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ABSTRACT

When information is stored in a computer it can usually be
organised in many different ways. If the information is
used for a number of different purposes the ideal
organisation is not always obvious. It will depend on how
often various parts of the data are used, how often they are
changed, and the amount of data taking part in each
transaction. It ~ay be difficult to predict these
parameters in advance, especially in data-base applications
where the pattern of use may change as time goes by.
Ultimately, one can visualise systems which can

autoMatically choose the optimum
can substantially assist in the

representation, or
choice. A step in

which
this

direction, which could itself find immediate application, is
to find a practical way to tailor programs to a particular
data organisation. The thesis describes an experimental
system which does this for a limited range of programs, and
the work which lead up to it. Both data retrieval and

simple updates are considered.

One prerequisite is a method of writing the program so ~~at
it does not depend on the way that the data is stored. A
number of data-base syste~s achieve this independence by
describing the data as a collection of relations. These
systems and ~~e background to them are reviewed. The

experimental system is loosely based on the use of
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relations, but some modifications have been made to make the
processing simpler and so that the characteristics of the
data organisation can be described. The system incorporates
the representation into the program and produces a tailored
version which is expressed in abstract, Algol-like code.
The result is intended to be similar to code which a human
programmer might write in similar circumstances, but as far
as possible ignoring the details of any particular
implementation.

iv



1

1. 1

1.2
1.3
1.4

1.5

2

CONTENTS

Introduction • • • • • • •

An example • • • • • • • •

Abstract view of data. • •

Definitions. • • • •
Code generation. • •
Outline of contents.

• • • •

• • • •

• • • •

Relational data. • • • • • • •

2.1 Relational operations.
2.2

• •

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• •

•

•

•

•

• •

•

•

•

•

•

•

• • •

•

•

• 1

6

•

Relational implementations •

• •

• •

• •

•

• •

• • •

• •

• .12
.18
.22
.27

• •

• •

• •

• •

• •

• •

• •

• •

• •

•

•

•

• •

• .30
.35
.40•

•

•

•
2.3 Other systems ••••••••••••••••••• 48

Language F •
3.1

3

3.2
3.3
3.4

4

• • • •• • • • ••

Problems with Codd's relations
Language description • • • • •
Data representation.

• •

•

•

•

•

• • • • • • •
Background to the implementation • •

Compilation.
4.1

4.2
4.3
4.90

• • • • • • •• ••

Pre-processing •
Code generation.

• •• • •

• • •• • •

Primitive Statements • • • •
Conjunction. • • • • • • • •

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

• •

•

• • •

•

• • • • • •

•

•

•

•

•

•

•

• •

•

• • •

• •

• •

•

•

•

•

•

• •

• •

• • •

• •

• •

• •

• •

•

• .56

.57

.61

.69

.79

• •

•

• .85
.87
.95

.99

103

•

•

• •

•

• •

v



4.5
4.6
4.7
4.8

5

5.1
5.2
5.3
5.4

Disjunction.
Negation • •

• • •

• •

•

• •

•

•

•

•

•

•

• • •

• • • •

Projection and related operations.
Choosing a program • • • • • • • •

Selective update • • •

Introduction. • •

Assignments •••••
Logical expressions.
Other functions •••

6 An experimental system •
6.1 Outline description.
6.2

7

Examples • • • • •

Conclusions and further work

Appendix A • • • • • •

Appendix B • • • • • •

Appendix C • • • • • •

References • • • •• •

• •

• •

•

•

•

•

•

• •

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • •

• • •

• • • •

• • ••

• • • •

• • •

• • •

• •

• • •

• • •

• • •

• • •

• •

•

•

•

•

•

•

• •

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• •

• •

•

•

• •

•

•

•

•

•

•

•

•

•

•

• 105
109
110
120

•

• •

• •

•

• 132
133
141
144
148

•

•

•

•

•

• 161
161
165

•

• •

• •

• • 189

• 200•

• • 206

• 209•

• • 211

vi



CHAPTER 1
INTRODUCTION

When designing a computer program, one of the factors which
must be considered is the way that the data should be
organised. This has a strong influence both on the
processing time and on the storage that the resulting
program will use.

In a simple program intended for a very specific purpose,
the logical organisation of the data is often self-evident.
In a larger piece of software, for example a commercial
compiler, operating system or data-processing suite, the
best organisation is usually much less obvious. A program
of this sort will be built from a number of smaller programs
which operate on the same data. Considering the
sub-programs individually, we may be able to determine the
data organisation that each ideally needs, but when they are
put together we often find that their requirements conflict.
We may then have to decide whether a redundant organisation
of the data should be maintained, satisfying the processing
requirements at the expense of storage, whether suitable
structures should be created temporarily to suit· a
particular process, or whether some of the component
programs should be adapted to work with a structure which is
less than ideal. Each of these alternatives might prove the
best compromise under some conditions.
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The problem is shown up most sharply in the design of a
data-base. For example if this were to store information on
a number of manufactured assemblies and the parts that each
contained, we might ask at different times for:

(i) a .complete list of assemblies and their
component parts,

(ii)
(iii)

the parts used in a particularassernbly,
the assemblies where a particular part
is used,

(iv) whether a part is used in a particular
assembly.

In addition new assemblies may be added to the data-base, or
an assembly may be modified so that different parts are
used. Each of these uses of the data ideally needs a
different data-structure. We can choose to store one or
more of these to facilitate particular retrievals, but as
more redundancy is employed, so the difficulty of modifying
the data increases, and so more storage space will be
needed.

The aim of the work described here has been to take
practical steps toward an understanding of the factors which
influence the choice of data structure. There is an
emphasis on the application to data-processing, that is
retrieving data from, and modifying the data in, an on-line
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data-base. This is because these applications often have
quite a complex structure, examples come fairly readily to
mind and the potential benefits of machine assistance are
most obvious in this area. While the design of a systems
program like a compiler may be difficult, the job it has to
do will remain largely unchanged throughout its lifetime. A
data-base on the other hand, models some part of the outside
world. The demands made on it may vary from week to week as
the interests of its users change, it may grow in directions
which were not anticipated by its designers and it may need
to reflect organisational changes in the world at large.
Ideally one would like to be able to adapt the data
structures kept, and the processing methods used, to each
change in circumstances.

This thesis describes a processor which will automatically
adapt a computation to a given data representation. A
practical method of adapting algorithms to work with a
particular configuration of stored data could be applied
directly in high level data-base systems, where existing
data can be used by people with no formal training in
programming. For example a supermarket company may have a
number of outlets and record the sales at each branch in a
central data-base by monitoring the transactions at each
check-out. The central data-base is supported by an expert
programming team, and performs stock control and provides
sales statistics for management at head office. Branch
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managers may also have their own individual information
needs, but do not have the programming expertise to provide
it. This could be overcome by providing a very high level
interface to the central data-base and a processor to
generate retrieval algorithms automatically, adapting them
to the existing data organisation.

In a research environment, for example in studying rock
samples, there may be no central programming team. In this
case the data-base system may need to take responsibility,
not only for generating detailed retrieval algorithms, but
also for organising the data representation. A number of
systems have been aimed at this broad area, for example the
Peterlee IS/1 system (Notley 1972), SQUARE (Boyce 1973) or
Woods Lunar Data System (Noods 1972). Stocker and Dearnley
in particular have considered the problems of adapting the
representation to suit the particular pattern

structures to a

of requests
However, to
pattern of

encountered (Stocker and
successfully adapt data

Dearnley 1973)•

transactions it is clearly necessary to understand how each
of the processes depends on the way the data is stored.
Developing a system which can reliably adapt programs to a
given storage organisation may lead to such an understanding
and so to a simple model by which the effect of a change in
data organisation can be predicted.

There are also more far-reaching efforts to autom~te, or to
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partially automate, the programming of complete business
applications (Goldberg 1974, Krohn 1972). It has been
suggested by Darlington, Knuth, Gerhard and others
(Darlington and Burstall 1973, Knuth 1974, Gerhard 1974)
that a good way to produce a correct, efficient program is
to write the algorithms in as clear a way as possible, so
making it easy to verify that they are functionally what is
needed, and then to transform the program to optimise its
performance on the machine. This method is particularly
suited to (and indeed may necessitate) automatic assistance •

.Some of the transformations will be concerned with questions
of data organisation, such as whether to store a structure
permanently or compute it each time it is needed. Studying
ways of adapting programs to a particular data organisation
should give insight into a large and interesting class of
such program transformations.

'The aim therefore has been to consider a program which is
written without a knowledge of the actual data organisation,
and to investigate how it can be combined with a definition
of an actual representation, so that the result executes
reasonably efficiently. A system which automatically
adapted a program to the representation could be applied
directly to high-level data-base systems, and might, in the
longer term, assist in the development and maintainance of
large applications. The insight gained into the effect of
altering the representation might also suggest new methods
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of determining the optimum data organisation.

The following sections contain a brief introduction to the
work described in the remaining chapters. Section 1.1 gives
an example of two programs which are intended to give the
same result using different data structures.
type of transformation we are trying to

This shows the
achieve. Then

sections 1.2 and 1.3 introduce the abstract view of data
which is used, and the way that this reflects the properties
of a data representation which are of interest. Some
examples are then given to show how the description of the
data of interest can be compiled into a program to obtain
it. Finally, section 1.5 describes how the remainder of the
thesis is organised.

1.1 An example

Suppose that a sm~ll factory, manufacturing say electronic
equipment, wishes to keep a record of the assembled products
it makes and the components used in each. We will assume
that this "bill of materials" data is to be kept on a direct
access device, so that both sequential and random access can
be used.

Each record in the file may contain (amongst others) four
fields:
ASSEMBLY the name or other identification of the

finished product.

section 1.1 6



PART the name of one of the components used
in an assembly.
the number of components of type PART
used in an assembly.
the number of assemblies produced per

QTY

WEEKLY-OUTPUT
week.

The format is indicated at the top of figure 1.1.

When ordering new supplies of component parts, it might be
decided that each should be ordered in just sufficient
quantity to cover a single week's requirements. For this
purpose, a list is n~eded showing .each part, together with
the total number used in all assemblies in one week.
Producing this list is quite straight-forward if the bill of
materials file were kept in PART order, that is,with all
records relevant to one component stored together. It is
then possible in one scan of the file, to process the parts

sequentially. For each record, the number used in an
assembly is multiplied by the number of assemblies produced
each week, and the products are summed for the batch of
records corresponding to a single component.

However, it is likely that other processing requirements
will demand that the records are kept in ASSEMBLY, rather
than PART order. There is then a choice between keeping the
data redundantly so that both of the orderings are

available, or effectively re-sorting the file for this and
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similar processes. The two situations are illustrated in
the lower half of figure 1.1. When the "file is kept only in
ASSEMBLY order, to find the weekly usage of all parts the
file could first be sorted into PART order, and subsequently
processed to sum the quantities used. The processing needed
is labelled "program 2". If the data is kept permanently in
PART order, only the last step is needed and this is
labelled "program 1".

If the application were to be programmed using the Report
Program Generator (RPG) (Bowden 1970) and the data is not
properly sorted, it will be necessary to perform a sort and
then run the program on the newly created file, exactly as
illustrated. The file in PART order can be thought of as an
intermediate structure needed to produce the result, and
this can either be stored, or generated each time it is
needed.

If the application were instead programmed in, say, PL/1,
more complex internal data-structures can be used. There is
no need to perform an initial sort when the data is not
correctly ordered and it will be more efficient to omit it.
The programming becomes more complicated and to illustrate
this figure 1.2 shows the outline of two programs which
might be written, the first for sorted data, and the second
for unsorted data. (It is not necessary to read these
programs in detail.) Program 2 does not obviously perform
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DCL 1 Br! RECORD,
2 TASSEHBLY, PART) CHAR (20),2 (QTY, WEEKLY-OP) FIXED (4);

DCL PNAHE CHAR (20), TOTAL FIXED (4);

READ FILE(BM_FILE) INTO (BM_RECORD);
DO WHILE (PART -,= "ZZZZ"); /*dummy last card*/

PNAME = PART; TOTAL = 0;
DO WHILE (PART = PNAME);

TOTAL = TOTAL + QTY* l'1EEKLY-OP;
READ FILE(BH FILE) INTO (BM RECORD):END; - _

PUT LIST (PNAME, TOTAL);
END;

a) Assuming Part order.

DeL 1 Bl-! RECORD,
2 TASSErmLY, PART) CHAR (20),2 (QTY, WEEKLY-OP) FIXED (4);

/* AUXILIARY PART TABLE */
DCL PNN1E (N) FIXED (4); TOTAL (N) FIXED (4);
DCL Pl-!AXINITIAL (0); /* GIVES LAST ENTRY USED */
READ FILE(BH FILE) INTO (BM RECORD);_ _
DO WHILE (PART -,= "ZZZZ");

/* LOOK FOR PART IN TABLE */
DCL FOUND BIT (1); FOUND = 'O'B:
DO I = 1 TO p~mxWHILE (~OUND);

IF PNAr-1E(I) = PART THEN FOUND = '1'B:
END;
IF ~OUND THEN

DO; /* MAKE A NEl'1TABLE ENTRY */
I, PHAX = Pf.'AX+ 1;
PNAME (I) = PART; TOTAL (I) = 0;

END:
/* ADD PRODUCT INTO APPROPRIATE TOTAL */
'l'OTAL(I) = TOTAL (I) + QTY * l'lEEKLY-OP;
READ FILE(BM FILE) INTO (BU_RECORD);END; _

/* PRINT ALL TOTALS */
DO I = 1 TO PHAX;

PUT LIST (PNAME (I), TOTAL (I) );
END;

b) Assuming Assembly order.
Figure 1.2

PL/1 outlines for obtaInIng weekly-use.
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the same function as a sort followed by program 1. A
running total is kept for each PART during a single pass
down the data and the final values are subsequently printed
out. The program shown has been simplified by using a
simple linear search to locate part entries in an auxiliary
table, and by ignoring any requirement for an alphabetic
list of parts. It would be preferable to store the running
totals in a binary tree in order to achieve a logarithmic,
rather than linear, dependency on the number of different
parts appearing. If properly programmed this method will be
more efficient than pre-sorting the data.

One of the major concerns of this investigation has been to
find a way of reliably achieving optimisations such as
this.

with examples written in a conventional programming
language, the relationship between programs using different
data structures
obvious. As

to acheive the same result is
Hopcroft (Aho, Hopcroft and

often not
Ullman

1975)suggests, the relationship becomes much clearer if we
take a more abstract view of the process.

section 1.1 11



1.2 Abstract view of data-- ----

The method of generating programs which we have adopted uses
an abstract description of the data, modelling its structure
using functions and sets.

In the example, the bill of materials data is held in a
sequential file of records. Abstractly we view this file as
a set, each member corresponding to a record in the file.
We might call this set "uses", as each member represents the
use of one part in one assembly.

The records in the bill of materials file contain four
fields, of which, for the moment, we will consider only
three, ASSEr.mLY, PART and QTY. These fields are modelled
using functions. For instance, to correspond with ASSErmLY
we use a function "assembly". When applied to a member of
the set "uses" it returns the value contained in the
ASSEMBLY field of the corresponding bill of materials
record.

Very informally, the situation can be shown as follows:

section 1.2 12



uses

The large dots correspond to sets, and the
them are labelled by functions. For example,

lines joining
the function

·part" takes a member of "uses" and produces a member of the
set "parts".
A possible physical realisation of the abstract functions is
shown in figure 1.3(a). Given a sequential file like that
illustrated, we could read through all the records. This is
modelled by the ability to sequence through all the members
of the abstract set "uses", retrieving all the members in
turn. The members of this set correspond to records in the
bill of materials file. Uaving obtained a particular record
in the physical file, we can extract the ASSElffiLY, PART and
QTY data. This is modelled by the ability to apply to a
member of "uses" any of the functions "part", "assembly" and
"qty"•

Although we are using functions and sets, throughout this
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thesis they are treated informally. They merely provide a
convenient way to ignore unwanbcd details of a

representation. To take an extreme case, the assembly, part
and quantity data might be held in three separate arrays,.and members - of the set "uses" might merely be integer
indexes to the arrays. Our abstract description remains
unchanged because the same operations can be carried out.
In programming terms however, the representation wouLd be
considered very different from the sequential file.

The program in section 1.1 (to find the weekly consumption
of all parts) ideally requires that the records relating to
each part can be obtained together.
assumes that the function:

The simpler code

uses-of-part(p) = {b I part(b)=p}

is stored. Given a part p, "uses-of-part(p)" will stand for
the set of members of "uses" whose part is p. These
correspond to the bill of materials records containing part
p. If we stored all the parts as a list of records and in
each kept the result of this function, again represented as
a sequence, then a hierarchical organisation like that in
figure 1.3 (b) would be obtained.

In the figure the functions "uses-of-part","assembly", and
"quantity" are represented by the fields USES-OF-PART,
ASSE~mLY and QTY. Again the representation is only one of a
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nUmber of possible ways of storing the data modelled by:

The function "uses-of-part" produces a subset of (rather
than a single member of) the set "uses". The diagram merely
shows how the functions and sets are connected and how one
can get from one set to another. It does not accurately
describe the domains and ranges of the functions.

In a similar way a representation whd.challowed all the data
for each assembly to be obtained together might store the
function:

uses-of-assembly(a) = lb I assembly(b)=aJ

together with a set "assemblies" and the functions "part"
and "quantity". Such an organisation is shown in figure 1.3
(c). Although the sorted files in the earlier example are
not quite in this hierarchical form, it would be easy to
arrange a subroutine to present them in this light. The
first PL/I program, for instance, is structured as if the
data were hierarchical.
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In summary, we make the assumption that the characteristics
of the data organisation which are of interest can be
reflected by a model in terms of functions and sets. The
details of how these are stored will be ignored.
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1.1 Definitions.

We might also record in the data-base information about each
part and each assembly. For example we might include the
following functions:

cost (p)=n meaning the cost of part "p" is "n"
number-on-hand(p)=n meaning there are "n" of part "p"

on hand
supplies (m,p) meaning manufacturer "m" can supply

part "p"
meaning "n" assemblies of type "a"
are produced per week.

weekly-prod (a)=n

The first two functions, "cost" and "number-on-hand" will be
contained in a part file: the function "weekly-prod" belongs
in an assembly file. In the original example this data was
included in the bill of materials file as a field
WEEKLY_OUTPUT, but a problem can arise if the values are
stored here. In the bill of materials file there is more
than one record associated with each assembly. It is
therefore possible, perhaps as a result of an update, that
two records could give conflicting information about the
number being produced. It is to avoid probems of this sort
that Codd, in the relational treatment of data, defines
"third-norrnal-form". Chapter 2 expands on this point.

The function "weekly-prod" does not have this problem, as it
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associates only one output with each assembly and so cannot
give inconsistent information. However, if it were more
convenient to use, the function "weekly-output" can be
introduced by defining it in terms of "weekly-prod":

weekly-output (b) = weekly-prod(assernbly(b»

By storing this function in a set of fields we get a
representation like that used in the original example. But
it is now clear that these fields are, in fact, redundant.
They depend on other values stored, and in particular are
not independent of one another. This is important when
considering update because all related fields must be
changed consistently.

Further definitions can be made using the available

functions, for example:

out-of-stock(p) 3 (number-on-hand(p) = 0).

This gives a predicate satisfied only by parts which are not

in stock.

cost-on-hand(p) = cost(p) * nurnber-on-hand(p).

This logically forms an addition to the parts file, giving
the product of two other fields.

rate-used (b) = quantity(b) * weekly-output(b)

defines the number of parts used each week in the production
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of an assembly. The part and the assembly are tl10se
associated with the bill-of-~aterials item b.

suppliers(p) = \mlsupplies(m,p)l

defines a function corresponding to a field in the parts
file containing a set of all suppliers of the part. Using
this we can define:

can't-obtain(p) 3 ~ ~ (suppliers(p»

Here some is a function corresponding to the existential
quantifier in predicate calculus. Its argument is a set, in
this case of the manufacturers supplying part p. Some
determines whether there is at least one value contained in
the set.

Another operator on sets is the. If the set contains a
single member it will produce that member, but otherwise is
undefined. For example:

use(a,p)=the tr:uses I part(r)=p and assembly(r)=a}- -
defines a function which, given a part and an assembly,
produces the unique member of "uses" which relates that part
and that assembly. The function models an index to the
"bill-of-materials" file.

The functions or predicates defined by each of these
equivalences might be used as part of a program to extract
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data of interest from the data-base. The values they
represent could be computed each time they are needed, or,
to avoid repeated re-calculation they could be stored
permanently. The latter choice usually produces an overall
representation which stores the data redundantly, with a
corresponding update problem.

Given a program to retrieve some data, some of the functions
it uses will be supported directly by the representation.
Others will not be stored. For these, the definition must
be used to relate them to functions which are part of the
stored representation. Again retu+ning to the e~ample of
section 1.1, the program to find the weekly consumption of
parts assumed that it had available a representation
modelled by the functions and sets:

parts
uses-of-part

weekly-output

qty

the set of all parts.
giving the bill-of-materials data
for a part.
giving the number of assemblies
produced.
giving the number of each part used
in each assembly.

The first PL/I program shows the straightforward loop needed
to do the processing when the data is indeed stored. If
"uses-of-part" is not stored directly, a definition must be
provided so that its value can be computed. Given only a
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sequential file, it must be expressed in terms of the
function "part":

uses-of-part(p)= {b part(b)=p} •

The problem then
the best of the

is to re-organise the
situation. As the

computation to make
second PL/I program

shows, it is often not the best policy to first create real
data corresponding to the defined function (performing th
preliminary sort), nor to use its definition blindly to
compute the uses of each part encountered. This latter
course would mean scanning the bill of materials file many
times. Instead we would like to achieve the basically
sequential program shown, using an auxiliary table.

The next section introduces the way this is done, but taking
a less complex example.

1.4 Code qeneration

Suppose we wished to obtain a list of the assemblies whose
production used more than 1000 4BA NUTs each week. The
assemblies of interest can be expressed:

ta I rate-used(use(a,"4BA NUT"}»1000} •

Suppose further that "rate-used" were stored in the bill of
materials file, and that these records were kept
sequentially. It would be necessary to inspect the part and
rate-used field of each of the records, looking for the
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value, "4BA NUT", and a rate greater than 1000. The code
needed, when expressed in an Algol-like language, might be:

for b in uses do
if part(b) = "4BA NUT" then
if rate-used(b) > 1000 then

write(assembly(b»
fi

fi
od

The retrieval could be performed more quickly if the file
were inverted on parts. This could be reflected by keeping
the field corresponding to:

uses-of-part(p)=[blpart(b)=p}

The code could then become:

for b ~ uses-of-part("4BA NUT") do
if rate-used(b) > 1000 then-

write(assernbly(b»
fi

od

This makes direct use of the function "uses-of-part", giving
directly the assemblies containing each part.

If the function rate-used were not stored at all, it would
be necessary to refer to the assembly file in order to
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compute it, using the definition in the last section. For
example:

for b in uses-of-part("4BA NUT") do
let t1 = quantity{b);

let t2 = weekly-prod(assembly(b»;
let rate-used = t1 * t2;

if rate-used> 1000 then
write(assembly(b»

fi
od.

The process by which this code is obtained has a similar
goal to the access-path selection carried out in a data-base

system. It attempts to produce the required answer at

minimum cost. In the example the value of Hp" in
uses-of-part(p) is given, so that ideally the process should
use this function to obtain the assemblies of interest

directly. It can do this in the second case. If this
function is not stored, then the system must go back to its
definition and simulate it by scanning all records and
selecting those of interest. The number of iterations
needed and so the cost of doing the calculation, will be
greater if this is necessary. The method by which the code
is produced uses, as far as possible, only structural
information to produce an optimum program. In practice
direct estimates of the cost of execution must sometimes be
used, but are difficult to make.

section 1.4 24



Update

If the weekly output of an assembly were to be increased, we
might record this in the data-base by an assignment, say:

weekly-prod ("DVH"):= 60

where "DVM" is used to identify an assembled
digital-volt-meter.

This logically has the effect of re-setting the field
weekly-prod in the record corresponding to "DVM" in the
assembly file. Other actions would be needed, however, if
the data were stored redundantly. For example if the
information were also kept in the bill-of-materials file, a
number of fields must be re-set:

for b in uses do
if assembly (b) = "DVM" then

weekly-output(b):= 60
fi

od

Slightly more work is required if the field rate-used were
also held:
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for b in uses do
if assembly (b) = "DVl-1" then

rate-used (b):=60*quantity(b);
weekly-output(b):=60

--·fi
od

Again, many variations of this code are possible, depending
on the functions which are available. These pieces of code
must be executed when a modification takes place to
guarantee that the values stored corresponding to the
functions:

weekly-output (b) = weekly-prod (assembly(b»
rate-used (b) = weekly-output (b) * quantity (b)

remain correct after weekly-prod has been changed. The
problem here is essentially to find the fe\.,estchanges that
must be made so that the resulting data is correct.

In summary, we have investigated a system which aims to
adapt programs to a given data organisation. The data
organisation is modelled by functions and sets so that
unwanted details of the representation can be ignored.
Programs are assumed to be written in terms of these
functions and sets using a limited set of operations. The
operations chosen are similar to
algebra, but modified to suit

those in Codd's relational
the slightly different data
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model. The program can assume a different data organisation
than that which actually exists, but definitions must then
be provided which relate the assumed and actual
representations. For retrieval, the system combines the
program and these definitions and then searches for a
processing algorithm which it considers satisfactory. For
update, it has the additional task of manipulating the
program to find an efficient way of modifying redundantly
held data. The resulting algorithms are expressed in a
simple, but informal, Algol-like language.

The system was produced as a step. toward understanding the
relationship between the processing algorithm and the data
organisation. It might, however, have a practical use in
data-base environments where it is an advantage to be able
to write programs without knowing how the data is stored.

1.5 Outline of contents

The remaining chapters give an account of the work which
lead to this approach, and describe the methods used in the
experimental system.

There are a number of data-base systems which are based on
the use of operations on sets of n-tuples. Chapter 2
reviews some of these systems and the background to them.
Codd's work on relational data and the operations to
manipulate it were aimed at presenting a view of the data in

section 1.5 27



an information system which is independent of the way in
which it happens to be stored. Relations form the basis of
the work described here, but some detailed changes in their
treatment were found to be necessary, mainly to give a
closer match with predicate logic. The modifications are
discussed in Chapter 3. As a preliminary to the description
of the code generation process, some further examples are
given to show how the relations can be represented in
storage.

Chapter 4 describes how a program
abstract functions and predicates

written in terms
can be compiled

of
to

Algol-like code, once the data representation is known. The
programs produced are intended to be similar to those which
a programmer might write in similar circumstances, but are
expressed in an abstract language which has not been
implemented. This avoids the need to consider the detailed
conventions of an existing language like PL/1 or Cobol, and
the output code is used just to suggest the structure of a
suitable program. It might be implemented in various ways,
for example transliterating to a conventional language, or
using an interpreter to form a complete high level data-base
sub-system.

Chapter 5 shows how code can be produced to perform
updates. ~~en the data is stored redundantly, the code must
arrange that all the relevant storage has been consistently
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modified.

Chapter 6 describes the structure of the experimental system
and gives some details about the way it operates. The
system was not intended to be a practical tool, nor was it
intended to implement a language which would immediately be
suitable for interacting with a data-base. It has been used
rather as an experimental test-bed to verify that the
methods proposed could be sensibly implemented and to
uncover any practical problems which might arise. Some
examples are given showing the operation of the system and

the output it produces.

Finally, in the light of the promise that the system shows,
a number of suggestions are made for future work.
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CHAPTER 2
RELATIONAL DATA

In a conventional data-base system, whether based on
hierarchies like IMS (IMS/360 1972), or on networks like IDS
(IDS 1968), an applications program makes direct reference
to stored sequences of data items. lfuenthe representation
is altered the programs may also need to be changed. In the
Codasyl proposal (Codasyl 1971), based largely on IDS, some
indirection is provided (using "subschemas" which describe a
modified view of the data), but the degree of independence
obtained is fairly small.

Codd proposed relations as a means of describing data so as
to convey only its inherent structure. The motivation was
to allow users of the data to be independent of the stored
representation. Similar
proposed by Childs (Childs

machine independent models
1968), Kuhns (Kuhns 1969)

were
and

Grindlay and Stevens (Grindlay and Stevens 1968).

In the relational model of data,
underlying sets of objects are

(Codd 1970), a number of
assumed. These might

represent parts, manufacturers, costs, quantities and so on.
These sets are called "domains". All information about the
objects is held in a collection of time varying relations.
A relation on the domains D1, D2 •••• Dn is a set of
n-tuples, where each n-tuple has its first component drawn
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from D1, its second from D2 and so on. The number of
components (n) in each tuple is called the "degree" of the
relation.

For example, the manufacturers who can supply various parts
can be described
pairs. In each

using a binary relation, that is a set of
pair the first component will be a

manufacturer (that is drawn from a domain "manufacturers")
and the second a part (from a domain "parts·). A tuple in
the relation represents the ability of the manufacturer to
supply the part:

supplies c manufacturers x parts.

Sample data for the relation is illustrated diagramatically
in figure 2.1. As the table is intended to depict a set,
all the rows are different. In the table each column is
headed by the domain-name from which the elements are taken.
The column ordering is significant, as the domain-names need
not all be different. A relation giving the nearest
equivalent of each part, for
identical domains:

example would have two

nearest-equivalent ~ parts x parts.

To avoid dependence on column ordering Codd suggests that
the domain-name could be qualified by a "role-name", so that
the combination is unique. A user could then deal ,·Ii th
"relationships" where the components are not ordered.
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However, operations of the relational algebra are defined
only for relations where ordering is used to distinguish the
components.

Normalised Relations

In general, the underlying domains of a relation need not
consist of elementary values (such as parts or
manufacturers) but may themselves be sets of relations. As

an example, a collection of examination results might be
expressed as a binary relation:

results' ~ students x mark-lists

associating with each student a relation (from mark-lists)
which gives the mark for each examination he took. Here,
members of the domain mark-lists are relations:

mark-lists c (exams ~ marks).

(. being used to form the set of all subsets of its
argument). Codd in (Codd 1972 b), defines a normalisation
procedure to systematically eliminate domains of this sort
in favour of sets of elementary values. The
first-normal-form form of "results" would be a ternary
relation:

results c students x exams ~ marks

obtained in the obvious way from results'.
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Second and third normal forms are defined, aimed at
preventing unexpected behaviour when an update occurs. If a
domain "tutors" is added to the relation "results", sample
data could occur as in figure 2.2. The "tutors" column
gives each-student's tutor. A problem occurs if a
particular student took no examinations. It would not be
possible to record his tutor's name, as no entries occur in
the relation for the student. This anomaly can happen as a
result of a deletion. To define a third-normal-form
relation, one or more of the domains are designated as the
"primary key". Any two tuples in the relation must differ
in the values of these domains,·so that a value of the
primary key uniquely identifies a tuple. In a relation
"number-on-hand", "parts" would constitute the primary key,
while in "supplies", both a value for "parts" and a value
for "manufacturers" is needed to guarantee to identify an
individual tuple. In a third-normal-form relation, the
value in no domain must be uniquely determined by a (proper)
subset of the primary key. The restriction is violated by

the example, since there is only one tutor for each student,
whereas the key (which uniquely identifies a tuple) consists
of both the students domain and the exams domain. To obtain
the third normal form of the data in this relation it must
be split into t,'lO,one containing the examination results
(whose key is student and examination) and one containing
the tutor information (whose key is just student). The
normalisation rules are fully discussed by Date (Date
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1975).

2.1 Relational operations

The operations on relations are described in some detail
because the language to be introduced in the next chapter
was developed from them. However we will not need to make
use of the definitions which are given. The operations
described are taken from (Codd 1972). Variations are
possible, for example (Codd 1970) and that used as an
intermediate language by IS/1 (Notley 1972), but their
structure is similar. They are defined only for normalised
relations, those whose domains are simple sets of integers
or strings.

Relations may participate in the usual set operations:
union, intersection, difference and cartesian product. The
first three operations are only defined for a pair of
relations which have the same degree (or number of columns)
and where corresponding domains in the two relations are
either both sets of strings or both sets of integers. The
cartesian product is defined so that an expanded product is
obtained. Cross multiplying t\% relations Rand S, of
degrees m and n, gives a relation of degree m+n. It is
formed by concatenating each tuple from the first relation
with all tuples in the second. Denoting the concatenation
of two tuples rand s by rAs,
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R " S = {r"s I reR & SElS}

The remaining operations apply specifically to relations.
The projection operation is used to select or permute the
columns of a relation. If r is a tuple from an n-ary
relation R, then the elements can be selected and re-ordered
by an operation rev] where v is a vector of indices. (The
operation is identical with APL array indexing). For
example, ("A" "H" "e") [3 1] = ("e" "A"). The projection of
R on v is then defined by:

R[v) = {z Ivl I rER}

Two of the projections of the relation supplies are shown in
figure 2.3.

The other important operation is called "join". This
concatenates two relations as in a cross-product, but result
tuples must also satisfy a test. The test compares a
specified column "from each relation, so that if e is one of
the comparisons =,*,>,~,<,~ then:

R[A e B]S = {r~slr~R & s~S & (r[A] e s[B])}

Some examples of joins are shown in figure
indicates a comparison for equality, two
result will be identical. A projection must

2.4. When
columns in the

be used to
remove one of them.

Two other operations are included, both of which can be
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defined in terms of the others. The division operator is
the counterpart of a universal quantifier. Its definition
is omitted because it is quite lengthy and its equivalent is
not included in the language to be defined. Restriction
subsets a relation on the basis of a comparison of two
columns. It is defined by:

R[A e B] = trl reR & (r[A] e r[B])l

(where e is one of the comparisons above).

Restriction can be defined in terms of join, or join can be
defined by a restriction of a cross-product:

R[A ~ B]S = (R • S) [A e B']

where B' is B increased by the degree of R.

Codd also defines a relational calculus in which queries can
be expressed. The variables in the calculus have tuple
values, and unary predicates are used
stored relations. An algorithm is

to correspond with
given to form a

relational expression from each expression in the calculus.
The resulting expression is not intended to be efficient,
but demonstrates that the conversion is possible. Less
inefficient conversions are discussed by Palermo (Palermo
1972) and Longstaff and Poole (LongBtaff and Poole 1974).
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2.2 Relational in~lementations

Perhaps the implementation most closely following the
relational algebra is the Peterlee IS/1 system (now referred
to as the Peterlee Relational Test Vehicle, PRTV) (Todd
1975). It provides the four set operations, union,
intersection, difference and cartesian product (called
rather confusingly "join"), together with the project and
restrict operators. The restrict operation is generalised
to allow an arbitrary test on the contents of a tuple and
called "select".

The implementation is based on sorted, largely sequential,
files. The tuples in a relation are sorted in the natural
way, the first component of a tuple being the most
significant. A compression technique is used so that if a
tuple differs from the previous one only in its low-order
fields, the unchanging high-order fields are omitted. The
remaining fields are also compressed. The complete relation
may occupy a number of physical blocks in the file and an
index is kept, showing the range of tuple values in each
block.

The set operations are implemented by variations on the
symmetric merge (Knuth 1973). For union, tuples occuring in
either operand are produced, reading the files so that tile
result is properly ordered. For intersection, only tuples
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occurring in both operands are produced. When evaluating a
compound expression composed of these operations, a
co-routine evaluation technique is used so that the complete
result of a sub- expression need not be stored. A tree of
co-routines is constructed corresponding to the form of the
expression. Execution is initiated at the root of the tree
and each operation calls on its operand routines whenever
the next block of tuples is needed.

Join operations and most projections cannot participate in
the coroutine tree. In a join operation, each member of the
first set must effectively be compared with every element of
the second set, so that the appropriate members of the
cross-product can be formed. Its operands must therefore be
evaluated completely and stored so that they can be
re-scanned. A complete re-scan can be avoided if the
operands are already sorted on the fields mentioned in the
selection criterion. In other cases either the operands
must be sorted first, or
generated. No details are
method is made.

a complete cross-product must be
available on how the choice of

A projection is implemented by appropriately extracting the
result fields. Unless only the lowest order fields are
removed by the projection, this will produce unsorted
output, so that again a complete result must be stored and
then re-sorted.
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Titman has reported on a system using very similar
techniques (Titman 1974). The processing uses collate and
sort operations on sequential files. By storing only binary
relations in compressed form, even relations with a large
cardinality can be retrieved with a single movement of a
disk arm, so giving good performance on small batches of
input. Titman regards his use of relations as a data-base
implementation method, and not primarily as a way of
disguising the representation.

The McAims system at MIT (Strnad 1971) was one of the first

systems to use n-ary relations. It manipulates them with

operations from the relational algebra. The implementation,
however, allows for arbitrary storage techniques, by
defining just the operations that the representation must
support to interface with the remainder of the system.
Again although the basic processing technique is collation,
the general nature of the system allows for other methods.

The SEQUEL language is a special purpose query language, but
closely corresponding to the relational algebra (Chamberlin
1974). Its implementation makes much greater use of random
access than PRTV or Titmans system (Astrahan 1972). It
utilises a storage system called XRM (Extended n-ary
Relational Memory) (Lorie 1974), in turn based on a binary

relational storage system. Each tuple of an n-ary relation
is stored in a random-access memory and can be located by a
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unique "tuple identifier". Access to tile tuples is provided

by keeping one or more binary relations as indexes for

frequently used domains. A binary relation is used to

associate with a value the set of the identifiers of the

tuples where the value occurs. A mixture of hash-coding and

ordered lists is used to give fairly rapid retrieval of all

elements in the second column of a relation, given a value

in the first colu~.

The representation for the relation "supplies" might

approximate to figure 2.5. The tuples are stored as data in

random access storage • Access is provided by what is
.

logically a binary relation, in this case giving tuples with

a particular value in the "parts" field. The set of

pointers to the tuples (tuple identifiers) for, say, a "6BA

NUT" are chained together, and the head of the chain is

accessed by hashing the string value "6BA NUT".

Optimisation

The PRTV system optimises relational expressions in

approximately source form. The intent is to move

restriction (or selection) operations as early as possible

in th~ computation, and project operators as late as

possible. It is obviously advantageous to perform

restrictions at an early stage, as these produce subsets of

the data. Such a test is therefore applied as soon as elC
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data it mentions is brought together by a join. Project
operations usually imply a sort and if they do, their
execution is delayed. Two or more projections may then be
combined into a single projection. This optimisation should
reduce the amount of sorting needed, by sorting when the
data is smallest and combining sorts where it is possible.
The principles are given by Hall and Todd in (Hall and Todd
1974) but their effectiveness has not been reported. Hall
also describes a method
elimination (Hall 1974).

for common sub-expression

The optimisation algorithm used in the implementation of
SEQUEL is given in some detail. This is intended to make
good use of the available binary indexes in obtaining the
required subsets of a relation. In a paged multi-user
system retrieval costs cannot be accurately predicted, so
the algorithm attempts to minimise the number of tuples
retrieved rather than minimising the overall cost. The
description given is quite complex, but the outcome is that
where a test on a relation takes the form
"column-name=value" and an inversion on the
exists (as a binary relation), the inversion
immediately locate the subset of tuples whLch
test. When simple tests are combined by "and",

column-name
is used to
satisfy the
"or", etc.,

these operations can sometimes be implemented by merging the

sets of tuple identifiers obtained from the inversions.
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Bracchi, Fedeli and Paolini (Bracchi 1974) describe a scheme
which provides n-ary relations at the user level, but which
uses binary relations at the system level. N-ary relations
(and also hierarchical structures) can be defined in terms
of combinations of binary relations. They outline an
optimisation procedure not dissimilar to that used in
SEQUEL. Another optimisation procedure for queries, this
time based on the entity set model of data (Senko 1973) is
described by Ghosh and Astrahan (Ghosh 1974). The different
nature of the model makes it difficult to relate this to the
previous discussion, but basically it uses a cost function
to choose the preferred access-path.

Of these optimisation methods, the
described by Hall and Todd. It has the

simplest is that
great advantage of

working entirely in terms of the source program. The other
algorithms tend to be more difficult to appreciate because
they introduce (and consequently can take advantage of) more
details of the representations used.

Update

Relational systems appear to find update difficult. The
Peterlee PRTV system implements an assignment statement, so
that one or more complete tuples can be added to a relation
R by executing the assignment: R=R+Newtuples. (The + sign
is used for union). Tuples can be deleted in much the same
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way using a set difference operation. A more traditional
selective update of a tuple, for example to alter the
number-on-hand field of a particular part, can only be done
by a complex relational expression, or by the addition of a.
subroutine written in PL/1. Todd (Todd 1975) remarks that
the update of relations is not sufficiently well understood
to allow a general update facility.

Titman's system keeps changes in separate files showing the
additions and deletions to the master relations. The master
relation and the changes are merged at each retrieval, and
periodically the data-base must be re-organised so that
accumulated changes can be incorporated in the master

files.

other systems concentrate entirely on retrieval, or make
only passing reference to the possibility of update. A
reason for the difficulty may be related to that suggested
by Heath (Heath 1972). Arbitrary changes to components of a
tuple can cause side effects. For example if the parts
field of a tuple in the relation "number-on-hand" ,~ere
altered, it might create two numbers on hand for the same
part. It will certainly upset the sorting order of the
tuples and might also create two identical tuples one of
which should be deleted. To prevent such effects, the

relation should be in third-normal-form and no assignment
can be permitted to fields which are part of the key. None
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of the relational systems mentioned restrict relations
sufficiently to detect this•

.2.3 Other systems

In "Data Semantics" (Abrial 1974) Abrial describes a
somewhat different data model which is relevant in this
context. t~ith the relational model, the existence of an
object is essentially implied because data is stored about
it. For example the existence of a 4BA NUT is implied by
the occurrence in the relation Number-on-hand of a tuple
with "4BA NUT" as a part component. The values from a
domain such as "parts" which are actually mentioned in a
relation are called by Codd the "active domain". Abrial
makes the existence of an object such as a part explicit by
including it in a "category" (a set) of parts. An object in
a category does
identification and is
objects.

not necessarily
just known to be

have an external
distinct from other

Properties are attached to objects using binary relations.
For example two binary relations could relate parts to their
descriptions (the description being a string such as "4BA
NUT") and their numbers-on-hand. Both these relations will
in fact be functions, one description and one number-on-hand
being associated with each part. Diagramatically, this is
represented in figure 2.6. The categories are shown as
large dots and the relations as lines between them.
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The labelled ar-rowsrepresent "access-functions" and two are
associated with each binary relation. That labelled
"number~on-hand" gives the quantity associated with each
part and the inverse "parts-in-quantity" gives all parts
with a givell number-on-hand. An • access function for a
binary relation maps one set to a powerset of the other. In
Abrial's model
produce result
cardinalities.

the access functions
sets with given

can be constrained to
maximum and minimum

In the example, each part will have only one
number-on-hand. The maximum cardinality of the
access-function will therefore be unity. The inverse will
be unconstrained. Both the access-functions "description"
and "part-with-descriptionn might be expected to have
maximum and minimum cardinalities of unity, all parts having
a unique description. (However, when the check for minimum
cardinality can be made is not clear).

A ternary relation such as:

delivery-delay ~ manufacturers x parts ~ delays

probably needs to be broken down as shown in figure 2.7,
inventing a new category called "supply". An object in the
supply category with a manufacturer m and part p represents
the ability of manufacturer m to supply part p. Each of the

section 2.3 49



Figure ~.~ Relations between
parts,quantities and descriptions.

Figure 3..2.
Possible breakdown of "delivery-delay"
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access-functions "manufacturer-supplying", "part-supplied"
and "delay-for-supply" will produce at most one value.

As pointed out by Sharman (Sharman 1975) there will be a.
close correspondence between the objects in a category (such
as supply and part) and the tuples in the corresponding
n-ary relations of a third-normal-form description. The
outgoing access functions will correspond approximately to
domain-names in the relation. The inverse access-functions
do not have a relational equivalent but correspond to
possible indexes in SEQUEL for example. An advantage of
Abrial's model is that it caters more naturally for objects
which have more than one identification (personnel numbers
and national insurance numbers for employees for example).
On the other hand, the restriction to binary relations means
that the constraint that given a manufacturer and a part,
only one delivery delay is possible, is not directly shown.

To express the operations on the data, Abrial uses a
PLANNER-like language (Hewitt 1969), with a very powerful
evaluation mechanism. This makes it easy to express the
processing when modelling a data-base system, but there is a
considerable gap between the facilities provided by PLANNER
and those of, say, Cobol, which might be used to implement a

final working version.
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Predicate Calculus systems

The author is not aware of any systems which implement the
relational calculus directly. (Although a number of
algorithms were .

mentioned earlier for converting the
calculus to algebraic expressions, and HORIS (Bracchi 1972)
does use a calculus-like language). There are, however,
some systems based on the predicate calculus. These were
not intended for data-base work and so may seem somewhat out
of context here. They are described briefly because they
have certain features in common with relational systems and
the implementation of ASSET in particular strongly
influenced the modified relational language defined later.

The ABSYS system (Foster 1968) was designed for experiments
in problem solving and evaluates a subset of the predicate
calculus. It does this by setting up a collection of
n~tates". Each state gives values to variables so that they
satisfy a given predicate expression. For example the
expression: x+y=6 and y=5 is only satisfied in a state where
x=1, y=5. There is an obvious correspondence between a
state and a tuple in a relation, and between a set of states
and the relation itself.

The processing method reflects the fact that the evaluation
order is not specified. The system attempts to satisfy each
conjunct in turn. If the conjunct cannot be satisfied
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immediately, it is attached to each variable it uses which
currently does not have a value. In the example, for
instance, it might try first to satisfy x+y=6, but as there
is an infinity of possible pairs of values, the expression
is attached -to x and y and another conjunct tried. The
expression y=5 can be satisfied immediately by setting y to
5. This causes the expression x+y=6 (attached to y) to be
re-examined and when y=5 there is only the single
possibility that x=1. The effect of this "sequencing"
process is to sort the conjuncts into an order so that the
final set of states is built reasonably efficiently. It
performs much the same function as a conversion algorithm
between the relational calculus and the relational algebra.

The appearance of "or" causes two states to be created. For
example in x+y=6 or x+y=7 one state is used to keep the
values satisfying x+y=6 the other for values satisfying
x+y=7. Recursion can be used to set up a larger number.
For example, the expression (slightly paraphrased) :

mem ([1,2,3],x)
where mem(l,x) = (hd(l)=x 2E mem(tl(l) ,x»

would cause three states to be set up, with x taking on
respectively the values 1,2,3. Values from the states whLch
satisfy an expression can be used to form a set.

The overall effect is therefore very like an evaluator for
.. -....
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the relational calculus, although reflecting the greater
freedom allowed in forming expressions. In particular
identical processing need not be perfo~ed on all states and
the presence of recursion means that all states have to be
processed more or less in parallel to avoid infinite loops.
Execution tends to be breadth-first, while relational
evaluators can work depth first to minimise the amount of
intermediate storage used.

The later ASSET system (Elcock et al.1971) is linguistically
smoother, but does not include the facility for generating
mUltiple states. The authors report that the evaluation
order is critical in determining the number of intermediate
states which are created, and it was found difficult to
control this.

That predicate logic can be treated as a programming
language is shown by Kowalski (Kowalski 1974). In principle
his system is similar to ABSYS, but using a much more meagre
syntax. As well as satisfying assertions, it uses a
resolution method (called SL resolution) to produce
counter-examples showing that a set of assertions are
unsatisfiable. At an abstract level, the executions are
very similar to those of ABSYS and Kowalski also comments on
the need for a separate means to indicate the execution
order.
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Ideas from these direct implementations of predicate logic,
particularly the analogy between a relation and a set of
states, have been drawn on to overcome a number of the
difficulties encountered with standard relations.

section 2.3 55



CHAPTER 3
LANGUAGE F

Earlier we considered some program transformations connected
with the choice between keeping items of data in storage and
computing them as the need arises. This chapter describes a
language based on the use of relational operations and
introduces the way that the transformations can be
accomplished. For this purpose the standard relational
algebra turns out to be less than ideal and in the first
section we will look at some of its drawbacks. Then, in
section 3.2, the alternative language (designated Language F
largely for historical reasons) is introduced. Although
this is very similar in principle, it was developed to
overcome some of the implementation problems. The new
language is close to conventional predicate logic,
effectively using variables to name the columns in a
relation instead of domain numbers. This has the advantage
that the program can be manipulated using the properties of
the logical operators rather than their more complex
relational equivalents. Expressions are allowed which
contain both relations and arbitrary functions or arrays.
This means that the language can be used to describe common
storage organisations, something outside the scope of a
purely relational structure. Section 3.3 gives some
examples to show how this is done and how the descriptions
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can correspond to possible physical realisations. The
discussion shows that, if relations of the type used by
Abrial are allowed, we can produce fairly simple definitions
of various representations. Section 3.4 then introduces the
method of processing and explains the reasons for choosing
to implement a compiler rather than a complete data
retrieval system.

3.1 Problems with Codd's relations- -

If we express programs in terms of operations on relations,
the program transformations become transformations on
relational expressions. The first problem we encounter is
that the relational algebra is not very easy to manipulate.
In large measure, this stems from its use of ordinal numbers
to identify the columns in a relation. For example we find
that the relational join operator does not commute. In
general n[A=B]S \-lillbe different from S[I3=A]R. The result
of the first expression is a subset of R ~ S, and each tuple
has components from R occuring first, followed by the
components from S. In the result of the second expression
the components of S occur first. The two result sets
contain identical data, but their columns are in a different
order. We can obtain an equivalence between the two
expressions by adding a project operator to re-order the
columns, but the form of the resulting equivalence is far
from sirr.ple.
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For exactly the same reason the join operator is not
associative and again rather involved projections must be
introduced to maintain the correct column ordering. The
complexity of the transformations need not itself be.
insuperable in a mechanical processor, but the problem is
made worse because projections are introduced and the
project operator does not have a very efficient
implementation. In general the result of a projection will
have fewer members than the original relation (figure 2.3
showing some examples). In view of this, consider how the
projection Supplies[2J might be implemented. The result is
the set of parts supplied by at least one manufacturer.
First we might scan the members of Supplies, creating from
each tuple a tuple for the result. This removes the
manufacturer column, leaving the list of entries in column
2. As figure 2.1 shows, the list may contain duplicates
which have to be removed. Probably the best way to do this
is to sort the list, so that when duplicate members are
brought together they can be eliminated. The complete
process is rather a lengthy one and should not be performed
unnecessarily. In particular there is no need to carry out
duplicate elimination if it can be guaranteed that the
original relation and the result of the projection always
have the same number of members. This special case clearly
applies if the projection only serves to rearrange the
columns as it does in the projections introduced during

transformation.
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Certain other projections can
simplified way. For instance
illustrated by:

also be dealt with in this
a common type of join is

Nurnber-on-hand[1=2]Supplies.

The result (shown in figure 2.4) necessarily has two
identical columns. Presumably, later on in the processing,
one of these columns will be removed by a projection. While
this operation will actually subset the columns, it cannot
change the number of elements in the relation, so again
there will be no need to remove duplicates from the result.
As a further example, the projection Number-on-hand[1] must
have the same cardinality as Number-an-hand itself because
the original relation is always, in fact, a function.

Consequently, if unnecessary sorts arc not to be introduced,
we must detect and keep track of these special case
projections. This was found to be a more difficult task
than eliminating the root of the problem, particularly the
dependence on column ordering.

A rather less tangible reason for modifying the language is
that relations were originally designed to provide a
standard description of the data, deliberately avoiding any
suggestion of a particular storage structure. In spite of
this, the tacit assumption is often made (referred to, for
example, by Bracchi (Bracchi 1974» that a collection of
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relations in third normal form also gives its representation
in storage. For example the relation:

part-data (part-number, cost, number-an-hand)

could well be represented by a file with three fields part-
number, cost and number-an-hand, with an index on the key
field part-number (which has been underlined). This is
obviously one possibility, but by no means the only one.
There are many other file organisations using secondary
indexes, heirarchies and networks which cannot be related to
the abstract relational description in such a direct way.
To cover these possibilities it seems essential to have the
notion of an array or function in addition to that of a

relation.

Another related aspect is that of update. It was mentioned
earlier that relational systems have some difficulty with
this. The only type of assignment which is naturally
provided on relations is the addition and deletion of their
members. Many updates, which typically alter the value of
some data item, do not fall into this category and.we need
arrays to express them conveniently.
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3.2 Language description

The input language we will consider in the following
chapters is shown in figure 3.0. Although it has the form.
of a functional calculus and appears to be very different
from the relational algebra, the interpretation it will be
given is quite similar. Like the relational algebra it is
not intended for direct use in a high-level data-base
system. For this purpose it would probably be necessary to
provide a rather heavier syntactic disguise, such as the
very English-like syntax used by Bracchi (Bracchi 1973).
The syntax shown is intended to convey the style of the
language only. It contains only a few of the large number
of possible operations and for simplicity does not indicate
their priorities. The conventional precedences will be
observed to resolve the resulting ambiguity.

The meta-syntax used in figure 3.0 is described in appendix
A. The only features which need comment are the use of [ ]
to enclose an optional phrase and the symbol 1which stands
for the terminal symbol I.

The language evolved from a simple predicate logic
containing the connectives "and", "or" and "not". Together
with an existential quantifier and some built-in predicates
like "greater-than", expressions can be constructed whdcn
are equivalent to those in the relational algebra. For
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definition ::= function [parameters] ~ valued-expression I

predicate [parameters] _ logical-expression
result-to-print ::= set-expression
set-expression ::= (parameters 1logical-expression}

function [arguments]
logical-expression ::= predicate [arguments]

arguments in set-expression
~ logical-expression
logical-expression ~ logical-expression
logical-expression or logical-expression
valued-expression comparison valued-expressio~
some set-expression

comparison ::=
valued-expression ::= constant I variable

function [arguments]
the set-expression
number set-expression
~(set-expression, function-name)

parameters ::= parameter I (parameter-list)
parameter-list ::= parameter I parameter,parameter-list
parameter ::= variable variable:set-expression
arguments ::= valued-expression I (valued-expression-list)
valued-expression-list::= valued-expression I

valued-expression, valued-expression-list

Figure 3.0 Syntax for language F
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example the relational expression:

supplies [2=1] out-of-stock
can be transliterated very approximately as:

Supplies (m,p) ~ Out-of-stock(p).

The result of the relational expression is shown in figure
2.4. Assume that "Supplies" is a predicate which is

satisfied only by members of the relation "supplies", and
"Out-of-stock" is only satisfied by members of the relation
"out-of-stock". The complete predicate expression shown
will be satisfied if the variable "m" is set to the
manufacturer component of a tuple in the result of:

supplies[2=1]out-of-stock

and p to a part component of the same tuple. The predicate
expression will be false for pairs of values (m,p) which do
not occur in one ~f the result tuples.

Similarly, we can replace relational expressions containing
union and difference by logical expressions containing or
and not. For instance we might ,.,rite:

Out-of-stock(p) 2E Obsolete(p)

as an approximate replacement for the relational expression:

out-of-stock U obsolete.

Again we assume that "Out-ef-stock" and "Obsolete" are
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satisfied respectively by members of "out-of-stock" and
"obsolete". (Although there is no rigid rule, predicates
will often be distinguished from functions and sets by an
initial capital letter.) The predicate expression shown
will be true if "p" has as a value a member of the result of
the relational expression. It will be false otherwise.

The logical operators and, or and not in the language
approximately cover the relational operators "join",
"restrict", "cartesian product" and the set operations.
However instead of acting directly on relations, they act on
predicate expressions which are satisfied by relations.

The replacement for the project
shortly, but as has been
implementation involves quite

operator will be dealt with
mentioned, its general

lengthy computations. This
motivated the introduction of functions which produce values
other than logical ones. Using only predicates, the
definition of "LO\-l-on-stock"in terms of "Number-an-hand"
might be written:

Low-an-stock (p) == (3q) (Number-an-hand(p,q) and q<10)•

The quantifier, whose operational equivalent is a

projection, can be eliminated if a function "number-an-hand"
is used in place of the predicate:

Low-on-stock(p) = number-on-hand(p) <10.
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During the processing, the quantifier is re-introduced, but
only in a restricted form which is much easier to
implement.

Expressions standing for sets of values are also allowed.
Internally, sets and predicates behave almost identically,
so that in effect, functions can return predicate values.
Sets were introduced partly because they are more natural in
some contexts than are predicates
the domain of a function) and

(for instance to indicate
partly because they were

needed in the description of representations.

A set constructor is provided. For instance we can write:

{(m,p)I Supplies (m,p) ~ Out-of-stock(p)}

to mean the set of pairs (m,p) which satisfy the predicate
expression. The result is the relation:

(supplies[2=1]out-of-stock) [1,2]

(where the additional projection is needed to eliminate a
duplicate column).

The set contructor acts in
expression, the variables
appearance before the I.

much the same way as a lambda
"m" and Hp" being bound by their

In spite of their similarity, predicates and sets differ in
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that the system assumes that a set is stored as a list of
its members while a predicate is stored as a logical array.
This will be examined in greater detail in the next
section.

The language contains a number of operators which act on
sets. The general existential quantifier is included as a
function some which takes a set argument. It gives the
value true if the set contains at least one member. For-
instance in place of:

Can-be-supplied(p) ~ (3m)(Supplies(m,p»
or relationally:

can-be-supplied=supplies[2]
we can define:

Can-be-supplied(p) s ~ {m I Supplies (m,p)}.

The syntax is somewhat cumbersome, but was chosen to match
the structure used within the implementation and because it
generalises more easily. A practical query language would
probably contain a large number of similar operators acting
on sets or functions. These correspond to English words
like "a", "the", "all", "most", "largest", "sum", "product",
"average" and so on. A few have been added to give an
insight into their requirements. The function number
produces a count of the members of a set and the function
sum sums the results of applying a function to a given set
of arguments. The function the is similar to the iota
operator of predicate calculus and extracts the only member
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of a set. The way that the, number, ~ and some were
included was influenced, with an eye to future extension, by
Cresswell's book (Cress'Vlell1973). In "Logic and Language"
he expresses the semantics of English words as operators on
lambda expressions in a related way. To keep the language
small, soreeof the obvious operators (for instance set
union) have been omitted. The implementation, in fact,
supports a wider language than that discussed.

New predicates and
known ones in the

functions can be defined in terms of
normal way. All such definitions have

global scope.
by:

For example, "cost-an-hand" can be defined

cost-on-hand(p) = cost(p) * number-on-hand (p).

Definitions may not be recursive. Although some examples of
recursion can apparently be handled, we will not consider
them here.

A set expression standing on its own is understood to mean a
set of values to be printed, and thus to represent a request
for information. The expression should have no unbound
variables.

To illustrate the style of the language, some simple
definitions and queries might be expressed as follows:
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1. Define Out-of-stock in terms of number-on-hand:
Out-of-stock(p)=(number-on-hand(p)=O).

2. Find the set of parts used in assembly A:
{pi Uses(A,p)}.

3. Find the parts used in A which are either out of stock
or obsolete:

{pi Uses (A,p) and (Out-of-stock(p) ~ Obsolete(p»}.
4. Find the British manufacturers who can supply any out

of stock part:
{ml British(m) and ~ fpl Out-of-stock(p) ~ Supplies (m,pn}

5. Define the components of an assembly as the parts it
uses:

components (x) = {PI Uses (x,p)}.
6. Find the number of components of A which cost more than

100p each:
number tPI p in components CA) ~ costCp) > 100}.

7. Find any manufacturers who can supply any of the
components of A:
{m:mfrl~ ~plp in components(A) ~ Supplies(m,p)}}.

8. Find manufacturers supplying all components of A:
tm:mfrl ~ ~ tplp in components(A) and

not Supplies (m,p)H •
Note how the variable m is bound to the set "mfr",
representing the set of all manufacturers.

9. Find manufacturers who give a discount on all
components of A:
tm:mfrlnot ~ tpl p in components(A) and
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not (Supplies(m,p) and
discount(m,p»O) }}

10. Find manufacturers who give a discount on all parts
they can supply to assembly A:

(m:mfrl~ ~ tPlp in components(A) and
Supplies (m,p) ~
not discount(m,p»O }} •

11. Find the assemblies and the total number of parts used
in each:
(a,n) I a in assemblies and n=~(qty,uses-of-assernbly(a»}.

3.3 Data representation

The next question we have to resolve is the way that the
data organisation is reflected in Language F.

In the examples we have used predicates (such as Supplies,
Uses and so on) as a standard representation-independent way
of referencing the data. We could equally well have
standardised on the use of sets and relations. For example
4 we might have written:

(mlrnin British and
~ (pI p in out-of-stock ~ (m,p) in supplies}}

where British, out-of-stock and supplies are all sets. This
corresponds rather more closely to the equivalent relational
expression. Whichever standard form is chosen, definitions
must be provided for the predicates or sets used in the
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expressions, in terms of structures which actually occur in
the stored data. These definitions could be stored on a
system library so that, to express the retrieval, it would
not be necessary to know what these definitions are, nor
even that they exist.

This section gives a number of examples to illustrate the
sort of definitions which could be used to relate the
predicates or sets to the actual data structures stored.
This shows the way that a data organisation is modelled in
the language. The examples illustrate that the amount of
detail assumed about the representation is roughly the same
as that in Hoare's abstract data structures (Hoare 1972a).

1. Following Hoare's use in "Notes on Data Structuring"
consider the following type description:

~ part-file = sparse powerset (part-record)
~ part-record=(partnuMber:string,

number-on-hand:integer,.
cost:integer).

A part file consists of a set (sparse because most of the
possible members are probably ab~ent). Each part-record
consists of a cartesian product: a partnurnber, a

number-on-hand and a cost.
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Figure 3.1 shows one possible physical representation of
this simple sequential file. Many other representations
could fit this type description. The fields shown could
appear in a different order, be non-contiguous or even be
kept on different physical devices without in any way
effecting the logical characteristics of the
representation.

Further, the records could be stored contiguously in storage
or they could be chained together (in one or both
directions) by explicit pointers. However in
representations like these, while all the elements in the
set can be found by reading through the sequence, there is

no direct way to determine whether a particular record is in
the set or not. This must be done by a sequential search.

If we assume that retrieval programs treat the data as if it
were a collection of relations, then we would need to store
the following definitions in the system library:

partnurnbers = ~p,n) Ipartnumber(p)=n}
numbers-on-hand= ~p,q) Inumber-on-hand(p)=q)
costs = Up,c) Icost{p)=c}
parts =part-file

The first three definitions relate the sets assumed by the
program and the three selector functions in the abstract
data structure description of the representation.
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Figure 3.2 The relation part-number.
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There is a direct correspondence between the set "parts" and
the sparse powerset "part-file" in the representation.
Because the representations of sparse powersets most
commonly encountered are sequential, and do not allow for
direct testing, the system assumes this method of storage.

If the program referred to the data through predicates a
very similar set of definitions would be needed:

Partnumber(p,n) • partnumber(p)=n
Number-on-hand (p,q)• number-on-hand (p)=q
Cost (p,c)
Part(p)

E cost (p)=c
If P in part-file.

In place of the four predicates or sets we could construct
from the data a more conventional single relation:

{(n,q,c) I~ tplpartnumber(p)=n and number-on-hand(p)=q
and cost(p)=c ~ p in part-file H.

Each tuple in this relation has three components, a
partnurnber, a number-on-hand and a cost. However, because
of the relatively complex nature of this definition, the
possiblility of using a standard relational description will
not be considered.
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2. Figure 3.3 illustrates an indexed file containing
similar data. The index enables a part-record to be
retrieved given its partnumber. Numerous techniques are



available for
method being

implementing
typified by

this
~e

index, the
indexed

traditional
sequential

organisation, which uses a mixture of direct indexing and
sequential searching. The XRM system (Loria 1974), on which
SEQUEL is based, uses hash-tables and Wedekind describes how
relational data can be stored in a generalisation of binary
trees called B-trees (Wedekind 1974) (Bayer 1975). Hoare
classes all these as implementations of a sparse array, that
is an array where the number of elements stored in much less
than the number of possible index values.

If the indexing array in .figure 3.3 is called
"part-with-number", a relation partnumbers' can be defined
by:

partnurnbers'= {(p,n) I part-with-number(n)=p}.

This should of course be the same relation as is defined by:

partnumbers = {(p,n)Ipartnurnber(p)=n}

as the index is supposed to produce the record containing
the appropriate part number. The representation stores the
relation redundantly, both the array part-with-number and
the collection of fields partnumber being concrete
representations of the same relation. Both figure 3.1 and
figure 3.3 have the same relational description; they
differ only in their representation. For the latter
organisation the following definitions would be needed:
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partnurnbers = Hp ,n)Ipartnumber (p)=n}
= Hp ,n)Ipart-with-number (n)=p 1

numbers-on-hand =(p,q) Inumber-on-hand(p)=q}
costs = {(p,c)Icost(p)=c}
parts =part-file.

The set "partnumbers" has two alternative definitions.
Either may be used in a retrieval.

3. Finally, figure 3.4 shows an organisation of two files
representing a number of additional relations. The diagram
depicts a physical representation using DBTG-like (Codasyl
1971) structure, sets being connected by chains (or rings)
of pointers. The diagram could be re-arranged to use
physical contiguity in place of these chains or to display a
more hierarchical structure. Such re-arrangements would not
effect the type definition.

The definition of simple abstract relations in terms of the
functions provided by the type definition of figure 3.4 is
given by:

partnumbers = {(p,n) I n=partnumber (p) }
={{p,n) p=part-with-number{n)}

numbers-on-hand= f(p,q)
costs = ({p,c)
costs-an-hand = ~p,c)

q=number-on-hand(p)}
c=cost{p)}
c=cost-on-hand(p)}

section 3.3 75



f..rC - ow -bel' """"'ber ......._
kA...& <.ASt

C. 6A NUT 1000

4- BA !-JUT 0 2.

2. B" NUT 200 "5

b BA BOL.T I 5'00

4BA BOL.T 0

2fVt BoLT :lOo 2.

~ Frl:..e.c..rJ. c (fO"rt:_,..,....be.. : s+n~ j

"""'-b~I'-o ...-~ : .....~e~ i
Cos(;:- I ''''"~e.,.. )

~ ~-(..)I~-~.....b.u.. ~ a.r~ Sk.:",!f fWhea>rci

Figure 3.3 Inclusion of part-number index.

section 3.3 76



..,161
J.H

Figure 3.4 Representation with two files.

section 3.3 77



= ((s,p)
= t(s,p)

manufacturers = Hs,ro)
discounts = {(s,q)

supplies p=part-supplied(s)}
s in suppliers(p)}
ro=manufacturer(s)}
q=discount (sl} •

Two relations (partnurnberand supplies) are represented
redundantly. In addition a field cost-on-hand has been
included which could be computed using the equivalence:

cost-on-hand(p) = number-on-hand(p) * cost(p).

These examples show how different data organisations can be
seen as concrete representations of relational data. By
working \'1ith relatively narrow relations and Hoare's
abstract data-structures, notably arrays, powersets and
cartesian products, the representation can be expressed in
relational terms in a fairly straight-forward way.

If a relation is stored redundantly it will have more than
one definition. When accessing the data we may choose to
use either of the definitions. Also sets will be assumed to
be stored sequentially, as this seems to be the most common
type of representation. All the members in the set can be
retrieved, but there is no inherent provision for testing
membership. Because of this assumption, to express the
complete range of functions provided by a "powerset" in
"Notes on data structuring", two definitions are needed.
For example, in:
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Out-of-stock(p) : p in out-of-stock-list
= out-of-stock-array(p)

if we choose the first definition we can sequence through
the set members, but by choosing the second definition, in
terms of a sparse logical array, a test for membership can
be made.

3.4 Background ~ ~ implementation

Having shown how queries and
in language F, this section
the method of processing.

representations can be defined
gives a brief introduction to

In our implementation, predicate expressions are used in a
number of different ways. To illustrate these, consider the
expression:

Supplies (m,p)•

This has two free variables m and p. If we give each of
them a value then the predicate Supplies can be applied and
a true or false result obtained. For example, assuming the
data in figure 2.1, it will be true if m="A&Co". and p="6BA
NUT". Instead, knowing neither of the variable values, we
could draw up the set of all values of m and p so that the
expression is true. The data could be arranged as a table
like that in figure 3.5. This is very similar to the table
of figure 2.1 except that now the columns are headed by
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variable names rather than domain
significance in the column ordering.
assignments is like a relation, but
arbitrary column names.

names and there is no
Such a table of value-
generalised to allow

Now given a logical expression such as:

Out-of-stock(p) 2£ Obsolete(p)

we can similarly use it in more than one way. Given a value
for P, it can be evaluated conventionally to produce a
logical result. Alternatively we could find all the values
of p which satisfy the expression. To do this we could
first find all the values which satisfy Obsolete{p) and all
the values which satisfy Out-of-stock{p), and then take the
union of these two sets. Because the expression contains a
free variable, the or is implemented like a relational
union, obtaining its result in the form of a table of values
for p.

To find all values for m and p which satisfy:

Supplies (m,p) and Out-of-stock(p).

we can proceed in much the same way. First we find all the
values of m and p which satisfy the first operand (figure
3.5) and all values of p which satisfy the second (figure
3.6). We then combine these tables in such a way that any
entry in the result satisfies the complete expression. The
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r
A s.Co. b gil 1-l\l'T

A f,c,. t. SA &t..T

B "Co. b BA tJUT

C. ltd.. "BA Soq

C Lhi. 'l.SA. SoL.T

c.. I-hL 4- SA Sc>L.T

V --........ --

a) Data satisfying Supplies(m,p).

r

b) Data satisfyingOut-of-stock(p).

c) Data satisfying Supplies(m,p) and Out-of-stock(p).

Figure 3.5 Sample tables of value-assignments
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table which is formed is illustrated in figure 3.7, and the
operation which constructs it approximates to a relational
join.

The same result can be obtained by another method. First
the complete table for one operand, say the first, is
generated. Then each entry is taken in turn and tested to
see whether it satisfies the second expression. If it does
then the particular value-assignment satisfies both
expressions and can be included in the result. After all
entries in the first table have been processed all possible
members of the result will have been produced.

In this computation both the suggested evaluation methods
have been used, one to obtain a set of possible results from
Supplies (m,p) and one to select or reject them according to
the truth of Out-of-stock(p). Using this method there is no
need to generate the entire table for the second operand.
This is useful if the table is very long, and would be
essential if it were infinite.

Finally to create the set:

{(rn,p), Supplies (m,p) and Out-of-stock(p)}.

we form the table of value-assignments which satisfy the
internal predicate expression as before. Then the columns
are ordered according to the list of variables given and the
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variable names removed. This constructs the required
relation.

Operations can be defined on tables of value-assignments.corresponding to each of the logical connectives and to the
existential quantifier. This produces an algebra similar to
(although differing in detail from) that described by Hall,
Hitchcock and Todd (Hall, Hitchcock and Todd 1974).

The next chapter describes how these ideas are applied in
the current implementation, which takes the form of a
compiler. The compiler translates from Language F to an
Algol-like language. If a complete interpreter for Language
F were built, it would have the advantage that data could be
obtained about the actual number of accesses needed to
answer queries on a sample data-base. However, unless the
data-base is of a realistic size the results obtained might

be deceptive. The difference between a sequential search
and an indexed look-up can be quite small if the data is
small, but will become much more marked as the data becomes
larger. Further, much of the code in a complete system is
devoted to supporting routines such as storage allocation
and index management. These low-level functions are
particular to the detailed physical organisation chosen and
are not really relevant to the task in hand. Moreover,
unless they are carefully optimised, they can have a
significant bearing on the results obtained. By generating
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another program we can choose to ignore these implementation
details and match the output code to the level of detail
assumed in the abstract data structures.
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CHAPTER 4

COMPILATION

The process of compiling Language F can be decomposed into
two phases, a pre-processing stage and a subsequent code
generation stage. The code generator converts a logical
expression into a program to construct a relation. However
it accepts only a very limited class of expressions, those
which correspond exactly to a possible method of
constructing a set. For example it will accept:

p in parts ~ ~ obsolete(p)

if "parts" is a stored set and "obsolete" is a stored
logical function, but it will report failure if given the
equivalent expression:

not obsolete(p) and p in parts.- -
To make this expression acceptable to the code generator we
have a pre-processor. This accepts complex expr~ssions,
simplifies them, and generates a series of alternative forms
for input to the code generator. The alternative
expressions it produces come from two sources. First a
function may have more than one definition and a second
series of possibilities come from applying commutivity,
associativity and distribution to logical expressions.

This two stage structure was chosen to keep the
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implementation of the operators and the application of
transformations to the initial expression as independent
from one another as possible. Although the parts are
considered separately, it would not be sensible to generate
all the alternative forms first and then to apply the code
generation algorithm to each. Practically therefore, both
stages execute in parallel, the pre-processor producing
alternatives on demand.

The programs produced are similar in style to to those used
by Hoare in "Notes on Data Structuring". The main aim was
that their logic should be easy to follow. Only simple
control structures such as if statements and !2£ loops are
used, although it will become clear later that co-routines
should also have been included.

The following sections deal in more detail with the
compilation
pre-processor
Then section

process. Section 4.1 considers the
and the transformations which it applies.

4.2 introduces the method of code generation
and subsequent sections consider the rather more interesting
implementation of the various operations. The final
section, 4.8, discusses how one program can be selected when
more than one possibility exists.
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!.l Pre-processing

The pre-processing phase converts complex logical
expressions to a series of alternative and simpler
expressions. Principally, functions which are not primitive
are replaced by their definitions and nested function
applications are removed.

1. To remove non-primitive functions, the usual evaluation
rule for a function definition (roughly rule "I" in Landin
1966) is applied:

• • F(11)• • where F (x)=L

=> • • L where x=H • •

This replaces a reference to a function (F) by a copy of the
procedure body (L), binding arguments and parameters. For
example:

Supplies (m,p) and Out-of-stock(p)
where Supplies (m,p) = m in suppliers(p)

is converted to:

m in suppliers(p) ~ Out-of-stock{p).

Notice that for a redundant representation, where a function
has more than one definition, there will be more than one
possible expansion. For example:

Supplies (m,p) and Out-of-stock(p)
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where Out-of-stock{p) ~ p in out-of-stock-list
E out-of-stock-array (p)

produces two expansions:

Supplies (m,p) ~ p in out-of-stock-list
Supplies (m,p) and out-of-stock-array (p).

Both of the possibilities must be considered in turn by the
compiler.

2. In exactly the same way, set definitions can be
removed, using the rule:

• • M in S •• where S={xIL}
=> • • L where x=M • •

For example:

p in Out-of-stock-list
where 0ut-of-stock-list = [xl nu~her-on-hand{x)=O}

=> number-on-hand(p)=O.

A set definition is treated as if it were a definition of a
predicate, but with a different syntax. The expression:
M ill {xIL} is treated exactly as if P(H) where P(x)5L had
occurred.

An example where both functional and set reduction can be
applied is:

section 4.1 88



m in Suppliers(p)-
where Suppliers(p) = {zip in supplied-by(x)}

=> m ~ txlp in supplied-by{x)}
=> p .insupplied-by{m).

Applying these rules leads to one or more equivalent logical
expressions whd ch contain only stored (or other primitive)
functions and sets. The process incorporates the
representation of the data into the program. A further
simplification is then made to eliminate nested functional
expressions.

3. When a predicate (other than =) occurs with an argument
which is a functional expression, the following
transformation is made, P standing for the predicate:

P{f{x» => (Et)(P{t) and t=f(x».

Similarly, functional expressions are flattened:

r=g(f{x» => (Et)(r=g(t) ~ t=f(x».

In both the resulting expressions, there can be at most one
value of t which satisfies the quantified expression, as in
each case the only possible value is determined by the
result of a function. A special implementation is given to
the existential quantifier when this condition is known to
hold, and to retain the special case the 3 sign is
written as E.
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The transformations can be justified in the following way.
First we replace the expression f(x) by (~t)(t=f(x»:

P(f(x» => P«1.t) (t=f(x»).

Then removing the iota:

P «1,t)(t=f(x)» => (Et)(P(t) ~ t=f (x))•

The latter step is justified by the equivalence given by
Carnap (Carnap 1958) which is paraphrased by:

P «1.x)(Q(x») - (3! x) (Q(x» and (3x)(P(x) and Q (x»

(where (3!x)(Q(x» means there i~ a unique x so that Q(x)
from (Kleene 1967». In the transformation, the uniqueness
condition has been dropped. We will see the effect of this
shortly.

As an example, using the first transformation,
cost(p»3

is reduced to:
(Er)(cost(p)=r and r>3).

Similarly the more complex expression:
r = cost (p) * number-on-hand (p)

becomes:
(Ex)(Ey)(x=cost(p) ~ y=number-on-hand(p) and r=x*y).

Historically the transformation was carried out so that
functions could use the existing mechanism for predicate
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expressions. Since a predicate expression is compiled to a
statement, it tends to produce programs composed of simple
statements rather than compound expressions. These were
found to be easier to understand. It also has the advantage
that the equivalent of the iota operator (~) can be dealt
with at the same time.

By using just the last step in the transformation,
appearances of ~ can be eliminated:

P(~{xIQ(x)}) => (Ex)(P(x) and Q(x».

As a simple example, supposes we encounter the expression:

cost(x»4,

where cost is not stored directly, but is defined in terms
of its inverse:

cost(p) = the {clp in parts-with-cost(c)}.-- -
(A function parts-with-cost is stored, which produces a set
of parts given a cost. The cost of a part p is given by the
(unique) cost c in whose result set the part occurs).
Replacing the infix> by "greater-than", we get:

greater-than (cost(x),4)
=> greater-than (~ {clx in parts-with-cost(c)},4)
=> (Ec)(x in parts-with-cost(c) and greater-than(c,4».
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However if we generate all the values of x which satisfy:
(Ec)(x in parts-\vith-cost(c) and c>4)

not all of them are necessarily soltions to:
cost(x»4

since we should exclude any for which c is not unique (that
is any parts which are recorded as having more than one
cost.) Dropping the uniqueness condition from the
transformation produces code which may give erroneous
output.

The effect of these transformations is to reduce a logical
expression to a series of expressions which contain only
primitive predicates with variables as arguments,
expressions of the form: y=f(x), y in f(x), a restricted
existential quantifier
and number. The code

and expressions involving ~,~
generator assembles a program from

components corresponding to these forms.

Finally, the pre-processor will, if called on to do so,
generate alternative forms of each expanded expression by

and distributing and overre-ordering the operands
or. A complete list of
in Appendix A.

of and
the transformations applied appears

As an example, given an expression to find the assemblies
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using any out-of-stock part:

{al ~ {p t uses Laj p) and Out-of-stock(p)}}

together \·lith the definitions:

Uses (a,p) !il P in parts-used-by (a)
Out-of-stock(p) = number-on-hand(p)=O

describing how the predicates
the pre-processor potentially
expressions:

are represented
produces the

in storage,
pair of

[al ~ {pip in parts-used-by(a)
~ nurnber-on-hand(p}=O}}

{al some {plnumber-on-hand(p)=O
~ p ~ parts-used-by(a) n .

These expressions only refer to primitive functions. Each
of the atomic expressions has one of the forms listed, and
all orderings of the conjuncts appear.

As a more complex example, consider the expression given in
chapter 1, to find the assemblies using more than 1000 4BA
NUTs a week:

{alrate-used(use(a,"4BA NUT"»>1000}.

With the definitions:

rate-used(r)=quantity(r)*weekly-output(assembly(r»
use (a,p) =the {r Ipart (r)=p ~ assembly (r)=a}
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the preprocessor will expand it as follows:

-laI quantity (r)*\veekly-output(assembly (r))>1000
where r=use(a,"4BA NUT")}

=>
~al (EwExEyEz) (z>1000 and z=x*y

~ y=quantity(r)
and x=week Ly-outiput; (\'1)

~ w=assembly(r)
where r=use(a,"4BA NUT") }

removing the nested expressions.

=>
{al(EwExEyEz) (z>1000 and z=x*y

~ y=quantity(r)
~ x=weekly-output (\'1)

~ w=assernbly(r)
where r=the {rlpart(r)="4BA NUT" and assembly(r)=a}}

substituting for "use".

=>
'{al(EvEwExEyEz) (z>1000 and z=x*y

~ y=quantity(v)
~ x=weekly-output(w)
~ w=assembly(v)
~ part(v)="4BA NUT"
~ assembly(v)=a } ,
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applying the rule for the simultanously to the expressions:
w=assembly ( the t. .} )
y=quantity( the {. •1 ).

It must be emphasised that, although there are a large
number of possible orderings of these conjuncts, it is very
unlikely that it will be necessary to generate them all.

4.2 Code generation

The code generator attempts to convert the expressions
produced by the pre-processor directly into programs,
replacing each logical operator which occurs by a simple
code sequence. The code produced must satisfy certain
constraints. For instance, a variable cannot be referenced
unless it has previously been given a value. The generator
checks that conditions such as this are obeyed and if not,
the generation process fails and another equivalent
expression must be tried.

For data retrieval it is assumed that we usually need to
print all the members of a set or relation. If the set is
S, then the code to do this could be written in a simple
Algol-like language as:

for x in S do write(x) od.

If S is stored, this simple program is an adequate
description of the processing. It would not be difficult to
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implement such
using any of

a loop in a standard programming
the sequential representations

language
of sets

discussed in section 3.3.

Suppose now that the set to be printed is not stored but
consists of an expression. For instance S might be:

{pip ~ parts and number-on-hand{p)=O}

A program to print its members can be obtained by first
writing it in the form:

~ x ~ tplp in parts and number-on-hand(p)=O} do
write (x)

od

and then applying a series of transformations which remove
the complex expression between the for and do in favour of a
more elaborate control structure. Each transformation
substitutes a simple implementation for the principle
operator in the expression.

In the example the first operator to be removed is in. Its
implementation requires no more than the substitution of
actual for formal variables, removing p in favour of x. This
gives:

for xix in parts and number-on-hand(x)=O do
write (x)

od.
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The resulting partly developed program illustrates the
general form of the statements which are processed. It can
be read: "for all values of x which satisfy the expression:
x in parts and number-on-hand(x)=O, execute the statement
write(x)". The loop control variable x occurs before the I

and a logical expression determining its possible values
occurs after it. In general there may be more than one
control variable so that in the model form: ~ xlP do C od
x is strictly a set of identifiers. However when x is a
unit set we will not distinguish it from its only member.
Also there may be no control variables at all, so that x may
be empty. The for loop then reduces to an if statement.

To continue with the example, the next operator to be
removed is and. Its implementation introduces a nest of
statements:

for x in parts do- - -
L1: if number-on-hand(x)=O then-

L2: write (x)
fi

od

The expressions in the loop header and the if clause cannot
now be decomposed further and the generation process is
complete. The pre-processor will have guaranteed that the
set "parts" and the function "number-on-hand" do not have
definitions so that these are assumed to be stored. If the
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set "parts" were a sequence of records and the function
"number-on-hand" a field-name in each record, the program
could be implemented quite easily in a standard language.

Looking more carefully at its execution, the for loop sets x
successively to all members of the set "parts". At label L1,
x will take on every value which satisfies the expression "x
~ parts". The set of program states at L1 corresponds to
the set of value-assignments to "x in parts". The inner if
statement receives all these values and produces at L2 only
those which also satisfy "number-on-hand(x)=O". The write
statement prints this set.

During execution the possible values of x are generated one
by one by the loop and each is processed to completion by
the loop body before the next is tried. No intermediate set
is stored, as the generation and processing of its members
are interleaved. This method of organising a calculation
involving sets or lists parallels the coroutining of PRTV.
An analagous method has been used by Abrams to avoid storing
temporary vectors in the evaluation of APL (Abrams 1970).
Similar ideas lie behind the "stream processing" functions
reported by Burge (Burge 1975) and "dynamic lists" in POP2
(POP2 1971). Because the code responsible for generating
the intermediate structure only produces a new element when
it has to, Henderson and Morris have called the technique
"lazy evaluation".
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4.3 Primitive Stateffients- -
Recall that retrieval causes processing to begin with a
statement which has the form:

for x in S do write (x) od

and the predicate is repeatedly processed to produce a nest
of ~ loops containing only atomic predicates. The three

types of atomic logical expression produced by the

pre-processor give rise to three types of primitive
statement, a standard for loop, a let block and an if
statement. In a completely expanded program they can only
mention functions and sets which are directly stored or

easily computed.

A standard for loop is generated by the transformation:

for tx}lx in S do C od
=> for x in S do C od

The transformation reflects the fact that, assuming C does
not exit abnormally, the resulting code sequence executes C
with all values of x satisfying x in S. For the conversion
to work the set of variables to be deterroined (the set
preceding the I) must have x as its only member. No code

could be generated for example from:

for yl p in parts do C od
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and given this expression the code generator will report
failure.

In general, x may be a list of variables, when {xl is

understood to mean the set of variables in the list x (which
must all be different). For example:

for tm,pll (m,p) in Supplies do C od- -
=> for (m,p) in Supplies do Cod.- -

Again the transformation is straight-forward, the final code
sequence generating all values of m and p satisfying the

expression.

A ~ block is generated by:

for {x}lx=e do C od
=> !.!:! x=e; C.

Since there must be one and only one value of x which
satisfies the predicate expression, the for loop, which
would otherwise be produced, can be supplanted by a simpler
let block. The equality may be reversed so that the unknown
variable appears on the right rather than the left without
effecting the code, but unknowns may not appear on both
sides. A simple example of ~ is:
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for ql nurnber-on-hand(p)=qdo C od-
=>
~ q=nurnber-on-hand(p); C.

The final transformation may be used for any predicate
function:

for {\ I P do C od
=> if P then C fie

The set of variables to be determined must in this case be
empty, so the loop is a degenerate form with no control
variable. Examples are:

~ {}I Out-of-stock(p) do C od
=> if Out-of-stock(p) ~ C fi

~ t} I number-on-hand(p)=q do C ~
=> if number-on-hand(p)=q then C fie

As there is normally special-case code when the set of
variables to be determined is empty, it is convenient to
make the transliteration between for and if whenever this
occurs. In general an if statement may also have an else
clause, but following normal practice, it will be omitted
when it contains only a null statement.

Although g can be used for the majority of predicates, we
have made the assumption that sets are held sequentially.
Consequently we will ddsaLlov code sequences of the form:
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if x in S then C fi

when S is stored. The danger of allowing such code is that,

should it occur

times and the

in a loop, the set S ffiaybe searched many

resulting program might be very inefficient.

It would be costly for example to attempt to intersect two

sets S1 and S2 using:

for x in S1 do

if x in S2 then C fi

od.

Since in has to be implemented on a sequence by searching

the entire set, the code amounts to:

for x in S1 do

for y in S2 do

if x=y then C fi

od

od.

By disallowing this code, the compiler is forced to

look for an alternative. For instance it may be able to process

both sets sequentially in a collate operation.
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4.4- Conjunction- -

The simple example given earlier shows that code for a
conjunction can be constructed by inserting one loop within
another. In general, if P and 0 are two predicate
expressions and the variables used in P are a set p, then
the transformation takes the form:

for xl P and Q do C od
=> for (xnp)IP do

~ (x-p)10 do
C

od
od ,

The outer loop generates all values for any of the unkno~~
variables in x which are used in P (these are given by
(x np) • The inner loop accepts these values and in turn
generates values for any remaining variables (those in the
set difference x-p) so that 0 is also satisfied. The
statement C is executed with all values satisfying the
conjunction.

-As an example consider generating the set of values:

t(x,y)I x in 1••20 and y in 1•• 10 and x+y=5}.

Taking the principle operator to be the first~, the
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generation proceeas:

~ tx,Y}1 x in 1••20 and~ in 1••10 and x+y=5 do C on

=> ~ xix in 1•• 20 ~
for yly in 1 •• 10 and x+y=5 do

C

od
od

by expanding the and into a nest of loops.

=> for x in 1•• 20 do
!2£ yly in 1•• 10 do

for n I x+y=5 do
C

od
od

od

simplifying the first loop header and expanding the second
and.

=> for x in 1•• 20 do- -
!!Z!.. y in 1 •• 10 do

if x+y=5 then C fi
od

od

replacing th~ central for loop by an if stateMent.
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This is only one of the possible programs (and clearly not

the best) which could be used to generate the same set of

values. Other orderings of the cbnjuncts would produce

different programs. Discussion of the choice of a suitable

order is deferred until section 4.8.

4.5 Disjunction

To print the values which satisfy the expression:

x in 1••5 or x in 7 •• 10

the following program would suffice:

for x in 1•• 5 do write(x) od:

for x in 7••10 do write(x) od

It consists of two statements generating values in the

individual sub-ranges concatenated together.

In general we make the transformation:

!£!:. x IP 2!:. Q do C ~

=> for xlP do C od:

for xlQ do Cod.

The loop body C has been duplicated in this construction.

If the code is short the duplication is of little

consequence. If the code were more lengthy it might be

better to create a subroutine containing C and insert a call
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in each loop body.

The code

disjoint

sequence is

set union.

strictly an

If there

implementation

are values

of a

,...hich

simultaneously satisfy both operands of an £E, the code will

generate them twice. Provided only simple predicate

connectives are used the duplication

the only effect would be to reduce

will go undetected and

the program efficiency.

But were we to attempt to count the number of items in a set

by counting the total number of loop iterations, then too

large a result would be obtained. Similarly, when printing

the values, so~e will appear twice. Also, while we have not

been explicitly concerned with the order in which values are

produced, the code generates all values from one operand

first followed by those from the other. It does not

interleave the values properly if they come from an ordered

set.

The natural implementation of or for this more general case

is to use a symmetric merge. A merge requires that the two

operands generate values in the same order, but has the

advantage that an ordered result is produced and that

duplicate values can be removed easily. As was remarked

only to

for each

earlier, many relational

implement £E, but in

systems use merge not

different variations

operation.

implement

An interpreter constructed initially to

the operations on value-assignments was no
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exception to this.
well be expedient

To use collate operations widely may
in practice, but it does obscure

situations when a simpler method could have been used.

No symmetric merge operations are generated at present. The
major problem being that to express the process a pair of
coroutines is needed. While the generation of values which
satisfy:

out-of-stock(p) or obsolete(p)
might be indicated as:

for p ~ (out-of-stock ~ obsolete) do - od
when the operands of the or are expressions, no convenient
way to express the process could be found. The use of a
"resume" statement as in Simula 67 does not produce very
clear code, neither does the alternative (which would be
necessary if using a standard high-level language) of
simulating this with conventional loop structures. As a
temporary measure, the semi-colon is replaced by a comma (to
indicate the parallel execution of the two statements) when
the necessity for a merge has been detected. Occurrences of
its use do not seem to be very common in practice.

The problem with inclusive or does not occur if there are no
variables to be determined. We can then use a standard
transformation whose general form is:
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if P or Q then Cl else C2 fi- -
=> if P then Cl else

if Q then Cl else C2 fi fie

To illustrate its use consider the expression:

{{x,y) I y in 1..10 and x+y=5 and (x in 1..5 or x in 7••10)}

The generation proceeds:

for {x,Y}1 y in 1••10 and x+y=5 and (x in 1..5 or x in 7 •• 10)
do C od
=> for y in 1•.10 do

let x=5-y;
for HI x in 1 ••5 or x in 7 •• 10 do C od-

od

=> for y in 1••10 do
let x=5-y;

if x in 1••5 then C else
if x in 7••10 then C fi fi--

ea,

One may feel in this case that the expansion has gone too
far since the program is probably clearer with the or than
with its if then else replacement. However a complete
expansion is sometimes needed to eliminate compound
expressions within disjuncts and so is always carried out.
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4.6 Negation

A !!2! operator can only be corcp i Led in a context whe re there
are no variables left to be determined. We cannot, without
searching the universe, determine values which do not
satisfy an expression. The only transformation used is:

if not P then C1 else C2 fi
=> if P then C2 else C1 fie

As an example the expression:

{(m,p) I Supplies(m,p) ~ ~ (p="4BA NUT" £!. p="4BA BOLT")
where Supplies(m,p) = (m,p) in supplies-list }.

becomes:
for (m,p) in supplies-list 2£
II !!.£!(p="4BANUT" ~ p="4BA BOLT") ~ write (m,p) fi

od

=>
!££ (m,p) in supplies-list do

if p="4BA NUT" £E. p="4BA BOLT" then ~ write(m,p) fi
od

=>
~ (m,p) ~ supplies-list 2£
if p= "4BA NUT" ~ ~
if P= "4BA BOLT" ~ ~ ,..,rite(m,p) fi Q

od ,
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4.7 Projection ana related operations- -

An equivalent of the existential quantifier must be included
to give the same facilities as the project operator in the
relational algebra. In the restricted form derived from
functional expressions, it is known that at most one value
can satisfy the quantified expression, and this produces a
very easy implementation. As an example, consider listing
the values satisfying

p in parts and r=cost-on-hand(p).- -
Section 4.1 shows that this reduces to:

(Ex)(Ey)(x=number-on-hand(p) ~ y=cost(p) and r=times(x,y)
~ p ~ parts).

A program which produces all values of p,x,y and r
satisfying the quantified expression at label Lis:

~ p in parts do
let x = number-on-hand (p);

~ y = cost (p);
let r = tiroes (x,y) ;
L: C

od

Clearly execution will reach the label once for each value
of p and with r containing the required value. Consequently
we can just ignore the quantifier and assuming that the set
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"parts" contains no duplicates, no two iterations will have
the same value of p.

The same should be true, although less obviously, in the
example:

Cost(p) ~ 1••10

which, if Cost is defined in terms of its inverse, reduces
to:

(En)(p ~ parts-with-cost(n) and n in 1••10).

(A very similar example was given in section 4.1). Code to
execute statement C with all values of p and n satisfying
the quantified expression is:

for n in 1 •• 10 do.......
for p ~ parts-with-cost(n} do

c
od •

od•.......

Again the quantifier can be ignored and no duplicate values
of P should be produced, although this is not obvious from
the code. (Notice, though, that the values of p are not
produced in any sorted order).

Consequently the existential quantifier, when it is known
that at most one value can satisfy the expression, can be

section 4.7 111



implemented simply by forgetting it. This contrasts with
the more general case. Suppose, for example, we have the
expression:

some {m I Supplies (m,p)} and Out-of-stock(p)- .
giving, as values of p, the out-of-stock parts for which at
least on supplier is recorded. It would be more
conventionally written:

(3m)(Supplies(m,p» and out-of-stock(p).

With suitable representations, we might, using the same
method as before, create the program:

for p in out-of-stock do- - -
for m in suppliers (p) do
c

od
od

•
and forget the quantifier. However, execution will reach C
many times for each value of p and if we printed a list of
values of p produced in this way it would contain many
duplicates. We can prevent this by branching out of the
in-most loop once one value has been found:
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~ p in out-of-stock do
for m in suppliers (p) do

C; goto L
od

L: od

Execution will now reach statement C at most once for each
value of p. In examples with just simple connectives and,
£El ~ the advantage of the lazy method of evaluation has
been to avoid the need to store temporary sets of values.
Here the generation of a set can be prematurely terminated
when the existence of the remaining members is of no
interest.

Generally we make the transformation:

if some S then C1 else C2 fi
a> for x in S do

C1, goto L
•

C2;
L:

Statement C1 is executed once if a value is found satisfying the
test. C2 is executed if no value is found.

section 4.7 113



Other operations

A number of other operations can be performed in a similar way.
For example to count the number of suppliers of each out-of-stock
part we could, in similar circumstances, use the code:

for p in out-of-stock do
~ r=O:

for m in suppliers(p) do
r:=r+1

c

od.

When statement C is executed, r will contain the number of
suppliers of part p. The general implementation is:

let r = number S: C •
=> let r=O:

for x in S do
r:=r+1

od . C,

The use of let in the resulting code sequence is of dubious
legality as the variable it introduces takes on more than
one value. However we regard the loop as part of the
construction of its initial value.
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In exactly the same way to find the sum of some items we can
use:

let r = ~ (S,f); C
=> !!:! r=O;

for x in S do
r:=r+f (x)

Remember the function ~ takes two arguments, a set and a
function to be applied to its elements. The items to be
summed do not necessarily constitute a set.

All these examples clearly have the same form. The function
some differs sornewhaebecause its result is a logical value
and because, once one value has been found, no more need be
considered. Other functions with a similar structure for •
example all, minimum, one-of, could readily be implemented
in the same \'iayby modifying the initial value and the
statement in the loop body.

The transformations shown in the appendix are slightly more
general than those given here to allow for arrays.
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Temporary Structures

Suppose that we need to expand:

for pi ~ (mISupplies(m,p)} do C od,

that is we need to execute C with all parts p supplied by at
least one manufacturer. The implementation of the
restricted quantifier E is to ignore it. If we try the same
method and assume that Supplies is stored as a set:

Supplies (m,p) ~ (m,p) in supplies-list

the ~ loop reduces to:

~ tm,p} I (m,p) in supplies-list do Cod.

The code is simply:

for (m,p) ~ supplies-list do Cod.

Certainly C will be executed with p taking on all parts
supplied by some manufacturer, since the code goes through
the entire supplies file extracting all parts. However each
part will be produced many times. We cannot, as in an
earlier case, terminate the production of duplicates by a
branch, so to eliminate the duplication the values must be
stored:
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let S=empty;
for (m,p) in supplies-list do

S:=5 union p
od;

~ p in S do Cod.

The parts occurring are saved in a temporary set S
(implemented, say, by a binary tree). When execution of the
first loop is terminated, S contains the set of values
required. The second loop executes statement C once for
each value found.

The substitution can be generalised:

for tx} t some S do C od- -
=> let T=empty;

for (ty}utx})ty in S do
•

T:=T union x

2£;
for x in T do Cod.

With the functions nu~her and sum it may be necessary to
create a temporary array of values. The transformation used
for number, introducing an array A is:

~ {r}Utx}tr=nurnberSex) do C od
=> let A(x)=number Sex);

for tx}Utr}tx in domain(A) and r=A(X) do Cod.
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For example, suppose we needed the number of manufacturers
who can supply each out-of-stock part.
The set to be printed is:

(p, r) I Out-of-stock (p) and r=:nurnbert m ISupplies (m,p)H .

If the representation were:

Supplies (m,p) = (m,p) in supplies

then we would need to expand:

!2E. {p,r} I

Out-of-stock(p) and r=nurnber tml (m,p) in suppliesJ
do write (p,r) 2£.

No code can be generated without first creating an array.
The reason for this is that p appears on the left of an in
in the second clause. The only
the set supplies many times,

possibility would be to scan
once for each out-of-stock

part. So applying the transformation to produce an array, we
get:

let A(p) = number tIDI(m,p) in supplies};
for tP,r}1 p in domain (A) and r=A(p) 2£

if Out-of-stock(p) then
write(p,r)

fi
od.

Expanding the let according to the implementation of number
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gives:

let A(p)=O; comment A is a sparse array, and all elements
are defaulted to zero.

for (m,p) in supplies do
A(p):= A(p}+1

2£;
for p in domain(A) do

~ r=A(p);
g Out-of-stock(p) then

write (p,r)
fi

od.

The code could be iroprovedby noticing that A stores the
counts for all parts, whereas only those in out-of-stock are
used. It would be better to test this condition before
storing into the array. The intended transformation with
this effect was unfortunately found not to be possible
within the current implementation structure.

The complete list of expansions used during code generation
are shown in Appendix A.
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!.! Choosing a program

Although many of the alternative expressions produced by the
pre-processor will fail to generate a code sequence, there
will be some occasions where more than one result is
possible.

An important source of alternatives is the ability to take
the clauses of a conjunctive expression in any order. For
the arithmetic example given earlier:

{(x,y) I x in 1••20 and y ~ 1••10 ~ x+y=5}

many of the orderings could be used and they are illustrated
in figure 4.1. In the diagram each node has been labelled
with a subset of the clauses. At I this is the empty set
and at 0 all the clauses are included. Assuming members of
these sets are connected by~, each node is associated
with a logical expression. Each edge in the figure is
labelled by the heading of an if, ~ or let statement. The
various programs to construct the set of interest are
represented by a sequence of directed edges from I to o.
For example the original program:
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for x in 1••20 do
!£E y in 1 •• 10 do

if x+y=5 then C fi
od

od

is represented by the edges through the chain of points
1,2,6,8. The logical expressions at the nodes define the
sets of states which occur at intermediate points in the
program.

When dealing with stored relations rather than computed ones
the possibilities will be limited by the representation. An

example which is structurally similar to the last is:

{(m,p) I Out-of-stock(p} and Supplies(m,p} and British(m}}.

Suppose that the predicates are defined in terms of stored
structures by:

Out-of-stock (p) :£ P in out-of-stock-list :£ out-of-stock (p)

- British (m)
Supplies (m,p)

..m in british-list 5 british (m)
E. m in Suppliers (p)•

Both Out-of-stock and
provide the functions

British are represented so that they

programs (without using
illustrated by figure

a

a "powerset". The possible
collate operation) are then
t'lhere no transformation is

of

4.2.
possible the connection between two nodes is shown as a
dotted line. Only one path between I and 0 is possible
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representing the program:

for p in out-of-stock-list do
!2!: rn in Suppliers(p) do

if british(m) then C fi
od

od.

If instead the predicate Supplies were represented by
"supplied-by":

Supplies (m,p) : p in supplied-by(m)

then the possibilities are shown in figure 4.3. This
differs from figure 4.2 only in that a different vertical
edge is solid. The only program then is:

for m in british-list do
!2E p ~ supplied-by(m) do

if out-of-stock(p) then C fi

od
od.-
suppose that "Supplies" is given a redundant

representation, storing both "supplies" and "supplied-by".
The possibilities are given by overlaying the two figures
and either of the two programs are possible.

The least controversial approach we could take to the
problem of selecting a program is to generate and print them
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all. Hm'leverthis makes the implementation rather slow and
awkward to code. It was also found that in a number of
cases where only one solution was expected, a large number
would be produced. These differed only in minor matters
such as the ordering of independent ~ blocks.

A second alternative is to try to select the program which
incurs the least execution cost. Some selection on a cost
basis would probably be needed in an automated data
retrieval system. As the actual costs of individual
operations are not known, a possible approximation to this
is to minimise the number of operations performed.

For the arithmetic example in figure 4.1 we might argue as
follows:

First, consider programs which contain the line connecting I
to 3 and so start:

!££ (x,y) ~ addto(S) 22

The function "addto" is expected to produce all pairs of
numbers whose sum is given by the parameter. For positive
integers this might be possible, but if negative integers
were included there would be an infinity of such pairs.
Although it is possible for execution of the loop to be
terminated prematurely (for example by the existential
quantifier), in general a program starting in this \'1aywould
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not stop. Point 3 has been annotated with the number of
iterations (infinity) to show this.

Ignoring these programs, next we consider those starting:

for x in 1••20 do

The loop body will be executed twenty times and again this
number of iterations is shown; The body itself will
comprise either line 2,6,8:

for y in 1••10 do
gx+y=5 then C fi

od
or line 2,5,8:

let y = 5 - x •,
gy in 1••10 then C fi

both of whd.chexecute C with the same set.

The second alternative is to be preferred, as the inner test
is executed only once per iteration, while in the first ele
test is executed ten times.

Similarly, the best program starting with line 1,4 is:
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for y in 1••10 do
let x = 5 - Y ;

if x in 1 •• 20 then C fi
od.

This is better than the last as the loop bodies are very
similar, but here it is executed ten, rather than twenty
times. This program should therefore be selected.

To guide this choice it is clearly necessary to know the
size of the underlying data and to be able to estimate the
size of the various intermediate sets. This motivated a
study of the constraints on the sizes of sets formed by
expressions
difficulty}

in the underlying algebra. Although
be obtained no

(with
usefulsome bounds can

simplifying principles were discovered and the rules are
probably of only marginal value in practice. For example
while the maximum size of the intersection of two sets A and
B is the size of the smallest of A and B, the number of
members to expect in the result is highly dependent on
semantic factors.

The implementation takes a third and very simple approach,
producing the first complete program it finds. It was felt
that, in the long run, it would be better to rely only on
syntactic information in selecting a program rather than try
to make deductions from actual data sizes. Working toward
this we need to reduce the choice as much as possible and
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then to arrange the search so that programs with the least
execution cost are encountered first.

Toward the first goal,
depicted in figures 4.2

consider the two alternatives
and 4.3. While they produce

identical sets, if we were to execute them their results
would look very different. Each produces a list of
manufacturer-part pairs, but in the list produced by the
first program, entries containing the same part occur
consecutively, while the second will list all entries for
one manufacturer together. Practically we would probably
not want to give the system the .freedom to choose the way
that the output is ordered as it is very unlikely that a
list sorted by parts would serve the same purpose as a list
sorted by manufacturers. The need to make the choice can be
avoided by requiring that the output be specified as an
appropriate array of sets. The present implementation does
not handle arrays sufficiently generally to allow this, but
uses the list of output variables as an indication of the
result order. If the list were (m,p), then the code would
vary the value of p most rapidly. Although we have tried to
ignore the question of set ordering, it is apparent that for
proper output presentation and to include symmetric merge
operations, the notion of an ordered representation of a set
should be included.

Fixing the output order avoids many of the choices which
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must otherwise be made. The only change this makes in the
transformations is to replace the set of variables x in
for xlP do C od by a vector of variables, substituting for
the union operator on such sets, vector concatenation.

There will, even with this change, be some occasions when a
choice of code exists. Suppose we need to find the set of
parts p satisfying:

Out-of-stock(p) ~ Obsolete(p)

where Out-of-stock and Obsolete are both stored as

"powersets":

Out-of-stock(p) e p in out-of-stock-list e out-of-stock(p)
Obsolete (p) - p in obsolete-list • obsolete(p).

There is a choice between e

~ p in out-of-stock-list do
if obsolete(p) ~ C fi

od
and:

for p in obsolete-list do- -
if out-of-stock (p) then C fi

od.

The shorter list should be processed sequentially, but

without a knowledge of set sizes the implementation
arbitrarily prefers the first program, sequencing through
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the left-hand argument of the and operation. If a collate
operation were available it wouLd be better to treat this
symmetric situation by symmetric code. A binary merge
technique (Knuth 1973) for example achieves good performance
on a wide range of sets. For genuinely asymmetric cases an
alternative syntax could be introduced.

The tables in appendix A show the order in which the search
for a code sequence is made. These illustrate, for
instance, that no distribution of and over or takes place
unless a code sequence cannot be produced ,.,ithout it.

Chapter 6 gives a series of examples which show the complete
compilation process in action and the way that this
simplified method of choice works in practice.
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CHAPTER 5
SELECTIVE UPDATE

A long term aim of this work has been to further the
understanding of the choice of data organisation. If we
restrict consideration to data retrieval only, then
increasing the amount of redundancy in the stored data will
always tend to improve the overall processing time. If the
number of alternative structures is increased then it
becomes more likely that one will exist to suit a randomly
chosen retrieval. The choice of a data organisation reduces
to an analysis of the trade-off between retrieval time and
storage space. However when the data is subject to change,
each update must be propagated through all the relevant data
structures. Update times will therefore tend to increase as
more redundancy is employed and the optimimum data
organisation will depend on the pattern of retrievals and
updates. Florentin (Florentin 1972) suggests that update is

usually the critical factor in determining this
organisation.

These thoughts suggested that an assignment statement should
be added to the earlier mini-language and the effect of
assignments on the stored data structures investigated.
Section 5.1 introduces the method which is used and section
5.2 describes the assignments considered. Subsequent
sections discuss the effect of the assignments on data
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structures whose contents are defined by the allowable
expressions. Ultimately this should allow a comparison to
be made between the situations when an expression is
computed on each retrieval and when the expression is
stored. In the latter case it must be recomputed on each
update. Section 5.3 covers the relatively simple case of
structures defined only by logical expressions,
corresponding approximately to relational expressions, but
without the project operator. Section 5.4 then illustrates
the extensions necessary to handle more general functions.

5.1 Introduction.

It is assumed that the user views the information in the
data-base as being contained in a number of variables. If a
change occurs in the stock position of, say, 4BA NUTs this
may be reflected by an assignment such as:

Number-on-hand("4BA NUT"):=250.

The assignment changes the function stored in the variable
Number-on-hand.

When dealing with update it becomes necessary to distinguish
the variable in which information is held from the function
or set which happens to be its current value. While we need
to make this distinction, that is in this section, section
5.2 and section 5.3, we will distinguish variables by an
initial capital letter. Their values will start with a small
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letter, regardless of whether they are predicates, functions
or sets. Thus Number-on-hand stands for a variable, while
"number-on-hand" stands for the function which is its
current value. Outside these sections, initial capitals do
not have this significance.

Ideally, in making an assignment, there should be no danger
that the data held in the data-base will become internally
inconsistent. That is, in the example there should be no
information held which could imply that there are other than
250 4BA NUTs in stock. This mutual independence of the data
is one of the aims of Codd's "third-norma1-form". We \.,i11
therefore assume that variables are separated into two
groups, those which are primitive, and those whose values
are given by definitions. The primitive variables, which
correspond to a third-normal-form view of the data, can be
updated freely, but no assignments are allowed to variables
which have a definition. The definitions give their values
at all times.

For example, an assignment can be made to Number-on-hand, as
it is assumed to be in the primitive group, but an
assignment is not explicitly allowed to Out-of-stock-1ist.
Its value is given at all times by the definition:

Out-of-stock-list= LP I Number-on-hand(p)=O} •

The effect is as if the value of the variable is computed
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each time it is referenced.

Thus although for retrieval, the data may appear to contain
many variables whose values are interdependent and these may
be used without distinction, for update only a certain group
of primitive variables can be changed and all the others
take on consistent values.

In spite of the notional separation into variables which
store primitive data and those with computed values, there
is no need for the actual storage representation to

correspond to this. Variables whose values are given by a
definition may be stored, provided the value kept in storage
is always the same as that given by the definition, and
variables whLch are apparently primitive can be computed, if
sufficient data exists elsewhere. We will not be concerned
with this last possiblity, but will consider the effect of
keeping stored data corresponding to a definition.

Keeping such redundant data may improve the overall system
performance. For example, suppose that the parts which are
out-of-stock are frequently the subject of enquiries. It
may often be necessary during retrievals to obtain the set

Out-of-stock-list. If this is permanently in storage there

will be no need to search the complete list of parts to

obtain its members. This may result in a considerable

saving of compute time (at the expense of the extra
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storage).

The PRTV system (Todd 1975), for exa~ple, will store data
corresponding to definitions. When a defined relation is.
referenced and the data it contains has been computed, the
relation is saved in permanent storage. Until the space it
occupies is needed for other purposes, subsequent references
to the definition can make us of the pre-computed data. The
system attempts to maintain in storage data corresponding to
the most frequently used definitions.

The PRTV system cannot update this redundant data when an
assignment occurs. Any pre-computed relations which may be
effected by the assignment must be discarded. The question
which concerns us here is how the redundant data should be
changed so that it is still correct after the assignment.

With the assignment:

Nurnber-on-hand("4BANUT") :=250 ,

suppose Out-of-stock-list is stored. Its value must be
changed so that it is still given by the definition. It will
then not be noticeable that the value is being stored and
not computed on reference. One way to guarantee the
validity of the redundant data would be to recompute it
completely. Whenever the system receives an assignment to
Number-on-hand, it could discard the old value of
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Out-of-stock-list and re-calculate it by an assignment such
as:

Out-of-stock-list := {pINumber-on-hand(p)=O}.

The processing would be much the same as would be needed to
respond to a request to print the list of out-of-stock
parts. A scan would be made of all parts, and those with a
number-on-hand of zero collected. Instead of sending them
to the printer, these would be stored as the value of
Out-of-stock-list. This is obviously grossly inefficient,
since the new list will differ from the old one by at most
one member. Intuitively, for the assignment given, the
correct action is just to delete the member "4BA NUT" from
Out-of-stock-list, if it is there. The characteristic of
this better method is that it makes use of the earlier value
in storage. Rather than re-computing the value completely,
it merely makes a small change to the earlier one.

strength reduction.

The transformation to get such an assignment uses the same
principle as a standard optimisation carried out by some
compilers (.Allan 1970,Cocke and Sch,...artz 1971,Gries 1970).
In this context it is used to "strength-reduce" operations
occurring within loops. For instance the code:
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for 1:=1 until 10 do
X:=4*I;

od
• • •

in the right circumstances is changed to:

for 1:=1 until 10 do
X:=X+4:

od.
• • •

In the unoptirnisedloop, X is always given the value 4*1 at
the start of the loop body. It is assumed that there are no
other assignments to X, so that during execution of the loop
X always has the value 4*1. In calculating each ne,~value
of X the old value is ignored.

In the optimised code, the multiplication in the assignment
has been "strength reduced" to an addition which utilises
the value of X from the previous iteration. As addition is
a simpler operation than multiplication, the optimised loop
should run more quickly than the original.

The argument which leads to this optimisation runs as
follows:

Suppose, on some iteration, I has the value i and X has the
value x, so that x=4*i. On the next iteration, I will have
some value i' and X some value x'. Again these values will
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be related by:

xl=4*il.
=4* (i+1)

.since I is incremented by unity between one iteration and
the next. This has expressed the new value of X in terms of
the old value of I.

=4*i+4
= x +4

distributing the ~ultiply and replacing 4*i by x. This has
obtained the new value of X in terms of the old value. To
generate this new value the assignment:

X:=X+4

is used.

More generally, suppose we wish to maintain an equivalence:

Y=f(X)

between t,.,ovariables X and Y.

Suppose X has the value x and Y has the value y, so that
y=f(x), and an assignment:

X:=u(X)

occurs. We need to set the new values of X and Y, say Xl and
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y', so that:

y'=f(x').

Because of the assignment, x, will be related to x by:

X I=u (x) •

substituting we get:

y'=f(u(x»

relating y' to the old value of X.
equivalence of the form:

Now if we have an

f(u(x»=v(f(x»

the new value of Y can be expressed:

y' =v (f (x))
=v(y)

so that the assignment:

Y:=v(Y)

will give Y a new value with the property that Y=f(X).

The problem is to find a suitable set of equivalences with
the form:

f (u (x) ) =v ( f (x) )

so that the data-base definitions can be treated in this
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way. Osman in his PhD thesis (Osman 1974), mentions the
possibility of performing the optimisation for set
operations in PRTV.

5.2 Assignments.

The assignments which will be considered have the form:

function [arguments] := valued-expression
predicate [arguments] := logical-expression.

If the function or predicate is stored in an array, then the
assignment corresponds to the update of an array element.
For example:

Number-on-hand("4BA NUT") := 250

alters the value of the array element indexed by "4BA NUT"
to 250.

The effect of the assignment may be described by defining:

update(a,t,r)=if t then r else a.

update ''1illbe used as a replacement for if then else ,...hen
describing the effect of an assignment. The substitution
clarifies the meaning of some of the expressions.

Following an assignment:
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A(i):=v

the new value of A, say a', will be related to the old value
"a" by:

a' (x)=if x=i ~ v else a(x)
=update(a(x) ,x=i,v).

For the example assignment given earlier, the new value of
Number-an-hand will be given by:

number-an-hand' (p)=update (number-on-hand(p) ,p="4BA NUT",250)
=if p="4BA NUT" then 250

else number-on-hand(p).

The functions number-an-hand' and number-an-hand are the
same everywhere except for an argument "4BA NUTn, where the
new function gives 250 regardless of the value returned by
the old function.

To create an assignment to a stored item of data, the first
step is to obtain its new value in terms of the old one. The
next two sections deal in detail with the way this is done.
Usually, the relationship takes the form:

r' (x)=update(r(x),t(x) ,vex»~
=if t(x) ~ vex) else rex)

where r' is the new value of tilestored variable Rand r is
its old value. Then it necessary to generate an assignment
to alter ~~e stored value of R appropriately.
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In the expression, the new value of R differs from the old
value only at values of x which satisfy the test t(x). For
these the element R(x) must be set to contain v(x). Other
elements of R are to remain unchanged.
make the assignMent is:

The code used to

~ xlt(x) do R(x):=v(x) od.

This generates all values of x which satisfy t(x). These
value index the elements of R which must be updated. Within
the loop the new value v (x) is assigned to them.

For the example:

number-on-hand' (p) =update (number-on-hand (p) ,p="4BA NUT",250)

we get:

for plp="4BA NUT" do
Number-on-hand(p) :=250

od.

Simplifying this according to the processing in chapter 5
gives firstly:

~ p="4BA NUT":
Number-on-hand(p):=250

then eliminating p gives:

Number-on-hand("4BA NUT"}:=250.
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5.3 Logical expressions

This section describes how the new
defined using a logical expression

value of a
can be obtained

variable
in the

required form. Of necessity, the examples are of rather an
uninteresting nature. A more realistic example is given in
the next section.

Suppose that a sparse array (or set of logical fields) is
maintained in storage and its value is given at all times by
the definition:

Unavailable(p) == Out-of-stockep) 2! Obsolete(p).

If an assignment occurs which changes the value of
"Out-of-stock" then the value of "Unavailable" may also need
to be changed so that the equivalence remains true after the
update. If delivery were received for some part "a", then
an assignment caused by the change might be:

Out-of-stock(a):=false.

In terms of the function update, the new value of the
variable Out-of-stock will be related to the old one by:

out-of-stock I (p)
aupdate(out-of-stock(p), p=a, false).

We woul.d like to construct an assignment to "Unavailable"
which uses the old value in the same way. In other words,
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we would like to express the new value of "Unavailable" in
the form:

unavailable' (p)
..update (unavailable(p),t,r)

where t and r are expressions giving the positions at which
the update is to take place and the result to be assigned.
Now the new value "unvailable'" must be related to the new
value "out-of-stock'" by the defining equivalence. So, after
the assignment we must have:

unavailable' (p)
• out-of-stock' (p) £!: ob"solete(p)
Eupdate(out-of-stock(p), p=a, false) or obsolete(p).

NOW, appendix C shows that:

update(P,t,r) 2! Q ~ update (P 2E Q, t ~ ~ Q, r).

substituting P..out-of-stock(p), Qsobsolete(p) we find that
the new value of "unavailable" is:

update (out-of-stock(p) ~ obsolete(p),
p=a ~ ~ obsolete(p) ,false)

= update (unavailable(p), p=a ~ ~ obsolete(p), false).

The last expression is in the required form, giving the new
value of Unavailable in terms of the old one. The code to
update the variable must assign the value false to any
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element Unavailable (p) wher-e p satisfies the expression: p=a

.and ~ obsolete(p). The code:

for pi p=a and not Obsolete(p) do

Unavailable(p) :=false

od

is needed. This simplifies to:

~ p=a r

if Obsolete(p) then else Unavailable(p) :=false,

so that the additional assignment:

if Obsolete (a) then else Unavailable (a):=false--
maintains the consistency of the stored data. Intuitively

this assignment is correct. If Obsolete(a) is true then the-
value of Unavailable(a) is unaffected by the change to

Out-of-stock(a) , but if Obsolete (a) is false then

Unavailable (a) must be given the same value as

Out-of-stock (a)•

To deal with a complex expression, the equivalences may need

to be applied iteratively. For example, suppose:

Supplics-good-part(m,p) = Supplies (m,p) and not Obsolete(p)

The assignment: Obsolete (a):=~ produces a new value of

Obsolete(p) given by:
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update(obsolete(p), p=a, true).

The new value of Supplies-good-part(m,p) is:

Supplies (m,p) and ~ update (obsolete(p) ,p=a,~).
First the innermost expression is treated, using the

equivalence from appendix c:

not update(P,T,L) ~ update(~ P,T,~ L).

We get:

Supplies (m,p) and update(~ obsolete(p), p=a, false).

Next update is carried through the ~ using:

P and update(Q,t,r) = update(P ~ Q,t and Q,r).

The result is:

update(Supplies-good-part(m,p), p=a and Supplies (m,p) ,false).

Assuming that Supplies is defined in terms of the

representation:

supplies (m,p) = m in suppliers(p)

the complete code needed for the assignment is:

for m in suppliers(a) ~

Supplies-good-part(m,a) :=false

Obsolete (a):=~.
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The equivalences for ~, 2E and not allow the strength
reduced assignments to be formed for expressions constructed
using the logical connectives. However as will be seen in
the next seotion this does not extend to the majority of
relational expressions because expressions containing a
project operator (or its equivalent ~) cannot always be
optimised. It is necessary to recompute at least part of a
general projection on each update. Ne should also note that
even with just the simple logical connectives, not all
expressions can be optimised. To obtain an assignment for
example to:

R ;:P and Q

when P changes, we have implicitly assumed that Q remains
constant. This need not be so, as in:

R(x,y,z) = Father(x,y) and Father(y,z)

if the predicate "Father" should change. The
transformations do not always work in such a situation.

5.4 Other functions

An outline of the rules for strength-reducing assignments
for most of language F are contained in Appendix A.. Rather
than writing the rules as equivalences, they have been
expressed directly in statement form. For example, to
maintain the equivalence: R = rand Q when an assignment:
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for xlT do P:=V od- - -
'occurs, it is necessary to make the additional assignment:

for (xur)IT and Q do R:=V od- -
(where r is the set of free variables in R). The last
statement results froJT\ applying the corresponding
equivalence.

A significant omission from the appendix is a rule for the.
the is a partial function and its result is undefined unless
the argument is a unit set. To cater for this we need to
allow stored functions to give undefined results for some of
their arguments. In a data-base situation this simply
corresponds to fields with temporarily undefined values. It
appears quite possible to carry this through, but the
implications are very wide. For example the two sets:

{plnumber-on-hand(p)=O}
{plnot number-on-hand(p)FO}

need not be identical if number-on-hand may produce
undefined values. The first set contains parts which have a
number on hand of zero. The second contains all parts
except those with a non-zero number on hand, and so contains
not only parts ,·litha zero number on hand, but also any
whose number-on-hand is undefined.

If the right results are to be obtained, the system cannot
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use the equivalence: P == not not P, distinguishing between
"known to be true" and "known not to be false". Although
for retrieval the implementation appears not to violate this
intuitionist logic, the update rules are made slightly more
complex and have not been included.

The appendix contains a new type of assignment which is
only generated internally. It is clear for example that
"becomes equal to" is not always appropriate for updating
sets, as we may wish to modify the set contents rather than
change its value completely. To make such small changes the
two statements:

S:plus x and S:less x

are used. The first adds x as a new member of S. The
result is not defined if the set already contains x. In
practice an implementation should check whether an attempt
is being made to duplicate an existing member and issue an
error message if this is so. Analagously, S:less x deletes
an existing member x from S and an implementation is
expected to complain if S does not contain x. These
assignments were chosen in preference to normal union and
difference so that the set is always changed.

An example.

To illustrate some of the resulting code sequences we will
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take a simplified airline reservation system as an example.
This is to contain data about a number of "bookings". A
booking associates a "passenger" with a "flight". If a
passenger p is booked onto a flight f these will be a
(single) booking, b say, so that:

passngr-booked(b)=p
and flight-booked(b)=f.

There may also be other information about the booking, for
example the date when the booking was made. Flights are
identified externally by their flight-number and departure
date. It is also assumed that. data is kept giving the
aircraft which is scheduled to operate each flight. This
data is represented by a function "assigned-aircraft".
Auxiliary information is also held about each aircraft in
use, its type, seating capacity and so on. The situation is
represented diagrarnatically in figure 5.1, which shows by
labelled arcs the various functions connecting the sets
Bookings, Passengers, Flights and Aircraft.

When a passenger is to be booked onto a flight, a check
should first be made that the flight is not already full.
The set of bookings already made for each flight is given in
terms of the primitive function "flight-booked" by:

bookings (f) = {blflight-booked(b)=f}.

The number of seats whi ch could be booked on each flight is
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Figure 5.1 Simple reservation system.
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given by:

flight-capacity (f) = capacity(assigned-aircraft(f)).

As no aircraft should be overbooked, we should at all times
have:

flight-capacity(f»= number bookings (f)•

When making a booking, we should check that this constraint
will not be violated. To do this, we could evaluate the
expression for the particular flight. However it would not
be sensible to count the number of passengers already booked
on at each request for a seat. C.learlyit would be better
to keep permanently the number of passengers booked onto
each flight. The set of fields needed has a value given at
all times by:

nurnber-booked(f)=number bookings(f).

Similarly, to avoid referring to the Aircraft file, an extra
field could be added to flight records to contain the value
of "flight-capacity". Again the value is always to be given
by the definition. (The redundant functions are shown in
figure 5.1 as dashed arcs.)

When making a booking it will only be necessary to compare
these two fields in the flight record to make the check. To
compensate for the easier data retrieval, the redundant
fields must be recomputed at each update and some
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assignments which effect them will nm.,rbe considered.

The first update is the change to the aircraft operating a

flight. Suppose the assignment:

assigned-aircraft(flight("BE300","TUES"»:="VISCOUNT1"

is made. In the absence of the redundant data, the code

sequence:

!!;! f=flight("BE300",ITUES"):

assigned-aircraft (f) :="VISCOm~T1"

merely setting the appropriate field, would be adequate.

However, because the value of "flight-capacity" is stored

and its value depends on that of "assigned-aircraft", this

must be updated as \.,rell.

The definition of "flight-capacity":

flight-capacity(f) = capacity(assigned-aircraft(f»

has the form: R=F(E). Appendix A contains the rule that to

maintain this equivalence following the assignment:

for xlT ~ E:=V ~

we need the additional assignment:

for (xur) IT do R:=F(V) od.- - -
Making the substitutions:
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R=flight-capacity(f)
F=capacity
E=assigned-aircraft(f)
V="VISCOUNT1"
x=r={f}
T= (f=flight("BE300","TUES")

we find that the assignment needed is:

for flf=flight("BE300","TUES") do
'flight-capacity(f):=capacity("VISCOUNT1")

od
or:

let f=flight("BE300" ,"TUES");
flight-capacity (f):=capacity("VISCOUNT1").

This has the effect of setting the capacity of the flight to
that of the new aircraft. Notice that since we have altered
the value of "flight-capacity", we may also have effected
the truth of:

flight-capacity(f»= number booked(f).

We should check that the flight is not now overbooked. The
checking of a constraint such as this needs exactly the same
processing as would be used to maintain its value in
storage. However instead of saving the resulting value we
would merely verify that the value computed is true.

Another logically possible, but unlikely change is that an
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aircraft may have some seats removed so changing its
capacity. Suppose that:

capacity("CONCORD1") :=90.

Again we must update "flight-capacity". ~.ppendix~. contains
the rule that to maintain an equivalence R=F(E) given an
update:

for xlT ~ F(E') :=V ad

needs the additional assignment:

for (xUr) IT and E=E' do R:=V od.- -
Making the substitutions:

R=flight-capacity(f)
F=capacity
E=assigned-aircraft(f)
E'="CONCORIJ1"
V=90
x=r= {f}
T=true

we obtain:
!£!:. flassigned-aircraft(f)="CONCORD1" do

flight-capacity (f):=90
od.

This has the effect of changing the flight capacity of all
flights using the aircraft being altered.
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To perform the assignment, if the representation contains
only the functions shown in figure 5.1, there will be no
alternative but to search all the possible flights:

for f in Flights ~
if assigned-aircraft(f)="CONCORD1" then

flight-capacity (f):=90
fi

However, if chains were kept through all flights using the
same aircraft we could find those of interest directly and
so improve the code.

The last change we will consider is the alteration of a
booking from one flight to another. If the booking to be
altered is B, then the assignment might be:

~ b=B~
~ F=flight("BE300", "TUES")~

flight-booked(B):=F.

The stored function "number-booked" depends on
To find the"flight-booked" so will need to be changed.

changes, it is convenient to divide its definition into a
number or parts whd ch can be treated separately:

nurnber-booked=number bookings(f)
bookings (f) = {bl Flight(b,f)}
Flight(b,f) _ (flight-booked(b)=f).
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The change to the predicate Flight can be found by again
applying rule 9 from the appendix, exactly as for the first
assignment in this section. In this case we have:

R = Flight(b,f)
F (x) = (x=f)
E = (flight-booked(b)=f)
v = flight("BE300","TUES")
T = (b=B)

leading to the assignment:

for {b,f}1 b=B do- -
Flight(b,f) :=(flight("BE300","TUES"»

od,-
Continuing with the next part of the definition:

bookings(f)={bIFlight(b,f)} •

The appendix suggests the rule that, to maintain:

R={yIP}

when the assignment:

for xlT ~2 P:=V ad

occurs, we need the pair of loops:

for (xUr)IT ~ y ~ R 2£ R:~ y ~:
for (xUr)IT and V ~ R:plus y od.
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To keep "bookings" up to date we need:

~ {b,f}lb=B and b in bookings (f) do
bookings (f):less b

for {b,f}lb=B and f=flight("BE300","TUES") do
bookings (f):plus b

od
or:

~ f=flightbooked(B) ;
bookings(f):less B;

!!:! f=flight("BE300","TUES");
bookings (f):plus B.

This has the effect of subtracting B from the bookings of
the original flight ''lithwhich it was associated, and adding
it to the new flight.

The last step is relatively straightforward. Given that:

number-booked(f)=number bookings(f),

when a member is removed from bookings (f), one must be
subtracted from "number-booked(f)". This is true because we
know that the member was indeed there beforehand.
Similarly, when a member is added to the set, one must be
added to "number-booked". The final assignment results from
applying this rule from the appendix:

let f=flight-booked(r):
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number-booked (f):=number-booked(f)-1;
~ f=flight("BE300","TUES");

number-booked (f):=number-booked(f)+1.

The effect is to subtract one from the number-booked on the
original flight, and to add one to that of the new flight.

As a final remark, there is not always a strength reduced
method of updating a structure defined using the function
some. As an illustration, we might consider keeping a

at least one passenger islogical flag to indicate that
booked onto a flight:

not-empty (f) = ~ bookings(f).

If a new member is added to the bookings of some flight F,
then it will clearly become not-empty.
is cancelled for flight F there is

However if a booking
no alternative but to

re-evaluate the expression "~bookings(F)" in the new
state. It was this problem which finally caused the author
to reject of Coddls relational algebra as a means of
constructing the data of interest. The project operator has
the same characteristics as ~, but must be used in almost
every interesting relational expression. In consequence
very few redundant structures so defined can be efficiently
updated.
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CHAPTER 6
AN EXPERIHENTAL SYSTEl1

A number of systems have been written to test ideas as they
developed. Their purpose has been to check the algorithms,
uncover any practical difficulties and to stimulate further
thought. No attempt has been made to produce a complete and
workable system and the facilities provided have always been
kept to the minimum necessary for experiment.

The examples later in the chapter show the output from the
most recent of these systems. It compiles a definition of a
set into abstra~t Algol-like code and can also handle simple
updates. Like earlier versions, it is coded in Algol-vI
(Algol-W 1972) and at the time of writing consists of about
a thousand lines of code. It was developed on the IBH Hodel
168 at Newcastle University running under the Michigan
Terminal System (HTS).

6.1 Outline description.

The main components of the system and the overall data-flow
are shown in figure 6.1. The processing is divided into
three main stages, executed one after the other. This
arrangement results largely from the non-deterministic
nature of the compilation process. The input stage converts
statements to internal data structures which may be scanned
repeatedly by the code generator in its search for a
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satisfactory code sequence. Only when the choice has been
completely made is the rather lengthy job of generating
formatted output text begun.

.
The input stage is divided in the usual way into two
sub-parts. A statement is first broken into a string of
words. A word may be an identifier, an integer, an operator
(any string of other characters) or one of the special words
"(" ")" ":n "," and" itself. The syntax analyser then
builds expressions from these words. The analyser is table
driven and relies mainly on operator precedence to govern
its actions. Operators are allowed to bind with different
strengths on the two sides. For example the infix operator
"In, used to indicate a set construction, binds tightly on
the left where a parameter is expected, but loosely on the
right where a logical expression may appear. In operation,
the analyser runs two stacks, one for operators and one for
operands in the conventional way.

The syntax accepted is given in appendix A. It is fairly
close to that used in the earlier chapters, the differences
coming from the more restricted character set which must be
used. The table of operator priorities shown can be
modified by the input command PRIORITY.

The analyser builds a list-structure to represent each
program statement, each element in the structure containing
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-

-------------- --------------

Figure 6.' Structure £f ~ experimental system
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a reference to a function and a reference to its argument.
The structure is saved if it is part of a definition or
passed to the remaining phases if it is to be compiled •

.
Most of the logic is contained in the next phase, that of
code generation. The three main sub-units are the
expression pre-processor, the strength-reducer and the code
generator itself. As this part of the system has been
subject to continual modification, the transformations have
been represented in the code as directly as possible.
Conceptually, the pre-processor produces from each input
expression a series of alternatives for the code generator
to try. In practice it is sensible to run the pre-processor
in a lazy manner, so that the generation of an alternative
can be stopped as soon as the code generator finds that no
code is possible and so that the whole pre-processor can be
stopped as soon as one complete code sequence is found.
This leads to a fairly unconventional program structure,
making very heavy use of procedure parameters, effectively
simulating coroutines. Apart from this peculiarity, the
coding is a straight-forward transliteration of the rules in
Appendix A and table 5.1.

If a code sequence is found, the internal data structure
generated is passed to the output routine for printing. The
use of if fi, do od statement bracketting rather than the
normal beain end convention was motivated by the simpler
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printing algorithm obtained. As well as formatting the
text, the output routine also tries to clean up the program
to make it more readable. LET blocks are eliminated where
possible (that is where there is only one use of the
variable defined or where the defining expression is just a
variable or constant), so reconstructing compound
expressions. IF statements with a null THEN clause:
IF P THEN ELSE s FI are replaced by
IF ~p THEN 5 Fl. An attempt is also

the equivalent form:
made to re-construct

expressions in infix operator notation.

Overall, the system has been coded rather in the style of
Lisp, with few loops or assignments and a great deal of
recursion. No attention has been paid to the efficiency of
the code. Rather surprisingly, the bulk of the execution
time appears to be spent in the output routine, which is
fairly slow.

6.2 Examples

This section shows the output from a run of the
interspersed by comments. The examples illustrate
the features discussed earlier.

system,
most of

**LANGUAGE F LOADED.
ECHO ON~

The initial message indicates the syntax table which is in
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use. The system is then asked to echo all input lines it
is given. These appear in column 1 while system output is
indented to column 3.

1•
xIX IN 1••10:

=>
FOR X IN 1••10 DO
WRITE (X)

OD.
The "I" in the input line acts as infix set constructor,
no curly brackets being available in the character set.
The program produced by the system is preceded by =>. It
should print all members of the set defined. In this case
only a for loop is needed.

2.
xIx IN 1••10 AND x>3:

=>FOR X IN 1••10 DO
IF X>3 THEN
WRITE (X)

FI
OD.

The additional condition results in a program consisting
of nested if and for statements.

3.
XIX>3 AND X IN 1••10;

=>
FOR X IN 1••10 DO
IF X>3 THEN
WRITE (X)

FI
OD.

The order of appearance of the clauses does not, in this

case, effect the outcome.
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4.
X:1 ••10 I X>3;

=>
FOR X IN 1••10 DO
IF X>3 THEN
WRITE (X)

FI
OD.

The infix operator ":" is used to constrain a variable to
a set. In this case the result is the same as in the two
previous examples. However, constraints introduced in
this way are treated specially. Such a set is used as a
source of values only if there is no other alternative.

5.
xI X IN (1••5 OR 6••10) AND ODD(X);c>

FOR X IN 1••5 DO
IF ODD (X) THEN
WRITE (X)

FI
OD;
FOR X IN 6••10 DO
IF ODD (X) THEN
WRITE (X)

FI
OD.

Here, the disjunct is used to generate values for x, the
OR acting as a disjoint set union. The print algorithm
duplicates the code to be executed rather than creating a
subroutine called from within each !2E loop.

6.
X:1 ••10 I X>5 OR 3>X;

=>
FOR X IN 1••10 DO
IF X>s THEN
WRITE (X) ELSE
IF 3>X THEN
WRITE (X)

FI
FI

OD.
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In this example the OR is not used to generate values, but
only to test them. An if then ~ structure is used to
do this.

7.
X:1••10 I _NOT X>S ANDOR X>3;

=>
FOR X IN 1••10 DO
IF X>S THEN
IF X>3 THEN
WRITE (X)

FI ELSE
WRITE (X)

FI
OD.

The negation (which binds more tightly than ANDOR, the
operator standing for a normal inclusive or) is
implemented by reversing the arms of the conditional
generated.

8.
(X,Y)I X IN 1••20 AND Y IN 1••10 AND X+Y=S;

=>
FOR X IN 1••20 DO
FOR Y IN 1••10 DO
IF X+Y=5 THEN
WRITE(X,Y)

FI
OD

OD.
Here values for a list of variables are to be printed.
The code always arranges to vary the value of the last
variable in the list most rapidly. The compiler cannot
produce the better code sequence which calculates Y from
X+Y=S without a series of alternative definitions for the
operation "+". If the definitions are provided, the code
produced depends on the order of appearance of the
conditions.
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The next examples show the effect of various data
representations in simple cases.

9.
P:PARTS I OUT_STOCK(P) AND OBSOLETE(P);

=>
FOR P IN PARTS DO
IF OUT STOCK(P} THEN
IF OBSOLETE(P) THEN
WRITE (P)

FI
FI

OD.
OUT STOCK and OBSOLETE do not have definitions and so are
assumed to be stored as functions of PARTS. The most
likely representation would be as logical flags in each
part record, when the names OUT STOCK and OBSOLETE would
be interpreted as field selectors. The code tests these
fields in each record, printing those which satisfy the

condition.

10.
LET OUT_STOCK(P) <= P IN OUT_STaCK_PARTS;
P:PARTS I OUT_STOCK(P) AND OBSOLETE(P);

=>
FOR P IN OUT STOCK PA DO
IF OBSOLETETp) THEN
l'lRITE(P)

FI
OD.

Here the LET is used to define the predicate OUT_STOCK in
terms of the members of a set. The set is assumed to be
stored as an (ordered) list. The definition could be

hidden from a casual data-base user so that he is not
aware of the actual representation. Rather than search
the complete set of parts, only those in OUT STOCK PARTS
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are inspected. (The variable OUT STOCK PARTS exceeds the
twelve-character maximum length and has been truncated in
the output program.) If instead OBSOLETE were stored as a
list, the situation would be reversed.

11.
LET OBSOLETE(P) <= P IN OBSOLETE_PARTS;
P:PARTS lOUT STOCK(P) AND OBSOLETE(P);

=> -
** CANNOT PRINT - COLLATE

The earlier definition of OUT STOCK still holds and
OBSOLETE is now also represented as a list. The best way
to obtain the answer is to collate the two lists, but the
print algorithm objects to the choice.

12.
LET OUT STOCK(P) <= OUT FIELD(P)

- (= P IN OUT STOCK_PARTS;
P:PARTS I OUT_STOCK(P) AND OBSOLETE(P);

=>
FOR P IN OBSOLETE PAR DO
IF OUT FIELD(P} THEN
WRITETp)

FI
OD.

This introduces a redundant representation for OUT_STOCK,
-(=" preceding each alternative definition. In this case
only one code sequence is possible, but if both predicates
are stored redundantly there is a choice:
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13.
LET OBSOLETE(P) <= OBS FIELD(P)

<= P IN OBSOLETE_PARTS:
P:PARTS lOUT STOCK(P) AND OBSOLETE(P);

=> -
FOR P IN OUT STOCK PA DO
IF OBS FIELD(P) THEN
WRITETp)

FI
OD.

The left hand operand is chosen arbitrarily to generate
trial values, although a collate operation could have been
used instead.

The next three examples illustrate the effect of keeping a
secondary index to a file. In the first, the cost of a
part is defined by a field COST FIELD in each part record
only.

14.
LET COST(P:PARTS) <= COST FIELD(P);
X I 4=COST (X);

=>
FOR X IN PARTS DO
IF 4=COST FIELD(X) THEN
WRITE(X)-

FI
OD.

To find the parts whose cost is 4 the only possibility is
to search all parts, testing the cost field.

15.
LET COST(P:PARTS) <= COST FIELD(P)

<= THE C:COSTS I P IN PARTS_COSTING (C);
XI 4=COST(X);

=>
FOR X IN PARTS
WRITE (X)

OD.

COSTIN(4) DO
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However, here the representation includes both a cost
field and also an array PARTS_COSTING. According to the
definition this array gives the set of all parts whose
cost is C. The definition of COST in terms of
PARTS COSTING amounts to:

C=COST(P) = P IN PARTS COSTING(C).
The code uses this secondary index to obtain the parts of
interest directly.

16.
XI COST(X»4;

=>FOR C IN COSTS DO
IF C>4 THEN
FOR X IN PARTS COSTIN(C) DO
WRITE (X) -

OD
FI

OD.
Again the inversion is used, the code first finding all
costs exceeding 4 and then the parts having each cost. As
each part can have only one cost, the sets of parts
produced from each of the costs tried "dll be disjoint. A

part will only be produced once, but the set \'lillnot be
produced in sorted order. Both to produce acceptable
output and for merge operations the sets should be sorted,
but the compiler currently fails to check this.

To illustrate the code for SOME, consider finding the
manufacturers who can supply any of the out-of-stock
parts. The definition of the set is:

section 6.2 172



{ml~fp [m in suppliers (p) and p in out-stock li.

If both "suppliers" and "out-stock" are represented in the
way suggested in the expression, "out-stock" as a set and
"suppliers" as an array of sets, then the code is:

17.
MI SOME( PI 1-1 IN SUPPLIERS(P) AND P IN OUT STOCK PARTS );

=>
LET S1=EHPTY;
FOR P IN OUT STOCK PA DO
FOR M IN SUPPLIERS(P) DO
S1 UNION H

00
OD;
FOR f-1 IN S1 DO
WRITE(M)

OD.
The code collects all suppliers of out-of-stock parts in

the set S1. (variables generated by the compiler have a
first letter indicating the type of value - "S" for sets,
WA" for arrays and "X" for scalar items - and are numbered
sequentially.) The set in this case serves to eliminate
duplicate appearances of a manufacturer who supplies more
than one part.

An abbreviation has been built in for expressions of this
form to make them easier to enter. It comes from Carnap
(Carnap 1958,032-6, p127):

R" S = X I sons (Y I X IN R(Y) AND Y IN S) •
R"S can be read "the R of S" and is expanded by the
syntax analyser to give the right-hand-side.
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To illustrate a change in representation, suppose that the

set of out-of-stock parts is not stored directly but

defined in terms of a logical field in each part record:

18.
LET OUT STOCK PARTS <= P:PARTS OUT_FIELD(P);

SUPPLIERS"OUT STOCK PARTS;
=> --
LET S3=E}!PTY;
FOR X2 IN PARTS DO
IF OUT FIELD(X2) THEN
FOR xT IN SUPPLIERS(X2) DO
S3 UNION X1

OD
FI

OD;
FOR X1 IN S3 DO
WRITE (X1)

OD.

The code is similar to the previous example, except that

the out-of-stock parts must be found by searching all the

parts.

In the next example the definition of OUT STOCK PARTS

still holds, but this time the suppliers of each part are

not stored directly:

19.
LET SUPPLIERS(P) <= M:MANUF I P IN PARTS_PROM(H) 1

SUPPLIERS"OUT_STOCK_PARTS;
=>
FOR X1 IN ~ANUF DO
FOR X2 IN PARTS FROM(X1) DO
IF OUT FIELD(X2) THEN
WRITETX1) ;
GOTO L1

FI
OD

L1:
OD.
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SUPPLIERS is defined in terms of a function PARTS FROl1.
The representation is arranged so that each manufacturer
record identifies (for example by physically preceding) a
sequence of the parts which can be obtained from him. The
code which--results is somewhat different because it is no
longer possible to locate the manufacturers of interest
directly. The complete set of manufactures are processed
in turn and the parts obtainable from each are tested to
determine whether one is out-of-stock. This uses the
simpler type of code, a GOTO terminating the search once a
part satisfying the condition is found.

In chapter 1 an example was given to find the weekly
consumption of the parts used in a number of assemblies.
This can be expressed using the function sum. We imagine
a set of objects, each representing the use of a part in

an assembly. With each of these uses a "quantity-used"
(shortened to QTY) is associated, giving the number of
the particular part used in that assembly. In addition,
each assembly has a "weekly-output" associated with it.
The situation is shown diagramatically as follows:

•
QuMITl'tll!S
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These functions could be represented by two files, one for
bill-of-materials data with fields PART,ASSEI1BLY and QTY,
and one for assemblies containing a field WEEKLY_OUTPUT.

The weekly consumption of a part for a particular use
(that is for one assembly) will be given by:

LET CONSUMPTION(U} <= QTY(U}*WEEKLY_OUTPUT(ASSE1~LY(U)};

These values must be summed for all uses of each part.
The set of uses of a part is given by a function
USES_OF_PART, the inverse of the function PART. This
could be stored directly, for example by following part
records by the relevant bill-of-material records, or by
chaining together the bill-of-material records which refer
to the same part. Given such a representation the code
would be:

20. (P:PARTS,N) I N=SUM(USES_OF_PART(P),CONSUMPTION);
=>
FOR P IN PARTS DO
LET N=O;
FOR X2 IN USES OF PART(P) DO
N:=N+QTY (Y.2) *wlmKLY OUTPU (ASSE!~LY(X2»OD; _

WRITE(P,N)
OD.

This processes the parts serially, summing the weekly
consumptions from all the relevant bill-of-materials
records. However, if the inversion is not stored so that
only the functions shown on solid lines in the figure are
available, USES OF PART must be expressed in terms of the
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selector function PART. The code becomes:

21.
LET USES_OF_PART(P) <= U:BH_FILE I PART(U)=P~
(P:PARTS,N) I N=SUM(USES OF PART(P) ,CONSUMPTION) ~=> __

LET A1(P)=O;
FOR U IN BM FILE DO
LET P=PARTTU) ~
A1(P) :=A1(P)+QTY(U)*WEEKLY OUTPU(ASSEMBLY(U»

OD~ -
FOR P IN DOMAIN(A1) DO
LET N=A1(P);
WRITE(P,N)

OD.
A sparse array A1 is initialised to zero and the
bill-of-materials records are scanned once, accumulating
all the sums in parallel. Finally the results stored in
the array are printed. A possible inplementation of this
abstract code was given in figure 1.2.

The last example of data retrieval is taken from a recent
paper by Halstead (Halstead 1975). This compares two
programs \~ritten to perform the same task. One is written
in DSL ALPHA (Codd 1971) assuming relational data, and one
is written in COBOL (with Codasyl DBTG extensions) to
operate on a particular organisation of the data. The
problem is as follows:

Given a machine X, start date A, stop date B, find the
identification number of a person who has adequate
skill to operate X and is available between date A and
date B to carry out the operation. Schedule this
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person if one is located.

We are going to convert a form approximating to the
relational program into one which executes like the COBOL.
For comparison, the DSL ALPHA and COBOL solutions are given
in Appendix B. The DSL ALPHA program assumes the following
relations:

(i) PERSON-SKILL(Pt,SKILL#)

which relates a person-number (Pi) to some skill-numbers
(SKILLt), representing the skills the person has.

(ii) MACHINE-SKILL(MACH#,SKILL#)

which associates each machine-number (BACH#) with the
skill-numbers which relate to the machine. A person Pi can
operate a machine Mi if there is a skill Si so that the
tuple (Pt,S#) occurs in PERSON-SKILL and (r1#,S#) is in
~IACHINE-SKILL.

(iii) SCHED(P#,MACH#,SCHED-START-DATE,SCHED-STOP-DATE)

where each member in the relation shows that person Pi is
scheduled to operate MACHi between the indicated dates.

The DBTG COBOL solution assumes the follo\·ling
representation:

1. A set of person records.
2. A set of machine records.
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3. A set of skill-link records.

Person records contain the identification number of a person
as a field IDENTIFICATION-NUM. Machine records are indexed
by the machine name (such as "X") and each machine record
contains the group of schedule entries for the machine.
Each record in the group contains the start and stop dates
and the person scheduled to operate it between those times.
No machine number is included as this information is implied
by the group in which the record occurs.

A skill-link record reflects the ability of a person to
operate a machine. It corresponds to a SKILL# in the
relational version. Each identifies the person and the
machine participating in the link. (We will call these
fields PERSON and MACHINE, although the COBOL program does
not refer to them explicitly.) Each machine record is
chained (using a ring of pointers) from a field NEEDS-SKILL
to all the skill-link records associated with the machine.
This enables all the people who can operate the machine to
be located via its set of skill-link records. Each
person-record also has a field (HAS-SKILL) giving a similar
chain through the skill link records. Figure 6.2
illustrates the representation for a very small amount of

data.

Language F cannot express the whole of the problem (neither
can DSL l~PIIA). We will content ourselves with obtaining
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all person records who could operate machine "X" between
dates "A" and "B". There is no operation to select an
arbitrary member from this set to complete the retrieval.
The set can be defined as follows:

let busy-between(p,start,end)

=~ {SI

end>shed-start-date(s) and
start(sched-stop-date(s) ~
worker-id(s)=identification-num(p) and
can-operate(p,sched-machine(s»}

{p:persons Ican-operate (p,"X") and ~ busy-between(p,"l\.","B")}

This is very similar to the DSL ALPHA program. One minor
difference is that there is no explicit reference to skills.
These will be introduced in the definition of can-operate.
A much more significant difference is the appearance of:

can-operate(p,sched-machine(s»
in the definition of "busy-between", This does not appear
in the DSL ALPHA program at all. It is an invariant, and
reflects the fact that anyone scheduled to operate a machine
will be capable of doing so. It must be included here
because the operation of the COBOL program relies on its
being true.

Of the identifiers used in the program, only the predicate
"can-operate" and the function "sched-machine" are not
supported directly by the representation. These must be
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expressed in terms of structures which do exist.
The function sched-machine (HACH# in the relational form)
must be expressed in terms of the machine-record in which
the schedule occurs:

sched-machine(s) = the {m:machines I s in schedules(m)}

The field "schedules" in a machine record contains all the
schedules for the machine. In the COBOL it is a repeating
group.

The predicate "can-operate" is represented by the skill-link
records and the chains through these. It is represented
redundantly:

can-operate (p,m)

= ~ {k:skills
== ~ {k:skills

person(k)=p ~ k in skills-needed(m)}
machine(k)=m ~ k in has-skill(p)}.

The function one is the external form of the restricted
existential quantifier.
~I but additionally

It produces the same result as
assumes that the argument set

contains at most one member. (It is possible to do without
~ by re-arranging the definition,
gained.) The definition says that
machine m if one of the set of

but little advantage is
a person can operate a
skill records obtained

through the "skills-needed" field of m identifies person p,
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Or equivalently, if one of the skill-records obtained from
the "has-skill" field of p identifies machine m.

The complete compilation was run as an unseen test case in
the following way:

22.
PRIORITY CAN OPERATE 3 3; (defines CAN OPERATE as an infix

operator with left and right priority 3)
LET P CAN OPERATE M

<= ONE-K:SKILLS I PERSON(K)=P AND K IN SKILL NEEDED(M)
<= ONE K:SKILLS I UACHINE(K)=H AND K IN HAS_SKILL(P);

LET SCHED HACHINE(S)
-<= THE M:MACHINES I S IN SCHEDULES(M);

LET BUSY AT (P,START,END) <=
SOME S: SCHEDS I .

START>SClIED STOP DATE(S) AND
SCHED START-DATETS}>END AND
WORKER ID(Sf = IDENTIFICATION NUM(P) AND
P C~.N_OPERATE SCHED_}1ACHINE (Sf;

P:PERSONS I P CAN_OPERATE "X" AND NOT BUSY_AT(P,"A","B");
=>
FOR K IN SKILL NEEDED("X") DO
LET P=PERSON Cit) ;
FOR K IN HAS SKILL(P) DO
FOR S IN SCHEDULES(nACHINE(K» DO
IF "A">SCHED STOP D(S) THEN
IF SCHED START (S»"B" THEN
IF WORKER ID(S)=IDENTIFICATI(P) THEN
GOTO L1 -

FI
FI

FI
OD

OD;
WRITE (P)

L1:
OD.

The resulting program matches the operation (but not the
form) of the COBOL program quite accurately. It first
locates all the skill records associated with machine X.
For each the associated person record is found. This
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person could operate the machine. To find if the person
is busy, the invariant is utilised. All the machines he
could operate are inspected. This is done by locating all
the skill-link records chained from the person record and
from thes~ finding the machines. The schedules in each
machine are inspected for conflicing dates and matching
identification numbers. If a conflicting schedule is
found, the person is rejected via the branch to L1 and the
next person tried. (The COBOL program seems to find the
next candidate in a slightly different way.)

The process potentially produces all suitable operators.
To satisfy the original problem definition the search
would have to be terminated after the first candidate had
been found.

Examples of update.

The remaining examples show the effect of some simple
assignments
redundantly.

on data-structures which are stored

LET UNAVAILABLE(P) <=OUT_OF_STOCK(P) AND OBSOLETE_PART(P) :
MAINTAIN UNAVAILABLE(P) :

The function UNAVAILABLE is first defined to reflect the
instantaneous value of the right-hand expression. The
MAINTAIN statement indicates to the system that we wish to
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consider the effect of keeping its value in storage.
Subsequent assignments which effect its value must be
followed by an appropriate modification of the stored
data.

23.
OBSOLETE_PART("4BA_NUT") :=TRUE;
=>
IF OUT OF STOCK("4BA NUT") THEN
UNAVAILABLE("4BA NUT") :=TRUEFI; _

OBSOLETE_P~R("4BA_NUT"):=TRUE.
The code shows the pair of statements whdch are needed to
preserve the truth of the definition.

24.
OUT OF STOCK("4BA NUT") :=FALSE;=> - -

IF OBSOLETE PAR("4BA NUT") THEN
UNAVAILABLE("4BA_NUT") :=FALSE

FI;
OUT OF_STOCK("4BA_NUT"):=FALSE.

The code for deletion is symmetric, although the test is
in this case not strictly necessary.

The next example illustrates the code generated to
maintain the value of a disjunctive expression.

25.
LET DONT_USE(P) <= OUT_OF_STOCK(P) ANDOR OBSOLETE_PART(P);
MAINTAIN DONT_USE(P);
OUT OF STOCK("4BA NUT") :=TRUE;=> _ _

IF -,OBSOLETE PAR("4BA NUT") THEN
.DONT _USE ("4BA_J'lUT"):;;'TRUE
FI;
OUT OF STOCK("4BA NUT") :=TRUE.- - -

Notice that the assignment is made to DONT_USE only if its
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value needs to be changed. In the next example, the
definition of DONT USE is retained, but OUT OF STOCK is
defined in terms of NU~mER ON HAND.

26.
LET OUT_OF~STOCK (P) <= Nur.mER_ON_HAND (P)=0 ;
NUMBER ON HAND("4BA_NUT"):=N;

=>IF ...,O=NTHEN
IF .,OBSOLETEPAR("4BA NUT") THEN
DONT USE("4BA NUT"):=F~LSEFI - -

FI;
IF O=N THEN
IF -,OBSOLETEPAR("4BA NUT") THEN
DONT USE("4BA NUT") :=TRUEFI - -

FI;
NUl$.BERON HA("4Bl\.NUT") :=N.- - -

The first statement in the sequence removes the effect of
the original value of NUMBER_ON_HAND. The second statement
changes DONT USE to account for the new value. The first
t,.,ostatements could be combined into an if-then-else
structure. An early design decision makes this rather
difficult to do in the current implementation however.

The remaining examples show, almost without comment, the
code produced by the system for the illustration used in
the latter part of chapter 5.
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27.
LET FLIGHTCAP(F:FLIGHTS) <= CAPACITY(ASSIGNED_AC(F» i

LET BOOKINGS(F) <= BIFLIGHT(B)=Fi
LET NUMBOOI<ED (F) <= NUMBER BOOKINGS (F) ;
MAINTAIN N=NUHBOOKED(F)i

- .

FLIGHT ("rWTICKET") := "BE300"i
=>
LET F=FLIGHT("~YTICKET");
IF -,F="BE300" THEN
NUMBOOKED(F) :=NUHBOOKED(F)-1

FIi
IF ..,FLIGIIT("HYTICKET")="BE300" THEN
NUHBOOKED("BE300") :=NUl1BOOKED("BE300")+1

FIi
FLIGHT ("HYTICKET") :="BE300".

The code produced suggests that equality should be given
special case treatment in the strength reduction
algorithm, as the outer t\'lOtests could be made common.

28.
MAINTAIN N=FLIGHTCAP(F) i

CAPACITY("CONCORD1"):= 90;
-=>
FOR F IN FLIGHTS DO
IF ASSIGNED AC(F)="CONCORD1" THEN
FLIGHTCAP(F) :=90

FI
OD;
CAPACITY("CONCORD1") :=90.

ASSIGNED AC("BE300"):= "VISCOUNT1";
=> -
FLIGHTCAP("BE300") :=CAPACITY("VISCOUNT1") i
ASSIGNED_AC("BE300") :="VISCOUNT1".
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Finally:
QUIT
COHPILE Turn: 0.16 SF-CS.
OOOO.86SECONDS IN EXECUTION
The "compile-time" given is the time spent in the central
code generation stage of the system. Host of the
remaining time used in the set of examples is spent
printing the resulting programs.
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CHAPTER 7

CONCLUSIONS AND FURTHER WORK.

The investigation began by considering the effect of the
data organisation on the execution of a program. The aim
has been to find a practical way of adapting a program to
a representation and ultimately to enable assistance to be
given in the choice of a data organisation.

Aggregate operations were investigated as
overcoming the problems encountered with
defined programs, although this has meant
limited class of programs could be covered.

a method of
recursively

that only a
The interest

in data base applications suggested the use of relations
to describe the data and the algebra of relations to
specify the computation. However in spite of the
considerable number of existing implementations based on
this principle, the standard relational description
developed by Codd did not prove an ideal implementation
tool. Its principle disadvantages can be summarised as
follows.

In a normal form relational model, all the data with the
same key appears in the same relation. For example one
relation contains all the properties of "parts". The key
field might be the part-nu~bers. Relations therefore tend
to have a large number of domains, each tuple
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corresponding approximately to a record in a file.
Although this does reflect one possible physical
organisation of the data, the relationship with other
organisations (for example using networks) which lay the
fields out differently can be quite complex, and does not
lend itself easily to mechanical processing.

The relational algebra is used to specify the computation
of new relations from existing ones. The algebra uses
domain numbers to identify elements in a tuple and this
makes the manipulation of expressions rather difficult.
Although the relational calculus (similar to DSL ALPHA)
does use domain names and does not rely on their ordering,
a direct implementation using the algebraic operations
would not be very efficient.

More fundamentally, the operations are only defined for
"flat" or unstructured sets of tuples. They do not
recognise the special case which arises when the relation
is, in fact, a function. For example this leads to uses
of the general project operator when none need occur, and
to consequent inefficiency. Also, some of the operations
we need more naturally
than unstructured sets.
using only relations is

use array-like structures rather
One example of the effect of

found in the definition of the
relational "divide" operator, which performs the
equivalent of a finite universal quanitifier. This can be
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used to express the query: "find the manufacturers who
give a discount on all parts used in assembly A" but not
to express: "find the manufacturers who give a discount
for all parts they supply to assembly An. In the first
case we can first find the parts in assembly A and then
determine, by the divide operation, manufacturers who
supply all members of the set. The difficulty with the
second example is that the set of parts to be used in the
divide is not a constant, but depends on the manufacturer
in question. A divide operation which covered this
(admittedly unusual) situation is not easy to define and
probably needs four domain numbers as parameters in
addition to the two relations. Essentially the operation
acts in general on arrays of sets and not simply on
relations.

Since relations are sets, the fundamental update
deletion of members. Theoperations are the addition and

co~monly occurring operation to modify an existing member
can be expressed by a combination of an addition and a
deletion, but because this pair of operations can in
general have other effects (it may alter the number of
members in the relation), to treat selective update in
this way does not produce an efficient implementation.
Again, when considering methods to optimise the update of
redundant data structures, it is essential to recognise
the special case of projection which results from a
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functional application. While this can be optimised the

to deduce themore general form can not be. Attempts

necessary information, show that whd Le it may be possible

to do this (e.g. Delobel and Casey 1972) it is quite a

complex process.

These conclusions are perhaps confirmed by the existing

implementations, which tend to store each relation more or

less directly, make few claims about their efficiency (but

see Titman (Titman 1974) ), and provide little support for

update.

A number of relationally based mini-languages were

developed in an attempt to overcome these problems. The

most recent of these, Language F, has been described. It

was designed to allow a limited, but hopefully typical

range of data base operations to be expressed and to be

processed with reasonable efficiency. The principle

changes made during its development can be summarised as

£ollO\."s.

First we have

similar to

assumed a more primitive type

Abria1. Each

relation,

relationthose used by

corresponds not to a complete record, but approximately to

a single field in a record. Also relations can contain

items other than simple integers or strings. This makes

it possible to connect the relational description and the
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physical data structure by a relatively simple abstraction
function. However, using these more primitive relations
does not prevent the construction of a standard relational
v.i.ewof the data if this is needed. (For example see
(Bracchi 1974).)

The second change was to re-define the operations to
remove their dependence on column ordering and to match
them exactly to the operators in the standard calculus.
While this does not add anything essential, it does make
the manipulation of expressions easier and means that only
a small step is needed to add array-like structures as
functions.

The addition of functions was perhaps more fundamental
than was at first realised. Initially, the motivation was
to be able to use the special case of the project operator
which results from expanding a functional application.
This has a much simpler implementation than the general
purpose operator. However, with functions which return
predicates (or sets) we can describe hierarchical data
organisations. Not only does this mean that common
physical structures can be described, but also that the
description of the computation can use structures which
are not normalised relations. We can use functions like
number which act on arrays of sets. Although no
equivalent of the relational divide operator was included
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in Language F, we could readily introduce such an
operation. For example, all(s,p) could return "true" if
all members of set s satisfy predicate p. (The
implementation is very similar to some , in a simple case
all values satisfying p are generated, and tested for
inclusion in s. It was omitted from the language because
of this similarity.) The operation can be used to express
any example of "all" and would not be restricted in the
same way as the relational divide.

A further advantage of functions is that they allow a
natural selective update.
single array element and
matched deletion and
problems.

We can arrange to assign to a
do not need the artifice of a

addition, with its attendent

In summary, there is no need to insist that the data be
viewed as a normalised relational structure. One can
think of the relation Supplies as a set, a predicate, an
array giving the suppliers of each part, an array giving
the set of parts supplied by each manufacturer, whichever
is convenient. The actual data-structures which are
stored can be quite unrelated to the view which is taken
and the system will make the conversion. One may, of
course, feel that such a disregard of the actual storage
structure is dangerous, because the cost of performing a
retrieval may not be related in any way to the complexity
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of its specification. However this is inherent in any
system which attempts to insulate the user from the
physical data organisation.

An experimental compiler has been written for the language
'-1hichproduces Algol-like programs. This superceded an
earlier interpreter so that the intimate details of the
data accessing algorithms could be ignored. In principle
the compiler works by applying the standard rules of
functional application and equivalences from predicate
logic to obtain a series of equivalent expressions in
terms of stored functions and sets. These are tested in
turn until one is found which can be turned directly into
a program to construct the result. Within its
limitations, this has been found to work quite well. Two
sources of early concern, that compile times would be very
long and that a large amount of information about the
sizes of sets would be needed to select a program, have
not, at least in the experiments, proved to be serious
problems. The simplest possible sequencing algorithm has
proved adequate for the examples tried, and only in a few
instances has extra information been strictly needed to
choose the code.

While the findings must be considered to be of a
preliminary nature, the experiments suggest that it is
practicable to use this method to adapt programs to a
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given data representation, or to convert between one
representation and another. A high-level data-base system
could well operate along the lines suggested and make
reasonably efficient use of a given storage structure. In
the longer term, a similar system might be useful to
outline the effect of a chosen data organisation even when
the application is ultimately to be hand-coded.

A great deal of work remains to be done, both in the
short and the long term. Immediately, the compiler has a
number of known deficiencies, the most obvious of these
being the lack of symmetric me~ge and collate operations.
These were omitted from the program printing routine
because their inclusion seemed to make the resulting
programs unnecessarily complex. Some work has been done
toward the addition of a simple printing method, and only
small changes are needed in the remainder of the compiler
to make the necessary distinction between sorted and
un-sorted sets.

Neither the input language, nor the output language were
consciously designed. Rather, they have gradually evolved
in response to various pressures. As the input language
is no longer purely a relational one, further
understanding would probably result from re-designing it,
and this should be the next major step. The aim of the
new design would be mainly to rationalise the underlying

section 7 196



structure, to eliminate all dependence on size information
and to allow the definition of functions such as number
which currently must be built-in.

The reluctance to accept the short-comings of the standard
relational treatment left rather to little time to study
the alternative proposed in depth. For instance, it is
not clear what programs can, and what programs cannot, be
compiled. This depends both on the types of statement
which can appear in the output and on the alternative
transformations that the compiler will try. As both have
been changed many times, no attempt has yet been made to
document its detailed input rules. A re-design of the
input language and processing algorithms along cleaner
lines would give an opportunity to rectify this omission.
Also, in the interests of
and consequently the
informal. A more stable
rigour.

progress, the output language
transformations are entirely

design would allow for more

The experiments so far have given some insight into the
interaction between the storage structure specified and
the processing method which results. However much more
experience is needed to understand clearly what governs
the choice of data organisation to suit a given suite of
programs, and the space and time trade-offs which are
often involved. The availability of a richer set of
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operators (such as "all","maximum" and so on) would mean
that a large number of more realistic examples could be
tried and a model of the behavior developed.

It has been noticed that one of the factors influencing
the choice of data organisation are the consistency
constraints on the data. They must be guaranteed after an
update (affecting not only the storage structure, but also
for example, the possible ways of synchronising concurrent
operations). Also, as example 22 of chapter 6 shows, use
can be made of them on retrieval. In Grindlay and
Stevens' Systematics (Grindlay and Stevens 1968),
consistency conditions are used to specify the output from
an information system. For example, we might like the
purchasing department of our factory to be permanently
aware of the parts which are out-of-stock. They should be
informed whenever a part becomes out-of-stock so that they
can take appropriate action, and similarly be told when
the position is rectified, 50 that the action can be
stopped. Exactly the same methods can be used to maintain
the consistency of the data in the purchasing department
with that in the central data-base as is used to keep
consistency in a redundant storage structure. It is felt
that a re-design of the input language should include a
deeper look at these invariant conditions, their various
uses and the implications that these might have.
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Finally a more complete prototype system should be built.
This could well interface with an existing programming
system designed to handle abstract programs, such as TOPD
(Henderson et al. 1975). It would then be possible to
judge whether the performance and code quality can be
maintained in a more realistic environment.
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APPENDIX A
Summary of implemented system

The following four tables show an approximate concrete
syntax, the priority of the operators, the transformations
done by the pre-processor and the code generation rules.
The strength-reduction rules for assignment foLl.ow,

The syntax is expressed in the extented Backus-Naur form
originally used in the Vienna definition of PL/1 (Urschler
1969). The conventions used are:

(i) Non-terminal symbols are represented simply by
lower-case words.

(ii) Alternatives, usually placed on separate lines, are
separated by I. (1stands for the terminal symbol I.)

(iii) [}are used as meta-syntactic brackets.

(iv) [] indicate that the enclosed phrase is optional.

(v) ••• show that the preceding phrase may occur any
non-zero number of times.
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program
statement-list

: := [statement-list] QUIT
·.-·.- statement ; [statement-list]

statement : := let-definition
set-to-compile
assignment
maintain-clause
system-command

let-definition ·.- LET function [parameter] t <=express ion}·.- ...
expression ·.- set-exp predicate-exp valued-exp·.-
set-to-compile ·.- set-exp·.-
predicate-exp

set-exp

valued-exp

parameter

parameter-list
argument

argument-list

: := predicate-function [argument]
predicate-exp t~~D'OR'ANDOR} predicate-exp
NOT predicate-exp
valued-exp l= , >= , >} valued-exp
valued-exp IN set-exp
soxe set-exp
set-function [argument]
parameter 1predicate-exp

: :=

::= valued-function [argument]
valued-exp t+ , - , *} valued-exp
Nur-mER set-exp
THE set-exp
SUM(set-exp,valued-function)
identifier , string-constant

I,
I,
Iinteger

: := identifier
identifier : set-exp
( [parameter-list] )

::= parameter [, parameter-list]
valued-exp
( [argument-list] )

..-..-

..-..- argument [,argument-list]
maintain-clause::= !-lAINTAINpredicate-exp

::= predicate-function [argument] := predicate-exp
valued-function [argument] := valued-exp

set-function [argument] := set-exp
system-command ::= ECHO iON , OFF} I

PRIORITY identifier integer integer

assignment

Implementation syntax
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operator left right
OR ANDOR 11 1 1

AND & 10 10

NOT 9

= > >= 8 8

+ - 7 7

* 6 6

SOME NUl·mER 2

ONE THE 2

• • 1 1

2 12

IN 8 2

• 1 2•

.- 12 2.-

Built-in operator priorities
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i. function definitions.
LET fex) <= L1 <= L2 <= L3 •••• i M

=> H ,..,heref (x) =L1
=> M where f(x)=L2

••• • •
ii. sets.

{x:SIP} => {xIP}
=> {xix in S ~ Pl

M ~ {xIP} => P where x=M
iii. nested functions.

P(f{x»
r=f{g(x»

=> P (~ttl t=f (x)})
=> r=f(~{tlt=g(x>1 )

iv. iota re~oval.
l-1=~ [x IP}
O(~txIP})

=> P wher"e x=M
=> ~{XIO(x) and P(x)}

v. distribution etc.
(P 2E. 0) and R => (P or 0) and R- (P and R) or (0 R)=> and
(P and Q) and R => (P and Q) and R

=> (P and R) and Q

P ~Q => P and Q
=> o and P

Pre-processing transformations
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i. primitive state~ents.
~ xix in S do C od
!£!. xlx=e do C od

=> for x in ~ do C od
=> ~ x=ei C

for ()11' do C od => if P then C fi
ii. logical expressions.

!2E. x,ylP and Q do C od => for xiI' do for vlO do C od od-- - --- .... '-- --
!£E. xiI' or Q do C od => for xiI' do C od; for xlQ do C od- -

. for xiI' andor () do C nd
=> !£!. xlP co C od, for xlQ do C od

if P and 0 then C1 else C2 fi
=> if P then if 0 then C1 else C2 fi else C2 fi

if I'or Q then C1 else C2 fi
=> if I'then C1 else if Q then C1 else C2 .f!' fi.._~-- --

if nnt P then C1 else C2 fi => if P then C2 else C1 fi-- -
iii. set expressions.

if SOT'1e S then C1 else C2 fi--
=> for x in S do C1:goto L ~: C2: L:

let A=nurnber S: C

=> let T=ermty:
for x,vl y in S do T:=T union x ~:- -
for x in T do C od

=> let 1'_=0:-
~ y,ctl Y in S do 1\:=1\+1~: C

=> let A=O:-
~ y,al y in S do 1\:=1\+f(v) od: C- ."

for xl~ S do C od

for r,YI r=nu~ber S do C od => ~ ~(y)=number S:
!E!. r:domain(a) ,ylr=·"·(Y) do C od

Cone generation su~~ary
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definition Update Result
for xlt do

1 • R - P and 0 P:=V for xUrlT and Q do R:=V od-
2. R - P or Q P:=V for xlJrlT and not Q do R:=V od- --
3. R - not Q P:=V for xUriT do R:=not V od

4. R {YIP} P:=true for xUriT and not y in R do
~:less y-- -
od --

P:=false for xLJrlT and y in R do
R:plus y

od
P:=V for xUrirr and Y in R do

~:less y-
od: -
'lOr xUriT and V do
~:plus y-
od

5. R = nUMber S S:plus y for xiT do R:=R+1 od- -
S:less y !£!. xlT do ~:=R+1 od-

6. R = SUJl1(S, F) S:plus y !E!. XIT do R:=R+F (y) od
S:less y for xl'!'do R:=R-F(y) od

7. R ::.sOJl1eS S:nlus y for xlT do R:=true od-
S:less y for xiT do R:=some Sod

8. R = F(E) E:=V !2!. xiT do R:=F(V) od-
F(E') :=V for xiT and F=F.' do R:=V od

od

1\ssiQnment code SUY'1marv
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l\.PPF"mIXB

Original solutions to scheGulin~ example

The following t,.,oproq rams , one in DSL ALPHA and one in DBTG.
Cobol are reproduced from (Halstead 1974).

a) nSL ALPHA

GET (into ,rorkspace) N (at most) (1) PERSON-SKILL. P#:

EXIST r"ACH-SKILL (with)

(~mCH-SKILL. MACH~ = X)

& (~ACH-SKILL. SKILLt = PERSON-SKILL. SKILL#)

& NOT FXIST SCHFD hlith)-
(SCHF.D. Pt = PERSON-SKILL. Pt)

& (SCHED. SCHED-START-DATE LESS-TRl\N B)

& (SCRED. SCHED-STOP-DATE GREATFR-THAN A)

MOVE l~ INTO SCRFD- RECORD

PUT SCHED-RECORD SeRED.

(host language)
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b) DBTC; Cobol

PROCEDUPF DIVISION.
OPFtl Pl\NDJ-2\nFA, NITH-110LD, RE~T.

FIND-r~ACPINF •
OPEN XP.
MOVF. MACHINE-Imr,'p.FR TO ~J\CH-NU~.BF:R.
FIND MACHINF-PFC():RD ~lIA SYS-l-']\CHINF. nSINC; !-mCII-NtnmFR.
IF ERROR-STATUS = 326 GO TO NOT-IN-!)ATA-BASE.

FOUND-~FC.
MOVE CURRFNCY S,!,1\.TUS FOR ~.ACHINF. RECORD TO SAVE-MACHINE.

GET-NFXT-~KII,L •
FIND NEXT ~KILL-LINK RFCORD OF' NFFDS-SKILL SFT.
IF FRROR-~TATUS = 326 OR 307 GO TO NO-ONE-AVAILABLE.
FInD ONNFR IN P1\.S-SKILL 8FT OF CURRENT OF' SKILL-LINK RFCORD.
IF ERROR-STATU~ = 322 THE~ GO TO GET-NEXT-SKILL.
l-iOVE CURRFNCY STATUS FnR PF~~ON RECORD TO SAVE-PERSON.
MOVE CURRENCY ~T}\~,!,U8 FOR PERPON RECORD TO CHFCK-PE:qSON-ITEH.
STORF CHFCK-PF~snN.
IF ERROR-STATUS = 1025 GO TO GET-NEXT-SKILL.

CHFCK-PERsnN-SCJTFDULF.
FIND NFXT SKILL-LINK RECORD OF HAS-SKILL SET1

SUPPRE~S NFFDS-SKILL CURRENCY UPDATES.
IF FRROR-ST~TUS = 307 GO Tn PFR~O~-IS-F~EE.
FIND ONNFR IN NFFDS-SKILL OF CtT'P.~FN'T' OF SKILL-LINK RECORD:

SUPPRFSS NFFD~-SKTLL rU~RENCY UPDATES.
IF ERROR-ST]\TtrS = 322 (';0TO CPFCK-PFPSONS-SCHFDULE.
1-10VE Ct'R~FNCY STfI'1"US Fn~ M]\CBINF PFrORD TO CHFCK-r~.CIIINF I'!'EH.
STORE CHFCK-'''l-.CJ-TINF.
IF FRROR-ST~TUS = 1025 GO TO CHFCK-PERSONS-SCHFDULE.
GET 1-'J\CHINE.
?10VE 1 TO AVl\.II,ABLE.
PERSON SFF-I!'-SCPFDULFD THFtT SEF-r.XIT VJ\RYINr.

SCIIFDtTLFD-C0UN'!' Fpm~ 1 BY 1 UNTIL SCHEDULE-COUNT
I~ G~F"TFR THAN SCHFDnLF..

IF AVl\ILJ\BLF = 0 C;O 'l."0 GFT-PE~{T-8KILL.
GO TO CHFCK-PFRsnNS-SCRFDULE.

SFF-IF-SCnFDt·Lr.o.
IF SCHFDULF.-STl'.RT-DATF IS G!lE1\'!'FR THAN SCP.FDULE-START

IN ~]\CHINF (SrHFDULF-COUNT) 1\ND LESS TPAN
SCHFDULF-cm~PLFTION IN ~]I.C'HINF. (SCHF.DtJLE-COUNT)

GO TO PF~snN-NOT-1\U]\ILABr.F.
IF SCJtFDPLF-!)]\.TF-r~D I~ c;~rA'T'FR TE1\N SCHrDULF-START

IN '·]\CHINF (SCPf'TmI,F.-cmm"") AND LFSS ",PJ\N
SCHFDtTLF-C()?'PLF'I'ION p~ r·'AClIINF (SCHEDULF-COPNT)
GO TO PFRSON-·mT-A~.'_TIILl\BLF.

Gn 'T'n srr-rXI'!'.
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PERSON-!10T-]lV1\ILr..BLE.
FIND PERSON USING SJ\VE-PEPSONi

SUPP~ESS ALL CURPENCY UPDATES.
GET PERSON.
IF' IDEHTIFICATION-NUM IN PBRS~N IS EQU1\L

WORKFR-IDENTIFICATION IN Ml\CHINF.(SCEEDULE-COUNT)
MOVE 0 TO AVAILABLE, r,O TO SEE-EXIT.

~OVF l'7(')RKFR-IDF'NTIFICP.TIONIN MJ\CHINE (SCHEDULE-COUNT)
TO InENTIPICJI.TION-NUM IN PERSON.

FIND PERSON RECORD,
SUPPRESS HJlS-SKILL CtTPRENCY UPDATES.

MOVE CURRENCY S'J'ATUf:FO~ PERSON RECORD
TO CHECK-PERSON ITEM.

STORE CHECK-PERSON.
SEE-EXIT. EXIT.
PERSON-IS-F'REE.

FIND PACHINE USING SAVE-MACHINE.
GET HACHINE.
FIND PERSON USING SAVE-PERSON.
GET PERSON.
AnD 1 TO SCHEDULE IN MACHINE.
MOVE IDENTIFICATION-!mM IN PERson TO WORKER-IDENTIFICATION

IN ~}\CHINE (f:CHEDULE IN r-1l\CHINE).
HOVE SCHEnUT_,E-STJ\PT-DATE Tn SCHEDULE-ST.1\RT IN M1\.CHINE

(SCHEDULE IN ?~l\CHINE).
HOVE SCHEDULE-DATE-END TO SCHEDULE-COHPLETION IN ~~ACHINE

(SCHEDULE IN P~CHINE).
MOVE SCHEDULE-TASK TO JOBCODE IN HACHINE (SCHEDULE IN

MACHINE) •
MODIFY HJ\CHINE.
IF ERROR-STATUS = 803

GO TO PERSON IS FREE.
CLOSE XP. GO TO GET-NEN-M1\CIIINE.

l\ppennix B 208



APPENDIX C
UPDATE E(')UIVi,\LENCES

In the following we use the fact that for logical values,
up~ate(p,t/r)reduces to (t and r) or (not t and pl. This
follows from the definition of update in terms of
if-then-else.
1. For conjunctions we use:

P and update(Q,t,r):update(P and Q,P ~ t,r)

To show this, it is convenient to take the right-hand-side.
Then by using simple propositional logic:

update(P ~ Q,P and t,r)
e(P and t and r) or ( not (P and t) and P and Q)
5(P and t and r) or « not t or not p) and P and Q)

=(p and t and r) or not t and P and Q
sP and «t and r) 2£ ( not t and 0»
sp ~ update(Q,t,r)

2. For disjunctions we use:

p ~ undate(Q,t,r)5update(P or Q,t and ~ Q,r)

Again, taking the right-hand-side:

update(P £!:. Q,t and not O,r)
Et and not Q and r or (t and not (1) and (p or Q)- -
Et and not Q and r or ( not t or Q) and (p or Q)- - - -
:t and not n and r or not t and p or 0

-appendix C 209



;::(tann r or not t and P) or Q-
E:update(P,t,r) ~Q

3. For negation we use:

.update(P,t,r)Eupaate( not P,t, not r)

As before, expanding the right-hand-side:

update( ~ P,t, ~r)

= not r and t or not t and not P

- not ( not ( not r ~ t) and not ( not t and ~ P»-
:: not (Lr or not t) and (t ~ P»-
== not (r and t or r and P or not t and p)- --
:: not (r and t or r and P and t

or rand P and not t or not t and p)

!: not (r and t or not t and p)
;; not update(p,t,r).

appendix C 210



REFERENCES

P.S.Abrams (1970)
An ~PL Machine.
of _ Stanford.

Doctoral Dissertation, University
(Issued by Digital Systems

Laboratory, Technical Report No.3).

J.R.Abrial (1974)
Data Semantics. In "Data Base Management", Ed.
Klimbe and Koffeman, North Holland, page 1 ff.
(From proceedings of IFIP TC.2 Working Conference,
Corsica,Apri11974).

A.V.Aho,J.E.Hopcroft,J.D.Ullman (1975)
The design and analysis of Computer Algorithms.
Adison-~·1elsley.October 1975.

Algol W. (1972)
Algol w Programming Manual.- Computing
Laboratory, University of Ne~.,castle-upon-Tyne.

F.E.}\.llen(1969)
Program Optimisation. Annual Review in Automatic
Programming, Volume 5. Pergamon Press. p.261.

Rp.ferences 2'1



M.~.Astrahan, n.D.Cha~berlin (1972)
Imple~entation of a Structured English Query
Language. IBM Research Report, RJ1072. San Jose,
July 1972.

R.Bayer (1971)
Lecture notes to the International Suw~er School.
Munich, July 1971. Part II, p.12.

R.Bayer, E.M.McCreight (1973)
Organisation and Maintenance of large ordered
Indices. Acta Informatica Vol.1 no.3, Harch 1973,

p.173.

S.M.Bernard (1970)
System/360 Report Program Generator.
Hall, New Jersey.

Prentice

R.F.Boyce et al. (1973)
Satisfying
SQUARE. IBM

Queries as Relational Expressions:
San Jose,Research Report, RJ1291,

October 1973.

References 212



G.Bracchi, ~.Feoeli, P.P~olini (1972 a)
A lanquanc for a r~lRtion~l
system. Procp'p-dinqs Sixth l\nnual Princeton
Conferenc~ on tnform~tion ~ciences nnd Synte~s.
Harch 1972.

G.Bracchi, A.Feoeli, P.Paolini (1972 b)
The Architecture of an Online Information
Manage~ent Syste~. Proceedinqs of thp. ONLINE 72
International Conferc-nce. Brunel University,
September 1972.

G.Bracchi, A.Feoeli, P.Paolini (1974)
A multi-level Relational ~odel for data-bane
nanaqel'lent Syst£'ms. In "n",tl'lD.'lse ~~anaCJeMent"•
Ed. Klimbe and Koff.e~an, North lIollanc1. p.211.

l'l.II.Burge (1975)
Stream Procpssinn Function~. IB~ Journal of
Research and Development. January 1975, p.12.

Burstall, Collins, Popplestone (1971)
Programminq in POP2.
p.30.

Rdinhurgh Univorsity Pr~ss.



R.M.Burstall, J.Darlington (1974)
Systematic Develop~ent of
EconoMies of Interaction.
circulated August 1974.

Progra~s by introducing
Preliminary draft,

R.Carnap (1958)
Introduction to Symbolic Logic. Dover
Publications, New York.

D.L.Childs (1968)
Feasibility of a set-theoretic data structure.
Proceedings IFIP Congres~, Edinburgh 1968. North
Holland. Booklet 1, p.162.

Codasyl (1971)
Data base Task Group of the Codasyl Programming
Language Committee. Report, April 1971.

D.D.Chamherlin, R.F.Boyce (1974)
SEQUEL: A Structuren English Query Language.
proceedings 1974 ACH Sigfidet l\Torkshop,Ann }\.rbor,
Michigan. April 1974.

J.Cocke, J.Schwartz (197n)
Programming Languages and
Courant Institute, Nm., York.

their Compilers.

References 214



E.F.Codd (1972 a)
Relational Completeness
sub-languages. !B~ Research
Jose, March 1972.

of data
Report RJ997.

base
San

E.F.Codd (1970)
A relational model for large shared data banks.
Cornmunications Acr~. Vol.13 no.6. June 1970.
p.377.

E.F.Codd (1971)
A data-base sub-language founded on the relational
calculus. Proceedings of the 1971 ACM SIGFIDET
Workshop on data Description Access and Control.
San Diego.

E.F.Codd (1972 b)
Further Normalisation of the data base relational
'model. In "Data Base Systems". Ed.

Science Symposia,
Rustin.
'\701.6.Courant Computer

Prentice Hall.

M.J. Cress"7ell (1973)
Logic and Languages. ~ethuen Press.

References 215



J.Darlington, R.M.Burstall (1973)
A system which automatically improves programs.
Proceedings 3rd International Conference on
Artificial Intelligence. S.R.I. p.479.

C.J.Date (1975)
An Introduction to data-base systems.
Wesley, New York.

Addison

C.Delobel, R.G.Casey (1973)
The decomposition of a data-base and the theory of
Boolean Switching functions. IBM Journal of
Research and Development Vol 17 no 5, Septe~ber

1973.

E.W.Elcock et al. (1971)
ABSET. A programming language based on sets:
motivation and examples. Machine Intelligence.
Volume 6. Ed Michie, Edinburgh University Press,
p.467.

J.J.Plorentin (1972)
Consistency auditing of data bases. Draft paper,
circulated August 1972.

Re~erences 216



J.M.Foster, E.W.Elcock (1968)

ABSYS 1: an increMental compiler for assertions.

Hachine Intelligence. Volume 3, Ed. Michie.

Edinburgh University Press. p.423.

S.L.Gerhard (1974)

Correctness preserving program transformations.

Proceedings second ACM/SIGPLAN Symposium on

Principles of programming languages. 1974 p.54.

S.P.Ghosh, M.M.Astrahan (1974)

A translator Optimiser tor obtaining answers to

entity-set queries from an arbitrary access-path

network. Information processing 74. North

Holland, p.436.

p.e.Goldberg (1974)

Automatic Programming. IBM Research Report.

'RCS148, Yorktown, September 1974.

D.Gries (1971)

Compiler Construction

Wiley, New York, 1971.

for digital

p.205.

Computers.

References 217



C.B.B.Grinday, W.G.R.Stevens (1968)
Principles of the identification of information.
Proceenings IFIP International Seminar on file
organisation. North Holland, Noveroher 1968,
p.60.

P.A.V.Hall (1974)
Common sub-expression identification in general
algebraic systems. IBM (UK) Scientific centre
report UKSC 0060.

P.A.V.Hall, S.J.P.Todd (1974)
Factorisation of algebraic expressions. IBl1 (UK)
Scientific Centre report UKSC 0055, April 1974.

P.A.V.Hall, P.Hitchcock, S.J.P.Todd (1974)
•

An algebra of relations for machine computation.
Second AC}1SIG7'CT/SIGPLAN Symposium on principles
'of programming languages. 1974. p.225.

M.H.Halstead (1974)
Soft,.,arephysics conpari son of a sample program in
DSL Ar~PHJ\and Cobol. IBM Research Report RJ1460,
San Jose, October 1974.

References 218



I.J.Heath (1972)

Unacceptable file operations on a relational
data-base. IBM (UK) Technical Report. TR12.094.
March 1~72 p.S7.

P.Henderson, J.Morris (1975)
The lazy evaluator. Unpublished draft, August
1975.

C.He\'Titt(1969)
PLANNER: A language for proving theorems in
robots. Proceedings of the International Joint
Conference on Artificial Intelligence. Bedford,
Mass. ~itre Corp. 1969. p.29S.

C.A.R.Hoare (1969)
An exiomatic basis of computer programming.
Commund.cat Lons AC~, Vol.12 no.10, October 1969,
p.576.

C.A.R.Hoare (1972)
Notes on data structuring. In "Structured
PrograMming", O-J Dahl, E.W.Dijkstra, C.A.R.Hoare.
Academic Press, p.83.

References 219



r ,n.s, (1968)
IDS Reference Manual. GE 625/535. G.E.
Information Syste~s, Phoenix February 1968.

IMS/360 (1972)
IMS/360 General Information Manual.
Number GH20-0765-3 NoveJTIber1972.

IBH Form

S.Kleene (1967)
!1athematicalLogic. Wiley, p.154.

D.E.Knuth (1973)
The Art of Computer Programming Volume 3, "Sorting
and Searching". Addison Wesley. p.205.

D.E.Knuth (1974)
Structured
Computing
-p.261.

Programming
Surveys, Vol.6

with goto statements.
no.4, DeceJ"lher 1974,

R.Kowalski (1974)
Predicate Logic as a programming language.

North Holland, p.569.Information Processing 74.

M.Krohn, p.Williamson (1972)
Towards an automatic system generator. sor tware
72. Transcript books, p.72.

References 220



J.L.Kuhns (1969)
Logical aspects of que~tion answering by co~puter.
Proceedings third international symposium on
Information Sciences. Miami, December 1969.
Aca.demicPress.

P.J.Landin (1966)
The next
Corornunications

700
ACM,

programming
'101.9 no.3

languages.
(~arch 1966)

p.157.

J.Longstaff, F.poo1e (1974)
A new reduction algorithm for a relational
data-base. Tees-side Polytechnic report. Draft,
Circulated, November 1974.

R.1\.Lorie (1974)
X.R.M. An extended (N-ary) Relational Memory.
IBM Scientific Centre Report, 320 - 2096 Cambridge
(Mass). October 1974.

M.G.Notley (1972)
The Peterlee IS/1 Syste~. IBM (UK) Scientific
Centre Report UKSC 0018, Harch 1972.

'Refe-rences 221



I.Osman (1974)
Matching storage organisation to usage pattern in
a Relational Data Base. Ph.D. Thesis, University
of Durham, October 1974. p.29.

F.P.Palermo (1972)
A data base search problem. IBM Report ~J1072,
San Jose, July 1972.

p.H.Prowse (1973)
The relational model as a systems analysis tool.
BSC Symposium on relational data-base concepts.
London, April 1973.

J.T.Schwartz (1970)
Set theory as a language for program specification
and programming. Notes, distributed 1970.

t-t.E.Senkoet al. (1973)
Data structures and accessing in data base
systems, II Information organisation. IB~1
Systems Journal, 1973 no.1, p.45.

P.M.Stocker, P.A.Dearnley (1973)
Self-organising data management systems. Computer
Journal vol.16 no.2, (February 1973) p.100.

References 222



G.C.H.Sharman (1975)
A new model of relational data base and high level
languages. IBM (UK) technical report TR 12-136,
February 1975.

A.L.~trnad (1971)
The relational approach to the management of the
data base. Proceedings IFIP Congress, Lubjana,
1971. Booklet 5 p.91.

P.J.Titman (1974)
An experimental data-base system using binary
relations. In "Data Base Management", ed Klimbe
and Koffeman, North Holland, p.351.

S.J.P.Todd (1975)
PRTV: A technical overview. IB~'~ Scientific
Centre Report UKBC 0075, !~ay1975.

F.B.Thomson et al (1969)
REL: A rapidly
Proceenings 24th
York. p.399.

extensible
AC~ National

language system.
Conference, New

Refp.rences 223



G.Urschler (1969)

Concrete Syntax of PL/I (ULD Version III) • IB~'

Laboratory Vienna, Technical Report TR.096, June

1969.

H.Wedekind (1974)

On the selection of access-paths in a data base

system. In "Data Base Management", ed Klirnbe and

Koffernan, North Holland, p. 385. (Proceedinqs IFIP

TC.2 working conference, Corsica, ~pril 1974).

W .A.Woods, R.l-i. Kaplan, B.N.t'7eber(1972)

The Lunar sciences Natural language Information

System. B.B.N. Report number 2378. June 1972.

References 224



Errata

Page 216 Insert:

R.M. Burstall, J. Darlington.

Some transformations for developing

recursive programs.
Proceedings International conference

on reliable software, Los Angeles April, 1975, p.465.

Page 219 Insert,
P. Henderson, J. Morris.

A lazy Evaluator,

Proceedings of the third A.C.M. symposiom

on the principles of programming languages,

Atlanta Georgia, Jlmuary 1976 p.95

Page 222 Insert:

J. T. Schwartz.

Automatic and semi-automatic optimisation

in SETL.

Proceedings A.C.M. Sigplan Symposium on very-

high-level languages. Sigplan notices 9, 4 April 1974.


