
Management of Concurrency
• Ina

Reliable Object-Oriented Computing

System

N[~~ASTLE UNIVERSITY LIBRARY

088 22726 5

Graham D. Parrington

Ph.D Thesis

The University of Newcastle upon Tyne

Computing Laboratory

July 1988

Abstract

Abstract

Modern computing systems support concurrency as a means of increasing

the performance of the system. However, the potential for increased performance

is not without its problems. For example, lost updates and inconsistent retrieval

are but two of the possible consequences of unconstrained concurrency. Many

concurrency control techniques have been designed to combat these problems;

this thesis considers the applicability of some ofthese techniques in the context of

a reliable object-oriented system supporting atomic actions.

The object-oriented programming paradigm is one approach to handling the

inherent complexity of modern computer programs. By modeling entities from

the real world as objects which have well-defined interfaces, the interactions in

the system can be carefully controlled. By structuring sequences of such

interactions as atomic actions, then the consistency of the system is assured.

Objects are encapsulated entities such that their internal representation is not

externally visible. This thesis postulates that this encapsulation should also

include the capability for an object to be responsible for its own concurrency

control.

Given this latter assumption, this thesis explores the means by which the

property of type-inheritance possessed by object-oriented languages can be

exploited to allow programmers to explicitly control the level of concurrency an

object supports. In particular, a object-oriented concurrency controller based

upon the technique of two-phase locking is described and implemented using

type-inheritance. The thesis also shows how this inheritance-based approach is

highly flexible such that the basic concurrency control capabilities can be adopted

unchanged or overridden with more type-specific concurrency control ifrequired.

Acknowledgments

Acknowledgments

Firstly, my thanks must go to my supervisor, Professor Santosh

Shrivastava, who gave me the opportunity to work in the area of object-oriented

systems as a member of the Arjuna project, and in addition made many helpful

comments upon the content of this thesis. I would also like to thank Professor

Brian Randell and particularly Professor Pete Lee for their diligent and

painstaking reading of previous drafts of this thesis. Their efforts have

contributed greatly to its current presentation. Professor Harry Whitfield also

deserves thanks for his patience in the early years of my research.

Thanks too must go to all of my colleagues on the Arjuna project for the

many profitable discussions we have had over the years. Many other members of

the Computing Laboratory to numerous to mention individually have also made

my tenure here more pleasant. Thanks to you all.

Finally, the support and patience of my wife Susan, and that of my parents,

throughout the long years of this research deserve a special mention.

Financial support for the work described in this thesis was provided by a

grant from the UK Science and Engineering Research Council and a Serc/ Alvey

gran t in software engineering.

Table of Contents

Table of Contents
1
Introduction

2

1.1 Object-Oriented Programming

1.2 Atomic Actions

1.3 Distributed Systems

1.4 Programming Distributed Systems

1.5 Aims of this Thesis

1.6 Structure of Thesis

Concurrency Control
Techniques

2.1 The Concurrency Control Problem

2.1.1 Interference

2.2 Serialisabili ty

2.2.1 Limitations of Serial is ability

2.3 Concurrency Control Techniques

2.4 Pessimistic Concurrency Control

2.4.1 Locking

2.4.2 Two-Phase Locking

2.4.3 Conservative Two-Phase Locking

2.4.4 Multi-Granularity Locking

2.4.5 Multi-Version Locking

2.4.6 Problems with Locking Protocols

2.4.7 Other Locking Protocols

2.4.8 Timestamping

2.4.9 Basic Timestamping

2.4.10 Conservative Timestamping

2.4.11 Multi-Version Timestamping

2.4.12 Mixed Approaches

2.5 Optimistic Concurrency Control

2.5.1 Serial Validation

2.5.2 Other Optimistic Methods

2.6 Effects of Distribution on Concurrency Control

2.7 Adaptive Concurrency Control

2.8 Non-Serialisable Approaches

1

4

6

7

14
16

17

19

20
21

24
25

25

27

27

29
30

31

34

35

37
37
38

38

39
40
40
41
42
42
43

45

Table of Con tents

2.9 Summary

3
Atomic Actions and
Concurrency Control

4

3.1 Atomic Actions

3.2 Atomic Action Operations

3.2.1 Begin Action

3.2.2 Commit Action

3.2.3 Abort Action

3.3 Distribution and Two-Phase Commit

3.4 Atomic Action Nesting

3.5 Concurrency and Atomic Actions

3.6 Effects of Nesting

3.5.1 Locking

3.5.2 Timestamping

3.7 Examples of Systems Supporting Atomic Actions

3.7.1 R*

3.7.2 Locus

3.7.3 Amoeba

3.7.4 Swallow

3.7.5 Felix

3.8 Summary

Object-Oriented Systems and
Concurrency Control

4.1 Object-Oriented Programming

4.2 Type Inheritance

4.2.1 Type Inheritance in C++

4.3 Concurrency Control in Object-Oriented Systems

4.3.1 Clouds

4.3.2 Argus

4.3.3 TABS

4.3.4 Camelot

4.3.5 Avalon

4.3.6 ISIS

4.3.7 Some Conclusions

46

48

49
53

54

55

55

55

58

61
63

63

65

65

66

67

71
72

74

74

76

77

78

84
87

87

90
91
92

94
95
96

Table otContents

5

4.4 Concurrency Control via Type Inheritance

4.4.1 An Overview of the Concurrency Controller

4.5 Locks as Objects

4.6 Inside the Concurrency Controller

4.6.1 The Setlock Operation

4.6.2 The Lockconflict Operation

4.6.3 Some Disadvantages of this Design

4.7 A Revised Concurrency Controller

4.8 Deadlock

4.8.1 Modifying the Lock Type

4.8.2 Extending Setlock

4.8.3 Modifying the Concurrency Controller

4.9 Handling Atomic Action Nesting

4.10 Other Issues

4.10.1 Lock Conversion

4.10.2 Managing the Lock List

4.10.3 Ensuring Two-Phase Locking

4.11 Summary

Implementation in
Arjuna

5.1 Arjuna

5.2 The Arjuna System Model

5.3 Atomic Actions in Arjuna

5.4 The Arjuna Class Hierarchy

5.5 Adding the Concurrency Controller to Arjuna

5.5.1 Ensuring Strict Two-Phase Locking

5.5.2 Implications of the Arjuna System Model

5.6 Further Complications

5.6.1 Concurrency Control State

5.6.2 The Problem of Server Lockout

5.7 The Concurrency Controller in Arjuna

5.7.1 Performance

5.8 A Complete Arjuna Example

5.9 Summary

97

98

102

105

106

107

108

110

114

117

117

118

119

120

120

123

124

125

127

128

129

133

135

137

137

141

146

146

153

155

158

163

169

Table of Contents

6
Alternative Approaches
to Concurrency

6.1 Type Specific Locking

6.1.1 Some Problems

6.2 Multiple Levels of Granularity

6.3 A Revised Arjuna System Model

6.4 Multi-Version Approaches

6.5 Optimistic Approaches

6.5.1 Optimism and Nesting

6.5.2 Implementing an Optimistic Policy

6.6 Combining Approaches

6.7 Summary

7
Conclusions

7.1 Thesis Summary

7.2 Future Work

References

171

172

176

181

184

186

189

191

192

197

198

200

200
207

211

List of Figures

List of Figures

Figure 1-1: A distributed system

Figure 1-2: Structure ofa node

Figure 2-1: Deposit procedure

Figure 2-2: Transfer procedure

Figure 2-3: Print procedure

Figure 2-4: Two-phase locking

Figure 2-5: Dynamic lock acquisition

Figure 2-6: Multi-granularity locking compatibility matrix

Figure 2-7: Two-version locking compatibility matrix

Figure 3-1: Co-ordinator state diagram

Figure 3-2: Participant state diagram

Figure 3-3: Sequential nested atomic actions

Figure 3-4: Concurrent nested atomic actions

Figure 4-1: Simple and multiple inheritance

Figure 4-2: An example C++ class

Figure 4-3: Virtual functions in C++

Figure 4-4: Clouds lock type

Figure 4-5: Outline open operation for the File class

Figure 4-6: The LockCC class

Figure 4-7: The Lock class

Figure 4-8: The setlock operation

Figure 4-9: The lockconfZict operation

Figure 4-10: The revised Lock class

Figure 4-11: The Lock conflict algorithm

Figure 4-12: The revised LockCC class

Figure 4-13: The revised lockconfZict operation

Figure 4-14: The PLock class

Figure 4-15: The PLock conflict algorithm

Figure 5-1: The architecture of Arjuna

Figure 5-2: Remote operation invocation

Figure 5-3: The class Action

10

11

22

23

23

30

31

33

34

57
57
59

59

79

85

86

88

100

100

103

106

107

112

113

113

114

122

122

129

131

134

List of Figures

Figure 5-4: The class Action in use

Figure 5-5: The Arjuna class hierarchy

Figure 5-6: The class Lock_Record

Figure 5-7: The Implementation of nested commit

and abort for Lock_Record

Figure 5-8: Arjuna process structure

Figure 5-9: The loads tate operation of LockCC

Figure 5-10: The pack operation of Lock

Figure 5-11: Concurrent nested action structure

Figure 5-12: The Arjuna version of LockCC

Figure 5-13: The Arjuna version of setlock

Figure 5-14: The Arjuna version of lockconflict

Figure 5-15: Comparison of versions of LockCC under action

Figure 5-16: Comparison of versions of LockCC without action

Figure 5-17: Object relationship for class Day

Figure 5-18: The class Day

Figure 5-19: The class Event

Figure 5-20: The implementation of set for the class Day

Figure 5-21: The implementation of pack for the class Day

Figure 5-22: A simple test for Day and Event

Figure 6-1: Compatibility matrix for directories

Figure 6-2: The TypeLock class

Figure 6-3: The TypeLock conflict algorithm

Figure 6-4: The IncLock conflict algorithm

Figure 6-5: The File and Page classes

Figure 6-6: An example action hierarchy

Figure 6-7: The basic Event class

Figure 6-8: The basic OptCC class

Figure 6-9: The validation algorithm

134

135

139

140

142

150

151

154

156

157

158

161

163

164

165

166

167

168

168

172

174

174

179

181

187

193

194

196

List of Tables

Table 5-1: Basic system performance

Table 5-2: Performance with action

Table 5-3: Performance without action

List of Tables

159

160
162

Introduction 1

Chapter 1
Introduction

Over the past few decades increasing reliance has been placed upon

computers to such an extent that today many organisations are totally dependent

on the correct functioning of their computer systems. Enterprises such as banks

and airlines simply could not function without the data contained in their

computer systems being available, up to date and correct at all times.

Much of the burden of ensuring this correctness inevitably falls upon

individuals since it is people that design and write the programs that execute

upon the computer hardware and also design and construct the hardware itself.

No matter how carefully programs are designed and tested, they are nonetheless

vulnerable to external factors over which the programs have no control - in

particular they may be susceptible to interference from other programs and

possibly failures of the hardware and also of the software. Providing failure free

hardware and software is not a sufficient solution to these problems because

although a program may behave correctly when executed in isolation, this

behaviour may not be repeatable when the program is executed in a

mul ti programming or mul ti processing environment.

Multiprogramming is inescapable in modern computers; without it the

majority of the power of the computer would be wasted. Multiprogramming

allows programs to execute seemingly in parallel (or concurrently) with each

other. If the computer has multiple independent central processing units (CPUs)

then truly parallel execution can occur as each program can be executed upon a

different CPU. Concurrent execution of programs can lead to problems if shared

data is being manipulated by the programs in question since the execution of one

program could interfere with the execution of another by changing the value of

the data shared between the programs in a seemingly arbitrary fashion. Thus,

Introduction 2

apparently correct programs (that is, programs that obey their specification when

executed in isolation) can behave in an unexpected (and often unrepeatable)

fashion. Avoiding this problem requires the use of some form of concurrency

control technique.

In addition to the problems caused by concurrency, computer systems are

also subject to many types of failure. These failures, which may affect the

hardware and also the software, can either halt a program or force it to behave in

an abnormal fashion (that is, the program no longer obeys its specification) at any

point in its execution, leading to potential inconsistencies in the system. Once

such a failure has occurred and been detected, the system must be able to recover

from the effects of the failure so that prior to the recommencement of normal

operation the state of the system is once again consistent.

What constitutes consistency is of course system and application dependent.

However, it is assumed that there exists a set of a priori constraints upon the

system which suffice to determine if any given state of the system is consistent or

not. Furthermore, it is also assumed that given a consistent system state then

the applications programs will maintain this state or move the system into a new,

equally consistent, state. This implies that the possibility of design faults in the

system is not being considered. Due to the complexity of modern computer

systems, expecting them to be free of design faults may appear unrealistic,

however, techniques exist to aid in coping with such design faults and since this

topic is orthogonal to that considered in this thesis, the interested reader is

referred to [Lee and Anderson 85].

When the resources being used by programs are distributed over a set of

computers there can be further complications since there may be a high

probability that some component in the distributed system is not functioning, or

is not functioning correctly. While a distributed environment offers opportunities

Introduction 3

that can be exploited to achieve higher reliability and parallelism, the problem

remains as to how a distributed system should maintain consistency in the face of

concurrency and failures.

In addition to the complexities introduced by such problems as interference

and failure, the task of writing a correct application program has itself become

increasingly complex. As computers have been introduced into more areas of

human endeavour, the tasks that they must perform have become more

sophisticated. Consequently, programs and systems consisting of hundreds of

thousands oflines of code are not uncommon.

Overcoming all of these problems is extremely difficult and in order to stand

any chance of success the overall task must be divided into more manageable sub­

tasks. This is the basic strategy of divide and conquer. By breaking the entire

task into a set of pieces, each of which may in turn be further broken down, it is

hoped that eventually the individual pieces become small enough (and simple

enough) to be comprehendable and thus implementable as part of a computer

program. This process of decomposition requires discipline in both the design and

coding of such systems. Many disciplines, some with formal underpinnings, are

available. In this thesis the use of one of these approaches is examined - the so­

called object-oriented paradigm [Jones 78]. This discipline will be described

further in the following section.

Having overcome the sheer complexity of the system in design terms, the

problems of concurrency and failure still remain. In order to overcome these

problems a computing abstraction known as an Atomic Action may be utilised.

Atomic actions have several useful properties that make them well suited for this

purpose. Section 1.2 of this chapter will briefly describe why the combination of

atomic actions with the object-oriented paradigm is useful.

Introduction 4

1.1 Object-Oriented Programming

The fundamental construct used in object-oriented programming is the

Object. An object is a logical or physical entity that is self-contained and which

provides a well defined interface that permits orderly interaction between the

object and other objects. Breaking the system down into a set of objects provides a

way of managing the complexity of the programming task. Each object is an

instance of some type and consists of some data structure (its instance variables)

and a set of operations (its methods). The interface defines the visibility of these

operations and instance variables, to other objects. An object-oriented program

then consists of a set of such objects and a sequence of operations upon those

objects. By structuring programs using the object-oriented paradigm various

benefits ensue including modular design and the possibility of software

reusability. In addition, since an object is self-contained and provides a well

defined interface then the object-oriented style of programming directly supports

the notions of data abstraction and information hiding, because the details of how

an object is implemented is completely hidden (unless explicitly revealed).

The above is not, however, a complete definition of object-oriented

programming since it could equally well be fulfilled by any language that

provides user-defined types (sometimes called abstract data types or ADTs), for

example, Ada [Ada 80]. According to Stroustrup [Stroustrup 87a], what

distinguishes object-oriented programming from programming using user­

defined types, is the ability to make the commonality between various types

explicit. Thus two types representing specific shapes (say a circle and a square)

could be specialisations of a more generic type shape, and thus may have many

operations in common that can be shared. Such commonality is expressed in

object-oriented programs via inheritance.

Introduction 5

Perhaps the most well known object-oriented language and system is

Smalltalk-80"" [Goldberg and Robson 83]; however, there are several other

systems and languages that claim to be object-oriented, for example, Clu [Liskov

et al. 79], CommonLoops [Bobrow et al. 86], Flavors [Moon 86], C++ [Stroustrup

86], Objective-C [Cox 86], and Trellis/Owl [Schaffert et al. 86]. In fact the earliest

such language is Simula-67 [Birtwhistle et al. 73] which, while being based upon

Algol-60, pioneered many of the features considered essential in an object­

oriented language. Its use of classes to define types and the notion of virtual

functions which enable the specialisation of inherited capabilities have been

carried over into C++.

Object-oriented programming has been an active area of research for many

years, and there are many notable systems and languages that claim to support

it. However, there does not as yet appear to be an agreed definition of precisely

what object-oriented programming is. For the purposes of this thesis it is

assumed that for a programming language to be called object-oriented it has at

least the following properties:

• Data Abstraction. The available set of operations provided by a type

provides the only means by which instances of the type (objects) may be

manipulated. The user of the type usually does not know how the operations

are implemented nor how the type is represented. Data abstraction allows

the separation of the abstract behaviour of a type from its concrete

implemen tation.

™Smalltalk is a Trademark of Xerox Corporation.

Introduction 6

• Sub-Typing. New types can be composed out of existing types by deriving a

new type from an old type. The newly created type is said to be a sub-type of

the existing type (which is referred to as the base type of the new type).

• Inheritance. When a new type is created by derivation from an existing type

it can inherit the attributes of the parent type. These inherited attributes

may be left unchanged in the new type, or the new type may provide

suitably modified versions of any of the attributes so that they are more

applicable to instances of the new type. If a new type can have more than

one parent type then it can inherit properties from all ofthem.

This definition of object-oriented programming is also in accordance with

that of Wegner [Wegner 86] who states that:

object-oriented data abstractions

+ abstract data types

+ type inheritance

For the purposes of this thesis these properties serve to define object­

oriented programming. Another property often assumed necessary, that of

message passing, is not considered to be required here. Thus the definition allows

languages based on procedure calls rather than message passing to be object­

oriented. Examples of such languages include Trellis/Owl, and C++.

1.2 Atomic Actions

Atomic actions are programmer defined sequences of operations upon

objects that have three highly desirable basic properties that make them well

suited as a method of structuring software to simplify the problems caused by

both concurrency and failure (section 1.4 will describe exactly what faults are

expected to be tolerated). These properties are:

Introduction 7

• Failure Atomicity. Either all of the operations that constitute the action

happen or none of them do. That is, if the action succeeds (commits) then all

of the operations upon any objects manipulated under control of the atomic

action will have been performed. If the actions fails (aborts), the effect is as

though none of the operations had been performed.

• Concurrency Atomicity. Individual actions appear to execute in some serial

order despite the fact that they may in reality have been executed

concurrently. This property is also known as Serialisability. The effect of

this property is to give the illusion that the constituent operations of the

atomic action happened instantaneously from the point of view of other

atomic actions.

• Permanence of Effect. Once an atomic action has successfully terminated,

its results are permanent. This usually requires the implementation of

stable storage.

Thus, by the use of atomic actions the programmer is freed from the burden

of worrying about the undesirable effects of concurrency and failure upon the

application, since the atomic action support system provides capabilities that

automatically handle the problems.

1.3 Distributed Systems

The rapid rise in the number of distributed systems in the past decade can

be attributed to two major forces. Technological improvements in the area of

Very Large Scale Integration (VLSI) have made it possible to provide individuals

with more computing power on their desktop than was available from an entire

room full of equipment a mere decade ago. In addition, as the performance of

computers has increased, the size and cost of them has decreased. As a result a

modern personal workstation dedicated to a single user is capable of delivering 10

Introduction 8

million instructions per second (Mips) - a far cry from the days of the old

centralised, shared (and usually heavily overloaded) mainframe.

Coupled with this advance in computer technology has been an similar

advance in communications capabilities. Currently, Local Area Networks

(LANs) such as Ethernet [Metcalfe and Boggs 76] are capable of transmission

speeds of 10 Megabits per second. This fact, coupled with the very low error rates

that such networks possess, makes distributed systems a viable and cost-effective

alternative to the traditional centralised system in many environments.

In addition, real world problems are themselves often distributed. For

example, banks typically have many branches dispersed over very large areas.

Such geographical distribution, because of the poor response times that might

otherwise result, often motivates the distribution of computing facilities so that

they are adjacent to their particular users. These issues will be covered in more

detail in the following sections of this chapter.

What Constitutes a Distributed System

There are no hard and fast guidelines or definitions of what precisely

constitutes a distributed system. According to Enslow [Enslow 78], distributed

processing systems have five principle components:

• A multiplicity of general purpose resources, both physical and logical, that

can be assigned to specific tasks dynamically. General purpose is important

here so that systems that contain specialised processors to handle

inputloutput, for example, are excluded.

• Physical distribution and interconnection. This requires communications

over some link using a cooperative protocol. Systems that operate in a

Introduction 9

Master/Slave relationship are not allowed because of the lack of autonomy

such a relationship implies.

• A high-level operating system that unifies and integrates control of the

distributed components. This does not imply that each component system

must employ the same operating system. Rather each system is allowed to

execute its own, but there is a well defined set of policies that governs the

integrated operation ofthe distributed system as a whole.

• Transparency. The existence of the distributed system should be

transparent to the user unless the user needs to know of the distribution for

specific reasons (for example, to use local resources for efficiency). Services

must thus be named in some generic fashion.

• Cooperative autonomy. Each component is an autonomous entity in its own

right which agrees to cooperate with others to achieve some purpose.

Agreement is important here; systems must be free to reject requests for

service at any time regardless of previous behaviour.

This definition is overly strict and means that a distributed system requires

distributed hardware, distributed control and distributed data.

Sloman [Sloman 87] relaxes this definition slightly, particularly with

respect to transparency and concludes that:

ttA distributed processing system lS one m which several

autonomous processors and data stores supporting processes

and/or databases interact in order to cooperate to achieve an

overall goal. The processes coordinate their activities and

exchange information by means of information transferred overa

communications network."

Introduction 10

This latter definition captures the essential qualities of a distributed

system. Such a system is considered to be made up of a number of autonomous

nodes (abstract computers) connected by, and communicating over, some

communications medium an example of which is illustrated in Figure 1-1. New

Network

Figure 1-1: A distributed system

nodes may be added (though not removed except In special cases) to the

distributed system at any time.

Each node (Figure 1-2) consists of one or more processors, together with

associated storage (memory) that is either permanent or volatile. Permanent

storage has the property that it can be assumed not to lose its contents when the

node fails (more shall be said about node failure shortly). Thus permanent

storage is stable. Some techniques for building stable storage are described by

Lampson and Sturgis [Lampson and Sturgis 79] and will only be briefly described

here. Their approach builds stable disk storage using pairs of conventional

magnetic disks that are assumed to fail independently of one another. Each disk

pair represents a single logical disk. Each real disk is carefully updated. Careful

updating requires that each disk is updated in turn and is also read immediately

afterwards to ensure that the update was successful. Such an approach ensures

Introduction

Volatile
Storage

Processor(s)

Communications Network

Figure 1-2: The structure of a node

11

that there is a high probability that at least one copy of the data is correct.

Increased confidence can be gained by using more than two disks. Alternative

approaches to stable storage are possible; for example, Banatre has built such

stable storage using stable memory instead of disks as part of the Enchere project

[Banatre et aI. 83]. In contrast to permanent storage the contents of volatile

storage are always assumed to be lost when the node fails; such storage is usually

implemented in the main memory of the computer.

The notion of node autonomy is also very important. Any node is free to

manage its own resources in any way it sees fit. All of the resources of a node are

wholly under the control of that node and furthermore are only accessible and

usable to others through the cooperation of the node. Nodes may not be available

for a variety of causes, including failure and administrative reasons. However,

when they are available they are willing to cooperate with other nodes in a

fashion defined by the interfaces they present to those other nodes.

Introduction 12

The Advantages of Distributed Systems

It is an inevitable fact of human nature that there will always be a

requirement for any system to support more users, do things more quickly and

more reliably, and perhaps most importantly to do things less expensively.

Distributed systems are expected to meet these objectives in a way that

conventional centralised systems cannot. In particular, distributed systems

provide:

• Reduced Costs. Processing power and memory is cheap and getting cheaper

each year. High quality printers and other specialised devices are not. The

ability to share expensive peripherals whilst distributing processing power

to where it is needed is both useful and cost effective.

• Flexibility and Extensibility. Should the system need extending for some

reason (say to add in some new specialised device) it is usually easy to add

another node into the distributed system. Such flexibility is not generally

available with conventional centralised systems. In addition, by utilising

standard protocols, equipment from different manufacturers can be

incorporated, thus reducing the dependency on a single manufacturer.

• Availability. When any part of a centralised system fails then the entire

system usually fails with it. Distributed systems can overcome this since

individual nodes may fail without necessarily affecting the rest of the

system. Furthermore if resources are replicated then the failure may not be

apparent to users of the system.

• Performance. This encompasses both the areas of response time and

throughput. Centralised systems usually have a fairly fixed performance

characteristic that can only be altered in relatively static ways, for example,

by upgrading to the next model of CPU. In addition this path is often

Introduction 13

limited - there are only a finite number of faster models of CPU. In general

distributed systems do not suffer from this problem since to increase

performance another node can be added in to the system usually wi th little

trouble.

• Local Control. By allowing localised control over data and processing the

system can be made more sensitive to local needs. In addition expecting a

site to relinquish control over its data may be unrealistic.

The Disadvantages of Distributed Systems

Distributed system may have advantages over centralised systems, but they

also have disadvantages, which include:

• Operating Costs. With a central site operating costs can be kept to a

minimum since all of the trained staff are often located in one place. With

distributed systems many more people may need to be involved to provide

local support. In addition there are various problems concerned with purely

operational matters, such as who is responsible for safeguarding the data by

making backups periodically. In the centralised case the answer is simple;

it may not be so for distributed systems. This leads to the observation that

distribution often brings administrative headaches with it.

• Development. Developing a distributed application is a considerably more

complex task than developing a non-distributed one (which is itself

complex). Indeed the craft is still a topic of active research. Enforcing

standards may also prove difficult, together with trying to overcome the

tendency to Ire-invent the wheel' at each site.

Introduction 14

• State of the Art. Distributed systems are currently regarded as being State

of the Art. As such, few people in the real world are willing to be guinea

pigs!

Despite these problems, the growth of distributed systems is continuing. As

more knowledge is accumulated through research and commercial experience of

such systems, this growth is likely to continue for many years to come.

1.4 Programming Distributed Systems

Programming large complex applications has already been described as a

difficult task. Constructing distributed applications is even more difficult due to

the additional problems that distribution brings. It is one of the propositions of

this thesis that the adoption of the object-oriented programming approach eases

the programming of such distributed applications. Having structured the

application program as a sequence of operations upon some set of objects, it should

not matter to the programmer where in the distributed system the actual objects

are located. Given adequate programming tools, programs that access purely

local objects should look no different to those that access objects at other nodes.

Thus, programming a distributed application becomes no more complex than

programming a centralised application.

Distributed systems appear to have the potential for increased reliability

over conventional centralised systems since they no longer possess a single point

of failure. As each component in the distributed systems is assumed to be

autonomous, failures in individual components should not cause failure of the

entire distributed system. This is an important gain which can be exploited by

providing appropriate levels of redundancy so that the distributed system can

behave as if the failure had not occurred, or alternatively, the system may

continue to operate but provide a degraded level of service. Even failure of the

Introduction 15

network itself need not be catastrophic since local processing is likely still to be

available.

Unfortunately, since failures do not typically affect the entire distributed

system, then without care it is possible for the system to end up in an inconsistent

state as work proceeds at non-faulty nodes unaware of problems elsewhere in the

distributed system. In order to overcome these problems, applications should be

structured as atomic actions, whose properties ensure that the applications

complete successfully or appear not to have executed at all. Thus by using the

object-oriented programming approach, the overall complexity of the

programming task has been eased, and when this approach is used in

combination with the atomic action abstraction, the problems of failure and

concurrency are also eased, leaving the programmer free to concentrate on the

task at hand.

The model of distributed systems adopted by this thesis regards failures of

the processor or volatile memory as failures of the entire node (recall that it is

assumed that permanent storage never fails). If a node fails (crashes) it is

assumed to be equivalent to halting the processor; that is, the node behaves in a

fail-stop fashion [Schlicting and Schneider 83]. After a crash the node is repaired

within some finite period of time and restarted (the node is said to have

recovered).

Node behaviour is thus classified as correct if the node is functioning;

tolerable if it crashes and recovers, and intolerable otherwise. Thus, in general,

permanent removal of a node from the network (except when it can be guaranteed

that the node was idle and no longer needed) is classified here as intolerable

behaviour. Hence, the requirement made earlier that nodes could not be removed

from the distributed system and that nodes must be repaired within some finite

period of time.

Introduction 16

It is further assumed that the communication system itself can cause

problems, possibly delivering messages out of order, delaying messages for

arbitrary periods, corrupting messages, or even deleting messages entirely.

However, it is assumed that by appropriate use of checksums (or some other

similar technique) corrupt messages can be detected with high probability and

rejected. Furthermore, by including the addressing information in the checksum

it will be assumed that messages will only be received by their intended

recipients. Thus if a message arrives, it arrives intact and at the correct node.

Other problems of message duplication, etc., can be handled in well-known ways

by various protocols so will not considered further here.

1.5 Aims of this Thesis

This chapter has postulated that programming distributed applications

following the object-oriented paradigm is a profitable approach to adopt. It has

been further suggested that the use of atomic actions can relieve the programmer

from some of the burden of worrying about the possible effects of concurrency and

failure. This thesis concentrates on the provision of support for one particular

property of atomic actions, the property of concurrency atomicity, within a

distributed object-oriented system.

The thesis shows how a concurrency controller can be designed and

implemented in an object-oriented environment in a highly flexible manner that

allows a wide variety of the available concurrency control techniques to be

available to the programmer. In support of this claim a concurrency controller

based upon a technique known as two-phase locking is designed, implemented,

and its performance measured. Given this design, the thesis shows how user­

defined objects may utilise it in a simple fashion such that concurrency atomicity

is achieved.

Introduction 17

The means by which this support is provided follows the object-oriented

programming approach by providing a basic concurrency control type from which

a user's type can be derived in the standard object-oriented fashion. The same

technique has been used to provide the other properties of atomic actions but this

is not described here, see [Dixon 88] for details. Thus, the approach adopted in

this thesis is intentionally evolutionary, not revolutionary. That is, it is not the

aim of this thesis to design a new programming language or operating system

that supports concurrency control directly, but rather to take advantage of

existing language features and systems to implement the ideas.

The thesis also describes how it is possible to override the basic system such

that higher levels of concurrency can be supported based upon the programmer's

knowledge of the object.

1.6 Structure of Thesis

In chapter two the problem of concurrency control is examined in greater

detail, describing the problems that concurrency control sets out to solve; for

example, lost updates and inconsistent retrieval. The chapter then describes many

of the basic techniques by which this control has been achieved.

Chapter three is devoted to the relationship between atomic actions and

concurrency control. In particular the problems that need to be solved to make

concurrency control in atomic actions work are described, together with the

descriptions of the implementation of atomic actions in several existing

distributed systems.

Chapter four considers the object-oriented framework in greater detail and

describes the characteristics such a framework has that makes it suitable for

implementing reliable software. This chapter also describes the design of a lock­

based concurrency controller that allows individual objects to control their own

Introduction 18

level of concurrency. Naturally the design is itself object-oriented and this

approach is contrasted with the efforts of other researchers in this area. The

chapter also deals with such issues as deadlock and lock conversion.

Chapter five describes how the techniques and designs of the previous

chapter have been implemented as part of Arjuna - a programming system for

reliable distributed computing currently under development at the University of

Newcastle upon Tyne. This chapter also gives some performance characteristics

of this particular implementation.

Chapter six deals with how to build alternative concurrency controllers in

the object-oriented environment. It describes how type-specific concurrency

controllers, that exploit the programmer's knowledge of the semantics of the

operations supported by an object, can be built in a simple fashion, building upon

the basic concurrency controller design presented in chapter four. In addition, the

requirements such concurrency controllers place upon the underlying system, in

order that the increased level of concurrency can be realised are also noted.

The final chapter presents some conclusions from the work presented in this

thesis and suggests where it should progress in the future.

Concurrency Control Techniques 19

Chapter 2

Concurrency Control
Techniques

This chapter takes a closer look at the problems that concurrency control

techniques should overcome and describes some of the basic techniques

themselves. The topic of concurrency control has been an area of active research

for many years and there is now a great depth of knowledge in the field (see

[Kohler 81, Bernstein and Goodman 81, Bernstein et al. 87] for some

comprehensive studies). In particular, a large number of different techniques

have been proposed, some of which are general purpose, whereas others are only

applicable in particular specialised applications. New techniques and subtle

modifications to existing techniques are published regularly, particularly in

database literature. The theory of concurrency control has not been neglected

either, and sound mathematical proofs underlie many of the more popular

methods (see for example, [Eswaran et al. 76, Papadimitriou 79, Bernstein et al.

87]).

Despite the wide choice of available techniques only a relatively small

number have found favour so that many exist in purely theoretical form only.

This chapter only concentrates upon these popular techniques; the interested

reader will find many other techniques described elsewhere (see for example,

[Buckley and Silberschatz 84, Goodman and Shasha 85]).

The majority of the studies of concurrency control have been driven by the

need to access shared, centralised databases. Consequently, many of the

techniques are described in the literature in database style terms. For example,

programs are assumed to be manipulating data items that are basically

structured as physical or logical storage entities (files, records, pages);

Concurrency Controll'echmques 20

furthermore the access to the data is usually only classified as a read or a write

access. In addition, it is usually assumed that there is only a single concurrency

controller for the system. This single controller handles all requests for access to

all of the data items. This centralised approach makes certain concurrency

control techniques easier to implement since at any given time the concurrency

controller effectively has global knowledge regarding which objects are being

accessed concurrently and by which programs. The ability to gather and use such

knowledge makes the detection and handling of certain problems such as

deadlock far easier.

In the case of distributed systems it is still usually the case that a single

concurrency controller exists per site. Furthermore, the global knowledge

necessary to detect deadlock must still be acquired somehow, usually by

comm~nication between the concurrency controllers of each site, despite the fact

that gathering this information is a potentially costly operation.

Consequently, in the descriptions that follow, these traditional description

conventions are followed. In later chapters, however, the concurrency control

techniques described in this chapter will be applied to the object-oriented
i

environment that is really under consideration in this thesis. In particular, the

notion of having only one concurrency controller per site will be abandoned in

favour of having one concurrency controller per object.

2.1 The Concurrency Control Problem

Concurrency control is the act of coordinating the concurrent accesses by

processes (it will be assumed in this chapter that user programs are executed by

processes, which are the standard agents supplied by the operating system for

this task) executing in parallel with each other to shared data such that those

processes do not interfere with each other. Thus, concurrency control is a

generalisation of the traditional problem of mutual exclusion found in operating

Concurrency Control Techniques 21

systems where certain data structures may only be manipulated by a single

process at any moment in time.

The general problem of concurrency control is, however, somewhat more

complex than simple mutual exclusion since it is often unacceptable to allow only

exclusive access to a data item for performance reasons. In addition, most

programs require access to multiple data items, since the value of one data item is

often used to calculate the value of another. In such a situation the program

would need to ensure it had exclusive access to all of the data items, otherwise the

consistency ofthe data could be compromised.

Consistency is not the only goal of a good concurrency control technique. In

addi tion it should also:

• permit sufficient parallelism in the system. That is, the concurrency control

technique should not overly constrain the potential parallelism.

• not place too great an overhead on the system by consuming excessive

amounts of resources.

• place as few constraints as possible on program structure.

2.1.1 Interference

Interference between processes can occur in many ways but two of the more

common problems are known as Lost Updates, and Inconsistent Retrievals. A

simple example serves to illustrate these problems further:

In this example (Figure 2-1) the deposit procedure places money into some

account and is sufficiently trivial so as to appear to be correct. However, should

two people attempt to execute this procedure in parallel it is possible for the

account to become inconsistent.

Concurrency Control Techniques

procedure Deposit (Account, Amount)
begin

end

current := Read(Account):
current := current + Amount;
Write (Account, current):

Figure 2-1: Deposit procedure

22

Consider the following sequence of events: Customer 1 attempts to deposit

£20 into the account, while customer 2 simultaneously attempts to deposit £100.

If the account currently holds £100 then the expected result is that after the two

deposits the account should hold £220. However, the following shows one possible

interleaving of the execution of the two transfers that renders this required state

impossible.

Cl read the account balance and gets £100

C2 reads the account balance and gets £100

Cl adds the amount £20 and writes £120 back into the account

C2 adds the amount £100 and writes £200 back into the account

The end result is that the account contains £200, not £220 as it should. The

problem is that C2 read the account prior to Cl completing its update. This

phenomenon, known as the Lost Update problem, occurs when two processes both

read an old value of some object and then both attempt to write a new value for

the object.

A related problem can occur if another process is simply retrieving the value

of an object. Consider the concurrent execution of the transfer and print

programs shown as Figures 2-2 and 2-3.

Concurrency Control Techniques

procedure Transfer(Accountl, Account2, Amount)
begin

end

temp := Read(Accountl);
Write (Accountl, temp - Amount);
temp := Read(Account2);
Write (Account2, temp + Amount);

Figure 2-2: Transfer procedure

procedure Printsum(Accountl, Account2)
begin

end

templ:= Read (Accountl);
temp2 := Read (Account2);
sum := templ + temp2;
output (sum);

Figure 2-3: Print procedure

23

IfCl attempts to transfer £50 from account 5 to account 9, while C2 attempts

to print the balance of the same two accounts, then the following interleaving of

the execution of these two programs is possible (assume accounts 5 and 9 both

initially contain £400):

Cl reads account 5 and gets £400

Cl subtracts £50 from the value it read and writes £350 to the account

C2 reads account 5 and gets £350

C2 reads account 9 and gets £400

Cl reads account 9 and gets £400

C2 prints the sum as £750

Cl writes £450 into account 9.

The problem here is one of Inconsistent Retrieval. Because C2 was able to

retrieve the balance from account 5 after it had been updated, but retrieved the

balance from account 9 prior to the corresponding update to it, then there

appeared to be a loss of money. In actual fact no money had been lost and the two

accounts are in fact correct.

Concurrency Control Techniques 24

2.2 Serialisability

The examples in the previous section, albeit simple, nonetheless showed

how concurrent execution can make programs that would normally function

correctly if executed in isolation, behave in an inconsistent fashion. Note that the

problems only arose because of the particular order in which the operations where

executed at run-time. If executed in isolation and to completion the programs

would have produced the expected results.

Such problems can obviously be avoided by executing the programs strictly

sequentially. However, the degradation of performance that would occur by doing

so makes such an option untenable. What is required is some way of making the

programs behave as if they had been executed sequentially. This is known as

serialisability. More precisely, any given concurrent execution of a set of

programs is serialisable if it is equivalent to some serial execution of the same

programs. Attaining serialisability is the goal of many concurrency control

techniques.

Serialisable executions avoid the problems outlined in the previous section

as follows. Lost updates can only occur if two processes read an old value of some

object prior to updating it. With a serial execution one update must read the

result of the preceding update regardless of the order the updates execute in.

Since a serialisable execution is equivalent to some serial execution it cannot

cause lost updates.

Similar arguments can be applied to the problem of inconsistent results.

Since in a serial execution the retrieval process executes either before or after the

update, in a serialisable execution the inconsistency cannot arise.

Concurrency Control Techniques 25

There are many possible serialisable executions just as there are many

possible serial executions - all of which are equally correct (assuming that the

programs themselves are correct). However, there is no way to ensure that any

particular serial order is followed without user intervention.

2.2.1 Limitations of Serialisability

Serialisability is not without its problems. In particular, it limits

concurrency. Kung and Papadimitriou [Kung and Papadimitriou 79] show that it

uses only syntactic information about programs and that higher levels of

concurrency are possible if semantic knowledge is also used. In addition,

serialisability introduces synchronisation problems of its own. For example, lock­

based approaches can encounter deadlock and also enforcing serialisability

restricts the ability of programs to directly exchange messages since such an

exchange would be unserialisable.

Given these problems several researchers have considered non-serialisable

approaches which are nonetheless consistency preserving. Some of these

approaches are briefly examined in section 2.8 of this chapter.

2.3 Concurrency Control Techniques

Concurrency control techniques can be broadly classified into two distinct

types: Pessimistic and Optimistic. Pessimistic concurrency controllers prevent

potentially conflicting operations from occurring. In doing so they must always

assume the worst possible case in that if two operations might conflict, the

concurrency controller assumes that the conflict will happen. Optimistic

concurrency controllers, on the other hand, allow free access to the data items and

then attempt to determine if any conflict had occurred at some later point in time

(usually when a program terminates). Thus, they assume (optimistically) that

conflict will not occur, and only take action ifit actually does.

Concurrency Control Techniques 26

In general when the concurrency controller is presented with an access

request for a data item it has three possible options open to it:

• Accept. The access to the data item is granted immediately with the

concurrency controller recording details of the request to support any later

decisions it may be required to make.

• Reject. The access to the data item is denied. When this occurs the process

attempting the access is usually aborted. Rejection of a request implies that

serialisability would be compromised if the request was granted.

• Delay. The request cannot be granted immediately so the concurrency

controller queues the request for later processing. This allows the

concurrency controller some leeway with regard to later decisions but

restricts concurrency.

In addition to being pessimistic or optimistic, all of the concurrency control

techniques can be broadly classified as Aggressive or Conservative. An aggressive

concurrency controller avoids delays and always grants requests if possible. By

doing so it may reach a situation whereby it ends up rejecting other requests

(since they would violate serialisability) and thus must abort the process making

those requests.

Conservative concurrency controllers tend to delay requests. This makes it

possible to re-order the request queue in the hope of permitting more operations

to complete. This has an obvious effect on the potential level of concurrency.

Aggressive concurrency controllers work well in environments where

conflicts are rare, and hence conflicts that require rejection are likely to be rarer

still. On the other hand if the rate of conflict is high a conservative approach may

Concurrency Control Techniques 27

be better since the concurrency controller could re-order the requests to cause the

least number of rejections.

2.4 Pessimistic Concurrency Control

Pessimistic approaches prevent potentially conflicting operations from

occurring concurrently. Such techniques are pessimistic because they always

assume the worst possible case. Simply because there is a potential conflict does

not always mean that the conflict will actually occur. Consequently pessimistic

approaches tend to restrict concurrency somewhat more than is necessary. This

section describes several pessimistic concurrency control techniques, the first of

which, has almost become the standard method of implementing concurrency

control.

2.4.1 Locking

Locking is the most widely used form of concurrency control mechanism for

controlling access to shared resources. The basic mechanism is extremely simple

and easy to implement and has been the method of choice in the majority of

existing systems.

In the simplest case there is a lock that is associated with each object which

has to be acquired before the object can be accessed. If the lock is busy the

requesting process generally must wait until it becomes free or be aborted.

As stated, this is no different to the traditional mutual exclusion problem,

and given that there was only a single lock associated with each data item, could

be handled in the same way. However, to increase concurrency it is useful to

distinguish between several different types of lock depending upon how the data

item is to be accessed. At the simplest level this distinction is simply between

Read access and Write access. When attempting to set a lock of a given type the

concurrency controller must examine each of the locks currently set to determine

I

Concurrency Control Techniques 28

if setting the requested lock would cause a conflict. If the locks do not conflict

then concurrent access to the data item is permitted, resulting in an increased

level of concurrency. If conflict would occur then the request must be queued

until all the existing locks that conflict with the request have been released.

The notion of what constitutes conflict is fairly obvious in this case; the

traditional policy that Reads conflict with Writes and Writes also conflict with

other Writes is adopted. However, lock requests from the same process never

conflict with each other regardless of the actual lock type. The reasons behind

this are not immediately obvious. Consider some data item x; a process may read

this object (and thus require and set a read lock) and may decide at some later

stage to update the object (and thus require a write lock). Since reads and writes

normally conflict the write lock could not be set until the read lock was released.

To overcome this problem programs are allowed to convert their locks from one

type to a stronger type (for example, a read lock can be converted to a write lock,

but not vice-versa).

Obviously, in the same way that it was possible to increase concurrency by

defining locks to be of read or write types, it is likely that by introducing different

types of lock (and by specifying precisely how such locks conflict with each other)

a further increase the level of concurrency might be possible. This idea leads to

the notion of Type-Specific locking. This topic will be returned to in chapters four

and six; for now the discussion is restricted to the basic read and write types of

lock.

Processes that make use of locking must be well-formed; this requires that

they:

• lock an object prior to accessing it.

• do not lock an object for which a conflicting lock already exists.

Concurrency Control Techniques 29

• eventually unlock all the objects they have locked.

2.4.2 Two-Phase Locking

The basic locking approach outlined above reveals little about when locks

should be released. The most obvious approach - release the lock when

manipulation of the object is complete - has the unfortunate side-effect of

producing non-serialisable executions. To illustrate this consider the possible

interaction ofthe processes PI and P2.

PI: read[x]; write[y];

P2: write[x]; write[y];

If each object (x and y) was unlocked immediately after use the following

execution history could occur:

PI read locks x, reads its value and unlocks it

P2 write locks x, writes it, and unlocks it

P2 write locks y, writes it and unlocks it

PI write locks y, writes it and unlocks it

Such an interaction is clearly not serialisable since it appears that the

execution of P2 follows PI as far as x is concerned, but precedes it as far as y is

concerned.

Two-phase locking is designed to overcome this problem. The idea is to

divide the acquisition and release oflocks into two distinct phases as is shown in

Figure 2-4. During the first phase (termed the growing phase) locks can only be

acquired and not released. In the second phase (the shrinking phase) locks may

only be released and no new ones acquired. In a classic paper, Eswaran et al.

[Eswaran et al. 76] proved that by following this approach then serialisability was

guaranteed.

Concurrency Control Techniques

Growing phase
Shrinking phase

r-----------

Locks
held

Time

Figure 2-4: Two-phase locking

30

The fact that the shrinking phase may occur instantaneously (as indicated

by the dotted lines) arises in an attempt to avoid the problem of cascading aborts.

This will be considered in the next chapter. This latter approach is known as

strict two-phase locking.

2.4.3 Conservative Two-Phase Locking

One of the major problems with two-phase locking is that the incremental

acquisition oflocks can lead to a situation known as deadlock (of which more will

be said in section 2.4.6). Basically, deadlock occurs when two processes wait for

each other to release the resources the other holds. For example, PI may have

locked x and be wanting to lock y, while P2 has locked y and wants to lock x.

Obviously in such a case neither process is unlikely to make any progress.

This problem can be overcome be pre-declaring all the necessary locks and

acquiring them in one single operation. This is the approach adopted by

conservative two-phase locking. Using this technique either all the requested

Concurrency Control Techniques 31

locks are granted or none of them are, thus the deadlock described above is

impossible. Unfortunately, there is the possibility with this approach that a

particular process will never proceed because all the locks it requires are never all

available at the same time.

Further complications arise with this strategy if the determination of which

locks are required is decided dynamically. For example, in the program fragment

of Figure 2-5 depending upon the value of the data item a then the program

read (a);

if (a < 0) then
read (b)

else
read (c);

Figure 2-5: Dynamic lock acquisition

accesses either b or c. With pre-declaration, locks on both band c must be

acquired regardless of the actual pattern of access. Finally pre-declaration really

requires compiler support to determine all the objects manipulated, since leaving

the choice up to the programmer is probably far to prone to error to be acceptable.

2.4.4 Multi-Granularity Locking

The locking protocols of the previous sections assume that there is no

relationship between the data items being locked. However, in reality a data

item could be a file, a record, or even an entire database. This leads to the notion

of granularity; the relative size of an object. Here, a database has a coarser

granularity than a file or a record.

Granularity affects performance. Locking at a coarse level of granularity

reduces overhead due to fewer locks being requested, but it also reduces

concurrency since processes are more likely to conflict. For example, two

processes could not concurrently modify different records in a file since both

Concurrency Control Techniques 32

would require write locks on the file and thus appear to conflict. The apparently

obvious solution of always locking at the finest level of granularity is not a

panacea ei ther since the overhead of doing so is likely to be significant.

A solution to this problem is to use multi-granularity locking. Using this

approach processes lock data items at an appropriate level of granularity for their

purpose. This approach was suggested by Gray et al. [Gray et al. 75]. Essentially

locks are considered hierarchical, such that setting an explicit lock at a coarse

level implicitly locks all of the contained objects at finer levels. Thus a read lock

at the file level automatically read locks all of the records in the file also.

This is not the complete scheme, however, since there is also the need to

reflect locks set at fine levels back at coarser levels. The reasons for this are as

follows. Assume some process has write-locked several records in a file; in order

to prevent another process read-locking the entire file (that is, setting a read lock

at the next higher level) the process must indicate that locking is occurring lower

down the hierarchy. One possible approach is to require that setting coarse locks

causes all finer level locks to be checked for possible conflict. This would achieve

the desired result but it imposes enormous overhead. An alternative approach

introduces intention locks into the systems [Gray et aI. 75]. Prior to setting a lock

at any given level, intention locks must have also been set on all coarser levels.

Thus in order to write records in a file, a process must acquire intention locks on

the database and the file (in that order).

Locks are thus acquired starting at the coarsest level and working towards

finer levels. They are released in the reverse order to ensure that there never

arises a situation in which fine level locks are held but not coarse level ones.

The conflict rules for multi-granularity locking are more complicated than

those for simple read/write locking and are given below in Figure 2-6 (from

[Bernstein et al. 87]). The notation ir and iw represents intention-read and

Concurrency Control Techniques 33

Held Lock Mode

r w lr lW rlW

Requested
r y n y n n

Mode

w n n n n n

ir y n y y y

lW n n y y n

rIW n n y n n

Figure 2-6: Multi-granularity locking

compatibility matrix

intention-write locks respectively. The riw mode is a useful shorthand that is the

same as owning both a read lock and an intention-write lock on the object. Its

presence arises from the observation that programs frequently need both a read

lock on a file (to be able to read the records within), and an intention-write lock so

that it can write lock certain records to update them.

Deciding at what level of granularity locks should be applied can be

complicated. Iflocks are always set at the finest level there are no problems. The

question arises though of when to set coarse level locks. One approach requires

the concurrency controller to analyse requests to determine which level of lock is

appropriate. For example, if a process requests many fine level locks, the

concurrency controller can escalate the level to a coarser one (for example, from

record level locks to file level locks). Unfortunately such escalation can lead to

deadlock if two processes attempt to escalate write locks on records to write locks

on files.

Concurrency Controll'echniques 34

2.4.5 Multi-Version Locking

One problem with any locking protocol is that write access precludes the

possibility of read access since the two modes of access conflict with each other.

One approach that overcomes this drawback is to maintain multiple versions of

each object [Stearns and Rosenkrantz 81].

In the simplest case at most two versions of the object are maintained: a

certified version and a temporary version. If a process wishes to write an object it

creates a new version for its own use. Concurrent reads are permitted to read the

old certified version. Since the old version is precisely the version that the failure

recovery mechanisms need to maintain for their own use this approach can be

quite attractive.

Implementing the two-version scheme requires the use of certify locks, a

compatibility matrix for which is shown below in Figure 2-7.

Requested

Mode
r

w

c

Held Lock Mode

r

y

y

n

w

y

n

n

c

n

n

n

Figure 2-7: Two-version locking compatibility

matrix

Concurrency Control Techniques 35

When a process terminates all of its write locks are automatically converted

by the concurrency controller to certify locks. Since only a single write lock is

allowed at any time, this ensures that a maximum of two versions of the object

can exist. Furthermore after the update only a single certified version remains.

Since read locks and certify locks conflict the attempt to convert a write lock to a

certify lock is delayed until all read locks are released.

The scheme can be extended to allow multiple uncertified versions,

however, in general only a single certified version exists.

2.4.6 Problems with Locking Protocols

The major problems associated with lock-based protocols are due to the fact

that processes can be made to wait forever. Rosenkrantz et al. [Rosenkrantz et al.

78] point out that processes may wait indefinitely for four reasons:

• Deadlock.

• Infinite chain. This occurs if a process waits for a second, which in turn

waits for a third, and so on as new processes enter the system.

• Waiting for a non-terminating process.

• Waiting for an infinite number of new processes that complete or abort.

This can occur in the following fashion. Say PI waits for P2. A new process

P3 starts and PI is made to wait for it also. P2 terminates but PI is still

blocked waiting for P3, and so on.

By far the major problem associated with locking protocols is the fact that

they are prone to deadlock. Deadlock occurs when two or more processes wait for

resources that will never become available. In this case the processes become

blocked forever and, unless external action is taken, will stay that way.

Concurrency Control Techniques 36

One simple approach to overcoming deadlock is to detect that a given

process has been waiting for a lock for a long time and assume that it must be

deadlocked with some other process. Of course what constitutes 'a long time' is

system dependent. In fact the process may not be deadlocked at all, but merely

held up by some other process that is taking a long time to complete.

Such problems can be overcome using a long timeout period. However, the

longer the period the longer a deadlocked process must wait. Thus careful tuning

is required to ensure that deadlocks are detected quickly enough but without

falsely detecting deadlocks that are not really there.

Usually, a better approach is to detect deadlocks precisely. Doing this

requires the construction of a Wait-For Graph. A wait-for graph is a directed

graph with each node representing a process. There is an arc in the graph from Pi

to Pj if Pi is waiting for Pj to release some lock. Deadlock detection then amounts

to detecting cycles in this graph. Once a cycle is detected the concurrency

controller must break it by aborting one of the processes (any will do, although for

example, some consideration about the amount of work already performed by

each process can be taken into account).

Building and checking a wait-for graph is a potentially expensive operation

- even more so in a distributed system. Thus it is important to optimise when the

deadlock check is initiated (that is, when the graph is built and checked).

Rosenkrantz et al. [Rosenkrantz et al. 78] overcome these problems by using

two protocols which they term Wait-Die and Wound-Wait. These protocols

combine the notions of timestamps (described more fully later in this chapter)

with two-phase locking. Rather than make the process simply wait when a

conflict is detected, the concurrency controller adopts one of two basic policies:

Concurrency Control Techniques 37

• Wait-Die. If the requester is older than the process with which it conflicts it

waits, otherwise it commits suicide and aborts.

• Wound-Wait. If the requester is older then it attempts to wound the

conflicting process, otherwise it waits. Wounding is an attempt to force the

conflicting process to abort. This attempt may not be successful if the

process was already terminating, but in either case the conflict is resolved.

Both of these protocols give priority to older processes (the notions of process

age being based upon the ordering of their timestamps) since in the Wait-Die

approach the younger process aborts itself, while in the Wound-Wait approach the

older process tries to force a younger process to abort

2.4.7 Other Locking Protocols

There are certain structures commonly used in databases that require

specialised protocols to ensure that maximum performance is achieved. In

addition certain data items are often accessed more frequently than others

leading to so-called hot-spots.

Specialised protocols have been developed for these situations including

Tree-Locking protocols [Bayer and Schkolnick 77, Kedem and Silberschatz 81]

amongst many others. Such protocols are considered no further in this thesis due

to their specialised application environment.

2.4.8 Timestamping

A timestamp is simply a unique number that is drawn from a monotonically

increasing sequence, and is assigned to a process. Often timestamps are derived

directly from the value of the local system clock. The total ordering of

timestamps ensures that if TSI and TS2 are two timestamps then either TSI <

TS2 or TS2 < TSI. Timestamps are examples of what Rosenkrantz et al.

Concurrency Control Techniques 38

[Rosenkrantz et al. 78] call a valid numbering scheme. The serialisation order

imposed by timestamp-based methods is that defined by the order of the

timestamps themselves.

Generating timestamps in a distributed environment can be handled simply

by assigning each site a unique identifier that is concatenated with the value of

the local site system clock to produce the timestamp. Given such an approach

then all timestamps generated at one site appear to precede or follow all

timestamps generated at another site, and thus form part of a total ordering

In addition to their use in concurrency control, timestamps can also be used

in deadlock detection to determine which process should be aborted to break the

deadlock once it has been detected.

2.4.9 Basic Timestamping

The rules of timestamp-based concurrency control state that operations

must be carried out in timestamp order, thus if any request arrives out of order it

must be rejected. Basic timestamping concurrency controllers are thus

aggressive in nature since operations are performed strictly first in, first out. For

example, if two processes, one with timestamp 1, and the other with timestamp 5,

had already manipulated some object x and a process with timestamp 2 attempted

to manipulate the same object x it must be aborted otherwise the timestamp order

would be violated.

2.4.10 Conservative Timestamping

Basic timestamping could abort a large number of requests if the order in

which requests are processed by the concurrency controller differs badly from the

timestamp order. Recall that a conservative concurrency controller attempts to

queue requests to avoid this situation. Hence a conservative timestamp

Concurrency Control Techniques 39

controller queues requests for a while to see if any requests with earlier

timestamps will arrive [Bernstein et al. 78].

Obviously the longer the delay imposed by the concurrency controller the

less number of rejections should be generated. Unfortunately this slows the

processing rate, implying that a compromise must be reached. In its ultimate

form conservative timestamping produces a purely serial execution.

2.4.11 Multi-Version Timestamping

Multi-version timestamping was introduced by Reed [Reed 78, Reed 83]. As

with multi-version locking the idea is to maintain multiple versions of each

object. In Reed's scheme, object versions have a lifetime defined by two

timestamps (pseudotimes in Reed's terminology). For example, an object might

have the following history:

<vO[tO,tl]> , <vl[t2,t3] >, <v2[t4,t5] >

which implies that the object had value vO between pseudotimes to and t1, v1

between t2 and t3, and v2 between t4 and t5. It is permissible for there to be gaps

in the history for which no version is valid - for example, in the above history, t1

and t2 need not be the same pseudotime, however, t1 must precede t2 in

pseudotime order.

Processes draw timestamps from a pseudo-temporal environment and it is

these timestamps that determine which version of an object is visible to the

process.

New versions of an object are first created as tokens and are only converted

into proper versions when the process terminates successfully. In addition the

pseudotime interval during which any single version is valid can be extended by

reading the version. Thus in the above example, if a process with a timestamp

Concurrency Control Techniques 40

greater than tl but less than t2 (say tl.5) read the object, then the validity of

version vO would be extended from [W,tl] to [W,tl.5].

2.4.12 Mixed Approaches

The techniques described so far in this chapter can be considered complete

and pure. They are complete since they solve conflicts between reads and writes

(r-w) and writes and writes (w-w) and are considered pure because they use the

same technique to solve both types of conflict.

It is, however, possible to design a concurrency controller that uses different

approaches to tackle each of these two types of conflict, providing that the

resulting integrated concurrency controller behaves in a consistent fashion and

produces correctly serialisable executions. For example, in Bernstein and

Goodman [Bernstein and Goodman 81] such an integrated controller is developed

which uses two-phase locking for r-w conflicts and a derivation of timestamping

called the Thomas Write Rule [Thomas 79] for w-w conflicts. Such mixed

concurrency controllers will not be considered further.

2.5 Optimistic Concurrency Control

Optimistic concurrency control is based upon the premise that it is easier to

apologise after the event than to ask permission before it. That is, whereas

pessimistic approaches always obtain permission to use an object before they

actually do so, optimistic approaches use the object and then determine at a later

stage whether this has caused problems. The methods are optimistic because

they assume that conflicts between processes are likely to be very rare such that

checking for conflict later is likely to be much cheaper than preventing conflicts

from occurring in the first place.

Concurrency Control Techniques 41

Optimistic approaches divide process execution into three stages:

• Read Phase. During this phase processes read objects but only write to local

copies that are not visible to others.

• Validation Phase. Prior to making objects they have written visible to

others, processes must be validated to ensure that no conflicts have

occurred.

• Write Phase. Assuming that validation was successful the local copies of the

object replace the originals and become globally visible.

In the following sections some optimistic concurrency control techniques are

described. As yet none have been adopted in any system since the benefits (if they

exist) have not been established.

2.5.1 Serial Validation

This concurrency control approach, described by Kung and Eobinson [Kung

and Robinson 81], assumes that there is a single concurrency controller capable of

collecting all of the information it requires in order to determine if conflicts have

occurred during the concurrent execution of the processes in the system.

During process execution this concurrency controller accumulates

information about the read-sets (the objects read) and write-sets (the objects

written) of each process. These sets are used during the validation phase to

validate the process when it terminates. In addition, a monotonically increasing

counter is used for timestamp-like purposes.

The protocol proceeds as follows. When a process is started the value of the

counter is read and the process is assigned this value as a timestamp. At the start

of the validation phase, the counter is read again and is used to determine all

those processes which have terminated since the process attempting validation

Concurrency Control Techniques 42

started. These processes are then the ones which could have invalidated any of

the objects (by creating new versions of those objects) that the validating process

has read. Thus the concurrency controller examines the write-set of each of the

terminated processes to see if this set intersects the read-set of the validating

process. If there is an intersection then an already terminated process has

written a value after the currently validating process read it. In this case

validation fails. Otherwise validation succeeds and the process enters its write

phase at which point the counter is increased.

Increasing the counter only after successful validation ensures that at

validation time the concurrency controller can easily detect those processes that

have terminated successfully since the validating process began. The validation

phase and the write phase must be carried out inside a critical section to ensure

consistent results; hence the method is termed serial validation.

2.5.2 Other Optimisitic Methods

Lausen [Lausen 82] has proposed a scheme integrating two-phase locking

and the optimistic concurrency control of Kung and Robinson which allows

processes to use either technique. His scheme requires that processes using two­

phase locking have the same three phases as the optimistic approach.

Carey [Carey 87] has improved the performance of the standard serial

validation algorithm by using timestamps instead of a counter. Also, by

introducing multiple versions of objects, he has produced a protocol called multi­

version serial validation.

2.6 Effects of Distribution on Concurrency Control

All of the techniques described so far have been designed with a centralised

system in mind. However, most will adapt to a distributed environment. Strict

two-phase locking adapts the easiest since in order to grant a lock the local

Concurrency Control Techniques 43

concurrency controller only needs to know what other locks are currently held on

an object. Since objects typically only live at one site (ignoring here the

possibility that an object may reside at several sites, either in part or in total) all

of this information is available. However, distribution compounds the problems

of deadlock detection since it becomes considerably more expensive to produce a

global wait-for graph from all of the local graphs held at each site. The cost of

producing this graph implies that the initiation of the deadlock detection

procedure should be undertaken less frequently. Furthermore, there is the

possibility of phantom deadlocks. These are deadlocks that appear in a global

wait-for graph due to the delay in building it. For example, after a site has

transmitted its local graph to the deadlock detector several processes might

terminate, thus releasing the locks that they hold. However, when the global

wait-for graph is built these processes still appear in it and might appear to cause

deadlock despite the fact that they have since terminated.

Timestamp-based concurrency controllers are also easy to apply to

distributed systems providing that the timestamps from all sites are totally

ordered. A simple technique to ensure this has already been described in section

2.4.8.

An optimistic concurrency control technique has been adapted to a

distributed environment by Ceri and Owicki [Ceri and Owicki 82] who have

extended Kung and Robinson's serial validation scheme to a distributed

environment.

2.7 Adaptive Concurrency Control

In his thesis, Robinson [Robinson 82] notes that given the proliferation of

concurrency control techniques, choosing an appropriate one is difficult.

Furthermore, the appropriate method could well change with system use. What

Concurrency Control Techniques 44

is required is some form of adaptive strategy that avoids commitment to anyone

technique.

Robinson's concurrency control scheme requires processes to generate

requests to the concurrency controller for read, write, read/write and validate

access to objects. Using these requests the concurrency controller maintains

sufficient information about the types of access to objects and the set of objects

accessed to enable it to decide how to reply to any individual request. Robinson's

scheme is adaptive in that by selecting appropriate replies to requests it can

behave in either an optimistic or a pessimistic manner.

For each request the concurrency controller has four possible options::

• Wait. The requesting process is made to wait for all conflicting processes.

• Kill. All conflicting processes are aborted.

• Die. The requesting process is aborted.

• Grant. The access is granted. This option is illegal in response to a validate

request.

The concurrency controller selects one of these options based upon whether

it detects conflict and based upon the policy that is being followed. Thus two­

phase locking is equivalent to selecting wait for all responses if a conflict exists.

Similarly the optimistic approach is obtained by selecting grant for read, write

and readlwri te requests, and kill for validate requests.

Unfortunately this scheme requires global knowledge of the system and

Robinson deliberately aims it at an environment where there is some form of

global object store where the concurrency controller and all shared objects reside.

Concurrency Control Techniques 45

This store is maintained by a global memory manager (GMM) that interacts with

the concurrency controller.

Another interesting aspect of this scheme is that the GMM maintains object

versions so that processes that declare themselves to be read-only never need to

interact with the concurrency controller at all.

2.8 Non-Serialisable Approaches

Many researchers have pointed out that serialisability is often a far

stronger constraint than is really necessary. Hence there have been

investigations into non-serialisable approaches. A concurrency controller that

produces non-serialisable schedules must still, however, produce results that are

consistent and correct. This section very briefly notes some of these efforts.

Garcia-Molina [Garcia-Molina 83] has proposed the idea of semantically

consistent schedules. Processes are divided into two types: one type requires a

consistent view, the other type does not. Schedules are semantically consistent if

those processes that need a consistent view see such a view.

In the context of abstract data types, Allchin and McKendry [Allchin and

McKendry 83] develop the notion of end of action serialisability which although

serialisable at the abstract level is not so at the concrete level. They further allow

non-serialisable behaviour at the abstract level by adding extra procedures to an

object allowing information about object use to be gathered. That is, the object is

informed when atomic actions that have used them, commit or abort. In the same

area, Schwarz and Spector [Schwarz and Spector 82] uses semantic information to

track dependencies between programs.

Perhaps the most interesting (and complicated) approach is that ofSha [Sha

et aI. 83, Sha 85] who has developed a model of consistency that is termed the

relational model. As pointed out in [Sha et al. 88], when using non-serialisable

Concurrency Control Techniques
46

schedules it is no longer correct to assume that the execution of an action will

always be consistent and correct even if the action itself is consistent and correct

when executed in isolation. That is, when executing under a non-serialisable

schedule the results of any execution could be different from any serial execution

and so could prove to be neither consistent nor correct. In order to overcome this

modular concurrency techniques are developed that are both consistent and

correct.

One such technique uses setwise serialisability to allow elementary

transactions accessing different atomic data sets (partitions of the data such that

the consistency of each set can be maintained independently of other sets) to be

combined into compound transactions, the execution of which is generally not

serialisable.

Other work in this area includes that of Birman and Joseph [Birman and

Joseph 87] who have proposed the notion of virtual synchrony which is a weaker

consistency constraint than serialisability but which they argue is more

applicable to distributed systems. With this scheme one event seems to happen at

a time, system wide, although the actual execution is concurrent. Furthermore,

event ordering is preserved in that if one event precedes another then everyone

sees a consistent event ordering. Their work, and a similar notion, virtual time

[Jefferson 85], provides an interesting departure from classic notions on

serialisabili ty.

2.9 Summary

This chapter has surveyed some of the many techniques available to ensure

that concurrent access to an object does not result in inconsistencies. Many of the

basic techniques have been known for many years, and still more are being

invented, usually to solve some specialised need. Despite this, most systems still

use locking as their concurrency control technique, hence this chapter's

Concurrency Control Techniques 47

concentration on this approach. Even new distributed systems research projects

such as Argus [Liskov 84, Liskov 88] (which will be described in chapter four)

have persisted in using this approach.

In reality the choice of which technique to use is complex. Some studies

have been carried out (for example, [Franaszeck and Robinson 85, Tay et al. 85,

Agrawal and DeWitt 85]) to determine the performance of the various approaches

under different assumptions, but no conclusive evidence appears forthcoming.

A general consensus of opinion is that in situations of high contention, lock­

based approaches are the most suitable despite their inherent problems. Whether

optimistic approaches are truly viable has yet to be established. Robinson's

adaptive approach appears highly flexible given an appropriate environment,

however, as yet it has not been tested in anything other than a simple prototype

research system. Certainly the most active area of research at the current time is

in the area ofnon-serialisable techniques.

Atomic Actions and Concurrency Control 48

Chapter 3

Atomic Actions and
Concurrency Control

The previous chapter described several of the available concurrency control

techniques. In doing so emphasis was placed solely on the interactions of

processes executing programs that referenced shared objects. It assumed a

perfect environment in which failure never occurred and processes terminated

correctly at all times. This was deliberate since it is part of the view of this thesis

that the topic of concurrency control can be considered separately to that of

handling failure. Such an assumption is of course clearly unrealistic in practice,

so this chapter examines the concept of the atomic action and investigates the

relationship that concurrency control has with it.

First, however, the concept of the atomic action is examined in more detail

describing why the concept is a suitable one to use in programming reliable

distributed systems. Having done so the chapter then describes how many of the

concurrency control techniques of chapter two can be utilised to provide one ofthe

key properties of the atomic action abstraction - that of concurrency atomicity.

This is followed by an appraisal of what it means for atomic actions to be nested

and the requirements that this nesting places upon concurrency control. Finally,

the implementation of atomic actions in several existing systems is described to

illustrate the point that different concurrency control techniques can be (and are

being) used in practice.

Atomic Actions and Concurrency Control 49

3.1 Atomic Actions

The general concept of the atomic action has been around for many years.

Probably the first reference to it was by Davies [Davies 73] under the name

Spheres of Control. The name atomic action was coined by Lomet [Lomet 77] who

described atomic actions as a means of process structuring, synchronisation, and

recovery.

Davies' concept was adopted by the database community where it was

rechristened the transaction, a term which is now considered synonymous with

atomic action in most circles. The popularity of the abstraction of the atomic

action can be attributed to its three fundamental properties:

• Failure Atomicity.

• Concurrency Atomicity.

• Permanence of Effect.

Failure atomicity ensures that an atomic action can only terminate in two

ways: either normally, committing its results; or abnormally, aborting and

producing no results at all. The net effect of the execution of an atomic action is to

move the system from one consistent state to another if the atomic action

commits, or to leave the system in the same consistent state that it was in before

the atomic action started should the atomic action abort. The provision of this

property is usually by means of backward error recovery, which is invoked

whenever an error is detected in the system. Backward error recovery requires

that the states of any objects manipulated under the control of the atomic action

are restored to the corresponding states each object was in prior to the start of the

atomic action. Various techniques can be used to achieve this state restoration.

The simplest records the prior state of each object as a checkpoint, and restores

this state if the atomic action aborts. Alternatively, the sequence of operations

Atomic Actions and Concurrency Control 50

performed upon each object can be recorded as an audit trail, allowing the

operations to be undone if required. Such state saving and recovery can often be

made automatic thus freeing the programmer from this burden.

One problem with the backward error recovery approach involves atomic

actions that interact with the real world. In such situations it may be impossible

to effectively restore the prior state of the system. For example, if an automatic

cash dispenser gives out money as part of the execution of an atomic action in

response to a client's request, then in this case simple state restoration is

impossible should the action be aborted since the money has already been

dispensed!

One possible solution to this particular problem is to delay performing such

unrecoverable operations until the action is certain to commit and only perform

such operations at that time. Essentially the operations need to be recorded as

intentions and when the action commits all such intentions are performed only

then.

Instead of attempting to perform backward error recovery another possible

approach is that of forward error recovery [Melliar-Smith and Randell 77]. The

idea here is not to restore the state to one which existed at some time in the past,

but to attempt to modify the existing erroneous state such that it becomes

consistent again after an error has occurred that caused the atomic action to

abort. One form of forward error recovery is based upon the use of a compensating

action which can be started and which attempts to undo the effects of the failed

action. Obviously the success of this compensation effort depends critically upon

the operation performed which can make writing such compensating actions

difficult.

Atomic Actions and Concurrency Control 51

Forward and backward error recovery can be used in conjunction with each

other. When used in this way, forward error recovery allows efficient handling of

expected errors, with backward error recovery handling the more general errors

that were not anticipated, or were deliberately ignored. Forward error recovery is

a far more complex task that cannot usually be performed automatically, thus

failure atomicity is implemented by utilising backward error recovery in the

majority of existing systems. Forward error recovery does have it place;

particularly in asynchronous systems, however, such systems are beyond the

scope of those under consideration in this thesis, and so the interested reader is

referred to [Campbell and Randell 86] and [Shrivastava 85] for further

enlightenment.

Given that an atomic action has completed successfully, external

consistency (defined shortly) requires that the effects of the atomic action are

permanent and will not be lost due to a subsequent failure of the system. This

permanence of effect property requires the provision of stable storage; storage

that will survive failures of the system with a very high probability of success.

Such storage is the most reliable (and so also the most expensive to use) storage

available and can be considered to be at the top of a storage hierarchy that has at

its bottom normal, volatile computer memory. There are, of course, intermediate

levels of storage that provide various degrees of susceptibility to failure, however,

for the purpose of this thesis, the basic model outlined in chapter one will be

followed and it will be assumed that storage is only either volatile or stable.

Lampson and Sturgis [Lampson and Sturgis 79] detail the design of such stable

storage using pairs of conventional magnetic disks and an implementation of

their technique in a UNIXt environment is described in [Anyanwu 84]. An

tUNIX is a registered trademark of AT&T in the USA and other countries.

Atomic Actions and Concurrency Control 52

alternative technique for implementing stable storage using stable memory has

been used by Banatre [Banatre et al. 83] as part of the Enchere system. In

addition, work was carried out at MIT as part of the SWALLOW project

[Svobodova 80, Svobodova 81] on using write-once optical discs for stable storage.

The second property of atomic actions, concurrency atomicity, ensures that

computations structured as atomic actions do not interfere with each other. It is

the provision of this property that is the primary concern of this thesis. In

addition, atomic actions have the property that they are consistency preserving.

If a system is consistent prior to the start of an atomic action then the system will

also be consistent after the action has terminated (even if the action aborted). Of

course during the execution of the action such consistency will probably be

violated temporarily. For example, if the transfer procedure of the previous

chapter was executed under the control of an atomic action the constraint that the

sum of the two accounts was constant would be maintained before and after the

action executed. However, during the actual execution this constraint is

temporarily violated as money is moved between the two accounts. Such

constraints are user-defined and are more precisely termed internal consistency

constraints, since they define the correctness of the actual internal state of the

system.

In addition to internal consistency, atomic actions should also preserve

external consistency. That is, the user's perception of the state of the system

conforms with the actual state of the system. This implies that once a user has

been informed that some action has been performed it must not be undone

otherwise the user's perception of the system would be inconsistent with the true

state of the system.

Atomic Actions and Concurrency Control 53

Such perception is, of course, influenced by the nature of the communication

between the system and the user. If all communication can be delayed until an

action commits then there is no problem. However, some actions will invariably

solicit input from the user during their execution. Thus the user perceives the

progress of the action through the system by the output it produces and the input

it demands. In such cases feedback from the system is vital to inform the user of

the final outcome of the action. One interesting approach to this problem was

adopted by the TABS project at Carnegie-Mellon [Spector et aI. 85b]. Within this

system output could be displayed in three different fashions. While the action

was executing the output was displayed with a grey background indicating its

tentative nature. If the action successfully committed the output was redrawn in

black, otherwise if the action aborted, lines were drawn through the output to

indicate that it had been canceled. This latter approach was felt to be a more

communicative way of informing the user that an action had aborted rather than

simply erase the screen making the output disappear which could have been very

disconcerting to the user!

3.2 Atomic Action Operations

The description of atomic actions given in the previous section leads to a

natural requirement that at least the following operations must be implemented

in order to support them:

• Begin Action

• Commi tAction

• Abort Action

the following sub-sections outline the support from the system that each

operation requires.

Atomic Actions and Concurrency Control 54

3.2.1 Begin Action

Atomic actions are started by a process executing the Begin Action

operation. Failure atomicity requires that any object manipulated by the process

after executing this operation must record sufficient information so that the

initial state of the object may be restored later if needed (assuming a backward

error recovery approach has been adopted). Often this is handled by taking a

checkpoint of the initial state of the object the first time it is modified, which can

be restored later if the action aborts.

When an atomic action is begun it is allocated a atomic action identifier that

identifies the action to the system. This identifier is supplied as an implicit

parameter to all of the operations that the action executes from now on, thus

ensuring that all of the effects of the action can be identified should the action

need to be aborted. This identifier may also used by the concurrency controller to

enable it to make any decisions about the permissible level of concurrency. Such

an identifier needs to be globally unique across the entire distributed system so

that no two actions have the same identifier. Traditionally such identifiers are

generated by concatenating together an identifier that uniquely identifies the

creating site, and the current (unique) value of the local system clock.

Depending upon the system, processes may not have to explicitly start an

atomic action themselves. Rather it may be implicit with the start of the process

itself. Handling action commencement in such an implicit fashion guarantees

that all processes in the system run as atomic actions and is thus less prone to

programmer error.

Atomic Actions and Concurrency Control 55

3.2.2 Commit Action

Commit Action indicates the successful termination of the atomic action.

This normally requires that the persistent objects (that is, those objects whose

lifetime is not restricted to the lifetime of the action) affected by the atomic action

are made permanent and any concurrency control information that has been

collected may be usually be discarded. It may not be appropriate to discard the

concurrency control information if the atomic action was nested within another

atomic action. This latter point will be covered further in section 3.6 of this

chapter.

3.2.3 Abort Action

Abort Action indicates that the computation executing under the control of

an atomic action has failed for some reason and any changes the computation has

made to the system state must be undone. Thus the state of each object modified

within the scope of the action must be recovered in an appropriate manner. In the

case of backward error recovery this amounts to restoring the prior state of each

object.

Depending upon the system this recovery may require a lot of work, or

virtually none. For example, if the current state of an object was maintained in

volatile memory this state can often simply be destroyed since the proper version

to restore to usually still exists on stable storage. On the other hand, if the

current state has already been propagated to stable storage, either partially or

fully, the prior state must be reinstalled on stable storage as the current version.

3.3 Distribution and Two-Phase Commit

Whether an action commits or aborts it is essential that the states of all of

the objects that the action modified are also either committed or recovered.

Ensuring this uniformity requires the use of a special commit protocol. The most

Atomic Actions and Concurrency Control 56

common protocol is the two-phase commit protocol [Gray 78]. As its name implies

this protocol is split into two distinct phases. During the first phase the initiator

of the commit protocol (the co-ordinator) broadcasts prepare messages to each of

the objects (the components or participants) and waits for each to reply. When a

participant receives the prepare message, if it is willing to commit, the

participant saves sufficient information on stable storage to allow it to commit or

abort under instruction from the co-ordinator and replies with an ok vote. Once in

this state the participant has lost the right to act unilaterally and cannot proceed

further until directed by the co-ordinator. If the participant is unwilling to

commit it replies no.

The co-ordinator gathers all of the replies from the participants and then

starts the second phase of the protocol. If all of the votes were ok, the co-ordinator

records a commit flag on stable storage and broadcasts commit to its participants.

If any vote was no, or no reply was received from any of the partici pan ts, then the

co-ordinator records no on stable storage and broadcasts abort only to those

participants that had replied ok. In either case the co-ordinator waits for

acknowledgments from the participants it had sent messages to in the second

phase, before it then terminates. Participants await the decision of the co­

ordinator and act accordingly before acknowledging. This protocol is shown by

the state diagrams of Figures 3-1 and 3-2 (which omit details of failure

processing). In these diagrams the state transitions are labeled with the input

messages that cause the transition, and the output messages that are sent as a

result of the transition taking place. Messages labeled with an asterisk indicate

messages sent to, or received from, all participants, while messages labeled with

dashes (--) are null messages.

The above discussion has assumed that once the protocol has been started no

failures will occur in the system. In actual fact, failures can occur, and the

protocol will still ensure that all the participants take the same action. For

Atomic Actions and Concurrency Control 57

commit/prepare * ok*/commit*
Committed

no/abort* J:~'I-
,.--- - -

/ "
abort/abort*

I-----'-o.:::.k*...:../_--__ .: Forgotten)
' - -'/

........ _----_

Figure 3-1: Co-ordinator state diagram

Prepared
commit/ok

Committed

abort/ok

abort/--

Figure 3-2: Participant state diagram

example, if the co-ordinator crashes during its first phase then upon recovery the

action is considered aborted, a fact that can be discovered by the participants if

they query the co-ordinator to determine the outcome of the action (something

they might do if they have not received the decision from the co-ordinator after

some period of time). If the co-ordinator fails during phase two, then upon

recovery of the co-ordinator, the status of the action can be determined by the

commit information recorded on stable storage at the end of phase one, and the

Atomic Actions and Concurrency Control
58

protocol can proceed. Similar arguments can be applied to failures of the

participants, but are not discussed further here.

While two-phase commit is robust, it has an unfortunate problem in that it

can become blocked if a participant, having responded ok to the co-ordinator, does

not receive the decision of the co-ordinator for some reason (this can occur if the

co-ordinator has crashed, or the network has lost or delayed the message

containing the decision, etc.) since it has lost the ability to act unilaterally.

Various modifications have been attempted to overcome this deficiency including

the development of so-called non-blocking commit protocols such as the three­

phase commit protocol [Skeen 81]. Other modifications have also been made in an

attempt to make the protocol more efficient [Mohan et al. 83] but will not be

discussed further.

3.4 Atomic Action Nesting

The ability to compose new programs out of existing ones is a useful

technique. This reusability cuts down costs and reduces errors since existing

(hopefully working) programs are used to construct new ones. The ability to

compose existing atomic actions into new ones is also equally useful. Without it

there would be no way to take two existing actions and combine them into a new

third action, short of copying the code from each into the new action - a potentially

costly operation both in terms oftime and the possible errors that might result.

Another problem is that such enlarged actions might take a long time to

execute; so long in fact that the 'all or nothing' property of atomic actions becomes

a liability. For example,if the action requires longer to complete than the time

that the system executes without a failure occurring somewhere, then the long

running action can never complete.

Atomic Actions and Concurrency Control 59

Such problems can be overcome by allowing atomic actions to be nested as

illustrated in Figure 3-3, which shows purely sequential nested actions, and

Figure 3-4 which shows concurrent nested actions. Note that, by the definition of

Begin Action Commit Action
B B

Begin Action
A

Begin Action Commit Action
C C

Commit Action
A

Figure 3-3: Sequential nested atomic actions

Begin Action
A

Co-Begin
C

•

B

C

Co-End
C

Commi tAction
A

Figure 3-4: Concurrent nested atomic actions

Atomic Actions and Concurrency Control 60

an atomic action, any such nesting is proper in the sense that the executions of

the nested actions Band C are always totally encompassed by the execution of the

enclosing action A.

Such nested actions (or sub-actions as they are sometimes called) behave

precisely like top-level actions. That is, they may fail independently of one

another and are synchronised in the same way top-level actions would be (with

minor provisos that will be explained shortly). However, stable storage is usually

only affected when the top-level action commits. The reason for this lies in the

fact that even if Band C commit there is always the possibility that A might

abort, requiring that the effect on the system is as if Band C had never executed

at all. If the commitment of the nested actions updated stable storage, these

updates would then have to be undone. Typically, since updating stable storage is

an expensive operation, the effect of the commitment of a nested action is only

visible in the volatile version of an object. The stable version is only updated

when the top-level action commits.

Nesting actions in this fashion has several advantages. Firstly, the use of

concurrent actions can exploit the potential parallelism available in the system;

thus top-level actions may execute faster than if they had been structured using

the sequential approach. However, the effects of the parallelism may not be as

great as might be expected depending upon the objects manipulated by the sub­

actions. If all of the sub-actions manipulate the same objects then the

concurrency controller may force a strict serial execution of the sub-actions since

sub-actions are serialisable in precisely the same way as other actions. The nett

effect is that the overall execution time is greater than if a sequential approach

had been used due to the concurrency control overhead.

Atomic Actions and Concurrency Control 61

Secondly, and perhaps more importantly, nesting provides a means of

isolation. That is, simply because one of the sub-actions aborts it does not mean

that the top-level action must also abort. Rather, the failure is isolated to the

(sub-action) tree rooted at the failed action. Thus if sub-action B (in Figure 3-4)

aborts for some reason, action A is free to start another sub-action to do the work

in place of the failed sub-action B.

This isolation property provides a kind of firewall to protect the top-level

action from failures that would otherwise require that the entire action be

aborted. In addition, using nested actions in this fashion allows the

implementation of fault-tolerance based upon recovery blocks [Horning et al. 74]

or N-Version programming [Aviziennis and Chen 77].

A third advantage of nesting is that new actions can now be composed out of

existing, formerly top-level actions, since the old top-level actions simply become

sub-actions of the new, more pervasive top-level action.

Since the structure that results from the use of nested actions conforms to

that of a hierarchy, standard tree terminology combined with family

relationships will be used to describe atomic action relationships. Thus a top­

level action is the root of the action hierarchy. Similarly, actions having sub­

actions are referred to as parents, while the sub-actions themselves are called

children. Additional relationships such as ancestor and descendant have an

equally obvious meaning.

3.5 Concurrency and Atomic Actions

The previous chapter treated concurrency control as a topic in its own right.

This section shows how those techniques can be used to provide the important

concurrency atomicity property of atomic actions. In general, this integration is a

straight forward operation.

Atomic Actions and Concurrency Control 62

Recall that when an atomic action is started it is assigned some form of

unique identifier that is usually termed the atomic-action-id or the transaction­

id. The system uses this identifier throughout the lifetime of the action to track

the effects of the action. If this unique identifier is such that it can be used as a

timestamp (say the identifier is generated directly from the system clock in a

fashion similar to that outlined in chapter two) then any of the timestamp-based

approaches to concurrency control are available to provide the property of

concurrency atomicity in an obvious manner - all that is required is that prior to

attempting some operation upon an object, the concurrency controller is called to

make sure timestamp ordering is being maintained.

Lock-based approaches to concurrency control are also possible since it is

easy to arrange that prior to executing an operation the action attempts to set an

appropriate lock. In fact, locking is used by the majority of actual

implementations of atomic actions to provide the concurrency atomicity property

with by far the most dominant method being strict two-phase locking. Strict two­

phase locking modifies the basic two-phase requirement so that the shrinking

phase is seemingly instantaneous at the end of the program. When used with

atomic actions the acquisition oflocks is incremental as operations are performed,

while the release of locks occurs only when the action commits or aborts. The

release of locks is instantaneous in order to avoid potential cascade aborts.

Cascade aborts can occur in the following manner. Assume some action is using

ordinary two-phase locking and is gradually releasing its locks during its

shrinking phase. These locks can then be acquired by other actions and the

objects they protect manipulated. However, if the original action now aborts it

needs to restore the states of the objects it manipulated, but which may now be

being used by other actions. Thus these other actions will have to be aborted also,

and so on. This so-called domino-effect [Randell 75] is usually considered

Atomic Actions and Concurrency Control 63

undesirable and can be avoided by only releasing locks when the top-level action

terminates.

Having noticed that early release is usually undesirable, the Profemo

system [Nett et al. 85], does allow just such an approach, but uses specialised

hardware to track the resulting dependencies between actions. In addition,

Shrivastava [Shrivastava 82] has investigated a system model that tracks

dependencies between actions and associates levels of confidence to results

consumed as a consequence of early release oflocks.

3.6 Effects of Nesting

While being highly desirable, the nesting of actions has some implications

for concurrency atomicity. These sub-sections describe the required modifications

to some standard concurrency control techniques to handle action nesting. The

equivalent modifications required for failure atomicity are beyond the scope of

this thesis.

3.6.1 Locking

When a non-nested action was committed or aborted the concurrency

controller could discard any locks that it was holding on behalf of that action. The

possibility that the action might be a nested one means that this is no longer true

for the following reason. In two-phase locking locks cannot be released when a

child action commits because the concurrency controller might then allow some

other action to acquire the locks, thus breaking the concurrency atomicity

property for the parent action. What is required is a means by which the parent

action can inherit the locks acquired by its children so that it maintains control

over all objects manipulated under control of itself and all of its children.

Atomic Actions and Concurrency Control 64

This extension to two-phase locking was made by Moss [Moss 81] and has

become the standard way of implementing two-phase locking in a nested action

environment. The scheme is as follows. A distinction is made between holding a

lock and merely retaining it. When a lock is held the (sub-)action can manipulate

the object in the normal way. When a child action commits, its parent action

inherits and retains all of the locks held or retained by its child. Lock retention

ensures that other actions outside of the scope of the top-level action cannot

acquire the lock, but inferior child actions can. Should a child action be aborted

all of its locks whether held or retained are released. Moss's locking rules are

thus:

• An action may hold a lock in write mode if no other action holds the lock (in

any mode) and all retainers of the lock are ancestors of the requesting action.

• An action may hold a lock in read mode if no other action holds the lock in

write mode, and all retainers of write locks are ancestors of the requesting

action.

• When an action aborts, all of its locks (held and retained, of all modes) are

simply discarded. If any of its ancestors hold or retain the same lock, they

continue to do so, in the same mode as before the abort.

• When an action commits, all of its locks (held and retained, of all modes) are

inherited by its parent (if any). This means that the parent retains each of

the locks (in the same mode as the child held or retained them).

Furthermore, lock modes are ordered, since some merging may be necessary

if a parent inherited a lock from one of its children in a different mode to that

which it was already retaining it in. For example, an action may have been

retaining a lock in read mode. This would allow one of its children to acquire and

hold the lock in write mode, so that when the child committed the parent would

Atomic Actions and Concurrency Control 65

inherit this lock. The parent must then retain the lock in the stronger of the two

modes (in this case write).

3.6.2 Timestamping

Timestamp based approaches are more difficult to adapt to an environment

supporting nested atomic actions. The major problem that arises is ensuring that

the timestamp order is maintained even for the nested atomic actions. One

approach to this is to allocate non-overlapping timestamp ranges to atomic

actions and ensure that all nested actions draw their timestamp ranges from the

timestamp range allocated to their parent. This technique ensures that all

atomic actions are correctly serialised. One design that uses this approach was

undertaken by Reed [Reed 78, Reed 83] and is based upon multi-version

timestamping. The scheme is novel in that it took an integrated approach to the

problems of action naming and synchronisation. Reed's scheme was later used in

a simplified form as a basis for the SWALLOW project at MIT (see section 3.7.4 of

this chapter for further details).

3.7 Examples of Systems Supporting Atomic Actions

This section describes some systems that support atomic actions in one form

or another. While by no means exhaustive, the systems have been chosen to

illustrate the fact that the various concurrency control techniques of the previous

chapter have been used to implement concurrency atomicity in practice. The

examples are drawn from distributed databases and distributed operating

systems only; the description of some object-based systems is postponed until the

next chapter.

Atomic Actions and Concurrency Control 66

3.7.1 R*

R* [Lindsay et al. 84, Mohan et al. 86] IS an experimental distributed

database system developed at the IBM research laboratory at Almaden. It

supports only single level transactions and uses strict two-phase locking as its

concurrency control technique. Each site in the distributed system runs the R*

database manager and clients only ever communicate with their local manager.

Requests for remote service are handled entirely between the R* managers

themselves. Thus a request from a client is first presented to the local manager,

who will forward it to some remote manager if required. Results destined for a

client are likewise transmitted via the local manager. Such communication is

made over a virtual circuit established on behalf of the client transaction when

the first remote service request for a site is processed. Transaction identifiers are

globally unique and are transmitted only when a connection between sites is first

initiated (and the virtual circuit is established).

Since R* does not support nested transactions it uses an alternative,

simpler, approach based upon the establishment of save points that act as

recovery points. Should recovery become necessary a transaction is only

recovered back to the last established save point, not all the way back to its start.

The root process acts as a co-ordinator should this recovery be necessary by

instructing all of the participants to recover to their save points.

Unlike most other database systems R* does not contain a separate lock

manager process. Instead all lock related information is maintained in shared

storage and is accessible to all of the processes at a site. The lock access code is

executed directly by the processes accessing the database. Although generally

obeying two-phase locking some locks are actually released before all other locks

have been acquired for performance reasons. Allowing this requires that should

the transaction abort these locks must be re-acquired. To avoid potential

Atomic Actions and Concurrency Control 67

deadlock problems only a single transaction is allowed to attempt lock re­

acquisition at once. Deadlock detection is based on constructing a global wait-for

graph. Each site maintains its own local wait-for graph and may initiate

deadlock detection at any time.

3.7.2 Locus

Locus is a distributed operating system developed at UCLA [Walker et al.

83, Walker 85]. It has provided a testbed for several different implementations of

atomic actions, some nested, others not. This section first describes the basic

capabilities of Locus before considering how atomic actions have been

implemented upon this base.

Locus is a UNIX compatible, transparent distributed system. It appears to

the user as a single UNIX system despite the fact that it is executing on several

nodes. The file system appears as a single tree structured hierarchy that spans

all the nodes. Filenames in Locus are location independent, thus it is usually not

possible to determine the location of a file from its name. Files may also be

replicated to varying degrees for availability purposes. The file system itself is

also somewhat more robust than traditional UNIX systems and uses a shadow

paging technique [Lorie 77] coupled with commit and abort primitives to ensure

that changes to files are handled atomically. In Locus only the operations

performed upon files are recoverable.

Each Locus site is a full-function node executing the Locus kernel, though

file system activity can involve more than one site. Locus systems define three

logical sites:

• Using Site. This site issues the request to open a file and is the source of all

file manipulation requests.

Atomic Actions and Concurrency Control 68

• Storage Site. This is the site at which a copy of the file resides. If the file is

replicated it will have several storage sites, only one of which will be

selected to supply pages of the file to the using site.

• Current Synchronisation Site. This is the site that enforces global access

synchronisation to a particular file. The ess stores infonnation on which

sites a given file is stored at, together with an indication as to which is the

current version of the file. It mayor may not actually store the file itself.

This partitioning of si tes is purely logical and any site can be any or all of

the above. The system is, however, its most efficient when all three functions are

perfonned at a single site since there is no network communications overhead.

When a file is opened the current synchronisation site is interrogated to

detennine synchronisation policy and to detennine a storage site for the file. The

CSS is also responsible for maintaining a structure known as a version vector for

replicated files. This structure enables the ess to determine which Locus site

currently stores the most up to date version of a replicated file.

Once a storage site has been selected communication is only between it and

the using site while the file is manipulated. The ess becomes involved once more

when the file is finally closed.

Atomic Actions in Locus

The first full implementation of atomic actions in Locus included support for

nested actions and was undertaken by Mueller [Mueller 83, Mueller et al. 83],

based on an earlier simpler implementation by Moore [Moore 82]. The atomic

action interface was simple: only a single system call was provided that started a

new process executing as an action. The caller was blocked until the action thus

created terminated. The created process was allowed to create other member

Atomic Actions and Concurrency Control 69

processes that where linked to the same action, any of which could start a sub­

action using the same interface.

Concurrency control was via strict two-phase locking obeying Moss's nested

locking rules. The Locus rules regarding the selection of a CSS and SS were

modified such that actions interacted with a transaction synchronisation site

(TSS), which played both roles. Similarly all I/O operations on the files were

tagged with the transaction identifier ofthe action making the call.

The TSS maintained information using a tlock structure for a file. This

structure contained information on both lock holders and retainers together with

recovery information in the form of a file version stack. Versions of files where

kept incrementally so that only those pages that had been modified by an action

where noted.

Experience with the implementation described above caused a re­

implementation to occur for several reasons. Firstly, the process structure was

deemed to be too heavyweight. Secondly, maintaining version stacks and inter­

transaction synchronisation proved to be too expensive, and thirdly,

synchronisation was done only at the file level.

This second implementation [Weinstein et al. 85] attempted to overcome

these difficulties at several levels. As a means of increasing concurrency, record

level locking was introduced, allowing users to lock particular parts of a file

rather than the entire file. Lock requests could be either made explicitly via a

system call or implicitly when parts of the file were actually accessed.

File modification was not restricted to being performed as part of an atomic

action, arbitrary processes could also do so. To cope with this extensions were

made to the commit and abort mechanisms of the basic system to ensure that if a

Atomic Actions and Concurrency Control 70

file was modified both as part of an atomic action and by an ordinary process then

inconsistencies did not arise.

The system still followed two-phase locking for actions, but not for ordinary

processes whose locks could be released at any time. In addition, two methods by

which serialisabili ty could be a voided were provided. The first method was by the

provision of special locks which did not have to obey the two-phase rule. The

second method relied on the fact that locks acquired before an action was started

were not converted to action type locks when the action did start. These locks

behaved as if owned by ordinary processes.

Finally, actions were started and ended by explicit system calls and applied

to the calling process. Furthermore, such actions could not be nested as they had

been in the previous implementation.

Although admirable attempts, neither of these two implementations of

atomic actions described in the preceding paragraphs can really be called a

success. The first, which provided a full implementation of the nested action

model, proved to be too expensive for general use. In addition, the user interface

to it was unnatural and did not fit well with traditional UNIX interface. The

second implementation remedied some of these problems but lost the flexibility

that the nested model provided by reverting to a simple single level approach.

Probably the major flaw with both approaches arose from the underlying

system itself. Locus was designed to be BSD UNIX compatible, with all that that

entailed. In particular, the semantics of file system operation and the nature of

processes did not harmonise well with the atomic action philosophy.

The arguments behind the original design effort was that by placing atomic

action support in the kernel, it need be implemented only once, and could thus be

made more efficient and relieve applications of the necessity of implementing

Atomic Actions and Concurrency Control 71

such support themselves. Unfortunately the resulting generality that was

required to support various applications just did not integrate well with the UNIX

model upon which Locus was based.

3.7.3 Amoeba

Another distributed operating system, Amoeba [Tanenbaum and Mullender

81, Tanenbaum and Renesse 85] is novel in that one of the distributed file services

that are available uses an optimistic concurrency control technique combined

with standard two-phase locking in a multi-version environment [Mullender and

Tanenbaum 85].

The choice of which technique to use is based upon the amount of data to be

accessed and hence the likelihood of conflict. Small updates (one file) use the

optimistic approach; larger updates (several files) use locking.

The Amoeba file service makes use of immutable versions of files. When

opened for writing, a new version of the file is created which initially behaves as a

copy of the original. The new version becomes available when a commi t operation

is performed on the file. Files are structured as a tree of pages (although the page

size is not fixed and is only limited to a maximum of 32k bytes) which may be

shared by several versions. Thus each version is in some sense like a difference

file [Severance and Lohman 76].

The optimistic concurrency control used is based upon the serial validation

approach of Kung and Robinson [Kung and Robinson 81]. When an attempt is

made to commit a version of a file a check is made to see if the version of the file

this new version is based upon is the current version. If it is then the commit

succeeds and the new version is installed as the current version ofthe file.

Atomic Actions and Concurrency Control 72

If the new version is not based upon the current version but on some older

version this implies that at least one newer version of the file exists and a check

must be made to see whether the changes made to the file to create the version

that is being validated can be reconciled with those of the other newer versions of

the file. Thus the page trees of each version are descended in parallel to

determine if the two versions are serialisable. This check proceeds to check all

newer versions of the file until it ascertains whether the validating version can be

made the current version or not.

While this is an elegant scheme it is a sobering thought to note that this

particular file service does not receive much use in the current implementation of

the system. Basically, the optimistic file service is considered far too slow in

comparison to some of the other file services that are also available in Amoeba.

3.7.4 Swallow

Swallow [Svobodova 80, Svobodova 81, Arens 81] was an attempt to use

Reed's ideas on multi-version timestamping to design a reliable object repository.

It simplified his model by not allowing gaps in the version history of an object.

Thus when a new version was created, the validity interval of the preceding

version was extended to immediately prior to the start time of the new version.

Swallow was simply a data storage system originally intended to be

implemented upon write-once optical discs (theoretically an ideal medium since

each version of an object was immutable). The management of this storage

proved to be particularly complex since it could potentially grow forever,

necessitating a distinction between Online Version Storage (that part currently

available) and Offline Version Storage. Most of the problems arose due to the

need the ensure that the latest version of any object was always online; thus

Atomic Actions and Concurrency Control 73

objects that had been inactive for a length of time frequently had to be copied to

ensure their availability.

Actions are named and synchronised in SWALLOW using a concept called

pseudotime. Pseudotime is a global, temporal coordinate system imposed upon a

distributed computation such that all pseudotimes form part of a totally ordered

set. Pseudotimes act as timestamps but are only loosely connected with real time.

Associated with each atomic action is a pseudotime generator called a pseudo­

temporal environment. Each such pseudo-temporal environment is effectively a

non-overlapping subrange of all of the possible pseudotimes, thus all of the steps

of one atomic action will either precede or follow all of the steps of another atomic

action in psuedotime order. In order to handle atomic action nesting, each sub­

action receives a non-overlapping subrange of its parent's pseudo-temporal

environment as its own. Attempts to read or write objects require a pseudotime

generated from the environment of the action. This pseudotime selected which

particular version of the object could be manipulated by the action (since, in

multi-version timestamp ordering, objects have versions that are valid over

particular ranges of pseudo time).

When a new object is created (objects are immutable by virtue of the version

scheme), it is only a tentative version known as a token. The set of all tokens

created by an action forms a possibility. When an action is started a new

possibility is created to which tokens are added as the action executes.

Committing the action also commits the possibility and thus installs all of the

tokens as proper versions ofthe objects in question.

Tokens are only visible to the action that created them, but not visible

outside that action until it commits. In order that child actions might see each

others tokens as well as those of their parents the notion of a dependent possibility

is available.

Atomic Actions and Concurrency Control 74

3.7.5 Felix

Another file server, Felix [Fridrich and Older 81], is novel because it

supported multi-file commit as one of its basic operations. Felix also allowed pre­

declaration so that actions would never be aborted (a conservative two-phase

locking approach). In addition, Felix maintained two versions of files (like two­

version two-phase locking) using notions of copy, original, and exclusive types of

access (in both read and write modes). Copy access provided an means of

accessing the most recent version of a file but any changes made to the file were

uncommitable. Original type access was the normal mode but also allowed copy

access. Exclusive access provided the traditional exclusivity.

3.8 Summary

In this chapter the relationship between concurrency control techniques and

the concurrency control requirements of atomic actions has been examined. As

has been shown many of the concurrency control techniques described in chapter

two have been attempted in one or more actual systems. However, two-phase

locking has proved to be the dominant choice, particularly in commercially

available systems, while other techniques have generally only appeared in

research projects - often simply to show that such techniques could indeed be used

and would work as envisaged.

The dominance of two-phase locking can probably be attributed to several

factors. Firstly, its relative simplicity and intuitive correctness. Secondly, its

wide applicability and good performance under many different situations.

Thirdly, inertia is also at work; until some of the other concurrency control

techniques have demonstrated any advantages they might possess, why change?

Lack of commercial pressure is also a factor. Databases predominate in the

commercial world and are still typically only providing single level transactions,

Atomic Actions and Concurrency Control 75

despite the apparent flexibility, power and elegance of the nested transaction

approach.

Similarly, attempts to provide support for atomic actions within operating

systems have proved to be of dubious value, often because of overkill - operating

systems do not generally need the full generality of atomic actions as a rule, and

supporting them becomes too restrictive and/or detrimental to performance.

Despite arguments that system level support for atomic actions is better

than each application providing the support, the generality that such a system­

based implementation must provide often makes using atomic actions unnatural

to applications (for example, consider the Locus implementations of atomic

actions) as they try to support all possible applications with the nett result that

none is really supported adequately. In particular, in order to gain high

performance, it is highly likely that the basic concurrency control and/or recovery

mechanisms may need to be overridden by clients in order to specialise the

system's level of support to one more appropriate to the needs of the application.

In essence, these findings agree with those of Stonebraker et al. [Stonebraker et al.

85] who attempted to make the INGRES database system use basic transaction

facilities available in the operating system of a PRIME computer but discovered

that substantial changes to both INGRES and the operating system were

required before an acceptable level of performance would ensue.

Object-Oriented Systems and Concurrency Control 76

Chapter 4

Object-Oriented
Systems and

Concurrency Control

Previous chapters have considered the provision of concurrency control and

the support for atomic actions to be in some sense attributes of the system as a

whole. That is, it has been assumed that the concurrency controller and the

atomic action support system are system based. This chapter will modify this

view significantly.

In chapter one it was postulated that building programs using the object­

oriented paradigm was a profitable approach to adopt. Therefore, this chapter

follows those rules and adopts the approach henceforth. The adoption of this

approach leads to the interesting notion that since objects are considered to be

encapsulated, then individual objects should to be responsible for their own

concurrency control and recovery.

This latter proposition is the approach adopted in this chapter. In it, the

notions of what constitutes object-oriented programming are first refined,

followed by a concentration on the particular property of object-oriented

programming languages that is useful for providing concurrency control to

individual objects; that of type-inheritance. The chapter then goes on to show how

a user-defined object can be subject to concurrency control in a simple manner by

designing a basic concurrency control type that user-defined types can inherit and

make use of (in particular. the design is of a concurrency control type which

manages locks and which follows the two-phase locking technique). This ability

for a type to inherit concurrency control capabilities is complemented by the

ability for a type to also inherit recovery capabilities, however, this latter part is

Object-Uriented Systems and Concurrency Control 77

beyond the scope of this thesis. For a complete description of the design of the

support for these recovery capabilities, see [Dixon 88].

The use of inheritance as a means of providing concurrency control has a

number of advantages. Firstly, it allows experimentation with different

concurrency control techniques to be undertaken in a relatively simple and

straightforward way (for example, chapter six examines the possible

implementation of some other types of concurrency controller within the same

basic object-oriented framework), since the capabilities are not tied into any

particular system. Secondly, there is no need to design and implement either a

new language and run-time system, nor a new operating system kernel, instead

the inheritance based approach is applicable to any object-oriented programming

language. This is contrasted with the approach taken by several other research

efforts being undertaken in the same area including Clouds [Dasgupta et al. 85],

Argus [Liskov and Scheifler 83], TABS [Spector et al. 85a], Camelot [Spector 87],

Avalon/C++ [Herlihy and Wing 87], and ISIS [Birman 86].

4.1 Object-Oriented Programming

Object-oriented programming is a style of programming that differs from

conventional programming styles by concentrating upon modeling entities from

the real-world as logical objects, and the interactions between real-world entities

as communication between such objects.

An object is an instance of some type or class (it will be assumed that the

words class and type are freely interchangeable from this point on). Each

individual object consists of some data structure (its instance variables) and a set

of operations (its methods) that detennine the external behaviour of the object.

The operations provided by an object have access to the instance variables and

can thus modify the state of the object. Furthermore, the type of an object

determines precisely what operations may be applied to it. An object-oriented

Object-Oriented Systems and Concurrency Control 78

program then consists of a sequence of operations applied to a particular set of

objects.

The relationship among types is a relatively natural model of what happens

in the real world. For example, one thing is often regarded as being like another

except for certain differences. Thus a lion is like a domestic cat only it is larger

and more ferocious. This relationship is expressed in object-oriented

programming languages through the inheritance mechanism.

4.2 Type Inheritance

Having noted that in reality some objects are like other objects, a method of

expressing this relationship is needed. This is accomplished by means of a type

hierarchy. Type hierarchies arise due to the property of sub-typing in object­

oriented languages by which one type is allowed to be a sub-type of another. For

example, given some type A, a new type B can be created such thatB is a sub-type

of A. Certain terminology is associated with this behaviour. Given the type

structure defined here then B is a sub-type of A, and conversely, A is the super- ,

type of B. Alternatively, using the terminology of C++ [Stroustrup 86], then A is

called a base type, and B is called a derived type.

Deriving new types from existing types has several implications. Firstly, it

is permissible that wherever an instance of the base type (A) is expected (for

example, as a parameter to some operation), then an instance of the derived type

(B) may be supplied in its place. Secondly, (and as a consequence of this first

point), the attributes of the base type must be inherited by the new derived type.

Such attribute inheritance ensures that instances of type B are capable of

behaving like instances of type A should the need arise. It is this latter property

of inheritance that will be made use oflater in this chapter to provide instances of

Object-Oriented Systems and Concurrency Control 79

user-defined types (objects) with the ability to perform concurrency control

operations upon themselves.

The situation described above illustrates simple type inheritance, where the

new type inherits from only a single parent type. More complicated

arrangements are possible that allows a derived type to have more than one

parent. Such a situation is termed multiple inheritance. The two forms are shown

diagrammatically in Figure 4-1, where Figure 4-1(a) illustrates simple sub­

typing, and Figure 4-l(b) illustrates multiple inheritance.

0
\
8

\
8

(a) (b)

Figure 4-1: Simple and multiple inheritance

Inheritance is a very useful property that allows new types to share

attributes of their parent type(s). The question that arises, though, is precisely

what is inherited from the parent type: only the interface description, operation

code, instance variables, or some combination of all of these? Furthermore, how

are these inherited attributes viewed, by both the type doing the inheriting, and

by any new types further down the hierarchy?

Object-Oriented Systems and Concurrency Control 80

The fact that instances of a derived type should behave as instances of their

base type in certain circumstances requires that the interface to the derived type

must at least include the interface to the base type, and so at least the interface to

the base type must be inherited by the derived type.

Another problem raised by the use of inheritance is the access the new type

has to the attributes of the base type. One approach is to regard inheritance

simply like any other form of access, so that the derived type has no special

privileges and can only use the public interface to the base type. Adopting this

approach often leads to making more attributes of the base type visible in the

interface than strictly necessary simply because it is envisaged that they might

be useful in designing future derived types. Alternatively, the act of deriving a

new type can be considered different to normal usage of the base type, so that the

implementor of a derived type should have additional privileges over and above

those provided by the usual public interface. For example, direct access to the

instance variables of the base type might be allowed or access to the private

operations of the base type could be permitted.

One of the important properties of object-oriented languages, that they

share with languages that support data abstraction, is that of encapsulation.

Encapsulation (also known as data hiding) ensures that the internals of a type

are not visible outside the type boundary. Thus the type provides a black box

which only performs those operations defined by its interface. This hiding is

important in that it allows the representation of the object, and even the way the

interface is implemented, to be changed freely, providing that the actual interface

to the type is not changed in any way.

Object-Oriented Systems and Concurrency Control 81

Inheritance can compromise this encapsulation, since if the instance

variables of a base type are directly visible to the derived type then a change in

the way the base type is implemented could ripple throughout the entire

hierarchy, requiring changes in all of the derived types of the changed type.

For example, consider a type that represents a matrix. Such a type will need

instance variables that represent the matrix bounds together with some storage

for the actual matrix elements (say a simple two-dimensional array). If these

variables are visible (that is, they can be accessed directly) then any user of the

matrix type will be able to view these variables. If at some time in the future the

internal representation of the type was changed totally (to use a list of elements

rather than an array because the matrix was sparse), then all users of the matrix

type may be affected. By allowing the instance variables to be visible the

implementor of the type has lost the ability to arbitrarily change the

representation of the type without informing all users of the type of the change.

This argument, also noted by Snyder [Snyder 86] implies that access to inherited

instance variables should only be provided through inherited operations of the

base type (so-called access operations).

The visibility of any inherited operations can also be problematical.

Frequently the new derived type will change or refine the semantics of the

operations it inherits from its parent(s) to make them more applicable to itself. In

addition the new type may add new operations of its own or possibly restrict the

Use of others. While this permits specialisation, the degree of control over

inherited operations varies from language to language. For example, in

Smalltalk-80 [Goldberg and Robson 83], inherited operations can be refined in

the derived class but they cannot be excluded from the interface except by

refining the operations either to do nothing or to return an error. A similar

approach is adopted by Objective-C [Cox 86]. This approach has the undesirable

characteristic that as the hierarchy becomes deeper the interfaces to objects

Object-Oriented Systems and Concurrency Control 82

potentially become more and more complex and cluttered with operations

inherited from all of their ancestors.

Such unrestricted inheritance can also compromise encapsulation, since if a

base type provides some operation to access its instance variables for a derived

type's use, then that operation may also form part of the public interface to the

derived type so that anyone may use it. For example, the implementor of the

matrix type described earlier may have provided some operation that allowed the

derived type access to information that would normally be kept private. Once

defined, this operation may be available not only to all of the derived types of the

matrix type but also to all the users of any of those derived types. Solving this

problem requires recognising that the base type will have two classes of users:

implementors of derived types and general users, and so each class of user should

have a different abstract view of the base type. This distinction is made by

languages such as C++, which enables certain attributes of a type to be declared

protected. That is they can only be used by derived types of the type providing the

protected attribute, thus ensuring they do not become publicly available unless

one of the derived types explicitly makes them so.

In C++ and Trellis/Owl [Schaffert et al. 86], operations and instance

variables may also be declared to be either public or private. Private operations

and instance variables are only accessible to other operations of the type and do

not form part of the public interface. Furthermore, if a derived type privately

inherits a base type, then all of the public operations and instance variables ofthe

base type become private variables of the derived type. On the other hand, if a

derived type publically inherits a base type then the public operations and

variables of the base type become public attributes of the derived type also.

Object-Uriented Systems and Concurrency Control 83

Notions of private inheritance have implications regarding precisely where

a type may be used. Recall that earlier in this section it was stated that if B was a

derived type of A, then whenever an A type object was expected it was permissible

to supply a B type object instead. This is acceptable in the Smalltalk-80 model

where all operations are inherited publicly, since all the operations available in

the A type object are also supplied by the B type object. However, in languages

such as C++ and Trellis/Owl the operation may have been removed from the

public interface of the object in the derived type. Hence such languages perform

strict compile time checking to ensure that this situation is not permitted to arise.

The ability to refine and specialise operations implies that some operation

binding must be performed at run-time. For example, suppose a type implements

the operation Describe, the purpose of which is to cause an instance of the type to

describe itself in some fashion (for example, by printing an ascii description of

itself on some output device). A derived type inheriting this operation is certain

to refine it so as to describe instances of itself, not its parent, which would be the

meaning otherwise. Under most circumstances the compiler can detect the type

of the object and ensure that the correct version of Describe is invoked when

required. However, the type rules make it possible to supply an instance of a

derived type whenever a base type is required. This implies that the object cannot

simply be treated as being of the base type, rather a lookup must be performed at

run time to determine the actual type of object supplied so that the correct version

of Describe is actually called. This run-time lookup is called dynamic binding.

As an example, consider a type that maintains a list of objects. Ideally,

objects of arbitrary type should be able to be inserted and removed from such a

list, otherwise it would be necessary to implement different types oflists for each

type of object. This type of generic list is easily constructed if it is designed to

manipulate entries of some basic type (call it List_Entry). Types that are to be

Object-Oriented Systems and Concurrency Control 84

inserted into a list are thus declared to be derived types of this base type and thus

can be inserted into a list with ease.

Given such a list a program may wish to print out descriptions of all objects

in it. To do this the program simply selects each entry in the list (in some fashion)

and invokes the Describe operation of that entry. Since the compiler cannot

detect what type of object will be on the list, the determination of which

particular implementation of the Describe operation to invoke has to be made at

run-time.

4.2.1 Type Inheritance in C++

The language that will be used to develop all of the examples henceforth in

this thesis is C++ [Stroustrup 86], a language developed from C [Kernighan and

Ritchie 78]. C++ is a superset of C, incorporating facilities for data abstraction,

type inheri tance and operator overloading.

The abstraction and inheritance features are related to those of Simula-67

[Birtwhistle et aZ. 73] and are based upon the class concept. Classes in C++ can

currently only inherit from a single base class, although a version ofthe language

supporting multiple inheritance has been developed [Stroustrup 87b].

Classes are defined in the manner shown in Figure 4-2. In this example a

new class FiZe is created that is derived from a public (as indicated in the class

header by the keyword public) base class LockCC. Using the terminology of the

previous section, File is a sub-type of LockCC, and LockCC is the super-type of

File. Instances of the class File will have two private instance variables

(current-pos and page_count), a protected variable (fd), and a set of public

operations (open, read, etc.).

Object-Oriented Systems and Concurrency Control

class File: public LockCC
{

int current_pas; II private stuff
int page_count;

protected:
int fd;

public:

} ;

File ();
-File ();

int open (char., mode);
int read (char_, int);
int write (char_, int);

Figure 4-2: An example C++ class

85

In order to guarantee correct initialisation of objects when they are created,

a special operation termed a constructor is automatically called when an instance

of the class is created. This operation is a public operation that has the same

name as the class itself (in this case File). Despite being public, the constructor

operation cannot be called directly. Its function is to perform a type-specific

initialisation of the newly created object. A complementary operation (called a

destructor) is likewise called whenever the object is destroyed. Its name is that of

the class preceded by a I-I, (in this case -File).

Any operation or variable of a class can be declared as either public,

protected or private. Normally, class definitions are written as illustrated here,

with the private attributes first, followed by the protected attributes, and finally

the public attributes, although it is possible to intermix them. Since File is

declared to be publicly inheriting LockCC then all of the public attributes of

LockCC (variables and operations) are also considered to be public attributes of

File also.

c++ is a strongly typed language with compile-time binding of operation

names to the code that implements them. However, as was noted in the previous

section, there are occasions where dynamic binding must be used otherwise

Object-Oriented Systems and Concurrency Control 86

objects could not be treated as instances of their parent type and passed to

operations that expected them to behave as instances of their parent type. In C++

this is handled by declaring such operations as virtual. As illustrated in Figure 4-

3 the only distinction between a normal function and a virtual function is the /

class Shape class Circle: public Shape
{ {

void Move ();

public: public:
virtual void Draw (); virtual void Draw ();

}; };

Figure 4-3: Virtual functions in C++

occurrence of the keyword virtual before the operation declaration. The

occurrence of this keyword indicates to the compiler that it should generate code

to cause a run-time binding of the code that implements the operation based upon

the type of the object. In this example the operation Draw is defined in both the

base class (Shape) and the derived class (Circle), such that a call to Draw must

determine at run-time which particular implementation to invoke based upon the

type of the object currently under consideration.

Similar situations can arise with the base class operation Move. Given that

once an object has been moved it will probably need to be redrawn at its new

position, then the code that implements the operation Move may possibly be coded

to make a call to Draw. Since in this particular example Circle is inheriting the

definition of Move unchanged from Shape (Circle does not define its own version)

the same code will be executed for instances of either type, however, depending

upon the type of shape being moved then the appropriate version of Draw must be

invoked. Hence, dynamic lookup is still required.

Object-Oriented Systems and Concurrency Control 87

4.3 Concurrency Control in Object-Oriented Systems

This section examines some of the existing systems that are claimed by their

authors to be object-based or object-oriented, paying particular attention to the

mechanisms they use to implement concurrency control. For each system, an

attempt is made to determine how flexible the concurrency controller is, and to

assess the ease by which new user-defined types encompassing concurrency

control can be created.

4.3.1 Clouds

The first system under examination is Clouds [Allchin 83, Dasgupta et al.

85, Kenley 86]. Concurrency control in Clouds is based upon standard two-phase

locking, extended to cover lock modes other than simple read and write. If

required, locks may be released explicitly under programmer control. In addition,

Clouds supports nested atomic actions, so the concurrency controller obeys a

slightly modified version of the nested locking rules advocated by Moss [Moss 81].

Requests to lock objects may be made either implicitly (the compiler inserts code

to automatically lock the object) or explicitly using Clouds system calls,

depending upon how the particular operation for an object has been defined.

Cloud's objects consist of volatile and permanent data segments and a set of

operations upon those data segments. All objects are uniquely named and

sharable. Application programs and user-defined types are coded in the language

Aeolus [LeBlanc and Wilkes 85]. As indicated above, Aeolus supports two types of

interaction with the Clouds concurrency controller depending upon whether

locking is being performed implicitly or explicitly. If implicit locking is being

performed then operations have to be classified as either readers (signified by the

presence of the keyword examines in the text of the implementation of the

operation) or writers (signified by the keyword modifies). Once so identified the

Object-Oriented Systems and Concurrency Control 88

compiler inserts appropriate calls to the Clouds kernel to set appropriate read or

write locks on the object as part of the standard operation prologue.

More explicit control can be obtained by appropriate declaration and use of

instances of the basic Aeolus lock type as part of the definition of a user-defined

type. A lock type is used to declare variables which can be used to implement

type-specific locking for a user-defined type. Lock type declarations include the

specification of a compatibility list that is used to determine whether a lock of a

given mode can be set or not. In addition, locks possess values that allow the

programmer additional control over the compatibility oflocks.

A simple lock declaration is illustrated in Figure 4-4. In this example a new

type file_lock is lock (read: [read],
write : []) domain is string(20)

Figure 4-4: Clouds lock type

lock variable is created called file_lock. This lock has two modes, read and write,

which obey the traditional rules concerning lock compatibility (that is multiple

readers, but a single writer). This lock is further identified by a string, the need

for which will be described shortly. Such a lock might be used as part of the

implementation of a type that represented a traditional file system directory.

Locks thus declared may be set, tested, and released as part of the execution

of an operation using the primitives Setlock, Testlock, and Releaselock

respectively. Setlock sets a lock of the given mode on the named instance from the

lock domain. Thus, if the call of Set lock illustrated below:

Setlock (file_lock, read, "myfile")

was made as part of the execution of an operation, then a read lock would be set

Upon the lock file_lock using the string myfile. By associating values with locks,

Object-Oriented Systems and Concurrency Control 89

Clouds allows programmers to increase the level of concurrency an object

supports. For example, if the following Setlock call:

Setlock (file_lock, write, "hisfile")

was made in addition to the earlier call shown above, then it would succeed,

despite the apparent incompatible mode (reads conflict with write), due to the fact

that the lock specifies a different value. Effectively, the values associated with

locks provide the illusion that locks are being applied at a finer granularity than

they actually are.

The Testlock operation on locks is provided to enable the programmer to

determine if attempting to set a lock would block, prior to actually executing the

Setlock call. Testing the value of a lock does not guarantee that the lock will

remain free, since two concurrent actions could both test the lock, find it free, and

attempt to set it. Depending upon the lock mode required and the compatibility

between locks then both may succeed, or only one. The programmer must be

aware of this possibility and use additional mutual exclusion primitives if the

action must not block.

The Clouds scheme is interesting due to the way that locks are permitted to

have values which give the illusion that locks are being applied at a finer

granularity than they actually are. For example, the lock type illustrated in this

section could have been used in the implementation of a filesystem directory type

where it would have given the illusion that individual files were being locked, not

the directory object itself. Even so, since the Cloud's kernel implements the

concurrency controller, all objects are currently limited to using two-phase

locking, and furthermore, all applications must be programmed in Aeolus.

Finally, the system is not object-oriented (by the definition of chapter one) since it

does not support inheritance, rather it is best described as object-based [Wegner

87].

Object-Oriented Systems and Concurrency Control 90

4.3.2 Argus

Argus [Liskov 84, Liskov 88, Weihl 84] is a distributed programming

language (and system) that supports nested atomic actions. It is derived from the

programming language Clu [Liskov et al. 79]. In Argus, programs are structured

as a collection of operations on guardians [Liskov and Scheifler 83]. Each

guardian consists of a set of local data objects and processes for manipulating

those objects; thus guardians are object managers. Objects within a guardian can

only be manipulated by processes within that guardian. Each guardian provides

a set of handlers (operations) which constitute the guardian's public interface.

Handler calls are executed by a new process, with each call executing under the

control of an atomic action.

In addition to the provision of some basic data types that are atomic (that is,

recoverable and serialisable) such as integers and arrays, Argus also supports the

construction of user-defined data types that are similarly both serialisable and

recoverable. Concurrency control over the built-in atomic data types is via

standard two-phase locking using traditional read and write locks, with

inheritance of locks as defined by Moss. Locks on built in atomic types are

automatically set and released by the system without any provision for

programmer control. User-defined types are similarly restricted if they are

implemented using only the basic atomic data types. In order to permit higher

levels of concurrency than this built in locking strategy would normally allow,

the programmer must build user-defined types using non-atomic types (types

whose use is not constrained by locks) in conjunction with the basic, built-in

atomic types. For example, a type that represented a queue could be constructed

as a non-atomic array of atomic entries. Since the array itself is not constrained

by serialisability, several independent atomic actions can modify the queue and

insert and remove entries from it. This level of concurrency would not be possible

Object-Oriented Systems and Concurrency Control 91

if the array was itself atomic since modification of the array would set a write lock

on it automatically.

The major problems with Argus stem from the fact that the concurrency

control is totally implicit and automatically invoked whenever any of the basic

atomic types are manipulated. Thus, in order to increase concurrency, the

programmer has to play potentially dangerous tricks by mixing atomic and non­

atomic types. As with Clouds, Argus is best described as an object-based system,

since it does not fulfill the definition set out in chapter one.

4.3.3 TABS

The TABS (TransAction Based System) project [Spector et al. 85a] at

Carnegie-Mellon is in many ways similar to the Argus project at MIT. TABS

provides data servers that encapsulate one or more data objects. These data

servers are similar to Argus guardians in that they are essentially recoverable

object managers.

TABS is built upon the Accent kernel [Rashid and Robertson 81] and the

various components of the TABS system (such as the Transaction manager and

the Recovery manager) communicate with one another by sending messages

addressed to ports. In order to ease the burden of programming such message

transfers a remote procedure call facility called MatchMaker [Jones et al. 85] is

used. Matchmaker takes descriptions of procedure headers and outputs client and

server stubs that manage the packing and unpacking of the data into messages

and the appropriate dispatching ofthe correct procedure in the server.

Data servers use locking as their synchronisation mechanism using

standard two-phase locking. Locking is explicit in that the data servers must

explicitly call the TABS routine LockObject, supplying an object identifier and a

mode, in order to set a lock. Ifthe lock is not available the server is made to wait.

Object-Oriented Systems and Concurrency Control 92

Like Clouds, TABS also has primitives to test if a lock is set. However, it

also has a ConditionallyLockObject routine that locks the object if possible, or

returns immediately otherwise. This avoids the need for the separate mutual

exclusion necessary in Clouds.

There is no unlock facility in TABS. Objects are only unlocked when the

action that locked them commits or aborts, following the standard nested locking

rules.

4.3.4 Camelot

Given the experience of TABS, the designers of that system are now in the

process of producing CAMELOT (CArnegie-MEllon Low Overhead Transaction

facility) [Spector 87, Spector et al. 87]. In many ways the influence of TABS is

apparent in the philosophy of Camelot - indeed the structure of a Camelot node

bears a considerable resemblance to the structure of a TABS node. Thus Camelot

also uses data servers that encapsulate objects. It is, however, built on top of the

Mach operating system [Jones and Rashid 86], which is a BSD4.3 UNIX

compatible system

Camelot provides support for two compatible types of concurrency control:

standard two-phase locking and hybrid atomicity [Weihl 84]. Hybrid atomicity

makes use of timestamps generated when atomic actions commit to provide more

information about the serialisation order of atomic actions, and hence permit the

concurrent execution of some operations that other concurrency control

techniques might have serialised. Hybrid atomicity thus combines aspects of

both static (timestamping) and dynamic (lock-based) concurrency controllers.

The mixed locking and timestamping protocol briefly mentioned in chapter two

(section 2.4.12) is one example of a hybrid atomic concurrency controller.

Object-Oriented Systems and Concurrency Control 93

As with TABS the concurrency control (of either form) is explicit with

locking being provided via a call to the routine Camlib_Lock which takes a lock

name and a mode as parameters. Similarly there are routines to test and set a

lock (Camlib_TryLock), and determine the status of a lock

(Camlib_LockStatus). As with Clouds, however, Camelot has added an explicit

unlock call (Camlib_Unlock) to enable locks to be released early.

Support for hybrid atomicity requires the use of timestamps in addition to

locks and requires that objects explicitly take part in the process of action

commitment. Camelot implements this by allowing servers to declare routines

that will be called whenever they become involved in the commitment or abortion

of an action.

Camelot is claimed to integrate the best features of several systems. Thus it

uses the optimised commit protocols of R* [Mohan et al. 86], the nested

transaction mechanism of Argus, and the virtual memory and recoverable

storage mechanisms of TABS. The system is very flexible, permitting much

tailoring of the implementation of object servers, however, the interface is

complex and requires use of some unorthodox programming techniques. For

example, recoverable objects are modified using a macro rather than the

conventional programming language concept of assignment. Furthermore,

clients are always aware ofthe clientlserver relationship that exists in the system

with calls on the operations supported by a server being coded differently to other

procedure calls.

Object-Oriented Systems and Concurrency Control 94

4.3.5 Avalon

Not strictly a separate system in its own right, Avalon [Herlihy and Wing

87], is an attempt to provide programmers with a set of linguistic constructs

designed to give explicit control over transaction-based processing of atomic

objects.

The Avalon constructs are implemented as extensions to some host

language such as C++, and are currently hosted upon the Camelot system. In

many respects Avalon resembles Argus; the principal differences occurring in the

way that user-defined atomic data types are implemented.

Within Avalon/C++ advantage is taken of the inheritance properties of the

language, such that new atomic data types are created by deriving them from a

system-defined type called atomic. This base type provides a monitor-like facility

for mutual exclusion, and provides virtual functions for action commit and abort.

It is the provision of these latter functions that allows Avalon objects to

implement the property of hybrid atomicity [Herlihy and WeihI88].

Currently, Avalon is the only other system (known to the author) that is

making use of inheritance in any way, however, its base system (CamelotiMach)

provides it with many facilities for object recovery and concurrency control and

therein lies the major problem. Many of the characteristics of the underlying

system are visible to the programmer and considerable care must be taken to

ensure that these characteristics are handled in the implementation of any user­

defined types. For example, the programmer must be aware of the method by

which the system implements recovery, otherwise it is easy to make the system

inconsistent.

Object-Oriented Systems and Concurrency Control 95

4.3.6 ISIS

The ISIS project from Cornell university [Birman 86] aims to produce fault­

tolerant implementations of objects automatically from fault-intolerant program

specifications. The resulting objects are then known as resilient (or more

precisely k-resilient) objects.

ISIS replicates the code and data of each object at least k + 1 times, while

ensuring that the replicated program behaves exactly like a non-replicated

program obeying the same specification. Resilient objects are represented at a set

of sites by components that are capable of executing requests sent to them via

remote procedure calls. Each request is handled as a separate atomic action.

Concurrency control in ISIS is explicit to the implementor of type since it is

difficult to infer an efficient concurrency control algorithm without knowledge of

the semantics of the operations of a type. Thus ISIS requires the provision of a

single site concurrency control algorithm, which is transformed into a distributed

one. ISIS basically supports two-phase locking but locks are classified into two

distinct types.

• Nested two-phase locks. These obey the standard nested two-phase rules.

• Local two-phase locks. These obey standard two-phase rules but are always

released at action commit or abort regardless of whether the action is nested

or not.

ISIS locks can belong to one of four distinct modes: read, write, promotable

read, and previous committed version read. The first two behave in the standard

manner expected, the others are described in the following paragraphs.

Object-Oriented Systems and Concurrency Control 96

Promotable read locks are designed to overcome the problems associated

with lock conversion. In essence they are exclusive read locks that may be

promoted to write locks. Since they are exclusive then only one action can hold

such a lock and thus promotion of such a lock to a write lock will not cause

deadlock which could otherwise occur.

Previous committed version locks are intended for actions that can be

classified as read only. By allowing access to a previously committed version of

an object both reads and updates can be allowed to proceed in parallel. This is

essentially an implementation of the two-version two-phase locking strategy

described in chapter two.

The ISIS system described above was implemented; but its designers were

not happy with the level of concurrency the system supported, or the ease of

creating resilient objects. They have now embarked upon ISIS-II, which has

similar goals but is based upon the notion of Virtual Synchrony [Birman and

Joseph 87], rather than serialisability as its correctness criterion. The designers

feel that this technique is much better suited to building highly concurrent

distributed applications. It remains to be seen whether their confidence will be

justified in reality.

4.3.7 Some Conclusions

All of the systems described in the previous sections have been claimed by

their designers to be either object-based or object-oriented. While the systems do

indeed support the concept of an object as an encapsulated entity, it is interesting

to note that all of the systems have adopted the approach of building either a new

language or system, or possibly both to provide this concept. Only Avalon has

attempted to use the capabilities of an existing object-oriented language and

provide a simple means of permitting user-defined types to be serialisable and

recoverable. In addition, all of the systems have chosen to use locking (in one

Object-Oriented Systems and Concurrency Control 97

form or another) as the basic (and often unchangeable) concurrency control

technique. Only ISIS in its latest incarnation has attempted to break this mould.

The remainder of this chapter will show how it is possible to avoid this

commitment to a single concurrency control technique by providing a flexible

framework for the implementor of a user-defined type to use. Furthermore, the

technique used does not require a new language or system but can be applied to

any object-oriented language.

4.4 Concurrency Control via Type Inheritance

This section describes a novel approach to providing individual objects with

their own concurrency controller by making use of the property of type

inheritance. In particular, the design and implementation of a concurrency

controller based upon the common technique of two-phase locking is described. In

many respects two-phase locking is an ideal concurrency control technique since

it makes all decisions about whether to grant locks based upon purely local

information. Thus, in a conventional distributed system this might be site-local

information. Here this locality is taken to its logical extreme and concurrency

control decisions are made using information purely local to the individual objects

themselves.

The concurrency control type designed in the rest of this chapter is intended

to support standard two-phase locking using only the lock modes of read or write

which obey the traditional rules with respect to conflict. While this may seem

highly restrictive, it is shown later in the chapter how simple modifications

overcome these restrictions with ease, further demonstrating the flexibility of the

type-inheritance based approach. Furthermore, chapter six, describes how more

explicit type-specific locking can be implemented in an equally flexible manner.

Object-Oriented Systems and Concurrency Control
98

There are, however, numerous issues that need to be resolved first. For

instance, what is the interface to the concurrency control type as seen from user­

defined types that are derived from it? In addition, is the provision of locking

implicit in that the derived type need take no action, or is it explicit requiring the

operations ofthe derived type to invoke appropriate operations of the concurrency

control type directly? Then too there is the problem of how to represent the lock

requests themselves. Ifthe interface provided a call of the form:

SetLock (Mode);

what is the form of the Mode parameter?

The following sections attempt to answer these questions and come to some

conclusions about the resulting design.

4.4.1 An Overview of the Concurrency Controller

In many respects the preferences for how the concurrency control type

should be presented to the designer of a new type have already been betrayed in

Figure 4-2.

The concurrency control type can be inherited by any user-defined type that

wishes to make use of it. For the moment it will be assumed that there is only this

single concurrency control type, and that all user-defined types that require

concurrency control will make use of it. Thus the aim is to provide a base type­

which will actually be called LockCC (standing for Lock-based Concurrency

Controller) - from which all user-defined types should be derived. In effect this

makes all user-defined types merely derived types of a basic concurrency

controlled type. This concurrency control type is a lock manager. It permits locks

to be set providing that the basic conflict rules would not be violated by doing so.

The type is strictly a manager in that it does not create locks itself but merely

Object-Oriented Systems and Concurrency Control 99

ensures that locks created by the user are set and released in accordance with the

rules of two-phase locking.

Given this approach, some determination needs to be made as to what

operations this concurrency control type should provide, such that user-defined

types have as much flexibility as possible over the types of locking policy they

follow.

In addition, as has been previously stated, the intention is not to modify a

language or its compiler. This precludes the automatic, implicit approach

adopted by Argus, or the compiler-based approach of Clouds for determining

when locks should be set on objects, since it is not possible, in general,

automatically to determine when a lock should be set, or more problematically,

what particular type of lock should be set. Therefore an explicit approach has

been adopted and the interface to the concurrency control type provides specific

operations for the manipulation oflocks.

Note, however, that the use of a concurrency controller is only explicit to the

implementor of the type that is actually derived from the concurrency control

type, not to the eventual user of this user-defined type. That is, when an

operation upon an object is invoked, a lock will be set because the code

implementing the operation explicitly sets a lock. However, as far as the invoker

of the operation is concerned, the acquisition of the lock is simply a side-effect of

the operation. Thus, as is illustrated in Figure 4-5, the implementor of the

operation open has created a new lock object and passed that to the concurrency

controller via the setlock routine. However, as far as the actual caller of the open

operation is concerned, this concurrency control activity has occurred implicitly

and is simply a side-effect of the execution of the open operation.

Object-Oriented Systems and Concurrency Control

int File::open (char. fname, mode openmode)
{

}

lockstatus openstatus;
II First set an appropriate lock if possible
openstatus : setlock (new Lock(openmode»;
if (openstatus :: REFUSED)

return ERROR;
II now actually open the file and do any other housekeeping

Figure 4-5: Outline open operation for the File class

100

This explicit approach is not too bad a choice. As has been pointed out by

others, increased levels of concurrency are possible by providing the type designer

with explicit access to the concurrency controller for the type, and although at the

moment it is assumed that only simple read and write type accesses will be made

and standard conflict rules will be utilised, it will be shown in section 4.10 and

later in chapter six that further use of inheritance provides the flexibility to adopt

other approaches.

Bearing these points in mind, Figure 4-6 shows the skeletal declaration of

class LockCC
{

Lock_List locks held;
Semaphore. mutex;

virtual boolean lockconflict (Lock_);

public:

}

LockCC ();
-LockCC ();

lockstatus setlock (LoCk.);

II List of all currently held locks
II For mutual exclusion purposes
II Other CC state as necessary

II Initialise concurrency controller
II Cleanup

II set lock on this object

Figure 4-6: The LockCC class

this basic concurrency controller type LockCC. For the moment it will be

assumed that this base type only provides the ability to set locks on objects via the

setlock operation. Furthermore, it will be assumed that the caller is executing

Object-Oriented Systems and Concurrency Control 101

under the auspices of some atomic action, although description of how this is

achieved is delayed until chapter five.

The basic operation of setlock can then be described as follows: Setlock is

responsible for setting a lock upon the object derived from this base type. The

type of lock required is determined by the parameter passed as part of the call.

This parameter is of type Lock and contains sufficient information to allow the

concurrency controller to determine if this particular lock can currently be set.

Locks will be described more completely in section 4.5. Setlock returns a status to

indicate the success or failure in granting the requested lock. Normally, when

the lock cannot be granted due to conflict, the calling process is blocked and the

call will only return when the lock has actually been granted. There are,

however, instances when the call can return with an error status - this point will

be considered further in section 4.8.

The boolean function lockconflict is used by setlock to determine whether

any two locks conflict or not. It returns true if setting the lock would cause

conflict, false otherwise. The routine is declared virtual to ensure that any type

derived from LockCC could implement its own notion of conflict (this topic shall

also be explored in section 4.6). Note, however, that the function is also private,

thus ensuring that the only way it will be called is through one of the public

functions of LockCC, in this case the public function setlock.

At this point in the design an operation to allow a lock to be released has

deliberately not been included in the interface. For the moment it will be

assumed that lock release is accomplished automatically in some fashion; later in

this chapter (in section 4.10.3), and in chapter five, a method of achieving this

effect will be described.

Object-Oriented Systems and Concurrency Control 102

To be able to detennine whether any particular setlock request can be

honoured, the concurrency controller of an object maintains a list of lock objects

that are currently being both held and retained (in order to obey Moss's nested

locking rules). By scanning this list, the concurrency controller can decide if

granting the request would cause conflict to occur. Two separate lists could have

been used; one for the holders of locks on the object and one for the retainers of

locks on the object, however, since it is assumed that the lock objects themselves

can be interrogated as to their type, and both lists may need to be searched

anyway when attempting to set a lock, the two types are kept on a single list.

Finally, since the concurrency control operations may be being executed by

several atomic actions concurrently, a traditional semaphore mutex is provided to

enable simple mutual exclusion during these operations.

4.5 Locks as Objects

One of the key characteristics of the systems described in section 4.3 was

that, despite the fact that they were claimed by their designers to be object­

oriented, none of them were consistent in this view. Thus a lock was often

regarded as a primitive (and unchangeable) system type, as indeed was the

interface to the concurrency controller.

This thesis wishes to take a different view of locks. That is, locks are

regarded exactly like any other object in the system. Thus locks are objects (or

more precisely locks are simply instances of a particular lock type).

This approach has several advantages. Firstly, locks can be created and

manipulated in the same way as any other object in the system. Secondly, new

language features or modifications to the run-time environment are not required

to support them. Thirdly, the approach is very flexible, particularly if advantage

Object-Oriented Systems and Concurrency Control
103

is taken of the basic inheritance properties of the language (this latter point will

become clearer in section 4.10).

Figure 4-7 shows a skeletal declaration of one possible Lock type. Instances

class Lock
{

lockstatus current_status;
modetype lockmode;
Uid owner;

public:

}

Lock (modetype);
-Lock ();

modetype getlockmode ();
lockstatus getstatus ();
Uid getowner ();

II status, e.g. HELD
II mode of lock, e.g. READ
II identity of lock owner
II other private
II variables and operations

II Lock object initialiser

II Interrogation operations

Figure 4-7: The Lock class

of this type can be declared whenever they are needed by the programmer, and it

is instances of this type that are passed to the concurrency control type LockCC as

the parameter to setlock.

This Lock type encapsulates as part of its private state all ofthe information

that might need to be known about any particular lock instance. For example, it

maintains information about the current mode of the lock (say READ), the

current status of the lock (held or retained in accordance with Moss's locking

rules), together with any other information that might be deemed necessary such

as some notion about the owner of the lock (typically this will be the identifier of

the atomic action under whose control the lock was set). Following the arguments

made earlier in this chapter about encapsulation it also provides a set of

operations to retrieve this internal information should it be required rather than

make the information directly accessible.

Object-Oriented Systems and Concurrency Control 104

Locks have a constructor function, which is used to initialise a new Lock

object when it is first created. This constructor ensures that all of the instance

variables have appropriate values for such newly created locks.

Any given instance of this Lock type can be in one of three states. It is

initially free after it has been created. It becomes held after it has been

successfully supplied to the setlock operation, and may then become retained if the

atomic action that created it performs a nested commit. These states naturally

conform to Moss's notions regarding held and retained locks. Once in a held or

retained state a lock object will stay in one of those two states as appropriate until

it is eventually destroyed.

In this design the mode of a lock object is considered to be immutable; that

is, it cannot be changed once the lock object has been created. Thus, having

declared a lock object to be a read lock, then the lock object is always a read lock.

If a write lock is required, a new lock object with the appropriate mode must be

created. The reasons behind this philosophy relate to the way locks are expected

to be used. In database systems for example, the only reason to change the mode

of a lock is due to the notion of lock conversion. In the system being described here

such lock conversion is not allowed. The effect of lock conversion is, however,

permissible and the manner in which it is achieved is described in section 4.10.1.

It might be argued that the mode of a Lock should not be determined by an

instance variable at all, but rather, should be determined by the actual basic type

of the lock. That is, use should be made of the sub-typing mechanism of the

language to create new types of lock rather than maintain a single Lock type. If

this approach was followed, then the system would need a ReadLock type, a

WriteLock type, and so on, for as many different types of lock as were needed.

Naturally, all of these lock types could be derived from the basic Lock type in the

manner shown below:

Object-Oriented Systems and Concurrency Control 105

class ReadLock: public Lock

While this scheme seems elegant, it is not without its problems. Recall that

the concurrency control type, as one of its basic actions, is required to compare

locks for conflict. While the mode of a lock remains as an instance variable this is

easy to achieve, since the concurrency controller is effectively comparing Lock

with Lock, a valid operation to attempt. However, if the mode is somehow

encoded as part of the basic type, there are problems. For example, what does it

mean to compare an instance of a ReadLock type with an instance of a WriteLock

type? Given that the meaning could be expressed in the language, problems can

arise later if further new lock types are introduced, since there must be some way

of expressing how these new lock types compare with the old types. Furthermore,

the old lock types must also be changed so that they know how they conflict with

the new lock types. Thus, in order to avoid such complications, the mode of the

lock is maintained simply as an instance variable of the basic Lock type.

In addition the owner of a lock is set when it is created to be the identifier of

the creating action (recall that it was assumed that execution of the operation

was proceeding under the auspices of some atomic action). Should a lock be set

when the process is not executing as part of an atomic action then a fake identifier

is created and the lock is flagged as being a non-action lock. Such information is

naturally held in the instance variables of the Lock type.

4.6 Inside the Concurrency Controller

The two previous sections, have given a basic overview of the concurrency

control type and the lock objects that it manipulates. This section, examines the

concurrency control type in detail and gives a more precise definition of its

interface and internals.

Object-Oriented Systems and Concurrency Control
106

4.6.1 The Setlock Operation

As described earlier, setlock IS the only operation of the concurrency

controller that is publically visible. This operation is responsible for taking the

user-provided lock object and performing a conflict check between it and all of the

other lock objects that the concurrency controlled object is currently managing. A

code skeleton for this operation is shown in Figure 4-8.

lockstatus LockCC::setlock (Lock_ reqlock);
{

}

boolean conflict = TRUE;
do

{

II assume there is conflict

P(mutex); II grab semaphore
if «conflict = lockconflict(reqlock»)
{

}

V(mutex);
sleep();

} while (conflict);
locks_held.insert(reqlock);

V(mutex);
return (GRANTED);

II conflict exists so ...
II wait for a while

II check repeatedly
II add lock to list

II release semaphore

Figure 4-8: The setlock operation

As illustrated here, setlock attempts to determine whether conflict exists by

calling the lockconflict operation. If this operation returns the result TR UE, then

conflict exists between the requested lock and (at least) one of the other locks

currently set on the object. In this case, the semaphore is simply freed and the

caller is made to sleep for some period of time. How this sleep is implemented is

not important, in that it may be a busy wait, or a simple wait for a fixed interval,

or any other acceptable means of blocking the operation. However, the

concurrency controller does not assume that because the sleep call has returned

that the conflict must now be resolved. In particular, if the conflict had been

caused by two other locks conflicting, the release of one might have triggered the

wake up, despite the fact that conflict still exists.

Object-Oriented Systems and Concurrency Control
107

4.6.2 The Lockconflict Operation

In many respects lockconfZict is the heart of the concurrency control type

since it is this operation that determines whether or not there exists a conflict

between the requested lock and all of the currently held locks.

This determination of conflict is done by comparing the mode of the

requested lock object with the modes of all of the other lock objects currently

being held upon the concurrency controlled object. A simple version of

lockconflict that only considers locks that obey the traditional read and write

conflict rule is given as Figure 4-9.

boolean LockCC: :lockconflict (Lock. reqlock)
{

}

Lock_Iterator next(locks_held);
Lock. heldlock;

while «heldlock = next(» l= Null) II iterate over all locks
{

if (hel dl oCk-+getowner() ! = reql ock-+getowner(»
switch (reqlock-+getlockmode(»
{

}

case READ:
if (heldlock-+getlockmode() == WRITE)

return TRUE;
break;

case WRITE:
return TRUE;

return FALSE;

Figure 4-9: The lockconflict operation

Since lockconf1ict must check whether a conflict exists between the

requested lock and (possibly) all of the currently set locks, it is convenient to

employ some mechanism that delivers each lock in turn to lockconfZict for

consideration. In this case, an instance of the class Lock_Iterator (called next) is

employed for precisely this purpose. When created, the constructor for the

Lock_Iterator class ensures that the first call to next will deliver the first lock

from the list specified as the parameter to its constructor. Subsequent calls to

Object-Oriented Systems and Concurrency Control 108

next deliver each succeeding list entry, until all have been delivered when a result

of Null is returned. Having retrieved a lock instance, lockconflict determines

whether the mode of the requested lock (passed as a parameter) conflicts with

that of the lock it has just retrieved via next. This conflict check makes use of the

public operations of the Lock objects themselves to determine each lock's mode

and owner.

Since it is assumed that this basic version of the concurrency controller

obeys the simple multiple reader, single writer, policy then if the requested lock

mode was write then the existence of any other lock applied by a different action

must cause conflict (recall that locks set by the same action cannot, in general,

cause conflict with each other).

4.6.3 Some Disadvantages of this Design

As described above the design has certain disadvantages. The most notable

one is that despite the fact that locks are objects and are thus encapsulated the

lockconflict operation must still be able to take two such objects and compare

them for conflict. This state of affairs means that if a new lock mode was added to

the basic lock type (for example, by deriving a new type of lock from it) then

appropriate modifications must also be made to the implementation of

lockconflict.

This is possible, since lockconflict was deliberately declared virtual with

precisely this point in mind. Thus the user-defined type (that is, the type actually

derived from LockCC) can redefine the operation of lockconflict to take advantage

of the new lock modes. Having done this, then whenever setlock called

lockconflict, the run-time lookup performed would automatically ensure that the

appropriate version of the operation was actually invoked.

Object-Oriented Systems and Concurrency Control 109

This solution is, however, somewhat unattractive, since this could imply

that lockconflict ends up being redefined in many types, possibly incorrectly.

What is required is some way of allowing a standard version of lockconflict to

determine whether conflict exists without having explicit knowledge of all of the

possible different types oflock that might exist.

One possible way this could be handled is by representing the conflict

information as some form of boolean matrix, such that the conflict check amounts

to little more than indexing into this matrix using the requested mode and the

held mode as indices. All that would be required then would be some way of

informing the concurrency controller of the correct matrix to use, which could be

handled as part of the constructor mechanism perhaps, or through provision of a

setmatrix type of operation.

This approach is viable, but really needs compiler support to be

implemented efficiently. In fact a similar scheme is adopted in Clouds [Kenley

86], where each SetLock call in Aeolus translates into a call on the Cloud's kernel

with the additional parameter of a compiler computed lock compatibility clause

deduced from the compatibility clause given when the lock was declared. This

clause is simply a bitstring table which can be accessed very efficiently and thus

conflict checks reduce to bit tests in the Cloud's kernel.

Problems with this approach can occur when type-specific locking is

considered, since compatibilities are now on specific instances. For example,

given some directory object, two write locks may be permitted providing they

access different entries in the directory. Thus the compatibility clause cannot

simply say that write is compatible with write, since this is only true if other

conditions are also met (that is, different entries are being written).

Object-Oriented Systems and Concurrency Control 110

Clouds avoids this problem by parameterising locks using user-supplied

values. So for the above example, standard mUltiple reader, single writer

compatibility clauses can still be specified, since write locks would be applied to

different values (i.e. the particular names in the directory, rather than the

directory itself).

Avalon/C++ [Herlihy and Wing 87, Herlihy and Weihl88] employs a similar

technique, except that it requires that the conflict table be built dynamically by

the object constructor as part of the initialisation of the object. Obviously such an

approach may have significant run-time overhead, particularly if the object has a

complex compatibility matrix and many objects of that particular type are

created.

At the moment the system being described in this chapter cannot use the

Cloud's approach because the basic Lock type is not parameterisable in the sense

that Cloud's locks are. Chapter six shows how such types of lock can be simply

constructed from the basic Lock type using inheritance. Furthermore, given a

wish to avoid the potential overhead of the Avalon approach, an alternative

method must be found. One such approach is described in the following section.

4.7 A Revised Concurrency Controller

The problems outlined at the end ofthe previous section come about because

the concurrency control type (in particular the operation lockconflict) has to be

able to interpret the mode (and owner) information held within the lock objects in

order to determine whether conflict exists. Thus the implementation of the

conflict check depends upon the the semantics of the information supplied by the

lock objects. The end result of which is that changes to the implementation of the

lock objects will probably require changes to the concurrency control type also.

Object-Oriented Systems and Concurrency Control 111

What is required is some way to decouple this dependency, such that new

types of lock can be created without also having to make modifications to the

concurrency control type. Fortunately, this decoupling is surprisingly simple to

achieve in the object-oriented environment that has been adopted in this chapter.

Essentially, all the conflict check is doing is comparing two lock objects for

equality, where equality in these circumstances means that the two locks are in

some sense compatible. This implies that the responsibility for determining

conflict should be delegated to the actual lock objects themselves. By doing so the

problem is solved in one simple operation.

The solution then is to provide the Lock type with an operation which allows

two instances of the type to be compared. This could be done simply by providing

a routine of the form:

boolean Lock::compare (Lock. otherlock);

This routine takes advantage of the fact that one lock object can be asked to

compare itself against another. Fortunately, however, C++ provides a much more

attractive alternative through its operator overloading capabilities. Using these

capabilities it is possible to redefine the meaning of the standard operators (+, -,

= , etc.) for user-defined types. Thus expressions of the form:

x = y + z

are valid providing that the meaning of such an expression can be deduced. For

example, if X, Y and Z where all basic types (say integer) this statement behaves

exactly as expected. Furthermore if all three variables were of a particular user­

defined type (say the type complex) then, providing routines for handling the

assignment operator (=), and the addition operator (+) had been defined for the

type, the statement remains valid.

Object-Oriented Systems and Concurrency Control 112

In C++ the name of an operator function is the keyword operator, followed by

the operator itself. For example, operator+ would be the name of the function

that implemented the addition operator. An operator function is declared like

any other operation (and can be used in exactly the same way); use of the operator

itself is merely syntactic sugar for calling the function itself. Thus given a

suitably declared operator function, X + Y is interpreted as X.operator+(Y) or,

in other words, call the operator + function of the object X supplying the object Y

as a parameter.

So, in order to implement the object-oriented conflict check, the meaning of

the not equal operator (! =) is redefined, such that if L1 and L2 are instances of

the Lock type, then the expression L1 ! = L2 returns the boolean value true if the

modes of the two locks conflict, and returns false otherwise. Thus the declaration

of the Lock class now becomes like that illustrated in Figure 4-10. The conflict

class Lock
{

lockstatus current_status;
modetype lockmode;
Uid owner;

public:

}

Lock (modetype);
-Lock ();

modetype getlockmode ();
lockstatus getstatus ();
Uid getowner ();

virtual boolean operatorl= (Lock_);

II status, e.g. HELD
II mode of lock, e.g. READ
II identity of lock owner
II other private
II variables and operations

II Lock object initialiser

II Interrogation operations

Figure 4-10: The revised Lock class

operation is declared as virtual for precisely the same reasons that lockconflict

was declared in the same fashion, that is, it is probable that a programmer will

wish to redefine the notions of what constitutes conflict for different types oflocks

(all of which will now be derived from the basic Lock class). This conflict

operation is part of the public interface of the Lock class for the following reason.

Object-Oriented Systems and Concurrency Control 113

Since locks are independent objects, they can only be manipulated through their

public interfaces, thus in order for another object (in this case the user-defined

object derived from LockCC) to compare two locks, there must be a public function

available to do it. The code to implement this basic conflict check is virtually

identical to that of the originallockconflict, and is shown as Figure 4-11.

boolean Lock::operatorl: (Lock. otherlock);
{

}

if (otherlock-+getowner() !: owner) II only check if locks owned by
II different actions

switch (lockmode)
{

}

case READ: II held mode is read
if (otherlock-+getlockmode() 1= READ)

return TRUE;
break.;

case WRITE:
return TRUE;

II held mode is write

return FALSE;

Figure 4-11: The Lock conflict algorithm

Now that this minor change has been made, it is possible to remove the

keyword virtual from the definition of lockconflict and make it into a simple

private operation. In addition, lockconflict itself becomes far simpler. The

resulting interface and code is shown as Figures 4-12 and 4-13.

class LockCC
{

Lock_List locks_held;
Semaphore. mutex;

boolean lockconflict (Lock.);

public:

}

LockCC ();
-LockCC ();

lockstatus setlock (Lock.);

II List of all currently held locks
II For mutual exclusion purposes

II Now private operation

II Initialise concurrency controller

II Set lock on this object

Figure 4-12: The revised LockCC class

Object-Oriented Systems and Concurrency Control

boolean LockCC::lockconflict (Lock reqlock.);
{

}

Lock_Iterator next(locks_held);
Lock. heldlock;

while «heldlock = next(» 1= Null) II iterate over all locks
{

if (.heldlock 1= reqlock) II check for conflict
return TRUE; II found - return error

}
return FALSE;

Figure 4-13: The revised lockconflict operation

114

Thus, the dependency between the two types (that is, the Lock type and the

concurrency control type LockCC) has been removed such that it is now possible

to redefine conflict for different types oflock while still relying on the concurrency

controller to behave in the manner dictated by the requirements of two-phase

locking.

4.8 Deadlock

As was pointed out in chapter two, locking protocols are prone to deadlock,

and thus the concurrency control type described in the preceding sections is

similarly capable of becoming deadlocked. Regrettably, solving this deadlock

problem is not as easy as in some of the other systems that have been considered

so far in this thesis.

Recall that in conventional centralised systems deadlock was usually

allowed to form and was then detected and broken typically by aborting one of the

deadlocked transactions. Detection frequently required the building and

scanning of a wait-for graph, the nodes of which were transactions, with arcs

indicating that a transaction was waiting for another. As was pointed out in the

discussion of such an approach in chapter two, building this wait-for graph was

complicated and made far more expensive by the introduction of distribution into

the system, since concurrency controllers at each site had to exchange their local

Object-Unented Systems and Concurrency Control 115

wait-for graphs, in order to build a global wait-for graph that indicated the

relationship of every waiting transaction in the system.

Utilising such a scheme in the system described here magnifies the problem

still further. Although not explicitly stated previously (although perhaps

implied) it is assumed that since each individual object is responsible for its own

concurrency control so there will be a concurrency controller for each object active

in the system. This is not an unreasonable assumption to make since the

encapsulation properties of objects suggests that the concurrency control

information should be private in order to allow objects to behave autonomously,

at least as far as making concurrency control decisions is concerned. Thus, given

the potentially large number of active objects, then in order to establish even a

local wait-for graph could require substantial communication amongst the

objects.

One possible approach to this problem could require that each object's

concurrency controller stored sufficient information about its state into some

single location on a per site basis, and then a separate process could attempt to

use this information in an attempt to detect deadlock. Such an approach is

probably untenable due to problems of determining when the information was

consistent. This is not to say that the approach is impossible, merely that a

simpler approach is available which will be described later in this section. The

need for such a complicated deadlock detection system remains unconvincing at

the present.

Alternatively, the wound-wait or wound-die scheme of Rosenkrantz et al.

[Rosenkrantz et al. 78] (described in chapter two) could be adopted as a method of

deadlock detection. Using this approach requires that there exists some means of

determining age, so that the potential victim can be established when deadlock is

suspected. This may require either an extra instance variable in the Lock class,

ObJect-Unented :iystems and Concurrency Control 116

or possibly structuring the owner identifier such that it could be used as a

timestamp.

There is, however, an even simpler solution. Make use of the traditional

mechanism of timeouts to determine deadlock. Of course this strategy may mean

that deadlock is falsely detected through using too short a timeout, or

alternatively deadlock remains undetected for a period of time due to using too

long a timeout period. However, these consequences must be accepted as the price

of utilising so simple a scheme.

It is interesting to note that both Clouds and Camelot currently use

timeouts for precisely this purpose, although recent reports on Camelot indicate

that provision of a deadlock detector is being considered. However, since both

systems are built upon special kernels, with concurrency control as part of that

kernel, building such a detector is a far simpler task since all of the concurrency

control information is located centrally in the kernel.

Having decided to use timeouts the problem arises of where to use them.

Clouds places timeouts on actions; that is, if an atomic action has not completed

within a given time limit it is aborted. In the system described here there are

several possible options. Firstly, it would be possible to implement timeouts as a

property of the Lock type itself, or secondly, supply a timeout parameter to the

setlock call, or finally build the timeout into the actual concurrency control type

LockCC.

All ofthese approaches are viable, and each has the same effect. Namely, if

a lock cannot be set before the timeout period has elapsed then setlock should

return with a status of refused. Given such a return status, the onus is then on

the client to decide what to do next. The programmer may give up, try to set the

ObJect-Unented :Systems and Concurrency Control 117

lock again, or whatever. Thus the system does not impose any particular policy

upon the object designer.

It could be argued that simply returning a status is a potential source of

error, particularly if the caller chooses to ignore the returned value (or simply

forgets to check it). Ideally, lock refusal constitutes exceptional behaviour and

should be handled by some appropriate exception handler [Goodenough 75].

However, since C++ does not currently support exception handling, return codes

must be persevered with, error-prone as they may be.

The discussion above has stated that there are several options open in order

to incorporate a timeout mechanism into the basic concurrency control type.

Since each is possible, they are briefly described in the following sections.

4.8.1 Modifying the Lock Type

The first alternative allows instances of the Lock type itself to carry the

timeout value with them. Setting the value of the timeout could be handled in

many ways. For example, it could be set to some default value in the Lock

constructor (or, by appropriate overloading of the constructor, set to some specific

value). Similarly, public operations could be provided to allow the timeout value

to be set. Indeed, a combination of both approaches is possible.

4.8.2 Extending Setlock

Instead of modifying the basic Lock type, the setlock operation could be

modified such that it took another parameter which indicated the timeout value

to use for this particular call. If the language supports a default parameter

mechanism whereby parameters not supplied in a call are set to default values

then this is a particularly attractive technique since existing code does not

Object-Unented 8ystems and Concurrency Control 118

require changing (the default value would be used), yet the programmer can now

specify a particular timeout value ifrequired.

This approach is supported by C++ and so it is also possible to define the

interface to setlock as follows:

lockstatus setlock (Lock., int timeout = 20);

In this case, if no second argument is supplied on any given call then the

default value (in this case 20 time units) would be used.

4.8.3 Modifying the Concurrency Controller

In the same way that instances of the Lock type could be modified to carry a

timeout value, so similar modifications could be made to the basic concurrency

control type LockCC so that one of its instance variables is just such a timeout

value. Setting the value of the timeout can then be handled in basically the same

way as it was handled for the Lock type, that is, the timeout value could be set to

some default value in the LockCC constructor (or, by overloading of the

constructor, set to some specific value).

Of the three options presented, this latter one is probably the least flexible,

since it only allows a single timeout value to ever exist for the object. Both of the

two previous approaches allow different timeouts to be supplied with each lock

request, thus providing the maximum flexibility. For example, with both of the

previous approaches, if the request to set a lock was refused, the caller may wish

to try again but with an increased timeout value. This is impossible with this last

approach.

Object-Oriented Systems and Concurrency Control 119

4.9 Handling Atomic Action Nesting

As described so far in this chapter the concurrency control type is incapable

of handling nested atomic actions for two reasons. Firstly, when attempting to

set a lock the concurrency controller takes no account of the available ancestry

information. That is, when two locks are compared, they are considered

compatible if they belong to the same action or if their modes are compatible.

Secondly, although the Lock type has a status indicating whether it is held or

retained, the concurrency controller does not use this in any way.

Both of these problems can be overcome by simple additions to the

concurrency control type LockCC. Overcoming the first problem requires the

addition of a private operation isancestorofto the concurrency control type. This

operation determines whether the owner of each held or retained lock is an

ancestor of the owner of the requested lock. This relationship is then tested in

accordance with the nested locking rules given in chapter three.

The second problem requires that locks have their status changed when an

atomic action commits. There are two distinct cases here. If a nested action is

committing then the locks should be propagated to the parent action, otherwise if

the action is a top-level one, then the locks should actually be released. Thus

another operation, propagate, is added to LockCC. This operation has the task of

ensuring that the ownership of any locks held by the object on behalf of the action

is changed to that of the parent action, and that the status of the locks are

similarly changed from held to retained.

In addition to lock propagation, lock release is also not handled by the

concurrency control type. This situation clearly needs amending, otherwise locks

would persist as long as the object itself was active. To this end, the operation

release lock is also added to LockCC. Given these two operations (propagate and

Object-Unented 8ystems and Concurrency Control 120

releaselock), it is then necessary to decide precisely which should be called when

an atomic action commits.

There are two alternatives to consider; which is followed depends upon how

atomic actions have been implemented. For example, propagate could be called

directly by the atomic action system implementation when a nested atomic action

is being committed, leaving release lock to be called only when a top-level action

commits. Alternatively, releaselock could always be called, and it could

determine whether to propagate the lock or release it based upon the action

nesting level prevailing at the time. Which approach is followed is determined by

the implementation of the atomic action system. Thus, if the atomic action

implementation distinguishes between top-level and nested commits such that

different protocols are followed, then propagate should be called for nested action

commit, with releaselock only being called when the top-level action commits (or

aborts).

4.10 Other Issues

This section considers some other relatively minor issues that have not been

considered elsewhere.

4.10.1 Lock Conversion

In chapter two it was noted that it was possible for an atomic action to first

set a read lock upon an object and then at some later point in time decide to set a

write lock on the object as well. This procedure was termed lock conversion.

Earlier in this chapter it was stated that such conversion would not be

allowed due to the immutability of the mode of each lock object. This does not

mean the same same effect cannot be achieved; rather it must be achieved in a

somewhat different fashion. The illusion of lock conversion can be achieved

automatically using the inheritance based scheme of this chapter with no further

ObJect-Unented ::iystems and Concurrency Control 121

work or modification to the existing design for the following reasons. Firstly,

locks from the same action are not considered to conflict with each other Thus

even though an action may already have set a read lock upon an object,

attempting to set a write lock at some later time will be allowed providing that no

other action is also holding a read lock on the same object.

If another action does hold a read lock then a conflict will exist and the

attempt to set the write lock will not be allowed until the conflicting lock is

released. This is correct behaviour since the net effect is that eventually only a

single action is manipulating the object and the attempt to set the write lock will

then succeed. This means that the list oflocks on the object will consist of the new

write lock plus the original read lock, both of which belong to the same action.

This conversion process is of course prone to deadlock if two independent

actions both attempt to convert their existing read locks to write locks, since they

will each end up waiting for the other to release the read locks they respectively

hold. However, this deadlock can be handled in the same way as before, so that

one of the requests for a write lock will eventually time out and be refused,

causing an error return. What happens after this error return is determined by

the implementor of the type.

As an alternative approach, the ISIS strategy could be adopted and an

explicit promotable read mode lock could be declared that is basically exclusive in

nature. With this type oflock it would then be possible to disallow the illusion of

conversion of normal read locks to write locks.

Within the system under consideration such promotable read locks are

simple to implement without further modification to the basic scheme. Once

again use is made of the type inheritance capabilities of the language and a new

ObJect-Unented ::3ystems and Concurrency Control
122

lock type - the PLock (illustrated in Figure 4-14) - is created, together with an

appropriate declaration of its conflict operation (Figure 4-15).

class PLock: public Lock
{

virtual boolean operatorl~ (Lock_);

public:

}

PLock (modetype);
-PLock ();

Figure 4-14: The PLock class

boolean PLock::operatorl~ (Lock. otherlock);
{

}

switch (lockmode)
{

}

case READ: II Read compatible with all except Write
if (otherlock~getlockmode() ~~ WRITE)

return TRUE;
break;

case PREAD: II Pread ok with Read or same owner Write
if (otherlock~getlockmode() ~= READ)

break;
if (owner l= otherlock~getowner(»

return TRUE;
case WRITE: II Exclusive unless same owner

if (owner l= otherlock~getowner{»
return TRUE;

return FALSE;

Figure 4-15: The PLock conflict algorithm

Plocks are identical to Locks except that they support the additional mode

PREAD (for promotable read) and have their own version of the conflict check.

This check no longer allows lock attempts by the same action to proceed

unhindered. Instead it checks all attempts to set a lock for conflict regardless of

the source of the request. Thus in this case WRITE lock requests from the same

action will always cause conflict with existing lock requests from the same action.

The only way a WRITE lock can be granted using this conflict check is if the same

action had already acquired a PREAD lock (or already holds an existing WRITE

Object-Uriented Systems and Concurrency Control 123

lock). This particular implementation allows READ locks to be compatible with

PREAD locks, however, only one PREAD lock is allowed on the object at any

given time (it is assumed that the action does not attempt to set two or more

PREAD locks on the same object, although the conflict check could easily be made

to cope with this situation). This ensures that there can be at most one attempt to

convert such a lock to a WRITE lock, thus avoiding any possibility of deadlock.

Either of these two approaches is acceptable, but the very fact that both can

be supported in so simple a fashion emphasises once more the flexibility of the

basic design and the applicability of the type-inheritance approach.

4.10.2 Managing the Lock List

As locks may be inherited from child actions, there is likely to come some

time when the list oflocks being maintained by the concurrency controller for an

object becomes unwieldy and requires pruning. For example, if an action had

been retaining a read lock on the object, and then inherited a write lock from one

of its children it would end up retaining two locks, one in each mode.

Obviously, in this case the read lock is no longer strictly necessary and can

be released. This process of lock merging, must ensure that the correct lock is

released (here the read lock, not the write lock) and thus requires that the lock

modes form some total order. Given that lock modes can be ordered then it is a

simple matter to ensure that the lesser is released when the merge occurs.

Ordering of locks can be handled once again by a simple modification to the

basic Lock class. All that is required is a new virtual function ordering, that

compares the modes of the two lock instances and returns an indication as to

which has the stronger mode (or whether both have equal strength modes).

Alternatively, (as before) one of the standard operators could be overloaded (say

<) to perform the same function.

ObJect-Unented :Systems and Concurrency Control 124

4.10.3 Ensuring Two-Phase Locking

In order to ensure that the concurrency controller follows strict two-phase

locking it must not release any locks until the atomic action commits or aborts.

This requires that certain operations of the concurrency controller (in particular

propagate and releaselock) are called by the atomic action system when an atomic

action commits or aborts rather than directly by the programmer. In order to do

so, the atomic action system needs to be informed as to which objects each action

has manipulated and the locks that have been set. The precise form of this

information is given in the next chapter, however, what follows is a brief

overview of the processing involved.

Essentially, what happens is that when a lock is set, an indication is sent to

the atomic action manager giving it sufficient information to identify the lock

object and the actual object upon which the lock is being set. Then, as part of the

standard commit processing performed by the atomic action manager the lock

information registered with the manager is used to call the releaselock operation

of the object, passing the lock identification as a parameter. Since this call only

occurs as part of the commitment of an atomic action, the following of the strict

two-phase protocol is assured.

As an aside it may be noted that it is also possible for the two-phase policy to

be subverted deliberately by explicit use of releaselock by the programmer. If this

Occurs it is assumed the programmer knows what he (or she) is doing. In this

respect our system is similar to both Clouds and Camelot which allow the same

operations and make the same assumptions. In reality there are instances where

releaselock must be explicitly called by the programmer. This situation arises if a

call was made to setlock while the program was not executing as part of any

atomic action. In this situation the programmer must release the locks explicitly.

Object-Oriented Systems and Concurrency Control 125

In order to assure that a two-phase policy was still being followed once a lock

was released explicitly it is possible to refuse to set further locks, but that would

not overcome the possible problem of cascading aborts that might then follow.

4.11 Summary

This chapter has considered how to apply one of the concurrency control

techniques of chapter two to an object-oriented environment. In doing so

individual objects have been made directly and explicitly responsible for their

own concurrency control which it is argued is the correct thing to do, bearing in

mind the properties claimed for objects, particularly with regards to

encapsulation.

This control was added in a novel and evolutionary way by using the type­

inheritance capabilities of the implementation language. This had the highly

desirable features of being both flexible and not requiring modifications to, or the

design and implementation of, either a new language or operating system.

Taking this approach further, it was claimed that locks ought to be objects

in precisely the same sense as any other object in the system and so should not be

regarded as pre-defined (and thus frequently immutable) system types. This

approach is radically different to that adopted by the other object-based systems

that have been considered in this chapter.

In support or'this approach, a Lock type was designed that supported the

basic modes of read and write and it was shown how by giving it an appropriate

interface such an object could be used by a concurrency control type. A two-phase

locking based concurrency control type was then designed that could be inherited

by user-defined types, such that in conjunction with the Lock type the correct two­

phase behaviour was obtained.

UbJect-Unented ::iystems and Concurrency Control 126

Finally, the problem of deadlock was considered, and it was explained how

this could be handled by use of the simple expedient of time outs. Note that there

is no commitment to adopting this approach in the design, since other approaches

are possible, however, they are more costly. The experience of the designers of

other object-based systems shows that the use of timeouts has, in general, proved

adequate. The need for a more complicated deadlock detection scheme is, as yet,

unnecessary.

Throughout this chapter it has been claimed that using type-inheritance in

the manner described here is a flexible approach to adopt. In chapter six further

examples will be given in support of this claim.

Implementation in Arjuna 127

Chapter 5

Implementation in
Arjuna

This chapter shows how the concurrency control type designed in the

previous chapter was implemented as part of one particular system - Arjunat.

Arjuna is an object-oriented programming system that supports the construction

of reliable distributed application programs.

The following sections describe Arjuna in more detail. In particular they

describe the Arjuna system model and the class hierarchy upon which the entire

system is based. They then show how the concurrency control type designed in

the previous chapter is integrated into this hierarchy and consider the facilities

that are required to enable the concurrency controller to function as part of the

Arjuna system.

The chapter then describes some of the problems that the model of

computation employed by Arjuna has on the implementation of the concurrency

control type, together with ways by which these problems can be overcome.

Finally, the chapter shows the actual implementation of the concurrency

control type of the previous chapter in Arjuna and gives sample performance

details for this particular implementation. A more complex example is then

described. This latter example is based upon a simple diary system that allows

users to note when specific events are due to happen and is designed to show the

tIn the Hindu epic Mahabharata, Arjuna is a warrior prince whose chariot is driven by

Lord Krishna.

Implementation in Arjuna 128

ease by which the facilities of Arjuna can be used by a programmer to create

concurrency controlled objects.

5.1 Arjuna

Arjuna [Shrivastava 86, Dixon et al. 87, Parrington and Shrivastava 88,

Shrivastava et al. 88] is an object-oriented programming system that supports the

construction of reliable distributed applications. The initial goal of the project

was to utilise as much as possible of the theoretical work on reliability that had

been carried out at Newcastle University over the years [Shrivastava 85]. In

addition some practical work was also available including a remote procedure call

(RPC) mechanism that supported orphan killing. This mechanism - Rajdoot

[Panzieri and Shrivastava 88] - was already being modified to incorporate

facilities for multicast remote procedure calls [Hedayati 88] based upon a new

multicast communication system [Hughes 86] which it was felt would be helpful

in several areas, but particularly in the commit processing mechanism.

Arjuna is being implemented in the language C++ [Stroustrup 86] upon a

set of UNIX workstations connected by an Ethernet. As has been emphasised

earlier in this thesis, the aim of the project has been to provide support for reliable

distributed programming without resorting to producing a new programming

language, operating system, or combination thereof. Rather, the project aims to

exploit features provided by the implementation language and the host operating

system.

Objects in Arjuna are persistent (their lifetime exceeds the lifetime of the

program that created them) and are the main repositories for holding the state of

the system. Objects are normally stored in an object repository named Kubera

[Dixon 88], which provides the necessary stable storage mechanisms to ensure

that node crashes do not destroy objects stored within it. Kubera is a general

purpose object store and holds not only the images of persistent objects, but also

implementatwn in Arjuna 129

certain critical infonnation about the system such as the state of any atomic

actions in the process of being committed.

5.2 The Arjuna System Model

The basic layered architecture of Arjuna is shown in Figure 5-1. Objects in

Distributed Programs

employing atomic

actions

Robust objects and

actions

Multicast RPC

Multicast communication

Layer

Hardware

Figure 5-1: The architecture of Arjuna

Arjuna may be either passive or active. When in a passive state an object resides

in the object store of the node at which the object is located. Arjuna objects are

assumed to be located in their entirety at only a single site.

In order for an operation to be performed upon an object the object must first

be activated. Once activated it remains active until the top-level action

responsible for its management commits, or the action manipulating the object

aborts. Note that objects may actually be activated by nested actions but

providing that the nested action commits the object will remain active and will be

inherited by the parent action. Arjuna thus differs from systems such as Argus

[Liskov 88] and Camelot [Spector 87, Spector et al. 87] where object servers

Implementation in Arjuna 130

(guardians in Argus tenninology) are pennanently running processes that are

automatically started as part of node start up, and are guaranteed to be restarted

after a node crash.

For the sake of consistency and simplicity Arjuna makes no attempt to

differentiate between local and remote objects. That is, local objects are handled

in the same way as remote objects. In practice this means that even local objects

are accessed via remote procedure calls (RPCs) [Nelson 81, Birrell and Nelson 84].

While this may seem inefficient the uniformity of access that it affords has its

benefits from the point of view of stub generation. In particular the use of remote

procedure calls can be completely hidden from the programmer.

To make the distribution of objects hidden from the programmer Arjuna

employs a stub generator [Wheater 88] that takes definitions of the interface to a

type and produces an equivalent stub type. This stub type provides the same

interface to the programmer as the original type, only the implementation of the

actual operations of the type has changed. Instances of the stub type are tenned

stub objects.

Each operation of the stub type is responsible for packing the parameters of

the operation into a fonn suitable for transmission over the communications

medium and invoking a remote procedure call to a server process at the site where

the object actually resides. This server then unpacks the parameters, perfonns

the requested operation locally upon the object, packs the result and returns it to

the client stub object. The client stub object waits for this reply and when it is

received unpacks the result and returns it to the caller exactly as if the call had

been perfonned locally. This sequence of events is shown in Figure 5-2.

Implementatzon mArjuna

Stub Operation

invocation

Client Operation

RPC setup

Server Operation

'"--_____ call ____ --,

131

RPC Analysis

t
wait Local Operation

invocation ,
Result packaging

r----- return ____ 't

Result setup ,

Figure 5-2: Remote operation invocation

This procedure is transparent to the programmer since whenever an

instance of a type is declared in the program, an instance of the corresponding

stub type is instantiated instead. Thus the programmer continues to invoke

operations upon the stub objects as if these stub objects were the real objects.

The stub object and the code that has to be executed in order to pack and

unpack the parameters for each of the operations of the actual object (at both the

client and the server) are automatically produced by the stub generator from the

interface definition.

Implementation in Arjuna 132

Recall that in C++ objects have special operations known as constructors

and destructors associated with them. The code produced by the stub generator

takes advantage of this fact to determine when to create the server process for

each object. When the stub object first comes into scope (that is, it is created) the

constructor for the stub object is called. This constructor determines the site at

which the real object resides by interrogating some name server and then makes

a remote procedure call to a manager process running at that site requesting

creation of a server process. When the server process has been created the

manager sends back to the stub object constructor an address by which the server

process may be contacted directly. All future remote procedure calls are directed

to the server process without further involvement of the manager at the remote

site.

Similarly, when the stub object goes out of scope, the destructor operation

ensures that the communication channel is terminated after first instructing the

server to terminate (which in turn will cause the remote objects to be passivated).

The RPC system employed by Arjuna is a modification of Rajdoot, a system

that provides exactly once semantics. That is, if the client receives a reply then

exactly one execution of the called operation has taken place. If the client does

not receive a reply then either one, none, or a partial execution of the operation

may have taken place. The simplest course of action to take in this situation is to

abort the action from which the call was made (assuming that the operation is

executing under the control of some atomic action).

Although not shown above, there may be further recursion in the system

since a server may itself be a client to some other server. Thus at any instant

there may be many clients each with possibly multiple servers, each of which

may, in its own right, be the client of yet more servers.

Implementation in Arjuna 133

Such an approach naturally leads to a tree-like structure of client and server

processes and this was the model employed originally by Rajdoot. This implied

that remote procedure calls destined for the same object but which originated

from different nodes resulted in the creation of additional server processes. Thus

it was possible that any single object might have several servers active for it at

any given time.

Since this situation was considered undesirable, (it provides several

management difficulties) this basic RPC mechanism was modified so that servers

can now be shared by more than one client, providing that the clients are related.

The implications of this will be considered later in this chapter in section 5.5.2

and again in chapter six.

5.3 Atomic Actions in Arjuna

Arjuna is unlike any of the other object-oriented systems reported in the

literature (and briefly described in the previous chapter) that have been

developed over recent years in that every major entity in the system is an object.

This idea even extends to the notion of presenting an atomic action as simply

another object in the system, as opposed to it being implemented as part of an

operating system or built into a special programming language.

Thus atomic actions in Arjuna are manipulated and declared in the same

way as other objects. In particular, there is a class called Action, a skeleton of

which is shown as Figure 5-3. This class provides the basic operations associated

with atomic actions as outlined in chapter three and leads to programs that

resemble the simple example shown as Figure 5-4 which illustrates a sequential

nested action B inside the top-level action A. Action management and the

implementation of the failure atomicity properties of objects are not the concern

Implementation in Arjuna

class Action
{

public:

}

Action ();
-Action ();

Begin_Action ();
Commit_Action ();
Abort_Action ();

Action_ Parent ();

II private action management
II functions and variables

Figure 5-3: The class Action

main ()
{

}

Action A, B;

A.Beg in_Act i on ();
{

}

B.Beg in_Act ion ();
{

}

B.Commit_Act i on();

A.Commit_Act ion ();

II declare the two actions

II commence action A

II start nested action B

II operations of action B

I I commit B

II finally commit A

Figure 5-4: The class Action in use

134

of this thesis and are only covered briefly here to give the reader an overview of

the Arjuna system. For precise details see [Dixon 88].

Instances ofthe class Action maintain as part of their private state all of the

necessary information regarding the current status of the action (running,

committing, aborting, etc), together with a special list of records that records

information required to achieve the properties of failure atomicity and

pennanence of effect. Also held on this list are records detailing actions taken by

[mplementatzon in Arjuna 135

(or yet to be taken by) the concurrency controller of each object. This will be

described in more detail in section 5.5.

5.4 The Arjuna Class Hierarchy

One of the key concepts of Arjuna is its use of the properties and facilities of

the implementation language C++ and the host operating system to provide

support for reliable distributed programming using atomic actions. This support

is added by the declaration and use of appropriate classes responsible for

implementing the various portions of atomic action management.

These classes form a hierarchy, a basic illustration of which is given as

Figure 5-5. At the root of the entire hierarchy is the class Object. This class

Figure 5-5: The Arjuna class hierarchy

Implementation in Arjuna 136

provides the basic facilities used by all of the other classes. In particular, it

contains the name of each object (in terms of a unique identifier) and operations to

determine the size and type of an object. It is also responsible for interaction with

the object store, especially with respect to object activation and passivation.

Since Action is a class derived from Object it inherits the attributes of that

class. This allows, for example, actions to be named by their unique identifiers

rather than any other way, such as associating some form of hierarchical name

that reflects the action nesting. However, it should be pointed out that since

Action provides an operation called Parent such a hierarchical name could be

generated if required simply by following this parent chain back to the top-level

action (which is identified by the fact that it has no parent). The implementation

of the concurrency control type LockCC uses this unique identifier to associate all

of the locks of any given atomic action together.

Instances of the class Abstract_Record are not meant to be instantiated in

any way (in fact all of the operations of this class are designed to return errors if

they are invoked). Instead, Abstract_Record is used as a template for the

declaration of several other management utility classes. The operations provided

by Abstract_Record correspond to those of Action and include such operations as

begin, top_level_commit, abort, etc. The use of one particular type derived from

Abstract_Record - the Lock_Record - will be described in section 5.5.

In section 5.3 it was mentioned that instances of Action maintained a list of

records for management purposes. In actual fact these records are simply

instances of the record types derived from Abstract_Record, that is,

Object_Records, Lock_Records, etc. Whenever an operation on an instance of

Action is performed it, in turn, causes the equivalent operations to be invoked on

each record instance held on its Record_List.

Implementation in Arjuna 137

When an atomic action commits, Action invokes the equivalent commit

operation for each record in its current Record_List. When an nested atomic

action commits certain information must be propagated to the parent atomic

action. This propagation is necessary so that if an object was manipUlated for the

first time by the nested atomic action then the parent of the action can assume

responsibility for the management of the object. Similarly if the object was

already known to the parent then the duplicate information can be discarded

since the action already knows about the object. Thus the Record_List behaves

in a similar fashion to a recovery cache [Lee et al. 80].

5.5 Adding the Concurrency Controller to Arjuna

The final sections of previous chapter outlined the mechanism by which the

concurrency control type designed in that chapter could be integrated into a

system that supported atomic actions. This section shows how that mechanism is

provided in the AIjuna system.

As can be seen from Figure 5-5 the concurrency control type described in the

previous chapter is in actual fact derived from the root class Object and thus

inherits the capabilities it provides. Since all of these features are really required

by the user-defined objects themselves, then LockCC publically inherits Object,

and is itselfpublically inherited by the user-defined types.

5.5.1 Ensuring Strict Two-Phase Locking

As was pointed out in chapter four, the concurrency controller of an object

needs some way of recording with the atomic action system that it has set a lock

Upon the object. When the action commits the concurrency controller for the

object can then be instructed either to propagate, or to release the lock as

appropriate, depending upon whether the committing action is nested or not. In

Aljuna this communication is enabled by the ability of the concurrency controller

Implementation in Arjuna 138

for an object to add records to the Record_List of the appropriate action. For this

purpose (although not shown in Figure 5-3) Action also provides as part of its

public interface an add operation, the basic declaration of which is shown below:

int add (Abstract_Record_);

In addition, there is always a pointer to the current action available under

the name Current_Action. Thus whenever a lock has been successfully set upon

an object the concurrency controller for that object can inform the atomic action

system of the fact by simply executing the following statement:

CurrenLAction-+add (new Lock_Record(reqlock -+get_ownerO, this»;

This statement creates a new instance of the class Lock_Record and passes

to its constructor the unique identifier of the owner ofthe lock object and a pointer

to the actual concurrency controlled object. This newly created record is then

added to the list maintained as part of the state of the current action.

The declaration of the class Lock_Record is shown in Figure 5-6. The only

information this class maintains is the owner of the lock (in terms of the unique

identifier of the atomic action setting the lock) and a pointer to the appropriate

concurrency controlled object. Furthermore, these private variables can only be

set through the constructor operation; no further manipulation of them is

permitted. Thus, each instance of Lock Record contains sufficient information

to enable appropriate actions to be taken to ensure that locks set by an action are

all correctly propagated or released depending upon the ultimate fate of the

action. Since locks are themselves objects (instances of the class Lock which is

derived from Object), they possess a unique identifier by which they too can be

named.

Implementation in Arjuna

class Lock_Record: public Abstract_Record

{
Uid. action_uid;
LockCC. object_address;

virtual void pack (Image_);
virtual void unpack (Image_);

public:

}

Lock_Record (Uid_, LockCC_);
- Lock_Record ();

virtual void begin ();

vi rtual int nested _prepare ();
virtual void nested - commit ();

vi rtual void abort ();

virtual int top_ level _prepare
vi rtual void top_ level - commit
virtual void top_ level - abort -

virtual Record_Type TypeIs ();
virtual UnTyped Value ();
virtual int ordering ();

();

();

();

II unique id of owner atomic action
II pointer to concurrency controlled
/I obj ect

II Arjuna required operations

II create new lock record

II operations lock records respond to

II operations required by Action

Figure 5-6: The class Lock_Record

139

Lock_Records must re-implement all of the functions they inherit from

Abstract_Record since the base class operations are designed to return an error if

they are ever invoked. As a rule most of these operations are simply redefined to

be null operations, so that if they are called the operation returns immediately.

In Arjuna, the implementation of the class Action makes a distinction

between the commitment of a nested atomic action and the commitment of a top­

level atomic action. There are seven distinct operations required to cope with

this. Nested-prepare and nested_commit are invoked when a nested action

commits. Top_level-p rep a re, top_level_commit, and top_level_abort are

invoked as appropriate during execution of the two-phase commit protocol.

The implementation of all of these operations is simple as far as instances of

Lock_Record are concerned since all they are required to do is trigger the release

or propagation of the associated lock at some object depending upon whether a

Implementatzon In Arjuna 140

commit or an abort is being performed. In section 4.10.3 of the previous chapter

two possible approaches to lock release and propagation were described, and it

was stated that which approach to adopt depended upon how the atomic action

system treated nested action commitment. Since Action distinguishes between

nested and top-level commits the implementation of these operations for the type

Lock_Record are different and are shown as Figure 5-7.

void Lock_Record: : nested_commit ()

{
obj ect_add ress -+ propagate (act i on_u i d) ;

}

void Lock_Record::abort ()

{

}

object_address-+releaseall (action_uid);

Figure 5-7: The implementation of nested commit and abort for

Lock_Record

The additional functions provided by Lock_Record are for the benefit of the

atomic action management system. For example, ordering is used during the

record list merging process, while Value simply returns the value of the

action _ uid member variable.

Once a decision has been made to abort or commit a top-level action, that

decision should carried out regardless of any crashes by any node in the system.

Arjuna handles this by utilising a form of intentions list coupled with the ability

for instances of each of the action management classes to save sufficient

information about themselves in the object store.

Basically what happens is the following. When top-level action commit is

invoked, Action uses facilities provided by Object to retrieve the state of each of

the records currently held on its record list and saves that state in the object store.

The commit operation of Action then invokes the top_level---prepare operation

Implementation in Arjuna 141

upon each record in turn. IT this succeeds for all of the records in the action then

the first phase of the commit process is considered successful and the intentions

list (which records the unique identifier of each record) is also placed in the object

store. The second phase is then started which requires re-scanning the record list

performing the top_Level_commit (or top_Level_abort if the action is being

aborted) operation on each record and then removing the corresponding record

from the object store.

Since the information that needs to be saved differs from record type to

record type, each provides a type-specific pack function which is called

automatically by Object. This function packs the state of the record instance into

a contiguous block of memory that is handled by a class called Image. For

symmetry purposes there is also an unpack function which performs the reverse

operation. For more complete details of this procedure, see [Dixon 88].

5.5.2 Implications of the Arjuna System Model

Earlier in this chapter the system model employed in Arjuna was described.

This section describes what effects this model has upon the basic concurrency

control scheme designed in the previous chapter.

The most obvious problem that arises comes about due to the fact that it is

possible for an object to be managed by more than one server at any particular

site. This can quite naturally lead to severe consistency problems. As was

pointed out in section 5.2 the model of computation supported by Rajdoot was

extended to allow for server sharing. However, such sharing was only allowed

between related processes, which in this context means servers that have come

into existence due to the execution of related atomic actions. This situation is

shown in Figure 5-8.

Implementation in Arjuna 142

Figure 5-8: Arjuna process structure

In this example a client program PI (at node N 1) has accessed an object at

node N 2 resulting in the creation of the server process P2. PI has also accessed

another object at node N 3 resulting in the creation of the server P3. An operation

performed by P3 (on behalf of the original client) is then assumed to require the

invocation of some operation on the object at N 2 already served by P2. Thus in

this case P3 is allowed to share the server P2 with the original client PI.

If, however, some totally unrelated action running at N 3 attempted to

perform some operation on the object managed by P2 then an entirely new server

(call it P4) would be created. Thus the object at N2 ends up by being served by

both P2 and P 4. It is the task of the concurrency controller for the object to ensure

that this situation does not lead to any inconsistencies. The concurrency

controller does this by controlling when an object is activated.

Recall that objects in AIjuna, when passive, are stored in the object store

Kubera. This object store is particularly simple minded in that, while it ensures

that the object is stored reliably, it contains no access control mechanisms

whatsoever. Thus if two servers attempt to activate an object, both would be

allowed to load it from the object store independently of each other without any

access check taking place.

Implementation in Arjuna 143

Since this is the case, it is the concurrency controller for the object that must

determine when the load of the object from the object store should take place. It

would be possible, for example, for the object to be loaded as part of the invocation

of the constructor operation at the object's server, but that leads to precisely the

situation we are trying to avoid.

Consider the simple case provided by the basic system where the object can

only set read or write locks upon itself (ignoring the potential problems caused by

lock conversion for now). If the object is only being read then having mUltiple

servers, each with a copy ofthe object does no harm whatsoever, since each server

has a copy of the latest state of the object. Problems only arise when (at least) one

of the servers wishes to modify the object in some way. Obviously each server

cannot be allowed to have its own copy of the object in this case, since the

modifications each performed would not be reflected in the final object state.

Rather only the modification performed by the last committed server would be

reflected - leading to the classical problem of lost updates. Thus only one server

must be allowed to modify an object at any given time. Fortunately, this

situation is fairly easy to achieve since in order to modify the object the server

would have to first obtain a write lock on the object, and by the standard locking

rules only one such lock can exist at anyone time.

Obviously the modification should take place upon the latest state of the

object which requires that the object is only actually activated (and thus cause its

state to be loaded into the server) after an appropriate lock has been acquired.

For this purpose, the base class Object, provides a routine called activate, the

purpose of which is to determine if the object has been activated, and if not cause

it to be activated by loading the latest state of the object into the server. If the

state has already been loaded, activate simply returns without doing anything.

Implementatwn m Arjuna 144

Using this mechanism it is simple to ensure that only one server has modify

access to an object and thus lost updates are not possible. The sequence of events

is thus now:

(1) The stub object comes into scope and causes creation of a server process at

the home site of the actual object. The server process sends its address to the

stub object so that communication between the client and the server

requires no third party. As part of the server creation an instance of the

required object is created and initialised into a (type-specific) default state.

(2) The client program invokes some operation on the stub object which is

translated into a remote procedure call to the appropriate server requesting

the execution of the operation.

(3) The actual code for the requested operation attempts to set a lock of the

appropriate type upon the object by calling setlock.

(4) If the lock cannot be granted the server blocks until it can be. Once the lock

is granted, setlock calls activate to ensure that the actual object state has

been loaded into the server from the object store (that is, the object becomes

active at this point in time).

(5) The setlock call returns, the requested operation IS performed and the

results are returned to the client.

As can be seen from the above description activate must be called on every

attempt to set a lock on the object. While this may seem to be an unnecessary

overhead it is probably not so, since in the majority of cases activate will return

immediately without doing anything.

Implementatwn in Arjuna 145

An alternative approach is the following. The state of the object is

automatically loaded as part of the invocation of the object's constructor at server

startup. This means that read accesses do not need to perform activate calls since

they already have the state present. Only calls that modify the object require

activate calls to ensure that once the lock is set the latest current state is loaded

into the server.

While this latter scheme will work in the simple case that has been under

consideration here, it still has its problems. The most notable problem is that

under this scheme the concurrency controller for the object needs to know which

locks will be set when the object is to be modified, to be sure that activate is called

when locks of that type are set.

In the simple case where only read and write locks may be set this is easy to

determine, since write locks are the only lock type that allows object modification

and so the concurrency controller for the object could simply check for those.

However, as shall be seen in the next chapter, when the types oflocks that may be

set on an object are extended in a type-specific manner this check is not

guaranteed to be effective.

Of course a requirement could be made that all locks in addition to a mode

(such as read or write) also carry some indication as to their type (say either

examine or modify along the line of Clouds [Dasgupta et al. 85]) which could then

be tested by the concurrency controller of the object, but for now this approach is

discounted and instead calling activate on every attempt to set a lock is preferred.

The above discussion has assumed that the object is not a new object that is

being created by the calling action. Ifthis were the case then the call to activate is

strictly unnecessary, since the object does not yet exist in the object store. Given

Implementation in Arjuna 146

that the status of an object can be determined by calling an operation provided by

Object it is simple to avoid the activation in this case.

Lock conversion could also be a source of problems if two servers attempted

to convert their read locks to write locks since lost updates could reappear.

However, the techniques of the previous chapter suffice to cover this situation

effectively. Firstly, if the extended Plock style of locking is used then only one

server will be allowed to convert from read access to write access on an object,

thus ensuring that only one server will update the object. Alternatively, using

the normal style of locking, the conversion would cause deadlock to occur, which,

in turn, would cause one of the conversion requests to fail, thus still leaving only

one server capable of updating the object.

5.6 Further Complications

The previous section showed how the use of multiple servers for each object

in Arjuna could cause inconsistencies to occur without modifications to the basic

concurrency control scheme described in chapter four.

The following sub-sections outline some other problems that this model of

computation has together with means by which they can be overcome.

5.6.1 Concurrency Control State

The problems already described in the previous section, which were to do

with the actual state of the object, have analogous problems to do with the state of

the concurrency controller for the object. This section describes these problems

and considers ways by which they can be solved.

The state of the concurrency controller for an object is essentially

determined by the list of Lock objects that it is currently holding or retaining on

behalf of the various atomic actions ongoing in the system. In order to be able to

Implementation in Arjuna 147

decide whether any individual request to set a lock can be granted, the

concurrency controller for the object needs complete knowledge of all the locks

that are currently set upon the object. Unfortunately, if multiple servers exist for

an object then this information is actually distributed amongst all such servers.

Thus the concurrency controller in each server for a single object only knows

what locks have been set by that server. This is an intolerable situation since it

can lead to inconsistent decisions by the concurrency controller. For example,

consider an object for which two servers exist. It could be that one server holds

several read locks on the object, while the other server is being asked to set a

write lock on the same object. In this case, without knowledge of the read locks

held by the first server, the second server may inadvertently allow the write lock

to be set, creating obvious consistency problems. This problem can be overcome in

several possible ways:

Using Multicast Communications

One possible way by which this problem of incomplete knowledge could be

overcome is by allowing the concurrency controllers in each server to

communicate with each other so that a consensus can be arrived at whenever a

lock is to be set.

However, since servers are created dynamically, determining how many

servers exist and how to communicate could be a problem. One solution is to use

multicast communication, such that the servers for an object all form part of a

common multicast group [Hughes 86]. Thus when servers are dynamically

created they join the appropriate group and when they die they leave the

appropriate group. It is then the task of the multicast communications software

to ensure that all members of the group receive messages.

Implementation in Arjuna 148

Creating such a multicast group is a simple procedure. Since each server is

responsible for an object that has a unique identifier, this unique identifier can be

used to generate a unique multicast group identifier for the purpose of

communication. Furthermore, since all of the servers for the same object would

see the same unique identifier for the object, they will each generate the same

group identifier, thus ensuring that all active servers for an object (and only

servers for that object) would be capable of sending and receiving multicast

messages for that group. It further follows that any new servers created for the

object would also be capable of generating the same multicast identifier, and so

they too could participate.

Unfortunately, while seemingly simple, this solution does not fit in well

with the basic organisation of the system. One problem is caused by the

clientJserver relationship and the use of remote procedure calls. Recall that each

server is effectively in a loop, receiving remote procedure calls, obeying them, and

returning the results to the client. Furthermore, the code that dispatches the call

to the correct operation has been generated automatically by the stub generator

from the interface to the object. The use of multicast communications then causes

problems, since the server is either expecting a remote procedure call, or is

obeying one already. In either case the arrival of a multicast call is unexpected

and additionally the dispatch code does not know how to handle it.

There is too an equally difficult problem regarding precisely what

information to exchange. What effectively has to happen is that the server

attempting to gather the lock information must recreate the entire list of Lock

objects within itself. Thus, all of the other servers must transmit the locks they

are currently holding in a form that allows them to be recreated at the receiver.

This is difficult to achieve without breaking the encapsulation properties of the

Lock objects.

Implementatwn zn Arjuna 149

Neither of these problems is unsolvable, however, there are simpler

solutions to the problem, therefore, this approach is considered no further.

Using the Arjuna Object Store

Fortunately a much simpler and more universally applicable way of

overcoming the problem is possible which requires making use of the Arjuna

object store itself to transfer information between the individual servers that are

collectively managing an object. This approach is only open because in Arjuna

locks are simply regarded as objects by the system and are thus equally eligible to

be stored in the object store.

The implementation requires modifications to both the Lock class and the

concurrency controller class LockCC. Recall that to ensure mutual exclusion the

LockCC class (Figure 4-12) maintains a semaphore that is acquired and released

by each operation (for example setlock (Figure 4-8» before the internal state of the

concurrency controller is manipulated. Thus in addition to acquiring and

releasing the semaphore, each operation must ensure that the current

concurrency control state is retrieved from (and stored in, respectively) the object

store. To handle this, each call of the P semaphore operation is simply replaced

with a call to the new private operation loadstate. Similarly, each call of the

semaphore V operation is replaced by a call to the operation unloadstate.

All the loadstate operation is required to do is acquire the semaphore (to

maintain the property of mutual exclusion) and then cause the concurrency

controller state to be loaded from the object store (this is shown as Figure 5-9).

This operation first obtains the image of the concurrency control information for

the object from the object store and then proceeds to rebuild the internal list of

lock objects based upon the information it finds in the retrieved image.

Implementation in Arjuna

II
II Lock and load the concurrency control state. First we grab the
II semaphore to ensure exclusive access and then we build the held
II lock list by retrieving the locks from the object store.
II

void LockCC::loadstate ()

{

}

int count;
Uid- u;

II retrieve this many locks

Lock_ current;
Image- I;

II retrieving this lock
II image retrieved from store

mutex P(); I I grab semaphore
if «I = lock_store unload(get_Uid(), LockCC::type(») 1= Null)
{ II pick apart the image

}

I unpack(&count); II how many locks in store
for (int i = 0; i < count; i++)
{ II retrieve and rebuild lock

II information

}

u = new Uid();
u unpack(I);

II lock unique id

current = new Lock(u); II create empty lock
current unpack(I); II unload image into it
locks_held.insert(current); II Then add to lock list

Figure 5-9: The loadstate operation of LockCC

150

The encapsulation property of objects requires that individual locks must

rebuild themselves, since only the implementor of the Lock class knows the

internal state of a Lock object, only he has sufficient knowledge to know what

parts of that state are required to be saved in the object store such that the lock

could be recreated when necessary. Thus an empty lock is created which is then

made to perform this operation. The resultant lock is then simply added to the

internal lock list.

As might be expected, unloadstate is simply the reverse of this operation,

which causes the state of the concurrency controller for the object to be replaced in

the object store prior to then releasing the semaphore. In this case an empty

image is first created into which each lock object is made to pack itself. The

Implementation in Arjuna 151

resulting image of the concurrency controller's state is then stored in the object

store.

The packing and unpacking of objects requires that each type supplies both

a pack and an unpack operation which can be used to cause instances of the type

to pack up their state into an image, and similarly retrieve their state from a

supplied image.

This is only one possible approach, in that the entire state of the

concurrency controller for an object is built into a single image for storage in the

object store. An alternative approach would be to store each lock in the store

individually (since Lock is derived from Object this is equally possible to achieve)

and then have the concurrency control state simply be a list of those individual

objects, rather than the objects themselves. However, this solution imposes

greater overheads than the one adopted due to the creation of the extra images,

thus it has not been adopted here. As will be seen in the next chapter, a modified

Arjuna system model will remove the need for moving the state around at all.

Since locks must be able to pack themselves into an image, an appropriate

pack operation must be defined for them. Figure 5-10 illustrates just such a pack

virtual void Lock::pack (Image. I)
{

}

I-+pack(isactionlock);
I-+pack(current_status);
I -+pack(1 ockmode);
owne r-+pack(I);

II pack up type,
II held or retained
II mode
II and owner

Figure 5-10: The pack operation of Lock

operation. Packing of locks is simple in that the private variables of the class

indicating the lock type, status and mode are directly packed, followed by the

owner of the lock. Since the owner of the lock is an instance of the class U id, it is

Implementation in Arjuna 152

asked to pack itself, for the same reasons regarding encapsulation that have been

made earlier.

With these modifications it is now possible to tolerate (at a price,

particularly in performance) having multiple servers for an object at least as long

as only the simple multiple reader, single writer approach to concurrency control

is followed. However, as shall be seen in the next chapter, enhancing the level of

concurrency recreates these problems once more.

Using Shared Memory

Another possible solution to the problem of concurrency control state is to

use shared memory. One approach to using shared memory requires that all of

the locks are either originally allocated in, or moved to (it does not really matter

which), a region of memory that can be shared between all of the servers for an

object.

For this scheme to be effective all the locks for a given object must either

reside in one particular shared memory region which the concurrency controller

of the object knows how to access, or alternatively, there is a single shared

memory region per system which is organised in such a fashion that it is possible

to identify which locks belong to which concurrency controller, since in general

there will be many objects active, and hence many different concurrency

controllers, each of which will need to know only those locks set by itself.

While seemingly attractive, the use of shared memory in this fashion is

discounted for two reasons. Firstly its management and organisation is complex,

and secondly (and in this, case more importantly) the proper support facilities for

it are not currently available in the current implementation environment.

Implementation in Arjuna 153

However, by adopting a slightly different approach the use of shared

memory is still possible. The approach adopted is to provide a shared memory

manager that has basically the same interface as the object store. Using this

approach the Image of the concurrency control state must still be created, but

instead of it then being stored in the object store, it is placed in a region of shared

memory. Since access to shared memory should be faster than access to disk this

approach should provide an increased level of performance.

This approach is also useful in that since the interface to the shared memory

manager resembles the interface to the object store the changes to the

concurrency controller are minor to implement it.

Sample performance figures for both of these approaches (object store and

shared memory) are given in section 5.7.1.

5.6.2 The Problem of Server Lockout

The previous section showed how the basic problem of state management

could be overcome by moving the necessary state information in and out of the

object store (or shared memory) as it was needed.

This section describes another problem which may cause atomic actions to

be aborted unnecessarily. Consider the diagram of Figure 5-11. This diagram

illustrates the processes that will have been created if a top-level action A creates

two concurrent nested actions Band C (all of which are executing at site N 1

although they need not necessarily be so) to perform some work on its behalf, each

of which is manipulating the same object at some remote site N 2. According to

the rules stated in section 5.5.2 since the two nested actions share a common

ancestor then both will use the same remote server process (in this case S). This

is where the problem occurs.

Implementation in Arjuna 154

....
call

A ; S
, .

" :
". :

'....... :

'.

".

call

Figure 5-11: Concurrent nested action structure in Arjuna

There are two distinct cases here. In the first, the server S may already be

executing an operation on behalf of the action B. In this case it is deaf to any

incoming requests for service from the action C. Since the operation may take an

arbitrary length of time to complete the RPC mechanism may incorrectly assume

that the server is dead and give an exceptional return. The only safe course open

to the action C is then to abort itself, which is completely unnecessary. This is, of

course, a problem with the underlying RPC mechanism.

The second problem in this area relates to the action the concurrency

controller for the object undertakes when it detects conflict. At present it simply

causes the server to sleep for a short period before retrying the lock request. Once

again this will cause the server to become deaf to other clients. Consider the

following; B has set a read lock on the object and a request from C arrives that

Implementation in Arjuna 155

requires a write lock. In this case, a conflict will (correctly) be detected and Swill

be made to sleep. In doing so, S is now deaf to any call from B that might cause

the conflicting lock to be released, such that when C's request is attempted again

the conflict still exists and S will sleep once more. Eventually, the timeout on the

setlock call will decide that the write lock for C cannot be set and will give an

exceptional return, which is likely to result in C being aborted. In addition, since

the server appears deaf, the RPC mechanism might similarly cause B to be

aborted also.

It should be stressed here that this behaviour does not cause any

inconsistencies to appear in the system, rather it may simply abort actions

unnecessarily. The revised architecture in the next chapter will also tackle this

problem.

5.7 The Concurrency Controller in Arjuna

In chapter four, a basic concurrency control type was described, together

with some modifications to allow it to work in a nested atomic action

environment. Earlier parts of this chapter have illustrated the further

restrictions that Arjuna placed upon the design and has outlined some means by

which these can be accommodated. This section presents the current Arjuna

version of the concurrency control type to illustrate one particular

implementation of the concurrency controller and gives some indication as to the

performance of this implementation.

Figure 5-12 shows the interface presented by LockCC to users. To ensure

that strict two-phase locking is obeyed a user-defined type should only make use

of the setlock operation. All of the other publically available operations (such as

propagate) are intended to be called only by the atomic action implementation as

part of commit or abort processing. However, as was noted in the previous

chapter the concurrency controller is capable of setting locks (and following two-

Implementation in Arjuna

class LockCC : public Object

{
Lock_List locks_held;
Semaphore. mutex;
Object_Store. lock_store;

void loadstate ();
void unloadstate ();
void freestate ();

void dorelease (const Uid.,
boolean lockconflict (const
boolean isancestorof (const

re 1 easetype);
Lock_);
Lock.) ;

II
II
II

II
II
II

II
II
II
II

the actual list of locks set
for mutual exclusion pu rposes
repository for locks

CC state loader
and unloader
state ditcher

actual lock releaser
confl ict checker
check ancestry
information

protected: II Arjuna specific operations
virtual void pack (Image.);
virtual void unpack (Image.);

public:

};

LockCC() ;
-LockCC() ;

status setlock (Lock., int timeout = 100); II user visible setlock
status releaselock (const Uid_ lockid); II release one particular lock
status releaseall (const Uid. actionid); II release all locks for a given action
void propagate (const Uid. actionid); II propagate all locks to parent action

II functions inherited from Object

virtual TypeName type();

Figure 5-12: The Arjuna version of LockCC

156

phase locking rules) even if the program is not executing under the control of an

atomic action. In these circumstances, it is the responsibility of the programmer

to call releaselock explicitly to release such non-action locks. The programmer

should also be aware that locks set outside of an action will conflict with those set

as part of an action, since the locks will be given different owner identifiers.

Figure 5-13 shows the implementation of the setlock operation itself. This

implementation uses the default parameter mechanism of C++ to provide a

simple timeout mechanism that can be overridden at any single call as described

in section 4.8 of the previous chapter.

Implementation in Arjuna

}

II
II setlock: This is the main user visible operation. Attempts to set
II the given lock on the current object. If lock cannot be set, then
II the lock attempt is retried timeout times before giving up and
II returning an error. This gives a simple handle on deadlock.
II

status LockCC::setlock Lock. reqlock, int timeout)
{

boolean conflict TRUE;
status returnstatus = REFUSED;

II assume there will be conflict
II matching return status

if (Current_Action 1= Null) II set up lock owner

do

{

reqlock-+setowner(Current_Action-+get_Uid(). TRUE);

loadstate(); II recover entire state
if «conflict lockconflict(reqlock»)

{ 1/ there is conflict so ...

}

freestate();
timeout--;
sleep(5);

II free state
II decrement timer
1/ wait a bit

} while «conflict) && (timeout)= 0»;
if (Iconfl ict)
{ II no conflict so set lock

locks_held.insert(reqlock); 1/ add to local lock list
if (Current_Action 1= Null)
{ 1/ add lock record to action

Current_Act i on-+
add(new Lock_Record(reqlock-+getowner(). this»;

}

list

act i vate();
returnstatus GRANTED;

II trigger object load from store
II lock granted successfully

}

unloadstate(); 1/ exit critical region
return (returnstatus);

Figure 5-13: The Arjuna version of setlock

157

Similarly, Figure 5-14 illustrates the conflict operation lockconflict. This

uses the capabilities of the individual lock objects to determine whether lock

modes conflict and performs an ancestry check to determine if any found conflict

is with one of the requesting actions ancestors. Thus it implements Moss's nested

locking rules.

Implementation in Arjuna

II
II lockconflict: Here we attempt to determine if the provided lock is
II in conflict with any of the existing locks. If it is we use nested
II locking rules to allow children to lock objects already locked by
II their ancestors.

II

boolean LockCC: :lockconflict (const Lock. reqlock)

}

Lock_ heldlock;
Lock_Iterator next(locks_held);
boolean isconflict = FALSE;

while «heldlock = next(» 1= Null)
{

if (_heldlock 1= reqlock)
{

II the iterator over locks
II assume no conflict

II get next lock

II check for conflict

if (Iisancestorof(heldlock» II not quite Moss's rules

}
}

{

}

isconflict = TRUE;
break.;

return (isconflict);

Figure 5-14: The Arjuna version of lockconflict

158

The astute reader will note that this check does not follow Moss's rules

exactly. If it did then a nested action would not be allowed to lock an object that

had been locked by any of its ancestors. Moss regarded this situation as being a

deadlock between the action and the conflicting ancestor and thus disallowed it.

This interpretation was viewed as being too restrictive in a general object­

oriented environment and has thus been relaxed so that children are allowed to

lock objects that have been locked by their ancestors. However, care must

obviously be exercised. In particular, parents must not assume that their

children will not modify objects that they themselves have locked.

5.7.1 Performance

This section describes simple experiments that were carried out to

determine the performance of the concurrency controller as it has been

implemented in Arjuna. The performance figures given here are derived from an

Implementation in Arjuna 159

untuned, experimental implementation, the primary purpose of which was to

establish the feasibility of the type-inheritance approach adopted in this thesis.

All of the tests were carried out on a Sun-31l60 computer that had 4Mb of main

memory. The tests were carried out when the machine was lightly loaded and

were executed many times to obtain an average time for each test. The Arjuna

system was compiled using version 1.1 of the C++ compiler in conjunction with

the standard system C compiler.

Basic Performance

Table 5-1 gives the basic performance characteristics concerning the

creation and deletion of essential system objects, in this case Locks and

Lock_Records. Creation of such object requires dynamic acquisition of the basic

Type Creation Time Deletion Time
(microseconds) (microseconds)

Lock 347 232

Lock Record 334 .352 -
Table 5-1: BaSIC system performance

storage (via the standard system memory allocator, malloc), followed by

execution of the constructor function for the type (and all of its base types). Thus

for instances of the type Lock, the constructors for both Lock and Object are

invoked.

Performance of the Concurrency Controller

In section 5.6 of this chapter methods by which the multiple server model

currently used by Arjuna could be tolerated were described. These methods,

which required the loading and unloading of the state of the concurrency

controller for an object from the object store (or a region of shared memory),

Implementation in Arjuna 160

naturally have a perfonnance penalty. In this section a simple experiment is

described which attempts to quantify this penalty.

The test carried out was particularly simple. A new type was created

(derived from LockCC), the sole operation of which simply executed a

predetermined (as indicated by an argument to the type's constructor) number of

calls on setlock to set compatible locks (that is, READ locks) and to time how long

this took. This operation was then executed a number of times, and the average

time each call to setlock took to execute calculated. The test was executed under

the control of a single top-level action which was aborted each time.

This test was repeated with a version of LockCC that maintained all of the

lock infonnation in memory without attempting to move the locks around, a

version that used the shared memory technique, and a version which utilised the

object store, as described in section 5.6. The results of these tests are given below

as Table 5-2 and graphically as Figure 5-15. To determine the effect that

Number of In Memory U sing Shared U sing Object
Memory Store Locks (milliseconds) (milliseconds) (milliseconds)

20 4.2 36.6 41.0

40 4.9 89.8 92.5

60 6.1 125.9 162.9

80 8.1 242.4 246.7

100 9.8 343.8 342.7
Table 5-2: Perfonnance wIth action

execution of the test under the control of an atomic action was having the same

tests were repeated without using an atomic action. These results are shown as

Table 5-3 and Figure 5-16.

Implementation in Arjuna 161

360

320

280

240

200

160

120

80

o

Average setlock execution
time (milliseconds)

U sing object store

"' .;, .,
";,

,.;;/
,.-;/

""" .j"
.,. /

.' "

" "

" " "

." " ,,- /

.. " .. "
.,' /

"
" " "

,,-
,,-

,,-.-
.;

.;
J

"
" " " U sing shared memory

" "
~~ •

.. ,,­
,,-

,..

In memory

20 40 60 80 100

N umber of setlock calls

Figure 5-15: Comparison of versions of LockCC under action

These results betray some interesting characteristics. As expected, any

attempt to cater for multiple servers causes a considerable performance penalty.

However, the difference between the version of the concurrency controller using

shared memory is consistently, but not significantly, faster than the version that

Uses the object store. This suggests that the overhead of creating and dismantling

Implementation in Arjuna 162

Number of In Memory U sing Shared U sing Object
Locks (milliseconds) Memory Store

(milliseconds) (milliseconds)

20 2.6 29.2 34.4

40 3.7 58.9 64.7

60 4.8 90.3 96.9

80 6.7 124.9 132.0

100 7.7 169.8 178.1
Table 5-3: Performance wIthout actIOn

the image of the concurrency control state is the performance bottleneck and

attention in that area might prove fruitful.

The effects of the presence of an atomic action when attempting to set a lock

are also illuminating. Without the presence of an action, the concurrency

controller has approximately linear performance in that it takes, on average,

twice as long to set fourty locks as it does to set twenty locks. In the presence of an

action this linearity no longer holds, such that as the number of locks increases

then the average time taken to set a lock rapidly becomes excessive, such that by

the time a hundred locks have been set, the response time is approaching half a

second. This deterioration in performance can be attributed to the creation of the

Lock_Records (which has a fixed overhead), and more importantly, to the

addition of these records to the atomic action management structure, which

because it is behaving as a cache has to be scanned at each insertion to see if the

record already exists. So as the number of records increases this scan takes

longer to perform.

Implementation in Arjuna

360

320

280

240

200

160

120

80

40

o
20

Average setlock execution
time (milliseconds)

40

U sing object store

60

N umber of setlock calls

163

In memory

80 100

Figure 5-16: Comparison of versions of LockCC without action

5.8 A Complete Arjuna Example

In this section a more comprehensive example is described to outline how a

simple user-defined type can be implemented. The user-defined type in question

is meant to be used as part of a diary system, allowing users to note events that

will take place at various times of day. The basic relationships between the

objects used in this example is shown as figure 5-17. At its heart is the class Day

Implementation in Arjuna 164

Figure 5-17: Object relationship for class Day

(Figure 5-1S). Instances of this class represent a single day within a diary and

thus have an instance variable that records the date the instance represents.

For simplicity, events are only allowed to occur at predefined timeslots

throughout the day, and have durations that are finite multiples of the length of

each timeslot. The granularity of each timeslot is determined by a compile time

constant. Similarly, there are only a set number of timeslots per day and these

occur between some starting hour and a finishing hour (say 7am to Spm). Since

some events naturally last all day (for example, birthdays) such events are

flagged as special and are stored independently of other events. Special events

appear to start at midnight and have a duration of twenty four hours.

Events are implemented as another user-defined type and are shown as

Figure 5-19. Each event starts at some particular time, has a duration, and a

character string that describes the actual event. Events can be created in several

Implementation in Arjuna

enum eventtype { NORMAL, SPECIAL };

class Day: public LockCC

Date thisday;
int normal count;
int specialcount;
Event. events [slotsperday];
Event. specials [specialslots];

boolean slotinuse [slotsperday];

II date of this calendar page
II event counters

II the actual events for today
II the special events for
II today

II flag which timeslots are
II currently being used

void init (); II basic initialisation
boolean set (Event., eventtype = NORMAL); II set up an event
boolean purge (Event., eventtype NORMAL); II purge an event

protected: I I Arj una specif i c
virtual void pack (Image.);
virtual void unpack (Image.);

public:

};

Day ();
Day (int, int, int);
Day (Uid.):
-Day ();

boolean setevent (Event.);
boolean setspecial (Event.);
boolean purgeevent (Time.);

boolean purgespecial (Evento);
boolean freeday ();

Event .getevent(Time.);

II create entry for today
II and for specific date
II Arjuna specific

II set normal event
II set special event
II delete event that starts at
II given time
II delete special event
II indicate if no events for
II this day
II return event for given time

Figure 5-18: The class Day

165

ways: either from scratch by specifying time, duration and event; by copying an

existing event; by accepting a default duration, etc.

Event is derived from LockCC so that individual events could be locked if

required, although in this particular implementation this capability is not

utilised (because the operations of Event do not make calls on setlock). Instead,

concurrency control occurs at a higher level (in this case at the Day level) when an

event is set.

Implementation in Arjuna

class Event : public LockCC

{
Time starttime;
int duration;
char. eventstring;

void buildevent (Time_, into char_);

protected:
virtual void pack (Image.);
virtual void unpack (Image_);

public:

};

Event (Evenh);
Event (char.);
Event (Time., char_);
Event (Time., into char.);
Event (Uid.);
-Event ();

Time. getstarttime ();
int getduration () { return duration; }
char. getevent ();

boolean operator== (Event.);

II event start time
II event duration in minutes
II event description

II Arjuna specific functions

II build new from old
II event that last all day
II event at specific start time;
II event with specific time interval
II Arjuna specific

II compare two events

Figure 5-19: The class Event

166

By deriving Event from LockCC it is possible to apply the unload_image

operation provided by Object to instances of Event to yield an image capable of

being stored in the object store. This approach has been taken so that events

might be given independent existence at a later stage. A simpler alternative

would have been to allow access to the pack and unpack operations directly as

part of the public interface to instances of Event as was done with instances of

Lock earlier in this chapter.

Given these basic types then the various event type setting routines are

implemented as calls on the private operation set which is shown as Figure 5-20.

This operation simply sets a write lock on the day (by calling setlock), calls

modified (provided by Object) to record the fact that the state of the object is about

to be changed, and then updates the internal state of the day object as

appropriate.

Implementation in Arjuna 167

}

boolean Day: :set (Event. ev, eventtype slottype)

{
int slotcount, startslot;
int howlong = eV4getduration();
Time. when = eV4getstarttime();

setlock(new Lock(WRITE»;
modified();

II lock day
II indicate modified state
II now to the real work ... switch (slottype

{
case NORMAL:

if (normal count == slotsperday)
return FALSE;

slotcount = howlong I minsperslot;
II no more slots left

if «slotcount • minsperslot) != howlong)
slotcount++;

startslot = (when-+gethour() - starthour) • 2 + when-+getmin() I minsperslot;
for (int i = startslot; i < startslot + slotcount; i++)

if (slotinuse[i])
return FALSE; II not all required slots free

II - error return
while (slotcount-- > 0)

slotinuse[startslot++] TRUE;
events[normalcount++] = new Event(ev);
break;

case SPECIAL:

}

if (special count == specialslots)
return FALSE;

specials[specialcount++] = new Event(ev);
break;

return TRUE;

Figure 5-20: The implementation of set for the class Day

Each individual instance ofthe Day type can be stored in the object store. To

enable this to occur appropriate declarations are needed for the type-specific pack

and unpack functions. The pack function of Day is shown as Figure 5-21.

Naturally this requires individual events to be packable and each event instance

is required to pack itself into the supplied image. The end result of this is that the

image for a day contains its date, event counters, and all of the events for that

date. This entire image is then stored in the object store. It would also have been

possible to store events in the object store individually, instead of collecting them

all into a single image but that has not been done here.

Implementation in Arjuna

virtual void Day::pack (Image. I)

{

}

int i;

thisday.pack(I);
I -+pack(normal count);
I-+pack(specialcount) ;
for (i = 0; i < normalcount; i++)

events[i] -+un 1 oad_ image(I);
for (i = 0; i < special count; i++)

specials[i]-+unload_image(I);
for (i = 0; i < slotsperday; i++)

I -+pack(slot i nuse[i]);

/1 get date to pack itself
// pack up event counts

/1 now get each event to pack
II itself into the supplied image

Figure 5-21: The implementation of pack for the class Day

168

Finally, Figure 5-22 shows a simple test program that uses the Day and

Event types. This example reveals the ease by which the Arjuna system can be

#include "Day.h"
#include <Action/Action.h>
#include <stream.h>

main (int argc, char ··argv)
{

}

Day Today;
Day Xmas(25,12,88);
Time. start = new Time(10, 0);
Action A;

1/ diary page for today
/1 and one for christmas

II execute under control of action

A.Begin_Action(); // start action
if (Today.setevent(new Event(start. 30. "Project Meeting"»)
{

if (Today.setevent
(new Event(new Time(10.30). 15. "Another Project Meeting"»)

{
cout « "Successfully set both events!";

}
}

Xmas.setspecial(new Event("It's Christmas Day!"»;
A.Commit_Action();

Figure 5-22: A simple test for Day and Event

used. By simply deriving the class Day from LockCC, and adding simple calls to

the operation setlock, instances of the class Day have been made concurrency

controlled. Declaration of an appropriate pack operation, and a call on the

operation modified, has further made instances of Day recoverable (in conjunction

Implementation in Arjuna 169

with the use of an atomic action as illustrated in Figure 5-22) and capable of being

placed in the object store. Of course similar small changes have to be made to the

class Event but these changes have not been shown here. By these changes, a

user-defined type that was not designed with concurrency control in mind

originally has had it added simply and correctly.

5.9 Summary

In this chapter we have considered how the concurrency control type

designed in the previous chapter could be implemented in a real system, in this

particular instance Arjuna.

Arjuna is novel in treating all major system entities as objects and thus

applying the object-oriented paradigm in a uniform fashion. Unlike other object­

oriented systems such as Argus [Liskov 88], Clouds [Dasgupta et al. 85], TABS

[Spector et al. 85] and Camelot [Spector 87] the system has been implemented

completely using only facilities available in the implementation language and

the host operating system.

As has been shown, the simple system model employed in Arjuna,

particularly with regard to server management has caused some problems for the

implementation of the concurrency control type, however techniques by which

these problems can be overcome have been developed, implemented and their

performance measured. The use of these techniques was made possible because of

the uniformity by which the object-oriented paradigm has been applied in AIjuna.

While the approach adopted in overcoming the problems may not be the most

efficient (consider loading and unloading locks to and from the object store or

shared memory for example) it does nonetheless work.

Implementation in Arjuna 170

As was indicated by the performance figures in section 5.7 the performance

of the concurrency controller can be significantly enhanced if it can be ensured

that only a single server exists for an object. In the next chapter a revised system

model for Arjuna will be described that achieves this aim. In addition, the design

of some other concurrency controllers will be discussed, all of which make use of

the basic approach oftype inheritance that is advocated by this thesis.

Alternative Approaches to Concurrency 171

Chapter 6

Alternative Approaches
to Concurrency

The previous chapters have claimed that by designing and implementing

concurrency control on a per-object basis there has been a gain in flexibility. In

particular it has been stated that type-inheritance has allowed a flexibility not

possible in other object-oriented systems which have broadly the same design

goals. This chapter aims to justify this claim further.

First the chapter shows how it is possible to devise a type-specific locking

scheme for the object-oriented environment under consideration in this thesis in a

simple manner and indicates the requirements that this places upon other parts

of the system. It then considers some of the other methods of concurrency control

that have been examined in chapter two, including specifying levels of object

granularity and multi-version approaches, and indicates how these approaches

might be handled under the object-oriented environment using type inheritance.

Finally the chapter considers how an implementation of an optimistic style

of concurrency control could be achieved in the object-oriented environment of

this thesis. This strategy, based on work by Herlihy [Herlihy 86] requires a

different recovery scheme to the normal state-based mechanism usually used to

implement the failure atomicity property of atomic actions, but the discussion

shows that the type-inheritance approach is flexible enough to cope with the

requirements of an optimistic concurrency control technique providing the

required underlying recovery mechanisms can also be provided.

Alternative Approaches to Concurrency 172

6.1 Type-Specific Locking

Many other researchers have pointed out that by taking into account the

semantics of the operations available upon an type, then an increased level of

concurrency can be supported [Schwarz and Spector 82, Allchin 83, Garcia­

Molina 83, Schwarz 84, Weihl 84]. The term type-specific is, in this context,

somewhat misleading since it does not mean allowing user-defined types to follow

any arbitrary locking policy, but instead means that the standard two-phase

locking rules are still being followed but with modes other than simple read and

write.

In [Schwarz and Spector 82] type-specific lock conflict tables are defined

based upon both the operation to be performed and all of its formal parameters.

An example of such a table is shown as Figure 6-1.

Held Lock Mode

Dir Modify(a) DirLookup(a) DirDump

Requested
Dir Modify(a) n n n

Mode

Dir Modify(a) y y n

DirLookup(a) n y y

DirLookup(a) y y y

DirDump n y Y

Figure 6-1: Compatibility matrix for directories

Alternative Approaches to Concurrency 173

In this example locks may ofthree distinct types:

• DirModifyCa). This indicates that an action has inserted or deleted an entry

with a key string of a.

• DirLookupCa). This indicates that an action has attempted to observe the

entry with akeystringofa.

• DirDump. This indicates that an action has performed a dump of the entire

directory.

Because this conflict table makes use of the parameter string a, in addition

to the actual mode of the lock, it allows actions to proceed concurrently that would

not otherwise have been allowed had the operations been classed as simple reads

and writes. For example, it allows concurrent writes to the directory providing

such writes manipulate different directory entries. Locks obeying this particular

protocol are easy to implement in Clouds [Dasgupta et al. 85] as was shown in

section 4.3.1 in the previous chapter. This section shows how the basic technique

of using type inheritance provides a simple method of achieving the same effect

by building on the design of the Lock type of chapter four.

First, a new type of lock Ccall it a TypeLock) is derived from the basic Lock

type. Second, the conflict check for this new type of lock is then implemented.

These steps are illustrated by Figures 6-2 and Figure 6-3.

In order to show that this conflict operation is correct and does follow the

conflict matrix shown earlier consider the case where one action has already ,

acquired a DirModify(a) lock (that is, an instance of TypeLock has been created

that has a as the value of the instance variable Id), and a second action is also

attempting to set a DirModify(a) lock.

Alternative Approaches to Concurrency

~ass TypeLock: public Lock

SomeType Id;

virtual boolean operatorl= (Lock.);

II Something to identify the lock
II e.g. the string a or a

public:

}

TypeLock (SomeType, modetype);
-TypeLock ();

SomeType GetId (); II operation to access extra
II information

Figure 6-2: The TypeLock class

boolean TypeLock::operatorl= (Lock. otherlock);
{

}

if (otherlock-+getowner() 1= owner) II if different owners
switch (lockmode)
{

}

case DirLookup: II holding DirLookup
if «otherlock-+getlockmode() == DirModify) &&

(Id == «TypeLock.)otherlock-+getld())))
return TRUE;

break;
case DirModify: II holding DirModify

if (otherlock-+getlockmode() == DirDump)
return TRUE;

if (Id == «TypeLock.)otherlock-+getId()))
return TRUE;

break;
case DirDump:

if (otherlock-+getlockmode()
return TRUE;

break;

DirModify)

return FALSE;

Figure 6-3: The TypeLock Conflict Algorithm

In this case, the comparison will proceed as follows:

174

• The two instances of TypeLock will belong to different atomic actions,

therefore the full conflict check will be performed.

Alternative Approaches to Concurrency 175

• Since the existing lock has a mode of DirModify , the conflict operation first

checks to see if the new lock has a mode of DirDump (this corresponds to the

entry in the bottom row of the first column in Figure 6-1).

• Having passed this first check the Id fields of the two locks are compared.

Since they are different (one is a, the other is a) then the two locks are not

considered to conflict and the result is thus False. This is precisely the

behaviour dictated by the conflict matrix of Figure 6-1.

Similar arguments can be followed for all of the other entries in this

particular conflict matrix. Thus the new type-specific lock implemented by the

type TypeLock does indeed obey the locking rules of Figure 6-1 correctly.

One characteristic of this particular implementation is that the conflict

check still appears to take a Lock object pointer as its parameter despite the fact

that when it is actually called the parameter will actually be a pointer to a

TypeLock. This is a quirk of C++ in that once defined, a virtual function

declaration cannot change. Thus having been defined to take Lock object pointers

in the base class Lock, the definition must remain the same in the TypeLock class

definition. In reality this causes no problems since one type of lock is derived

from the other and thus by the rules of object-oriented programming a pointer to a

TypeLock may be passed to a routine expecting a pointer to a Lock. Furthermore,

the invoked operation assumes in advance that its parameter type is really a

pointer to a TypeLock, not a pointer to a Lock, and acts accordingly. Making this

assumption may be dangerous if the programmer accidentally mixes the use of

Locks and TypeLocks. This can be overcome by the inclusion of an additional

check in the conflict operator for TypeLock that the parameter is of the required

type. The result of the comparison in this situation is programmer defined.

Alternative Approaches to Concurrency 176

In addition this particular implementation bears out the point that was

made in the previous chapter with regards to lock modes. Recall that in that

chapter the justification for calling an activate routine after setting every lock

was because it was not possible to guarantee the ability to detect when write-type

locks were being set. This example illustrates precisely this point. Here the lock

modes are not simply read and write, and although they can easily be classified as

examine or modify types as was suggested, this classification can only be done

with additional information from the user.

This approach is flexible in that the additional information regarding the

extra lock modes and the extra semantic information (in this case an identifying

value) are all entirely user specified. Furthermore, this extra information is not

limited to a single piece of information; rather it can be as many pieces as deemed

required. For example, the compatibility function might be constructed such that

locks are compatible if both the identifier in conjunction with some other value

obey some condition (or set of conditions). This is in contrast with the Clouds

approach, where locks can only be parameterised with one additional value. In

fact the lock type developed here (by appropriate modification of the conflict

operation) will perform precisely like any Clouds lock.

6.1.1 Some Problems

From the point of view of the concurrency control type designed in chapter

four the scheme described in the previous section is perfectly acceptable and

would appear to produce serialisable executions of the individual actions.

However, a blind implementation like this would fail in the context ofthe Arjuna

[Shrivastava et aZ. 88] system due to interactions between the concurrency

controller for an object and other parts of the system. The following sub-sections

describe some ofthese problems.

Alternative Approaches to Concurrency 177

Multiple Servers

Depending upon the definition of the semantics of the type then the

concurrency controller for that type might allow multiple writes on instances of

the type providing that such writes manipulated different portions of the state of

the object in question. This is acceptable in Arjuna providing that there is only a

single server for the object. However, given that in the current implementation

there might be several servers for an object in existence, then the old problem of

lost updates rears its head once again.

Consider such an object being managed by two distinct servers. If different

parts of the object are being modified, both servers will be granted write access to

the object (since the conflict rules allow for this possibility) and will proceed to

modify it. The problem now arises as to what happens when the two servers

attempt to commit their changes. Since the existing Arjuna system transfers

entire objects to the object store the effect of one of the writes will be lost.

What is required is some way by which only the modified state is entered

into the object store. This could possibly be handled by defining appropriate pack

and unpack routines for the object so that only the modified portions are

transferred, but this would still probably require a method of retrieving the en tire

object state since it is bound to be needed somewhere. Using this technique the

object store would no longer contain complete versions of each object, but some

base version together with a set of incremental changes to that base version, the

result of applying which would yield the current object state. Using such a

technique also requires changes to the basic concurrency controller over and

above simply defining a new lock type. This is because the basic concurrency

controller assumes that a simple call to activate will obtain the entire latest state

of the object. By using incremental transfer this is unlikely to be the case.

Alternative Approaches to Concurrency 178

Note that this problem only arises because of the possibility of the existence

of multiple servers. If only a single server existed, then the entire state of the

object is being maintained by that one server and the entire object can be

committed as normal. Furthermore the basic concurrency controller can remain

unaffected.

As a side issue it should also be can noted that using only a single server

also alleviates the problem of concurrency control state as described in section 5.6

in the previous chapter, in that it would no longer be necessary to have to resort to

loading and unloading the state of an object's concurrency controller to and from

the object store (or shared memory) upon every interaction with the concurrency

controller.

Recovery Management

Although not previously stated explicitly Arjuna currently uses a state­

based recovery scheme. That is, whenever an object is first modified within the

scope of an atomic action, a copy of the current state of the object is taken so that

should the action abort, then this state can be restored. Thus the server for the

object maintains the current state and modifications to the object thus take place

directly on this state.

This has an effect on the level of concurrency permitted by an object. For

example, consider some object that is meant to represent a counter, that is, it can

have (at least) increment and decrement operations applied to it. Now there is no

reason why increment and decrement operations should not be allowed to proceed

in parallel with each other (with the proviso that suitable short-term mutual

exclusion is also employed to prevent corruption), since the order in which two

increments, or an increment and a decrement are executed should be irrelevant.

Thus a type-specific lock that had a conflict operation defined like that of Figure

6-4 might be constructed. In this function, increments and decrements only

Alternative Approaches to Concurrency

boolean IncLock: :operatorl= (Lock. otherlock);

{

}

if (otherlock-+getowner() 1= owner)

switch (lockmode)

{

}

case Increment:

if (otherl ock-+getl ockmode() == Read)

return TRUE;
break;

case Decrement:

if (otherlock-+getlockmode() == Read)

return TRUE;

break;

case Read:

if (otherlock-+getlockmode() l= Read)

return TRUE;

break;

return FALSE;

Figure 6-4: The IncLock conflict algorithm

conflict with reads. thus the two should be allowed to proceed in parallel.

179

Unfortunately this has a disastrous interaction with the recovery system (it

will be assumed for now that only a single server is managing the object).

Consider some object X that initially has the value 5. If two concurrent actions A

and B both attempt increment operations it would be expected that providing both

actions commit the result would be that X has the value 7. Which is indeed the

result with only a single server.

However. consider the following sequence of events. Action A sets an

increment lock on X and changes the value to 6. in doing so it records the old value

as 5. Similarly. action B sets an increment lock and sets the value of X to 7.

recording the old value of 6 (since there is a single server and the concurrency

control has allowed the two actions simultaneous access to the object). B then

commits producing 7 as the final value for X. while A aborts. and thus restores

the prior value of X to what it believes it should be. in this case 5!

Alternative Approaches to Concurrency 180

The problem here is caused by the fact that although the concurrency

control method commutes, the recovery method does not. One possible way to

avoid this is to use an alternative recovery method based on intentions-lists.

Using this approach changes to an object are not actually applied until the action

that made them commits. Thus the individual increments for A andB would only

be applied when those actions committed. Naturally each action needs to be able

to see the effects it has performed, leading to the notion of a view of an object.

Each action's view is simply the effects of any changes it has made applied to the

last committed version of the object. This type of recovery approach is the basis of

Argus [Liskov 88].

Alternatively, rather than simply re-instate some past object state, the

recovery system invoke some specific compensating operation. Obviously, such

compensating operations are highly dependent upon the semantics of the

operations that have been performed by an action.

It is interesting to note that Allchin [Allchin 83] also has this problem since

he uses a state-based recovery scheme as well. However, he overcomes it in an

interesting fashion by allowing objects to be notified of when actions start,

commit and abort, and thus objects are able to override the default recovery

mechanism and indicate what result should be returned whenever they detect

these events.

It must be stressed here that these problems are caused by the interaction of

the concurrency controller of an object and the underlying recovery system and

system execution model, not by any inherent problems with the concurrency

control design itself. Fortunately, the recovery system of Arjuna is flexible

enough to allow the approaches that have been suggested here to be followed,

given sufficient implementation effort by the user.

Alternative Approaches to Concurrency 181

Despite these problems a simple directory type obeying the conflict rules of

Figure 6-1 was implemented using the type-specific lock type shown as Figures 6-

2 and 6-3. This implementation, when executed in a carefully constrained

environment (that is, only a single server) did appear to function correctly,

further supporting the basic ideas expounded in this thesis.

6.2 Multiple Levels of Granularity

As was pointed out in chapter two, increased concurrency can also be

obtained by changing the granularity at which the concurrency control is applied.

Thus, for example, if the simple file example introduced in chapter four which

applied locks at the file level is reconsidered, there could obviously be an increase

in the level of concurrency iflocks were applied at (say) the level of a page.

Figure 6-5 shows how just such a file type could be implemented using the

class File: public LockCC
{

int page_count;
Page .. pages;
int current_posn;

virtual void pack (Image_);
virtual void unpack (Image_);

public:

};

File (char_);
-File ();

int read (char_, int);
int write (char_, int);
int lseek (int);

class Page: public LockCC
{

char buffer[PAGESIZE];
int size;

virtual void pack (Image_);
virtual void unpack (Image_);

public:

};

Page (Uid-);
Page ();
-Page ();

int read_page (char_, int, int);
int write_page (char_, int, int);

Figure 6-5: The File and Page classes

type-inheritance technique. Firstly, the two basic classes involved; File and Page

are described. The class Page only provides two operations, read-page and

write-page, which use the basic (read and write) locking mechanism to set

appropriate page level locks. The class File uses instances of the Page class to

Alternative Approaches to Concurrency 182

represent individual pages within a file. Both the File object and all of its pages

are held in the object store as separate objects.

When a File object is accessed, only it is activated; the actual pages are

activated (and locked) as and when they are really needed. It will be assumed

that the state of the file as stored in the object store essentially consists of a list of

the unique identifiers of the enclosed pages. Thus in order to access any

particular page the code for the read or write operations of File only has to check

to see if the appropriate page has been activated, and activate it if it has not.

Once a page has been activated it can only be manipulated through the

readJage and write-page operations, each of which sets an appropriate page

level lock (either read or write) before proceeding.

Using this approach, then providing that the size of the file (that is the

number of pages it consists of) does not change, then it is not necessary to set any

type of locks on the File object other than simple read locks. If the size does

change then a write lock must be set on the file to prevent two actions both

attempting to extend the file for example.

Once again this example was implemented under the current Arjuna

system, and since it follows the traditional multiple reader, single writer policy

for both File and Page objects functions correctly even in the presence of multiple

servers. This implementation is, of course, quite susceptible to deadlock

particularly if independent actions attempt to modify pages of the file that the

other currently holds a read lock on.

It would of course have been possible to follow the description of multi-, ,

granularity locking described in chapter two more closely and set intention locks

at the file level in a very simple and obvious fashion by defining a new lock type

[Lock, derived of course from Lock, and defining an appropriate conflict operation

Alternative Approaches to Concurrency 183

for it. However, since it is not strictly necessary in this case that is left as an

exercise for the reader.

It could be argued that the problems described in the previous section

regarding modifying different parts of an object's state are caused by the fact that

the object has been incorrectly designed. For example, rather than treat the

directory as a monolithic whole, it should have been structured differently as a

container object as has been done here for the File object.

Using this approach the directory object simply contains references to other

objects that are actually contained within it (call them direntry objects), with

each such object being totally independent - in particular responsible for its own

concurrency control and recovery.

Such a directory object could be designed and implemented in the Arjuna

system that obeys these rules; unfortunately it does not circumvent the problem

of the previous section. Consider an insert of some directory entry, ifit does not

already exist then it is inserted. However, this insertion causes creation of a new

direntry object, the unique identifier of which must be recorded as part of the

containing directory. Hence the state of the directory object itself is being

changed and the directory must therefore be locked.

Ideally, two inserts should be able to proceed concurrently if they are

inserting different entries (again assuming short-term mutual exclusion is

employed while critical data structures are updated), but since each insert

modifies the directory state the original problem has reappeared. It is possible to

define a type-specific lock function that allows the concurrent writes, but if there

is more than one server for the object the lost update problem is back once again.

Alternative Approaches to Concurrency 184

This observation leads to the unhappy conclusion that although the

concurrency control scheme using type inheritance is extremely flexible, its

implementation in AIjuna is compromised by the underlying system model, in

particular the fact that an object may be managed by more than one server at any

instance in time.

6.3 A Revised Arjuna System Model

Throughout this chapter, and as part of chapter five, whenever an attempt is

made to increase the level of concurrency supported by an object by allowing

multiple writes upon it the AIjuna system model conspired to thwart the attempt.

This was due to the fact that multiple servers could exist for an object. In this

section, this model is revised and it is explained how the problems outlined

previously are thus solved.

The fundamental change that is made is to insist that any object may only

have a single server associated with it whenever it is active. In actual fact this is

not really a major change, since AIjuna currently only creates new servers when

non-related actions attempt to access the object. All this change requires is that if

a server already exists for an object, then it serves all clients, not some

constrained subset of them.

However, this is not the whole story. One of the original design decisions of

Rajdoot, the remote procedure call system upon which AIjuna is based, was that

there would be multiple servers in order to ensure that a server could not become

deaf to a call. By insisting that there is only a single server per object this

problem has been re-introduced, since while the server is obeying one call, it is

not listening for others. In addition, in order to be efficient, Rajdoot uses

datagrams not virtual circuits for its clienUserver communication. This has the

effect that if the server is busy, the call is simply lost. Of course, Rajdoot performs

a few retries on behalf of the client, but it is still possible for the client to

Alternative Approaches to Concurrency 185

incorrectly conclude that the server is dead, when it was in actual fact simply

busy every time the client made a call. As was pointed out in section 5.6.2 of the

previous chapter, this is unlikely to cause inconsistencies in the system, but is

likely to cause actions to be aborted unnecessarily.

In order to overcome this problem parallelism must be introduced into the

actual server itself; that is the server must become multi-threaded. A multi­

threaded server behaves in a fashion similar to an Argus guardian. That is,

whenever a new remote procedure call is received, a new lightweight process (or

thread) is allocated to deal with the request, and the server then listens again for

further requests. Obviously by following such a strategy, the server will never

appear busy so long as it is capable of creating a new thread for each incoming

call.

All threads created by a server share the same address space, thus all

threads will see the same object state (that is, the current state), and furthermore,

all of the concurrency control information will be available without resorting to

the trick of loading and unloading locks to and from the object store. Naturally,

since the threads appear to run in parallel with each other interference between

them is possible, however, standard mutual exclusion techniques such as the use

of semaphores provide an adequate solution to this problem.

Although UNIX (upon which Arjuna is currently hosted) does not currently

support threads directly, they can be simulated. In addition both Amoeba

[Tanenbaum and Mullender 81] and Mach [Jones and Rashid 86] directly support

threads, with the latter system intended to be BSD4.3 UNIX compatible. Thus the

adoption of this approach should be relatively simple.

Alternative Approaches to Concurrency 186

Multi-threading also cures the problem outlined in the previous chapter

with regards to the concurrency controller for an object sleeping when conflict is

detected, since now only a single thread will be affected, not the entire server, as

was the case.

6.4 Multi-Version Approaches

So far this chapter has managed to adapt the basic concurrency controller of

chapter four to suit a variety of cases without making changes to anything other

than the basic Lock type itself (by deriving new types of lock from it) and defining

appropriate conflict relations upon such locks. However, in order to accommodate

multiple versions of objects, some changes to the underlying concurrency control

type itself must be made. This is not particularly surprising since the

concurrency controller was designed to support the two-phase locking approach to

concurrency control. In order to support the multi-version concurrency control

technique a different basic concurrency controller is required.

However, before proceeding it is necessary to ask the question: what does

multi-version concurrency control mean in a nested action environment? Reed

[Reed 78, Reed 83] has already tackled this question for timestamp-based

approaches where object versions have distinct lifetimes and the timestamps of

nested actions are designed to be within the timestamps of their parent. Lock­

based concurrency control with versions is, however, a different matter. Recall

that in chapter two a non-nested, two version concurrency controller based upon

the use of certify locks was described. The question is, can this technique be

extended to a nested en vironmen t?

The problem is really one of version visibility. In the non-nested case only

one new version existed and was only visible to its creator. Other actions were

only allowed to read the previous version; if they wished to create a new version

they had to wait until there was only one single committed version. Stearns and

Alternative Approaches to Concurrency 187

Rosenkrantz [Stearns and Rosenkrantz 81] describe this as concurrency control

using before values and described it in the context of distributed databases. What

is required is some way of generalising this to the more general nested atomic

action environment.

One possibility is to regard nested action commitment as not producing a

new globally visible version of an object, since until the top-level action commits,

the new version is still only tentative. Thus the full two version protocol need

only be adopted at the commitment of the top-level action. In other words certify

locks can only be set by top-level actions. Using this approach means that all

actions, whether nested or not, that do not belong in the universe of the writer of

an object, can only set read locks and thus are permitted to read the previous

version of the object.

Consider the action hierarchy of Figure 6-6. If any of the actions A, B, or C

Figure 6-6: An example action hierarchy

acquires a write lock on some object X, then the action D and E will only be

pennitted to acquire read locks on the previous version of X until the top-level

action A commits.

Alternative Approaches to Concurrency 188

The problem then arises as to the visibility of this new version as far as the

action tree rooted at A is concerned. Assume that action B has acquired a write

lock on the object and is producing a new version. In this case, action C cannot be

granted a write lock (since it conflicts with that currently held by B), but should it

be granted a read lock and gain access to the previous version of the object? If the

full protocol was adopted at all levels then the answer would have to be yes.

However, care must be taken here in that the protocol cannot simply be followed

blindly since the certification process blocks until all reads on the previous

version terminated. In a nested environment this does not make sense for nested

action commits since a real certified version of the object is not being produced at

this point.

Essentially what is required is another type of lock (call it a nested certify

lock) that has the property that it does not conflict with read locks held by

external actions (for example D and E in Figure 6-6) so that the certification

process does not have to wait for such actions, but it must conflict with internal

actions (for example C), otherwise consistency might be compromised.

To show this, consider what could happen if B was actively creating a new

version of some object X, and C was allowed access to the prior version of X. When

B attempts to commit it sets certify locks on X, which if they did not conflict with

C's read lock would succeed. B would then commit passing its locks and the new

object version to A. The problem now is what to do about C: ifit simply commits

all is well, but ifit attempts to convert its lock on X to a write lock (which it would

be able to do) then the effect is as ifboth Band C had read the old version of X and

both written new versions of X - a clearly unserialisable execution.

This situation could be detected by noting that the version read by a child is

no longer the same as that known to its parent, but this complicates the

implementation greatly with probably no additional advantages.

Alternative Approaches to Concurrency 189

In addition the Arjuna system environment poses certain problems with

version management. In particular since the object will be maintained by a

single server, that server must always know which version of the object it is

supposed to be using at each operation invocation. For example, say B was in the

process of creating a new version when C attempted to set a read lock. By the

standard two version rules this should be allowed with C gaining access to the

previous version. However, since one server is involved (the actions are related)

on every operation the server must be able to determine which version is current

as far as the invoking action is concerned in order to return the correct response.

Although once again not strictly a concurrency control problem (it is actually a

problem of version management) it is easier to take a simpler approach that

avoids these problems.

Thus the normal nested locking rules are obeyed as far as nested actions are

concerned and the multi-version rules only apply at the top-level. This means

that internal nested actions consistently see the latest version of the object, while

external actions see the previous version.

It is interesting to note that the current Arjuna environment of multiple

servers when actions are not related fits this scenario perfectly. Only one action

tree can modify the object (and since the actions are related there is a single

server handling this correctly), while other servers can freely be allowed to

execute (in read mode) and are provided with the old state of the object. Given the

disenchantment about multiple servers earlier this is an amusing outcome.

6.5 Optimistic Approaches

In many respects optimistic concurrency control poses similar problems to

multi-version concurrency control in a nested environment. Recall that

optimistic protocols are based upon the idea that it is easier to apologise after the

event than to ask permission before it. Thus in an optimistic environment actions

Alternative Approaches to Concurrency 190

execute completely without synchronisation and then immediately prior to

commitment attempt to determine if any conflict has occurred due to the

concurrent execution.

This process, called validation, is generally assumed to be cheaper than

approaches based upon preventing conflict providing that validation succeeds

sufficiently often. The serial validation scheme described in chapter two had the

disadvantage that it was designed for a centralised database and required the

concurrency controller to gather information about the read and write sets of

actions and maintain this information for an arbitrary period of time, as such it is

unsuitable for the object oriented environment considered in the thesis.

Recently, however, Herlihy [Herlihy 86] has proposed a pair of optimistic

protocols suitable for object-oriented systems. In his protocols each object has

associated with it a serial-dependency relation that allows conflicts between pairs

of events to be ascertained at validation time. Each event is a pair consisting of

an operation invocation and its corresponding response. This approach is

comparable with pessimistic lock-based schemes in that while lock-based schemes

use conflict to introduce delays, his optimistic protocols use conflict to determine

ifvalidation can be successfully completed.

Since the validation process is performed when an action attempts to

commit it can validate more concurrent executions than might have been possible

using a pessimistic approach because of the additional information available. In

particular, under locking, a lock is acquired before an operation is performed,

thus conflict is often defined in terms of operation invocations only. In contrast

optimistic schemes require validation after the results of an operation are known,

so conflicts can be defined between complete events.

Alternative Approaches to Concurrency 191

Herlihy's protocols have obviously been influenced by the work of Weihl

[Weihl 84] and Argus and rely on the underlying recovery system being based

upon intentions-lists. This is because the intentions lists are applied in the order

in which actions commit and also because the events specified can have semantics

similar to those outlined for the counter object described in the previous section,

for which it was shown that state-based recovery was inappropriate.

Herlihy defines two distinct protocols, called forward and backward

validation. Each derives its name from the method by which it selects the actions

it might be in conflict with.

Forward validation ensures that when an action commits it will not

invalidate any other currently active action. Backward validation ensures that

when an action is validated its execution has not been invalidated by the

commitment of other actions that started after it did. This latter case is

essentially the same as that defined by Kung and Robinson [Kung and Robinson

81].

One advantage of these protocols is that they may be used on a per object

basis and freely mixed with certain other pessimistic protocols such as two-phase

locking.

6.5.1 Optimism and Nesting

The same question that could be asked about multi-version protocols can

also be asked about optimistic protocols, that is, how do they apply to a nested

atomic action environment? Once again there are problems with respect to

version visibility and also with validation. For example, consider the action

hierarchy of Figure 6-6 once again. If actions A and D were using an optimistic

protocol to update some object X then provided that both committed, everything

would be correct. Similarly if either aborted there would be no problems.

Alternative Approaches to Concurrency 192

However, consider now what happens if Band D are optimistically updating

X. In this case when B attempts (and succeeds at) its validation the version of X it

produced cannot be made visible as would normally be the case, since A might

abort and thus undo the effects of Bon X. Instead what must happen is that A

must inherit all the changes made by B and the entire validation process must be

repeated when A finally commits.

The implications of this are that the validation process in effect gets

repeated several times (probably taking longer each time) depending upon the

depth of nesting employed. It might be argued that this is wasteful and it would

be better to only perform the validation on top-level actions. The problem with

this approach is that such validation might fail due to a conflict that occurred in

one of the children of the top-level actions that had executed a long time ago, and

which would have been aborted then had the validation been performed at that

time. The potential advantage of detecting the conflict early thus justifies the

repeated validation.

As an example, assume that B was not properly validated at the time it

committed, yet was in conflict with D. In this case A can never be validated if D

commits before it, and if the action tree rooted on C takes a long time to complete

(minutes or hours, as opposed to seconds) then the amount of wasted work could

be enormous.

6.5.2 Implementing an Optimistic Policy

This section will outline how one of Herlihy's optimistic protocols could be

implemented in the Arjuna environment. In order to do this several assumptions

must be made, in particular it will be assumed that the underlying recovery

mechanism is based upon intentions lists and that there is some kind of view

Alternative Approaches to Concurrency 193

mechanism that allows an object to determine its current state based upon

applying its updates to the last committed state.

Backward Validation

The protocol described is that of backward validation. That is an attempt is

made to determine if execution of the validating action has been compromised by

the commitment of other actions that have committed since the validating action

started. In order to handle this, each object keeps a note of Last(e), the most

recent commit timestamp for an action that executed the event e. In addition, for

each active action A, each object maintains First(A,e), the logical time when the

action A first executed the event e.

Objects can only validate an action A if Last(e? < First(A,e) for each event e'

that conflicts with each event e executed by A. This condition ensures that

recently committed actions have not invalidated the execution of the validating

action. In a sense this is equivalent to comparing the read and write sets of an

action in the basic serial validation approach.

As with the implementation of two-phase locking events are modeled as

instances of the class Event (Figure 6-7).

class Event
{

public:

}

Event (EventType);
-Event ();

EventType GetType ();
virtual EventList- ConflictingEvents (Event.);

Figure 6-7: The basic Event class

Alternative Approaches to Concurrency 194

Obviously this class is highly type specific (far more so than the basic Lock class)

and real event types are expected to be derived from this basic type; thus little is

said about its structure other than to describe the purpose of the operations

GetType and ConflictingEvents.

ConflictingEvents will be used by the validation routine of the concurrency

controller to generate a list of events that conflict with each event type that has

been executed by the validating action. Once such a list has been generated then

the concurrency controller can determine whether any of those events has been

executed in a conflicting fashion by examination of the First and Last timestamps

for the action and the event as described above. This routine must be virtual so

that as new event classes are defined using the basic Event class, they can

implement this generation appropriately.

GetType will be used by the concurrency controller to maintain its lists of

events in a particular order. This should become clearer after the description of

the actual concurrency controller class itself.

Similarly the actual concurrency controller is the class OptCC (Figure 6-8),

class OptCC
{

public:

}

OptCC (int);
-OptCC ();

void AddEvent (Event.);
boolean validate (Actionld);
void DoCommit (Actionld);
void DoAbort (Actionld);

Figure 6-8: The Basic OptCC Class

Alternative Approaches to Concurrency 195

from which the actual user-defined objects that use the optimistic approach are

ultimately derived.

This class provides several basic operations:

• AddEvent. This operation is called by the user-defined type once some event

has been performed to inform the concurrency controller for the type of the

occurrence of the event. If the action performing the event is not currently

known to the concurrency controller then it is noted. The event type is then

determined and used to update the First information for the action if

appropriate.

• Validate. This operation is automatically invoked when validation occurs.

Its operation will be described more thoroughly shortly.

• DoCommit and DoA bort. Validate is called during the first phase of commi t

or as part of nested commit and only determines whether the action is valid

at the object. In order that certain information about the object and the

actions using it are also kept up to date (most notably the Last timestamps

for events) these two operations perform additional housekeeping

The concurrency controller for the object maintains a set of lists (one per

action) of the events executed by an action together with an indication of the time

the action first performed that event. Note that each event need only be

maintained once. Thus if an action performs the same event more than once, only

the first occurrence is noted. The advantage of maintaining the lists on a per

action basis as opposed to on a single list or on an event basis is that it becomes

simple to traverse this list at validation time since then what is really required is

an indication of what events a given action has participated in.

Alternative Approaches to Concurrency 196

Since there is a need to ensure that the validation routine ofthe concurrency

controller is called whenever an action commits, the same basic strategy can be

adopted as for two-phase locking. That is (in this case) an Optimistic_Record is

created that is logged with the atomic action system. This record identifies the

action and the object so that when commit processing occurs the validation

routine will be called. Since there is only the need to log the object's use by an

action once, an Optimistic_Record is only created and logged if this is the first

event executed by the action on the object.

Validation of an action at an object requires that each of the operations

performed by the action is examined and a determination made as to whether any

conflict has occurred by examining the First and Last timestamps. An outline of

the process is shown as Figure 6-9. Although not strictly true C++ this outline

boolean OptCC::Validate(ActionId Id)
{

}

EventList. ConfEvents;
Event_Iterator next(Elist[Id]);
Event. El, E2;

wh i 1 e « E 1 = n ext (» 1 = Null)
{

}

ConfEvents = ConflictingEvents(El);
Event_Iterator nextconf(ConfEvents);
while «E2 = nextconf(» 1= Null)
{

}

if (Last[E2] < First[El])
return FALSE;

return TRUE;

II iterate over events
II executed by the action

II iterate over conflicting
1/ events

Figure 6-9: The validation algorithm

describes the process of validation without resorting to detailed data structure

manipulation.

Alternative Approaches to Concurrency 197

The key here is that for each event executed by the action a list of conflicting

events is generated and then each event in this list is checked to determine if

conflict has occurred. If it has validation fails and the routine returns with a

failure indication.

If the action is a top-level one and finally commits then the routine

DoCommit is called which updates the Last timestamp for each event executed by

the action and then removes the information about the action from the

concurrency con troller.

6.6 Combining Approaches

One advantage of adopting object-based concurrency is that individual

objects should be able to choose their own method of concurrency control from the

wide spectrum of available methods. Unfortunately the choice cannot be as free

as it appears since different methods serialise actions in different orders, thus it is

possible to end up with a situation in which it appears as though action A

executed before action B at one object, while action B executed before action A at

another object.

This is clearly an undesirable occurrence and needs to be avoided. Weihl

[Weihl84] has developed techniques for classifying when different techniques are

compatible. He calls the various classes of protocols static atomicity, dynamic

atomicity, and hybrid atomicity depending upon how they affect serialisability.

Static atomicity characterises protocols such as multi-version

timestamping, that is, those in which the serialisable order is determined

statically. Dynamic atomicity characterises locking protocols i.e. those protocols

that determine serialisability dynamically, while hybrid atomicity describes

those protocols that combine characteristics of the other two. The optimistic

protocols described in the previous section are hybrid atomic.

Alternatwe Approacnes to Concurrency 198

6.7 Summary

This chapter has considered how the basic philosophy of using type

inheritance stood up to the task of implementing different approaches to

concurrency control.

It has shown that the approach is particularly suitable for implementing so­

called type-specific locking as advocated by several other researchers, and that

such types of lock can be handled easily and flexibly by the type-inheritance

technique. In particular the style of locking supported by Clouds proved very

simple to emulate and implement by deriving a new type oflock (called TypeLock)

from the basic Lock type of chapter four.

However, as has been seen, once such approaches are adopted the

underlying system and execution model begin to play their part, such that

seemingly correct implementations of conflict checks may still produce problems,

most notably in the form of lost updates to objects. As a way of overcoming this

problem in the context of the Arjuna system, a revised system model for Arjuna

was introduced based upon the use of multi-threaded servers which removed the

problems caused by the system model, but left those currently caused by the

existing implementation of recovery.

In considering other forms of concurrency control, these problems have been

highlighted even further, to the extent that the optimistic approach described in

section 6.5 requires a completely different form of recovery mechanism to the one

assumed in the previous chapter.

In addition, what it means to handle some of the available concurrency

control methods in a nested atomic action environment as opposed to the single

level environment in which they were originally conceived has been considered.

Alternative Approaches to Concurrency 199

Such considerations have led to the idea that following the concurrency control

protocol at all levels of the action hierarchy is not often a good idea.

It can be concluded, therefore, that standard two-phase locking using simple

read and write locks imposes minimal requirements upon the rest of the system

architecture. However, once different approaches to concurrency control are

considered, for whatever reason, then the underlying recovery system and

execution model begin to play an important part and must be equally flexible.

Providing that this flexibility is available, implementing concurrency control via

type inheritance appears to be a promising technique.

Conclusions 200

Chapter 7

Conclusions

This final chapter summarises the material that has been presented in this

thesis and indicates some of the possible areas for future research.

7.1 Thesis Summary

The first chapter of this thesis postulated that building reliable distributed

systems was difficult but necessary. As the demand for computing power

increases, so to does the aspirations and expectations of those using computers as

an essential part of their business.

Although the actual hardware and knowledge of how to construct true

distributed systems is currently available, programming such systems is a

complex task that is currently not very well understood. In particular application

programs that execute on a distributed system can fail in very different (and often

unexpected) ways to their centralised counterparts. In addition to the problems of

failure, concurrent execution of programs, a necessity for high performance,

introduces its own problems.

Programming can be difficult enough without having to worry about the

problems caused by failure and concurrency, and so this thesis has turned to a

particular methodology of program design as a means of handling the general

issues of complexity, together with the use of a computing abstraction known as

the atomic action to cope with problems introduced by the possibilities of failure

and concurrency .

Conclusions 201

The methodology used, the so-called object-oriented paradigm, views

programs as consisting of a collection of objects and a sequence of operations upon

those objects. By taking advantage of the property of encapsulation it is possible

to view any object simply as a black box. That is, the internal details of the

structure of the object are unimportant, only its abstract behaviour is important.

By structuring the system as a collection of objects with well-defined behaviour

the overall complexity of the system is reduced to manageable proportions.

This thesis has adopted the attitude that this behaviour should also

encompass an object's behaviour in the face of failure and concurrency. Thus

individual objects should also be responsible for the provision of mechanisms that

can cope with failure and concurrent access.

It is inevitable that if left to themselves then the programmers of each

object type would invariably implement these recovery and concurrency control

mechanisms in different, probably incompatible, and perhaps even incorrect

ways. So, in order to introduce some order, atomic actions have been used as a

means of co-ordinating the behaviour of objects when failure or concurrent access

occurs.

Atomic actions have the important properties of: failure atomicity, that is

the atomic action executes successfully to completion or appears not to have

executed at all; concurrency atomicity, whereby the concurrent manipulation of

objects by different actions is so constrained that it appears as though the actions

had executed in some serial order; and permanence of effect, whereby once an

action is complete the system will not arbitrarily lose its effects.

In order to ease the implementation of the properties of atomic actions on

particular property possessed by object-oriented languages, that of type­

inheritance has been utilised. Using this property user-defined types can inherit

a set of basic capabilities that make the management of concurrency and failure

Conclusions 202

far simpler, and equally important, less prone to error than might otherwise be

the case.

This thesis has been particularly concerned with the concurrency atomicity

property of atomic actions and it has considered how this property might best be

provided using the type inheritance property. As was noted in chapter two, there

are a great many concurrency control algorithms in existence, and more are

developed each month. Yet despite this, the applicability of these algorithms is

limited by the environment assumed when they were developed.

The majority of such algorithms are designed for a centralised database

environment. In such environments all data access is typically in terms of simple

reads or writes of data and since the database is assumed to be centralised there is

usually only a single, system-wide concurrency controller. This structure ensures

that the concurrency controller and the atomic action (transaction) manager can

easily collect sufficient information to establish a global view of the activity of the

system. This global view enables certain problems such as that of deadlock to

become relatively easy to detect and solve.

Even those algorithms and systems that are distributed still assume that

there is only a single concurrency controller per site, so that although no single

controller has global knowledge of the entire distributed system, each

nonetheless still has total knowledge of the local system and by appropriate

communication can form a reasonably accurate picture of the state of the entire

distributed system.

In the envisaged object-oriented environment of this thesis, such

assumptions are no longer valid since each individual object must make

concurrency control decisions based only on purely local knowledge gathered as

part of the normal invocation of operations upon the object.

Conclusions 203

The most suitable concurrency control techniques for this environment are

those based upon two-phase locking, which has the particular property that in

order to determine whether to grant a lock on some object it only needs purely

local information about other locks that have already been granted on the object.

Such information can be gathered in an automatic fashion as locks are requested

and released on any object.

Unfortunately, locking protocols are prone to deadlock. In other systems

such deadlock can be detected by communication amongst the individual

concurrency controllers. In the object-oriented environment of this thesis such

communication is likely to be prohibitively expensive since each individual object

is maintaining its own concurrency control information and although it could

possibly all be collected in one place (sayan object store) occasionally, ensuring

the consistency and currency (that is, how up to date the information is) would be

difficult.

Instead this thesis has taken the convenient expedient of using timeouts.

However, unlike other researchers timeouts are not placed upon the length of

time an atomic action may execute, but instead timeouts are placed upon

individual lock requests. Furthermore the atomic action is not automatically

aborted if the timeout expires, rather an exception is returned to the caller so that

he can take some more appropriate action should one be possible.

This approach is taken because the occurrence of a timeout when setting a

lock may not be due to genuine deadlock, rather it could just be that a particular

action is taking a long time to execute and is thus holding locks longer than

expected, or alternatively the timeout period itself is too short. By returning an

exception the programmer is allowed the option of retrying the lock request

(perhaps with a different timeout value) in case deadlock was not truly the cause

of the problem at all.

Conclusions 204

In addition this thesis regarded locks simply as objects in their own right,

and thus they had the same basic properties as all other objects in the system.

For example they could be stored in an object store like any other object, a

property that was made use of to overcome some limitations of the underlying

system model when an implementation of the ideas proposed in this thesis was

considered in chapter five.

Specifying locks as objects also gained flexibility in the types of locks that

the basic concurrency control type was able to support. For example, chapter six

showed how, by making further use of type inheritance, several different types of

type-specific lock could be derived in a simple fashion that amounted to little

more than defining the new lock type (by deriving it from the existing Lock type)

and giving an appropriate conflict detection routine for it.

This approach had one major advantage over that adopted by other

researchers. It was possible to implement the ideas underlying this thesis

without having to resort to designing and building either a new language and/or a

new operating system kernel. Additionally the flexibility gained by this

approach meant that the resulting system was not tied to the particular style

adopted by the operating system or language. In fact, although the thesis has

adopted the language C++ [Stroustrup 86], both to describe and implement the

ideas, any other object-oriented programming language would have sufficed.

Furthermore, such type-specific locks could be defined without resorting to

changes in the basic concurrency control type, thus it was possible to experiment

with different types of lock simply to determine whether the increased level of

concurrency such locks afforded was worthwhile in terms of the additional

complexity introduced into the programming of the operations of the object.

Conclusions 205

Later, chapter six further demonstrated this flexibility by developing a

concurrency control type based upon the optimistic approach. Using this it would

be possible to build a system in which some objects used locking as their

concurrency control technique, while others used an optimistic approach.

Of course, as was pointed out in that chapter, the flexibility of the approach

could lead to problems in that some techniques are not compatible with others. In

particular the various concurrency control techniques serialise actions in

differing orders. However, the compatibility of the different concurrency control

techniques has been researched by others, in particular by Weihl [Weihl 84], and

so this is not regarded as a serious problem.

Throughout the thesis an explicit use of the concurrency control mechanism

has been adopted. That is the programmer of a type (but not the user) has been

required to provide explicit calls to the controller as part of the operations

supported by a type. Although this is more complicated than providing implicit

calls it has some advantages. Firstly it can be assumed that the programmer has

explicit knowledge of the semantics ofthe type and is in by far the best position to

detennine what concurrency control is likely to be needed. Secondly, implicit

invocation usually means that the operations of an object can only be classified as

to whether they read or write the object since further semantic information is not

available without careful analysis of the actual operations. Finally the implicit

approach frequently needs compiler support in that the calls to the concurrency

controller must typically be inserted into the prologue executed when an

operation is called. The Clouds system from Georgia Institute of Technology

[Dasgupta et el. 85] has both explicit and implicit mechanisms but relies on a

special systems programming language called Aeolus and its associated compiler

to implement it. Similarly, the Argus project from MIT [Liskov 88] pursues an

implicit approach in the same fashion, although in his thesis Weihl argued that

Conclusions 206

the adoption of an explicit approach would enable higher levels of concurrency to

be attained.

Finally this thesis has considered the effects that the support for

concurrency control has on the underlying system model and upon the recovery

system that is providing the failure atomicity property of the atomic action.

Concurrency control based upon two phase locking using the basic, simple

policy of allowing multiple reads and exclusive write locks places the minimum of

requirements on the rest of the system. It allows multiple servers for an object at

a site, and only needs simple hooks into the atomic actions system to function

properly. In particular it needs a way of indicating to the atomic action manager

that a lock has been set so that the atomic action manager can, when appropriate,

inform the concurrency controller of the object to release the lock as the action

commits (or aborts).

However, as was shown in chapter six, even the addition of simple type­

specific locking begins to place additional requirements on the underlying

system. In particular the ability for an object to support concurrent writes to

different parts of its state requires that there is either a single server

maintaining the object that executes the concurrent writes, or alternatively that

the object storage and retrieval mechanism is able to cope with partial object

images.

Objects representing such things as counters place even more requirements

on the system. Since such objects might allow concurrent writes on the same part

of their state, then the recovery mechanisms themselves must be of a particular

type; in particular the recovery mechanisms must commute in the same way that

the concurrency control commutes. Thus, in this instance the recovery system

must either be based on intentions lists, so that the changes made to an object

only actually take place when the action that made them actually commits, or

Conclusions 207

alternatively user-specified compensation routines must be called if the action

aborts. Simple state-based recovery which is perfectly acceptable for the simple

locking policy, is inadequate to cope with such objects. In addition the optimistic

algorithm also required that the recovery system be based on intentions lists so

that changes made to the same objects by different actions appeared to have

executed in the same serial order.

7.2 Future Work

Although this thesis has concentrated mainly on concurrency control

techniques and their implementation in an object-oriented environment, chapter

six has shown that the topic cannot be considered in isolation.

In particular, in order for type-specific locking approaches to be effectively

implemented and tested, the underlying system model must be further revised.

The most obvious area of revision lies in the area of server management. As was

pointed out in chapter five, the basic remote procedure call mechanism has

already been modified so that calls from related actions are directed to the same

server; what we require is that an object is only ever maintained by one server

once activated regardless of which action is using it.

This has some problems as far as the basic RPC mechanism is concerned

since each server is essentially in a loop, first waiting for an RPC, executing it,

and then returning the results. Given that there is only one server, there arises

the increased probability that it might be deaf to requests since it may currently

be busy serving another.

Chapter six showed a solution to this problem by providing multiple threads

of control within each server process. Each thread of control behaves as a

lightweight process that is cheap to create and schedule and shares the address

space of the main process with all the other threads of control. Using such an

Conclusions 208

approach, each individual call can be handled by a separate thread thus the

server need never be deaf to a call. Whether the server is configured with a fixed

number of such threads when it is defined or creates them dynamically for each

request is probably unimportant.

Such a server could be produced In the existing workstations by

implementing a simple multi-tasking environment for a UNIX process; an

approach adopted by the ISIS team at Cornell [Birman 86]. Alternatively use

could be made of one of the other operating systems that already support such

threads of control, such as Amoeba [Tanenbaum and Mullender 81] or Mach

[Jones and Rashid 86] However, a much more attractive approach may be

possible since the Computing Laboratory has recently acquired a shared memory

multiprocessor (an Encore Multimax"') which also supports such threads in

addition to providing true parallelism by virtue of having multiple central

processors. It remains to be seen what effects such a change in the server model

would have on the orphan detection capabilities of the underlying remote

procedure call system.

It might appear that by adopting such an approach the servers are becoming

similar to Argus guardians. There are, however, important differences. For

example, in Argus, guardians are always active and are restarted automatically

whenever necessary. In the Arjuna system a server for an object need not exist

until the object is actually activated, and once all the actions using the object

have terminated the server may be destroyed. All that is required is that once a

server is created it is willing to serve all actions that wish to make use of the

object, regardless of their relationships to each other.

"'Multimax is a Trademark of Encore Computer Corporation.

Conclusions 209

Also possible is the combination of several of the concurrency control

techniques into a single object. This would enable a programmer for example to

choose type-specific locking for some operations and an optimistic approach for

others depending upon the concurrency required and the conflicts likely to occur.

Such an approach requires that the implementation language supports

multiple inheritance so that a user-defined object may be derived from both

LockCC and OptCC. The version of C++ available at this time does not currently

support this feature. However, a research version with this capability has been

produced and will probably become available in the future.

In the short term the lock-based approaches could also be combined such

that some operations used type-specific locking while others used the simple read

write locking of the basic system. Such an approach requires that the

concurrency controller keeps each type of lock separate since it does not in

general make sense to compare a type-specific lock and an ordinary lock for

conflict unless the programmer has made the meanings of such comparisons

explicitly defined. This point is analagous to the one made in chapter four

regarding why the mode of a lock was made part of the state of the Lock type,

rather than deriving new lock types immediately. Alternatively, the

programmer must take additional care in defining the conflict operation such

that comparison of type-specific locks and basic read-write locks had some

meaning.

This thesis has claimed that the type-inheritance based approach is flexible

and is not tied to any particular language or system. Testing this in reality

requires moving the system to another operating system base (a port to Amoeba is

being considered), and perhaps more radically, re-implementing the system in

another object-oriented language such as Trellis/Owl [Schaffert et al. 86] or

Smalltalk-80 [Goldberg and Robson 83].

Conclusions 210

Finally, although the aim throughout this thesis has been not to modify a

language or operating system, integration of parts of the system into an operating

system would inevitably bring improvements, particularly in the areas of

performance and memory utilisation, which may be important.

In conclusion it can be said that using type inheritance In the way

illustrated in this thesis has allowed the production of a highly flexible system in

which a variety of concurrency control techniques may be implemented. Treating

the system as a collection of communicating objects has allowed the problems

caused by distribution to be ignored. However, as has been shown, concurrency

control cannot be considered in isolation.

As increased levels of concurrency are required then the recovery system

and the underlying system model all play their part. In some respects this echoes

the thoughts of Reed [Reed 78] and Weihl [Weihl 84] who both treated

concurrency control and recovery within an integrated framework in order to

improve concurrency. Certainly the relationship between the two concepts is

worth exploring more fully.

References 211

References
Ada 80

u.s. Department of Defense, Reference Manual for the ADA Programming

Language, 1980.

Agrawal and DeWitt 85

Agrawal, R., and D.J. DeWitt, UIntegrated Concurrency Control and

Recovery Mechanisms: Design and Performance Evaluation," ACM

Transactions on Database Systems, Vol. 10, No.4, pp. 529-564, December

1985.

Allchin83

Allchin, J.E., ((An Architecture for Reliable Decentralized Systems," Ph.D

Thesis, Technical Report GIT-ICS-82/83, Georgia Institute of Technology,

September 1983.

Allchin and McKendry 83

Allchin, J.E., and M.S. McKendry, ((Synchronisation and Recovery of

Actions," Proceedings of the 2nd Annual ACM Symposium on Principles of

Distributed Computing, pp. 31-44, Montreal, August 1983.

Anyanwu84

Anyanwu, J.A., URobust Data Storage in aN etwork Of Computer Systems,"

Ph.D Thesis, Computing Laboratory, University of Newcastle upon Tyne,

November 1984.

Arens 81

Arens, G.C., ((Recovery of the SWALLOW Repository," M.Sc Dissertation,

Technical Report MITILCSITR-252, MIT Laboratory for Computer Science,

Cambridge, January 1981.

References 212

Avizienis and Chen 77

Avizienis, A. and L. Chen, (tOn the Implementation of N -Version

Programming for Software Fault-Tolerance During Execution," Proceedings

ofCOMPSAC 77, pp.149-155, November 1977.

Banatre et al. 83

Banatre, J.-P., M. Banatre, and F. Ployette, "Construction of a Distributed

System Supporting Atomic Transactions," IEEE Proceedings of the 3rd

Symposium on Reliability in Distributed Software and Database Systems,

pp. 95-99, October 1983.

Bayer and Schkolnick 77

Bayer, R., and M. Schkolnick, t(Concurrency of Operations on B-Trees," Acta

Information, Vol. 9, pp. 1-21, 1977.

Bernstein and Goodman 81

Bernstein, P.A., and N. Goodman, "Concurrency Control in Distributed

Database Systems," ACM Computing Surveys, Vol. 13, No.2, pp. 185-221,

June 1981.

Bernstein et al. 78

Bernstein, P.A., J.B. Rothnie, N. Goodman, and C.H. Papadimitriou, "The

Concurrency Control Mechanism of SDD-1: A System for Distributed

Databases (The Fully Redundant Case)," IEEE Transactions on Software

Engineering, Vol. SE-4, No.3, pp.154-168, May 1978.

Bernstein et al. 87

Bernstein, P.A., V. Hadzilacos, and N. Goodman, Concurrency Control and

Recovery in Database Systems, Addison-Wesley, 1987.

References 213

Birman 86

Birman, K.P.,'1SIS: A System for Fault-Tolerant Distributed Computing,"

Technical Report TR 86-744, Department of Computer Science, Cornell

University, April 1986.

Birman and Joseph 87

Birman, K.P., and T.A. Joseph, "Exploiting Virtual Synchrony in

Distributed Systems," Technical Report TR 87-811, Department of

Computer Science, Cornell University, February 1987.

Birrell and Nelson 84

Birrell, A., and B.J. Nelson, "Implementing remote procedure calls," ACM

Transactions on Computer Systems, Vol. 2, No.1, pp. 39-59, February 1985.

Birtwhistle et al. 73

Birtwhistle, G.M., O.-J. Dahl, B. Myhrhaug, and K. Nygaard, SimulaBegin,

Academic Press, 1973.

Bobrow et al. 86

Bobrow, D.G., K. Kahn, G. Kiczales, L. Masinter, M. Stefik, and F. Zdybel,

"CommonLoops: Merging Lisp and Object-Oriented Programming,"

OOPSLA '86 Conference Proceedings, pp.17-29, September 1986.

Buckley and Silberschatz 84

Buckley, G.N. and A. Silberschatz, "Concurrency Control in Graph

Protocols Using Edge Locks," Proceedings of the 3rd ACM SIGACT­

SIGMOD Symposium on Principles of Database Systems, Waterloo, Ontario,

pp. 45-50, April 1984.

References 214

Campbell and Randell 86

Campbell, R.H. and B. Randell, t'Error Recovery in Asynchronous Systems,"

IEEE Transactions on Software Engineering, Vol. SE-12, No.8, pp. 811-826,

August 1986.

Carey 87

Carey, M.J., t'Improving the Performance of an Optimistic Concurrency

Control Algorithm Through Timestamps and Versions," IEEE Transactions

on Software Engineering, Vol. SE-13, No.6, pp. 746-751, June 1987.

Ceri and Owicki 82

Ceri, S., and S. Owicki, ttOn The Use of Optimistic Methods for Concurrency

Control in Distributed Databases," Proceedings of the Sixth Berkeley

Workshop on Distributed Data Management and Computer Networks,

February 1982.

Cox 86

Cox, B.J., Object Oriented Programming, Addison Wesley, 1986.

Dasgupta et al. 85

Dasgupta, P., R.J. LeBlanc Jr., and E. Spafford, <tThe Clouds Project:

Designing and Implementing a Fault Tolerant, Distributed Operating

System," Technical Report GIT-ICS-85/29, Georgia Institute of Technology,

1985.

Davies 73

Davies, C.T., «Recovery Semantics for a DBIDC System," Proceedings of the

ACM National Conference, pp. 136-141, Atlanta, Georgia, August 1973.

References 215

Dixon et al. 87

Dixon, G.N., S.K. Shrivastava, and G.D. Parrington, toManaging Persistent

Objects in Arjuna: A System for Reliable Distributed Computing,"

Proceedings of the Workshop on Persistent Object Systems, Persistent

Programming Research Report 44, Department of Computational Science,

University of St. Andrews, August 1987.

Dixon 88

Dixon, G.N., "Object Management for Persistence and Recoverability," Ph.D

Thesis, Computing Laboratory, University of Newcastle upon Tyne, in

preparation.

Enslow 78

Enslow, P.H., toWhat is a "Distributed" Data Processing System?," IEEE

Computer, Vol. 11, No.1, pp.13-21,January 1978.

Eswaran et al. 76

Eswaran, K.P, J.N. Gray, R.A. Lorie, and LL. Traiger, toThe Notions of

Consistency and Predicate Locks in a Database System," Communications

of the ACM, Vol. 19, No. 11, November 1976.

Franaszeck and Robinson 85

Franaszeck, P., and J.T. Robinson, "Limitations on Concurrency in

Transaction Processing,", ACM Transactions on Database Systems, Vol. 10,

No.1, pp. 1-28, March 1985.

Fridrich and Older 81

Fridrich, M., and W. Older, "The FELIX File Server," Proceedings of the 8th

Symposium on Operating System Principles, pp. 37-44, December 1981.

References 216

Garcia-Molina 83

Garcia-Molina, H., "Using Semantic Knowledge for Transaction Processing

in a Distributed Database," ACM Transactions on Database Systems, Vol. 8,

No.2, pp.186-213,June 1983.

Goldberg and Robson 83

Goldberg, A., and D. Robson, Smalltalk-80; The Language and its

Implementation, Addison-Wesley, 1983.

Goodenough 75

Goodenough, J.B., «Exception Handling: Issues and a Proposed Notation,"

Communications of the ACM, Vol. 18, No. 12, pp. 683-696, December 1975.

Goodman and Shasha 85

Goodman, N., and D. Shasha, «Semantically-based Concurrency Control for

Search Structures," Proceedings of the 4th ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems, Portland, March 1985.

Gray et aZ. 75

Gray, J.N., R.A. Lorie, G.R. Putzolu, and LL. Traiger, «Granularity of Locks

and Degrees of Consistency in a Shared Data Base, " in Modelling in Data

Base Management Systems, ed. G.M. Nijssen, North-Holland, 1976.

Gray 78

Gray, J.N ., «Notes on Data Base Operating Systems," in Operating Systems:

An Advanced Course, eds. R. Bayer, R.M. Graham, and G. Seegmueller, pp.

393-481, Springer, 1978.

References
217

Hedayati88

Hedayati, F, "Multicast Primitives Supporting a Large Class of

Applications in Distributed Computing Systems," Ph.D Thesis, Computing

Laboratory, University of Newcastle upon Tyne, in preparation.

Herlihy 86

Herlihy, M.P., "Optimistic Concurrency Control for Abstract Data Types,"

Proceedings of the Fifth Annual ACM Symposium on Principles of

Distributed Computing, Calgary, Alberta, pp. 206-216, August 1986.

Herlihy and Wing 87

Herlihy, M.P., and J.M. Wing, "Avalon: Language Support for Reliable

Distributed Systems," Digest of Papers FTCS-17, Seventeenth Annual

Symposium on Fault-Tolerant Computing, Pi ttsburgh, pp. 89-94, July 1987.

Herlihy 87

Herlihy, M.P., "Extending Multi-Version Time-Stamping Protocols to

Exploit Type Information," IEEE Transactions on Computers, Vol. SE-36,

No.4, pp. 443-448, April 1987.

Herlihy and Weihl88

Herlihy, M.P., and W.E. Weihl, ((Hybrid Concurrency Control for Abstract

Data Types," Proceedings of the Seventh Annual ACM SIGACT-SIGART

Symposium on Principles of Database Systems, Austin, Texas, March 1988.

Horning et al. 74

Horning, J.J, H.C. Lauer, P.M. Mellior-Smith, and B. Randell, ((A Program

Structure for Error Detection and Recovery," Lecture Notes in Computer

Science, 16, Springer, 1974.

References 218

Hughes 86

Hughes, F.L., ((Multicast Communications in Distributed Systems," Ph.D

Thesis, Computing Laboratory, University of Newcastle upon Tyne, October

1986.

Jefferson 85

Jefferson, D.R., ((Virtual Time," ACM Transactions on Programming

Languages and Systems, Vol. 7 , No.3, pp. 404-425, July 1985.

Jones 78

Jones, A.K., "The Object Model: A Conceptual Tool for Structuring

Software," in Lecture Notes in Computer Science 60, eds. R. Bayer, R.M.

Graham, and G. Seegmueller, pp. 8-16, Springer, 1978.

Jones et al. 85

Jones, M.B., R.F. Rashid, and M.R. Thompson, ((Matchmaker: An Interface

Specification Language for Distributed Processing," Proceedings of the 12th

Annual ACM Symposium on Principles of Programming Languages, pp.

225-235, January 1985.

Jones and Rashid 86

Jones, M.B., and R.F. Rashid, ((Mach and Matchmaker: Kernel and

Language Support for Object-Oriented Distributed Systems," OOPSLA '86

Conference Proceedings, pp.67 -77, September 1986.

Kedem and Silberschatz 81

Kedem, Z.M., and A. Silberschatz, ('A Characterisation of Database Graphs

Admitting a Simple Locking Protocol," Acta Information, Vol. 16, pp. 1-13,

1981.

References 219

Kenley 86

Kenley, G.C., <~An Action Management System for a Decentralized

Operating System," M.Sc. Thesis, Technical Report GIT-ICS-86/01, Georgia

Institute of Technology, January 1986.

Kernighan andRitchie 78

Kernighan, B.W., and D.M. Ritchie, The C Programming Language,

Prentice-Hall, 1978.

Kohler 81

Kohler, W.H., "A Survey of Techniques for Synchronisation and Recovery in

Decentralised Computer Systems," ACM Computing Surveys, Vol. 13, No.2,

pp.149-183, June 1981.

KungandPapadimitriou 79

Kung, H.T., and C.H. Papadimitriou, "An Optimality Theory of

Concurrency Control for Databases," Proceedings of the ACM SIGMOD

Conference, pp.116-126, May 1979.

Kung and Robinson 81

Kung, H.T., and J.T. Robinson, ~~On Optimistic Methods for Concurrency

Control," ACM Transactions on Database Systems, Vol. 6, No.2, pp. 213-

226, June 1981.

Lampson and Sturgis 79

Lampson, B.W., and H.E. Sturgis, "Crash Recovery in a Distributed Data

Storage System," Unpublished internal report, XeroxPARC, April 1979.

References 220

Lausen82

Lausen, G., ((Concurrency Control in Database Systems: A Step Towards

The Integration of Optimistic Methods and Locking," Proceedings of the

ACM 82 Conference, pp. 64-68, October 1982.

LeBlanc and Wilkes 85

LeBlanc, R.J., and C.T. Wilkes, (tSystems Programming with Objects and

Actions," Proceedings of the 5th International Conference on Distributed

Computing Systems, pp.132-139, May 1985.

Leeetal.80

Lee, P.A., N. Ghani, and K. Heron, (tA Recovery Cache for the PDP-ll,"

IEEE Transactions on Computers, Vol. C-29, No.6, pp. 546-549, 1980.

Lee and Anderson 85

Lee, P.A., and T. Anderson, "Design Fault Tolerance," in Resilient

Computing Systems, ed. T. Anderson, pp. 64-77, Collins, 1985.

Lindsay et aZ. 84

Lindsay, B.G., L.M. Haas, C. Mohan, P.F. Wilms, and R.A. Yost,

(tComputation and Communication in R*: A Distributed Database

Manager," ACM Transactions on Computer Systems, Vol. 2, No.1, pp. 24-38,

February 1984

Liskov et aZ. 79

Liskov, B., R. Atkinson, T. Bloom, J.E.B. Moss, C. Schaffert, B. Scheifler,

and A. Snyder, "Clu Reference Manual," Technical Report MITILCStrR-

225, MIT Laboratory for Computer Science, Cambridge, Mass., October

1979.

References 221

Liskov and Scheifler 83

Liskov, B., and R. Scheifler, uGuardians and Actions: Linguistic Support for

Robust, Distributed Programs," ACM Transactions on Programming

Languages and Systems, Vol. 5, No, 3, pp. 381-404, July 1983.

Liskov 84

Liskov, B., "Overview of the Argus Language and System," Programming

Methodology Group Memo 40, MIT Laboratory for Computer Science,

February 1984.

Liskov 88

Liskov, B. "Distributed Programming in Argus," Communications of the

ACM, Vol. 31, No.3, pp. 300-312, March 1988.

Lomet 77

Lomet, D.B., uProcess Structuring, Synchronisation and Recovery Using

Atomic Actions," Proceedings of ACM Conference on Language Design for

Reliable Software, pp. 128-137, March 1977. (Also ACM SIGPLAN Notices,

Vol. 12, No.3).

Lorie 77

Lorie, R.A., «Physical Integrity in a Large Segmented Database," ACM

Transactions on Database Systems., Vol. 2, No.1, pp. 91-104, March 1977.

Melliar-Smith and Randell 77

Melli ar-Smith , P.M. and B. Randell, "Software Reliability: the Role of

Programmed Exception Handling," Proceedings of ACM Conference on

Language Design for Reliable Software, pp. 95-100, March 1977. (Also ACM

SIGPLAN Notices, Vol. 12, No.3).

References 222

Metcalfe and Boggs 76

Metcalfe, RM., and D.R Boggs, "Ethernet: Distributed Packet Switching

for Local Computer Networks," Communications of the ACM, Vol. 19, No.7,

pp. 395-404, July 1976.

Mohan et al. 83

Mohan, C., and B. Lindsay, "Efficient Commit Protocols for the Tree of

Processes Model of Distributed Transactions," Proceedings of the 2nd

Annual ACM Symposium on Principles of Distributed Computing, pp. 76-88,

August 1983.

Mohan et al. 86

Mohan, C., B. Lindsay, and R Obermarck, "Transaction Management in the

R* Distributed Database Management System," ACM Transactions on

Database Systems, Vol. 11, No.4, pp. 378-396, December 1986.

Moon 86

Moon, D.A. "Object-Oriented Programming with Flavors," OOPSLA '86

Conference Proceedings, pp. 1-8, September 1986.

Moore 82

Moore, J.D., "Simple Nested Transactions in LOCUS: A Distributed

Operating System," M.Sc Dissertation, University of California at Los

Angeles, 1982.

Moss 81

Moss, J.E.B., "Nested Transactions: An Approach to Reliable Distributed

Computing," Ph.D Thesis, MITILCStrR-260, MIT Laboratory for Computer

Science, Cambridge, Mass., April 1981.

References 223

Mueller 83

Mueller, E.T., t1mplementation of Nested Transactions in a Distributed

System," M.Sc Dissertation, University of California at Los Angeles, 1983.

Mueller et al. 83

Mueller, E.T., J.D. Moore, and G.J. Popek, ttA Nested Transaction

Mechanism for LOCUS," Proceedings of the 9th ACM Symposium on

Operating System Principles, pp. 71-89, October 1983.

Mullender and Tanenbaum 85

Mullender, S.J., and A.S. Tanenbaum, ttA Distributed File Service Based on

Optimistic Concurrency Control," Proceedings of the 10th ACM Symposium

on Operating System Principles, pp. 51-62, December 1985.

Nelson 81

Nelson, B.J., ttRemote Procedure Call," Ph.D Thesis, CMU-CS-81-119,

Department of Computer Science, Carnegie-Mellon University, 1981.

Nett et al. 85

Nett, E., K. GroBpietsch, A. Jungblut, J. Kaiser, R. Kroger, W. Lux, M.

Speicher, and H. Winnebeck, ttprofemo: Design and Implementation of a

Fault Tolerant Distributed System Architecture," GMD-Studien, Nr. 100,

1985.

Panzieri and Shrivastava 88

Panzieri, F., and S.K. Shrivastava, ttRajdoot: A Remote Procedure Call

Mechanism Supporting Orphan Detection and Killing," IEEE Transactions

on Software Engineering, Vol. SE-14, No.1, pp. 30-37 , January 1988.

References 224

Papadimitriou 79

Papadimitriou, C.H., "Serializability of Concurrent Updates," Journal of the

ACM, Vol. 26, No.4, pp. 631-653, October 1979.

Parrington and Shrivastava 88

Parrington, G.D., and S.K. Shrivastava, "Implementing Concurrency

Control for Robust Object-Oriented Systems," Proceedings of the Second

European Conference on Object-Oriented Programming, ECOOP88, August

1988 (to be published.)

Randell 75

Randell, B., "System Structure for Software Fault Tolerance," IEEE

Transactions on Software Engineering, Vol. SE-1, No.2, pp. 220-232, June

1975.

Rashid and Robertson 81

Rashid, R., and G. Robertson, "Accent: A Communication Oriented Network

Operating System Kernel," Proceedings of the 8th ACM Symposium on

Operating System Principles, pp. 64-75, December 1981.

Reed 78

Reed, D.P., "Naming and Synchronisation in a Decentralized Computer

System," Ph.D Thesis, MITILCStrR-205, MIT Laboratory for Computer

Science, Cambridge, Mass., September 1978.

Reed 83

Reed, D.P., "Implementing Atomic Actions on Decentralized Data," ACM

Transactions on Computer Systems, Vol. 1, No.1, pp. 3-23, February 1983.

References 225

Robinson 82

Robinson, J.T., "Design of Concurrency Controls for Transaction Processing

Systems," Ph.D Thesis, CMU-CS-82-114, Department of Computer Science,

Carnegie-Mellon University, April 1982.

Rosenkrantz et al. 78

Rosenkrantz, D.J., R.E. Stearns, and P.M. Lewis II, "System Level

Concurrency Control for Distributed Database Systems," ACM

Transactions on Database Systems, Vol. 3, No.2, pp.178-198, June 1978.

Schaffert et al. 86

Schaffert, C., T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt, "An

Introduction to Trellis/Owl," OOPSLA '86 Conference Proceedings, pp. 9-16,

September 1986.

Schlicting and Schneider 83

Schlicting, R.D., and F.B. Schneider, ((Fail-Stop Processors: An Approach to

Designing Fault-Tolerant Computing Systems," ACM Transactions on

Computer Systems, Vol. 1, No.3, pp. 222-238, August 1983.

Schwarz and Spector 82

Schwarz, P.M., and A.Z. Spector, ((Synchronizing Shared Abstract Types,"

Technical Report CMU-CS-82-128, Department of Computer Science,

Carnegie-Mellon University, September 1982.

Schwarz 84

Schwarz, P.M., "Transactions on Typed Objects," Ph.D Thesis, Technical

Report CMU-CS-84-166, Department of Computer Science, Carnegie-

Mellon University, December 1984.

References 226

Severance and Lohman 76

Severance, D.G., and G.M. Lohman, ~~Differential Files: Their Application to

the Maintainance of Large Databases," ACM Transactions on Database

Systems, Vol. 1, No.3, pp.256-267, September 1976.

Sha etal. 83

Sha, L., E.D. Jensen, R.F. Rashid, and J.D. Northcutt, "Distributed Co­

operating Processes and Transactions," in Distributed Computing Systems,

eds. Y. Paker andJ. P. Verjus, pp. 23-50, Academic Press, 1983.

Sha85

Sha, L., ~~Modular Concurrency Control and Failure Recovery --­

Consistency, Correctness and Optimality," Ph.D Thesis, Technical Report

CMU-CS-85-114, Department of Computer Science, Carnegie-Mellon

University, March 1985.

Shaetal.88

Sha, L., J.P. Lehoczky, and E.D. Jensen, "Modular Concurrency Control and

Failure Recovery," IEEE Transactions on Computers, Vol. 37, No.2, pp.146-

159, February 1988.

Shrivastava 82

Shrivastava, S.K., "A Dependency, Commitment and Recovery Model for

Atomic Actions," Proceedings of 2nd IEEE Symposium on Reliability in

Distributed Software and Database Systems, Pittsburgh, pp. 112-119, 1982.

Shrivastava 85

Shrivastava, S.K., (ed) Reliable Computer Systems: Collected Papers of the

Newcastle Reliability Project, Springer-Verlag, 1985.

References 227

Shrivastava 86

Shrivastava, S.K., "An Introduction to Arjuna: A System for Reliable

Distributed Programming," Internal Report SRM/439, Computing

Laboratory, University of Newcastle upon Tyne, August 1986.

Shrivastava et al. 88

Shrivastava, S.K., G.N. Dixon, F. Hedayati, G.D. Parrington, and S.M.

Wheater, "A Technical Overview of Arjuna: A System for Reliable

Distributed Computing," Proceedings of the Alvey Conference, July 1988.

(to be published)

Skeen 81

Skeen, D., "Nonblocking Commit Protocols," Proceedings of the ACM

International Conference on the Management of Data, pp. 133-142, April

1981.

Sloman 87

Sloman, M., and J. Kramer, Distributed Systems and Computer Networks,

Prentice-Hall, 1987.

Snyder 86

Snyder, A., "Encapsulation and Inheritance in Object-Oriented

Programming Languages," OOPSLA '86 Conference Proceedings, pp.38-45,

September 1986.

Spector et al. 85a

Spector, A.Z., J. Butcher, D.S. Daniels, D.J. Duchamp, J.L. Eppinger, C.E.

Fineman, A. Heddaya, and P.M. Schwarz, "Support for Distributed

Transactions in the TABS Prototype," IEEE Transactions on Software

Engineering, Vol. SE-11, No.6, pp. 520-530, June 1985.

References 228

Spector et al. 85b

Spector, A.Z., D.S. Daniels, D.J. Duchamp, J.L. Eppinger, and R. Pausch,

"Distributed Transactions for Reliable Systems," Proceedings of the 10th

ACM Symposium on Operating Systems Principles, pp. 127-146, December

1985.

Spector 87

Spector, A.Z., "Distributed Transaction Processing and The Camelot

System," Technical Report CMU-CS-87-100, Department of Computer

Science, Carnegie-Mellon University, January 1987.

Spector et al. 87

Spector, A.Z., D. Thompson, R.F. Pausch, J.L. Eppinger, D. Duchamp, R.

Draves, D.S. Daniels, and J.J. Bloch, ttCamelot: A Distributed Transaction

Facility for Mach and the Internet - An Interim Report," Technical Report

CMU-CS-87-129, Department of Computer Science, Carnegie-Mellon

University, June 1987.

Stearns and Rosenkrantz 81

Stearns, R.E., and D. J. Rosenkrantz, "Distributed Database Concurrency

Control Using Before-Values," Proceedings of the ACM International

Conference on the Management of Data, pp. 74-83, April 1981.

Stonebraker et al. 85

Stonebraker, M., D. DuBourdieux, and W. Edwards, t'Problems in

Supporting Database Transactions in an Operating Systems Transaction

Manager," ACM Operating Systems Review, Vol. 19, No.1, pp.6-14, January

1985.

References 229

Stroustrup 86

Stroustrup, B., The C++ Programming Language, Addison Wesley, 1986.

Stroustrup 87a

Stroustrup, B. 'What is 'Object-Oriented Programming'?," Technical

Report, AT&T Bell Laboratories, 1987.

Stroustrup 87b

Stroustrup, B. "Multiple Inheritance for C++," Proceedings of the EUUG

Conference, Helsinki, May 1987.

Svobodova 80

Svobodova, 1., "Management of Object Histories in the SWALLOW

Repository," Technical Report MIT/LCS/TR-253, MIT Laboratory for

Computer Science, Cambridge, Mass., July 1980.

Svobodova 81

Svobodova, L., "A Reliable Object Oriented Data Repository for a

Distributed Computer System," Proceedings of the 8th ACM Symposium on

Operating System Principles, pp 47-58, December 1981.

Tanenbaum and M ullender 81

Tanenbaum, A.S., and S.J. Mullender, "An Overview of the Amoeba

Distributed Operating System," ACM Operating Systems Review, pp. 51-64,

July 1981.

Tanenbaum and Renesse 85

Tanenbaum, A.S., and R. van Renesse, "Distributed Operating Systems,"

ACM Computing Surveys, Vol. 17, No.4, pp. 419-470, December 1985.

References 230

Tayetal.85

Tay, Y.C., N. Goodman, and R Suri, "Locking Perfonnance in Centralized

Databases," ACM Transactions on Database Systems, Vol. 10, No.4, pp. 415-

462, December 1985.

Thomas 79

Thomas, RH., ttA Majority Concensus Approach to Concurrency Control for

Multiple Copy Databases," ACM Transactions on Database Systems, Vol. 4,

No.2, pp.180-209,June 1979.

Walker et al. 83

Walker, B., G.J. Popek, R English, C. Kline, and G. Thiel, "The LOCUS

Distributed Operating System," Proceedings of the 9th ACM Symposium on

Operating System Principles, pp. 49-70, October 1983.

Walker 85

Walker, B.J., The Locus Distributed System Architecture, MIT Press, 1985.

Wegner 86

Wegner, P., ttClassification of Object-Oriented Systems," ACM SIGPLAN

Notices, Vol. 21, No. 10, pp.173-182, October 1986.

Wegner 87

Wegner, P., "Dimensions of Object-Based Language Design," OOPSLA '87

Conference Proceedings, pp.168-182, October 1987.

Weih184

Weihl, W., ttSpecification and Implementation of Atomic Data Types," Ph.D

Thesis, MIT/LCS/TR-314, MIT Laboratory for Computer Science,

Cambridge, Mass., March 1984.

References 231

Weihl and Liskov 85

Liskov, B., and W. Weihl, "Implementation of Resilient, Atomic Data

Types," ACM Transactions on Programming Languages and Systems, Vol.

7, No.2, pp. 244-269, April 1985.

Weinstein et al. 85

Weinstein, M.J., T.W. Page Jr., B.K. Livezey, and G.J. Popek, "Transactions

and Synchronization in a Distributed Operating System," Proceedings of the

10th ACM Symposium on Operating System Principles, pp. 115-126,

December 1985.

Wheater88

Wheater, S. "Distributed Programming in C++," Technical Report,

Computing Laboratory, University of Newcastle upon Tyne (to appear).

	384011_0001
	384011_0002
	384011_0003
	384011_0004
	384011_0005
	384011_0006
	384011_0007
	384011_0008
	384011_0009
	384011_0010
	384011_0011
	384011_0012
	384011_0013
	384011_0014
	384011_0015
	384011_0016
	384011_0017
	384011_0018
	384011_0019
	384011_0020
	384011_0021
	384011_0022
	384011_0023
	384011_0024
	384011_0025
	384011_0026
	384011_0027
	384011_0028
	384011_0029
	384011_0030
	384011_0031
	384011_0032
	384011_0033
	384011_0034
	384011_0035
	384011_0036
	384011_0037
	384011_0038
	384011_0039
	384011_0040
	384011_0041
	384011_0042
	384011_0043
	384011_0044
	384011_0045
	384011_0046
	384011_0047
	384011_0048
	384011_0049
	384011_0050
	384011_0051
	384011_0052
	384011_0053
	384011_0054
	384011_0055
	384011_0056
	384011_0057
	384011_0058
	384011_0059
	384011_0060
	384011_0061
	384011_0062
	384011_0063
	384011_0064
	384011_0065
	384011_0066
	384011_0067
	384011_0068
	384011_0069
	384011_0070
	384011_0071
	384011_0072
	384011_0073
	384011_0074
	384011_0075
	384011_0076
	384011_0077
	384011_0078
	384011_0079
	384011_0080
	384011_0081
	384011_0082
	384011_0083
	384011_0084
	384011_0085
	384011_0086
	384011_0087
	384011_0088
	384011_0089
	384011_0090
	384011_0091
	384011_0092
	384011_0093
	384011_0094
	384011_0095
	384011_0096
	384011_0097
	384011_0098
	384011_0099
	384011_0100
	384011_0101
	384011_0102
	384011_0103
	384011_0104
	384011_0105
	384011_0106
	384011_0107
	384011_0108
	384011_0109
	384011_0110
	384011_0111
	384011_0112
	384011_0113
	384011_0114
	384011_0115
	384011_0116
	384011_0117
	384011_0118
	384011_0119
	384011_0120
	384011_0121
	384011_0122
	384011_0123
	384011_0124
	384011_0125
	384011_0126
	384011_0127
	384011_0128
	384011_0129
	384011_0130
	384011_0131
	384011_0132
	384011_0133
	384011_0134
	384011_0135
	384011_0136
	384011_0137
	384011_0138
	384011_0139
	384011_0140
	384011_0141
	384011_0142
	384011_0143
	384011_0144
	384011_0145
	384011_0146
	384011_0147
	384011_0148
	384011_0149
	384011_0150
	384011_0151
	384011_0152
	384011_0153
	384011_0154
	384011_0155
	384011_0156
	384011_0157
	384011_0158
	384011_0159
	384011_0160
	384011_0161
	384011_0162
	384011_0163
	384011_0164
	384011_0165
	384011_0166
	384011_0167
	384011_0168
	384011_0169
	384011_0170
	384011_0171
	384011_0172
	384011_0173
	384011_0174
	384011_0175
	384011_0176
	384011_0177
	384011_0178
	384011_0179
	384011_0180
	384011_0181
	384011_0182
	384011_0183
	384011_0184
	384011_0185
	384011_0186
	384011_0187
	384011_0188
	384011_0189
	384011_0190
	384011_0191
	384011_0192
	384011_0193
	384011_0194
	384011_0195
	384011_0196
	384011_0197
	384011_0198
	384011_0199
	384011_0200
	384011_0201
	384011_0202
	384011_0203
	384011_0204
	384011_0205
	384011_0206
	384011_0207
	384011_0208
	384011_0209
	384011_0210
	384011_0211
	384011_0212
	384011_0213
	384011_0214
	384011_0215
	384011_0216
	384011_0217
	384011_0218
	384011_0219
	384011_0220
	384011_0221
	384011_0222
	384011_0223
	384011_0224
	384011_0225
	384011_0226
	384011_0227
	384011_0228
	384011_0229
	384011_0230
	384011_0231
	384011_0232
	384011_0233
	384011_0234
	384011_0235
	384011_0236
	384011_0237
	384011_0238
	384011_0239
	384011_0240
	384011_0241

