
UNIVERSITY OF NEWCASTLE UPON TYNE

DEPARTMENT OF COMPUTING SCIENCE

FAULT-TOLERANT GROUP COMMUNICATION PROTOCOLS

FOR ASYNCHRONOUS SYSTEMS

Ph.D THESIS

BY

Raimundo Jose de Araujo Macedo

NEWCAS1LE UPON TYNE

AUGUST,1994

NEWCASTLE UNIVERSITY LIBRARY
094 05412 6

I dedicate this thesis to my children

Lucas and Lais

and to my parents

Joselita and Raimundo

i

Acknowledgements

I would like to express my sincere gratitude to several people who have

contributed in various ways to the completion of this thesis.

First and foremost, I thank my supervisor, Professor Santosh K. Shrivastava. His

guidance and technical contributions throughout this work have been invaluable.

Santosh's constant enthusiasm and encouragement have been essential for the

completion of this thesis.

I am indebted to Dr. Paul Ezhichelvan. The countless discussions I have had with

Paul have helped me to clarify many questions on Group Communication Protocols. I

also declare that the material on group membership presented in this thesis has been

carried out through joint work with Paul.

I shall never forget the support and friendship of many people who along these last

few years have helped me to overcome many difficult moments of my personal life.

Although taking the risk of omitting important names, I shall mention Claudete Alves,

Marta Macedo, Aldineia Ferreira, German Medina, Marisol Kucharek, Marcos

Euzebio, Sandrine Dalban, Carlos Lopes, Kristina Baldus, Robert Burnett, Tatiana

Simas, and Helder Pires.

I would like also to thank several of my colleagues and staff members of the

Computing Science Department for their prompt help and technical support on many

occasions. These include Trevor Kirby, Alcides Calsavara, Fernando Capretz, Rogerio

de Lemos, Luis Buzato, Stuart Wheater, and Gillian Dobson. Also, many thanks to

Shirley Craig for her patience and efficient help in searching out many relevant

references for this thesis.

I am also thankful to the Federal University of Bahia, in Brazil, which provided

institutional support for my studies in Newcastle. Financial support for this thesis has

been provided by the Brazilian Research Council (CNPq), grant number 200811/89.4.

ii

Abstract

It is widely accepted that group communication (multicast) is a powerful

abstraction that can be used whenever a collection of distributed processes cooperate

to achieve a common goal such as load-sharing or fault-tolerance. Due to the

uncertainties inherent to distributed systems (emerging from communication and/or

process failures), group communication protocols have to face situations where, for

instance, a sender process fails when a multicast is underway or where messages from

different senders arrive in an inconsistent order at different destination processes.

Further complications arise if processes belong to multiple groups.

In this thesis, we make use of logical clocks [Lamport78] to develop the concept

of Causal Blocks. We show that Causal Blocks provide a concise method for

deducing ordering relationships between messages exchanged by processes of a

group, resulting in simple methods for dealing with multiple groups. Based on the

Causal Blocks representation, we present a protocol for total order message delivery

which has constant and low message space overhead (Le. the protocol related

information contained in a multicast message is small). We also present causal order

protocols with different trade-offs between message space overhead and speed of

message delivery. Furthermore, we show how the Causal Blocks representation can

be used to easily deduce and maintain reliability information. Our protocols are fault-

tolerant: ordering and liveness are preserved even if group membership changes occur

(due to failures such as process crashes or network partitions). The total order

protocol, together with a novel flow control mechanism, has been implemented over a

set of networked Unix workstations, and experiments carried out to analyse its

performance in varied group configurations.

iii

Contents

Acknowledgements ii
Abstract iii
Contents iv
Dlustrations vi

Chapter 1 - Introduction 1
1.1 Group Communication 2

1.1.1 Process Crashes and Membership Reconfiguration 2
1.1.2 Message Ordering 3
1.1.3 Message Delivery in Overlapping Process Groups 4

1.1.4 Existing Group Communication Protocols 4

1.2 Contributions of the Thesis 5
1.3 Thesis outline 6

Chapter 2 - Group Communication Protocols and Related Problems 9
2.1 Synchrony and Group Communication 9
2.2 The System Model 11

2.3 Overlapping Process Groups 12

2.4 Message Order Delivery 13

2.4.1 Event Ordering in Distributed Systems 14
2.4.2 Identical Order Delivery 15
2.4.3 Causal Order Delivery 16
2.4.4 Total Order Delivery 18

2.5 Fault-Tolerance 19

2.6 Related Work 23

2.6.1 Chang and Maxemchuk's protocol.. 23
2.6.2 V System and Amoeba 24
2.6.3 ISIS protocols 25
2.6.4 Psync protocol 27
2.6.5 Trans and Total protocols 29

2.6.6 Transis protocols 30

2.6.7 Garcia-Molina and Spauster's protocol.. 30

2.6.8 Mostefaoui and Raynal's protocol 31
2.6.9 Outlined Solutions and the Protocols developed in this
Thesis 32

IV

2.7 Conclusions 33

Chapter 3 - The Causal Blocks Model: Basic Principles and Concepts 35
3.1The System Model and Failure Assumptions 35
3.2 Block Counters 37
3.3 Causal Blocks and the Block Matrix 39

3.4 Block Completion 41
3.5 The Last Received Vector - LRV 42
3.6 Message Ordering 43
3.7 Representing Missing Messages in the Block Matrix 45
3.8 Conclusions 46

Chapter 4 - The Total Order Message Delivery Protocol, Newtop 48

4.1 The System Model 49
4.2 Construction of Causal Blocks for Total Order Delivery 50
4.3 Time-silence Mechanism 52
4.4 Overlapping Groups 54
4.5 Protocol Description 57

4.5.1 Algorithm 57

4.5.2 Correctness of the Protocol. 61
4.6 Conclusions 63

Chapter 5 - Causal Order Message Delivery in Overlapping Process Groups 65
5.1 Representing Causal Relationship precisely using Causal Blocks
Numbers 67
5.2 Causal Order in Overlapping Process Groups 70

5.3 System Model and Failure Assumptions 71

5.4 The Slow Causal Order Protocol. 71
5.5 The Fast Causal Order Protocol 72
5.6 The Relative Causal Order Protocol 74
5.7 Conclusions 80

Chapter 6 - Introducing Fault-Tolerance to Newtop 82

6.1 Group Patitioning 82

6.2 The Fault-Tolerant Properties of Newtop 83
6.3 Making Newtop Fault-Tolerant 86

6.3.1 Message Stability 87
6.3.2 Managing Group Membership 87
6.3.3 Example of an Execution of the Group Membership

Algorithm 92

6.4 Comparison with Existing Related Work 94

v

6.5 Conclusions 96

Chapter 7 - The Implementation of Newtop ··· ··· 98
7.1 The Transport Multicast Layer 98
7.2 The Newtop Layer 102

7.2.1 Message Queues 102
7.2.2 The Block Matrix 103
7.2.3 Time-out Class 104
7.2.4 Group Naming 105
7.2.5 The Configuration File 105
7.2.6 The Newtop Class 106
7.2.7 The Receiver Process ·· 108
7.2.8 The Transmitter Process 108
7.2.9 The Deliver Process 109
7.2.10 The Clock-Ticks Process 110

7.2.11 The Local_time_silence Process ··············· 110
7.2.12 The SuspectorProcess 111
7.2.13 The Membership Process 111

7.3 Experimental Results 112
7.3.1 Performance Measures 112

7.3.1.1 The l-active Experiment 115
7.3.1.2 The all-active Experiment 116

7.3.2 Commenting on Performance Results ············118
7.4 Conclusions 128

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols 130
8.1 Flow Control in Newtop 132
8.2 Experimental Results 138
8.3 Related Work 140
8.4 Conclusions 142

Chapter 9 - Conclusions 143
9.1 Synopsis 143
9.2 Future Work 147

References 150

vi

Illustrations

2.1 - The System Model 12
2.2 - On-line Server Migration 13

2.3 - Identical Order Delivery in Overlapping Groups 16
2.4 - Causal Order Delivery 17
2.5 - Causal Order Delivery in Overlapping Groups 18
2.6 - Effects of crashes on Group Communication 21
2.7 - Chang and Maxemchuk's protocol 24
2.8 - Causal Order Delivery using Vector Clocks 26
2.9 - Representing Causal Information in the Context Graph 28

3.1 - The Block Matrix of a 6-member Group Process 40

3.2 - Representation of Complete and Incomplete Blocks using LRV 43
3.3 - The Block Matrices of a 3-member Group 45
3.4 - Example of a Block Matrix in a 4-member Group 46

4.1 - Overlapping Groups gland g2 54
4.2 - Acyclic and cyclic Overlapping Groups 57

5.1 - Graph 0 of overlapped process groups 71
5.2 - The msg-delivery sub-process for slow causal order delivery 72
5.3 - The send primitive 75

5.4 - The msg-receive sub-process 76
5.5 - The msg-deliver sub-process 76

6.1 - Example of Network Partitioning 93

7.1 - The BM data structure 104
7.2 - The Newtop Protocol. 108
7.3 - The l-active 3-member group experiment. Maximum number of
unstable blocks 119
7.4 - The l-active 3-member group experiment. Null messages transmitted
by all group members 119

7.5 - The l-active 3-member group experiment. The average delay overhead 120

7.6 - The l-active experiments for different group configurations. Maximum
number of unstable blocks 121

vii

7.7 - Thel-active experiments for different group configurations. Average
number of messages transmitted per inactive process 121
7.8 - Thel-active experiments for different group configurations. The

average delay overhead 122

7.9 - The l-active 3-member group experiment. Maximum number of

unstable blocks 123
7.10 - The l-active 3-member group experiment. Average delay overhead 123
7.11 - The l-active 3-member group experiment. Average number of null
messages transmitted per receiver 124
7.12 - The l-active 3-member group experiment. Throughput: number of

messages delivered per second 124

7.13 - The all-active 3-member group experiment. Maximum number of
unstable blocks 125
7.14 - The all-active 3-member group experiment. The total number of null
messages transmitted 125
7.15 - The all-active 3-member group experiment. The average delay

overhead 126

7.16 - The all-active experiment for varied group sizes. Maximum number of

unstable blocks 127
7.17 - The all-active experiment for varied group sizes. The average delay
overhead 127
7.18 - The all-active experiment for varied group sizes. Total null messages
transmitted by the group 128

8.1 - n2-stable, stable, complete and incomplete Causal Blocks 136
8.2 - l-sender and 5-receivers with flow control switched off 140
8.3 - l-sender and 5-receivers with flow control switched on 140

viii

Chapter 1 - Introduction

Chapter 1 - Introduction

Distributed systems are generally characterised by a set of processes residing at a

number of computing units (such as workstations or personal computers), possibly

spread over a geographical area, where processes communicate to each other only by

means of message exchange. The use of such systems have notably expanded over the

years, for computing units and communication links have become increasingly more

available and cheaper.

Besides making possible the realisation of applications that are inherently

distributed (e.g. computer supported collaborative work), distributed systems

facilitate two new possibilities for computing systems, when compared with the

traditional centralised systems: the possibility of implementing fault-tolerance by

replicating processes over distinct computing units (in contrast to just hardware

redundancy used in centralised systems) and the exploitation of parallel computations

to improve application performance. Unfortunately, there are two difficulties that

must be faced by designers of distributed systems which are not present for centralised

systems. Firstly, the absence of global state (global clock or shared memory) among

distributed processes makes the problem of ordering events in a distributed

computation become much harder. Secondly, time uncertainties on process

communication delays caused by factors such as communication failures (e.g. message

losses) or arbitrary process execution times due to variations on system loads,

introduces a new problem: how to detect whether a remote process is operational (i.e.

whether or not it has crashed)'. In a group communication setting, such an

uncertainty can create inconsistencies (processes can get mutually inconsistent views

of the group membership). System designers are then faced with the challenge of

providing proper abstractions which would hide most of the common complexity of

1 Note that Distributed Systems can partially fail due to the failures of some of its components
(processes or communication links) whereas centralized systems only fail entirely.

1

Chapter 1 - Introduction

distributed programming, facilitating the work of application developers. Group

communication with some message ordering and reliability guarantees have been

advocated as such an abstraction [Birman91a, 01sen91, Verissfm093] and it is the

concern of this thesis.

1.1 Group Communication

Group communication (or multicast) can be used whenever groups of distributed

processes cooperate for the execution of a given task such as committing a distributed

data base transaction, or to achieve fault-tolerance or better performance (by

replication). In group communication, processes usually communicate in a group basis

where a message is sent to a group of processes, rather than just to one process,

which is the case in point-to-point communication. With a group is usually associated

a name to which application processes will refer, making transparent the location of

the distributed processes forming the group. Due to the uncertainties inherent to

distributed systems (emerging from communication or process failures), group

communication protocols have to face situations where, for instance, a sender process

fails when a multicast is underway or where messages arrive in an inconsistent order

at different destination processes. On the other hand, distributed applications usually

require that processes forming a group "see" events such as processes failures and

message delivery in a mutually consistent way. For instance, active replication

requires that messages are delivered in the same order at all the replicas and that

failures are handled in a mutual consistent manner among operational replicas.

1.1.1 Process Crashes and Membership Reconfiguration

Process crashes should ideally be handled by a fault tolerant multicast protocol in

the following manner: when a process does crash, all functioning processes must

promptly observe that crash event and agree on the order of that event relative to

other events in the system. As hinted earlier, in systems subjected to arbitrary

communication and processing delays (such a system is referred to as an

asynchronous system) this is impossible to achieve: when processes are prone to

2

Chapter 1 - Introduction

failures, it is impossible to guarantee that all non-faulty processes will reach

agreement in finite time [Fischer85]. This impossibility stems from a process' inability

to distinguish slow processes from crashed ones. Asynchronous protocols therefore

need to circumvent this impossibility result by permitting processes to suspect process

crashes [Chancira91] and to reach agreement only among those processes which they

do not suspect to have crashed [Ricciardi91]. A process detected to have crashed will

then be removed from the group membership of the operational members involved in

the agreement. Hence, a membership reconfiguration service must work in co-

operation with the group communication protocol in order to provide the members of

a group with a mutually consistent view of the order in which membership changes

occur. Moreover, processes forming a new membership should be delivered the same

set of messages, even when a process removed from the membership crashed during a

multicast and before that multicast message had reached all destination processes.

1.1.2 Message Ordering

Some distributed applications require that messages multicast are delivered in such

a way that some specific order is not violated. In asynchronous systems, messages

may arrive in arbitrary order at destinations. For example, consider that the messages

m and m' are sent by two different processes to a group g. A given process p

belonging to g could receive m before m' whereas another process q also belonging to

g could received m' before m. Thus, delivery order of m and m' in p and q would

violate the identical order principle required, for instance, by active replication

applications. So, group communication protocols have to provide users with some

message order guarantees, making transparent to the application processes the fact

that messages may be delivered in an arbitrary order by the low level network

protocol.

3

Chapter 1 - Introduction

1.1.3 Message Delivery in Overlapping Process Groups

In some applications, processes are required to simultaneously participate m

multiple groups [Binnan91c, Garcia-Molina91]. That is, process groups may overlap.

For example, take a computer based conferencing application where users may

simultaneously participate in different conversations (or groups). Suppose a given

multi-group user generates a message m' in a group B as a consequence of a message

m delivered to the same user in group A. Other multi-group users participating

simultaneously in groups A and B, would then require that m' be delivered only after

m has been delivered (otherwise, m' may make no sense). Since message m potentially

caused message m', we say that they are causally related [Lamport78]. For correct

delivery of messages m and m', we require a protocol which delivers messages

respecting their causal origin or in causal order. If besides respecting the causal order,

messages are required to be delivered in identical order, we say that messages are

required to be delivered in total order. The precise notion of causality as well as other

order requirements for overlapping groups are examined in more detail in the next

chapter as well as in the subsequent chapters where our protocols are presented.

1.1.4 Existing Group Communication Protocols

In the last few years, several group communication protocols have been proposed

for use in distinct system settings, providing users with a variety of services

[Chang84, Birman91b, Peterson89, Melliar-Smith90, Amir92a]. This thesis builds on

existing works and is concerned with the development of portable (i.e. not designed

for a specific network topology or system setting) fault-tolerant group communication

protocols. Particularly we aim for a protocol adequate to a variety of network

topologies and application requirements such as group overlapping. Thus, we avoid

specific assumptions such as known and bounded message transmission latency

[Lamport82, Strong83, Fischer83, Babaoglu88], broadcast support on the underlying

communication network [Melliar-Smith90, Amir92a, Rodrigues91], or the absence of

network partitions [Birman91b, Peterson89]. In addition, we aim for protocols that

4

Chapter 1 - Introduction

preserve some required message order delivery even when groups overlap. Although

group overlapping has been addressed in previous work [Birman91 b, Garcia-

Molina91, Mostefaoui93], these protocols have not addressed causality preserving

total order message delivery for overlapping groups.

1.2 Contributions of the Thesis

In this thesis, we make use of logical clocks [Lamport78] to develop the concept

of Causal Blocks. We show that Causal Blocks provide a concise method for

deducing ordering relationships between messages exchanged by processes of a

group, resulting in simple methods to deal with overlapping groups. Based on the

Causal Blocks representation, we present a protocol for total order message delivery

which has constant and low message space overhead (Le. the protocol related

information contained in a multicast message is small). We also present causal order

protocols with different trade-offs between message space overhead and speed of

message delivery. Furthermore, we show how the Causal Blocks representation can

be used to easily deduce and maintain reliability information.

The protocols we present do not use extra control messages in order to enforce

correct message delivery. Some of the protocols, however, require that processes are

lively in sending messages (Le. now and then a new message is transmitted), and to

guarantee this liveness we introduce the time-silence mechanism.

We develop and show the implementation of a distributed failure suspector based

on the Causal Blocks representation and local time-outs. Based on this failure

suspector, we have developed a fault-tolerant total order protocol for overlapping

process groups which works correctly despite process crashes and network partitions.

To our best knowledge there is no other existing protocol fulfilling these requirements

all together. We also present a novel flow control mechanism to be used in multicast

protocols and formally prove its correctness. All protocols and services such as

membership, the flow control, time-silence, and the suspector have been developed

based on the Causal Blocks representation and therefore they work in a integrated

5

Chapter 1 - Introduction

manner, without relying on any external service. This makes our work distinctive from

existing works in the area.

We have implemented the total order protocol (Newtop) and carried out

experiments to analyse the effects of the time-silence mechanism (transmission of null

messages) and the degree of processes activity (rate of message transmission) on the

protocol performance.

1.3 Thesis outline

This thesis is structured in 9 chapters. Basic background material is presented in

chapter 2. Chapter 3 introduces the Causal Blocks model and it is a pre-requisite for

all remaining chapters. Chapters 4 and 5 are independent and can be read in any order.

Chapter 6 and 7 can also be read in any order but their contents depend on chapter 4.

Chapter 8, if desirable, can be read straight after chapter 3. Below is a summary of the

chapter contents, from chapter 2 to chapter 9.

Chapter 2 discusses issues related with Group Communication. Section 2.1

comments on the effects of synchronous and asynchronous modelling on performance

and failure detection. Section 2.2 presents the system model. The following three

sections discusses issues related with group communication protocols: group

overlapping, message order delivery, and fault-tolerance, respectively. Section 2.6

comments on previous related work and section 2.7 concludes the chapter.

Chapter 3 presents the basic principles and terminology of the Causal Blocks

model which has been developed to represent message ordering and reliability

information in a concise manner. The first section of the chapter states the system

model assumed. The next three sections show how Causal Blocks are constructed,

demonstrating the main properties of the model. Section 3.5 shows a compact

representation for a Block Matrix (Le. a set of Causal Blocks). Message ordering for

delivery is examined in section 3.6. Sections 3.7 shows how missing (sent but not

received) messages are represented in a Block Matrix and section 3.8 concludes the

chapter.

6

Chapter 1 - Introduction

In chapter 4 we present a total order protocol for overlapping process groups and

prove its correctness. After showing how to organise Causal Blocks for total order

delivery in section 4.2, we present in section 4.3 a mechanism called time-silence that

guarantees the liveness of the protocol. Section 4.4 discusses total order using Causal

Blocks in a group overlapping scenario. Section 4.5 gives an algorithmic description

and proves correctness of the total order protocol. The chapter is concluded in section

4.6.

In chapter 5 we discuss causal order delivery in overlapping process groups and

present protocols based on Causal Blocks which yield different trade-offs between

message delivery delay and message space overhead (the amount of ordering

information added to user messages). In section 5.1 we show how Causal Block

numbers can be used to precisely represent causal relationship between transmitted

messages. Sections 5.2 discusses causal order delivery in overlapping process groups.

After presenting the system model and failure assumptions in section 5.3, we describe

the Slow, Fast, and Relative causal order protocols, in sections 5.4, 5.5, and 5.6,

respectively. Section 5.7 concludes the chapter.

Chapter 6 discusses how to introduce fault-tolerance to Causal Blocks based

protocols. In particular, we show how to extend the total order protocol presented in

chapter 4 into a fault-tolerant total order protocol, by developing a failure suspector

and a membership algorithm using the Causal Blocks representation. Section 6.1

discusses the requirement of group partitioning for multicast protocols. Section 6.2

presents the fault-tolerant properties of the total order protocol we develop. Section

6.3 describe the fault-tolerant mechanism developed. Section 6.4 discusses related

work. The chapter is concluded in section 6.5.

Chapter 7 describes the implementation of the total order protocol (the protocol

Newtop) over a Unix network and shows performance figures collected. Section 7.1

presents how the transport multicast layer has been implemented using Unix Sockets.

Section 7.2 describes the implementation of the Newtop protocol. Section 7.3

7

Chapter 1 - Introduction

discusses the experiments realised, shows and comments performance figures.

Conclusions are drawn in section 7.4.

Chapter 8 presents a novel flow control mechanism for multicasts and presents its

implementation as part of the protocol Newtop. Section 8.1 presents the flow control

scheme and proves its correctness. Section 8.2 presents and discusses experimental

results. Section 8.3 comments on related work and section 8.4 concludes the chapter.

Conclusions of the thesis are drawn in chapter 9 where future work is also

discussed.

8

Chapter 2 - Group Communication Protocols and Related Problems

Chapter 2 - Group Communication Protocols and Related
Problems

In this chapter we discuss the relevant issues related to the design of group

communication protocols. The difficulty in developing a group communication

protocol will depend on the degree of reliability and ordering guarantees required.

Additionally, the processes forming a group should behave as if they were a single

entity, so that application processes can deal with a process group without worrying

about both its internal structure and the management of group members. We start in

the next section by discussing the implications of synchronous and asynchronous

communication environment on group communication. We then present the system

model adopted in this thesis, discuss issues of ordering and fault-tolerance concerning

multicast protocols, and then finally we comment on existing related work.

2.1 Synchrony and Group Communication

Distributed systems can be broadly classified into two categories : synchronous

and asynchronous. Synchronous systems assume that message processing and

communication delays are known and bounded. Therefore, it is possible to determine

timeout durations that can be used as an accurate indication of failures. It is also

possible to keep local process's clocks synchronised within a known bound E and

synchronous protocols often rely on this assumption. Consider that B, B > 0, is the

bounded time interval within which a transmitted message is received at a destination

process. Synchronised clocks imply that for any two processes p and q, with local

clocks Cp and Cq, respectively, and for a given moment in real-time t, ICp(t) - Cq(t) I

~ E. SO, if there are no failures, a transmitted message timestamped with the sender

process' clock reading, say T, will arrive at the destination process no later than T + B

+ E (according to the local clock of the destination process). There are also protocols

for synchronous systems which do not rely on the assumption of explicitly

9

Chapter2 -GroupCommunicationProtocolsandRelatedProblems

synchronised clocks but still guarantee that operations are terminated within a

bounded time interval [Ezhilchelvan93, Rodrigues91].

Multicast protocols for synchronous systems [Lamport82, Strong83, Fischer83,

Babaoglu88, Cristian90] 1 usually work in a scheme of rounds where a round has a

time duration, say A, (according to process local clocks). Messages are sent in the

beginning of a round, and A must be "large enough" so that, destination processes can

deliver all the messages sent to them in a round before the end of the round is

reached. Suppose a multicast is initiated by a process at a time T (on its local clock).

Reliability and ordering guarantees can be provided as follows: a multicast is either

delivered at each functioning process at time T + A or is never delivered at any

functioning process (atomic delivery); when T + A is reached (according to process

local clocks) multicast messages timestamped with T will be ordered (in a

deterministic way) before being delivered. This scheme (depending on how large A is)

can have an bad effect on performance, since messages can only be consumed when

the end of the round is reached, even if all the messages are received at the beginning

of the round. Nevertheless, the termination time (T + A) of multicast for synchronous

systems is essential for applications requiring timeliness guarantees such as in real-

time applications.

The assumption of bounded transmission delay and processing time (Le.

synchronous systems) can be realised in some systems settings by using special

mechanisms such as running protocol processes with high-priority, guaranteed

network bandwidth to "urgent" traffic, etc. However, the synchronous system

assumption is quite hard to realise in system settings such as long-haul networks

interconnecting general purpose multi-task systems, subjected to factors like:

1 These protocolsare actuallyreferedto as AtomicBroadcastProtocols.Broadcastusuallymeans
sendinga messageto all nodesconnectedto a network.Multicastprotocols,on the otherhand, aima
sub-setof thenodesconnectedto a networkand,moregenerally,a setof distributedprocesses.Thus,
multicastcan be thoughtof as a generarizationof Broadcast.Therefore,the principlespresentedin
theBroascastprotocolscitedcanbe directlyappliedto thecorrespondingmulticastprotocols.

10

Chapter 2 - Group Communication Protocols and Related Problems

unpredictable variations in system loads, queuing delays, unpredictable routings,

message retransmissions due to errors, etc.

We are interested in group communication protocols for distributed systems with

arbitrary network topology and diverse computing systems. Therefore, we have

chosen to model our system as asynchronous, where no bound on message

transmission delay and relative process speed can be accurately estimated. The no-

bound assumption has a strong implication on failure detection, since under these

circunstances it is impossible to distinguish between a crashed (or disconected)

process and a slow one. On the other hand side, if a process does crash, it is important

that non-faulty processes forming a group come to an agreement on that crash and

remove the crashed process from the group; this is however impossible to achive

within a finite time [Fischer85].Asynchronous protocols therefore need to circumvent

this impossibility result by permitting processes to suspect process crashes

[Chandra91, Schiper93c] and to reach agreement only among those processes which

they do not suspect to have crashed [Ricciardi91]. A process detected to have crashed

will then be removed from the group membership of the functioning members

involved in the agreement. Of course, there is the possibilityof a functioning process

erroneously be taken as crashed. Other implications of failures in asynchronous

systems are discusses in section 2.5.

2.2 The System Model

We model our system as a set of sequential processes, distributed possibly in

distinct processors or sites, which in their tum are linked by communication channels.

We assume that processes can communicate to each other only by exchanging

messages. We also assume the existence of a message transport layer permitting

uncorrupted and sequenced message transmission between a sender and the

destinations processes-, A group is defmed as a collection of distributed processes in

2This functionality is provided by standard IPC mechanisms such as Unix TCP/IP sockets.

11

Chapter 2 - Group Communication Protocols and Related Problems

which a member process communicates with the other members only by multicasting

to the full membership of the group. A given process can be member of more than one

group. That means, we assume groups may overlap. No assumption about message

transmission time is made (i.e. asynchronous modeling). Process and communication

failures assumptions are discussed in section 2.5. In figure 2.1, we illustrate the

system model. Applications are built on top of the group communication layer and the

group communication layer is built on top of the transport layer.

Application layer
Group communication layer

Transport layer

Figure 2.1 - The System Model

2.3 Overlapping Process Groups

In some applications, processes are required to simultaneously participate in

multiple groups [Birman91c, Garcia-Molina91]. That is, process groups may overlap.

Overlapping groups imposes extra complexity for multicast protocols since message

delivery guarantees for different groups must take the existence of common members

into account. In section 1.1.3 we have discussed the need for group overlapping in

conferencing computer based applications. Now, we illustrate the use of overlapping

groups by taking the problem of on-line server migration.

Suppose a given server is replicated in two processes, located in machines A and

B, forming the process group gl (the upper-case letters represent the site name and

also the replica process running in it). Also, suppose that the process in machine B has

to migrate to machine C (figure 2.2(a». This problem can be solved by using group

overlapping in the following way.

12

Chapter 2 - Group Communication Protocols and Related Problems

C C:

~

(0)

~
(b)

~
(c)

~
(d)

Figure 2.2 - On-line Server Migration

(i) Processes A and B agree that they will form a new temporary group g2; from

this point onwards, requests arriving to gl will be forwarded to g2;

(ii) The new temporary group g2 is formed that includes the new replica in

machine C (figure 2.2(b»;

(iii) The group gl is closed (i.e. it ceases to exist) and the temporary group g2 is

now renamed gj (figure 2.2(c».

(iv) Process B leaves group gl (figure 2.2(d».

Note that by using the group overlapping scheme suggested above, clients do not

need to stop sending new requests while the migration process is being performed,

However, request messages arriving to gl after the execution of step (i) and before

step (ii) is concluded, must be buffered to be forwarded after conclusion of step (ii).

2.4 Message Order Delivery

Some distributed applications require that messages multicast are delivered in

some specific order. For instance, processes maintaining replicated data require

updates to be received in identical order. By our transport assumption, transmitted

messages from a given sender are received by the destination processes in the same

order they were sent. Thus, if just one sender is transmitting messages to a group,

messages would be delivered in the same order they were sent. When more than one

process is sending messages, however, there is the possibility of messages being

delivered in a different order in distinct recipient processes. For example, consider

that the messages m and m' are sent by two different processes to group g. A given

13

Chapter 2 - Group Communication Protocols and Related Problems

process p belonging to g could receive m before m' whereas another process q also

belonging to g could received m' before m. Thus, delivery order of m and m' in p and

q would violate the identical order principle, required for instance, by data replication

applications. General purpose multicast protocols should therefore provide users with

some delivery order guarantees. In the next sections we will discuss message order

guarantees that can be provided by group communication protocols.

2.4.1 Event Ordering in Distributed Systems

A process execution consists of a sequence of events, each event corresponding

to the execution of an action by a process. Within a given process, events are naturally

ordered by the sequence they happen. However, ordering events from distinct

processes is not possible unless they execute communication actions among

themselves. An example of a communication action executed by a process, say p, can

be to send a multicast message, say m, to a group that is recorded in m as m.g. The

corresponding event will be denoted as sendp(m). Similarly, we denote the event of a

process q, belonging to the group m.g, receiving m as receiveim). Then, we can

define a 'happened before' relation, denoted as '~', on send and receive events in a

given set of system events. Thus, when a, b, and c are three distinct events in a subset

of system events, each referring to either send or receive events,

(i) if a comes before b in the same process, then a ~ b. e.g., if sendpCm)

comes before sendp(m'), then sendp(m) ~ sendpCm');

(ii) if a is a sendp(m) and b is receiveq(m), then a ~ b; and

(iii) if a ~ b and b ~ c, than a ~ c.

A message m will be said to have potentially caused m', if send(m) ~ send(m'),

and distinct messages m and m' will be said to be concurrent if neither send(m) ~

send(m') nor send(m') ~ send(m) is true. Hence, the relation '~' establishes a partial

order of events in a distributed system [Lampon78]. For notational simplicity, when

m and m' are two distinct multicasts, m ~ m' will denote that send(m) ~ send(m').

14

Chapter 2 - Group Communication Protocols and Related Problems

When some specific delivery order is required, received messages may have to be

retained for later delivery until certain ordering conditions are satisfied (otherwise, the

delivery order stated may be violated). Thus, we need to define deliveryp(m) as the

event of delivering message m to process p. Based on send, receive, and deliver

events, and on the '-+' relation defined above, we can state the ordering properties

applied to multicast protocols. To simplify the explanation, let us assume for a while

there are no failures on communication channels or processes. We will consider

process and communication failures in section 2.5.

2.4.2 Identical Order Delivery

As assumed by our asynchronous system model, messages may arrive at

destinations with arbitrary delays. Some applications, however, require that the

messages sent to a group of processes are delivered in the same identical order. For

instance, an implementation of distributed lock on a set of replicated servers will

require that locks are delivered to the replicas in the same identical order. The

following is the specification of identical order for multicasts in a process group g,

where sendsm) means process Pi multicasts m.

Identical order delivery : Consider events sendi(m) and sendim'), Pi

andpj E g: deliverq(m) -+ deliverq(m') ~ deliversfm) -+ deliversfm'), V

q, s E g.

When groups overlap, common members of the overlapped groups must be

delivered messages in identical order, even if the messages have been originated by

members of different groups. In the example given in figure 2.3, messages m and

m' have been sent by processes r E gl and s E g2, respectively. Notice that p may

receive m before m' whereas q may receive m' before In. However, p and q being

common members of gl and g2 should be delivered m and m' in identical order.

Identical order delivery guarantee for overlapping process groups is specified as

follows.

15

Chapter 2 - Group Communication Protocols and Related Problems

Figure 2.3 - Identical Order Delivery in Overlapping Groups

Identical order delivery: Consider events sendi(m) and sendj<m'), Pi E

m.g and Pj E m'.g: deliverq(m) ~ deliverqfm') ~ deliver~m) ~

deliver~m'), 'V q, s E m.g n m'.g.

2.4.3 Causal Order Delivery

Causality is a fundamental concept to many problems in distributed systems. For

instance, determining a global snapshot of a distributed computation corresponds to

finding a collection of local snapshots which is consistent with casual order

[Chandy85]. For some applications, enforcing that messages are delivered respecting

causal order may be essential to avoid inconsistences. For instance, suppose the

existence of a replicated distributed data base, keeping bank accounts. Messages

directed to the data base (account registers) correspond to deposits and withdrawals.

Whenever an account balance is not enough for a withdrawal, the account value is not

modified and a notice is given to the user about the attempt of withdrawal. Consider

that the current state of an account X of user U is 0 units. Suppose that a process P

sends a message a depositing 50 units in the account X, and afterwards P sends

another message b withdrawing 40 units from the same account X. If b is delivered in

a replica of the data base (a copy of the account register for X) before a, no fund will

be available for that transaction and a notice will, inappropriately, be generated to U.

If causal order is enforced, however, the messages deliveries will result in the balance

of 10 units in all the replicas of X. Other examples of the use of causal order

16

Chapter 2 - Group Communication Protocols and Related Problems

protocols for a variety of problems in distributed systems can be found in [Birman89,

Schmuck88].

If an event a "happened before" event b (i.e., a -+ b), then, event b may have been

caused or influenced by event a. If a and b are two message multicasts, to respect

causality, the delivery of a must precede delivery of b, in all common destinations of a

and b. In figure 2.4, we illustrate causal delivery in a 3-member process group. The

process group is formed by processes PI, P2, and P3. The horizontal lines represent

the passage of time and oblique lines message flows between processes (arrows

touching the lines represent delivered messages). Process PI multicast message mi

and process P2, after delivering ml, multicast m2. Note that P3 receives m2 first but

its delivery is delayed until m 1 is received and delivered.

Physical time--)

Figure 2.4 - Causal Order Delivery

If there is only one sender process transmitting messages to a group, sequenced

delivered messages' (or FIFO delivery) would result in causal order always being

respected. However, if more than one process are sending messages to the group,

FIFO delivery alone is not enough to guarantee causal order delivery. Note that in the

example given in figure 2.4, where PI and P2 are transmitting messages, FIFO

delivery would result in m2 being delivered before m}. leading to causal order

violation. The specification of causal order delivery in a given group g is as follows.

3 i.e, messages are delivered in the same sequence they have been generated by the sender.

17

Chapter 2 - Group Communication Protocols and Related Problems

Causal order delivery : sendp(m) ~ send,(m'), p and reg =>

deliver q(m) ~ deliver q(m'), for any q E g.

When groups overlap, a message m received by a common member p, may actually

be causally related to messages sent in other groups distinct from the one m has been

sent to. In the example given below (figure 2.5), process p sends ml in group gl·

Process r, after delivering m}. sends m2 in g2, and process q, after delivering m2,

sends m3 in g2 (i.e., ml ~ m2 ~ mj). In order to respect causality, message ml

should be delivered to s before m3 is delivered (notice that in the example of figure

2.5, s receives m3 first). Below is the specification of causal order delivery in

overlapping groups.

gl g2

Figure 2.5 - Causal Order Delivery in Overlapping Groups

Causal order delivery: sendp(m) ~ send,(m,), p E m.g and r E m'.g =>

deliver q(m) ~ deliver q(m'), for all q, q E m.g n m'.g.

2.4.4 Total Order Delivery

Total order delivery combines identical order with causal order delivery. Take the

example used for causal order (a distributed data base keeping bank accounts). This

time, consider that process p sends a message a with a deposit of 25 units and then a

message b with a withdrawal of 50 units, both for account X of user U. Suppose also

that a second process q sends a message c corresponding to deposit of 25 units for

account X of user U. Notice that while messages a and b are causally related, message

c is concurrent to both a and b. In this example, neither causal nor identical order, if

applied in isolation, is enough to avoid inconsistencies. To verify this, assume, for

18

Chapter 2 - Group Communication Protocols and Related Problems

instance, that only causal order is enforced. Because concurrent messages are

delivered in any order, we could have one replica getting message c before b

(resulting a balance 0 for X) whereas other replica getting b before c (resulting in a

notice issued to user U). Identical order in isolation also is not enough to avoid

inconsistences. Note that the violation of causal order could lead to situations, where

a deposit followed by a withdrawal by the same process, on behalf of a user, could

result in an inappropriate notice for that user. So, we will need a total order message

delivery. Identical order will prevent state divergences among the account replicas and

causal order would avoid inappropriate notices being generated.

Total order delivery is an extension over the Causal order delivery, achieved by

imposing a delivery order on concurrent events. Following is the specification of total

order delivery for multicasts in overlapping process groups. Conditions (i) and (ii)

assure that identical and causal order are not violated, respectively.

Total order delivery: for any Pi, Pj e m.g n m'.g : if deliveryi(m),

deliverygm'), delivery/m'), and delivery/m) occur, then

(i) deliverygm) ~ delivery fm') ~ deliveryjCm) ~ delivery (m') and

(ii) sendim) ~ send(m') ~ deliverygm) ~ delivery;(m').

2.5 Fault-Tolerance

We assume that processes fail by crashing. In the crash assumption, a process

either works correctly (as specified) or stops working and from that point on does

nothing. The process crash assumption separates cooperating processes into crashed

and functioning ones. We assume the existence of a failure suspector [Chandra91,

Schiper93c] which will suspect process crashes. In asynchronous systems, it is

impossible to build a perfectly accurate failure suspector [Chandra91]. That is, failure

suspectors may make mistakes. Erroneous suspicions made by failure suspectors can

lead to virtual partitioning, where processes are sub-divided into functioning sub-

groups unable to communicate with each other. A fault-tolerant multicast protocol

19

Chapter 2 - Group Communication Protocols and Related Problems

should therefore work correctly even when the original group has been partitioned

into functioning sub-groups. Some existing systems however prevent the existence of

multiple sub-groups [Birman9lb]. In order to achieve that a group is allowed to exist

as long as the majority its members are functioning, and by making (partitioned)

processes not belonging to that majority leave the group.

To simplify the presentation of the fault-tolerant concepts, we will not consider in

this chapter the existence of group partitioning. In chapter 6, we extend the fault-

tolerant concepts to include network or virtual partitioning and present a protocol that

can cope with that. In chapter 6, we also describe the implementation of a failure

suspector based on local time-outs.

Let Gi be the set of groups a process Pi belongs to: G] = {gx I Pi egx}' When Pi

multicasts (or delivers) a message m with m.g = gx, it actually does so only to (or

from) those processes which it views as functioning members of group gx. Let Vx,i be

the set of all processes which it views as functioning members of gx' When gx is

initially formed, each functioning Pi installs an identical, initial view vOx i = { Pt- P2,,
... , Pn}. As Pi detects process crashes, it installs a new view by excluding the detected

processes from its current view.

Processes failures can cause inconsistences among functioning members of a

group. Firstly, if a multicast made by a process is interrupted due to the crash of that

process, this can result in some connected destinations not receiving the message.

Secondly, since views can be installed at arbitrary times, functioning processes may

end up with different views of the group membership. For instance, two functioning

processes may have delivered the same set of messages but have different views of the

group membership. In some applications, group members require to have a mutual

consistent view of the group membership changes, concerning all messages delivered.

Consider, for instance, a load-sharing application where a distributed computation is

divided up among the functioning members of a group. In this application, the task

assigned to a group member will depend on state of the computation (messages

delivered) and on the current group membership view. Therefore, in order to avoid

20

Chapter 2 - Group Communication Protocols and Related Problems

inconsistences (e.g., two processes being assigned the same task), group members are

required be delivered the same set of messages for each group membership view

installed.

In figure 2.6, we give an example of a 4-member group communication using only

the functionality of our assumed transport layer and failure suspector. yO = {Plo P2,

P3, P4} is the group membership installed when the group is created and VI = {PI,

P2, P3} is the new membership installed after the crash of process P4 has been

detected. Arrows touching the lines means message delivery and small black balls

means new group membership views being installed. In this example, we illustrate two

inconsistencies caused by the crash of process P4. Firstly, message m2 was not

delivered (and will never be) to process P3. Secondly, message ml was delivered to

P3 after it had known about P4's crash, whereas PI and P2 first deliver ml (and m2)

and then realize P4 had crashed. We now proceed to precisely specify the properties

that should be provided by fault-tolerant group communication protocols so as to

avoid such inconsistences.

Physical time---------------->

P vD
~

p~crashes

Figure 2.6 - Effects of crashes on Group Communication

21

Chapter 2 - Group Communication Protocols and Related Problems

Let VOx,i>Vlx,i' V2x,i, ... vrx,i be the series of views Pi has sequentially installed

over a period of time, until it crashes (the view does not exist for a crashed process).

The view updates by Pi must satisfy certain conditions so that message delivery by the

protocol can be 'atomic' with respect to views updates. For this purpose, when failures

occur (indicated by the failure suspector), functioning processes execute a

membership protocol [Amir92b, Mishra91, Ricciardi92, Melliar-Smith91] to reach an

agreement on the group membership of gx. The view changes performed by processes

of group gx should satisfy the following properties:

VC1 : The sequence of views installed by any two functioning processes are identical

(validity).

VC2 : If Pk crashes, Pk E vrx,i and Pi does not crash, then Pi will eventually install

vr'x,i such that r' > r and Pk E vr'x,i (liveness).

VC3 : any two functioning processes deliver the same set of messages between two

consecutive views that are identical. That is, vr-1x,i = vr-1xJ and vrx,i = vrxJ' then

the set of m, m.g = gx' delivered by Pi and Pj in vr-1x are identical.

VCL, VC2, and VC3 are a formalization for the virtual synchrony model

[Birman87, Schiper93a] which requires that (i) all functioning members "see" the

same sequence of membership changes and (ii) for each membership configuration the

same set of messages are delivered. VCl implies (i) and VC3 implies (ii). VC2 implies

that if a process does crashes, the membership protocol will eventually generate a new

view, removing the crashed process from the membership (in chapter 6 we will

redefme these properties under the network partition assumption). Note that for the

example given in figure 2.6, VCl is verified but VC3 is violated. For instance, vOl =
V03 and VII = V13 but between these two identical views PI has delivered ml and

m2, whereas P3 has delivered no messages.

22

Chapter 2 - Group Communication Protocols and Related Problems

2.6 Related Work

A number of group communication protocols have been described in the literature

which meet many application requirements. Multicast protocols for synchronous

distributed systems [Cristian90, Fischer83] 1 are quite different in nature to the ones

intended to the system model we are aiming, where no bounds on transmission and

message processing delays are assumed. So, we will focus our attention on previous

works intended for asynchronous distributed systems. The published protocols vary in

several aspects: the availability of group management services (e.g. dynamic group

membership service), the level of reliability provided (faults tolerated), the existence

of distinct order delivery guarantees (e.g. causal, identical, total) and the techniques

used to implement them. The research presented in this thesis builds on previous work

which we will outline briefly in this section. In the subsequent chapters, when

appropriate, we will make detailed comparisons of our work with solutions published

to date.

2.6.1 Chang and Maxemchuk's protocol

In [Chang84] a fault-tolerant identical order protocol is described. Chang and

Maxemchuk's protocol uses a sequencer process called the token holder (one of the

group members) to generate sequence numbers for identical order message delivery.

The token holder positive acknowledges messages sent to the group and multicasts

the message sequence numbers, that will be used by group members to identically

order the messages before delivery. Figure 2.7 illustrates the scheme of the Chang and

Maxemchuk's protocol in a n-member group communication. In order to tolerate the

failure of k members, delivery of a message is delayed until the token has been

transferred to k distinct group processes. The message sequence numbers are also

1 In fact, most of the work for synchronous systems are intented to broadcast (rather then multicast)
messages to the whole set of processors (rather than a set of processes) connected to a network.
Alhough problems such as group overlapping have not been addressed in broadcast protocols, the
basic ideas present in those protocols can be directed applied to multicasts.

23

Chapter 2 - Group Communication Protocols and Related Problems

used by destination processes to detect lost messages that must be retransmitted by

the token holder when required. Failure of the token holder is detected when a

process does not receive the positive acknowledgement or when the token holder

does not respond to a retransmission request. When the failure of the token holder is

detected a process enters in a reformation phase when a new token holder is

determined. Causal order and overlapping groups are not addressed.

Figure 2.7 - Chang and Maxemchuk's protocol

2.6.2 V System and Amoeba

V System [Cheriton85] and Amoeba [Kaashoek91] are examples of systemswhich

provide group communication protocols at the operating system level. V System

group primitives perform best-effort to deliver a message to a group of processes.

However, no guarantees are provided on the messages being delivered to all

functioning members (atomic delivery-) or on the order messages are delivered.

Amoeba provides an atomic and identically ordered group delivery primitive that

works only for non-overlapping groups. Message multicasts are first passed to a

sequencer process using point-to-point communication. The sequencer, after

assigning a sequence number to the message, transmits it to the group. The sequencer

waits for a number of acknowledgements from receivers before accepting that

message for delivery. Membership (including the election of another sequencer)

2 atomic delivery implies that if a functioning group process delivers a message, all functioning
members of the group will also deliver that message. Property VC3 (section 2.5) leads to atomic
delivery.

24

Chapter 2 - Group Communication Protocols and Related Problems

reconfiguration is obtained by calling the ResetGroup primitive when a functioning

process detects the failure of some member (indicated by the kernel). The protocol

described in [Navaratnam88] has a similar approach to Amoeba. It is built on top of V

System and provides identical order message delivery by means of a sequencer

process (the primary manager) which gets all message broadcasts and delivers them in

proper order to the other members. To achieve atomic message delivery, the primary

manager waits for acknowledgements from all receivers (the secondary managers)

before sending the next broadcast.

2.6.3 ISIS protocols

ISIS [Birman87, Birman9lb] was the first system that implemented causal and

total order protocols. The causal order ISIS protocol, called CBCAST, is based on

the concept of vector clocks [Fidge91, Mattern89]. A vector clock is a n-dimensional

vector where n is the process group size. Each process maintains a vector clock. The

vector clock VC(Pi)maintained by process Pi is initialized with zeros when Pi starts

execution. When Pi multicasts a message, vC(Pi)[i] is incremented by I and this value

is transmitted as the message timestamp. When a message m timestamped with vc(m)

is delivered by a process Pj- it updates its vector clock as follows :

for I s k s n, vc(pj)[k] = max(vc(Pj)[k], vc(m)[k]).

Assume vel and vc2 are two distinct vector clocks. We can compare vel and vc2

using the following rules (i) and (ii):

(i) vc I svc2 iff 'if i : vc I [i] svc2[i];
(ii) vcl < vc2 iffvcl ~ vc2 and 3 i S.t. vcl[i] < vc2[i].

Let m IIm' denote the absence of causal relation between two messages m and m'.

Also, when two vector clocks vcl and vel cannot be compared by rules (i) and (ii) ,

we will denote vel IIvc2. Consider the relation 'happened before' defmed by Lamport

and denoted as '~', and the messages m and m' timestamped with vector clocks.

Causal relationship between m and m' can be precisely deduced by comparing their

respective vector clock timestamps. That is, we can state the following property:

25

Chapter 2 - Group Communication Protocols and Related Problems

m ~ m' ¢:) vc(m) < vc(m') and m IIm' ¢:) vc(m) IIvc(m').

A discussion on vector clocks properties can be found in [Raynal82].

Let VCjbe the vector clock maintained by process Pj- Assuming messages are

transmitted in FIFO order, CBCAST delays the delivery of a message m sent by

process Pi at a process Pj until vCj[k] = vc(m)[k] + 1, for k = i, and vCj[k] ~ vc(m)[k]

for 1 S k sn and k *' i. The former test guarantees that previous messages from Pi

have already been delivered to Pj and the latter test guarantees that the other messages

sent to the group and delivered by Pi before it sent m, have already been delivered to

Pj- In figure 2.8 we illustrate causal order delivery using vector clocks. Vector clocks

values maintained by processes are in bold. Note that IIl2, when received, is not

immediately delivered at process P3 because vcjj l] < vc(m2)[1] (vc3 = <0,0,0> and

vc(m2) = <1,1,0». When P3 receives m1 and delivers it, vC3 becomes <1,0,0> and

m2 can finally be delivered. After the delivery of m2, vc3 becomes <1,1,0>. Similar

protocols for causal order delivery for point-to-point communication, rather than

group communication, are presented in [Schiper89, Raynal91].

Physical time.. >

<1,0,0>

P3----------~~--_.~~~---
ml : m2 <1,1,0>,

Figure 2.8 - Causal Order Delivery using Vector Clocks

A vector clock is a uni-group information. For the case of overlapped groups,

CBCAST will carry with each transmitted message vector clocks of all groups

involved in the overlapping structure. Depending on the number of groups, as well

26

Chapter 2 - Group Communication Protocols and Related Problems

their sizes, the transmission of vector clocks can produce a high message space

overhead and this is the main drawback of CBCAST.

ISIS builds a total order protocol called ABCAST on top of CBCAST. Messages

to be totally ordered are transmitted by CBCAST and kept marked "undeliverable" in

a buffer. A special receiver (a sort of coordinator or sequencer process) called the

token holder will multicast to the group the ordering information that should be used

to deliver the buffered messages in total order [Birman9lb].

Membership change consistency is guaranteed in ISIS by implementing the

concept of virtual synchrony. So, in addition to causal or total order delivery, if the

membership of a process group changes during a multicast, the semantics of virtual

synchrony implies that the message will be delivered either to the members that were

in the group before the change or to those that were in the group after the change. In

other words, multicasts are delivered in the same membership view at all functioning

members of a group [Birman89, Schiper93a].

2.6.4 Psync protocol

Psync [Peterson89] uses the concept of a conversation between processes. A

process can start a conversation, join an existing one, send or receive messages to a

conversation, or close a conversation. Messages sent to the conversation are delivered

in causal order and, in order to achieve that, Psync [Peterson89] builds a directed

acyclic graph to explicitly represent the causal relationship from all messages

exchanged between processes during a given conversation. In the so called context

graph, edges will link messages related by the Lamport's happened before relation

such that the edge (m,m') will only exist if there is no path with size larger than one

linking m and m', Figure 2.9(b) is the context graph built from the example given in

figure 2.9(a). Note that although ml ~ Ill4, the edge (mj, II14)is not represented in

the context graph for there exist the path (m I, m2, II14).Also notice that because m3

and Ill4 are not causal related, there is no directed path linking them.

27

Chapter 2 - Group Communication Protocols and Related Problems

ml

Pl--~------~--------------
P2 ~~~------~~~---

m4
[a) [bJ

Figure 2.9 - Representing Causal Information in the Context Graph

Psync maintains a copy of the context graph at each host where there is a process

participating in the conversation (copies of the context graph in different hosts are not

necessarily identical at a given moment in physical time). When a message is

transmitted to the conversation, besides being represented in the local context graph,

the ids of all its predecessors in the local context graph are also sent together with the

message (for instance, in figure 2.9, IIl4 is transmitted with the id of its predecessor,

m2). When that message is received, it will be represented in the context graph of the

remote destination process but delivery will only happen if all its predecessor

messages are also present in the remote copy of the context graph. Otherwise, the

message is put in a holding queue until its predecessor messages are received.

The basic send operation in Psync addresses only one process. So, a multicast

primitive can be built by sending a message to all processes belonging to a

conversation (a process group). A total order protocol can then be developed on top

of Psync by identifying sets of concurrent messages and delivering messages of each

set in a pre-fixed order [Peterson89]. This can be done by each group member

incrementally executing a topological sort of the context graph (messages assigned to

a given topological level - called a wave - are concurrent). In the example of figure

2.9, there are three waves : wave I = {m1}, wave2 = {m2, m3}, and wave3 = {II14}.

A wave is complete when a member process is certain that no future message will

arrive that belongs to that wave (i.e., each participant has either sent a message to that

28

Chapter 2 - Group Communication Protocols and Related Problems

wave or sent a message that follows, in the causal relation, a message in that wave).

In the example given in figure 2.9, wave! and wave2 are complete. Wave3 is

incomplete because process PI could still send a message which would fit in the

topological level corresponding to wave3. In order to guarantee that waves will be

complete, acknowledgements are sent for received messages (when the process has

no application message to transmit). Process group overlapping has not been

addressed in Psync.

2.6.5 Trans and Total protocols

In [Melliar-Smith90] two protocols are described for ordered broadcast'

communication (Trans and Total) that are built on top of a hardware broadcast facility

for local area networks. In order to guarantee that all transmitted messages are

eventually received by all functioning processors, and also to construct a partial order

on received messages, the Trans protocol uses a scheme of negative and positive

acknowledgements plus the evaluation of an "observable predicate for delivery". The

total order protocol named Total, incrementally extends the partial order provided by

Trans on a total order. This is done by gradually selecting sets of candidate messages

and by having some voting criteria deciding on the sets to be included in the total

order. The positive and negative acknowledgements are piggybacked in transmitted

messages. So, no extra control messages (other than null messages when processors

are inactive) are transmitted. However, a considerable amount of processing time is

needed in order to construct the partial and total orders out of the negative and

positive acknowledgements. The Total protocol may not be able to decide on a order

to deliver messages when processor failures occur. Nevertheless, the author claims

that total order is achieved with high probability.

3 a message broadcast is sent to all processors connected to a network rather than to a set of
distributed processes.

29

Chapter 2 - Group Communication Protocols and Related Problems

2.6.6 Transis protocols

Transis [Amir92a] system provides the following multicast primitives: Causal,

Agreed, Basic, and Safe. They implement causal order, total order, unordered with

delivery atomicity, and unordered with uniform' delivery atomicity, respectively. As in

Trans, the Transis system assumes the existence of a network broadcast facility and

works by piggybacking negative and positive acknowledgements in transmitted

messages. To represent causal information, Transis maintains a Directed Acyclic

Graph (DAG) that is similar to the context graph of Psync. Transmitted messages

carry acks for all direct causal dependent messages represented on the DAG graph.

Transis also provides a membership service that guarantees the membership changes

and message deliveries will happen in a consistent order at all processors (virtual

synchrony semantics). The total order protocol of Transis [Dolev93] is built on top of

the causal order protocol by applying functions on new messages added to the DAG

graph that will eventually transform candidate messages into totally ordered messages.

2.6.7 Garcia-Molina and Spauster's protocol

In [Garcia-Molina91] is presented an interesting asymmetric (sequencer based)

protocol that delivers messages in identical order in a group overlapping scenario. In

this protocol, messages are ordered by a collection of processes (instead just one

process as in [Chang84]) structured as a graph, called the propagation graph, which is

built according to a particular set of multicast groups. Common members of

overlapped groups are used as intermediate nodes of the propagation graph (a set of

trees) so that messages from different groups can be delivered in identical order to

multi-group members. A message is first sent to a primary destination and then

propagated thorough the propagation graph until the intended destinations are

reached. The main problem with this solution is that processes have to access the

propagation graph which is a global piece of information and have to be reorganised

4 Uniform atomic delivery implies that if a group process (whether functioning or not) delivers a
message, all functioning processes of the group will also deliver that message.

30

Chapter 2 - Group Communication Protocols and Related Problems

due to dynamic group membership changes (due to process crashes, voluntary leaves,

or joins).

2.6.8 Mostefaoui and Raynal's protocol

The protocol presented in [Mostefaoui93] provides causal order message delivery

for overlapping process groups. For enforcing causal order delivery within a given

process group, each group member multicasts messages following a scheme of

phases. For each phase a process multicasts exactly one message, and the next phase

begins when messages sent in the previous phase have been delivered. Message

multicasts are timestamped with the phase number. When a process p receives a

message timestamped with a phase number f3 for which it has not sent a message yet,

it synchronises itself with the group by multicasting a null message containing the

phase number f3 + 1. Thus, the group will be informed that p has progressed up to

phase f3 + 1. In order to assess the phase progress for all the members, a process

maintains a vector with one entry per process, say q, keeping the last informed phase

number from q. A received message timestamped with t will be delivered at a process

p only when p does not expect messages with timestamps equal or larger than t from

any of the group members (this is concluded by consulting the vector of expected

phase numbers). In order to cope with overlapping groups, a process p maintains a

vector of expected phase numbers per group p may be a member of. Let maxx be the

maximum expected phase number of processes of group gx. Thus, when a process p

transmits a message, it will be timestamped with the phase number maxy for each

group gy p belongs to as well as with the maxz of other groups gz p has indirectly

been informed by other members. A received message m will only be delivered at a

process p, when all groups p is a member of, have progressed their phases up to the

values indicated in the m's timestamp. This scheme produces a smaller message space

overhead than the ISIS' CBCAST protocol for overlapping groups. CBCAST

timestamps each message with one vector per group whereas Mostefaoui and Raynal's

protocol timestamps messages with one integer value per group. CBCAST is however

31

Chapter 2 - Group Communication Protocols and Related Problems

more efficient in terms of delivery delay since vector clocks do not impose any extra

synchronisation delays for message delivery.

2.6.9 Outlined Solutions and the Protocols developed in this Thesis

Chang and Maxemchuk's protocol, Amoeba, and the protocol presented in

[Navaratnam88] address identical order for non-overlapping groups, using a

sequencer process (a distinctive group member) to generate message sequence

numbers for identical order. The ISIS' ABCAST protocol provides total order

message delivery for non-overlapping groups and also makes use of a sequencer

process. Garcia-Molina and Spauster's protocol extends in some sense Chang and

Maxemchuk's protocol to work in overlapping groups. Processes using Garcia-Molina

and Spauster's protocol will have to maintain the propagation graph that is built based

on the group overlapping structure. Modification on the group memberships (due to

process crashes or application related reasons) will lead to modification of the

propagation graph, making it expensive to maintain for systems where groups change

dynamically and frequently. In this thesis we develop a total order protocol (see

chapter 4) that does not rely on sequencer processes such as in the propagation graph

of Garcia-Molina' and Spauster's protocol. ISIS, Total, Transis, and Psynct provide

total order message delivery (for non-overlapping groups) but their protocols have

been built on top of their respective causal order protocols and require a larger

message space overhead (the amount of ordering information added to application

messages) when compared with our total order protocol. This is (mainly) due to the

fact that our protocol has been built directly to provide total order (rather than being

built on top of an existing causal order protocol). In order to assess delivery

conditions, Total, Transis, and Psync protocols have to examine some 'stability'

conditions in the structures they maintain for representing causal relationship between

exchanged messages (negative and positive acks, the DAG graph, and the context

5 In fact. Psync provides a poit-to-point causal order protocol. However. a total order multicast
protocol can be built on top of this basic primitive as discussed in [peterson89].

32

Chapter 2 - Group Communication Protocols and Related Problems

graph, respectively). In our total order protocol, this is done just by keeping the

minimum value of a vector of integers and comparing this value with timestamps of

received messages (integer values). Total and Transis total order protocols rely on the

existence of a hardware broadcast facility. None of the protocols discussed addresses

the requirement of total order delivery for overlapping process groups which has

motivated the construction of our total order protocol.

The ISIS, Transis, Psync, and Mostefaoui and Raynal's protocols provide causal

order delivery, However, overlapping groups are only addressed in ISIS and

Mostefaoui and Raynal's protocols. ISIS provides an efficient causal order protocol

called CBCAST. The CBCAST protocol delivers messages efficiently regarding

message delivery delays. However, when complex group overlapping structures are

considered, CBCAST can lead to a large message space overhead : a transmitted

message has to carry vector clocks of all the groups from which messages have been

exchanged (this will be examined in more details in chapter 5). In this thesis, we

present three causal order protocols for overlapping groups with different trade-offs

between message space overhead and message delivery delays. The first of our causal

order protocols favours message space overhead (small one) with a longer message

delivery delay. The second protocol favours message delivery delay but with a larger

message space overhead. The third protocol is a compromise solution between

message delivery delay and message space overhead, producing a trade-off similar to

Mostefaoui' and Raynal's protocol.

In this thesis, we also describe fault-tolerant mechanisms for our protocols that

make them to work correctly even if process failures and network partitions occur.

Finally, the protocols and services we develop do not rely on any specific system

facility such as a hardware broadcast.

2.7 Conclusions.

In this chapter we have discussed the main issues concerning the design of group

communication protocols. We started by discussing the implications of synchronous

33

Chapter 2 - Group Communication Protocols and Related Problems

and asynchronous modelling on group communication. We have presented the system

model adopted in the thesis and discussed issues related with group communication

protocols (group overlapping, message ordering, and fault-tolerance). We have

outlined existing group communication protocols and also pointed out some of their

drawbacks, relating them with the protocols we develop in this thesis. In chapter 3 we

will present the concept of Causal Blocks for maintaining ordering information for

group communication. Causal Blocks representation will then be used to develop our

protocols that we describe in the subsequent chapters (4 and 5). In chapter 6 we will

show how fault-tolerance is incorporated to our protocols.

34

Chapter 3 - Basic Principles and Concepts

Chapter 3 - The Causal Blocks Model: Basic Principles
and Concepts

The Causal Blocks model is a framework for developing group communication

protocols with different ordering requirements [Macedo'Ba]. It also provides a

mechanism for crash suspicion and membership reconfiguration. In this framework,

communication (i.e., sending and delivery of messages) is thought of as proceeding in

rounds where each round is characterised by a number of messages that hold no

causal relationship. However, messages in different rounds may be causally related; so

a round is termed a Causal Block. Each Causal Block is monotonically numbered and

this number essentially represents a 'tick' from a logical clock [Lamport78], with the

difference that Lamport's logical clock 'ticks' on send/receive events, whereas Causal

Block numbers can be generated on a combination of events that may also include

delivery of messages. By combining different ways of block numbering as well as

different message timestamp contents (all based on Causal Block numbers, though),

one can get distinct message ordering qualities. Moreover, the Causal Blocks

representation provides an easy way of dealing with overlapping process groups.

Integrated mechanism such as crash suspicion and membership reconfiguration (see

chapter 6.0) have also been developed within the Causal Blocks context.

In the following sections of this chapter we first present the system model, we

then describe how Causal Blocks are constructed, their basic properties, and

associated concepts.

3.1The System Model and Failure Assumptions

We assume a set of sequential processes which are distributed possibly on distinct

processors or sites and communicate with each other only by exchanging messages.

We assume a transport layer that provides lossless, uncorrupted, and sequenced

35

Chapter 3 - Basic Principles and Concepts

message delivery between any pair of functioning processes (FIFO assumption)'.

Once a message has been sent by the transport layer, it can take an potentially

unbounded amount of time to be received at the destination. For simplicity, in this

chapter we assume a failure-free environment (i.e., processes do not crash or

misbehave) and we also assume that a given process can only belong to one given

group (i.e., there is no overlapping of group memberships). A group once created will

remain with the same membership until it is closed. Coping with dynamic changes in

the membership (due to process crashes) is treated in chapter 6.0 and different ways

of dealing with overlapping groups will be presented in chapters 4.0 and 5.0.

A group is just a set of cooperating processes. Members of a group communicate

only by multicasting to the full membership of the group. A process execution consists

of a sequence of events, each event corresponding to the execution of an action by a

process. An example of an action executed by a process, say p, can be to send a

multicast message, say m, to a group that is recorded in m as m.g. The corresponding

event will be denoted as sendp(m). We denote the event of a process q, belonging to

the group m.g, receiving m as receiveim), and deliver q(m) will denote the event of m

being delivered to q. We distinguish the event of receiving a multicast message from

the event of delivery, since in our protocols, as in other protocols, e.g. [Schiper89], a

received message may have to be delayed before delivery, in order to satisfy some

ordering condition, and also, as previously noted, because in the Causal Blocks

model, deliver events may affect the block numbering process.

Throughout this chapter we will assume that all the members of a group are lively:

a member will eventually multicast a new message. This assumption is put here only

for didactic purposes and will be removed in chapter 4.0 with the introduction of the

time-silence mechanism.

1 This can be realised by introducing sequential numbers to messages, with posmve
acknowledgement and retransmission of missing messages (TCP/IP provides such a functionality).

36

Chapter 3 - Basic Principles and Concepts

3.2 Block Counters

Consider the existence of a group, g = {PI, P2, , ... , Pn}· Each process Pi

maintains a logical clock called the Block Counter and denoted as BCi. BCi is an

integer variable and its value increases monotonically. When g is created, the BCi of

every Pi is initialized to any finite integer, and without loss of generality, we will

suppose that they are all initialized to zero. Transmitted messages are timestamped

with Block Counters, and, as it is the case in Lamport's Logical Clock, timestamping

using Block Counters will respect causality. That is, if m ~ m', then the timestamp

associated with m' will be larger than the timestamp associated with m. However, the

reverse will not always hold. If two messages have different timestamp values, they

may be concurrent. Unlike Lamport's Logical Clock that is advanced on send/receive

events, we have decided to advance Block Counters on send/delivery events, since a

transmitted message can only be causally dependent on previously delivered ones. By

proceeding this way, we reduce the number of messages with distinct timestamps that

are concurrent. Specifically, we avoid the situation when a number of messages have

been received (but not delivered) that would advance the local Block Counter, making

the timestamp of a subsequent transmitted message larger than those timestamps of

the mentioned received messages, where, clearly, they do not hold any causal

dependence. More precisely, consider the happened before Lamport's relation

denoted as '~' (see section 2.6). When messages are delivered to processes using a

multicast protocol, an occurrence of the following sequence of events is often possible

in a process execution: (... receive(m) ~ ... send(m') ... ~ deliver(m) ... }2.

Though receive(m) ~ send(m'), receive(m) cannot have caused or influenced

send(m'), because send(m') ~ deliver(m) and only delivered messages are used by a

process in its computation. So, our happened before relationship representing the

potential causality between messages will be defmed based only on send and deliver

events in a given set of system events. Thus, when a, b, and c are three distinct events

in a subset of system events, each referring to either send or deliver events,

2 We will drop the suffix in denoting an event, where the suffix is obvious or irrelevant

37

Chapter 3 - Basic Principles and Concepts

(i) if a comes before b in the same process, then a -+ b;

(ii) if a is a sendim) and b is deliver q(m), then a -+ b; and

(iii) if a -+ b and b -+ c, than a -+ c.

Just before a process Pi multicasts a message m, it advances BCi by one. The

contents of the incremented BCi is assigned to m as its block-number in the message

field m.b. The Causal Blocks properties stated in this section will be equally valid

when BCi is incremented by any non-zero positive other than one (this will be the case

in an overlapping scenario as we shall see in chapter 4). BCi may also be advanced by

Pi on deliverygm) if the current value of BCi is less than m.b. Thus, the two events

under which BCi may be advanced are:

CAl (Counter advances during send;(m»: Before Pi multicasts m, it increments

BCi by one, and assigns the incremented value to m.b; and,

CA2 (Counter advances during deliveryi(m»: Before pi delivers m, it sets BCi =

max {BCi' m.b}.

Based on CAl and CA2 we can state the three following properties possessed by

block-numbers of multicast messages. For notational simplicity, we denote sendpi as

simply sends.

prl : sendi(m) -+ sendi(m') => m.b <m'.b.

pr2 : for any m, Pj E m.g : deliver/m) -+ sendim') => m.b < m'.b; and,

pr3 : for all m', m" : m'.b = m".b => m' and m" are concurrent.

The properties prl and pr2 follow directly from CAl and CA2, respectively.

Together they imply that for any distinct m, m': send(m) -+ send(m') => m.b < m'.b.

The property pr3 states that distinct messages multicast with the same block-number

are necessarily concurrent and these messages must have been multicast by distinct

processes, as CAl forbids two send events to occur in a given process with the same

valueofBC.

38

Chapter 3 - Basic Principles and Concepts

Finally, notice that the reverse of prj is not always true. That is, if there are two

distinct messages m and m' such that m ~ m', not necessarily m.b < m'.b is true. To

verify this statement, just notice that a sequence of send events will increment the

Block Counter irrespective of the existence of received (but not delivered) messages.

For instance, suppose that all messages with block-number B have been delivered in

process Pi, and also that Pi has not sent or received any message with block-number B

+ 1 (i.e., BCi = B). Now, suppose Pi receives a message mo with block-number B + 1

and then subsequently sends other two messages, ml and m2. That is, it executes the

following sequence of events: receivetmq), send(m 1), and sendunj). By CAJ, mj.b =

B + 1 and m2.b = B + 2. Although mo is concurrent to both m1 and m2 (note that

deliver(mo) has not happened), mo.b =m [.b <m2.b.

3.3 Causal Blocks and the Block Matrix

Consider a process group g = {Pt. P2, ... , Pn}· Using pr3, Pi constructs Causal

Blocks to represent concurrent messages it sent/received with the same block-number.

Construction of Causal Blocks leads to the notion of Block Matrix which can be

viewed as a convenient way of representing sent and received messages with different

block-numbers. A Causal Block is a vector of size equal to n = IGI. Whenever a

process Pi receives or sends a multicast message with a new block-number, say B, it

creates an empty vector of length n; for any message multicast with block-number B,

it sets the [th entry of the vector to '+'; and, for any multicast message received with

block-number B from another process Pj' j *' i, it sets the jth entry of the vector to '+'.

Causal Blocks, maintained by a process in this way, will have the following property:

PRJ: in a given Causal Block, only concurrent messages are represented.

A given Causal block is constructed to represent messages sent/received with the

same block number, which by pr3 are concurrent.

When group communication is active, Le. member processes continually send

multicast messages, the number of Causal Blocks constructed will grow. Causal

Blocks maintained by a process are arranged in the increasing order of the message

39

Chapter 3 - Basic Principles and Concepts

block-number they represent, giving rise to a matrix which is called the Block Matrix

and denoted as BM. Thus, BM[B] will represent the Causal Block for message block-

number B. Referring to BM of any member process in G, we can state another

property of Causal Blocks,

PR2: if m and m', represented in BM[B] and BM[B'], respectively, are causally

related such that m ~ m', then B <B'.

Ifm ~ m', then either (i) the process which sent m also sent m', or (ii) the process

that sent m' had previously delivered m. Suppose Pi and Pj are the processes which

sent m and m', respectively. Suppose also that m.b = B and m'.b = B'. If (i) happens, i

= j, and there will be a causal chain sendj(m) ~ ... ~ sendam'). After sendlm), by

CAl, BCj will be equalized to m.b. If (ii) happens, i ~ j, and there will be a causal

chain sendjtrn) ~ deliveqim) ~ ... ~ send.un'). As in (i), after deliveram), by CA2,

BCj will be equalized to m.b. Since BCj is never decremented (CAl and CA2), the

block-number assigned to m' during sendam'), by CAl, will be larger than m.b.

PR2 also implies that if two messages are represented in different Causal Blocks,

the one with smaller block-number may causally preceed (i.e., have caused) the

message with larger block-number.

PI P2 P3 P4 Ps P6

1 + +

2 + + +

3 + + +

4 + +

5 +

Figure 3.1 - The Block Matrix of a 6-member Group Process

Figure 3.1 shows the Block Matrix of a 6-member process group. It represents all

messages sent/received by the process which owns this particular matrix. Since

40

Chapter 3 - Basic Principles and Concepts

messages arrive at destinations with presumably distinct delays, the BM matrices of

different processes will not necessarily be the same in a given moment of physical

time. The BM matrix showed in figure 3.1, indicates, for example, that the block-

numbers of the last messages received from processes PI and P2, are 4 and 5,

respectively.

3.4 Block Completion

By PRJ, all messages which belong to a given Causal Block, say BM[B], are

concurrent. From PR2, any causal order message delivery based solely on block

numbers (see section 3.6) will require that a received message represented in BM[B],

B > 1, be delivered only after all multicast messages which can be represented in

BM[B '], for all B' < B, have been delivered.

To enable a member process to accurately determine that a given block completely

represents all messages which can be represented in it, we use the notion of block

completion.

A Causal Block BM[B], B ~ 1, will be said to be complete, if and only if for all j,

l:5';j:5';n, the jth entry of BM[B] either (i) has '+' or (ii) is blank and there exists B', B'>B

such that the jth entry of BM[B'] has '+'. A message sent by process Pj and

represented in the Block Matrix accordingly with (i) and (ii) is said to be the

completive message from the group member Pj for Causal Block BM[B]. We can also

say that a Causal Block B is complete, if there is a completive message for B,

represented in BM, from each of the group members. By (i), it is ensured that if Pj has

sent a message with block-number B, it is received. By CAJ and CA2, Pj will not

produce two distinct multicast messages with the same block-number. Since messages

from a given sender process are received in FIFO order, (ii) guarantees that Pj has not

multicast any message with block-number B. In the example shown in figure 3.1,

block 2 is complete because processes P2, P5, and P6 have sent a message with block-

number 2, and processes PI, P3, and P4 have sent a message with block-number 3.

41

Chapter 3 - Basic Principles and Concepts

From PR2 it is obvious that the existence of BM[B], B > 1, also implies the

existence of some Causal Block BM[B'], for some B' < B (B' = B-1 if Block

Counters are incremented by 1). Since messages are assumed to be transmitted in

FIFO order, Causal Blocks in the BM maintained by a process will complete in the

sequentially increasing order of block-numbers they represent.

In the next section, we introduce a compact representation of BM that provides

an efficient way for detecting complete Causal Blocks.

3.S The Last Received Vector - LRV

Each process maintains a vector of size n called the Last Received Vector, LRV,

which contains the last received message block-number from each of the group

members. In other words, consider the BM matrix maintained by a group member Pi>

and that LRVi denotes the LRV vector maintained by Pi. At any time, LRVi[j] will

contain the largest block-number B of messages received from Pj (i.e. the jth entry of

BM[B] has a '+'). Let max{LRV} and min{LRV} be the maximum and minimum

values present in LRV. Thus,

PR3 : referring to the BM of pi, all Causal Blocks with block-numbers

less or equal than min {LRVi} are complete, and the number of incomplete

blocks is given by the difference max{LRVi} - min{LRVi}.

The Causal Block BM[min{LRVi}] is complete because for every j, 1 S; j S; n,

there exist at least one Causal Block BM[B], B ~ min{LRVi}, such that the jth entry

of BM[B] = '+'. Since Causal Blocks get complete in the sequential order of their

block-numbers, the Causal Blocks with block-numbers from 0 to (min{LRV) - 1) are

also complete. Also, notice that any Causal Block BM[B], B > min{LRVi}, cannot be

complete because there exist at least one entry j of BM (the one corresponding to one

of the group members whose last received message block-number is equal to

min{LRVi}) such that there is no '+' sign represented in BM[B]. Thus, the number of

incomplete blocks is given by the difference max{LRV} - min{LRV}. In the example

showed in figure 3.1, LRV= (4, 5, 3, 3, 4, 2), min{LRV} = 2, and max{LRV} = 5.

42

Chapter 3 - Basic Principles and Concepts

Causal Blocks 1 and 2 are complete, and there are 3 incomplete blocks (3, 4, and 5).

Figure 3.2 illustrates the use of the LRV vector to determine the sets of complete and

incomplete blocks. In the implementation of the protocol described in chapter 7.0, the

LRV vector has been used together with other data structures to efficiently implement

the BM matrix.

The Block Matrix

Block 0

Block mln{LRV}
Incomplete blocks

Block max{LRV} -- t--------i

Figure 3.2 - Representation of Complete and Incomplete Blocks using LRV

3.6 Message Ordering

Message delivery protocols with different ordering requirements can be developed

based solely on the concept of block completion. The following are safe conditions for

causal and total order message delivery based only on block-numbers associated with

transmitted messages and complete blocks in BM. Notice that we consider here that

the Block Counter is incremented by one (section 3.2).

Conditions for Causal Ordering"

COl: messages with block-number 1 can be delivered soon after being

received, and

C02: messages represented in BM[B], B > 1, can be delivered after

BM[B-l] is complete and all messages represented in BM[B-l]have been

delivered.

3 Notice that message block-numbers do not precisely represent causal relationship between
messages (the reverse of prl is not always true - section 3.2). In fact, COl and C02 are delivery
conditions which just do not violate causal order.

43

Chapter 3 - Basic Principles and Concepts

Conditions for Total Order

TO 1 : messages represented in a given Causal Block will be delivered in a

fixed pre-determined order, only after that block is complete, and

T02 : messages in BM[B] will be delivered only after those in BM[B-I]

have been delivered.

By applying these conditions, protocols satisfying either causal or total order

message delivery can be developed.

Figure 3.3 shows the Causal Block Matrices of a 3-member group, at a given

moment in time, when messages are delivered in causal order. Above the Block

Matrices, the horizontal lines represent the passage of time and oblique lines message

flows between processes (arrows touching the lines, represent received messages, and

not touching the lines, represent messages in transit). In the BM of process P3, blocks

I and 2 are complete, and 3 is incomplete. Note that for block 3 to be complete, it

would need messages from PI and P2 with block-number equal or greater than 3.

44

Chapter 3 - Basic Principles and Concepts

Physical time------------------->

~ P) ~
1 + +
2 +
3

~ P) ~
1 +
2 +
3

~ P) ~
1 + +
2 + +
3 +

Figure 3.3 - The Block Matrices of a 3-member Group

3.7 Representing Missing Messages in the Block Matrix

So far we have assumed a sequenced, uncorrupted multicast transport layer.

However, if the underlying message transport layer is taken to be unordered and

unreliable, messages may not be received at the destinations, due to message loss or

corruption. To detect missing messages, every multicast message, say m, is given not

only a block-number, as m.b, but also the block-number, as m.pb, which was given to

the message that was multicast prior to sending m.b by the same source. Similarly,

when a message is received, it is not only represented in BM but also the

representation of m.pb for the same sender is also checked. If a '+' sign does not

represent m.pb, a '-' sign is placed to indicate that a message with block-number m.pb

is expected, but not (yet) received due to out of order message delivery, or due to

message corruption or loss. Loss of messages and out of order message delivery

introduce some problems that are solved as explained below.

Firstly, when a '-' symbol is entered in the BM, the appropriate message source

should be requested to retransmit the expected message. Secondly, the definition of

complete blocks should be revised since the previous one was presented under no

45

Chapter 3 - Basic Principles and Concepts

failure and FIFO message delivery assumptions. A Causal Block BM[B], B ~ 1, will

be complete if and only if for all j, 0 s j s n, the jth entry of the Causal Block either

has '+', or is blank and there exists aB', B' > B, such that BM[B'] = '+' and the jth

entry of BM[B"] is not '-' for all B", B < B" < B'. In other words, if any jth entry of a

Causal Block is blank, it will be followed by a (possibly empty) sequence of blanks

and at least one '+' sign in the jth column of the BM. Note that due to '-' sign in the

BM, BM[B] can be complete, while BM[b], b< B, is not complete. By the definition

of Causal Blocks, a complete BM[B] will imply that all messages with block-number

B have been received.

In the BM shown in figure 3.4, the first Causal Block is complete; but the second

and the third blocks are not; however, the fourth block is complete. The second block

is not complete because the third entry in it is a blank, followed (immediately) by a '-'

sign in the third column. Though only a message from P3 with block-number 3 is

expected, it is not sure whether P3's message with block-number 2 is also missing.

The existence or non-existence of such a message can only be confirmed after the

message with block-number 3 is received from P3.

P] P.2 PJ P4

1 + + +

2 +

3 + -

4 + +

5 + +

Figure 3.4 - Example of a Block Matrix in a 4-member Group

3.8 Conclusions

This chapter has presented the basic principles and concepts related with Causal

Blocks. In describing these basic principles and concepts, we have made strong failure

and membership assumptions that will be removed in the subsequent chapters. It has

46

Chapter 3 - Basic Principles and Concepts

been presented how Causal Blocks are created and become complete. It has also been

presented conditions for causal and total order message delivery based solely on

message block numbers. We finished the chapter showing how the sequenced,

uncorrupted, and reliable transport layer assumption can be removed by introducing

the representation of missing messages in the Block Matrix. In the next 2 chapters

(4.0 and 5.0), we will present two protocols based on the principles we have

introduced, extending the Causal Blocks concepts to work with multiple process

groups and to precisely represent causal relationship between transmitted messages.

In chapter 6.0 we show how fault-tolerance can be implemented in the context of

Causal Blocks, removing the failure-free assumption made in this chapter. Chapter 7.0

then, describes the implementation of a total order delivery protocol based on Causal

Blocks.

47

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

Chapter 4 - The Total Order Message Delivery Protocol,
Newtop

Following the basic principles given in the previous chapter, we now present a

total order message delivery protocol for overlapping process groups, also called the

Newtop protocol (Newcastle total order protocol) [Macedo'Bb]. In this chapter, we

also introduce a liveness mechanism called the time-silence mechanism, that will allow

us to remove the assumption made in the previous chapter that processes are

permanently active, sending messages.

An identical order protocol delivers messages in the same order in each of the

destination processes of a group. A total order protocol, besides delivering the

messages in identical order, also respects causality [Birman91b, Peterson89,

Amir92a]. Previous works on total/identical order group communication protocols for

asynchronous systems can be broadly classified into two categories: asymmetric and

symmetric protocols. Asymmetric protocols usually rely on a sequencer process to

which messages are first sent and then ordered for delivery [Chang84, Birman91b,

Navaratnam88, Kaashoek91]. Symmetric approaches do not rely on any centralised

process (such as a sequencer) and usually work by waiting for "sufficient" ordering

information from group members before ordering received messages for delivery

[Melliar-Smith90, Amir92a]. When processes are actively sending messages, the

symmetric protocols work efficiently since message delivery will happen with the

normal flow of messages (i.e., no extra control messages are needed). However,

delivery delays can occur when members are inactive. To cope with this potential

delays, inactive members are usually required to send periodic null messages.

Asymmetric solutions have the extra communication cost with the centralised process

(e.g. the sequencer) but will not delay message delivery due to inactive group

members. Hence, if groups members may be inactive, asymmetric protocols are more

efficient (no extra delays apart from transmitting the message to the sequencer). The

48

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

main advantage of symmetric solutions will come when failures and dynamic changes

in the group membership (leaves and joins) are considered. Because symmetric

protocols are fully distributed, the failure of a single group member will not affect the

whole system (apart from the exclusion of the failed member from the group). When a

sequencer fails, however, delivery of messages will be delayed until a new sequencer

process has been established. Moreover, if groups are allowed to overlap, the choice

of such a sequencer is a much harder task since it must be a common member of

overlapping groups [Garcia-Molina91].

Newtop is symmetric and the message space overhead remains small (basically, the

message block-number), despite the presence of multiple, possibly overlapped,

groups. For the case of a single non-overlapping group in a failure-free environment,

Newtop resembles the total order protocol presented in [Lamport78]. In some sense,

we apply the concept of logical clocks developed in [Lamport78] to group

communication context (i.e. multicasting rather than point-to-point communication),

extending it to work with group overlapping and system components failures.

Section 4.1 describes the system model assumed in this chapter. Section 4.2

discusses how Causal Blocks are created for total order delivery. Section 4.3 presents

the time-silence mechanism. Section 4.4 shows how overlapping groups are handled

in Causal Blocks. Section 4.5 gives an algorithm description and proves the

correctness of the total order protocol for overlapping groups. Finally, section 4.6

concludes the chapter and compares our solution with existing related protocols.

4.1 The System Model

As in section 3.1, in this section we will still assume a failure-free environment

However, two other assumptions not related with failures have been removed. Firstly,

now we assume that processes can belong to multiple (overlapping) groups. Secondly,

processes do not need to remain active by sending messages to guarantee that blocks

eventually complete. The time-silence mechanism introduced in section 4.3 will work

to guarantee that Causal Blocks created eventually complete.

49

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

4.2 Construction of Causal Blocks for Total Order Delivery

Newtop delivers all messages in the same order and that delivery respects

causality. Formally, delivery of messages by Newtop satisfies the following property.

total order defivery': for any Pi and Pj E m.g (Jm'.g:

if deliveryjun'), deliveryjtm), deliveryam'), and deliveryj<m') occur, then

(i) deliveryjun) ~ deliveryjun') ¢::> deliveryam) ~ deliveryam') and

(ii) m ~ m' ~ deliveryjtm) ~ deliveryjtrn'),

(i) guarantees that messages are delivered in the same global order and (ii) guarantees

that delivery will respect causality.

To start with, consider the existence of a single group gx = {PI, P2, ... , Pn}. It is

assumed that every member process Pi> lSi S n, knows the whole membership, and

that, when gx is created, the Bq of every Pi is initialized to zero. The Block-Matrix

of Pi for gx will be denoted as BMx,i· Thus, a message m sent or received by Pi>will

be represented in the row BMx,i[m.b].

Before a process Pi multicasts a message m, it advances BCi by a, where a, a

non-zero positive integer, can be chosen randomly for any given multicast-, The

contents of the incremented Bq is assigned to m as its block-number in the field m.b.

As BCi is advanced by a, for every multicast, consecutively sent messages will have

increasing block-numbers. Hence, the properties stated in section 3.2 are equally valid

when BCi is incremented by a. As stated in section 3.4, a Causal Block BMx,i[~], ~ ~

I, will be said to be complete, when Pi can no longer send or receive a message, m,

m.b = ~ and m.g = Ox.

lRecall that we are assuming in this chapter a failure-free environment. In the presence of failures,
total order delivery can not be guaranteed deterministically in an asynchronous system [Fischer85],
unless mechanisms such as failures detectors [Hadzilacos93] are considered. Chapter 6.0 discusses
such mechanisms in the context of Causal Blocks.
2 The reasons for that will become clear when we discuss Causal Blocks properties for overlapping
groups in section 4.4.

50

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

Recall that in section 3.2 we stated that both send and deliver events can advance

the process Block Counters. For total order delivery, however, only send events will

lead to the advancement of Block-Counters. The reason for that is simple. A message

m can only be delivered to a process Pi> after the Causal Block BMx,i[m.b] is

complete (TOl - §3.6). Note that the Causal Block BMx,i[m.b] can not be complete,

if Pi has not sent a message with block-number larger than or equal to m.b. Thus, by

the time BMx,i[m.b] completes, and its delivery occurs, BCi would have been

advanced to at least m.b, making CA2 operation in section 3.2 redundant (i.e., Bq =

max {BCi>m.b}). CAl of section 3.2 is then, the only operation considered for total

order delivery. Let us re-write the operation CAl in terms of a.

CAl (Counter advances during sendi(m): Before Pi multicast m, it increments BCi by

a, and assigns the incremented value to m.b.

When a process identifies complete Causal Blocks, it can identify the set of all

concurrent messages with a given block-number (or the absence of it); also, the set of

all messages that may be causally related to a given message can be identified; for

instance, if a message m is represented in BMx,i[~] that is complete, then {mo I mo
~ m} !:: {messages represented by every BMx,i[I3o], 130 < ~}. Hence, Newtop obeys

the following safe conditions for total order message delivery:

safe1: after a Causal Block is complete, a fixed pre-determined order for delivery is

assigned to messages represented there; and,

sa/e2: a message m, m.b = ~, is delivered only after the delivery of all messages with

block-numbers less than ~ and the messages with block-number ~ that were ordered

beforem.

The above conditions state the safety property of Newtop for a single non-

overlapping group. Its correctness follow straight from the properties PRl and PR2

possessed by Causal Blocks and proved in section 3.3. Every received message will

eventually be delivered by a process (liveness property), if it can be guaranteed that

every Causal Block maintained by the process will eventually complete. This can only

happen if every process is constantly generating messages and this was assumed in the

51

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

last paragraph of section 3.1. We now remove this assumption by introducing a simple

mechanism called the time-silence mechanism, to enable a process to remain lively by

sending null messages, during those periods it is not generating computational

messages to complete created Causal Blocks.

4.3 Time-silence Mechanism

The time-silence mechanism of a process Pi> timesilence], works as follows:

whenever Pi creates a new Causal Block as a result of receivin~ a multicast message

with block-number ~, a timeout for some predetermined period (called local-time-

silence) is set for that Causal Block, BMx,i[~], if Pi has not already multicast a

message with block-number larger than or equal to ~. This timeout period indicates

the duration within which Pi is expected to multicast a message with block-number ~

or larger - thus contributing to the completion of BMx,i[~] at all member processes

of gx (including itself). Note that Pi multicasting a message with block-number W will

contribute to the completion of blocks BMxj[j30], for ~ sWand for all j, 1 s j s n.

So, if Pi multicasts a message with block-number W, W~ ~, before the expiration of

the timeout set for BMx,i[~], then the timeout set for any and every BMx,i[~], for ~

o ~ W, are cancelled. If, on the other hand, the timeout for BMx,i[~] expires, then

timesilencej will force Pi to multicast a special null message. This null message is

multicast with the largest block-number that Pi has "seen" so far, i.e. with a block-

number W' = max{m'.b Ireceivejtm'l} ~ ~, so that, this multicast will contribute to the

completion of all Causal Blocks BMxj[~], for ~ s W' and for all j, 1 s j ~ n. This

null message will also cancel the timeouts set for any BMx,i[~]' for ~ ~ W'. With the

introduction of time-silence, Block-Counters of processes advance not only by

sending application related messages (CAl), but also when null messages are sent.

This possibility is stated as CA2.

52

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

CA2 (Counter Advances due to sending of a null message by timesilencej) before Pi

multicasts a null message m, it sets m.b = max{m'.b I receivejun') has occurred}, and

BCi=m.b.

Null messages contains only protocol related information (such as block-number,

group identifiers, etc.). They are distinct and distinguishable from application related

messages, which will be called non-null messages, where distinction is required. lust

like a non-null message, a null message, upon being received, is represented in BMx;

also, if the reception a null message creates a new Causal Block, the timesilence will

start a timeout for that block, if a multicast with a larger or equal block-number has

not already been made. A null message due for delivery, will not be supplied for

processing.

Note that for a multicast, block-numbers are computed using different algorithms

for null and non-null messages. Despite this difference, prl (sendi(m) ---+ sendi(m') ::::)

m.b < m'.b) is still valid. That is, successive multicasts from Pi will have increasing

block -numbers.

proof: if m' is non-null, prl is true by CAl, irrespective of whether m is null or non-

null. Suppose then that m' is a null message. Irrespective of whether m is null or non-

null, sendpm) must have caused all unexpired timeouts set for any BMxJ[(30], for (30
~ m.b, to be cancelled. In other words, no null message m' (m' *m) could have been

sent by timesilence] with block-number m.b. Therefore, sendjtrn') must have occurred

because of Pi received a null or non-null message, say J.1,with J.1.b> m.b. Hence, by

CA2, m'.b ~ J.1.b> m.b.

The time-silence mechanism can increase the message overhead of the protocol

when processes are not always active. However, the time-silence mechanism or some

equivalent mechanism (such as periodic exchange of 'I am alive' or 'synchronise'

[Mostefaoui93] messages by processes) is essential for ensuing the liveness of any

fully distributed (symmetric) total order protocol.

53

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

4.4 Overlapping Groups

Consider two groups gl = {Plo P2. P3. P4} and g2 = {P3. P4. P5. P6}· The

processes P3 and P4 are members of both gl and g2 (see figure 4.1). Suppose that PI

multicasts mling 1 and that m1 is delivered to P3 which subsequently multicasts m2

in g2. P4. being a member of gl and g2. will receive ml and m2 (not necessarily in

that order) and must be able to deduce that deliver3(m l) ~ send3(m2). i.e. m1 ~

m2. Newtop treats group overlapping in the following way: processes which are

members of more than one group should maintain a single Block Counter which

should be advanced subject to CAl. no matter which one of the groups a sent

message belongs to. So. if the multigroup member process P3 maintains a single BC

for both gl and g2, then the block-number given to m2 will be m2.b > mj b, as

sendjtmj) ~ deliver3(ml) ~ send3(m2)·

Figure 4.1 - Overlapping Groups gl and g2

More precisely, suppose that a process Pi is a member of more than one group. Let

Gi be the set of groups Pi belongs to: Gi = {gx I Pi E Gx}. So. IGil> 1. We assume

that Pi maintains, as before, a single BCi which will be updated as mentioned in CAl -

irrespective of the group m was multicast. It will, however, maintain a distinct BMx,i

for each group gx in Gi - representing messages sent or received with m.g = gx in the

same manner as described in 4.2. Although Pi advances its BCi by only one every time

it multicasts a non-null message, it can appear to advance its BCi by a randomly

chosen (X., (X. > 0, between successive multicasts in a given group, if it has performed

multicasts to other groups in between those two multicasts. Despite this, the

following Causal Block property will still be valid in a given BMx,i of PF if two

distinct non-null messages m and m' are represented respectively in BMx i[~] and•
BMx,i[W], and m ~ m', then the row BMx,i[~] will precede the row BMx.i[W].

54

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

The time-silence mechanism of Pi will operate independently for each distinct gx:

the timeout set for BMxJ[~] will not be cancelled when Pi multicasts a ~ with ~.b ~ ~

and gx :#: u.g; similarly, if the timeout set for BMxJ[~] expires, a null message will be

multicast only in gx' As the working of time-silence mechanism and the multicasting

of null messages become group-oriented, CA2 and validity of pr 1 will become

restricted to a given single group.

CA2': Just before Pi multicasts a null message m in a given group gx, it sets m.b =

max{m'.b I receivejtrn') has occurred 1\ m'.g = gx}' and BCi = max{BCi, m.b}. This

will change prl to:

prl': sendjun) ~ sendjtm') 1\m.g = m'.g ~ m.b <m'.b, for any m and m'.

Since the messages multicast by a given process in a given group have increasing

block-numbers and are received in FIFO order, a multi-group member process Pi can

identify the complete blocks in each of its BMx,i in the same manner as in section 3.4.

Note that by CAl, m ~ m' ~ m.b <m'.b, for any non-null m and m'.

To summarize, Pi maintains a Block Matrix for each of the groups it belongs to,

and the time-silence mechanism of Pi operates for each group as if the other groups

did not exist. By applying the arguments presented in non-overlapping case, it can be

shown that any single, or multi-group member process in the system will eventually

identify every Causal Block it creates to be complete.

The message delivery condition, safel , must however be modified to take account

of the fact that a process belongs to more than one group. The new condition for a

process, Pi>is:

safel': after BMx i[~] is complete for every gx E Oh a fixed pre-determined order for,

delivery is assigned to the messages with block-number B.

We illustrate the need for the above modification with the help of a simple

example. Consider the case illustrated in figure 4.2(a), where ml and m2 are messages

with the same block-number (say ~); naturally we require that p and q be delivered

these messages in the same identical order, and before delivery of any message with

55

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

block-number larger than ~. Assume that r has fast communication paths to p and q,

and r follows mi with a few more multicasts in gl. Assume that while ml has been

received at p and q, m2 is still in transit. Ifwe use condition sofel (rather than safe1,),

then p (q) could be delivered mi and its successor messages from r followed by m2.

Use of condition sofel' will prevent this from happening.

The time-silence mechanism ensures that, once a block has been created, it will

eventually complete. However, this liveness mechanism alone is not enough to

guarantee block completion for the case of overlapping groups. Referring again to

figure 4.2(a), suppose s does not multicast m2. How long should p (q) wait, before

being absolutely certain that no message with block-number ~ is in transit in g2 ? We

solve this problem by adding another liveness mechanism that works as indicated

below.

Whenever a process multicasts a non-null message, with say block-number X, to

one of its groups or receives a non-null message with block-number X in a group, it

also multicast a null message with block-number X in those other groups whose Block

Matrices do not contain a Causal Block with block-number larger than or equal to X

(thereby ensuring that Causal Block with block-number X will eventually complete in

each group).

Let us now return to the previous example. Suppose q receives ml, and its BM for

g2 contains entries whose block-numbers are less than ~ (~ = ml.b); so q will send a

null message with block-number ~ to members of g2. This will guarantee that swill

definitely create a Causal Block with block-number ~ and contribute to the

completion of this block either by transmitting m2, or a null message (generated by

the time-silence mechanism of s for g2 - timesilence2,s). The message delivery

conditions, safel' and safe2, together with the time-silence and the added liveness

mechanism can cope with arbitrarily complex group structures. Figure 4.2(b)

illustrates a cyclic group structure. Assume that m I ~ m2 ~ m3, P does not send any

further message to r, and ml is still in transit as m3 is received at r. Causal delivery at

r (mI ~ m3) is guaranteed because of the following four reasons: (i) sofel' will

56

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

require Causal Blocks with block-number mj.b to be complete both at g3 and g2; (ii)

the liveness mechanism will ensure that p does create a Causal Block with block-

number mj.b, and contribute with a null message; (iii) the null message from p will

arrive at r only after ml (transport layer FIFO assumption); and finally, (iv) safe2 will

ensure causal delivery.

la)

Figure 4.2 - Acyclic and cyclic Overlapping Groups

4.5 Protocol Description

4.5.1 Algorithm

Having given the basic principles for construction of Causal Blocks for

overlapping groups, we proceed to present the algorithms of the relevant aspects of

protocol>, and in the subsequent section, to show its correctness arguments. We will

assume that the global variables such as the Block Counter, Block Matrix, etc., are

accessed by the various sub-processes that make the protocol, in a mutually consistent

manner.

Consider process Pi, and let Gi = {gx IPi E gx}. To run the protocol, a process Pi

has - in addition to BCi and a BMx,i for each gx in Gi - a vector, called the

Completed Blocks Vector and denoted as CBVi> which is of size IGil and is

maintained in the following manner: for each gx in G], CBVi[x] indicates the largest

3 An actual implementation in C++ using TCP/IP sockets is discussed in chapter 7.0.

57

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

number of complete blocks in BMx i- Process Pi also maintains the value of,

min{CBVi[x] Igx E Gi} in a variable Bmin. CBVi is initialized to [0,0, ... ,0], Bmin to

0, and every time a '+' is added to any BMx,i both are updated if possible. Whenever

the value of Bmin changes, all sent and received, but not delivered messages with

block-number less than or equal to (the new value of) Bmin are delivered according to

the message delivery conditions safel' and safe2. We will use the notation maxx,i to

represent the largest block-number in block-matrix BMx,i'

We first describe the algorithm by which Pi multicasts a non-null message m to the

destination group m.g. As stated before, Pi also muIticasts a null message to those

groups gx E Gi where m.b > maxx,i' In order to distinguish the event of multicasting

a message (null or non-null) used in the definition of the relation '~', from the actions

resulting from the multicast of a non-null message (including the extra null messages

cited above), we term the latter set of actions as psend(m). Accordingly, preceive(m)

will denote the actions taken by msg-receive sub-process described below when

receiving a message (we will use the symbols '~' and 'LI' for 'then' and 'else',

respectively).

psend(m : non-null-message):
{

m.b:= BCi + 1; BCi = m.b;
multicast m to other members of m.g;
prepare a null message 11with 11.b= m.b;
for each gx in Gi - {m.g} ~
do
m.b > maxx,i ~ 11.g := gx; multicast 11to other members of gx
LIm.b ~ maxx i ~ skip,

od

Block-numbering and multicasting a null message in response to the expiration of

timeout set by time-silence will proceed as per CA2'. We assume that multicasting a

null or non-null message will automatically update the appropriate BM and will

modify CBVi if necessary. We will also assume a primitive to deliver a message

whose execution will supply the message to the local destination process, only if that

message is non-null. The protocol for Pi is given below, dropping the suffix i.

58

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

The msg-receive sub-process receives messages from the transport layer intended

for Pi. When the received message is non-null, a null message is also multicast to

those gx E Gi, where m.b > maxx i- The sub-process msg-deliver awaits the value of,
Bmin to change (or to increase, to be more precise). When the value of Bmin

changes, it delivers all sent and received, but not delivered messages with block-

number less than or equal to Bmin, in a fixed and pre-determined order.

59

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

begin
msg-multicast:

(... uses psend(m) ... }

II

msg-receive:
(do

receive(m); update appropriate BM; compute CBV;
if m is null ~ skip;
Cl m is non-null ~ G' := G - (m.g);

for each gx in G - (m.g) ~
do

m.b smaxx ~ G':= G' - {gx};
LJ m.b > maxx ~ skip

od
if G' = { } ~ skip
Cl G' ::I-() ~ prepare a null message TIwith TI.b= m.b;

BC := max (TI.b,BC};
for each gx in G' ~
do

TI.g := gx; multicast Tt to other members of gx
od

fi
fi

od
}

II

msg-delivery :
{do

ifBmin = min(CBV[x] Igx E G} ~ skip
Cl Bmin ::I-min(CBV[x] Igx E G} ~

Bmin:= min (CBV[x] Igx E G};
deliver all sent and received, but not delivered m such that
m.b ~ Bmin in the fixed, pre-determined order;

fi
od
}

II

time-silence:

{ II manage time-silence timouts }

end

60

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

4.5.2 Correctness of the Protocol

For proving the correctness of the protocol, we have to show that a sent message

is eventually delivered (liveness property) and it does so without violating causal/total

order (safety property). Before proving these properties, we will show that the

sending of null messages by the psend and preceive primitives will not violate

property prj' (§4.4) based on which completeness of Causal Blocks is identified. We

will also prove that for any non-null messages m and m', if send;(m) --+ sendi(m'),

then m.b <m'.b.

observation}: Notice that either primitives (psend or preceive) after being executed,

say for a message J.1,will not decrease the current value of the Block-Counter whose

value will be always equalized to the block-number of the message sent (if any is

sent). That is, its value will be set to max {Bq, J.1.b}.

Lemma I :The sending of null messages by the psend and preceive primitives does

not violate prj' (sendjun) --+ sendjtrn') A m.g = m'.g ~ m.b <m'.b, for any m and m').

proof'

If m' is non-null, then prl' is true by observation} and CA}, irrespective of

whether m is null or non-null. Suppose then, that m' is a null message sent by Pi in a

given group gy E 0i, Y '# x (where gx E 0i is the group corresponding to the non-null

message, say J.1,taken by either primitives). There are two cases to consider here.

Firstly, if m' is a consequence of psendui), its block-number is the same of the

corresponding non-null (Le. m'.b = J.1.b= Bq + 1) and that will be larger than mb

since, as stated in observation}, the multicast of m (either in psendru) or preceiveiu)

always keep BCi to the max {BCi, m.b}. Secondly, m' may be a consequence of

preceivetu). In this case, m'.b is not the incremented value of BCi but the block-

number of the received message J.1in gx' Now, suppose by absurd hypothesis that

there is a message m previously sent by Pi in gy with m.b ~ m'.b (it could be a null

message sent by time-silencej,y or just another non-null message sent by Pi in gy), so

that maxy ~ m.b ~ m'.b. Then, the violation of pr1' is avoided by the statement present

61

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

in both psend and preceive primitives that forbids a null message such as m' being sent

to those groups gy E Gi where m'.b ~ maxy; that is, m' could not exist.

Observation2: Observe that because the block-number ofthe null messages generated

by time-silence is calculated per group basis (CA2' - §4.4), prj' is no longer valid

when those messages are considered. For example, take the two block matrices for

groups gx and gy a process Pi simultaneously belongs to. Assume Pi has not sent any

message yet (i.e. BCi = 0). Also, assume that Pi receives a message J.1 in gx with

block-number 4 and after some time another message J.1', in gy' with block-number 2.

Suppose, the timeout for J.1 expires before the timeout for J.1'. Thus, From AC2',

timesilencCi,x will force Pi to send a null message, say TI,TI.b= 4, and BCi will be set

to 4. Similarly, timesilenCCi,ywill force Pi to send another null message, say TI',TI'.b=

2, and this time BCi will not be affected. Hence, although TI-7 TI', TI.b> TI'.b. Notice

also, that in spite of the fact that block-numbers of null messages from time-silence

are not monotonically generated, the value of BCi never decreases. However what

have been observed, when only non-null messages are considered (and only non-null

can be consumed by processes), if sendi(m) -7 sendi(m'), indeed m.b <m'ib.

Lemma II: sendgm) -7 sendgm') => m.b <m'ib, for any non-null m and m'.

proof' if m.g = m'.g, the assertion becomes identical to prJ', and by Lemma I that

will be true for any m and m'. So, consider m.g em'.g. Just after sendi(m), by psend,

BCi will be set to m.b. Since by observation] and observations, BCi is never

decreased no matter which group Pi sends the message to, and psend(m') will

increment BCi before assigning its value to m'.b, indeed m.b < m'ib.

Safety property

We must show that messages are only delivered in the same global order and that

causality is not violated. Consider two non-null messages m and m', such that Pi and

Pj are in m.g (J m'.g. If send(m) -7 send(m') then m.b < m'.b (by Lemma /1).

Suppose that m.b < m'.b. As Bmin never decreases, it is not possible for (Bmin ~

m'.b) to become true before (Bmin ~ m.b) becomes true. Since messages are delivered

62

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

in the increasing order of their block-numbers, deliver(m) -+ deliver(m') will be true

for both Pi and P} Suppose that m.b =m'.b. For every process Pk in m.g n m'.g, when

(Bmin ~ m.b) becomes true for the first time, both BMm'.g,k[m.b] and BMm.g,k[m.b]

will be complete; so, both m and m' will be taken together for delivery and their

delivery order will be according to the pre-determined order which is fixed identically

for all processes in the system.

Liveness property

We must show that a sent message will eventually be delivered at the destination

processes. Firstly, notice that by our transport assumption, any sent message will

eventually be received at the destination processes and that the time-silence

mechanism guarantees that a created Causal Block (resulting from a received or sent

message) eventually completes. A message m, represented in BM[m.b] of a process

Pi>is only delivered after BMx,i[m.b] is complete for every gx E Gi (safeI' - §4.2) so

as Bmin ~ m.b. Consider that m is non-null and that was multicast by Pi in gx. The

operation psendgm) ensures that a null 11with 11.b = m.b is multicast such that in

every gy E Gi - {gx}, a BMy,i[m.b] is created, if not already there. When PjoPj E gx,

receives m, the msg-receive procedure also ensures that BMyj[m.b] is created (if not

already there) for every gy E Gj- Since, as noted previously, every Causal Block

created completes (by time-silence), and is identified to be complete, Bmin ~ mb

eventually becomes true and thus m is eventually delivered.

4.6 Conclusions

In this chapter, we have presented an approach based on Causal Blocks for

implementing a symmetric total order protocol for groups that may be overlapping.

Besides being simple to handle, even in the presence of overlapping groups (a process

can belong to multiple groups), the approach presented has the main advantage of the

constant and low message space overhead. We have also presented in this chapter, a

mechanism to ensure that a created Causal Block will eventually complete. This has

been called the time-silence mechanism.

63

Chapter 4 - The Total Order Message Delivery Protocol, Newtop

Symmetric total order protocols have also been presented in [Melliar-Smith90,

Amir92]. However, these protocols have not addressed the problem of multiple

groups; further they assume in their system model a hardware broadcast facility on top

of which the protocols are built (making them not as portable as Newtop).

Asymmetric protocols with similar functionalities are described in [Chang84,

Navarantnam88, Birman91, Kaahoek91]. None of them however, addresses the group

overlapping problem for total order delivery. In [Peterson89] a symmetric protocol is

described where group overlapping is not addressed either. Both total order protocols

in [Birman91b and Peterson89] are built on top of a causal order protocol which

make them have a larger message space overhead (the amount of ordering information

added to user messages) when compared to Newtop: in [Birman91b] messages carry

vector clocks and in [Peterson89] messages carry references to other messages related

by the 'happened before relation' and represented in a graph, called the context graph.

Newtop, in contrast, has been designed directly to provide total order delivery and

messages are timestamped with just a block-number. In order to assess delivery

conditions, the protocol in [Peterson89] has to examine some 'stability' conditions in

the context graph. In Newtop, this is done just by keeping the minimum value of the

vector CBV and comparing this value with the block-numbers of received messages.

The protocol presented in [Garcia-Molina91] indeed addresses the group overlapping

problem. However, all processes have to access the propagation graph (see section

2.6) which is a global piece of information and have to be reorganised due to dynamic

group membership changes (due to process crashes, voluntary leaves, or joins). That

is, the delivery of messages will be delayed until the graph is reorganised and its new

configuration known by the relevant processes. In Newtop, only local information is

used to handle group overlapping and changes in the overlapping structure will not

affect message ordering.

The next chapter shows other protocols based on Causal Blocks and intended only

for causal order delivery. In chapter 6.0, we incorporate fault-tolerance to Newtop,

removing the failure-free assumption made in this chapter.

64

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

Chapter 5 - Causal Order Message Delivery in
Overlapping Process Groups

If two messages m and m' are causally related (m ~ m'), a causal order protocol

will deliver m' to a process p only after m has been delivered to p. If the delivery of m'

is delayed only if there exist a message m", such that m" ~ m' and m" has not yet been

delivered to p, we say that the causal order protocol delivers messages as early as

possible. Causal order protocols have to compromise between delivery speed (as early

as possible principle) and the size of message timestamps containing causality

information [Mostefaoui93]. Small timestamps usually means slower delivery. The

first causal order protocol for process groups, the CBCAST protocol [Birman87],

was based on the idea of message piggybacking. In CBCAST, causally related

messages were piggybacked on top of transmitted messages; this made the protocol

quite expensive in terms of message space overhead. In the second version of

CBCAST [Birman91b], a message to be transmitted is timestamped with a vector

clock [Mattern88, Fidge91, Schiper89, Birman91b] which is a compact representation

of a causal history within a process group. Vector clocks lead to a precise causal

dependency representation between transmitted messages, and it is a lower-bound in

message space overhead in order to get delivery as early as possible [Charron91,

Raynal92]. When groups overlap, causal order protocols based purely on vector

clocks [Birman91b] are quite expensive in terms of message space overhead.

Typically, vector clocks related to all groups in the system have to be transmitted on

top of transmitted messages. Although some optimisations are possible (e.g., using

compression - [Birman91b]), the high cost is unavoidable to guarantee fast causal

delivery (as early as possible delivery). In order to avoid the high cost of vector

clocks for overlapping process groups, some compromise must be made, trading a

potentially slower delivery with smaller timestamps.

65

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

Using conditions COl and C02 of section 3.6 for causal message delivery, when

a message m arrives at a destination process p, it can only be delivered after the

Causal Block (m.b - 1) becomes complete in p. As we have previously stated, some of

the messages with block-number less than m.b may actually be concurrent to m (the

reverse of prl is not always true - section 3.2). Although the waiting time introduced

by block completion is inevitable for the total order requirement, it can be avoided for

just causal order delivery, if we can deduce the precise set of messages m depends on.

In this chapter, we shall show how Causal Block numbers can be used to precisely

represent causal relationship between transmitted messages (section 5.1), leading to a

faster causal order protocol. We will then present three protocols for causal order

delivery in overlapping process groups, in the context of causal blocks 1, and describes

a trade-off solution in more details. The first protocol, called Slow causal protocol, is

purely based on message block-numbers. It is optimum in message space overhead

but may introduce extra delay time for message delivery because it relies on block-

completion. The second protocol, the Fast causal protocol is based on a vector called

the Global Last Delivered Vector (GLDV). It reduces message delivery delay

(delivery as early as possible) but has a higher message space overhead. The third

protocol, the Relative causal order protocol, uses the Last Delivered Vector (LDV)

combined with the block-completion concept and is a trade-off solution between

message space overhead and delivery delay.

Sections 5.2 discusses causal order delivery in overlapping process groups. After

presenting the system model and failure assumptions in section 5.3, we describe the

Slow, Fast, and Relative causal order protocols, in sections 5.4, 5.5, and 5.6,

respectively. Section 5.7 concludes the chapter.

lAs messages are organized in Causal Blocks, all complementary mechanisms, such as
membership and flow control (chapters 6 and 8 respectively) can also be used in the causal order
protocols presented in this chapter.

66

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

5.1 Representing Causal Relationship precisely using Causal Blocks
Numbers

Consider that instead of timestamping a message m with just its block-number, we

introduce a timestamp that includes also the block-numbers of the last delivered

message from each of the group members by the time m is sent. When m is received

at a destination process p, it can be delivered immediately after the messages

represented by those block-numbers have also been delivered at p.

Consider that each member process Pi of a group g maintains a vector, called the

Last Delivered Vector and denoted as LOV, whose size is the size of g. The contents

of LOV, together with the message block-number, will be used to timestamp sent

messages. At any time, LOV[j] of Pi> 1 s j s n, will indicate the largest block number

of the message from Pj that Pi has delivered. Assume that m.b and m.s denote the

block-number and the sender process identifier associated with message m,

respectively. Thus, LOV of Pi will satisfy the following at any given time,

LOV[j] = max{m.b Im.s = Pj and deliver;(m) has occurred}.

With respect to its LOV, Pi will carry out the following:

Al :just before senditm) :m.ldv = LOV,

A2 : just after sendgm) : LOV[i] = m.b (or BCi), and

A3 : just after deliveri(m) : LOV[m.s] = m.b,

Consider the LOV vectors maintained by processes Pi and Pj, and denoted as

LDVi and LOV} respectively. The values of LOVi and LOVj are compared using the

following rules:

Cl :LOVi s LOVj ¢::> 'V k : LOVi[k] s LOVik]

C2 : LOVi < LOVj ¢::> LOVi s LOVj and 3 k: LOVi[k] < LOVj[k]

For causal message delivery, a received message m is delivered to Pi immediately

after the following delivery condition is true:

DC: for all Pj E m.g, m.LOV[j] sLOVi[j]·

67

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

By the above condition, any message that Pi sends is immediately deliverable at Pi.

Hence, we will assume that for m, m.s = Pi> sendgm) is immediately followed by

delivergm).

LDV vectors have similar properties to vector clocks (see section 2.6.3). The

difference is due to the fact that an entry of a given LDV represents the Block

Counter value of a given group process (Le. the process logical time), whereas an

entry of a vector clock indicates how many events have happened in a given process

by a given moment of its computation. In other words, LDVi[j] indicates not only the

last message sent by process Pj and delivered by Pi, but also informs Pi that Pj has

sent/delivered messages up to Causal Block LDVi[j]. This Pi'S knowledge of Pj'S

logical time progress, as we will show in this chapter, provides our protocol with an

efficient way of dealing with causal message delivery in the presence of group

overlapping. Below we state some properties of LDV vectors.

LDV vector Properties

Consider messages mJ and m2 timestamped as m1.LDV and m2.LDV,

respectively. Based on the previous definitions we state the following properties prJ,

pr2, and pr3 possessed by LDV vector timestamps.

prJ: m1.b = max(m1.LDV[j], 1 sj s n) + 1;

When a message ml is sent, its block-number m1.b is given by the incremented

value of the current Block Counter (by CAJ - section 3.2). Thus, to verify prJ, we

only need to show that the value of a Block Counter BCi = max(LDVi[j], I s j s n).

Notice that for i = j, LDVi(j) is only updated to equalise BCi (by A2). For i *j, by A3,

LDVi(j) is updated to ml.b of a delivered message ml. By AC2 - section 3.2, BCi

will maintain the maximum value between the previous value of BCi and m1.b

(LDVi(j) after A3). Hence, BCi = max {LDVi[j], I s] s n} holds, and therefore, prl.

pr2 : ml -+ m2 <=> ml.LDV < m2.LDV and ml.b sm2.LDV[i]

Let Pi and Pj be the processes which sent ml and m2, respectively. By the

definition of the relation '-+', if ml -+ m2, then either i = j and m2 was sent after ml,

or m2 was sent after Pj has delivered ml. In the former case, by A2, LDVi[i] will be

68

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

incremented after ml be sent, thus m2.LDV > m1.LDV and m1.b s m2.LDV[i] will

hold. In the latter case, notice that ml can only be delivered in Pj after LDVj be larger

or equal than m1.LDV. Because the block-number of a message is always larger than

all block-numbers present in its timestamp vector (by prl), then, after delivering ml,

by A3, LDVj(i) is updated to m1.b and then will be larger than m1.LDV[i]. Therefore,

by Al, the inequality m2.LDV > m1.LDV will hold. Because LDVj(i) is updated to

m1.b before being used as m2's timestamp, then m1.b S m2.LDV[i] will also hold.

Hence, it follows that ifml ~ m2, then m1.LDV < m2.LDV and m1.b s m2.LDV[i].

The reverse of pr2, that is, ifml.LDV < m2.LDV and ml.b sm2.LDV[i], then ml ~

m2, follows from the fact that when m2 is timestamped to be transmitted, all

messages with block-numbers up to those present in m2.LDV will have already been

delivered in Pj> including ml (note that ml.b s m2.LDV[i]). Thus, if ml.LDV <

m2.LDV and ml.b sm2.LDV[i], then indeed ml ~ m2.

Notice that by using LDV vectors as timestamps, the potential causal relationship

between messages is as precisely represented as in vector clocks (see section 2.6). In

practice, this precise representation of potential causality makes possible fast causal

message delivery. That is, the delivery of a message m is only delayed if there is

another message m' such that m' ~ m and deliver(m') has not happened yet.

If two messages ml and m2 are not causally related they are said to be concurrent

messages, and we will denote ml] m2. Concurrent messages can be precisely defined

by their timestamps as follows:

pr3 :ml "m2 ~ neither {ml.LDV <m2.LDV and ml.b :s;m2.LDV[i] 1
nor {m2.LDV < ml.LDVand m2.b:s; ml.LDVUll holds.

Ifml IIm2, neither ml ~ m2 nor m2 ~ ml hold. In the former case, when m2 was

sent ml had not been delivered yet. Thus, by A3, LDVj[i] will only progress to m1.b

when ml is delivered in P} Thus, m2.LDV[i] < m1.b. The same reasoning applies for

the latter case (when m2 ~ ml does not hold).

69

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

5.2 Causal Order in Overlapping Process Groups

When process groups overlap, a message m received by a multi-group member

may causally depend on messages sent in other groups distinct from the one m was

sent to. Thus, timestamping a message with a single group vector (such as LDV or

Vector Clocks) is not enough to represent causal information. Consider two groups

gx and gy' such that gx ('\ gy i:- 0 (Le. gx and gy overlap). A message m sent in gx by

a process in gx ('\ gy , may depend on previous messages sent in gy. Thus, m has to

carry causal information not only about gx but also about gy so that any other

member of {gx ('\ gy) will be able to deliver m properly.

Overlapped groups can be represented as a graph of groups whose structure can

vary in time due to the changes on the group memberships. Consider the existence of

process groups gi = {PI>P2, '" 'Pn}' The graph 0 of overlapped groups is defmed as

follows: one vertice of 0 represents a given process group, and there will be an edge

linking two vertices whenever the corresponding groups overlap. That is, 0 = (V,E),

where V is the set of all groups gi and (gj' gk) E E iff gj ('\ gk i:- 0. In the particular

case where there is no cycles in 0, it suffices for a message m to carry causal

information about all groups the sender of m is a member of. However, in the general

case, causal dependences may propagate through cycles [Birman9Ib] and messages

have to carry global causal information (i.e., causal information of all groups in 0).

For instance, consider the 4 groups gl = {PI> P2, P3, P4}, g2 = {P3, P4, P5, P6}, g3

= {P5, P6, P7, pg}, and g4 = {PI> P2, P7, pg}. The graph 0 of overlapping groups

(figure 5.1) is given by V = (gj, g2, g3, g4) and E = {el = (gI> g2), e2 = (g2, g3), e3

= (g3, g4), e4 = (gl, g4)}· Consider that PI sends the message ml in gj. After

delivering ml, P3 sends m2 in g2· Then, P6 delivers m2 and sends m3 in g3. And

finally, P7 delivers m3 and sends ffi4 in g4· Since ml --+ ffi4, P2 has to deliver ml

before ma. Unless the information m] --+ m2 --+ m3' is passed through the groups to

P7, it cannot deduce 'mj --+ ffi4' and send this causal information together with ffi4.

70

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

Figure 5.1 - Graph 0 of overlapped process groups

5.3 System Model and Failure Assumptions

We will assume the system model as specified in chapter 4, section 4.1. So, let us

assume initially that processes do not crash so that once a group membership is

installed it will not change during of the execution of the causal order protocol.

Failures for the causal order protocols presented in this chapter will be treated in the

same way as for the total order protocol Newtop. For this, refer to chapter 6.

Based on send and deliver events, and on the '-+' relation defined in 3.2, we state

the following property satisfied by the protocols developed in this chapter.

Causal order delivery: sendp(m) -+ sendr(m') ~ deliverq(m) -+

deliverq(m'), for all functioning q, q e m.g ('Im'.g, pe m.g, and r e m'.g.

5.4 The Slow Causal Order Protocol

We present the slow causal order protocol by slightly modifying the total order

protocol described in chapter 4. In that protocol, a message m can be delivered only

after the Causal Block BM[m.b] is complete. This is necessary so as the concurrent

messages can be delivered in the same (pre-fixed) order. For just causal order,

however, concurrent messages can be delivered in any arbitrary order. Therefore, a

received message m can immediately be delivered, provided that all blocks BM[B], B

<m.b, are complete and its messages delivered. The condition CA2 of section 3.2 that

was redundant for total order, now must be used to advance the block-counter after

delivery. So, we take the total order protocol presented in chapter 4 and modify the

msg-delivery sub-process (section 4.5.1) to produce just causal order delivery. Figure

5.2 shows the modified msg-delivery sub-process intended for causal order delivery.

71

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

mag-delivery: /* executed after a message has been received */
(
do
if Bmin = min {CBV[x] I gx E G) ~

deliver all sent and received, but not delivered m such that m.b = Bmin + 1
if m.b > BCi ~ BCi := m.b; /* update the block-counter */

Cl /* the received message completed one or more blocks */
Bmin:= min{CBV[x] Igx E G);
deliver all sent and received, but not delivered m such that m.b ~ Bmin + 1
if m.b > BCi ~ BCi := m.b; /* update the block-counter */

fi
od

Figure 5.2 - The msg-delivery sub-process for slow causal order delivery

In figure 5.2, Bmin represents the largest block-number of complete (and

delivered) Causal Blocks for all groups Pi is a member of. Thus, any received

message with block-number Bmin + 1 can immediately be delivered to Pi with the

assurance that all possible causal dependent messages have been already delivered. On

the other hand, messages with block-numbers Bmin + K, K> 1, will have to wait for

block-completion to occur. Otherwise, causal order may be violated. For instance, if a

message m, m.b = Bmin + 5, is received, it can not be immediately delivered since

another message m', m.b = Bmin + K, 1 ~ K ~ 4 and m.s ~ m'.s, can be subsequently

received. Therefore, m will have to wait for the block BM[Bmin + 4] to become

complete in order to be safely delivered. When more than one block get complete,

messages are delivered following the increasing order of their block-numbers. Safety

and liveness correctness proves for the Slow Causal order protocol are similar to the

ones given for the total order protocol in chapter 4.

5.5 The Fast Causal Order Protocol

To obtain fast causal order delivery, we extend the group based Last Delivered

Vector presented in section 5.1 into a Global Last Delivered Vector suitable for a

multi-group environment. Consider the existence of distinct process groups. In order

72

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

to construct the GLDV vector, each process maintains a unique Block-Counter BC,

despite the number of groups it may belong to. To represent sent/received messages,

each process Pi maintains a Block-Matrix BMi,x for each group gx that Pi is a

member of. Updating Bq follows the rules CAl and CA2 (section 3.2). Also, each

process Pi maintains a Global Last Delivered Vector (GLDVi) for keeping the largest

block-number of messages sent/delivered by all processes (belonging to groups Pi is a

member of or not).

Suppose the existence of a multi-group process Pi. Thus, GLDVi is initialised with

the entries corresponding to all processes belonging to groups Pi is also a member of.

Transmitted messages are timestamped with the current value of GLDVi. So, before

Pi transmits a message m, it assigns the current value of GLDVi to m.gldv. Just after

m is sent, the vector entry corresponding to Pi is updated with m.b (i.e. GLDVi [i] =
m.b). When m is received by another process, say Pj, the local GLDVj is updated to

include all entries in m.gldv that are not present in GLDV} So, actually, GLDVj will

maintain the largest block-number of messages sent/delivered by processes of groups

in the overlapping structure O. To simplify presentation, let us assume that when a

given GLDV is initialised, there will be an entry in it for each process in 0 and they

will be set to zero before any message is transmitted or delivered. Notice that like the

LDV vectors (section 5.1), the GLDV vectors are constructed by maintaining the

largest block-number of messages sent/delivered by processes. Thus, the comparison

rules and properties of LDV vectors presented in section 5.1 can also be applied for

GLDV vectors. Consider a given process Pi, and let Gi = {gx IPi E gxl. Let S be the

set of all processes belonging to groups Pi is also a member of. That is, S = {Pk IPk E

gx and gx E Gil. On receiving a message m, Pi must proceed with the following test

for delivery:
Delivery test: if ('V Pk E S, GLDVi[k] ~ m.gldv[k]) then deliver(m);

After delivering the message m, GLDVi is updated as follows:

Updating GLDV:

for any process Pk e: S, GLDVi [k] :=max(m.gldv[k], GLDVi[k]);

73

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

OLDVi[m.s] :=m.b;

The delivery test guarantees that a received message m is only delivered after all

messages represented in m.gldv, corresponding to those processes in S, have already

been delivered by Pi. After delivery of m, the entry of OLDVi corresponding to the

sender of m (m.s) is updated with the block-number of the message delivered (m.b).

The other entries of OLDY i not corresponding to processes in S, will keep the

maximum values between the values in OLDVi and m.gldv, so that a future

transmitted message m' by Pi will carry in m'.gldv all inter-group causal information

known by Pi by the time m' is multicast.

Message space overhead when using the GLDV vectors

Consider the existence of a set of process groups whose overlapping structure is

given by the graph 0, previously defined. The size of OLDY, IOLDVI, corresponds to

the number of processes participating in groups in O. It can be trivially verified that

IOLDVI < L Igil, gi E V, if E :f:. 0, where Igil is the size of group gi. In CBCAST

[Birman91b], a message is timestamped with IVI vector clocks (i.e. the number of

groups in 0), leading to a message space overhead of I. Igil, gi E V. Thus, the

CBCAST2 overhead corresponds to the OLDY upper-bound overhead, that will only

happen when there is no overlapping in 0 (E = 0). Hence, the more groups overlap,

the smaller is the overhead of Fast causal protocol using OLDY when compared with

theCBCAST.

5.6 The Relative Causal Order Protocol

We now combine the group based LDV vectors with the concept of block-

completion to develop a trade-off solution. We will first describe the protocol for the

non-overlapping scenario. We will then extend the protocol to work with overlapping

process groups, proving its correctness.

2. Without considering the compression mechanisms presented in [Birman91b].

74

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

To represent ordering causal information between messages sent in a given group,

we will make use of the Last Delivered Vector (LDV) introduced in section 5.1.

Thus, a process Pi will maintain a Block Counter BCx,i and a Block Matrix BMx,i

for every group gx, it is a member of. The updating of BMx,i and BCx,i will follow

the conditions CAl and CA2 of section 4.2 restricted to a given group. Besides that,

Pi will also maintain a Last Delivered Vector - LDVi, for each group Pi is a member

of. LDV x i will be updated as specified in the conditions AI, A2, and A3 of section,

5.1, and will be used to precisely represent causality between messages sent in a given

group (see property pr2 of section 5.1).

Every message multicast will be timestamped with, in addition to m.b, the current

value of the LDVi vector as m.ldv. The algorithm of the send(m) primitive for a

process Pi is given below, in figure 5.3, where gx represents the destination group of

message m, m.g.

send(m: non-null-message);
{
m.s :» i;
m.b := BCx,i + 1; BCx,i := m.b;
m.ldv := LOV x i;
LOV x,i(i] := BCx,i;
BMx i[m.b] := '+';
multicast m to other members of m.g;

}

Figure 5.3 - The send primitive

The receive process (figure 5.4) will receive messages from the transport layer and

represent them in the appropriate Block Matrix. After that, it signals the deliver

process which will try then to deliver the received message. Delivering a message

creates conditions for received (and not delivered) messages to be delivered. So, after

a message has been delivered, the deliver process is recursively activated until there is

no message that can be delivered. A received message m taken from the transport

layer and intended for Pi will be immediately represented in the block matrix BMi

related to the group m.g but delivery will only happen when the m.ldv is greater than

75

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

or equal to LDVi x (gx = m.g). Figures 5.4 and 5.5 show the algorithmic descriptions,
of the receive and deliver sub-processes, respectively.

do

msg-receive;
(

receive m from the transport layer;
update appropriate BM; /* BMi x[m.b] := m; */
signal msg-delivery sub-process; 1* signal the deliver sub-process "l

od
)

Figure 5.4 - The msg-receive sub-process

if 3 m in BMi,x Im is not marked delivered and m.ldv ~ LDV i,x -+
{
mark m delivered and deliver m to Pi;
signal msg-deliver sub-process; 1* try recursively to deliver another message */

msg -deli ver;
{

Figure 5.5 - The msg-deliver sub-process

Maintaining inter-group causal information

Each process Pi maintains a block-counter BCi,x and a block-matrix BMi,x for

each group gx process Pi is a member of. Updating of the Block-Counter and Block-

Matrix follows the same rules for the non-overlapping case described in the last

paragraph. Thus, BCi,x maintains the largest block-number of messages sent or

delivered in group gx and received/sent messages of gx are represented in BMi,x' Just

before a message m is sent in group gx, it is timestamped with the incremented value

of BCi,x as m.b. A destination process, say Pj>on receiving m will know that when m

was sent group gx had progressed in logical time up to block-number m.b. Thus, any

message m', m ~ m', subsequently transmitted by Pj to a group gy' y * x, will also

carry this inter-group causal information so that any process Pr E gx (J gy , r * j, will

deliver m' only after the Causal Block BMr,x[m.b] is complete and its messages

delivered. Therefore, enforcing the delivery of m before delivery of m',

76

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

For assessing which Causal Blocks per group should be complete before a

received message can be delivered, processes will maintain a vector containing the

block-numbers of the largest sent/delivered message per group (the GBN vector), and

this information will be transmitted together with any sent message.

The GBN vector

Let GBNi[1..k] be the process Pi'Svector of Group Block Numbers, where k is the

number of groups-. GBNifj] represents the block number of last message

sent/delivered in group gj- Every message sent by process Pi will carry in m.gbn the

current value of GBNi. GBNi is set up with zeros when Pi starts and will be updated

in the following way:

Just after a message m is sent by Pi>

GBNi[m.g] := m.b;

Just after Pi delivers a message m,

GBNifj] :=max {GBNifj], m.gbnljj}, j i: m.g;

GBNi[m.g] := m.b;

By using the vector GBN, we can now state the message delivery conditions for a

given multi-group process Pi. A received message m of gx can only be delivered if

the two following conditions COl and C02 are true.

Conditions for Causal Ordering

COl: m.ldv ~LDVx,i;

C02: m.gbn[y] is complete in BMy,h and its messages delivered, for all

gy such that Pi is a member of and y i: x.

By applying the above conditions, protocols satisfying causal order message

delivery can be developed.

3. In fact, k changes dynamically. Thus, in a real implementation, GBN will be a list of (Gid, BN)
pairs, where BN is the block-number of the last sent/delivered message of the group identified by
Gid.

77

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

Correctness of the protocol

For proving the correctness of the protocol, we have to show that a sent message

is eventually delivered (liveness property) and it does so without violating causal

order (safety property). As stated before, we assume a reliable FIFO transport layer.

Also we assume the time-silence mechanism as in section 4.3.

Safety property

We must show that the delivery of messages by the protocol respect causal order.

That is, if two messages ml and m2 are sent, and ml --+ ffi2, m2 is only delivered in a

process Pi after ml has been delivered in Pi. COl guarantees that if ml and m2 belong

to the same group gx, ml is delivered first. Supposing that ml and m2 are sent in

different groups gx and gy' respectively, such that ml --+ m2. C02 guarantees that ml

of gx is delivered before m2 of gy is delivered.

COl is safe

We will prove COl by contradiction. COl guarantees that a received message m2,

m2.g = gx, is only delivered in a process Pj' after LDVj,x ~ m2.ldv. Assume that Pj

receives m2 and COlis true (i.e. pj delivers m2). Suppose by absurd that there exist a

message ml sent in group gx, such that, ml --+ m2, and ml has not been delivered by

pj (Le. pj has delivered m2 but not m l). Suppose without loss of generality that ml

was sent by a process pi of gx, i ~ j. Since m2 has been delivered, LDVj,x ~ m2.ldv.

Thus, by definition (Cl of section 5.1), LDVj,x[i] ~ m2.ldv[i]. Also, because ml ~

ffi2, by pr2 of section 5.1, ml.b s m2.ldv[i]. Therefore, LDVj,x[i] ~ ml.b what

implies that ml must have been delivered (FIFO assumption).

C02 is safe

We will prove that C02 is safe by contradiction. Assume that a message m2, m2.g

= gy' has been delivered at a process Pj and suppose by absurd that there exist a

message ml, m1.g = gx, x ~ y, such that, ml ~ m2 and ml has not been delivered by

pj (Le. pj has delivered m2 of gy but not ml of gx). Note that GBNj[x] maintains the

largest block-number of messages sent or delivered by process Pj in group gx. Since

ml ~ m2, m2.gbn[x] ~ ml.b, Therefore, when m2 is delivered (by C02), the Causal

78

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

Blocks of BMj,x[B], B ~ ml.b have been completed and all corresponding messages

delivered (including ml).

Liveness

To prove the liveness of our protocol, we have to show that a sent message is

eventually delivered at the intended destinations. In other words, we must show that

once a message m is received, the conditions COl and C02 will eventually become

true for m. We will prove the liveness of conditions COl and C02 by induction on all

Causal Blocks created in a process Pi.

COl eventually become true:

base step : suppose the Causal Block number 1 of Ox is created at the group member

Pi. Notice that the very first message sent in gx will be have block number 1. By pr1

of section 5.1, m.b = max {m.ldv[j], 1 S j S n} + 1, where n is the size of m.g. Thus, if

m.b = 1, m.ldv[j] = 0, 1 S j S n. Because LDVi is initialized with zeros, m.ldv S

LDV i x is true and m is immediately delivered.,
induction step : consider that the Causal Block B of a group gx is created at a

process Pi. That is, a message m is received such that m.b = B and m.g = gx'

Suppose by induction hypothesis that all messages m' of gx with block-number m'.b <

B will eventually be delivered at Pi· By pr1 of section 5.1, m.ldv[j] < B, 1 S j S n .

Thus, by our induction hypothesis, the messages of gx represented in m.ldv will be

eventually delivered and therefore m.ldv s LDVi,x will eventually become true.

C02 eventually become true.

Suppose a message m is transmitted in group gx' By our transport assumption,

transmitted messages are eventually received by the destination processes and

represented in the appropriate BM. So, assume the m is received by a process Pi of a

group gx. C02 will be true when the block m.gbn[y] is complete (and the

corresponding messages delivered) in BMi,y, for every group gy that process Pi is a

member of. Notice m.gbn[y] is the block-number of a message sent in group gy.

Thus, if Pi belongs to gy' it will eventually receive a message in gy with block-number

m.gbn[y] (transport assumption). Since the time-silence mechanism guarantees that all

79

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

group members will send a message to complete a created Causal Block, then all

created blocks will eventually get complete. Therefore, the blocks represented in

m.gbn will eventually get complete. We must show now that messages of blocks

represented in m.gbn will eventually get delivered. First notice that the very first

message transmitted will have m.gbn[y] equal to zero, for any gy. Thus, the very first

message is delivered by liveness of COl. Consider a message m' of a block

represented in m.gbn[y], for any gy. Let us suppose, by induction hypothesis, that

messages represented in blocks of m'.gbn will get eventually delivered. That is, C02

will eventually become true for m', Thus, liveness of COl guarantees that m' will

eventually be delivered. Therefore C02 for m will eventually become true.

5.7 Conclusions

We have presented three approaches for causal order message delivery in

overlapping process groups. They represent different trade-offs between delivery

delay and message space overhead costs. The Slow causal protocol requires the

smallest timestamp (the message block-number) but can potentially introduce large

delays since Causal Blocks have to be complete before message delivery. The Fast

causal protocol is based on the OLDY vector which is a precise representation of

causal dependence between transmitted messages in a multi-group environment. In

Fast causal, message delivery occurs as early as possible. That is, the delivery of a

message m is only delayed if there is a message m', such that m' ~ m and m' has not

been delivery yet. On the other hand, the Fast causal protocol imposes the highest

message space overhead among the approaches presented. The Relative causal

protocol is a trade-off solution. It provides as early as possible delivery in a uni-group

environment but some extra delay is possible in a multi-group environment due to the

need of block-completion. When compared with the Fast causal protocol, it provides

a smaller timestamp with a potentially slower delivery time. When compared with The

Slow causal protocol, the Relative causal provides a faster message delivery but with

a higher message space overhead.

80

Chapter 5 - Causal Order Delivery in Overlapping Process Groups

Finally, all protocols presented in this chapter have been designed to work in the

context of Causal Blocks such that the mechanisms described in another chapters (e.g.

time-silence, group-membership, and flow control) can be easily integrated to become

part of the causal order protocols.

81

Chapter 6 - Introducing Fault-Tolerance to Newtop

Chapter 6 - Introducing Fault-Tolerance to Newtop

The Newtop protocol presented in chapter 4.0 delivers messages in each group

member in the same total order and always with the same group view. However,

when a process crash is considered, it can have the following effects: if the sender

crashes during a multicast in a given group, some functioning members may not

receive the multicastmessage; secondly, the Causal Blocks maintainedby a process Pi

will not complete, when Pi is a member of a group of which the crashed process is

also a member. In this chapter, we take Newtop as presented in chapter 4 and extend

it in such a way that ordering and liveness is preserved even if the membership

changes occur due to (suspected) process crashes. Since the fault-tolerant

mechanisms will be developed using the Causal Blocks representation (i.e., using

message block-numbers), the extensions we will present can also be applied for the

fast causal order protocols described in chapter 5.0, as we will indicate in a

subsequent section.

We start in section 6.1 by discussing the requirement of group partitioning for

multicast protocols. In section 6.2, we state the fault-tolerant properties of Newtop.

In section 6.3, we describe the fault-tolerant mechanisms developed. Section 6.4

discusses related work. Finally, in section 6.5 we conclude the chapter.

6.1 Group Patltioning

As stated earlier, we are interested in a general purpose protocol for asynchronous

systems where processes could be geographically widely separated, communicating

over a long-haul network such as the internet. As discussed in section 2,1, a fault-

tolerant protocol for such an environment, would handle process crashes in the

following way: functioning processes suspect process crashes and reach agreement

only among those processes which they do not suspect to have crashed. (Such

protocols are quite different in nature to membership protocols for a synchronous

system, e.g., [Cristian91]). Despite efforts to minimise incorrect suspicions by

82

Chapter 6 - Introducing Fault-Tolerance to Newtop

processes, it is possible for a subgroup of mutually unsuspecting processes to wrongly

agree (though rare it may be in practice) on a functioning and connected process as a

crashed one, leading to a 'virtual' partition. Thus, there is always a possibility for a

group of processes to partition themselves (either due to virtual or real network

partitioning) into several subgroups of mutually unsuspecting processes. These

observations have motivated us to develop a membership service for Newtop that can

support concurrent existence of multiple subgroups, leaving it to applications to

decide on the eventual fate of such subgroups.

Most of the existing multicast protocols have not addressed the issue of network

partitioning in the manner suggested above. The symmetric protocol of [Amir92b]

and the co-ordinator oriented protocol of [Schiper93c] do provide membership

services that treat network partitions by permitting the existence of multiple

subgroups. In section 6.4 we will compare our membership protocol with these

protocols.

6.2 The Fault-Tolerant Properties of Newtop

Let Oi be the set of groups Pi belongs to: 0i = {gx IPi E gx}' When Pi multicasts

(or delivers) a message m with m.g = gx' it actually does so only to (or from) those

processes which it views as functioning members of gx' When gx is initially formed,

each functioning Pi installs an identical, initial view VOx,i= {PI, P2' ... Pn}' As Pi

Justifiably' suspects another Pk to have crashed or disconnected, it attempts to

confirm its suspicion with other members it does not suspect; if confirmed, it installs a

new view that does not include Pk· Let VOx,i' Vlx,i' V2x,i' ... vrx,i be the series of

views Pi has thus sequentially installed over a period of time, until it crashes. (The

view does not exist for a crashed process.) The view installations by Pi must satisfy

certain conditions so that message delivery by Newtop can be 'atomic' with respect to

view updates. For this purpose, Newtop provides each Pi with a group-view process,

denoted as GVx.i- for each gx' gx E G], Group-view processes execute a membership

protocol to reach agreement and update group views.

83

Chapter 6 - Introducing Fault-Tolerance to Newtop

The Newtop membership protocol maintains consistency in the presence of (real

or virtual) partitions by permitting a group of processes to partition themselves into

two or more sub-groups of connected processes with the property that: (i) the

functioning processes within any given subgroup will have mutually consistent views

about the membership; and (ii) the views of processes belonging to different

subgroups are guaranteed to stabilise into non-intersecting ones. Newtop leaves it to

applications to decide whether or not the applications should continue to maintain

more than one subgroup. This flexibility makes Newtop more powerful than many

other protocols [Melliar-smith91, Ricciardi91, Mishra91] that can guarantee

continued group operation only when the group partitions in such a way that exactly

one subgroup can be uniquely identified as the primary. This in turn requires a certain

number (at least a majority) of processes in the group to remain operational and

connected; as we have discussed earlier, this requirement is not always possible to

meet.

In Newtop, view updates performed by processes of a group gx satisfy the

following view consistency properties:

VCI: The sequence of views installed by any two functioning processes that do not

suspect each other are identical (validity).

VC2: IfPk, Pk e Vrx,i' crashes or gets disconnected from Pi and if Pi does not crash,

then Pi will eventually install Vr'x,i such that r' > r and Pk e: Vr'x,i (liveness).

VC3: any two functioning processes deliver the same set of messages between two

consecutive views that are identical. That is, Vr-1x,i= Vr-1xj and Vrx,i = vrxj => the

set of m, m.g = gx' delivered by Pi and Pj in Vr-1x are identical. This condition is the

generalised version of virtual synchrony defined for the ISIS system [Birman91b]; the

generalisation is explained below.

84

Chapter 6 - Introducing Fault-Tolerance to Newtop

Consider Pi multicasting m in view yrx,i' Let this event be denoted as send;(m,r).

Pi delivers its own messages only by executing the protocol. Suppose that Pi delivers

m in view yr'x,i' for some r' ~ r; denote this event as deliveryi(m,r'). Note that r' ~ r,

and the '~' relation (defined only on send and delivery events) is not closed under

view updates. The virtual synchrony model of ISIS requires r' = r. In section 6.3, we

show that our protocol can be modified to provide this closure property, but only at

the necessary expense of performance, by blocking send operations when a new view

is being installed (this is the case in ISIS as well). Newtop has the following message

delivery properties (in stating them the suffix x has been dropped):

validity: for any m: sendgmr) "deliverylm,r') ~ Pi E yr'j. In words: a process

will deliver a message m in view y, only if the sender of m is in y.

Iiveness: if a Pi sends m in view yri, then provided it continues to function, it will

eventually deliver m in some view yr'i, r' ~ r.

atomicity: 'V Pi' Pj S.t. V'i = V'j" V'+1i = V'+lj: deliverysmr] ¢::> delivery/m,r).

This property is implied by YC3.

The three properties stated above (validity, liveness, and atomicity) guarantee live,

atomic delivery in the presence of dynamic membership changes. The total order

delivery property stated in section 4.2 has now to be redefined to take into account

membership view changes. The order property stated below ensures total order

deliveries in single groups. Subsequently, we extend this property for multiple process

groups.

Total order delivery (single group) : 'V Pi, Pj S.t. V'i = V'j" V'+li = V'+lj:

delivery;(m,r) ~ delivery;(m',r) ¢::> deliverylm,r) ~ delivery/m',r) and m ~ m' ~

delivery;(m,r) ~ delivery;(m',r).

85

Chapter 6 - Introducing Fault-Tolerance to Newtop

Newtop extends the above property so that processes simultaneously belonging to

multiple groups are delivered messages in total order. Let m' be a message with m'.g =

gy and p ~ 0 be an integer:

Total order delivery (multiple groups) : V Pi' Pj s.t. vrx,i= vrxj" vr+1x,i = vr+1xj

" VPy,i = VPyj " vp+ly,i " vp+lyj : deliverygmr) --7 deliverylm',p) <=>

delivery/m,r) --7 delivery/m',p), and m --7 m' ~ delivery[m r) --7 deliverylm',p).

6.3 Making Newtop Fault-Tolerant

We now describe how to extend Newtop (as in chapter 4) to incorporate fault

tolerance: ordering and liveness is preserved even ifmembership changes occur due to

(suspected) process failures. As stated before, Newtop provides each Pi with a group-

view process, denoted as av x.i- for each gx' gx E ai. av x,i is responsible for

maintaining Pi's view of the group membership of gx. Informally, this extension has

the following aspects: (i) the liveness mechanism based on timesilence (section 4.3)

needs to be extended to enable av x,i to suspect a failure of some remote process (Pj)

that does not seem to be responding; (ii) in which case av x,i can initiate a

membership agreement on Pj, the outcome of which is that either processes agree to

eliminate Pj from the group view, with an agreement on the last message sent by Pj,

or Pj continues to be a member and Pi is able to retrieve missing messages of Pj; (iii)

the time-silence mechanism described in section 4.3 will be extended to keep

processes lively in sending messages during the execution of the membership protocol

(during the periods where there are no application or membership related messages to

be transmitted). The extension for the time-silence mechanism is as follows: the time-

silence mechanism related to a process Pi will force Pi to multicast a null message if

no (null or non-null) message was sent by Pi in the past interval of length, say t. This

86

Chapter 6 - Introducing Fault-Tolerance to Newtop

extension is necessary in order to guarantee that new crashes are 'promptly' suspected

while running the membership protocol.

6.3.1 Message Stability

It is necessary to ensure that a process can always retrieve a missing message from

another functioning member process. This in turn means that we require a mechanism

that enables a process to safely discard a received message. To develop such a

mechanism, we will first define the concept of message stability:

Message Stability: A Causal Block BMx i[~] becomes stable if it is known to be,

complete in all the processes in the current view of gx. The messages represented in

BMx i[~] will also be termed stable.,

Blocks become stable in increasing order of block-numbers: if block BMx i[~] is,

stable, then all blocks BMx,i[~O]' ~o<~, will also be stable. Once a Causal Block

becomes stable at Pi, Pi "knows" that the corresponding messages have been received

by all the members in Pi's view. Stability information is passed together with

transmitted messages. That is, when a message m, m.g = sx. is transmitted by Pi, a

field m.lcb is used to represent the number of the largest complete block in BMx i- To,

compute stable blocks, each process Pi, maintains a vector called SVx,i (Stability

Vector) for each gx· At process Pi, SVx,ifj] represents the largest complete block at

Pj- If min(SV x,i}represents the minimum value in SVx.i- then all blocks BMx,i[~]' ~ S

min(SV x i) will be stable. For the sake of fault tolerance, a block that is not stable,,

and the messages represented in it are not discarded from the local storage of

processes.

6.3.2 Managing Group Membership

The membership algorithm of Newtop is based on the approach used in Psync

[Mishra91, Mishra93], adapted to the context of Causal Blocks and extended to

coordinate view updates with message delivery. Group-view process GVx,i of Pi

works as if Pi is not a member of any other group; it refers only to the local Block

87

Chapter 6 - Introducing Fault-Tolerance to Newtop

Matrix corresponding to gx' So, we can ignore the fact that Pi can be a member of

more than one group, and will describe the av x,i of Pi for a given gx' dropping the

suffix x.

Each aVi has a failure suspector module, Si, which is implemented as follows:

soon after a new causal block is created in BMi, Si sets a timeout for duration 0), 0) >

timesilence timeout (local-time-silence - section 4.3). If the block is not complete

within 0), Si suspects those member processes whose messages are needed for the

completion of that block as crashed and notifies aVi of its suspicion. In practice, 0)

should be tuned to a value that minimises the possibility of unfounded suspicions.

We will assume that a send primitive mcast(m) is available to Pi for multicasting m

for total order message delivery (ie., for Pi to execute a sendum) event). aVi also

uses this mcast(m) primitive to multicast a membership related message. However, at

the receivers, these membership messages are treated differently. Each Pi has a sub-

process, msg-receive, that is responsible for receiving messages from the transport

layer and maintaining the Block Matrix. The msg-receive sub-process treats the

membership messages destined for the local av process as null messages for the

purposes of representation in the Block Matrix; it passes the actual messages directly

to the local av process.

A notification from Si to aVi will be of the form {Pk, Ibn} - indicating that Pk is

suspected to have crashed and Ibn is the block-number of the last message Pi has

received from Pk. aVi maintains a set suspicions, where notifications from Si are

entered. aVi also multicasts a suspect message (i, suspect, (Pk' Ibn)) to av

processes of all processes (including aVk) that are in its current membership view Vi'

If aVi receives confirmation that all other unsuspected members in Vi also suspect

each {Pk, Ibn} in its suspicions i' it decides to treat each Pk of suspicions i as having

failed and Pk is added to a set called fatted; The msg-receive sub-process of Pi

discards any messages received from Pk and avk, if either Pk E failed, or Pk E Vi'

Also, once suspicion {Pk, Ibn} has been added to suspicions i, it will keep the

messages received from Pk and aVk as pending. If suspicion {Pk, Ibn} is subsequently

88

Chapter 6 - Introducing Fault-Tolerance to Newtop

refuted, the pending messages will be assumed to have been just received, and will be

handled appropriately; if, however, suspicion {Pk, Ibn} is confirmed as a failure, then

the pending messages of Pk and GVk are discarded.

Suppose that GVj receives the message (i, suspect, (Pk' Ibn)} from GVi' If {Pk'

Ibn} is already in suspicionsj' GVj regards GVi as yet another process that holds the

same suspicion as itself; if however {Pk, Ibn} is not in suspicionsj' it records this

suspicion from Pi, but suspends judgement on it pending confirmation from its own

Sj. If in the mean time Pj receives a message m from Pk with m.b > Ibn, then GVj

multicasts a refute message (j, refute, (Pk' Ibn)}. When GVi receives this refute

message, it stops suspecting Pk for Ibn, and removes {Pk' Ibn} from suspicions j; it

also initiates an attempt to recover the missing messages of Pk (a missing m can be

piggybacked in the refute message; by definition any missing m is unstable, so would

not have been discarded by Pj; Pj can therefore always piggyback m.); after recovery,

Pi multicasts (i, refute, (Pk' lbnj) message. If GVi ever receives a message (k,

suspect, {p;. IbnJ}, it takes no action in the hope that some GVj will refute that

suspicion.

The event driven algorithm for GVi is given below, dropping the suffix i for all the

set variables used exclusively by GVi; these set variables are initialised to empty and a

boolean variable consensus is initialised to false, when the group gx is formed. The

algorithm describes the steps taken by GVi, once a certain condition holds.

(i) notification {Pk' Ibn} received from Si: suspicions := suspicions u {Pk, Ibn};
mcast(i, suspect, {Pk, lbnl);

(ii) (j, suspect, (Pk, Ibn)) received: if (Pk * Pi) then record the suspicion {Pk, Ibn} of
GVj; if (Pk = Pi) then discard the received message;

(iii) suspicion {Pk' Ibn} ofGVj is recorded A m, m.b > Ibn, from Pk is represented in
BMj: mcast(i, refute, {Pk, lbnl); /* all received m of Pk, m.b>lbn, are piggybacked */

(iv) (j, refute, (Pk, Ibn)} received A (Pk, Ibn) e suspicions: suspicions := suspicions-
{Pk, Ibn}; recover the missing m, m.b>lbn ofPk; mcast(i, refute, (Pk, Ibn});

89

Chapter 6 -Introducing Fault-Tolerance to Newtop

(v) for every {Pk» Ibn} e suspicions, if there exist suspect messages received from
every GVj of Pj e Vi - ({Pk / {Pk' Ibn} e suspicions} u failed): detection :=
suspicions; suspicions := {}; mcast(i, confirmed, detection); consensus := true;

(vi) (j, confirmed, detectionj) received " detectionj c suspicions: detection :=
detectionj; suspicions:= suspicions - detectionj; mcast(i, confirmed, detection);
consensus := true;

(vii) (consensus = true): Ibnmn:= minimum{lbn I {Pk, Ibn} e detection}; for every
Pk e {Pk, Ibn} e detection do instruct msg-receive sub-process to assume that it
has received and will receive from Pk only a null m, m.lcb := 00, for every m.b >
Ibnmn; failed := failed u {Pk}; removals := removals u {Pk, Ibnmn} od; instruct Pi to
mcast(remove, failed); consensus := false;

(viii) (j, confirmed, detectionj) received" (Pi' Ibn}e detectionjfor some Ibn: force S
to suspect Pj for Ibnj = block-number of the received message; suspicions :=
suspicions u {Pj' lbn.}; mcast(i, suspect, [P], Ibnj}) ensuring that this multicast has a
block-number larger than Ibnj;

(ix) Pi delivers m = (remove.failed): F:= failed of delivered m; if F n Vi *0 then
for each Pk e F n Vi do remove the column in BM corresponding to Pk, starting
from the row number Ibnk, such that {Pk, lbnj-] e removals; removals:= removals-
{Pk, lbnj}; failed:= failed - {Pk} od; Yi .= Vi - (F n Vi_);

When GVi confirms all of its suspicions (condition (v) or a subset of them

(condition (vi» into agreed failure detection, it sets the boolean consensus to true.

Functioning members that hold identical views and do not suspect each other, will

confirm identical detection sets in an identical order. (For the proof of this, see

[Mishra91].) Whenever a new detection set is agreed, GVi instructs (in (vii» msg-

receive sub-process to assume that it can avail from every detected process Pk a

stream of consecutively block-numbered, null messages starting with the block-

number Ibnmn+l, where Ibnmn is the minimum of {Ibn I {Pk, Ibn} e detection}.

These 'virtual' messages will have their lcb field set to 00, and will serve the purpose of

completing any blocks for which messages from Pk are necessary. So, this instruction

by GVi to the msg-receive sub-process causes block completion and stabilisation to

progress and the message delivery to Pi to resume, after being temporarily halted by

90

Chapter 6 - Introducing Fault-Tolerance to Newtop

the absence of messages from suspected members. Further in (vii), GVi includes Pic

into the setfailedi and {Pk, lbnrrm} into the set removals; to remove (later) failed

Pk from its view assuming that no (actual) m was received from Pk for any m.b >

lbnrrm. This assumption is necessary to ensure safety (an example is given later to

illustrate this point).

The remove message Ri = (remove, failed;) multicast by Pi is delivered in

identical order to all functioning and connected members who have agreed over the

set detections. Note that this remove message Rt will have a block-number larger than

lbnrrm. This is because Si notifies suspicions by identifying member processes whose

messages are needed for the completion of a given block in BMi, after having waited

for 0) time units after that block was first formed. So, for every {Pic, lbnk} notified by

Si to GVi, Pk has been found responsible for the non-completion of a block BMi[B],

B > lbnj, As 0) > the timeout for timesilencet, when Si notified {Pk, lbnj}, Pi must

have sent a null or non-null m, m.b > lbnj, Further, when Si is forced to suspect {Pk,

lbnk} in (viii), GVi ensures that the suspect message it multicasts has a block-number

larger than lbnj, (This is possible as BCi can be advanced by any non-zero, positive

integer before block-numbering a message to be multicast.) Thus, Rt will always have

a block-number larger than lbnrrm computed just before it is multicast This means

that when Ri = (remove, failedt) is delivered to any Pj E Vi - foiled; of Rt, Pj will

have no non-null m, m.b ~ Rtb, from Pk E failed; of Ri, that is waiting to be

delivered. (Any non-null m, m.b ~ Rt.b, received from Pic, would have been turned

into a virtual null message.) So, upon delivering Ri, if Pj prompts GVj to update its

view by removing all Pk E failed; of Ri, the validity property (of section 6.3) is

guaranteed to be satisfied.

For safety reasons, GVi treats all the processes in a given set detection; as having

failed "together", ignoring any outputs produced by them with m.b > lbnmn. This is

necessary to preserve causal order delivery, since it is possible that one such output

could have been produced by a process after consuming an output of another failed

process that no one else received. The following example illustrates this:

91

Chapter 6 - Introducing Fault-Tolerance to Newtop

Suppose that functioning Pi and Pj hold identical views and never permanently

suspect each other. Let P, crash during the multicast of m, and only Ps receives m. Let

Ps deliver m (possible, if the arrival of m from P, causes m.b block to become

complete), multicast m' that is received by Pi and Pj' and crash before it could refute

the suspicion {Pp Ibn} for some Ibn < m.b, held by GVi and GVj. P, and Ps will be

detected together by GVi and GVj, and m' from Ps will be replaced by a virtual null

message, as m'.b > m.b ~ lbnmn. Thus, m', m ~ m', is guaranteed not to be delivered

when m cannot be delivered.

6.3.3 Example of an Execution of the Group Membership Algorithm

Now we present an example to illustrate how the membership algorithm works.

Consider a group g = { Pi, Pj, Pk, PI, Pm} in which each functioning member holds

the initial view vO = g. Say, Pi and Pj never suspect each other and also, Pk and PI

never suspect each other. Let Pi, Pj, Pk and PI suspect Pm for some Ibnm. Let the

suspect messages of GVi and GVj be received by GVk and GVI, before a network

failure partitions Pi and Pj from Pk and Pl' GVi and GVj, not receiving any suspect

message for {Pm' lbnm} from GVk and GVI, suspect {Pk, Ibnk} and {PI, Ibnd, and

form detection, = detectionj = {{Pm' lbnm}, {Pk,lbnk}, {PI, Ibnd} = detectionij (say),

with failed, = jailedj = {Pm' Pk, Pt! = jailedij (say) (see figure 6.1 - Sr represents

suspect (Pr' Ibnr})'

92

Chapter 6 - Introducing Fault-Tolerance to Newtop

Network partitioning

Pm crashes

Figure 6.1 - Example of Network Partitioning

aVk and aVI, having received a suspect message for {Pm' lbnm} from aVk and

aVI, do not (yet) suspect Pi and Pj, and proceed to form detectioni = detections =
{{Pm' lbnm}} = detectionij (say), with/ailedk =failed, = {Pm} = /ailedkl (say). Both

Pi and Pj will multicast (remove.failedtj) and both these messages will be delivered to

Pi and Pj in an identical order. Let Rij be the (remove.failedc) message that is first to

be delivered to Pi and Pj. Similarly, let Rkl be the (remove, /ailedkl) message that is

first (of two) to be delivered to Pk and Pl. By delivering Rij, Pi and Pj will update

their views to V1 = {Pi, Pj}, and before the update, they would have delivered an

identical set of non-null m, m.b SRij.b; the messages from Pm, Pk and PI in the block-

number range minllbnm, lbnk, lbnt} < m.b S Rij.b will only be virtual null messages.

Similarly, Pk and PI would have delivered an identical set of non-null m, m.b S

Rkl.b, when they updated their views to V1 = {Pi, Pj, Pk, Pd.

Note that Vi1 and Vk1 are not mutually exclusive as the network partition was not

observed in the same order with respect to the observation of Pm's failure:

concurrently by Pi and sequentially by Pk. This situation is short lived as aVk and

aVI must subsequently suspect Pi and Pj: either by receiving (i or j, confirmed, (Pm,

Pk, PV) and executing (viii) if the network partition is transient, or by being notified

93

Chapter 6 - Introducing Fault-Tolerance to Newtop

from the local suspector if the network partition is permanent. Pk and PI will reach

agreement on detection'[= detection'[= {{Pi, lbnj}, {Pj, lbnj}} = detection'kl (say).

The delivery of R'kl = (remove, (Pi, Pj}) will update their views to V2 = {Pk, PI};

VC2 is met, as Pk and PI have disconnected Pi and Pj in their V2. This also shows that

after a transient period of instability caused by successive failures, partitioned

subgroups will stabilise their views to non-intersecting ones. In view V I, Pk and PI

would have delivered an identical set of non-null m, Rkl.b ~ m.b ~ R'kl.b, that

were sent only by processes in VI. Thus VC3 is met. That VCI is met can be seen by

the fact that identical view changes are installed by Pi and Pj' and also by Pk and PI'

6.4 Comparison with Existing Related Work

In this section, we highlight some significant differences between our protocol and

the published ones that support concurrent existence of multiple, partitioned

subgroups. (We will refer to the previous example for this purpose.) The protocol of

[Schiper93c] has the following two aspects: (i) concurrent views are non-intersecting

(i.e., in the example, the situation where VI of Pk and PI intersecting with VI of Pi

and Pj will not occur); and (ii) message deliveries respect the original (restricted)

virtual synchrony property (i.e., no message sent in view yr is ever delivered after

yr+ I is installed). As we show below, our protocol can be modified easily to

guarantee these properties; further, the original virtual synchrony is met by imposing

less severe performance penalty than [Schiper93c].

Concurrent non-intersecting views are guaranteed in [Schiper93c] essentially by

defining a process view as a set of process signatures, where a signature is a tuple:

{process-id, sequence-number}. Let GVi replace Vi by f}i = {{Pj, ej] I 'Tt Pj E Vi},

where ei is the total number of processes GVi has excluded from the initial view;

ei=ej, if Vl=Vl for every r ~ D. Thus, in the example, f}D={{Pi, D}, {Pj, D}, {Pk,

D},{PI, D},{Pm, D}} for all functioning processes of g. After partitioning, ~I=

f}jI={ {Pi, 3}, {Pj, 3}} which do not intersect with f}kl=f}ll={ {Pi, I}, {Pj, I}, {PIc,

I }, {PI, I} }; after stabilising, f}k2=f}12={{Pk,3 },{PI,3}}.

94

Chapter 6 - Introducing Fault-Tolerance to Newtop

To meet the original virtual synchrony property, two modifications are needed.

First, view updates should be attempted only on the last delivery of a given (remove,

failed) message; other earlier deliveries will prompt GVi to take no action except to

keep the count. (Currently, view update is attempted upon the delivery of any

(remove.failed) message.) Referring to the example, the message Rij whose delivery

should prompt a view update for Pi and Pj will be: the 1tth (remove.failedq) message

to be delivered by Pi and Pj where 1t is the size of the new view proposed by (remove,

failedij) and 1t= I current-view -failedij I= 2. So, when Pi and Pj deliver the second

of the two (remove.failedtj) messages, they will update their views to VI = {Pi, Pj}.

Similarly, the message Rkl whose delivery should prompt a view update for Pk and PI

will become the fourth (remove.failedijj message to be delivered, asfailedkl = {Pm}

and IVO - failedkll = 4. (Note that Pi and Pj will not multicast (remove.failedgj) and

hence Rkl does not exist for Pk and PI to update their views to vO - failedkl . This

does not lead to deadlock as GVk and GVI will subsequently suspect Pi and Pj, agree

on detection'ta = {{Pi, lbnj}, {Pj, lbnj}}, and instruct Pk and PI (respectively) to

multicast (remove.falled'pj) wherefailed'kl is now {Pi, Pj, Pm}. The second delivery

of (remove, failed'td) will cause Pk and PI to update their views to VI = yO -

failed'kl = (Pk, PI}).

The second modification is that Pi should be blocked from multicasting any non-

null messages (except remove messages) during the period when the set variable

failed; remains non-empty. So, Pi may well be blocking (application related)

multicasts for a (possibly) long period, when its successive detections cascade with

each other before resulting in a view update (as the detections {{Pm, lbnm}} and

{{Pi, Ibni},{Pj, lbnj}} of Pj, and PI cascade intofailed'kl). This performance penalty

is less severe compared to [Schiper93c] where Pi is required to halt multicasting

whenever either suspicions; or failed; becomes non-empty.

Newtop can knowingly discard certain messages received from a detected Pk, as

not having received (every non-null m from Pk with lbnnm ~ m.b ~ lbnk, {Pk, lbnk}e

detectiont, will be discarded by PD. This is because the multicasts do not carry any

95

Chapter 6 - Introducing Fault-Tolerance to Newtop

explicit information about causally preceding messages, and received messages are

represented in a matrix. In Transis, messages carry causal precedence information and

are represented in a directed acyclic graph (DAG) that precisely indicates the presence

or absence of causal relation between messages. Using DAG, Transis [Amir92a]

provides an efficient causal delivery service which is not the primary objective of

Newtop. Our matrix representation, while considerably simplifying the protocol

implementation, does not completely reveal the absence of causal relations: two

concurrent messages represented in different blocks, are treated as causally related (of

course, this does not matter in a total order protocol). So the protocol of [Amir92b]

is more precise than ours in rejecting messages received from processes that are to be

removed from the view. Finally, the protocols of [Schiper93c, Amir92b] deal with

process recoveries and merging of partitioned subgroups, which we have not

considered here.

6.5 Conclusions

We have presented an approach based on the concept of Causal Blocks for

implementing a fault-tolerant total order multicast protocol. We have shown how

message order can be preserved in an asynchronous environment despite the

occurrence of process crashes and network partitions. The membership protocol

ensures that network partitions do not lead to processes forming inconsistent group

membership views; further, message delivery is kept atomic with respect to view

change installations. We have highlighted the significant differences between our

membership protocol and the similar protocols published in the literature.

The fault-tolerant mechanisms have been developed using the Causal Block

representation (i.e., using message block numbers). The causal order protocols

described in chapter 5 can, therefore, incorporate fault-tolerance by running

Suspector and Group View processes as described for Newtop. In the absence of

failures, messages will be delivered using the causal order protocol (either Slow, Fast,

or Relative causal order protocol). When a process failure is suspected, the

96

Chapter 6 - Introducing Fault-Tolerance to Newtop

membership protocol (Group View processes) is switched on and message delivery is

suspended until a (possibly) new membership is established. After that, message

delivery can resume using the causal order protocol.

97

Chapter 7 - The Implementation of Newtop

Chapter 7 - The Implementation of Newtop

Newtop has been implemented and tested over a set of networked UNIX

workstations (sun spare stations). The system is divided into two layers: Newtop and

the multicast transport layers. A message to be sent by the Newtop protocol is passed

first to the multicast transport layer that then transmits it reliably'. Accordingly,

Newtop gets messages intended to application processes through the reliable multicast

layer. The architecture of the Newtop consists basically of concurrent processes

communicating through messages-queue UNIX IPCs. Before showing the

implementation of the concurrent processes that make the Newtop protocol, we

describe how the transport multicast layer has been implemented.

7.1 The Transport Multicast Layer

A message, once sent by the transport multicast layer, will be received by all

functioning destinations as long as the sender of the message does not crash. That is,

if the message sender crashes before finishing the message multicast, some of the

destination processes may not get the message. An initial version of the transport

multicast layer has been implemented by creating multiple point-to-point TCP/IP

sockets- and daemon processes to send/receive multicasts in a given group. The

identifiers of sockets for a given group are generated by applying a function to the

unique identifiers of the group processes. A message to be transmitted by the

transport layer is passed to the sending message queue', Then, the multicast sender (a

daemon process), which is installed before the execution of the Newtop, takes the

message from the sending message queue and sends it to all group members except

1As long as the sender of a message does not crash, the sent message is received by all functioning
destinations and in FIFO order.
2TCP/IP channels (UNIX stream sockets) are reliable and deliver messages in FIFO order
[Stevens90].
3 It could be a UNIX pipe, a file, or even a shared variable. Message queues as well a C++ class to
implement them are described later in this text.

98

Chapter 7 - The Implementation of Newtop

the application process that originated the message. Each application process has got

a multicast receiver (a daemon process) associated to each of the group members.

Once a message is received by a multicast receiver, it is passed to the receiving

message queue and then consumed by Newtop. Hence, Newtop communicates with

the transport layer through two message queues, the sending and the receiving

message queues. The identifiers of these message queues related to a given group are

known by the Newtop layer and are derived from the application process unique

identifier supplied on the creation of the group. We present below the simplified code

of the sender and receiver multicast transport layer processes.

99

Chapter 7 - The Implementation of Newtop

II The sender process
main() {

/I this is the installing procedure for the sender process
multlcastList GL; /I GL will contain the description of the group members
GL.num_participants = groupSize.
GL.multicast_UID = "multicastUID";
GLmembers[O] = UID1;
GL.host[O] = "host of process UID1";

II Initialize other attributes of GL ...
message_queue sendMultlcast("myUID" + 101); /I creates the sending message queue
tcpcllent client[MaxNumPart); /I create empty client socket structures
for (Int I =0; I < groupSize; 1++)
{

if (I 1="lndex for myUID")
IIcreate a sending socket for the channel "myUID" <--> GL.members[i).
cllent[I).lnlt((Int) GL.members[l) + (200 + "Index for myUID"), GL.host[I»;

Int chlldPid = forkO; /I forks a new process (the sender process)
If (chlldPld == 0) /I this Is the multicast sender process
whlle(1) /I do it forever
{

n = sendMulticast.receive(buf);
if (I I="index for myUID")

client(i).send(&buf);
}

} II end of the simplified code for the sending process

II The receiver process
maln() {

II this Is the Installing procedure to the receiver process
multlcastList GL;
GL.num_partlcipants = groupSize.
GL.host[O] = "host of process UID1";

II Initialize other attributes of GL ...
message_queue recelveMultlcast("myUID" + 100); /I creates the sending message queue
tcpserver server[MaxNumPart); II create empty server socket structures
for (Int I =0; i < groupSize; i++)
{

if (i I="index for myUID")
server[i).lnit((Int) "myUID" + (200 + i));

Int chlldPld = forkO; 1/ forks a process
If (chlldPld == 0) II this is the multicast receiver process
while(1) 1/ do it forever
{

Int size = server[i).recv(&buf);
receiveMultlcast.send(&buf, size);

}

} 1/ end of the simplified code for receiver process

100

Chapter 7 - The Implementation of Newtop

Rules for creating application process unique identities

Since the transport multicast layer creates structures (and the corresponding

unique identifiers) such as messages-queues and UNIX sockets to work on specific

group processes, there must be a way of mapping those structures to the

corresponding group processes. This is done by deriving structure identifiers from the

unique application group process identifiers. This, however, imposes some restrictions

on the way application processes identifiers can be generated. Let UIDi be the process

Pi unique identifier. Thus, for any application processes Pi and p} i :t:. j, UIDi - UIDj

~ K, where K must be large enough so as to accommodate all identifiers of structures

(message queues and sockets) used by the multicast and Newtop layers. In the current

implementation, K has been set to 1000. Following is the distribution of identifiers

derived from the application process unique identifier. Assume the existence of an

application process unique identifier, UID. Derived structures unique identifies are

generated as follows:

UID + [1..100) are IPC message queues;

UID + [100, 101] are multicast message queue identifiers (send and receive queues);

and

UID + [200 ..K) are identifiers of sockets used to implement the reliable multicast

As an example, assume a group of 3 processes, PO, PI, and P2. Also, assume that

the unique identifiers of these three processes are 10000, 20000, and 30000

respectively. Then, the following identifiers will be generated in the transport layer.

receive multicast queue

Po: 10100; PI: 20100; P2: 30100

send multicast queue

PO: 10101; PI: 20101; P2 : 30101

client sockets (send multicasts)

PO: 20200 for PI and 30200 for P2.

P 1 : 10201 for Po and 30201 for P2.

P2: 10202 for Po and 20202 for Pl.

101

Chapter 7 - The Implementation of Newtop

server sockets (receive multicasts)

PO: 10201 for PI and 10202 for P2.

P1:20200 for Po and 20202 for P2.

P2 : 30200 for Po and 30201 for Pl.

7.2 The Newtop Layer

Newtop operates through a set of concurrent processes that communicate to each

other through message-queue UNIX IPCs. A message intended to processes using

Newtop, is received by the receiver process which gets the message from the

receiving message-queue provided by the transport layer. After receiving a message,

the receiver process pass it to the deliver process. Also the receiver process passes the

header of the message (message block-number, group indentifier, etc.) to the

following processes : local-time-silence, suspector, transmitter, and membership.

When the message is ready to be delivered (see chapter 4), it is passed from the

deliver process to the application process through the application queue. The

application process, then consumes the message.

A message to be sent by Newtop, is passed to the transmitter process through the

transmitter queue. After block numbering the message, preparing other fields of the

message header, and checking for flow control conditions (see chapter 8), the

transmitter process, then, pass the message to the transport multicast layer (by putting

it into the transmitting message-queue) to be finally transmitted. After that, the

transmitter process pass the header of the message to the processes: deliver, local-

time-silence, and suspector. Before describing the processes, we describe the main

aspects of the relevant C++ classes and data structures used throughout the

implementation.

7.2.1 Message Queues

Message queues are IPC mechanisms of UNIX System that appeared for the first

time in the System V. These queues are created and manipulated by system calls and

102

Chapter 7 - The Implementation of Newtop

reside in the system kernel [Stevens90]. The C++ class message_queue implements

the IPC message queue operations, such as creation of a queue, removal of a queue,

sending message to a queue, receiving message from a queue, etc. Below is the

simplified class definition code of message_queue.

class message_queue {
public:
message_queue(ket_t key);
~message_queueO;
send(char ·ptr. int size);
recelve(char ·ptr);

};

1/ create a queue unique identified by key (32 bits).
1/ destructor
/I send a message
/I receive a message

7.2.2 The Block Matrix

Messages belonging to unstable blocks are kept in a pool called BM (Block

Matrix) and physically organizes in a two level data structure (figure 7.1). The first

level of BM is a hashing table addressed by block-numbers. Each entry of the hashing

table contains a Causal Block number and the pointers to the messages associated

with that Causal Block. These messages are kept in a dynamically allocated message

pool (the second level). The size of the hashing table, say N, is known when the group

is created'. When a non-null message m is to be entered in BM (or retrieved from),

the hashing function h, where h(m.b) = m.b mod N, will produce the address in the

hashing table where the pointers to the messages of block m.b can be found. Collision

of addresses (block b and block b + N, for instance) never happens due to the flow

control provided (see chapter 8). The functionality of BM is implemented through a

C++ class called Block_Matrix with the following member functions: insen(*ptr),

stabilize(int bn), frrst_message(int bn), and next_message(bn). The first function puts

a new message in BM, the second stabilize a Causal Block (Le. discards their

messages from the message poll and the corresponding entry from the hashing table).

The last two functions are used to retrieve messages to be delivered from complete

blocks. The following is the simplified code for the class Block_Matrix. definition.

4 This is defined in the configuration file : "define.h".

103

Chapter 7 - The Implementation of Newtop

class Block_Matrix {
.... some data structures
public:
Block_Matrix();
-Block_Matrix(); /I destructor
void insert(message_buffer "ptr):
void stabilize(int bn);
char" first_message(int bn);
char" next_message(int bn);

}; /I end of class definition

o H----tL----
1
2 I-f---I

bn

N - 1L..-I._---'

Hashing table Dynamically allocated message pool

Figure 7.1 - The BM data structure

7.2.3 Time-out Class

The time-out class is the basic class used by the local_time_silence and suspector

processes. A time-out object includes a list of Causal Block numbers representing

existing Causal Blocks. Once a time-out object is created, one can set a time-out for a

Causal Block, switch off a set of time-outs, cancel all time-outs, etc. Below is the

simplified definition of the time-out class with its main member functions available.

104

Chapter 7 - The Implementation of Newtop

class time-out (
tlrne-outt):
-tlme-outt):
void set(int bn, time long);
sWitch_off(lnt bn);
long flrst_tlme_outO;
next_tlme_outO:

/! set time to block bn
/I switch off time-outs up to block bn

/I return the "oldest" time_out.
/! cancel the "oldest" time_out

7.2.4 Group Naming

Application processes must include the file "group_name.h" and also declare an

object of the class multicastList. A multicastList object contains the description of a

process group membership. Part of the information to be assigned to the multicastList

object is found in the file "group_name" which includes the group_id, unique identifier

of members, host addresses of members, etc. The remaining information not present in

"group_name.h", is supplied by the application process.

7.2.5 The Configuration File

The configuration file "defme.h" must be included by all group members and

contains the following information.

Maxmesbuf: the maximum size of message. This is used by the protocol to allocate

internal buffers mainly for the BM structure;

Maxnumblocks : this is the maximum number of unstable blocks. This value defines

the amount of storage kept for unstable blocks and it is used by the flow control

mechanism of Causal Blocks;

Maxmespool: this value defines the maximum number of unstable messages kept in

the second level of the BM structure(the dynamic message pool);

MaxGroupSize : this is the maximum group size allowed;

Clock period : this is number of milliseconds in between clock ticks for the time-out

control",

Delta : this is estimated transmission delay time; and

MaxLocalTS : this is the local time silence timeout.

S see the clock_ticks process description.

105

Chapter 7 - The Implementation of Newtop

7.2.6 The Newtop Class

To use Newtop, the application process simply declares a variable of class

Newtop, supplying a multicastList object with the group membership. The two

Newtop member functions send and receive are then used by the application process

to send and receive messages that are totally ordered". The constructor of the class

Newtop "forks" the parallel processes that will cooperate in order to deliver messages

properly. Below we show the simplifiedC++ code used by an application process to

use Newtop.

/I simplified code of the application process using Newtop.

#include <Newtop.h> /I this is the code of the Newtop class.
#include <groupMembership.h> /I this file contains the details of the group membership

/lprocesses: host addresses, unique Identifiers, etc.

matnt) {
char message[500); /I this is the buffer for the application messages
multicastList GroupList; /I this object will contains the group membership description

GroupList.computatlon_type = 'c'; /lIt sends and receives wNewTopwordered messages
GroupList.myself = 0; 1/ 0 Is the first process of groupMembershlp list

NewTop talk(GroupList); /linstanclate a NewTop object

/I send a message asynchronously
talk.send(message, messageSlze);

1/ receive a message
messageSlze = talk.recelve(message); /I it blocks waiting for a message

When the class Newtop is instantiated by an application process, all processes that

cooperate to implement the Newtop protocol are created", as well as, the

corresponding message-queues. A process communicates to another process by

putting a message in its queue. For instance, if the receiver process wants to

communicate with the deliver process, it sends a message to the deliver process

queue, deliver_Q. The communicationbetween all processes makes a communication

graph where processes are nodes and actual communication through process

6 messages are delivered respecting causality and in the same global order in all destinations.
7 This is done by using the "fork" system call.

106

Chapter 7 - The Implementation of Newtop

message-queues, edges (figure 7.2). The system has been carefully designed so as to

avoid cycles in the graph which could lead the execution of the protocol to a

deadlock. Although each message-queue can keep a number of messages, the

inclusion of a new message in a queue will depend on the availability of space for

messages in the operating system kernel. To avoid problems of overloading some

processes (by having too many messages in its queue) whereas blocking other

processes waiting for message space, a flow control mechanism has been used that

waits for a number of messages to be consumed before putting new messages in the

queue. For instance, the application process can only put one message at once in the

transmitter queue.

When the send operation of a Newtop object is executed, the message to be

transmitted is passed to the transmitter process through its queue, the transmitter _Q.

The receive operation when executed will remove a message from the application

queue, application_Q. If there is no message available, the application process blocks

(without consuming CPU time) waiting for a message to be put in application_Q. In

the following sub-sections, we will briefly describe all cooperating processes involved

in the execution of the Newtop protocol (receiver, deliver, local_rime_silence,

suspector, transmitter, and the clock_ticks processes).

107

Chapter 7 - The Implementation of Newtop

Transport Multicast Layer

Figure 7.2 - The Newtop Protocol

7.2.7 The Receiver Process

The receiver process receives messages from the transport layer addressed to the a

given application process. When a message m is received, the receiver process pass m

to the deliver process, and the header of m to the processes local_time_silence,

suspector, transmitter, and the membership process.

7.2.8 The Transmitter Process.

The transmitter process can get two types of messages: null and non-null. Non-null

messages come from the application process which puts the message it produces in

the transmitter queue, transmitter_Q. The local_time_silence process prepares and

puts a null message with the largest block-number known at the time the null message

is produced. By the time the transmitter process gets this message, some non-null

messages may have been produced such that the null message is no longer necessary

(i.e, the local BC has increased larger than the null message block-number). To avoid

this situation, the transmitter process maintains the block-number of the last

transmitted message and discards any null message that has got block-number smaller

108

Chapter 7 - The Implementation of Newtop

than that value. Messages (null and non-null) to be transmitted are then passed to the

transport multicast layer, after being duly block-numbered.

The transmitter process also carries out the flow control mechanism of Causal

Blocks (see chapter 8). The information necessary for this work, besides messages

transmitted, is obtained from the receiver process which puts into the transmitter

queue the header part of messages received. Before transmitting a message m with

block-number m.b, the transmitter process also prepares the fields m.lcb and m.lsb,

the last complete block and the last stable block, respectively. After transmitting a

message, the transmitter process puts the message header in the queues of the deliver

and suspector processes.

7.2.9 The Deliver Process

The deliver process gets messages from the receiver process and store them in the

BM structure (see section 7.3.2). The header part of all messages transmitted (non-

null and null) are also put in the deliver process queue by the transmitter process. The

deliver process maintains a LRV vector (see section 3.5). By computing the minimum

value in LRV, the deliver process figures out complete blocks. Messages from

complete blocks are then delivered to the application process (i.e the messages are put

into the application process queue).

To compute stable blocks, the deliver process maintains a vector called the

Stability Vector (VS) with one entry per process in the group. SVi[j] represents what

process Pi knows about the last complete block number at P} When the deliver

process detects a block stable (Le with block number b S minimum value in SV), it

executes the operation stabilize(b) of the BM structure, freeing the space occupied by

block b.

109

Chapter 7 - The Implementation of Newtop

7.2.10 The Clock-Ticks Process

Time-outs in Newtop are implemented based on a clock that ticks each

CLOCKPERIOD8milliseconds. In order to achieve that, the clock-ticks process is

repeatedly put to sleep for CLOCKPERIOD millisecondsusing a UNIX system call.

Whenever the process wakes up it sends (via message queue IPC) a signal to the

local_time_silence and suspector processes that then increment their own local

CLOCK. A signal to one of these process is only sent after the previous signal has

been consumed, that is, the signalingmessage has been consumed.

7.2.11 The Local time silence Process- -
This process gets messages from the receiver process, transmitter process, and

from the clock_ticks process. When this process is first started by the Newtop class

constructor, the C++ long variable CLOCK is initialized with zero; and it is

incremented each time an IPC message arrives from the clock_ticks process. At the

constructor execution time it is also instantiated an object of the class time-out with

the name LT (Local Time_silence). Assume that b' is the block-number of the last

transmitted message. Then, whenever a new Causal Block b is created as a

consequence of received messages, time-outs are set (with the current value of

CLOCK plus the localTS value, a multiple of CLOCKPERIOD, present in the

"define.h" file) to all blocks b", b' < b" ~ b using the operation LT.set(b, CLOCK +

local'I'S). When a new message is transmitted, if its block-number, say b, is larger

than the largest time-out block-number, say b', then all time-outs are canceled

(LT.cancell(b». Otherwise, all time-outs in the interval (b', b] are canceled using the

operation LT.switch_off(b). Time-outs are checked each CLOCKPERIOD

milliseconds and when one of them expires, a null-message is sent to the transmitter

process, that is, a null-message is put in the transmitter process queue to be

transmitted.

8CLOCKPERIOD is defined in the configuration file :define.h".

110

Chapter 7 - The Implementation of Newtop

7.2.12 The Suspector Process

The suspector process gets messages from the receiver, the transmitter, and the

clock_ticks processes. Its function is to suspect processes of having crashed. As in the

local_time_silence process, it implements a clock that ticks each CLOCKPERIOD,

and, as it was the case for the deliver process, it maintains the LRV vector to detect

complete blocks. When the suspector process starts, it is created the RT (Remote

Time_silence) object of time-out class. Whenever a new Causal Block b is created due

to messages obtained from the suspector queue, a time-out is set to b using the

operation RT.set(b, CLOCK + localTS + 2 * Delta). The values of localTS and Delta

are the ones present in the configuration file "define.h". When a new block get

complete, say LCB, all time-outs up to LCB are canceled with the operation

RT.cancel(LCB). Finally, when a time-out expires (the oldest time-out), a suspicion

message is prepared and sent to the local membership process (via the its message

queue) as well as multicast to the remote membership processes (Le the suspicion

message is put into the sending message queue to be transmitted by the transport

layer). The suspector process maintains other two vectors with one entry per group

member, the functioning and suspector vectors. When the process group is created,

the entries of functioning is set to one and the entries of suspected to zero. When a

process Pi is declared crashed, functioning[i] is set to 0, and when a process Pi is

suspected, suspected[i] is set to 1. Messages from crashed or suspected processes are

ignored by the suspector. Suspicion on a process Pi is removed (Le suspected[i] is re-

set to 0) when a refute suspicion message is received from a remote membership

process (see next section).

7.2.13 The Membership Process.

The membership process works as an arbiter that based on the suspicion messages

sent by the suspector processes (one per group member), decides if an over-silent (or

suspected) process has crashed or not. In case of a crash indication, the crashed

111

Chapter 7 - The Implementation of Newtop

process is excluded from the group membership. The membership process maintain

the following main structures :

typedef {
Int Ibn; /I last block number from the over-silent (suspected) process.
int agreed[MAXGROUPSIZE); /I indicates the processes that have agreed on Ibn.

} suspicion;
suspicion susplclons[MAXGROUPSIZE); /I keeps all crash suspicions
suspected[MAXGROUPSIZE);
functlonlng[MAXGROUPSIZE);
LRV[MAXGROUPSIZE);

The header of messages sent or received by the application process are passed to

the membership process through its message queue. These messages are represented

in the structure LRV for working out complete blocks. When a suspicion message is

received from a suspector process, either a refute message will be generated and

multicast to the group or it will be represented in the suspicions set. When all

unsuspected (not suspected) processes have suspicion messages about a given (pid,

Ibn) pair represented in the suspicions set, the process identified by pid is removed

from the group membership by setting functioning[pid] to O.

7.3 Experimental Results

In this section we will comment on the performances results obtained from a series

of experiments where various parameters have been monitored during the execution

of the Newtop. In section 7.4.1, we explain some terminology used and describe the

different experiments we have carried out. In section 7.4.2, we will comment on the

experimental data collected.

7.3.1 Performance Measures

Due to the unpredictability of transmission delays in asynchronous systems,

message delivery delay of a total order multicast protocol for such systems is

measured in terms of the number of extra messages transmitted so as to deliver a

multicast In the case of Newtop, these messages are null messages generated by the

time-silence mechanism in order to complete "old" incomplete blocks. Another

112

Chapter 7 - The Implementation of Newtop

relevant performance measure is the message space overhead, and in the case of our

protocol, this overhead is constant and very small (basically, the message block-

number).

In Newtop, messages are delivered on the basis of block completion. This means

that messages to complete a given block have to be sent by all group members before

that block can be delivered. So, the activity (rate of message transmission) of the

group members will determine how fast blocks get complete, and consequently,

messages delivered. The Local Time-Silence mechanism guarantees that messages are

always delivered despite the inactivity of some group members but on the expense of

null messages transmitted.

To analyze the behavior of our protocol we have carried out experiments for the

two extreme case scenarios in terms of processes activity. That is, the worst case

scenario, when only one process sends messages to the group whereas the others

remain silent, and the best case scenario, when all processes are active (sending

messages to the group). By analyzing the behavior of the protocol on these

conditions, one can get a good insight of its performance in the presence of distinct

scenarios.

Experiments have been run for different group configurations, varying parameters

such as the inter-message transmission time period and the local time silence timeout.

Before presenting the figures, let us explain briefly some important concepts and

notations .

. CLOCKPERIOD·

In the current implementation of Newtop, timeouts of the local time silence and

suspector processes are verified in intervals of CLOCKPERIOD milliseconds. In fact,

a CLOCK have been implemented that progresses (ticks) each CLOCKPERIOD

milliseconds. The timeout associated with an event will be computed taking the

current value of this CLOCK plus an integer number (representing a number of ticks)

and it will expire when the current value of CLOCK reaches that value.

113

Chapter 7 - The Implementation of Newtop

- Inter-message transmission time period -

This is the amount of time (in milliseconds) an active process waits before sending

a message to the group. In other words, messages are sent by active processes in

intervals of "Inter-message transmission time period" milliseconds.

- Local Time Silence (Local TS) -

This is the timeout for sending null messages. The value of Local TS will be a

multiple of CLOCKPERIOD. For instance, if CLOCKPERIOD is equal to 50 and

Local TS is equal to 4, then, the local time silence process will wait approximately

200 milliseconds until timeouts. Notice that the actual time for the example cited

above will vary between 150 and 200 milliseconds, depending on when the event

occurred, just before incrementing CLOCK or just after incrementing it, respectively.

- Maximum number of unstable blocks (Max# unstable) -

This value represents the maximum number of blocks found unstable during a given

experiment.

- Average delay overhead (Avr. delay ov.)-

The delivery delay overhead for our protocol, is the time elapsed between the receipt

of a message m by the receiver process and the delivery of that message by the deliver

process. When m is received from the multicast layer by the receiver process, it is

timestamped with the current wall clock value and placed in BM. Then, when it is

delivered (put the in application message queue), the current wall clock value is taken

again and its value minus m's timestamp is taken as the delivery delay overhead of m

For a given experiment, the average delay overhead of messages delivered by a group

member is the sum of all message delay overheads divided by the number of messages

delivered. Finally, the average delay overhead showed in the figures is the sum of the

average delay overheads of all group members divided by the number of members.

-THROUGHPUT-

Say that in a given experiment N messages are sent to the group. Assume that all

group members after delivering those messages send a reply to the group confirming

the delivery of the N messages. Also, assume that USERO is the group member that

114

Chapter 7 - The Implementation of Newtop

sends the very first message in the group. Say that T is the wall clock time elapsed

between just before sending the very first message and the delivery of the N messages

plus all replies at USERO. Thus, the throughput for that experiment is N divided by T.

7.3.1.1 The 1-active Experiment

In this experiment, the application process USERO sends 1000 messages of 32

bytes to the group. The other processes deliver 1000 messages and after that send a

reply to the group confmning the delivery. There are two computations related to the

application process USERO (the sender computation and the receiver computation).

The other processes only have one computation that sends and receives messages. We

present below the simplified code for the application processes.

USERO- The sender computation

tlmert;
groupList GL; II groupList Is the class that defines the Initial group configuration.
GL.num_partlcipants = N;
GL.myld = "myld";
/I other initializations
NewTop talk(GL); /I NewTop Is the C++ class that Implements the NewTop protocol.
long to = t.current_tlmeO;
for (Int 1= 0; I < 1000; i++) talk.send(tO);

USERO- The receiver computation

timer t;
groupList GL;
GL.num_patlclpants = N;
NewTop talk(GL);
/I other Inltlallzatlons
for (int I = 0; I < 1000; i++) talk.receive(m);
II get the replies
for (int i = 0; i < GL.num_particlpants - 1; 1++) talk.recelve(m);
/I work out the elapsed time
long ftlme = t.current_timeO;
long delay = ftime - m; II notice that m is the initial time transmitted by USERO in the sender

II computation.

115

Chapter 7 - The Implementation of Newtop

Other processes· sender/receiver computation

groupList GL;
GL.num_patlcipants = N;
NewTop talk(GL);

for (Int 1=0; 1<1000; 1++) talk.recelve(m);
/I send reply
talk.send(m);
/I deliver all replies
for (Int 1=0; 1< GL.num_partlclpants - 1; 1++) talk.recelve(m);

7.3.1.2 The all-active Experiment

In this experiment, each application process sends 1000 messages of 32 bytes to the

group. The application process identified as USERO sends a signal (using sockets) to

the other members begin to transmit the messages. All processes except USERO send

a reply after delivering all transmitted messages (1000 * number of members). We

show below the simplified code for the application processes. There are two

computations for each application process: the sender and the receiver computations.

116

Chapter 7 - The Implementation of Newtop

USERO· The sender computation

tlmert;
groupList GL; /I groupList is the class that defines the

/I Initial group configuration.
GL.num_partlclpants = N;
GL.myld = -myld-;

NewTop talk(GL); II NewTop is the C++ class that implements the NewTop protocol.
long to = t.current_time();
II sends a sign to all group members to begin the transmission (using
II TCP/IP sockets.
for (int i = 0; I < 1000; 1++) talk.send(tO);

USERO- The receiver computation

timert;
groupList GL;
GL.num_patlclpants = N;
NewTop talk(GL);

long to;
talk.receive(to); /I Notice that the sender computation of USERO transmits the initial time.
for (Int I = 1; I < 1000 • N; i++) talk.receive(m);
/I get the replies
for (int 1= 0; 1< N - 1; i++) talk.recelve(m);
II work out the elapsed time
long ftime = t.current_time();
long delay = ftime - to;

Other processes· sender computation

timert;
groupList GL; /I groupList is the class that defines the initial group configuration.
GL.num_participants = N;
GL.myld = "rnyld":

NewTop talk(GL); II NewTop is the C++ class that implements the NewTop protocol.

/I waits the sign to begin to transmit ...

II munlcast 1000 messages
for (int i = 0; i < 1000; i++) talk.send(tO);

117

Chapter 7 - The Implementation of Newtop

The receiver computation

timer t;
groupList GL;
GL.num_partlcipants = N;
NewTop talk(GL);

for (Int I = 0; I < 1000· N; 1++) talk.recelve(m);
/I get the replies
for (Int 1= 0; 1< N - 1; 1++) talk.recelve(m);

7.3.2 Commenting on Performance Results

Figures 7.3, 7.4, and 7.5 show the data collected for the l-active 3-process group

experiment, when the inter-message transmission time period was set to 100 msecs.

We have measured three different performance parameters against different time-

silence timeouts values. Figure 7.3 shows the maximum number of unstable blocks

present at all members during the experiment. Notice that the number of unstable

blocks tends to grow for increasing time-silence timeouts. Figure 7.4 shows the total

number of null messages transmitted by all 3 group members during the experiment.

This number tends to decrease for increasing time-silence timeouts. Figure 7.5 shows

the average delay overhead observed during the experiment. The average delay

overhead increased for increasing time-silence timeouts. The behaviour observed in

the experiments of figures 7.3, 7.4, and 7.5 is present in all experiments we have

carried out. Therefore, choosing the appropriate value for the time-silence timeout

can give to a system designer the desired performance for specific application/system

requirements. Shorter time-silences, gives better delay overhead and keeps the

number of unstable blocks smaller. On the other hand, the number of null messages

transmitted increases.

118

Chapter 7 - The Implementation of Newtop

Num. max. unstable bls.

tlme-s lienee

Figure 7.3 - The l-active 3-member group experiment. Maximum number of unstable

blocks.

Null transm. by the group

1500
en
C'l1(xx)
E
:; 500
c

o
U)

o
o... o

U)... o
U)
N

oov
o
U)
o

tlme-s lienee

Figure 7.4 - The l-active 3-member group experiment. Null messages transmitted by

all group members.

119

Chapter 7 - The Implementation of Newtop

Av. delay overhead

800
~600
~400~ XO± --.-~r

O+---+---+---~--~--~--~
o
LD

o
o.....

o
LD
N

o
ov

time-silence

o
In
o

Figure 7.5 - The l-active 3-member group experiment. The average delay overhead.

Figures 7,6, 7.7, and 7.8 show data collected for the l-active experiment when

inter-message transmission time period was set to 200 msecs. The graphs in figures

7,6, 7.7, and 7.8 show maximum unstable blocks, average number of null messages

transmitted per inactive process (the receivers), and average delay overhead,

respectively, for time-silence timeouts from 50 to 1050 msecs. We have run the

experiments for different group configurations, from 2 to 6 group members. In each

of the graphs there is a curve representing the data for a given group configuration

(the group size appears on the legend). Group processes were spread over three

workstations. Notice the same pattern present in the previous experiment is also

present here, despite the number of group members. That is, increasing the time-

silence timeout makes the number of unstable blocks to grow, increases the delivery

delay, and decreases the number of null messages transmitted.

120

Chapter 7 - The Implementation of Newtop

Max. unstable blocks

Cl) 15
J:2
III 10-J:2., 5...
Cl)
c

0::::I
Cl Cl Cl Cl Cl
Ln Cl Ln Ln Cl.- .- N V

tirre-s ilence

Cl
Ln
(D

• 2

• 3

• 4

Cl -m--5
Ln
Cl.- • 6

Figure 7.6. The l-active experiments for different group configurations. Maximum

number of unstable blocks.

Av. null rrgs. per receiver

l(ID
Cl) 800Cl
Cl) {jJJE- 400
::::I znC

0
Cl Cl Cl Cl Cl Cl
Ln Cl Ln Ln Cl Ln.- .- N V (D

tirre-s ilence

Figure 7.7 - Thel-active experiments for different group configurations. Average

number of messages transmitted per inactive process.

121

Chapter 7 - The Implementation of Newtop

Av. delay overhead

tirre-s ilenc:e

• 2

• 3

• 4

0 LO -----0-- 5
LO 00
UJ ~ • 6

Figure 7.8 - The l-active experiments for different group configurations. The average

delay overhead.

Figure 7.9, 7.10, 7.11, and 7.12 show data collected from the l-active experiment

when time-silence was fixed to 100 msecs. For this experiment, we have varied the

inter-message transmission time period from 400 msecs down to 6 msecs. Observe

that for smaller inter-message transmission periods, the number of unstable blocks

increases and the number of null messages decreases. For the same variation, the

average delay overhead increases. This increase of the average delay overhead is due

to the fact that a larger number of unstable blocks imposes extra delay overhead on

messages waiting for block completion. Thus, adding to the overall average message

delivery delay overhead. Finally, notice that despite the increase on average delay, the

numbers of messages delivered per second (throughput) increased for smaller inter-

message delivery time. The explanation for this is that when the inter-message

message transmission period in small (so, transmission rate is high), several blocks are

122

Chapter 7 - The Implementation of Newtop

delivered at once. Thus, as long as an application can afford buffers, the existence of

incomplete blocks will not affect the overall system performance.

Number of unstable blocks

100
.J 80It
C 60;:,

E 40
;:,

20c
0
Cl Cl Cl Cl In N0 Cl 0 In N ...
V N ...

Infer-message transmsslon period

Figure 7.9. The l-active 3-member group experiment. Maximum number of unstable

blocks.

Av. delay overhead

400

}300
-8200
:10

100III

0
Cl Cl Cl Cl In N U)0 0 0 In N ...V N

Inter-message transmsslon time period

Figure 7.10. The l-active 3-member group experiment. Average delay overhead.

123

Chapter 7 - The Implementation of Newtop

Null mgs transmitted per
receiver

o 0 0 ~ N W
o 0 ~ N .-
N .-

Inter-message transrrisslon period

Figure 7.11. The l-active 3-member group experiment. Average number of null

messages transmitted per receiver.

Throughput
cj 100Q)
en 80.. 60Q)
c. 40en 20Cl
en 0E 0 0 0 0 ~ N

0 0 0 ~ N
V N .-

Inter-message transmission
period

Figure 7.12. The l-active 3-member group experiment. Throughput: number of

messages delivered per second.

We now comment on the data for the all-active experiment. Figures 7.13, 7.14,

and 7.15 show the data collected for the all-active 3-member group experiment when

124

Chapter 7 - The Implementation of Newtop

the inter-message transmission time period was set to 400 msecs. These figures show

the maximum number of unstable blocks, total number of null messages transmitted,

and average delay overhead obtained during the experiment, respectively. Notice that

since all processes are active, if we had a time-silence timeout larger then the inter-

message transmission time period, no null messages would be transmitted. So, for this

experiment we have used time-silences shorter than 400 msecs. We varied them from

350 to 100 msecs. Notice that, different from the l-active experiment, the use of

varied time-silences did not cause much impact on the number of unstable blocks and

average delay overhead. The only noticeable impact was on the number of null

messages transmitted.

Max. unstable bls.

~ 3
J:l
Q) 2 - -:c
1:1-Cl)c 0::3

350 300 250 200 150 100
tlme-s lienee

Figure 7.13 - The all-active 3-member group experiment. Maximum number of

unstable blocks.

Null trans m. by the group

250 200 150 100

Figure 7.14 - The all-active 3-member group experiment. The total number of null

tlme-s lienee

messages transmitted.

125

Chapter 7 - The Implementation of Newtop

Av. delay overhead

!l~t:=====
350 300 250 200 150 100

tlme-s lienee

Figure 7.15 - The all-active 3-member group experiment. The average delay

overhead.

The next three figures (7.16, 7.17, and 7.18) show data collected from the all-

active experiment when the inter-message transmission time period was set to 500

msecs for time-silences values from 450 down to 200 msecs. We have run the

experiment for different group sizes, from 2 to 6 group members. Figures 7.16, 7.17,

and 7.18 show the maximum number of unstable blocks, the average delay overhead,

and the number of null messages transmitted by the group, respectively, during the

experiment. Notice that, as it occurred for the all-active 3-member group experiment,

the variation on time-silence timeouts did not cause a great impact on the number of

unstable blocks and average delay overhead (although the average delay overhead

slightly decreased for smaller time-silence timeouts). Similarly, the number of null

messages transmitted increased for shorter time-silence timeouts. Observe that

although all application processes for this experiment transmit messages in the same

rate, they work asynchronously (all processes run in a multi-task and melt-user

environment). Therefore, messages to complete a given block will not arrive (or be

transmitted) at the same physical time, causing null messages be transmitted by the

time-silence mechanism.

126

Chapter 7 - The Implementation of Newtop

Num rn::DC. unstctlle tjs.

.
en-J:2
.,J
enc
:::II

• 2

• 3

• 4

an --m----- 5

• 6Hme-silence

Figure 7.16 - The all-active experiment for varied group sizes. Maximum number of

unstable blocks.

Av. delay overhec:d

200
~an
a; 100·:
"C 100
~ oo"'__"""'-==1I=::: __ -o~~~~==~~~==~

L100

• 2

• 3

• 4

200 an ----m--- 5

• 6
400

time-s IIence

Figure 7.17 - The all-active experiment for varied group sizes. The average delay

overhead.

127

Chapter 7 - The Implementation of Newtop

Tad null rrsgs tralSrritted

tlrre-sllence

• 2

• 3

• 4

an
----m-- 5

• 6

zsn~am
~ HID
~ laD
S 8Do._--~--~~~--~~~

4fD

Figure 7.18 - The all-active experiment for varied group sizes. Total null messages

transmitted by the group.

7.4 Conclusions

We have described the implementation of the Newtop protocol. The

implementation described has been tested over a set of networked UNIX spare

stations. We have run experiments to evaluate the performance of Newtop under

varied group configurations, transmission rates, and time-silence timeouts, when

processes crashes were not considered. The value set for the time-silence timeout is

determinant on the number of null messages transmitted. When only one group

member is transmitting messages, choosing shorter time-silence timeouts will on one

hand cause a larger number of null messages be transmitted, but on the other hand, it

will reduce the message delay overhead and the number of unstable blocks produced.

When all group members are actively transmitting messages at the same rate, varying

the time-silence timeout does not cause a great impact on the number of unstable

128

Chapter 7 - The Implementation of Newtop

blocks and the average delay overhead improved only slightly for shorter time-silence

timeouts. So, choosing the appropriate time-silence value is a key point for tuning the

behaviour of Newtop to specific application and system requirements such as local

buffers (maximum number of unstable blocks), delay overhead, and consumption of

transmission bandwith (extra null messages transmitted).

During the first implementation tests, the execution of the protocol was sometimes

interrupted due to the running out of local buffers for unstable messages. Typically,

this happened when we combined small inter-message transmission times with large

time-silence timeouts (localTS). That means, receiver processes were not sending

stability information quick enough so that blocks could be stabilised at the sender's

side. This has motivated us to develop the flow control mechanism that we will

present in the following chapter.

129

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

Chapter 8 - A Flow Control Scheme for Fault-Tolerant
Multicast Protocols

Fault-tolerant group communication protocols require that a transmitted/received

message be kept locally for possible retransmission until certain ordering and

reliability conditions have been satisfied at all the members of the group. If we assume

variable (potentially unbounded) transmission and message processing delays - in

what would be an asynchronous distributed system - then the number of such

'unstable' messages at processes may grow indefinitely, leading to the possibility of

buffer overflows; hence the need for a flow control mechanism. This chapter

addresses the problem of flow control in an asynchronous, total order group

communication protocol. We have developed a mechanism that guarantees that the

number of unstable messages does not exceed the stated bound, thus preventing

buffer overflows. Our mechanism is safe (no buffer overflows) as well as lively (a

sender will be eventually permitted to send).

The flow control mechanism to be described here has been designed and

implemented for Newtop (see chapters 4 and 7). In a symmetric total order protocol,

such as Newtop, when a message is received at a node, its delivery to the local

process(es) may be delayed, as there may be concurrent or causal related messages

from other members of the group in transit. Once it is certain that all such messages

have been received, then these messages can be delivered. That is, once a Causal

Block is detected to be complete (there are no more distinct messages to be received

with the same block-number), the received messages can be delivered to the process

in some fixed order. In order to ensure that Causal Blocks eventually complete, as has

been described in section 4.3, we employ a time-silence mechanism that ensures that a

process transmits a message now and then (only a null message, if a given process has

no other message to transmit).

130

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

Consider now that a process multicasting a message crashes (or gets disconnected)

in the middle of the multicast, such that only some of the members receive the

message. In this situation, the time-silence mechanism alone will not be able to ensure

block completion. For this purpose, Newtop (in common with other protocols, e.g.,

[Amir92b, Mishra93]) provides another liveness mechanism: each process is

associated with a local group-view process that can execute a membership protocol

(see chapter 6) with its counterparts to reach agreement on the membership of the

group. Thus, if the group-view process of Pi suspects a failure of some remote

process (Pj) that does not seem to be responding, then the group-view process can

initiate a membership agreement on Pj- the outcome of which is that either processes

agree to eliminate pj from the group, with an agreement on the last message sent by

Pj, or Pj continues to be a member of the group and Pi is able to retrieve missing

messages of Pj- Thus, even if a Causal Block is complete at a process, it is necessary

to keep the messages with that block-number for a while (as it may be asked to supply

some of those messages to others). Once it is known that a given block is complete at

all the members of the group, only then the messages with that block-number can be

discarded after delivery (such messages are said to be stable). Our flow control

mechanism is therefore based on piggybacking block completion and message stability

information on normal messages.

Fortunately, in order to explain the basic principles behind our flow control

mechanism, we do not need to know how the membership service (or even the time-

silence mechanism) actually works: it is sufficient to assume the existence of liveness

mechanisms that ensure that a given Causal Block will eventually complete. Indeed,

we will ignore process failures altogether, and simply assume that there is a group g =

{p1, P2, ... , Pn} and that every member process Pi>1 ~ i ~ n, knows the membership,

and member processes communicate with other members only by multicasting to the

membership of the group. We assume the existence of a message transport layer

permitting best effort uncorrupted and sequenced message transmission between a

131

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

sender and destination processes, if the processes are alive and the destination

processes are not partitioned (either due to physical network failure or message

congestion) from the sender; no assumption about message transmission time is made.

We assume that all processes have identical, fixed amount of local buffer spaces

available for storing received messages and housekeeping information. A sender

blocks if the sending of a message can cause the buffer space to overflow at any of the

member processes. For the sake of simplicity in exposition, we will assume that all

messages have the same fixed size. If a process belongs to multiple groups (Newtop

has been designed to deal with this case), then our flow control mechanism can be

individually operated for each of the groups the process belongs to. To achieve that, a

separate Block Counter can be created for each group a multi-group process Pi

belongs to (transmitted messages would carry two block-numbers: one intended for

message delivery and another for flow control). Causal Blocks related with the Block

Counter used for flow control would however not be created and no message space

alocated to them. Their existence can be represented by a single vector called the Last

Received Vector (LRV) that provides an efficient way of block completion detection

(see section 3.2). Since the flow control operates individually for each of the groups,

we need only consider the case of a single group. So, in what follows, we will assume

Newtop in a uni-group environment such that the same Block Counter BC will be

used for both message delivery and the flow control mechanism, and therefore,

transmitted messages will be times tamped with only one block-number.

8.1 Flow Control in Newtop

Let us assume that the maximum size of the Block Matrix has been fixed to N. As

stated before, it is necessary to ensure that a process can always retrieve a missing

message from another functioning member process. This in turn means that we

require a mechanism that enables a process to safely discard a received message. To

develop such a mechanism, we use the concept of message stability (first defined in

section 4.4.1 and repeated here).

132

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

Message Stability: A Causal Block BMj[~] becomes stable if it is known to be

complete in all the processes in the group. The messages represented in BMi[P] will

also be termed stable.

The flow control mechanism for Newtop operates at the level of Causal Blocks

and ensures that multicasting of a message will not cause the limit of no more than N

unstable blocks at any process to be exceeded. Blocks become stable in increasing

order of block-numbers: if block BMj[~] is stable, then all blocks BMj[Po], ~o< p, will

also be stable. Once a Causal Block becomes stable at Pi, Pi "knows" that the

corresponding messages have been received by all the members. Stability information

is passed together with transmitted messages. That is, when a message m is

transmitted by Pi, a field m.lcb is used to represent the number of the largest complete

block in BMj. To compute stable blocks, each process Pi, maintains a vector called

SVi (Stability Vector). At process Pi, SVj[j] represents the largest complete block at

pj. If min(SVj) represents the minimum value in SVj, then all blocks BMj[~], ~ ~

min(SV j) will be stable. For the sake of fault tolerance, a block that is not stable, and

the messages represented in it are not discarded from the local storage of processes.

Once a stable block has been discarded, the freed space becomes available for reuse.

The flow control mechanism developed here is based on a stronger stability condition,

called n2_ stability.

Message n2.stability: Causal Block with number ~ is n2-stable if BMi[~] is stable at

all Pi,l ~ i ~ n.

An n2-stable block by definition does not exist in the BM of any group member.

That is, if ~ is an n2-stable block, then, all group members would have discarded it

from their respective BMs. As was the case for stability, if a block P' is n2-stable then

all ~ ~ W will also be n2-stable. Whenever a new Causal Block, say with number p, is

to be created by the sender of a message m (m.b = ~), the sender first verifies the

conditionfll:

133

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

t11: Causal Block with number ~ - N is n2-stable.

Iffll is true, m can be sent with the assurance that the slot addressed by m.b - N

will be free in the BM of every recipient; otherwise, the sender will wait for the

conditionfll to become true. In order to compute n2-stability, each process maintains

a vector of size n called the n2-stability vector (NNS). At process Pi, NNSiI]] records

the number of the largest stable block at process P} If min(NNSD is the minimum

value represented in NNSi, then all blocks ~ ~ min(NNSD, are n2-stable. A new field,

Isb (for largest stable block), is added to a message to disseminate n2-stability

information: whenever m is transmitted by Pi, the field m.lsb will represent the number

of the largest stable block at Pi at the time of transmission (it will be helpful to recall

here that in the field m.lcb, the message also carries the stability information, the

number of the largest complete block at the sender).

Although applying condition fll is safe in avoiding overflows, if enforced in

isolation, it may lead the sender process to starvation and the whole system to a

deadlock. For instance, consider the scenario where a process Pi is about to transmit

m with block-number ~ and blocks awaiting condition fll to become true. Also,

consider that after a given period of time, all blocks in BM of Pi become complete but

no one is stable. Because stability information is transmitted together with messages

(null or non-null), Pi will block forever, and soon so will other processes as they must

receive information from Pi to stabilise blocks. To avoid this situation we need

conditions that guarantee that blocks eventually become n2-stable. This can be

realised if, in addition tofll, the sender also verifies conditionsfl2 andfl3:

t12: Causal Block with number ~ + 1 - N is stable; and,

t13: Causal Block with number ~ + 2 - N is complete.

So, whenever a new Causal Block, say with number ~, is to be created, the sender

blocks ifconditionsfll,fl2 andfl3 are not true. The rationale behindfl2 andfl3 is as

134

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

follows. By applying condition jl2, it is guaranteed that a received message m will

bring the information that at least block ~ - N + 1 is stable at the sender. Since this

condition will be followed by all processes, it is guaranteed that when block p

completes at Pi, block p - N + 1 will be n2-stable, and block p + 2 - N is stable (thanks

to jl3). Thus completion of a block, p, ensures that the first two conditions are true

for the next block (P + 1). Fortunately, the liveness mechanisms of Newtop ensure

that a Causal Block eventually completes, so condition jl3 can always be relied upon

to become true. The minimum size of a Block Matrix is therefore three. The proof of

correctness (that the three conditions together implement flow control properly for N

~ 3, i.e., a BM never overflows and a sender never blocks indefinitely) is given below

after an illustrative example. Consider that Block-Counters are initialized by -1 so that

the first Causal Block created will have block-number equal to zero.

Figure 8.1 shows the BM of a process, say Pi, where the maximum size of the BM

of processes has been set to 8. In figure 8.1(a), blocks 0, 1, and 2 are n2-stable, block

3 is stable and block 4 is complete. The other blocks (from 5 to 10) have not yet been

created (thus, no message space allocated). Given this situation, Pi will be able to send

messages with block-numbers 5 to 10 (figure 8.1(b», but will be blocked for the

sending of a message with block-number 11. For this case, the message can only be

sent once block 3 become n2-stable, block 4 becomes stable, and block 5 becomes

complete.

135

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

o
1
2
3
4

51-- -1
61-- -1
71-------i81-- ---t
910I-------i

(a)

o
1
2
3
4

5
6
7
8
9
10

Window size = 8

n2-stable

stable

~ complete

incomplete

(b)

Figure 8.1 - n2-stable, stable, complete and incomplete Causal Blocks

Correctness proof.

We now prove the correctness of the flow control mechanism, for any N ~ 3.

Lemma 1:BM does not overflow (safety).

Proof: The proof is by contradiction: suppose that BMi of a process Pi overllows

while trying to represent a received message m. This means that a new Causal Block

needs to be created but BMi of Pi has already N unstable blocks. In particular, this

means that the slot (m.b mod N) in BMi points to an unstable block. By defmition,

just before m was sent, condition fll had to be true. That is, block-number m.b - N

was n2-stable at m's sender; this implies that block-number m.b - N was stable at Pi

and, consequently, the space reserved for messages with block-number m.b - N freed.

Therefore, BMi of Pi could not overflow while trying to represent m.

Lemma 2: A sender never blocks indefinitely (liveness).

Proof: Assuming that once a Causal Block is created, block completion liveness

mechanisms of the protocol will ensure that the block will eventually complete, we

will prove the liveness of the sending conditions fll, fl2, and fl3 using induction on

136

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

the message block-numbers. First we show that it is always possible for a process to

send the first N messages (with block-numbers 0 to N-l).

(i) Any message with block-number less than N - 2 will meet the sending conditions

and transmitted straightaway due to the fact that it will only depend on messages of

non-existing Causal Blocks (i.e., blocks with negative block numbers). Thus, if N ~ 3,

messages with block-number 0 can be sent without blocking.

(ii) Let us consider the sending of a message m with block-number N - 2. The sending

conditions require that block-number -2 is n2-stable (flJ), block-number -1 is stable

(fl2), and block-number 0 is complete (fl3). Since blocks -1 and -2 do not exist, we

need only prove thatfl3 will eventually be true. Provided N ~ 3, this will be the case

since messages with block-number 0 meet the sending conditions, and once created,

block 0 will eventually complete.

(iii) Now consider the sending of a message m with block number N - 1. The sending

conditions require that block number -1 is n2-stable, block number 0 is stable, and

block number 1 is complete. From (ii) we can see that once block number N - 2

completes at the sender, block 0 is bound to become stable (because a message with

block number N - 2 will carry the information that block-number i ~ 0 is complete at

the sender); further, like block 0, block 1 will also eventually complete.

Consider the case when the message to be sent has block number equal to N. We

must show that the following will eventually be true: block 0 is n2-stable, block 1 is

stable, and block 2 is complete. From (iii) we can state that once block N - 1

completes at the sender, blocks 0 and 1 are bound to become n2-stable and stable

respectively; further, like block 1, block 2 will also eventually complete.

Finally, consider the sending of a message with block-number ~ > N. Since block

counter is incremented by one before transmission, a (null or non-null) message with

block-number ~-1 must have been sent before ~. So, by induction hypothesis, the

137

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

following was true before the message with block number p - 1 was transmitted:

block p - N - 1 was n2-stable; block p - N was stable; and, block p - N + 1 was

complete. To prove that a message with block number p will be sent eventually, we

must prove that (i) block p - N will eventually become n2-stable; (ii) block P - N + 1

will eventually become stable; and (iii) block p - N + 2 will eventually complete. This

will be the case, since completion of block p - 1 will bound to cause block p - N to

become n2-stable and block p - N + 1 to become stable. Fmally, block completion

liveness mechanisms will ensure that block p - N + 2 completes.

Observation:

The application of the sending conditions fll, fl2, and fl3 will not prevent

null messages from being eventually transmitted by a process p.

Suppose there is a null message u with block number u.b to be transmitted by a

process p. Because null messages are only transmitted to complete existing blocks

(see section 4.3), there is at least one non-null message m that was transmitted by a

process q with block number m.b equal to u.b. This means that by the time m was

sent, all group members had produced enough information together with transmitted

messages so as the sending conditions for m could be satisfied. By our transport

assumption, we realise that those messages will eventually reach all destinations,

including process p, when then, the sending conditions for u will be met

8.2 Experimental Results

The flow control mechanism presented in this chapter has been implemented and

tested on the Newtop protocol (see chapter 7). In the implementation of Newtop, the

BM matrix is regarded just as a conceptual entity, with the necessary information

therein being encoded in a vector of size n, called the Last Received Vector (see

section 3.5). Received messages with the same block-number are kept in a linked list

of buffers, with an entry in a hash table of size N containing the pointer to the head of

138

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

the list. Recall that N is the size of the Block Matrix, so N is also the maximum

permissible number of unstable blocks; therefore the maximum number of buffers

required is nN. The addressing function of the hash table takes a message block-

number and generates an address in the interval [0, N-l]. Messages with block-

number p are discarded only after Causal Block with block-number p becomes stable;

after this the hashed entry in the table becomes available for pointing to messages of a

new Causal Block.

We have performed experiments to evaluate the effect of the flow control

mechanism on the performance of Newtop. In the experiments we have a process

group with six members distributed over three workstations. We consider the case

when only one process is sending messages. In this circumstance, the time-silence

mechanism of the inactive processes is responsible for the completion of blocks. The

time-silence timeout for the experiments was fixed to 50 msecs. The graphs depicted

in figures 8.2 and 8.3 are for the sender process. For each run, WOOmessages of 32

bytes each were transmitted. We varied the inter-message transmission time from 400

msecs to 6 msecs and calculated the maximum number of unstable blocks as well as

the average delivery delays.

Figures 8.2 and 8.3 graphically show the data collected during the experiments

when the flow control mechanism was switched off and on (with N fixed to 50)

respectively. It is interesting to note that when the flow control was switched on,

besides limiting the number of unstable blocks to 50, the average delivery delay was

also reduced for inter-message transmission times of less than and equal to 50 msecs.

The explanation for this is that when the transmission rate is higher, a larger number

of messages are transmitted without stability information (Le. the last complete block

number) being updated at the sender. This causes the number of incomplete blocks to

grow quickly and thus increases the average delay overhead for message delivery.

139

Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

Ol+-~-=~--~----~
1000 100 110

Trans. Time Trans. Time

160
140

~~~g
~ 80

~ ~o
20O~----~-----T----~

1000 10 1100

Figure 8.2 - l-sender and 5-receivers with flow control switched off.

50

,40
III
£530
-;20
I:
::J 10

O~-----+------+-----~
1000 100 10

Trans. Time

O+-----~----~----~
1000 100 10

Trans. Time

Figure 8.3 - l-sender and 5-receivers with flow control switched on.

8.3 Related Work

Flow control schemes for point-to-point communication protocols (such as

TCP/IP) have been extensively explored in the past [Tanenbaum81]. Usually, these

protocols utilise the concept of sliding windows. In a sliding window scheme,

transmitted messages are numbered sequentially before being sent to the destination.

At any instant, the sender has a "window" on this sequence of messages and have

permission from the receiver to send any message within this window. So, if the

window extends from n to n + k, the sender can send any message numbered from n

to n + k. As the receiver acknowledges the receipt of messages, say w messages, the

window slides (moves) forwards in the ordered sequence. Thus, on receiving the

140



Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

acknowledgments for the w messages, the sender can now send messages numbered

from n + w to n + k + w. The sequence numbers within the sender's window represent

messages sent but not yet acknowledged. If the messages currently in the sender's

window may ultimately be lost or damaged in transit, the sender must keep them for

possible retransmission. A flow control scheme for point-to-point communication will

as well regulate the flow of messages so that the number of 'unacknowledged'

messages sent by a given process does not exceed the sender buffer's limits.

Flow control for multicast protocols have not received much attention in the

literature. As discussed earlier, in multicast communication not only sent messages

must be kept for possible retransmission but also received messages sent by all

processes of a group. The message flow must then be controlled so that the number

of such 'unstable' messages from different processes does not exceed a given limit on

the buffer space of a process buffer. The importance of flow control as an

implementation requirement for multicast protocols has been pointed out in

[Amir92a]. The flow control scheme implemented in the Transis system is outlined in

[Amir92a], and to our best knowledge is the only (very brief) published description of

an implemented flow control scheme for multicast protocols. We will briefly compare

the Transis flow control mechanism to our solution. In Transis, unstable messages are

kept in a buffer and the flow control will work to avoid as much as possible the buffer

overflow. Each process maintains a sliding window consisting of unstable messages

(they are computed from the local process DAG's - see section 2.6.6). When the

window exceeds a maximal size, the flow of messages is blocked. This will reduce the

chances of buffer overflows in other processes. In Transis, acks (Le.

acknowledgments for received messages) are usually piggybacked on messages.

However, if there is are messages to be transmitted or if the flow of messages is

blocked, extra ack messages may be transmitted. Our flow control mechanism in

contrast guarantees that no buffer overflows will occur. We guarantee that the buffer

size will never exceed the stated bound even when processes are faulty. In our

mechanism, senders may be temporarily blocked because of slow processes (or

141



Chapter 8 - A Flow Control Scheme for Fault-Tolerant Multicast Protocols

process failures) but eventually they will be allowed to send new messages. Finally,

our flow control mechanism does not exchange any extra (ack) messages in order to

compute stability information. We achieve that by enforcing completeness and

stability conditions on created Causal Blocks.

8.4 Conclusions

Flow control is an important aspect of protocol design. However, it has not

received much attention in the literature for fault-tolerant multicast protocols. We

have presented a flow control mechanism for a multicast protocol that ensures that a

sender process does not cause buffers to overflow from a known limit at any of the

functioning destination processes. This is achieved by piggybacking block completion

and block stability information (two integer values) on top of normal messages. This

permits a process to compute whether it is safe to transmit a message. Although the

mechanism has been designed and implemented for a specific protocol, Newtop, the

ideas presented can be adapted to any multicast protocol and will require the

maintenance of a logical clock and an LRV vector for each group a process belongs

to.

142



Chapter 9 - Conclusions

Chapter 9 - Conclusions

9.1 Synopsis

In this thesis, we have discussed the main issues concerning the design of fault-

tolerant group communication protocols. We have assumed that processes can be

geographically separated, communicating via long-haul network such as the internet

Asynchronous communication was therefore assumed where message transmission

times cannot be accurately estimated and the network may well get partitioned. We

have contributed in the area by presenting a comprehensive approach based on the

concept of Causal Blocks for implementing fault-tolerant group communication

protocols with different ordering requirements. Causal Blocks representation is based

on the concept of logical clocks [Lamport78] and is a convenient way of maintaining

and deducing ordering and reliability information between messages exchanged by

processes of a group.

We have presented a symmetric total order protocol, called Newtop. Besides being

simple to handle, even in the presence of overlapping groups, Newtop has the main

advantage of the constant and low message space overhead. Symmetric total order

protocols have also been presented in [Melliar-Smith90, Arnir92a]. However, these

protocols have not addressed the problem of multiple groups; further they assume in

their system model a hardware broadcast facility on top of which the protocols are

built (making them not as portable as Newtop). Asymmetric protocols with similar

functionalities are described in [Chang84, Navarantnam88, Birman91b, Kaahoek91].

None of them however, addresses the group overlapping problem for total order

delivery. In [Peterson89] is described a symmetric protocol where group overlapping

is not addressed either. Protocols described in [Biman91b, Melliar-Smith90, Amir92a,

Petersonbv'] provide total order message delivery (for non-overlapping groups) but

their protocols have been built on top of their respective causal order protocols and

1 In fact, Psync provides a poit-to-point causal order protocol. However, a total order multicast
protocol can be built on top of this basic primitive as discussed in [peterson89].

143



Chapter 9 - Conclusions

require a larger message space overhead (the amount of ordering information added

to application messages) when compared to Newtop. This is (mainly) due to the fact

that our protocol has been built directly to provide total order (rather than being built

on top of an existing causal order protocol). In [Birman91b] messages carry vector

clocks. in [Peterson89, Amir92a] messages carry references to other messages directly

related by the 'happened before' relation. In [Melliar-Smith90] messages carry positive

and negative acknowledgements for other transmitted messages. In Newtop, in

contrast, messages are timestamped with just a block-number. In order to assess

delivery conditions, the protocols in [Melliar-Smith90, Amir92a, Peterson89] have to

examine some 'stability' conditions in the structures they maintain for representing

causal relationship between exchanged messages (negative and positive acks, the

DAO graph, and the context graph, respectively). In Newtop, this is done just by

keeping the minimum value of a vector of integers (the CBV vector) and by

comparing this value with timestamps of received messages (integer values). Newtop

is able to offer these advantages because it does not attempt to precisely represent the

absence of causal relation among multicast as this is not essential for total order

message delivery.

The protocol presented in [Oarcia-Molina91] indeed addresses the group

overlapping problem. However, all processes have to maintain the propagation graph

that is built based on the group overlapping structure. Modification on the group

memberships (due to process crashes or application related reasons) will lead to

modification of the propagation graph, making it expensive to maintain for systems

where groups change dynamically and frequently.

We have also presented three approaches for causal order message delivery in

overlapping process groups. They represent different trade-offs between delivery

delay and message space overhead costs. The Slow causal protocol produces the

smallest timestamp (the message block-number) and the potentially longest delivery

time since Causal Blocks for all the groups a process belongs to have to be complete

before message delivery. The Fast causal protocol is based on the OLDV vector

which is a precise representation of causal dependence between transmitted messages

in a multi-group environment. As in CBCAST [Birman91b], the Fast causal protocol

produces message delivery as early as possible. That is, the delivery of a message m is

144



Chapter 9 - Conclusions

only delayed if there is a message m', such that m' ~ m and m' has not been delivered

yet. On the other hand, the Fast causal protocol imposes the highest message space

overhead among the approaches presented (message overhead similar to CBCAST: an

integer number per process belonging to all groups). The Relative causal protocol is a

trade-off solution. It provides as early as possible delivery in a uni-group environment

but some extra delay is possible in a multi-group environment due to the need of

block-completion. Protocols presented in [Birman91b, Amir92a, Peterson89,

Mostefaoui93] provide causal order delivery. However, overlapping groups are only

addressed in [Birman91b, Mostefaoui93]. Our Relative Causal protocol presents a

similar trade-off to the protocol presented in [Mostefaoui93]. In [Mostefaoui93] a

message will carry an integer number per group involved in an overlapped structure.

In our Relative causal protocol a message will carry an integer per group and also a

vector of integers with the size of the group the message was sent to. Message

delivery within a group will then be as early as possible (fast delivery) but Causal

Blocks for other (possibly) overlapped groups have to be complete before message

delivery can take place. Message delivery in [Mostefaoui93] will depend on the

progress of the logical clocks corresponding to all groups a given process is a member

of.

We have developed a failure suspector based on the Causal Blocks representation

and local time-outs. Based on this failure suspector, we have deleloped a membership

protocol that ensures that network partitions do not lead to processes forming

inconsistent group membership views; further, message delivery is kept atomic with

respect to view change installations. We have then developed a fault-tolerant total

order protocol for overlapping process groups which works correctly despite process

crashes and network partitions. To our best knowledge there is no other existing

protocol fulfilling these ordering and reliability requirements all together.

The causal order protocols as well as the fault-tolerant mechanisms we have

developed were designed to work in the context of Causal Blocks (i.e., using message

block-numbers). Therefore, they can easily be integrated to provide causal ordering

delivery in the presence of process crashes and network partitions.

145



Chapter 9 - Conclusions

We have described the implementation of the Newtop protocol over a set of

networked UNIX spare stations. We have run experiments to evaluate the

performance of Newtop under varied group configurations, transmission rates, and

time-silence timeouts, when processes crashes were not considered. The value set for

the time-silence timeout is determinant on the number of null messages transmitted.

When only one member of a group is transmitting messages, choosing a shorter time-

silence timeout will on one hand cause a larger number of null messages be

transmitted, but on the other hand, it will lead to a shorter message delay overhead

and reduction in the number of unstable blocks produced. When all group members

are actively transmitting messages at the same rate, varying the time-silence timeouts

does not cause a great impact on the number of unstable blocks and the average delay

overhead improved only slightly for shorter time-silence timeouts. So, choosing the

appropriate time-silence value is a key point for tuning the behaviour of Newtop to

specific application and system requirements such as local buffers (maximum number

of unstable blocks), delay overhead, and consumption of transmission bandwidth

(extra null messages transmitted).

We have developed a novel flow control mechanism for a multicast protocol that

ensures that a sender process does not cause buffers to overflow from a known limit

at any of the functioning destination processes. This is achieved by piggybacking

block completion and block stability information (two integer values) on top of

normal messages. This permits a process to compute whether it is safe to transmit a

message. Although the flow control mechanism has been designed and implemented

for Newtop, the ideas presented can be adapted to any multicast protocol and will

require the maintenance of a logical clock and an LRV vector for each group a

process belongs to.

Finally, all protocols and services such as membership, the flow control, time-

silence, and the suspector have been developed based on the Causal Blocks

representation and therefore they work in a integrated manner, without relying on any

external service. This makes our work distinctive from existing works in the area.

146



Chapter 9 - Conclusions

9.2 Future Work

We have presented a membership protocol that can deal with process crashes and

network partitioning. Process crashes can lead to situations where a group is sub-

devided into sub-groups of functioning processes and our membership protocol was

designed so that message delivery will be kept atomic with respect to view

installations in each of the partitioned sub-groups. However, we have not addressed

the problem of merging sub-groups holding the same group identifier, which could

happen, for instance, after a partitioned network has been fixed. We are currently

analysing the possibility of addressing the merging problem by taking the more general

approach of group formation. In a group formation problem, a given process Pi

knowing of the existence of a set gn of processes, will make an attempt to form a new

group (we assume that Pi is not a member of any gx such that Vx,i = gn). The

processes involved in a given group formation process, can approve the attempt or

reject it. There are a couple of questions to be investigated such as how many group

formation attempts a given process is allowed to undertake and how a given group

formation attempt can be distinguished from previous ones in an asynchronous

environment. Once the group formation problem has been properly addressed,

merging existing partitioned sub-groups can be dealt with in a straightforward way by

making partitioned sub-group carrying out group formation attempts after events such

as recovery from network partitioning. Notice that the problem of a process p joining

a group g corresponds to merging g with the "l-member group" formed by p.

Therefore, joining processes to existing groups can also be thought of as a particular

case of the group formation problem.

The symmetric Newtop protocol we have developed provides a simple way of

dealing with overlapping groups. As it is the case for any symmetric total order

protocol, message delivery speed by Newtop will depend on the flow of messages

from all the members of a group. When members are not active in sending messages,

message delivery speed can slow down to the level of the most inactive process. In

order to guarantee message delivery speed will not be affected by the inactivity of

147



Chapter 9 - Conclusions

some processes, we have used the time-silence mechanism that will force inactive

members to transmit null messages. In an asymmetric protocol, where message

delivery order is determined by a sequencer [Chang84], the activity of group members

will not affect message delivery speed. We are presently investigating the use of

sequencer processes to work on top of Newtop. Asymmetric solutions for total order

delivery are difficult to handle because the choice of a sequencer will usually depend

on the nature of the overlapped groups. For instance, in [Garcia-Millina91] nodes of

the propagation graph will be common members of overlapped groups. It is possible

to develop a Newtop asymmetric protocol where sequencer processes will timestamp

messages with Causal Blocks numbers. Since messages are timestamped with

increasing block-numbers (or logical clock values), we do not require that members of

common groups will access the same sequencer, making simple to handle dynamic

overlapping groups. We are also investigating the possibility of integrating symmetric

and asymmetric multicasts so that a given process could send a message m to one

group using the symmetric Newtop and send a message m' to another group using the

asymmetric Newtop. Thus, applications will be able to take advantage of this

flexibility to achieve best performance according to distinct environments. For

instance, symmetric Newtop version will be more suitable to environments where

processes are actively transmitting new messages, whereas asymmetric Newtop

version will be more efficient in environments where only a few group members are

active in sending messages.

Our reliable transport layer has been built on top of TCP/IP which is a protocol

optimised for stream communication. We expect that by implementing Newtop on top

of an unreliable datagram suite such as UDP/IP we will get a better performance (in

section 3.7, we have explained how missing messages can be represented in the Block

Matrix). The implementation of the transport multicast layer using UDP/IP and the

analysis of this new implementation on the performance of Newtop is left for the

future. Similarly, performance analysis of Newtop in a multi-group environment, and

148



Chapter 9 - Conclusions

implementation of the Relative causal order protocol and its integration with the

membership service is also left for the future.

149



References

References

[Amir92a]
Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki, "Transis: A
Communication Sub-System for High Availability", 22nd International
Symposium on Fault-Tolerant Computing (FTCS-22nd), Boston, July 1992.

[Amir92b]
Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki, "Membership
Algorithm for Multicast Communication Groups", Proc. of the 6th International
Workshop on Distributed Algorithm, pp 292-312, November 1992.

[Babaoglu88]
O. Babaoglu, P. Stephenson, and R. Drummond, "Reliable broadcasts and
communication models: tradeoffs and lower bounds". Distributed Computing
(1988) 2: 177-189, Spring Verlag.

[Birman87]
Birman, K. and Joseph, T. "Reliable Communication in the Presence of
Failures", ACM Transactions on Computers Systems 5, 1 (Feb. 1987)

[Birman89]
Birman, K. and Joseph, T., "Exploiting Replication in Distributed Systems", In
Sape Mullender, editor, Distributed Systems, New York, 1989, ACM Press,
Addison-Wesley.

[Birman91a]
Kenneth P. Birman, "The Process Group Approach to Reliable Distributed
Computing", Technical Report TR91-1216, Department of Computer Science,
Cornell University, July, 1991.

[Birman91b]
Birman, K., Shiper A., and Stephenson, "Lightweight Causal and Atomic Group
Multicast", ACM Transactions On Computer Systems, Vol. 9, No 3, August
1991, pp. 272-314.

[Birman91c]
Kenneth P. Birman, "Design Alternatives for Process Group Membership and
Multicast", Technical Report TR91-1257, Department of Computer Science,
Cornell University, December, 1991.

[Chandra91]
T. D. Chandra and S. Toueg, "Unreliable Failure Detectors for Asynchronous
Systems", Proceedings of the Tenth Annual A.C.M. Symposium on Principles
of Distributed Computing, pages 325-340. ACM, August 1991.

150



References

[Chandy85]
K. M. Chandy and L. Lamport, "Distributed Snapshots: Determining Global
States in Distributed Systems", ACM Transactions on Computer Systems, Vol.
3, No. I, pp. 63-75, February, 1985.

[Chang84]
Chang, J. and Maxemchuk, N. F. "Reliable Broadcast Protocols". ACM
Transactions on Computer Systems, Vol. 2, No 3, August 1984, Pages 251-
273.

[Charron91]
B. Charron-Bost B., "Concerning the size of Logical Clocks in Distributed
Systems", Inf. Proc. Letters, Vol. 39, (1991), pp. 11-16.

[Cheriton85]
D. R. Cheriton and W. Zwaenepol, "Distributed Process Groups in the V
Kernel", ACM Transactions on Computer Systems, Vol. 3, No.2, May 1985.

[Cristian90]
Flaviu Cristian, Danny Dolev, Ray Strong, Houtan Aghili, "Atomic Broadcast in
a Real-Time Environment", Lecture Notes in Computer Science, No. 448, pp.
51-71.

[Cristian91]
Cristian, F., "Reaching Agreement on Processor Group Membership in
Synchronous Distributed Systems", Distributed Computing, Vol. 4, No.4, April
1991, pp. 175-187.

[Dolev93]
Danny Dolev, Shlomo Kramer, Dalia MaIki, "Early Delivery Totally Ordered
Multicast in Asynchronous Systems", FfCS-23, Toulouse, France, June, 1993.

[Ezhilchelvan93]
Paul Ezhilchelvan and Santosh K. Shrivastava, "rellREL: A Family of Reliable
Multicast Protocols for Distributed Real-Time Systems", Technical Report 461,
Department of Computing Science, Newcastle University, 1993.

[Fidge91]
C. J Fidge, "Logical time in distributed computing systems, IEEE Computer,
Vol. 24,8 (1991).

[Fischer83]
M. Fischer, "The Consensus Problem in Unreliable Distributed Systems".
Proceedings of the Internatiaonal Conference on Foundations of Computing
Theory, Sweden, 1983.

[Fischer85]
M. Fischer, N. Lynch, and M. Peterson, "Impossibility of Distributed Consensus
with One Faulty Process", 1.ACM, 32, April 1985, pp 374-382.

151



References

[Garcia-Molina91]
Hector Garcia-Molina, "Ordered and Reliable Multicast Communication", ACM
Transations on Computer Systems, Vol. 9, No.3, August, 1991, pages 242-
271.

[Kaashoek91 ]
M. Frans Kaashoek and Andrew S. Tanenboum, "Group Communication in the
Ameoba Distributed Operating System", Proc. Eleventh International
Conference on Distributed Computing Systems, Arlington, TX, May 1991.

[Lamport78]
Lamport, L., "Time, clocks, and ordering of events in a distributed system",
Commun. ACM, 21, 7 (July 1978), pp. 558-565.

[Lamport82]
L. Lamport, R.. Shostak, and M.Pease, "The Byzantine Generals Problem".
ACM Transactions on Programming Languages and Systems, vol. 4, nO. 3, pp.
382-401, July 1982.

[Hadzilacos93]
Vassos Hadzilacos and Tam Toueg, "Fault-Tolerant Broadcast and Related
Problems". In Distributed Systems (Second Edition), edited by Sape J.
Mullender, ACM Press, New York, 1993.

[Maced093a]
Raimundo A. Macedo, Paul Ezhilchelvan, Santosh K. Shrivastava, "Modelling
Group Communication using Causal Blocks", 5th European Workshop on
Dependable Computing, Lisbon, February, 1993.

[Macoo093b]
Raimundo A. Macedo, Paul Ezhilchelvan, Santosh K. Shrivastava, "Newtop: a
Total Order Multicast Protocol Using Causal Blocks", Broadcast deliverable
report, Volume I, First open Broadcast workshop, Newcastle, october, 1993.

[Mattern89]
F. Mattern, "Time and global states in distributed systems", In Proc. of the
International Workshopom Parallel and Distributed Algorithms, North-Holland,
Amsterdam, 1989.

[Melliar-Smith90]
M. P. Melliar-Smith, L. E. Moser, and V. Agarwala, "Broadcast Protocols for
Distributed Systems", IEEE Transactions on Paralell and Distributed Systems,
Vol. 1, No.1, January, 1990.

[Melliar-Smith91 ]
M. P. Melliar-Smith, L. E. Moser, and V. Agarwala, "Membership Algorithms
for Asynchronous DIstributed Systems", Proc. of the 12th International Conf.
on Distributed Compo Systems, pp 480-488, May 1991.

152



References

[Mishra91]
S. Mishra, L. Peterson, and R, Schlichting, "A Membership Protocol Based on
Partial Order", Proc. IFIP Conf. on Dependable Computing For Critical
Applications, Tuscon, Feb. 1991, pp 137-145.

[Mishra93]
Mishra, S., Peterson L., and Schlichting, R., "Consul: a Communications
Substrate for Fault-Tolerant Distributed Programs", Distributed Systems
Engineering, 1 (1993), pp. 87-103.

[Mostefaoui93]
Achour Mostefaoui and Michel Raynal, "Causal Multicasts in Overlapping
Groups: Towards a Low Cost Approach", In Proc. of the 4th IEEE Int.
Conference on Future Trends of Distributed Systems, pp. 136-142, Lisboa,
September 1993.

[Navaratnam88]
S. Navaratnam, S. Chanson, and G. Neufeld, "Reliable Group Communication
in Distributed Systems", Proc. 8th Int. Conf. on Dist. Compo Sytems, San Jose,
CA, pp. 439-446 (June 1988)

[Olsen91]
Michael H. Olsen, Ed Oskiewicz, and John P. Warne, "A Model for Interface
Groups", Proceedings of the Tenth Symposuim on Reliable Didtributed
Systems, Pisa, Italy, October, 1991.

[Peterson89]
L. L. Peterson, N. Bucholz, and R Schlichting, "Preserving and using context
information in interprocess communication", ACM Transactions on Computer
Systems, Vol. 7, No 3, August 1989, pp. 217-246.

[Raynal91]
Michel Raynal, Andre Schiper, and Sam Toueg, "The causal ordering
abstraction and a simple way to implement it", Information Processing Letters,
Vol. 38, pp. 343-350, 1991.

[Raynal92]
Michel Raynal, "About Logical Clocks for Distributed Systems", Operating
Systems Review, SIGOPS, vol. 26, Number 1, January, 1992.

[Ricciardi91 ]
A. M. Ricciardi and K.Birman, "Using Process Groups to Implement Failure
Detection in Asynchronous Environments", Proc. of Annual ACM symposium
on PoDC, pp. 341-352, August 1991.

[Ricciardi92]
Aleta Marie Ricciardi, "The Group Membership Problem in Asynchronous
Systems", Ph.D. dissertation, Cornell University, 1992.

153



References

[Rodrigues91 ]
L. Rodrigues and P. Verissimo, "xAMp: A multi-primitive Group
Communication Service", Proc. of the eleventh Symposium on Reliable
Distributed Systems, Houston, TX, 1991.

[Schiper89]
A. Schiper, J. Eggli, and A. Sandoz, "A new algorithm to implement causal
ordering", Proceedings of the 3rd International Workshop on Distributed
Algorithms, Lecture Notes on Computer Science 392, Springer-Verlag, New
York, 1989, pp. 219-232.

[Schiper93a]
A. Schiper and A. Sandoz, "Understanding the power of the virtually-
synchronous model", 5th European Workshop on Dependable Computing,
Lisbon, February, 1993.

[Schiper93b]
A. Schiper and A. Sandoz, "Uniform Reliable Multicast in a Virtually
Synchronous Enviroment", IEEE proceedings of the 13th Int. Conf. On
Distributed Computing Systems (ICDCS-93), Pittsburgh, May 25-28, 19993.

[Schiper93c]
A. Schiper and A. Ricciardi, "Virtually Synchronous Communication Based on
Weak Failure Suspector", IEEE Proc. of the 23rd Annual Int. Symp. on Fault-
Tolerant Computing (FTCS-23), Toulose, June/1993.

[Schmuck88]
Frank Schuck, "The use of Efficient Broadcast Primitives in Asynchrounous
Distributed Systems", Ph.D. dissertation, Cornell University, 1988.

[Stevens90]
W. R. Stevens, "Unix Network Programming", Prentice-Hall, Englewood
Clifes, N. J., 1990.

[Strong83]
R. Strong and D. Dolev, "Byzantine agreement", Digest of Papers, Spring
Compcon, IEEE Computer Society Press, 1983.

[Tamenbaum81]
A. S. Tanenbaum, "Computer Networks", Prentice-Hall, 1981.

[Verissim093]
Paulo Verissfrno, Luis Rodrigues, and Werner Vogels, "Group Orientation: a
Paradigm for Modem Distributed Systems", BROADCAST Project deliverable
report, vol I, October 1993.

154


