembly were to be increased, we

might record this in the data-base by an assignment, say:
weekly-prod ("DVM"):= 60

where "DVM" is used to identify an assembled

digital-volt-meter,

This logically has the effect of re-setting the field
weekly-prod in the record corresponding to "DVM" in the
assembly file. Other actions would be needed, however, if
the data were stored redundantly. For example if the
information were also kept in the bill-of-materials file, a

number of fields must be re-set:

for b ig uses do

if assembly(b) = "DVM" then

weekly-output(b) := 60
£fi
od

Slightly more work is required if the field rate-used were

also held:
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for b in uses do
if assembly(b) = "DVM" then
rate-used(b) :=60*quantity(b) ;
weekly-output (b) :=60
£

od

Again, many variations of this code are possible, depending
on the functions which are available. These pieces of code
must be executed when a modification takes place to
guarantee that the values stored corresponding to the

functions:

weekly-output (b) = weekly-prod (assembly(b))

rate-used (b) = weekly-output (b) * quantity (b)

remain correct after weekly-prod has been changed. The
problem here is essentially to find the fewest changes that

must be made so that the resulting data is correct.

In summary, we have investigated a system which aims to
adapt programs to a given data organisation. The data
organisation is modelled by functions and sets so that
unwanted details of the representation can be ignored.
Programs are assumed to be written in terms of these
functions and sets wusing a limited set of operations. The
operations chosen are similar to those in Codd's relational

algebra, but modified to suit the slightly different data
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model. The program can assume a different data organisation
than that which actually exists, but definitions must then
be provided which relate the assumed and actual
representations., For retrieval, the system combines the
program and- these definitions and then searches for a
processing algorithm which it considers satisfactory. For
update, it has the additional task of manipulating the
program to find an efficient way of modifying redundantly
held data. The resulting algorithms are expressed in a

simple, but informal, Algol-like language.

The system was produced as a step toward understanding the
relationship between the processing algorithm and the data
organisation. It might, however, have a practical wuse in
data-base environments where it is an advantage to be able

to write programs without knowing how the data is stored.

1.5 Outline of contents

The remaining chapters give an account of the work which
lead to this approach, and describe the methods used in the

experimental system.

There are a number of data-base systems which are based on
the use of operations on sets of n-tuples. Chapter 2
reviews some of these systems and the background to them.
Codd's work on relational data and the operations to

manipulate it were aimed at presenting a view of the data in
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an information system which is independent of the way in
which it happens to be stored. Relations form the basis of
the work described here, but some detailed changes in their
treatment were found +to be necessary, mainly to give a
closer match - with predicate logic.. The modifications are
discussed in Chapter 3. As a preliminary to the description
of the code generation process, some further examples are

given to show how the relations can be represented in

storage.

Chapter 4 describes how a program written in terms of
abstract functions and predicates can be compiled to
Algol-like code, once the data representation is known. The
programs produced are intended to be similar to those which
a programmer might write in similar circumstances, but are
expressed 1in an abstract language which has not been
implemented. This avoids the need to consider the detailed
conventions of an existing language 1like PL/1 or Cobol, and
the output code ié used just to suggest the structure of a
suitable program., It might be implemented in various ways,
for example transliterating to a conventional language, or
using an interpfeter to form a complete high level data-base

sub-system,

Chapter 5 shows how ‘code can be produced to perform
updates. When the data is stored redundantly, the code must

arrange that all the relevant storage has been consistently
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modified.

Chapter 6 describes thé structure of the experimental system
and gives some details about the way it operates. The
system was not intended to be a practical tool, nor was it
intended to implement a language which would immediately be
suitable for interacting with a data-base. It has been used
rather as an experimental test-bed to verify that the
methods proposed could be sensibly implemented and to
uncover any practical problems which might arise. Some
examples are given showing the operation of the system and

the output it produces.

Finally, in the light of the promise that the system shows,

a number of suggestions are made for future work.
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CHAPTER 2

RELATIONAL DATA

In a conventional data-base system, whether based on
hierarchies like IMS (IMS/360 1972), or on networks like IDS
(IDS 1968), an applications program makes direct reference
to stored sequences of data items. When the representation
is altered the programs may also need to be changed. 1In the
Codasyl proposal (Codasyl 1971), based 1largely on IDS, some
indirection is provided (using "subschemas" which describe a
modified view of the data), but the degree of independence

obtained is fairly small.

Codd proposed relations as a means of describing data so as
to convey only its inherent structure. The motivation was
to allow users of the data to be independent of the stored
representation. Similar machiné independent models were
proposed by Childs (Childs 1968), Kuhns (Kuhns 1969) and

Grindlay and Stevens (Grindlay and Stevens 1968).,

In the relational model of data, (Codd 1970), a number of
underlying sets of objects are assumed, These might
represent parts, manufacturers, costs, quantities and so on.
These sets are called "domains". All information about the
objects is held in a collection of time varying relations.
A relation on the domains D1, D2 .... Dn is a set of

n-tuples, where each n-tuple has its first component drawn
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from D1, its second from D2 and so on. The number of
components (n) in each tuple is called the "degree" of the

relation.

For example, the manufacturers who can supply various parts
can be described using a binary relation, that is a set of
pairs. In each pair the first component will be a
manufacturer (that is drawn from a domain "manufacturers")
and the second a part (from a domain "parts"). A tuple in
the relation represents the ability of the manufacturer to

supply the part:
supplies ¢ manufacturers :xparts.

Sample data for the relation is illustrated diagramatically
in figure 2.1. As the table is intended to depict a set,
all the rows are different. In the table each column is
headed by the domain-name from which the elements are taken.
The column ordering is significant, as the domain-names need
not all be different. A relation giving the nearest
equivalent of each part, for example would have two

identical domains:
nearest-equivalent ¢ parts x parts.

To avoid dependence on column ordering Codd suggests that
the domain-name could be qualified by a "role-name", so that
the combination is unique. A user could then deal with

"relationships" where the components are not ordered.
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SLLPF‘ICS ( manufacturer, “xxrt)

AsGo. 6 BA NT
AkG. 6 BA BoT
B &C. 6 BA NuT
C L. 6 BA Bout
C ld. 2.BA BolT
C L. 4 BA BoLT
Ve

Figure 2.1 Sample data for Supplies.

Results ( student | exam o, wmack butor )
A I 50 PRoF R
A 2 60 RoF R
A 3 10 PROF R
8 ! 30 PROF P
B 2 80 PROF P
c 2 20 PRofF R
c 3 85 PRoF R

Figure 2.2 Sample data for results.
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However, operations of the relational algebra are defined
only for relations where ordering is used to distinguish the

components.

Normalised Relations

In general, the underlying domains of a relation need not
consist of elementary values (such as parts or
manufacturers) but may themselves be sets of relations. As
an example, a collection of examination results might be

expressed as a binary relation:
results' ¢ students x mark-lists

associating with each student a relation (from mark-lists)
which gives the mark for each examination he took. Here,

members of the domain mark-lists are relations:
mark-lists ¢ (exams x marks)*

(* being used to form the set of all subsets of its
argument). Codd in (Codd 1972 b), defines a normalisation
procedure to systematically eliminate domains of this sort
in favour of sets of elementary values., The
first-normal-form form of "results" would be a ternary

relation:
results < students X exams X marks

obtained in the obvious way from results'.
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Second and third normal forms are defined, aimed at
préventing unexpected behaviour when an update occurs. If a
domain "tutors" is added to the relation "results", sample
data could occur as in figure 2.2. The "tutors" column
gives each 'student's tutor. A problem occurs if a
particular student took no examinations. It would not be
possibie to record his tutor's name, as no entries occur in
the relation for the student. This anomaly can happen as a
result of a deletion. To define a third-normal-form
relation, one or more of the domains are designated as the
"primary key". 2Any two tuples in the relation must differ
in the values of these domains, so that a wvalue of the
primary key uniquely identifies a tuple, In a relation
"number-on-hand"”, "parts" would constitute the primary key,
while in "supplies", both a value for "parts" and a value
for "manufacturers” is needed to guarantee to identify an
individual tuple. In a third-normal;form relation, the
value in no domain must be uniquely determined by a (proper)
subset of the primary key. The restriction is violated by
the example, since there is only one tutor for each student,
whereas the key (which uniquely iaentifies a tuple) consists
of both the students domain and the exams domain. To obtain
the third normal form of the data in this relation it must
be split into two, one containing the examination results
(whose key is student and examination) and one containing
the tutor information (whose key 1is just student). The

normalisation rules are fully discussed by Date (Date
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1975).

2.1 Relational operations

The operations on relations are described in some detail
" because the mlanguage to be introduced in the next chapter
was developed from them. However we will not need to make
use of the definitions which are given. The operations
described are taken from (Codd 1972). Variations are
possible, for example (Codd 1970) and that used as an
intermediate language by IS/1 (Notley 1972), but their
structure is similar. They are defined only for normalised
relations, those whose domains are simple sets of integers

or strings.

Relations may participate in the wusual set operations:
union, intersection, difference and cartesian product. The
first three operations are only defined for a pair of
relations which have the same degree (or number of columns)
and where corresponding domains in the two relations are
either both sets of strings or both sets of integers. The
cartesian product is defined so that an expanded product is
obtained. Cross multiplying two relations R and S, of
degrees m and n, gives a relation of degree m+n, It is
formed by concatenating each tuple from the first relation
with all tuples in the second. Denoting the concatenation

of two tuples r and s by r”"s,

section 2.1 35



Roe S = {r"s| reR & seS}

The remaining operations apply specifically to relations.
The projection operation is used to select or permute the
columns of a relation. If r is a tuple from an n-ary
relation R, then the elements can be selected and re-ordered
by an operation r[v] where v is a vector of indices. (The
operation is identical with APL array indexing). For
example, ("A" "B" "C")[3 1] = ("C" "A"), The projection of

R on v is then defined by:
R[lv] = {rlv] | reRr}

Two of the projections of the relation supplies are shown in

figure 2.3,

The other important operation is called "join". This
concatenates two relations as in a cross-product, but result
tuples must also satisfy a test. The test compares a
specified column from each relation, so that if 6 is one of

the comparisons =,#,>,>,<,% then:
R[A 6 B]S = {r"s|reR & seS & (r[A] & s[B])}

Some examples of joins are shown in figure 2.4. When
indicates a comparison for equality, two columns in the
result will be identical. A projection must be used to

remove one of them,

Two other operations are included, both of which can be
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manufackuress. parts. manufacturers .

A & Co. LBA NUT ALCo.
B % Co. 6BA NUT | B&Co.
T C L. 6BA BOLT| A (.
Sl 6BA Bour| C Ltd.
47 BoLT C L.
S lis[ﬂ] 28A &x£~ C L.
Supphes [2 1]
pmh.
6 BA NUT
G BA BoLT ,
ABA Bt Supphes [>]
2 BA BoLT]
/_\.
Figure 2.3

Various projections of the relation supplies

from figure 2.1.
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Po,ﬂ»s y qvuof\";h'ls

LBA NUT IOOO PM"S qvub-'shir
ABA NUT (o) 484 NOT 0o fo)
2BA NUT 200 4BA BoLT Q (0]
48a BoOLT o] ’ 3
vmhes -ou-havd (21 °o
28A BoLT 200 te}
"\‘

Numbaer—ow -mq

pats quamihes
6 BA NOT Qo0 500
6 BA BoLT 500 500
/"_—_\
.

N\N\u-.u-k“d[ - I \J 2500}

Nowbal -ou-hamd [122] Sopplies

pute aaahhes soppher ot
¢BA  NUT looo As.Co. 6 Ra  NUT
6BA  NUT 1000 BLG. 6 BA NuT
6B8A BoLT 500 ALG. 6 BA BoLT
6BA BoLT 50 C H. ¢ BA  BoLT
48A BOLT o) C L. 4 BA BoLT
28A BoLT 200 C . 2.BA BoLT
=S e S

Figure 2.4 Some examples of join.
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defined in terms of the others. The division operator is
the counterpart of a universal quantifierf Its definition
is omitted because it is quite lengthy and its equivalent is
not included in the 1language to be defined. Restriction
subsets a relation on the basis of a comparison of ¢two

columns. It is defined by:
R[A © B] = {r| reR & (r[A] e r[B])}

(where 8 is one of the comparisons above).

Restriction can be defined in terms of join, or join can be

defined by a restriction of a cross-product:
R[A ©B]S = (R e S)[A 6 B']

where B' is B increased by the degree of R.

Codd also defines a relational calculus in which queries can
be expressed. The variables in the calculus have tuple
values, and unary predicates are used to correspond with
stored relations. An algorithm is given to form a
relational expression from each expression in the calculus.
The resulting expression is not intended to be efficient,
but demonstrates that the conversion 1is possible. Less
inefficient conversions are discussed by Palermo (Palermo

1972) and Longstaff and Poole (Longstaff and Poole 1974).
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2.2 Relational implementations

Perhaps the implementation most closely following the
relational algebra is the Peterlee IS/1 system (now referred
to as the Peterlee Relational Test Vehicle, PRTV) (Todd
1975). It provides the four set operations, union,
intersection, difference and cartesian product (called
rather confusingly "join"), together with the project and
restrict operators. The restrict operation is generalised
to allow an arbitrary test on the contents of a tuple and

called "select",

The implementation 1s based on sorted, 1largely sequential,
files. The tuples in a relation are sorted in the natural
way, the first component of a tuple being the most
significant. A compression technique is used so that if a
tuple differs from the previous one only in its low-order
fields, the wunchanging high-order fields are omitted. The
remaining fields are also compressed. The complete relation
may occupy a number of physical blocks in the file and an
index is kept, showing the range of tuple values in each

block.

The set operations are implemented by variations on the
symmetric merge (Knuth 1973),., For union, tuples occuring in
either operand are produced, reading the files so that the

result is properly ordered. For intersection, only tuples
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occurring in both operands are produced. When evaluating a
compound expression composed of these operations, a
co-routine evaluation technique is used so that the complete
result of a sub- expression need not be stored. A tree of
co-routines is constructed corresponding to the form of the
expression. Execution is initiated at the root of the tree
and each operation calls on iﬁs operand routines whenever

the next block of tuples is needed.

Join operations and most projections cannot participate in
the coroutine tree. In a join operation, each member of the
first set must effectively be compared with every element of
the second set, so that the appropriate members of the
cross-product can be formed. 1Its operands must therefore be
evaluated completely and stored so that they can be
re-scanned. A complete re-scan can be avoided if the
operands. are already sorted on the fields mentioned in the
selection criterion. In other cases either the operands
must be sorted first, or a complete cross-product must be
generated. No details are available on how the choice of

method is made.

A projection is implemented by appropriately extracting the
result fields. Unless only the 1lowest order fields are
removed by the projection, this will produce unsorted
output, so that again a complete result must be stored and

then re-sorted.
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Titman has reported on a system using very similar
techniques (Titman 1974). The processing uses coliate and
sort operations on sequential files. By storing only binary
relations in compressed form, even relations with a large
cardinality can be retrieved with a single movement of a
disk arm, so giving good performance on small batches of
input. Titman regards his use of relations as a data-base
implementation method, and not primarily as a way of

disguising the representation.

The McAims system at MIT (Strnad 1971) was one of the first
systems to use n-ary relationms, It manipulates them with
operations from the relational algebra. The implementation,
however, allows for arbitrary storage techniques, by
defining just the operations that the representation must
support to interface with the remainder of the system.
Again although the basic processing techniqué is collation,

the general nature of the system allows for other methods.

The SEQUEL language is a special purpose query language, but
closely corresponding to the relational algebra (Chamberlin
1974). Its implementation makes much greater use of random
access than PRTV or Titmans system (Astrahan 1972). It
utilises a storage system called XRM (Extended n-ary
Relational Memory) (Lorie 1974), in turn based on a binary
relational storage system. Each tuple of an n-ary relation

is stored in a random-access memory and can be located by a
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unique "tuple identifier", Access to tiae tuples is provided
by keeping one or more binary relations as indexes for
frequently used domains, A binary relation is used to
associate with a value the set of the identifiers of the
tuples where the value occurs. A miéture of hash-coding and
ordered lists is used to give fairly rapid retrieval of all

elements in the second column of a relation, given a value

in the first column.

The representation for the relation "supplies" might
approximate to figure 2.5. The tuples are stored as data in
random access storage. Access is provided by what is
logically a binary reiation, in this case giving tuples with
a particular value in the "parts" field. The set of
pointers to the tuples (tuple identifiers) for, say, a "6BA
NUT" are chained together, and the head of +the chain 1is

accessed by hashing the string wvalue "6BA NUT".

Optimisation

The PRTV system optimises relational expressions in
approximately source form. The intent is to: move
restriction (or selection) operations as early as possible
in the computation, and project operators as late as
possible. It is obviously advantageous to perform
restrictions at an early stage, as these produce subsets of

the data, Such a test is therefore applied as soon as the
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LBA NUT .

6BA BolT

28A BoLT

4BA BoT

Ir\dax S “Pﬁ *..
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Figure 2.5

A% Co. bBA  NuT
AL Co. GBA BoLT
B Co. 6Ba  NOT
C ud. 6BA  BeCT
C LH. 28A  BoLT
C L. 4BA BoLT
bgles  shored 1
kcods ™ fandom
access s#wa.se_ .

Schematic representation of Supplies in XRM
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data it mentions is brought together by a join. Project
operations usually imply a sort and if they do, their
execution is delayed. Two or more projections may then be
combined into a single projection., This optimisation should
reduce the amount of sorting needed, by sorting when the
data is smallest and combining sorts where it is possible.
The principles are given by Hall and Todd in (Hall and Todd
1974) but their effectiveness has not been reported. Hall
also describes a method for common sub-expression

elimination (Hall 1974).

The optimisation algorithm wused in the implementation of
SEQUEL is given in some detail. This is intended to make
good use of the available binary indexes in obtaining the
required subsets of a relation. In a paged multi-user
system retrieval costs cannot be accurately predicted, so
the algorithm attempts to minimise the nuﬁber of tuples
retrieved rather than minimising the overall cost. The
description given is quite complex, but the outcome is that
where a test on a relation takes the form
"column-name=value" and an inversion on the column~name
exists (as a binary relation), the inversion 1is used to
immediately locate the subset of tuples which satisfy the
test. When simple tests are combined by "and", "or", etc.,
these operations can sometimes be implemented by merging the

sets of tuple identifiers obtained from the inversions.
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Bracchi, Fedeli and Paolini (Bracchi 1974) describe a scheme
which provides n-ary relations at the user level, but which
uses binary relations at the system level. N-ary relations
(and also hierarchical structures) can be defined in terms
of combinations of binary relations. They outline an
optimisation procedure not dissimilar to that wused 1in
SEQUEL. Another optimisation procedure for queries, this
time based on the entity set model of data (Senko 1973) is
described by Ghosh and Astrahan (Ghosh 1974). The different
nature of the model makes it difficult to relate this to the
previous discussion, but basically it uses a cost function

to choose the preferred access-path,

Of these optimisation methods, the simplest is that
described by Hall and Todd. It has the great advantage of
working entirely in terms of the source program., The other
algorithms tend to be more difficult to appreciate because
they introduce (and consequently can take advantage of) more

details of the representations used.

Ugdate

Relational systems appear to find update difficult. The
Peterlee PRTV system implements an assignment statement, so
that one or more complete tuples can be added to a relation
R by executing the assignment: R=R+Newtuples. (The + sign

is used for union). Tuples can be deleted in much the same
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way using a set difference operation. A more traditional
selective update of a tuple, for example to alter the
number-on-hand field of a particular part, can only be done
by a complex relational expression, or by the addition of a
subroutine written in PL/1. Todd (Todd 1975) remarks that
the update of relations is not sufficiently well understood

to allow a general update facility.

Titman's system keeps changes in separate files showing the
additions and deletions to the master relations. The master
relation and the changes are merged at each retrieval, and
periodically the data-base must be re-organised so that
accumulated changes can be incorporated in the master

files,

Other systems concentrate entirely on retrieval, or make
only passing reference to the possibility of update. A
reason for the difficulty may be related to that suggested
by Heath (Heath 1972), Arbitrary changes to components of a
tuple can cause side effects. For example if the parts
field of a tuple in the relation "number-on-hand" were
altered, it might create two numbers on hand for the same
part. It will certainly upset the sorting order of the
tuples and might also create two identical tuples one of
which should be deleted. To prevent such effects, the
relation should be in third-normal-form and no assignment

can be permitted to fields which are part of the key. None
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of the relational systems mentioned restrict relations

sufficiently to detect this,

2.3 Other systems

' In "pata Semantics" (Abrial 1974) Abrial describes a
somewhat different data model which is relevant in this
context. With the relational model, the existence of an
object is essentially implied because data is stored about
it. For example the existence of a 4BA NUT is implied by
the occurrence in the relation Number-on-hand of a tuple
with "4BA NUT" as a part component. The values from a
domain such as "parts" which are actually mentioned in a
relation are called by Codd the "active domain". Abrial
makes the existence of an object such as a part explicit by
including it in a "category" (a set) of parts. An object in
a category does not necessarily have an external
identification and is Jjust known to be distinct from other

objects.

Properties are attacﬁed to objects using binary relations.
For example two binary relations could relate parts to their
descriptions (the description being a string such as "4BA
NUT") and their numbers-on-hand. Both these relations will
in fact be functions, one description and one number-on-hand
being associated with each part. Diagramatically, this is
represented in figure 2,6. The categories are shown as

large dots and the relations as lines between them.

section 2,3 48



The labelled arrows represent "access-functions" and two are
associated with each binary relation. That labelled
‘"number-on-hand" gives the quantity associated with each
part and the inverse "parts-in-quantity" gives all parts
with a given number-on-hand. An - access function for a
binary relation maps one set to a powerset of the other. 1In
Abrial's model the accesé functions can be constrained to
produce result sets with given maximum and minimum

cardinalities.

In the example, each part will  have only one
number-on-hand. The maximum cardinality of the
access-function will therefore be unity. The inverse will
be unconstrained. Both the access~-functions "description"
and ‘"part-with-description" might be expected to have
maximum and minimum cardinalities of unity, all parts having
a unique description. (However, when the check for minimum

cardinality can be made is not clear).

A ternary relation such as:

delivery-delay ¢ manufacturers x parts x delays

probably needs to be broken down as shown in figure 2.7,
inventing a new category called "supply". An object in the
supply category with a manufacturer m and part p represents

the ability of manufacturer m to supply part p. Each of the
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Possible breakdown of "delivery-delay"
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access-functions "manufacturer-supplying", "part-supplied"

and "delay-for-supply" will produce at most one value.

As pointed out by Sharman (Sharman 1975) there will be a
close correspondence between the obj;cts in a category (such
as supply and part) and the tuples in the corresponding
n-ary relations of a third-normal-form description. The
outgoing access functions will correspond approximately to
domain-names in the relation. The inverse access-functions
do not have a relational equivalent but correspond to
possible indexes in SEQUEL for example. An advantage of
Abrial's model is that it caters more naturally for objects
which have more than one identification (personnel numbers
and national insurance numbers for employees for example).
On the other hand, the restriction to binary relations means
that the constraint that given a manufacturer and a part,

only one delivery delay is possibie, is not directly shown.

To express the operations on the data, Abrial uses a
PLANNER-like language (Hewitt 1969), with a very powerful
evaluation mechanism. This makes 1t easy to express the
processing when modelling a data-base system, but there is a
considerable gap between the facilities provided by PLANNER
and those of, say, Cobol, which might be used to implement a

final working version.
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Predicate Calculus systems

The author is not aware of any systems which implement the
relational calculus directly. (Although a number of
algorithms were mentioned earlier for converting the
calculus to algebraic expressions, and MORIS (Bracchi 1972)
does use a calculus-like language). There are, however,
some systems based on the predicate calculus., These were
not intended for data-base work and so may seem somewhat out
of context here. They are described briefly because they
have certain features in common with relational systems and
the implementation of  ABSET in particular strongly

influenced the modified relational language defined later,

The ABSYS system (Foster 1968) was designed for experiments
in problem solving and evaluates a subset of the predicate
calculus, It does this by setting up a collection of
"states". Each state gives values to variables so that they
satisfy a given predicate expression. For example the
expression: x+y=6 and y=5 is only satisfied in a state where
x=1, y=5., There is an obvious correspondence hetween a
state and a tuple in a relatiqg, and between a set of states

and the relation itself.
The processing method reflects the fact that the evaluation
order is not specified. The system attempts to satisfy cach

conjunct in turn. If the conjunct cannot be satisfied
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immediately, it is attached to each variable it uses which
currently does not have a value. In the example, for
-instance, it might try first to satisfy x+y=6, but as there
is an infinity of possible pairs of values, the expression
is attached - to x and y and another conjunct tried. The
expression y=5 can be satisfied immediately by setting y to
5. This causes the expression x+y=6 (attached to y) to be
re-examined and when y=5 there is only the single
possibility that x=1, The effect of this "“sequencing"
process is to sort the conjuncts into an order so that the
final set of states 1is built reasonably efficiently. It
performs much the same function as a conversion algorithm

between the relational calculus and the relational algebra.

The appearance of "or" causes two states to be created. For
example in x+y=6 or x+y=7 one state is used to keep the
values satisfying x+y=6 the other for values satisfying
x+y=7. Recursion can be used to set up a larger number.

For example, the expression (slightly paraphrased):

mem(([1,2,3],x%)

where mem(l,x) = (hd(l)=x or mem(tl(1l),x))

would cause three states to be set up, with x taking on
respectively the values 1,2,3. Values from the states which

satisfy an expression can be used to form a set.

The overall effect is therefore very like an evaluator for

P
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the relational calculus, although reflecting the greater
freedom allowed in forming expressions. In particular
identical processing need not be perforred on all states and
the presence of recursion means that all states have to be
processed more or less in parallel to avoid infinite loops.
Execution tends to be breadth-first, while relational
evaluators can. work depth first to minimise the amount of

intermediate storage used.

The later ABSET system (Elcock et al.1971) is linguistically
smoother, but does not include the facility for generating
multiple states. The authors report that the evaluation
order is critical in determining the number of intermediate
states which are created, and it was found difficult to

control this.

That predicate 1logic can be treated as a programming
language is shown by Kowalski (Kowalski 1974). 1In principle
his system is similar to ABSYS, but using a much more meagre
syntax. As well as satisfying assertions, it uses a
resolution method (called SL resolution) to produce
counter-examples showing that a set of assertions are
unsatisfiable. At an abstract level, the executions are
very similar to those of ABSYS and Kowalski also comments on
the need for a separate means to indicate the execution

order.
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Ideas from these direct implementations of predicate logic,
particularly the analogy between a relation and a set of
states, have been drawn on to overcome a number of the

difficulties encountered with standard relations.

section 2.3 55



CHAPTER 3

LANGUAGE F

Farlier we considered some program transformations connected
with the choice between keeping items of data in storage and
computing them as the need arises. This chapter describes a
language based on the use of relational operations and
introduces the way that the transformations can be
accomplished, For this purpose the standard relational
algebra turns out to be 1less than ideal and in the first
section we will look at some of its drawbacks. Then, in
section 3.2, the alternative language (designated Language F
largely for historical reasons) is introduced. Although
this is very similar in principle, it was developed to
overcome some of the implementation problems. The new
language is close to conventional predicate logic,
effectively using variables to name the columns in a
relation instead of domain numbers. This has the advantage
that the program can be manipulated using the properties of
the 1logical operators rather than their more complex
relational equivalents. Expressions are allowed which
contain both relations and arbitrary functions or arrays.
This means that the language can be used to describe common
storage organisations, something outside the scope of a
purely relational structure, Section 3.3 gives some

examples to show how this is done and how the descriptions
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can correspond to possible physical realisations. The
discussion shows that, if relations of the type used by
Abrial are allowed, we can produce fairly simple definitions
of various representations. Section 3.4 then introduces the
method of processing and explains the reasons for choosing
to implement a compiler rather than a complete data

retrieval systen.

3.1 Problems with Codd's relations

If we express programs in terms of operations on relations,
the program transformations become  transformations on
relational expressions. The first problem we encounter is
that the relational algebra is not very easy to manipulate.
In large measure, this stems from its use of ordinal numbers
to identify the columns in a relation. For example we find
that the relational join operator does not commute. In
general R[A=B]S will be different from S[B=A]JR. The result
of the first expression is a subset of R @ S, and each tuple
has components from R occuring first, followed by the
components from S, In the result of the second expression
the compbnents of S occur first. The two result sets
contain identical data, but their columns are in a different
order. We can obtain an equivalence between the two
expressions by adding a project operator to re-order the
columns, but the form of the resulting equivalence 1is far

from simple.
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For exactly the same reason the join operator is not
associative and again rather involved projections must be
introduced to maintain the correct column ordering. The
complexity of the transformations need not itself be
insuperable in a mechanical proceséor, but the problem is
made worse because projections are introduced and the
project operator does not have a very efficient
implementation. In general the result of a projection will
have fewer members than the original relation (figure 2.3
showing some examples). In view of this, consider how the
projection Supplies([2] might be implemented. The result is
the set of parts supplied by at 1least one manufacturer.
First we might scan the members of Supplies, creating from
each tuple a tuple for the result. This removes the
manufacturer column, leaving the list of entries in column
2. As figure 2.1 shows, the 1list may contain duplicates
which have to be removed. Probabiy the best way to do this
is to sort the 1list, so that when duplicate members are
brought together they can be eliminated. The complete
process is rather a lengthy one and should not be performed
unnecessarily. In particular there is no need to carry out
duplicate elimination if it can be guaranteed that the
original relation and the result of the projection always
have the same number of members. This special case clearly
applies if the projection only serves to rearrange the
columns as it does in the projections introduced during

transformation,
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Certain other projections can also be dealt with in this
simplified way. For instance a common type of join is

illustrated by:
Number-on-hand {1=2]Supplies.

The result (shown in figure 2.4) necessarily has two
identical columns. Presumably, later on in the processing,
one of these columns will be removed by a projection. While
this operation will actually subset the columns, it cannot
change the number of elements in the relation, so again
there will be no need to remove duplicates from the result.
As a further example, the projection Number-on-~hand{1] must
have the same cardinality as Number-on-hand itself because

the original relation is always, in fact, a function.

Consequently, if unnecessary sorts are not to be introduced,
we must detect and keep tracﬁ of these special case
projections., This was found to be a more difficult task
than eliminating the root of the problen, pérticularly the

dependence on column ordering.

A rather less tangible reason for modifying the language is
that relations were originally designed to provide a
standard description of the data, deliberately avoiding any
suggestion of a particular storage structure. In spite of
this, the tacit assumption is often made (referred to, for

example, by Bracchi (Bracchi 1974)) that a collection of
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relations in third normal form also gives its representation

in storage. For example the relation:

part-data (part-number, cost, number-on-hand)

could well be represented by a file with three fields part-
number, cost and number-on-hand, with an index on the key
field part-number (which has been underlined). This |is
obviously one possibility, but by no means the only one.
There are many other file organisations using secondary
indexes, heirarchies and networks which cannot be related to
the abstract relational description in such a direct way.
To cover these possibilities it seems essential to have the
notion of an array or function in addition to that of a

relation,

Another related aspect is that of update. It was mentioned
earlier that relational systems. have some difficulty with
this. The only type of assignment which is naturally
provided on relations is the addition and deletion of their
members. Many updates, which typically alter the value of
some data item, do not fall into this category and we need

arrays to express them conveniently.
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3.2 Language description

The input language we will consider in the following
chapters is shown in figure 3.0. Although it has the form
of a functional calculus and appeérs to be very different
from the relational algebra, the interpretation it will be
given is quite similar. Like the relational algebra it is
not intended for direct use in a high-level data-base
system. For this purpose it would probably be necessary to
provide a rather heavier syntactic disguise, such as the
very English-like syntax wused by Bracchi (Bracchi 1973).
The syntax shown is intended to convey the style of the
language only. It contains only a few of the large number
of possible operations and for simplicity does not indicate
their priorities. The conventional precedences will be

observed to resolve the resulting ambiguity.

The meta-syntax used in figure 3,0 is described in appendix
A. The only features which need comment are the use of [ ]
to enclose an optional phrase and the symbol | which stands
for the terminal symbol |.

The language evolved from a simple predicate 1logic
containing the connectives "and", "or" and "not". Together
with an existential quantifier and some built-in predicates
like "greater~than", expressions can be constructed which

are equivalent to those in the relational algebra, For
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definition ::= function ([parameters] = valued-expression |

predicate [parameters] = logical-expression
result-to-print ::= set-expression
set-expression ::= {parameters | logical-expression } |
function [arguments]) |
logical-expression ::= predicate [arguments] |
arguments in set-expréssion |
not logical-expression |
logical-expression and logical-expression |
logical-expression or logical-expression |
valued-expression comparison valued-expression]
some  set-expression
comparison ::= =|>|>
valued-expression ::= constant | variable |
function [arguments] |
the set-expression |
number set-expression |
sum(set-expression, function-name)
parameters ::= parameter | (parameter-list)
parameter-list ::= parameter | parameter,parameter-list
parameter ::= variable | variable:set-expression
arguments ¢ := valued-expression | (valued-expression-list)

valued-expression-list::= valued-expression |

valued-expression, valued-expression-list

Figure 3.0 Syntax for lanquage F
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example the relational expression:

supplies [2=1] out-of-stock

can be transliterated very approximately as:
Supplies(m,p) and Out-of-stock(p).

The result of the relational expression is shown in figure
2.4. Assume that "Supplies" 1is a predicate which is
satisfied only by members of the relation "supplies", and
*Out-of-stock" is only satisfied by members of the relation
"out-of-stock". The complete predicate expression shown
will be satisfied if the variable "m" is set to the

manufacturer component of a tuple in the result of:
supplies[2=1]out~of-stock

and p to a part component of the same tuple. The predicate
expression will be false for pairs of values (m,p) which do

not occur in one of the result tuples.

Similarly, we can replace relational expressions containing
union and difference by logical expressions containing or

and not. For instance we might write:
Out-of-stock (p) or Obsolete(p)

as an approximate replacement for the relational expression:
out-of-stock U obsolete,

Again we assume that "Out-of-stock"” and "Obsolete" are
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satisfied respectively by members of "out-of-stock" and
"obsolete". (Although there is no rigid rule, predicates
will often be distinguished from functions and sets by an
initial capital letter.) The predicate expression shown
will be true if "p" has as a value a member of the result of

the relational expression. It will be false otherwise.

The logical operators and, or and not in the language
approximately cover the relational operators "join",
"restrict", "cartesian product" and the set operations.
However instead of acting directly on relations, they act on

predicate expressions which are satisfied by relations.

The replacement for the project operator will be dealt with
shortly, but as has been mentioned, its general
implementation involves quite lengthy computations. This
motivated the introduction of funétions which produce values
other than 1logical ones. Using only predicates, the
definition of "Low-on-stock" in terms of "Number-on-hand"

might be written:
Low-on-stock(p) = (3q) (Number-on-hand(p,q) and q<10).

The quantifier, whose operational equivalent is a
projection, can be eliminated if a function "number-on-hand"

is used in place of the predicate:

Low-on-stock (p) = number-on-hand(p)<10.
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During the processing, the quantifier is re-introduced, but
~only in a restricted form which 1is much easier to
implement.

Expressions standing for sets of ;alues are also allowed.
Internally, sets and predicates behave almost identically,
so that in effect, functions can return predicate values.
Sets were introduced partly because they are more natural in
some contexts than are predicates (for instance to indicate
the domain of a function) and partly because they were

needed in the description of representations.
A set constructor is provided. For instance we can write:

{(m,p)| Supplies(m,p) and Out-of-stock(p)}

to mean the set of pairs (m,p) which satisfy the predicate

expression, The result is the relation:
(supplies[2=1]out-of-stock) [1,2]

(where the additional projection is needed to eliminate a

duplicate column).

The set contructor acts in much the same way as a lambda
expression, the variables "m" and "p" being bound by their
appearance before the |.

In spite of their similarity, predicates and sets differ in
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that the system assumes that a set is stored as a 1list of
its members while a predicate is stored as a logical array.
This will be examined in greater detail in the next

section.

The language contains a number of operators which act on
sets. The general existential qﬁantifier is included as a
function some which takes a set argument. It gives the
value true if the set contains at least one member. For
instance in place of:

Can-be-supplied(p) = (3m) (Supplies(m,p))
or relationally:

can-be-supplied=supplies (2]

we can define:

"

Can-be-supplied (p) some { m | Supplies (m,p)}.

The syntax is somewhat cumbersome, but was chosen to match
the structure used within the implementation and because it
generalises more easiiy. A practical query language would
probably contain a large number of similar operators acting
on sets or functions. These correspond to English words
like "a", "the", "all", "most", "largest", "sum", "product",
"average" and so on. A few have been added to give an
insight into their requirements. The function number
produces a count of the members of a set and the function
sum sums the results of applying a function to a given set
of arguments. The function the is similar to the iota

operator of predicate calculus and extracts the only member
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of a set. The way that the, number, sum and some were

included was influenced, with an eye to future extension, by
Cresswell's bﬁok (Cresswell 1973). In "Logic and Language"
he expresses the semantics of English words as operators on
lambda expressions in a related way. To keep the language
small, some of the obvious operators (for instance set
union) have been omitted. The implementation, in fact,

supports a wider language than that discussed.

New predicates and functions can be defined in terms of
known ones in the normal way. All such definitions have
global scope. For example, "cost-on-hand" can be defined

by:
cost-on-hand(p) = cost(p) * number-on-hand (p).

Definitions may not be recursive. Although some examples of
recursion can apparently be handled, we will not consider

them here.

A set expression standing on its own is understood to mean a
set of values to be printed, and thus to represent a request
for information. The expression should have no unbound

variables.

To illustrate the style of the language, some simple

definitions and queries might be expressed as follows:
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3.

4.

6.

Define Out-of-stock in terms of number-on-hand:
Out-of-stock (p) =(number-on~hand (p)=0).
Find the set of parts used in assembly A:
{p| Uses(A,p)} .
Find the parts used in A which are either out of stock

or obsolete:

{pl| Uses(A,p) and (Out-of-stock(p) or Obsolete(p))}.

Find the British manufacturers who can supply any out

of stock part:

{m| British(m) and some {p| Out-of-stock(p) and Supplies(m,p)}}

Define the components of an assembly as the parts it
uses:

components(x) = {p| Uses (x,p)}.
Find the number of components of A which cost more than
100p each:
number {p| p in components (A) and cost(p) > 100},
Find any manufacturers who Can supply any of the
components of A:
{m:mfr|some {p|p in components(A) and Supplies(m,p)i}.
Find manufacturers supplying all components of A:
{m:mfr| not some {p|p in components(A) and

not Supplies(m,p)}}.

Note how the variable m is bound to the set "mfr",

representing the set of all manufacturers.
Find manufacturers who give a discount on all
components of A:

{m:mfr|not some {p| p in components(A) and
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not (Supplies(m,p) and
discount (m,p)>0) }} .
10. Find manufacturers who give a discount on all parts
they can supply to assembly A:
{m:mfr|not some {plp in components(A) and
Supplies(m,p) and
not discount(m,p)>0 }} .
11. Find the assemblies and the total number of parts used

in each:

{ta,n)| a in assemblies and n=sum(qty,uses-of-assembly(a))}.

3.3 Data representation

The next question we have to resolve 1is the way that the

data organisation is reflected in Language F.

In the examples we have used predicates (such as Supplies,
Uses and so on) as a standard representation-independent way
of referencing the data. We could equally well have
standardised on the use of sets and relations. For example

4 we might have written:

{mim in British and

some {p| p in out-of-stock and (m,p) in supplies}}

where British, out-of-stock and supplies are all sets. This
corresponds rather more closely to the equivalent relational
expression, Whichever standard form is chosen, definitions

must be provided for the predicates or sets used in the
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expressions, in terms of structures which actually occur in
the stored data. These definitions could be stored on a
system library so that, to express the retrieval, it would
not be necessary to know what these definitions are, nor

even that they exist.

This section gives a number of examples to 1illustrate the
sort of definitions which could be wused to relate the
predicates or sets to the actual data structures stored.
This shows the way that a data organisation is modelled in
the language. The examples illustrate that the amount of
detail assumed about the representation is roughly the same

as that in Hoare's abstract data structures (Hoare 1972a).

1. Following Hoare's use in "Notes on Data Structuring"

consider the following type description:

type part-file = sparse powerset (part-record)

type part-record=(partnumber:string,
number-on-hand:integer,

cost:integer).

A part file consists of a set (sparse because most of the
possible members are probably  absent). Each part-record
consists of a cartesian  product: a partnumber, a

number-on~hand and a cost.
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Figure 3.1 shows one possible physical representation of
this simple sequential file., Many other representations
could fit this type description. The fields shown could
appear in a different order, be non-contiguous or even be
kept on different physical devices without in any way
effecting the logical characteristics of the

representation.

Further, the records could be stored contiguously in storage
or they could be chained together (in one or both
directions) by explicit pointers. However in
representations like these, while all the elements in the
set can be found by reading through the sequence, there is
no direct way to determine whether a particular record is in

the set or not. This must be done by a sequential search.

If we assume that retrieval programs treat the data as if it
were a collection of relations, then we would need to store

the following definitions in the system library:

partnumbers = {(p,n) |partnumber (p)=n}
numbers-on-hand= {(p,q) |number-on~hand (p)=q}
costs = {(p,c) |cost(p)=c}

parts =part-£file

The first three definitions relate the sets assumed by the
program and the three selector functions in the abstract

data structure description of the representation.
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There is a direct correspondence between the set "parts" and
the sparse powerset "part-file" in the representation.
Because the representations of sparse powersets most
commonly encountered are sequential, and do not allow for

direct testing, the system assumes this method of storage.
If the program referred to the data through predicates a
very similar set of definitions would be needed:

Partnumber (p,n) = partnumber (p)=n

Number-on~hand(p,q) = number-on~hand(p) =q

Cost(p,c) = cost (p) =c
Part(p) =p in part-file.

In place of the four predicates or sets we could construct

from the data a more conventional single relation:

{(n,q,c) |some {p|partnumber (p)=n and number-on-hand(p)=q

and cost(p)=c and p in part-file }}.

Each tuple in this relation has three components, a
partnumber, a number-on-hand and a cost. However, because
of the relatively complex nature of this definition, the
possiblility of using a standard relational description will

not be considered.,

2, Figure 3.3 illustrates an indexed file containing
similar data. The 1index enables a part-record to be

retrieved given its partnumber. Numerous techniques are
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available for implementing this index, the traditional
method being typified by the indexed - sequential
organisation, which uses a mixture of direct indexing and
sequential searching. The XRM system (Lorie 1974), on which
SEQUEL is based, uses hash-tables and Wedekind describes how
relational data can be stored in a generalisation of binary
trees called B-trees (Wedekind 1974) (Bayer 1975). Hoare

classes all these as implementations of a sparse array, that

is an array where the number of elements stored in much less

than the number of possible index values,

If the indexing array in  figure 3.3 is called
"part-with-number", a relation partnumbers' can be defined

by:
partnumbers' = {(p,n) | part-with-number(n)=p}.

This should of course be the same relation as is defined by:
partnumbers = {(p,n) |partnumber(p)=n}

as the index is supposed to produce the record containing
the appropriate part number. The representation stores the
relation redundantly, both the array part-with-number and
the collection of fields partnumber being concrete
repreééntations of the same relation. Both figure 3.1 and
figure 3.3 have‘ the séme relational description; they
differ only in their representation. For the latter

organisation the following definitions would be needed:

section 3.3 74



partnumbers = {(p,n) |partnumber (p)=n?}

= {(p,n) |part-with-number (n)=p}
numbers~on-hand = {(p,q) |nurber-on-hand (p)=q}
costs = {(p,c) |cost (p)=c}

parts - =part-file.

The set "partnumbers"™ has two alternative definitions.

Either may be used in a retrieval.

3. Finally, figure 3.4 shows an organisation of two files
representing a number of additional relations. The diagram
depicts a physical representation using DBTG-like (Codasyl
1971) structure, sets being connected by chains (or rings)
of pointers. The diagram could be re-arranged to use
physical contiqguity in place of these chains or to display a
more hierarchical structure. Such re-arrangements would not

effect the type definition.

The definition of simple abstract relations in terms of the
functions provided by the type definition of figure 3.4 is

given by:

partnumbers = {{p,n) | n=partnumber (p) }

={(p,n) | p=part-with-number(n)}
numbers-on-hand= {(p,q) | g=number-on-hand(p) }
costs ={(p,c) | c=cost(p)}

costs-on-hand = {(p,c) | c=cost-on-hand(p)}
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supplies = {(s,p) | p=part-supplied(s)}
={(s,p) | s in suppliers(p)}
manufacturers = {(s,m) | m=manufacturer(s)}

discounts = {(s,q) | g=discount(s)}.

Two relations (partnumber and supplies) are represented
redundantly. In addition a field cost-on-hand has been

included which could be computed using the equivalence:

cost-on-hand(p) = number-on~hand(p) * cost(p).

These examples show how different data organisations can be
seen as concrete representations of relational data. By
working with relatively narrow relations and Hoare's
abstract data-structures, notably arrays, powersets and
cartesian products, the representation can be expressed in

relational terms in a fairly straight-forward way.

If a relation 1is stored redundantly it will have more than
one definition. When accessing the data we may choose to
use either of the definitions. Also sets will be assumed to
be stored sequentially, as this seems to be the most common
type of representation. All the members in the set can be
retrieved, but there is no inherent provision for testing
membership. Because of this assumption, to express the
complete range of functions provided by a "powerset" in
"Notes on data structuring", two definitions are needed.

For example, in:
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Out-of-stock(p) P in out-of-stock-list

out-of-stock-array(p)

if we choose the first definition we can sequence through
the set members, but by choosing the second definition, in

terms of a sparse logical array, a test for membership can

be made.

3.4 Background to the implementation

Having shown how queries and representations can be defined
in language T, this section gives a brief introduction to

the method of processing.

In our implementation, predicate expressions are used in a
number of different ways. To illustrate these, consider the

expression:
Supplies(m,p).

This has two free variables m and p. If we give each of
them a value then the predicate Supplies can be applied and
a true or false result obtained. For example, assuming the
data in figure 2.1, it will be true if m="A&Co"..and p="6BA
NUT". 1Instead, knowing neither of the variable values, we
could draw up the set of all values of m and p so that the
expression is true. The data could be arrahged as a table
like that in figqure 3.5. This 1is very similar to the table

of figure 2.1 except that now the columns are headed by
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variable names rather than domain names and there is no
significance in the column ordering. Such a table of value-
assignments is 1like a relation, but generalised to allow
arbitrary column names.

Now given a logical expression such as:
Out-of-stock(p) or Obsolete(p)

we can similarly use it in more than one way. Given a value
for p, it can be evaluated conventionally to produce a
logical result. Alternatively we could find all the values
of p which satisfy the expression. To do this we could
first find all the values which satisfy Obsolete(p) and all
the values which satisfy Out-of-stock(p), and then take the
union of these two sets, Because the expression contains a
free variable, the or is implemented like a relational
union, obtaining its result in tﬁe form of a table of values

for p.
To find all values for m and p which satisfy:

Supplies(m,p) and Out-of-stock(p).

we can proceed in much the same way. First we find all the
values of m and p which satisfy the first operand (figure
3.5) and all values of p which satisfy the second (figure
3.6). We then combine these tables in such a way that any

entry in the result satisfies the complete expression. The
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P
ALG b BA NuT
ALG. 6 8a Bour
) B %Co. 6 BA WOT
C Ld. 6 BA BouT
C LH. 2L8A BoLT
C Ltd. 4BA BoLT
T
iy, ST

a) Data satisfying Supplies(m,p).

48A  NOT

4B8A BoLT

b) Data satisfying dut-of-stock(p).

. P
C . 48A BoLT
L

Data satisfying Supplies(m,p) and Out-of-stock(p).

Figure 3.5 Sample tables of value-assignments
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table which is formed is illustrated in figure 3.7, and the
operation which constructs it approximates to a relational

join.

The same result can be obtained by another method. First
the complete table for one operand, say the first, is
_generated. Then each entry is taken in turn and tested to
see whether it satisfies the second expression. If it does
then the particular value-assignment satisfies both
expressions and can be included in the result. After all
entries in the first table have been processed all possible

members of the result will have been produced.

In this computation both the suggested evaluation methods
have been used, one to obtain a set of possible results from
Supplies(m,p) and one to select or reject them according to
the truth of Out-of-stock(p). Using this method there is no
need to generate the entire table for the second operand.
This is useful if the table is very long, and would be

essential if it were infinite.
Finally to create the set:

{(m,p) | Supplies(m,p) and Out-of-stock(p)}.

we form the table of value-assignments which satisfy the
internal predicate expression as before. Then the columns

are ordered according to the list of variables given and the
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variable names removed. This constructs the required

relation.

Operations can be defined onv tables of value-assignments
corresponding to each of the 1ogicél connectives and to the
existential quantifier. This produces an algebra similar to
(although differing in detail from) that described by Hall,

Hitchcock and Todd (Hall, Hitchcock and Todd 1974).

The next chapter describes how these ideas are applied in
the current implemenéation, which takes the form of a
compiler. The compiler translates from Language F to an
Algol-~like language. If a complete interpreter for Language
F were bﬁilt, it would have the advantage that data could be
obtained about the actual number of accesses needed to
answer queries on a sample data-base. However, unless the
data-base is of a realistic size the results obtained might
be deceptive. The difference between a sequential search
and an indexed look-up can be quite small if the data is
small, but will become much more marked as the data becomes
larger. Further, much of the code in a complete system is
devoted to supporting routines such as storage allocation
and index management., These low-level functions are
particular to the detailed physical organisation chosen and
are not really relevant to the task in hand. Moreover,
unless they are carefully optimised, they can have a

significant bearing on the results obtained. By generating
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another program we can choose to ignore these implementation
details and match the output code to the level of detail

assumed in the abstract data structures,
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CHAPTER 4

COMPILATION

The process of compiling Language F can be decomposed into
two phases, _a pre-processing stage and a subsequent code
generation stage. The code generator converts a logical
expression into a program to construct a relation. However
it accepts only a very limited class of expressions, those
which correspond exactly to a possible method of

constructing a set. For example it will accept:
p in parts and not obsolete(p)

if ‘"parts" is a stored set and "obsolete" 1is a stored
logical function, but it will report failure if given the

equivalent expression:
not obsolete(p) and p in parts.

To make this expression acceptable to the code generator we
have a pre-processor. This accepts complex expressions,
simplifies them, and generates a series of alternative forms
for input to the code generator. The alternative
expressions it produces come from two sources., First a
function may have more than one definition and a second
series of possibilities come from applying commutivity,

associativity and distribution to logical expressions.
This two stage structure was chosen to keep the
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implementation of the operators and the application of
transformations to the initial expression as independent
from one another as possible, Although the parts are
considered separately, it would not be sensible to generate
all the alternative forms first and then to apply the code
generation algorithm to each. Practically therefore, both
stages execute in parallel, the pre-processor producing

alternatives on demand.

The programs produced are similar in style to to those used
by Hoare in "Notes on Data Structuring”. The main aim was
that their logic should be easy to follow. Only simple
control structures such as if statements and for loops are
used, although it will become clear later that co-routines
should also have been included.

The following sections deal ih more detail with the
compilation process., Section 4,1 considers the
pre-processor and the transformations which it applies.
Then section 4,2 introduces the method of code generation
and subsequent sections consider the rather more interesting
implementation of the various operations. The final
section, 4.8, discusses how one program can be selected when

more than one possibility exists.
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4.1 Pre-processing

The pre-processing phase converts complex logical
expressions to a series of alternative and simpler
expressions., Principally, functions which are not primitive
are replaced by their definitions and nested function

applications are removed.

1. To remove non-primitive functions, the usual evaluation
rule for a function definition (roughly rule "I" in Landin

1966) is applied:

e o F(M) . . where F(x)=L

=> , + L where x=M , .

This replaces a reference to a function (F) by a copy of the
procedure body (L), binding arguments and parameters. For

example:

Supplies(m,p) and Out-of=-stock (p)

where Supplies(m,p) = m in suppliers(p)
is converted to:
m in suppliers(p) and Out-of-stock(p).

Notice that for a redundant representation, where a function
has more than one definition, there will be more than one

possible expansion., For example:
Supplies(m,p) and Out-of-stock (p)
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where Out~of-stock(p) = p in out-of-stock-list
= out-of-stock-array (p)

produces two expansions:

Supplies(m,p) and p in out-of-stock-list

Supplieé(mrp) and out-of-stock-array (p).
Both of the possibilities must be considered in turn by the
compiler.
2. In exactly the same way, set definitions can be

removed, using the rule:

« « Mins . . where S={x|L}

=> , . L where x=M , .
For example:

p in Out-of-stock-list

where Nut-of-stock-list {x| nurber-on-hand(x)=0}

=> number-on-hand(p)=0.

A set definition is treated as if it were a definition of a
predicate, but with a different syntax. The expression:
M in {x|L} is treated exactly as if P(M) where P(x)=L had

occurred.

An example where both functional and set reduction can be

applied is:
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m in Suppliers(p)
where Suppliers(p) = {%|p in supplied-by (x)}
=>m in {x|p in supplied-by(x)}

=> p i&xsupplied-by(m).

Applying these rules leads to one or more equivalent logical
expressions which contain only stored (or other primitive)
functions and sets. The process incorporates the
representation of the data into the program. A further
simplification is then made to eliminate nested functional

expressions,

3. When a predicate (other than =) occurs with an argument
which is a functional expression, the following

transformation is made, P standing for the predicate:

P(f(x)) => (Et) (P(t) and t=f(x)).

Similarly, functional expressions are flattened:
r=g(£f(x)) => (Et) (r=g(t) and t=£f(x)).

In both the resulting expressions, there can be at most one
value of t which satisfies the quantified expression, as in
each case the only possible value is determined by the
result of a function. A special implementation is given to
the existential quantifier when this condition is known to
hold, and to retain the special case the 3 sign is

written as E.
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The transformations can be justified in the following way.

First we replace the expression f£(x) by (at) (t=£(x)):
P(£(x)) => P((1t) (t=£(x))).

Then removing the iota:
P((1t) (t=£(x))) => (Et) (P(t) and t=£f(x)).

The latter step is Jjustified by the equivalence given by

Carnap (Carnap 1958) which is paraphrased by:
P((1x) (Q(x))) = (3lx) (Q(x)) and (Ix) (P(x) and Q(x))

(where (3!x)(Q(x)) means there is a unique x so that Q(x)
from (Kleene 1967) ). 1In the transformation, the uniqueness
condition has been dropped. We will see the effect of this

shortly.

As an example, using the first trénsformation,
cost(p) >3
is reduced to:
(Er) (cost (p)=r and r>3).
Similarly the more complex expression:
r = cost (p) * number-on-hand (p)
becomes:

(Ex) (Ey) (x=cost (p) and y=number=-on-hand(p) and r=x*y).

Historically the transformation was carried out so that

functions could use the existing mechanism for predicate
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expressions. Since a predicate expression is compiled to a
statement, it tends to produce programs composed of simple
statements rather than compound expressions. These were
found to be easier to understand. It also has the advantage
that the equivalent of the iota operator (the) can be dealt

with at the same time.

By using just the 1last step in the transformation,

appearances of the can be eliminated:

P(the{x|Q(x)}) => (Ex) (P(x) and 0(x)).
As a simple example, supposes we encounter the expression:
cost(x) >4,

where cost is not stored directly, but is defined in terms

of its inverse:
cost(p) = the {c|p in parts-with-cost(c)}.

(A function parts-with-cost is stored, which produces a set
of parts given a cost. The cost of a part p is given by the
(unique) cost c¢ in whose result set the part occurs).

Replacing the infix > by "greater-than", we get:

greater-than (cost(x),4)
=> greater-than (the {c|x in parts-with-cost(c)},4)

=> (Ec) (x in parts-with~-cost(c) and greater-than(c,4)).
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However if we generate all the values of x which satisfy:
(Ec) (x in parts-with-cost(c) and c>4)
.not all of them are necessarily csoltions to:
cost (x) >4
since we should exclude any for which ¢ is not unique (that
is any parts which are recorded as having more than one
cost.) Dropping the uniqueness condition from the
transformation produces code which may give erroneous

output. ‘ -

The effect of these transformations is to reduce a logical
expression to a series of expressions which contain only
primitive predicates with variables as arguments,
expressions of the form: y=f(x), y in f(x), a restricted
existential quantifier and expressions involving some, sum
and number, The code generator assembles a program from

components corresponding to these forms.

Finally, the pre-processor will, if called on to do so,
generate alternative forms of each expanded expression by
re-ordering the operands of and and distributing and over
or. . A complete list of the transformations applied appears

in Appendix A.

As an example, given an expression to find the assemblies
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using any out-of-stock part:
{a| some {pjuses(a,p) and Out-of-stock(p)}}

together with the definitions:

Uses (a,p) = p in parts-used-by (a)

Out-of-stock (p) = number-on-hand(p)=0

describing how the predicates are represented in storage,
the pre-processor potentially produces the pair of

expressions:

{al some {p|p in parts-used-by(a)
and number-on-hand(p)=0 }}
{a| some {p|number-on-hand(p)=0

and p in parts-used-by(a) }} .

These expressions only refer to primitive functions. Each
of the atomic expressions has one of the forms listed, and

all orderings of the conjuncts appear.

As a more complex example, consider the expression given in
chapter 1, to find the assemblies using more than 1000 4BA

NUTs a week:
{alrate-used(use(a,"4BA NUT"))>1000}.
With the definitions:
rate-used (r) =quantity(r) *weekly=-output (assembly(r))

use (a,p) =the {r|part(r)=p and assembly(r)=a}
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the preprocessor will expand it as follows:

f{al gquantity(r) *weekly-output (assembly(r))>1000

where r=use(a,"4BA NUT")}

{a! (EwEXEyEz) (2>1000 and z=x*y

and y=quantity(r)

and x=weekly-output (w)

and w=assembly(r)

where r=use(a,"4BA NUT") }

removing the nested expressions.

=>

{al (EWEXEYEz) (z>1000 and z=x*y

and y=quantity(r)

and x=weekly-output (w)

and w=assembly(r)

where r=the {r|part(r)="4BA NUT" and assembly(r)=a}}

substituting for "use".

=>

-{a| (EVvEwWEXEyYEz) (z>1000

and

and
and

and

and

and z=x*y
y=quantity(v)
x=weekly=~-output (w)
w=assembly(v)
part(v)="4BA NUT"

assembly(v)=a } ,
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applying the rule for the simultanously to the expressions:
w=assembly( the { . .} )

y=quantity( the {. .}).

It must be emphasised that, although there are a large
number of possible orderings of these conjuncts, it is very

unlikely that it will be necessary to generate them all,

4.2 Code generation

The code generator attempts to convert the expressions
produced by the pre-processor directly into programs,
replacing each logical operator which occurs by a simple
code sequence, The code produced must satisfy certain
constraints. For instance, a variable cannot be referenced
unless it has previously been given a value. The generator
checks that conditions such as this are obeyed and if not,
the generation process fails and another equivalent

expression must be tried.

For data retrieval it is assumed that we usually need to
print all the members of a set or relation. If the set is
S, then the code to do this could be written in a simple

Algol-like language as:
for x in S do write(x) od.

If § 1is stored, this simple program is an adequate

description of the processing, It would not be difficult to
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implement such a loop in a standard programming language
using any of the sequential representations of sets

discussed in section 3.3.

Suppose now . that the set to be printed is not stored but

consists of an expression. For instance S might be:
{plp in parts and number-on-hand(p)=0}

A program to print its members can be obtained by first

writing it in the form:

for x in {plp in parts and number-on-hand(p)=0} do
write(x)

od

and then applying a serieé of transformations which remove
the complex expression between the for and do in favour of a
more elaborate control structure. Each transformation
substitutes a simple implementation for the principle

operator in the expression.

In the example the first operator to be removed is in. 1Its
implementation requires no more than the substitution of
actual for formal variables, removing p in favour of x. This

gives:

for x|x in parts and number-on-hand(x)=0 do
write (x)

od,
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The resulting partly developed program illustrates the
general form of the statements which are processed, It can
be read: "for all values of x which satisfy the expression:
x in parts and number-on-hand(x)=0, execute the statement
write(x)". The loop control variable =x occurs before the |
and a logical expression determining its possible values
occurs after it. In general there may be more than one
control variable so that in the model form: for x|P do C od
X is strictly a set of identifiers. However when x is a
unit set we will not distinguish it from its only member.
Also there may be no control variables at all, so that x may

be empty. The for loop then reduces to an if statement.

To continue with the example, the next operator to be
removed is and. Its implementation introduces a nest of

statements:

for x in parts do
L1: if number-on-hand(x)=0 then
L2: write(x)
£ ‘
od

The expressions in the loop header and the if clause cannot
now be decomposed further and the generation process is
complete. The pre-processor will have guaranteed that the
set "parts" and the function "number-on-hand" do not have

definitions so that these are assumed to be stored., If the
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set "parts" were a sequence of records and the function
"number-on-hand" a field-name in each record, the program

could be implemented quite easily in a standard language.

Looking more carefully at its'execution, the for loop sets x
successively to all members of the set "parts". At label L1,
X will take on every value which satisfies the expression "x
in parts". The set of program states at L1 corresponds to
the set of value-assignments to "x in parts". The inner if
statement receives all these values and produces at L2 only
those which also satisfy "number-on-hand(x)=0". The write

statement prints this set.

During execution the possible values of x are generated one
by one by the loop and each is processed to completion by
the loop body before the next is tried. No intermediate set
is stored, as the generation and'processing of its members
are interleaved. This method of organising a calculation
involving sets or 1lists parallels the coroutining of PRTV,
An analagous method has been used by Abrams to avoid storing
temporary vectors in the evaluation of APL (Abrams 1970).
Similar ideas 1lie behind the "stream processing" functions
reported by Burge (Burge 1975) and "dynamic 1lists" in POP2
(POP2 1971). Because the code responsible for generating
the intermediate structure only produces a new element when
it has to, Henderson and Morris have called the technique

"lazy evaluation".
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4.3 Primitive Statements

Recall that retrieval causes processing to begin with a

statement which has the form:
for x in S do write(x) od

and the predicate is repeatedly processed to produce a nest
of ggg loops containing only atomic predicates. The three
types of atomic logical expression produced by the
pre-processor give rise to three types of primitive
statement, a standard for loop, a let block and an if
statement. In a completely expanded program they can only
mention functions and sets which are directly stored or

easily computed.

A standard for loop is generated by the transformation:

for {x}|x in S do C od

=> for x ig § do C od

The transformation reflects the fact that, assuming C does
not exit abnormally, the resulting code sequence executes C
with all values of x satisfying x in S. For the conversion
to work the set of variables to be determined (the set
preceding the |) must have x as its only member. No code

could be generated for example from:

for y| p in parts do C od
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and given this expression the code generator will report

failure.,

In general, x may be a 1list of wvariables, when {x} is
understood to mean the set of variables in the list x (which

must all be different). For example:

for {m,p}| (m,p) in Supplies do C od

=> for (m,p) in Supplies do C od.

Again the transformation is straight-forward, the final code
sequence generating all values of m and p satisfying the

expression,

A let biock is generated by:

for {x}|x=e do C od

=> let x=e; C.

Since there must be one and only one value of x which
satisfies the predicate expression, the for loop, which
would otherwise be produced, can be supplanted by a simpler
let block. The equality may be reversed so that the unknown
variable appears on the right rather than the left without
effecting the code, but unknowns may not appear on both

sides. A simple example of let is:
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for q| number-on-hand(p)=q do C od
=>

let g=number-on-hand(p); C.

The final transformation may be used for any predicate

function:

for {}| P do C od

=> ii P then C Ei.

The set of variables to be determined must in this case be
empty, so the loop 1is a degenerate form with no control

variable. Examples are:

for {}| Out-of-stock(p) do C od
=> if Out-of-stock(p) then C fi
for {}| number-on-hand(p)=q do C od

=> if number-on-hand(p)=q then C fi.

As there is normally special-case code when the set of
variables to be determined is empty, it is convenient to
make the transliteration between for and if whenever this
occurs. In generél an if statement may also have an else
clause, but following normal practice, it will be omitted

when it contains only a null statement.
Although if can be used for the majority of predicates, we

have made the assumption that sets are held sequentially.

Consecguently we will disallow code sequences of the form:
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ig X iﬂ S then C gi

when S is stored. The danger of allowing such code is that,
should it occur in a loop, the set S may be searched many
times and the resulting program might be very inefficient.

It would be costly for example to attempt to intersect two

sets S1 and S2 using:

for x 52 s1 do
ig X ig S2 then C Ei

od.

Since in has to be implemented on a sequence by searching

the entire set, the code amounts to:

for x in S1 do
for y in S2 do

if x=y then C fi

od.
By disallowing this code, the compiler is forced to

look for an alternative. For instance it may be able to process

both sets sequentially in a collate operation.

section 4.3 102



4.2 Conjunction

The simple example given earlier shows that code for a
conjunction can be constructed by inserting one loop within
another, In general, if P and Q are two predicate
expressions and the variables used in P are a set p, then

the transformation takes the form:

for x| P and Q do C od
=> for (xnp) |P do

for (x-p)|Q do

The outer loop generates all values for any of the unknown
variables in x which are wused in P (these are given Ly
(xnp). The inner 1loop accepts these values and in turn
generates values for any remaining variables (those in the
set difference x-p) so that Q 1is also satisfied. The
statement C is executed with all values satisfying the

conjunction.

‘As an example consider generating the set of values:
{(x,y)| x in 1,.20 and y in 1..10 and x+y=5]}.

Taking the principle operator to be the first and, the
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generation proceeds:

for {x,v}| x in 1..,20 and y in 1..10 and x+y=5 do C od

=> for x|x in 1..20 do

for yly in 1..10 and x+y=5 do

by expanding the and into a nest of loops.

=> for x i& 1..20 gg
for yly in 1..10 do

for {}| x+y=5 do

simplifying the first loop header and expanding the second

and,

=> for x in 1..20 do
for y in 1..10 do

if x+y=5 then C fi

replacing the central for loop by an if statement,
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This is only one of the possible programs (and clearly not
the best) which could be used to generate the same set of
values., Other orderings of the c¢onjuncts would produce
different programs. Discussion of the choice of a suitable

order is deferred until section 4.8.

4.5 Disjunction

To print the values which satisfy the expression:

x in 1..5 or x in 7..10

the following program would suffice:

for x i

|5

1..5 do write(x) od;

for x in 7..10 gg write(x) od

It consists of two statements generating values in the

individual sub-ranges concatenated together.
In general we make the transformation:

for x|P or Q do C od
=> for x|P do C od;

for x|Q do C od.

The loop body C has been duplicated in this construction.
If the code is short the duplication is of 1little
consequence, If the code were more lengthy it might be

better to create a subroutine containing C and insert a call
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in each loop body.

The code sequence 1is strictly an implementation of a
disjoint set union, If there are values which
simultaneously satisfy both operands of an or, the code will
generate them twice. Provided only simple predicate
connectives are used the duplication will go undetected and
the only effect would be to reduce the program efficiency.
But were we to attempt to count the number of items in a set
by counting the total number of loop iterations, then too
large a result would be obtained. Similarly, when printing
the values, some will appear twice. Also, while we have not
been explicitly concerned with the order in which values are
produced, the code generates all values from one operand
first followed by those from the other. It does not
interleave the values properly if they come from an ordered

set.

The natural implementation of or for this more general case
is to use a symmetric merge. A merge requires that the two
operands generate values in the same order, but has the
advantage that an ordered result is produced and that
duplicate values can be removed easily. As was remarked
earlier, many relational systems use merge not only to
implement or, but in different wvariations for each
operation. An interpreter constructed initially to

implement the operations on value-assignments was no
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exception to this. To wuse collate operations widely may
well be expedient in practice, but it does obscure

situations when a simpler method could have been used.

No symmetric merge operations are generated at present. The
major problem being that to express the process a pair of
coroutines is needed. While the generation of values which
satisfy:

out-of-stock(p) or obsolete(p)
might be indicated as:

for p in (out-of-stock or obsolete) do - od
when the operands of the or are expressions, no convenient
way to express the process could be found. The use of a
"resume" statement as in Simula 67 does not produce very
clear code, neither does the alternative (which would be
necessary if wusing a standard high-level language) of
simulating this with conventional loop structures. As a
temporary measure, the semi-colon is replaced by a comma (to
indicate the parallel execution of the two statements) when
the necessity for a merge has been detected. Occurrences of

its use do not seem to be very common in practice,
The problem with inclusive or does not occur if there are no

variables to be determined. We can then wuse a standard

transformation whose general form is:
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if P

IO

r 0 then C1 else C2 Ei

P then C1 else

s IR

Q then C1 else C2 Ei Ei.

To illustrate its use consider the expression:
{(x,y)1 ¥y in 1..10 and x+y=5 and (x in 1..5 or x in 7..10)}
The generation proceeds:

for {x,y¥| y in 1..10 and x+y=5 and (x in 1..5 or x in 7..10)
do C od
=> for y in 1..10 do
let x=5-y;
for {31 x in 1..5 or x in 7..10 do C od

od

=> for y in 1..10 do
let x=5-y;

X i& 1..5 then C else

- |P-
|

x in 7..10 then C £i fi

od.

One may feel in this case that the expansion has gone too
far since the program is probably clearer with the or than

with its if then else replacement. However a complete

expansion is sometimes needed to eliminate  compound

expressions within disjuncts and so is always carried out.
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4.6 Negation

A not operator can only be corpiled in a context where there
are no variables left to be determined. We cannot, without
searching the wuniverse, determine values which do not

satisfy an expression. The only transformation used is:

iﬂ not P then C1 else C2 Ei

=> iﬂ P then C2 else C1 fi.

As an example the expression:

{(m,p) | Supplies(m,p) and not (p="4BA NUT" or p="4BA BOLT")
where Supplies(m,p) = (m,p) in supplies-list }.
becomes:
for (m,p) in supplies-list do
if not(p="4BA NUT" or p="4BA BOLT") then write(m,p) fi
od
for (m,p) in supplies-list do

if p="4BA NUT" or p="4BA BOLT" then else write(m,p) fi

od

for (m,p) in supplies-list do

if p= "4BA NUT" then else
if P= "4BA BOLT" then else write(m,p) fi fi
od.
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4.7 Projection and related operations

An equivalent of the existential quantifier must be included
to give the same facilities as the project operator in the
relational algebfa. In the restricted form derived from
functional expressions, it is known that at most one value
can satisfy the quantified expression, and this produces a
very easy implementation. As an example, consider listing

the values satisfying
p in parts and r=cost-on-hand(p).
Section 4.1 shows that this reduces to:

(Ex) (Ey) (x=number-on-hand(p) and y=cost(p) and r=times(x,y)

and p in parts).

A program which produces all values of p,x,y and r

satisfying the quantified expression at label L is:

for p in parts do

let x = number-on-hand (p)

-y

let y = cost (p);

-e

let r = tires (x,y)
L: C

od

Clearly execution will reach the label once for each value
of p and with r containing the required value. Consequently

we can just ignore the quantifier and assuming that the set
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"parts" contains no duplicates, no two iterations will have

the same value of p.

The same should be true, although 1less obviously, in the

example:
Cost(p) in 1..10

which, if Cost 1is defined in terms of its inverse, reduces

to:
(En) (p in parts-with-cost(n) and n in 1..10).

(A very similar example was given in section 4.1). Code to
execute statement C with all values of p and n satisfying

the quantified expression is:

for n in 1..10 do
for p in parts-with-cost(n) do
C
od .

od.

Again the quantifier can be ignored and no duplicate values
of p should be produced, although this is not obvious from
the code. (Notice, though, that the values of p are not

produced in any sorted order).

Consequently the existential quantifier, when it is known

that at most one value can satisfy the expression, can be
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implemented simply by forgetting it. This contrasts with
the more general case., Suppose, for example, we have the

expression:

some {m | Supplies(m,p) } and Out-of-stock (p)

giving, as values of p, the out-of-stock parts for which at
least on supplier is recorded. It would Dbe more

conventionally written:
(Im) (Supplies(m,p)) and out-of-stock(p).

With suitable representations, we might, using the same

method as before, create the program:

for p in out-of-stock do

for m in suppliers (p) do

C

od

and forget the quantifier. However, execution will reach C
many times for each value of p and if we printed a list of
values of p produced in this way it would contain many
duplicates. We can prevent this by branching out of the

in-most loop once one value has been found:
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for p in out-of-stock do

for m in suppliers (p) do

C:; goto L

Execution will now reach statement C at most once for each
value of p. In examples with just simple connectives and,
or, not the advantage of the lazy method of evaluation has
been to avoid the need to store temporary sets of values.
Here the generation of a set can be prematurely terminated

when the existence of the remaining members is of no

interest.

Generally we make the transformation:

ii some S then C1 else C2 Ei

=> for x in S do

Cl1; goto L
od; '
C2;
L:

Statement C1 is executed once if a value is found satisfying the

test, C2 is exécuted if no value is found,
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Other operations

A number of other operations can be performed in a similar way.
For example to count the number of suppliers of each out-of-stock

part we could, in similar circumstances, use the code:

for p in out-of-stock do
let r=0;
for m in suppliers(p) do
r:=r+1
od;
C
od.

Wwhen statement C is executed, r will contain the number of

suppliers of part p. The general implementation is:

let r = number S; C
=> let r=0;
for x ig S do

r:=r+1

The use of let in the resulting code sequence is of dubious
legality as the variable it introduces takes on more than
one value. However we regard the 1loop as part of the

construction of its initial value.
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In exactly the same way to find the sum of some items we can

use:

let r = sum (S,f); C
»=> .l_e_t_r=0;
for x in S do
r:=r+f (x)
od; C
Remember the function sum takes two arguments, a set and a
function to be applied to its elements. The items to be

summed do not necessarily constitute a set.

All these examples clearly have the same form. The function
some differs somewhat because its result is a logical value
and because, once one value has been found, no more need be
considered. Other functions with a similar structure for
example all, minimum, one-of, could readily bé implemented
in the same way by modifying the initial wvalue and the

statement in the loop body.

The transformations shown in the appendix are slightly more

general than those given here to allow for arrays.
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Temporary Structures

Suppose that we need to expand:

for p| some {m|Supplies(m,p)} do C od,

that is we need to execute C with all parts p supplied by at
least one manufacturer. The implementation of the
restricted quantifier E is to ignore it. If we try the same

method and assume that Supplies is stored as a set:
Supplies(m,p) = (m,p) in supplies-list
the for loop reduces to:
for {m,p} | (m,p) in supplies-list do C od.
The code is simply:
for (m,p) in supplies-list do C od.

Certainly C will be executed with p taking on all parts
supplied by some manufacturer, since the code goes through
the entire supplies file extracting all parts. However each
part will be produced many times. We cannot, as in an
earlier case, terminate the production of duplicates by a
branch, so to eliminate the duplication the values must be

stored:
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let S=empty;
for (m,p) in supplies-list do
S:=S unjion p
od;

for p in S do C od.

The parts occurring are saved in a temporary set S
(implemented, say, by a binary tree). When execution of the
first 1loop is terminated, S contains the set of values

required. The second loop executes statement C once for

each value found,

The substitution can be generalised:

for {x} | some S do C od
=> let T=empty;
for ({y}uix})|y in § do
T:=T union x
od;

for x ig T do C gg.

With the functions number and sum it may be necessary to

create a temporary array of values. The transformation used

for number, introducing an array A is:

for {r}U{x}|r=number S(x) do C od
=> let A(x)=number S(x);

for {x}V{r}ix in domain(A) and r=a(X) do C od.
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For example, suppose we needed the number of manufacturers
who can supply each out-of-stock part.

The set to be printed is:

{(p,x) J Out-of-stock (p) and r=number { m|Supplies(m,p)3} .
If the representation were:

Supplies(m,p) = (m,p) in supplies
then we would need to expand:

for {p,r} |

Out-of-stock(p) and r=number {m| (m,p) in supplies }

do write (p,r) od.

No code can be generated without first creating an array.
The reason for this is that p appears on the 1left of an in
in the second clause. The only possibility would be to scan
the set supplies many times, once for each out-of-stock
part. So applying the transformation to produce an array, we

get:

let A(p) = number {m|(m,p) in supplies};
for {p,r}| p in domain(A) and r=A(p) do
if Out-of-stock(p) then

write(p,r)

Expanding the let according to the implementation of number

section 4.7 118



gives:

let A(p)=0; comment A is a sparse array, and all elements
are defaulted to zero.
for (m,p) in supplies do .
A(p):= A(p)+1
od;
for p in domain(a) do
let r=A(p);
if Out-of-stock(p) then

write(p,r)

od.

The code could be improved by noticing that A stores the
counts for all parts, whereas only those in out-of-stock are
used. It would be better to test this condition before
storing into the array. The ihtended transformation with
this effect was unfortunately found not to be possible

within the current implementation structure.

The complete list of expansions used during code generation

are shown in Appendix A.
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4.8 Choosing a program

Although many of the alternative expressions produced by the
pre-processor will fail to generate a code sequence, there
will be some occasions where more than one result is

possible,

An important source of alternatives is the ability to take
the clauses of a conjunctive expression in any order. For

the arithmetic example given earlier:
{(x,y)] x in 1..20 and y in 1..10 and x+y=5}

many of the orderings could be used and they are illustrated
in figure 4.1. In the diagram each node has been labelled
with a subset of the clauses, At I this is the empty set
and at O all the clauses are included. Assuming members of
these sets are connected by and, each node is associated

with a logical expression. Each edge in the figure is

labelled by the heading of an iﬁ' for or let statement. The
various programs to construct the set of interest are
represented by a sequence of directed edges from I to O,

For example the original program:
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for x i& 1..20 do
for y in 1..10 do

if x+y=5 then C fi

od

is represented by the edges through the chain of points
1,2,6,8. The 1logical expressions at the nodes define the
sets of states which occur at intermediate points in the

program,

When dealing with stored relations rather than computed ones
the possibilities will be limited by the representation. An

example which is structurally similar to the last is:
{(m,p) | Out-of-stock(p) and Supplies(m,p) and British(m)}.

Suppose that the predicates are defined in terms of stored

structures by:

Out-of~-stock(p) out~of-stock-list = out-of-stock(p)

]
o]

[

o]

L
3
-
3

- British(m) in british-list = british(m)

n
=)
P
e

Supplies (m,p) in Suppliers(p).

Both Out-of-stock and British are represented so that they
provide the functions of a "powerset",. The possible
programs (without using a collate operation) are then
illustrated by figure 4.2. Where no transformation 1is
possible the connection between two nodes is shown as a

dotted line. Only one path between I and O is possible
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Figure 4.1 Possible programs for
x in 1..20 and y in 1..10 and x+y=5.
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representing the program:

for p in out-of-stock-list do
for m in Suppliers(p) do

if british(m) then C fi

If instead the predicate Supplies were represented by

"supplied-by":
Supplies(m,p) = p in supplied-by (m)

then the possibilities are shown in figure 4.3, This
differs from figure 4.2 only in that a different vertical

edge is solid. The only program then is:

for m in british-list do
for p in supplied-by(m) do

if out-of-stock(p) then C fi

Now suppose that "Supplies" is given a redundant
representation, storing both "supplies" and "supplied-by".
The possibilities are given by overlaying the two figures

and either of the two programs are possible.

The least controversial approach we could take to the

problem of selecting a program is to generate and print them
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Figure 4.2 Possible programs for
British(m) and Supplies(m,p) and Out-of-stock (p) .
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Figure 4.3 Further possibilities for
Britisﬁ(gf and Supplies(m,p) and Out-of-stock(p) .
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all. However this makes the implementation rather slow and
awkward to code, It was also found that in a number of
cases where only one solution was expected, a large number
would be produced. These differed only in minor matters

such as the ordering of independent let blocks.

A second alternative is to try to select the program which
incurs the least execution cost. Some selection on a cost
basis would probably be needed in an automated data
retrieval system. As the actual costs of individual
operations are not known, a possible approximation to this

is to minimise the number of operations performed.

For the arithmetic example in figure 4.1 we might argue as

follows:

First, consider programs which contain the line connecting I

to 3 and so start:
for (x,y) in addto(5) do

The function "addto" is expected to produce all pairs of
numbers whose sum is given by the parameter. For positive
integers this might be possible, but if negative integers
were included there would be an infinity of such pairs.
Although it 1is possible for execution of the 1loop to be
terminated prematurely (for example by the existential

quantifier), in general a program starting in this way would
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not stop. Point 3 has been annotated with the number of

iterations (infinity) to show this.

Ignoring these programs, next we consider those starting:
for x ié 1..20 do

The loop body will be executed twenty times and again this
number of iterations is shown. The body itself will

comprise either line 2,6,8:

for y in 1..10 do
if x + y = 5 then C fi
od
or line 2,5,8:
let y =5 -x;

if y in 1..10 then C fi

both of which execute C with the same set.
The second alternative is to be preferred, as the inner test
is executed only once per iteration, while in the first the

test is executed ten times.

Similarly, the best program starting with line 1,4 is:
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for y in 1..10 do

let x 5 -y
if x in 1..20 then C fi

od.

This is better than the last as the loop bodies are very
similar, but here it is executed ten, rather than twenty

times. This program should therefore be selected.

To gquide this choice it is clearly necessary to know the
size of the underlying data and to be able to estimate the
size of the various intermediate sets. This motivated a
study of the constraints on the sizes of sets formed by
expressions in the underlying algebra. Although (with
difficulty) some bounds can be obtained no useful
simplifying principles were discovered and the rules are
probably of only marginal value in practice. For example
while the maximum size of the intersection of two sets A and
B is the size of the smallest of A and B, the number of
members to expect in the result is highly dependent on

semantic factors.

The implementation takes a third and very simple approach,
producing the first complete program it finds. It was felt
that, in the 1long run, it would be better to rely only on
syntactic information in selecting a program rather than try
to make deductions from actual data sizes. Working toward

this we need to reduce the choice as much as possible and
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then to arrange the search so that programs with the least

execution cost are encountered first.

Toward the first goal, consider the two alternatives
depicted in figures 4.2 and 4.3. While they produce
identical sets, if we were to execute them their results
would 1look very different. Fach produces a 1list of
manufacturer-part pairs, but in the list produced by the
first program, entries containing the same part occur
consecutively, while the second will 1list all entries for
one manufacturer together, Practically we would probably
not want to give the system the freedom to choose the way
that the output is ordered as it is very unlikely that a
list sorted by parts would serve the same purpose as a list
sorted by manufacturers. The need to make the choice can be
avoided by requiring that the output be specified as an
appropriate array of sets. The éresent implementation does
not handle arrays sufficiently generally to allow this, but
uses the 1list of output variables as an indication of the
result order. If the list were (m,p), then the code would
vary the value of p most rapidly. Although we have tried to
ignore the question of set ordering, it is apparent that for
proper output presentatioﬁ and to include symmetric merge
operations, the notion of an ordered representation of a set

should be included.
Fixing the output order avoids many of the choices which
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must otherwise be made. The only change this makes in the
transformations 1is to replace the set of variables x in
£2£'x|P do C od by a vector of variables, substituting for
the union operator on such sets, vector concatenation.

There will, even with this change, be some occasions when a
choice of code exists. Suppose we need to find the set of

parts p satisfying:
Out-of-stock(p) and Obsolete (p)

where Out-of-stock and Obsolete are both stored as

"powersets":

Out-of-stock(p) = p in out-of-stock-list = out-of=-stock(p)

Obsolete (p) = p in obsolete-list = obsolete(p).
There is a choice between:

for p in out-of-stock-list do
if obsolete(p) then C fi
od
and:
for p in obsolete-list do
if out-of-stock (p) then C fi

od.

The shorter 1list should be processed sequentially, but
without a knowledge of set sizes the implementation

arbitrarily prefers the first program, sequencing through
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the left-hand argument of the and operation. If a collate
operation were available it would be better to treat this
symmetric situation by symmetric code. A binary merge
technique (Knuth 1973) for example achieves good performance
on a wide range of sets. For genuinely asymmetric cases an

alternative syntax could be introduced.

The tables in appendix A show the order in which the search
for a code sequence is made. These 3illustrate, for
instance, that no distribution of and over or takes place

unless a code sequence cannot be produced without it.
Chapter 6 gives a series of examples which show the complete

compilation process in action and the way that this

simplified method of choice works in practice.
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CHAPTER 5

SELECTIVE UPDATE

A long term aim of this work has been to further the
understanding of the choice of data organisation. If we
restrict consideration to data retrieval only, then
increasing the amount of redundancy in the stored data will
always tend to improve the overall processing time. If the
number of alternative structures is increased then it
becomes more likely that one will exist to suit a randomly
chosen retrieval. The choice of a data organisation reduces
to an analysis of the trade-off between retrieval time and
storage space. However when the data is subject to change,
each update must be propagated through all the relevant data
structures. Update times will therefore tend to increase as
more redundancy is employed and the optimimum data
organisation will depend on the ‘pattern of retrievals and
updates. Florentin (Florentin 1972) suggests that update is
usually the critical factor in determining this

organisation,

These thoughts suggested that an assignment statement should
be added to the earlier mini-language and the effect of
assignments on the stored data structures investigated.
Section 5.1 introduces the method which is used and section
5.2 describes the assignments  considered. Subsequent

sections discuss the effect of the assignments on data
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structures whose contents are defined by the allowable
expressions. Ultimately this should allow a comparison to
be made between the situations when an expression 1is
computed on each retrieval and when the expression is
stored. In -the latter case it must be recomputed on each
update. Section 5.3 covers the relatively simple case of
structures defined only by logical expressions,
corresponding approximately to relational expressions, but
without the project operator. Section 5.4 then illustrates

the extensions necessary to handle more general functions.

2'1 Introduction.,

It is assumed that the user views the information in the
data-base as being contained in a number of variables. If a
change occurs in the stock position of, say, 4BA NUTs this

may be reflected by an assignment such as:
Number-on-~hand ("4BA NUT") :=250,

The assignment changes the function stored in the variable

Number-on-hand.

When dealing with update it becomes necessary to distinguish
the variable in which information is held from the function
or set which happens to be its current value. While we need
to make this distinction, that is in this section, section
5.2 and section 5.3, we will distinguish variables by an

initial capital letter. Their values will start with a small
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letter, regardless of whether they are predicates, functions
or sets. Thus Number-on-hand stands for a variable, while
"number-on-hand" stands for the function which is its
current value. Outside these sections, initial capitals do

not have this significance.

Ideally, in making an assignment, there should be no danger
that the data held in the data-base will become internally
inconsistent. That is, in the example there should be no
information held which could imply that there are other than
250 4BA NUTs in stock. This mutual independence of the data
is one of the aims of Codd's "third-normal-form". We will
therefore assume that variables are separated into two
groups, those which are primitive, and those whose values
are given by definitions, The primitive variables, which
correspond to a third-normal-form view of the data, can be
updated freely, but no assignments are allowed to variables
which have a definition. The definitions give their values

at all times,

For example, an assignment can be made to Number-on-hand, as
it is assumed to be in the primitive group, but an
assignment is not explicitly allowed to Out-of-stock-list.

Its value is given at all times by the definition:

Out-of-stock-list= {p | Number-on-hand(p)=01} .

The effect is as if the value of the variable 1is computed
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each time it is referenced,

Thus although for retrieval, the data may appear to contain
many variables whose values are interdependent and these may
be used without distinction, for update only a certain group
of primitive variables can be changed and all the others

take on consistent values.

In spite of the notional separation into variables which
store primitive data and those with computed values, there
is no need for the actual storage representation to
correspond to this, Variables whose values are given by a
definition may be stored, provided the value kept in storage
is always the same as that given by the definition, and
variables which are apparently primitive can be computed, if
sufficient data exists elsewhere. We will not be concerned
with this last possiblity, but will consider the effect of

keeping stored data corresponding to a definition.

Keeping such redundant data may improve the overall system
performance. For example, suppose that the parts which are
out-of-stock are frequently the subject of enquiries. It
may often be necessary during retrievals to obtain the set
Out-of-stock=-list. If this is permanently in storage there
will be no need to search the complete 1list of parts to
obtain its members., This may result in a considerable

saving of compute time (at the expense of the extra
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storage).

The PRTV system (Todd 1975), for example, will store data
corresponding to definitions. When a defined relation is
referenced and the data it containé has been computed, the
relation is saved in permanent storage. Until the space it
occupies is needed for other purposes, subsequent references
to the definition can make us of the pre-computed data. The
system attempts to maintain in storage data corresponding to

the most frequently used definitions.

The PRTV system cannot update this redundaht data when an
assignment occurs. Any pre-computed relations which may be
effected by the assignment must be discarded. The question
which concerns us here is how the redundant data should be

changed so that it is still correct after the assignment.

With the assignment:
Number-on-hand ("4BA NUT") :=250 ,

suppose Out-of-stock-list is stored. Its value must Dbe
changed so that it is still given by the definition. It will
then not be noticeable that the. value is being stored and
not computed on reference. One way to guarantee the
validity of the redundant data would be to recompute it
completely. Whenever the system receives an assignment to

Number-on-hand, it could discard the old value of
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Out-of-stock-list and re-calculate it by an assignment such

as:
Out-of-stock-list := {p|Number-on-hand(p)=0}.

The processing would be much the séme as would be needed to
respond to a request to print the 1list of out-of-stock
parts. A scan would be made of all parts, and those with a
number-on-hand of 2zero collected. Instead of sending them
to the printer, these would be stored as the value of
Out-of-stock-list, This is obviously grossly inefficient,
since the new list will differ from the old one by at most
one member. Intuitively, for the assignment given, the
correct action is just to delete the member "4BA NUT" from
Out-of-stock-list, if it is there, The characteristic of
this better method is that it makes use of the earlier value
in storage. Rather than re-computing the value completely,

it merely makes a small change to the earlier one.

strength reduction.

The transformation to get such an assignment uses the same
principle as a standard optimisation carried out by some
compilers (Allan 1970,Cocke and Schwartz 1971,Gries 1970).
In this context it is used to “strength-reduce" operations

occurring within loops. For instance the code:
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for I:=1 until 10 gg
x:=4*I; L] . .

od

in the right circumstances is changed to:

X:=0;

for I:=1 until 10 do
Xe=X+4: . . &

od.

In the unoptimised loop, X is always given the value 4*I at
the start of the loop body. It is assumed that there are no
other assignments to X, so that during execution of the loop
X always has the value 4*I, 1In calculating each new value

of X the o0ld value is ignored.

In the optimised code, the multiplication in the assignment
has been "strength reduced" to an addition which utilises
the value of X from the previous iteration., As addition is
a simpler operation than multiplication, the optimised loop

should run more quicklyv than the original.

The argument which 1leads to this optimisation runs as

follows:

Suppose, on some iteration, I has the value i and X has the
value x, so that x=4*i, On the next iteration, I will have

some value i' and X some value x', Again these values will
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be related by:

x‘=4*i' .

=4*(i+1)

since I is incremented by unity between one iteration and
the next. This has expressed the new value of X in terms of

the old value of 1I.

=4*ji+4

= x +4

distributing the rultiply and replacing 4*i by x. This has
obtained the new value of X in terms of the old value, To

generate this new value the assignment:
X:=X+4

is used.

More generally, suppose we wish to maintain an equivalence:
y=f£ (X)

between two variables X and Y.

Suppose X has the value x and Y has the value y, so that

y=f(x), and an assignment:
X:=u(X)

occurs. We need to set the new values of X and Y, say x' and
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y', so that:
y'=£f(x').

Because of the assignment, x' will be related to x by:
x'=u(x{.

Substituting we get:

y'=£f(u(x))

relating y' to the old value of X. Now if we have an

equivalence of the form:
f(u(x))=v(f(x))
the new value of Y can be expressed:

y'=v(£f(x))

=v(y)
so that the assignment:
:=v(Y)

will give Y a new value with the property that Y=£f(X).

The problem is to find a suitable set of equivalences with

the form:
f(u(x))=v(f(x))

so that the data-base definitions can be treated in this
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way. Osman in his PhD thesis (Osman 1974), mentions the
possibility of performing the optimisation for set

operations in PRTV.

5.2 Assignments.

The assignments which will be considered have the form:

function [arguments] := valued-expression |

predicate [arguments] := logical-expression.

If the function or predicate is stored in an array, then the
assignment corresponds to the updéte of an array element.

For example:
Number-on-hand ("4BA NUT") := 250
alters the value of the array element indexed by "4BA NUT"
to 250.
The effect of the assignment may be described by defining:

update(a,t,r)=if t then r else a.

update will be used as a replacement for if then else when
describing the effect of an assignment, The substitution

clarifies the meaning of some of the expressions.

Following an assignment:
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A(i):=v

the new value of A, say a', will be related to the old value

"a" by:

a'(x)=if x=i then v else a(x)

=update (a(x) ,x=i,v).

For the example assignment given earlier, the new value of

Number-on-hand will be given by:

number-on-hand' (p) =update (number-on-hand(p) ,p="4BA NUT",250)
=if p="4BA NUT" then 250

else number-on-hand(p).

The functions number-on-hand' and number-on-hand are the
same everywhere except for an argument "4BA NUT", where the
new function gives 250 regardless of the value returned by

the o0ld function.

To create an assignment to a stored item of data, the first
step is to obtain its new value in terms of the o0ld one. The
next two sections deal in detail with the way this is done.

Usually, the relationship takes the form:

r' (x)=update(r(x),t(x),v(x))

=if t(x) then v(x) else r(x)

where r' is the new value of the stored variable R and r is
its old value. Then it necessary to generate an assignment

to alter the stored value of R appropriately.

section 5.2 142



In the expression, the new value of R differs from the old
value only at values of x which satisfy the test t(x). For
these the element PR(x) must be set to contain v(x). Other

elements of R are to remain unchanged. The code used to

make the assignment is:
for x|t(x) do R(x):=v(x) od.

This generates all values of x which satisfy ¢t(x). These
value index the elements of R which must be updated. Within

the loop the new value v(x) is assigned to them.

For the example:
number-on-hand' (p) =update (number-on-hand (p) ,p="4BA NUT", 250)

we get:

for p|p="4BA NUT" do
Number-on-hand (p) :=250
od,

Simplifying this according to the processing in chapter 5

gives firstly:

let p="4BA NUT";

Number-on-hand (p) :=250
then eliminating p gives:

Number-on-hand ("4BA NUT") :=250,
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5.3 Logical expressions

This section describes how the new wvalue of a wvariable
defined using a logical expression can be obtained in the
required form. Of necessity, the examples are of rather an
uninteresting nature. A more realistic example is given in

the next section.

Suppose that a sparse array (or set of logical fields) is
maintained in storage and its value is given at all times by

the definition:

Unavailable(p)

Out-of-stock(p) or Obsolete(p).

If an assignment occurs which changes the value of
"out-of~stock" then the value of "Unavailable" may also need
to be changed so that the equivalence remains true after the
update. If delivery were received for some part "a", then

an assignment caused by the change might be:
Out-of-stock(a):=false.

In terms of the function update, the new value of the

variable Out-of-stock will be related to the o0ld one by:

out-of~-stock' (p)

= update (out-of-stock (p) , p=a, false).

We would 1like to construct an assignment to "Unavailable"

which uses the o0ld value in the same way. In other words,
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we would like to express the new value of "Unavailable" in

the form:

unavailable' (p)

= update (unavailable(p) ,t,r)

where t and r are expressions giving the positions at which
the update is to take place and the result to be assigned.
Now the new value "unvailable'" must be related to the new
value "out-of-stock'" by the defining equivalence. So, after

the assignment we must have:

unavailable' (p)
= out-of-stock' (p) or obsolete(p)

= update (out-of-stock(p), p=a, false) or obsolete(p).

Now, appendix C shows that:
uEdate(P,t,r) or Q0 = update (P or Q, t and not Q, r).

Substituting P=zout-of-stock(p), Q=obsolete(p) we £find that

the new value of "unavailable" is:

ugdate (out-of-stock(p) or obsolete(p),
p=a and not obsolete(p) , false)

= update (unavailable(p), p=a and not obsolete(p), false).

The last expression is in the required form, giving the new
value of Unavailable in terms of the old one, The code to

update the variable must assign the value false to any
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element Unavailable(p) where p satisfies the expression: p=a

and not obsolete(p). The code:

for p| p=a and not Obsolete(p) do
Unavailable(p) :=false .

od

is needed. This simplifies to:

let p=a;

if Obsolete(p) then else Unavailable(p):=false,
so that the additional assignment:
if Obsolete(a) then else Unavailable(a):=false

maintains the consistency of the stored data. Intuitively
this assignment is correct. If Obsolete(a) is true then the
value of Unavailable(a) is unaffected by the change to
Out-of-stock(a), but if Obsolete(a) is false then
Unavailable (a) must be given the same value as

Out~-of-stock(a).

To deal with a complex expression, the equivalences may need

to be applied iteratively., For example, suppose:
Supplies-good-part(m,p) = Supplies(m,p) and not Obsolete(p)
The assignment: Obsolete(a):=true produces a new value of

Obsolete(p) given by:
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update (obsolete(p), p=a, true).
The new value of Supplies-good-part(m,p) is:

Supplies{m,p) and not update (obsolete(p) ,p=a,true)

First the innermost expression is treated, using the

equivalence from appendix C:

not update(P,T,L) = update(not P,T,not L).

We get:

Supplies(m,p) and update(not obsolete(p), p=a, false).

Next update is carried through the and using:

P and update(Q,t,r) = update(P and Q,t and Q,r).

The result is:
update (Supplies-good-part(m,p), p=a and Supplies(m,p),false).

Assuming that Supplies 1is defined in terms of the

representation:
supplies(m,p) = m in suppliers(p)
the complete code needed for the assignment is:

for m in suppliers(a) do
Supplies~good-part(m,a) :=false
od;

Obsolete (a) :=true.
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The equivalences for and, or and not allow the strength
_reduced assignments to be formed for expressions constructed
using the 1logical connectives., lHowever as will be seen in
the next section this does not extend to the majority of
relational expressions because e#bressions containing a
project operator (or its equivalent some) cannot always be
optimised. It is necessary to recompute at least part of a
general projection on each update. We should also note that
even with just the simple logical connectives, not all

expressions can be optimised. To obtain an assignment for

example to:
R =P and Q

when P changes, we have implicitly assumed that Q remains

constant. This need not be so, as in:
R(x,y,2) = Father(x,y) and Father(y,z)

if the predicate "Father" should change., The

transformations do not always work in such a situation.

5.4 Other functions

An outline of the rules for strength-reducing assignments
for most of language F are contained in Appendix A. Rather
than writing the rules as equivalences, they have been
expressed directly in statement form, F'or example, to

maintain the equivalence: R = P and Q when an assignment:
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for x|T do P:=V od
occurs, it is necessary to make the additional assignment:

for (xur)|T and Q do R:=V od

(wvhere r is the set of free variables in R). The last
statement results from applying the corresponding

equivalence.

A significant omission from the appendix is a rule for the.
the is a partial function and its result is undefined unless
the argument is a unit set. To cater for this we need to
allow stored functions to give undefined results for some of
their arguments. In a data-base situation this simply
corresponds to fields with temporarily undefined values. It
appears gquite possible to carry this through, but the

implications are very wide. For example the two sets:

{plnumber-on-hand(p)=o}

{pinot number-on-hand(p)#0}

neéd not be identical if number-on-hand may produce
undefined values, The first set contains parts which have a
number on hand of zero. The second contains all parts
except those with a non-zero number on hand, and so contains
not only parts with a zero number on hand, but also any

whose number-on~hand is undefined.

If the right results are to be obtained, the system cannot
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use the equivalence: P

not not P, distinguishing between
."known to be true" and "known not to be false". Although
for retrieval the implementation appears not to violate this
intuitionist logic, the update rules are made slightly more

complex and have not been included.

The appendix contains a new type of assignment which is
only generated internally, It is clear for example that
"becomes equal to" is not always appropriate for updating
sets, as we may wish to modify the set contents rather than
change its value completely. To make such small changes the

two statements:
S:plus x and S:less x

are used. The first adds x as a new member of S. The
result is not defined if the set already contains x. 1In
pracfice an implementation should check whether an attempt
is being made to duplicate an existing member and issue an
error message if this is so. Analagously, S:lggg x deletes
an existing member x from S and an implementation is
expected to complain if S does not contain x. These
assignments were chosen in preference to norm&l union and

difference so that the set is always changed.
An example.
To illustrate some of the resulting code sequences we will
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take a simplified airline reservation system as an example.
This is to contain data about a number of "bookings". A
booking associates a "passenger" with a "flight", If a
passenger p is booked onto a flight £ these will be a

(single) booking, b say, so that:

passngr-booked (b)=p

and flight-booked(b)=f.

There may also be other information about the booking, for
example the date when the booking was made. Flights are
identified externally by their flight-number and departure
date. It is also assumed that . data is kept giving the
aircraft which is scheduled to operate each flight. This
data is represented by a function "assigned-aircraft".
Auxiliary information is also held about each aircraft in
use, its type, seating capacity and so on. The situation is
represented diagramatically in figure 5.1, which shows by
labelled arcs the various functions connecting the sets

Bookings, Passengers, Flights and Aircraft.

When a passenger is to be booked onto a flight, a check
should first be made that the flight is not already full.
The set of bookings already made for each flight is given in

terms of the primitive function "flight-booked" by:
bookings(f) = {b]flight-booked(b)=£f}.

The number of seats which could be bookecd on each flight is
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Figure 5.1 Simple reservation system.
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given by:
flight-capacity(£f) = capacity(assigned-aircraft(f)).

As no aircraft should be overbooked, we should at all times

have:
flight-capacity(f)>= number bookings(f).

When making a booking, we should check that this constraint
will not be violated. To do this, we could evaluate the
expression for the particular flight. However it would not
be sensible to count the number of passengers already booked
on at each request for a seat. Clearly it would be better
to keep permanently the number of passengers booked onto
each flight. The set of fields needed has a value given at

all times by:
number-booked (f) =number bookings(f).

Similarly, to avoid referring to the Aircraft file, an extra
field could be added to flight records to contain the value
of "flight~-capacity". Again the value is always to be given
by the definition. (The redundant functions are shown in

figure 5.1 as dashed arcs.)

When making a booking it will only be necessary to compare
these two fields in the flight record to make the check. To
compensate for the easier data retrieval, the redundant

fields must be recomputed at each update and some
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assignments which effect them will now be considered.

The first update is the change to the aircraft operating a

flight. Suppose the assignment:

assigned-aircraft(flight ("BE300","TUES")) :="VISCOUNT1"

is made. In the absence of the redundant data, the code

sequence:

let f=flight("BE300","TUES");

assigned-aircraft(f) :="VISCOUNT1"

merely setting the appropriate field, would be adequate.
However, because the value of "flight-capacity" is stored
and its value depends on that of "assigned=-aircraft", this
must be updated as well.

The definition of "flight-capacity":

flight-capacity(f) = capacity(assigned-aircraft(f))

has the form: R=F(E). Appendix A contains the rule that to

maintain this equivalence following the assignment:
for x|T do E:=V od

we need the additional assignment:
for (xur)|T do R:=F(V) od.

Making the substitutions:
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R=flight-capacity(f)

F=capacity
=assigned-aircraft(f)

V="VISCOUNT1"

x=r={£f}

T= (f=flight(“BE300","TUES") )
we find that the assignment needed is:

for f|f=flight("BE300","TUES") do
‘flight-capacity(£f) :=capacity("VISCOUNT1")
od
or:

let f=flight("BE300","TUES");

flight-capacity(f) :=capacity("VISCOUNT1").

This has the effect of setting the capacity of the flight to
that of the new aircraft. Notice that since we have altered
the value of "flight-capacity", we may also have effected

the truth of:
flight-capacity(f)>= number booked(f).

We should check that the flight is not now overbooked. The
checking of a constraint such as this needs exactly the same
processing as would be used to maintain its value in
storage. However instead of saving the resulting value we

would merely verify that the value computed is true.

Another logically possible, but unlikely change is that an
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aircraft may have some seats removed so changing its

capacity. Suppose that:
capacity ("CONCORD1") :=90,

Again we must update "flight-capacity". Appendix A contains
the rule that to maintain an equivalence R=F(E) given an

update:

for x|T do F(E') :=V od
needs the additional assignment:

for (xUr)|T and E=E' do R:=V od.
Making the substitutions:

R=flight-capacity(f)
F=capacity
E=assigned=-aircraft(f)
E'="CONCORD1"

V=90

x=r={f}

T=true

we obtain:
for flassigned-aircraft(£f)="CONCORD1" do
flight-capacity(f) :=90
od.
This has the effect of changing the flight capacity of all

flights using the aircraft being altered,
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To perform the assignment, if the representation contains
only the functions shown in figure 5.1, there will be no

alternative but to search all the possible flights:

for f in Flights do .
if assigned-aircraft(f)="CONCORD1" then

flight=-capacity(f) :=90

od;

However, if chains were kept through all flights using the
same aircraft we could find those of interest directly and

so improve the code.

The last change we will consider is the alteration of a
booking from one flight to another, If the booking to be

altered is B, then the assignment might be:

let b=B;
let F=flight("BE300", "TUES");

flight-booked (B) :=F.

The stored function "number-booked" depends on
"flight~booked" so will need to be changed. To £ind the
changes, it 1is convenient to divide its definition into a

number or parts which can be treated separately:

number-booked=number bookings(f)
bookings(f) = {b} Flight(b,f)}
Flight(b,f) = (flight-booked (b)=f).
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The change to the predicate Flight can be found by again
applying rule 9 from the appendix, exactly as for the first

assignment in this section. In this case we have:

R = Flight(b,f) .
F(x)= (x=f)

E = (flight-booked (b)=f)

A" = flight("BE300","TUES")
T = (b=B)

leading to the assignment:

for {b,f}| b=B do
Flight(b,f) :=(flight ("BE300","TUES"))
od,

Continuing with the next part of the definition:
bookings (£)={b|Flight (b, f)}.

The appendix suggests the rule that, to maintain:
R={y|P}

when the assignment:
for x|T do P:=V od

occurs, we need the pair of loops:

for (xUr)|T and y in R do R:less y od;

for (xVr)|T and V do R:plus y od.
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To keep "bookings" up to date we need:

for {b,f}|b=B and b in bookings(f) do
bookings(f) :less b

od; :

for {b,f}|b=B and f=flight("BE300","TUES") do
bookings(f) :plus b

od

or:
let f=flightbooked(B) ;
bookings (f) :less B;
lgt_:_ f=£flight ("BE300","TUES") ;

bookings(f) :plus B.

This has the effect of subtracting B from the bookings of
the original flight with which it was associated, and adding

it to the new flight,

The last step is relatively straightforward. Given that:
number-booked (f) =number bookings(f),

when a member is removed from bookings(f), one must be
subtracted from "number-booked(f)". This is true because we
know that the member was indeed there beforehand.
Similarly, when a member is added to the set, one must be
added to "number-booked". The final assignment results from

applying this rule from the appendix:
let f=flight-booked(F);
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number-booked (f) :=number-booked (£f)-1;
let f=flight("BE300","TUES");

number-booked (f) :=number-booked (£) +1.

The effect is to subtract one from the number-booked on the

original flight, and to add one to that of the new flight.

As a final remark, there is not always a strength reduced
method of updating a structure defined using the function
some, As an illustration, we might consider keeping a
logical flag to indicate that at least one passenger is

booked onto a flight:
not-empty (f) = some bookings(f).

If a new member is added to the bookings of some flight F,
then it will clearly become not-empty. However if a booking
is cancelled for flight F there is no alternative but to
re-evaluate the expression "some bookings(F)" in the new
state. It was this problem which finally caused the author
to reject of Codd's relational algebra as a means of
constructing the data of interest. The project operator has
the same characteristics as some, but must be used in almost
every interesting relational expression., In consequence
very few redundant structures so defined can be efficiently

updated.

section 5.4 160



CHAPTER 6

AN EXPERIMENTAL SYSTEM

A number of systems have been written to test ideas as they
developed. Their purpose has been to check the algorithms,
uncover any practical difficulties and to stimulate further
thought, No attempt has been made to produce a complete and
workable system and the facilities provided have always been

kept to the minimum necessary for experiment.

The examples later in the chapter show the output from the
most recent of these systems. It-compiles a definition of a
set into abstract Algol~-like code and can also handle simple
updates. Like earlier versions, it is coded in Algol-W
(Algol-W 1972) and at the time of writing consists of about
a thousand lines of code. It was developed on fhe IBM Model
168 at Newcastle University running wunder the Michigan

Terminal System (MTS).

6.1 Outline description.

The main components of the system and the overall data-flow
are shown in figure 6.1. The processing is divided into
three main stages, executed one after the other. This
arrangement results largely from the non-deterministic
nature of the compilation process. The input stage converts
statements to internal data structures which may be scanned

repeatedly by the code generator in its search for a
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satisfactory code sequence. Only when the choice has been
completely made is the rather 1lengthy job of generating

formatted output text begun.

The input stage is divided in Ehe usual way into two
sub-parts, A statement is first broken into a string of
words. A word may be an identifier, an integer, an operator
(any string of other characters) or one of the special words
bl S B w," ®," and " itself. The syntax analyser then
builds expressions from these words. The analyser is table
driven and relies mainly on operator precedence to govern
its actions., Operators are allowed to bind with different
strengths on the two sides. For example the infix operator
"|", used to indicate a set construction, binds tightly on
the left where a parameter is expected, but loosely on the
right where a logical expression may appear. In operation,
the analyser runs two stacks, one for operators and one for

operands in the conventional way.

The syntax accepted is given in appendix A. It is fairly
close to that used in the earlier chapters, the differences
coming from the more restricted character set which must be
used. The table of operator priorities shown can be

modified by the input command PRIORITY.

The analyser builds a list-structure to represent each

program statement, each element in the structure containing

section 6.1 162



INPUT > LEXICAL
PROGRAM ANALYSIS
Y
INPUT
STAGE. SINTACTC -
ANALNSIS
apression Y
) 4rea STORED
DEFINITIONS
Y \
"grRenNGT™ RE— L
REDUCTION PRecessING
GENERATION
STAGE
CoDE.
GENERATION
st.bulc.,
‘r Cede
———————-__—--V __________
ouTPuT
EDITING
oUTRUT
S™GE.
y
ProqrAM
LsTING .

Figure 6.1 Structure of the experimental system
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a reference to a function and a reference to its argument.
The structure 1is saved if it is part of a definition or

passed to the remaining phases if it is to be compiled.

Most of the logic is contained in.the next phase, that of
code generation. The three main sub-units are the
expression pre-processor, the strength-reducer and the code
generator itself, As this part of the system has been
subject to continual modification, the transformations have
been represented in the code as directly as possible.
Conceptually, the pre-processor produces from each input
expression a series of alternatives for the code generator
to try. In practice it is sensible to run the pre-processor
in a lazy manner, so that the generation of an alternative
can be stopped as soon as the code generator finds that no
code is possible and so that the whole pre-processor can be
stopped as soon as one complete code sequence is found.
This leads to a fairly unconventional program structure,
making very heavy use of procedure parameters, effectively
simulating coroutines. Apart from this peculiarity, the
coding is a straight-forward transliteration of the rules in

Appendix A and table 5.1.

If a code sequence is found, the internal data structure
generated is passed to the output routine for printing. The

use of if fi, do od statement bracketting rather than the

normal begin end convention was motivated by the simpler
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printing algorithm obtained. As well as formatting the
text, the output routine also tries to clean up the program
.to make it more readable., LET blocks are eliminated where
possible (that is where there is only one use of the
variable defined or where the defiﬁing expression is just a
variable or constant), so reconstructing compound
expressions. IF statements with a null THEN clause:
IF p THEN ELSE s FI are replaced by the equivalent form:
IF -p THEN s FI, An attempt is also made to re-construct

expressions in infix operator notation.

Overall, the system has been coded rather in the style of
Lisp, with few loops or assignments and a great deal of
recursion, No attention has been paid to the efficiency of
the code. Rather surprisingly, the bulk of the execution
time appears to be spent in the output routine, which is

fairly slow.

6.2 Examples

This section shows the output from a run of the system,
interspersed by comments. The examples illustrate most of

the features discussed earlier.

**LANGUAGE F LOADED,

ECHO ON;

The initial message indicates the syntax table which is in
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use. The system is then asked to echo all input lines it
is given. These appear in column 1 while system output is

indented to column 3.

1.
X|X IN 1..10;
=>
FOR ¥ IN 1..10 DO
WRITE (X)
oD.

The "|" in the input line acts as infix set constructor,
no curly brackets being available in the character set.
The program produced by the system is preceded by =>. It
should print all members of the set defined. 1In this case

only a for loop is needed.

2,
X|X IN 1..10 AND X>3;
=>

FOR X IN 1..10 DO
IF X>3 THEN
WRITE (X)
FI

oD.

The additional condition results in a program consisting

of nested EE and for statements.

3.
X|X>3 AND X IN 1,..10;
=>
FOR X IN 1.,.10 DO
IF X>3 THEN
WRITE (X)
FI
oD.

The order of appearance of the clauses does not, in this

case, effect the outcome.
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4,
X:1..10 | X>3;
=>
FOR X IN 1..10 DO
IF X>3 THEN
WRITE (X)
FI
oD.

The infixiéperator ":" is used to constrain a variable to
a set. In this case the result is the same as in the two
previous examples. However, constraints introduced in
this way are treated specially. Such a set is wused as a

source of values only if there is no other alternative.

5.
X| X IN (1..5 OR 6..10) AND ODD(X);
=>
FOR X IN 1..5 DO
IF ODD(X) THEN
WRITE (X)
FI
OoD;
FOR X IN 6..10 DO
IF ODD(X) THEN
WRITE (X)
FI
oD.

Here, the disjunct is used to generate values for x, the
OR acting as a disjoint set union. The print algorithm
duplicates the code to be executed rather than creating a

subroutine called from within each for loop.

6.
X:1..10 | X>5 OR 3>X;
=>
FOR X IN 1,.10 DO
IF X>5 THEN
WRITE(X) ELSE
IF 3>X THEN
WRITE (X)
FI
FI
oD,
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In this example the OR is not used to generate values, but
only to test them. An if then else structure is used to

do this.

7.
X:1..10 | NOT X>5 ANDOR X>3;
=>
FOR X IN 1..10 DO
IF X>5 THEN
IF X>3 THEN
WRITE (X)
FI ELSE
WRITE (X)
FI
oD.

The negation (which binds more tightly than ANDOR, the
operator standing for a normal inclusive or) is

implemented by reversing the arms of the conditional

generated.
8.
(X,Y)] X IN 1,.,20 AND Y IN 1..10 AND X+Y=5;
=>

FOR X IN 1..20 DO
FOR Y IN 1,.10 DO
IF X+Y=5 THEN
WRITE(X,Y)
FI
oD
oD.
Here values for a 1list of variables are to be printed.
The code always arranges to vary the value of the last
variable in the list most rapidly. The compiler cannot
produce the better code sequence which calculates Y from
X+Y=5 without a series of alternative definitions for the
operation "+", If the definitions are provided, the code
produced depends on the order of appearance of the

conditions.
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The next examples show the effect of various data
representations in simple cases.
9.
P:PARTS | OUT_STOCK(P) AND OBSOLETE(P);
=>
FOR P IN PARTS DO
IF OUT_§TOCK(P) THEN
IF OBSOLETE(P) THEN
WRITE (P)
FI
FI
OoD.
OUT_STOCK and OBSOLETE do not have definitions and so are
assumed to be stored as functions of PARTS. The most
likely representation would be as logical flags in each
part record, when the names OUT_STOCK and OBSOLETE would
be interpreted as field selectors. The code tests these
fields in each record, printing those which satisfy the
condition.
10. v
LET OUT_STOCK(P) <= P IN OUT_STOCK_PARTS;
P:PARTS | OUT_§TOCK(P) AND OBSOLETE (P) ;
=>
FOR P IN OUT STOCK_PA DO
IF OBSOLETE(P) THEN
WRITE(P)
FI
oD.
Here the LET is used to define the predicate OUT_STOCK in
terms of the members of a set. The set is assumed to be
stored as an (ordered) list. The definition could be
hidden from a casual data-base user so that he is not
aware of the actual representation. Rather than search

the complete set of parts, only those in OUT_STOCK_PARTS
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are inspected. (The variable OUT_STOCK_PARTS exceeds the
twelve-character maximum length and has been truncated in
the output program.) If instead OBSOLETE were stored as a
list, the situation would be reversed.
11,
LET OBSOLETE (P) <= P IN OBSOLETE_PARTS;
P:PARTS | OUT_ﬁTOCK(P) AND OBSOLETE(P);
=>
*%* CANNOT PRINT - COLLATE
The earlier definition of OUT_STOCK still holds and
OBSOLETE is now also represented as a list., The best way
to obtain the answer is to collate the two lists, but the
print algorithm objects to the choice.
12,
LET OUT_STOCK(P) <{= OUT_FIELD(P)
<= P IN OUT_STOCK PARTS;
P:PARTS | OUT_STOCK(P) AND OBSOLETE(P) ;
=>
FOR P IN OBSOLETE_PAR DO
IF OUT FIELD(P) THEN
WRITE(P)
FI
OD.
This introduces a redundant representation for OUT_STOCK,
*"<=" preceding each alternative definition. 1In this case

only one code sequence is possible, but if both predicates

are stored redundantly there is a choice:
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13.
LET OBSOLETE(P) <= OBS_FIELD(P)
<= P IN OBSOLETE_PARTS;

P:PARTS | OUT_STOCK(P) AND OBSOLETE(P);
=>
FOR P IN OUT_STOCK PA DO
IF OBS FIELD(P) THEN
WRITE(P)
FI
oD.

The left hand operand is chosen arbitrarily to generate

trial values, although a collate operation could have been

used instead.

The next three examples illustrate the effect of keeping a
secondary index to a file. In the first, the cost of a

part is defined by a field COST_FIELD in each part record

only.

14, '
LET COST(P:PARTS) <= COST_FIELD(P):

X| 4=COST(X);
=>
FOR X IN PARTS DO
IF 4=COST FIELD(X) THEN
WRITE(X)
FI
oD.

To find the parts whose cost is 4 the only possibility is

to search all parts, testing the cost field.

15,
LET COST(P:PARTS) <= COST_FIELD(P)
<= THE C:COSTS | P IN PARTS_COSTING(C) ;

X| 4=COST(X);
=>
FOR X IN PARTS COSTIN(4) DO
WRITE (X) -
oD,
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However, here the representation includes both a cost
field and also an array PARTS_COSTING. According to the
definition this array gives the set of all parts whose
cost is C. The definition of COST in terms of
PARTS_COSTING amounts to:
C=COST(P) = P IN PARTS_COSTING(C) .
The code uses this secondary index to obtain the parts of
interest directly.
16.
X| COST(X)>4;
=>
FOR C IN COSTS DO
IF C>4 THEN
FOR X IN PARTS_COSTIN(C) DO
WRITE (X)
ob
FI
oD.
Again the inversion is used, the code first finding all
costs exceeding 4 and then the parts having each cost. As
each part can have only one cost, the sets of parts
produced from each of the costs tried will be disjoint. A
part will only be produced once, but the set will not be
produced in sorted order. Both to produce acceptable

output and for merge operations the sets should be sorted,

but the compiler currently fails to check this,
To illustrate the code for SOME, consider finding the

manufacturers who can supply any of the out-of-stock

parts. The definition of the set is:
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{mjsomefp|m in suppliers(p) and p in out-stock}}.

If both "suppliers" and "out-stock" are represented in the
way suggested in the expression, "out-stock" as a set and

"suppliers" as an array of sets, then the code is:

17.
M| SOME( P| M IN SUPPLIERS(P) AND P IN OUT_STOCK_PARTS );
=>
LET S1=EMPTY;
FOR P IN OUT_STOCK_PA DO
FOR M IN SUPPLIERS(P) DO

S1 UNION M
oD
OD;
FOR M IN S1 DO
WRITE (M)
oD,

The code collects all suppliers of out-of-stock parts in
the set S1. (variables generated by the compiler have a
first letter indicating the type of value - "S" for sets,
*"A" for arrays and "X" for scalar items - and are numbered
sequentially.) The set in thié case serves to eliminate
duplicate appearances of a manufacturer who supplies more

than one part.

An abbreviation has been built in for expressions of this
form to make them easier to enter. It comes from Carnap
(Carnap 1958, D32-6, p127):

R''S = X | SOME (Y | X IN R(Y) AND Y IN S).
R''S can be read "the R of S" and is expanded by the

syntax analyser to give the right-hand-side,
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To illustrate a change in representation, suppose that the
set of out-of-stock parts 1is not stored directly but

defined in terms of a logical field in each part record:

18,
LET OUT_STOCK_PARTS <= P:PARTS | OUT_FIELD(P);

SUPPLIERS''OUT_STOCK_PARTS;
=>
LET S3=EMPTY;
FOR X2 IN PARTS DO
IF OUT FIELD(X2) THEN
FOR XT IN SUPPLIERS(X2) DO
S3 UNION X1
oD
FI
OD;
FOR X1 IN S3 DO
WRITE (X1)
OD.

The code is similar to the previous example, except that
the out-of-stock parts must be found by searching all the

parts,

In the next example the definition of OUT_STOCK PARTS
still holds, but this time the suppliers of each part are

not stored directly:

19.
LET SUPPLIERS(P) <= M:MANUF | P IN PARTS_FROM(M);

SUPPLIERS''OUT_STOCK_PARTS;
=>
FOR X1 IN MANUF DO
FOR X2 IN PARTS FROM(X1) DO
IF OUT FIELD(XZ) THEN
WRITET(X1) ;
GOTO L1
FI
oD
L1:
oD.
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SUPPLIERS is defined in terms of a function PARTS_FROM.
The representation is arranged so that each manufacturer
record identifies (for example by physically preceding) a
sequence of the parts which can be obtained from him. The
code which results is somewhat different because it is no
longer possible to locate the manufacturers of interest
directly. The complete set of manufactures are processed
in turn and the parts obtainable from each are tested to
determine whether one 1is out-of-stock. This uses the
simpler type of code, a GOTO terminating the search once a

part satisfying the condition is found.

In chapter 1 an example was given to find the weekly
consumption of the parts used in a number of assemblies.
This can be expressed using the function sum. We imagine
a set of objects, each representing the use of a part in
an assembly. With each of these uses a "quantity-used"
(shortened to QTY ) is associated, giving the number of
the particular part used in that assembly. In addition,
each assembly has a "weekly-output" associated with it.

The situation is shown diagramatically as follows:

BMALE

ASSEMBLY

® NOSPER .WEEK .
PARTS AssemBuest~——_ 00 >

WEEKLY -OUTPUT

QUANTITES
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These functions could be represented by two files, one for
bill-of-materials data with fields PART,ASSEMBLY and QTY,

and one for assemblies containing a field WEEKLY_ OUTPUT.

The weekly consumption of a part for a particular use

(that is for one assembly) will be given by:
LET CONSUMPTION(U) <= QTY(U)*WEEKLY_ OUTPUT (ASSEMBLY (U)) ;

These values must be summed for all uses of each part.
The set of uses of a part is given by a function
USES_OF_PART, the inverse of the function PART. This
could be stored directly, for example by following part
records by the relevant bill-of-material records, or by
chaining together the bill-of-material records which refer

to the same part. Given such a representation the code

would be:
20,
(P :PARTS,N) ] N=SUM(USES_9F_?ART(P),CONSUMPTION);
=>
FOR P IN PARTS DO
LET N=0;

FOR X2 IN USES_OF_PART(P) DO

N:=N+QTY(X2)*WEEKLY_QUTPU(ASSEMBLY(XZ))

0oD;

WRITE (P,N)

oD.

This processes the parts serially, summing the weekly
consumptions from all the relevant bill-of-materials
records. llowever, if the inversion 1is not stored so that
only the functions shown on solid 1lines in the figure are

available, USES_OF_PART must be expressed in terms of the
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selector function PART. The code becomes:
21 *
LET USES_QF_PART(P) <= U:BM_FILE | PART(U)=P;
(P:PARTS,N) | N=SUM(USES_QF_?ART(P),CONSUMPTION);
=>
LET A1(P)=0;
FOR U IN BM FILE DO
LET P=PART(U);
A1(P) :=A1(P) +QTY (U) *WEEKLY_OUTPU (ASSEMBLY (U) )
OD;
FOR P IN DOMAIN(A1) DO
LET N=A1(P);
WRITE(P,N)
oD,
A sparse array Al is initialised to zero and the
bill-of-materials records are scanned once, accumulating
all the sums in parallel. Finally the results stored in
the array are printed. A possible inplementation of this

abstract code was given in figure 1.2,

The last example of data retrieval is taken from a recent
paper by Halstead (Halstead 1975). This compares two
programs written to perform the same task. One is written
in DSL ALPHA (Codd 1971) assuming relational data, and one
is written in COBOL (with Codasyl DBTG extensions) to
operate on a particular organisation of the data. The

problem is as follows:

Given a machine X, start date A, stop date B, find the
identification number of a person who has adequate
skill to operate X and is available between date A and

date B to carry out the operation, Schedule this
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person if one is located.

We are going to convert a form approximating to the
relational program into one which executes like the COBOL.
For comparison, the DSL ALPHA and COBOL solutions are given
in Appendix B. The DSL ALPHA program assumes the following

relations:
(i) PERSON=-SKILL(P#,SKILL#)

which relates a person-number (P#) to some skill-numbers

(SKILL#), representing the skills the person has.
(ii) MACHINE=-SKILL(MACH#,SKILL#)

which associates each machine-number (MACH#) with the
skill-numbers'which relate to the machine., A person P# can
operate a machine M# if there is a skill S# so that the
tuple (P#,S#) occurs in PERSON;SKILL and (M#,S#) 4is in

MACHINE-~SKILL.

(iii) SCHED(P#,MACH#,SCHED-START-DATE ,SCHED-STOP-DATE)
where each member in the relation shows that person P# is
scheduled to operate MACH# between the indicated dates.

The DBTG COBOL solution assumes the following

representation:

1. A set of person records,

2. A set of machine records,
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3. A set of skill-link records.

Person records contain the identification number of a person
as a field IDENTIFICATION-NUM, Machine records are indexed
by the machine name (such as "X") and each machine record
contains the group of schedule entries for the machine.
Each record in the group contains the start and stop dates
and the person scheduled to operate it between those times.
No machine number is included as this information is implied

by the group in which the record occurs.

A skill-=link record reflects the ability of a person to
operate a machine. It corresponds to a SKILL# in the
relational version. Each identifies the person and the
machine participating in the link. (We will call these
fields PERSON and MACHINE, although the COBOL program does
not refer to them explicitly.) Each machine record is
chained (using a ring of pointers) from a field NEEDS-SKILL
to all the skill-link records associated with the machine.
This enables all the people who can operate the machine to
be located via its set of skill-link records. Each

person-record also has a field (HAS-SKILL) giving a similar
chain through the skill 1link records. Figure 6.2
illustrates the representation for a very small amount of

data.

Language F cannot express the whole of the problem (neither

can DSL 2LPHA). We will content ourselves with obtaining
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all person records who could operate machine "X" between
dates "A" and "B". There is no operation to select an
arbitrary member from this set to complete the retrieval.

The set can be defined as follows:

let busy—gétween(p,start,end)
= some {s|
end>shed-start-date(s) and
start<sched-stop-date(s) and
worker-id(s)=identification-num(p) and
can-operate (p,sched-machine(s)) }

{p:persons|can-operate(p,"X") and not busy-between(p,"A","B")}

This is very similar to the DSL ALPHA program. One minor
difference is that there is no explicit reference to skills.
These will be introduced in the definition of can-operate.
A much more significant difference is the appearance of:
can-operate(p,sched-machine(s))

in the definition of "busy-between". This does not appear
in the DSL ALPHA program at all, It is an invariant, and
reflects the fact that anyone scheduled to operate a machine
will be capable of doing so. It must Dbe included here
because the operation of the COBOL program relies on its

being true.

Of the identifiers wused in the program, only the predicate
"can-operate” and the function "sched-machine" are not

supported directly by the representation, These must be
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expressed in terms of structures which do exist.
The function sched-machine (MACH# in the relational form)
must be expressed in terms of the machine-record in which

the schedule occurs:
sched-machine(s) = the {m:machines | s in schedules (m) }

The field "schedules" in a machine record contains all the
schedules for the machine. In the COBOL it is a repeating

group.

The predicate "can-operate" is represented by the skill=-link

records and the chains through these. It is represented

&

redundantly:

can-operate (p,m)

= one {k:skills | person(k)#p and k in skills-needed(m)}

one {k:skills | machine(k)=m and k in has-skill(p)}.

The function one 1is the external form of the restricted
existential quantifier. It produces the same result as
some, but additionally assumes that the argument set
contains at most one member. (It is possible to do without
one by re-arranging the definition, but little advantage is
gained.) The definition says that a person can operate a
machine m if one of the set of skill records obtained

through the "skills-needed" field of m identifies person p,
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or equivalently, if one of the skill-records obtained from

the "has=-skill" field of p identifies machine m,

The complete compilation was run as an unseen test case in

the following way:

22,
PRIORITY CAN_OPERATE 3 3; (defines CAN OPERATE as an infix
operator with left and right priority 3)
LET P CAN OPERATE M
<= ONE K:SKILLS | PERSON (K)=P AND K IN SKILL_NEEDED(M)
<= ONE K:SKILLS | MACHINE(K)=M AND K IN HAS_SKILL(P);

LET SCHED_MACHINE(S)
<= THE M:MACHINES | S IN SCHEDULES(M) ;

LET BUSY AT (P,START,END) <=
SOME S:SCHEDS | _
START>SCHED STOP DATE(S) AND
SCHED START DATET(S)>END AND
WORKER ID(SY = IDENTIFICATION NUM(P) AND
P CAN_OPERATE SCHED_MACHINE(ST;

P:PERSONS | P CAN_OPERATE "X" AND NOT BUSY_AT(P,"A","B");
=>
FOR K IN SKILL NEEDED("X") DO
LET P=PERSON(K) ; ,
FOR K IN HAS_SKILL(P) DO
FOR S IN SCHEDULES (MACHINE(K)) DO
IF "A">SCHED_STOP_D(S) THEN
IF SCHED START_ (§5)>"B" THEN
IF WORKER ID(S)=IDENTIFICATI(P) THEN
GOTO L1 ~
FI
FI
FI
oD
OD;
WRITE (P)
L1:
oD.

The resulting program matches the operation (but not the
form) of the COBOL program quite accurately. It first
locates all the skill records associated with machine X.

For each the associated person record is found. This
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person could operate the machine. To find if the person
is busy, the invariant is utilised. All the machines he
could operate are inspected., This is done by locating all
the skill-link records chained from the person record and
from these finding the machines. The schedules in each
machine are inspected for conflicing dates and matching
identification numbers. If a conflicting schedule 1is
found, the person is rejected via the branch to L1 and the
next person tried. (The COBOL program seems to find the

next candidate in a slightly different way.)

The process potentially produces all suitable operators.
To satisfy the original problem definition the search
would have to be terminated after the first candidate had

been found.

Examples of update.

The remaining examples show the effect of some simple
assignments on data~-structures which are stored

redundantly.
LET UNAVAILABLE(P) <=OUT_OF_STOCK (P) AND OBSOLETE_PART(P) ;
MAINTAIN UNAVAILABLE(P) ;

The function UNAVAILABLE is first defined to reflect the
instantaneous value of the right-hand expression. The

MAINTAIN statement indicates to the system that we wish to
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consider the effect of keeping its value in storage.
Subsequent assignments which effect its value must be
followed by an appropriate modification of the stored

data.

23.

OBSOLETE_PART("4BA_NUT"):=TRUE;
=>
IF OUT_QF_STOCK("4BA_NUT") THEN
UNAVAILABLE(“4BA_NUT"):=TRUE
FI;
OBSOLETE_PAR("4BA_NUT"):=TRUE.

The code shows the pair of statements which are needed to

preserve the truth of the definition.

24,

0UT_0F_$TOCK("4BA_NUT"):=FALSE;
=>
IF OBSOLETE_PAR("4BA_ NUT") THEN
UNAVAILABLE("4BA_NUT") :=FALSE

FI;
OUT_OF_STOCK("4BA_NUT") :=FALSE.
The code for deletion is symmetric, although the test is

in this case not strictly necessary.

The next example illustrates the code generated to

maintain the value of a disjunctive expression.

25,

LET DONT USE(P) <= OUT_OF_STOCK(P) ANDOR OBSOLETE_PART(P) ;
MAINTAIN DONT_USE(P) ;

0UT_pF_$TOCK("4BA_NUT"):=TRUE;
=>
IF ﬁOBSOLETE_PAR("4BA_NUT") THEN
DONT_pSE(“4BA_NUT"):=TRUE
FI;
OUT_QF_STOCK(“4BA_§UT"):=TRUE.

Notice that the assignment is made to DONT USE only if its
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value needs to be <changed. In the next example, the
definition of DONT _USE is retained, but OUT_OF_STOCK is

defined in terms of NUMBER_ON_HAND,

26. .

LET OUT_OF_STOCK(P) <= NUMBER ON_HAND(P)=0;

NUMBER_ON_HAND("4BA_NUT") :=N;
=>
IF —0=N THEN
IF -OBSOLETE_PAR("4BA_NUT") THEN
DONT_USE (" 4BA_NUT” ) :=FALSE
FI
FI;
IF 0=N THEN
IF -OBSOLLTE_PAR("4BA_NUT") THEN
DONT USE("4BA_NUT"):=TRUE
FI ~
Fl;
NUMBER_ON_HA("4BA_NUT") :=N,

The first statement in the sequence removes the effect of
the original value of NUMBER_ON HAND. The second statement
changes DONT_USE to account for the new value. The first
two statements could be combined into an if-then-else
structure., An early design decision makes this rather

difficult to do in the current implementation however.,
The remaining examples show, almost without comment, the

code produced by the system for the illustration used in

the latter part of chapter 5.
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27. '
LET FLIGHTCAP(F:FLIGHTS) <= CAPACITY(ASSIGNED_AC(F));

LET BOOKINGS (F) <= B|FLIGHT(B)=F;

LET NUMBOOKED(F) <

NUMBER BOOKINGS(F) ;
MAINTAIN N=NUMBOOKED (F) ;

FLIGHT ("MYTICKET") := "BE300";
=>
LET F=FLIGHT("MYTICKET");
IF —F="BE300" THEN
NUMBOOKED (F) :=NUMBOOKED (F) -1
FI;
IF -FLIGHT("MYTICKET")="BE300" THEN
NUMBOOKED ("BE300") :=NUMBOOKED ("BE300") +1
FIl;
FLIGHT ("MYTICKET") :="BE300",

The code produced suggests that equality should be given
special case treatment in the strength reduction

algorithm, as the outer two tests could be made common.

28.
MAINTAIN N=FLIGHTCAP (F);

CAPACITY("CONCORD1") := 90;
=>
FOR F IN FLIGHTS DO
IF ASSIGNED_AC(F)="CONCORD1" THEN
FLIGHTCAP (F) :=90
FI
OD;
CAPACITY("CONCORD1") :=90,

ASSIGNED_AC("BE300") := "VISCOUNT1";

=>
FLIGHTCAP("BE300") :=CAPACITY("VISCOUNT1");
ASSIGNED_AC("BE300") :="VISCOUNT1",
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Finally:

QuUIT

COMPILE TIME: 0.16 SFCS.

0000,86SECONDS IN EXECUTION

The "compile-time" given is the time spent in the central
code generation stage of the system, Most of the

remaining time used in the set of examples 1is spent

printing the resulting programs,
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CHAPTER 7

CONCLUSIONS AND FURTHER WORK.

The investigation began by considering the effect of the
data organisation on the execution of a program., The aim
has been to find a practical way of adapting a program to
a representation and ultimately to enable assistance to be

given in the choice of a data organisation.

Aggregate operations were investigated as a method of
overcoming the problems encountered with recursively
defined programs, although this has meant that only a
limited class of programs could be covered. The interest
in data base applications suggested the use of relations
to describe the data and the algebra of relations to
specify the computation. However in spite of the
considerable number of existihg implementations based on
this principle, the standard relational description
developed by Codd did not prove an ideal implementation
tool. Its principle disadvantages can be summarised as

follows.

In a normal form relational model, all the data with the
same key appears in the same relation. For example one
relation contains all the properties of "parts". The key
field might be the part-numbers. Relations therefore tend

to have a large number of domains, each tuple

section 7 189



corresponding approximately to a record in a file.
Although this does reflect one possible physical
organisation of the data, the relationship with other
organisations (for example using networks) which 1lay the

fields out differently can be quite complex, and does not

lend itself easily to mechanical processing.

The relational algebra is used to specify the computation
of new relations from existing ones. The algebra wuses
domain numbers to identify elements in a tuple and this
makes the manipulation of expressions rather difficult.
Although the relational calculus (similar to DSL ALPHA)
does use domain names and does not rely on their ordering,
a direct implementation wusing the algebraic operations

would not be very efficient.

More fundamentally, the operafions are only defined for
"flat" or unstructured sets of tuples. They do not
recognise the special case which arises whén the relation
is, in fact, a function. For example this leads to uses
of the general project operator when none need occur, and
to consequent inefficiency. Also, some of the operations
we need more naturally use array-like structures rather
than unstructured sets. One example of the effect of
using only relations is found in the definition of the
relational "divide" operator, which performs the

equivalent of a finite universal quanitifier. This can be
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used to express the query: "find the manufacturers who
give a discount on all parts wused in assembly A" but not
to express: "find the manufacturers who give a discount

for all parts they supply to assembly A", In the first

case we can first find the parts in assembly A and then
determine, by the divide operation, manufacturers who
supply all members of the set. The difficulty with the
second example is that the set of parts to be used in the
divide is not a constant, but depends on the manufacturer
in question. A divide operation which covered this
(admittedly unusual) situation is not easy to define and
probably needs four domain numbers as parameters in
addition to the two relations. Essentially the operation
acts in general on arrays of sets and not simply on

relations.

Since relations are sets,. the fundamental update
operations are the addition and deletion of members. The
commonly occurring operatioh to modify an existing member
can be expressed by a combination of an addition and a
deletion, but because this pair of operations can in
general have other effects (it may alter the number of
members in the relation), to treat selective update in
this way does not produce an efficient implementation.
Again, when considering methods to optimise the update of
redundant data structures, it is essential to recognise

the special case of projection which results from a
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functional application. While this can be optimised the
more general form can not be. Attempts to deduce the
necessary information, show that while it may be possible
to do this (e.g. Delobel and Casey 1972) it is quite a

complex process.

These conclusions are perhaps confirmed by the existing
implementations, which tend to store each relation more or
less directly, make few claims about their efficiency (but
see Titman (Titman 1974) ), and provide little support for

update.,

A number of relationally based mini~languages were
developed in an attempt to overcome these problems. The
most recent of these, Lanqguage F, has been described. It
was designed to allow a limited, but hopefully typical
range of data base operations.to be expressed and to be
processed with reasonable efficiency. The principle
changes made during its development can be summarised as

follows.

First we have assumed a more primitive type relation,
similar to those used by Abrial. Each relation
corresponds not to a complete record, but approximately to
a single field in a record. Alsé relations can contain
items other than simple integers or strings., This makes

it possible to connect the relational description and the
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physical data structure by a relatively simple abstraction
function. However, using these more primitive relations
does not prevent the construction of a standard relational
view of the data if this is needed. (For example see

(Bracchi 1974).)

The second change was to re-define the operations to
remove their dependence on column ordering and to match
them exactly to the operators in the standard calculus.
While this does not add anything essential, it does make
the manipulation of expressions easier and means that only
a small step is needed to add array-like structures as

functions.

The addition of functions was perhaps more fundamental
than was at first realised. 1Initially, the motivation was
to be able to use the special dase of the project operator
which results from expanding a functional application,
This has a much simpler implementation than the general
purpose operator. However, with functions which return
predicates (or sets) we can describe hierarchical data
organisations, Not only does this mean that common
physical structures can be described, but also that the
description of the computation can use structures which
are not normalised relations. We can use functions like
number which act on arrays of sets. - Although no

equivalent of the relational divide operator was included
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in Language F, we could readily introduce such an
operation. For example, all(s,p) could return "true" if
all members of set s satisfy predicate Pe (The
implementation is very similar to some , in a simple case
all values satisfying p are generated, and tested for
inclusion in s. It was omitted from the language because
of this similarity.) The operation can be used to express
any example of "all" and would not be restricted in the

same way as the relational divide.

A further advantage of functions is that they allow a
natural selective update. We can arrange to assign to a
single array element and do not need the artifice of a
matched deletion and addition, with its attendent

problems.

In summary, there is no need 'to insist that the data be
viewed as a normalised relational structure. One can
think of the relation Supplies as a set, a predicate, an
array giving the suppliers of each part, an array giving
the set of parts supplied by each manufacturer, whichever
is convenient. The actual data=-structures which are
stored can be quite unrelated to the view which is taken
and the system will make the conversion. One may, of
course, feel that such a disregard of the actual storage
structure is dangerous, because the cost of performing a

retrieval may not be related in any way to the complexity
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of its specification. However this is inherent in any
system which attempts to insulate the wuser from the

physical data organisation.

- An experimental compiler has been written for the language
which produces Algol-like programs. This superceded an
earlier interpreter so that the intimate details of the
data accessing algorithms could be ignored. In principle
the compiler works by applying the standard rules of
functional application and equivalences from predicate
logic to obtain a series of equivalent expressions in
terms of stored functions and sets. These are tested in
turn until one is found which can be turned directly into
a program to construct the result., Within its
limitations, this has been found to work quite well. Two
sources of early concern, that compile times would be very
long and that a large amountvof information about the
sizes of sets would be needed to select a program, have
not, at least in the experiments, proved to be serious
problems. The simplest possible sequencing algorithm has
proved adequate for the examples tried, and only in a few
instances has extra information been strictly needed to

choose the code.
While the findings must be considered to be of a
preliminary nature, the experiments suggest that it is

practicable to use this method to adapt programs to a
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given data representation, or to convert between one
representation and another. A high-level data-base system
could well operate along the 1lines suggested and make
reasonably efficient use of a given storage structure. 1In
the 1longer term, a similar system might be useful to
outline the effect of a chosen data organisation even when

the application is ultimately to be hand-coded.

A great deal of work remains to be done, both in the
short and the long term. Immediately, the compiler has a
number of known deficiencies, the most obvious of these
being the lack of symmetric merge and collate operations.
These were omitted from the program printing routine
because their inclusion seemed to make the resulting
programs unnecessarily complex. Some work has been done
toward the addition of a simple printing method, and only
small changes are needed in the remainder of the compiler
to make the necessary distinction between sorted and

un-sorted sets,

Neither the input language, nor the output language were
consciously designed. Rather, they have gradually evolved
in response to various pressures. As the input language
is no longer purely a relational one, further
understanding would probably result from re-designing it,
and this should be the next major step. The aim of the

new design would be mainly to rationalise the underlying
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structure, to eliminate all dependence on size information
and to allow the definition of functions such as number
which currently must be built-in.

The reluctance to accept the short-comings of the standard
relational treatment left rather to little time to study
the alternative proposed in depth. For instance, it is
not clear what programs can, and what programs cannot, be
compiled. This depends both on the types of statement
which can appear in the output and on the alternative
transformations that the compiler will ¢try. As both have
been changed many times, no attempt has yet been made to
document its detailed input rules. A re-design of the
input language and processing algorithms along cleaner
lines would give an opportunity to rectify this omission.
Also, in the interests of progress, the output language
and consequently the transformations are entirely
informal. A more stable design would allow for more

rigour.-

The experiments so far have given some insight into the
interaction between the storage structure specified and
the processing method which results. However much more
experience is needed to understand clearly what governs
the choice of data organisation to suit a given suite of
programs, and the space and time trade-offs which are

often involved. The availability of a richer set of
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operators (such as "all","maximum" and so on) would mean
that a large number of more realistic examples could be

tried and a model of the behavior developed.

It has been noticed that one of Lhe factors influencing
the choice of data organisation are the consistency
constraints on the data. They must be guaranteed after an
update (affecting not only the storage structure, but also
for example, the possible ways of synchronising concurrent
operations). Also, as example 22 of chapter 6 shows, use
can be made of them on retrieval, In Grindlay and
Stevens' Systematics (Grindlay and Stevens 1968),
consistency conditions are used to specify the output from
an information system. For example, we might like the
purchasing department of our factory to be permanently
aware of the parts which are out-of-stock. They should be
informed whenever a part becomes out-of-stock so that they
can take appropriate action, and similarly be told when
the position is rectified, so that the action can be
stopped. Exactly the same methods can be used to maintain
the consistency of the data in the purchasing department
with that in the central data-base as is used to keep
consistency in a redundant storage structure. It is felt
that a re-design of the input language should include a
deeper look at these invariant conditions, their various

uses and the implications that these might have.
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Finally a more complete prototype system should be built.
This could well interface with an existing programming
system designed to handle abstract programs, such as TOPD
(Henderson et al. 1975). It would then be possible to

judge whether the performance and code quality can be

maintained in a more realistic environment.
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APPENDIX A

Summary of implemented system

The following four tables show an approiimate concrete
syntax, the priority of the operators, the transformations
done by the pre-processor and the code generation rules.

The strength-reduction rules for assignment follow.
The syntax is expressed invthe extented Backus-~Naur form
originally used in the Vienna definition of PL/1 (Urschler

1969). The conventions used are:

(i) Non-terminal symbols are represented simply by

lower-case words,

(ii) Alternatives, usually placed on separate lines, are

separated by |. (]| stands for the terminal symbol |.)
(iii) {} are used as meta-syntactic brackets,
(iv) [ ] indicate that the enclosed phrase is optional.

(v) ... show that the preceding phrase may occur any

non-zero number of times.
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program s:= [statement-list] QUIT
statement~list ::= statement ; [statement-list]

statement s:= let-definition |
set-to-conpile |
assignment |
maintain-clause |
system-command

let-definition ::= LET function [parameter] {<=expression} cee
expression 1:= set-exp | predicate-exp | valued-exp
set-to-compile ::= set-exp

predicate-exp ::= predicate-function [argument]
predicate-exp {AND|OR|ANDOR} predicate-exp
NOT predicate-exp
valued-exp §= | >= | >} valued-exp
valued-exp IN set-exp
SOME set-exp

set-exp ::= set-function [argument] i
parameter | predicate-exp

valued-exp ::= valued-function [argument] |
valued-exp $+ | = | *} valued-exp |
NUMBER set-exp |
THE set-exp |
SUM(set-exp,valued-function) |
identifier | string-constant | integer

parameter ss= identifier

identifier : set-exp |
( [parameter=-list] )

parameter-list ::= parameter [, parameter-list]

argument $:= valued-exp
' ( [argument-list] )

argument-list ::= argument [,argument-list]

maintain~clause::= MAINTAIN predicate-exp

assignment ::= predicate~function [argument] := predicate-exp |
valued-function [argument] := valued-exp |
set-function [argument] := set-exp

system-command ::= ECHO $ON | OFF} |
PRIORITY identifier integer integer

Implementation syntax
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operator left right

OR ANDOR 11 11
AND & 10 10
NOT 9
= > >= 8 8
+ - 7 7
* 6 6
SOME NUMBER 2
ONE THE 2
oo 1 1
[ 2 12
IN 8 2
: 1 2
:= 12 2

Built-in operator priorities

appendix A 202



i. function definitions.
LET £(x) <= L1 <= L2 <= L3 .... ; M

=> M where f(x)=L1
=> M where f(x»)=L2

[ BN BN B BN ]
ii. sets.

{x:5|P} => {x|P}
=> {x|x in S and P}

M in {x|P} => P where x=M

iii. nested functions.

P(f(x)) => P(the{t|t=f(x)})
r=£(g(x)) => r=f(the{t|t=g(x)})

iv. iota removal.

M=the {x|p} => P where x=M
Q(the{x|P}) => one{x|0(x) and P(x)}

v. distribution etc.

(P or Q) and R => (P or Q) and R
=> (P and R) or (Q and R)

(P and Q) and R => (P and Q) and R
=> (P and R) and Q

P and Q => P and Q
' => Q and P

Pre-processing transformations
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i. primitive statements.
for x|x in € do C od
for x|x=e do C od
for ()IP do C od

ii. logical expressions.
for x,v|P and O do € od
for x|P or 0 do € od

+ for x|P andor N do C od

if P and O then C1 else

=> if P

=> for x ig S do C gg
=> let x=e; C

=> ii P then C Ei

=> for x|P do for vIQ do C od od

- => for xIP do C od; for x|0 do C od

=> for x|P do C od, for x|0 do C od

c2 11

then iﬁ N then C1 else C2 Ei else C2 Ei

if Poro then C1 else (2 fi

=> iﬁ P then C1 else ii 0O then C1 else C2 Ei fi

if not P then C1 else C2 Ei => iﬁ P then C2 else CI Ei

iii. set expressions.

if some S then C1 else C2 Ei

for x|some S do C od

let A=number S; C

let A=sum(S,f); C

=> for x in § do Cl;goto L od; C2; L:

=> let T=emnty;

for x,v| y in S do T:=T union x od;
for x in T do C od

=> let PA=0;
for y,al vy in S do A:=A+1 od; C

=> let A=0;

for y,al vy in S do A:=A+fi(y) od; C

for r,y| r=nurmber € do C od => let A(y)=number S;

for r:domain(a),ylr=A(y) do C od

Code generation summarv
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definition

R

P and O

P or Q

= not O

{yIP}

= number S

= sum (S,F)

= some S

F(F)

Update

for x|t do

P:=true

P:=false

S:less vy

E:=V

F(E') :=V

Result

for xUr|T and 0 do R:=V od

for xUr|T and not O do R:=V od

for xUr|T do R:=not Vv od

for xUr|T and not v in R do

R:less y

od

for xUr|T and vy in R do
R:plus vy

od

R:less v

od:;

. for xUr|T and y in R do

for xUr|T and V do
R:plus v

od

for x|T do R:=R+1 od

for x|T do

for

for

for

for

for

for

x|T

x|T

x|T

x|T

X|T

x|T

Assianment code summarv

do

do

do
do

do

and F=r! Qg Re=V gg

R:=R+1 gg

R:=R+F(v) od

R:=R-F(y) od

R:=true gg

R:=some Sod

Re:=F (V) od
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APPFNDIY B

Original solutions to scheduling example

The following two programs, one in DSL ALPHA and one in DBTG

Cobol are reproduced from (Halstead 1974).,

a) DSL ALPHA

——
-—

GET (into workspace) W (at most) (1) PERSON-SKILL,P#:

EXIST MACH-SKILL (with)

(MACH-SKILL. MACH% = X)

& (MACH-SKILL, SKILL# = PERSON-SKILL, SKILL#)

& NOT FXIST SCBFD (with)

(SCHFD, P#

PERSON-SKILL, P#)

& (SCHED. SCHED-START-DATE LESS-THAN B)

& (SCHED, SCHED-STOP-DATE GREATER-THAN A)

MOVE W INTO SCHFD-RECORD (host language)

PUT SCHED-RECORD SCHFED,
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b)

DBTG Cobol

PROCFDUPF DIVISION,

OPFI PANDJ-ARFA, WITH-NIOLD, REST,

FIND-IACHINE,

OPEN XP,

MOVF MACHINE-NUMBFR TO MACH-NUMBFR,

FIND MACHINF=-PICORD VIA SYS~-MACHINF USING MACH-NUMBFR,
IF FRROR=-STATUS = 326 GO TO NOT-IN-DATA-BASE,

FOUND-RFC,

MOVE CURRFNCY STATUS FOR MACHINF RECORD TO SAVFE-MACHINE.

GET-NFXT-SKILL.

FIND NEXT SKILL-LINK RFCORD OF NFFDS-SKILL SFT,

IF FRROR-STATUS = 326 OR 307 GO TO NO-ONE-AVAILABLE.

FIND OWNFR IN HAS~SKILL SFT OF CURRENT OF SKILL-~-LINK RFCORD,
IF ERROR-STATUS = 322 THEN GO TO GFET-NFXT-SKILL.

MOVE CURRFNCY STATUS FOR PFREON RECORD TQO SAVE-PERSON,.

MOVE CURRENCY STATUS FOR PFERESON RFCORD TO CHFCK~-PERSON-ITEM,
STORF CHFCK-PFPEON,

IF ERROR-STATUS = 1025 GO TO GET-NFXT-SKILL.

CHFCK-PERSON-SCHFDULF,

FIND NFXT SKILL~LINK RFCORD OF HAS-SKILL SET;
SUPPRFEESS NFFDS-SKILL CURRFNCY UPDATES.

IF FRROR-STATUS = 307 GN TO PFRSON-IS-FREFE,

FIND OWNFR IN NFFDS=SXILL OF CURRFNT NOF SKILL-LINK RECORD;
SUPPRFSS NWEFDS=SKILL CURRENCY UPDATFS,

IF FRROR-STATUS = 322 GO TO CEFCK-PFRSONS=-SCHFFIDULE,

MOVE CURRFNCY STATUS FOR MACHINF RECORD TO CHFCK-MACHINEF ITEM,

STOPE CFFCK-MACHINF,

IF FRROR-STATUS = 1025 GO TO CHFCK-PERSONS-SCHFDULF,

GET MACHINE,

MOVFE 1 TO AVAILABLE.

PERSON SFF=IF=SCHFFDULFD THRU SFEF=-LXIT VARVING
SCHFDULFD-COUNT FROM 1 BY 1 UNTIL SCHFEDULE-COUNT
IS GRFATFR THAN SCHFEDULF,

IF AVAILABLF = 0 GO TO GFT-NFY{T-SKILL,

GO 70 CKECK~-PFREONS-SCRHRFDULE.

SFE=IF=-SCHIDULFED,

IF SCHFDULFE-START-DATFE IS GREATFR THAN SCHFDULE-START
IN MACHINF (SCHFDULF-COUNT) AND LFSS THAN
SCHFDULF-COMPLETION IN MACHINF (SCHFEDULF-COUNT)

GO TO PFREON=-NOT-AVAILABLF.

IF SCHFDULF-DATF-FND IS GRFATFR TEAN SCHI'DULF-START
IN MACHINT (SCETPDULF=COUNT) AND LFSS THAN
SCHFDULF=COMPLFTION IN MACHINF (SCHEDULF~COUNT)
GO TO PFREON-NOT-AVATILABLF,

GO TO STF-TXIT,
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PERSON-NOT-AVAILABLE,

FIND PEPSON USING SAVE-PERSON;
SUPPRESS ALL CURRENCY UPDATES,

GET PERSON,

IF¥ IDENTIFICATION-NUM IN PERSNN IS EQUAL
WORKER=-IDENTIFICATION IM MACHINFE (SCHEDULE-COUNT)
MOVE 0 TO AVAILABLE, GO TO SFE<EXIT,

MOVF WORKFR-IDFNTIFICATION IN MACHINE (SCHEDULE-COUNT)
TO IDENTIFICATION-NUM IN PERSON,

FIND PFPSOMN RECORD,
SUPPRISS HAS-SKILL CURPENCY UPDATES.

MOYVE CURRENCY STATUS FOR PERSON RECORD
TO CHECK-PERSON ITEM,

STORE CHFCK-PERSON,

SEE-EXIT. EXIT.

PERSON=-IS~-FREE.
FIND MACHINE USING SAVE-MACHINE,
GET MACHINE.
FIND PERSON USING SAVE-PERSON,
GET PERSON,
ADD 1 TO SCHEDULE IN MACHINE,
MOVE IDENTIFICATION-MNUM IN PERSON TO WORKER-IDENTIFICATION
IN MACHINE (SCHEDULE IN MACHINE).
MOVE SCHEDULE-START-DATE TN SCHEDULE~-START IN MACHINE
(SCHEDULE IN MACHINE),
MOVE SCHEDULE-DATE-END TO SCHEDULE-COMPLETION IN MACHINE
(SCHEDULE IN MACHINE),
MOVE SCHEDULE-TASK TO JOBCODE IN MACHINE (SCHEDULE IN
MACHINE) .
MODIFY MACHINE.,
IF ERROR-STATUS = 803
GO TO PERSON IS FREE.
CLOSE XP. GO TO GET-NEW-MACHINE,
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APPENDIX C

UPDATE EQUIVYALENCES

In the following we use the fact that for logical values,
update(p,t,r) reduces to (t and r) or ( not t and p). This
follows from the definition of update in terms of

iffthen-else.

1. For conjunctions we use:

P and update(Q,t,r)=update(P and Q,P and t,r)

To show this, it is convenient to take the right-hand-side.

Then by using simple propositional logic:

update (P and 0,P and t,r)

(P and t and r) or ( not (P and t) and P and Q)

=(P and t and r) or ({( not t or not P) and P and 0Q)

=(P and t and r) or not t and P and O

=P and ((t and r) or ( not t and Q))

sP and update(Q,t,r)

2, For disjunctions we use:
P or undate (Q,t,r)=update(P or Q,t and not Q,r)
Again, taking the right-hand-side:

update(P or 0,t and not Q,r)

=t and not Q and r

(t and not Q) and (P or 0)

or
=t and not 0 and r or ( not t or Q) and (P or 0)
or

=t and not N and r not £t and P or Q
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=(t and r or not t and P) or 0

=update (P, t,r) or Q
3., For negation we use:

update (P, t,r)=supdate( not P,t, not r)

As before, expanding the right-hand-side:

update( not P,t, not r)

= not r and t or not t and not P

= not ( not ( not r and t) and not ( not t and not P))

n

not ((r or not t) and (t or P))

n

not (r and t or r and P or not t and P)

1]

not (r and t or r and P and t

or r and P and not t or not t and P)

not (r and t or not t and P)

not update(P,t,r).
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