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Abstract 

Abstract 

Modern computing systems support concurrency as a means of increasing 

the performance of the system. However, the potential for increased performance 

is not without its problems. For example, lost updates and inconsistent retrieval 

are but two of the possible consequences of unconstrained concurrency. Many 

concurrency control techniques have been designed to combat these problems; 

this thesis considers the applicability of some ofthese techniques in the context of 

a reliable object-oriented system supporting atomic actions. 

The object-oriented programming paradigm is one approach to handling the 

inherent complexity of modern computer programs. By modeling entities from 

the real world as objects which have well-defined interfaces, the interactions in 

the system can be carefully controlled. By structuring sequences of such 

interactions as atomic actions, then the consistency of the system is assured. 

Objects are encapsulated entities such that their internal representation is not 

externally visible. This thesis postulates that this encapsulation should also 

include the capability for an object to be responsible for its own concurrency 

control. 

Given this latter assumption, this thesis explores the means by which the 

property of type-inheritance possessed by object-oriented languages can be 

exploited to allow programmers to explicitly control the level of concurrency an 

object supports. In particular, a object-oriented concurrency controller based 

upon the technique of two-phase locking is described and implemented using 

type-inheritance. The thesis also shows how this inheritance-based approach is 

highly flexible such that the basic concurrency control capabilities can be adopted 

unchanged or overridden with more type-specific concurrency control ifrequired. 
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Introduction 1 

Chapter 1 
Introduction 

Over the past few decades increasing reliance has been placed upon 

computers to such an extent that today many organisations are totally dependent 

on the correct functioning of their computer systems. Enterprises such as banks 

and airlines simply could not function without the data contained in their 

computer systems being available, up to date and correct at all times. 

Much of the burden of ensuring this correctness inevitably falls upon 

individuals since it is people that design and write the programs that execute 

upon the computer hardware and also design and construct the hardware itself. 

No matter how carefully programs are designed and tested, they are nonetheless 

vulnerable to external factors over which the programs have no control - in 

particular they may be susceptible to interference from other programs and 

possibly failures of the hardware and also of the software. Providing failure free 

hardware and software is not a sufficient solution to these problems because 

although a program may behave correctly when executed in isolation, this 

behaviour may not be repeatable when the program is executed in a 

mul ti programming or mul ti processing environment. 

Multiprogramming is inescapable in modern computers; without it the 

majority of the power of the computer would be wasted. Multiprogramming 

allows programs to execute seemingly in parallel (or concurrently) with each 

other. If the computer has multiple independent central processing units (CPUs) 

then truly parallel execution can occur as each program can be executed upon a 

different CPU. Concurrent execution of programs can lead to problems if shared 

data is being manipulated by the programs in question since the execution of one 

program could interfere with the execution of another by changing the value of 

the data shared between the programs in a seemingly arbitrary fashion. Thus, 
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apparently correct programs (that is, programs that obey their specification when 

executed in isolation) can behave in an unexpected (and often unrepeatable) 

fashion. Avoiding this problem requires the use of some form of concurrency 

control technique. 

In addition to the problems caused by concurrency, computer systems are 

also subject to many types of failure. These failures, which may affect the 

hardware and also the software, can either halt a program or force it to behave in 

an abnormal fashion (that is, the program no longer obeys its specification) at any 

point in its execution, leading to potential inconsistencies in the system. Once 

such a failure has occurred and been detected, the system must be able to recover 

from the effects of the failure so that prior to the recommencement of normal 

operation the state of the system is once again consistent. 

What constitutes consistency is of course system and application dependent. 

However, it is assumed that there exists a set of a priori constraints upon the 

system which suffice to determine if any given state of the system is consistent or 

not. Furthermore, it is also assumed that given a consistent system state then 

the applications programs will maintain this state or move the system into a new, 

equally consistent, state. This implies that the possibility of design faults in the 

system is not being considered. Due to the complexity of modern computer 

systems, expecting them to be free of design faults may appear unrealistic, 

however, techniques exist to aid in coping with such design faults and since this 

topic is orthogonal to that considered in this thesis, the interested reader is 

referred to [Lee and Anderson 85]. 

When the resources being used by programs are distributed over a set of 

computers there can be further complications since there may be a high 

probability that some component in the distributed system is not functioning, or 

is not functioning correctly. While a distributed environment offers opportunities 
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that can be exploited to achieve higher reliability and parallelism, the problem 

remains as to how a distributed system should maintain consistency in the face of 

concurrency and failures. 

In addition to the complexities introduced by such problems as interference 

and failure, the task of writing a correct application program has itself become 

increasingly complex. As computers have been introduced into more areas of 

human endeavour, the tasks that they must perform have become more 

sophisticated. Consequently, programs and systems consisting of hundreds of 

thousands oflines of code are not uncommon. 

Overcoming all of these problems is extremely difficult and in order to stand 

any chance of success the overall task must be divided into more manageable sub­

tasks. This is the basic strategy of divide and conquer. By breaking the entire 

task into a set of pieces, each of which may in turn be further broken down, it is 

hoped that eventually the individual pieces become small enough (and simple 

enough) to be comprehendable and thus implementable as part of a computer 

program. This process of decomposition requires discipline in both the design and 

coding of such systems. Many disciplines, some with formal underpinnings, are 

available. In this thesis the use of one of these approaches is examined - the so­

called object-oriented paradigm [Jones 78]. This discipline will be described 

further in the following section. 

Having overcome the sheer complexity of the system in design terms, the 

problems of concurrency and failure still remain. In order to overcome these 

problems a computing abstraction known as an Atomic Action may be utilised. 

Atomic actions have several useful properties that make them well suited for this 

purpose. Section 1.2 of this chapter will briefly describe why the combination of 

atomic actions with the object-oriented paradigm is useful. 
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1.1 Object-Oriented Programming 

The fundamental construct used in object-oriented programming is the 

Object. An object is a logical or physical entity that is self-contained and which 

provides a well defined interface that permits orderly interaction between the 

object and other objects. Breaking the system down into a set of objects provides a 

way of managing the complexity of the programming task. Each object is an 

instance of some type and consists of some data structure (its instance variables) 

and a set of operations (its methods). The interface defines the visibility of these 

operations and instance variables, to other objects. An object-oriented program 

then consists of a set of such objects and a sequence of operations upon those 

objects. By structuring programs using the object-oriented paradigm various 

benefits ensue including modular design and the possibility of software 

reusability. In addition, since an object is self-contained and provides a well 

defined interface then the object-oriented style of programming directly supports 

the notions of data abstraction and information hiding, because the details of how 

an object is implemented is completely hidden (unless explicitly revealed). 

The above is not, however, a complete definition of object-oriented 

programming since it could equally well be fulfilled by any language that 

provides user-defined types (sometimes called abstract data types or ADTs), for 

example, Ada [Ada 80]. According to Stroustrup [Stroustrup 87a], what 

distinguishes object-oriented programming from programming using user­

defined types, is the ability to make the commonality between various types 

explicit. Thus two types representing specific shapes (say a circle and a square) 

could be specialisations of a more generic type shape, and thus may have many 

operations in common that can be shared. Such commonality is expressed in 

object-oriented programs via inheritance. 
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Perhaps the most well known object-oriented language and system is 

Smalltalk-80"" [Goldberg and Robson 83]; however, there are several other 

systems and languages that claim to be object-oriented, for example, Clu [Liskov 

et al. 79], CommonLoops [Bobrow et al. 86], Flavors [Moon 86], C++ [Stroustrup 

86], Objective-C [Cox 86], and Trellis/Owl [Schaffert et al. 86]. In fact the earliest 

such language is Simula-67 [Birtwhistle et al. 73] which, while being based upon 

Algol-60, pioneered many of the features considered essential in an object­

oriented language. Its use of classes to define types and the notion of virtual 

functions which enable the specialisation of inherited capabilities have been 

carried over into C++. 

Object-oriented programming has been an active area of research for many 

years, and there are many notable systems and languages that claim to support 

it. However, there does not as yet appear to be an agreed definition of precisely 

what object-oriented programming is. For the purposes of this thesis it is 

assumed that for a programming language to be called object-oriented it has at 

least the following properties: 

• Data Abstraction. The available set of operations provided by a type 

provides the only means by which instances of the type (objects) may be 

manipulated. The user of the type usually does not know how the operations 

are implemented nor how the type is represented. Data abstraction allows 

the separation of the abstract behaviour of a type from its concrete 

implemen tation. 

™Smalltalk is a Trademark of Xerox Corporation. 
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• Sub-Typing. New types can be composed out of existing types by deriving a 

new type from an old type. The newly created type is said to be a sub-type of 

the existing type (which is referred to as the base type of the new type). 

• Inheritance. When a new type is created by derivation from an existing type 

it can inherit the attributes of the parent type. These inherited attributes 

may be left unchanged in the new type, or the new type may provide 

suitably modified versions of any of the attributes so that they are more 

applicable to instances of the new type. If a new type can have more than 

one parent type then it can inherit properties from all ofthem. 

This definition of object-oriented programming is also in accordance with 

that of Wegner [Wegner 86] who states that: 

object-oriented data abstractions 

+ abstract data types 

+ type inheritance 

For the purposes of this thesis these properties serve to define object­

oriented programming. Another property often assumed necessary, that of 

message passing, is not considered to be required here. Thus the definition allows 

languages based on procedure calls rather than message passing to be object­

oriented. Examples of such languages include Trellis/Owl, and C++. 

1.2 Atomic Actions 

Atomic actions are programmer defined sequences of operations upon 

objects that have three highly desirable basic properties that make them well 

suited as a method of structuring software to simplify the problems caused by 

both concurrency and failure (section 1.4 will describe exactly what faults are 

expected to be tolerated). These properties are: 
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• Failure Atomicity. Either all of the operations that constitute the action 

happen or none of them do. That is, if the action succeeds (commits) then all 

of the operations upon any objects manipulated under control of the atomic 

action will have been performed. If the actions fails (aborts), the effect is as 

though none of the operations had been performed. 

• Concurrency Atomicity. Individual actions appear to execute in some serial 

order despite the fact that they may in reality have been executed 

concurrently. This property is also known as Serialisability. The effect of 

this property is to give the illusion that the constituent operations of the 

atomic action happened instantaneously from the point of view of other 

atomic actions. 

• Permanence of Effect. Once an atomic action has successfully terminated, 

its results are permanent. This usually requires the implementation of 

stable storage. 

Thus, by the use of atomic actions the programmer is freed from the burden 

of worrying about the undesirable effects of concurrency and failure upon the 

application, since the atomic action support system provides capabilities that 

automatically handle the problems. 

1.3 Distributed Systems 

The rapid rise in the number of distributed systems in the past decade can 

be attributed to two major forces. Technological improvements in the area of 

Very Large Scale Integration (VLSI) have made it possible to provide individuals 

with more computing power on their desktop than was available from an entire 

room full of equipment a mere decade ago. In addition, as the performance of 

computers has increased, the size and cost of them has decreased. As a result a 

modern personal workstation dedicated to a single user is capable of delivering 10 
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million instructions per second (Mips) - a far cry from the days of the old 

centralised, shared (and usually heavily overloaded) mainframe. 

Coupled with this advance in computer technology has been an similar 

advance in communications capabilities. Currently, Local Area Networks 

(LANs) such as Ethernet [Metcalfe and Boggs 76] are capable of transmission 

speeds of 10 Megabits per second. This fact, coupled with the very low error rates 

that such networks possess, makes distributed systems a viable and cost-effective 

alternative to the traditional centralised system in many environments. 

In addition, real world problems are themselves often distributed. For 

example, banks typically have many branches dispersed over very large areas. 

Such geographical distribution, because of the poor response times that might 

otherwise result, often motivates the distribution of computing facilities so that 

they are adjacent to their particular users. These issues will be covered in more 

detail in the following sections of this chapter. 

What Constitutes a Distributed System 

There are no hard and fast guidelines or definitions of what precisely 

constitutes a distributed system. According to Enslow [Enslow 78], distributed 

processing systems have five principle components: 

• A multiplicity of general purpose resources, both physical and logical, that 

can be assigned to specific tasks dynamically. General purpose is important 

here so that systems that contain specialised processors to handle 

inputloutput, for example, are excluded. 

• Physical distribution and interconnection. This requires communications 

over some link using a cooperative protocol. Systems that operate in a 
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Master/Slave relationship are not allowed because of the lack of autonomy 

such a relationship implies. 

• A high-level operating system that unifies and integrates control of the 

distributed components. This does not imply that each component system 

must employ the same operating system. Rather each system is allowed to 

execute its own, but there is a well defined set of policies that governs the 

integrated operation ofthe distributed system as a whole. 

• Transparency. The existence of the distributed system should be 

transparent to the user unless the user needs to know of the distribution for 

specific reasons (for example, to use local resources for efficiency). Services 

must thus be named in some generic fashion. 

• Cooperative autonomy. Each component is an autonomous entity in its own 

right which agrees to cooperate with others to achieve some purpose. 

Agreement is important here; systems must be free to reject requests for 

service at any time regardless of previous behaviour. 

This definition is overly strict and means that a distributed system requires 

distributed hardware, distributed control and distributed data. 

Sloman [Sloman 87] relaxes this definition slightly, particularly with 

respect to transparency and concludes that: 

ttA distributed processing system lS one m which several 

autonomous processors and data stores supporting processes 

and/or databases interact in order to cooperate to achieve an 

overall goal. The processes coordinate their activities and 

exchange information by means of information transferred overa 

communications network." 
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This latter definition captures the essential qualities of a distributed 

system. Such a system is considered to be made up of a number of autonomous 

nodes (abstract computers) connected by, and communicating over, some 

communications medium an example of which is illustrated in Figure 1-1. New 

Network 

Figure 1-1: A distributed system 

nodes may be added (though not removed except In special cases) to the 

distributed system at any time. 

Each node (Figure 1-2) consists of one or more processors, together with 

associated storage (memory) that is either permanent or volatile. Permanent 

storage has the property that it can be assumed not to lose its contents when the 

node fails (more shall be said about node failure shortly). Thus permanent 

storage is stable. Some techniques for building stable storage are described by 

Lampson and Sturgis [Lampson and Sturgis 79] and will only be briefly described 

here. Their approach builds stable disk storage using pairs of conventional 

magnetic disks that are assumed to fail independently of one another. Each disk 

pair represents a single logical disk. Each real disk is carefully updated. Careful 

updating requires that each disk is updated in turn and is also read immediately 

afterwards to ensure that the update was successful. Such an approach ensures 
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Figure 1-2: The structure of a node 

11 

that there is a high probability that at least one copy of the data is correct. 

Increased confidence can be gained by using more than two disks. Alternative 

approaches to stable storage are possible; for example, Banatre has built such 

stable storage using stable memory instead of disks as part of the Enchere project 

[Banatre et aI. 83]. In contrast to permanent storage the contents of volatile 

storage are always assumed to be lost when the node fails; such storage is usually 

implemented in the main memory of the computer. 

The notion of node autonomy is also very important. Any node is free to 

manage its own resources in any way it sees fit. All of the resources of a node are 

wholly under the control of that node and furthermore are only accessible and 

usable to others through the cooperation of the node. Nodes may not be available 

for a variety of causes, including failure and administrative reasons. However, 

when they are available they are willing to cooperate with other nodes in a 

fashion defined by the interfaces they present to those other nodes. 
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The Advantages of Distributed Systems 

It is an inevitable fact of human nature that there will always be a 

requirement for any system to support more users, do things more quickly and 

more reliably, and perhaps most importantly to do things less expensively. 

Distributed systems are expected to meet these objectives in a way that 

conventional centralised systems cannot. In particular, distributed systems 

provide: 

• Reduced Costs. Processing power and memory is cheap and getting cheaper 

each year. High quality printers and other specialised devices are not. The 

ability to share expensive peripherals whilst distributing processing power 

to where it is needed is both useful and cost effective. 

• Flexibility and Extensibility. Should the system need extending for some 

reason (say to add in some new specialised device) it is usually easy to add 

another node into the distributed system. Such flexibility is not generally 

available with conventional centralised systems. In addition, by utilising 

standard protocols, equipment from different manufacturers can be 

incorporated, thus reducing the dependency on a single manufacturer. 

• Availability. When any part of a centralised system fails then the entire 

system usually fails with it. Distributed systems can overcome this since 

individual nodes may fail without necessarily affecting the rest of the 

system. Furthermore if resources are replicated then the failure may not be 

apparent to users of the system. 

• Performance. This encompasses both the areas of response time and 

throughput. Centralised systems usually have a fairly fixed performance 

characteristic that can only be altered in relatively static ways, for example, 

by upgrading to the next model of CPU. In addition this path is often 
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limited - there are only a finite number of faster models of CPU. In general 

distributed systems do not suffer from this problem since to increase 

performance another node can be added in to the system usually wi th little 

trouble. 

• Local Control. By allowing localised control over data and processing the 

system can be made more sensitive to local needs. In addition expecting a 

site to relinquish control over its data may be unrealistic. 

The Disadvantages of Distributed Systems 

Distributed system may have advantages over centralised systems, but they 

also have disadvantages, which include: 

• Operating Costs. With a central site operating costs can be kept to a 

minimum since all of the trained staff are often located in one place. With 

distributed systems many more people may need to be involved to provide 

local support. In addition there are various problems concerned with purely 

operational matters, such as who is responsible for safeguarding the data by 

making backups periodically. In the centralised case the answer is simple; 

it may not be so for distributed systems. This leads to the observation that 

distribution often brings administrative headaches with it. 

• Development. Developing a distributed application is a considerably more 

complex task than developing a non-distributed one (which is itself 

complex). Indeed the craft is still a topic of active research. Enforcing 

standards may also prove difficult, together with trying to overcome the 

tendency to Ire-invent the wheel' at each site. 
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• State of the Art. Distributed systems are currently regarded as being State 

of the Art. As such, few people in the real world are willing to be guinea 

pigs! 

Despite these problems, the growth of distributed systems is continuing. As 

more knowledge is accumulated through research and commercial experience of 

such systems, this growth is likely to continue for many years to come. 

1.4 Programming Distributed Systems 

Programming large complex applications has already been described as a 

difficult task. Constructing distributed applications is even more difficult due to 

the additional problems that distribution brings. It is one of the propositions of 

this thesis that the adoption of the object-oriented programming approach eases 

the programming of such distributed applications. Having structured the 

application program as a sequence of operations upon some set of objects, it should 

not matter to the programmer where in the distributed system the actual objects 

are located. Given adequate programming tools, programs that access purely 

local objects should look no different to those that access objects at other nodes. 

Thus, programming a distributed application becomes no more complex than 

programming a centralised application. 

Distributed systems appear to have the potential for increased reliability 

over conventional centralised systems since they no longer possess a single point 

of failure. As each component in the distributed systems is assumed to be 

autonomous, failures in individual components should not cause failure of the 

entire distributed system. This is an important gain which can be exploited by 

providing appropriate levels of redundancy so that the distributed system can 

behave as if the failure had not occurred, or alternatively, the system may 

continue to operate but provide a degraded level of service. Even failure of the 
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network itself need not be catastrophic since local processing is likely still to be 

available. 

Unfortunately, since failures do not typically affect the entire distributed 

system, then without care it is possible for the system to end up in an inconsistent 

state as work proceeds at non-faulty nodes unaware of problems elsewhere in the 

distributed system. In order to overcome these problems, applications should be 

structured as atomic actions, whose properties ensure that the applications 

complete successfully or appear not to have executed at all. Thus by using the 

object-oriented programming approach, the overall complexity of the 

programming task has been eased, and when this approach is used in 

combination with the atomic action abstraction, the problems of failure and 

concurrency are also eased, leaving the programmer free to concentrate on the 

task at hand. 

The model of distributed systems adopted by this thesis regards failures of 

the processor or volatile memory as failures of the entire node (recall that it is 

assumed that permanent storage never fails). If a node fails (crashes) it is 

assumed to be equivalent to halting the processor; that is, the node behaves in a 

fail-stop fashion [Schlicting and Schneider 83]. After a crash the node is repaired 

within some finite period of time and restarted (the node is said to have 

recovered). 

Node behaviour is thus classified as correct if the node is functioning; 

tolerable if it crashes and recovers, and intolerable otherwise. Thus, in general, 

permanent removal of a node from the network (except when it can be guaranteed 

that the node was idle and no longer needed) is classified here as intolerable 

behaviour. Hence, the requirement made earlier that nodes could not be removed 

from the distributed system and that nodes must be repaired within some finite 

period of time. 
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It is further assumed that the communication system itself can cause 

problems, possibly delivering messages out of order, delaying messages for 

arbitrary periods, corrupting messages, or even deleting messages entirely. 

However, it is assumed that by appropriate use of checksums (or some other 

similar technique) corrupt messages can be detected with high probability and 

rejected. Furthermore, by including the addressing information in the checksum 

it will be assumed that messages will only be received by their intended 

recipients. Thus if a message arrives, it arrives intact and at the correct node. 

Other problems of message duplication, etc., can be handled in well-known ways 

by various protocols so will not considered further here. 

1.5 Aims of this Thesis 

This chapter has postulated that programming distributed applications 

following the object-oriented paradigm is a profitable approach to adopt. It has 

been further suggested that the use of atomic actions can relieve the programmer 

from some of the burden of worrying about the possible effects of concurrency and 

failure. This thesis concentrates on the provision of support for one particular 

property of atomic actions, the property of concurrency atomicity, within a 

distributed object-oriented system. 

The thesis shows how a concurrency controller can be designed and 

implemented in an object-oriented environment in a highly flexible manner that 

allows a wide variety of the available concurrency control techniques to be 

available to the programmer. In support of this claim a concurrency controller 

based upon a technique known as two-phase locking is designed, implemented, 

and its performance measured. Given this design, the thesis shows how user­

defined objects may utilise it in a simple fashion such that concurrency atomicity 

is achieved. 
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The means by which this support is provided follows the object-oriented 

programming approach by providing a basic concurrency control type from which 

a user's type can be derived in the standard object-oriented fashion. The same 

technique has been used to provide the other properties of atomic actions but this 

is not described here, see [Dixon 88] for details. Thus, the approach adopted in 

this thesis is intentionally evolutionary, not revolutionary. That is, it is not the 

aim of this thesis to design a new programming language or operating system 

that supports concurrency control directly, but rather to take advantage of 

existing language features and systems to implement the ideas. 

The thesis also describes how it is possible to override the basic system such 

that higher levels of concurrency can be supported based upon the programmer's 

knowledge of the object. 

1.6 Structure of Thesis 

In chapter two the problem of concurrency control is examined in greater 

detail, describing the problems that concurrency control sets out to solve; for 

example, lost updates and inconsistent retrieval. The chapter then describes many 

of the basic techniques by which this control has been achieved. 

Chapter three is devoted to the relationship between atomic actions and 

concurrency control. In particular the problems that need to be solved to make 

concurrency control in atomic actions work are described, together with the 

descriptions of the implementation of atomic actions in several existing 

distributed systems. 

Chapter four considers the object-oriented framework in greater detail and 

describes the characteristics such a framework has that makes it suitable for 

implementing reliable software. This chapter also describes the design of a lock­

based concurrency controller that allows individual objects to control their own 
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level of concurrency. Naturally the design is itself object-oriented and this 

approach is contrasted with the efforts of other researchers in this area. The 

chapter also deals with such issues as deadlock and lock conversion. 

Chapter five describes how the techniques and designs of the previous 

chapter have been implemented as part of Arjuna - a programming system for 

reliable distributed computing currently under development at the University of 

Newcastle upon Tyne. This chapter also gives some performance characteristics 

of this particular implementation. 

Chapter six deals with how to build alternative concurrency controllers in 

the object-oriented environment. It describes how type-specific concurrency 

controllers, that exploit the programmer's knowledge of the semantics of the 

operations supported by an object, can be built in a simple fashion, building upon 

the basic concurrency controller design presented in chapter four. In addition, the 

requirements such concurrency controllers place upon the underlying system, in 

order that the increased level of concurrency can be realised are also noted. 

The final chapter presents some conclusions from the work presented in this 

thesis and suggests where it should progress in the future. 
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Chapter 2 

Concurrency Control 
Techniques 

This chapter takes a closer look at the problems that concurrency control 

techniques should overcome and describes some of the basic techniques 

themselves. The topic of concurrency control has been an area of active research 

for many years and there is now a great depth of knowledge in the field (see 

[Kohler 81, Bernstein and Goodman 81, Bernstein et al. 87] for some 

comprehensive studies). In particular, a large number of different techniques 

have been proposed, some of which are general purpose, whereas others are only 

applicable in particular specialised applications. New techniques and subtle 

modifications to existing techniques are published regularly, particularly in 

database literature. The theory of concurrency control has not been neglected 

either, and sound mathematical proofs underlie many of the more popular 

methods (see for example, [Eswaran et al. 76, Papadimitriou 79, Bernstein et al. 

87]). 

Despite the wide choice of available techniques only a relatively small 

number have found favour so that many exist in purely theoretical form only. 

This chapter only concentrates upon these popular techniques; the interested 

reader will find many other techniques described elsewhere (see for example, 

[Buckley and Silberschatz 84, Goodman and Shasha 85]). 

The majority of the studies of concurrency control have been driven by the 

need to access shared, centralised databases. Consequently, many of the 

techniques are described in the literature in database style terms. For example, 

programs are assumed to be manipulating data items that are basically 

structured as physical or logical storage entities (files, records, pages); 
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furthermore the access to the data is usually only classified as a read or a write 

access. In addition, it is usually assumed that there is only a single concurrency 

controller for the system. This single controller handles all requests for access to 

all of the data items. This centralised approach makes certain concurrency 

control techniques easier to implement since at any given time the concurrency 

controller effectively has global knowledge regarding which objects are being 

accessed concurrently and by which programs. The ability to gather and use such 

knowledge makes the detection and handling of certain problems such as 

deadlock far easier. 

In the case of distributed systems it is still usually the case that a single 

concurrency controller exists per site. Furthermore, the global knowledge 

necessary to detect deadlock must still be acquired somehow, usually by 

comm~nication between the concurrency controllers of each site, despite the fact 

that gathering this information is a potentially costly operation. 

Consequently, in the descriptions that follow, these traditional description 

conventions are followed. In later chapters, however, the concurrency control 

techniques described in this chapter will be applied to the object-oriented
i 

environment that is really under consideration in this thesis. In particular, the 

notion of having only one concurrency controller per site will be abandoned in 

favour of having one concurrency controller per object. 

2.1 The Concurrency Control Problem 

Concurrency control is the act of coordinating the concurrent accesses by 

processes (it will be assumed in this chapter that user programs are executed by 

processes, which are the standard agents supplied by the operating system for 

this task) executing in parallel with each other to shared data such that those 

processes do not interfere with each other. Thus, concurrency control is a 

generalisation of the traditional problem of mutual exclusion found in operating 
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systems where certain data structures may only be manipulated by a single 

process at any moment in time. 

The general problem of concurrency control is, however, somewhat more 

complex than simple mutual exclusion since it is often unacceptable to allow only 

exclusive access to a data item for performance reasons. In addition, most 

programs require access to multiple data items, since the value of one data item is 

often used to calculate the value of another. In such a situation the program 

would need to ensure it had exclusive access to all of the data items, otherwise the 

consistency ofthe data could be compromised. 

Consistency is not the only goal of a good concurrency control technique. In 

addi tion it should also: 

• permit sufficient parallelism in the system. That is, the concurrency control 

technique should not overly constrain the potential parallelism. 

• not place too great an overhead on the system by consuming excessive 

amounts of resources. 

• place as few constraints as possible on program structure. 

2.1.1 Interference 

Interference between processes can occur in many ways but two of the more 

common problems are known as Lost Updates, and Inconsistent Retrievals. A 

simple example serves to illustrate these problems further: 

In this example (Figure 2-1) the deposit procedure places money into some 

account and is sufficiently trivial so as to appear to be correct. However, should 

two people attempt to execute this procedure in parallel it is possible for the 

account to become inconsistent. 
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procedure Deposit (Account, Amount) 
begin 

end 

current := Read(Account): 
current := current + Amount; 
Write (Account, current): 

Figure 2-1: Deposit procedure 
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Consider the following sequence of events: Customer 1 attempts to deposit 

£20 into the account, while customer 2 simultaneously attempts to deposit £100. 

If the account currently holds £100 then the expected result is that after the two 

deposits the account should hold £220. However, the following shows one possible 

interleaving of the execution of the two transfers that renders this required state 

impossible. 

Cl read the account balance and gets £100 

C2 reads the account balance and gets £100 

Cl adds the amount £20 and writes £120 back into the account 

C2 adds the amount £100 and writes £200 back into the account 

The end result is that the account contains £200, not £220 as it should. The 

problem is that C2 read the account prior to Cl completing its update. This 

phenomenon, known as the Lost Update problem, occurs when two processes both 

read an old value of some object and then both attempt to write a new value for 

the object. 

A related problem can occur if another process is simply retrieving the value 

of an object. Consider the concurrent execution of the transfer and print 

programs shown as Figures 2-2 and 2-3. 
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procedure Transfer(Accountl, Account2, Amount) 
begin 

end 

temp := Read(Accountl); 
Write (Accountl, temp - Amount); 
temp := Read(Account2); 
Write (Account2, temp + Amount); 

Figure 2-2: Transfer procedure 

procedure Printsum(Accountl, Account2) 
begin 

end 

templ:= Read (Accountl); 
temp2 := Read (Account2); 
sum := templ + temp2; 
output (sum); 

Figure 2-3: Print procedure 
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IfCl attempts to transfer £50 from account 5 to account 9, while C2 attempts 

to print the balance of the same two accounts, then the following interleaving of 

the execution of these two programs is possible (assume accounts 5 and 9 both 

initially contain £400): 

Cl reads account 5 and gets £400 

Cl subtracts £50 from the value it read and writes £350 to the account 

C2 reads account 5 and gets £350 

C2 reads account 9 and gets £400 

Cl reads account 9 and gets £400 

C2 prints the sum as £750 

Cl writes £450 into account 9. 

The problem here is one of Inconsistent Retrieval. Because C2 was able to 

retrieve the balance from account 5 after it had been updated, but retrieved the 

balance from account 9 prior to the corresponding update to it, then there 

appeared to be a loss of money. In actual fact no money had been lost and the two 

accounts are in fact correct. 
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2.2 Serialisability 

The examples in the previous section, albeit simple, nonetheless showed 

how concurrent execution can make programs that would normally function 

correctly if executed in isolation, behave in an inconsistent fashion. Note that the 

problems only arose because of the particular order in which the operations where 

executed at run-time. If executed in isolation and to completion the programs 

would have produced the expected results. 

Such problems can obviously be avoided by executing the programs strictly 

sequentially. However, the degradation of performance that would occur by doing 

so makes such an option untenable. What is required is some way of making the 

programs behave as if they had been executed sequentially. This is known as 

serialisability. More precisely, any given concurrent execution of a set of 

programs is serialisable if it is equivalent to some serial execution of the same 

programs. Attaining serialisability is the goal of many concurrency control 

techniques. 

Serialisable executions avoid the problems outlined in the previous section 

as follows. Lost updates can only occur if two processes read an old value of some 

object prior to updating it. With a serial execution one update must read the 

result of the preceding update regardless of the order the updates execute in. 

Since a serialisable execution is equivalent to some serial execution it cannot 

cause lost updates. 

Similar arguments can be applied to the problem of inconsistent results. 

Since in a serial execution the retrieval process executes either before or after the 

update, in a serialisable execution the inconsistency cannot arise. 
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There are many possible serialisable executions just as there are many 

possible serial executions - all of which are equally correct (assuming that the 

programs themselves are correct). However, there is no way to ensure that any 

particular serial order is followed without user intervention. 

2.2.1 Limitations of Serialisability 

Serialisability is not without its problems. In particular, it limits 

concurrency. Kung and Papadimitriou [Kung and Papadimitriou 79] show that it 

uses only syntactic information about programs and that higher levels of 

concurrency are possible if semantic knowledge is also used. In addition, 

serialisability introduces synchronisation problems of its own. For example, lock­

based approaches can encounter deadlock and also enforcing serialisability 

restricts the ability of programs to directly exchange messages since such an 

exchange would be unserialisable. 

Given these problems several researchers have considered non-serialisable 

approaches which are nonetheless consistency preserving. Some of these 

approaches are briefly examined in section 2.8 of this chapter. 

2.3 Concurrency Control Techniques 

Concurrency control techniques can be broadly classified into two distinct 

types: Pessimistic and Optimistic. Pessimistic concurrency controllers prevent 

potentially conflicting operations from occurring. In doing so they must always 

assume the worst possible case in that if two operations might conflict, the 

concurrency controller assumes that the conflict will happen. Optimistic 

concurrency controllers, on the other hand, allow free access to the data items and 

then attempt to determine if any conflict had occurred at some later point in time 

(usually when a program terminates). Thus, they assume (optimistically) that 

conflict will not occur, and only take action ifit actually does. 
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In general when the concurrency controller is presented with an access 

request for a data item it has three possible options open to it: 

• Accept. The access to the data item is granted immediately with the 

concurrency controller recording details of the request to support any later 

decisions it may be required to make. 

• Reject. The access to the data item is denied. When this occurs the process 

attempting the access is usually aborted. Rejection of a request implies that 

serialisability would be compromised if the request was granted. 

• Delay. The request cannot be granted immediately so the concurrency 

controller queues the request for later processing. This allows the 

concurrency controller some leeway with regard to later decisions but 

restricts concurrency. 

In addition to being pessimistic or optimistic, all of the concurrency control 

techniques can be broadly classified as Aggressive or Conservative. An aggressive 

concurrency controller avoids delays and always grants requests if possible. By 

doing so it may reach a situation whereby it ends up rejecting other requests 

(since they would violate serialisability) and thus must abort the process making 

those requests. 

Conservative concurrency controllers tend to delay requests. This makes it 

possible to re-order the request queue in the hope of permitting more operations 

to complete. This has an obvious effect on the potential level of concurrency. 

Aggressive concurrency controllers work well in environments where 

conflicts are rare, and hence conflicts that require rejection are likely to be rarer 

still. On the other hand if the rate of conflict is high a conservative approach may 
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be better since the concurrency controller could re-order the requests to cause the 

least number of rejections. 

2.4 Pessimistic Concurrency Control 

Pessimistic approaches prevent potentially conflicting operations from 

occurring concurrently. Such techniques are pessimistic because they always 

assume the worst possible case. Simply because there is a potential conflict does 

not always mean that the conflict will actually occur. Consequently pessimistic 

approaches tend to restrict concurrency somewhat more than is necessary. This 

section describes several pessimistic concurrency control techniques, the first of 

which, has almost become the standard method of implementing concurrency 

control. 

2.4.1 Locking 

Locking is the most widely used form of concurrency control mechanism for 

controlling access to shared resources. The basic mechanism is extremely simple 

and easy to implement and has been the method of choice in the majority of 

existing systems. 

In the simplest case there is a lock that is associated with each object which 

has to be acquired before the object can be accessed. If the lock is busy the 

requesting process generally must wait until it becomes free or be aborted. 

As stated, this is no different to the traditional mutual exclusion problem, 

and given that there was only a single lock associated with each data item, could 

be handled in the same way. However, to increase concurrency it is useful to 

distinguish between several different types of lock depending upon how the data 

item is to be accessed. At the simplest level this distinction is simply between 

Read access and Write access. When attempting to set a lock of a given type the 

concurrency controller must examine each of the locks currently set to determine 
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if setting the requested lock would cause a conflict. If the locks do not conflict 

then concurrent access to the data item is permitted, resulting in an increased 

level of concurrency. If conflict would occur then the request must be queued 

until all the existing locks that conflict with the request have been released. 

The notion of what constitutes conflict is fairly obvious in this case; the 

traditional policy that Reads conflict with Writes and Writes also conflict with 

other Writes is adopted. However, lock requests from the same process never 

conflict with each other regardless of the actual lock type. The reasons behind 

this are not immediately obvious. Consider some data item x; a process may read 

this object (and thus require and set a read lock) and may decide at some later 

stage to update the object (and thus require a write lock). Since reads and writes 

normally conflict the write lock could not be set until the read lock was released. 

To overcome this problem programs are allowed to convert their locks from one 

type to a stronger type (for example, a read lock can be converted to a write lock, 

but not vice-versa). 

Obviously, in the same way that it was possible to increase concurrency by 

defining locks to be of read or write types, it is likely that by introducing different 

types of lock (and by specifying precisely how such locks conflict with each other) 

a further increase the level of concurrency might be possible. This idea leads to 

the notion of Type-Specific locking. This topic will be returned to in chapters four 

and six; for now the discussion is restricted to the basic read and write types of 

lock. 

Processes that make use of locking must be well-formed; this requires that 

they: 

• lock an object prior to accessing it. 

• do not lock an object for which a conflicting lock already exists. 
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• eventually unlock all the objects they have locked. 

2.4.2 Two-Phase Locking 

The basic locking approach outlined above reveals little about when locks 

should be released. The most obvious approach - release the lock when 

manipulation of the object is complete - has the unfortunate side-effect of 

producing non-serialisable executions. To illustrate this consider the possible 

interaction ofthe processes PI and P2. 

PI: read[x]; write[y]; 

P2: write[x]; write[y]; 

If each object (x and y) was unlocked immediately after use the following 

execution history could occur: 

PI read locks x, reads its value and unlocks it 

P2 write locks x, writes it, and unlocks it 

P2 write locks y, writes it and unlocks it 

PI write locks y, writes it and unlocks it 

Such an interaction is clearly not serialisable since it appears that the 

execution of P2 follows PI as far as x is concerned, but precedes it as far as y is 

concerned. 

Two-phase locking is designed to overcome this problem. The idea is to 

divide the acquisition and release oflocks into two distinct phases as is shown in 

Figure 2-4. During the first phase (termed the growing phase) locks can only be 

acquired and not released. In the second phase (the shrinking phase) locks may 

only be released and no new ones acquired. In a classic paper, Eswaran et al. 

[Eswaran et al. 76] proved that by following this approach then serialisability was 

guaranteed. 
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Growing phase 
Shrinking phase 

r----------- ................... . 

Locks 
held 

Time 

Figure 2-4: Two-phase locking 
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The fact that the shrinking phase may occur instantaneously (as indicated 

by the dotted lines) arises in an attempt to avoid the problem of cascading aborts. 

This will be considered in the next chapter. This latter approach is known as 

strict two-phase locking. 

2.4.3 Conservative Two-Phase Locking 

One of the major problems with two-phase locking is that the incremental 

acquisition oflocks can lead to a situation known as deadlock (of which more will 

be said in section 2.4.6). Basically, deadlock occurs when two processes wait for 

each other to release the resources the other holds. For example, PI may have 

locked x and be wanting to lock y, while P2 has locked y and wants to lock x. 

Obviously in such a case neither process is unlikely to make any progress. 

This problem can be overcome be pre-declaring all the necessary locks and 

acquiring them in one single operation. This is the approach adopted by 

conservative two-phase locking. Using this technique either all the requested 
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locks are granted or none of them are, thus the deadlock described above is 

impossible. Unfortunately, there is the possibility with this approach that a 

particular process will never proceed because all the locks it requires are never all 

available at the same time. 

Further complications arise with this strategy if the determination of which 

locks are required is decided dynamically. For example, in the program fragment 

of Figure 2-5 depending upon the value of the data item a then the program 

read (a); 

if (a < 0) then 
read (b) 

else 
read (c); 

Figure 2-5: Dynamic lock acquisition 

accesses either b or c. With pre-declaration, locks on both band c must be 

acquired regardless of the actual pattern of access. Finally pre-declaration really 

requires compiler support to determine all the objects manipulated, since leaving 

the choice up to the programmer is probably far to prone to error to be acceptable. 

2.4.4 Multi-Granularity Locking 

The locking protocols of the previous sections assume that there is no 

relationship between the data items being locked. However, in reality a data 

item could be a file, a record, or even an entire database. This leads to the notion 

of granularity; the relative size of an object. Here, a database has a coarser 

granularity than a file or a record. 

Granularity affects performance. Locking at a coarse level of granularity 

reduces overhead due to fewer locks being requested, but it also reduces 

concurrency since processes are more likely to conflict. For example, two 

processes could not concurrently modify different records in a file since both 
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would require write locks on the file and thus appear to conflict. The apparently 

obvious solution of always locking at the finest level of granularity is not a 

panacea ei ther since the overhead of doing so is likely to be significant. 

A solution to this problem is to use multi-granularity locking. Using this 

approach processes lock data items at an appropriate level of granularity for their 

purpose. This approach was suggested by Gray et al. [Gray et al. 75]. Essentially 

locks are considered hierarchical, such that setting an explicit lock at a coarse 

level implicitly locks all of the contained objects at finer levels. Thus a read lock 

at the file level automatically read locks all of the records in the file also. 

This is not the complete scheme, however, since there is also the need to 

reflect locks set at fine levels back at coarser levels. The reasons for this are as 

follows. Assume some process has write-locked several records in a file; in order 

to prevent another process read-locking the entire file (that is, setting a read lock 

at the next higher level) the process must indicate that locking is occurring lower 

down the hierarchy. One possible approach is to require that setting coarse locks 

causes all finer level locks to be checked for possible conflict. This would achieve 

the desired result but it imposes enormous overhead. An alternative approach 

introduces intention locks into the systems [Gray et aI. 75]. Prior to setting a lock 

at any given level, intention locks must have also been set on all coarser levels. 

Thus in order to write records in a file, a process must acquire intention locks on 

the database and the file (in that order). 

Locks are thus acquired starting at the coarsest level and working towards 

finer levels. They are released in the reverse order to ensure that there never 

arises a situation in which fine level locks are held but not coarse level ones. 

The conflict rules for multi-granularity locking are more complicated than 

those for simple read/write locking and are given below in Figure 2-6 (from 

[Bernstein et al. 87]). The notation ir and iw represents intention-read and 
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Held Lock Mode 
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Figure 2-6: Multi-granularity locking 

compatibility matrix 

intention-write locks respectively. The riw mode is a useful shorthand that is the 

same as owning both a read lock and an intention-write lock on the object. Its 

presence arises from the observation that programs frequently need both a read 

lock on a file (to be able to read the records within), and an intention-write lock so 

that it can write lock certain records to update them. 

Deciding at what level of granularity locks should be applied can be 

complicated. Iflocks are always set at the finest level there are no problems. The 

question arises though of when to set coarse level locks. One approach requires 

the concurrency controller to analyse requests to determine which level of lock is 

appropriate. For example, if a process requests many fine level locks, the 

concurrency controller can escalate the level to a coarser one (for example, from 

record level locks to file level locks). Unfortunately such escalation can lead to 

deadlock if two processes attempt to escalate write locks on records to write locks 

on files. 
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2.4.5 Multi-Version Locking 

One problem with any locking protocol is that write access precludes the 

possibility of read access since the two modes of access conflict with each other. 

One approach that overcomes this drawback is to maintain multiple versions of 

each object [Stearns and Rosenkrantz 81]. 

In the simplest case at most two versions of the object are maintained: a 

certified version and a temporary version. If a process wishes to write an object it 

creates a new version for its own use. Concurrent reads are permitted to read the 

old certified version. Since the old version is precisely the version that the failure 

recovery mechanisms need to maintain for their own use this approach can be 

quite attractive. 

Implementing the two-version scheme requires the use of certify locks, a 

compatibility matrix for which is shown below in Figure 2-7. 
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Figure 2-7: Two-version locking compatibility 

matrix 
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When a process terminates all of its write locks are automatically converted 

by the concurrency controller to certify locks. Since only a single write lock is 

allowed at any time, this ensures that a maximum of two versions of the object 

can exist. Furthermore after the update only a single certified version remains. 

Since read locks and certify locks conflict the attempt to convert a write lock to a 

certify lock is delayed until all read locks are released. 

The scheme can be extended to allow multiple uncertified versions, 

however, in general only a single certified version exists. 

2.4.6 Problems with Locking Protocols 

The major problems associated with lock-based protocols are due to the fact 

that processes can be made to wait forever. Rosenkrantz et al. [Rosenkrantz et al. 

78] point out that processes may wait indefinitely for four reasons: 

• Deadlock. 

• Infinite chain. This occurs if a process waits for a second, which in turn 

waits for a third, and so on as new processes enter the system. 

• Waiting for a non-terminating process. 

• Waiting for an infinite number of new processes that complete or abort. 

This can occur in the following fashion. Say PI waits for P2. A new process 

P3 starts and PI is made to wait for it also. P2 terminates but PI is still 

blocked waiting for P3, and so on. 

By far the major problem associated with locking protocols is the fact that 

they are prone to deadlock. Deadlock occurs when two or more processes wait for 

resources that will never become available. In this case the processes become 

blocked forever and, unless external action is taken, will stay that way. 
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One simple approach to overcoming deadlock is to detect that a given 

process has been waiting for a lock for a long time and assume that it must be 

deadlocked with some other process. Of course what constitutes 'a long time' is 

system dependent. In fact the process may not be deadlocked at all, but merely 

held up by some other process that is taking a long time to complete. 

Such problems can be overcome using a long timeout period. However, the 

longer the period the longer a deadlocked process must wait. Thus careful tuning 

is required to ensure that deadlocks are detected quickly enough but without 

falsely detecting deadlocks that are not really there. 

Usually, a better approach is to detect deadlocks precisely. Doing this 

requires the construction of a Wait-For Graph. A wait-for graph is a directed 

graph with each node representing a process. There is an arc in the graph from Pi 

to Pj if Pi is waiting for Pj to release some lock. Deadlock detection then amounts 

to detecting cycles in this graph. Once a cycle is detected the concurrency 

controller must break it by aborting one of the processes (any will do, although for 

example, some consideration about the amount of work already performed by 

each process can be taken into account). 

Building and checking a wait-for graph is a potentially expensive operation 

- even more so in a distributed system. Thus it is important to optimise when the 

deadlock check is initiated (that is, when the graph is built and checked). 

Rosenkrantz et al. [Rosenkrantz et al. 78] overcome these problems by using 

two protocols which they term Wait-Die and Wound-Wait. These protocols 

combine the notions of timestamps (described more fully later in this chapter) 

with two-phase locking. Rather than make the process simply wait when a 

conflict is detected, the concurrency controller adopts one of two basic policies: 
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• Wait-Die. If the requester is older than the process with which it conflicts it 

waits, otherwise it commits suicide and aborts. 

• Wound-Wait. If the requester is older then it attempts to wound the 

conflicting process, otherwise it waits. Wounding is an attempt to force the 

conflicting process to abort. This attempt may not be successful if the 

process was already terminating, but in either case the conflict is resolved. 

Both of these protocols give priority to older processes (the notions of process 

age being based upon the ordering of their timestamps) since in the Wait-Die 

approach the younger process aborts itself, while in the Wound-Wait approach the 

older process tries to force a younger process to abort 

2.4.7 Other Locking Protocols 

There are certain structures commonly used in databases that require 

specialised protocols to ensure that maximum performance is achieved. In 

addition certain data items are often accessed more frequently than others 

leading to so-called hot-spots. 

Specialised protocols have been developed for these situations including 

Tree-Locking protocols [Bayer and Schkolnick 77, Kedem and Silberschatz 81] 

amongst many others. Such protocols are considered no further in this thesis due 

to their specialised application environment. 

2.4.8 Timestamping 

A timestamp is simply a unique number that is drawn from a monotonically 

increasing sequence, and is assigned to a process. Often timestamps are derived 

directly from the value of the local system clock. The total ordering of 

timestamps ensures that if TSI and TS2 are two timestamps then either TSI < 

TS2 or TS2 < TSI. Timestamps are examples of what Rosenkrantz et al. 
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[Rosenkrantz et al. 78] call a valid numbering scheme. The serialisation order 

imposed by timestamp-based methods is that defined by the order of the 

timestamps themselves. 

Generating timestamps in a distributed environment can be handled simply 

by assigning each site a unique identifier that is concatenated with the value of 

the local site system clock to produce the timestamp. Given such an approach 

then all timestamps generated at one site appear to precede or follow all 

timestamps generated at another site, and thus form part of a total ordering 

In addition to their use in concurrency control, timestamps can also be used 

in deadlock detection to determine which process should be aborted to break the 

deadlock once it has been detected. 

2.4.9 Basic Timestamping 

The rules of timestamp-based concurrency control state that operations 

must be carried out in timestamp order, thus if any request arrives out of order it 

must be rejected. Basic timestamping concurrency controllers are thus 

aggressive in nature since operations are performed strictly first in, first out. For 

example, if two processes, one with timestamp 1, and the other with timestamp 5, 

had already manipulated some object x and a process with timestamp 2 attempted 

to manipulate the same object x it must be aborted otherwise the timestamp order 

would be violated. 

2.4.10 Conservative Timestamping 

Basic timestamping could abort a large number of requests if the order in 

which requests are processed by the concurrency controller differs badly from the 

timestamp order. Recall that a conservative concurrency controller attempts to 

queue requests to avoid this situation. Hence a conservative timestamp 
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controller queues requests for a while to see if any requests with earlier 

timestamps will arrive [Bernstein et al. 78]. 

Obviously the longer the delay imposed by the concurrency controller the 

less number of rejections should be generated. Unfortunately this slows the 

processing rate, implying that a compromise must be reached. In its ultimate 

form conservative timestamping produces a purely serial execution. 

2.4.11 Multi-Version Timestamping 

Multi-version timestamping was introduced by Reed [Reed 78, Reed 83]. As 

with multi-version locking the idea is to maintain multiple versions of each 

object. In Reed's scheme, object versions have a lifetime defined by two 

timestamps (pseudotimes in Reed's terminology). For example, an object might 

have the following history: 

<vO[tO,tl]> , <vl[t2,t3] >, <v2[t4,t5] > 

which implies that the object had value vO between pseudotimes to and t1, v1 

between t2 and t3, and v2 between t4 and t5. It is permissible for there to be gaps 

in the history for which no version is valid - for example, in the above history, t1 

and t2 need not be the same pseudotime, however, t1 must precede t2 in 

pseudotime order. 

Processes draw timestamps from a pseudo-temporal environment and it is 

these timestamps that determine which version of an object is visible to the 

process. 

New versions of an object are first created as tokens and are only converted 

into proper versions when the process terminates successfully. In addition the 

pseudotime interval during which any single version is valid can be extended by 

reading the version. Thus in the above example, if a process with a timestamp 
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greater than tl but less than t2 (say tl.5) read the object, then the validity of 

version vO would be extended from [W,tl] to [W,tl.5]. 

2.4.12 Mixed Approaches 

The techniques described so far in this chapter can be considered complete 

and pure. They are complete since they solve conflicts between reads and writes 

(r-w) and writes and writes (w-w) and are considered pure because they use the 

same technique to solve both types of conflict. 

It is, however, possible to design a concurrency controller that uses different 

approaches to tackle each of these two types of conflict, providing that the 

resulting integrated concurrency controller behaves in a consistent fashion and 

produces correctly serialisable executions. For example, in Bernstein and 

Goodman [Bernstein and Goodman 81] such an integrated controller is developed 

which uses two-phase locking for r-w conflicts and a derivation of timestamping 

called the Thomas Write Rule [Thomas 79] for w-w conflicts. Such mixed 

concurrency controllers will not be considered further. 

2.5 Optimistic Concurrency Control 

Optimistic concurrency control is based upon the premise that it is easier to 

apologise after the event than to ask permission before it. That is, whereas 

pessimistic approaches always obtain permission to use an object before they 

actually do so, optimistic approaches use the object and then determine at a later 

stage whether this has caused problems. The methods are optimistic because 

they assume that conflicts between processes are likely to be very rare such that 

checking for conflict later is likely to be much cheaper than preventing conflicts 

from occurring in the first place. 
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Optimistic approaches divide process execution into three stages: 

• Read Phase. During this phase processes read objects but only write to local 

copies that are not visible to others. 

• Validation Phase. Prior to making objects they have written visible to 

others, processes must be validated to ensure that no conflicts have 

occurred. 

• Write Phase. Assuming that validation was successful the local copies of the 

object replace the originals and become globally visible. 

In the following sections some optimistic concurrency control techniques are 

described. As yet none have been adopted in any system since the benefits (if they 

exist) have not been established. 

2.5.1 Serial Validation 

This concurrency control approach, described by Kung and Eobinson [Kung 

and Robinson 81], assumes that there is a single concurrency controller capable of 

collecting all of the information it requires in order to determine if conflicts have 

occurred during the concurrent execution of the processes in the system. 

During process execution this concurrency controller accumulates 

information about the read-sets (the objects read) and write-sets (the objects 

written) of each process. These sets are used during the validation phase to 

validate the process when it terminates. In addition, a monotonically increasing 

counter is used for timestamp-like purposes. 

The protocol proceeds as follows. When a process is started the value of the 

counter is read and the process is assigned this value as a timestamp. At the start 

of the validation phase, the counter is read again and is used to determine all 

those processes which have terminated since the process attempting validation 
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started. These processes are then the ones which could have invalidated any of 

the objects (by creating new versions of those objects) that the validating process 

has read. Thus the concurrency controller examines the write-set of each of the 

terminated processes to see if this set intersects the read-set of the validating 

process. If there is an intersection then an already terminated process has 

written a value after the currently validating process read it. In this case 

validation fails. Otherwise validation succeeds and the process enters its write 

phase at which point the counter is increased. 

Increasing the counter only after successful validation ensures that at 

validation time the concurrency controller can easily detect those processes that 

have terminated successfully since the validating process began. The validation 

phase and the write phase must be carried out inside a critical section to ensure 

consistent results; hence the method is termed serial validation. 

2.5.2 Other Optimisitic Methods 

Lausen [Lausen 82] has proposed a scheme integrating two-phase locking 

and the optimistic concurrency control of Kung and Robinson which allows 

processes to use either technique. His scheme requires that processes using two­

phase locking have the same three phases as the optimistic approach. 

Carey [Carey 87] has improved the performance of the standard serial 

validation algorithm by using timestamps instead of a counter. Also, by 

introducing multiple versions of objects, he has produced a protocol called multi­

version serial validation. 

2.6 Effects of Distribution on Concurrency Control 

All of the techniques described so far have been designed with a centralised 

system in mind. However, most will adapt to a distributed environment. Strict 

two-phase locking adapts the easiest since in order to grant a lock the local 
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concurrency controller only needs to know what other locks are currently held on 

an object. Since objects typically only live at one site (ignoring here the 

possibility that an object may reside at several sites, either in part or in total) all 

of this information is available. However, distribution compounds the problems 

of deadlock detection since it becomes considerably more expensive to produce a 

global wait-for graph from all of the local graphs held at each site. The cost of 

producing this graph implies that the initiation of the deadlock detection 

procedure should be undertaken less frequently. Furthermore, there is the 

possibility of phantom deadlocks. These are deadlocks that appear in a global 

wait-for graph due to the delay in building it. For example, after a site has 

transmitted its local graph to the deadlock detector several processes might 

terminate, thus releasing the locks that they hold. However, when the global 

wait-for graph is built these processes still appear in it and might appear to cause 

deadlock despite the fact that they have since terminated. 

Timestamp-based concurrency controllers are also easy to apply to 

distributed systems providing that the timestamps from all sites are totally 

ordered. A simple technique to ensure this has already been described in section 

2.4.8. 

An optimistic concurrency control technique has been adapted to a 

distributed environment by Ceri and Owicki [Ceri and Owicki 82] who have 

extended Kung and Robinson's serial validation scheme to a distributed 

environment. 

2.7 Adaptive Concurrency Control 

In his thesis, Robinson [Robinson 82] notes that given the proliferation of 

concurrency control techniques, choosing an appropriate one is difficult. 

Furthermore, the appropriate method could well change with system use. What 
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is required is some form of adaptive strategy that avoids commitment to anyone 

technique. 

Robinson's concurrency control scheme requires processes to generate 

requests to the concurrency controller for read, write, read/write and validate 

access to objects. Using these requests the concurrency controller maintains 

sufficient information about the types of access to objects and the set of objects 

accessed to enable it to decide how to reply to any individual request. Robinson's 

scheme is adaptive in that by selecting appropriate replies to requests it can 

behave in either an optimistic or a pessimistic manner. 

For each request the concurrency controller has four possible options:: 

• Wait. The requesting process is made to wait for all conflicting processes. 

• Kill. All conflicting processes are aborted. 

• Die. The requesting process is aborted. 

• Grant. The access is granted. This option is illegal in response to a validate 

request. 

The concurrency controller selects one of these options based upon whether 

it detects conflict and based upon the policy that is being followed. Thus two­

phase locking is equivalent to selecting wait for all responses if a conflict exists. 

Similarly the optimistic approach is obtained by selecting grant for read, write 

and readlwri te requests, and kill for validate requests. 

Unfortunately this scheme requires global knowledge of the system and 

Robinson deliberately aims it at an environment where there is some form of 

global object store where the concurrency controller and all shared objects reside. 
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This store is maintained by a global memory manager (GMM) that interacts with 

the concurrency controller. 

Another interesting aspect of this scheme is that the GMM maintains object 

versions so that processes that declare themselves to be read-only never need to 

interact with the concurrency controller at all. 

2.8 Non-Serialisable Approaches 

Many researchers have pointed out that serialisability is often a far 

stronger constraint than is really necessary. Hence there have been 

investigations into non-serialisable approaches. A concurrency controller that 

produces non-serialisable schedules must still, however, produce results that are 

consistent and correct. This section very briefly notes some of these efforts. 

Garcia-Molina [Garcia-Molina 83] has proposed the idea of semantically 

consistent schedules. Processes are divided into two types: one type requires a 

consistent view, the other type does not. Schedules are semantically consistent if 

those processes that need a consistent view see such a view. 

In the context of abstract data types, Allchin and McKendry [Allchin and 

McKendry 83] develop the notion of end of action serialisability which although 

serialisable at the abstract level is not so at the concrete level. They further allow 

non-serialisable behaviour at the abstract level by adding extra procedures to an 

object allowing information about object use to be gathered. That is, the object is 

informed when atomic actions that have used them, commit or abort. In the same 

area, Schwarz and Spector [Schwarz and Spector 82] uses semantic information to 

track dependencies between programs. 

Perhaps the most interesting (and complicated) approach is that ofSha [Sha 

et aI. 83, Sha 85] who has developed a model of consistency that is termed the 

relational model. As pointed out in [Sha et al. 88], when using non-serialisable 
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schedules it is no longer correct to assume that the execution of an action will 

always be consistent and correct even if the action itself is consistent and correct 

when executed in isolation. That is, when executing under a non-serialisable 

schedule the results of any execution could be different from any serial execution 

and so could prove to be neither consistent nor correct. In order to overcome this 

modular concurrency techniques are developed that are both consistent and 

correct. 

One such technique uses setwise serialisability to allow elementary 

transactions accessing different atomic data sets (partitions of the data such that 

the consistency of each set can be maintained independently of other sets) to be 

combined into compound transactions, the execution of which is generally not 

serialisable. 

Other work in this area includes that of Birman and Joseph [Birman and 

Joseph 87] who have proposed the notion of virtual synchrony which is a weaker 

consistency constraint than serialisability but which they argue is more 

applicable to distributed systems. With this scheme one event seems to happen at 

a time, system wide, although the actual execution is concurrent. Furthermore, 

event ordering is preserved in that if one event precedes another then everyone 

sees a consistent event ordering. Their work, and a similar notion, virtual time 

[Jefferson 85], provides an interesting departure from classic notions on 

serialisabili ty. 

2.9 Summary 

This chapter has surveyed some of the many techniques available to ensure 

that concurrent access to an object does not result in inconsistencies. Many of the 

basic techniques have been known for many years, and still more are being 

invented, usually to solve some specialised need. Despite this, most systems still 

use locking as their concurrency control technique, hence this chapter's 
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concentration on this approach. Even new distributed systems research projects 

such as Argus [Liskov 84, Liskov 88] (which will be described in chapter four) 

have persisted in using this approach. 

In reality the choice of which technique to use is complex. Some studies 

have been carried out (for example, [Franaszeck and Robinson 85, Tay et al. 85, 

Agrawal and DeWitt 85]) to determine the performance of the various approaches 

under different assumptions, but no conclusive evidence appears forthcoming. 

A general consensus of opinion is that in situations of high contention, lock­

based approaches are the most suitable despite their inherent problems. Whether 

optimistic approaches are truly viable has yet to be established. Robinson's 

adaptive approach appears highly flexible given an appropriate environment, 

however, as yet it has not been tested in anything other than a simple prototype 

research system. Certainly the most active area of research at the current time is 

in the area ofnon-serialisable techniques. 
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Chapter 3 

Atomic Actions and 
Concurrency Control 

The previous chapter described several of the available concurrency control 

techniques. In doing so emphasis was placed solely on the interactions of 

processes executing programs that referenced shared objects. It assumed a 

perfect environment in which failure never occurred and processes terminated 

correctly at all times. This was deliberate since it is part of the view of this thesis 

that the topic of concurrency control can be considered separately to that of 

handling failure. Such an assumption is of course clearly unrealistic in practice, 

so this chapter examines the concept of the atomic action and investigates the 

relationship that concurrency control has with it. 

First, however, the concept of the atomic action is examined in more detail 

describing why the concept is a suitable one to use in programming reliable 

distributed systems. Having done so the chapter then describes how many of the 

concurrency control techniques of chapter two can be utilised to provide one ofthe 

key properties of the atomic action abstraction - that of concurrency atomicity. 

This is followed by an appraisal of what it means for atomic actions to be nested 

and the requirements that this nesting places upon concurrency control. Finally, 

the implementation of atomic actions in several existing systems is described to 

illustrate the point that different concurrency control techniques can be (and are 

being) used in practice. 
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3.1 Atomic Actions 

The general concept of the atomic action has been around for many years. 

Probably the first reference to it was by Davies [Davies 73] under the name 

Spheres of Control. The name atomic action was coined by Lomet [Lomet 77] who 

described atomic actions as a means of process structuring, synchronisation, and 

recovery. 

Davies' concept was adopted by the database community where it was 

rechristened the transaction, a term which is now considered synonymous with 

atomic action in most circles. The popularity of the abstraction of the atomic 

action can be attributed to its three fundamental properties: 

• Failure Atomicity. 

• Concurrency Atomicity. 

• Permanence of Effect. 

Failure atomicity ensures that an atomic action can only terminate in two 

ways: either normally, committing its results; or abnormally, aborting and 

producing no results at all. The net effect of the execution of an atomic action is to 

move the system from one consistent state to another if the atomic action 

commits, or to leave the system in the same consistent state that it was in before 

the atomic action started should the atomic action abort. The provision of this 

property is usually by means of backward error recovery, which is invoked 

whenever an error is detected in the system. Backward error recovery requires 

that the states of any objects manipulated under the control of the atomic action 

are restored to the corresponding states each object was in prior to the start of the 

atomic action. Various techniques can be used to achieve this state restoration. 

The simplest records the prior state of each object as a checkpoint, and restores 

this state if the atomic action aborts. Alternatively, the sequence of operations 
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performed upon each object can be recorded as an audit trail, allowing the 

operations to be undone if required. Such state saving and recovery can often be 

made automatic thus freeing the programmer from this burden. 

One problem with the backward error recovery approach involves atomic 

actions that interact with the real world. In such situations it may be impossible 

to effectively restore the prior state of the system. For example, if an automatic 

cash dispenser gives out money as part of the execution of an atomic action in 

response to a client's request, then in this case simple state restoration is 

impossible should the action be aborted since the money has already been 

dispensed! 

One possible solution to this particular problem is to delay performing such 

unrecoverable operations until the action is certain to commit and only perform 

such operations at that time. Essentially the operations need to be recorded as 

intentions and when the action commits all such intentions are performed only 

then. 

Instead of attempting to perform backward error recovery another possible 

approach is that of forward error recovery [Melliar-Smith and Randell 77]. The 

idea here is not to restore the state to one which existed at some time in the past, 

but to attempt to modify the existing erroneous state such that it becomes 

consistent again after an error has occurred that caused the atomic action to 

abort. One form of forward error recovery is based upon the use of a compensating 

action which can be started and which attempts to undo the effects of the failed 

action. Obviously the success of this compensation effort depends critically upon 

the operation performed which can make writing such compensating actions 

difficult. 
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Forward and backward error recovery can be used in conjunction with each 

other. When used in this way, forward error recovery allows efficient handling of 

expected errors, with backward error recovery handling the more general errors 

that were not anticipated, or were deliberately ignored. Forward error recovery is 

a far more complex task that cannot usually be performed automatically, thus 

failure atomicity is implemented by utilising backward error recovery in the 

majority of existing systems. Forward error recovery does have it place; 

particularly in asynchronous systems, however, such systems are beyond the 

scope of those under consideration in this thesis, and so the interested reader is 

referred to [Campbell and Randell 86] and [Shrivastava 85] for further 

enlightenment. 

Given that an atomic action has completed successfully, external 

consistency (defined shortly) requires that the effects of the atomic action are 

permanent and will not be lost due to a subsequent failure of the system. This 

permanence of effect property requires the provision of stable storage; storage 

that will survive failures of the system with a very high probability of success. 

Such storage is the most reliable (and so also the most expensive to use) storage 

available and can be considered to be at the top of a storage hierarchy that has at 

its bottom normal, volatile computer memory. There are, of course, intermediate 

levels of storage that provide various degrees of susceptibility to failure, however, 

for the purpose of this thesis, the basic model outlined in chapter one will be 

followed and it will be assumed that storage is only either volatile or stable. 

Lampson and Sturgis [Lampson and Sturgis 79] detail the design of such stable 

storage using pairs of conventional magnetic disks and an implementation of 

their technique in a UNIXt environment is described in [Anyanwu 84]. An 

tUNIX is a registered trademark of AT&T in the USA and other countries. 
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alternative technique for implementing stable storage using stable memory has 

been used by Banatre [Banatre et al. 83] as part of the Enchere system. In 

addition, work was carried out at MIT as part of the SWALLOW project 

[Svobodova 80, Svobodova 81] on using write-once optical discs for stable storage. 

The second property of atomic actions, concurrency atomicity, ensures that 

computations structured as atomic actions do not interfere with each other. It is 

the provision of this property that is the primary concern of this thesis. In 

addition, atomic actions have the property that they are consistency preserving. 

If a system is consistent prior to the start of an atomic action then the system will 

also be consistent after the action has terminated (even if the action aborted). Of 

course during the execution of the action such consistency will probably be 

violated temporarily. For example, if the transfer procedure of the previous 

chapter was executed under the control of an atomic action the constraint that the 

sum of the two accounts was constant would be maintained before and after the 

action executed. However, during the actual execution this constraint is 

temporarily violated as money is moved between the two accounts. Such 

constraints are user-defined and are more precisely termed internal consistency 

constraints, since they define the correctness of the actual internal state of the 

system. 

In addition to internal consistency, atomic actions should also preserve 

external consistency. That is, the user's perception of the state of the system 

conforms with the actual state of the system. This implies that once a user has 

been informed that some action has been performed it must not be undone 

otherwise the user's perception of the system would be inconsistent with the true 

state of the system. 
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Such perception is, of course, influenced by the nature of the communication 

between the system and the user. If all communication can be delayed until an 

action commits then there is no problem. However, some actions will invariably 

solicit input from the user during their execution. Thus the user perceives the 

progress of the action through the system by the output it produces and the input 

it demands. In such cases feedback from the system is vital to inform the user of 

the final outcome of the action. One interesting approach to this problem was 

adopted by the TABS project at Carnegie-Mellon [Spector et aI. 85b]. Within this 

system output could be displayed in three different fashions. While the action 

was executing the output was displayed with a grey background indicating its 

tentative nature. If the action successfully committed the output was redrawn in 

black, otherwise if the action aborted, lines were drawn through the output to 

indicate that it had been canceled. This latter approach was felt to be a more 

communicative way of informing the user that an action had aborted rather than 

simply erase the screen making the output disappear which could have been very 

disconcerting to the user! 

3.2 Atomic Action Operations 

The description of atomic actions given in the previous section leads to a 

natural requirement that at least the following operations must be implemented 

in order to support them: 

• Begin Action 

• Commi tAction 

• Abort Action 

the following sub-sections outline the support from the system that each 

operation requires. 
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3.2.1 Begin Action 

Atomic actions are started by a process executing the Begin Action 

operation. Failure atomicity requires that any object manipulated by the process 

after executing this operation must record sufficient information so that the 

initial state of the object may be restored later if needed (assuming a backward 

error recovery approach has been adopted). Often this is handled by taking a 

checkpoint of the initial state of the object the first time it is modified, which can 

be restored later if the action aborts. 

When an atomic action is begun it is allocated a atomic action identifier that 

identifies the action to the system. This identifier is supplied as an implicit 

parameter to all of the operations that the action executes from now on, thus 

ensuring that all of the effects of the action can be identified should the action 

need to be aborted. This identifier may also used by the concurrency controller to 

enable it to make any decisions about the permissible level of concurrency. Such 

an identifier needs to be globally unique across the entire distributed system so 

that no two actions have the same identifier. Traditionally such identifiers are 

generated by concatenating together an identifier that uniquely identifies the 

creating site, and the current (unique) value of the local system clock. 

Depending upon the system, processes may not have to explicitly start an 

atomic action themselves. Rather it may be implicit with the start of the process 

itself. Handling action commencement in such an implicit fashion guarantees 

that all processes in the system run as atomic actions and is thus less prone to 

programmer error. 
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3.2.2 Commit Action 

Commit Action indicates the successful termination of the atomic action. 

This normally requires that the persistent objects (that is, those objects whose 

lifetime is not restricted to the lifetime of the action) affected by the atomic action 

are made permanent and any concurrency control information that has been 

collected may be usually be discarded. It may not be appropriate to discard the 

concurrency control information if the atomic action was nested within another 

atomic action. This latter point will be covered further in section 3.6 of this 

chapter. 

3.2.3 Abort Action 

Abort Action indicates that the computation executing under the control of 

an atomic action has failed for some reason and any changes the computation has 

made to the system state must be undone. Thus the state of each object modified 

within the scope of the action must be recovered in an appropriate manner. In the 

case of backward error recovery this amounts to restoring the prior state of each 

object. 

Depending upon the system this recovery may require a lot of work, or 

virtually none. For example, if the current state of an object was maintained in 

volatile memory this state can often simply be destroyed since the proper version 

to restore to usually still exists on stable storage. On the other hand, if the 

current state has already been propagated to stable storage, either partially or 

fully, the prior state must be reinstalled on stable storage as the current version. 

3.3 Distribution and Two-Phase Commit 

Whether an action commits or aborts it is essential that the states of all of 

the objects that the action modified are also either committed or recovered. 

Ensuring this uniformity requires the use of a special commit protocol. The most 
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common protocol is the two-phase commit protocol [Gray 78]. As its name implies 

this protocol is split into two distinct phases. During the first phase the initiator 

of the commit protocol (the co-ordinator) broadcasts prepare messages to each of 

the objects (the components or participants) and waits for each to reply. When a 

participant receives the prepare message, if it is willing to commit, the 

participant saves sufficient information on stable storage to allow it to commit or 

abort under instruction from the co-ordinator and replies with an ok vote. Once in 

this state the participant has lost the right to act unilaterally and cannot proceed 

further until directed by the co-ordinator. If the participant is unwilling to 

commit it replies no. 

The co-ordinator gathers all of the replies from the participants and then 

starts the second phase of the protocol. If all of the votes were ok, the co-ordinator 

records a commit flag on stable storage and broadcasts commit to its participants. 

If any vote was no, or no reply was received from any of the partici pan ts, then the 

co-ordinator records no on stable storage and broadcasts abort only to those 

participants that had replied ok. In either case the co-ordinator waits for 

acknowledgments from the participants it had sent messages to in the second 

phase, before it then terminates. Participants await the decision of the co­

ordinator and act accordingly before acknowledging. This protocol is shown by 

the state diagrams of Figures 3-1 and 3-2 (which omit details of failure 

processing). In these diagrams the state transitions are labeled with the input 

messages that cause the transition, and the output messages that are sent as a 

result of the transition taking place. Messages labeled with an asterisk indicate 

messages sent to, or received from, all participants, while messages labeled with 

dashes (--) are null messages. 

The above discussion has assumed that once the protocol has been started no 

failures will occur in the system. In actual fact, failures can occur, and the 

protocol will still ensure that all the participants take the same action. For 
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Figure 3-1: Co-ordinator state diagram 
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abort/ok 

abort/--

Figure 3-2: Participant state diagram 

example, if the co-ordinator crashes during its first phase then upon recovery the 

action is considered aborted, a fact that can be discovered by the participants if 

they query the co-ordinator to determine the outcome of the action (something 

they might do if they have not received the decision from the co-ordinator after 

some period of time). If the co-ordinator fails during phase two, then upon 

recovery of the co-ordinator, the status of the action can be determined by the 

commit information recorded on stable storage at the end of phase one, and the 
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protocol can proceed. Similar arguments can be applied to failures of the 

participants, but are not discussed further here. 

While two-phase commit is robust, it has an unfortunate problem in that it 

can become blocked if a participant, having responded ok to the co-ordinator, does 

not receive the decision of the co-ordinator for some reason (this can occur if the 

co-ordinator has crashed, or the network has lost or delayed the message 

containing the decision, etc.) since it has lost the ability to act unilaterally. 

Various modifications have been attempted to overcome this deficiency including 

the development of so-called non-blocking commit protocols such as the three­

phase commit protocol [Skeen 81]. Other modifications have also been made in an 

attempt to make the protocol more efficient [Mohan et al. 83] but will not be 

discussed further. 

3.4 Atomic Action Nesting 

The ability to compose new programs out of existing ones is a useful 

technique. This reusability cuts down costs and reduces errors since existing 

(hopefully working) programs are used to construct new ones. The ability to 

compose existing atomic actions into new ones is also equally useful. Without it 

there would be no way to take two existing actions and combine them into a new 

third action, short of copying the code from each into the new action - a potentially 

costly operation both in terms oftime and the possible errors that might result. 

Another problem is that such enlarged actions might take a long time to 

execute; so long in fact that the 'all or nothing' property of atomic actions becomes 

a liability. For example,if the action requires longer to complete than the time 

that the system executes without a failure occurring somewhere, then the long 

running action can never complete. 
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Such problems can be overcome by allowing atomic actions to be nested as 

illustrated in Figure 3-3, which shows purely sequential nested actions, and 

Figure 3-4 which shows concurrent nested actions. Note that, by the definition of 

Begin Action Commit Action 
B B 

Begin Action 
A 

Begin Action Commit Action 
C C 

Commit Action 
A 

Figure 3-3: Sequential nested atomic actions 

Begin Action 
A 

Co-Begin 
C 

• 

B 

C 

Co-End 
C 

Commi tAction 
A 

Figure 3-4: Concurrent nested atomic actions 
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an atomic action, any such nesting is proper in the sense that the executions of 

the nested actions Band C are always totally encompassed by the execution of the 

enclosing action A. 

Such nested actions (or sub-actions as they are sometimes called) behave 

precisely like top-level actions. That is, they may fail independently of one 

another and are synchronised in the same way top-level actions would be (with 

minor provisos that will be explained shortly). However, stable storage is usually 

only affected when the top-level action commits. The reason for this lies in the 

fact that even if Band C commit there is always the possibility that A might 

abort, requiring that the effect on the system is as if Band C had never executed 

at all. If the commitment of the nested actions updated stable storage, these 

updates would then have to be undone. Typically, since updating stable storage is 

an expensive operation, the effect of the commitment of a nested action is only 

visible in the volatile version of an object. The stable version is only updated 

when the top-level action commits. 

Nesting actions in this fashion has several advantages. Firstly, the use of 

concurrent actions can exploit the potential parallelism available in the system; 

thus top-level actions may execute faster than if they had been structured using 

the sequential approach. However, the effects of the parallelism may not be as 

great as might be expected depending upon the objects manipulated by the sub­

actions. If all of the sub-actions manipulate the same objects then the 

concurrency controller may force a strict serial execution of the sub-actions since 

sub-actions are serialisable in precisely the same way as other actions. The nett 

effect is that the overall execution time is greater than if a sequential approach 

had been used due to the concurrency control overhead. 
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Secondly, and perhaps more importantly, nesting provides a means of 

isolation. That is, simply because one of the sub-actions aborts it does not mean 

that the top-level action must also abort. Rather, the failure is isolated to the 

(sub-action) tree rooted at the failed action. Thus if sub-action B (in Figure 3-4) 

aborts for some reason, action A is free to start another sub-action to do the work 

in place of the failed sub-action B. 

This isolation property provides a kind of firewall to protect the top-level 

action from failures that would otherwise require that the entire action be 

aborted. In addition, using nested actions in this fashion allows the 

implementation of fault-tolerance based upon recovery blocks [Horning et al. 74] 

or N-Version programming [Aviziennis and Chen 77]. 

A third advantage of nesting is that new actions can now be composed out of 

existing, formerly top-level actions, since the old top-level actions simply become 

sub-actions of the new, more pervasive top-level action. 

Since the structure that results from the use of nested actions conforms to 

that of a hierarchy, standard tree terminology combined with family 

relationships will be used to describe atomic action relationships. Thus a top­

level action is the root of the action hierarchy. Similarly, actions having sub­

actions are referred to as parents, while the sub-actions themselves are called 

children. Additional relationships such as ancestor and descendant have an 

equally obvious meaning. 

3.5 Concurrency and Atomic Actions 

The previous chapter treated concurrency control as a topic in its own right. 

This section shows how those techniques can be used to provide the important 

concurrency atomicity property of atomic actions. In general, this integration is a 

straight forward operation. 
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Recall that when an atomic action is started it is assigned some form of 

unique identifier that is usually termed the atomic-action-id or the transaction­

id. The system uses this identifier throughout the lifetime of the action to track 

the effects of the action. If this unique identifier is such that it can be used as a 

timestamp (say the identifier is generated directly from the system clock in a 

fashion similar to that outlined in chapter two) then any of the timestamp-based 

approaches to concurrency control are available to provide the property of 

concurrency atomicity in an obvious manner - all that is required is that prior to 

attempting some operation upon an object, the concurrency controller is called to 

make sure timestamp ordering is being maintained. 

Lock-based approaches to concurrency control are also possible since it is 

easy to arrange that prior to executing an operation the action attempts to set an 

appropriate lock. In fact, locking is used by the majority of actual 

implementations of atomic actions to provide the concurrency atomicity property 

with by far the most dominant method being strict two-phase locking. Strict two­

phase locking modifies the basic two-phase requirement so that the shrinking 

phase is seemingly instantaneous at the end of the program. When used with 

atomic actions the acquisition oflocks is incremental as operations are performed, 

while the release of locks occurs only when the action commits or aborts. The 

release of locks is instantaneous in order to avoid potential cascade aborts. 

Cascade aborts can occur in the following manner. Assume some action is using 

ordinary two-phase locking and is gradually releasing its locks during its 

shrinking phase. These locks can then be acquired by other actions and the 

objects they protect manipulated. However, if the original action now aborts it 

needs to restore the states of the objects it manipulated, but which may now be 

being used by other actions. Thus these other actions will have to be aborted also, 

and so on. This so-called domino-effect [Randell 75] is usually considered 
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undesirable and can be avoided by only releasing locks when the top-level action 

terminates. 

Having noticed that early release is usually undesirable, the Profemo 

system [Nett et al. 85], does allow just such an approach, but uses specialised 

hardware to track the resulting dependencies between actions. In addition, 

Shrivastava [Shrivastava 82] has investigated a system model that tracks 

dependencies between actions and associates levels of confidence to results 

consumed as a consequence of early release oflocks. 

3.6 Effects of Nesting 

While being highly desirable, the nesting of actions has some implications 

for concurrency atomicity. These sub-sections describe the required modifications 

to some standard concurrency control techniques to handle action nesting. The 

equivalent modifications required for failure atomicity are beyond the scope of 

this thesis. 

3.6.1 Locking 

When a non-nested action was committed or aborted the concurrency 

controller could discard any locks that it was holding on behalf of that action. The 

possibility that the action might be a nested one means that this is no longer true 

for the following reason. In two-phase locking locks cannot be released when a 

child action commits because the concurrency controller might then allow some 

other action to acquire the locks, thus breaking the concurrency atomicity 

property for the parent action. What is required is a means by which the parent 

action can inherit the locks acquired by its children so that it maintains control 

over all objects manipulated under control of itself and all of its children. 
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This extension to two-phase locking was made by Moss [Moss 81] and has 

become the standard way of implementing two-phase locking in a nested action 

environment. The scheme is as follows. A distinction is made between holding a 

lock and merely retaining it. When a lock is held the (sub-)action can manipulate 

the object in the normal way. When a child action commits, its parent action 

inherits and retains all of the locks held or retained by its child. Lock retention 

ensures that other actions outside of the scope of the top-level action cannot 

acquire the lock, but inferior child actions can. Should a child action be aborted 

all of its locks whether held or retained are released. Moss's locking rules are 

thus: 

• An action may hold a lock in write mode if no other action holds the lock (in 

any mode) and all retainers of the lock are ancestors of the requesting action. 

• An action may hold a lock in read mode if no other action holds the lock in 

write mode, and all retainers of write locks are ancestors of the requesting 

action. 

• When an action aborts, all of its locks (held and retained, of all modes) are 

simply discarded. If any of its ancestors hold or retain the same lock, they 

continue to do so, in the same mode as before the abort. 

• When an action commits, all of its locks (held and retained, of all modes) are 

inherited by its parent (if any). This means that the parent retains each of 

the locks (in the same mode as the child held or retained them). 

Furthermore, lock modes are ordered, since some merging may be necessary 

if a parent inherited a lock from one of its children in a different mode to that 

which it was already retaining it in. For example, an action may have been 

retaining a lock in read mode. This would allow one of its children to acquire and 

hold the lock in write mode, so that when the child committed the parent would 
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inherit this lock. The parent must then retain the lock in the stronger of the two 

modes (in this case write). 

3.6.2 Timestamping 

Timestamp based approaches are more difficult to adapt to an environment 

supporting nested atomic actions. The major problem that arises is ensuring that 

the timestamp order is maintained even for the nested atomic actions. One 

approach to this is to allocate non-overlapping timestamp ranges to atomic 

actions and ensure that all nested actions draw their timestamp ranges from the 

timestamp range allocated to their parent. This technique ensures that all 

atomic actions are correctly serialised. One design that uses this approach was 

undertaken by Reed [Reed 78, Reed 83] and is based upon multi-version 

timestamping. The scheme is novel in that it took an integrated approach to the 

problems of action naming and synchronisation. Reed's scheme was later used in 

a simplified form as a basis for the SWALLOW project at MIT (see section 3.7.4 of 

this chapter for further details). 

3.7 Examples of Systems Supporting Atomic Actions 

This section describes some systems that support atomic actions in one form 

or another. While by no means exhaustive, the systems have been chosen to 

illustrate the fact that the various concurrency control techniques of the previous 

chapter have been used to implement concurrency atomicity in practice. The 

examples are drawn from distributed databases and distributed operating 

systems only; the description of some object-based systems is postponed until the 

next chapter. 
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3.7.1 R* 

R* [Lindsay et al. 84, Mohan et al. 86] IS an experimental distributed 

database system developed at the IBM research laboratory at Almaden. It 

supports only single level transactions and uses strict two-phase locking as its 

concurrency control technique. Each site in the distributed system runs the R* 

database manager and clients only ever communicate with their local manager. 

Requests for remote service are handled entirely between the R* managers 

themselves. Thus a request from a client is first presented to the local manager, 

who will forward it to some remote manager if required. Results destined for a 

client are likewise transmitted via the local manager. Such communication is 

made over a virtual circuit established on behalf of the client transaction when 

the first remote service request for a site is processed. Transaction identifiers are 

globally unique and are transmitted only when a connection between sites is first 

initiated (and the virtual circuit is established). 

Since R* does not support nested transactions it uses an alternative, 

simpler, approach based upon the establishment of save points that act as 

recovery points. Should recovery become necessary a transaction is only 

recovered back to the last established save point, not all the way back to its start. 

The root process acts as a co-ordinator should this recovery be necessary by 

instructing all of the participants to recover to their save points. 

Unlike most other database systems R* does not contain a separate lock 

manager process. Instead all lock related information is maintained in shared 

storage and is accessible to all of the processes at a site. The lock access code is 

executed directly by the processes accessing the database. Although generally 

obeying two-phase locking some locks are actually released before all other locks 

have been acquired for performance reasons. Allowing this requires that should 

the transaction abort these locks must be re-acquired. To avoid potential 
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deadlock problems only a single transaction is allowed to attempt lock re­

acquisition at once. Deadlock detection is based on constructing a global wait-for 

graph. Each site maintains its own local wait-for graph and may initiate 

deadlock detection at any time. 

3.7.2 Locus 

Locus is a distributed operating system developed at UCLA [Walker et al. 

83, Walker 85]. It has provided a testbed for several different implementations of 

atomic actions, some nested, others not. This section first describes the basic 

capabilities of Locus before considering how atomic actions have been 

implemented upon this base. 

Locus is a UNIX compatible, transparent distributed system. It appears to 

the user as a single UNIX system despite the fact that it is executing on several 

nodes. The file system appears as a single tree structured hierarchy that spans 

all the nodes. Filenames in Locus are location independent, thus it is usually not 

possible to determine the location of a file from its name. Files may also be 

replicated to varying degrees for availability purposes. The file system itself is 

also somewhat more robust than traditional UNIX systems and uses a shadow 

paging technique [Lorie 77] coupled with commit and abort primitives to ensure 

that changes to files are handled atomically. In Locus only the operations 

performed upon files are recoverable. 

Each Locus site is a full-function node executing the Locus kernel, though 

file system activity can involve more than one site. Locus systems define three 

logical sites: 

• Using Site. This site issues the request to open a file and is the source of all 

file manipulation requests. 
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• Storage Site. This is the site at which a copy of the file resides. If the file is 

replicated it will have several storage sites, only one of which will be 

selected to supply pages of the file to the using site. 

• Current Synchronisation Site. This is the site that enforces global access 

synchronisation to a particular file. The ess stores infonnation on which 

sites a given file is stored at, together with an indication as to which is the 

current version of the file. It mayor may not actually store the file itself. 

This partitioning of si tes is purely logical and any site can be any or all of 

the above. The system is, however, its most efficient when all three functions are 

perfonned at a single site since there is no network communications overhead. 

When a file is opened the current synchronisation site is interrogated to 

detennine synchronisation policy and to detennine a storage site for the file. The 

CSS is also responsible for maintaining a structure known as a version vector for 

replicated files. This structure enables the ess to determine which Locus site 

currently stores the most up to date version of a replicated file. 

Once a storage site has been selected communication is only between it and 

the using site while the file is manipulated. The ess becomes involved once more 

when the file is finally closed. 

Atomic Actions in Locus 

The first full implementation of atomic actions in Locus included support for 

nested actions and was undertaken by Mueller [Mueller 83, Mueller et al. 83], 

based on an earlier simpler implementation by Moore [Moore 82]. The atomic 

action interface was simple: only a single system call was provided that started a 

new process executing as an action. The caller was blocked until the action thus 

created terminated. The created process was allowed to create other member 
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processes that where linked to the same action, any of which could start a sub­

action using the same interface. 

Concurrency control was via strict two-phase locking obeying Moss's nested 

locking rules. The Locus rules regarding the selection of a CSS and SS were 

modified such that actions interacted with a transaction synchronisation site 

(TSS), which played both roles. Similarly all I/O operations on the files were 

tagged with the transaction identifier ofthe action making the call. 

The TSS maintained information using a tlock structure for a file. This 

structure contained information on both lock holders and retainers together with 

recovery information in the form of a file version stack. Versions of files where 

kept incrementally so that only those pages that had been modified by an action 

where noted. 

Experience with the implementation described above caused a re­

implementation to occur for several reasons. Firstly, the process structure was 

deemed to be too heavyweight. Secondly, maintaining version stacks and inter­

transaction synchronisation proved to be too expensive, and thirdly, 

synchronisation was done only at the file level. 

This second implementation [Weinstein et al. 85] attempted to overcome 

these difficulties at several levels. As a means of increasing concurrency, record 

level locking was introduced, allowing users to lock particular parts of a file 

rather than the entire file. Lock requests could be either made explicitly via a 

system call or implicitly when parts of the file were actually accessed. 

File modification was not restricted to being performed as part of an atomic 

action, arbitrary processes could also do so. To cope with this extensions were 

made to the commit and abort mechanisms of the basic system to ensure that if a 
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file was modified both as part of an atomic action and by an ordinary process then 

inconsistencies did not arise. 

The system still followed two-phase locking for actions, but not for ordinary 

processes whose locks could be released at any time. In addition, two methods by 

which serialisabili ty could be a voided were provided. The first method was by the 

provision of special locks which did not have to obey the two-phase rule. The 

second method relied on the fact that locks acquired before an action was started 

were not converted to action type locks when the action did start. These locks 

behaved as if owned by ordinary processes. 

Finally, actions were started and ended by explicit system calls and applied 

to the calling process. Furthermore, such actions could not be nested as they had 

been in the previous implementation. 

Although admirable attempts, neither of these two implementations of 

atomic actions described in the preceding paragraphs can really be called a 

success. The first, which provided a full implementation of the nested action 

model, proved to be too expensive for general use. In addition, the user interface 

to it was unnatural and did not fit well with traditional UNIX interface. The 

second implementation remedied some of these problems but lost the flexibility 

that the nested model provided by reverting to a simple single level approach. 

Probably the major flaw with both approaches arose from the underlying 

system itself. Locus was designed to be BSD UNIX compatible, with all that that 

entailed. In particular, the semantics of file system operation and the nature of 

processes did not harmonise well with the atomic action philosophy. 

The arguments behind the original design effort was that by placing atomic 

action support in the kernel, it need be implemented only once, and could thus be 

made more efficient and relieve applications of the necessity of implementing 
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such support themselves. Unfortunately the resulting generality that was 

required to support various applications just did not integrate well with the UNIX 

model upon which Locus was based. 

3.7.3 Amoeba 

Another distributed operating system, Amoeba [Tanenbaum and Mullender 

81, Tanenbaum and Renesse 85] is novel in that one of the distributed file services 

that are available uses an optimistic concurrency control technique combined 

with standard two-phase locking in a multi-version environment [Mullender and 

Tanenbaum 85]. 

The choice of which technique to use is based upon the amount of data to be 

accessed and hence the likelihood of conflict. Small updates (one file) use the 

optimistic approach; larger updates (several files) use locking. 

The Amoeba file service makes use of immutable versions of files. When 

opened for writing, a new version of the file is created which initially behaves as a 

copy of the original. The new version becomes available when a commi t operation 

is performed on the file. Files are structured as a tree of pages (although the page 

size is not fixed and is only limited to a maximum of 32k bytes) which may be 

shared by several versions. Thus each version is in some sense like a difference 

file [Severance and Lohman 76]. 

The optimistic concurrency control used is based upon the serial validation 

approach of Kung and Robinson [Kung and Robinson 81]. When an attempt is 

made to commit a version of a file a check is made to see if the version of the file 

this new version is based upon is the current version. If it is then the commit 

succeeds and the new version is installed as the current version ofthe file. 



Atomic Actions and Concurrency Control 72 

If the new version is not based upon the current version but on some older 

version this implies that at least one newer version of the file exists and a check 

must be made to see whether the changes made to the file to create the version 

that is being validated can be reconciled with those of the other newer versions of 

the file. Thus the page trees of each version are descended in parallel to 

determine if the two versions are serialisable. This check proceeds to check all 

newer versions of the file until it ascertains whether the validating version can be 

made the current version or not. 

While this is an elegant scheme it is a sobering thought to note that this 

particular file service does not receive much use in the current implementation of 

the system. Basically, the optimistic file service is considered far too slow in 

comparison to some of the other file services that are also available in Amoeba. 

3.7.4 Swallow 

Swallow [Svobodova 80, Svobodova 81, Arens 81] was an attempt to use 

Reed's ideas on multi-version timestamping to design a reliable object repository. 

It simplified his model by not allowing gaps in the version history of an object. 

Thus when a new version was created, the validity interval of the preceding 

version was extended to immediately prior to the start time of the new version. 

Swallow was simply a data storage system originally intended to be 

implemented upon write-once optical discs (theoretically an ideal medium since 

each version of an object was immutable). The management of this storage 

proved to be particularly complex since it could potentially grow forever, 

necessitating a distinction between Online Version Storage (that part currently 

available) and Offline Version Storage. Most of the problems arose due to the 

need the ensure that the latest version of any object was always online; thus 
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objects that had been inactive for a length of time frequently had to be copied to 

ensure their availability. 

Actions are named and synchronised in SWALLOW using a concept called 

pseudotime. Pseudotime is a global, temporal coordinate system imposed upon a 

distributed computation such that all pseudotimes form part of a totally ordered 

set. Pseudotimes act as timestamps but are only loosely connected with real time. 

Associated with each atomic action is a pseudotime generator called a pseudo­

temporal environment. Each such pseudo-temporal environment is effectively a 

non-overlapping subrange of all of the possible pseudotimes, thus all of the steps 

of one atomic action will either precede or follow all of the steps of another atomic 

action in psuedotime order. In order to handle atomic action nesting, each sub­

action receives a non-overlapping subrange of its parent's pseudo-temporal 

environment as its own. Attempts to read or write objects require a pseudotime 

generated from the environment of the action. This pseudotime selected which 

particular version of the object could be manipulated by the action (since, in 

multi-version timestamp ordering, objects have versions that are valid over 

particular ranges of pseudo time). 

When a new object is created (objects are immutable by virtue of the version 

scheme), it is only a tentative version known as a token. The set of all tokens 

created by an action forms a possibility. When an action is started a new 

possibility is created to which tokens are added as the action executes. 

Committing the action also commits the possibility and thus installs all of the 

tokens as proper versions ofthe objects in question. 

Tokens are only visible to the action that created them, but not visible 

outside that action until it commits. In order that child actions might see each 

others tokens as well as those of their parents the notion of a dependent possibility 

is available. 
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3.7.5 Felix 

Another file server, Felix [Fridrich and Older 81], is novel because it 

supported multi-file commit as one of its basic operations. Felix also allowed pre­

declaration so that actions would never be aborted (a conservative two-phase 

locking approach). In addition, Felix maintained two versions of files (like two­

version two-phase locking) using notions of copy, original, and exclusive types of 

access (in both read and write modes). Copy access provided an means of 

accessing the most recent version of a file but any changes made to the file were 

uncommitable. Original type access was the normal mode but also allowed copy 

access. Exclusive access provided the traditional exclusivity. 

3.8 Summary 

In this chapter the relationship between concurrency control techniques and 

the concurrency control requirements of atomic actions has been examined. As 

has been shown many of the concurrency control techniques described in chapter 

two have been attempted in one or more actual systems. However, two-phase 

locking has proved to be the dominant choice, particularly in commercially 

available systems, while other techniques have generally only appeared in 

research projects - often simply to show that such techniques could indeed be used 

and would work as envisaged. 

The dominance of two-phase locking can probably be attributed to several 

factors. Firstly, its relative simplicity and intuitive correctness. Secondly, its 

wide applicability and good performance under many different situations. 

Thirdly, inertia is also at work; until some of the other concurrency control 

techniques have demonstrated any advantages they might possess, why change? 

Lack of commercial pressure is also a factor. Databases predominate in the 

commercial world and are still typically only providing single level transactions, 
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despite the apparent flexibility, power and elegance of the nested transaction 

approach. 

Similarly, attempts to provide support for atomic actions within operating 

systems have proved to be of dubious value, often because of overkill - operating 

systems do not generally need the full generality of atomic actions as a rule, and 

supporting them becomes too restrictive and/or detrimental to performance. 

Despite arguments that system level support for atomic actions is better 

than each application providing the support, the generality that such a system­

based implementation must provide often makes using atomic actions unnatural 

to applications (for example, consider the Locus implementations of atomic 

actions) as they try to support all possible applications with the nett result that 

none is really supported adequately. In particular, in order to gain high 

performance, it is highly likely that the basic concurrency control and/or recovery 

mechanisms may need to be overridden by clients in order to specialise the 

system's level of support to one more appropriate to the needs of the application. 

In essence, these findings agree with those of Stonebraker et al. [Stonebraker et al. 

85] who attempted to make the INGRES database system use basic transaction 

facilities available in the operating system of a PRIME computer but discovered 

that substantial changes to both INGRES and the operating system were 

required before an acceptable level of performance would ensue. 
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Chapter 4 

Object-Oriented 
Systems and 

Concurrency Control 

Previous chapters have considered the provision of concurrency control and 

the support for atomic actions to be in some sense attributes of the system as a 

whole. That is, it has been assumed that the concurrency controller and the 

atomic action support system are system based. This chapter will modify this 

view significantly. 

In chapter one it was postulated that building programs using the object­

oriented paradigm was a profitable approach to adopt. Therefore, this chapter 

follows those rules and adopts the approach henceforth. The adoption of this 

approach leads to the interesting notion that since objects are considered to be 

encapsulated, then individual objects should to be responsible for their own 

concurrency control and recovery. 

This latter proposition is the approach adopted in this chapter. In it, the 

notions of what constitutes object-oriented programming are first refined, 

followed by a concentration on the particular property of object-oriented 

programming languages that is useful for providing concurrency control to 

individual objects; that of type-inheritance. The chapter then goes on to show how 

a user-defined object can be subject to concurrency control in a simple manner by 

designing a basic concurrency control type that user-defined types can inherit and 

make use of (in particular. the design is of a concurrency control type which 

manages locks and which follows the two-phase locking technique). This ability 

for a type to inherit concurrency control capabilities is complemented by the 

ability for a type to also inherit recovery capabilities, however, this latter part is 
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beyond the scope of this thesis. For a complete description of the design of the 

support for these recovery capabilities, see [Dixon 88]. 

The use of inheritance as a means of providing concurrency control has a 

number of advantages. Firstly, it allows experimentation with different 

concurrency control techniques to be undertaken in a relatively simple and 

straightforward way (for example, chapter six examines the possible 

implementation of some other types of concurrency controller within the same 

basic object-oriented framework), since the capabilities are not tied into any 

particular system. Secondly, there is no need to design and implement either a 

new language and run-time system, nor a new operating system kernel, instead 

the inheritance based approach is applicable to any object-oriented programming 

language. This is contrasted with the approach taken by several other research 

efforts being undertaken in the same area including Clouds [Dasgupta et al. 85], 

Argus [Liskov and Scheifler 83], TABS [Spector et al. 85a], Camelot [Spector 87], 

Avalon/C++ [Herlihy and Wing 87], and ISIS [Birman 86]. 

4.1 Object-Oriented Programming 

Object-oriented programming is a style of programming that differs from 

conventional programming styles by concentrating upon modeling entities from 

the real-world as logical objects, and the interactions between real-world entities 

as communication between such objects. 

An object is an instance of some type or class (it will be assumed that the 

words class and type are freely interchangeable from this point on). Each 

individual object consists of some data structure (its instance variables) and a set 

of operations (its methods) that detennine the external behaviour of the object. 

The operations provided by an object have access to the instance variables and 

can thus modify the state of the object. Furthermore, the type of an object 

determines precisely what operations may be applied to it. An object-oriented 
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program then consists of a sequence of operations applied to a particular set of 

objects. 

The relationship among types is a relatively natural model of what happens 

in the real world. For example, one thing is often regarded as being like another 

except for certain differences. Thus a lion is like a domestic cat only it is larger 

and more ferocious. This relationship is expressed in object-oriented 

programming languages through the inheritance mechanism. 

4.2 Type Inheritance 

Having noted that in reality some objects are like other objects, a method of 

expressing this relationship is needed. This is accomplished by means of a type 

hierarchy. Type hierarchies arise due to the property of sub-typing in object­

oriented languages by which one type is allowed to be a sub-type of another. For 

example, given some type A, a new type B can be created such thatB is a sub-type 

of A. Certain terminology is associated with this behaviour. Given the type 

structure defined here then B is a sub-type of A, and conversely, A is the super- , 

type of B. Alternatively, using the terminology of C++ [Stroustrup 86], then A is 

called a base type, and B is called a derived type. 

Deriving new types from existing types has several implications. Firstly, it 

is permissible that wherever an instance of the base type (A) is expected (for 

example, as a parameter to some operation), then an instance of the derived type 

(B) may be supplied in its place. Secondly, (and as a consequence of this first 

point), the attributes of the base type must be inherited by the new derived type. 

Such attribute inheritance ensures that instances of type B are capable of 

behaving like instances of type A should the need arise. It is this latter property 

of inheritance that will be made use oflater in this chapter to provide instances of 
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user-defined types (objects) with the ability to perform concurrency control 

operations upon themselves. 

The situation described above illustrates simple type inheritance, where the 

new type inherits from only a single parent type. More complicated 

arrangements are possible that allows a derived type to have more than one 

parent. Such a situation is termed multiple inheritance. The two forms are shown 

diagrammatically in Figure 4-1, where Figure 4-1(a) illustrates simple sub­

typing, and Figure 4-l(b) illustrates multiple inheritance. 

0 
\ 
8 

\ 
8 

(a) (b) 

Figure 4-1: Simple and multiple inheritance 

Inheritance is a very useful property that allows new types to share 

attributes of their parent type(s). The question that arises, though, is precisely 

what is inherited from the parent type: only the interface description, operation 

code, instance variables, or some combination of all of these? Furthermore, how 

are these inherited attributes viewed, by both the type doing the inheriting, and 

by any new types further down the hierarchy? 
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The fact that instances of a derived type should behave as instances of their 

base type in certain circumstances requires that the interface to the derived type 

must at least include the interface to the base type, and so at least the interface to 

the base type must be inherited by the derived type. 

Another problem raised by the use of inheritance is the access the new type 

has to the attributes of the base type. One approach is to regard inheritance 

simply like any other form of access, so that the derived type has no special 

privileges and can only use the public interface to the base type. Adopting this 

approach often leads to making more attributes of the base type visible in the 

interface than strictly necessary simply because it is envisaged that they might 

be useful in designing future derived types. Alternatively, the act of deriving a 

new type can be considered different to normal usage of the base type, so that the 

implementor of a derived type should have additional privileges over and above 

those provided by the usual public interface. For example, direct access to the 

instance variables of the base type might be allowed or access to the private 

operations of the base type could be permitted. 

One of the important properties of object-oriented languages, that they 

share with languages that support data abstraction, is that of encapsulation. 

Encapsulation (also known as data hiding) ensures that the internals of a type 

are not visible outside the type boundary. Thus the type provides a black box 

which only performs those operations defined by its interface. This hiding is 

important in that it allows the representation of the object, and even the way the 

interface is implemented, to be changed freely, providing that the actual interface 

to the type is not changed in any way. 
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Inheritance can compromise this encapsulation, since if the instance 

variables of a base type are directly visible to the derived type then a change in 

the way the base type is implemented could ripple throughout the entire 

hierarchy, requiring changes in all of the derived types of the changed type. 

For example, consider a type that represents a matrix. Such a type will need 

instance variables that represent the matrix bounds together with some storage 

for the actual matrix elements (say a simple two-dimensional array). If these 

variables are visible (that is, they can be accessed directly) then any user of the 

matrix type will be able to view these variables. If at some time in the future the 

internal representation of the type was changed totally (to use a list of elements 

rather than an array because the matrix was sparse), then all users of the matrix 

type may be affected. By allowing the instance variables to be visible the 

implementor of the type has lost the ability to arbitrarily change the 

representation of the type without informing all users of the type of the change. 

This argument, also noted by Snyder [Snyder 86] implies that access to inherited 

instance variables should only be provided through inherited operations of the 

base type (so-called access operations). 

The visibility of any inherited operations can also be problematical. 

Frequently the new derived type will change or refine the semantics of the 

operations it inherits from its parent(s) to make them more applicable to itself. In 

addition the new type may add new operations of its own or possibly restrict the 

Use of others. While this permits specialisation, the degree of control over 

inherited operations varies from language to language. For example, in 

Smalltalk-80 [Goldberg and Robson 83], inherited operations can be refined in 

the derived class but they cannot be excluded from the interface except by 

refining the operations either to do nothing or to return an error. A similar 

approach is adopted by Objective-C [Cox 86]. This approach has the undesirable 

characteristic that as the hierarchy becomes deeper the interfaces to objects 
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potentially become more and more complex and cluttered with operations 

inherited from all of their ancestors. 

Such unrestricted inheritance can also compromise encapsulation, since if a 

base type provides some operation to access its instance variables for a derived 

type's use, then that operation may also form part of the public interface to the 

derived type so that anyone may use it. For example, the implementor of the 

matrix type described earlier may have provided some operation that allowed the 

derived type access to information that would normally be kept private. Once 

defined, this operation may be available not only to all of the derived types of the 

matrix type but also to all the users of any of those derived types. Solving this 

problem requires recognising that the base type will have two classes of users: 

implementors of derived types and general users, and so each class of user should 

have a different abstract view of the base type. This distinction is made by 

languages such as C++, which enables certain attributes of a type to be declared 

protected. That is they can only be used by derived types of the type providing the 

protected attribute, thus ensuring they do not become publicly available unless 

one of the derived types explicitly makes them so. 

In C++ and Trellis/Owl [Schaffert et al. 86], operations and instance 

variables may also be declared to be either public or private. Private operations 

and instance variables are only accessible to other operations of the type and do 

not form part of the public interface. Furthermore, if a derived type privately 

inherits a base type, then all of the public operations and instance variables ofthe 

base type become private variables of the derived type. On the other hand, if a 

derived type publically inherits a base type then the public operations and 

variables of the base type become public attributes of the derived type also. 
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Notions of private inheritance have implications regarding precisely where 

a type may be used. Recall that earlier in this section it was stated that if B was a 

derived type of A, then whenever an A type object was expected it was permissible 

to supply a B type object instead. This is acceptable in the Smalltalk-80 model 

where all operations are inherited publicly, since all the operations available in 

the A type object are also supplied by the B type object. However, in languages 

such as C++ and Trellis/Owl the operation may have been removed from the 

public interface of the object in the derived type. Hence such languages perform 

strict compile time checking to ensure that this situation is not permitted to arise. 

The ability to refine and specialise operations implies that some operation 

binding must be performed at run-time. For example, suppose a type implements 

the operation Describe, the purpose of which is to cause an instance of the type to 

describe itself in some fashion (for example, by printing an ascii description of 

itself on some output device). A derived type inheriting this operation is certain 

to refine it so as to describe instances of itself, not its parent, which would be the 

meaning otherwise. Under most circumstances the compiler can detect the type 

of the object and ensure that the correct version of Describe is invoked when 

required. However, the type rules make it possible to supply an instance of a 

derived type whenever a base type is required. This implies that the object cannot 

simply be treated as being of the base type, rather a lookup must be performed at 

run time to determine the actual type of object supplied so that the correct version 

of Describe is actually called. This run-time lookup is called dynamic binding. 

As an example, consider a type that maintains a list of objects. Ideally, 

objects of arbitrary type should be able to be inserted and removed from such a 

list, otherwise it would be necessary to implement different types oflists for each 

type of object. This type of generic list is easily constructed if it is designed to 

manipulate entries of some basic type (call it List_Entry). Types that are to be 
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inserted into a list are thus declared to be derived types of this base type and thus 

can be inserted into a list with ease. 

Given such a list a program may wish to print out descriptions of all objects 

in it. To do this the program simply selects each entry in the list (in some fashion) 

and invokes the Describe operation of that entry. Since the compiler cannot 

detect what type of object will be on the list, the determination of which 

particular implementation of the Describe operation to invoke has to be made at 

run-time. 

4.2.1 Type Inheritance in C++ 

The language that will be used to develop all of the examples henceforth in 

this thesis is C++ [Stroustrup 86], a language developed from C [Kernighan and 

Ritchie 78]. C++ is a superset of C, incorporating facilities for data abstraction, 

type inheri tance and operator overloading. 

The abstraction and inheritance features are related to those of Simula-67 

[Birtwhistle et aZ. 73] and are based upon the class concept. Classes in C++ can 

currently only inherit from a single base class, although a version ofthe language 

supporting multiple inheritance has been developed [Stroustrup 87b]. 

Classes are defined in the manner shown in Figure 4-2. In this example a 

new class FiZe is created that is derived from a public (as indicated in the class 

header by the keyword public) base class LockCC. Using the terminology of the 

previous section, File is a sub-type of LockCC, and LockCC is the super-type of 

File. Instances of the class File will have two private instance variables 

(current-pos and page_count), a protected variable (fd), and a set of public 

operations (open, read, etc.). 
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class File: public LockCC 
{ 

int current_pas; II private stuff 
int page_count; 

protected: 
int fd; 

public: 

} ; 

File (); 
-File (); 

int open (char., mode); 
int read (char_, int); 
int write (char_, int); 

Figure 4-2: An example C++ class 

85 

In order to guarantee correct initialisation of objects when they are created, 

a special operation termed a constructor is automatically called when an instance 

of the class is created. This operation is a public operation that has the same 

name as the class itself (in this case File). Despite being public, the constructor 

operation cannot be called directly. Its function is to perform a type-specific 

initialisation of the newly created object. A complementary operation (called a 

destructor) is likewise called whenever the object is destroyed. Its name is that of 

the class preceded by a I-I, (in this case -File). 

Any operation or variable of a class can be declared as either public, 

protected or private. Normally, class definitions are written as illustrated here, 

with the private attributes first, followed by the protected attributes, and finally 

the public attributes, although it is possible to intermix them. Since File is 

declared to be publicly inheriting LockCC then all of the public attributes of 

LockCC (variables and operations) are also considered to be public attributes of 

File also. 

c++ is a strongly typed language with compile-time binding of operation 

names to the code that implements them. However, as was noted in the previous 

section, there are occasions where dynamic binding must be used otherwise 
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objects could not be treated as instances of their parent type and passed to 

operations that expected them to behave as instances of their parent type. In C++ 

this is handled by declaring such operations as virtual. As illustrated in Figure 4-

3 the only distinction between a normal function and a virtual function is the / 

class Shape class Circle: public Shape 
{ { 

void Move (); 

public: public: 
virtual void Draw (); virtual void Draw (); 

}; }; 

Figure 4-3: Virtual functions in C++ 

occurrence of the keyword virtual before the operation declaration. The 

occurrence of this keyword indicates to the compiler that it should generate code 

to cause a run-time binding of the code that implements the operation based upon 

the type of the object. In this example the operation Draw is defined in both the 

base class (Shape) and the derived class (Circle), such that a call to Draw must 

determine at run-time which particular implementation to invoke based upon the 

type of the object currently under consideration. 

Similar situations can arise with the base class operation Move. Given that 

once an object has been moved it will probably need to be redrawn at its new 

position, then the code that implements the operation Move may possibly be coded 

to make a call to Draw. Since in this particular example Circle is inheriting the 

definition of Move unchanged from Shape (Circle does not define its own version) 

the same code will be executed for instances of either type, however, depending 

upon the type of shape being moved then the appropriate version of Draw must be 

invoked. Hence, dynamic lookup is still required. 
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4.3 Concurrency Control in Object-Oriented Systems 

This section examines some of the existing systems that are claimed by their 

authors to be object-based or object-oriented, paying particular attention to the 

mechanisms they use to implement concurrency control. For each system, an 

attempt is made to determine how flexible the concurrency controller is, and to 

assess the ease by which new user-defined types encompassing concurrency 

control can be created. 

4.3.1 Clouds 

The first system under examination is Clouds [Allchin 83, Dasgupta et al. 

85, Kenley 86]. Concurrency control in Clouds is based upon standard two-phase 

locking, extended to cover lock modes other than simple read and write. If 

required, locks may be released explicitly under programmer control. In addition, 

Clouds supports nested atomic actions, so the concurrency controller obeys a 

slightly modified version of the nested locking rules advocated by Moss [Moss 81]. 

Requests to lock objects may be made either implicitly (the compiler inserts code 

to automatically lock the object) or explicitly using Clouds system calls, 

depending upon how the particular operation for an object has been defined. 

Cloud's objects consist of volatile and permanent data segments and a set of 

operations upon those data segments. All objects are uniquely named and 

sharable. Application programs and user-defined types are coded in the language 

Aeolus [LeBlanc and Wilkes 85]. As indicated above, Aeolus supports two types of 

interaction with the Clouds concurrency controller depending upon whether 

locking is being performed implicitly or explicitly. If implicit locking is being 

performed then operations have to be classified as either readers (signified by the 

presence of the keyword examines in the text of the implementation of the 

operation) or writers (signified by the keyword modifies). Once so identified the 
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compiler inserts appropriate calls to the Clouds kernel to set appropriate read or 

write locks on the object as part of the standard operation prologue. 

More explicit control can be obtained by appropriate declaration and use of 

instances of the basic Aeolus lock type as part of the definition of a user-defined 

type. A lock type is used to declare variables which can be used to implement 

type-specific locking for a user-defined type. Lock type declarations include the 

specification of a compatibility list that is used to determine whether a lock of a 

given mode can be set or not. In addition, locks possess values that allow the 

programmer additional control over the compatibility oflocks. 

A simple lock declaration is illustrated in Figure 4-4. In this example a new 

type file_lock is lock ( read: [read], 
write : [] ) domain is string(20) 

Figure 4-4: Clouds lock type 

lock variable is created called file_lock. This lock has two modes, read and write, 

which obey the traditional rules concerning lock compatibility (that is multiple 

readers, but a single writer). This lock is further identified by a string, the need 

for which will be described shortly. Such a lock might be used as part of the 

implementation of a type that represented a traditional file system directory. 

Locks thus declared may be set, tested, and released as part of the execution 

of an operation using the primitives Setlock, Testlock, and Releaselock 

respectively. Setlock sets a lock of the given mode on the named instance from the 

lock domain. Thus, if the call of Set lock illustrated below: 

Setlock (file_lock, read, "myfile") 

was made as part of the execution of an operation, then a read lock would be set 

Upon the lock file_lock using the string myfile. By associating values with locks, 
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Clouds allows programmers to increase the level of concurrency an object 

supports. For example, if the following Setlock call: 

Setlock (file_lock, write, "hisfile") 

was made in addition to the earlier call shown above, then it would succeed, 

despite the apparent incompatible mode (reads conflict with write), due to the fact 

that the lock specifies a different value. Effectively, the values associated with 

locks provide the illusion that locks are being applied at a finer granularity than 

they actually are. 

The Testlock operation on locks is provided to enable the programmer to 

determine if attempting to set a lock would block, prior to actually executing the 

Setlock call. Testing the value of a lock does not guarantee that the lock will 

remain free, since two concurrent actions could both test the lock, find it free, and 

attempt to set it. Depending upon the lock mode required and the compatibility 

between locks then both may succeed, or only one. The programmer must be 

aware of this possibility and use additional mutual exclusion primitives if the 

action must not block. 

The Clouds scheme is interesting due to the way that locks are permitted to 

have values which give the illusion that locks are being applied at a finer 

granularity than they actually are. For example, the lock type illustrated in this 

section could have been used in the implementation of a filesystem directory type 

where it would have given the illusion that individual files were being locked, not 

the directory object itself. Even so, since the Cloud's kernel implements the 

concurrency controller, all objects are currently limited to using two-phase 

locking, and furthermore, all applications must be programmed in Aeolus. 

Finally, the system is not object-oriented (by the definition of chapter one) since it 

does not support inheritance, rather it is best described as object-based [Wegner 

87]. 
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4.3.2 Argus 

Argus [Liskov 84, Liskov 88, Weihl 84] is a distributed programming 

language (and system) that supports nested atomic actions. It is derived from the 

programming language Clu [Liskov et al. 79]. In Argus, programs are structured 

as a collection of operations on guardians [Liskov and Scheifler 83]. Each 

guardian consists of a set of local data objects and processes for manipulating 

those objects; thus guardians are object managers. Objects within a guardian can 

only be manipulated by processes within that guardian. Each guardian provides 

a set of handlers (operations) which constitute the guardian's public interface. 

Handler calls are executed by a new process, with each call executing under the 

control of an atomic action. 

In addition to the provision of some basic data types that are atomic (that is, 

recoverable and serialisable) such as integers and arrays, Argus also supports the 

construction of user-defined data types that are similarly both serialisable and 

recoverable. Concurrency control over the built-in atomic data types is via 

standard two-phase locking using traditional read and write locks, with 

inheritance of locks as defined by Moss. Locks on built in atomic types are 

automatically set and released by the system without any provision for 

programmer control. User-defined types are similarly restricted if they are 

implemented using only the basic atomic data types. In order to permit higher 

levels of concurrency than this built in locking strategy would normally allow, 

the programmer must build user-defined types using non-atomic types (types 

whose use is not constrained by locks) in conjunction with the basic, built-in 

atomic types. For example, a type that represented a queue could be constructed 

as a non-atomic array of atomic entries. Since the array itself is not constrained 

by serialisability, several independent atomic actions can modify the queue and 

insert and remove entries from it. This level of concurrency would not be possible 



Object-Oriented Systems and Concurrency Control 91 

if the array was itself atomic since modification of the array would set a write lock 

on it automatically. 

The major problems with Argus stem from the fact that the concurrency 

control is totally implicit and automatically invoked whenever any of the basic 

atomic types are manipulated. Thus, in order to increase concurrency, the 

programmer has to play potentially dangerous tricks by mixing atomic and non­

atomic types. As with Clouds, Argus is best described as an object-based system, 

since it does not fulfill the definition set out in chapter one. 

4.3.3 TABS 

The TABS (TransAction Based System) project [Spector et al. 85a] at 

Carnegie-Mellon is in many ways similar to the Argus project at MIT. TABS 

provides data servers that encapsulate one or more data objects. These data 

servers are similar to Argus guardians in that they are essentially recoverable 

object managers. 

TABS is built upon the Accent kernel [Rashid and Robertson 81] and the 

various components of the TABS system (such as the Transaction manager and 

the Recovery manager) communicate with one another by sending messages 

addressed to ports. In order to ease the burden of programming such message 

transfers a remote procedure call facility called MatchMaker [Jones et al. 85] is 

used. Matchmaker takes descriptions of procedure headers and outputs client and 

server stubs that manage the packing and unpacking of the data into messages 

and the appropriate dispatching ofthe correct procedure in the server. 

Data servers use locking as their synchronisation mechanism using 

standard two-phase locking. Locking is explicit in that the data servers must 

explicitly call the TABS routine LockObject, supplying an object identifier and a 

mode, in order to set a lock. Ifthe lock is not available the server is made to wait. 
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Like Clouds, TABS also has primitives to test if a lock is set. However, it 

also has a ConditionallyLockObject routine that locks the object if possible, or 

returns immediately otherwise. This avoids the need for the separate mutual 

exclusion necessary in Clouds. 

There is no unlock facility in TABS. Objects are only unlocked when the 

action that locked them commits or aborts, following the standard nested locking 

rules. 

4.3.4 Camelot 

Given the experience of TABS, the designers of that system are now in the 

process of producing CAMELOT (CArnegie-MEllon Low Overhead Transaction 

facility) [Spector 87, Spector et al. 87]. In many ways the influence of TABS is 

apparent in the philosophy of Camelot - indeed the structure of a Camelot node 

bears a considerable resemblance to the structure of a TABS node. Thus Camelot 

also uses data servers that encapsulate objects. It is, however, built on top of the 

Mach operating system [Jones and Rashid 86], which is a BSD4.3 UNIX 

compatible system 

Camelot provides support for two compatible types of concurrency control: 

standard two-phase locking and hybrid atomicity [Weihl 84]. Hybrid atomicity 

makes use of timestamps generated when atomic actions commit to provide more 

information about the serialisation order of atomic actions, and hence permit the 

concurrent execution of some operations that other concurrency control 

techniques might have serialised. Hybrid atomicity thus combines aspects of 

both static (timestamping) and dynamic (lock-based) concurrency controllers. 

The mixed locking and timestamping protocol briefly mentioned in chapter two 

(section 2.4.12) is one example of a hybrid atomic concurrency controller. 
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As with TABS the concurrency control (of either form) is explicit with 

locking being provided via a call to the routine Camlib_Lock which takes a lock 

name and a mode as parameters. Similarly there are routines to test and set a 

lock (Camlib_TryLock), and determine the status of a lock 

(Camlib_LockStatus). As with Clouds, however, Camelot has added an explicit 

unlock call (Camlib_Unlock) to enable locks to be released early. 

Support for hybrid atomicity requires the use of timestamps in addition to 

locks and requires that objects explicitly take part in the process of action 

commitment. Camelot implements this by allowing servers to declare routines 

that will be called whenever they become involved in the commitment or abortion 

of an action. 

Camelot is claimed to integrate the best features of several systems. Thus it 

uses the optimised commit protocols of R* [Mohan et al. 86], the nested 

transaction mechanism of Argus, and the virtual memory and recoverable 

storage mechanisms of TABS. The system is very flexible, permitting much 

tailoring of the implementation of object servers, however, the interface is 

complex and requires use of some unorthodox programming techniques. For 

example, recoverable objects are modified using a macro rather than the 

conventional programming language concept of assignment. Furthermore, 

clients are always aware ofthe clientlserver relationship that exists in the system 

with calls on the operations supported by a server being coded differently to other 

procedure calls. 
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4.3.5 Avalon 

Not strictly a separate system in its own right, Avalon [Herlihy and Wing 

87], is an attempt to provide programmers with a set of linguistic constructs 

designed to give explicit control over transaction-based processing of atomic 

objects. 

The Avalon constructs are implemented as extensions to some host 

language such as C++, and are currently hosted upon the Camelot system. In 

many respects Avalon resembles Argus; the principal differences occurring in the 

way that user-defined atomic data types are implemented. 

Within Avalon/C++ advantage is taken of the inheritance properties of the 

language, such that new atomic data types are created by deriving them from a 

system-defined type called atomic. This base type provides a monitor-like facility 

for mutual exclusion, and provides virtual functions for action commit and abort. 

It is the provision of these latter functions that allows Avalon objects to 

implement the property of hybrid atomicity [Herlihy and WeihI88]. 

Currently, Avalon is the only other system (known to the author) that is 

making use of inheritance in any way, however, its base system (CamelotiMach) 

provides it with many facilities for object recovery and concurrency control and 

therein lies the major problem. Many of the characteristics of the underlying 

system are visible to the programmer and considerable care must be taken to 

ensure that these characteristics are handled in the implementation of any user­

defined types. For example, the programmer must be aware of the method by 

which the system implements recovery, otherwise it is easy to make the system 

inconsistent. 
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4.3.6 ISIS 

The ISIS project from Cornell university [Birman 86] aims to produce fault­

tolerant implementations of objects automatically from fault-intolerant program 

specifications. The resulting objects are then known as resilient (or more 

precisely k-resilient) objects. 

ISIS replicates the code and data of each object at least k + 1 times, while 

ensuring that the replicated program behaves exactly like a non-replicated 

program obeying the same specification. Resilient objects are represented at a set 

of sites by components that are capable of executing requests sent to them via 

remote procedure calls. Each request is handled as a separate atomic action. 

Concurrency control in ISIS is explicit to the implementor of type since it is 

difficult to infer an efficient concurrency control algorithm without knowledge of 

the semantics of the operations of a type. Thus ISIS requires the provision of a 

single site concurrency control algorithm, which is transformed into a distributed 

one. ISIS basically supports two-phase locking but locks are classified into two 

distinct types. 

• Nested two-phase locks. These obey the standard nested two-phase rules. 

• Local two-phase locks. These obey standard two-phase rules but are always 

released at action commit or abort regardless of whether the action is nested 

or not. 

ISIS locks can belong to one of four distinct modes: read, write, promotable 

read, and previous committed version read. The first two behave in the standard 

manner expected, the others are described in the following paragraphs. 
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Promotable read locks are designed to overcome the problems associated 

with lock conversion. In essence they are exclusive read locks that may be 

promoted to write locks. Since they are exclusive then only one action can hold 

such a lock and thus promotion of such a lock to a write lock will not cause 

deadlock which could otherwise occur. 

Previous committed version locks are intended for actions that can be 

classified as read only. By allowing access to a previously committed version of 

an object both reads and updates can be allowed to proceed in parallel. This is 

essentially an implementation of the two-version two-phase locking strategy 

described in chapter two. 

The ISIS system described above was implemented; but its designers were 

not happy with the level of concurrency the system supported, or the ease of 

creating resilient objects. They have now embarked upon ISIS-II, which has 

similar goals but is based upon the notion of Virtual Synchrony [Birman and 

Joseph 87], rather than serialisability as its correctness criterion. The designers 

feel that this technique is much better suited to building highly concurrent 

distributed applications. It remains to be seen whether their confidence will be 

justified in reality. 

4.3.7 Some Conclusions 

All of the systems described in the previous sections have been claimed by 

their designers to be either object-based or object-oriented. While the systems do 

indeed support the concept of an object as an encapsulated entity, it is interesting 

to note that all of the systems have adopted the approach of building either a new 

language or system, or possibly both to provide this concept. Only Avalon has 

attempted to use the capabilities of an existing object-oriented language and 

provide a simple means of permitting user-defined types to be serialisable and 

recoverable. In addition, all of the systems have chosen to use locking (in one 
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form or another) as the basic (and often unchangeable) concurrency control 

technique. Only ISIS in its latest incarnation has attempted to break this mould. 

The remainder of this chapter will show how it is possible to avoid this 

commitment to a single concurrency control technique by providing a flexible 

framework for the implementor of a user-defined type to use. Furthermore, the 

technique used does not require a new language or system but can be applied to 

any object-oriented language. 

4.4 Concurrency Control via Type Inheritance 

This section describes a novel approach to providing individual objects with 

their own concurrency controller by making use of the property of type 

inheritance. In particular, the design and implementation of a concurrency 

controller based upon the common technique of two-phase locking is described. In 

many respects two-phase locking is an ideal concurrency control technique since 

it makes all decisions about whether to grant locks based upon purely local 

information. Thus, in a conventional distributed system this might be site-local 

information. Here this locality is taken to its logical extreme and concurrency 

control decisions are made using information purely local to the individual objects 

themselves. 

The concurrency control type designed in the rest of this chapter is intended 

to support standard two-phase locking using only the lock modes of read or write 

which obey the traditional rules with respect to conflict. While this may seem 

highly restrictive, it is shown later in the chapter how simple modifications 

overcome these restrictions with ease, further demonstrating the flexibility of the 

type-inheritance based approach. Furthermore, chapter six, describes how more 

explicit type-specific locking can be implemented in an equally flexible manner. 
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There are, however, numerous issues that need to be resolved first. For 

instance, what is the interface to the concurrency control type as seen from user­

defined types that are derived from it? In addition, is the provision of locking 

implicit in that the derived type need take no action, or is it explicit requiring the 

operations ofthe derived type to invoke appropriate operations of the concurrency 

control type directly? Then too there is the problem of how to represent the lock 

requests themselves. Ifthe interface provided a call of the form: 

SetLock (Mode); 

what is the form of the Mode parameter? 

The following sections attempt to answer these questions and come to some 

conclusions about the resulting design. 

4.4.1 An Overview of the Concurrency Controller 

In many respects the preferences for how the concurrency control type 

should be presented to the designer of a new type have already been betrayed in 

Figure 4-2. 

The concurrency control type can be inherited by any user-defined type that 

wishes to make use of it. For the moment it will be assumed that there is only this 

single concurrency control type, and that all user-defined types that require 

concurrency control will make use of it. Thus the aim is to provide a base type­

which will actually be called LockCC (standing for Lock-based Concurrency 

Controller) - from which all user-defined types should be derived. In effect this 

makes all user-defined types merely derived types of a basic concurrency 

controlled type. This concurrency control type is a lock manager. It permits locks 

to be set providing that the basic conflict rules would not be violated by doing so. 

The type is strictly a manager in that it does not create locks itself but merely 
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ensures that locks created by the user are set and released in accordance with the 

rules of two-phase locking. 

Given this approach, some determination needs to be made as to what 

operations this concurrency control type should provide, such that user-defined 

types have as much flexibility as possible over the types of locking policy they 

follow. 

In addition, as has been previously stated, the intention is not to modify a 

language or its compiler. This precludes the automatic, implicit approach 

adopted by Argus, or the compiler-based approach of Clouds for determining 

when locks should be set on objects, since it is not possible, in general, 

automatically to determine when a lock should be set, or more problematically, 

what particular type of lock should be set. Therefore an explicit approach has 

been adopted and the interface to the concurrency control type provides specific 

operations for the manipulation oflocks. 

Note, however, that the use of a concurrency controller is only explicit to the 

implementor of the type that is actually derived from the concurrency control 

type, not to the eventual user of this user-defined type. That is, when an 

operation upon an object is invoked, a lock will be set because the code 

implementing the operation explicitly sets a lock. However, as far as the invoker 

of the operation is concerned, the acquisition of the lock is simply a side-effect of 

the operation. Thus, as is illustrated in Figure 4-5, the implementor of the 

operation open has created a new lock object and passed that to the concurrency 

controller via the setlock routine. However, as far as the actual caller of the open 

operation is concerned, this concurrency control activity has occurred implicitly 

and is simply a side-effect of the execution of the open operation. 
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int File::open (char. fname, mode openmode) 
{ 

} 

lockstatus openstatus; 
II First set an appropriate lock if possible 
openstatus : setlock (new Lock(openmode»; 
if (openstatus :: REFUSED) 

return ERROR; 
II now actually open the file and do any other housekeeping 

Figure 4-5: Outline open operation for the File class 

100 

This explicit approach is not too bad a choice. As has been pointed out by 

others, increased levels of concurrency are possible by providing the type designer 

with explicit access to the concurrency controller for the type, and although at the 

moment it is assumed that only simple read and write type accesses will be made 

and standard conflict rules will be utilised, it will be shown in section 4.10 and 

later in chapter six that further use of inheritance provides the flexibility to adopt 

other approaches. 

Bearing these points in mind, Figure 4-6 shows the skeletal declaration of 

class LockCC 
{ 

Lock_List locks held; 
Semaphore. mutex; 

virtual boolean lockconflict (Lock_); 

public: 

} 

LockCC (); 
-LockCC (); 

lockstatus setlock (LoCk.); 

II List of all currently held locks 
II For mutual exclusion purposes 
II Other CC state as necessary 

II Initialise concurrency controller 
II Cleanup 

II set lock on this object 

Figure 4-6: The LockCC class 

this basic concurrency controller type LockCC. For the moment it will be 

assumed that this base type only provides the ability to set locks on objects via the 

setlock operation. Furthermore, it will be assumed that the caller is executing 
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under the auspices of some atomic action, although description of how this is 

achieved is delayed until chapter five. 

The basic operation of setlock can then be described as follows: Setlock is 

responsible for setting a lock upon the object derived from this base type. The 

type of lock required is determined by the parameter passed as part of the call. 

This parameter is of type Lock and contains sufficient information to allow the 

concurrency controller to determine if this particular lock can currently be set. 

Locks will be described more completely in section 4.5. Setlock returns a status to 

indicate the success or failure in granting the requested lock. Normally, when 

the lock cannot be granted due to conflict, the calling process is blocked and the 

call will only return when the lock has actually been granted. There are, 

however, instances when the call can return with an error status - this point will 

be considered further in section 4.8. 

The boolean function lockconflict is used by setlock to determine whether 

any two locks conflict or not. It returns true if setting the lock would cause 

conflict, false otherwise. The routine is declared virtual to ensure that any type 

derived from LockCC could implement its own notion of conflict (this topic shall 

also be explored in section 4.6). Note, however, that the function is also private, 

thus ensuring that the only way it will be called is through one of the public 

functions of LockCC, in this case the public function setlock. 

At this point in the design an operation to allow a lock to be released has 

deliberately not been included in the interface. For the moment it will be 

assumed that lock release is accomplished automatically in some fashion; later in 

this chapter (in section 4.10.3), and in chapter five, a method of achieving this 

effect will be described. 
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To be able to detennine whether any particular setlock request can be 

honoured, the concurrency controller of an object maintains a list of lock objects 

that are currently being both held and retained (in order to obey Moss's nested 

locking rules). By scanning this list, the concurrency controller can decide if 

granting the request would cause conflict to occur. Two separate lists could have 

been used; one for the holders of locks on the object and one for the retainers of 

locks on the object, however, since it is assumed that the lock objects themselves 

can be interrogated as to their type, and both lists may need to be searched 

anyway when attempting to set a lock, the two types are kept on a single list. 

Finally, since the concurrency control operations may be being executed by 

several atomic actions concurrently, a traditional semaphore mutex is provided to 

enable simple mutual exclusion during these operations. 

4.5 Locks as Objects 

One of the key characteristics of the systems described in section 4.3 was 

that, despite the fact that they were claimed by their designers to be object­

oriented, none of them were consistent in this view. Thus a lock was often 

regarded as a primitive (and unchangeable) system type, as indeed was the 

interface to the concurrency controller. 

This thesis wishes to take a different view of locks. That is, locks are 

regarded exactly like any other object in the system. Thus locks are objects (or 

more precisely locks are simply instances of a particular lock type). 

This approach has several advantages. Firstly, locks can be created and 

manipulated in the same way as any other object in the system. Secondly, new 

language features or modifications to the run-time environment are not required 

to support them. Thirdly, the approach is very flexible, particularly if advantage 
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is taken of the basic inheritance properties of the language (this latter point will 

become clearer in section 4.10). 

Figure 4-7 shows a skeletal declaration of one possible Lock type. Instances 

class Lock 
{ 

lockstatus current_status; 
modetype lockmode; 
Uid owner; 

public: 

} 

Lock (modetype); 
-Lock (); 

modetype getlockmode (); 
lockstatus getstatus (); 
Uid getowner (); 

II status, e.g. HELD 
II mode of lock, e.g. READ 
II identity of lock owner 
II other private 
II variables and operations 

II Lock object initialiser 

II Interrogation operations 

Figure 4-7: The Lock class 

of this type can be declared whenever they are needed by the programmer, and it 

is instances of this type that are passed to the concurrency control type LockCC as 

the parameter to setlock. 

This Lock type encapsulates as part of its private state all ofthe information 

that might need to be known about any particular lock instance. For example, it 

maintains information about the current mode of the lock (say READ), the 

current status of the lock (held or retained in accordance with Moss's locking 

rules), together with any other information that might be deemed necessary such 

as some notion about the owner of the lock (typically this will be the identifier of 

the atomic action under whose control the lock was set). Following the arguments 

made earlier in this chapter about encapsulation it also provides a set of 

operations to retrieve this internal information should it be required rather than 

make the information directly accessible. 
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Locks have a constructor function, which is used to initialise a new Lock 

object when it is first created. This constructor ensures that all of the instance 

variables have appropriate values for such newly created locks. 

Any given instance of this Lock type can be in one of three states. It is 

initially free after it has been created. It becomes held after it has been 

successfully supplied to the setlock operation, and may then become retained if the 

atomic action that created it performs a nested commit. These states naturally 

conform to Moss's notions regarding held and retained locks. Once in a held or 

retained state a lock object will stay in one of those two states as appropriate until 

it is eventually destroyed. 

In this design the mode of a lock object is considered to be immutable; that 

is, it cannot be changed once the lock object has been created. Thus, having 

declared a lock object to be a read lock, then the lock object is always a read lock. 

If a write lock is required, a new lock object with the appropriate mode must be 

created. The reasons behind this philosophy relate to the way locks are expected 

to be used. In database systems for example, the only reason to change the mode 

of a lock is due to the notion of lock conversion. In the system being described here 

such lock conversion is not allowed. The effect of lock conversion is, however, 

permissible and the manner in which it is achieved is described in section 4.10.1. 

It might be argued that the mode of a Lock should not be determined by an 

instance variable at all, but rather, should be determined by the actual basic type 

of the lock. That is, use should be made of the sub-typing mechanism of the 

language to create new types of lock rather than maintain a single Lock type. If 

this approach was followed, then the system would need a ReadLock type, a 

WriteLock type, and so on, for as many different types of lock as were needed. 

Naturally, all of these lock types could be derived from the basic Lock type in the 

manner shown below: 
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class ReadLock: public Lock 

While this scheme seems elegant, it is not without its problems. Recall that 

the concurrency control type, as one of its basic actions, is required to compare 

locks for conflict. While the mode of a lock remains as an instance variable this is 

easy to achieve, since the concurrency controller is effectively comparing Lock 

with Lock, a valid operation to attempt. However, if the mode is somehow 

encoded as part of the basic type, there are problems. For example, what does it 

mean to compare an instance of a ReadLock type with an instance of a WriteLock 

type? Given that the meaning could be expressed in the language, problems can 

arise later if further new lock types are introduced, since there must be some way 

of expressing how these new lock types compare with the old types. Furthermore, 

the old lock types must also be changed so that they know how they conflict with 

the new lock types. Thus, in order to avoid such complications, the mode of the 

lock is maintained simply as an instance variable of the basic Lock type. 

In addition the owner of a lock is set when it is created to be the identifier of 

the creating action (recall that it was assumed that execution of the operation 

was proceeding under the auspices of some atomic action). Should a lock be set 

when the process is not executing as part of an atomic action then a fake identifier 

is created and the lock is flagged as being a non-action lock. Such information is 

naturally held in the instance variables of the Lock type. 

4.6 Inside the Concurrency Controller 

The two previous sections, have given a basic overview of the concurrency 

control type and the lock objects that it manipulates. This section, examines the 

concurrency control type in detail and gives a more precise definition of its 

interface and internals. 
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4.6.1 The Setlock Operation 

As described earlier, setlock IS the only operation of the concurrency 

controller that is publically visible. This operation is responsible for taking the 

user-provided lock object and performing a conflict check between it and all of the 

other lock objects that the concurrency controlled object is currently managing. A 

code skeleton for this operation is shown in Figure 4-8. 

lockstatus LockCC::setlock (Lock_ reqlock); 
{ 

} 

boolean conflict = TRUE; 
do 

{ 

II assume there is conflict 

P(mutex); II grab semaphore 
if «conflict = lockconflict(reqlock») 
{ 

} 

V(mutex); 
sleep(); 

} while (conflict); 
locks_held.insert(reqlock); 

V(mutex); 
return (GRANTED); 

II conflict exists so ... 
II wait for a while 

II check repeatedly 
II add lock to list 

II release semaphore 

Figure 4-8: The setlock operation 

As illustrated here, setlock attempts to determine whether conflict exists by 

calling the lockconflict operation. If this operation returns the result TR UE, then 

conflict exists between the requested lock and (at least) one of the other locks 

currently set on the object. In this case, the semaphore is simply freed and the 

caller is made to sleep for some period of time. How this sleep is implemented is 

not important, in that it may be a busy wait, or a simple wait for a fixed interval, 

or any other acceptable means of blocking the operation. However, the 

concurrency controller does not assume that because the sleep call has returned 

that the conflict must now be resolved. In particular, if the conflict had been 

caused by two other locks conflicting, the release of one might have triggered the 

wake up, despite the fact that conflict still exists. 
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4.6.2 The Lockconflict Operation 

In many respects lockconfZict is the heart of the concurrency control type 

since it is this operation that determines whether or not there exists a conflict 

between the requested lock and all of the currently held locks. 

This determination of conflict is done by comparing the mode of the 

requested lock object with the modes of all of the other lock objects currently 

being held upon the concurrency controlled object. A simple version of 

lockconflict that only considers locks that obey the traditional read and write 

conflict rule is given as Figure 4-9. 

boolean LockCC: :lockconflict (Lock. reqlock) 
{ 

} 

Lock_Iterator next(locks_held); 
Lock. heldlock; 

while «heldlock = next(» l= Null) II iterate over all locks 
{ 

if (hel dl oCk-+getowner() ! = reql ock-+getowner(» 
switch (reqlock-+getlockmode(» 
{ 

} 

case READ: 
if (heldlock-+getlockmode() == WRITE) 

return TRUE; 
break; 

case WRITE: 
return TRUE; 

return FALSE; 

Figure 4-9: The lockconflict operation 

Since lockconf1ict must check whether a conflict exists between the 

requested lock and (possibly) all of the currently set locks, it is convenient to 

employ some mechanism that delivers each lock in turn to lockconfZict for 

consideration. In this case, an instance of the class Lock_Iterator (called next) is 

employed for precisely this purpose. When created, the constructor for the 

Lock_Iterator class ensures that the first call to next will deliver the first lock 

from the list specified as the parameter to its constructor. Subsequent calls to 
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next deliver each succeeding list entry, until all have been delivered when a result 

of Null is returned. Having retrieved a lock instance, lockconflict determines 

whether the mode of the requested lock (passed as a parameter) conflicts with 

that of the lock it has just retrieved via next. This conflict check makes use of the 

public operations of the Lock objects themselves to determine each lock's mode 

and owner. 

Since it is assumed that this basic version of the concurrency controller 

obeys the simple multiple reader, single writer, policy then if the requested lock 

mode was write then the existence of any other lock applied by a different action 

must cause conflict (recall that locks set by the same action cannot, in general, 

cause conflict with each other). 

4.6.3 Some Disadvantages of this Design 

As described above the design has certain disadvantages. The most notable 

one is that despite the fact that locks are objects and are thus encapsulated the 

lockconflict operation must still be able to take two such objects and compare 

them for conflict. This state of affairs means that if a new lock mode was added to 

the basic lock type (for example, by deriving a new type of lock from it) then 

appropriate modifications must also be made to the implementation of 

lockconflict. 

This is possible, since lockconflict was deliberately declared virtual with 

precisely this point in mind. Thus the user-defined type (that is, the type actually 

derived from LockCC) can redefine the operation of lockconflict to take advantage 

of the new lock modes. Having done this, then whenever setlock called 

lockconflict, the run-time lookup performed would automatically ensure that the 

appropriate version of the operation was actually invoked. 
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This solution is, however, somewhat unattractive, since this could imply 

that lockconflict ends up being redefined in many types, possibly incorrectly. 

What is required is some way of allowing a standard version of lockconflict to 

determine whether conflict exists without having explicit knowledge of all of the 

possible different types oflock that might exist. 

One possible way this could be handled is by representing the conflict 

information as some form of boolean matrix, such that the conflict check amounts 

to little more than indexing into this matrix using the requested mode and the 

held mode as indices. All that would be required then would be some way of 

informing the concurrency controller of the correct matrix to use, which could be 

handled as part of the constructor mechanism perhaps, or through provision of a 

setmatrix type of operation. 

This approach is viable, but really needs compiler support to be 

implemented efficiently. In fact a similar scheme is adopted in Clouds [Kenley 

86], where each SetLock call in Aeolus translates into a call on the Cloud's kernel 

with the additional parameter of a compiler computed lock compatibility clause 

deduced from the compatibility clause given when the lock was declared. This 

clause is simply a bitstring table which can be accessed very efficiently and thus 

conflict checks reduce to bit tests in the Cloud's kernel. 

Problems with this approach can occur when type-specific locking is 

considered, since compatibilities are now on specific instances. For example, 

given some directory object, two write locks may be permitted providing they 

access different entries in the directory. Thus the compatibility clause cannot 

simply say that write is compatible with write, since this is only true if other 

conditions are also met (that is, different entries are being written). 
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Clouds avoids this problem by parameterising locks using user-supplied 

values. So for the above example, standard mUltiple reader, single writer 

compatibility clauses can still be specified, since write locks would be applied to 

different values (i.e. the particular names in the directory, rather than the 

directory itself). 

Avalon/C++ [Herlihy and Wing 87, Herlihy and Weihl88] employs a similar 

technique, except that it requires that the conflict table be built dynamically by 

the object constructor as part of the initialisation of the object. Obviously such an 

approach may have significant run-time overhead, particularly if the object has a 

complex compatibility matrix and many objects of that particular type are 

created. 

At the moment the system being described in this chapter cannot use the 

Cloud's approach because the basic Lock type is not parameterisable in the sense 

that Cloud's locks are. Chapter six shows how such types of lock can be simply 

constructed from the basic Lock type using inheritance. Furthermore, given a 

wish to avoid the potential overhead of the Avalon approach, an alternative 

method must be found. One such approach is described in the following section. 

4.7 A Revised Concurrency Controller 

The problems outlined at the end ofthe previous section come about because 

the concurrency control type (in particular the operation lockconflict) has to be 

able to interpret the mode (and owner) information held within the lock objects in 

order to determine whether conflict exists. Thus the implementation of the 

conflict check depends upon the the semantics of the information supplied by the 

lock objects. The end result of which is that changes to the implementation of the 

lock objects will probably require changes to the concurrency control type also. 
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What is required is some way to decouple this dependency, such that new 

types of lock can be created without also having to make modifications to the 

concurrency control type. Fortunately, this decoupling is surprisingly simple to 

achieve in the object-oriented environment that has been adopted in this chapter. 

Essentially, all the conflict check is doing is comparing two lock objects for 

equality, where equality in these circumstances means that the two locks are in 

some sense compatible. This implies that the responsibility for determining 

conflict should be delegated to the actual lock objects themselves. By doing so the 

problem is solved in one simple operation. 

The solution then is to provide the Lock type with an operation which allows 

two instances of the type to be compared. This could be done simply by providing 

a routine of the form: 

boolean Lock::compare (Lock. otherlock); 

This routine takes advantage of the fact that one lock object can be asked to 

compare itself against another. Fortunately, however, C++ provides a much more 

attractive alternative through its operator overloading capabilities. Using these 

capabilities it is possible to redefine the meaning of the standard operators (+, -, 

= , etc.) for user-defined types. Thus expressions of the form: 

x = y + z 

are valid providing that the meaning of such an expression can be deduced. For 

example, if X, Y and Z where all basic types (say integer) this statement behaves 

exactly as expected. Furthermore if all three variables were of a particular user­

defined type (say the type complex) then, providing routines for handling the 

assignment operator (=), and the addition operator ( + ) had been defined for the 

type, the statement remains valid. 



Object-Oriented Systems and Concurrency Control 112 

In C++ the name of an operator function is the keyword operator, followed by 

the operator itself. For example, operator+ would be the name of the function 

that implemented the addition operator. An operator function is declared like 

any other operation (and can be used in exactly the same way); use of the operator 

itself is merely syntactic sugar for calling the function itself. Thus given a 

suitably declared operator function, X + Y is interpreted as X.operator+(Y) or, 

in other words, call the operator + function of the object X supplying the object Y 

as a parameter. 

So, in order to implement the object-oriented conflict check, the meaning of 

the not equal operator (! =) is redefined, such that if L1 and L2 are instances of 

the Lock type, then the expression L1 ! = L2 returns the boolean value true if the 

modes of the two locks conflict, and returns false otherwise. Thus the declaration 

of the Lock class now becomes like that illustrated in Figure 4-10. The conflict 

class Lock 
{ 

lockstatus current_status; 
modetype lockmode; 
Uid owner; 

public: 

} 

Lock (modetype); 
-Lock (); 

modetype getlockmode (); 
lockstatus getstatus (); 
Uid getowner (); 

virtual boolean operatorl= (Lock_); 

II status, e.g. HELD 
II mode of lock, e.g. READ 
II identity of lock owner 
II other private 
II variables and operations 

II Lock object initialiser 

II Interrogation operations 

Figure 4-10: The revised Lock class 

operation is declared as virtual for precisely the same reasons that lockconflict 

was declared in the same fashion, that is, it is probable that a programmer will 

wish to redefine the notions of what constitutes conflict for different types oflocks 

(all of which will now be derived from the basic Lock class). This conflict 

operation is part of the public interface of the Lock class for the following reason. 
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Since locks are independent objects, they can only be manipulated through their 

public interfaces, thus in order for another object (in this case the user-defined 

object derived from LockCC) to compare two locks, there must be a public function 

available to do it. The code to implement this basic conflict check is virtually 

identical to that of the originallockconflict, and is shown as Figure 4-11. 

boolean Lock::operatorl: (Lock. otherlock); 
{ 

} 

if (otherlock-+getowner() !: owner) II only check if locks owned by 
II different actions 

switch (lockmode) 
{ 

} 

case READ: II held mode is read 
if (otherlock-+getlockmode() 1= READ) 

return TRUE; 
break.; 

case WRITE: 
return TRUE; 

II held mode is write 

return FALSE; 

Figure 4-11: The Lock conflict algorithm 

Now that this minor change has been made, it is possible to remove the 

keyword virtual from the definition of lockconflict and make it into a simple 

private operation. In addition, lockconflict itself becomes far simpler. The 

resulting interface and code is shown as Figures 4-12 and 4-13. 

class LockCC 
{ 

Lock_List locks_held; 
Semaphore. mutex; 

boolean lockconflict (Lock.); 

public: 

} 

LockCC (); 
-LockCC (); 

lockstatus setlock (Lock.); 

II List of all currently held locks 
II For mutual exclusion purposes 

II Now private operation 

II Initialise concurrency controller 

II Set lock on this object 

Figure 4-12: The revised LockCC class 
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boolean LockCC::lockconflict (Lock reqlock.); 
{ 

} 

Lock_Iterator next(locks_held); 
Lock. heldlock; 

while «heldlock = next(» 1= Null) II iterate over all locks 
{ 

if (.heldlock 1= reqlock) II check for conflict 
return TRUE; II found - return error 

} 
return FALSE; 

Figure 4-13: The revised lockconflict operation 
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Thus, the dependency between the two types (that is, the Lock type and the 

concurrency control type LockCC) has been removed such that it is now possible 

to redefine conflict for different types oflock while still relying on the concurrency 

controller to behave in the manner dictated by the requirements of two-phase 

locking. 

4.8 Deadlock 

As was pointed out in chapter two, locking protocols are prone to deadlock, 

and thus the concurrency control type described in the preceding sections is 

similarly capable of becoming deadlocked. Regrettably, solving this deadlock 

problem is not as easy as in some of the other systems that have been considered 

so far in this thesis. 

Recall that in conventional centralised systems deadlock was usually 

allowed to form and was then detected and broken typically by aborting one of the 

deadlocked transactions. Detection frequently required the building and 

scanning of a wait-for graph, the nodes of which were transactions, with arcs 

indicating that a transaction was waiting for another. As was pointed out in the 

discussion of such an approach in chapter two, building this wait-for graph was 

complicated and made far more expensive by the introduction of distribution into 

the system, since concurrency controllers at each site had to exchange their local 
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wait-for graphs, in order to build a global wait-for graph that indicated the 

relationship of every waiting transaction in the system. 

Utilising such a scheme in the system described here magnifies the problem 

still further. Although not explicitly stated previously (although perhaps 

implied) it is assumed that since each individual object is responsible for its own 

concurrency control so there will be a concurrency controller for each object active 

in the system. This is not an unreasonable assumption to make since the 

encapsulation properties of objects suggests that the concurrency control 

information should be private in order to allow objects to behave autonomously, 

at least as far as making concurrency control decisions is concerned. Thus, given 

the potentially large number of active objects, then in order to establish even a 

local wait-for graph could require substantial communication amongst the 

objects. 

One possible approach to this problem could require that each object's 

concurrency controller stored sufficient information about its state into some 

single location on a per site basis, and then a separate process could attempt to 

use this information in an attempt to detect deadlock. Such an approach is 

probably untenable due to problems of determining when the information was 

consistent. This is not to say that the approach is impossible, merely that a 

simpler approach is available which will be described later in this section. The 

need for such a complicated deadlock detection system remains unconvincing at 

the present. 

Alternatively, the wound-wait or wound-die scheme of Rosenkrantz et al. 

[Rosenkrantz et al. 78] (described in chapter two) could be adopted as a method of 

deadlock detection. Using this approach requires that there exists some means of 

determining age, so that the potential victim can be established when deadlock is 

suspected. This may require either an extra instance variable in the Lock class, 
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or possibly structuring the owner identifier such that it could be used as a 

timestamp. 

There is, however, an even simpler solution. Make use of the traditional 

mechanism of timeouts to determine deadlock. Of course this strategy may mean 

that deadlock is falsely detected through using too short a timeout, or 

alternatively deadlock remains undetected for a period of time due to using too 

long a timeout period. However, these consequences must be accepted as the price 

of utilising so simple a scheme. 

It is interesting to note that both Clouds and Camelot currently use 

timeouts for precisely this purpose, although recent reports on Camelot indicate 

that provision of a deadlock detector is being considered. However, since both 

systems are built upon special kernels, with concurrency control as part of that 

kernel, building such a detector is a far simpler task since all of the concurrency 

control information is located centrally in the kernel. 

Having decided to use timeouts the problem arises of where to use them. 

Clouds places timeouts on actions; that is, if an atomic action has not completed 

within a given time limit it is aborted. In the system described here there are 

several possible options. Firstly, it would be possible to implement timeouts as a 

property of the Lock type itself, or secondly, supply a timeout parameter to the 

setlock call, or finally build the timeout into the actual concurrency control type 

LockCC. 

All ofthese approaches are viable, and each has the same effect. Namely, if 

a lock cannot be set before the timeout period has elapsed then setlock should 

return with a status of refused. Given such a return status, the onus is then on 

the client to decide what to do next. The programmer may give up, try to set the 
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lock again, or whatever. Thus the system does not impose any particular policy 

upon the object designer. 

It could be argued that simply returning a status is a potential source of 

error, particularly if the caller chooses to ignore the returned value (or simply 

forgets to check it). Ideally, lock refusal constitutes exceptional behaviour and 

should be handled by some appropriate exception handler [Goodenough 75]. 

However, since C++ does not currently support exception handling, return codes 

must be persevered with, error-prone as they may be. 

The discussion above has stated that there are several options open in order 

to incorporate a timeout mechanism into the basic concurrency control type. 

Since each is possible, they are briefly described in the following sections. 

4.8.1 Modifying the Lock Type 

The first alternative allows instances of the Lock type itself to carry the 

timeout value with them. Setting the value of the timeout could be handled in 

many ways. For example, it could be set to some default value in the Lock 

constructor (or, by appropriate overloading of the constructor, set to some specific 

value). Similarly, public operations could be provided to allow the timeout value 

to be set. Indeed, a combination of both approaches is possible. 

4.8.2 Extending Setlock 

Instead of modifying the basic Lock type, the setlock operation could be 

modified such that it took another parameter which indicated the timeout value 

to use for this particular call. If the language supports a default parameter 

mechanism whereby parameters not supplied in a call are set to default values 

then this is a particularly attractive technique since existing code does not 
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require changing (the default value would be used), yet the programmer can now 

specify a particular timeout value ifrequired. 

This approach is supported by C++ and so it is also possible to define the 

interface to setlock as follows: 

lockstatus setlock (Lock., int timeout = 20); 

In this case, if no second argument is supplied on any given call then the 

default value (in this case 20 time units) would be used. 

4.8.3 Modifying the Concurrency Controller 

In the same way that instances of the Lock type could be modified to carry a 

timeout value, so similar modifications could be made to the basic concurrency 

control type LockCC so that one of its instance variables is just such a timeout 

value. Setting the value of the timeout can then be handled in basically the same 

way as it was handled for the Lock type, that is, the timeout value could be set to 

some default value in the LockCC constructor (or, by overloading of the 

constructor, set to some specific value). 

Of the three options presented, this latter one is probably the least flexible, 

since it only allows a single timeout value to ever exist for the object. Both of the 

two previous approaches allow different timeouts to be supplied with each lock 

request, thus providing the maximum flexibility. For example, with both of the 

previous approaches, if the request to set a lock was refused, the caller may wish 

to try again but with an increased timeout value. This is impossible with this last 

approach. 
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4.9 Handling Atomic Action Nesting 

As described so far in this chapter the concurrency control type is incapable 

of handling nested atomic actions for two reasons. Firstly, when attempting to 

set a lock the concurrency controller takes no account of the available ancestry 

information. That is, when two locks are compared, they are considered 

compatible if they belong to the same action or if their modes are compatible. 

Secondly, although the Lock type has a status indicating whether it is held or 

retained, the concurrency controller does not use this in any way. 

Both of these problems can be overcome by simple additions to the 

concurrency control type LockCC. Overcoming the first problem requires the 

addition of a private operation isancestorofto the concurrency control type. This 

operation determines whether the owner of each held or retained lock is an 

ancestor of the owner of the requested lock. This relationship is then tested in 

accordance with the nested locking rules given in chapter three. 

The second problem requires that locks have their status changed when an 

atomic action commits. There are two distinct cases here. If a nested action is 

committing then the locks should be propagated to the parent action, otherwise if 

the action is a top-level one, then the locks should actually be released. Thus 

another operation, propagate, is added to LockCC. This operation has the task of 

ensuring that the ownership of any locks held by the object on behalf of the action 

is changed to that of the parent action, and that the status of the locks are 

similarly changed from held to retained. 

In addition to lock propagation, lock release is also not handled by the 

concurrency control type. This situation clearly needs amending, otherwise locks 

would persist as long as the object itself was active. To this end, the operation 

release lock is also added to LockCC. Given these two operations (propagate and 
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releaselock), it is then necessary to decide precisely which should be called when 

an atomic action commits. 

There are two alternatives to consider; which is followed depends upon how 

atomic actions have been implemented. For example, propagate could be called 

directly by the atomic action system implementation when a nested atomic action 

is being committed, leaving release lock to be called only when a top-level action 

commits. Alternatively, releaselock could always be called, and it could 

determine whether to propagate the lock or release it based upon the action 

nesting level prevailing at the time. Which approach is followed is determined by 

the implementation of the atomic action system. Thus, if the atomic action 

implementation distinguishes between top-level and nested commits such that 

different protocols are followed, then propagate should be called for nested action 

commit, with releaselock only being called when the top-level action commits (or 

aborts). 

4.10 Other Issues 

This section considers some other relatively minor issues that have not been 

considered elsewhere. 

4.10.1 Lock Conversion 

In chapter two it was noted that it was possible for an atomic action to first 

set a read lock upon an object and then at some later point in time decide to set a 

write lock on the object as well. This procedure was termed lock conversion. 

Earlier in this chapter it was stated that such conversion would not be 

allowed due to the immutability of the mode of each lock object. This does not 

mean the same same effect cannot be achieved; rather it must be achieved in a 

somewhat different fashion. The illusion of lock conversion can be achieved 

automatically using the inheritance based scheme of this chapter with no further 
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work or modification to the existing design for the following reasons. Firstly, 

locks from the same action are not considered to conflict with each other Thus 

even though an action may already have set a read lock upon an object, 

attempting to set a write lock at some later time will be allowed providing that no 

other action is also holding a read lock on the same object. 

If another action does hold a read lock then a conflict will exist and the 

attempt to set the write lock will not be allowed until the conflicting lock is 

released. This is correct behaviour since the net effect is that eventually only a 

single action is manipulating the object and the attempt to set the write lock will 

then succeed. This means that the list oflocks on the object will consist of the new 

write lock plus the original read lock, both of which belong to the same action. 

This conversion process is of course prone to deadlock if two independent 

actions both attempt to convert their existing read locks to write locks, since they 

will each end up waiting for the other to release the read locks they respectively 

hold. However, this deadlock can be handled in the same way as before, so that 

one of the requests for a write lock will eventually time out and be refused, 

causing an error return. What happens after this error return is determined by 

the implementor of the type. 

As an alternative approach, the ISIS strategy could be adopted and an 

explicit promotable read mode lock could be declared that is basically exclusive in 

nature. With this type oflock it would then be possible to disallow the illusion of 

conversion of normal read locks to write locks. 

Within the system under consideration such promotable read locks are 

simple to implement without further modification to the basic scheme. Once 

again use is made of the type inheritance capabilities of the language and a new 



ObJect-Unented ::3ystems and Concurrency Control 
122 

lock type - the PLock (illustrated in Figure 4-14) - is created, together with an 

appropriate declaration of its conflict operation (Figure 4-15). 

class PLock: public Lock 
{ 

virtual boolean operatorl~ (Lock_); 

public: 

} 

PLock (modetype); 
-PLock (); 

Figure 4-14: The PLock class 

boolean PLock::operatorl~ (Lock. otherlock); 
{ 

} 

switch (lockmode) 
{ 

} 

case READ: II Read compatible with all except Write 
if (otherlock~getlockmode() ~~ WRITE) 

return TRUE; 
break; 

case PREAD: II Pread ok with Read or same owner Write 
if (otherlock~getlockmode() ~= READ) 

break; 
if (owner l= otherlock~getowner(» 

return TRUE; 
case WRITE: II Exclusive unless same owner 

if (owner l= otherlock~getowner{» 
return TRUE; 

return FALSE; 

Figure 4-15: The PLock conflict algorithm 

Plocks are identical to Locks except that they support the additional mode 

PREAD (for promotable read) and have their own version of the conflict check. 

This check no longer allows lock attempts by the same action to proceed 

unhindered. Instead it checks all attempts to set a lock for conflict regardless of 

the source of the request. Thus in this case WRITE lock requests from the same 

action will always cause conflict with existing lock requests from the same action. 

The only way a WRITE lock can be granted using this conflict check is if the same 

action had already acquired a PREAD lock (or already holds an existing WRITE 
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lock). This particular implementation allows READ locks to be compatible with 

PREAD locks, however, only one PREAD lock is allowed on the object at any 

given time (it is assumed that the action does not attempt to set two or more 

PREAD locks on the same object, although the conflict check could easily be made 

to cope with this situation). This ensures that there can be at most one attempt to 

convert such a lock to a WRITE lock, thus avoiding any possibility of deadlock. 

Either of these two approaches is acceptable, but the very fact that both can 

be supported in so simple a fashion emphasises once more the flexibility of the 

basic design and the applicability of the type-inheritance approach. 

4.10.2 Managing the Lock List 

As locks may be inherited from child actions, there is likely to come some 

time when the list oflocks being maintained by the concurrency controller for an 

object becomes unwieldy and requires pruning. For example, if an action had 

been retaining a read lock on the object, and then inherited a write lock from one 

of its children it would end up retaining two locks, one in each mode. 

Obviously, in this case the read lock is no longer strictly necessary and can 

be released. This process of lock merging, must ensure that the correct lock is 

released (here the read lock, not the write lock) and thus requires that the lock 

modes form some total order. Given that lock modes can be ordered then it is a 

simple matter to ensure that the lesser is released when the merge occurs. 

Ordering of locks can be handled once again by a simple modification to the 

basic Lock class. All that is required is a new virtual function ordering, that 

compares the modes of the two lock instances and returns an indication as to 

which has the stronger mode (or whether both have equal strength modes). 

Alternatively, (as before) one of the standard operators could be overloaded (say 

<) to perform the same function. 
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4.10.3 Ensuring Two-Phase Locking 

In order to ensure that the concurrency controller follows strict two-phase 

locking it must not release any locks until the atomic action commits or aborts. 

This requires that certain operations of the concurrency controller (in particular 

propagate and releaselock) are called by the atomic action system when an atomic 

action commits or aborts rather than directly by the programmer. In order to do 

so, the atomic action system needs to be informed as to which objects each action 

has manipulated and the locks that have been set. The precise form of this 

information is given in the next chapter, however, what follows is a brief 

overview of the processing involved. 

Essentially, what happens is that when a lock is set, an indication is sent to 

the atomic action manager giving it sufficient information to identify the lock 

object and the actual object upon which the lock is being set. Then, as part of the 

standard commit processing performed by the atomic action manager the lock 

information registered with the manager is used to call the releaselock operation 

of the object, passing the lock identification as a parameter. Since this call only 

occurs as part of the commitment of an atomic action, the following of the strict 

two-phase protocol is assured. 

As an aside it may be noted that it is also possible for the two-phase policy to 

be subverted deliberately by explicit use of releaselock by the programmer. If this 

Occurs it is assumed the programmer knows what he (or she) is doing. In this 

respect our system is similar to both Clouds and Camelot which allow the same 

operations and make the same assumptions. In reality there are instances where 

releaselock must be explicitly called by the programmer. This situation arises if a 

call was made to setlock while the program was not executing as part of any 

atomic action. In this situation the programmer must release the locks explicitly. 
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In order to assure that a two-phase policy was still being followed once a lock 

was released explicitly it is possible to refuse to set further locks, but that would 

not overcome the possible problem of cascading aborts that might then follow. 

4.11 Summary 

This chapter has considered how to apply one of the concurrency control 

techniques of chapter two to an object-oriented environment. In doing so 

individual objects have been made directly and explicitly responsible for their 

own concurrency control which it is argued is the correct thing to do, bearing in 

mind the properties claimed for objects, particularly with regards to 

encapsulation. 

This control was added in a novel and evolutionary way by using the type­

inheritance capabilities of the implementation language. This had the highly 

desirable features of being both flexible and not requiring modifications to, or the 

design and implementation of, either a new language or operating system. 

Taking this approach further, it was claimed that locks ought to be objects 

in precisely the same sense as any other object in the system and so should not be 

regarded as pre-defined (and thus frequently immutable) system types. This 

approach is radically different to that adopted by the other object-based systems 

that have been considered in this chapter. 

In support or'this approach, a Lock type was designed that supported the 

basic modes of read and write and it was shown how by giving it an appropriate 

interface such an object could be used by a concurrency control type. A two-phase 

locking based concurrency control type was then designed that could be inherited 

by user-defined types, such that in conjunction with the Lock type the correct two­

phase behaviour was obtained. 
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Finally, the problem of deadlock was considered, and it was explained how 

this could be handled by use of the simple expedient of time outs. Note that there 

is no commitment to adopting this approach in the design, since other approaches 

are possible, however, they are more costly. The experience of the designers of 

other object-based systems shows that the use of timeouts has, in general, proved 

adequate. The need for a more complicated deadlock detection scheme is, as yet, 

unnecessary. 

Throughout this chapter it has been claimed that using type-inheritance in 

the manner described here is a flexible approach to adopt. In chapter six further 

examples will be given in support of this claim. 
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Chapter 5 

Implementation in 
Arjuna 

This chapter shows how the concurrency control type designed in the 

previous chapter was implemented as part of one particular system - Arjunat. 

Arjuna is an object-oriented programming system that supports the construction 

of reliable distributed application programs. 

The following sections describe Arjuna in more detail. In particular they 

describe the Arjuna system model and the class hierarchy upon which the entire 

system is based. They then show how the concurrency control type designed in 

the previous chapter is integrated into this hierarchy and consider the facilities 

that are required to enable the concurrency controller to function as part of the 

Arjuna system. 

The chapter then describes some of the problems that the model of 

computation employed by Arjuna has on the implementation of the concurrency 

control type, together with ways by which these problems can be overcome. 

Finally, the chapter shows the actual implementation of the concurrency 

control type of the previous chapter in Arjuna and gives sample performance 

details for this particular implementation. A more complex example is then 

described. This latter example is based upon a simple diary system that allows 

users to note when specific events are due to happen and is designed to show the 

tIn the Hindu epic Mahabharata, Arjuna is a warrior prince whose chariot is driven by 

Lord Krishna. 
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ease by which the facilities of Arjuna can be used by a programmer to create 

concurrency controlled objects. 

5.1 Arjuna 

Arjuna [Shrivastava 86, Dixon et al. 87, Parrington and Shrivastava 88, 

Shrivastava et al. 88] is an object-oriented programming system that supports the 

construction of reliable distributed applications. The initial goal of the project 

was to utilise as much as possible of the theoretical work on reliability that had 

been carried out at Newcastle University over the years [Shrivastava 85]. In 

addition some practical work was also available including a remote procedure call 

(RPC) mechanism that supported orphan killing. This mechanism - Rajdoot 

[Panzieri and Shrivastava 88] - was already being modified to incorporate 

facilities for multicast remote procedure calls [Hedayati 88] based upon a new 

multicast communication system [Hughes 86] which it was felt would be helpful 

in several areas, but particularly in the commit processing mechanism. 

Arjuna is being implemented in the language C++ [Stroustrup 86] upon a 

set of UNIX workstations connected by an Ethernet. As has been emphasised 

earlier in this thesis, the aim of the project has been to provide support for reliable 

distributed programming without resorting to producing a new programming 

language, operating system, or combination thereof. Rather, the project aims to 

exploit features provided by the implementation language and the host operating 

system. 

Objects in Arjuna are persistent (their lifetime exceeds the lifetime of the 

program that created them) and are the main repositories for holding the state of 

the system. Objects are normally stored in an object repository named Kubera 

[Dixon 88], which provides the necessary stable storage mechanisms to ensure 

that node crashes do not destroy objects stored within it. Kubera is a general 

purpose object store and holds not only the images of persistent objects, but also 
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certain critical infonnation about the system such as the state of any atomic 

actions in the process of being committed. 

5.2 The Arjuna System Model 

The basic layered architecture of Arjuna is shown in Figure 5-1. Objects in 

Distributed Programs 

employing atomic 

actions 

Robust objects and 

actions 

Multicast RPC 

Multicast communication 

Layer 

Hardware 

Figure 5-1: The architecture of Arjuna 

Arjuna may be either passive or active. When in a passive state an object resides 

in the object store of the node at which the object is located. Arjuna objects are 

assumed to be located in their entirety at only a single site. 

In order for an operation to be performed upon an object the object must first 

be activated. Once activated it remains active until the top-level action 

responsible for its management commits, or the action manipulating the object 

aborts. Note that objects may actually be activated by nested actions but 

providing that the nested action commits the object will remain active and will be 

inherited by the parent action. Arjuna thus differs from systems such as Argus 

[Liskov 88] and Camelot [Spector 87, Spector et al. 87] where object servers 
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(guardians in Argus tenninology) are pennanently running processes that are 

automatically started as part of node start up, and are guaranteed to be restarted 

after a node crash. 

For the sake of consistency and simplicity Arjuna makes no attempt to 

differentiate between local and remote objects. That is, local objects are handled 

in the same way as remote objects. In practice this means that even local objects 

are accessed via remote procedure calls (RPCs) [Nelson 81, Birrell and Nelson 84]. 

While this may seem inefficient the uniformity of access that it affords has its 

benefits from the point of view of stub generation. In particular the use of remote 

procedure calls can be completely hidden from the programmer. 

To make the distribution of objects hidden from the programmer Arjuna 

employs a stub generator [Wheater 88] that takes definitions of the interface to a 

type and produces an equivalent stub type. This stub type provides the same 

interface to the programmer as the original type, only the implementation of the 

actual operations of the type has changed. Instances of the stub type are tenned 

stub objects. 

Each operation of the stub type is responsible for packing the parameters of 

the operation into a fonn suitable for transmission over the communications 

medium and invoking a remote procedure call to a server process at the site where 

the object actually resides. This server then unpacks the parameters, perfonns 

the requested operation locally upon the object, packs the result and returns it to 

the client stub object. The client stub object waits for this reply and when it is 

received unpacks the result and returns it to the caller exactly as if the call had 

been perfonned locally. This sequence of events is shown in Figure 5-2. 
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Figure 5-2: Remote operation invocation 

This procedure is transparent to the programmer since whenever an 

instance of a type is declared in the program, an instance of the corresponding 

stub type is instantiated instead. Thus the programmer continues to invoke 

operations upon the stub objects as if these stub objects were the real objects. 

The stub object and the code that has to be executed in order to pack and 

unpack the parameters for each of the operations of the actual object (at both the 

client and the server) are automatically produced by the stub generator from the 

interface definition. 
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Recall that in C++ objects have special operations known as constructors 

and destructors associated with them. The code produced by the stub generator 

takes advantage of this fact to determine when to create the server process for 

each object. When the stub object first comes into scope (that is, it is created) the 

constructor for the stub object is called. This constructor determines the site at 

which the real object resides by interrogating some name server and then makes 

a remote procedure call to a manager process running at that site requesting 

creation of a server process. When the server process has been created the 

manager sends back to the stub object constructor an address by which the server 

process may be contacted directly. All future remote procedure calls are directed 

to the server process without further involvement of the manager at the remote 

site. 

Similarly, when the stub object goes out of scope, the destructor operation 

ensures that the communication channel is terminated after first instructing the 

server to terminate (which in turn will cause the remote objects to be passivated). 

The RPC system employed by Arjuna is a modification of Rajdoot, a system 

that provides exactly once semantics. That is, if the client receives a reply then 

exactly one execution of the called operation has taken place. If the client does 

not receive a reply then either one, none, or a partial execution of the operation 

may have taken place. The simplest course of action to take in this situation is to 

abort the action from which the call was made (assuming that the operation is 

executing under the control of some atomic action). 

Although not shown above, there may be further recursion in the system 

since a server may itself be a client to some other server. Thus at any instant 

there may be many clients each with possibly multiple servers, each of which 

may, in its own right, be the client of yet more servers. 
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Such an approach naturally leads to a tree-like structure of client and server 

processes and this was the model employed originally by Rajdoot. This implied 

that remote procedure calls destined for the same object but which originated 

from different nodes resulted in the creation of additional server processes. Thus 

it was possible that any single object might have several servers active for it at 

any given time. 

Since this situation was considered undesirable, (it provides several 

management difficulties) this basic RPC mechanism was modified so that servers 

can now be shared by more than one client, providing that the clients are related. 

The implications of this will be considered later in this chapter in section 5.5.2 

and again in chapter six. 

5.3 Atomic Actions in Arjuna 

Arjuna is unlike any of the other object-oriented systems reported in the 

literature (and briefly described in the previous chapter) that have been 

developed over recent years in that every major entity in the system is an object. 

This idea even extends to the notion of presenting an atomic action as simply 

another object in the system, as opposed to it being implemented as part of an 

operating system or built into a special programming language. 

Thus atomic actions in Arjuna are manipulated and declared in the same 

way as other objects. In particular, there is a class called Action, a skeleton of 

which is shown as Figure 5-3. This class provides the basic operations associated 

with atomic actions as outlined in chapter three and leads to programs that 

resemble the simple example shown as Figure 5-4 which illustrates a sequential 

nested action B inside the top-level action A. Action management and the 

implementation of the failure atomicity properties of objects are not the concern 
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class Action 
{ 

public: 

} 

Action (); 
-Action (); 

Begin_Action (); 
Commit_Action (); 
Abort_Action (); 

Action_ Parent (); 

II private action management 
II functions and variables 

Figure 5-3: The class Action 

main () 
{ 

} 

Action A, B; 

A.Beg in_Act i on (); 
{ 

} 

B.Beg in_Act ion (); 
{ 

} 

B.Commit_Act i on(); 

A.Commit_Act ion ( ); 

II declare the two actions 

II commence action A 

II start nested action B 

II operations of action B 

I I commit B 

II finally commit A 

Figure 5-4: The class Action in use 
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of this thesis and are only covered briefly here to give the reader an overview of 

the Arjuna system. For precise details see [Dixon 88]. 

Instances ofthe class Action maintain as part of their private state all of the 

necessary information regarding the current status of the action (running, 

committing, aborting, etc), together with a special list of records that records 

information required to achieve the properties of failure atomicity and 

pennanence of effect. Also held on this list are records detailing actions taken by 
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(or yet to be taken by) the concurrency controller of each object. This will be 

described in more detail in section 5.5. 

5.4 The Arjuna Class Hierarchy 

One of the key concepts of Arjuna is its use of the properties and facilities of 

the implementation language C++ and the host operating system to provide 

support for reliable distributed programming using atomic actions. This support 

is added by the declaration and use of appropriate classes responsible for 

implementing the various portions of atomic action management. 

These classes form a hierarchy, a basic illustration of which is given as 

Figure 5-5. At the root of the entire hierarchy is the class Object. This class 

Figure 5-5: The Arjuna class hierarchy 
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provides the basic facilities used by all of the other classes. In particular, it 

contains the name of each object (in terms of a unique identifier) and operations to 

determine the size and type of an object. It is also responsible for interaction with 

the object store, especially with respect to object activation and passivation. 

Since Action is a class derived from Object it inherits the attributes of that 

class. This allows, for example, actions to be named by their unique identifiers 

rather than any other way, such as associating some form of hierarchical name 

that reflects the action nesting. However, it should be pointed out that since 

Action provides an operation called Parent such a hierarchical name could be 

generated if required simply by following this parent chain back to the top-level 

action (which is identified by the fact that it has no parent). The implementation 

of the concurrency control type LockCC uses this unique identifier to associate all 

of the locks of any given atomic action together. 

Instances of the class Abstract_Record are not meant to be instantiated in 

any way (in fact all of the operations of this class are designed to return errors if 

they are invoked). Instead, Abstract_Record is used as a template for the 

declaration of several other management utility classes. The operations provided 

by Abstract_Record correspond to those of Action and include such operations as 

begin, top_level_commit, abort, etc. The use of one particular type derived from 

Abstract_Record - the Lock_Record - will be described in section 5.5. 

In section 5.3 it was mentioned that instances of Action maintained a list of 

records for management purposes. In actual fact these records are simply 

instances of the record types derived from Abstract_Record, that is, 

Object_Records, Lock_Records, etc. Whenever an operation on an instance of 

Action is performed it, in turn, causes the equivalent operations to be invoked on 

each record instance held on its Record_List. 
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When an atomic action commits, Action invokes the equivalent commit 

operation for each record in its current Record_List. When an nested atomic 

action commits certain information must be propagated to the parent atomic 

action. This propagation is necessary so that if an object was manipUlated for the 

first time by the nested atomic action then the parent of the action can assume 

responsibility for the management of the object. Similarly if the object was 

already known to the parent then the duplicate information can be discarded 

since the action already knows about the object. Thus the Record_List behaves 

in a similar fashion to a recovery cache [Lee et al. 80]. 

5.5 Adding the Concurrency Controller to Arjuna 

The final sections of previous chapter outlined the mechanism by which the 

concurrency control type designed in that chapter could be integrated into a 

system that supported atomic actions. This section shows how that mechanism is 

provided in the AIjuna system. 

As can be seen from Figure 5-5 the concurrency control type described in the 

previous chapter is in actual fact derived from the root class Object and thus 

inherits the capabilities it provides. Since all of these features are really required 

by the user-defined objects themselves, then LockCC publically inherits Object, 

and is itselfpublically inherited by the user-defined types. 

5.5.1 Ensuring Strict Two-Phase Locking 

As was pointed out in chapter four, the concurrency controller of an object 

needs some way of recording with the atomic action system that it has set a lock 

Upon the object. When the action commits the concurrency controller for the 

object can then be instructed either to propagate, or to release the lock as 

appropriate, depending upon whether the committing action is nested or not. In 

Aljuna this communication is enabled by the ability of the concurrency controller 
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for an object to add records to the Record_List of the appropriate action. For this 

purpose (although not shown in Figure 5-3) Action also provides as part of its 

public interface an add operation, the basic declaration of which is shown below: 

int add (Abstract_Record_); 

In addition, there is always a pointer to the current action available under 

the name Current_Action. Thus whenever a lock has been successfully set upon 

an object the concurrency controller for that object can inform the atomic action 

system of the fact by simply executing the following statement: 

CurrenLAction-+add (new Lock_Record(reqlock -+get_ownerO, this»; 

This statement creates a new instance of the class Lock_Record and passes 

to its constructor the unique identifier of the owner ofthe lock object and a pointer 

to the actual concurrency controlled object. This newly created record is then 

added to the list maintained as part of the state of the current action. 

The declaration of the class Lock_Record is shown in Figure 5-6. The only 

information this class maintains is the owner of the lock (in terms of the unique 

identifier of the atomic action setting the lock) and a pointer to the appropriate 

concurrency controlled object. Furthermore, these private variables can only be 

set through the constructor operation; no further manipulation of them is 

permitted. Thus, each instance of Lock Record contains sufficient information 

to enable appropriate actions to be taken to ensure that locks set by an action are 

all correctly propagated or released depending upon the ultimate fate of the 

action. Since locks are themselves objects (instances of the class Lock which is 

derived from Object), they possess a unique identifier by which they too can be 

named. 
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class Lock_Record: public Abstract_Record 

{ 
Uid. action_uid; 
LockCC. object_address; 

virtual void pack (Image_ ); 
virtual void unpack (Image_ ); 

public: 

} 

Lock_Record (Uid_, LockCC_); 
- Lock_Record (); 

virtual void begin (); 

vi rtual int nested _prepare (); 
virtual void nested - commit (); 

vi rtual void abort (); 

virtual int top_ level _prepare 
vi rtual void top_ level - commit 
virtual void top_ level - abort -

virtual Record_Type TypeIs (); 
virtual UnTyped Value (); 
virtual int ordering (); 

(); 

(); 

(); 

II unique id of owner atomic action 
II pointer to concurrency controlled 
/I obj ect 

II Arjuna required operations 

II create new lock record 

II operations lock records respond to 

II operations required by Action 

Figure 5-6: The class Lock_Record 
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Lock_Records must re-implement all of the functions they inherit from 

Abstract_Record since the base class operations are designed to return an error if 

they are ever invoked. As a rule most of these operations are simply redefined to 

be null operations, so that if they are called the operation returns immediately. 

In Arjuna, the implementation of the class Action makes a distinction 

between the commitment of a nested atomic action and the commitment of a top­

level atomic action. There are seven distinct operations required to cope with 

this. Nested-prepare and nested_commit are invoked when a nested action 

commits. Top_level-p rep a re, top_level_commit, and top_level_abort are 

invoked as appropriate during execution of the two-phase commit protocol. 

The implementation of all of these operations is simple as far as instances of 

Lock_Record are concerned since all they are required to do is trigger the release 

or propagation of the associated lock at some object depending upon whether a 
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commit or an abort is being performed. In section 4.10.3 of the previous chapter 

two possible approaches to lock release and propagation were described, and it 

was stated that which approach to adopt depended upon how the atomic action 

system treated nested action commitment. Since Action distinguishes between 

nested and top-level commits the implementation of these operations for the type 

Lock_Record are different and are shown as Figure 5-7. 

void Lock_Record: : nested_commit () 

{ 
obj ect_add ress -+ propagate (act i on_u i d) ; 

} 

void Lock_Record::abort () 

{ 

} 

object_address-+releaseall (action_uid); 

Figure 5-7: The implementation of nested commit and abort for 

Lock_Record 

The additional functions provided by Lock_Record are for the benefit of the 

atomic action management system. For example, ordering is used during the 

record list merging process, while Value simply returns the value of the 

action _ uid member variable. 

Once a decision has been made to abort or commit a top-level action, that 

decision should carried out regardless of any crashes by any node in the system. 

Arjuna handles this by utilising a form of intentions list coupled with the ability 

for instances of each of the action management classes to save sufficient 

information about themselves in the object store. 

Basically what happens is the following. When top-level action commit is 

invoked, Action uses facilities provided by Object to retrieve the state of each of 

the records currently held on its record list and saves that state in the object store. 

The commit operation of Action then invokes the top_level---prepare operation 
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upon each record in turn. IT this succeeds for all of the records in the action then 

the first phase of the commit process is considered successful and the intentions 

list (which records the unique identifier of each record) is also placed in the object 

store. The second phase is then started which requires re-scanning the record list 

performing the top_Level_commit (or top_Level_abort if the action is being 

aborted) operation on each record and then removing the corresponding record 

from the object store. 

Since the information that needs to be saved differs from record type to 

record type, each provides a type-specific pack function which is called 

automatically by Object. This function packs the state of the record instance into 

a contiguous block of memory that is handled by a class called Image. For 

symmetry purposes there is also an unpack function which performs the reverse 

operation. For more complete details of this procedure, see [Dixon 88]. 

5.5.2 Implications of the Arjuna System Model 

Earlier in this chapter the system model employed in Arjuna was described. 

This section describes what effects this model has upon the basic concurrency 

control scheme designed in the previous chapter. 

The most obvious problem that arises comes about due to the fact that it is 

possible for an object to be managed by more than one server at any particular 

site. This can quite naturally lead to severe consistency problems. As was 

pointed out in section 5.2 the model of computation supported by Rajdoot was 

extended to allow for server sharing. However, such sharing was only allowed 

between related processes, which in this context means servers that have come 

into existence due to the execution of related atomic actions. This situation is 

shown in Figure 5-8. 
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Figure 5-8: Arjuna process structure 

In this example a client program PI (at node N 1) has accessed an object at 

node N 2 resulting in the creation of the server process P2. PI has also accessed 

another object at node N 3 resulting in the creation of the server P3. An operation 

performed by P3 (on behalf of the original client) is then assumed to require the 

invocation of some operation on the object at N 2 already served by P2. Thus in 

this case P3 is allowed to share the server P2 with the original client PI. 

If, however, some totally unrelated action running at N 3 attempted to 

perform some operation on the object managed by P2 then an entirely new server 

(call it P4) would be created. Thus the object at N2 ends up by being served by 

both P2 and P 4. It is the task of the concurrency controller for the object to ensure 

that this situation does not lead to any inconsistencies. The concurrency 

controller does this by controlling when an object is activated. 

Recall that objects in AIjuna, when passive, are stored in the object store 

Kubera. This object store is particularly simple minded in that, while it ensures 

that the object is stored reliably, it contains no access control mechanisms 

whatsoever. Thus if two servers attempt to activate an object, both would be 

allowed to load it from the object store independently of each other without any 

access check taking place. 
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Since this is the case, it is the concurrency controller for the object that must 

determine when the load of the object from the object store should take place. It 

would be possible, for example, for the object to be loaded as part of the invocation 

of the constructor operation at the object's server, but that leads to precisely the 

situation we are trying to avoid. 

Consider the simple case provided by the basic system where the object can 

only set read or write locks upon itself (ignoring the potential problems caused by 

lock conversion for now). If the object is only being read then having mUltiple 

servers, each with a copy ofthe object does no harm whatsoever, since each server 

has a copy of the latest state of the object. Problems only arise when (at least) one 

of the servers wishes to modify the object in some way. Obviously each server 

cannot be allowed to have its own copy of the object in this case, since the 

modifications each performed would not be reflected in the final object state. 

Rather only the modification performed by the last committed server would be 

reflected - leading to the classical problem of lost updates. Thus only one server 

must be allowed to modify an object at any given time. Fortunately, this 

situation is fairly easy to achieve since in order to modify the object the server 

would have to first obtain a write lock on the object, and by the standard locking 

rules only one such lock can exist at anyone time. 

Obviously the modification should take place upon the latest state of the 

object which requires that the object is only actually activated (and thus cause its 

state to be loaded into the server) after an appropriate lock has been acquired. 

For this purpose, the base class Object, provides a routine called activate, the 

purpose of which is to determine if the object has been activated, and if not cause 

it to be activated by loading the latest state of the object into the server. If the 

state has already been loaded, activate simply returns without doing anything. 
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Using this mechanism it is simple to ensure that only one server has modify 

access to an object and thus lost updates are not possible. The sequence of events 

is thus now: 

(1) The stub object comes into scope and causes creation of a server process at 

the home site of the actual object. The server process sends its address to the 

stub object so that communication between the client and the server 

requires no third party. As part of the server creation an instance of the 

required object is created and initialised into a (type-specific) default state. 

(2) The client program invokes some operation on the stub object which is 

translated into a remote procedure call to the appropriate server requesting 

the execution of the operation. 

(3) The actual code for the requested operation attempts to set a lock of the 

appropriate type upon the object by calling setlock. 

(4) If the lock cannot be granted the server blocks until it can be. Once the lock 

is granted, setlock calls activate to ensure that the actual object state has 

been loaded into the server from the object store (that is, the object becomes 

active at this point in time). 

(5) The setlock call returns, the requested operation IS performed and the 

results are returned to the client. 

As can be seen from the above description activate must be called on every 

attempt to set a lock on the object. While this may seem to be an unnecessary 

overhead it is probably not so, since in the majority of cases activate will return 

immediately without doing anything. 



Implementatwn in Arjuna 145 

An alternative approach is the following. The state of the object is 

automatically loaded as part of the invocation of the object's constructor at server 

startup. This means that read accesses do not need to perform activate calls since 

they already have the state present. Only calls that modify the object require 

activate calls to ensure that once the lock is set the latest current state is loaded 

into the server. 

While this latter scheme will work in the simple case that has been under 

consideration here, it still has its problems. The most notable problem is that 

under this scheme the concurrency controller for the object needs to know which 

locks will be set when the object is to be modified, to be sure that activate is called 

when locks of that type are set. 

In the simple case where only read and write locks may be set this is easy to 

determine, since write locks are the only lock type that allows object modification 

and so the concurrency controller for the object could simply check for those. 

However, as shall be seen in the next chapter, when the types oflocks that may be 

set on an object are extended in a type-specific manner this check is not 

guaranteed to be effective. 

Of course a requirement could be made that all locks in addition to a mode 

(such as read or write) also carry some indication as to their type (say either 

examine or modify along the line of Clouds [Dasgupta et al. 85]) which could then 

be tested by the concurrency controller of the object, but for now this approach is 

discounted and instead calling activate on every attempt to set a lock is preferred. 

The above discussion has assumed that the object is not a new object that is 

being created by the calling action. Ifthis were the case then the call to activate is 

strictly unnecessary, since the object does not yet exist in the object store. Given 
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that the status of an object can be determined by calling an operation provided by 

Object it is simple to avoid the activation in this case. 

Lock conversion could also be a source of problems if two servers attempted 

to convert their read locks to write locks since lost updates could reappear. 

However, the techniques of the previous chapter suffice to cover this situation 

effectively. Firstly, if the extended Plock style of locking is used then only one 

server will be allowed to convert from read access to write access on an object, 

thus ensuring that only one server will update the object. Alternatively, using 

the normal style of locking, the conversion would cause deadlock to occur, which, 

in turn, would cause one of the conversion requests to fail, thus still leaving only 

one server capable of updating the object. 

5.6 Further Complications 

The previous section showed how the use of multiple servers for each object 

in Arjuna could cause inconsistencies to occur without modifications to the basic 

concurrency control scheme described in chapter four. 

The following sub-sections outline some other problems that this model of 

computation has together with means by which they can be overcome. 

5.6.1 Concurrency Control State 

The problems already described in the previous section, which were to do 

with the actual state of the object, have analogous problems to do with the state of 

the concurrency controller for the object. This section describes these problems 

and considers ways by which they can be solved. 

The state of the concurrency controller for an object is essentially 

determined by the list of Lock objects that it is currently holding or retaining on 

behalf of the various atomic actions ongoing in the system. In order to be able to 
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decide whether any individual request to set a lock can be granted, the 

concurrency controller for the object needs complete knowledge of all the locks 

that are currently set upon the object. Unfortunately, if multiple servers exist for 

an object then this information is actually distributed amongst all such servers. 

Thus the concurrency controller in each server for a single object only knows 

what locks have been set by that server. This is an intolerable situation since it 

can lead to inconsistent decisions by the concurrency controller. For example, 

consider an object for which two servers exist. It could be that one server holds 

several read locks on the object, while the other server is being asked to set a 

write lock on the same object. In this case, without knowledge of the read locks 

held by the first server, the second server may inadvertently allow the write lock 

to be set, creating obvious consistency problems. This problem can be overcome in 

several possible ways: 

Using Multicast Communications 

One possible way by which this problem of incomplete knowledge could be 

overcome is by allowing the concurrency controllers in each server to 

communicate with each other so that a consensus can be arrived at whenever a 

lock is to be set. 

However, since servers are created dynamically, determining how many 

servers exist and how to communicate could be a problem. One solution is to use 

multicast communication, such that the servers for an object all form part of a 

common multicast group [Hughes 86]. Thus when servers are dynamically 

created they join the appropriate group and when they die they leave the 

appropriate group. It is then the task of the multicast communications software 

to ensure that all members of the group receive messages. 
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Creating such a multicast group is a simple procedure. Since each server is 

responsible for an object that has a unique identifier, this unique identifier can be 

used to generate a unique multicast group identifier for the purpose of 

communication. Furthermore, since all of the servers for the same object would 

see the same unique identifier for the object, they will each generate the same 

group identifier, thus ensuring that all active servers for an object (and only 

servers for that object) would be capable of sending and receiving multicast 

messages for that group. It further follows that any new servers created for the 

object would also be capable of generating the same multicast identifier, and so 

they too could participate. 

Unfortunately, while seemingly simple, this solution does not fit in well 

with the basic organisation of the system. One problem is caused by the 

clientJserver relationship and the use of remote procedure calls. Recall that each 

server is effectively in a loop, receiving remote procedure calls, obeying them, and 

returning the results to the client. Furthermore, the code that dispatches the call 

to the correct operation has been generated automatically by the stub generator 

from the interface to the object. The use of multicast communications then causes 

problems, since the server is either expecting a remote procedure call, or is 

obeying one already. In either case the arrival of a multicast call is unexpected 

and additionally the dispatch code does not know how to handle it. 

There is too an equally difficult problem regarding precisely what 

information to exchange. What effectively has to happen is that the server 

attempting to gather the lock information must recreate the entire list of Lock 

objects within itself. Thus, all of the other servers must transmit the locks they 

are currently holding in a form that allows them to be recreated at the receiver. 

This is difficult to achieve without breaking the encapsulation properties of the 

Lock objects. 



Implementatwn zn Arjuna 149 

Neither of these problems is unsolvable, however, there are simpler 

solutions to the problem, therefore, this approach is considered no further. 

Using the Arjuna Object Store 

Fortunately a much simpler and more universally applicable way of 

overcoming the problem is possible which requires making use of the Arjuna 

object store itself to transfer information between the individual servers that are 

collectively managing an object. This approach is only open because in Arjuna 

locks are simply regarded as objects by the system and are thus equally eligible to 

be stored in the object store. 

The implementation requires modifications to both the Lock class and the 

concurrency controller class LockCC. Recall that to ensure mutual exclusion the 

LockCC class (Figure 4-12) maintains a semaphore that is acquired and released 

by each operation (for example setlock (Figure 4-8» before the internal state of the 

concurrency controller is manipulated. Thus in addition to acquiring and 

releasing the semaphore, each operation must ensure that the current 

concurrency control state is retrieved from (and stored in, respectively) the object 

store. To handle this, each call of the P semaphore operation is simply replaced 

with a call to the new private operation loadstate. Similarly, each call of the 

semaphore V operation is replaced by a call to the operation unloadstate. 

All the loadstate operation is required to do is acquire the semaphore (to 

maintain the property of mutual exclusion) and then cause the concurrency 

controller state to be loaded from the object store (this is shown as Figure 5-9). 

This operation first obtains the image of the concurrency control information for 

the object from the object store and then proceeds to rebuild the internal list of 

lock objects based upon the information it finds in the retrieved image. 
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II 
II Lock and load the concurrency control state. First we grab the 
II semaphore to ensure exclusive access and then we build the held 
II lock list by retrieving the locks from the object store. 
II 

void LockCC::loadstate () 

{ 

} 

int count; 
Uid- u; 

II retrieve this many locks 

Lock_ current; 
Image- I; 

II retrieving this lock 
II image retrieved from store 

mutex .... P(); I I grab semaphore 
if «I = lock_store .... unload(get_Uid(), LockCC::type(») 1= Null) 
{ II pick apart the image 

} 

I .... unpack(&count); II how many locks in store 
for ( int i = 0; i < count; i++) 
{ II retrieve and rebuild lock 

II information 

} 

u = new Uid(); 
u .... unpack( I); 

II lock unique id 

current = new Lock(u); II create empty lock 
current .... unpack(I); II unload image into it 
locks_held.insert(current); II Then add to lock list 

Figure 5-9: The loadstate operation of LockCC 
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The encapsulation property of objects requires that individual locks must 

rebuild themselves, since only the implementor of the Lock class knows the 

internal state of a Lock object, only he has sufficient knowledge to know what 

parts of that state are required to be saved in the object store such that the lock 

could be recreated when necessary. Thus an empty lock is created which is then 

made to perform this operation. The resultant lock is then simply added to the 

internal lock list. 

As might be expected, unloadstate is simply the reverse of this operation, 

which causes the state of the concurrency controller for the object to be replaced in 

the object store prior to then releasing the semaphore. In this case an empty 

image is first created into which each lock object is made to pack itself. The 
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resulting image of the concurrency controller's state is then stored in the object 

store. 

The packing and unpacking of objects requires that each type supplies both 

a pack and an unpack operation which can be used to cause instances of the type 

to pack up their state into an image, and similarly retrieve their state from a 

supplied image. 

This is only one possible approach, in that the entire state of the 

concurrency controller for an object is built into a single image for storage in the 

object store. An alternative approach would be to store each lock in the store 

individually (since Lock is derived from Object this is equally possible to achieve) 

and then have the concurrency control state simply be a list of those individual 

objects, rather than the objects themselves. However, this solution imposes 

greater overheads than the one adopted due to the creation of the extra images, 

thus it has not been adopted here. As will be seen in the next chapter, a modified 

Arjuna system model will remove the need for moving the state around at all. 

Since locks must be able to pack themselves into an image, an appropriate 

pack operation must be defined for them. Figure 5-10 illustrates just such a pack 

virtual void Lock::pack ( Image. I ) 
{ 

} 

I-+pack( isactionlock); 
I-+pack(current_status); 
I -+pack( 1 ockmode); 
owne r-+pack( I); 

II pack up type, 
II held or retained 
II mode 
II and owner 

Figure 5-10: The pack operation of Lock 

operation. Packing of locks is simple in that the private variables of the class 

indicating the lock type, status and mode are directly packed, followed by the 

owner of the lock. Since the owner of the lock is an instance of the class U id, it is 
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asked to pack itself, for the same reasons regarding encapsulation that have been 

made earlier. 

With these modifications it is now possible to tolerate (at a price, 

particularly in performance) having multiple servers for an object at least as long 

as only the simple multiple reader, single writer approach to concurrency control 

is followed. However, as shall be seen in the next chapter, enhancing the level of 

concurrency recreates these problems once more. 

Using Shared Memory 

Another possible solution to the problem of concurrency control state is to 

use shared memory. One approach to using shared memory requires that all of 

the locks are either originally allocated in, or moved to (it does not really matter 

which), a region of memory that can be shared between all of the servers for an 

object. 

For this scheme to be effective all the locks for a given object must either 

reside in one particular shared memory region which the concurrency controller 

of the object knows how to access, or alternatively, there is a single shared 

memory region per system which is organised in such a fashion that it is possible 

to identify which locks belong to which concurrency controller, since in general 

there will be many objects active, and hence many different concurrency 

controllers, each of which will need to know only those locks set by itself. 

While seemingly attractive, the use of shared memory in this fashion is 

discounted for two reasons. Firstly its management and organisation is complex, 

and secondly (and in this, case more importantly) the proper support facilities for 

it are not currently available in the current implementation environment. 
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However, by adopting a slightly different approach the use of shared 

memory is still possible. The approach adopted is to provide a shared memory 

manager that has basically the same interface as the object store. Using this 

approach the Image of the concurrency control state must still be created, but 

instead of it then being stored in the object store, it is placed in a region of shared 

memory. Since access to shared memory should be faster than access to disk this 

approach should provide an increased level of performance. 

This approach is also useful in that since the interface to the shared memory 

manager resembles the interface to the object store the changes to the 

concurrency controller are minor to implement it. 

Sample performance figures for both of these approaches (object store and 

shared memory) are given in section 5.7.1. 

5.6.2 The Problem of Server Lockout 

The previous section showed how the basic problem of state management 

could be overcome by moving the necessary state information in and out of the 

object store (or shared memory) as it was needed. 

This section describes another problem which may cause atomic actions to 

be aborted unnecessarily. Consider the diagram of Figure 5-11. This diagram 

illustrates the processes that will have been created if a top-level action A creates 

two concurrent nested actions Band C (all of which are executing at site N 1 

although they need not necessarily be so) to perform some work on its behalf, each 

of which is manipulating the same object at some remote site N 2. According to 

the rules stated in section 5.5.2 since the two nested actions share a common 

ancestor then both will use the same remote server process (in this case S). This 

is where the problem occurs. 
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.... 
call 

A ; S 
, . 

" : 
". : 

'....... : 

'. 

". 

call 

Figure 5-11: Concurrent nested action structure in Arjuna 

There are two distinct cases here. In the first, the server S may already be 

executing an operation on behalf of the action B. In this case it is deaf to any 

incoming requests for service from the action C. Since the operation may take an 

arbitrary length of time to complete the RPC mechanism may incorrectly assume 

that the server is dead and give an exceptional return. The only safe course open 

to the action C is then to abort itself, which is completely unnecessary. This is, of 

course, a problem with the underlying RPC mechanism. 

The second problem in this area relates to the action the concurrency 

controller for the object undertakes when it detects conflict. At present it simply 

causes the server to sleep for a short period before retrying the lock request. Once 

again this will cause the server to become deaf to other clients. Consider the 

following; B has set a read lock on the object and a request from C arrives that 
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requires a write lock. In this case, a conflict will (correctly) be detected and Swill 

be made to sleep. In doing so, S is now deaf to any call from B that might cause 

the conflicting lock to be released, such that when C's request is attempted again 

the conflict still exists and S will sleep once more. Eventually, the timeout on the 

setlock call will decide that the write lock for C cannot be set and will give an 

exceptional return, which is likely to result in C being aborted. In addition, since 

the server appears deaf, the RPC mechanism might similarly cause B to be 

aborted also. 

It should be stressed here that this behaviour does not cause any 

inconsistencies to appear in the system, rather it may simply abort actions 

unnecessarily. The revised architecture in the next chapter will also tackle this 

problem. 

5.7 The Concurrency Controller in Arjuna 

In chapter four, a basic concurrency control type was described, together 

with some modifications to allow it to work in a nested atomic action 

environment. Earlier parts of this chapter have illustrated the further 

restrictions that Arjuna placed upon the design and has outlined some means by 

which these can be accommodated. This section presents the current Arjuna 

version of the concurrency control type to illustrate one particular 

implementation of the concurrency controller and gives some indication as to the 

performance of this implementation. 

Figure 5-12 shows the interface presented by LockCC to users. To ensure 

that strict two-phase locking is obeyed a user-defined type should only make use 

of the setlock operation. All of the other publically available operations (such as 

propagate) are intended to be called only by the atomic action implementation as 

part of commit or abort processing. However, as was noted in the previous 

chapter the concurrency controller is capable of setting locks (and following two-
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class LockCC : public Object 

{ 
Lock_List locks_held; 
Semaphore. mutex; 
Object_Store. lock_store; 

void loadstate (); 
void unloadstate (); 
void freestate (); 

void dorelease (const Uid., 
boolean lockconflict (const 
boolean isancestorof (const 

re 1 easetype); 
Lock_); 
Lock.) ; 

II 
II 
II 

II 
II 
II 

II 
II 
II 
II 

the actual list of locks set 
for mutual exclusion pu rposes 
repository for locks 

CC state loader 
and unloader 
state ditcher 

actual lock releaser 
confl ict checker 
check ancestry 
information 

protected: II Arjuna specific operations 
virtual void pack (Image.); 
virtual void unpack (Image.); 

public: 

}; 

LockCC() ; 
-LockCC() ; 

status setlock (Lock., int timeout = 100); II user visible setlock 
status releaselock (const Uid_ lockid); II release one particular lock 
status releaseall (const Uid. actionid); II release all locks for a given action 
void propagate (const Uid. actionid); II propagate all locks to parent action 

II functions inherited from Object 

virtual TypeName type(); 

Figure 5-12: The Arjuna version of LockCC 
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phase locking rules) even if the program is not executing under the control of an 

atomic action. In these circumstances, it is the responsibility of the programmer 

to call releaselock explicitly to release such non-action locks. The programmer 

should also be aware that locks set outside of an action will conflict with those set 

as part of an action, since the locks will be given different owner identifiers. 

Figure 5-13 shows the implementation of the setlock operation itself. This 

implementation uses the default parameter mechanism of C++ to provide a 

simple timeout mechanism that can be overridden at any single call as described 

in section 4.8 of the previous chapter. 
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} 

II 
II setlock: This is the main user visible operation. Attempts to set 
II the given lock on the current object. If lock cannot be set, then 
II the lock attempt is retried timeout times before giving up and 
II returning an error. This gives a simple handle on deadlock. 
II 

status LockCC::setlock Lock. reqlock, int timeout) 
{ 

boolean conflict TRUE; 
status returnstatus = REFUSED; 

II assume there will be conflict 
II matching return status 

if (Current_Action 1= Null) II set up lock owner 

do 

{ 

reqlock-+setowner(Current_Action-+get_Uid(). TRUE); 

loadstate(); II recover entire state 
if «conflict lockconflict(reqlock») 

{ 1/ there is conflict so ... 

} 

freestate(); 
timeout--; 
sleep(5); 

II free state 
II decrement timer 
1/ wait a bit 

} while «conflict) && (timeout )= 0»; 
if (Iconfl ict) 
{ II no conflict so set lock 

locks_held.insert(reqlock); 1/ add to local lock list 
if (Current_Action 1= Null) 
{ 1/ add lock record to action 

Current_Act i on-+ 
add(new Lock_Record(reqlock-+getowner(). this»; 

} 

list 

act i vate( ); 
returnstatus GRANTED; 

II trigger object load from store 
II lock granted successfully 

} 

unloadstate(); 1/ exit critical region 
return (returnstatus); 

Figure 5-13: The Arjuna version of setlock 
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Similarly, Figure 5-14 illustrates the conflict operation lockconflict. This 

uses the capabilities of the individual lock objects to determine whether lock 

modes conflict and performs an ancestry check to determine if any found conflict 

is with one of the requesting actions ancestors. Thus it implements Moss's nested 

locking rules. 
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II 
II lockconflict: Here we attempt to determine if the provided lock is 
II in conflict with any of the existing locks. If it is we use nested 
II locking rules to allow children to lock objects already locked by 
II their ancestors. 

II 

boolean LockCC: :lockconflict ( const Lock. reqlock ) 

} 

Lock_ heldlock; 
Lock_Iterator next(locks_held); 
boolean isconflict = FALSE; 

while «heldlock = next(» 1= Null) 
{ 

if (_heldlock 1= reqlock) 
{ 

II the iterator over locks 
II assume no conflict 

II get next lock 

II check for conflict 

if (Iisancestorof(heldlock» II not quite Moss's rules 

} 
} 

{ 

} 

isconflict = TRUE; 
break.; 

return (isconflict); 

Figure 5-14: The Arjuna version of lockconflict 
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The astute reader will note that this check does not follow Moss's rules 

exactly. If it did then a nested action would not be allowed to lock an object that 

had been locked by any of its ancestors. Moss regarded this situation as being a 

deadlock between the action and the conflicting ancestor and thus disallowed it. 

This interpretation was viewed as being too restrictive in a general object­

oriented environment and has thus been relaxed so that children are allowed to 

lock objects that have been locked by their ancestors. However, care must 

obviously be exercised. In particular, parents must not assume that their 

children will not modify objects that they themselves have locked. 

5.7.1 Performance 

This section describes simple experiments that were carried out to 

determine the performance of the concurrency controller as it has been 

implemented in Arjuna. The performance figures given here are derived from an 
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untuned, experimental implementation, the primary purpose of which was to 

establish the feasibility of the type-inheritance approach adopted in this thesis. 

All of the tests were carried out on a Sun-31l60 computer that had 4Mb of main 

memory. The tests were carried out when the machine was lightly loaded and 

were executed many times to obtain an average time for each test. The Arjuna 

system was compiled using version 1.1 of the C++ compiler in conjunction with 

the standard system C compiler. 

Basic Performance 

Table 5-1 gives the basic performance characteristics concerning the 

creation and deletion of essential system objects, in this case Locks and 

Lock_Records. Creation of such object requires dynamic acquisition of the basic 

Type Creation Time Deletion Time 
(microseconds) (microseconds) 

Lock 347 232 

Lock Record 334 .352 -
Table 5-1: BaSIC system performance 

storage (via the standard system memory allocator, malloc), followed by 

execution of the constructor function for the type (and all of its base types). Thus 

for instances of the type Lock, the constructors for both Lock and Object are 

invoked. 

Performance of the Concurrency Controller 

In section 5.6 of this chapter methods by which the multiple server model 

currently used by Arjuna could be tolerated were described. These methods, 

which required the loading and unloading of the state of the concurrency 

controller for an object from the object store (or a region of shared memory), 
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naturally have a perfonnance penalty. In this section a simple experiment is 

described which attempts to quantify this penalty. 

The test carried out was particularly simple. A new type was created 

(derived from LockCC), the sole operation of which simply executed a 

predetermined (as indicated by an argument to the type's constructor) number of 

calls on setlock to set compatible locks (that is, READ locks) and to time how long 

this took. This operation was then executed a number of times, and the average 

time each call to setlock took to execute calculated. The test was executed under 

the control of a single top-level action which was aborted each time. 

This test was repeated with a version of LockCC that maintained all of the 

lock infonnation in memory without attempting to move the locks around, a 

version that used the shared memory technique, and a version which utilised the 

object store, as described in section 5.6. The results of these tests are given below 

as Table 5-2 and graphically as Figure 5-15. To determine the effect that 

Number of In Memory U sing Shared U sing Object 
Memory Store Locks (milliseconds) (milliseconds) (milliseconds) 

20 4.2 36.6 41.0 

40 4.9 89.8 92.5 

60 6.1 125.9 162.9 

80 8.1 242.4 246.7 

100 9.8 343.8 342.7 
Table 5-2: Perfonnance wIth action 

execution of the test under the control of an atomic action was having the same 

tests were repeated without using an atomic action. These results are shown as 

Table 5-3 and Figure 5-16. 
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Figure 5-15: Comparison of versions of LockCC under action 

These results betray some interesting characteristics. As expected, any 

attempt to cater for multiple servers causes a considerable performance penalty. 

However, the difference between the version of the concurrency controller using 

shared memory is consistently, but not significantly, faster than the version that 

Uses the object store. This suggests that the overhead of creating and dismantling 
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Number of In Memory U sing Shared U sing Object 
Locks (milliseconds) Memory Store 

(milliseconds) (milliseconds) 

20 2.6 29.2 34.4 

40 3.7 58.9 64.7 

60 4.8 90.3 96.9 

80 6.7 124.9 132.0 

100 7.7 169.8 178.1 
Table 5-3: Performance wIthout actIOn 

the image of the concurrency control state is the performance bottleneck and 

attention in that area might prove fruitful. 

The effects of the presence of an atomic action when attempting to set a lock 

are also illuminating. Without the presence of an action, the concurrency 

controller has approximately linear performance in that it takes, on average, 

twice as long to set fourty locks as it does to set twenty locks. In the presence of an 

action this linearity no longer holds, such that as the number of locks increases 

then the average time taken to set a lock rapidly becomes excessive, such that by 

the time a hundred locks have been set, the response time is approaching half a 

second. This deterioration in performance can be attributed to the creation of the 

Lock_Records (which has a fixed overhead), and more importantly, to the 

addition of these records to the atomic action management structure, which 

because it is behaving as a cache has to be scanned at each insertion to see if the 

record already exists. So as the number of records increases this scan takes 

longer to perform. 
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Figure 5-16: Comparison of versions of LockCC without action 

5.8 A Complete Arjuna Example 

In this section a more comprehensive example is described to outline how a 

simple user-defined type can be implemented. The user-defined type in question 

is meant to be used as part of a diary system, allowing users to note events that 

will take place at various times of day. The basic relationships between the 

objects used in this example is shown as figure 5-17. At its heart is the class Day 
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Figure 5-17: Object relationship for class Day 

(Figure 5-1S). Instances of this class represent a single day within a diary and 

thus have an instance variable that records the date the instance represents. 

For simplicity, events are only allowed to occur at predefined timeslots 

throughout the day, and have durations that are finite multiples of the length of 

each timeslot. The granularity of each timeslot is determined by a compile time 

constant. Similarly, there are only a set number of timeslots per day and these 

occur between some starting hour and a finishing hour (say 7am to Spm). Since 

some events naturally last all day (for example, birthdays) such events are 

flagged as special and are stored independently of other events. Special events 

appear to start at midnight and have a duration of twenty four hours. 

Events are implemented as another user-defined type and are shown as 

Figure 5-19. Each event starts at some particular time, has a duration, and a 

character string that describes the actual event. Events can be created in several 
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enum eventtype { NORMAL, SPECIAL }; 

class Day: public LockCC 

Date thisday; 
int normal count; 
int specialcount; 
Event. events [slotsperday]; 
Event. specials [specialslots]; 

boolean slotinuse [slotsperday]; 

II date of this calendar page 
II event counters 

II the actual events for today 
II the special events for 
II today 

II flag which timeslots are 
II currently being used 

void init (); II basic initialisation 
boolean set (Event., eventtype = NORMAL); II set up an event 
boolean purge (Event., eventtype NORMAL); II purge an event 

protected: I I Arj una specif i c 
virtual void pack (Image.); 
virtual void unpack (Image.); 

public: 

}; 

Day (); 
Day (int, int, int); 
Day (Uid.): 
-Day (); 

boolean setevent (Event.); 
boolean setspecial (Event.); 
boolean purgeevent (Time.); 

boolean purgespecial (Evento); 
boolean freeday (); 

Event .getevent(Time.); 

II create entry for today 
II and for specific date 
II Arjuna specific 

II set normal event 
II set special event 
II delete event that starts at 
II given time 
II delete special event 
II indicate if no events for 
II this day 
II return event for given time 

Figure 5-18: The class Day 
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ways: either from scratch by specifying time, duration and event; by copying an 

existing event; by accepting a default duration, etc. 

Event is derived from LockCC so that individual events could be locked if 

required, although in this particular implementation this capability is not 

utilised (because the operations of Event do not make calls on setlock). Instead, 

concurrency control occurs at a higher level (in this case at the Day level) when an 

event is set. 
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class Event : public LockCC 

{ 
Time starttime; 
int duration; 
char. eventstring; 

void buildevent (Time_, into char_); 

protected: 
virtual void pack (Image.); 
virtual void unpack (Image_); 

public: 

}; 

Event (Evenh); 
Event (char.); 
Event (Time., char_); 
Event (Time., into char.); 
Event (Uid.); 
-Event (); 

Time. getstarttime (); 
int getduration () { return duration; } 
char. getevent (); 

boolean operator== (Event.); 

II event start time 
II event duration in minutes 
II event description 

II Arjuna specific functions 

II build new from old 
II event that last all day 
II event at specific start time; 
II event with specific time interval 
II Arjuna specific 

II compare two events 

Figure 5-19: The class Event 
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By deriving Event from LockCC it is possible to apply the unload_image 

operation provided by Object to instances of Event to yield an image capable of 

being stored in the object store. This approach has been taken so that events 

might be given independent existence at a later stage. A simpler alternative 

would have been to allow access to the pack and unpack operations directly as 

part of the public interface to instances of Event as was done with instances of 

Lock earlier in this chapter. 

Given these basic types then the various event type setting routines are 

implemented as calls on the private operation set which is shown as Figure 5-20. 

This operation simply sets a write lock on the day (by calling setlock), calls 

modified (provided by Object) to record the fact that the state of the object is about 

to be changed, and then updates the internal state of the day object as 

appropriate. 
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} 

boolean Day: :set ( Event. ev, eventtype slottype ) 

{ 
int slotcount, startslot; 
int howlong = eV4getduration(); 
Time. when = eV4getstarttime(); 

setlock(new Lock(WRITE»; 
modified(); 

II lock day 
II indicate modified state 
II now to the real work ... switch (slottype 

{ 
case NORMAL: 

if (normal count == slotsperday) 
return FALSE; 

slotcount = howlong I minsperslot; 
II no more slots left 

if «slotcount • minsperslot) != howlong) 
slotcount++; 

startslot = (when-+gethour() - starthour) • 2 + when-+getmin() I minsperslot; 
for (int i = startslot; i < startslot + slotcount; i++) 

if (slotinuse[i]) 
return FALSE; II not all required slots free 

II - error return 
while (slotcount-- > 0) 

slotinuse[startslot++] TRUE; 
events[normalcount++] = new Event(ev); 
break; 

case SPECIAL: 

} 

if (special count == specialslots) 
return FALSE; 

specials[specialcount++] = new Event(ev); 
break; 

return TRUE; 

Figure 5-20: The implementation of set for the class Day 

Each individual instance ofthe Day type can be stored in the object store. To 

enable this to occur appropriate declarations are needed for the type-specific pack 

and unpack functions. The pack function of Day is shown as Figure 5-21. 

Naturally this requires individual events to be packable and each event instance 

is required to pack itself into the supplied image. The end result of this is that the 

image for a day contains its date, event counters, and all of the events for that 

date. This entire image is then stored in the object store. It would also have been 

possible to store events in the object store individually, instead of collecting them 

all into a single image but that has not been done here. 
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virtual void Day::pack ( Image. I ) 

{ 

} 

int i; 

thisday.pack(I); 
I -+pack( normal count); 
I-+pack(specialcount) ; 
for (i = 0; i < normalcount; i++) 

events[ i] -+un 1 oad_ image( I); 
for (i = 0; i < special count; i++) 

specials[i]-+unload_image(I); 
for (i = 0; i < slotsperday; i++) 

I -+pack( slot i nuse[ i]); 

/1 get date to pack itself 
// pack up event counts 

/1 now get each event to pack 
II itself into the supplied image 

Figure 5-21: The implementation of pack for the class Day 
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Finally, Figure 5-22 shows a simple test program that uses the Day and 

Event types. This example reveals the ease by which the Arjuna system can be 

#include "Day.h" 
#include <Action/Action.h> 
#include <stream.h> 

main (int argc, char ··argv) 
{ 

} 

Day Today; 
Day Xmas(25,12,88); 
Time. start = new Time(10, 0); 
Action A; 

1/ diary page for today 
/1 and one for christmas 

II execute under control of action 

A.Begin_Action(); // start action 
if (Today.setevent(new Event(start. 30. "Project Meeting"») 
{ 

if (Today.setevent 
(new Event(new Time(10.30). 15. "Another Project Meeting"») 

{ 
cout « "Successfully set both events!"; 

} 
} 

Xmas.setspecial(new Event("It's Christmas Day!"»; 
A.Commit_Action(); 

Figure 5-22: A simple test for Day and Event 

used. By simply deriving the class Day from LockCC, and adding simple calls to 

the operation setlock, instances of the class Day have been made concurrency 

controlled. Declaration of an appropriate pack operation, and a call on the 

operation modified, has further made instances of Day recoverable (in conjunction 
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with the use of an atomic action as illustrated in Figure 5-22) and capable of being 

placed in the object store. Of course similar small changes have to be made to the 

class Event but these changes have not been shown here. By these changes, a 

user-defined type that was not designed with concurrency control in mind 

originally has had it added simply and correctly. 

5.9 Summary 

In this chapter we have considered how the concurrency control type 

designed in the previous chapter could be implemented in a real system, in this 

particular instance Arjuna. 

Arjuna is novel in treating all major system entities as objects and thus 

applying the object-oriented paradigm in a uniform fashion. Unlike other object­

oriented systems such as Argus [Liskov 88], Clouds [Dasgupta et al. 85], TABS 

[Spector et al. 85] and Camelot [Spector 87] the system has been implemented 

completely using only facilities available in the implementation language and 

the host operating system. 

As has been shown, the simple system model employed in Arjuna, 

particularly with regard to server management has caused some problems for the 

implementation of the concurrency control type, however techniques by which 

these problems can be overcome have been developed, implemented and their 

performance measured. The use of these techniques was made possible because of 

the uniformity by which the object-oriented paradigm has been applied in AIjuna. 

While the approach adopted in overcoming the problems may not be the most 

efficient (consider loading and unloading locks to and from the object store or 

shared memory for example) it does nonetheless work. 
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As was indicated by the performance figures in section 5.7 the performance 

of the concurrency controller can be significantly enhanced if it can be ensured 

that only a single server exists for an object. In the next chapter a revised system 

model for Arjuna will be described that achieves this aim. In addition, the design 

of some other concurrency controllers will be discussed, all of which make use of 

the basic approach oftype inheritance that is advocated by this thesis. 
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Chapter 6 

Alternative Approaches 
to Concurrency 

The previous chapters have claimed that by designing and implementing 

concurrency control on a per-object basis there has been a gain in flexibility. In 

particular it has been stated that type-inheritance has allowed a flexibility not 

possible in other object-oriented systems which have broadly the same design 

goals. This chapter aims to justify this claim further. 

First the chapter shows how it is possible to devise a type-specific locking 

scheme for the object-oriented environment under consideration in this thesis in a 

simple manner and indicates the requirements that this places upon other parts 

of the system. It then considers some of the other methods of concurrency control 

that have been examined in chapter two, including specifying levels of object 

granularity and multi-version approaches, and indicates how these approaches 

might be handled under the object-oriented environment using type inheritance. 

Finally the chapter considers how an implementation of an optimistic style 

of concurrency control could be achieved in the object-oriented environment of 

this thesis. This strategy, based on work by Herlihy [Herlihy 86] requires a 

different recovery scheme to the normal state-based mechanism usually used to 

implement the failure atomicity property of atomic actions, but the discussion 

shows that the type-inheritance approach is flexible enough to cope with the 

requirements of an optimistic concurrency control technique providing the 

required underlying recovery mechanisms can also be provided. 
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6.1 Type-Specific Locking 

Many other researchers have pointed out that by taking into account the 

semantics of the operations available upon an type, then an increased level of 

concurrency can be supported [Schwarz and Spector 82, Allchin 83, Garcia­

Molina 83, Schwarz 84, Weihl 84]. The term type-specific is, in this context, 

somewhat misleading since it does not mean allowing user-defined types to follow 

any arbitrary locking policy, but instead means that the standard two-phase 

locking rules are still being followed but with modes other than simple read and 

write. 

In [Schwarz and Spector 82] type-specific lock conflict tables are defined 

based upon both the operation to be performed and all of its formal parameters. 

An example of such a table is shown as Figure 6-1. 

Held Lock Mode 

Dir Modify( a) DirLookup(a) DirDump 

Requested 
Dir Modify( a) n n n 

Mode 

Dir Modify( a) y y n 

DirLookup(a) n y y 

DirLookup(a) y y y 

DirDump n y Y 

Figure 6-1: Compatibility matrix for directories 
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In this example locks may ofthree distinct types: 

• DirModifyCa). This indicates that an action has inserted or deleted an entry 

with a key string of a. 

• DirLookupCa). This indicates that an action has attempted to observe the 

entry with akeystringofa. 

• DirDump. This indicates that an action has performed a dump of the entire 

directory. 

Because this conflict table makes use of the parameter string a, in addition 

to the actual mode of the lock, it allows actions to proceed concurrently that would 

not otherwise have been allowed had the operations been classed as simple reads 

and writes. For example, it allows concurrent writes to the directory providing 

such writes manipulate different directory entries. Locks obeying this particular 

protocol are easy to implement in Clouds [Dasgupta et al. 85] as was shown in 

section 4.3.1 in the previous chapter. This section shows how the basic technique 

of using type inheritance provides a simple method of achieving the same effect 

by building on the design of the Lock type of chapter four. 

First, a new type of lock Ccall it a TypeLock) is derived from the basic Lock 

type. Second, the conflict check for this new type of lock is then implemented. 

These steps are illustrated by Figures 6-2 and Figure 6-3. 

In order to show that this conflict operation is correct and does follow the 

conflict matrix shown earlier consider the case where one action has already , 

acquired a DirModify(a) lock (that is, an instance of TypeLock has been created 

that has a as the value of the instance variable Id), and a second action is also 

attempting to set a DirModify(a) lock. 
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~ass TypeLock: public Lock 

SomeType Id; 

virtual boolean operatorl= (Lock.); 

II Something to identify the lock 
II e.g. the string a or a 

public: 

} 

TypeLock (SomeType, modetype); 
-TypeLock (); 

SomeType GetId (); II operation to access extra 
II information 

Figure 6-2: The TypeLock class 

boolean TypeLock::operatorl= (Lock. otherlock); 
{ 

} 

if (otherlock-+getowner() 1= owner) II if different owners 
switch (lockmode) 
{ 

} 

case DirLookup: II holding DirLookup 
if «otherlock-+getlockmode() == DirModify) && 

(Id == «TypeLock.)otherlock-+getld()))) 
return TRUE; 

break; 
case DirModify: II holding DirModify 

if (otherlock-+getlockmode() == DirDump) 
return TRUE; 

if (Id == «TypeLock.)otherlock-+getId())) 
return TRUE; 

break; 
case DirDump: 

if (otherlock-+getlockmode() 
return TRUE; 

break; 

DirModify) 

return FALSE; 

Figure 6-3: The TypeLock Conflict Algorithm 

In this case, the comparison will proceed as follows: 
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• The two instances of TypeLock will belong to different atomic actions, 

therefore the full conflict check will be performed. 
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• Since the existing lock has a mode of DirModify , the conflict operation first 

checks to see if the new lock has a mode of DirDump (this corresponds to the 

entry in the bottom row of the first column in Figure 6-1). 

• Having passed this first check the Id fields of the two locks are compared. 

Since they are different (one is a, the other is a) then the two locks are not 

considered to conflict and the result is thus False. This is precisely the 

behaviour dictated by the conflict matrix of Figure 6-1. 

Similar arguments can be followed for all of the other entries in this 

particular conflict matrix. Thus the new type-specific lock implemented by the 

type TypeLock does indeed obey the locking rules of Figure 6-1 correctly. 

One characteristic of this particular implementation is that the conflict 

check still appears to take a Lock object pointer as its parameter despite the fact 

that when it is actually called the parameter will actually be a pointer to a 

TypeLock. This is a quirk of C++ in that once defined, a virtual function 

declaration cannot change. Thus having been defined to take Lock object pointers 

in the base class Lock, the definition must remain the same in the TypeLock class 

definition. In reality this causes no problems since one type of lock is derived 

from the other and thus by the rules of object-oriented programming a pointer to a 

TypeLock may be passed to a routine expecting a pointer to a Lock. Furthermore, 

the invoked operation assumes in advance that its parameter type is really a 

pointer to a TypeLock, not a pointer to a Lock, and acts accordingly. Making this 

assumption may be dangerous if the programmer accidentally mixes the use of 

Locks and TypeLocks. This can be overcome by the inclusion of an additional 

check in the conflict operator for TypeLock that the parameter is of the required 

type. The result of the comparison in this situation is programmer defined. 
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In addition this particular implementation bears out the point that was 

made in the previous chapter with regards to lock modes. Recall that in that 

chapter the justification for calling an activate routine after setting every lock 

was because it was not possible to guarantee the ability to detect when write-type 

locks were being set. This example illustrates precisely this point. Here the lock 

modes are not simply read and write, and although they can easily be classified as 

examine or modify types as was suggested, this classification can only be done 

with additional information from the user. 

This approach is flexible in that the additional information regarding the 

extra lock modes and the extra semantic information (in this case an identifying 

value) are all entirely user specified. Furthermore, this extra information is not 

limited to a single piece of information; rather it can be as many pieces as deemed 

required. For example, the compatibility function might be constructed such that 

locks are compatible if both the identifier in conjunction with some other value 

obey some condition (or set of conditions). This is in contrast with the Clouds 

approach, where locks can only be parameterised with one additional value. In 

fact the lock type developed here (by appropriate modification of the conflict 

operation) will perform precisely like any Clouds lock. 

6.1.1 Some Problems 

From the point of view of the concurrency control type designed in chapter 

four the scheme described in the previous section is perfectly acceptable and 

would appear to produce serialisable executions of the individual actions. 

However, a blind implementation like this would fail in the context ofthe Arjuna 

[Shrivastava et aZ. 88] system due to interactions between the concurrency 

controller for an object and other parts of the system. The following sub-sections 

describe some ofthese problems. 
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Multiple Servers 

Depending upon the definition of the semantics of the type then the 

concurrency controller for that type might allow multiple writes on instances of 

the type providing that such writes manipulated different portions of the state of 

the object in question. This is acceptable in Arjuna providing that there is only a 

single server for the object. However, given that in the current implementation 

there might be several servers for an object in existence, then the old problem of 

lost updates rears its head once again. 

Consider such an object being managed by two distinct servers. If different 

parts of the object are being modified, both servers will be granted write access to 

the object (since the conflict rules allow for this possibility) and will proceed to 

modify it. The problem now arises as to what happens when the two servers 

attempt to commit their changes. Since the existing Arjuna system transfers 

entire objects to the object store the effect of one of the writes will be lost. 

What is required is some way by which only the modified state is entered 

into the object store. This could possibly be handled by defining appropriate pack 

and unpack routines for the object so that only the modified portions are 

transferred, but this would still probably require a method of retrieving the en tire 

object state since it is bound to be needed somewhere. Using this technique the 

object store would no longer contain complete versions of each object, but some 

base version together with a set of incremental changes to that base version, the 

result of applying which would yield the current object state. Using such a 

technique also requires changes to the basic concurrency controller over and 

above simply defining a new lock type. This is because the basic concurrency 

controller assumes that a simple call to activate will obtain the entire latest state 

of the object. By using incremental transfer this is unlikely to be the case. 
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Note that this problem only arises because of the possibility of the existence 

of multiple servers. If only a single server existed, then the entire state of the 

object is being maintained by that one server and the entire object can be 

committed as normal. Furthermore the basic concurrency controller can remain 

unaffected. 

As a side issue it should also be can noted that using only a single server 

also alleviates the problem of concurrency control state as described in section 5.6 

in the previous chapter, in that it would no longer be necessary to have to resort to 

loading and unloading the state of an object's concurrency controller to and from 

the object store (or shared memory) upon every interaction with the concurrency 

controller. 

Recovery Management 

Although not previously stated explicitly Arjuna currently uses a state­

based recovery scheme. That is, whenever an object is first modified within the 

scope of an atomic action, a copy of the current state of the object is taken so that 

should the action abort, then this state can be restored. Thus the server for the 

object maintains the current state and modifications to the object thus take place 

directly on this state. 

This has an effect on the level of concurrency permitted by an object. For 

example, consider some object that is meant to represent a counter, that is, it can 

have (at least) increment and decrement operations applied to it. Now there is no 

reason why increment and decrement operations should not be allowed to proceed 

in parallel with each other (with the proviso that suitable short-term mutual 

exclusion is also employed to prevent corruption), since the order in which two 

increments, or an increment and a decrement are executed should be irrelevant. 

Thus a type-specific lock that had a conflict operation defined like that of Figure 

6-4 might be constructed. In this function, increments and decrements only 
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boolean IncLock: :operatorl= (Lock. otherlock); 

{ 

} 

if (otherlock-+getowner() 1= owner) 

switch (lockmode) 

{ 

} 

case Increment: 

if (otherl ock-+getl ockmode() == Read) 

return TRUE; 
break; 

case Decrement: 

if (otherlock-+getlockmode() == Read) 

return TRUE; 

break; 

case Read: 

if (otherlock-+getlockmode() l= Read) 

return TRUE; 

break; 

return FALSE; 

Figure 6-4: The IncLock conflict algorithm 

conflict with reads. thus the two should be allowed to proceed in parallel. 
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Unfortunately this has a disastrous interaction with the recovery system (it 

will be assumed for now that only a single server is managing the object). 

Consider some object X that initially has the value 5. If two concurrent actions A 

and B both attempt increment operations it would be expected that providing both 

actions commit the result would be that X has the value 7. Which is indeed the 

result with only a single server. 

However. consider the following sequence of events. Action A sets an 

increment lock on X and changes the value to 6. in doing so it records the old value 

as 5. Similarly. action B sets an increment lock and sets the value of X to 7. 

recording the old value of 6 (since there is a single server and the concurrency 

control has allowed the two actions simultaneous access to the object). B then 

commits producing 7 as the final value for X. while A aborts. and thus restores 

the prior value of X to what it believes it should be. in this case 5! 
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The problem here is caused by the fact that although the concurrency 

control method commutes, the recovery method does not. One possible way to 

avoid this is to use an alternative recovery method based on intentions-lists. 

Using this approach changes to an object are not actually applied until the action 

that made them commits. Thus the individual increments for A andB would only 

be applied when those actions committed. Naturally each action needs to be able 

to see the effects it has performed, leading to the notion of a view of an object. 

Each action's view is simply the effects of any changes it has made applied to the 

last committed version of the object. This type of recovery approach is the basis of 

Argus [Liskov 88]. 

Alternatively, rather than simply re-instate some past object state, the 

recovery system invoke some specific compensating operation. Obviously, such 

compensating operations are highly dependent upon the semantics of the 

operations that have been performed by an action. 

It is interesting to note that Allchin [Allchin 83] also has this problem since 

he uses a state-based recovery scheme as well. However, he overcomes it in an 

interesting fashion by allowing objects to be notified of when actions start, 

commit and abort, and thus objects are able to override the default recovery 

mechanism and indicate what result should be returned whenever they detect 

these events. 

It must be stressed here that these problems are caused by the interaction of 

the concurrency controller of an object and the underlying recovery system and 

system execution model, not by any inherent problems with the concurrency 

control design itself. Fortunately, the recovery system of Arjuna is flexible 

enough to allow the approaches that have been suggested here to be followed, 

given sufficient implementation effort by the user. 
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Despite these problems a simple directory type obeying the conflict rules of 

Figure 6-1 was implemented using the type-specific lock type shown as Figures 6-

2 and 6-3. This implementation, when executed in a carefully constrained 

environment (that is, only a single server) did appear to function correctly, 

further supporting the basic ideas expounded in this thesis. 

6.2 Multiple Levels of Granularity 

As was pointed out in chapter two, increased concurrency can also be 

obtained by changing the granularity at which the concurrency control is applied. 

Thus, for example, if the simple file example introduced in chapter four which 

applied locks at the file level is reconsidered, there could obviously be an increase 

in the level of concurrency iflocks were applied at (say) the level of a page. 

Figure 6-5 shows how just such a file type could be implemented using the 

class File: public LockCC 
{ 

int page_count; 
Page .. pages; 
int current_posn; 

virtual void pack (Image_); 
virtual void unpack (Image_); 

public: 

}; 

File (char_); 
-File (); 

int read (char_, int); 
int write (char_, int); 
int lseek (int); 

class Page: public LockCC 
{ 

char buffer[PAGESIZE]; 
int size; 

virtual void pack (Image_); 
virtual void unpack (Image_); 

public: 

}; 

Page (Uid-); 
Page (); 
-Page (); 

int read_page (char_, int, int); 
int write_page (char_, int, int); 

Figure 6-5: The File and Page classes 

type-inheritance technique. Firstly, the two basic classes involved; File and Page 

are described. The class Page only provides two operations, read-page and 

write-page, which use the basic (read and write) locking mechanism to set 

appropriate page level locks. The class File uses instances of the Page class to 
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represent individual pages within a file. Both the File object and all of its pages 

are held in the object store as separate objects. 

When a File object is accessed, only it is activated; the actual pages are 

activated (and locked) as and when they are really needed. It will be assumed 

that the state of the file as stored in the object store essentially consists of a list of 

the unique identifiers of the enclosed pages. Thus in order to access any 

particular page the code for the read or write operations of File only has to check 

to see if the appropriate page has been activated, and activate it if it has not. 

Once a page has been activated it can only be manipulated through the 

readJage and write-page operations, each of which sets an appropriate page 

level lock (either read or write) before proceeding. 

Using this approach, then providing that the size of the file (that is the 

number of pages it consists of) does not change, then it is not necessary to set any 

type of locks on the File object other than simple read locks. If the size does 

change then a write lock must be set on the file to prevent two actions both 

attempting to extend the file for example. 

Once again this example was implemented under the current Arjuna 

system, and since it follows the traditional multiple reader, single writer policy 

for both File and Page objects functions correctly even in the presence of multiple 

servers. This implementation is, of course, quite susceptible to deadlock 

particularly if independent actions attempt to modify pages of the file that the 

other currently holds a read lock on. 

It would of course have been possible to follow the description of multi-, , 

granularity locking described in chapter two more closely and set intention locks 

at the file level in a very simple and obvious fashion by defining a new lock type 

[Lock, derived of course from Lock, and defining an appropriate conflict operation 
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for it. However, since it is not strictly necessary in this case that is left as an 

exercise for the reader. 

It could be argued that the problems described in the previous section 

regarding modifying different parts of an object's state are caused by the fact that 

the object has been incorrectly designed. For example, rather than treat the 

directory as a monolithic whole, it should have been structured differently as a 

container object as has been done here for the File object. 

Using this approach the directory object simply contains references to other 

objects that are actually contained within it (call them direntry objects), with 

each such object being totally independent - in particular responsible for its own 

concurrency control and recovery. 

Such a directory object could be designed and implemented in the Arjuna 

system that obeys these rules; unfortunately it does not circumvent the problem 

of the previous section. Consider an insert of some directory entry, ifit does not 

already exist then it is inserted. However, this insertion causes creation of a new 

direntry object, the unique identifier of which must be recorded as part of the 

containing directory. Hence the state of the directory object itself is being 

changed and the directory must therefore be locked. 

Ideally, two inserts should be able to proceed concurrently if they are 

inserting different entries (again assuming short-term mutual exclusion is 

employed while critical data structures are updated), but since each insert 

modifies the directory state the original problem has reappeared. It is possible to 

define a type-specific lock function that allows the concurrent writes, but if there 

is more than one server for the object the lost update problem is back once again. 
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This observation leads to the unhappy conclusion that although the 

concurrency control scheme using type inheritance is extremely flexible, its 

implementation in AIjuna is compromised by the underlying system model, in 

particular the fact that an object may be managed by more than one server at any 

instance in time. 

6.3 A Revised Arjuna System Model 

Throughout this chapter, and as part of chapter five, whenever an attempt is 

made to increase the level of concurrency supported by an object by allowing 

multiple writes upon it the AIjuna system model conspired to thwart the attempt. 

This was due to the fact that multiple servers could exist for an object. In this 

section, this model is revised and it is explained how the problems outlined 

previously are thus solved. 

The fundamental change that is made is to insist that any object may only 

have a single server associated with it whenever it is active. In actual fact this is 

not really a major change, since AIjuna currently only creates new servers when 

non-related actions attempt to access the object. All this change requires is that if 

a server already exists for an object, then it serves all clients, not some 

constrained subset of them. 

However, this is not the whole story. One of the original design decisions of 

Rajdoot, the remote procedure call system upon which AIjuna is based, was that 

there would be multiple servers in order to ensure that a server could not become 

deaf to a call. By insisting that there is only a single server per object this 

problem has been re-introduced, since while the server is obeying one call, it is 

not listening for others. In addition, in order to be efficient, Rajdoot uses 

datagrams not virtual circuits for its clienUserver communication. This has the 

effect that if the server is busy, the call is simply lost. Of course, Rajdoot performs 

a few retries on behalf of the client, but it is still possible for the client to 
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incorrectly conclude that the server is dead, when it was in actual fact simply 

busy every time the client made a call. As was pointed out in section 5.6.2 of the 

previous chapter, this is unlikely to cause inconsistencies in the system, but is 

likely to cause actions to be aborted unnecessarily. 

In order to overcome this problem parallelism must be introduced into the 

actual server itself; that is the server must become multi-threaded. A multi­

threaded server behaves in a fashion similar to an Argus guardian. That is, 

whenever a new remote procedure call is received, a new lightweight process (or 

thread) is allocated to deal with the request, and the server then listens again for 

further requests. Obviously by following such a strategy, the server will never 

appear busy so long as it is capable of creating a new thread for each incoming 

call. 

All threads created by a server share the same address space, thus all 

threads will see the same object state (that is, the current state), and furthermore, 

all of the concurrency control information will be available without resorting to 

the trick of loading and unloading locks to and from the object store. Naturally, 

since the threads appear to run in parallel with each other interference between 

them is possible, however, standard mutual exclusion techniques such as the use 

of semaphores provide an adequate solution to this problem. 

Although UNIX (upon which Arjuna is currently hosted) does not currently 

support threads directly, they can be simulated. In addition both Amoeba 

[Tanenbaum and Mullender 81] and Mach [Jones and Rashid 86] directly support 

threads, with the latter system intended to be BSD4.3 UNIX compatible. Thus the 

adoption of this approach should be relatively simple. 
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Multi-threading also cures the problem outlined in the previous chapter 

with regards to the concurrency controller for an object sleeping when conflict is 

detected, since now only a single thread will be affected, not the entire server, as 

was the case. 

6.4 Multi-Version Approaches 

So far this chapter has managed to adapt the basic concurrency controller of 

chapter four to suit a variety of cases without making changes to anything other 

than the basic Lock type itself (by deriving new types of lock from it) and defining 

appropriate conflict relations upon such locks. However, in order to accommodate 

multiple versions of objects, some changes to the underlying concurrency control 

type itself must be made. This is not particularly surprising since the 

concurrency controller was designed to support the two-phase locking approach to 

concurrency control. In order to support the multi-version concurrency control 

technique a different basic concurrency controller is required. 

However, before proceeding it is necessary to ask the question: what does 

multi-version concurrency control mean in a nested action environment? Reed 

[Reed 78, Reed 83] has already tackled this question for timestamp-based 

approaches where object versions have distinct lifetimes and the timestamps of 

nested actions are designed to be within the timestamps of their parent. Lock­

based concurrency control with versions is, however, a different matter. Recall 

that in chapter two a non-nested, two version concurrency controller based upon 

the use of certify locks was described. The question is, can this technique be 

extended to a nested en vironmen t? 

The problem is really one of version visibility. In the non-nested case only 

one new version existed and was only visible to its creator. Other actions were 

only allowed to read the previous version; if they wished to create a new version 

they had to wait until there was only one single committed version. Stearns and 
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Rosenkrantz [Stearns and Rosenkrantz 81] describe this as concurrency control 

using before values and described it in the context of distributed databases. What 

is required is some way of generalising this to the more general nested atomic 

action environment. 

One possibility is to regard nested action commitment as not producing a 

new globally visible version of an object, since until the top-level action commits, 

the new version is still only tentative. Thus the full two version protocol need 

only be adopted at the commitment of the top-level action. In other words certify 

locks can only be set by top-level actions. Using this approach means that all 

actions, whether nested or not, that do not belong in the universe of the writer of 

an object, can only set read locks and thus are permitted to read the previous 

version of the object. 

Consider the action hierarchy of Figure 6-6. If any of the actions A, B, or C 

Figure 6-6: An example action hierarchy 

acquires a write lock on some object X, then the action D and E will only be 

pennitted to acquire read locks on the previous version of X until the top-level 

action A commits. 
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The problem then arises as to the visibility of this new version as far as the 

action tree rooted at A is concerned. Assume that action B has acquired a write 

lock on the object and is producing a new version. In this case, action C cannot be 

granted a write lock (since it conflicts with that currently held by B), but should it 

be granted a read lock and gain access to the previous version of the object? If the 

full protocol was adopted at all levels then the answer would have to be yes. 

However, care must be taken here in that the protocol cannot simply be followed 

blindly since the certification process blocks until all reads on the previous 

version terminated. In a nested environment this does not make sense for nested 

action commits since a real certified version of the object is not being produced at 

this point. 

Essentially what is required is another type of lock (call it a nested certify 

lock) that has the property that it does not conflict with read locks held by 

external actions (for example D and E in Figure 6-6) so that the certification 

process does not have to wait for such actions, but it must conflict with internal 

actions (for example C), otherwise consistency might be compromised. 

To show this, consider what could happen if B was actively creating a new 

version of some object X, and C was allowed access to the prior version of X. When 

B attempts to commit it sets certify locks on X, which if they did not conflict with 

C's read lock would succeed. B would then commit passing its locks and the new 

object version to A. The problem now is what to do about C: ifit simply commits 

all is well, but ifit attempts to convert its lock on X to a write lock (which it would 

be able to do) then the effect is as ifboth Band C had read the old version of X and 

both written new versions of X - a clearly unserialisable execution. 

This situation could be detected by noting that the version read by a child is 

no longer the same as that known to its parent, but this complicates the 

implementation greatly with probably no additional advantages. 
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In addition the Arjuna system environment poses certain problems with 

version management. In particular since the object will be maintained by a 

single server, that server must always know which version of the object it is 

supposed to be using at each operation invocation. For example, say B was in the 

process of creating a new version when C attempted to set a read lock. By the 

standard two version rules this should be allowed with C gaining access to the 

previous version. However, since one server is involved (the actions are related) 

on every operation the server must be able to determine which version is current 

as far as the invoking action is concerned in order to return the correct response. 

Although once again not strictly a concurrency control problem (it is actually a 

problem of version management) it is easier to take a simpler approach that 

avoids these problems. 

Thus the normal nested locking rules are obeyed as far as nested actions are 

concerned and the multi-version rules only apply at the top-level. This means 

that internal nested actions consistently see the latest version of the object, while 

external actions see the previous version. 

It is interesting to note that the current Arjuna environment of multiple 

servers when actions are not related fits this scenario perfectly. Only one action 

tree can modify the object (and since the actions are related there is a single 

server handling this correctly), while other servers can freely be allowed to 

execute (in read mode) and are provided with the old state of the object. Given the 

disenchantment about multiple servers earlier this is an amusing outcome. 

6.5 Optimistic Approaches 

In many respects optimistic concurrency control poses similar problems to 

multi-version concurrency control in a nested environment. Recall that 

optimistic protocols are based upon the idea that it is easier to apologise after the 

event than to ask permission before it. Thus in an optimistic environment actions 
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execute completely without synchronisation and then immediately prior to 

commitment attempt to determine if any conflict has occurred due to the 

concurrent execution. 

This process, called validation, is generally assumed to be cheaper than 

approaches based upon preventing conflict providing that validation succeeds 

sufficiently often. The serial validation scheme described in chapter two had the 

disadvantage that it was designed for a centralised database and required the 

concurrency controller to gather information about the read and write sets of 

actions and maintain this information for an arbitrary period of time, as such it is 

unsuitable for the object oriented environment considered in the thesis. 

Recently, however, Herlihy [Herlihy 86] has proposed a pair of optimistic 

protocols suitable for object-oriented systems. In his protocols each object has 

associated with it a serial-dependency relation that allows conflicts between pairs 

of events to be ascertained at validation time. Each event is a pair consisting of 

an operation invocation and its corresponding response. This approach is 

comparable with pessimistic lock-based schemes in that while lock-based schemes 

use conflict to introduce delays, his optimistic protocols use conflict to determine 

ifvalidation can be successfully completed. 

Since the validation process is performed when an action attempts to 

commit it can validate more concurrent executions than might have been possible 

using a pessimistic approach because of the additional information available. In 

particular, under locking, a lock is acquired before an operation is performed, 

thus conflict is often defined in terms of operation invocations only. In contrast 

optimistic schemes require validation after the results of an operation are known, 

so conflicts can be defined between complete events. 
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Herlihy's protocols have obviously been influenced by the work of Weihl 

[Weihl 84] and Argus and rely on the underlying recovery system being based 

upon intentions-lists. This is because the intentions lists are applied in the order 

in which actions commit and also because the events specified can have semantics 

similar to those outlined for the counter object described in the previous section, 

for which it was shown that state-based recovery was inappropriate. 

Herlihy defines two distinct protocols, called forward and backward 

validation. Each derives its name from the method by which it selects the actions 

it might be in conflict with. 

Forward validation ensures that when an action commits it will not 

invalidate any other currently active action. Backward validation ensures that 

when an action is validated its execution has not been invalidated by the 

commitment of other actions that started after it did. This latter case is 

essentially the same as that defined by Kung and Robinson [Kung and Robinson 

81]. 

One advantage of these protocols is that they may be used on a per object 

basis and freely mixed with certain other pessimistic protocols such as two-phase 

locking. 

6.5.1 Optimism and Nesting 

The same question that could be asked about multi-version protocols can 

also be asked about optimistic protocols, that is, how do they apply to a nested 

atomic action environment? Once again there are problems with respect to 

version visibility and also with validation. For example, consider the action 

hierarchy of Figure 6-6 once again. If actions A and D were using an optimistic 

protocol to update some object X then provided that both committed, everything 

would be correct. Similarly if either aborted there would be no problems. 
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However, consider now what happens if Band D are optimistically updating 

X. In this case when B attempts (and succeeds at) its validation the version of X it 

produced cannot be made visible as would normally be the case, since A might 

abort and thus undo the effects of Bon X. Instead what must happen is that A 

must inherit all the changes made by B and the entire validation process must be 

repeated when A finally commits. 

The implications of this are that the validation process in effect gets 

repeated several times (probably taking longer each time) depending upon the 

depth of nesting employed. It might be argued that this is wasteful and it would 

be better to only perform the validation on top-level actions. The problem with 

this approach is that such validation might fail due to a conflict that occurred in 

one of the children of the top-level actions that had executed a long time ago, and 

which would have been aborted then had the validation been performed at that 

time. The potential advantage of detecting the conflict early thus justifies the 

repeated validation. 

As an example, assume that B was not properly validated at the time it 

committed, yet was in conflict with D. In this case A can never be validated if D 

commits before it, and if the action tree rooted on C takes a long time to complete 

(minutes or hours, as opposed to seconds) then the amount of wasted work could 

be enormous. 

6.5.2 Implementing an Optimistic Policy 

This section will outline how one of Herlihy's optimistic protocols could be 

implemented in the Arjuna environment. In order to do this several assumptions 

must be made, in particular it will be assumed that the underlying recovery 

mechanism is based upon intentions lists and that there is some kind of view 
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mechanism that allows an object to determine its current state based upon 

applying its updates to the last committed state. 

Backward Validation 

The protocol described is that of backward validation. That is an attempt is 

made to determine if execution of the validating action has been compromised by 

the commitment of other actions that have committed since the validating action 

started. In order to handle this, each object keeps a note of Last(e), the most 

recent commit timestamp for an action that executed the event e. In addition, for 

each active action A, each object maintains First(A,e), the logical time when the 

action A first executed the event e. 

Objects can only validate an action A if Last(e? < First(A,e) for each event e' 

that conflicts with each event e executed by A. This condition ensures that 

recently committed actions have not invalidated the execution of the validating 

action. In a sense this is equivalent to comparing the read and write sets of an 

action in the basic serial validation approach. 

As with the implementation of two-phase locking events are modeled as 

instances of the class Event (Figure 6-7). 

class Event 
{ 

public: 

} 

Event (EventType); 
-Event (); 

EventType GetType (); 
virtual EventList- ConflictingEvents (Event.); 

Figure 6-7: The basic Event class 
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Obviously this class is highly type specific (far more so than the basic Lock class) 

and real event types are expected to be derived from this basic type; thus little is 

said about its structure other than to describe the purpose of the operations 

GetType and ConflictingEvents. 

ConflictingEvents will be used by the validation routine of the concurrency 

controller to generate a list of events that conflict with each event type that has 

been executed by the validating action. Once such a list has been generated then 

the concurrency controller can determine whether any of those events has been 

executed in a conflicting fashion by examination of the First and Last timestamps 

for the action and the event as described above. This routine must be virtual so 

that as new event classes are defined using the basic Event class, they can 

implement this generation appropriately. 

GetType will be used by the concurrency controller to maintain its lists of 

events in a particular order. This should become clearer after the description of 

the actual concurrency controller class itself. 

Similarly the actual concurrency controller is the class OptCC (Figure 6-8), 

class OptCC 
{ 

public: 

} 

OptCC (int); 
-OptCC (); 

void AddEvent (Event.); 
boolean validate (Actionld); 
void DoCommit (Actionld); 
void DoAbort (Actionld); 

Figure 6-8: The Basic OptCC Class 
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from which the actual user-defined objects that use the optimistic approach are 

ultimately derived. 

This class provides several basic operations: 

• AddEvent. This operation is called by the user-defined type once some event 

has been performed to inform the concurrency controller for the type of the 

occurrence of the event. If the action performing the event is not currently 

known to the concurrency controller then it is noted. The event type is then 

determined and used to update the First information for the action if 

appropriate. 

• Validate. This operation is automatically invoked when validation occurs. 

Its operation will be described more thoroughly shortly. 

• DoCommit and DoA bort. Validate is called during the first phase of commi t 

or as part of nested commit and only determines whether the action is valid 

at the object. In order that certain information about the object and the 

actions using it are also kept up to date (most notably the Last timestamps 

for events) these two operations perform additional housekeeping 

The concurrency controller for the object maintains a set of lists (one per 

action) of the events executed by an action together with an indication of the time 

the action first performed that event. Note that each event need only be 

maintained once. Thus if an action performs the same event more than once, only 

the first occurrence is noted. The advantage of maintaining the lists on a per 

action basis as opposed to on a single list or on an event basis is that it becomes 

simple to traverse this list at validation time since then what is really required is 

an indication of what events a given action has participated in. 
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Since there is a need to ensure that the validation routine ofthe concurrency 

controller is called whenever an action commits, the same basic strategy can be 

adopted as for two-phase locking. That is (in this case) an Optimistic_Record is 

created that is logged with the atomic action system. This record identifies the 

action and the object so that when commit processing occurs the validation 

routine will be called. Since there is only the need to log the object's use by an 

action once, an Optimistic_Record is only created and logged if this is the first 

event executed by the action on the object. 

Validation of an action at an object requires that each of the operations 

performed by the action is examined and a determination made as to whether any 

conflict has occurred by examining the First and Last timestamps. An outline of 

the process is shown as Figure 6-9. Although not strictly true C++ this outline 

boolean OptCC::Validate(ActionId Id) 
{ 

} 

EventList. ConfEvents; 
Event_Iterator next(Elist[Id]); 
Event. El, E2; 

wh i 1 e « E 1 = n ext (» 1 = Null) 
{ 

} 

ConfEvents = ConflictingEvents(El); 
Event_Iterator nextconf(ConfEvents); 
while «E2 = nextconf(» 1= Null) 
{ 

} 

if (Last[E2] < First[El]) 
return FALSE; 

return TRUE; 

II iterate over events 
II executed by the action 

II iterate over conflicting 
1/ events 

Figure 6-9: The validation algorithm 

describes the process of validation without resorting to detailed data structure 

manipulation. 
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The key here is that for each event executed by the action a list of conflicting 

events is generated and then each event in this list is checked to determine if 

conflict has occurred. If it has validation fails and the routine returns with a 

failure indication. 

If the action is a top-level one and finally commits then the routine 

DoCommit is called which updates the Last timestamp for each event executed by 

the action and then removes the information about the action from the 

concurrency con troller. 

6.6 Combining Approaches 

One advantage of adopting object-based concurrency is that individual 

objects should be able to choose their own method of concurrency control from the 

wide spectrum of available methods. Unfortunately the choice cannot be as free 

as it appears since different methods serialise actions in different orders, thus it is 

possible to end up with a situation in which it appears as though action A 

executed before action B at one object, while action B executed before action A at 

another object. 

This is clearly an undesirable occurrence and needs to be avoided. Weihl 

[Weihl84] has developed techniques for classifying when different techniques are 

compatible. He calls the various classes of protocols static atomicity, dynamic 

atomicity, and hybrid atomicity depending upon how they affect serialisability. 

Static atomicity characterises protocols such as multi-version 

timestamping, that is, those in which the serialisable order is determined 

statically. Dynamic atomicity characterises locking protocols i.e. those protocols 

that determine serialisability dynamically, while hybrid atomicity describes 

those protocols that combine characteristics of the other two. The optimistic 

protocols described in the previous section are hybrid atomic. 
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6.7 Summary 

This chapter has considered how the basic philosophy of using type 

inheritance stood up to the task of implementing different approaches to 

concurrency control. 

It has shown that the approach is particularly suitable for implementing so­

called type-specific locking as advocated by several other researchers, and that 

such types of lock can be handled easily and flexibly by the type-inheritance 

technique. In particular the style of locking supported by Clouds proved very 

simple to emulate and implement by deriving a new type oflock (called TypeLock) 

from the basic Lock type of chapter four. 

However, as has been seen, once such approaches are adopted the 

underlying system and execution model begin to play their part, such that 

seemingly correct implementations of conflict checks may still produce problems, 

most notably in the form of lost updates to objects. As a way of overcoming this 

problem in the context of the Arjuna system, a revised system model for Arjuna 

was introduced based upon the use of multi-threaded servers which removed the 

problems caused by the system model, but left those currently caused by the 

existing implementation of recovery. 

In considering other forms of concurrency control, these problems have been 

highlighted even further, to the extent that the optimistic approach described in 

section 6.5 requires a completely different form of recovery mechanism to the one 

assumed in the previous chapter. 

In addition, what it means to handle some of the available concurrency 

control methods in a nested atomic action environment as opposed to the single 

level environment in which they were originally conceived has been considered. 
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Such considerations have led to the idea that following the concurrency control 

protocol at all levels of the action hierarchy is not often a good idea. 

It can be concluded, therefore, that standard two-phase locking using simple 

read and write locks imposes minimal requirements upon the rest of the system 

architecture. However, once different approaches to concurrency control are 

considered, for whatever reason, then the underlying recovery system and 

execution model begin to play an important part and must be equally flexible. 

Providing that this flexibility is available, implementing concurrency control via 

type inheritance appears to be a promising technique. 
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Chapter 7 

Conclusions 

This final chapter summarises the material that has been presented in this 

thesis and indicates some of the possible areas for future research. 

7.1 Thesis Summary 

The first chapter of this thesis postulated that building reliable distributed 

systems was difficult but necessary. As the demand for computing power 

increases, so to does the aspirations and expectations of those using computers as 

an essential part of their business. 

Although the actual hardware and knowledge of how to construct true 

distributed systems is currently available, programming such systems is a 

complex task that is currently not very well understood. In particular application 

programs that execute on a distributed system can fail in very different (and often 

unexpected) ways to their centralised counterparts. In addition to the problems of 

failure, concurrent execution of programs, a necessity for high performance, 

introduces its own problems. 

Programming can be difficult enough without having to worry about the 

problems caused by failure and concurrency, and so this thesis has turned to a 

particular methodology of program design as a means of handling the general 

issues of complexity, together with the use of a computing abstraction known as 

the atomic action to cope with problems introduced by the possibilities of failure 

and concurrency . 
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The methodology used, the so-called object-oriented paradigm, views 

programs as consisting of a collection of objects and a sequence of operations upon 

those objects. By taking advantage of the property of encapsulation it is possible 

to view any object simply as a black box. That is, the internal details of the 

structure of the object are unimportant, only its abstract behaviour is important. 

By structuring the system as a collection of objects with well-defined behaviour 

the overall complexity of the system is reduced to manageable proportions. 

This thesis has adopted the attitude that this behaviour should also 

encompass an object's behaviour in the face of failure and concurrency. Thus 

individual objects should also be responsible for the provision of mechanisms that 

can cope with failure and concurrent access. 

It is inevitable that if left to themselves then the programmers of each 

object type would invariably implement these recovery and concurrency control 

mechanisms in different, probably incompatible, and perhaps even incorrect 

ways. So, in order to introduce some order, atomic actions have been used as a 

means of co-ordinating the behaviour of objects when failure or concurrent access 

occurs. 

Atomic actions have the important properties of: failure atomicity, that is 

the atomic action executes successfully to completion or appears not to have 

executed at all; concurrency atomicity, whereby the concurrent manipulation of 

objects by different actions is so constrained that it appears as though the actions 

had executed in some serial order; and permanence of effect, whereby once an 

action is complete the system will not arbitrarily lose its effects. 

In order to ease the implementation of the properties of atomic actions on 

particular property possessed by object-oriented languages, that of type­

inheritance has been utilised. Using this property user-defined types can inherit 

a set of basic capabilities that make the management of concurrency and failure 
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far simpler, and equally important, less prone to error than might otherwise be 

the case. 

This thesis has been particularly concerned with the concurrency atomicity 

property of atomic actions and it has considered how this property might best be 

provided using the type inheritance property. As was noted in chapter two, there 

are a great many concurrency control algorithms in existence, and more are 

developed each month. Yet despite this, the applicability of these algorithms is 

limited by the environment assumed when they were developed. 

The majority of such algorithms are designed for a centralised database 

environment. In such environments all data access is typically in terms of simple 

reads or writes of data and since the database is assumed to be centralised there is 

usually only a single, system-wide concurrency controller. This structure ensures 

that the concurrency controller and the atomic action (transaction) manager can 

easily collect sufficient information to establish a global view of the activity of the 

system. This global view enables certain problems such as that of deadlock to 

become relatively easy to detect and solve. 

Even those algorithms and systems that are distributed still assume that 

there is only a single concurrency controller per site, so that although no single 

controller has global knowledge of the entire distributed system, each 

nonetheless still has total knowledge of the local system and by appropriate 

communication can form a reasonably accurate picture of the state of the entire 

distributed system. 

In the envisaged object-oriented environment of this thesis, such 

assumptions are no longer valid since each individual object must make 

concurrency control decisions based only on purely local knowledge gathered as 

part of the normal invocation of operations upon the object. 
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The most suitable concurrency control techniques for this environment are 

those based upon two-phase locking, which has the particular property that in 

order to determine whether to grant a lock on some object it only needs purely 

local information about other locks that have already been granted on the object. 

Such information can be gathered in an automatic fashion as locks are requested 

and released on any object. 

Unfortunately, locking protocols are prone to deadlock. In other systems 

such deadlock can be detected by communication amongst the individual 

concurrency controllers. In the object-oriented environment of this thesis such 

communication is likely to be prohibitively expensive since each individual object 

is maintaining its own concurrency control information and although it could 

possibly all be collected in one place (sayan object store) occasionally, ensuring 

the consistency and currency (that is, how up to date the information is) would be 

difficult. 

Instead this thesis has taken the convenient expedient of using timeouts. 

However, unlike other researchers timeouts are not placed upon the length of 

time an atomic action may execute, but instead timeouts are placed upon 

individual lock requests. Furthermore the atomic action is not automatically 

aborted if the timeout expires, rather an exception is returned to the caller so that 

he can take some more appropriate action should one be possible. 

This approach is taken because the occurrence of a timeout when setting a 

lock may not be due to genuine deadlock, rather it could just be that a particular 

action is taking a long time to execute and is thus holding locks longer than 

expected, or alternatively the timeout period itself is too short. By returning an 

exception the programmer is allowed the option of retrying the lock request 

(perhaps with a different timeout value) in case deadlock was not truly the cause 

of the problem at all. 
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In addition this thesis regarded locks simply as objects in their own right, 

and thus they had the same basic properties as all other objects in the system. 

For example they could be stored in an object store like any other object, a 

property that was made use of to overcome some limitations of the underlying 

system model when an implementation of the ideas proposed in this thesis was 

considered in chapter five. 

Specifying locks as objects also gained flexibility in the types of locks that 

the basic concurrency control type was able to support. For example, chapter six 

showed how, by making further use of type inheritance, several different types of 

type-specific lock could be derived in a simple fashion that amounted to little 

more than defining the new lock type (by deriving it from the existing Lock type) 

and giving an appropriate conflict detection routine for it. 

This approach had one major advantage over that adopted by other 

researchers. It was possible to implement the ideas underlying this thesis 

without having to resort to designing and building either a new language and/or a 

new operating system kernel. Additionally the flexibility gained by this 

approach meant that the resulting system was not tied to the particular style 

adopted by the operating system or language. In fact, although the thesis has 

adopted the language C++ [Stroustrup 86], both to describe and implement the 

ideas, any other object-oriented programming language would have sufficed. 

Furthermore, such type-specific locks could be defined without resorting to 

changes in the basic concurrency control type, thus it was possible to experiment 

with different types of lock simply to determine whether the increased level of 

concurrency such locks afforded was worthwhile in terms of the additional 

complexity introduced into the programming of the operations of the object. 
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Later, chapter six further demonstrated this flexibility by developing a 

concurrency control type based upon the optimistic approach. Using this it would 

be possible to build a system in which some objects used locking as their 

concurrency control technique, while others used an optimistic approach. 

Of course, as was pointed out in that chapter, the flexibility of the approach 

could lead to problems in that some techniques are not compatible with others. In 

particular the various concurrency control techniques serialise actions in 

differing orders. However, the compatibility of the different concurrency control 

techniques has been researched by others, in particular by Weihl [Weihl 84], and 

so this is not regarded as a serious problem. 

Throughout the thesis an explicit use of the concurrency control mechanism 

has been adopted. That is the programmer of a type (but not the user) has been 

required to provide explicit calls to the controller as part of the operations 

supported by a type. Although this is more complicated than providing implicit 

calls it has some advantages. Firstly it can be assumed that the programmer has 

explicit knowledge of the semantics ofthe type and is in by far the best position to 

detennine what concurrency control is likely to be needed. Secondly, implicit 

invocation usually means that the operations of an object can only be classified as 

to whether they read or write the object since further semantic information is not 

available without careful analysis of the actual operations. Finally the implicit 

approach frequently needs compiler support in that the calls to the concurrency 

controller must typically be inserted into the prologue executed when an 

operation is called. The Clouds system from Georgia Institute of Technology 

[Dasgupta et el. 85] has both explicit and implicit mechanisms but relies on a 

special systems programming language called Aeolus and its associated compiler 

to implement it. Similarly, the Argus project from MIT [Liskov 88] pursues an 

implicit approach in the same fashion, although in his thesis Weihl argued that 
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the adoption of an explicit approach would enable higher levels of concurrency to 

be attained. 

Finally this thesis has considered the effects that the support for 

concurrency control has on the underlying system model and upon the recovery 

system that is providing the failure atomicity property of the atomic action. 

Concurrency control based upon two phase locking using the basic, simple 

policy of allowing multiple reads and exclusive write locks places the minimum of 

requirements on the rest of the system. It allows multiple servers for an object at 

a site, and only needs simple hooks into the atomic actions system to function 

properly. In particular it needs a way of indicating to the atomic action manager 

that a lock has been set so that the atomic action manager can, when appropriate, 

inform the concurrency controller of the object to release the lock as the action 

commits (or aborts). 

However, as was shown in chapter six, even the addition of simple type­

specific locking begins to place additional requirements on the underlying 

system. In particular the ability for an object to support concurrent writes to 

different parts of its state requires that there is either a single server 

maintaining the object that executes the concurrent writes, or alternatively that 

the object storage and retrieval mechanism is able to cope with partial object 

images. 

Objects representing such things as counters place even more requirements 

on the system. Since such objects might allow concurrent writes on the same part 

of their state, then the recovery mechanisms themselves must be of a particular 

type; in particular the recovery mechanisms must commute in the same way that 

the concurrency control commutes. Thus, in this instance the recovery system 

must either be based on intentions lists, so that the changes made to an object 

only actually take place when the action that made them actually commits, or 
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alternatively user-specified compensation routines must be called if the action 

aborts. Simple state-based recovery which is perfectly acceptable for the simple 

locking policy, is inadequate to cope with such objects. In addition the optimistic 

algorithm also required that the recovery system be based on intentions lists so 

that changes made to the same objects by different actions appeared to have 

executed in the same serial order. 

7.2 Future Work 

Although this thesis has concentrated mainly on concurrency control 

techniques and their implementation in an object-oriented environment, chapter 

six has shown that the topic cannot be considered in isolation. 

In particular, in order for type-specific locking approaches to be effectively 

implemented and tested, the underlying system model must be further revised. 

The most obvious area of revision lies in the area of server management. As was 

pointed out in chapter five, the basic remote procedure call mechanism has 

already been modified so that calls from related actions are directed to the same 

server; what we require is that an object is only ever maintained by one server 

once activated regardless of which action is using it. 

This has some problems as far as the basic RPC mechanism is concerned 

since each server is essentially in a loop, first waiting for an RPC, executing it, 

and then returning the results. Given that there is only one server, there arises 

the increased probability that it might be deaf to requests since it may currently 

be busy serving another. 

Chapter six showed a solution to this problem by providing multiple threads 

of control within each server process. Each thread of control behaves as a 

lightweight process that is cheap to create and schedule and shares the address 

space of the main process with all the other threads of control. Using such an 
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approach, each individual call can be handled by a separate thread thus the 

server need never be deaf to a call. Whether the server is configured with a fixed 

number of such threads when it is defined or creates them dynamically for each 

request is probably unimportant. 

Such a server could be produced In the existing workstations by 

implementing a simple multi-tasking environment for a UNIX process; an 

approach adopted by the ISIS team at Cornell [Birman 86]. Alternatively use 

could be made of one of the other operating systems that already support such 

threads of control, such as Amoeba [Tanenbaum and Mullender 81] or Mach 

[Jones and Rashid 86] However, a much more attractive approach may be 

possible since the Computing Laboratory has recently acquired a shared memory 

multiprocessor (an Encore Multimax"') which also supports such threads in 

addition to providing true parallelism by virtue of having multiple central 

processors. It remains to be seen what effects such a change in the server model 

would have on the orphan detection capabilities of the underlying remote 

procedure call system. 

It might appear that by adopting such an approach the servers are becoming 

similar to Argus guardians. There are, however, important differences. For 

example, in Argus, guardians are always active and are restarted automatically 

whenever necessary. In the Arjuna system a server for an object need not exist 

until the object is actually activated, and once all the actions using the object 

have terminated the server may be destroyed. All that is required is that once a 

server is created it is willing to serve all actions that wish to make use of the 

object, regardless of their relationships to each other. 

"'Multimax is a Trademark of Encore Computer Corporation. 
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Also possible is the combination of several of the concurrency control 

techniques into a single object. This would enable a programmer for example to 

choose type-specific locking for some operations and an optimistic approach for 

others depending upon the concurrency required and the conflicts likely to occur. 

Such an approach requires that the implementation language supports 

multiple inheritance so that a user-defined object may be derived from both 

LockCC and OptCC. The version of C++ available at this time does not currently 

support this feature. However, a research version with this capability has been 

produced and will probably become available in the future. 

In the short term the lock-based approaches could also be combined such 

that some operations used type-specific locking while others used the simple read 

write locking of the basic system. Such an approach requires that the 

concurrency controller keeps each type of lock separate since it does not in 

general make sense to compare a type-specific lock and an ordinary lock for 

conflict unless the programmer has made the meanings of such comparisons 

explicitly defined. This point is analagous to the one made in chapter four 

regarding why the mode of a lock was made part of the state of the Lock type, 

rather than deriving new lock types immediately. Alternatively, the 

programmer must take additional care in defining the conflict operation such 

that comparison of type-specific locks and basic read-write locks had some 

meaning. 

This thesis has claimed that the type-inheritance based approach is flexible 

and is not tied to any particular language or system. Testing this in reality 

requires moving the system to another operating system base (a port to Amoeba is 

being considered), and perhaps more radically, re-implementing the system in 

another object-oriented language such as Trellis/Owl [Schaffert et al. 86] or 

Smalltalk-80 [Goldberg and Robson 83]. 
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Finally, although the aim throughout this thesis has been not to modify a 

language or operating system, integration of parts of the system into an operating 

system would inevitably bring improvements, particularly in the areas of 

performance and memory utilisation, which may be important. 

In conclusion it can be said that using type inheritance In the way 

illustrated in this thesis has allowed the production of a highly flexible system in 

which a variety of concurrency control techniques may be implemented. Treating 

the system as a collection of communicating objects has allowed the problems 

caused by distribution to be ignored. However, as has been shown, concurrency 

control cannot be considered in isolation. 

As increased levels of concurrency are required then the recovery system 

and the underlying system model all play their part. In some respects this echoes 

the thoughts of Reed [Reed 78] and Weihl [Weihl 84] who both treated 

concurrency control and recovery within an integrated framework in order to 

improve concurrency. Certainly the relationship between the two concepts is 

worth exploring more fully. 
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