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Abstract 

This thesis is concerned with maximizing the performance of policies for routing and 

transferring jobs in systems of heterogeneous servers. The tools used are probabilistic 

modelling, optimization and simulation. 

First, a system is studied where incoming jobs are allocated to the queue belonging 

to one of a number of servers, each of which goes through alternating periods of being 

operative and inoperative. The objective is to evaluate and optimize performance and 

cost metrics. Jobs incur costs for the amount of time that they spend in a queue, 

before commencing service. The optimal routing policy for incoming jobs is obtained 

by solving numerical programming equations. A number of heuristic policies are 

compared against the optimal, and one dynamic routing policy is shown to perform 

well over a large range of parameters. 

Next, the problem of how best to deal with the transfer of jobs is considered. 

Jobs arrive externally into the queue attached to one of a number of servers, and on 

arrival are assigned a time-out period. Jobs whose time-out period expires before it 

commences service is instantaneously transferred to the end another queue, based on 

a routing policy. Upon transfer, a transfer cost is incurred. An approximation to the 

optimal routing policy is computed, and compared with a number of heuristic policies. 

One heuristic policy is found to perform well over a large range of parameters. 

The last model considered is the case where incoming jobs are allocated to the 

queue attached to one of a number of servers, each of which goes through periods 

of being operative and inoperative. Additionally, each job is assigned a time-out 

on arrival into a queue. Any job whose time-out period expires before it commences 

service is instantaneously transferred to the end of another queue, based on a transfer 

ii 



policy. The objective is to evaluate and optimize performance and cost metrics. Jobs 

incur costs for the amount of time that they spend in a queue, before commencing 

service, and additionally incur a cost for each transfer they experience. A number of 

heuristic transfer policies are evaluated and one heuristic which performs for a wide 

range of parameters is observed. 
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Chapter 1 

Introduction 

1.1 Motivation 

The motivation for this work is recent developments in distributed computing. Ad

vances in high performance hardware, and in particular the widespread availability 

of high speed networking, has led to the connection of previously isolated computing 

resources. This allows users to access remote servers with storage and processing 

capabilities which may be located anywhere within a local or wider area network. 

The concept of a Computing Grid is defined as the technology enabling the cou

pling of such resources which may be both geographically and administratively dis

persed. It is a desirable feature of such a system that the user does not need to 

know where or how their desired service is performed, but rather submitting a re

quest for service to the Grid, and awaiting the results of the service. A computing 

grid therefore supports the concept of heterogeneous servers providing service to a 

widely distributed community of users. The role of the Grid management system is to 

maximise the efficiency of the composite servers. An environment can be considered 

more efficient than another if it makes a better use of all available resources. This 

can be analysed using performance measures such as the average number of waiting 

jobs present in the system or, following the submission of a job, the average response 

time. The latter is defined as the amount of time from the arrival of the service 

request until the completion of service. 

An example of a routing system is illustrated in Figure 1.1. Requests for service 
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Figure 1.1: A routing-based service provisioning sy tern 

arrive into a provisioning system, or dispatcher, which is responsible for th allocat ion 

of service requests , or jobs, to available computing r sources, for xampl the select ion 

of a server for the job. The provisioning system may also be responsible for tracking 

the number of jobs queueing at each resource. 

On the arrival of a request for s rvice, the dispatcher routes the job to avai lable 

computing resources, according to a routing poli y. The routing policy determines 

the appropriate allocation of resources, based on rvice capacities and the curr nt 

state of the resources, including t he number of queueing jobs and the current resource 

availabili ty. 

For the purposes of this thesis, a dynami routing policy is one which takes into 

account the current operational state of the resources associated with the djspatcher, 

and a static policy is one which does not. It is sensible to use dynamic routing when 

the queue sizes and server states are known entrally, and the costs of centrally di -

patching jobs from the dispatcher to the destination server are low. 

A different xample of a transfer system is illustrated in Figure 1.2. Request for 

servi e ar ubmitted by the user to one of the avai lable comput ing re ource . The 
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Figure l.2 : A transfer-based service provisioning system 

job then enters a queue awaiting either service, or transfer to another resource, where 

it is expected to receive better service. 

Job transfers make sense when either the system tate information is not available 

or when sending jobs to remote servers is expensive. 

It is easy to see that in the case of t he routing-based system, for best ut ilization 

of resources, the provisioning system should take into accoun t the current tate of 

the queues a t each resource in addi t ion to the, potentially changing, performance 

characteristics of each. 

In the case of transfer systems it is clear that jobs may be transferred on arrival 

Lo another resom ce if there is a clear benefi t to doing so. In many cas , how ver , it 

may not be certain whether the best option for a job is to remain in a queue rather 

than transferring to another , possibly distant , queue. This decision will be made 

more complex if the performance characteristics of resources vary wit h time. 

Object ives of this thesis include: 

l. to determine policies for a routing-based provision system to select t he destina

tion re ource for an incoming job; 

2. to determine h uristic for transfer systems, to determine when to transfer jobs 
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from a queue, and the best resulting destination; 

In Chapters 2 and 3, a routing system is considered. Each server has an associated 

queue, and goes through alternating periods of being operative and inoperative. The 

role of the provisioning system is to allocate incoming jobs to one of the servers, 

according to a routing policy. A static policy is likely to cause under-utilisation of 

some resources, and over-utilisation of others. Strategies for semi-static and dynamic 

allocation of jobs are investigated. 

In Chapter 4, a simple example of a transfer system is considered. There are only 

two servers, with transfers permitted in only one direction. The effect of different 

transfer rates is evaluated, and the system solved exactly for a performance metric. 

A good approximation to the exact solution is obtained and evaluated. 

In Chapters 5 and 6 general transfer systems are evaluated, firstly for always 

available servers, and then for servers which undergo alternating periods of being 

operative and inoperative. A number of transfer policies are evaluated. 

1.2 Related Work 

1.2.1 Routing 

Foley and McDonald [9] consider a system of m servers where each server has a 

dedicated stream of customers in addition to a shared stream of smart customers 

which use the shortest queue routing policy. They describe three separate cases where 

one or both servers can overload, dependent on the server speeds and the proportion 

of smart customers. 

The stability conditions are computed for the general case of m servers. Addi

tionally, the exact asymptotic distribution is computed for the limited case of m = 2. 
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1.2.2 Server Breakdowns 

Thomas and Mitrani [22] consider N parallel queues which undergo independent oper

ative and inoperative periods, which are all supplied with jobs from a single incoming 

stream. Incoming jobs are routed to one of the queues based on a routing policy which 

only depends on the set of operative states of all servers. This is a static version of 

the system considered in Chapters 2 and 3. Several routing strategies are evaluated 

and compared with each other and the optimal static routing policy. 

Mitrani and Wright [16] consider a system where incoming jobs form a single 

incoming stream which can be routed through N parallel MIMII queues. These 

servers are subject to random breakdowns and repairs. When a server breaks down, 

all jobs present in its corresponding queue are lost. Servers which are broken down 

when jobs arrive into the system cannot receive jobs into their queues. 

The marginal queue size distributions are computed for the general case, and in 

the special case of N = 2, the equilibrium distribution of the numbers of jobs in the 

queues is calculated. 

Wang, Wang and Pearn [23] study a single, unreliable server in the N policy 

MIGII queueing system with startup times. When N customers are waiting the 

server starts a 'warm-up' period, where it is unable to commence service. There

after, the server provides service until the queue becomes empty, or it undergoes a 

breakdown. 

Approximate formulas are derived for the steady-state probability distributions 

of the queue length, using the maximum entropy principle, and compared against 

established results for various distributions. It is shown that the maximum entropy 

approach generates a good approximation and hence is a useful approach. 

Gray, Wang and Scott [11] consider a queueing model in which a single server may 

experience several different types of breakdowns, each of which requires a random, 
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finite number of stages of repair. Necessary conditions for the existence of a stationary 

queue length distribution to occur is obtained, and then matrix geometric methods 

are used to compute the queue length distribution, and then an explicit expression 

for its mean. 

A number of properties of the model are also found, including the mean repair 

time, average completion time, average number of repair stages and relationships be

tween these measures and the number of breakdowns during a customer's service time. 

Glazebrook and Kirkbride [10] consider a model in which service times and repair 

times at each of number of machines are independent and identically distributed 

random variables with general distribution. Routing decisions take into account queue 

lengths, machine operative status and elapsed processing time of jobs in service. 

An approach to machine calibration is developed which gives a machine index 

which is a function of all status information. A number of heuristics are developed 

and compared against the optimal and one heuristic, consisting of routing tasks to 

the machine with the smallest current index, is identified which performs very well. 

It is noted that the approach is very flexible and will yield good policies for a range 

of variants of the basic model. 

1.2.3 Reneging 

Zeltyn and Mandelbaum [28] consider the problem of a single queue with Poisson 

arrivals, with n statistically-identical agents which service the queue. Each arriving 

caller has an associated, generally distributed patience time T. The model is applied 

to call center environments. 

Three asymptotic operational regimes for the number of agents are studied, and 

one is found to be a good approximation for a wide set of system parameters. In 

addition, parameters where simpler approximations are useful are identified. 
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Altman and Yechiali [1] investigate a series of models considering customer impa

tience, which is due to the absence of service on arrival. When a customer arrives into 

a queue and notices that the server is 'on vacation', an impatience counter is started. 

If the server returns to service before the timer expires, the customer remains in the 

system until its service is completed. Alternately, if the timer expires before the server 

returns to service, the customer leaves the system never to return. 

Single server MIMII and MIGII queues are analysed, as is the multi-server 

MIMic queue, and closed-form results are obtained. In particular, the proportion 

of customer abandonments is calculated and compared for single-vacation and multi

vacation regimes, and it is found that this is smaller for the single-vacation case. 

Dalal and Jordan [7] consider a MIMI 1 queue in which the average reward for 

servicing a job is a decreasing function of the sojourn time. The maximum reward 

and mean service times of a job are independent, arbitrarily distributed, random 

variables. Deadlines are not known by the server, and hence expired jobs are not 

dropped. A scheduler, which is assumed to know the maximum reward, service rate 

and age of each job, selects the next job to receive service on the completion of the 

previous job. 

Various schedulers are compared by simulation over a range of loads. It is proved 

that a scheduling policy that serves the customer with the highest product of potential 

reward and service rate, maximizes the average reward. 

He and Neuts [12] study a system of two servers with job transfers. Batches of jobs 

are transferred from the longer queue to the shorter one when the difference between 

them reaches a threshold L. The arrival rates and service rates of each server are 

independent. 

A simple condition for the stability of the system is obtained. A matrix geometric 

solution for the stationary distribution of the system is then calculated, and then 

the stationary distribution of the total number of jobs in the system is obtained and 

shown to decay exponentially. Based on theoretical results, the optimal system pa-
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rameters of such queueing systems are explored numerically. 

Movaghar [17] studies queueing systems where customer have strict deadlines until 

the beginning of service. A single queue serves a number of identical servers, and may 

have a finite capacity. An arriving job which finds the system full leaves immediately, 

never to return. 

Equations for probability density function of the time an infinite deadline cus

tomer has to wait until service commences are calculated for both finite and infinite 

capacity systems, as well as the probability of missing deadlines, and the probability 

of blocking. The efficacy of the method is illustrated numerically. 

Choi, Kim and Zhu [6] consider a MAP /M/c queue where a customer which 

cannot commence within a fixed time after arrival into the system is lost. The queue 

is serviced by c servers. Two cases of clients are considered: "aware" and "unaware" 

customers. In the case of aware customers, an arriving customer knows how long they 

can expect to wait, and waits in the queue or leaves the system on arrival, depending 

whether they will start service before the deadline expires. In the case of unaware 

customers, the customer always enters the system and is lost if service does not start 

before the deadline expires. 

The stationary distribution of the system is obtained and hence several perfor

mance measures such as loss probability, waiting time distribution, mean waiting 

time and mean queue size are computed. Numerical examples are presented for sys

tem load of 0.7, 0.8 and 0.9, with differences presented, where they exist, for aware 

and unaware customers. 

Liu and Kulkarni [13] evaluate a system with balking based on the workload. On 

arrival into the system, a job enters the system, and remains until service completion, 

if the expected waiting time is less than some maximum. Otherwise, it leaves the 

system, never to return. 

Some results are obtained for the case of a M/G/1 queue, and then the case of 
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a M/PH/1 queue is solved explicitly, to produce the probability that the system is 

empty, and the mean workload in equilibrium. A number of numerical examples are 

presented. 

Boo, Kim and Lee [3] study the M/G/1 queue with impatient customers, which 

leave the system if, after a fixed time K, they have not started service. It is noted 

that when analysing the waiting time and busy period, that this is equivalent to the 

case where customers only enter the system when their waiting time does not exceed 

K. 

The distribution of the waiting time is explicitly derived, and the expected busy 

period is obtained. 

Skimkin and Mandelbaum [20] consider the modelling of abandonment from an 

M/M/m queue, where each customer has a deadline, T, after which they will abandon 

the system if they have not commenced service. The customers are placed into a 

number of types, based on three utility function parameters. 

The optimal (or rational) behaviour for customers, which maximises their utility 

function is con pared to a myopic decision rule which chooses the abandonment time 

as the first local maximum of the utility function. This is shown to enjoy favourable 

analytical properties, in addition to making sense for cases where customers do not 

know the exact form of their utility functions. Concrete examples are provided, which 

illustrate the approach and analysis. 

Ward and Glynn [24] consider a GI/GI/l queue with customers which which 

either balk or reneging. In the reneging case, customers leave the queue if they have 

not commenced service before a deadline expires. For the case of customer balking, 

on arrival a customer does not enter the system if the offered waiting time exceeds 

the deadline, for the case where all customer processing times are known, or the 

conditional expected waiting time when only queues lengths are observable. 

An approximation for the workload and queue length processes is obtained, for 
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the case where the arrival rate is close to the processing rate with large reneging 

times, and this is shown to be a good approximation. Their approach is also shown 

to generate a good approximation for the queue-length process. 

Zhao and Grassman [29] solve a shortest queue problem, in which arriving jobs 

are always routed to the shortest queue, and transfers of jobs between queues are per

mitted. The servers are always available, and jobs transfer instantaneously between 

two queues. When the difference in queue length between the longest and shortest 

queue exceeds a pre-set number, the last job is transferred to the shortest queue. 

Expressions of main performance measures, including the average number of jobs 

in the system, the average waiting time in the system and the average number of 

transfers, are given. A number of numerical results are presented, and by comparing 

the results for systems with and without jobs transfers, it is shown that a significant 

improvement of the system performance is achieved for the system with job transfers. 

Xu and Zhao [27] consider a system where incoming jobs are routed to one of two 

servers. Transfers of jobs are permitted between the two servers in either direction. 

A transfer cost is incurred whenever a job is transferred. 

Dynamic routing and transfer policies are characterised that minimise the ex

pected total cost for both discounted and long-run average costs. It is shown that 

the optimal routing and transfer controls are described by three monotonically non

decreasing functions. Properties of these functions, relationships between them and 

their asymptotic behaviour are considered, and it shown that some well-known queue

ing control models are special cases of their model. 

Boots and Tijms [5] examine a multiserver queueing system with impatient cus

tomers. Each arriving customer is placed into a shared queue, and has an associated 

time-out. If the customer has waiting for their time-out period, and has not begun 

service, they leave system and become a lost customer. The loss probability, which is 

the long-run fraction of customers who are lost, is formulated for the MIMic queue, 
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and an approximation for the M/G/c queue is formulated and evaluated against nu

merical results, showing it to be a good approximation. 
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Chapter 2 

Servers Subject to Breakdowns 
and Repairs: Optimal Routing 

2.1 Introduction 

Grid services involve groups of heterogeneous servers, providing stTvice to wid('l\" dis

tributed users. These users submit jobs without w'c{'ssarily knowing or caring on 

which server they will be executed. It is the respollsihilitv of the systelil to allocate 

these jobs among the servers, attempting to make the best use of available [('SOllr('('s. 

and provide the best quality of service. 

In many implementations, grid services are run wit h a lower priorih" than other 

services, such as print or web services, on a server. This can be modelled by each 

server experiencing periods of availability, separated by unavailable periods. The 

problem then is to select, for a given operative state and queue length for each s('n"er, 

the optimal routing decision for arriving jobs. 

This CHIl, in principle, be solved exactly to yield the optimal routing poIiC'~"" How

('v('r, for large numbcrs of servers, this is would take an unfeasible length of time to 

calculate, <lml a very large amount of storage. Therefore, the optimal policy will be 

calculated for a small number of servers, where the computation time and storage re

quir(,lllcnt.s are not overly large, and compared wit h several heuristic policies. Then, 
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for larger numbers of servers, comparison between the heuristic policies will be made. 

2.2 The model 

Jobs arrive into the system according to an independent Poisson process with rate 

A. A routing policy sends the new arrivals to one of N servers, each having its 

own unbounded FIFO queue. There is no delay between arriving into the system 

and joining a queue. Having joined, a job remains in its queue until its service is 

completed. When server i is operative, its service times are distributed exponentially 

with mean 1/ J-Li (i = 1,2, ... , N). The operative and inoperative periods of server i 

are distributed exponentially with means 1/~i and l/r/i, respectively. Any job whose 

service is interrupted by a server breakdown remains at the head of its queue; as 

soon as the server is repaired, the service resumes from the point of interruption. All 

interarrival, service, operative and inoperative intervals are mutually independent. 

This system is illustrated in Figure 2.1. 

1 1 1 1 10 
J-Ll, 6, 111 

1 1 1 I~ 
J.L2, (2, TJ2 

0 0 
0 0 
0 0 

1 I 10 
J-LN,(N,l1N 

Figure 2.1: Unreliable Servers 

While a job remains in queue i, it incurs a cost Cj per unit time. These 'holding' 

costs reflect the possibly different importance attached to low response times at the 

N queues. The average total cost incurred over a given (finite or infinite) period will 

be our QoS measure. 
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The system state, 8, at a given time is described by a vector of integers: 

where ii is the current number of jobs in queue i, and bi is the current availability of 

server i (i = 1,2, ... ,N); the latter is defined as 

{ 

0 if server i is inoperative 
b; = 

1 if server i is operative 

The routing policy, u, is defined by specifying, for every state 8, the action, Us, 

taken when a job arrives and finds that state: Us = i if the job is directed to queue 

i. The policy is assumed to be stationary; the routing actions may depend on the 

current state but not on past history. 

The above assumptions imply that the system state is a Markov process whose 

evolution depends on the routing policy. The instantaneous transition rate, Tu(8, 8'), 

from state 8 to state 8' under policy u, is given by 

A if Us = i and 8' = 8 + ei; 

J.tibi if ii > 0 and 8' = 8 - ei; 

Tu(8,8') = ~i 

Tli if bi = 0 and 8' = 8 + ei+N; 

o otherwise 

(2.1) 

where i = 1,2, ... , N; ek is the 2N-dimensional vector whose kth element is 1 and the 

other 2N - 1 are O. 

The total instantaneous transition rate out of state 8, T(8), is equal to: 

N 

T(8) = A + L (bi[J.tid(ji > 0) + ~il + (1 - bi)Tli) , (2.2) 
i=1 
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where 6(B) is the indicator of the Boolean B: it is equal to 1 if B is true, 0 if B is 

false. Note that r(S) does not depend on the routing policy. 

If the routing policy makes reasonably efficient use of the servers, i.e. does not 

allow one of the queues to grow very large while others remain empty, then the system 

should be stable if the arrival rate is lower than the total average available service 

capacity: 

~(rr ) >.. < LJ __ I -Jl.i . 
i=1 ~i + 'f/i 

(2.3) 

2.3 Computation of the optimal policy 

The optimization problem consists of finding the minimal cost, cmin , and a stationary 

routing policy that achieves it: 

N 

cmin = inf~ CiLui , 
u LJ ' (2.4) 

i=1 

where Lu,i is the mean queue length of server i under policy u, and Ci is the holding 

cost per job per unit time for server i as before. 

For the purposes of optimization, it is convenient to apply the technique of uni

formization to the Markov process (e.g., see [8]). This involves the introduction of 

'fictitious' transitions which do not change the system state, in such a way that the 

average interval between consecutive transitions does not depend on the state. The 

discrete-time Markov chain embedded at transition instants is then equivalent to the 

original process. First, we find a constant, A, such that r(S) :5 A for all S. A suitable 

value for A is 
N 

A = >.. + Lmax(JLi + ~i,'f/i) . (2.5) 
i=1 

Without loss of generality, the unit of time can be scaled so that the right-hand side 

of (2.5) is equal to 1. Then the transitions of the Markov process can be assumed to 
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occur at exponentially distributed intervals with mean 1, according to a discrete-time 

Markov chain whose one-step transition probabilities under policy u, qu(S, S'), are 

equal to 

qu(S,S') = {ru(S,S')jA if S' # S , 

1 - r(S)j A if S' = S 

with ru(S, S') and r(S) given by (2.1) and (2.2) respectively. 

(2.6) 

For the purpose of accumulating costs, we consider the states of the above Markov 

chain just after a transition instant if the latter is not associated with an arrival and 

just before if an arrival occurs at that instant. Thus, if the chain is in state S and 

there is no arrival, then the cost of the current step, vo(S), is equal to 

N 

vo(S) = L e;ji , (2.7) 
;=1 

taking the necessary adjustments to e; due to adjustment in the unit of time as given. 

If the state is S and an arrival occurs, then in addition to vo(S), a holding cost 

equal to Ci if Us = i is incurred. 

Suppose that the objective is to minimize the average total cost incurred over a 

finite period consisting of n steps of the Markov chain. Denote by Vn(S) the minimum 

of that average, given that the current state is S and there is no arrival. Similarly, 

let V;~(S) be the minimum average total cost, given that the current state is S and 

an arrival occurs (with the a subscript denoting the arrival). These costs satisfy a set 

of dynamic programming equations (for the general theory, see [19, 25]). 

If there is no arrival in the current state, we have 

Vn(S) = vo(S) + .xV,!'_1(S) + LQu(S,S')Vn- 1(S') , (2.8) 

s' 

where the first term in the right-hand side is the cost of the current step. The second 
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term expresses the fact that the next transition is an arrival with probability ;\; if so, 

the incoming job sees state S and the consequent cost of the remaining n - 1 steps 

is Vn~ 1 (S). The sum in the third term extends over the transitions S ~ S' which 

do not involve an arrival: the next state is S' with probability qu(S, S'); if so, the 

consequent cost of the remaining n - 1 steps is Vn-l(S'). 

When there is an arrival in the current state, one of the routing actions directing 

the incoming job to queue i must be taken (i = 1,2, ... , N). The state then immedi

ately jumps to S + ei. The cost V:{S) is therefore obtained by adding to the current 

holding cost, vo{S), the minimum of the consequences of this action (on the current 

and subsequent n - 1 steps), over the possible actions: 

Again, the sum in the right-hand side extends over the transitions S + ei --+ S' which 

do not involve an arrival. 

The above recurrences can, in principle, be solved by iteration, starting with the 

initial values Vo{S) = vo{S) and Voa{s) = vo(S) + min(cl, C2, ..• , CN). In practice, the 

state space must be made finite by bounding the queue sizes: ji $; Ji and for some Ji , 

where i = 1,2, ... , N. The consequences of such a truncation are that incoming jobs 

are only routed to one of the queues for which j, < Ji ; if ji = JNi E {I, 2, ... , N}, 

new arrivals are lost. 

The complexity of the iterative solution is of the order O(n n:l (2J,)), since the 

size of the state space is n:l (2J,) and there are n steps (the summations in (2.8) 

and (2.9) have no more than 4 terms each). 

Having solved the equations, the value of i which achieves the minimum in the 

right-hand side of (2.9) is the optimal routing action in state S, for the finite horizon n. 
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More commonly, one is interested in an infinit~horizon optimization. The objec

tive is to minimize the average total future cost, and in order that the latter is finite, 

the cost of a step at distance n in the future is discounted by a factor an, for some 

o ::; a < 1. Setting a = 0 implies that all future costs are disregarded; only the 

current step is important. When a ---+ 1, the weight of a future step, no matter how 

distant, approaches that of the current one. 

Dynamic programming is a mathematical optimisation technique, which allows 

the total cost of a decision to be minimised, including future consequences. Decisions 

cannot be viewed in isolation since one must balance the desire for low present cost 

with the undesirability of high future costs. The dynamic programming technique 

captures this trade-off. At each stage, decisions are ranked based on the sum of the 

present cost and the expected future cost, assuming optimal decision making for sub

sequent stages [4J. 

Denote by V(S) the minimum average total future cost, given that the current 

state is 8 and there is no arrival. Similarly, va(8) is the minimum average total 

future cost, given that the current state is 8 and an arrival occurs. The corresponding 

dynamic programming equations are 

V(S) = vo(8) + aAva(8) + a Lq(S, 8')V(S') , (2.10) 
s' 

(2.11) 

with the same restrictions on 8' as for (2.8) and (2.9), respectively. 

Again, the optimal routing action in state S is specified by the value of i which 

achieves the minimum in the right-hand side of (2.11). 
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The infinite horizon optimization leads to fixed-point equations, rather than recur

rent ones. Moreover, their solution, and the optimal policy, depend on the discount 

factor a. The most important case, but also the most difficult to solve, is a ~ 1. 

Three methods for computing the optimal policy numerically are described below. In 

all cases, the state space is truncated by introducing the bounds ii :5 Ji , and impos

ing the appropriate policy restrictions on the boundaries ii = Ji (i = 1,2, ... , N)(see 

above). 

Cost Iteration 

This algorithm applies when a < 1. Then (a) the total costs are finite and (b) the 

finite horizon costs and policy converge to the infinite horizon costs and policy as 

n ~ 00. The algorithm works as follows: 

1. At iteration 0, set \'o(S) to vo(S) and Voa(s) to vo(S) + min(cl' C2,· .. ,CN), for 

all states S. 

2. At iteration n, compute Vn(S) and V,!'(S) according to (2.8) and (2.9) respec

tively, using Vn-1(S) and V,!'_l(S) from iteration n - 1. Terminate when 

(2.12) 

for some small €. 

3. Return the policy specified by the values of i which achieve the minima in the 

right-hand side of (2.9) on the last iteration. 

The complexity of the Cost Iteration algorithm is of the order O(n n~l Ji ), where 

n is the number of iteration steps needed for convergence. That number depends on 

the model parameters, on the discount factor, a, and on the desired accuracy, €. 
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Policy Stability 

This is similar to cost iteration, but is applied with a = 1. Now Vn(S} and V:(S} 

keep growing without bound, so a different termination criterion must be used. This 

is based on convergence of policy, rather than convergence of cost. At each iteration, 

the current 'optimal' policy is compared to the one from the previous iteration. The 

algorithm terminates if the policy has not changed for k consecutive iterations, for 

some k (e.g., k = 100). Return that policy. 

The complexity of this algorithm is of the order O(n n!l J;}, where n is the num

ber of iteration steps needed to achieve policy stability. That number depends on the 

model parameters and on the desired degree of stability, k. 

Policy Improvement 

Like cost iteration, this algorithm applies when the total costs are finite (a < I). 

However, it iterates on policy rather than costs, and ensures that the optimal policy 

is found. 

1. Start by making an initial guess about the optimal policy, i.e. construct an 

initial mapping, f(S}, from system states to routing actions. This could be a 

simple heuristic such as f(S} = i if ji = min;1 j;l, (i.e. send new arrivals to the 

shorter queue). 

2. Treat this guess as the optimal stationary policy and write the corresponding 

discounted cost equations. The only change with respect to (2.10) and (2.11) 

is that in the right-hand side of (2.11) there is no mini; the routing action f(S} 

is used. This new version of (2.10) and (2.11) is a set of simultaneous linear 

equations for V(S) and va(s). Solve them and determine the costs associated 

with policy f. 

3. Now try to 'improve' policy f. For every state S, find the routing action i 
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which achieves the minimum value in the original equation (2.11). In other 

words, minimize the total cost in state S, assuming that after the current step, 

policy 1 will be used. 

4. If the new routing actions are the same as I{S) for all S, then the policy 1 

cannot be improved; it is optimal. Return I. Otherwise, replace I{S) by the 

new policy and repeat from step 2. 

In step 2, the simultaneous set of linear equations is very sparse and is normally solved 

by iterations. Therefore, the complexity of the Policy Improvement algorithm is of the 

order O{mn n!l (Ji )), where m is the number of steps in the iterative solution of the 

simultaneous equations, and n is the number of policy improvement steps. The num

ber m depends on the model parameters, on the discount factor, and on the desired 

accuracy; in addition, n depends on how close the initial guess is to the optimal policy. 

Of the above three algorithms, only Policy Improvement is guaranteed to produce 

the optimal routing policy in a finite number of steps (assuming that the simultaneous 

equations are solved accurately). 

Optimal routing policies can, in principle, be computed off-line and stored in the 

form of decision tables. A dispatcher could then implement the policy by means of 

table look-up. A part of such a decision table is illustrated in Table 2.1. For each 

state where the queue sizes are in the range 0-18, server 1 is operative and server 2 

is inoperative, the table indicates whether an incoming job should be sent to queue 1 

or to queue 2. There are similar tables for the other three operative states (broken

operative, operative-operative and broken-broken). The parameters in this example 

are). = 1, JL1 = 5, JL2 = 2.5, 6 = 0.4, 6 = 0.2, "11 = TJ2 = 0.1, C1 = C2 = 1. The 

optimal policy was computed by the Policy Stability method. 

This example shows that the optimal policy does not lend itself to simple charac

terization. Jobs are not always sent to the shorter queue. Sometimes they are sent to 
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h 
0 1 2 3 4 5 6 7 8 9 10 

0 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 1 1 

jl 10 1 1 1 1 1 1 1 1 1 1 1 
11 1 1 1 1 1 1 1 1 1 1 1 
12 1 1 1 1 1 1 1 1 1 1 1 
13 2 1 1 1 1 1 1 1 1 1 1 
14 2 2 1 1 1 1 1 1 1 1 1 
15 2 2 2 1 1 1 1 1 1 1 1 
16 2 2 2 2 1 1 1 1 1 1 1 
17 2 2 2 2 2 1 1 1 1 1 1 
18 2 2 2 2 2 2 1 1 1 1 1 

Table 2.1: Optimal routing decisions: server 1 operative, server 2 broken 

a queue where the server is inoperative, even though an operative sever is available. 

There might be a rule of a 'threshold' type, i.e. 'if the difference between the two 

queues is greater than a certain value, send the job to the shorter queue'. However, 

what determines the value of that threshold, and how, is unknown. 

In the absence of a characterization, there are clearly great practical difficulties 

in implementing dispatchers based on table look-up. One would have to pre-compute 

and store a large number of tables, corresponding to different sets of parameter values, 

and then decide which table to use, depending on the currently observed conditions. 
, 

A more practicable approach would be to construct heuristic policies which, while 

not optimal, perform reasonably well over a wide range of parameter values. Such 

heuristics are introduced and evaluated in the next chapter. 
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2.4 Results 

The first set of experiments carried out were to compare the three different methods of 

producing the optimal policy. Due to the comprehensive nature of the optimisation 

systems, only two servers are being considered. The state space is truncated at 

J1 = J2 = 100, giving a total state space of size 400,000). The run times of the Cost 

Iteration, Policy Stability and Policy Improvement algorithms, for different values of 

the discount factor a, are illustrated in Figure 2.2. 
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Figure 2.2: Run times of different solution methods 

In this model, the two queues differ only in the unit holding costs. The param

eters are: >. = 4, J.Li = 5, ~i = TJi = 0.1 (i = 1,2), Cl = 1, C2 = 5; i.e., each server 

is available for half of the time on the average, and the total service capacity is 5. 

The general pattern of behaviour of the three solution methods' run times do not de

pend strongly upon the system parameters. For low values of a, Policy Improvement 

and Cost Iteration take much less time to solve than Policy Stability (which does not 

depend upon a), but their run times rise to above, at values of a significantly below 1. 

These parameters are normalized so that the uniformization constant becomes 
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A = 1. The termination criterion for Cost Iteration is f = 0.000001, while Policy 

Stability terminates when the policy does not change for 100 consecutive iterations. 

Since that algorithm does not depend on a, it is run only once; the resulting run time 

is shown as a horizontal line. 

Cost Iteration and Policy Improvement are very fast for a < 0.97, but start slow

ing down thereafter. The number of iterations performed by Cost Iteration varies 

from 273 to 3637. Policy Stability performs 4291 iterations before the policy sta

bilizes. Policy Improvement carries out between 3 and 7 improvement steps, each 

including the solution of a large set of simultaneous linear equations; that solution is 

obtained by iterations, with f = 0.000001. However, the coefficient matrix becomes 

ill-conditioned when a -+ 1. That explains the steep increase in the run times of 

Policy Improvement when a is very close to 1. 

To evaluate the performance of any routing policy, u, we use a single average cost 

metric, Cu , which is computed as follows. First, find the steady-state distribution, 

7ru(S) , of the system state under policy u. This is obtained by solving numerically 

the balance equations, 

7ru(S) = L 7ru(S')qu(S', S) , (2.13) 
S' 

(where the one-step transition probabilities qu(S', S) are given by (2.6)), together 

with the normalizing equation, 

L7ru(S) = 1. (2.14) 
s 

The state space is truncated as before. 

The average cost incurred under policy u per unit time, Cu , is then given by 
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= LCiLu •i , 

i=l 

(2.15) 



where Lu,i is the average number of jobs in queue i under policy u. 

Figure 2.3 compares the average costs of the optimal policies returned by the three 

solution methods, for different values of a. The parameter values are the same as in 

Figure 2.2. 
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Figure 2.3: Effect of a on optimal policy 

The remarkable feature of Figure 2.3 is the strong dependence between a and 

the performance of the optimal policy. The optimal policy for a = 1, returned by 

the Policy Stability algorithm, performs significantly better than the ones for a < 1 

(the policies returned by Cost Iteration and Policy Improvement are very similar). 

The differences in performance between a = 1 and a < 1 become small only when 

a> 0.99. For these values of a, the necessary solution times for Policy Improvement 

and Cost Iteration are much higher than the solution time for Policy Stability. 
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2.5 Conclusions 

This section has explored an initial problem in the field of distributed processing and 

job routing. Three approaches to computing the optimal routing table have been 

implemented and found to be in agreement both in the general nature of the optimal 

policy and also in the resulting values of the average holding cost. 

It is clear from the description of the algorithms, however, that none of the ap

proaches are suitable for scaling up to systems with tens, or even hundreds of servers. 

Therefore, there is a need for heuristics which are a good match to the efficiency 

of allocation of the optimal policy but without the large storage and computational 

needs of the optimal. This is the subject of the next chapter. 
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Chapter 3 

Servers Subject to Breakdowns 
and Repairs: Heuristic Policies 

3.1 Motivation 

The model from the previous chapter is now evaluated using a number of heuristics 

for the allocation of incoming jobs to servers. Initially these are ('ompared to the 

optimal policy, evaluated as in the previous chapter, for a small number of servers. 

However as the computation of the optiIllal poli('y becomes overly ('XI)('llsiw as the 

number of servers becomes large, they are later compared wit h one another in order 

to find the heuristic which performs best. 

3.2 Policies 

1. Random 

Send incoming jobs to queue i, with probability 1/1\' (i E 1, 2, ... , N), regardless 

of the system state (other than in the cases where queues have reached their 

truncation lengths). 

This is the heuristic which requires the least state information, as all that is 

necessary is which servers are able to receive incoming jobs. If the operational 

parameters arc known, they could be. partially or completely, taken into account 

to create a H'('ighted Random policy which can be expected to perform better, 

but in this chapter only the unweighted version will be considered. 
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2. Selective 

If no servers are operative, then route to server i with probability 1/ N; otherwise 

send jobs to server i with probability bdO, where 

(i E 1,2, ... , N). This is one of a class of policies discussed in [22]. 

This heuristic requires more information than the Random heuristic, as it re

quires, for each server, the current operative state, bi, but not the queue sizes. 

3. Shortest Queue 

Send jobs to queue i if ji = mini' ji" This policy requires the current queue 

length, ji for each server, which is the greatest amount of information of all the 

heuristics so far. 

4. Selfish 

If a job finds state S on arrival, evaluate the expected non-discounted cost, 

d(S, i), which it would incur if sent to queue i: 

d(S,i) = Ci (ji + 1)--'-' + __ I • [ 
I~'+T/ I-b] 

J.Li "Ii "Ii 

Where 
1 ~i + "Ii ---

J.Li "Ii 

is the average service period, taking into account the periods of unavailability, 

and 
1- bi 

"Ii 

is the average time remaining of the current, if any, unavailable period. 

Send the job to queue i if d(S, i) = mindd(S, i')). 

This heuristic, and the Index heuristic following, require full state information 

for each server. 
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5. Index Heuristic 

Whittle's idea [26] was to expand the class of stationary policies by including 

certain unrealizable policies. Suppose that, at an arrival epoch, a routing func

tion u may add a job to any number of queues simultaneously. Let f3; (u) be the 

resulting steady state arrival rate into queue i. Routing function u is then said 

to be 'broadly admissible' if the overall arrival rate under u is ..\ (which, as at 

some arrival epochs, a job may be added to multiple queues, necessitates that 

at others the arriving job is added to none, i.e. the job is lost): 

N 

L:f3i(U) =..\, 
i=1 

or 
N 

L:[..\ - f3i(U)] = (N - 1)..\ . (3.1) 
i=1 

Whittle's relaxed optimization problem, which replaces (2.4), is to find 

N 

(J"'in = i~f L: c;Lu.; , (3.2) 
;=1 

where the minimum extends over all broadly admissible routing functions. Since 

h I "d t h -=me in < e min t at c ass IS WI er, we mus ave _ . 

The constraint (3.1) can be included in the minimization (3.2) by means of a 

Lagrangian multiplier, w: 

N 

cmin(w) = i~ L:(c;Lu,i - wgu) , (3.3) 

;=1 

where 
N 

gu = L:[..\ - f3i(U)] - (N - 1)..\ . 
;=1 
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This last problem can be decomposed into a sum of N separate optimizations: 

N 

Cmin(w) = L qnin(w) - w(N - l)A , (3.4) 
i=1 

where 

(3.5) 

Note that the last term in (3.4) does not depend on the policy. 

The optimization problem (3.5), referred to as 'problem (i,w)', is set in the 

context of an isolated single server queue with arrival rate A, service rate I'i, 

and breakdown and repair parameters ~i and TJi respectively. The system state 

is a pair, Si = (ji, bi ), where ji is the number of jobs present and b; is 0 if 

server i is inoperative, 1 if operative. The 'routing policy' in this case consists 

in deciding whether an incoming job which sees state S; should be accepted or 

rejected. If accepted, the job incurs a holding cost of c; per unit time spent in 

the system; if rejected, it incurs cost w. 

It is reasonable to assume that the optimal policy for problem (i, w) is of the 

threshold type, i.e. there are two integers, TJ(w) and Tt(w), such that 

An incoming job which finds state Si = (ji, b;) is accepted if either b; = 0 

and j; ~ TJ(w), or bi = 1 and j; ~ Tt(w). 

Moreover, since the higher the cost of rejection, the greater the incentive to 

accept jobs, it is likely that both TJ(w) and Tt(w) are non-decreasing in w. 

It can be shown that, under these monotonicity conditions, there exists a La

grangian multiplier, w·, such that the solution to (3.3) is a solution to Whittle's 

relaxed problem (3.2). Hence there is a solution to Whittle's problem in the 

form of a superposition of optimal policies for the single queue problems (i, w*). 
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Now we can define the Whittle index, Wi(Si), for queue i in state Si: 

Wi(Si) = { inf{w I T~(w) ~ ji} if bi = 0 . 

inf{w I Ti{w) ~ ji} if bi = 1 
(3.6) 

In other words, the index is the minimum rejection cost that would cause an 

incoming job to be accepted, when faced with the given queue size and server 

availability. 

Returning to the original routing problem with N queues, the new heuristic 

policy works as follows: 

Index routing. Send jobs to the queue with the smallest Whittle index, i.e. to 

queue i if Wi(Si) :::; Wk{Sk) for all k = 1,2, ... , N. 

For a given set of parameters, the indices are computed numerically, off-line, 

and tabulated. That computation involves finding, for a given queue and a 

given w, the optimal pair of thresholds Tj(w) and Tt{w); the cost of each pair 

is calculated by solving the finite-state model for that queue. Repeating that 

procedure for different values of w yields the index corresponding to state Si, 

according to (3.6). 

Having computed the indices for all states, the index routing policy would be 

implemented in practice by means of table look-up. 

A part of an index table is shown in Table 3.1. It concerns an asymmetric 2-

server system. The parameters are: A = 4, J.Ll = 5, J.L2 = 10, ~i = 0.3, l1i = 0.1, 

c; = 1 (i = 1,2). The table shows the queue 1 and queue 2 indices for queue 

sizes from 0 to 8. 

j 0 1 2 3 4 5 6 7 8 

W1 1.00 1.00 5.66 17.29 31.68 50.31 79.91 107.41 144.38 

W2 1.00 1.00 5.66 13.14 20.87 28.05 37.71 39.59 53.22 

Table 3.1: Whittle indices for queue 1 and queue 2 
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There are, of course, many other policies which could have been considered, which may 

out-perform some or most of the above. The selected set does permit the observation 

of the variation in performance as more stat information is taken into account. 

3.3 Results 

3.3.1 Two servers 

The results covered in this section will involve a system of two servers, and allows 

comparison of the optimal policy, calculated using the Policy Stability algorithm, 

with the heuristics described in Section 3.2. For the remainder of this chapter, unless 

noted otherwise, the holding costs Ci are taken to be 1. 

For small to moderate numbers of servers, exact solutions of the balance equations 

(see Equation 2.13 and Equation 2.14) are computed, giving solutions to the steady 

state distribution of the system under the given policy, from which the average hold

ing cost can be computed (using Equation 2.15), as in Chapter 2. 

Figure 3.1 illustrates the comparison of heuristics with the optimal policy for a 

model where ILl = 5, IL2 = 2.5, TJ1 = 1J2 = 0.1, 6 = 0.4, ~2 = 0.2; server 1 is faster but 

less reliable than server 2. The system is stable when ..\ < 1.83. 

It can be observed that the dynamic heuristics (the Shortest Queue, Selfish and 

Index) are close to optimal. The static (Random) and semi-static (Selective) policies 

are less efficient, especially as the load increases. In this model, the Random policy 

performs better then the Selective policy at heavier loads, which is contrary to ex

pectation, and is probably a feature of the parameters chosen. 

The next experiment compares the performance of the optimal and heuristic poli

cies when the asymmetry of the two servers increases. The arrival rate is fixed at 
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Figure 3.1: Increasing arrival rate 

A = 4, as is the service rate of server 1, J-ll = 5, and the breakdown and repair rates, 

~1 = ~2 = 0.3, "'1 = "'2 = 0.1. What varies is the service rate of server 2, J.l2. The 

results are shown in Figure 3.2. 

As expected, the average costs decrease as the total service rate increases. The 

Selfish and Index heuristics are once again close to optimal (with the Selfish slightly 

more efficient than the Index heuristic), but now the Shortest Queue policy is signif

icantly poorer, with the Random and Selective policies much worse. 

Another way of increasing the asymmetry between the nodes is to increase the dif

ference between the average lengths of their operative and inoperative periods. This 

is done in the experiment illustrated in Figure 3.3. The arrival and service parameters 

are fixed, A = 4, J-ll = 5, J-l2 = 25, as are the breakdown and repair rates of server 1, 

"'1 = 0.1, 6 = 0.3. The operative and inoperative periods of server 2 increase (~ and 

'" decrease), while their ratio remains fixed, ~2 = 3'172. 
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Figure 3.2: Changing service rate at server 2 

Note that, although the average service capacity does not change when the op

erative and inoperative intervals increase in fixed ratio, the average queue sizes, and 

hence costs, nevertheless increase. This is a known phenomenon. In this case, that 

increase is slowed as server 1 can absorb some of the load during the long inoperative 

periods of server 2. 

The Index policy is a very close match to the Optimal policy. At short opera

tive and inoperative periods, the Selfish heuristic is near optimal, but as the periods 

increase, it moves further from optimality. The Shortest Queue heuristic, in compar

ison, is a relatively poor approximation to the optimal policy at short periods, but 

becomes better as the periods are longer. The Random and Selective heuristics are 

once again poor matches for the optimal policy over the entire experimental range. 
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Figure 3.3: Increasing operative and inoperative periods at server 2 

3.3.2 More than two servers 

In Figure 3.4, the effect of increasing the arrival rate to three servers is shown. All 

servers are identical, with service rates J.Li = 2.2, breakdown rates ""i = 0.1 and repair 

rates, ~i = 0.3. This gives a maximum stable arrival rate of A = 1.65, which is appar

ent on the figure. 

It is clear that the Random policy is the furthest from optimal over the range, 

followed by the Selective policy. This is due to the random nature of their allocation 

procedures, not taking into account the queue lengths of the servers. The Shortest 

Queue policy is a good fit in this experiment, due to the lack of variation between the 

servers' parameters. However, the best policies are the Selfish and Index heuristics, 

with little between them. 

In the next experiment, there are two identical servers and the third varies in 

service rate. The arrival rate is fixed at A = 4, as are the service rates for servers 
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Figure 3.4: Effect of increasing the arrival rate 

1 and 2, at J.Ll = J.L2 = 5, and the breakdown and repair rates of all servers, at 

"l1 = "l2 = "l3 = 0.1 and ~1 = "l2 = "l3 = 0.3. The minimum stable value of J.L3 = 6. 

The results are illustrated in Figure 3.5. 

Across the entire experimental range, the Selfish heuristic is a very close match to 

the Optimal policy. At low J.L3, the Shortest Cost heuristic is a good approximation to 

the optimal, but as J.L3 increases, it becomes steadily worse until it becomes as poor as 

the Selective policy. For the entire range, the Random policy is a poor approximation 

to the Optimal. 

Figure 3.6 is essentially the same experiment as carried out in Figure 3.3, but with 

3 servers. The difference is that the arrival rate is doubled, A = 8, servers 1 and 2 

have the same parameters as server 1 did (J.Ll = J.L2 = 5, "l1 = 'TJ2 = 0.1, 6 = 6 = 0.3), 

and server 3 has twice the service rate as server 2 did, J.L3 = 50. Once again, the 

operative and inoperative periods are increased in ratio, 6 = 3"l3. 
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Figure 3.5: Changing service rate at server 3 

20 

As expected, the Selfish heuristic is close to the Index policy at small values of 

operative and inoperative periods, but becomes a worse fit as the periods increase in 

length. The other heuristics also behave in the same manner as before. 

The remaining experiments consider situations with a much larger number of 

servers (up to 20). Therefore, the steady state distribution of the system is no longer 

practical to calculate, and so the distribution as a results of simulation will be used in 

its place. In addition, the Optimal Policy can no longer be computed in a reasonable 

amount of time and so the heuristic policies will be compared against one another. 

Simulation 

A simulation of a large number of state transitions can be carried out as follows: 

1. Calculate the total instantaneous transition rate, r( S), for the current state, S 

(see Equation 2.2). 

2. Compute the exponentially distributed amount of time the current state has 
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Figure 3.6: Increasing operative and inoperative periods at server 3 

been occupied, with a mean of r(S). 

3. Increment the logged amount of time the current state has been occupied. 

4. Randomly determine the new state, Sf according to the system parameters 

and the allowed transitions from the current state S, with one-step transition 

probabilities under policy u, 

qu(S, Sf) = ru(S, Sf)jr(S) 

with ru(S, Sf) and r(S) given by 2.1 and 2.2 respectively. 

Once the simulation is complete, compute 7l"u(S) by dividing each element of the log 

of occupancy by the total elapsed time. Then, calculate the average cost incurred 

under policy u per unit time, Cu by 

(3.7) 
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Figure 3.7: Varying service rate of all servers 

where ji is the number of jobs in queue i, in state S. 

10 

The first experiment with large N is to vary the service rate. The arrival rate 

is fixed, A = 10, as are the breakdown and repair rates, T} = 0.1, ( = 0.3, of all 20 

servers. Figure 3.7 illustrates the result. 

The static (Random) and semi-static (Selective) heuristics remain unstable at J.L 

above the minimum necessary for a balanced system, and as J.L increases, are always 

far worse performed than the dynamic heuristics. Between the dynamic heuristics, 

the Shortest Queue heuristic is the worse performing, as expected, and there is little 

between the Selfish and Index heuristics. 

An interesting experiment to try is to increase the number of servers in propor

tion to an increase in arrival rate. The results are illustrated in Figure 3.8, where 

up to 20 identical servers, with service rate J.L = 8.8, and operative and inoperative 

39 



200 
+ 

rJ + Ra.ndom~ 150 Se~tive·· .. .;- Shortest ueue-B-
fS + ~eth")('" U Index o'cy~ 
~ 

:§ 100 + 
0 

::t: 

i .... 
~ 
< 50 + 

O~--~---L----L---~ __ ~ ____ L-__ ~ __ ~ __ ~ 

2 4 6 8 10 12 14 16 18 20 
J..L 

Figure 3.8: Increasing number of servers, with a constant load 

rates, TJi = 0.1, ~i = 0.3 are served by an incoming stream of jobs with arrival rate 

>. = l.4N, where N is the number of servers. Therefore, the average system load 

should be constant, regardless of the number of servers, at 64%. 

It is clear that the Random and Selective heuristics are unable to successfully 

deal with this situation, as the average holding costs rise in approximate proportion 

to the arrival rate. The remaining heuristics perform much more satisfactorily, with 

the Shortest Queue slowly rising with N, presumably due to the increasing number 

of jobs routed to inoperative servers. Both the Selfish and Index heuristics do not 

significantly change with increasing N, after a small period of adjustment at low N, 

indicating that they are routing the incoming jobs in an acceptable manner. 

In the remaining experiments, there are two groups of nodes, with the same num

ber of servers in each. All the servers in group 1 have the same J..L, TJ and ~, as do 

those in group 2. 
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In Figures 3.9 and 3.10, an interesting variation is considered, where one group of 

servers becomes faster, but with longer average inoperative periods. Once again, there 

are 20 servers, with one group having fixed service rate, J..Ll = 2.2, and breakdown and 

repair rates, XiI = 1/1 = 0.3. The other group has a fixed breakdown rate of ~2 = 0.3, 

but the service and repair rate are related by 1J2J..L2 = 0.88. 

As each queue is truncated at ji = 100 (i = 1,2, ... ,20)' average holding costs 

close to 2, 000 represent parameter values and heuristics for which most of the queues 

are saturated for most of the time. From Figure 3.9, it is clear that this condition 

applies over the entire range for both the Random and Selective heuristics. 

The overall system load of this experiment is not a constant, and is plotted in Fig

ure 3.11. This provides one explanation of why the Random and Selective heuristics 

perform very badly. As the system as a whole is highly loaded, static and semi-static 

policies will tend to perform badly. 

From Figure 3.10, we can see that the Shortest Queue heuristic performs slightly 

worse than the Index and Selfish heuristics, with little difference between the latter 

two. 

In Figure 3.12, we see the effect of increasing the service rate of one groups of 

servers, while keeping the effective service rate (taking into account the operative and 

inoperative periods) constant. It it clear, once again, that the Random and Selective 

policies are greatly suboptimal, with no real difference in their performances. 

In Figures 3.13 and 3.14, the service rates for servers in one group are increased, 

with the breakdown and repair rates also increasing in proportion. There are 20 

servers, in two groups. The total arrival rate is fixed at A = 40. For the group of 

servers with fixed parameters, the arrival rate, J..L2 = 2.2, the breakdown rate, 112 = 0.3, 

and the repair rate, 6 = 0.9. The system as a whole is stable for J..Ll > 14. 
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Figure 3.9: The effect of increasing service rate and inoperative periods 

From the first graph (Figure 3.13), two observations can be easily made, that 

there is little difference between the Random and Selective heuristics, and also that 

they are both very far from optimal. Considering the detail plot (Figure 3.14), we 

can see that the Shortest Queue policy is quite close to optimal over the considered 

range, but overall the Selfish heuristic is very close to optimal over the entire range. 

In Figure 3.15, the arrival rate is varied. There are 20 servers, in two groups. 

The service rates for both groups are the same, J.L = 2.2, and the breakdown and 

repair rates are very different between the two groups (~1 = 0.3, 6 = 0.03, "'1 = 0.1, 

'T12 = 0.01), giving rise to the operative and inoperative periods being on average 10 

times longer for servers in group 2 as compared to those in group 1. The system is 

stable for ). < 11. 
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Figure 3.10: The effect of incre3.'ling service rate and inoperative periods (detail) 

The first observation is that the Random and Selective heuristics are much worse 

than the other three, with the Selective heuristic slightly outperforming the Random, 

due to the fact that it will not route to inoperative servers when there are operative 

ones for incoming jobs to go to. The dynamic policies are in close agreement, with the 

Shortest Queue heuristic being slightly the worst, 3.'l it will route to the server with 

the shortest queue, even if it is inoperative, the effect of which will be exacerbated by 

the possibility that that server is in group 2, and hence likely to remain inoperative 

for a significant amount of time. 

3.4 Conclusions 

In this chapter, a number of heuristic policies for routing jobs between servers have 

been evaluated, and two policies have been found which consistently perform close to 

the optimal policy in experiments where there are a small number of servers. 
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Figure 3.11: The effect of increasing service rate and inoperative periods (System 
load) 

In addition, these policies always perform as well as all other policies under con

sideration, and usually perform much better. The Index Policy requires an initial 

set-up phase, and storage of the form N M, where N is the number of servers, and 

M is the desired queue truncation size. Therefore, it is suitable for systems where 

the configuration does not vary very often, and which has sufficient storage space 

to store the indices. The benefit is the ease of determining which server to route 

an incoming job to. The Selfish Policy requires no set-up time, and no additional 

storage, other than the system state and parameters, but must compute the expected 

non-discounted cost for each server, adding a significant overhead. 
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Chapter 4 

Two Servers with One-Way 
Transfers 

4.1 Motivation 

The context of this chapter is once again the need to balance the offered load between 

servers in the system. In this case the jobs are directly submitted to one of the senTrS 

in the system, where it then either waits to commence service, or transfers to another 

from where it expects to complete service sooner. 

Posed in its full generality, this is a complex problem, which is unlikely to yield 

an exact and explicit solution. This chapter considers a simpler problem of the same 

forlll, where transfers are only permitted from server 1 to server 2. This systeIll can 

then \)(' solved exactly. An approximate solution approach is also developed. which 

is evaluated and found to be a good approximation to the exact solution. 

4.2 Model 

Jobs arrive into single-server, unbounded queues, 1 and 2. in independent Poisson 

S(.]THlllS with rates AI, and A2, respectively. The required sen-ice times at the two 

servers arc indqwIldcIlL exponentially distributed random \-ariables with means 1/111, 

and 1//12. n'sp('ctiwl~'_ Each job entering queue 1 is assigned, on arriyal. an inde

pendent tinH'out period, which is distributed exponentially, with mean 1/'IjJ. Any job 



whose timeout period expires before it commences services is instantaneously trans

ferred to server 2. Therefore, if there are i jobs in queue 1 (i > 1), the rate of transfers 

to queue 2 is (i - 1)"p. The system is illustrated in Figure 4.1. 

Define L1 and L2 to be the steady state numbers of jobs in queue 1 and 2, respec-

A1 j1 
1'1 , I I I I I 10 

A2 
!"p i2 

, I I I I 10 1'2 

Figure 4.1: Two queues with deadline-driven transfers 

tively. Then, we split L2 into L21 and L 22 , where L21 is the average number of jobs 

in queue 2 that were transferred from queue 1, and L22 is the average number of jobs 

in queue 2 that originally arrived at queue 2. These three properties are the system 

performance measures. The optimization problem consists of finding the value of "p 

that minimizes a cost function of the form 

(4.1) 

where C1, C2 and C3 are given holding costs. For example, if C1 = C2 = C3 = 1, then the 

objective is to minimize the total average number of jobs in the system. If C1 = C2 = 1 

and C3 = 0, then we want to minimize the average number of jobs originally submitted 

to queue 1. 

To determine the performance measures, it is necessary to find the joint distri

bution of the two queue sizes. Let Pi,j be the steady-state probability that there 

are i jobs in queue 1, and j jobs in queue 2. These probabilities satisfy the balance 
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equations: 

[AI + A2 + JLl t5(i > 0) + JL2t5(j > 0) + (i - 1)1/Jt5(i > O)]Pi,j 
(4.2) 

where all probabilities with a negative index are 0 by definition. The boolean indica

tor function, 6(B) is 1 if B is true, 0 otherwise. 

Introducing the generating function 

00 00 

g(x, y) = L LPi,jXiyi , (4.3) 
i=O j=O 

the balance equations can be re-written as 

[AI(1- x) + A2(1 - y) + JLI{1 - ~) + JL2 (1 - ~) - t/I (1 - ~) ] g{x, y) 

[ ( 1) (Y)] (1) ag{x,y) = JLI 1 -;; - t/I 1 - ;; g(O, y) + JL2 1 - Y g{x,O) + t/I(y - x) ax . 

(4.4) 
This equation, together with the fact that g(x, y) is an analytic function in the interior 

of the unit disc which satisfies the normalizing condition, 

g(l, 1) = 1 , (4.5) 

should in principle determine g(x, y) and hence the joint distribution ofthe two queue 

sizes. Unfortunately we have not been able to find the solution. 

However, useful information can be generated from 4.4. Setting y = 1 gives an 

equation for the marginal distribution of queue 1: 

ag(x,l) 
(AI X + t/I - JLI) g(x, 1) + (JLl - t/I) Po,. = t/lx ax ' (4.6) 

where Po,. = g(O,I) is the marginal probability that queue 1 is empty. This is an 

ordinary first-order linear differential equation, which can be solved in closed form. 
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Defining u(x) = g(x, 1), we can re-write equation 4.6 as 

'() [J.lI - 'I/J AI] ( 'I/J - J.lI U X + ---- ux)+--Po.=O 
'l/Jx 'I/J 'l/Jx' (4.7) 

However, it should be emphasized that a non-negative solution exists for all values 

of the parameters, as long as 'I/J > O. Hence, queue 1 is stable whenever 'I/J > 0 (this 

is also intuitively obvious, since the job transfer mechanism prevents queue 1 from 

growing too large). The probability Po, is determined from the condition that g{x, 1) 

is finite at x = 0; this gives 

(4.8) 

Alternatively, the marginal probabilities Pi,. can be obtained numerically from the 

Birth-and-Death equation for queue 1 (see [2]): 

AIPi, = (J.ll + i'I/J)Pi+l, i = 0,1, ... , (4.9) 

together with the normalizing equation. 

The performance measure Ll can be expressed in terms of Po" Setting x = 1 in 

(4.6) gives 

(4.1O) 

This yields a finite value for L1, provided that 'I/J > O. 

Next, we find the stability condition for queue 2. Consider the distribution of the 

total number of jobs in the system, whose generating function is obtained by setting 

x = y in (4.4). After simplification, this gives 
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Now set x = 1 in (4.11): 

(4.12) 

Since queue 2 is stable if, and only if, the probability that it is empty is non-zero, i.e. 

p"o > 0, we have the following ergodicity condition: 

(4.13) 

This condition depends on the value of 1/J through Po,.. When (4.13) is satisfied, the 

performance measures L21 and L22 are finite. 

It is worth pointing out, for future reference, that the difference, '\1,2, between the 

arrival rate into queue 1 and the service completion rate at server 1, 

(4.14) 

represents the average number of jobs transferred from queue 1 to queue 2 per unit 

time. That 'internal' traffic rate is strictly positive when 1/J > O. 

It is possible to express L21 and L22 in terms of the total average number of jobs 

in queue 2, L2• Note that, according to the PASTA property of the Poisson process, 

a job arriving externally into queue 2 sees, on the average, L2 jobs there, excluding 

itself (this is not true for the jobs transferring from queue 1). Hence, the average 

response time of an external arrival into queue 2 is (L2 + 1)/#2. By Little's theorem, 

the average number of jobs in queue 2 that arrived into it from outside is equal to 

(4.15) 

The average number of jobs in queue 2 that arrived into it from queue 1 is therefore 

given by 
'\2 '\2 

L21 = L2 - L22 = L2(1 - -) - - . 
#2 #2 

(4.16) 

Thus, the problem reduces to being able to compute L2 · 
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4.3 Exact and approximate solutions 

Since queue 1 is always stable, it can always be truncated without a significant loss 

of accuracy. Choose an arbitrary error bound, to > O. Using (4.8) and (4.9), find an 

integer N such that 
N 

LPi, > 1- to. (4.17) 
i=O 

That is always possible. Then, if queue 1 is truncated at threshold N, i.e. new 

arrivals are not allowed to join it when there are N jobs present, only states with a 

total probability less than f will become unreachable. 

With that truncation, queue 2 can be treated as an unbounded queue whose 

instantaneous transition rates are modulated by a finite state Markovian environment 

(the size of queue 1). It can then be solved by spectral expansion [14, 15]. Define the 

row vectors of probabilities corresponding to states with j jobs in queue 2: 

Vj = (PO,j,P1,j, ... ,PN,j) ; j = 0,1, .... (4.18) 

Defining A as the transition matrix of purely lateral transitions 

0 ).1 0 0 

J.L1 0 ).1 0 

0 J.L1 0 (4.19) 

).1 

0 0 J.L1 0 

B as the transition matrix of one-step upwards transitions 

).2 0 0 0 

0 ).2 0 0 

0 1/J ).2 0 (4.20) 

0 

0 0 (N - 1)1/J ).2 
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and C as the transition matrix of one-step downwards transitions 

JL2 0 0 0 

0 JL2 0 0 

0 0 JL2 0 (4.21) 

0 

0 0 0 JL2 

Let DA, DB and DC be diagonal matrices, defined by their diagonal elements as, 

N N N 

DA(i,i) = :LA(i,k); DB(i,i) = :LB(i,k); DC(i,i) = :LC(i,k). (4.22) 
k=O k=O k=O 

Then, the solution of the balance equations (4.2) has the form 

N+l 

Vj = :L D:kUkx{ ; j = 0,1, ... , (4.23) 
k=l 

where Xk are the eigenvalues of a matrix polynomial, Q, in the interior of the unit 

disc, Uk are the corresponding left eigenvectors, and D:k are some (possibly complex) 

constants, where 

(4.24) 

The unknown coefficients D:k are determined from the balance equations for j = 0 

(which have not been used in the matrix polynomial) and the normalizing equation. 

Having evaluated the spectral expansion solution, the marginal distribution of the 

number of jobs in queue 2 is given by 

N+1 

p.,j = :L D:k(Uke)x{ ; j = 0,1, ... , (4.25) 
k=l 

where e is a column vector with (N + 1) elements, all of them equal to 1. The average 
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number of jobs in queue 2 is equal to 

(4.26) 

All performance measures are now available and can be computed for different 

values of the control variable, 1jJ, in order to find the optimum. However, although 

the numerical solution is not difficult to implement, is fast, and yield accurate results 

in most cases of interest, there are parameter values which cause numerical problems. 

In particular, when the truncation threshold N is large, and 1jJ is large, the matrix 

whose eigenvalues need to be computed tends to become ill-conditioned. 

To cope with these difficulties, and to provide a 'rough-and-ready' alternative 

to the full solution, we propose a simple approximation which requires almost no 

computational effort. 

Poisson approximation 

Assume that the instants of job transfers from queue 1 to queue 2 form a Poisson 

process, with rate given by (4.14). Then queue 2 can be treated as an isolated M/M/1 

queue with arrival rate A2+Al,2 and service rate J1.2. That queue is stable when (4.13) 

is satisfied, and its average queue size is equal to 

(4.27) 

Intuitively, it can be expected that the Poisson approximation will underestimate 

the average size of queue 2. This is because the assumption of a constant rate of 

transfer eliminates some of the variability of the transfer process. The smaller the 

value of 1jJ, the less bursty the transfers and therefore the more accurate the approx

imation will be. 
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4.4 Results 

The first experiment consists of evaluating the cost function, C = Ll + ~1 + Ln 

(total average number of jobs in the system), for different values of 1/1, while keeping 

the arrival and service rates fixed. The offered loads at queue 1 and queue 2 are 0.9 

and 0.5, respectively (AI = 2.7, A2 = 1, JLl = 3, JL2 = 2). Therefore, we can expect 

that performance would benefit from some transfers. 

In Figure 4.2, the exact values of the cost function are compared to those obtained 

from the Poisson approximation. It is clear that the Poisson approximation is quite 

accurate. At low values of 1/1, it is almost exact, but the expected underestimation 

becomes more apparent as 1/1 increases. The optimal value of 1/1 is approximately 0.2, 

according to the exact solution, which is small compared to the service rate at server 

1. The optimum value of 1/1 obtained from the Poisson approximation is 0.25, which 

is not too dissimilar to the exact value. 

Exact ~ 
Poisson··+· . 

+ +.+.+ + + 
+.+ + ++ .. ' 

0.25 0.3 0.35 0.4 0.45 0.5 

1/1 

Figure 4.2: Cost as a function of 1/1, C = Ll + ~l + ~2 
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The error comes from the assumption in the Poisson approximation that the trans

fer rate is constant relative to the length of queue 1, which is not true. Therefore, 

as noted above the Poisson approximation will tend to underestimate the length of 

queue 2, and hence will predict a larger than ideal 'optimal' value of 1/J. 

In Figure 4.3, the same experiment is carried out once more, except that this 

time, the cost function is the average number of jobs originally arriving into queue 

1, C = Ll + L21 • In this case, as we are not considering the average number of jobs 

which originally arrived into queue 2, we would expect the optimal value of 1/J to be 

greater than before. For this experiment, the exact solution produces an optimal 

value of 1/J of approximately 0.35. As before, the Poisson approximation predicts an 

optimal1/J that is slightly larger, at 0.4. 
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Figure 4.3: Cost as a function of 1/J, C = Ll + ~1 

Another noticeable difference to the previous figure, is the much shallower rise in 

C with 1/J above optimal. This is not unexpected, as the effect of transferring too 
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many jobs from queue 1 to queue 2 will mostly be to increase the amount of time 

incoming jobs to queue 2 will have to wait. 

Figures 4.4 and 4.5 illustrate an experiment where Al varies, where the cost func

tion is the total average number of jobs in the system. The static parameters are the 

arrival rate into queue 2, A2 = 1, and the service rates of queues 1, J1.1 = 3, and 2, 

J1.2 = 2. 
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Figure 4.4: Optimal'I/J as a function of AI, C = Ll + L21 + ~2 

3.5 

Figure 4.4 shows the value of 'I/J which each of the solvers calculate to be the 

optimal value. We can easily see that as before, the optimal values of 'I/J computed 

by each solver differ, in this case by a maximum of approximately 0.7. At the point 

Al = 2.7, we can see the the difference in values of'I/J is around 0.7, which is the 

same value as the separation between minima observed in Figure 4.2. Both solvers 

exhibit the same behaviour, with zero transfers for a low arrival rate, rising to a maxi

mum at A ~ 2.5 and then decreasing, as the system as a whole becomes highly loaded. 
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Figure 4.5: Cost as a function of A!, C = Ll + L21 + L22 

In Figure 4.5, the same experiment is carried out, but now the cost function, 

C = Ll + L21 + L 22 , is evaluated for each of the solvers. From this, it can be seen 

that in spite of the differing values of 'If;, the exact cost of the Poisson approximation 

is indistinguishable from the cost of using the value of 'If; computed with the exact 

solver, until the system as a whole becomes close to saturation. 

When the system becomes close to saturation, the effect of the discrepancy be

tween the optimal value of 'If; and that calculated by the approximation becomes 

greater, and the percentage error in achieved costs increases towards saturation. The 

same behaviour is observed in the case where the cost function is the average number 

of jobs originally submitted to queue 1, C = Ll = L 21 . 

In Figures 4.6 and 4.7, we can see the benefit that an optimal value of 'If; has upon 

the cost function. The cost values achievable by the optimal policy are compared 
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with transferring too few jobs, 'IjJ = 0, or too many, 'IjJ = ILl. Note that setting 'IjJ = ILl 

makes queue 1 behave as an M/M/oo queue. 
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Figure 4.6: The benefits of optimization, C = L1 + L21 + L22 

Once again, the arrival rate into server 1, >'1 is varied, and the other system pa

rameters are held constant. 

As expected, when the offered load is low, there is little benefit to optimizing 

the transfer rate. However, as the load increases, a well-chosen 'IjJ can make a big 

difference. Under the policy 'IjJ = 0, queue 1 saturates at >'1 = 3; when 'IjJ = JJb 

queue 2 saturates at approximately >'1 = 2.9. Alternatively, using a well-chosen 'IjJ 

(either the optimal value, or the value obtained using the Poisson approximation) 

keeps both queues stable for offered loads of up to approximately >'1 = 3.99. This 

cannot be significantly improved upon, as >'2 = 1, and the total available service 

capacity, JJl + JL2 = 5. Note once again that the costs of the policy suggested by the 

Poisson approximation are almost optimal over the entire range of >'1, despite the 
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Figure 4.7: The benefits of optimization, C = L1 + L21 

overestimation of the optimal 1/). 

4.5 Conclusions 

This chapter has shown that a simple approximation is a good fit for the simple 

two-server system with transfers, when compared with the exact solution obtained 

by solving the balance equations using the spectral expansion technique. 

The approximation is a ver,V good fit across most s,VstC'1l1 parameters. The cxccp-

tion is when the system is highly loaded. In this case, the discrepancy between the 

optimal transfer rate and that obtained from the approximation causes the optimal 

polic.\! to noticeably out-perform the Poisson approximation. 

It. is apparent that, for most s.\·stem parameters, the simple arld computationall)' 
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less intensive approximation will perform adequately for computing a good value for 

a suggested transfer rate in this simple two server case. 

This work will be expanded on in the next chapter where systems of servers with 

transfers will be considered which are not explicitly solvable. 
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Chapter 5 

Servers with General Job 'fransfers 

5.1 Motivation 

This chapter will build upon the model considered in the previous cliaplPr, but in

stead of transfers only allowed in one direction between two servers, tliey are now 

permitted between any servers in a system of many more than two servers. 

This leads to the conclusion that the system will not be exactly solvable and so 

an iterative approximation technique will be used to find the distribution of jobs in 

the system a.s a whole, alld hence evaluate a cost function. 

5.2 Model Definition 

Suppose now that the system consists of N servers and queues, numbered 1.:2 ..... ,\,. 

Jobs arrive externally into queue i in an independent Poisson stream with rate ). •. 

The required servin' times at server i are distributed exponentially wit h mean 1/ J!i. 

Each job joining queue oi, whether e}..'ternally or from another queue, is assigned 

an independent time-out period which is distributed exponentially with mean 1/1;J,. 

Any job whose time-out period expires before it reaches the server is instantaneously 

transferred from queue i to queue j with probability qi,j' The system is illustrated in 

figure 5.1. 

6:2 



_"-=-1 ----, I 111110-1'-1--
r-----------...flPl.:

2 
I'l/Jl 

I 

1 11110 

Iw 
'----__ ---'---I ....l.........J1 I 0 

Figure 5.1: 3 servers with job transfers 

A matrix of transfer probabilities, Q = {qi,j }i'j=1, all of whose row sums are equal 

to 1, defines a 'transfer policy' for the system. We consider policies which transfer 

from queue i either all jobs that time out in it, or none of them. In other words, either 

qi,i = 0 (and the other probabilities in row i add up to 1), or qi,i = 1 (and qij = 0 

for j =I i; in that case, the parameter 'l/Ji is irrelevant and can be replaced by 0). For 

the moment, the transfer policy is assumed to be given; later we shall examine the 

effects of different transfer policies on the performance of the system. 

When jobs are transferred in all directions, no queue can be analyzed indepen

dently of the others. An exact solution for the general model, even of the sort de

scribed in Section 4.3, is unattainable. We therefore seek an acceptable approxima

tion. 

Denote by Pi,n the steady-state marginal probability that there are n jobs in queue 

i (including the one in service, if any). Let 'Yi be the total arrival rate into queue 

i (it includes the external arrivals and the transfers from other queues). Since jobs 

complete service in queue i at the rate of l'i(l - Pi,O), the rate at which jobs are 

transferred away from queue i is equal to 'Yi - J.Li(1 - Pi,O) (note that if qi,i = 1, then 

'Yi = J.l.i(l - Pi,O), and that jobs may be transferred even if they have already been 

transferred from another server). Hence, the internal traffic rate from queue i to 
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queue j, "Ii,j, is given by 

(5.1) 

Therefore, the total arrival rates, "Ii, satisfy the following set of traffic equations: 

N N N 

"Ii = Ai + L "Ij,; = Ai + L "Ijqj,i - L J.Lj(l - Pj,O)Qj,i . (5.2) 
j=l j=l j=l 

Unfortunately, we cannot use (5.2) to determine "Ii exactly. This is because the 

probabilities Pj,O are unknown; they depend in a non-trivial way on all system param

eters. However, an approximate solution can be obtained as follows: 

1. Assume that the process of arrivals into queue i, merging external and internal 

arrivals, is Poisson. Make initial guesses for the rates "Ii and 'YiJ, choosing them 

to be underestimates; e.g. "Ii = Ai, "Ii,j = 0, (i,j = 1,2, ... , N). 

2. For each i = 1,2, ... , N do the following: 

(a) treating queue i in isolation, with arrival rate "Ii, service rate J.L; and reneg

ing rate ?/!i(1 - q;,i), compute Pi,O according to (4.8) or (2.13); 

(b) for each j = 1,2, ... , N, compute 'Yi,j according to (5.1) and update 'Yi 

according to (5.2). 

3. Iterate step 2 until the successive estimates are sufficiently close (e.g., until the 

sum of the absolute values of the differences, l'Yi(next) - "Ii(last)l, is less than 

some small €). 

The above solution will be referred to as the 'Poisson approximation'. Whenever 

the system is stable, the iterations have been observed to converge. While having no 

proof, we can offer the following intuitive argument to explain why this should be so: 

each application of step 2 tends to increase the internal traffic between queues, and 

hence the total arrival rates. Thus, the sequence of successive estimates is monotone, 

and since it is bounded in a stable system, it converges to the fixed point of equations 
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(5.2). 

The computed values "Ii and Pi,O yield, according to (4.1O), estimates for the 

average number of jobs in queue i, Li . In this general model, there are no expressions 

for the numbers of jobs in queue i that originated in queue j. The overall system 

performance will be measured by a cost function, C, which takes into account queue 

sizes and internal traffic: 

N N N 

C = LCiLi + LLCi,j"liJ, (5.3) 
i=1 i=1 j=1 

where the coefficients Ci and Ci,j reflect the job holding costs in queue i per unit time, 

and the job transfer costs from queue i to queue j, respectively. 

The reason for including the second term in (5.3) is as follows. If jobs can be 

transferred from queue i to queue j and also from queue j to queue i, and if those 

transfers do not incur costs, then the best time-out intervals in both queues are O. 

Instantaneous transfers away from busy servers have the effect of creating a common 

queue for the two servers, which is the most efficient utilization of resources. However, 

in practice transfers do incur costs; the cost function should penalize not only long 

queues but also large numbers of transfers. 

Having a computational procedure that determines C for a given set of parameters, 

one can address the problem of choosing the transfer policy Q, and the time-out rates 

1/Ji, so as to optimize the system performance. Some results along those lines are 

reported in the next section, where the performance of several heuristic policies are 

evaluated and compared. 
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5.3 Policies 

In principle, if all parameters are known, one could search through the set of aU 

feasible matrices Q (or rather a reasonably dense finite subset) and then through aU 

values of ~i (again, a suitable finite subset), in order to find the best policy. We have 

done this for a model with 3 queues, and where applicable is plotted as the Optimal 

policy, as it determines the best of all possible policies. However, the brute force 

approach is generally impractical, not only because of the size of the search space 

but also because of the limited information available. Thus, it may be reasonable 

to assume that server i knows the speeds of the other servers (parameters J.Li), but 

not the corresponding arrival rates (Ai), and hence defining heuristic transfer policies. 

In general, the best transfer rates are determined by computing the cost function: 

N N N 

C = Ch L Li + Ct L L 'Yi,i . (5.4) 
i=1 i=1 j=1 

where Ch is the holding cost per job, and Ct is the transfer cost, which we have deter

mined should be 5 - 10 times larger than Ch. 

In practice, as the possible values of 'l/Ji are infinite, the cost function is evaluated 

for a set of values within a certain range, using the Poisson approximation method, 

described in Section 5.2, and choosing the rates that give the smallest cost. This 

is simplified by the observed behaviour of the cost as 'l/J is varied (see, for example, 

Figure 4.2, from which it is clear it is a convex function). 

We have evaluated the performance of a few simple and easily implementable 

heuristic policies which do not require knowledge of arrival rates. Their definitions 

are as follows: 

1. No transfers: The matrix Q is the unit matrix of size N. Alternatively, all 

transfer rates are O. 
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2. Uniform: Jobs are transferred from queue i to queue j (j =F i) with probability 

l/(N -1). 

3. Speed-weighted: Jobs are transferred from queue i to queue j (j =F i) with 

probability proportional to I£j (normalized 80 that the ith row-sum of Q is 1). 

4. Fastest other: Number the queues in non-increasing order of service rates. 

Queues 2,3, ... N send their transfers to queue 1; those from queue 1 go to 

queue 2. 

5. Next faster: Number the queues in non-increasing order of service rates. Jobs 

from queue i are transferred to queue i-I (i> 1); there are no transfers from 

queue 1. 

6. Equal load: This policy does not employ time-outs, but achieves equal loads at 

all queues by transferring jobs at moments of arrival. More precisely, every job 

arriving into queue i is sent to queue j with probability I£jl(1£1 + JL2 + ... + ItN); 

that decision involves an immediate transfer if j =F i. 

7. Optimal: As described in the discussion in this section. 

In the following experiments, it is assumed that the holding costs at all queues are 

equal; the transfer costs between any two queues are also equal, but grater than the 

holding costs by a factor of 5. Thus, the performance of the system is measured by 

the cost function: 
N N N 

C = L L; + 5 L L 1';,j . (5.5) 
;=1 ;=1 j=1 

Under policies 1 and 6, the model consists of N independent MIMl1 queues. 

5.4 Results 

Figure 5.2 illustrates the benefit obtained by applying job timeouts and hence tran.s-

fers in both directions between two queues. In this experiment, the external arrival 

rate into queue 1 is varied, while holding the arrival rate into queue 2 constant, 
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~2 = 1.5, as well as the service rate of each queue, JLi = 1.8. In this figure, the 

vertical bar at ~l = 1.5 represents the point at which the most highly loaded server 

changes from being server 2 (at ~1 < 1.5) and becomes server 1 (at ~1 > 1.5). 

At low ~l. there is little difference between only transferring in one direction, and 

transferring in both. This is due to the relatively large available service capacity, 

so when transfers of jobs are permitted from queue 1 to queue 2, very few jobs will 

timeout and transfer. However, as ~1 becomes larger, the average queue length at 

queue 1 will increase, and so the optimal behaviour will be to transfer jobs between 

queues in both directions. 
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Figure 5.2: The benefits of two-way transfers 

The next figure (5.3) illustrates the optimal values of 1/Ji obtained using the Pois

son approximation, with the same system parameters as before. As expected, when 

the external arrival rate into server 1)1, is low, there are no transfers from server 1 

to server 2, and the transfer rate from server 2 to server 1 is high. As ~1 increases, 
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the optimal transfer rate from server 2 decreases as the average queue length of server 

1 increases. 

When the external arrival rate into server 1 is the same as that into server 2 , 
the optimal transfer rate from each server is the same, due to all parameters of each 

server being equal. When the overall system load is greater than :::::: 0.75, the transfer 

rate of each server is above zero. 

0.25 r--,---..,.---,----,----.---,r--.----r--------, 

Figure 5.3: Optimal transfer rates 

In Figure 5.4, the effect of varying the arrival rate into one server, while keeping 

the parameters of the remaining servers constant (there are 3 servers in total). The 

arrival rates into servers 2 and 3 are A2 = 0.2 and A3 = 0.8 and the arrival rates are 

J.tl = 1.5, J.t2 = 1.2 and J.t3 = 1.0. 

As expected, the No Reneging policy performs badly across the full parameter 

range. In general, the Equal Load policy is far from optimal, as jobs are transferred 
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1.2 1.4 

on arrival to ensure that the applied loads on each server is constant, even if there 

is free capacity at the server to which it originally arrived. At low values of All the 

Just Faster policy is close to optimal. However, once the arrival rate into server 1 is 

over 1, it rapidly becomes further from optimal. This is due to the policy behaviour, 

where jobs are transferred from server 1 ~ 2, but jobs can be also be transferred from 

3 ~ 1, and also 2 ~ 1 (In fact, it starts to become worse than Optimal at :::::: 0.5, but 

the effect is small until :::::: 1). 

The All Others and Probabilistic policies are equally close to optimal across the 

whole range of the experiment, and are both only slightly outperformed by the Fastest 

Other policy which is about 50% closer to optimal. 

Figure 5.5 shows the effect of increasing the number of servers in each of two 

groups. The arrival rates into group 1 servers, Al = 1.0, and the arrival rate into 

group 2 servers, A2 = 1.5, are kept constant, as are the service rates of both groups, 
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J.Ll = 1.4 and J.L2 = 1.6. 

When N = 2, the policies split into two, with the Equal Load, No Reneging and 

Just Faster policies in the worst performing group, with Equal Load performing just 

better than the other two, which remain together across the whole experiment. As 

N increases, the Equal Load policy becomes gradually much worse performing than 

the others in its group, due to the inability to take advantage of variations in queue 

length, after the arrival of the jobs. 

In the lower group of policies, the Fastest Other policy gradually worsens, com

pared to the rest of the group, but never to the extent that it meets the worse 

performing group of policies. The All Others and Probabilistic policies produce the 

same average costs over the whole range of the experiment, and are overall the best 

performing. 
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Figure 5.5: The effect of increasing group size 

For all tested examples for N > 3, the same general behaviour was observed, with 
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Speed Weighted and Uniform both performing well, and increasingly better than all 

other policies. When the number of servers is fixed at a large (N > 3) fixed value, and 

one of the system parameters is varied as above, the Fastest Other policy performs 

worse than the noted best pair of policies. This is due to their ability to transfer to 

any other server, whereas the Fastest Other policy only ever transfers jobs to one of 

two servers. 

5.5 Conclusions 

For systems of servers with general transfers, an iterative approximation approach 

was used to find the cost of various transfer policies, according to a cost function 

which includes both holding cost and cost of job transfers. All these policies were 

simple in terms both of their description and implementation and several were found 

to perform well in comparison to the best policy found by a brute force search ap

proach. 

It was observed that policies which performed well over a broad range of system 

parameters and sizes had the general characteristic of transferring jobs to any other 

server, which prevents anyone queue from growing large while others have fewer or 

no jobs waiting. 
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Chapter 6 

Unreliable Servers with Job 
Transfers 

6.1 Motivation 

In service provisioning systems such as a Compu! ing Grid, it is likely that senws 

will undergo periods where they are unavailable to s('[vi('(' johs for the s\'81 (,ilL In the 

case of transfer-based systems as discussed over the last two chapters, if the expected 

duration of the unavailable period is low it may allow a job to complete sen'ice earlier 

(or give it a. smaller expected cost) if it waits for the period to expire rather than 

transferring to another server in the system. 

The system in this chapter is of this form. Once again, the distribution of jobs in 

the system is evaluated using an iterative approximation approach, and then a cost 

function is evaluated to allow transfer policies to be compared. 

6.2 Model Definition 

The system consists of N sern'rs. each with a separate queue. Jobs arrive externally 

into queues i in an independent Poisson stream with rate Ai i = 1,2, .. ,. S, The 

servin' times at server i are independent, exponentiall.\' distributed random variables 

with mean lip" Each server goes through alternating independent periods of being 

available and unavailable, or operative and inoperatiw. ""e shall call the end points of 
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those periods 'breakdowns' and 'repairs', respectively, although in practice the main 

reason for the occurrence of periods of unavailability is that the server is occupied 

with other, higher priority tasks. The operative and inoperative periods for server i 

are distributed exponentially with means 1/l;.i and I/TJ" respectively. 

Whenever a queue is not empty and its server is available, one of the jobs in it 

is being served. Services interrupted by breakdowns are eventually resumed from 

the point of interruption, but not necessarily on the same server. Each job in queue 

i which is not being served is assigned an independent time-out period which is 

distributed exponentially with mean l/,l/Ji,o if the server is inoperative, and mean 

1/1/Ji,1 if the server is operative. Any job whose time-out period expires before it 

reaches the server is instantaneously transferred to another queue, determined by the 

transfer policy adopted (e.g., the destination queue may be chosen at random). A 

three-server system is illustrated in Figure 6.1. 

81 = (jb bl ) . I I I I I 10 
1/J~,1 l$l:~ s, ~ (j" b,)~ 1/J2,1 . I I I I I 
1/Jg,2 11/Jg,3 
1/JJ,2 1/JJ,3 83 = (j3, ba) 0 

I I I 

Figure 6.1: Unreliable Servers with Job Transfers 

Note that if there are j > 0 jobs in queue i, then the instantaneous rate of 

transfers from that queue is (j - l)1/Ji,1 if the server is operative (since one of the jobs 

is being served), and j1/J"o if the server is inoperative. Also, if the server changes state 

from operative to inoperative or vice versa, then all waiting jobs have their time-out 

intervals re-sampled with the new mean. 

Denote by Li the steady state average numbers of jobs in queue i. Let also (JiJ be 

the steady state average number of transfers from queue i to queue j per unit time. 
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Suppose that it costs Cj to keep a job in queue i per unit time, and it costs Cj,j to 

transfer a job from queue i to queue j. Then, the total average cost per unit time in 

the steady state is given by 

N N 

C = ""' r''£' + ""' r' . . [3 ... ~ ">. ~ ">,] .,] (6.1) 
i=l i,;=l 

The ergodicity condition for this system is, in general, unknown. What we can 

say is that server i is operative for a fraction TJd(~i +TJi) ofthe time. Hence, the total 

available service capacity, J..L, is equal to 

N 

""' J..LiTJi J..L=~--. 
i=l ~i + TJi 

(6.2) 

Clearly, the total external arrival rate must be lower than the available service 

capacity: 

(6.3) 

However, although this condition is necessary for stability, it may not be sufficient. 

The load-balancing mechanism using job transfers does not preclude situations where 

some servers are operative and idle, while others have more than one job in their 

queues. 

The performance of the system is controlled by means of the time-out intervals, 

and also the job transfer policy. The objective is to choose those parameters so as 

to minimize the cost function (6.1). In order to do that, we need to provide solution 

methods for determining the performance measures Li and Pi';' That will be the aim 

of sections 6.3 and 6.4. 

6.3 An isolated queue 

Consider a single queue with Poisson input, intermittently available server, and time

outs resulting in departures (reneging). Omitting the queue index, the parameters 
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are ~ (arrival rate), IL (service rate), ~ (breakdown rate), TJ (repair rate), 1/Jo (reneging 

rate during inoperative periods) and 1/;1 (reneging rate during operative periods). 

The system state is described by a pair of integers, (i,j), where j = 0, I, ... is the 

number of jobs present and i = 0 if the server is inoperative, i = 1 if it is operative. 

Denote by Pi,j the equilibrium probability of state (i, j). These probabilities satisfy 

the following set of balance equations. 

{~ + j1/;o + TJ)Po,j = ~PO,j-1 + (j + 1)1/;oPo,j+1 + ~P1,j , (6.4) 

[~+ IL6(j > 0) + (j - 1)1/;1 + ~lp1,i = ~P1,j-1 + (IL + j1/;t)P1,j+1 + TJPoJ , (6.5) 

where all probabilities with a negative index are 0 by definition; the Boolean indicator 

function, 6{B), is 1 if B is true, 0 otherwise. 

It is convenient to introduce the generating functions 

00 

go{z) = LPO,jzj 
i=O 

00 

gl{Z) = LP1JZ
j 

. 
j=O 

(6.6) 

Multiplying (6.4) by zi and summing over all j, those balance equations can be re

written as 

I 1 [ TJ] ~gl (z) 
go{z) = 1/;0 ~ + 1 - z go(z) - 1/;0(1 - z) . (6.7) 

Similarly, equations (6.5) yield 

This is a set of two first order linear differential equations with two unknown 

functions, involving also the probability, P1,0 = gl (0), that the server is operative and 

idle. The following are some simple consequences from these equations. 

In order that g~(I) and g~(I) be finite, we must have TJgo(l) = ~gl(1). This, 

together with the normalizing equation, go (I) + gl (1) = 1, provides the marginal 

probabilities of the server being inoperative and operative (also obtainable directly 
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from the nature of breakdowns and repairs) 

90(1) = -~- ; 9l(1) = _1]_ . 
~+1] ~+1] (6.9) 

Next, setting z = 1 in (6.7) and (6.8) and applying L'Hopital's rule, we obtain 

9~(1) = ~O [Aa + ~9~(1) -1]9~(1)] , (6.10) 

9~(1) = ~I [(A - j.t + 1/JI){l - a) + (j.t - 1/JdPl,O + 1]9~(1) - ~9~(1)] , (6.11) 

where a = 90(1) = ~/(~ + 1]) is the probability that the server is inoperative. 

These equations can be solved to yield an expression for the average number of 

jobs present, L = 9b(1) + 9i(1), in terms of Pl,O. 

L = {~+ 1] + VJo)[A - (j.t - 1/Jd(l - a - Pl,O)]- aA(1/Jo - 1/Jd 
1/J01/Jl + ~1/Jo + WI . 

(6.12) 

The other performance measure for the isolated queue is the average number of 

jobs that renege per unit time, denoted by (3. Since the reneging jobs are those arrivals 

that do not complete service, and since jobs are completed at rate J.L when the server 

is operative and not idle, we can write 

(6.13) 

It now remains to determine the probability Pl,O. There are several ways of ap

proaching this task. 

6.3.1 Integrals and iterations 

Treating the function 9l(Z) which appears in the right-hand side of (6.7) as known, 

and applying the known formula for the solution of the first-order linear differential 
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equation (e.g., see [18]), we can write, after some manipulation, 

(6.14) 

Similarly, by solving (6.8), gl(Z) can be expressed in terms of an integral involving 

go(z) and PI,O. 

J.L - 'l/J1 11 -~X(1 ).L .1!..-2 ] - P1,0----:;S;- z e "'1 - X "'1 X "'1 dx . (6.15) 

Assume that 'l/J1 < J.L (this is the case of practical interest, since the timEH>ut 

interval is unlikely to be smaller than a service time when the server is opera.tive). 

Then the finiteness of gl(O) implies that the square brackets in the right-hand side of 

(6.15) must vanish at z = o. Hence, 

(6.16) 

The last three equations suggest an iterative scheme for computing the solution. 

Start by making an initial guess for the function go(z). For example, treat the queue 

during inoperative periods as an M/M/oo queue with parameters oX and 'l/Jo, and use 

go(z) = aexp(oX(z - 1)/'l/Jo). This, together with (6.16), provides an initial estima.te 

for P1,O and also, using (6.15), a first estimate for gl(Z). Equation (6.14) then yields 

a second estimate for go(z), and so on, until some termination criterion is satisfied. 

Although the above scheme is viable and has been implemented, we do not really 

recommend it as a solution method. It suffers from numerical instability problems, 

particularly in the neighborhoods of z = 0 and z = 1, which require careful handling. 
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6.3.2 Long operative/inoperative periods 

In real systems the periods of availability and unavailability tend to be much larger 

than the interarrival and service times. It is therefore worth considering the asymp

totic performance of the queue as ~ -- 0 and 1] -- 0, while keeping their ratio constant 

(Le., the steady state probability that the server is inoperative, 0', is fixed). 

Setting ~ = 1] = 0 in (6.7) turns that equation into 

g~{z) = ~go{z) . (6.17) 

The solution which satisfies go(1) = 0' is, as expected, the normalized generating 

function of the corresponding MIMloo queue. 

( ) 
..<\..(%-1) 

go z = ae"'o . (6.18) 

Similarly, the limiting equation (6.8) is 

(6.19) 

Its solution satisfying gl(1) = 1 - 0' is given by 

Again assuming that 'l/J1 < j.L, the square brackets in the right-hand side of (6.20) 

must vanish at z = O. This leads to an expression for P1,O which, after integrating by 

parts and changing variables, can be written as 

(6.21) 

where 'Y{x, y) is the incomplete gamma function: 
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Equation (6.21) provides a simple and robust approximation for the performance 

measures when the periods of availability and unavailability are long. 

6.3.3 Exact solution when 'l/JI = 0 

Intuitively, one might expect that setting 'l/Jl = 0, i.e. not transferring jobs away from 

a queue when its server is operative, would be quite a good policy. Indeed, that turns 

out to be the case (see Section 6.5). Hence, that special case is of interest in its own 

right. Moreover, the simplification involved is enough to enable us to obtain an exact 

solution in closed form. 

The differential equation (6.7) for go(z) remains unchanged. However, when 'l/Jl = 

0, the balance equations (6.5) lead to an algebraic, rather than differential, equation 

for gl(Z): 
1Jz JL(l - z) 

gl(Z) = d(z)go(z) - d(z) Pl,O, (6.22) 

where 

d(z) = (AZ - JL}(l - z) + ~z . 

Substituting (6.22) into (6.7) and simplifying, we get 

I [A 1J(AZ-JL)] ~JL 
go(z) = 'l/Jo + 'l/Jod(z) go(z) + 'l/Jod(Z)Pl,O . (6.23) 

Note that apart from the function go(z), this equation involves only the constant Pl,O, 

not another unknown function. 

Now, since the quadratic polynomial d(z) is negative at z = 0, positive at z = 1 

and negative at z = 00, its two zeros, Zl and Z2, are real and satisfy ° < Zl < 1 and 

1 < Z2. Writing d(z) = A(Z - Zt}(Z2 - z) and decomposing the second term in the 

square brackets in (6.23) into elementary fractions, that equation can be fe-written 

as 
(6.24) 
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where 
Zl 

a = 77"-~-:-----:-
(1 - Zt}(Z2 - Zl) 

The solution of (6.24) is given by 

where C is determined by the normalization 90(1) = 0': 

The desired expression for Pl,O is provided by remarking that a > 0, and go(zd 

is finite. Hence, the square bracket in the right-hand side of (6.25) must vanish at 

z = Zl, which yields 

(6.26) 

6.3.4 Truncated state space 

The general model of the isolated queue, when ~ and TJ are not necessarily small and 

1/Jl is not 0, can also be tackled by truncating the state space and solving numerically 

the resulting finite set of linear balance and normalizing equations. This can be done 

without significant loss of accuracy. 

Let 1/J > ° be the smaller of 1/J0 and 1/Jl: 1/J = min(1/Jo, 1/Jd· If the queue is replaced 

by one where the server is unavailable all the time and the time-out parameter is 1/J, 

then the departure rate would decrease and the tail of the queue size distribution 

would become thicker. Moreover, the modified queue behaves like an MjMjoo queue 

with parameters A and 1/J. 
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Choose an arbitrary error bound, f > 0, and find an integer m such that 

(
A)m+l 1 
-:;[; (m + I)! < f . (6.27) 

That is always possible. Then, the above argument shows that if the original queue 

is truncated at threshold m, i.e. new arrivals are not allowed to join it when there 

are m jobs present, the sum of the probabilities of the neglected states is less than f. 

We have found that this approach is in fact efficient and easily implement able, 

using either direct or iterative solution techniques. 

6.4 Approximate solution for N queues 

Let us now return to the general model of Section 6.2, consisting of N queues with 

different parameters. Any job whose time-out period expires before it reaches the 

server in queue i, is instantaneously transferred to queue j with probability qi,j (that 

probability does not depend on the operative state of server j because the latter is 

assumed unknown). 

A matrix of transfer probabilities, Q = {qi,j H~=l' all of whose row sums are equal 

to 1, defines a 'transfer policy' for the system. We consider policies which transfer 

from queue i either all jobs that time out in it, or none of them. In other words, either 

qi,i = 0 (and the other probabilities in row i add up to 1), or qi,i = 1 (and qi,j = 0 

for j '# i; in that case, the parameters 'l/Jo and 'l/Jl are irrelevant. For the moment, the 

transfer policy is assumed to be given; later we shall examine the effects of different 

transfer policies on the performance of the system. 

When jobs are transferred in all directions, the queues are coupled and their 

joint and marginal distributions are intractable. We therefore seek an acceptable 

approximation. 

Denote by "Ii be the total arrival rate into queue i in the steady state, under policy 

Q (that rate includes the external arrivals and the transfers from other queues). Let 

f3. be the rate at which jobs are transferred away from queue i. The transfer rate from 
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queue i to queue j is then equal to f3iqi,j, and we can write a set of traffic equations 

for Ii. 
N 

Ii = Ai + 2: f3jqj,i . 
j=1 

(6.28) 

Unfortunately, the quantities f3i are unknown; they depend in a non-trivial way on 

all system parameters. However, an approximate solution can be obtained as follows: 

1. Assume that the process of arrivals into queue i, merging external and internal 

arrivals, is Poisson. Make initial guesses for the rates Ii, choosing them to be 

underestimates; e.g. Ii = Ai, i = 1,2, ... , N. 

2. For each i = 1,2, ... , N, treating queue i in isolation and applying one of the 

solution methods described in section 3, determine f3i according to (6.13) (with 

A replaced by Ii). 

3. Using (6.28), compute a new estimate for Ii. 

4. Iterate from step 2 until the successive estimates are sufficiently close (e.g., until 

the sum of the absolute values of the differences, hi (next) - 'Yi(last)l, is less 

than some small f). 

5. Determine the cost of the system, based on the average numbers of jobs in queue 

i, Li , (computed according to (6.12)), and the average transfer rates, f3i. 

The above solution will be referred to as the 'Poisson approximation'. Whenever 

the system is stable, the iterations have been observed to converge. While having no 

proof, we can offer the following intuitive argument to explain why this should be 

so: each application of steps 2 and 3 tends to increase the internal traffic between 

queues, and hence the total arrival rates. Thus, the sequence of successive estimates 

is monotone, and since it is bounded in a stable system, it converges to the fixed 

point of equations (6.28). 

Having a computational procedure that determines the objective function for a 

given set of parameters, one can address the problem of choosing the transfer policy Q, 

and the time-out rates, so as to optimize the system performance. When N is small, 
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one could search through the set of all feasible matrices Q (or rather a reasonably 

dense finite subset), and through all values of "po and "pl for each queue (again, a 

suitable finite subset), in order to find the best configuration. 

However, the brute force approach is generally impractical, not only because of the 

size of the search space but also because of the limited information available. Thus, 

it may be reasonable to assume that server i knows the speeds of the other servers 

(parameters J.Lj), or their effective speeds (parameters J.Lj = J.Lj1/jf(f.j + 1/j», but not 

the corresponding arrival rates (Aj). It is therefore worth introducing and evaluating 

some heuristic policies that one might consider implementing. Some of the following 

simple heuristics assume knowledge of effective service rates; none rely on knowing 

the arrival rates or the current states of servers and queues. 

1. No transfers: The matrix Q is the unit matrix of size N. Alternatively, all 

transfer rates are O. 

2. Uniform: Jobs are transferred from queue i to queue j (j =I- i) with probability 

l/(N - 1). 

3. Speed-weighted: Jobs are transferred from queue i to queue j (j =I- i) with 

probability proportional to J.Lj (so that the ith row of Q adds up to 1). 

4. Equal load: This policy does not employ time-outs, but achieves equal loads at 

all queues by transferring jobs at moments of arrival. More precisely, every job 

arriving into any queue, i, is sent to queue j with probability J.Lj f (J.Li + Jl2 + 
... + J.LN); that decision involves an immediate transfer if j =I- i. 

5. Fastest other: Number the queues in decreasing order of effective service rates 

(parameters J.Lj). From queue 1, jobs are transferred to queue 2; from any other 

queue they are transferred to queue 1. 

6. Round-robin: Using the same numbering as in policy 5, transfer jobs from queue 

i to queue i + 1 if i < N, and from queue N to queue 1. 
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Under policies 1 and 4, the model consists of N independent MIMII queues. For 

the other policies, the cost function would normally be computed by means of the 

Poisson approximation. 

6.5 Numerical results 

Several numerical and simulation experiments were carried out, attempting to answer 

the following questions: 

1. Is the Poisson approximation acceptable? 

2. How should one choose the time-out rates, '¢;,o and '1/;;,1. at queue i? 

3. What gains in performance can be expected by using good choices of '1/;;,0 and 

'1/;;,1 as opposed to bad ones? 

4. How do the heuristic policies compare to each other and to the optimal policy 

(when the latter can be computed)? 

In all cases, the holding costs at all queues are assumed equal. The transfer costs 

are also equal, but are greater than the holding costs by a factor of 10. Thus, the 

coefficients of the cost function are C; = 1, C;,i = 10. 

The first experiment examines the way performance is influenced by changing 

time-out parameters, in the context of a system with two queues. At the same time, 

the results provided by the Poisson approximation are compared with those obtained 

from simulations. 

The two service rates are equal, as are the average operative and inoperative 

intervals. Each server is available 50% of the time. The arrival rates are chosen 

so that both queues are quite heavily loaded; the external offered load at queue 1 

is 0.7, while that at queue 2 is 0.8. The average time-out intervals at queue 2 do 

not depend on the state of the server and are fixed at just over two service times: 

'1/;2,0 = '1/;2,1 = 0.4. 
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Figure 6.2: Effect of time-out ~ifes in a 2-queue system 
Al = 0.385, A2 = 0.44, J.Li = 1.1, 'i = 'fJi = 0.1, 1/J2,O = 1/J2,1 = 0.4 

In Figure 6.2, the average cost is plotted against 1/Jl,O, the time-out rate in queue 1 

when the server is inoperative. The rate 1/Jl,l is either equal to 1/Jl,O (state-independent 

timeouts), or is O. The following remarks are suggested by these results. 

• There is an optimal value for the time-out parameter. When 1/Jl,O is too small, 

the holding costs in queue 1 are dominant; that queue becomes saturated due to 

transfers from queue 2. As 1/Jl,O increases, the holding costs in queue 1 decrease, 

while those in queue 2, and the costs due to transfers, increase. However, the 

latter effects are less pronounced. 

• The Poisson approximation underestimates the true costs. This is not really 

surprising, because the real arrival process has a higher variance than is implied 

by the Poisson assumption (particularly when 1/Jl,O and 1/Jl,l are different). 

• The approximation overestimates the optimal value of the time-out parameter, 

but not by much. This is a consequence of the cost underestimation. 

• Lower costs can be achieved by using state-dependent time-out rates than state

independent ones. In particular, it is better not to transfer jobs from a queue 

during operative periods. 
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Intuitively, the best time-out policy should depend on the lengths of operative 

and inoperative intervals. This is illustrated for a two-queue system in Figure 6.3, 

where the average operative periods at the two servers are equal, and are also equal 

to the average inoperative periods. Those lengths are increased and the costs of the 

following three policies are plotted: 
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Figure 6.3: Increasing operative/inoperative periods 
A1 = 0.495, A2 = 0.44, J.Li = 1.1 

60 

(a) State-independent time-outs; the values of 1/1;,0 = 1/1;,1 (i = 1,2) are chosen 

optimally by means of a search. 

(b) No time-outs during operative periods (1/1;,1 = 0), quickly clear the queue when 

the server breaks down (large value for 1/1;,0, here chosen equal to J.Li). 

(c) Optimal time-outs; the values of 1/1;,0 and 1/1;,1 (i = 1,2) are chosen by means of 

an exhaustive search. 

All costs are computed using the Poisson approximation. This will be the case 

from now on. 

Figure 6.3 shows that the state-independent time-out policy is almost optimal 

when the operative/inoperative intervals are short, but becomes very poor when 
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those intervals are large. Conversely, policy (b) performs badly when the opera

tive/inoperative intervals are short, but becomes almost optimal when the intervals 

are large. Since the latter case is most likely to occur in practice, the policy that 

does not transfer jobs during operative periods and quickly clears the queue after a 

breakdown, is a good candidate for adoption. 

In the third experiment, the same 2-queue system is subject to an increasing 

offered load at queue 1 (increasing AI), while the other parameters are kept fixed. The 

operative and inoperative intervals are quite large. Figure 6.4 shows the costs achieved 

by the three policies (a), (b) and (c). These results confirm the near-optimality of 

policy (b), and emphasize the increasingly higher costs of state-independent time-outs 

relative to the state-dependent ones. 
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Figure 6.4: Increasing load at queue 1 
A2 = 0.44, J.tl = J.t2 = 1.1; ~. = Tli = 0.01 

The last two experiments concern systems with more than two queues. They 

address the issue of transfer policy (i.e., where should one send a timed-out job), by 

evaluating and comparing the costs of the six heuristics defined in the last section. 

In Figure 6.5, the model consists of three queues with different arrival and service 

parameters. The arrival rate at queue 1 is increased, all other parameters remain 

fixed. The time-out parameters at all queues are ,pi,1 = 0, ,pi.! = Jl.i. The breakdown 
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and repair rates are equal, so the availability of all servers is 50%. 
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Figure 6.5: Different transfer policies in a system with 3 queues 
A2 = 0.2, A3 = 0.8 J.Ll = 3, J.L2 = 2.4, J.L3 = 2, {i = 1/i = 0.1 

As may be expected, the No transfer policy has the worst performance. It incurs 

large holding costs because queues grow during inoperative periods. Also, queue 1 

becomes unstable at Al = 1.5. The Equal load policy avoids early instability but 

it, too, incurs high holding costs during inoperative periods; in addition, its transfer 

costs are high because many jobs are transferred on arrival. The Fastest other policy 

performs well for low values of Al but as the latter increases the cost escalates sharply. 

This is because both queues 2 and 3 send their transfers to queue 1, eventually 

saturating it. 

The three policies Uniform, Round-Robin and Speed-weighted, perform well through

out the range of Al values; There is little to choose between them, although Speed

weighted is slightly better than the other two. We conjecture that these policies are 

close to optimal. 

In the final experiment, the number of queues is even and increases. Half of the 

queues have higher arrival rates and faster servers than the other half. The time-out 

parameters are the same as before. Again, all servers are 50% available. 
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Figure 6.6: Policy comparison for increasing number of queues 
>'2i = 1.875, >'2i+l = 0.125, J.L2i = 5, JL2i+l = 1, ~i = 1/i = 0.1 

The comparisons illustrated in Figure 6.6 show similar trends to those in Figure 

6.5. The differences between the three best policies become more pronounced for 

higher values of N. The Speed-weighted policy outperforms Round-Robin, which in 

turn outperforms the Uniform policy. This is not too surprising. 

It should be noted that the Fastest Other policy has not been plotted on this graph. 

This is because, though the policy performs well for N ~ 6, for larger numbers of 

servers, the system is saturated, as all jobs which time-out are transferred to either 

queue 1 or queue 2, and they remain within this pair, transferring from 1 to 2 and 

back again until service commences, whereas all other policies allow jobs to transfer 

to all servers. 

6.6 Conclusions 

In this chapter, the approximate iterative approach was used to determine behaviour 

of the system as the transfer rate from a server is varied, and hence the optimal value 

for a given set of parameters. This was then used to compare a number of policies, 

one of which tends to outperform all others under consideration. 

90 



The approximation used in this chapter, of not timing out when operative and 

quickly clearing the queue when inoperative, assumes that the operative and inop

erative periods are large and performs very badly when this assumption does not hold. 

When the overall system load is high the difference between the optimal transfer 

policy and the simple heuristic increases. In general, the approximation performs well 

and is a computationally inexpensive heuristic. 
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Chapter 7 

Conclusions 

7.1 Contributions 

This thesis has been concerned with methods for balancing the offered load between 

MIMI! servers with negative exponentially distributed breakdowns and subsequent 

repairs. Two approaches are considered to achieve a balanced offered load. 

In Chapters 2 and 3 the problem under consideration was that of dynamic rout

ing where incoming jobs are routed to one of the servers in the system upon arrival, 

remaining with this server until service is complete. This approach is sensible for sit

uations where server states are known centrally, and the cost of centralised transfers 

is low. This model lends itself to exact solution and in Chapter 2, three approaches 

to compute the optimal routing policy were presented and evaluated. However, this 

computation suffered from complexity issues due to the size of the state space, and 

the necessary number of iterations to converge to the optimal policy. So, for practical 

purposes, a number of easily computed heuristic policies were described in Chapter 3. 

When compared to the optimal policy two of these were found to compare favourably, 

as suggested by various simulation results. 

In Chapter 4, a preliminary system for balancing the offered load using dynamic 

job transfers was considered. A system of two servers allowing job transfers in only 

one direction was considered, with servers always available. The benefit of this sys-
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tem over a more general case is that the system is exactly solvable. The optimal 

transfer rate for a range of system parameters was computed by solving the balance 

equations for the system as a whole, using the technique of spectral expansion. The 

behaviour of the exact solution was also compared against an approximate technique, 

and shown to be in good agreement. 

This system was then extended in Chapter 5 to a system with general transfers 

between N always available servers. As the system is now no longer exactly solvable, 

the approximate technique was used to determine the distribution of jobs in the sys

tem and hence the average number of jobs in the system and the average transfer ra.te 

in the system. A number of easily computed heuristic policies for determining the 

transfer destination were evaluated and compared with an 'optimal' transfer policy, 

obtained by a brute force search through possible policies, and several were found to 

perform well. 

Finally, in Chapter 6, the problem was extended further to allow the servers to 

go through periods of availability and unavailability. The approximate technique was 

used to compare a number of different heuristics with the same type of 'optimal' 

transfer policy as in the previous chapter. As before, a heuristic policy for the trans

fer destination was presented which performed well in comparison to the optimal and 

which was significantly better over a range of parameters than the other heuristics 

under consideration. 

7.2 Application 

In the introduction, the applicability of this research was targeted on distributed com

puting and in particular the Computing Grid. This is a diverse and loosely connected 

research area, and so a discussion of the applicability of this research will consider 

one field, that of mobile ad-hoc networks. 
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Figure 7.1: A mobi l ad-h c network , with all rout r onn d 

A mobile ad-hoc n twork is a wireless n twork f rn bil rouLer onn L d b. 

wireless links. As the routers a re free to move and onn t t a varying numb r or 

other routers based on some criterion usually d istan e, th n Lwork topology an 

change rapidly and unpr dictably (see Figur 7.1). 

As the presence of a onnect ion b tween a pair of r uter i govern d by lh 

d i tance between them , it is possible that a router rna b orne entirely eparaL d 

from the rest of the network , or that the network its If rna fra tur in to ub-n twork 

which are d isconnected from one another (se Figur 7.2. 

onsidering the sit uation wher a t ream of data i to be ent from an originating 

s rv r through the ad-hoc network to a destination er r , each packet can be tr ated 

as a job. If Lh order f pa ket may be received in any order, t hey an be rout d 
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Figure 7.2: A mobile ad-hoc n twork , with on router ut. of cont.a t. 
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Figure 7.3: Two servers, with path thr ugh a mobile ad-hoc n t\ ork 

independently t hrough any path from the source to th d t inat ion. 

From the point of view of th tran mission end-points, th 

omplete when it has successfully reached the dest ination. Th r [or , it i r nabl 

t o treat a pa th which the packet takes through the ad- h network to be a erv r ( 

Figure 7.3). 

As a server in this appli ation con ists of a nu mb r of router and the transmi ion 

b tw en them, th transmis ion time from our to d tination along a particular 

path i equjvalent to the av rage rvi time of a erver in till the is. 
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Figure 7.4: Two s rvers , with one int rrup t d path and on avai labl path Lhrough a 
mobile ad-hoc network 

When a router within the ad-hoc network chang location nough to aff ct th 

network topology, it can cause the selected path betwe n origin and d LinaLion Lo Il 

longer be valid , which maps in this body of work to a rver b oming una ailabl . 

If a path becomes unavailable the pack t stream mu ith r take an alternate 

route to the destinat ion , whlch is equivalent to a transfer b tween erver or \ ait for 

th pa th to be restored. In the case where an alternate route i taken packet which 

already tarted transmjssion xperience a tran fer d la b undergoing a t ransfer rout 

onto the new route, whjch may be of zero length and hence d la. pon completion 

of this tran fer dela the packet will join the new rout . Thi transfer d la, is a 
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property of the application which is not modelled in this research. 

7.3 Future Work 

In this thesis, the routing of jobs from the dispatcher to the servers and the transfer 

of jobs between servers are instantaneous. This is not very realistic and as the geo

graphic separation between the source and destination of the transfer increases, so we 

can expect the transfer time to rise. Therefore, a good extension to the work covered 

in this thesis would be to allow for transmission delays. 

In Chapter 6, the case of servers with long operative and inoperative periods is 

considered. This generates the problem where the specific response time of jobs ar

riving just before failure, and the utilisation of servers just after repair is very bad. 

Transfer could potentially reduce this by transferring jobs away from recently failed 

nodes, and towards recently repaired ones. This would be an interesting and probably 

fruitful further investigation. 

Additionally in this thesis, two approaches to load balancing have been consid

ered and solved separately. There is no reason why a system could not be considered 

where small groups of servers, presumably in close geographical proximity, could be 

supplied with jobs from a local dispatcher, and jobs which reach their deadline would 

then be transferred between groups of servers. 

In addition, every model in this thesis has assumed that the number of servers in 

the system is a constant. This does not reflect an observed feature of computational 

resources allocation that, as time goes by, the degree of interconnection between pre

viously separate systems increases. Therefore, it may be of interest to consider a load 

balancing system where the total number of servers in the system increases, and the 

total incoming load also increases with time. 
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In this thesis it has been assumed that the information which decisions are based 

on is up to date. However, as geographical separation increases, this assumption will 

become increasingly invalid. Thomas, Bradley and Knottenbelt [21] looked at this 

problem in a static allocation model, and showed that a small delay in failure infor

mation propagation can have a significant negative impact. 

Both of these models could be analysed using the techniques developed and dis

cussed in this thesis. Especially in the former case, the model description and hence 

the computation requirements would be higher than in the models considered here. 
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