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ERR A T A

Page 15 - Line 4b Replace 'dx' by "dy ' •
1 1

Page 15 2b Replace /ym(l n-m f m-I 'l"! d:; .- Line - y) dy by y (l - y) .

0 0

Page 16 - Line 3 Replace n(n - 1)/2(n + 1) by n(n - 3)/2(n + 1).

Page 52 - Line Ib Replace 'is' by 'is less than or equal to'.

Page 70 - Line 6 Replace log (M - i) by log (M - 1)

Page 120 - Line 9 Replace Hc-k -2 by Hc-k'-2 .
Page 175 - Line 4b Replace 'adjecant' by 'adjacent' •

Page 108 - Insert following line 5:-

The idea of not resolving clashes during address calculation sortillh
was suggest~d by Jones, 1970. The uodification involving address
calculation sorting in place was suggested by Kronmal and Tarter, 1965.

Page 174 - Insert following line 17:-

38. Jones, B.: "A Variation On Address Calculation Sorting",
Comm. ACM, Vol. 13, No.2, 1970.

39. Kronma1, R., M. Tarter: "Cumulative polygon Address Calculation
Sorting", Proc. 20th ACM National Conference, 1965.
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ABSTRACT

Handling a single page fault involves execution of thousands

of instructions, drum rotational delay and is usually so expensive

that if it can be avoided, almost any other cost can be tolerated.

Optimizing operating system performance is usually the main concern

of computer seientists who deal with paged .emories. However,

redesigning the algorithm used by a problem program can often result

in a very significant reduction in paging, and hence in program

execution time. The redesigned algorithm frequently does not

satisfy the more conventional efficiency criteria.

A sorting algorithm, Hash Coding and other search algorithms

are considered. Analytic and simulation studies are presented,

and aome modifications are proposed to reduce the number of page

faults produced by data set references. Analysis is in terms of

three of the most commonly used page replaceme~t algorithms

i.e. least recently used, first in first out. and random selection.

The modifications are for the most part relatively minor

and in some cases have appeared elsewhere in the context of searching

on external storage media. The important aspects are the dramatic

performance improvements which are possible. and the fact that

classical internal algorithms are inappropriate for use in a paged

virtual memory system.
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Chapter 1.

INTRODUCTION

1.1 The Principles of a Paged Memory.

The cost per bit of computer memories almost always varies

inversly with access time. In consequence the high speed storage,

or main memory, f~o~ which the central processing unit (C.P.U.)

executes programs is usually small. Slower, secondary storage

devices often ha"e great capacity but are far too slow to allow

them to be directly referenced by the C.P.U.

Thus it is often found that programs require more main memory space

than is available on a particular computer. In this situation it is

usually left to the programmer to divide his program into smaller

parts so that each separate part will fit into memory. He then has

to arrange for one part at a time to be loaded into storage for

execution, the remainder of the program residing on some form of

backing storage. The programmer is supposed to understand his program

and the operating system sufficiently well to be able to do this

efficiently.

The main function of a paged virtual memory computer is to

automate this overlaying process completely, using special hardware

and software techniques. The adjective "virtual" is used because an

address space is usually provided for the user which bears no obvious

relation to real memory size or organisation. The virtual memory is

usually much larger than the physical main memory .rva f lcbLe but the
programmer is urged to ignore this and treat v Irrua I mernory as if it
were real.
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The terms real memory and real storage are s}~onymous with main

memory.

At any particular time the contents of those areas of virtual

storage actually required for execution to proceed are located in

real memory. The remainder, and in some systems (e.g. I.B.M.'s

as/VS) copies of those areas located in main storage as they were

prior to loading, reside on backing storage.

A mapping mechanism is employed to locate a given item from its

virtual address. In this way several different pieces of information

can be located in the same real memory cell at different times and the

mapping is updated to indicate the real memory con~ents at any given

time.

The mapping, or address translation as it is usually referred to,

takes the form of a table of correspondences between virtual and real

addresses. Ideally a table entry for each virtual memory word should

exist so that at any instant, only the individual words involved in a

program's execution need be in main memory but clearly this would make

the table undesirably large. It would also make the operation of the

secondary storage and its associated channel very inefficient because

a complete I/O operation would be needed to place one word of information

in main memory.

The compromise which occurs in practice is that virtual memory is

divided into blocks of equal size and only the base address of each

block is contained in the table. In this way the size of the table

is drastically reduced and the transfers to and from backing storage

involve blocks of information rather than single words. The blocks

are referred to as pages and a region of main memory (:qr. in size to
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a page and with starting address equal to a aultip1e of the page size

is known as a page frame. There is no clear cut optimum page size

and a size which is suitable for one program may not be for another.

Some systems (e.g. I.B.M.'s System 370) allow two different page

sizes in an attempt to alleviate this problem. It is interesting

to note that this use of the term page appears as far back as 1949

in the context of the machine built at Manchester University at that

time (Kilburn et aI, 1953).

Reference to an address not contained within a page in main

memory is termed a page fault and clearly, the program which made the

reference will be unable to continue execution until the required

address is available in real storage. Thus servicing a page fault

involves transferring a page into real storage and displacing a page

from real storage if it is completely full, together with whatever

housekeeping operations are necessary. The technique of waiting

until a page is requested before moving it into main memory (i.e. no

1ookahead) is known as demand paging. For a very lucid and

detailed description of virtual memory techniques see Denning, 1970.

1.2 Page Replacement Algorithms.

The choice of which page to displace from real storage when a

page fault occurs is made by a page replacement algorithm.

algorithms exist and four common ones are considered here.

They are:-

Several

(a) Least Recently Used (L.R.U.). A linked list is

maintained with one entry for each page in real

storage.
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At any given time the list entries are in the

order of the last use of the real storage pages,

the most recently used page is at the head and the

least recently used is at the tail. A page is

placed at the head of the list when it is in real

storage and referenced, and when it enters real

storage, but in the latter case the page at the

bottom of the list is selected for displacement.

(b) First In First Out (F.I.F.O.). A list is

maintained of the order in which pages entered

real storage. When a new page comes in, it is

placed at the head of the list and the page at the

bottom of the list is displaced.

(c) Random selection (RAND). When a new page enters

storage, a page already in real storage is selected

at random and displaced.

It is possible that one of the pages in real storage is no longer

needed or is not required for a 'considerable' time. Clearly such a

page is a good candidate for displacement. However if a page is

selected to be removed from real storage and is then immediately

required again, a second page fault will result. With hindsight i.e.

observation of execution after the page fault was serviced, it is

possible to determine which page should have been displaced. This

leads to the notion of the optimum replacement algorithm, defined by

Be1adys 1966:-
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(d) Minimum Algorithm (MIN). This algorithm is for

theoretical use only and is intended to operate on

address traces produced by program execution. Its

major use is to determine how close practical

algorithms come to the optimal value. Its basic

principle is to defer the decision about which

page to displace when a page fault occurs, until there

is sufficient information available about the future

use of pages to make an opti~ choice. For a

detailed description see Belady, 1966 but an

example should clarify the principle.

Suppose a virtual address space consists of five

pages, labelled 1, 2, .•, 5 for identification, and

there is room for three pages in real storage.

Consider the following page reference string:-

2, 1,2,3,4, 2, 1, 4,5, .

The reference to page 4 viII cause a page fault.

L.R.U. will select page 1 to displace and F.I.F.O.

will select page 2. Both of these are referenced

immediately after page 4 and so the optimum choice

for displacement is page 3, which is the one that MIN

would select.

The working set model of program behaviour (Denning, 1968)

provides a very elegant solution to the problem of storage allocation

in a paged multiprogramming environment. It can also be used to make

a decision about which page to replace when a page fault occurs.
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Denning points out that it is extremely closely related to L.R.U.

page replacement (Denning, 1972 (a); Denning & Schwartz 1972).

In fact if the working set model is used to set the number of

real page frames that a program may use to say k (t) (k is a function

of time), then working set replacement is just L.R.U. replacement within

these k page frames.

separately here.

Working set replacement will not be considered

1.3 The Costs of Paging.

Unfortunately, servicing a page fault is extremely expensive in

terms of system resources. Some of the costs are:-

(i) the execution of several thousand instructions

(typically 5000 on a 360/67) by the program which controls the

secondary storage device and in handling the interrupt which results

from the page fault.

(ii) waiting for the secondary storage device to find the

required page (e.g. rotation of a drum). This increases the program's

elapsed time.

(iii) the program's pages which are already in real storage are

locked there while the page fault is serviced, effectively reducing

the amount of real storage available for other programs (see Randell &
Kuehner, 1968 (a».

(iv) the channel connecting the secondary storage device to

main storage has to execute its program (see Denning. 1968).

(v) on I.B.M.'s System 360 Model 67 and System 370 there is

usually a single Bus Control Unit handling main storage requests.
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I/O channels have priority over the C.P.U. for its use and the very

high data transfer rates which are possible with Selector and Block

Multiplexor channels can cause serious interference to C.P.U. operation

(see Gibson, 1966; Lauer, 1967; Nielson, 1967). This effect is

still present, though reduced, when a high speed buffer memory (cache)

is used (see for example I.B.M. publication GA22-70l2-0).

The number of page faults being serviced can become excessive

and then their high cost shows up clearly. Usually this happens

when there is too high a level of multiprogramming and an over-

committment of main memory. The result is a total breakdown in system

performance and C.P.U. utilization drops considerably. This condition

is known as thrashing and designers of operating systems have devoted

considerable effort to its avoidance. However, even in a system which

is not thrashing, the extreme cost of page faults as detailed above

means that performance improvements will result if they can be avoided.

It is natural to ask why some kind of special hardware is not

provided to reduce these costs. The Scientific Computer Corporation

realize the need and include a microprogrammed miniprocessor within

the main C.P.U. of the S.C.C. 6700 (Watson, 1970). This miniprocessor

is dedicated to handling some of the housekeeping associated with a

page fault in parallel with normal C.P.U. operation. In addition,

the S.C.C. 6700 uses the "Berkeley Memory System" (Watson, 1970).

This employs a main memory access mechanism in which the priority of

pending storage requests can vary with time in order to enforce limited

co-operation between devices using main storage.

interference is reduced.

In this way
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Even if ideas such as these are used, paging still has a positive

cost and page faults should be avoided if possible. Unfortunately,

most manufacturers of presently available paged memory systems do not

have the foresight of S.C.C. and provide no hardware assistance.

1.4 The Problem Program Approach.

The MIN page replacement algorithm is often used as a standard

by which other replacement algorithms are judged. However it must be

remembered that MIN only achieves the minimwa number of page faults

for a given page reference string. If a programmer is prepared to

redesign his algorithm the performance achieved by MIN and the original

algorithm can often be beaten (see Weinberg, 1972). There are only a

few instances where this has been done, but the improvements are

dramatic.

For example, a comprehensive study of matrix storage and matrix

operations in a paged memory is presented by MCKellar & Coffman, 1969.

They show that the normal technique of row major (and equivalently

column major) matrix storage is wholly inappropriate for a paged memory.

Most matrix operations involve both row and column traversals and

clearly a column traversal with row major storage will produce a page

fault for every few elements referenced. It is shown that a much more

efficient storage technique is to divide the matrix into suitable

sized submatrices and store one submatrix per page. Algorithms are

presented for the various matrix operations which, assuming this

storage method, achieve reductions of three orders of magnitude in the

paging produced by data references, compared with what would be

produced by a naive approach using row or column inajor storage.
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Several different approaches to the problem of sorting a large

file located in a paged memory are discussed by Brawn, Gustavson and

Mankin, 1970. Efficient Lisp implementations in a paged environment

are considered by Bobrow & Murphy, 1967 and Cohen, 1967.

The redesigning process must take account of the fact that

if extra computation is necessary to avoid a single page fault it

may still be worthwhile. Clearly the amount of computation which it

is worth doing will depend on the particular machine involved and will

be less for the S.C.C. 6700 than say I.B.M.'s System 370. This implies

the need to question conventional standards of efficiency. For

example, sort algorithms are frequently compared in terms of the average

number of comparisons required to sort a given number of records. This

is a reasonable approach when the algorithm is to be executed from a

conventional memory. In this case a compar~ion is a relatively lengthy

operation and one would obviously want their number minimized.

However a comparision is trivial when one considers the amount of work

involved in a single page transfer. Indeed a thousand comparisions

may be considered trivial.

The notion of a program's working set (Denning, 1968) is well

established. The working set of a program involved in extensive data

manipulation may be considered to consist of two parts, namely the

working set of instructions and the working set of data.

The first of these is often relatively unimportant and

comparatively small. For example, most sort algorithms ca.: usually be

programmed in just a few hundred machine level instructions which

occupy less than a page. This will be the total size of the area used

to contain instructions during execution of the entire sort operation.
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Far more important and frequently much larger is the working set

of data (W.S.D.). It can be loosely defined as that set of data

pages which must be located in real storage for a program to execute

for a "reasonable" length of time without causing a page fault.

In fact a formal definition is not necessary because with most

algorithms, the size and constituent pages of the working set of data

are obvious.

this thesis.

Given this concept, it is clear that the results presented by

Several examples of this idea are included later in

other authors, which are mentioned above, are in fact changes in the

design of algorithms aimed at reducing the size of the W.S.D. so that

efficient operation will be maintained with less real storage available.

In addition, where possible it is important to use all of the data

contained within the W.S.D. while it is located in real storage so

that it need not re-enter real storage at a Lat er time.

1.5 The Objectives Of This Dissertation

The primary aims of this thesis are to examine various commonly

encountered algorithms which might be used on large data sets in a

virtual memory, propose changes to improve performance and to take

advantage, where possible, of the facilities provided by a paged

memory. For the most part the suggested modifications are relatively

minor but the improvement produced is usually substantial. An
attempt is made to analyse these effects in terms of each of the

replacement algorithms defined above.

The process of finding the ith largest element in an unsorted

data set i.e. element selection, is examined in Chapter 2.



- 11 -

This is really just a rather specialized search operation. One of

the few algorithms available is FIND (Hoare, 1961) and it will be shown

that in many ways that algorithm does not perform as well in a paged

memory as an alternative which is defined in Chapter 2.

Another search algorithm, the extremely important and widely used

Scatter Storage technique, is discussed in Chapter 3. Classical

implementations and analyses are shown to be inappropriate.

More general searching methods are considered in Chapter 4 and

a searching scheme is proposed which is optimum in many ways when used

in a paged memory.

In Chapter 5 a sorting algorithm is proposed which makes use of

techniques proposed by other authors (Brawn et aI, 1970) for reducing

the incidence of page faults. More importantly it takes advantage of

the large virtual address space in a limited way to considerably

increase sorting speed with only a very small increase in paging activity.

1.6 Paging Analysis Model

The model which will be assumed in the sections on paging analysis

is that a program in execution has a certain number of real page

frames available, and that the page replacement algorithm operates to keep

this quantity fixed. This is somewhat reminiscent of the early Atlas

scheme (Kilburn et aI, 1962). The discrepency between this model and

a real life situation varies considerably with different schedulers and

operating systems. Some schedulers tend to fix the amount of real

memory that a program can use depending on the amount of system activity.

The problem of a high number of page demands at the beginning of a time

slice is frequently circumvented by loading the set of pages that the
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program was using when previously halted, before allowing it to begin

execution once again (e.g. TSS, BCCI ). If these techniques are used,

the model provides a reasonable approximation and has been used by

several authors (Belady 1966, Brawn & Gustavson 1968, Coffman & Varian

1968, Fine et a1 1966, Joseph 1970, MCKellar 0 Coffman 1969).

A recently announced operating system known as VM/370 has been

produced by I.B.M. for running on their System 370 range of computers.

It is a modified form of the CP67/CMS system developed at the I.B.M.

Laboratoric3 in Cambridge, Mass. for the 360/67, and provides terminal

users with Virtual Machines (see I.B.M. GC20-180l-0,l972). It

incorporates a VM/370 operator command "SET RESERVED xxx n" which

allows a fixed number (n) of real storage page frames to be used

exclusively by a particular virtual machine (xxx) and that virtual

machine is then limited to n page frames even if more are available.

Clearly the behaviour of programs being executed by such a virtual

machine can be studied almost exactly by the use of the proposed model.

Extensive use is made of the ceiling and floor functions. For

non-integral x the notations and definitions are as follows:-

Ceiling rxl smallest integer greater than x.

Floor LxJ largest integer less than x.

and clearly:- rxl = LxJ+ l.

For integral x:- rxl = lxJ x.

The Harmonic numbers are also used considerably. The nth

Harmonic number where n >0, is denoted Hn and is defined:-
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ELEMENT SELECTION

thFinding the i largest or smallest element of a data set of n

items is a common problem. For example the cases i = 1 (extremes),

i - n/2 (median) and certain percentiles. If the data set is ordered

the problem is trivial, but if it is unordered a considerable amount

of data inspection is necessary. In genera~ the whole data set will

have to be scanned at least once. and if it o~cupies M pages this gives

a lower bound of M page faults for finding an element of specific rank.

2.1 The FIND Algorithm.

2.1.1 Definition Of The Basic Algorithm_

A frequently used algorithm on non-pageQ machines if FIND (Hoare,

1961). To find the ith largest element two pointers are established,

one at each end of the data set, and a record is chosen at random from

the data set. One of the pointers is moved towards the centre until

a record is found that is less than the selected record. The other

pointer is then moved until a record is found which is greater than the

selected record. The two records to which the pointers refer are then

swapped. This process is repeated until the pointers meet. Thus the

data set is partitioned into two pieces since all records on one side

of the pointers are less than the selected record, and all those on the

other side are greater. This partitioning process is then carried out

again on that section of the data containing the desired ith largest
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element, and repeated until the desired element is found.

2.1.2 A Modification To The Basic Algorithm.

If the range of the data and its distribution are known, an

alternative approach which does not appear in the original definition

of FIND, is to use a constant for comparison during each partitioning

process or step. Clearly if this is done, the constant for each step

should be selected so as to minimize the expected number of records

involved in the subsequent step.

2.1.3 The Expected Number Of Records Involved In The Second Step.
thSuppose the i largest record is required from a data set which

is a sample of size n from a distribution with density function f,

distribution function F, and range [a,b]. Define E
j

to be the
th
j step, then El = n = theexpected number of records involved in the

total number of records in the file.

Consider the first partitioning process and suppose a quantity x is

used to make comparisons. x may be a constant or set equal to a record

in the file, depending on which version of t~e algorithm is in use.

The expected number of records involved in the second partitioning

process depends on the values of x, i, and the joint pointer location

at the end of the first step. If at the end of the first step the
i t f h d i h th I . (1 / / ) thpo n ers re er to t e recor n t e m ocat1on ~ m ~ n en:-

number of records which
will be used in second step

n - m if m < i

m - I if m > i
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(m - 1) Im>i (m) + (n - m) Im<i (m)

where I is the indicator function i.e. I i{m) = 1 if m<i and 0m<
otherwise. Clearly if ID = i the algorithm can terminate.

2.1.3.1 The Basic Algorithm.

The number of records less than x is binomially distrbuted and

80:-

- E{number of records which will be used in I i, x)
second step.

n
- l:{(m-l)l >i(m) + (n-m)l <i(m)}{F(X)}m{l-F(X)}n-m ne

lIl-l m m m

For the basic algorithm the distribution of x is known since x is

selected at random from the file. and so the dependence of E2 on x can

be removed, giving:-

E2 = E(number of records which will be used in I i)
second step.

= ~~(m-1)'m>i(m) + (n-m)'m<i(m)}(F(x)}m(l-F(x)}n-m nCmf(x) dx
Q.

Let y = F(x) then dy/dx f(x) and the expression for E2 can be

simplified: -

Now

I
J i.{(m-l)ym(l_y)n-m nem} +

11,"1+1

o

f: {(m-1)nC / ym(l_y)n-mdy) +
IIlLi ..t m J

o

o m n-m n~{(n-m)y (l-y) e }dx
1'II~1 m

1

i.::1{ ( ) ne {ym(l_y)n-m2... n-m
m.! m J

o

dy}=

B(m,n) rem) r (n)
r(mof-n)

(m-l)! (n-l)!
(m+n-l) !

where rex) is the Gamma function.
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t (m-1) /(n+L)
i-l

E2 = + L (n-m) /(n+1)
"".1...1 tn:1

- 1 {n(n-3) + 2i(n+1-i)}
2(n+1)

The minimum value of E2 is n(n-1)/2(n+l) ~ n/2.

The maximum value of E2 occurs at the median and is:-

n~n-3) + (n+l)
2(n+1) 4

Q: 3n/4

2.1.3.2 The Modified Algorithm.

For the modified form of FIND the expression for E2 which is

given at the beginning of section 2.1.3.1 still app1ies:-

= t{(m-I) I i(m) + (n-ra)I i(m)}{ F (x)}m{l_F (x)}n-m ne
111=1 m> m< m

If a, b, f and F are known i.e. details of the distribution

from which the sample comes, then x can be chosen so as to minimize

E2• As noted previously this is the way in which x should be

selected for each step. No closed form expression for that value

of x which minimizes E2 in the general case, or the corresponding

value of E2 has been found. However in the special case where the

data is uniformly distributed on [0, 1], the minimum value of E2

for each i has been evaluated numerically for a file size of one

hundred records i.e. n = 100. These values are shown in graph 2.1.
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2.1.4 The Expected Number Of Records Involved In The Third

and Subsequent Steps.

During the second step if i < m the algorithm is in fact

required to find the ith largest record out of m, and if i > m the
thi-m largest out of n - m. This means that several additional

random variables are required in consideration of the number of

records involved in the third and subsequent steps.

Define:-

• rank of the desired record during jth

step.

number of records in the set known to

contain the desired record during jth

step.

- quantity used for comparison during

jth step.

- joint pointer location at the end of

jth step.

There are two relationships of interest:-

ij+l = + (ij-mj)I~ (m.)
~.;>bJ_j J

... + (n.-mj)I. (mj)J 1j>TIl_j

The quantities Ej are required because they are directly

related to the expected value of the amount of paging which will
occur.



- 19 -

Ideally, analytic solutions to these recurrence relations should be

found, giving the Ej explicit~ly, but this is not practical.

noted in section 2.1.3.1, it was not possible even to obtain a

As

general expression for E2 when using the modified algorithm, and

E2 is conditional on fewer random variables than the other Ej•

In the paging analysis which follows some simplifying

approximations will be made:-,

(a) At the beginning of the jth step, nj records remain in

the set being considered. nj wi11 be replaced by E(nj).

(b) For the basic algorithm, the relationship between

E2 and n (recall n = El) will be assumed to hold for

all Ej giving:-

(c) For the modified algorithm E2 has been found numerically

for one case (figure 2.1 shows E2 as a function of i).

Examination of the shape of the curve indicates that a

parabola might be used as an approximation. Thus Ej will

be approximated by:-

For the case j = 2, this approximation to E2 is also shown

in figure 2.1.

Even these approximate recurrence relations for the Ej are

non-linear making solution difficult. However they do allow

approximate bounds to be placed on the values vf E which in turn
j

allow bounds to be placed on the amount of paging to be expected.
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This is adequate for comparison purposes with a second algorithm

which is defined in section 2.2.

2.1.5 Paging Analysis.

Since the number of records per page is a constant, the expected

number of pages of the file which have to be examined during each step

1s directly related to the expected number of records which have to

be examined in that step i.e. Ej. If it is assumed that the two pages

containing the records to which the pointers refer remain in real

storage as the pointers are updated, it is possible to estimate the

number of page faults needed to locate one record ,

Page faults occur during the partitioning process because one of

the pointers, say pointer A, is being updated and crosses a page

boundary. Clearly it is preferable to replace the page which pointer

A has just left rather than the page being referenced by the other

pointer, pointer B. This is an example of cwo important concepts.

Firstly, the working set of data (W.S.D.) in this case consists of

two pages since clearly execution can proceed relatively efficiently

with just two data pages. Secondly, as a po~nter crosses a page

boundary a "page change" is required. A page change is the deletion

from the W.S.D. of one page which is no longe r required and the

addition of another. Thus the size of the working set of data,

denoted Iw.s.D.I, remains fixed but one of the constituent pages

changes. If the entire W.S.D. is located in real storage prior to

a page change, several page faults may be necessary before the new

W.S.D. is located wholly in real storage. The exact number depends

on the page replacement algorithm but the MIN algorithm, by definition

achieves the ideal situation of one page chaltge causing one page fault.
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2.1.5.1 L.R.U. Page Replacement.

Consider the first partitioning process and assume that creal

page frames are available with c > Iw.s.D. I. Initially setting up

the pointers will cause two pages to be loaded into real storage and

thereafter rEl/bl - 2 page changes will be necessary before the

pointers meet, where b is the number of records per page. c - 2 of

these page changes will occur before real storage is filled, and for

the remainder, it is reasonable to assume that pages from the W.S.D.

will be the most recently referenced and will not be selected for

displacement. Thus each page change will only induce one page fault

and this gives a total of rEI/bl page faults for the first step.

Each of the second and subsequent steps will begin with one of

their required pages already in real storage. Thus the expected

number of page changes required by the jth step (j > 1) will be

rEj/bl - 1 which will induce rEj/bl - I page faults. If a total of

t steps are needed before the size of the region in which the

desired record is known to lie drops to less than one page, then the

expected value of the total number of page faults induced will be:-

If c = Iw.s.D. I (recall Iw.s.D.1 = 2) then as a pointer is

updated and crosses a page boundary, the page which it leaves is the

page no longer required but is also most recently referenced. Thus

L.R.U. will always select incorrectly and each page change will

induce two page faults.
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It follows that the total number of page faults which will occur in

this case will be:-

2 Initially loading real storage.

First step.

Other steps.

The values of the Ej (1 ~ j ~ t) depend on which version of the

algorithm is in use. In both cases, even with simplifying

approximations, it was shown that Ej is the subject of a non-linear

recurrence relation which also involves ij. However approximate

bounds on the values of the Ej can be found and these are adequate.

In the case of the basic algorithm:-

E 1/2j-

3E. 1/4J-

j-l(3/4) El

and for the modified algorithm, assuming the approximating function

for Ej is reasonable:-

o for j > 1. n = canst.
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~ E 12
j-l

~ E 12j-l
1

These can be used to give approximate bounds on the number of

page faults involved in each case.

For the basic algorithm:-

rEl/bl + rEl/2bl
t-lMin. page faults ~ + ... + rEl/2 b1

~ r2El/b1

Max. page faults rE/bl + r3El/4bl r t-l 1~ + ... + (3/4) El/b
~ r4E/bl

For the modified algorithm:-

Min. page faults =

Max. page faults rE/b 1 + rE/2b 1
r2El/bl

r t-l 1+ ... + El/2 b

:=

2.1.5.2 F.I.F.O. Page Replacement.

In general F.I.F.O. replacement does not lend itself to analytic

study. The primary reason is that the page which is displaced when a

page fault occurs is not determined by the events immediately prior to

that page fault but by the events occurring when the page in question
entered storage.
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If the changing of the contents of real memory as page faults occur

is regarded as a Markov process then the new state following a page

fault is determined by the set of page references which occurred a

considerable period of time before, as well as the page which has

just been referenced. This makes the transition matrix extremely

complex in all but the simplest case.

The FIND algorithm is sufficiently simple that F.r.F.O.

replacement can be analysed but fairly major assumptions have to

be made (see below). Several algorithms are discussed in this

dissertation for which even approximate analysis with F.I.F.O.

replacement has not been possible.

The number of page changes which occur when using the FIND

algorithm with F.I.F.O. replacement will be the same as with L.R.U.

The assumptions which have to be made are:-

(i) In the case c > Iw.s.D.1 pages of the W.S.D. are not

the oldest in real storage.

(ii) In the case c = Iw.s.D.I, as pointer A is being updated

and crosses a page boundary, the page which pointer A leaves has been

in real storage longer than the page referenced by pointer B. This

is reasonable since there has been sufficient time for pointer A to

traverse a complete page.

If these assumptions are made then for all values of c, F.I.F.O.

always correctly selects the unwanted page and only one page fault

will occur for each page change. This is the same performance which

was found with L.R.U. replacement when c > Iw.s.D.1 and the results

obtained in that case apply here.
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2.1.5.3 Random Page Replacement.

The number of page changes required with Random page replacement

is the same as with the other replacement aLgorithms. When a page

change becomes necessary only one of the pages in real storage is still

in use. Thus the probability of selecting an unwanted page for

displacement is (c-l)/c and the probability of selecting the wanted

page is lIe. If the wanted page is displaced a second page fault

will occur when it is next referenced. Clearly these events can be

repeated and a large number of page faults could be induced before both

pages of the W.S.D. are located in real storage. The number of page

faults has a geometric distribution with parameter (c-l)/c and expected

value c/(c-l).

The expected value of the total number of page faults is

therefore:-

c IDitially loading storage.

+

{rEl/bl - c}.c/c-l

+

{rE/bl - lLc/c-l

Completing first step.

Second and subsequent steps.

-
As with L.R.U. and F.I.F.O., approximate bounds can be found for

this expression by using the approximate bounds for E
j
•
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2.2 The LOCATE Algorithm.

2.2.1 Definition.

Although FIND is reasonably efficient and has many excellent

properties, it was not designed to operate within a paged memory.

An alternative algorithm to be known as LOCATE is suggested here and

it will be shown that it is preferable to FIND in many respects.

The basic version of LOCATE is defined as fo1lows:-

(i) the range of the keys is divided into a set of intervals.

(ii) a set of counters is established, one for each interval,

and initialized to zero.

(iii) the whole data set Is scanned linearly and for each

record the counter corresponding to the interval In which

the key lies is incremented by one.

(iv) the interval which contains the desired record is determined

from the values of the counters.

(v) a second scan of the file is made and each record lying in

the same interval as the desired record Is stored In a

work area of the program.

(vi) the required record is selected from the records in the

work area.

It Is easily seen that at most 2M page faults are necessary, and the

number produced is independent of the replaceaent policy since the size

of the working set of data is only one.

Notice that LOCATE requires the range of the keys to be known. This

is not a serious disadvantage since in most cases experimental data comes

from sources where the bounds of the sample values are known.
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2.2.2 Analysis Of The Second Scan.

In practice, the second scan through the data set can be terminated

as Soon as all the records in the interval of interest have been found.

The number of records in the required interva1 and their distribution

through the file will determine the number of page faults induced during

the second scan.

Suppose there are n records occupying M pages in the file and q

counters are to be used. Suppose the counter corresponding to the

interval containing the desired record has a value of k at the beginning

of the second scan. k is a random variable vhose expected value depends

on the distribution of the keys in question. If they are uniformly

distributed then k has expected value n/q. In general, if a random

variable X has distribution function F then the transformed variable F(X)

has a uniform distribution. If F is known, this property can be used to

transform the data and ensure equal expected values for the counters.

In the case where the distribution function is not known, the uniform

distribution can be assumed and the counters then provide an estimate of

the density function of the distribution from which the data comes.

Assume that the data (or the transformed data) is uniformly distributed

and define S as the length of a string of pages which do not contain any

of the records which contribute to the counter value of interest, but which

would be the last pages moved into main stora~ if the second scan were to

examine the whole data set, then:-

E(number of page faults I k)
during second scan

M - E(S)
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Now preS = 0) = pr(last page examined contains a record)

- 1 (1 - l/M)k

preS ...1) pr(penultimate page examined contains a
record but last does not)

Similarly preS = j) = (1 - I/M)k(l 11 CM - 1» k ••• (1 - (1 - 11 (M _ j» k)

- (1 - j/M)k (1 - (j + l)/M)k

E(slk) .. 1'1-1I:j{(l - j/M)k
j=o

..

. . E(numher of page faults during second scan I k)

- k "t1J.kM - (11M) 2_
j:.O

This function approaches M very rapidly as k increases but it is not

impractical to keep k small by using a large number of counters. For

example, a file of 5000 records occupying 20 pages yields only 5 as the

expected value of k if 1000 counters are used. As only one byte need be

Used for each counter this requires a data area of only a quarter of one

Page on a machine like I.B.M.'s 360/67 which has a page size of 4096 bytes.

The expected number of page faults for the second scan assuming k is 5 is

then 17.
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2.2.3 A Simple Modification.

A modification can be incorporated which makes the second scan

unnecessary in certain cases. Suppose those records in the interval

where the desired record is expected to lie are stored in a program work

area during the first pass. If indeed it is found at the end of the first

pass that the required record is located in the work area then the second

scan is unnecessary. This modification is only worthwhile if the

probability of success is reasonably high.

In general, the distribution of the ith order statistic, xi' for a sample

of size n from a distribution F is given by:-

~l ~idG
i

{F(xi)} {I - F(xt)} dF(xt)

B(i,n-i+l)

where B(m,n) is the Beta function. In the case of a sample from the

uniform distribution this becomes the Beta distribution.

The probability that the ith largest record is located in the jth

interval is given by:-

P~

j/~

!xi-Iel_ x)n-i
B(i,n-i+l)

(j-l)/~

dx

where q is the number of intervals used, and assuming the data is uniformly

distributed on [O,IJ. thThe i largest record is expected to lie in

interval number riq/nl, and so the probability that the desired record is

found is Pij evaluated with j = riq/nl.

This integral is the difference between two incomplete Beta functions.

Extensive tables of the incomplete Beta function have been published but

only for parameter values which are considerably less than those involved
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here. Various methods of evaluation were considered but the use of a

Normal approximation was selected as the most suitable. With the

high values of the parameters involved the distribution of most of the

order statistics can be assumed to be almost Normal. the exceptions

being the xi with extreme values of i, e.g. xl. This approximation

was made for various parameter values and the approximate value of the

integral found to vary considerably. For example. searching for the
th1200 of 5000 records occupying 20 pages and using 1000 counters

(q - 1000) the corresponding limits of the standard Normal integral are

0.00795 and -0.15766 giving a probability of 0.066. However, searching
thfor the 400 record in the same file and stil1 using 1000 counters, the

corresponding limits are 0.00417 and -0.25655 giving a probability of

0.103.

This modification seems worthwhile since it costs very little but

the probability of success depends very much on the individual case.

2.2.4 A Major Modification.

If it is assumed that more than one real page frame is available for

use by the LOCATE algorithm, the previously described modification can be

extended. Instead of merely keeping copies of the small number of records

lYing in the interval which is expected to contain the desired record, copies

of those records lying over a much wider range can be kept in the extra page.

This could be done anyway since the virtual address space is not a

limitation. The important aspect is that if two real page frames are

available, this extra page plus at least one page of the file can reside
in storage concurrently. In effect. the working set of data increases by
One.
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If the required record is found to lie in this extra page, the

second scan over the data will not be necessary. In many cases, one

page represents a large proportion of the file and hopefully the

probability that the second scan can be omitted, or rather restricted

to this one page, will be high.

Once again the Normal approximation provides a convenient way to

determine the effect of the process. More than 99% of the probability

of the Normal distribution lies within three standard deviations of the

mean. Thus in the case of the order statistics being considered, it

can be assumed that:-

pr(ith largest record lies in
the interval ~ ± 30 )

0.99

where ~ - i/(n+l) and 02
c i(n+l-i)/(n+l)2(n+2) are the mean and

variance respectively of the ith order statistic, the distribution of

which was given above.

Using the previous example of a file of 5000 records and searching

for the l200th record this becomes:-

pr(required record lies in the
interval 0.24 ± 0.018 )

0.99

Thus if all the records from the sample which lie in this range can

be copied into the extra data page the second scan can almost certainly

be limited to this extra page. In the example given the expected number

of records in this range is 180 which will fit into a single page since

each page will hold 250 records.
It is important to realize that this modification need only be used

during the first execution of LOCATE or when establishing the counters
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cannot be achieved as a by-product of another process. Once the counters

have been set, a single sequential scan through the data set is all that

Is required to locate any record.

2.2.5 Paging Analysis.

The basic algorithm will generate M page faults during the first scan,

and a maxi~um of M-I during the second since one page of the file will be

in real storage as the second scan begins.

the replacement policy.

The simple modification described in section 2.2.3 has the effect of

This f1gure is independent of

sometimes obviating the need for the second pass and hence the maximum

figure of 2M - I page faults will be necessary less often.

Paging analysis of the major modification is less straight forward

because Iw.s.n.1 is two. Ideally, the extra data page should remain in

real storage throughout processing, while the file pages enter in sequence

with each one displacing one of its predecessors. Most replacement

algorithms will not operate in this fashion, and most operating systems

will not allow a user to "lock" pages in real storage selectively Le.

remove certain pages from the set being considered for paging out.

An exception is I.B.M.'s VM/370 which permits the system operator to

lock user pages in real storage. For the major modification each

replacement policy will be considered separately.

2.2.5.1 The Major Modification Operatin~ With L.R.U. Replacement.

In the case c > Iw.s.n.l. both pages in the W.S.D. will have been

referenced more recently than the other c - 2 pages in real storage, and

so they will not be. displaced when a page change is necessary.
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The total number of page faults induced will be M to load the file

pages plus one to load the extra data page.

When c = Iw.s.n.1 a page change will cause either the file page

or the extra data page to be displaced, the former being the best

choice since it is no longer needed. The final record examined will

determine whether the file page is least recently used or not, but to

guarantee that it always is, it is only necessary to make a 'dummy'

reference to the extra data page. In this way a single page fault per

page change can be achieved even in the case c = Iw.s.n.1 = 2.

2.2.5.2 The Major Modification Operating With F.I.F.O. Replacement.

When execution begins the first page to enter storage will be a page

of the file and it is reasonable to assume that the second will be the

extra data page. This will be followed by other file pages until all

the available real storage is full. After this an additional M - (c-l)

page changes will be necessary during the first scan. The second, the

c + 2nd, the 2c + 2nd, •.. of these page changes will cause two page

faults since the extra data page will be displaced. Every other page

change will only induce one page fault since each will cause a file page

which is no longer in use to be displaced. Thus the total will be:-

c loading real storage.
+

M - (c-l)
+

1+ lM - (c-l) J
c

one page fault for every page change.

one additional page fault each time

the extra data page is displaced.
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2.2.5.3 The Major Modification Operating With Random Replacement.

Once the available real storage has been loaded a further M - Cc-I)

page changes are required as noted in the previous section. When a

page change is necessary only one of the c pages in real storage is

still required i.e. the extra data page. Thus the probability that one

page fault will be sufficient is Cc-I)/c and in fact the number of page

faults necessary to complete a page change has a geometric distribution

wi~h parameter (c-l)/c and expected value c/(c-l). Thus the total

number of page faults necessary has expected value:-

c + CM - (c-l» __c__
c-l

= Mc/(c-I)

2.3 The Advantages Of LOCATE.

Apart from the advantages already noted. LOCATE is to be preferred

for several other reasons.

If the order of the data items is important, for example when run

tests are to be applied, FIND is totally inappropriate because the

partitioning process necessitates data movement. LOCATE however,

operates efficiently with no changes to the data set.

The first scan of the LOCATE algorithm is only necessary for the

first record which has to be found. Once the counters have been set,

they can be used any number of times and for the second and subsequent
searches at most M page faults are necessary.
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The FIND algorithm becomes more efficient as execution is repeated

because the file is effectively being sorted (i.e.Quicksort).

However to avoid repeating the partitioning processes, pointers will

have to be maintained indicating the limits oL the partitions as they

are established. This set of pointers will have to be updated with

each search until the file is sorted. This is a great deal less

convenient than the counters used by LOCATE. In addition, the

evaluation of the counters can be combined very easily with some other

process such as determination of the sample mean or even the initial

input phase.

The working set of data for the FIND algorithm is two pages, which

is reasonable, but the paging characteristics depend on the replacement

policy. The basic form of LOCATE however, has a working set of data

of just one page, and even when available main storage is severely

limited, it is not affected by the page replacement policy.



Chapter 3.

SCATTER STORAGE TABLES

3.1 Introduction

Conventional methods of assessing the efficiency of hashing or

scatter storage methods usually rely on comparisons of the average

number of probes required. A probe may be defined as the examination

of a single record in the file. More than one probe may be

necessary in order to locate a specific record because of the

possibility of clashes. The average number of probes is kept low by

making the hash table for a given number of records, as large as

practicable. The more sparsely it is occupied, the lower the average

number of probes.

A paged machine which provides a large virtual address space

might be thought very suitable because any previous limitation on table

size is removed. A closer examination reveals that a large hash table

will necessitate considerable paging activity if for each search,

every record has the same probability of being accessed. The reason

for this is that only part of the table will be located in main

memory at any time and if a random pattern of requests is produced,

there is a high probability that the data needed will be located on

backing storage.

The high cost of paging as detailed in cbapter I implies that the

comparison of hashing techniques used on a paged machine can no longer

rely on the number of probes required. Doubling the avterage number

of probes and reducing the number of page fau'ts by 5% may well decrease
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a program's execution time.

Only scatter storage tables which are basically static once

created are considered here. Tables which vary in size during

program execution are as much of a problem in a paged memory as in

a normal memory, and will require some form of periodic re-organisation.

3.2 Random Request Pattern

3.2.1 The Basic Technique.

Consider the basic technique of hash coding. In an attempt to

keep the average number of probes down, tables are not usually filled

to capacity, in fact rarely more than 75%. An average of 1.5 probes

per retrieval is an achievable figure for this packing density

(see Morris, 1968). The resolution of clashes can be done in several

ways but most of them make no deliberate attempt to keep the record

which clashes close to its hash location within the table.

Suppose a conventional table contains S records in p pages, is

100 f % full and c main memory pages are available. Let b be the

maximum number of records which can be contained in one page. The

probability that any record retrieved from this table is in main

memory when requested is given by:-

number of records in main memory
number of records in file

c b f
S

= c b f
Pbf

c
p

Thus the number of page faults generated by n requests has a

bLnom LaL distribution with parameters nand (1 - ~).
p
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The expected number of page faults generated by n requests is

therefore n (1 - ~), assuming no clashes have to be resolved.
p

One technique for clash resolution is normally termed random

probing. Table positions are examined in a sequence generated

by a pseudo-random number generator starting at the hash address.

It is usually arranged that the pseudo-random number generator

will produce a sequence of displacements within the table such

that each table location occurs exactly once. The record is

placed in the first free location that is found. An example is

shown in figure 3.1. This probably represents a worst case as far

as paging is concerned because it is quite likely that references

will be made to addresses located on the backing storage.

;'

I
I
I

........ ~,

-".

~. ..,
1 1/I
I
\

<

Occupied
Table
Positions

---------~ ..-
..-
I

I

Empty
Table
Position

Fig 3.1

An alternative technique is linear scanning. Adjacent table

positions are examined, starting at the hash address, until a vacant

location is found. This method is illustrated in figure 3.2.
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- - - - - - - - ~'~r----------j ~~==~====_~_::--===-::::_===-_ Occupied
Table
Positions

Empty
Table
Position

Fig 3.2
It is intuitively obvious that this is far better suited to a paging

environment since a page boundary will be crossed fairly infrequently

and the clashing record will often be located on the same page as the

hash address. Morris, 1968 makes a similar point.

For the purpose of worst case analysis, suppose that random

probing is being used. Assuming that for each key, every table

location has the same probability of being selected by the hashing

function, the expected number of probes required to insert the ith

element into a table of size N is:-

(1-i-1) + 2(i-l)(1-1-2) + + 1(1-1)(1-2) (<-(i)".1:.».1
N N N-l N N-1 N- r-r +1

1 + (1Nl) + (1-1)(1-2) + .•..... + (i-1)(i-2) ... ( 1 )
-,:r N-I rr N-=I N-i+2

1 + 1-1
N-i+2
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Thus the average number of probes per access will be:-

s[ 1. (1 + i-I )
i.-1 S N-i+2

- N+l
S (~l - ~l-S )

where Hi is the ith Harmonic number. Each probe has the same

probability (1 - c/p) of causing a page fault and so the average

number of page faults for n accesses will be:-

N+ln.(l - c/p} -g- (~l - ~l-S )

If N+I-S is large, the well known approximation for Harmonic

numbers can be used:-

log i + ye

where y is Euler's constant. In this case the expected number

of page faults is approximately:-

n (1 - c/p) N+sl log 1
e l-f

This presupposes that table requests are sufficiently frequent to

maintain c pages of main memory and that the initial loading of

memory has negligible effect. This result is the same for each of

the practical replacement policies being considered because the

request sequence is assumed to be random.

3.2.2 Minor Modifications

To reduce the amount of paging the following simple modifications

are proposed. Firstly the table size is reduced to the minimum

possible i.e. fp pages, and secondly clashes are resolved within the

page containing the calculated hash address.
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Reducing the table size depends on knowing the file size or having an

estimate of it. The problem is identical to that of conventicnal

hash coding where one does not want the table to become more than 75%

full. Resolving clashes may employ any of the standard techniques

modified to act within one page.

The results of these changes are:-

(1) the reduced number of pages in the file increases the

probability of a requested page being in main memory.

(ii) at most one page fault is produced per request.

(iii) a much higher average number of probes will be required.

Clearly the number of page faults still has a binomial distribution

but now with parameters nand (1 - c/fp) and no extra page fault~ a~e

induced in resolving clashes. Thus the expected number of page faults

in satisfying n requests is just n.(l - c/fp). This represents a
saving of:-

{n(1 - c/p)(pb + 1)10g 1 }
S el-f

n(l - c/fp)

For the typical values b = 100, c = 10, p = 40 and f = 3/4, these

modifications produce a saving of 0.725n page faults which is offset

by the extra probes which are necessary.

As shown above, the average number of probes per access for random
probing is:-

N + 1 (H - H )N+I N-S+IS

Assuming the proposed modifications are used, this expression will

apply with N = S = b = number of records per page and this gives:-
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b + 1 (~ + 1 -1)
b

In the typical case, b = 100 and so the average number of probes

will be approximately 5. Thus the extra cost of the proposed

modifications is approximately four probes per access. As an

example, suppose each requires the execution of ten machine level

instructions, then the cost for n requests is 400 instructions.

The saving is 0.725n page faults in the typical case considered and

since each of these could involve 5000 instructions it can readily be

seen that the modifications should prove very worthwhile.

It will not be possible to fill completely all the fp pages of

the table if the proposed clash resolution technique is used. As

soon as an attempt is made to insert a record into an already filled

page, the table itself must be regarded as full. Alternatively,

performance could be sacrificed and clashes resolved within one of

the remaining partially empty pages with the ensuing possibility of

an extra page fault. Suppose this is not done, it is useful to

know how much space will be wasted.

Recall that each page holds a maximum of b records and the table

size is fp pages. When a page becomes full, the probability that the

others contain il,······ ,ifp_l with 1.< b'7 j is:-
J

p
(fp)! (b - I + ~-I

(l/fp) b-l. + ;; ij.(l/fp)
i1.! ••••• ifp_t! (b - I)!

and so the expected value of il say, is:-
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Now

~ a-I
L Lp 1
t -0 1 .0
I ~p-l

since it is a sum of probabilities and by a suitable change of

variables, E can be reduced to a similar expression, allowing

simplification. However after this transformation the limits

involved in the expression for E do not correspond exactly with those

in the sum of probabilities and the final general form for E is

rather cumbersome in all but the simplest case i.e. fp=2.

Consider this case:-

E

b-l s-t ..i,
)= 1 1t 2(b - 1 + 1, ) !(1) (1)f.;t 1,! (b-l)! 7 7

.. ~ (b - 1 + 1, ) ! 1r':'&1 (if -1) !(b-I) ! (2)

make the transformations i :i.
1
-1 and d b + 1 then:-

E
d-3 d-l+!I (d - I + .q! Il'
1:0 i I (d-2) ! \2)

(d-l) (l)
d-t+l

(d - 1 + i) !
R.! (d-I)! 2)
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Now

(b - 1 + i. ) !
i,! (b-l)! 1

(sum of probabilities.)

and 50:-

"-b ('f' 2«- 2. 2o:t-2.
E = (d - 1)(1 - - Cd_1(1) )d-l "Z

- b(l - 2b-1C (1/2)21.-2 )
b

Corresponding, but more complex expressions can be derived

similarly for other values of fp.

Graph 3.1 shows the variation of E/b with b for fp=2. For

b> 100 the partially filled page can be expected to be more than 90%

full. It is intuitively clear that for other values of fp and

correspondingly large values of b, one can expect the partially

filled page to be more than 90% full.
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Morris, 1968 suggests that a scatter index table would be a suitable

technique for use on a paged machine. A scatter index table contains

entries consisting of a key and a pointer which shows where the rest

of the record is located. The data fields of the records are stored

sequentially. In this way the entries of the scatter storage table

will be shorter than if the whole record were kept there. The

advantage claimed is that the whole scatter index table could probably

be located in main memory and so only one page fault per access would

be necessary to pick up the data. This level of performance i.e.

one page fault per access is automatically achieved if the proposed

modifications are used and will frequently be surpassed because a

proportion of the table will always be located in main memory.

3.2.3 A Major Modification

The discussion so far represents only a minor departure from

conventional ideas and as far as programs using the table are

concerned, there is little change. For instance a compiler or

assembler which uses a hashing system for its symbol table could

still acquire information about symbols as they appear in the source

text, exactly as on non-paged machines.

If a more radical approach is taken to the use of hash tables a

much greater saving in page transfers can be obtained. This is at

the expense of altering the mode of operation of user programs.

Suppose the previously described modifications are used and in addition,

hash table requests are queued until sufficient have been

accumulated to allow several accesses to be made for each page brou.ght

into real memory.
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This is somewhat similar to the sector queuing system employed in

paging drum processors. It might be thought that this is totally

t.practical since most programs which acquire data, do so because

they are unable to continue without it. However, consider the

operation of an assembler. If a partial scan of the source text

is made prior to a phase which uses the symbol table, the information

about a fixed number of symbols can be brought into the program's

work area in an orderly fashion. The assembler could continue

execution until it had used all the information in the work area

and then the source text scan could resume.

Similarly, for operations on sparse matrices stored in a hash

table, if data was brought into a work area in 'bulk', the page

faults could be generated in an orderly fashion.

Suppose the number of requests is allowed to rise to q and they

are held in a 'pending' buffer. They are sorted into individual

queues, one for each page, and then all serviced at once. The number

of page faults caused by servicing this set of requests is equal to

the number of non-empty queues.

Let .. the number of non-empty queues after q requests

are in the buffer.

if q + 1st request is for a pagetben:-
which already has a non-empty queue.

+ 1 otherwise.

thus:-

x .x Ifp + (x + 1)(1 - xq/fp)
q q q

= x (1 - l/fp) + 1q
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thus = E(x )(1 - l/fp) + 1
q

which is a first order linear recurrence relation for E(Xq).

Hence:-

fp(l - (1 - l/fp)q)

So the total for n requests is:-

q(n/q).fp(l - (1 - l/fp) )

This assumes that the delay between bursts of paging activity is

such that pages of the table do not remain in main memory between

bursts. Note that this expression does not depend on c because the

ordered hash table requests only require one main memory page to be

serviced efficiently.

Suppose n = 5000, fp = 10 pages containing 1000 records,

q = 25 which implies a pending buffer size of one quarter of a page

and c = 4. Using the simple modifications this would produce 3000

page faults but only approximately 1850 if the requests are queued.

3.3 Non Random Request Pattern

3.3.1 An Example Of A Non Random Request Pattern.

Analysis of the use of hash tables usually assumes a random request

pattern, as has been done overleaf. This greatly simplifies the

mathematics but is rarely an accurate representation of real life.

Using the example of the compiler symbol table, it has been found that

identifiers consisting of a single letter are used far more

frequently than their longer counterparts (up to 70% of the total

identifier usage in some cases).
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To investigate the way in which programmers use identifiers,

a program was written to scan ALGOL W source text and produce counts

of the gaps which occurred between uses of the same identifier.

A gap of length n is defined as the occurrence of n instances of

other identifiers between two successive uses of a particular

identifier. Thus n is a variable taking non-negative integer values.

It is desirable to know what the expected values of these gap

frequencies are, if it is assumed that identifiers are used randomly.

Suppose S different identifiers have been used and there are a

total of d occurrences of identifiers in the entire source text.

Lemma 3.1
Let U = the number of gaps of length g in a sequenceg,d

of d symbols, then E(U d)g, = (d - (g+l»(l - l/S)g/S

~

Clearly:- U if i+lst symbol does notg,i induce a gap of length g.
Ug,i+l

U + 1 if i+lst symbol doesg,i induce a gap of length g.

{:g.i
if g > i-I. . E(Ug,i+lIUg,i) g

+ (1 - liS) /S ifg ~ r-i

{:(U i) + (1 -
if g > i-I

E(Ug,i+1) g
l/S) /S if s ~ r-ig,

which is a first order linear recurrence relation for E(U d).g,
Hence:-

E(U d)g,
g

(d - (g+1»(1 - l/S) /s
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Table 3.1 shows the proportions of different gap lengths that
were observed for four long programs (several hundred statements)
written by different programmers, together with expected values
computed using lemma 3.1 for programmer 1.

Graph 3.2 compares these observations.

Gap Observed Expected Observed Observed Observed
Length Prop'n Prop'n Prop'n Prop'n Prop'n

Prgrmr 1 Prgrmr 1 Prgrmr 2 I Prgrmr 3 Prgrmr 4
0 0.095 0.0104 0.124

I
0.087 0.078

1 0.108 0.0104 0.157 0.228 0.080
2 0.145 I 0.0104 I 0.100 0.162 0.149
3 0.129 0.0101 0.066 0.076 0.132
4 0.058 0.0101 0.076 0.048 0.074
5 0.034 0.0101 0.030 0.045 0.138 I

6 0.025 0.0098 0.033 0.031 0.045
7 0.020 0.0098 0.033 0.020 i 0.018
8 0.019 0.0098 0.026 0.020 ! 0.036
9 0.019 I 0.0090.0098 0.020 0.014 I10 0.019 0.0095 0.013 I o.on

I
0.009

11 0.015 0.0095 0.017
I

0.010 0.019
12 0.026 0.0092 0.013 0.006

I
0.016

13 0.010 0.0092 0.026 0.007 0.018
14 0.010 0.0092 0.003 1 0.010 I 0.004
15 0.007 0.0089 0.017 i 0.012 I 0.0
16 0.011 0.0089 0.013 I 0.008 I 0.009
17 0.004 0.0089 I 0.017 j 0.005 I 0.011
18 0.004 0.0086 I 0.003 I 0.005

I
0.004

19 0.008 0.0086 0.026 I 0.002 0.006
20 0.004 0.0083 0.010 0.006 I 0.004

Table 3.1
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3.3.2 A Model of Non Random Requests

Since the assumption of randomness appears to be inadequate as

shown by this example. a more comprehensive analysis is required

which can be used in the general case. The following model of

request patterns is proposed as one possible approach. After

each access. the next request to be serviced requires one of the

set of r most recently referenced different records with a higher

probability than the other (S-r) in the file. The most recently

referenced is required again with probability KI/S. the ith

(different) most recently referenced is requested again with

probability Ki/S, Note that these probabilities only refer to

different records. several occurrences of the same record do not

affect its probability of being requested again. Clearly Ki = 1

for every i corresponds to the random case.

3.3.3 L.R.U. Page Replacement

Assume that previously generated addresses are required by

the current request with probabilities KI/S ••.•. ,Kt/S.Kt+I/S' .•..•Kr/S

and those with i ~ t are still located in main memory. Other

addresses will be generated with probability:-

S(S-r)

Then the probability that the current request will generate a page fault

1s:-
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I +

• I
{t Ki (S-r) + t K. (,~-cb)

clfp - i.1 i.l 1----------------~~~-------------------S(S-r)

+ reb - Sl }

where l-c/fp is the probability found for the random case. Of course

1 is a random variable and so this probability is conditional on the
value of t.

Similarly the expected value of the number of page faults is

conditional and it is desirable to remove this dependence on t by

using the result:-

E( E( Xly » = E( X )

However it has not proved possible to derive expressions for terms
.t

such as E( ~ Ki) for general Ki and so an upper bound for the probability
1-1

is derived by replacing t by its lower bound c. Thus:-

probability of a page fault

1

c r
{ ~ Ki(S-r) - c ~ Ki(b-l)

c/fp- i..1 h1~~--------S~(~s~--r7)----------------
- c(S-rb) }

If r ~ c further simplification is possible since in that case

Thus the exact probability of a page fault can be derived:-

1 clfp -
~ Ki(r-cb) + reb - Sr }
i-1
S(S-r)
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• 1 clfp

r{(t;Ki - r)(S - cb)]

S(S - r)

• (1 - c/fp){l ( ~ Ki - r) I (S - r)}

and the expected number of page faults for n requests is just:-

n(l - c/fp){l
r

( L Ki - r) / (S - r)}1-1

~ Random Page Replacement.

With random page replacement the only record which is certain to

be in main memory is the most recently used. Other previously

referenced records are there with decreasing probability as new

records are processed.

Let a - the probability that any request causes a page fault

Ki - the probability weights as before.

- the conditional probability of a reference to the

table generating a main memory address, given

that the previously referenced records with

probability weights .... , are still

in main memory.
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then ,.probability of referencing the record

with weight Kl or one of the other cb-l

records in main memory.

- (S - !Ki)(cb - 1)
t ..1
S(S - r)

and more generally:-

P ,. K IS + f K./S + x(cb - (m+!) )
I,ii'....,i", 1 ja1 '1,;

,..
where x = (S - [Ki) is defined for1~1

S(S - r) convenience.

Now let Q. .
1,11 , ... , 1....

probability that previously referenced

records with probability weights

K • K., • K. are still in main
1 11 1,..

memory when a reference to the table

occurs.

Suppose the movement of a particular record between the two

storage levels as table requests are processed is regarded as a two

state Markov process then:-

Primary
Memory

A Primary I(1 - a/c)
Memory

Secondary a/(p-c)
Memory ..

\

Secondary
Memory

a/e

(1 - a/(p-e»
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is the associated transition matrix. So theprobabi1ity that a

particular record is in main memory say after d requests have

been serviced is just Ad(l,l) or Ad(2,1) depending on its

initial location. For instance the probability that the record
r-1with weight Kr is in main memory is A (1,1). Q. .

1.1..... ,1""

is merely the product of such terms with A raised to powers

i1-l , •••• , i~-1 and terms of the form Ak-1(l,2) with k taking

on values from the set { 1, 2, .•• , r }\J i
1
, i~, ... , i",}.

The total probability rule:-

pr(Event E) = t pr(Event E IEvent e. )pr(Event 1\)
i:l 1

can now be invoked using P . and Q .
t'lL'·· .. ' i.. 1.11' .... ,1'"

to give the page fault probability in terms of an expression

involving itself.

A closed form expression for a is clearly desirable but cannot

be found in the general case, because a polynomial in a is obtained

and there is no analytic solution for this polynomial when its order

is greater than four.

However specific simple models are often adequate, in

particular models where r is small (e.g. perhaps only K
1
, or Kl

and K 2. are significant) and Ki =K'v'i(K a constant).

a can be found explicitly.

In such cases

For example if r = 1, Kia K, then trivially:-

1 a - K/S + (1 - K/S)(cb - l)/(S - 1)

a {(S - cb)(S - K)}/{S(S - I)}
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Alternatively if r = 2, K = K = K then:-
1 2.

P - K/s + {(S - 2K)(cb - l)}/{S(S - 2)}
1 Q - a./c

1

P • 2K/s + {(S - 2K)(cb - 2)}/{S(S - 2)}t,l 1 - alc

1- a. .. + P Q
1,2 i.z

a - (c/S).{(S - 2K)(S - cb)}/(cS - 2c - K + 1)

The advantage of using L.R.U. page replacement when there is a

non-random request sequence is intuitively clear. The records with the

highest probability of being required again are the most recently

referenced and L.R.U. will tend to keep these in real storage.

It is not possible to quantify the exact difference in page fault

probability between random and least recently used replacement in the

general caes because no general expression for the page fault

probability has been found for random replacement. However for the

two simple models discussed above the exact difference can be found.

In the first case (r = 1. Kl = K). all replacement policies will

have the same page fault probability since the most recently referenced

record will always be in storage.

The difference in page fault probability between RAND and L.R.U.

for the second simple model (r = 2, K 1 = K 2 :a K) is:-
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c(l - cb/S)(S - 2k)
(cS - 2c - K + 1)

(1 - cb/S)(S - 2K)
(S - 2)

- (1 - cb/S).(S- 2K). (K - 1)
(S - 2) (cS - 2c - K + 1)

This expression is positive since:-

S > cb because it is assumed the file is

larger than available real storage

S > 2K the model of non-randomness

requires S > f K·
i-I ~

K > 1 K - 1 is the random case.

and

S > 2K ~ S > K + 2 =:;> cS - 2c - K + 1 > 0
c

This suggests the following modification. When random page

replacement is being used, having been selected on some other

grounds. and non-random requests are being made to a scatter

storage table. copies of the n most recently referenced records

are maintained as a linked list in a working area within the
program. This list is scanned before each access of the table

and if the desired record is found, it is made the head of the list

and no reference to the table is necessary.
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If it is not found the table is searched with the ensuing possibility

of a page fault, a copy of the record is placed at the head of the

list and the last record of the list is deleted. This modification

is similar in some senses to the cache memory of the 360/85 and the

associative memory of the 360/67. The length of the list, n, is

determined in an obvious way by r, the number of records

contributing to the model of non-randomness, and the available space.

Suppose n - r, i.e. copies of all of the records in the model

are kept in the list. By definition of the model, the probability
r

that any search will find the required record in the list is i~ Ki/S.

If c real storage pages are available and occupied by pages of the

file, the probability that a page fault is necessary is approximately:-

a

where p is the total size of the file. This probability is only

approximate because those records of which copies exist in the list

may be located in real storage, and this affects the second term of

the expression within parentheses. The error introduced is extremely

small if r is small compared with the number of records per page, and

will be neglected.

The original purpose of introducing this modification was to

gain some of the advantages of L.R.U. page replacement when random

page replacement is in use. This is achieved since if c > r, the

probability of a page fault with this modification in operation is

very close to that obtained with L.R.U. replacement. However the

modification has a second and more significant property. If real

storage is limited such that c < r,then all of the records for which
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non-uniformity exists will be available for reference even if the

pages of the file on which they reside are not located in real

storage. Thus the above expression for the page fault probability

will apply for all practical page replacement algorithms and any

amount of real storage. If the Ki are reasonably large there should

be a significant reduction in paging for small amounts of real storage.

To provide some evidence that this is so, three non-random

request sequences were generated and the resulting page reference

strings processed by page replacement simulation programs. In each

case the table size was taken to be 16 pages with 100 records per

page and 2000 searches were performed in each sequence. Three

models were used:-

(i) r - 8 = 100 (1 ~ i ~8)

(1 ~ i ~ 8)(ii) r - 8 150
(iii) r 8 - 175 (1 ~ i ~8)

and the numbers of page faults for each replacement algorithm using

various amounts of real storage are shown in tables 3.2 - 3.4 and

graphs 3.3 - 3.5. The results labelled MOD are the values predicted

to occur if the suggested modification is used. The data shown for

the Random algorithm is the average of several runs since the initial

value used in the random number generator of the paging simulator

affects the number of page faults produced.

As expected the L.R.U. algorithm consistently outperformed the

others which were considered (except MIN of course). This is
particularly
is 8 x 175

1600

true in the third case (Ki = 175) where the probability

0.875 that one of the eight most recently referenced

records will be required again.
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TABLE 3.2
IMain Page Faults

Memory
Pages L.R.U. F.I.F.O. Random MIN MOD

2 1487 1492 1521 1183 884
3 1271 1276 1300 864 822
4 1044 1083 1154 657 760
5 859 907 980 519 698
6 682 743 842 416 636
7 558 641 730 339 574
8 437 558 600 274 512
9 423 489 537 219 450

10 362 404 432 174 388
11 302 354 370 134 326
12 237 262 274 100 264
13 167 203 222 71 202
14 104 136 155 48 140
15 55 89 80 30 78
16 16 16 16 16 16

TABLE 3.3

Main Page Faults
Memory
Pages L.R.U. F.I.F.O. Random MIN MOD

2 1383 1396 1415 1081 450
3 1111 1123 1136 729 419
4 836 864 906 502 388
5 605 646 704 351 357
6 430 506 588 260 326
7 305 416 465 200 295
8 240 336 390 156 264
9 211 278 340 126 233

10 180 223 252 99 202
11 149 194 215 78 171
12 122 161 170 62 140
13 93 118 120 49 109
14 69 92 84 36 78
15 42 47 50 25 47
16 16 16 16 16 16
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TABLE 3.4

Main Page Faults
Memory
Pages L. R.U. F.I.F.O. Random MIN MOD

2 1340 1351 1350 1047 2333 1047 1067 1063 . 686 2184 781 812 820 452 2025 545 548 618 272 1866 290 384 396 175 171
7 172 281 315 118 155
8 129 199 242 90 1409 109 168 192 70 125la 98 125 179 56 10911 73 102 120 44 9412 57 86 91 36 7813 46 76 75 30 6314 34 74 44 25 4715 30 29 28 20 3216 16 16 16 16 16
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It could also be anticipated that c = 8 (i.e. eight real page
frames available) will be a critical value. The most recently
used eight pages can be regarded as the W.S.D. and with L.R.U. at
least, as c increases beyond eight the rate at which paging decreases
is small.

The advantage of the proposed modification shows up clearly.

3.3.5 F.I.F.O. Page Replacement

It is reasonable to suppose that F.I.F.O. replacement lies

somewhere between Random and L.R.U. in terms of efficiency. For

e~mple, if a record is referenced and is located on the secondary

storage device, the page containing that record enters real storage

and is certain to remain there until c additional page faults have

oCCurred. If the record originally requested is required again in

that time, which it may well be since a non-random request sequence

is assumed, it will be available immediately. Random page replacement

~11l be less efficient since all pages are candidates for displacement

at all times, and L.R.U. will be more efficient since every reference

to a page guarantees it a longer stay in real storage.

This conclusion is supported by the simulation studies, the results

Of Which are shown in section 3.3.4.



Chapter 4.

SEARCHING

~ Introduction

Searching in this context means the location and retrieval from

a file of a record containing some particular key field. Many

techniques are available and one has already been covered in

detail in chapter 3. Hash Coding is of sufficient importance and

is used so commonly on large files that it warrants extensive

separate treatment. Other methods will be examined here and the

techniques established in the consideration of Hash Coding will be

employed.

Binary Searching

4.2.1 Conventional Binary Searching

The standard binary search technique for locating records in a

file which is ordered is well known. It is preferable to 'n'ary

searches with n > 2 because it produces the least average number of

cOm.parisons. However when used with a large file on a paged

machine it is surprisingly inefficient because the number of page
transfers induced is unnecessarily large.

Consider a file of M pages and for simplicity suppose
~ - 2K for some integer K. During a binary search operation the

desired record is known to be located in a region of the file which
is halved in size by each step. Define R to be the set of pages
COnstituting that region, and IRI the number of pages in R.
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Clearly IRI = M initially and when IRI drops to one the paging

induced by the algorithm will cease.

IRI will become one after log2 M = K steps and as the
record examined in each step will be located on a previously

UOreferenced page, K different pages will usually be referenced.

The final step is concerned with deciding which of the two

remaining pages in R contains the desired record. One of them

Will have been brought into main memory in order to do the

comparison and so the probability is at least 1/2 that referencing

K different pages is sufficient. If the desired record lies on

the other of the two pages involved in the final step, K + I pages

might be accessed and K + I page faults might be caused, depending

on Whether previously referenced pages of the file remain in main

memory.

It is, of course, possible that the required record will

be one of those involved in the comparisons performed before IRI
becomes one.

The probability of this event occurring is:-

(11Mb) + (1 - I/Mb)_l_ + ..... +Mb-l (1 - lIMb).. 1Mb-(K-l)

• ~ ·_1 ft·· (1- _1 )
L Mb-i Mb-j
'00 jao

- K/Mb

Where b is the number of records per page.
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Clearly, this will be a small quantity if b is large. For example

if b - 100 and M = 16 then K = 4 and this probability is only
0.0025. In what follows, this event will be ignored.

Figure 4.1 illustrates the case M = 8 i.e. K = 3 and

hopefully clarifies the discussion.

Pages of file
~ ~

[

first comparison

""__.;._J Possible records for} _~---'
1. second comparison

'-- ---'_{PoSSible records for} _~ _.
third comparison

/ Record

/ '

Fig 4.1

In the case of infrequent accesses of the file it has to be

assumed that none of the file remains in main memory between requests

and so all K (and sometimes K + 1) page faults will be induced for

each record that has to be located.

4.2.2 Modified Binary Searching

Now consider the following modification. Suppose copies of the
key fields of the first record located in the second and subsequent
Pages of the file are kept in a small working area of the program which
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i8 referencing the file. Comparison of the desired key with this
list will reveal which page contains the desired record because the
file is ordered. In this way only one page fault need be caused
by a reference to the file because R consists immediately of just
one page. This prooess will involve M comparisons on average if

2
the list of keys is searched linearly or a maximum of flog2(M-i)1

if a binary search of the list is used. Clearly this is the first

Step in allM way search. The rest of the search on the single

remaining page should be binary as this part of the algorithm will

operate in main memory only.

The cost of this modification is the storage required for the

M - 1 keys in the list and the associated searching of this list.

The saving is K - 1 (and sometimes K) page faults per access.

The modification is similar to the Estimated Entry technique

described by Price, 1972 and other authors. It could also be

regarded as the use of a dope vector.

The usual problems of addition and deletion of items are

little different when the file is located in a paged memory.

MOVing large parts of the file to insert an item is costly and,

if the proposed modification were used, the contents of the list of

keys would have to be updated to reflect the changes.

The alternative of leaving unoccupied areas scattered

through the file to make way for expansion is surprisingly
attractive provided the proposed modification is used. They might
take the form of unused spaces at the end of each page, the size of

the spaces being dependent on the likely frequency of insertions.

No extra page faults need be induced by the extra space requirements
as only one is necessary per access.
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In addition, this would take advantage of the virtual memory

facilities since maintenance of the file is made easier by
USing more virtual memory than is strictly necessary but without
the heavy cost of additional paging. Note that this is only true

if the file is used infrequently. Where a working set can be

maintained it is preferable to compress the file as was noted in
chapter 3.

In terms of the number of page faults produced, the proposed

modification is also almost independent of any non-random request

pattern as any record can be accessed with at most one page fault.

Again this is not true of the ordinary binary search technique

Where it would be helpful in reducing page faults to have the

first comparison done on the most frequently needed item etc.

An entirely equivalent modification, which may be more

convenient, is to keep copies in the program's work area of the

key fields of the records involved in comparisons which occur

before IRI becomes 1.

The previous discussion is based on the assumption that

requests to the file are so infrequent that as each occurs, the

~hOle file is located on backing storage. If the access frequency

i8 high enough, the program using the file may well reach the

Point where it maintains a working set of file pages in main memory.

SUppose this latter situation exists and c real memory page frames
are available for the program's data.

With a conventional binary search, the page containing the

Centre record will be accessed the most frequently, the two pages

Containing the re~ords used for the second comparison will each be
accessed half as frequently, on average, and so on.
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The effect that this has on the paging activity depends on the

replacement algorithm and so each will be considered separately.

4.2.3 L.R.U. Page Replacement

For those values of c which are less than K, there will be

approximately K page faults per access of the file because the

frequently used pages will be displaced from main memory between
Uses. This will be a lower bound since in some cases K + 1 page

faults are required.

When c = K, the page containing the centre record will be

available, although 'least recently used', at the beginning of

each new search and immediately becomes 'most recently used',

hence. effectively resident. This will mean that only K - 1 page

faults will usually be required to locate a record. However

there is a probability of 1/2 that the initial comparison will have

the same result as during the previous search and hence the record

used for the second comparison will also be located in main memory.

Many different states can occur and the transition matrix is

inherently complex but a reasonable approximation of the paging

activity can be obtained if the following simplifying assumptions

are made:-

(1) For each comparison, the probability of the

same result occurring as on the previous search
is 1/2.

(ii) All records required following a comparison
with a different result to that of the previous

search are located on secondary memory.
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These assumptions imply:-

pr (K-l p.f. necessary) = 1/2
pr (K-2 p.f. necessary) 1/4

etc.

The approximate nature of the model is clear when it is realized

that only in the infinite case do these probabilities add to one.

However for n requests the approximate average number of page

faUlts for c - K will be:-

t n (1/2)i (K - i)

As c increases there will be little drop in the paging

activity until c reaches a figure where both the pages containing the

records used for the second comparisons will normally be in main

lIlamory. An example illustrates this. Figure 4.2 shows a 16 page

file with the pages numbered for identification.

Fig 4.2

Suppose two records are to be located which lie in pages 3 and

15. The sequence of pages referenced would be:-

8 4 2 3 8 12 14 15 8
If c - 7, then at the beginning of the search for the third

record, the 'centre' page (8) and both pages which might be

required for the second comparison (4 & 12) are located in main
lI1ell1ory.
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Rence the maximum number of page faults which will normally be
required is K - 2. It follows easily from the example that in the
general case this situation arises when c = 2K - 1.

Using the previously noted simplifying assumptions, and a

Similar set of probabilities, the approximate average number of

page faults induced by n searches with c = 2K - I is;-

~ n (1/2)i-1 (K - i)
i.~

At least two sources of error arise with this approximation.

Firstly it is possible to select one of the second comparison

pages several times in succession and probably displace the other

because of the additional pages needed to complete the searches.

Secondly, occasionally K - I page faults will be necessary - this

corresponds to the use of page number 16 in the example.

The two drops in paging activity predicted above to occur

at c • K and c - 2K - 1 are observed in simulation studies (see

below). Similar drops which might be expected at higher values

of c, corresponding to the presence in main memory of other pages

involved in 'early' comparisons do not occur. This can be

eXplained by the fact that the assumptions become increasingly

invalid as c increases, and the frequency of use of the pages in

qUestion is correspondingly less than say the 'centre' page.

4.2.4 Random Page Replacement

In the previous section it was shown that the pages used for
the first and second comparisons at least, require special
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consideration because they are used relatively frequently. With
this in mind and using the assumption that K pages have to be
referenced to locate each record from a file of size 2K, the
fOllowing model of random page replacement is suggested.

Let

P, - probability that referencing the 'centre'

record at the beginning of a search causes

a page fault.

- probability that referencing the second

record of a search causes a page fault.

- probability that ith record of a search

causes a page fault (3 ~ i). Thus

comparisons after the second are treated

equally.

then 1 - p - probability that second and subsequent
I

comparisons do not displace the page

containing the centre record

- (1 - Pa /c) (1 - P,3 /c)K-2

and 1 - Pa - probability that same second comparison

record 1s required as for previous search

and that it is still in main storage or
if the other second comparison record is
required, that it is in main storage.

- (1/2) (1 - P3 Ic)K-2 (1 - p,/c) + (1/2) «c-2)/(ZK-2»
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and I - Ps - probability that the record required for

ith comparison is in storage (3..:; i). If

the second comparison did not displace the
page containing the 'centre' record there

are c - 2 real storage pages that ith

comparison record could lie on. Otherwise

c - 1. Clearly it will not lie on the pages

containing the centre record or the two

records which could be used for second

comparison so it can only lie on one of

2K - 3 of the file pages. PJ will vary

slightly with i because real storage

contents will change but this effect is

neglected.

• K(1- P2./c).«c-2)/(2 -3» + K(P1/c).«c-I)/(2 -3»
This set of non-linear simultaneous equations in PI ' P1 and P3

~as solved approximately by iteration and the results are included

in section 4.2.6. They compare favourably with the simulation

studies except for extreme values of c.

The fact that random page replacement outperformed the other

algorithms for small values of c should be noted. This effect is

due to its ability to make the optimum choice (in the sense of the
~IN algorithm) on some occasions purely by chance. In addition the

drops in paging activity which occur for certain values of c with

L.R.U. replacement are not observed with random replacement. This
is to be expected since it is intuitively obvious that the
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probability of frequently used pages being in main storage when

reqUired, increases smoothly and monotonically as c increases,
rather than in jumps.

4.2.5 F.I.F.O. Page Replacement.

A complete analysis of binary searching with F.I.F.O.
replacement involves the same problems as have been noted

elsewhere with this paging algorithm. The large number of

POssible states make the calculations prohibitively complex.

H~ever a simpler model, similar to that employed with random page

replacement, gives at least some insight into expected behaviour.

For c < K, the paging rates will be similar to that observed

~ith L.R.U. Each search will usually induce K page faults and

there will only be a small drop as c increases.

approximately nK page faults will be required.

When c - K the centre page will be in main memory at the

beginning of roughly one half of the searches. This is most

So for n searches

eaSily understood with an example. Suppose the file pages are

n~ered I to 16 for identification and records are needed from
Pages 3 and 15. This is the example of section 4.2.3. The

sequence of pages referenced will be:-

8 4 2 3 8 12 14 15 8

Clearly if c - K = 4, the second reference to page 8 occurs
~h1le it is still in main memory. It will be displaced by the

reference to page 12, and so the third reference to page 8 will
cause a page fault, as did the first.
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This process of causing a page fault for every other search continues
for all n requests.

For c - K the proposed model is:-

(i) the probability that the 'centre' page is

in main memory for any particular request

is 1/2.

(ii) the probability that the same page is selected

for the second comparison as on the previous

search is 1/2 and that it is still in main memory

is 1/2.

(iii) the probability that anyone of the pages

required to complete a search is in main memory

when needed is:-

c - 2
2K_ 3

- first

of main memo pages not used bY\

or second compares )
of file pages which could be)

requested

Thus an estimate of the number of page faults needed for n requests

\lith c = K i8:-

(Cont'd Overleaf)
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n.(1/2)
+ n.(1/2)

using page for first comparison

using page for second comparison
when different from previous
search

+ n.(1/2).(1/2) using page for second comparison
when same as previous search

K+ n(l - (c-2)/(2 -3)~(K - 2) completing searches.

• 5n/4 + K Kn(K - 2)(2 - 1 - c)/(2 - 3)

and as with L.R.U. replacement there is a considerable drop in the

~ount of paging as c becomes equal to K.

For c > K the number of page faults can be expected to drop

as C increases but simulation is relied upon for actual numeric

~a1ues.

4.2.6 Simulation Results

Conventional binary searching was simulated for two file sizes,

16 and 32 pages, and in each case two hundred searches were

Performed. A random request pattern was used. Page replacement

USing the different algorithms being considered here was simulated

on the resulting page reference strings for various main memory
sizes assuming a request frequency sufficiently high to use all the
~in memory made available. The results together with the figures
Predicted by the above analyses are shown in tables 4.1 and 4.2,

and graphs 4.1 and 4.2 compare the various performances.
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The final columns of tables 4.1 and 4.2 (labelled MOD) show the
numbers of page faults expected to occur during two hundred searches
USing the proposed modification with a high request frequency.
The very considerable improvement it provides in the case of

restricted main memory should make it very worthwhile.

The drops in paging predicted for the conventional binary

search algorithm are observed to occur when anticipated and to be of

approximately the expected size.

r--

Real L.R.U. F.I.F.O. Random Min. Mod.

Pages Actual Exp. Actual Exp. Actual Exp.
t---

2 824 800 824 800 798 745 657 175
3 758 - 813 - 695 643 478 163
4 427 425 536 586 570 559 345 151
5 390 - 494 - 501 489 280 139
6 370 - 440 - 421 427 227 127
7 292 250 367 - 362 371 183 115
8 258 - 338 - 325 319 148 104
9 217 - 289 - 262 271 120 93

10 184 - 228 - 212 224 95 81
11 135 - 199 - 184 179 73 70
12 112 - 159 - 133 135 56 59
13 80 - 125 - 119 92 42 48
14 59 - 95 - 74 50 31 37
15 32 - 45 - 44 - 23 27
16 16 16 16 16 16 16 16 16.._

Table 4.1
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-
Real L.R.U. F.I.F.O. Random Min. Mod.

Pages Actual Exp. Actual Exp. Actual Exp.
I-

2 1030 1000 1030 1000 1002 970 870 188 .
3 1011 - 1013 - 965 903 705 182
4 984 - 1005 - 874 838 591 175
5 639 612 754 786 803 781 504 170
6 619 - 729 - 760 732 442 164
7 614 - 716 - 677 689 390 158
8 600 - 681 - 637 650 345 152
9 493 425 614 - 573 611 305 146

10 476 - 571 - 526 576 272 140
11 440 - 531 - 512 544 245 135
12 376 - 495 - 461 512 224 130
13 355 - 458 - 445 482 205 124
14 329 - 416 - 436 453 186 119
15 305 - 382 - 391 424 169 113
16 285 - 358 - 341 396 152 108
17 268 - 342 - 308 367 136 103
18 247 - 331 - 287 340 122 98
19 227 - 302 - 264 313 110 93
20 210 - 263 - 263 287 99 88
21 199 - 237 - 225 260 90 83
22 183 - 207 - 207 234 81 78
23 162 - 191 - 194 207 72 73
24 140 - 173 - 160 181 64 68
25 117 - 170 - 160 156 57 63
26 97 - 142 - 122 130 52 59
27 82 - 115 - 117 104 47 54
28 66 - 95 - 112 79 43 50
29 60 - 81 - 85 - 39 45
30 48 - 74 - 59 - 36 41
31 40 - 54 - 36 - 33 36
32 32 32 32 32 32 32 32 32._

Table 4.2
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~ Binary Sequence Search Trees

4.3.1 Storage Layout

An obvious first attempt at storing and using binary trees in

a paged memory is to keep the root (assumed at level 1), all nodes

at level 2, •••••••, all nodes at level i on the same page for

Some i which will depend on the record length. The subtrees

aSSOciated with each node at level i are then stored similarly.

Figure 4.3 shows an example.

~pages
k?

Fig 4.3

Let the binary tree itself be referred to as the data tree.

If the suggested storage method is used, the pages containing the

data tree have an n way tree structure imposed on them where each
Page constitutes a node. Let this tree be referred to as the page
tree. Suppose there are b records per page and for simplicity
b K+1 Kt then 2K. The data tree and• 2 -1 for some integer n = page
tree show up clearly in the example of figure 4.3 where K ...2 thus n = 4.
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4.3.2 Low Frequency of Searches

Suppose firstly that the tree is accessed so rarely that all of
its pages may be assumed to reside on backing storage when needed.

If the total file size is M pages, M may be written as

1 + n + na+ •••• + nj + 1 = (nj+l -l)/(n-l) + 1 for some integer j and

t < nj+1 since this is just the sum of the number of nodes at the

Various levels of the page tree. Nodes at level i require i page

faults when accessed. Thus assuming a random request pattern over

all pages of the page tree, the expected number of page faults for N

searches of the data tree is:-

E • N (1 + n.2 + n&.3 + ••••• + nj. (j+1) + 1.(j+2»/M

j+i

• N ( ~ t.nt-l + 1.(j+2»/M
t=l

• N «n-l) (j+2)nj+1 - (nj+2-l) + 1.(j+2»/M
(n-l)

In the example of figure 4.3, n = 4, M D 30, j = 2 and t = 9.

Thus E - 93N or roughly three page faults for each record located.
30

The only consolation is that the minimum number of comparisons will

be required.

Where there are a large number of records per page n may be

large and there may exist only one level other than the root in the
Page tree. For example with 63 - 2' - 1 records per page, n - 32
and a thirty page file, containing over 1800 records, can be stored
~ith only one level other than the root.

j • 0 and R. -29.

In this case n = 32, M = 30,
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Thus E ... 59N or approximately two page faults for each record located.
30

For large records Le. where n is small, an alternative approach
1s to construct a data tree using detached keys with pointers to the
associated data. Hopefully this tree structure would occupy just a

few pages and have a high value of n. This would allow any record to

be located with just two or three page faults.

Suppose the key field, together with the necessary pointers,is a

fraction a of the length of the actual record. The tree

constructed of these keys will have ~ records per page and occupy

[Mal pages.
a

If a - 0.1 in the example of figure 4.3 then the keys

can be contained in rMal'" 3 pages. Thus using the expression E,

tbe expected number of page faults required to locate a key is 1.67.

Each search will require one more page fault to locate the data

giving an expected number for N searches of 2.67N. Where a is small,

allowing the tree of detached keys to occupy just a few pages, a very

considerable saving may be possible using this technique. In the

eXample of figure 4.3, for 0<a,.034 clearly rMal = 1 and only two

Pages will be referenced in retrieving any record.

4.3.3 High Frequency of Searches

Now consider the case where searches are made sufficiently

frequently that file pages remain in main storage between searches

and an ordinary non-detached key system is employed.
effect to that noted with binary searching will occur.

A similar

The root page of the page tree will be used most frequently and
1f 'sufficient' real storage is available this page will tend to

become resident, exactly as was found with the centre page of a file
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Using binary searching and giving a similar drop in paging activity.

Sufficient here means j + 1 i.e. the number levels because that is
the number of pages usually required to complete a search. Most of
the conclusions arrived at in considering binary searching will apply.

The advantages of constructing detached key trees are far

greater when there is a high search frequency. The page tree will

USually be considerably smaller than if the data were included

(Occupying only rMal pages) and as a result only a small amount of

real storage is necessary for it to become permanently resident.

Suppose c, the amount of real storage available, satisfies c>rMal

then the pages containing the keys will tend to become resident

(particularly with L.R.D.) and so at most one page fault per search

Will be necessary to locate the data. The probability that even

this page fault is not necessary is clearly c - [Mal.
M

~ An Optimum Search Technique

The proposed modification to the binary search technique and the

detached key storage of trees are examples of mapping mechanisms

which allow records to be located with fewer page faults. A better

approach, for tree structures at least, is to use a fast simple

mapping mechanism specifically designed to indicate merely which page

of the file contains the desired record. The search procedure

Within the selected page can use any of the sophisticated techniques

developed for conventional non-paged memories.

Coffman and Eve, 1970 suggest a tree structure constructed from
transformed or 'hashed' keys rather than the keys themselves.
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The advantages of this technique that they illustrate are not relevant

here but the idea of hashing keys into a set of integers (representing
pages)s which would correspond to the first step in their algorithm.
seems to fulfil the conditions for the mapping suggested above. If

this mapping is used to set up the table then, during a search, the

page on which a particular record lies can be determined directly from

its key. Once again these ideas are related to the Estimated Entry
technique.

The records mapped into a given page need bear no obvious

relation to one another or can be closely related depending on the choice

of transformation function. It might be desirable to map all records

~ith some specific property into a given page for separate analysis
later.

The proposed search technique is thus:-

(i) Acquire M pages of free virtual memory based

on an estimate of the size the file will be.

(ii) Establish a suitable function to map the key

range into the set of integers {l, ••••• sM}

(iii) Insert records into the file or locate them by

computing the page number from the key and

performing a normal binary search or any other

conventional technique which suits the individual
case, within the selected page.
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Fig 4.4

This may be thought of as a cross between hash tables and trees.

The usual problem of dealing with hash table clashes is no longer a

problem - it is intentional. The previously noted problem of having

to reference several pages in searching a binary tree is no longer

present - each tree is smaller than a page.
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If a bad choice of M, the file size, is made it is not too
serious. If a particular page becomes full another free page can
be obtained and the tree or whatever structure is in use extended
OUto this page. Only on occasions when records contained in this

page are required will it be referenced and this will only be via

One other page. If several of these overflow pages become

necessary then a serious error in estimating M was made. The file

may have to be reorganised and a new mapping function defined.

F(Key)

Overflow

Pages
i/

,,

Fig 4.5

The adjective optimum is used with this technique in the context

of a paged memory for several reasons. If searches are made

infrequently only one page fault is caused each time. Where the

access frequency is high, the technique works efficiently with any

aVailable quantity of real storage. In this case at most one page
fault per search is caused and clearly there is a probability ~

M
that no page fault will be necessary. No restrictions such as file

ordering are made and insertions and deletions are fairly easy.
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Hinor errors in estimating M can be catered for and have very little

effect on searching efficiency. Finally, no extra storage is needed
for this mapping mechanism and none of the file is used unnecessarily
frequently, as the root page is with a binary tree.

The basis of this proposed method is very similar to Hash Coding

and many of the conclusions of chapter 3 apply. For instance if

requests can be queued and ordered into page queues a significant

reduction in paging can be achieved. In addition, if the request

Pattern is non-random the results of chapter 3 apply directly.

It must be observed that this search method is very similar

to the "buckets" technique which is often used with external searching.

The important aspect is the apparent lack of realization in general,

that an external method is appropriate for a paged environment because

a paging drum is an external storage device.



Chapter 5.

SORTING & MERGING

~ Introduction

The implementation of a conventional internal sorting algorithm

for use on large files wholly located in virtual memory is not

practical on paged machines. The necessarily non-sequential access

pattern leads to excessive paging activity which is undesirable as

shown in chapter 1.

This problem was considered by Brawn, Gustavson and Mankin, 1970

Who proposed and analysed strategies for sorting in a paging

enVironment. Basically, their approach is to divide the data set

into convenient length sublists (integral number of pages or a

fraction of a page) and to sort each of these by a conventional

internal technique. As groups of sorted sublists become available

they can be merged into one longer sublist.

terminates when only one sublist remains.

The work by Brawn et al shows that the use of sub lists can

The algorithm

produce a very significant reduction in paging activity but they

limit their analysis to F.I.F.O. page replacement. In this chapter

the use of sublists is assumed and a sorting algorithm is proposed to
take advantage of the special features of a paged memory. Analysis
is in terms of all of the page replacement policies described in
chapter 1.

In practical sorting situations different types of files occur.
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Records can vary 1n length between a few tens of bits and many

hundreds of bytes although not all of the record need b~ used in the
key. Three different techniques are usually employed to cater for
the different cases:-

(a) Record sort. The sort algorithm is applied directly

to the keys of the records in the stored file, treating

each record as a unit whenever a transfer is dictated

by the algorithm.

(b) Detached key sort. A table of keys and addresses is

set up and this table is sorted, the records in the file

are only re-arranged during the output phase.

(c) Nondetached key sort. A table of address pointers is

set up and records examined via this table. The table

is sorted into the order dictated by the record keys.

These alternatives have been considered in some detail by Brawn

et aI, 1970, and the various implementation methods which they

discuss will not be pursued here.

In what follows, 'record' will mean the complete record in a

record sort and key + pointer in a detached key sort. Nondetached

key sorting is omitted because of its fundamentally different

behaviour.

~ Basic Algorithm

In terms of almost all criteria, the most efficient internal
Sorting method for a set of data is that in which each key itself (or
a simple function of it) indexes the location of the corresponding
region in the store and the record can be directly "pigeonholed".
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For most data no such exact pigeonholing is possible but some

knowledge of the distribution of the keys in the data allows an
approximate calculation of the address of each record in the sorted
list. For this method, usually called address calculation, to be

reasonably efficient excessive movement of the records once placed

.USt be avoided and this leads to space requirements rather greater

than the size of the data. This has rendered address calculation

less attractive for non-paged systems than certain other sorting

~thods.

In a paging environment, however, reducing the amount of memory

space used is not of ~rimary importance (provided excessive paging

1s avoided) and so address calculation may be considered. If no

attempt is made to resolve clashes, the most time consuming aspect

of the algorithm is removed and since it is practical to keep the

~hole data set in virtual memory, the clashes can be easily

Concatenated onto the end of the data set for treatment later.

The object area so produced will be fairly sparsely populated but if

the modified algorithm executes quickly, this can be tolerated.

Figure 5.1 illustrates the basic movement of the data.

For the analysis of the address calculation sorting method

described, suppose that t records from a data set i.e. one

sublist, are sorted into a working or object area k records long.

The mapping may consist of any convenient transformation from the

range of the keys to the set of integers 1 .•.. k. For example if
k = 2r then the r most significant bits of the key would be relevant

~here the distribution of keys does not differ significantly from
the rectangular.
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Alphabetic keys can be treated identically provided the natural
ordering of the letters is reflected in their internal coding
e.g. as in EBCDIC.

Firstly it is necessary to determine just how sparsely filled

the object area will be.

Lemma 5.1
Assuming each record can be mapped into any of the object area

locations with equal probability, if t records are mapped into a

region k records long the expected number of successful mappings is:-

k(l - (1 - l/k)t)

Proof

Let U ..y,k
Consider mapping the y+lst record.

the number of records successfully mapped out of y.

Uy+l,k = {
UY,k
U k + 1y,

if y+lst record clashes.

otherwise.

Clearly the y+lst record clashes with probability U k/k.y,
'!'hus:-

(1 + U k)(l - U k/k)y, y,

III 1 + U k(l - 11k)y,

Using the result E(E(xlz» = E(X) this becomes:-

E(U +1 k)y ,
... 1 + E(U k)(l - 11k)y,

Thus :-

=
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An alternative derivation can be obtained from the probabilities
themselves. Define q n= pr(n records have been successfullym,

mapped after m records have been

processed).
then q satisfies:-m,n

- qm-1,n-l(1 - (n-l)/t)

which may be solved as before and leads to the previous result for

The expression derived in Lemma 5.1 appears in several other

contexts, in particular Morris, 1968.

The variance of the mapping efficiency can be similarly obtained.

Lemma 5.2

The variance of the number of records successfully mapped is

given by:-

(1 - 1/k)t(k(k - 1)(1 - l/(k-l»t + k - k1 (1 - l/k)t)

Proof

As in Lemma 5.1 it can easily be shown that:-

=
and so:-

= 2-1 + E(Uy,k)(2 - 11k) + E(Uy,k)(l - 2/k)

and the result follows from the solution of this recurrence relation.

If t and k are sufficiently large a very convenient approximation
Can be made:-

(1 - l/k)t = -t/ke
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'rhus:-

E(U k)t,

e-t/k(k(k_l)e -x! (k-l) + k _ kl.e-t/k)

~ Modifications

Several modifications have been considered to try and improve the

efficiency of the basic mapping without seriously affecting execution

speed. The first two deal with the treatment of clashes and the

third with a reduction in the space requirements. The fourth aims

at reducing page references.

The basic algorithm makes no attempt to resolve clashes whereas

there may well be a suitable empty slot close to the calculated

address. .The first modification is to store the clashes in an

overflow area and when the whole source area has been mapped,attempt

to insert each clash into the object area using a modified addressing

function. This function i8:-

{

+1 IF CLASH KEY > OCCUPANT KEY

NEW ADDRESS = CALCULATED ADDRESS

-1 IF CLASH KEY < OCCUPANT KEY

It is useful to know how many extra records will be mapped using
this technique.
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Suppose that after the initial mapping a total of n records have been

sUccessfully mapped into the object area which is of length k. The
expected number inserted during the second pass is given by:-

!i.lJ 1 m
C. c..

j'l'14x(o,i-m) J l-J

i.-j

Cu
n'

1. - V - m-u)
--n- 2n

where m = 2(r - t) and n' = k - n.

This is derived in the Appendix.

There does not appear to be any obvious way of simplifying this

expression as there was with the results of Lemmas 5.1 and 5.2

It is not even possible to use integrals to approximate the

summations because of the great variability of the summation limits.

The basic mapping process was simulated and the results

tOgether with the predicted values from Lemmas 5.1 and 5.2 are shown

in Table 5.1. Two hundred simulations were performed for each value

of t and the random assumption stated in Lemma 5.1 was made.

The modification to the basic process was also simulated for

~arious values of t and the results are shown in Table 5.2. Again,

two hundred simulations were made for each value of t and for each

Simulation the object area was pre-loaded with the observed average
number of records mapped by the basic process for that value of t.
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TABLE 5.1
......
Number in Size of Mean Number Calculated Observed Calculated
Source Area Object Area Mapped Mean Variance Variance

128 1024 120 120.38 6.72 6.46

256 1024 226 226.60 22.14 21.09

384 1024 320 320.34 40.00 38.66

512 1024 402 403.06 62.18 56.01

640 1024 476 476.06 71.92 71.36

768 1024 540 540.47 85.38 83.86

896 1024 597 597.32 101.92 93.24

._ 1024 1024 648 647.48 111.90 99.56

TABLE 5.2

-Number in Size of Number Mapped Number Mapped Total Number
Source Area Object Area in First Pass in Second Pass Mapped-

128 1024 120 7.955 128

256 1024 226 22.67 250

384 1024 320 43.00 363

512 1024 402 62.38 464

640 1024 476 76.61 553

768 1024 540 90.37 630

896 1024 597 99.72 697

1024 1024 648 107.28 755
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Evaluation of the expression relating to the second pass, for
Significant values of t and k has proved difficult because of its
inherent complexity. The amount of processor time involved is
excessive because of the number of nested summations, and accuracy

1s doubtful because of the occurrenee of iCj with very-large values of

1 and j. Even if great care is taken in the way that the expression

18 evaluated rounding errors are considerable.

The second modification is similar to the first but attempts to

resolve clashes as they occur rather than storing them. If the

calculated address is found to be occupied, the modified address

proposed above is examined immediately. If this location is also

OCCupied the record is transferred to the overflow area.

An analytic study of the properties of this modification was

attempted using the assumption that successfully mapped records are

randomly distributed over the object area, but this is incorrect.

In fact there will tend to be clumping of records because the empty

cells adjacent to an occupied cell have double the probability of

being filled by each record that is mapped. A similar point in a

d1fferent context appears in Morris, 1968. Flores, 1960 appears to

base his analysis on this assumption but its incorrectness may well

only have a second order effect because his theoretical results are

in approximate agreement with his simulation studies.

Theoretical analysis seems difficult if this simplifying
assumption cannot be made and so this modification has only been
studied by simulation. Table 5.3 shows the simulation results and

graph 5.1 compares all three suggested mappings. Notice that as
the ratio of source area size to object area size increases rather
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less records are mapped directly than are mapped by the basic process.
This is because for each record mapped, the object area will be more
.fully occupied using this modification than when using the basic
process.

Number in Size of Object Mean Number Mean Number Mean of
Source Area Area Mapped Directly into Adjacent Total Number

Cells Mapped.-
128 1024 120.125 7.3 127.4
256 1024 224.2 25.4 249.6
384 1024 314.0 SO.4 364.4
512 1024 389.31 78.62 467.9
640 1024 4S4.29 10S.4 S59.7
768 1024 S06.9 133.7 640.6

896 1024 SSO.7 157.0 707.7

1024 1024 584.85 179.66 764.5-
TABLE 5.3

A natural extension of these modifications is to examine several

locations, not just one, on the side of the calculated address dictated

by the rank of the clashing record. If movement of data is necessary

to fit a record in then it is placed in the overflow area, otherwise

in the object area. This rather more complex process was simulated and

rather surprisingly found to be only a very small amount more
efficient in terms of the mean number successfully mapped than the

previously described mappings.



0

Ii r-I

,
If,
I" If'\

t-,/ co
0,

,I,
// If'\

t-
o

, (j)

1/
N
''-;
(f)

r-I , cd

f'
(j)

If'\ H
If'\ C\I <

\0
+'

0 o
::r:: , (j)

/,,'
·r~

p.. ,0
0

~ , 0
p::;

f
8

~ If'\ (j)
N

0 'den
I (Ijt QI

H~
I rl C\I

I
tID (j)

~ ~ ~ If'\ o
'd 0 0 t- H
Pi .r! 'd (Y) ;:J
Pi +' +' 0
ctl ctl ctl 0 (f)

I ~ o o

f
''-; ''-; ~

() ~ ~ 0
''-; ·rl 'd
(fJ '"(j 'lJ 0, ctl ~ ~

''-;

I
ILl +'

0 cd
If'\ p::;
C\I

0

I

1
I

~
If'\
C\I
r-I.
0

~ ~ _. ~ ~ ~o

o
r-I

co
o

\0

o
...::t

o
C\I

o
o



- 104 -

Thus it was discarded as being of very little benefit for a fairly
heavy cost.

During the mapping processes described previously records are
transferred from the source area to the object and overflow areas.

If the initial source sublist contains t records then at most t

records will be located in source and object areas during the mapping,

and the rest of the space will in effect be wasted. The third

aodification is designed to include the source area within the object
area. They will in fact be exactly the same space if t = k.

The algorithm consists basically of placing a record at the

calculated displacement within the source area and using the displaced

record as the new source record. Two flags for each record are

necessary to distinguish between mapped and unmapped records.

Figure 5.2 illustrates the basic movement of data.

A slight problem arises if there is no source record at the

calculated address. The algorithm maintains a pointer, initially

at the beginning of the source area, which scans forward when necessary

until it locates an unmapped source record. When the pointer passes

the top of the source area the sublist is completely processed.

An alternative solution to this problem is suggested by a clash

resolution technique used in hash coding (Morris, 1968). If the

calculated hash address is occupied, the program scans from that

address through the table looking for an empty slot. In the sorting

case, if the calculated address no longer contains a source record
but is within the source area, the program scans forwards from the
calculated address until it locates a source record, wrapping around
from the end to the beginning of the source area if necessary.
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Clearly this method becomes less and less efficient as the source

8ublist empties and in fact the same location may be examined more
than once. It is fairly easy to show that the use of a single
POinter as described initially is the more efficient method in terms

of the average scan length for t > 7.

This modification is shown in detail in figure 5.3

Although initially it appears attractive this modification is

probably not worth further consideration. Its only advantage is

that it reduces by one page the main memory requirements for

efficient execution (see defn. of data working set) and this is at

a cost of two flags per record and the delays entailed in their

eXamination.

The fourth modification which is proposed is the use of bit

patterns to represent the state of the object area.

A bit string with one bit for each possible record location in

the object area is established and each bit is set to zero. As a

record is mapped into the object area the corresponding bit is switched

to one. To check whether a particular address within the object area

is already occupied it is only necessary to look at the corresponding

bit. In this way, if a clash occurs and the object page concerned

is not in real storage, it need never be referenced.

Once again this seems to be a worthwhile idea. There is no

reduction in virtual space requirements but processing a record now
always involves referencing two data pages rather than sometimes three.
However, unless a bad choice of the algorithm's parameters (see below)

,has been made, it will be operating so that the saving in page

references has negligible effect. In addition, the cost of
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BEGIN

CR- 8(1)
OP- 1
NM ....O
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J- ADDR(CR)
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SF(CR) - 'ON'

OF(J) _. 'ON'

S Combined Source &
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OV Overflow Area
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OF Object Flags
NM Number Mapped
CR Current Record
OP Next Available

Overflow Location
Up Next Available

Unmapped Record

S(J) ~ CR

TERMINATE

ov(Op) +- eR
op- OP + 1

Fig 5.3

UP~ UP + 1
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aanipulating the bit patterns is considerable, especially on System
360 and System 370.

This modification does make paging analysis somewhat simpler and
if required the performance to be expected can easily be derived from

the results presented in section 5.4.

~ Paging Analysis

The paging characteristics of both parts of this algorithm are

intuitively clear in that as the amount of real memory increases the

paging decreases, rapidly at first and very slowly after a certain

POint. This is confirmed by simulation which also gives estimates of

the actual number of page faults to be expected. However, analytic

studies are worthwhile since they help to reveal the exact causes of

excessive paging and the detailed differences between the different

replacement algorithms, even if exact predictions of the number of

page faults cannot be made. Although the sort technique described

is really quite simple, it has proved sufficiently complex to defeat

analytic study in certain cases.

Define M to be the total file size in pages, and e to be the

expected value of the proportion of a source sublist successfully

a&pped into an object area. a depends on which mapping is being used

and the parameters involved. The value of B for the basic mapping

process was derived in lemma 5.1.
The two separate parts of this algorithm, the sort phase and the

berge phase have entirely different properties and will be analysed
separately.
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5.4.1 The Sort Phase

Define the working set of data (w.s.n.) to be the total object
area, one source page and one overflow page. Clearly if the program

Can maintain its w.s.n. in main memory it can execute for relatively

long periods without causing a page fault. Suppose that there are c

real memory pages available for data should the program require them,

then there are three cases to consider:-

(i)

(ii)

(iii)

Iw.s.nl

Iw.s.nl

Iw.s.DI

< c

= c

> c

Where Iw.s.DI is the size of the W.S.D. in pages. Each case must be

COnsidered separately for each replacement algorithm.

5.4.1.1 L.R.U. Page Replacement.

Suppose the source sublist length is t' pages, the object area

size is k' pages and there are b records per page (then k = k'b,
t.. I I I It b and W.S.D. = k + 2).

Consider the first case, Iw.s.n.l<c.

The first page of the first source sub list will be loaded as it is

referenced followed by the various pages of the object area and the
Io~erflow page as they are required. This will generate 2 + k

Page faults. As 2 + ~ < c some further pages may be referenced and
~o~ed into main memory each generating only one page fault until the
total reaches c. These additional pages will be the second and
Subsequent pages of the source sub1ist (if t' > 1) or new overflow
Pages.



- 110 -

As soon as the available main memory is full, references to
addresses located on the backing store will cause one of the main
~mory pages to be paged out.

Clearly the program's W.S.D. will have been referenced most
recently. If full L.R.U. is being used, loading a new source or

overflow page will displace a page which the program is no longer

USing since Iw.s.D.1 < c. Similarly when changing sublists,

although almost a complete change of the W.S.D. is necessary, each

new page required will only generate one page fault.

The file is of length M pages but the overflow pages which are

Produced effectively constitute an extension of the source file.

On average, M(l - e) overflow pages are produced during processing of

the original file and of course this quantity is not generally an

integer.

Processing the overflow pages produces more overflow pages,

and so on, and thus the effective length of the source file upon which

the algorithm operates is:-

2 nMs - M + M(l - e) + M(l - e) + + M(l - e)

n~t
a M(l - (1 - B) )

B

~here n depends on the criterion used to terminate the sort phase.

The simplest and most obvious of these is termination when the length

of the unprocessed part of the source file is less than one page.

This short remaining sublist can be sorted using a more conventional
algorithm. Clearly the final sublist which is processed may not
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involve t' pages but for simplicity it will be assumed that all k
object pages are used with this sublist.

The sort phase simulation and the paging analysis which follows
Use this criterion, and clearly n is determined by:-

Fraction of a page left Overflows produced
+ < 1

unprocessed by final sub1ist by final sublist
i.e.

M(l 7\ ...1
(1 - s> > n...1 7\ ...1

lM(l - (1 - S> >J + M(l - S> < 1
S

and n is usually small, particularly if the 'best' mapping is used

in which case a ~ 0.75.

Each source page will be part of a source sub list but only has

to be brought into real storage once, thus lMsj page faults will be

produced by loading the source sublists.

A fairly obvious modification to make is to use the source area

JUSt released as a part of the new object area when changing source
8ublists. This implies that one of the pages of the new object area

~ght be in main memory as processing of a new sub1ist begins. This

Page will be either the second or third most recently referenced

Page in main memory depending on whether the last record was

sUccessfully mapped or not. Since k' + 2 < c by definition and it

ls necessary to load only one new source page plus k' - 1 new object

pages, a total of k' , the number of undisturbed pages in main memory
ls at least three. Thus the previously used source page will remain
in main storage.

Loading the constituent pages of the first object area will
Produce k' page f~ults and using the suggested modification, each
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8ubsequent object area will be loaded with k' - 1 page faults.

Hence the total for the object areas is:-

The total number of overflow pages used will be rMs - Ml ,

One of which will be the partially empty overflow page remaining

after the algorithm terminates. Each of these will only cause one

page fault when loaded giving a total of rMs - Ml.

Thus the entire sort phase will produce:-

page faults in the case Iw.s.D.1 < c.

Consider as examples, a twelve page file (M = 12) sorted using

Sublist lengths of 1, 2, 3, 4 and 6 with source area and object area

of equal size, and using the least efficient mapping (8 = 2/3).

~8 is then 17.8 and the numbers of page faults predicted by this

expression for the various sublist lengths are:-

t' Page Faults.

1

2

3

4

6

24

33

36
39

39

If Iw.s.n.1 « c it is possible that more than one completely
processed source page will still be resident in real storage at a
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change of sublist. This would slightly reduce the total number of
page faults, the reduction increasing with c, and this fairly small

effect is observed in simulation studies (see section 5.4.2).
Now consider the second case Iw.s.n.1 - c i.e. k' + 2 = c.

Surprisingly, for this value of c, there is a small but significant

rise in the paging activity compared with the case k' + 2 < c. The

reason for this effect is discussed below.

Suppose the le~ters S, 0 and V are used to denote a source area

page, an object area page and overflow page respectively. Let strings

of these letters represent main memory contents, the order from left

to right being the order of most recent use. Thus the letter at the

extreme right represents the most recently used page, and with L.R.U.

replacement, a page fault is represented by the letter at the extreme

left of the string being displaced and a new letter appearing at the

extreme right.

Possible main memory arrangements prior to a change of overflow
page are:-

o

o

o V S 0

V 0 S 0

V o 0 S 0

In all but the last case, a reference to the new overflow page,
v' , will displace an object area page. Before V can leave main
Storage it is necessary for it to become the least recently used page
in memory. Suppose at any time before being paged out, it is jth
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most recently referenced and that immediately following the first
reference to V' it is lth most recently referenced. For example in
the first memory state shown above 1 = 4 since S, 0 and V' will have
been referenced more recently than V. V will have been displaced by

V' in the last memory contents shown and clearly in that case 1 has no
Value.

Each record sorted will have one of three possible effects:-

(i) increase j by 1 by referencing an object page

in main memory which is to the left of V in the

string i.e. less recently used than V, and

hence not cause a page fault.

(ii) increase j by 1 by referencing the object page

which is not in main storage and hence cause a

page fault.

(iii) reference an object page to the right of V

i.e. more recently used than V and not cause a

page fault or an increase in j.

If it is assumed that the data is randomly distributed, each

Object page is equally likely to be selected for each record mapped

and 80:-

probabi1ity( (i) ) = (c - j) Ik'

probability( (ii) ) = 11k'

probability( (iii) ) = tIt(k - c + j - 1) k

Let Yj denote the number of page faults occurring as j increases
by one.
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Clearly, Y
j

can only be 0 or 1.

pr(Yj - 1) = pr(sequence of type (iii) events of any
length occurs followed by a type (ii)

event.)

•
GOL (1 - (c - j + 1)/k')n l/k'

n.o

- l/(c - j + 1)

pr(Yj - 0) = (c - j)/(c - j + 1)

thus E(Yj) = l/(c - j + 1)

The expected number of page faults between V becoming full and

its displacement from storage is:-

1 initial reference to V'

making V the least recently

used page

+ 1 finally displacing V

- 2 + ~ E(Yj)J·t

II: 2 + rl/(c - j + 1)
,jat

= ~ -R.+3 + 1 since c = ~ + 2
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Possible main memory contents prior to a change in S are:-

o o S 0 V

o o V S 0

V o 0 S 0

The expression derived for a change of V may be used for a change

in S except that the only values for tare 3 and 4.

It was shown previously that for the case Iw.s.n.1 < c only one

Page fault is induced by a change in V or S but in the case being

considered i.e. Iw.s.n.1 = c, more than one page fault will usually
OCCur. This is part of the reason for the increase in paging activity

as c drops to the size of the working set of data.

Exactly which state main memory is in prior to a change in S or V

~ill depend on the actual data. An upper bound on the total number

of page faults could be derived by assuming the worst possible case

i.e. k' and k' + 1 page f 1 i hid i 1 hi hau ts n c ang ng VanS respect ve y, w c

~ill occur very rarely. A more realistic figure can be obtained by

assuming that the highest expected value occurs each time. For

Simplicity this is taken as ~-1 + 1

a~ + 1 for S i.e. t = 3.

for V i.e. 1 = 4 and

Changing sublists is a rather more complex process than it at first
appears. At least k' page faults will occur because a new object area

1s being used and only one of its pages (the discarded source page) will
be located in real storage. In addition, a new source page will be
teferenced.
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,These k page faults will be sufficient only if each one causes

the displacement of one of the pages of the previous object area.
However, at the beginning of the processing of a new sublist, clashes
are extremely unlikely to occur, and it is very possible that all of

the k' pages of the new object area will be referenced before the

overflow page. As a result the overflow page may be displaced and

k' + 1 page faults will have to occur before the new W.S.D. is

located in real storage. Several memory states can occur which lead

to more than k' + 1 page faults, though these are less likely. To

Cater for these various situations, it is assumed that on average
k' ,+ I rather than k page faults occur when a sublist is changed.

Assuming that discarded source pages are used as part of the new

object area as before, an estimate of the number of page faults

induced i8:-

c Initially loading real storage

with the first W.S.D. Recall

+ c = k' + 2 in the case being

considered.

Loading those source pages which

are not loaded at the time that

sublists are changed. Recall
+ that there are lMsJ source pages

and flMsl/t'l sublists.

Changing sublists. When a
sublist change is necessary,
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+

k - 1 new object pages which

are not in real storage, and one
source sublist page, are referenced.

Changing overflow pages.

There are rMs - Ml overflow

pages involved of which one

was brought into real storage

when the c real page frames

were originally loaded •

• + +

Consider the previously defined examples (M = 12 etc).

The numbers of page faults predicted by this expression for the various

Sublist lengths are:-

,
t Page Faults.

1 40

2 58

3 68

4 77

6 86

For the case Iw.s.D.1 > c, the large number of possible states

before a page change and the complexity of the associated transition
matrix make it necessary to rely on simulation studies.



- 119 -

5.4.1.2 Random Replacement

For simplicity in consideration of random replacement, it is
assumed that the sublist changes and changes of overflow pages do not

overlap or interfere with each other.

Firstly consider the case Iw.s.D.1 < c i.e. k' + 2 < c. When

only one new page is required e.g. changing an overflow or source

page, the probability of displacing one of the remaining members of the

~orking set of data is (k' + l)/c. This will produce a further page

fault when the displaced page is required again. Clearly several

page faults may be induced in changing a single page of the W.S.D.

before all of the modified W.S.D. is in main memory. This number of

page faults has a geometric distribution with parameter 1 - (k'+l)/c

and the expected value is:-

1
1- (k'+l)/c

• c/(c - k' - 1)

The worst situation in the case being considered is c = k' + 3 when

this expected value is (k' + 3)/2.

When a source sublist and object area change is required the

problems are considerably worse because most of the W.S.D. has to be

replaced, but the random algorithm will not always choose members of

the old W.S.D. to displace. Initially two pages of the new W.S.D.

~i1l be in main memory. They are the current source page, which will

become part of the new object area, and the current overflow page.
Let Zi be the number of page faults necessary to increase the number
of new W.S.D. pages in main memory from i to i + 1.
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Z1 has a geometric distribution with parameter (c - i)/c. Note that
once i pages of the new W.S.D. have been loaded into main memory it is
not possible for this number to decrease although the constituent pages
lIlaychange.
W.S.D. 's is

So the total number of page faults induced by changing

This has expected value:-

-
,•.'.1- t= c/(c - i)
1.:1

- c ~ l/j
JOe-M-t

where j • c - i

- c(H - H )c-2 c-k -2

Where H denotes the ith Harmonic number.
i

An expression for the expected value of the total number of page

faults can now be derived. Again it is necessary to work in terms of

average values and hence· only to be able to obtain an approximate

result.

Since c - Iw.s.D.1 is an unspecified quantity in the case being

considered, the exact state of the algorithm when the available real

Storage becomes full is unknown. This can be derived of course but

the expressions involved are extremely lengthy and the algebra is
tedious. In the paging analysis which follows it is assumed that real

Storage becomes full once the first W.S.D. has been loaded. There is

1n fact no logical difference between the two cases lw.s.D.1 < c and
1~.s.D.1 - c when random page replacement is used and the 'jump' in
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the number of page faults which was observed with L.R.U. replacement

will not occur. Thus the results presented below apply to both cases

but because of the above mentioned assumption the expressions become
increasingly inaccurate as c increases.

The total number of page faults induced will be approximately:-

c Initially loading real storage

+ with the first W.S.D.

Loading those source pages

which are not loaded at the time
+ that sub1ists are changed.

Changing sub1ists.

+
(rMs - Ml - l).c/(c - k' - 1) Changing overflow pages.

Consider once again the previously defined examples (M = 12 etc).

The numbers of page faults predicted by this expression are:-

~
3 4 5 6 7 8 9

1 69 48 42

2 104 71 60

3 126 83 69

4 158 102 84

6 167 105

Recall that I k' in this example and that for the sort phaset ...

Iw.s.D·1 ,= k + 2.
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These results appear in more detail in tables 5.9 - 5.13.
For the case Iw.s.D.1 > c simulation studies are relied upon but

it is intuitively obvious that the increase in paging activity will be

Considerable.

5.4.1.3 F.I.F.O. Page Replacement.

Again the F.I.F.O. replacement algorithm is considerably more

difficult to analyse than either L.R.U. or Random because the order

of loading of pages into main memory varies to a great extent with

the actual data being used. Simulation studies are therefore

relied on to provide information on the paging characteristics of

the algorithm using F.I.F.O. replacement for all three cases.

5.4.1.4 The MIN Algorithm

Firstly consider the case Iw.s.D.1 < c. The L.R.U. algorithm

does not make many wrong choices of which page has to be displaced

because the working set of data is the most recently used set of

pages.

However MIN is able to make the best possible use of the

c - Iw.s.D. I extra pages available and thus one would expect the

number of page faults to be less than the number obtained with L.R.U.,
and to decrease monotonically as c increases.

For the case Iw.s.D.1 = c, MIN is always able to displace the

page which is no longer needed when a page fault occurs but there

are no extra pages of which it can take advantage. L.R.V. was

expected to behave' like this in the case Iw.s.D. I < c, especially as
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the c - Iw.s.D.1 extra pages were for the most part ignored in that
analysis. Thus the number of page faults which MIN will produce in
this case may be expected to be the number predicted for L.R.U. in

the case Iw.s.D.1 < c.

As for all the other replacement policies, the amount of paging

increases very rapidly for values of c such that Iw.s.D.1 > c.

5.4.2 Simulation Of The Sort Phase

In order to check on the expressions derived in section 5.4.1

and to provide data where theoretical analysis was not possible, the

Sort phase was simulated.

Clearly the number of variable quantities prohibits simulation

of all possible or even desirable cases. Further problems are that

execution of the simulation program requires considerable C.P.U. time

and several simulations with a given set of parameters are required

in order to obtain a reliable estimate of an unknown quantity (e.g.

amount of paging). To overcome these difficulties, specific values

of parameters were selected and hopefully they are typical. In

addition, only a limited number of simulations were carried out for

each parameter set and the results serve only to indicate the order

of magnitude of the unknowns.

The simulation was intended to reflect fairly accurately the
actual processes involved in the sort phase. A typical main memory

management system was modelled and the sorting using only the basic

mapping was actually carried out on randomly generated data

sequences. The modification involving reclamation of recently

released source pages was incorporated.



- 124 -

Page reference strings were output for latter use by programs
simulating different page replacement algorithms with various amounts
of real memory.

As observed elsewhere, the problems of simulation with random

page replacement are even greater, since the same page reference

string can exhibit different amounts of paging with different initial

values for the random number generator used in the page replacement

simulator. Each page reference string produced by the sort simulation

program was subjected to random page replacement using three different

initial values for the random number generator.

The random number generator used throughout is that described by

Lewis et al, 1969 which is claimed to be designed especially for

I.B.M.'s System 360. Some difficulty was experienced with some of the

initial values for this generator and so all of the simulation results

included here were obtained using starting values from the '~il1ion

Random Digits" produced by the Rand Corporation.

The file size used was M - 12 pages with b • 128 records per page.
,

The five values 1, 2, 3, 4 and 6 were used for t , the length of the

source sublist in pages, and the ratio of t' to k' was set at unity.

Each set of parameters was simulated with three different initial

values for the random number generator and amounts of main memory

between 2 and 12 pages.
Tables 5.4 - 5.8 show the simulation results for L.R.U. page

replacement together with the values predicted by the expressions

derived in section 5.4.1.1. Graph 5.2 shows the average page fault

values· for each value of. t' •

The results shown in tables 5.9 - 5.13 and graph 5.3 are for
Random page replacement.
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For each set of sort algorithm parameters, only the average of the
three random paging simuiations is shown.

Tables 5.14 - 5.18 and graph 5.4 show the results obtained
USing F.I.F.O. replacement, and the performance of the MIN algorithm

is shown in tables 5.19 - 5.23 and graph 5.5.

Graphs 5.6 - 5.8 compare the performances of the different

replacement policies for three of the source sublist lengths

Considered.

The most important thing to observe in these results is the

very rapid increase in page faults as the amount of main memory

(i.e. c) drops below Iw.s.D.I. This is observed with all programs

but rarely is the effect so pronounced as in this case, where with

c - Iw.s.D.1 - 1, there is an increase of more than an order of

magnitude over c • Iw.s.D.I. This emphasises the need for accurate

prediction of system loading so that c can be estimated, or dynamic

variation of program parameters during execution. The advantage
,of saving some data movement during the merge phase by setting t

(and hence Iw.s.D.I> at a high value is vastly offset by the paging

activity which results if Iw.s.D.1 > c.

With L.R.U. page replacement, the expected slight decrease in

paging as c becomes very much greater than Iw.s.D.1 is observed for
,

all values of t but is not included in the analytic results. Also,

the slight increase in the number of page faults as the available real
storage drops to Iw.s.n.1 is observed to occur.

An unexpected result which is also as yet unexplained is the

amount of paging in the cases where the source sublist length i.e.
,

t , is 3 and 6 pages with Iw.s.n.1 > c.
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,Observing the results for the other values of t , the amount of paging
for a given value of c increases as t' increases, except in theve cases.
This shows up quite clearly in graph 5.2.

In examining the results of random page replacement, it is a

little strange initially to come across situations where the amount of

paging increases as main memory size increases by one page. This can

happen of course where, by chance, random page replacement makes very

good cho~ces of which pages to replace at one memory size, but very

poor choices at the next.

Again the most striking and important feature of these results is

the dramatic paging increase as the amount of main memory available

drops below the size of the W.S.D. However as expected, random page

replacement is able, in a sense, to make use of large amounts of main

memory in that it then has less probability of making incorrect choices

of which pages to displace. Thus the amount of paging drops at a

significant rate as main memory size increases and Iw.s.D.1 = c is

observed, as predicted, not to be a special case as it is with L.R.U.

Although random page replacement does not perform as well as

either F.I.F.O. or L.R.U. for Iw.s.D.1 < c, in cases of limited main

memory it does perform consistently very much better than F.I.F.O. and

often better than L.R.U. As noted previously, the reason is that in

most cases, neither L.R.U. nor F.I.F.O. make the optimum choice when

main memory is limited (optimum in the sense of the definition of the
MIN algorithm). Random page replacement will make an optimum choice

on some occasions purely by chance. Consider for example the case
t' = k' c 1, c = 2. During the sort phase, a record will be

obtained from the source page and then a location examined in the
Object page.
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If this location is occupied the overflow page will be needed. Since

c - 2 any uses of the overflow page will cause a page fault, and both
L.R.U. and F.r.F.O. would displace the source page in this example.

The optimum choice would be to displace the object page as the source

page will be needed immediately to obtain the next record. Random

page replacement is capable of making this optimum choice purely by

chance.

Except in the case c - 2, the L.R.U. algorithm produced less

paging for all the parameter values used and this fact deserves

comment. Although full L.R.U. as modelled here is considered

somewhat impractical, the results indicate that the extra cost

associated with implementing it in some form may well be worthwhile.

In addition, the remarkable closeness of the L.R.U. results to the

MIN results in many cases, illustrates how very efficient L.R.U. is

for this particular sort algorithm.

analytic paging studies.

Although no analytic results have been obtained for F.I.F.O. page

This fact was indicated in the

replacement the simulation results show its behaviour to be very

similar to that obtained with other algorithms.
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TABLE 5.4

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 2718 2621 3079 2806 -
3 41 42 44 42 40
4 24 25 24 24.3 24
5 24 24 24 24 24
6 23 24 23 23.3 24
7 23 23 23 23 24
8 23 23 23 23 24
9 22 22 22 22 24

10 22 22 22 22 24
11 22 21 21 21.3 24
12 21 21 21 21 24

L.R.U. Page Replacement With Sublist Length Of One Page.

TABLE 5.5

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 3263 3306 4576 3715 -3 1147 1074 1365 1195 -4 53 51 65 56.3 58
5 30 29 29 29.3 33
6 25 25 23 24.3 33
7 25 25 23 24.3 33
8 24 24 23 23.7 33
9 24 24 23 23.7 33

10 23 23 22 22.7 33
11 22 22 21 21. 7 33
12 22 22 21 21. 7 33

L.R.U. Page Replacement With Sublist Length Of Two Pages.
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TABLE 5.6

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 3267 3259 3223 3249.7 -
3 1545 1549 1542 1543.3 -
4 726 738 739 732.3 -
5 65 60 61 62 68
6 31 30 32 31 36
7 30 30 31 30.3 36
8 26 28 27 27 36
9 24 24 24 24 36

10 24 24 24 24 36
11 23 23 23 23 36
12 23 23 23 23 36

L.R.U~ Page Replacement With Sub1ist Length Of Three Pages.

TABLE 5.7

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 4150 4119 4492 4253.7 -
3 2089 2039 2153 2093.7 -
4 1332 1262 1364 1352.7 -
5 670 622 675 655.7 -
6 84 79 84 82.3 77
7 32 30 31 31 39
8 28 28 30 28.7 39
9 27 27 28 27.3 39

10 26 24 27 25.7 39
11 24 24 24 24 39
12 24 24 24 24 39

L.R.U. Page Replacement With Sublist Length Of Four Pages.
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TABLE 5.8

Main SE:ED1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 3444 3490 3457
I

3463.7 -
3 2060 2076 2076 2070.1 -
4 1574 1552 i 1591 1572.3

I
-

5 1130 1151 1115 1132 -
6 763 762 729 751.3 -
7 424 417 386 409 -
8 80 80 89 83 86
9 32 32 33 32.3 39

10 32 32 32 32 39
11 32 32 32 32 39
12 32 32 32 32 39

L.R.U. Page Replacement With Sub1ist Length Of Six Pages.

TABLE 5.9

Main Average Average Average Average Predicted
Memory For For For Page Page
Pages SEED 1 SEED 2 SEED 3 Faults Faults

2 2196 2122 2473 2263.7 -
3 76 767 64.3 72.3 69
4 41.7 53 44.3 46.3 48
5 37.3 40 42.0 39.8 41
6 34.3 37.3 32.3 34.7 39
7 33.7 34 31.3 33 39
8 29 30.3 28.7 29.3 -
9 28.3 26.3 27.3 27.3 -

10 27.3 25.7 23.3 25.4 -
11 24 25.7 25 24.9 -
12 22.3 25 23.7 23.7 -

RANDOM. Page Replacement With Sub1ist Length Of One Page.
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TABLE 5.10

Main Average Average Average Average PredictedMemory For For For Page PagePages SEED 1 SEED 2 SEED 3 Faults Faults
2 3202.3 3185.7 4165 3517.7 -3 1433.3 1415.0 1867.3 1571.9 -4 123 134.7 122.7 126.8 1045 59.3 62 63.7 61.7 706 48 51.3 44.3 47.9 597 35.7 37.3 40 37.7 548 32.3 37.3 32 33.7 -9 32.3 32.7 34.7 33.2 -10 32.3 30.3 24.0 28.7 -11 29 27.7 26 27.6 -12 28.3 29.3 29.3 29.0 -

RANDOM Page Replacement With Sub1ist Length Of Two Pages.

TABLE 5.11

Main Average Average Average Average PredictedMemory For For For Page PagePages SEED 1 SEED 2 SEED 3 Faults Faults
2 3368.3 3364 3330.3 3354.2 -3 2035.3 2024.7 2018.3 2026.1 -
4 962.3 959 991.7 971 -5 116 135.3 134.7 128.7 125
6 69.7 73 78 73.6 837 49 55 46.7 50.2 698 47.3 48.3 41.7 45.8 629 36.7 37 35 36.2 -10 34.3 35.3 35 34.9 -11 32.7 28 30.7 30.5 -12 29.7 29 28.3 29 -

RANDOM Page Replacement With Sub1ist Length Of Three Pages.
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TABLE 5.12

Main Average Average Average Average Predicted
Memory For For For Page Page
Pages SEED 1 SEED 2 SEED 3 Faults Faults

2 4176 4141.7 4439 4252.2 -
3 2834.7 2740.3 2966 2847 -
4 1764.3 1703 1809 1758.7 -
5 865 845.7 924 878.2 -
6 166.7 165.3 196.7 176.2 158
7 92.3 79 77 82.8 102
8 64.7 54 62.3 60.3 84
9 47 45.7 48 46.9 78

10 36 45 39.7 40.2 -
11 33 33.3 38.7 35 -
12 31.3 32.7 32.7 32.2 -

RANDOM Page Replacement With Sub1ist Length Of Four Pages.

TABLE 5.13

Main Average Average Average Average Predicted
Memory For For For Page Page
Pages SEED 1 SEED 2 SEED 3 Faults Faults

2 3728.7 3729.3 3736.3 3731.4 -
3 2751 2737.3 2760 2749.4 -
4 2051 2009.7 2067.3 2042.7 -
5 1455.7 1480.7 1421.3 1452.6 -
6 998.7 949 956.7 968.1 -
7 518.7 511.7 515.7 515.4 -
8 160.3 156.3 180.7 165.8 167
9 117 83 97 99 105

10 71.3 65.3 72 69.5 84
11 55.3 58 63 58.8 74
12 61 49.3 57 55.8 -

RANDOM Page Replacement With Sublist Length Of Six Pages.
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TABLE 5.14

Main SEED 1 SEED 2 SEED 3 Average
Memory Page
Pages Faults

2 2718 2621 2785 2708
3 50 59 68 59
4 26 26 26 26
5 24 24 24 24
6 24 24 24 24
7 24 24 24 24
8 23 23 23 23
9 23 23 23 23

10 23 22 22 22.3
11 22 22 22 22
12 21 22 21 21.3

F.I.F.O. Page Replacement With Sub1ist Length Of One Page.

TABLE 5.15

Main SEED 1 SEED 2 SEED 3 Average
Memory Page
Pages Faults

2 3453 3500 4800 3917.7
3 1458 1505 1881 1614.7
4 56 56 78 63.3
5 36 36 35 35.7
6 33 33 32 32.3
7 26 26 24 25.3
8 25 25 23 24.3
9 24 24 22 23.3

10 23 23 22 22.7
11 23 23 22 22.7
12 23 23 22 22.7

F.l.F.O. Page Replacement With Sublist Length Of Two Pages.
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TABLE 5.16

Main SEED 1 SEED 2 SEED 3 Average
Memory Page
Pages Faults

2 3601 3613 3573 3595.7
3 2067 2082 2080 2076.3
4 926 948 951 941.7
5 61 61 61 61
6 41 41 41 41
7 32 32 32 32
8 29 29 29 29
9 25 25 25 25

10 24 24 24 24
11 23 23 23 23
12 23 23 23 23

F.1.F.0. Page Replacement With Sub1ist Length Of Three Pages.

TABLE 5.17

Main SEED 1 SEED 2 SEED 3 Average
Memory Page
Pages Faults

2 4526 4467 4845 4612.7
3 2874 2782 3001 2885.7
4 1768 1725 1833 1775.3
5 881 807 885 857.7
6 94 101 107 100.7
7 53 54 56 54.3
8 39 39 39 39
9 28 28 28 28

10 26 26 26 26
11 24 24 25 24.3
12 24 24 24 24

F.1.F.0. Page Replacement With Sub1ist Length Of Four Pages.
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TABLE 5.18

Main SEED 1 SEED 2 SEED 3 Average
Memory Page
Pages Faults

2 3889 3940 3912 3913.7
3 2770 2771 2802 2781
4 2047 2026 2022 2031.7
5 1468 1450 1439 1452.3
6 949 943 923 938.3
7 489 497 482 489.3
8 102 106 93 100.3
9 56 58 58 57.3

10 48 49 49 48.7
11 39 35 35 36.3
12 33 33 33 33

F.I.F.O. Page Replacement With Sublist Length Of Six Pages.

TABLE 5.19

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 1538 1475 1725 1579.3 -
3 26 26 28 26.7 24
4 23 24 23 23.3
5 22 22 22 22
6 21 21 21 21
7 20 20 20 20
8 20 20 20 20
9 20 20 20 20

10 20 20 20 20
11 20 20 20 20
12 20 20 20 20

MIN Page Replacement With Sublist Length Of One Page.
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TABLE 5.20

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 2277 2295 2993 2521.7 -
3 786 761 995 847.3 -
4 35 35 40 36.7 33
5 26 26 24 25.3
6 23 23 22 22.7
7 22 22 21 21.7
8 21 21 20 20.7
9 21 21 20 20.7

10 21 21 20 20.7
11 21 21 20 20.7
12 21 21 20 20.7

MIN Page Replacement With Sublist Length Of Two Pages.

TABLE 5.21

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 2406 2400 2370 2392 -
3 1116 1122 1111 1116.3 -
4 436 427 427 430 -
5 36 36 36 36 36
6 30 30 30 30
7 25 25 25 25
8 23 23 23 23
9 22 22 22 22

10 21 21 21 21
11 21 21 21 21
12 21 21 21 21

MIN Page Replacement With Sub1ist Length Of Three Pages.
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TABLE 5.22

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 3025 2978 3210 3071 -
3 1588 1552 1657 1599 -
4 828 814 864 835.3 -
5 354 339 358 350.3 -
6 40 40 41 40.3 39
7 29 29 30 29.3
8 25 25 26 25.3
9 23 23 24 23.3

10 22 22 23 22.3
11 21 21 22 21.3
12 21 21 21 21

MIN Page Replacement With Sublist Length Of Four Pages.

TABLE 5.23

Main SEED 1 SEED 2 SEED 3 Average Predicted
Memory Page Page
Pages Faults Faults

2 2639 2667 2652 2657.7 -
3 1597 1583 1600 1593.3 -
4 1030 1028 1028 1028.3 -
5 653 659 647 653 -
6 394 381 378 384.3 -
7 186 181 179 182 -
8 39 39 39 39 39
9 32 32 32 32

10 30 30 30 30
11 28 28 28 28
12 26 26 26 26

MIN Page Replacement With Sub1ist Length Of Six Pages.
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5.4.3 The Merge Phase

In order to produce a completely sorted file it is necessary to

merge together the sublists produced by the sort phase. Clearly if

an S way merge is to be used it would be preferable for at least one

page from each of the S sub lists to be present in main memory

together with one page from the new sublist being produced. This

will allow merging to continue without being unduly interrupted by

page faults, and leads to the definition of the working set of data

for the merge phase as these S + I pages. Many of the problems which

occurred in the sort phase analysis arise Ln the merge phase, and

there are the same three cases to consider:-

(i)

(ii)

(ili)

Iw.s.D.1 < c

IWoSoDol = c

IWos.D.1 > c

Fortunately it is not necessary to foraulate a completely

separate analysis for each replacement algorithm because merging is a

reasonably simple process and behaves similarly under the various

replacement policies. In order to be able to refer easily to the

various aspects of the process, it is useful to make the following

definitions:-

Define a 'phase' to be the entire merging process.

Define a 'step' to be the merging necessary to take a whole set

of sublists (input sublists) and produce a whole new set of longer

sublists (output sublists).

Define a 'unit' to be the merging of a set of input sublists to
produce one new output sublist.
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Thus a phase consists of several steps and a step consists of

several units. Hopefully figure 5.4 clarifies these definitions.

Recall the definition of a 'page change' as the replacement of

one of the members of the W.S.D. Thus Iw.s.D.1 remains the same but
one of the constituent pages is changed. If the entire W.S.D. is

located in real storage, a page change could induce several page

faults before the modified W.S.D. is entirely located in real storage.

As has been done previously, dynamic acquisition of a free

virtual page is treated as a page fault. This can be regarded as a

worst case and the analysis presented can easily be modified to

predict the performance of a specific operating system.

Consider the first case i.e. IW.S.D.I < c. During each unit the

only page faults which occur will be when the page of the output sublist

being produced becomes full, or one of the pages of the input sublist is

exhausted.

With L.R.U. each of these page changes will only cause one page

fault because no member of the W.S.D. will be least recently used.

Similarly with F.I.F.O., usually the oldest page in real storage

(i.e. first in) will not be a member of the W.S.D., so only one page

fault will be caused for each page change.

Random page replacement could induce any number of page faults

before successfully effecting one page change. The probability of

displacing an unwanted page is (c - S)/c and so the expected number of

page faults required to change a page of the W.S.D. is c/(c - S)
(expected value of a geometric distribution). The average number of

page faults produced in the change of W.S.D. which occurs when a new

unit begins is S + 1 for the first unit and c(H - H S 2) forc c- -

subsequent units (see section 5.4.1.2.).
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Let F be defined as this average number of page faults which occur
when a unit begins then:-

F ,.
for the first unit

for subsequent units.

A unit which merges S sublists each of length t pages will

require S + 1 page changes to load the W.S.D. initially, and:-

S(1 - 1) page changes to load the remainder

of each sub1ist.
+

S1 - 1 page changes to load the remainder

of the new sub1ist.

• 251 - 5 - 1

This will produce:-

5 + 1 + 251 - 5 - 1

• 25R.

F + (2S - S - 1) c
c - 5

page faults with L.R.U. and F.I.F.O.

page faults on average with random

page replacement.

The output of the sort phase described previously will consist

of sparsely occupied sublists. The first merge step will compact
them, as a side effect. In this case the expressions derived above

require the following modifications.
Suppose the input sublists for a unit are only 100f% full,

O<f~l.
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If there are S sublists each of length R. pages, the output sublist

length will be rStfl pages and the above expressions modify to:-

S1 + [ser] L.R.U. and F.I.F.D

F + (S1 + rS1fl - S - 1) c
c - S

Random

All the input sublists to a unit may not be the same length,

in particular, just one may be shorter than the rest. This special

case occurs frequently and expressions for the paging to be expected

are required. Clearly a unit merging S input sublists, of which

one is shorter than the rest, will not necessarily exhaust the

shorter sublist before the other S - 1. The distribution of the

keys in the shorter sub list is over the same range as in the longer

sublists, there are just fewer records.

Suppose (S - 1) input sublists are of length i and one is of

length t' where l' ~ 1. Using the expressions derived above the

total number of page faults will be:-

S + 1
+

(S - 1)(1 - 1) + (1' - 1)

loading the initial W.S.D.

loading the rest of the

+ input sublists.

r«S - 1)1 + l' )f1 1 loading the rest of the

output sublist.

- 51 - (1 - 2.') + r«S - l)t + t')f1 for L.R.U. and F.I.F.D.

and corresponding1y:-

F + (51 - (1 - t') + r«S - 1)t + t')fl - 5 - 1) c
c - S

for Random.
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In the case Iw.s.n.1 = c the expression derived for random page

replacement for the case Iw.s.n.1 < c is still valid.
An understanding of the problems associated with F.I.F.G.

replacement when Iw.s.n.1 = c is best obtained using a modified

version of the notation employed previously to describe main

storage contents. Suppose the letters 11, ••• , Is denotes the set

of pages from the S input sublists and Gidenotes the ith page of the

output sublist. A sequence of these letters then represents main

storage contents and the order from left to right indicates the

order in which the pages entered storage i.e. first in is the

extreme leftmost letter of the string.

storage contents will be:-

As the algorithm begins the

Clearly, the output page will be filled before any of the input

pages are exhausted and a reference to O~will result. This will

displace 11 :-

Referencing 11 will displace 12 and so on and a total of S + 1

page faults will occur before 01 is finally displaced. This is an

example of one page change requiring several page faults. The final

main storage contents will be:-

0.1' 11, I~, •••••. , Is

If 0, is filled and a reference to 03 occurs before one of the
input pages becomes exhausted, only one page fault will occur and the



- 151 -

new memory contents will be:-

Each of the input sublists has the same probability of being the

first to become exhausted. Suppose input page Ij becomes exhausted
•and a reference to its successor Ij occurs. Main storage contents

immediately following this will be either:-

...... , I I
,

s' J

I ° I~!o' i' Jor ...... ,

depending on how many output pages have been referenced. Either j

or j - I additional page faults will occur before Ij is displaced

giving totals of j + land j, and main storage contents following the

displacement of I. of:-
.J

Is'
, °i , Ij_tIj T1' ...... , IJ ' 11 ' ...... ,

1. , Is' °i ' • I· 1or ...... , 13 ' 11 ' ......,J +1 J-

Changing other input pages will have a similar 'mixing' effect

on storage contents and several page changes (the order of which will

depend on the actual data) will leave the pages in real storage in

what is virtually an unpredictable order.

For simplicity it is assumed that when a page change is necessary,

the page which has to be displaced occupies any of the possible

positions in the string with equal probability giving an average

number of page faults per page change of (S + 2)/2. Regrettably,

there is no way to improve on this figure since the program is not able

to rearrange the order of the pages in storage.



- 152 -

The fact that a page is no longer required in main storage is not

evident until its successor is referenced. As far as the output
sublist is concerned this will mean the filled page is second most

recently referenced page in storage and so S - 1 page faults must

occur with L.R.U. before it is displaced. An exhausted page of the

input sublists could be anything, except most recently used, giving an

average of (S + 1)/2 page faults to displace it.

If the program which is using the data is able to detect that an

input page is exhausted or an output page is full before referencing

its successor, for example by counting records or checking addresses,

the page which is no longer needed could be made least recently used

by deliberatly referencing the other pages in storage.

Thus in the case Iw.s.D.1 = c, a unit which merges S sublists

each of length t pages will require Set - 1) + St - 1 page changes

plus S + 1 page faults to initially load the W.S.D. giving totals of:-

S + 1 + S(1 - 1)(5 + 1) + (St - l)(S - 1)
2

page faults on

• S(S + 1)(3t - 1) - 2(St - 1)
2

average with L.R.U.

S + 1 + S(l - l)(S + 1) + (St - l)(S + 1)
2 2

page faults on

average with F.I.F.O.
• (S + l)(St - (S - 1»

2

F + c (2S1 - S - 1)
(c - S)

- F + (5 + 1)(2S - 5 - 1)

page faults on

average with Random.

(recall c = S + 1)
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The corresponding expressions for sparsely occupied input
sub1ists (f < 1) are:-

(5 + l)(S(t - 1) + rStfl) - 2(rStfl - 1)
2

L.R.U.

5(1 - l)(S + 1) + (fSifl + l)(S + 1)
2 2

F.I.F.O.

F + (Sl + rSlfl - S - 1) c
(c - S)

- F + (S + l)(Sl + rSlfl - S - 1)

Random.

When one sub1ist is shorter than the rest, these expressions

modify very easily. As before, suppose there are 8 - 1 sub1ists

of length 1 and one of length l' • The expressions for the number

of page faults induced are:-

S + 1 + (S - 1)(1 - l)(S + 1) + (1' - 1)(8 + 1)
2 2

+ «8 - 1)1 + l' - 1)(8 - 1)

L.R.U.

• (8 + l)«S - 1)(1 - 1) + (1' + 1»
2

,+ «8 - 1)1 + 1 )(8 - 1)

,
8 + 1 + «S - 1)(1 - 1) + (1 - 1»(8 + 1)

2

+ «5 - 1)1 + l' - 1)(S + 1)
2

- (5 + 1)(2 + (S - 1)(21 - 1) + 2(1' - 1»
2

F.I.F.O.

F + c (2(S - 1)1 + 21' - (S + 1»Cc - S)

- F + (5 + 1)(2(S - 1)1 + 21' - (S + 1»

Random.
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When real storage is very limited i.e. Iw.s.D.1 > c page faults

will occur during merging as well as when a page change is necessary.
As a result, a very considerable increase in paging is to be
expected.

Suppose there are b records per page. After a record has been

written to the output sublist a new record must be obtained from an

input sub1ist. Thus processing a single record can cause either 0,

1 or 2 page faults:-

o page faults if the page of the input sublist required

is in real storage.

1 page fault if the page of the input sublist required

is not in real storage and loading it does not displace

the page of the output sub1ist.

2 page faults if the page of the input sublist required

is not in real storage and loading it does displace

the page of the output sub1ist.

Assuming randomly distributed data the probabilities of each of

these cases for each replacement algorithm are:-

L.R.U.: pr(O p.f.) = (c - 1)/5
pr(l p.f.) = 1 - (c - l)/S

pr(2 p.f.) = 0 must be zero since the

page of the output

sublist is most recently

used.
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Random: pr(O p.f.) = (c - l)/S
pr(l p.f.) = (1 - (c - l)/S)(l - l/c)
pr(2 p.f.) = (1 - (c - l)/S).l/c

F.I.F.O. : A reasonable approximation is obtained if the

probabilities obtained for random page replacement

are used. This is intuitively reasonable since

pages are entering real storage in a 'random'

order. Further evidence is provided by

simulation. Table 5.24 and graph 5.9 show the

result of simulating the merging of eight, one

page sublists each containing 1000 records, using

various amounts of real storage.

Main Page faults
Memory
Pages L.R.U. F.I.F.O. RAND. MIN.

2 882 1322 1319 882

3 747 1010 1027 582

4 626 769 765 406

5 492 599 570 278

6 372 444 434 186

7 245 279 299 112

8 116 146 163 54
9 9 9 9 9

10 9 9 9 9

Table 5.24
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Thus for b records the expected number of page faults is
b(l - (c - l)/S) for L.R.U. and b(l - (c - l)/S)(l + lIe) for F.I.F.O.
and Random.

Changing a page of the W.S.D. will cause slight changes in

these expressions until the page leaving the W.S.D. has been

displaced from real storage. This effect is negligible when

compared with the paging which is occurring anyway and will be ignored.

Thus a unit merging S sublists of length i pages with b records per

page will induce an average of Sib(l - (c - l)/S)with L.R.U. and

Sib(l - (c - l)/S)(l + llc) for F.I.F.O. and Random.

Consider as an example the case S s 4, i = 3, f = 1, and b = 200.
Then Iw.s.D.1 = 5 and the expressions derived above give:-

c > Iw.s.D.1

c - Iw.s.D.1
c < Iw.s.D.1

L.R.U.

24

58

600(5 - e)

F.I.F.O.
24

53
600(5 - c)(l + llc)

RANDOM

5 + 19c/(c - 4)
100

600(5 - c)(l + llc)

The fact that paging increases by an order of magnitude if the available

real storage drops to one page less than the Iw.s.D.1 should be noted.

A step usually consists of several units. The expressions

derived above for the paging to be expected for a single unit are

'self contained' in the sense that all the paging occurring during

processing of a single unit is accounted for. As a result the paging

which will occur during a complete step consisting of say U units, can
be expected to be just U multiplied by the expression for a single

unit. However the total number of sublists involved in a single step

may not be a multiple of S, the order of merging.
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In this case, one unit will require special attention. Even if the
number of sublists is a multiple of S, one may be shorter than the
rest because one of the previous steps may have involved a unit
merging less than S sublists.

Suppose step i has Ei input sublists, all but one of them of

length Li, then it will consist of rEi/51 units and hence the input

sublists supplied to the next step will satisfy Ei+l = rEi/51 and

Li+l - rSLifl.
The final unit of each step will have Qi input sublists where

Qi - Ei - lEi/sJs if Ei is not a multiple of S, and Qi = S otherwise.

One of these sublists may be shorter than the rest. Its length will

be Vi and it is easily shown that Vi = «Qi-l - l)Li_l + Vi_l)f.

Clearly VI = Ll on most occasions since it is reasonable to assume

that all the sorted sublists produced by the sort phase are of the same

length. As an example figure 5.5 shows the case El = 20, 5 = 3, Ll = 1.

The importance of the special case unit rises with each step

until the final step which consists of a single unit.

The number of steps involved in the entire phase will be

rlogs Ell. Suppose, as input to the merge phase, there are El

sublists each of length L1 pages and an 5 way merge is desired.

Using the notation and expressions derived above, it is relatively

easy to compute the total number of page faults which will occur for

each replacement policy with various amounts of real storage available.
However the general expressions which result are extremely lengthy

and so only one case, Iw.s.D. I < c, is given here as an example.
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Fig 5.5

It is a great deal easier to deal with specific instances of merges

of particular interest where the actual parameters are available,

using the expressions derived for individual units, than to

formulate all encompassing generalized expressions.

Thus for the case Iw.s.n.1 < c, it is assumed that f < 1 for
units of the first step and f = 1 thereafter as the second and
subsequent steps will normally operate with compacted sublists.

In addition it is assumed that all the input sublists to the first

step are of equal length (i.e. equal numbers of sparsely occupied
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pages but not necessarily equal numbers of records). The total

number of page faults expected is:-

L.R.U. and F.I.F.O.:-

All but the last unit of

+
the first step.

(Q L + rQ L f1)
1 1 1 l

Last unit of the first

step.

All but the last unit of

second and subsequent steps.

Last unit of second and

subsequent steps.

(Cont'd Overleaf.)
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Random:-

(S + 1) + (SL1 + rSL1 f1 - S - 1) c
c - S

First unit of first step.

+

(rEt/Sl - 2)(c(Rc - Rc-5-2) + (SL1 + rSL1fl - 5 - 1) c )
c - 5

All of first step except

+ first and last units.

C(RC - Rc-Qr2 ) + (Q1Ll + IQ1Lli - Q1 - 1) c
c - 5

Last unit of first step.
+

r,os E,l
~ {c(Rc - Rc-5-2) + (25Li - 5 - 1) C
1-2 c - S

All but the final units

of the second and

subsequent steps.

Final units of second

and subsequent steps.

5.5 Parameter Setting

There are several variable quantities involved in this sorting

technique which play important roles in determining its efficiency.

They are the ratio of the source area size to the object area size
i.e. t to k or t' to k' , the actual size of the source area i.e.

the sublist length, and the order of merging, S. This raises the

question of a suitable definition of efficiency.
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Conventional internal comparative sorting algorithms are usually
assessed in terms of the average number of comparisons required to
sort n records. This relies on the assumption that execution time

increases as the average number of comparisons increases. Other

criteria which might be considered are the number of storage references,

amount of working space required, total execution time, or the number

of page faults induced.

For modified address calculation, the average number of

comparisons is not appropriate since two record keys are never compared

in the basic algorithm, and only a relatively small number of such

comparisons take place if the first or second modification is used.

Checking to see whether an object area location is occupied need not

involve a comparison (on I.B.M.'s System 360 and System 370 at

least). For example, if all object area locations are initialized

to zero then during execution, the logical OR can be used to set a

condition code if a particular object area location is other than

zero.

Normal address calculation sorting is known to be a high speed

algorithm and with the changes suggested here it should operate even

more quickly. Excessive paging will cause considerable delays and

Brawn et aI, 1970 have shown how the use of sub lists dramatically

reduces the number of page faults produced. In order that modified
address calculation does not lose the benefits gained from the use
of sublists, the criterion used in the setting of parameters is
that the amount of paging should be low.
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5.5.1 The Ratio Of Source Area Size To Object Area Size.

Suppose y a t/k. Lemma 5.1 shows that as y is reduced, the
mapping efficiency, at increases but the number of object pages

produced also increases. This is offset by less records clashing

and producing fewer overflow pages which have to be sorted.

However with y = 1, the largest value considered, 8 is almost .75

for the most efficient mapping and so very few overflow pages will

be produced anyway. For example, if the source file occupies 12

pages, table 5.25 shows the effect of varying y with the most

efficient mapping.
-

ACTUAL NUMBER ACTUAL NUMBER
EFFICIENCY OF SOURCE OF OBJECT

Y OF MAPPING PAGES MAPPED PAGES PRODUCED

0.125 .995 13 104

0.25 .975 13 52

0.375 .95 13 35
0.5 .91 14 28

0.625 .875 14 24

0.75 .835 14 19

0:825 .79 15 17

1.0 .745 16 16

TABLE 5.25

Clearly for any value of yother than unity, the efficiency of

the merge phase is going to be drastically reduced.
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5.5.2 The Source Area Size And Order Of Merging

Once the ratio of source area size (t records or tr pages) to
object area size (k records or k' pages) is determined, the value of

t will set the size of the W.S.D. for the sort phase. The value of

S determines the size of the W.S.D. for the merge phase. It was

shown in section 5.4 that provided Iw.s.D.1 < c ~easonable performance

can be achieved and this is the fundamental basis for the choice of

these parameters.

If they are chosen such that Iw.s.D.1 + I < C then main memory

1s available which the program cannot immediately use, although extra

data will be available in main memory for use at a later time.

By definition Iw.s.D.1 • k' + 2 for the sort phase and the optimum

h f I I i k' - 3c oice 0 t is clearly that which makes W.S.D. + I = c .e. c - •

Similarly, the 'best' choice of S is that which makes Iw.S.D.1 + I = c

i.e. S • c - 2.

Under most operating systems this is not possible because c usually

varies with time and there is no easy way of measuring it. A guess

at the value of c could be made by counting the number of tasks in

execution and perhaps use a function of this as an upper bound.

Alternatively the program could be written to be self modifying so as

to adjust its working set size as the paging traffic varies. Another

approach is to "play safe" and always set the parameters so that the

working set of data is as small as possible. In this way reasonable

performance can be achieved while using only the minimum system
resources.

These problems do not arise when VM/370 is being used. The
virtual machine performing the sort can be assigned a certain nlwber
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of real page frames using the SET RESERVED command and the algorithm's

parameters set accordingly.

5.6 Conclusion

A sorting technique has been proposed which differs from the

more conventional algorithms in that it requires rather more memory

space than is necessary to hold the data. However it does exhibit

extremely good locality of reference, and this is an ideal way to

take advantage of a paging system. In addition, the result of

removing the most time consuming aspect (resolution of clashes)

from address calculation sorting, which is an attractive algorithm

anyway, is to produce an extremely fast and simple sort technique.

Comparing the execution time of high level language implementations

of the sort phase indicates that modified address calculation will be

approximately an order of magnitude faster than Quicksort (Hoare, 1962).

There are so many variables involved in the precise comparison of

algorithms that it is not possible to quantify the exact performance

of the suggested algorithm. For example different coding, different

data, different hardware and many other factors affect practical

performance.

The way that the paging performance can be expected to vary with

changes in the amount of real storage available was shown in section
5.4. With correctly set parameters, the number of page faults

produced is of the same order as the number which would occur with a

conventional algorithm using sub1ists (Brawn et a1, 1970).
The most important point to note is that modified address

calculation will execute a great deal faster than conventional
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address calculation, and most other algorithms, without losing the

benefits of the file organisation suggested by Brawn et aI, 1970.
They show that the naive approach of treating virtual storage as if

it were real can produce an increase in paging of three orders of

magnitude or more.

Modified address calculation as suggested here is capable of

various extensions. For example, in a system where real storage

is extremely limited, the source area being vacated during execution

could be used to hold the overflow records, or the suggested use of

a combined source and object area could be investigated in more

detail.

The analysis of the merge phase is in terms of the previously

defined sort algorithm. However the conclusions apply to any merge

operation, no matter how the sublists are obtained. If the order

of merging is not less than the amount of real storage available,

the high costs computed in section 5.4 will be incurred.

Finally, the simplicity of the algorithm makes it suitable

for a microprogrammed implementation. Data fetching and address

calculation within registers can easily be overlapped at the

microprogram level and it ought to be possible to implement the

entire algorithm in a few specially constructed machine instructions.

This approach is suggested by Husson, 1970.



Chapter 6.

CONCLUSION

It seems unlikely that an inexpensive, extremely high capacity,

random access storage device with a cycle ttme of just a few nanoseconds

will become available in commercial quantities in the near future.

Magnetic bubble technology and cryogenics look promising but the cycle

times so far achieved are generally longer than presently available

magnetic core and electronic storage. Hardware designers will always

wish to use the fastest available storage and such storage will never

be economic in massive quantities soon after its introduction. Thus

it seems reasonable to assume that memory heirarchies will continue to

be used. Since paged memories have been made to work fairly well, and

at least one manufacturer has made available a whole range of machines

with paged memories, it also seems reasonable to assume that memory

heirarchies 'utilizing paging will continue to be used. If these

assumptions are correct, two broad areas for further research are suggested.

Firstly, all algorithms which are to be implemented in a paged

memory and which use large amounts of data should be examined to

determine how well they use virtual memory facilities. Hopefully

this thesis shows areas where improvement is possible but there are
many algorithms used in numerical analysis and statistics for example

which have not been considered.
Secondly, the architecture of computers with paged memories

must be reviewed with the aim of reducing the costs of paging. This

is achieved to a great extent in the S.C.C. 6700 (Watson, 1970). but
other commercially available machines contain few innovations in the
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architectural sense and are basically similar to the original
Atlas (Kilburn et al., 1962). However, even if hardware improvements
are made, paging will continue to be an expensive operation simply
because the difference in access times between the two storage levels

will mean delays in acquiring information located on the secondary

storage device.

A fact which has appeared on several occasions through this

thesis is that L.R.U. page replacement is generally superior to both

RAND and F.LF.D., at least as far as data references are concerned.

Frequently it can approach the performance level of the MIN algorithm.

An objection which might be raised to the analyses presented

is that the full L.R.U. algorithm is modelled. In practice a much

simplified version of L.R.U. is usually used because of hardware

deficiencies.

For example, l.B.M.'s System 360 Model 67 and all System 370

models have a 'use' bit and a 'change' bit associated with each half

page of real storage. Thus it is possible to distinguish between

those pages which have been referenced in a given time interval and

those which have not. No hardware facilities exist for

classification beyond this simple partitioning. Random selection

among non-referenced pages is the simple version of L.R.U. which is

often used, but very frequent inspection of these bits by the

operating system can reveal the least recently used page.
Rather surprisingly, a hardware implementation of L.R.U.

replacement is relatively simple on these machines and requires only

a minor addition to the hardware. One register for each real
storage page frame' is all that is required.
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These registers should be continuously incremented by clock pulses
and will be referred to here as use timers. Since another register
(the storage protection key) is interrogated for every storage

reference anyway, it is relatively trivial to reset the

corresponding use timer to zero. Full L.R.U. replacement within

the set of pages being used by a program then consists of selecting

the page from that set whose timer has the highest reading. This

selection is also a comparatively simple hardware operation and

could be a continuously operating process so that no delay is

incurred when a page has to be selected for displacement.

If this type of hardware is used, it is reasonable to implement

in addition, hardware measurement of the frequency of use of each

page. The decision of which page to displace could then be based on

a combination of frequency of use and time since last use (L.R.F.U.

page replacement). Further investigation is needed to determine

how worthwhile this would be.

Working Set allocation is becoming increasingly popular. If

modified hardware were available, it might be beneficial to redefine

a program's working set in terms of the frequency of use of its·pages

rather than merely those pages referenced during the 'window' interval.

Although they are not paging situations in the normal sense,

similar principles are used in the cache memories of I.B.M. 's System

360 Model 85 and System 370, and a hardware implementation of L.R.U.
replacement is used when a block has to be displaced. It should be

noted that many of the results obtained here may be used to advantage

on these machines.
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The idea of the Working Set of Data has been used extensively.
It has the useful property of frequently showing exactly how much
real storage is required for efficient operation and this value is
often clearly marked by a very sharp rise in paging when it is not

available.

In contrast, algorithms have been considered for which no

W.S.D. can be defined (e.g. the optimum search technique). In this

case, efficient operation is possible with any quantity of real

storage, the amount of paging decreasing smoothly as real storage

increases.
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APPENDIX.

Using the basic mapping process, suppose n records out of a
possible t have been mapped into the object area which is of

length k. In the object area the total number of possible

arrangements of the n 'full' cells and the k - n 'empty' cells
leis Ca ~d the n records inserted on the first pass will be

uniformly distributed over the object area.

Where a group of adjacent cells are full/empty they constitute

a full/empty block. The total number, k - n of empty cells in the

object area will be made up of a collection of empty blocks of

lengths ~l and ~k - n, each separated by one or more full cells.

The lengths of the empty blocks thus constitute a composition of

k - n.

By virtue of the second pass address function only those two

empty cells immediately adjacent to a full block stand any chance

of being filled.

Consider one of the two end cells of an empty block of length

>1. The probability that it gets filled by any particular record

processed in the second pass is the probability that the record has

a first pass address value of the adjacent occupied cell and that

it has the required rank with respect to the occupant. This

probability is (1/n).(1/2).
An empty block of length 1 has double the probability of being

filled i.e. l/n because clashes on either of the adjecant cells
could be mapped into it.

The above is.not strictly correct at the end points of the
object area.
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If the extreme end cells are full or part of an empty block of length

>1 then all is well. If either end cell constitutes an empty block
of length 1 it has probability 1/2n rather than l/n of being filled.
k and n will be quite large in practice and neglecting the end

effect is unlikely to invalidate the results to any great extent.

If there are r blocks constituting the composition of k - nand

1 of these are of length 1 (0 < 1 <. r-l in general) then clearly

there are 2(r -1) cells with probability 1/2n and 1cells with

probability lIn, which can be filled. If k - n source records are

processed during the second pass then the numbers of these mapped

into each of the 2r - 1cells have a multinomial distribution

provided a suitable variable is included to represent those records

not mapped into any empty cell. This leads to the following:-

Theorem.

During the second pass the expected number of extra successful

mappings is given by:-

Min(t,l)

L
j ..Mo..x.(O, i-m)

i-j -l.L

(-1) .I.-v
n

k-nmu)
2n

The proof requires two lemmas.
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Lemma A.l

n- Sr 1i-j-1-z

L
X, .. ""1t' -J-z.

where

Proof

L.B.S. -

j

S· = LX
J 9..=1 s > l"Z-j =

l+i-j

~ XC\.~:1+1

reversing the order of summation.

- ~(_ )Z- r z[ [( r SJ -ll-J-z.-l ( t:-li-J-%.-,]L 1 r- 1 - i... - m - (r + 1) - 1 - L - .1D..=.X...
r-e T\ 2n n. 2.n

using the binomial theorem.

- m-r
2.n

(t: (-1 t 1- _L -
r-1 n

+ t: )'Z.-r+l t. (,1 ,..1-.J..
n

r:li-j-Z-1
_ m-T
2T\r.o
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=

+

Now and

L.H.S • ... )
n- 5j -1i-,j-Z.-l

- 1ll..::....l:
2.n

- R.H.S.

Lemma A.2

Probability that a composition

of k - n occurs with r parts, 2 of -
which are 1.

Proof

The generating function for the frequencies of compositions

with r parts, 1of which are 1 is:-

the coefficient of dG-n is required •

...
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"cl. f_r-i+a-1C

~ ..o Q..

2r--l+Q..
t-

Let k - n - 2r - 1+ a then a = k - n - 2r + 1

Thus the coefficient of t,,-n in C (t ) is
r

r k.- n-r-!C C1. k.-n- 2Y'" +-.2

Each of these may occur in several ways because the occupied
Icells may be distributed in any way provided each empty block is

separated, i.e. there is at least one full cell between two empty

blocks. Thus in effect there are r + 1 different locations for the

remaining n - (r - 1) like (full) cells and these can be arranged
n+lin C~ different ways. The total number of arrangements of the

n full cells and k - n empty cells is kC and
TI.

so:-

Required probability -
"'C n.

Proof Of Theorem.

Consider a particular composition of k - n.

Let X
1
' •••• , Xl represent the numbers of records mapped into

the 1cells with probability l/n of being filled. Let X.2.+1 ,...., X
t+ m.

represent the numbers of records mapped into the m cells with

probability 1/2n of being filled, where m = 2(r - i). Let X represent

the number of records not mapped into any of the above 1+ m cells with

probability (1 - l/n - m/2n).

The probability that i of the X ,•••• , X are greater than zero
1 .hm

is the probability that i are successfully mapped during the second

pass with this particular composition of k - n. If j of the i are

of the type Xl ,.•.•, X~ i.e. mapped with probability lIn, and the

rest, i - j, are of the type Xl+1 ,•••• , Xl+m i.e. mapped with probability
1/2n, then clearly if the probability of successfully mapping i records
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is known it is only necessary to sum over j.

Since Xt, •••• , X, are effectively the same one need only
consider X1' •••• , Xj >0 and multiply by
and mUltiply by

.. probability(i are successfully mapped during second

pass with this particular composition

of k - n)
then - !1,tJ {

j.""-(o,i-m)
....,

x,.r- 0, "', J)..i-j >0, Xi+i_j+J=0, "', X
'
+m =0, X=k-n-t1\) }

Define Sj ,.,t: X~ , T. . = TX,. and n' = k - n as in LeunnaA.!.
'lei I-J ",.e+l

then:-

=

= n'l X, 1\'-S, ( n '-S, )! XL

. (l/n) 2: (n'-S )'X' (l/n) 0" 0(n '-S )' X I ~>l :1 • ;J.'1 ' l' _

n'-Sj_l ( ) X ,,):'-Sj (n'-S. ), X
l
.. 1~ n' -So I f ( ):i "(1/2 )

L (n'-S ~-'X:' lin _ (n'-S -T );X' n '0.xJ" t :S, ~ • X,.,- 1 J 1 • l? 1

1\'-~-Ti_';_1 ) X n'-S' -T .
~ (n'-Sj -Ti-i-l ! (1 '2 ) I.i-j (1 _ fin _ m/2n) J i-J

• 0 •• L ( , )IX' I n
)( -1 n -So -T. j .~"jl+l-j J 1- ' .. -1-
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=
n'i-v _ !!!:j!) }

n 2n

by repeated use of lemma A.l.

Let q a represent the probability obtained in lemma A.2.rt~

Then:-

pr(i successfully mapped) -

and so:-

Exp. no. of successful mappings

= ~

Me,,(". k-n) r-l
, ~ "T" k-n-r--l 1l.+1CiLL CL C"-1l+1-21"" !i.t r..l 2.MQX(o.2r-(k-n»~---""''''C.....:!.:-=~;,!_--1-

n.

,j j-v

i--b" L (-1)
VaO

Tt'
(1 _ i-v _~ )

n 2n


