
Routing and Transfers Amongst Parallel Queues

Thesis by

Simon P. Martin

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

NEWCASTLE UNIVERSITY LIBRARY
------------- -------------

206 53543 9

lhe515

eNewcastle V University

Newcastle University

Newcastle upon T~'ll(" UK

2008

(Submitted March 16, 2008)

Abstract

This thesis is concerned with maximizing the performance of policies for routing and

transferring jobs in systems of heterogeneous servers. The tools used are probabilistic

modelling, optimization and simulation.

First, a system is studied where incoming jobs are allocated to the queue belonging

to one of a number of servers, each of which goes through alternating periods of being

operative and inoperative. The objective is to evaluate and optimize performance and

cost metrics. Jobs incur costs for the amount of time that they spend in a queue,

before commencing service. The optimal routing policy for incoming jobs is obtained

by solving numerical programming equations. A number of heuristic policies are

compared against the optimal, and one dynamic routing policy is shown to perform

well over a large range of parameters.

Next, the problem of how best to deal with the transfer of jobs is considered.

Jobs arrive externally into the queue attached to one of a number of servers, and on

arrival are assigned a time-out period. Jobs whose time-out period expires before it

commences service is instantaneously transferred to the end another queue, based on

a routing policy. Upon transfer, a transfer cost is incurred. An approximation to the

optimal routing policy is computed, and compared with a number of heuristic policies.

One heuristic policy is found to perform well over a large range of parameters.

The last model considered is the case where incoming jobs are allocated to the

queue attached to one of a number of servers, each of which goes through periods

of being operative and inoperative. Additionally, each job is assigned a time-out

on arrival into a queue. Any job whose time-out period expires before it commences

service is instantaneously transferred to the end of another queue, based on a transfer

ii

policy. The objective is to evaluate and optimize performance and cost metrics. Jobs

incur costs for the amount of time that they spend in a queue, before commencing

service, and additionally incur a cost for each transfer they experience. A number of

heuristic transfer policies are evaluated and one heuristic which performs for a wide

range of parameters is observed.

iii

Declaration

All work contained within this thesis represents the original work of the author. t-.lost

of the work in this thesis has been published in conference proceedings as detailed

below. The material in chapters 2, Chapter 3 has been published in 1 and 2; some of

the material in chapters 4 and 5 has been published in 3 and the material in chapter

6 has been published in 4, and is to be published in 5.

1. Dynamic Routing Between Two Queues with Unreliable Servers, S.

Martin and I. Mitrani, I. International Journal of Simulation, Volume 5, Issue

5, pp 38-48 U.K. Simulation Society, 2004

2. Dynamic Routing Among Several Intermittently Available Servers,

S.P. Martin, I. Mitrani and K.D. Glazebrook, Proceedings of the first Eum\TGI

C()Ili'('rt'I]('(' 011 Traffic Eugilleerillg for the Ilext generation Internet (EURO;-';GI

2005), Roma, Itlia, 18-20 April 2005

3. Performance optimization with deadlines and job transfers, S. Mmtin

and I. Mitrani, Int. Conf. on Heterogeneous Networks (HET-NET '05), Ilkley

2005.

4. Job Transfers Between Queues with Unreliable Servers, S. Marlin and

I. Mitrani Proceedings of MCQT'06, Madrid, 2006

5. Job Transfers Between Queues with Unreliable Servers, S. Marlin and

I. Mitrani, Annals of Operations Research (to be published)

iv

Contents

Abstract

1 Introduction

1.1 Motivation.

1.2 Related Work

1.2.1 Routing

1.2.2 Server Breakdowns

1.2.3 Reneging

ii

1

1

-!

-!

6

2 Servers Subject to Breakdowns and Repairs: Optimal Routing 12

2.1 Introduction. 1:2

2.2 The model . . 13

2.3 Computation of the optimal policy

:2.1 Results ...

2.5 Conclusions

15

23

26

3 Servers Subject to Breakdowns and Repairs: Heuristic Policies 27

3.1 Motivation. 27

3.2 Policies.

3.3 Hl':mits.

3.3.1 Two servers

3.3.:2 l\lore than two servers

:l.I Conclusions

v

27

32

32

35

-!3

4 Two Servers with One-Way Transfers 47

4.1 Motivation . 47

4.2 Model ... 47

4.3 Exact and approximate solutions 52

4.4 Results ... 55

4.5 Conclusions 60

5 Servers with General Job Transfers 62

5.1 Motivation 62

5.2 Model Definition 62

5.3 Policies. 66

5.4 Results. 67

5.5 Conclusions 72

6 Unreliable Servers with Job Transfers 73

6.1 Motivation 73

6.2 Model Definition 73

6.3 An isolated queue . 75

6.3.1 Integrals and iterations . 77

6.3.2 Long operative/inoperative periods 79

6.3.3 Exact solution when Vh = 0 80

6.3.4 Truncated state space ... 81

6.4 Approximate solution for N queues 82

6.5 Numerical results 85

6.6 Conclusions 90

7 Conclusions 92

7.1 Contributions 92

7.2 Application 93

7.3 Future Work . 98

vi

Bibliography 100

VII

List of Figures

1.1

1.2

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

A routing-based service provisioning system

A transfer-based service provisioning system

Unreliable Servers

Optimal run time .

Effect of Q on optimal policy

Increasing arrival rate

Changing service rate at server 2

Increasing operative and inoperative periods at server 2 .

Effect of increasing the arrival rate

Changing service rate at server 3 .

Increasing operative and inoperative periods at server 3 .

Varying service rate of all servers

Increasing number of servers, with a constant load

2

3

13

23

25

33

34

35

36

37

38

39

40

3.9 The effect of increasing service rate and inoperative periods 42

3.10 The effect of increasing service rate and inoperative periods (detail) 43

3.11 The effect of increasing service rate and inoperative periods (System load) 44

3.12 The effect of increasing service rate, while keeping effective service rate

constant . 45

3.13 Effect of increasing service rate and breakdown rates, in proportion 45

3.14 Effect of increasing service rate and breakdown rates, in proportion (detail) 46

3.15 Increasing Arrival Rate 46

4.1 Two queues with deadline-driven transfers 48

viii

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

7.3

Cost as a function of 1/1, C = L1 + L21 + Ln

Cost as a function of 1/1, C = L1 + L21 '"

Optimal 1/1 as a function of All C = L1 + L21 + Ln

Cost as a function of All C = L1 + L21 + L22 . ..

The benefits of optimization, C = L1 + L21 + L22

The benefits of optimization, C = L1 + L21

3 servers with job transfers ...

The benefits of two-way transfers

Optimal transfer rates

Effect of varying arrival rate .

The effect of increasing group size .

Unreliable Servers with Job Transfers.

Effect of time-out rates in a 2-queue system

Increasing operative/inoperative periods

Increasing load at queue 1

Different transfer policies in a system with 3 queues .

Policy comparison for increasing number of queues

A mobile ad-hoc network, with all routers connected

A mobile ad-hoc network, with one router out of contact

Two servers, with paths through a mobile ad-hoc network

7.4 Two servers, with one interrupted path and one available path through

55

56

57

58

59

60

63

68

69

70

71

74

86

87

88

89

90

94

95

96

a mobile ad-hoc network .. 97

IX

Chapter 1

Introduction

1.1 Motivation

The motivation for this work is recent developments in distributed computing. Ad

vances in high performance hardware, and in particular the widespread availability

of high speed networking, has led to the connection of previously isolated computing

resources. This allows users to access remote servers with storage and processing

capabilities which may be located anywhere within a local or wider area network.

The concept of a Computing Grid is defined as the technology enabling the cou

pling of such resources which may be both geographically and administratively dis

persed. It is a desirable feature of such a system that the user does not need to

know where or how their desired service is performed, but rather submitting a re

quest for service to the Grid, and awaiting the results of the service. A computing

grid therefore supports the concept of heterogeneous servers providing service to a

widely distributed community of users. The role of the Grid management system is to

maximise the efficiency of the composite servers. An environment can be considered

more efficient than another if it makes a better use of all available resources. This

can be analysed using performance measures such as the average number of waiting

jobs present in the system or, following the submission of a job, the average response

time. The latter is defined as the amount of time from the arrival of the service

request until the completion of service.

An example of a routing system is illustrated in Figure 1.1. Requests for service

1

Figure 1.1: A routing-based service provisioning sy tern

arrive into a provisioning system, or dispatcher, which is responsible for th allocat ion

of service requests , or jobs, to available computing r sources, for xampl the select ion

of a server for the job. The provisioning system may also be responsible for tracking

the number of jobs queueing at each resource.

On the arrival of a request for s rvice, the dispatcher routes the job to avai lable

computing resources, according to a routing poli y. The routing policy determines

the appropriate allocation of resources, based on rvice capacities and the curr nt

state of the resources, including t he number of queueing jobs and the current resource

availabili ty.

For the purposes of this thesis, a dynami routing policy is one which takes into

account the current operational state of the resources associated with the djspatcher,

and a static policy is one which does not. It is sensible to use dynamic routing when

the queue sizes and server states are known entrally, and the costs of centrally di -

patching jobs from the dispatcher to the destination server are low.

A different xample of a transfer system is illustrated in Figure 1.2. Request for

servi e ar ubmitted by the user to one of the avai lable comput ing re ource . The

2

'"" /-- ,.p

~,.

~
~/

~

;,.-

~
/

(ri
'v

...J L.--

<1
';:.

Figure l.2 : A transfer-based service provisioning system

job then enters a queue awaiting either service, or transfer to another resource, where

it is expected to receive better service.

Job transfers make sense when either the system tate information is not available

or when sending jobs to remote servers is expensive.

It is easy to see that in the case of t he routing-based system, for best ut ilization

of resources, the provisioning system should take into accoun t the current tate of

the queues a t each resource in addi t ion to the, potentially changing, performance

characteristics of each.

In the case of transfer systems it is clear that jobs may be transferred on arrival

Lo another resom ce if there is a clear benefi t to doing so. In many cas , how ver , it

may not be certain whether the best option for a job is to remain in a queue rather

than transferring to another , possibly distant , queue. This decision will be made

more complex if the performance characteristics of resources vary wit h time.

Object ives of this thesis include:

l. to determine policies for a routing-based provision system to select t he destina

tion re ource for an incoming job;

2. to determine h uristic for transfer systems, to determine when to transfer jobs

3

from a queue, and the best resulting destination;

In Chapters 2 and 3, a routing system is considered. Each server has an associated

queue, and goes through alternating periods of being operative and inoperative. The

role of the provisioning system is to allocate incoming jobs to one of the servers,

according to a routing policy. A static policy is likely to cause under-utilisation of

some resources, and over-utilisation of others. Strategies for semi-static and dynamic

allocation of jobs are investigated.

In Chapter 4, a simple example of a transfer system is considered. There are only

two servers, with transfers permitted in only one direction. The effect of different

transfer rates is evaluated, and the system solved exactly for a performance metric.

A good approximation to the exact solution is obtained and evaluated.

In Chapters 5 and 6 general transfer systems are evaluated, firstly for always

available servers, and then for servers which undergo alternating periods of being

operative and inoperative. A number of transfer policies are evaluated.

1.2 Related Work

1.2.1 Routing

Foley and McDonald [9] consider a system of m servers where each server has a

dedicated stream of customers in addition to a shared stream of smart customers

which use the shortest queue routing policy. They describe three separate cases where

one or both servers can overload, dependent on the server speeds and the proportion

of smart customers.

The stability conditions are computed for the general case of m servers. Addi

tionally, the exact asymptotic distribution is computed for the limited case of m = 2.

4

1.2.2 Server Breakdowns

Thomas and Mitrani [22] consider N parallel queues which undergo independent oper

ative and inoperative periods, which are all supplied with jobs from a single incoming

stream. Incoming jobs are routed to one of the queues based on a routing policy which

only depends on the set of operative states of all servers. This is a static version of

the system considered in Chapters 2 and 3. Several routing strategies are evaluated

and compared with each other and the optimal static routing policy.

Mitrani and Wright [16] consider a system where incoming jobs form a single

incoming stream which can be routed through N parallel MIMII queues. These

servers are subject to random breakdowns and repairs. When a server breaks down,

all jobs present in its corresponding queue are lost. Servers which are broken down

when jobs arrive into the system cannot receive jobs into their queues.

The marginal queue size distributions are computed for the general case, and in

the special case of N = 2, the equilibrium distribution of the numbers of jobs in the

queues is calculated.

Wang, Wang and Pearn [23] study a single, unreliable server in the N policy

MIGII queueing system with startup times. When N customers are waiting the

server starts a 'warm-up' period, where it is unable to commence service. There

after, the server provides service until the queue becomes empty, or it undergoes a

breakdown.

Approximate formulas are derived for the steady-state probability distributions

of the queue length, using the maximum entropy principle, and compared against

established results for various distributions. It is shown that the maximum entropy

approach generates a good approximation and hence is a useful approach.

Gray, Wang and Scott [11] consider a queueing model in which a single server may

experience several different types of breakdowns, each of which requires a random,

5

finite number of stages of repair. Necessary conditions for the existence of a stationary

queue length distribution to occur is obtained, and then matrix geometric methods

are used to compute the queue length distribution, and then an explicit expression

for its mean.

A number of properties of the model are also found, including the mean repair

time, average completion time, average number of repair stages and relationships be

tween these measures and the number of breakdowns during a customer's service time.

Glazebrook and Kirkbride [10] consider a model in which service times and repair

times at each of number of machines are independent and identically distributed

random variables with general distribution. Routing decisions take into account queue

lengths, machine operative status and elapsed processing time of jobs in service.

An approach to machine calibration is developed which gives a machine index

which is a function of all status information. A number of heuristics are developed

and compared against the optimal and one heuristic, consisting of routing tasks to

the machine with the smallest current index, is identified which performs very well.

It is noted that the approach is very flexible and will yield good policies for a range

of variants of the basic model.

1.2.3 Reneging

Zeltyn and Mandelbaum [28] consider the problem of a single queue with Poisson

arrivals, with n statistically-identical agents which service the queue. Each arriving

caller has an associated, generally distributed patience time T. The model is applied

to call center environments.

Three asymptotic operational regimes for the number of agents are studied, and

one is found to be a good approximation for a wide set of system parameters. In

addition, parameters where simpler approximations are useful are identified.

6

Altman and Yechiali [1] investigate a series of models considering customer impa

tience, which is due to the absence of service on arrival. When a customer arrives into

a queue and notices that the server is 'on vacation', an impatience counter is started.

If the server returns to service before the timer expires, the customer remains in the

system until its service is completed. Alternately, if the timer expires before the server

returns to service, the customer leaves the system never to return.

Single server MIMII and MIGII queues are analysed, as is the multi-server

MIMic queue, and closed-form results are obtained. In particular, the proportion

of customer abandonments is calculated and compared for single-vacation and multi

vacation regimes, and it is found that this is smaller for the single-vacation case.

Dalal and Jordan [7] consider a MIMI 1 queue in which the average reward for

servicing a job is a decreasing function of the sojourn time. The maximum reward

and mean service times of a job are independent, arbitrarily distributed, random

variables. Deadlines are not known by the server, and hence expired jobs are not

dropped. A scheduler, which is assumed to know the maximum reward, service rate

and age of each job, selects the next job to receive service on the completion of the

previous job.

Various schedulers are compared by simulation over a range of loads. It is proved

that a scheduling policy that serves the customer with the highest product of potential

reward and service rate, maximizes the average reward.

He and Neuts [12] study a system of two servers with job transfers. Batches of jobs

are transferred from the longer queue to the shorter one when the difference between

them reaches a threshold L. The arrival rates and service rates of each server are

independent.

A simple condition for the stability of the system is obtained. A matrix geometric

solution for the stationary distribution of the system is then calculated, and then

the stationary distribution of the total number of jobs in the system is obtained and

shown to decay exponentially. Based on theoretical results, the optimal system pa-

7

rameters of such queueing systems are explored numerically.

Movaghar [17] studies queueing systems where customer have strict deadlines until

the beginning of service. A single queue serves a number of identical servers, and may

have a finite capacity. An arriving job which finds the system full leaves immediately,

never to return.

Equations for probability density function of the time an infinite deadline cus

tomer has to wait until service commences are calculated for both finite and infinite

capacity systems, as well as the probability of missing deadlines, and the probability

of blocking. The efficacy of the method is illustrated numerically.

Choi, Kim and Zhu [6] consider a MAP /M/c queue where a customer which

cannot commence within a fixed time after arrival into the system is lost. The queue

is serviced by c servers. Two cases of clients are considered: "aware" and "unaware"

customers. In the case of aware customers, an arriving customer knows how long they

can expect to wait, and waits in the queue or leaves the system on arrival, depending

whether they will start service before the deadline expires. In the case of unaware

customers, the customer always enters the system and is lost if service does not start

before the deadline expires.

The stationary distribution of the system is obtained and hence several perfor

mance measures such as loss probability, waiting time distribution, mean waiting

time and mean queue size are computed. Numerical examples are presented for sys

tem load of 0.7, 0.8 and 0.9, with differences presented, where they exist, for aware

and unaware customers.

Liu and Kulkarni [13] evaluate a system with balking based on the workload. On

arrival into the system, a job enters the system, and remains until service completion,

if the expected waiting time is less than some maximum. Otherwise, it leaves the

system, never to return.

Some results are obtained for the case of a M/G/1 queue, and then the case of

8

a M/PH/1 queue is solved explicitly, to produce the probability that the system is

empty, and the mean workload in equilibrium. A number of numerical examples are

presented.

Boo, Kim and Lee [3] study the M/G/1 queue with impatient customers, which

leave the system if, after a fixed time K, they have not started service. It is noted

that when analysing the waiting time and busy period, that this is equivalent to the

case where customers only enter the system when their waiting time does not exceed

K.

The distribution of the waiting time is explicitly derived, and the expected busy

period is obtained.

Skimkin and Mandelbaum [20] consider the modelling of abandonment from an

M/M/m queue, where each customer has a deadline, T, after which they will abandon

the system if they have not commenced service. The customers are placed into a

number of types, based on three utility function parameters.

The optimal (or rational) behaviour for customers, which maximises their utility

function is con pared to a myopic decision rule which chooses the abandonment time

as the first local maximum of the utility function. This is shown to enjoy favourable

analytical properties, in addition to making sense for cases where customers do not

know the exact form of their utility functions. Concrete examples are provided, which

illustrate the approach and analysis.

Ward and Glynn [24] consider a GI/GI/l queue with customers which which

either balk or reneging. In the reneging case, customers leave the queue if they have

not commenced service before a deadline expires. For the case of customer balking,

on arrival a customer does not enter the system if the offered waiting time exceeds

the deadline, for the case where all customer processing times are known, or the

conditional expected waiting time when only queues lengths are observable.

An approximation for the workload and queue length processes is obtained, for

9

the case where the arrival rate is close to the processing rate with large reneging

times, and this is shown to be a good approximation. Their approach is also shown

to generate a good approximation for the queue-length process.

Zhao and Grassman [29] solve a shortest queue problem, in which arriving jobs

are always routed to the shortest queue, and transfers of jobs between queues are per

mitted. The servers are always available, and jobs transfer instantaneously between

two queues. When the difference in queue length between the longest and shortest

queue exceeds a pre-set number, the last job is transferred to the shortest queue.

Expressions of main performance measures, including the average number of jobs

in the system, the average waiting time in the system and the average number of

transfers, are given. A number of numerical results are presented, and by comparing

the results for systems with and without jobs transfers, it is shown that a significant

improvement of the system performance is achieved for the system with job transfers.

Xu and Zhao [27] consider a system where incoming jobs are routed to one of two

servers. Transfers of jobs are permitted between the two servers in either direction.

A transfer cost is incurred whenever a job is transferred.

Dynamic routing and transfer policies are characterised that minimise the ex

pected total cost for both discounted and long-run average costs. It is shown that

the optimal routing and transfer controls are described by three monotonically non

decreasing functions. Properties of these functions, relationships between them and

their asymptotic behaviour are considered, and it shown that some well-known queue

ing control models are special cases of their model.

Boots and Tijms [5] examine a multiserver queueing system with impatient cus

tomers. Each arriving customer is placed into a shared queue, and has an associated

time-out. If the customer has waiting for their time-out period, and has not begun

service, they leave system and become a lost customer. The loss probability, which is

the long-run fraction of customers who are lost, is formulated for the MIMic queue,

10

and an approximation for the M/G/c queue is formulated and evaluated against nu

merical results, showing it to be a good approximation.

11

Chapter 2

Servers Subject to Breakdowns
and Repairs: Optimal Routing

2.1 Introduction

Grid services involve groups of heterogeneous servers, providing stTvice to wid('l\" dis

tributed users. These users submit jobs without w'c{'ssarily knowing or caring on

which server they will be executed. It is the respollsihilitv of the systelil to allocate

these jobs among the servers, attempting to make the best use of available [('SOllr('('s.

and provide the best quality of service.

In many implementations, grid services are run wit h a lower priorih" than other

services, such as print or web services, on a server. This can be modelled by each

server experiencing periods of availability, separated by unavailable periods. The

problem then is to select, for a given operative state and queue length for each s('n"er,

the optimal routing decision for arriving jobs.

This CHIl, in principle, be solved exactly to yield the optimal routing poIiC'~"" How

('v('r, for large numbcrs of servers, this is would take an unfeasible length of time to

calculate, <lml a very large amount of storage. Therefore, the optimal policy will be

calculated for a small number of servers, where the computation time and storage re

quir(,lllcnt.s are not overly large, and compared wit h several heuristic policies. Then,

12

for larger numbers of servers, comparison between the heuristic policies will be made.

2.2 The model

Jobs arrive into the system according to an independent Poisson process with rate

A. A routing policy sends the new arrivals to one of N servers, each having its

own unbounded FIFO queue. There is no delay between arriving into the system

and joining a queue. Having joined, a job remains in its queue until its service is

completed. When server i is operative, its service times are distributed exponentially

with mean 1/ J-Li (i = 1,2, ... , N). The operative and inoperative periods of server i

are distributed exponentially with means 1/~i and l/r/i, respectively. Any job whose

service is interrupted by a server breakdown remains at the head of its queue; as

soon as the server is repaired, the service resumes from the point of interruption. All

interarrival, service, operative and inoperative intervals are mutually independent.

This system is illustrated in Figure 2.1.

1 1 1 1 10
J-Ll, 6, 111

1 1 1 I~
J.L2, (2, TJ2

0 0
0 0
0 0

1 I 10
J-LN,(N,l1N

Figure 2.1: Unreliable Servers

While a job remains in queue i, it incurs a cost Cj per unit time. These 'holding'

costs reflect the possibly different importance attached to low response times at the

N queues. The average total cost incurred over a given (finite or infinite) period will

be our QoS measure.

13

The system state, 8, at a given time is described by a vector of integers:

where ii is the current number of jobs in queue i, and bi is the current availability of

server i (i = 1,2, ... ,N); the latter is defined as

{

0 if server i is inoperative
b; =

1 if server i is operative

The routing policy, u, is defined by specifying, for every state 8, the action, Us,

taken when a job arrives and finds that state: Us = i if the job is directed to queue

i. The policy is assumed to be stationary; the routing actions may depend on the

current state but not on past history.

The above assumptions imply that the system state is a Markov process whose

evolution depends on the routing policy. The instantaneous transition rate, Tu(8, 8'),

from state 8 to state 8' under policy u, is given by

A if Us = i and 8' = 8 + ei;

J.tibi if ii > 0 and 8' = 8 - ei;

Tu(8,8') = ~i

Tli if bi = 0 and 8' = 8 + ei+N;

o otherwise

(2.1)

where i = 1,2, ... , N; ek is the 2N-dimensional vector whose kth element is 1 and the

other 2N - 1 are O.

The total instantaneous transition rate out of state 8, T(8), is equal to:

N

T(8) = A + L (bi[J.tid(ji > 0) + ~il + (1 - bi)Tli) , (2.2)
i=1

14

where 6(B) is the indicator of the Boolean B: it is equal to 1 if B is true, 0 if B is

false. Note that r(S) does not depend on the routing policy.

If the routing policy makes reasonably efficient use of the servers, i.e. does not

allow one of the queues to grow very large while others remain empty, then the system

should be stable if the arrival rate is lower than the total average available service

capacity:

~(rr) >.. < LJ __ I -Jl.i .
i=1 ~i + 'f/i

(2.3)

2.3 Computation of the optimal policy

The optimization problem consists of finding the minimal cost, cmin , and a stationary

routing policy that achieves it:

N

cmin = inf~ CiLui ,
u LJ ' (2.4)

i=1

where Lu,i is the mean queue length of server i under policy u, and Ci is the holding

cost per job per unit time for server i as before.

For the purposes of optimization, it is convenient to apply the technique of uni

formization to the Markov process (e.g., see [8]). This involves the introduction of

'fictitious' transitions which do not change the system state, in such a way that the

average interval between consecutive transitions does not depend on the state. The

discrete-time Markov chain embedded at transition instants is then equivalent to the

original process. First, we find a constant, A, such that r(S) :5 A for all S. A suitable

value for A is
N

A = >.. + Lmax(JLi + ~i,'f/i) . (2.5)
i=1

Without loss of generality, the unit of time can be scaled so that the right-hand side

of (2.5) is equal to 1. Then the transitions of the Markov process can be assumed to

15

occur at exponentially distributed intervals with mean 1, according to a discrete-time

Markov chain whose one-step transition probabilities under policy u, qu(S, S'), are

equal to

qu(S,S') = {ru(S,S')jA if S' # S ,

1 - r(S)j A if S' = S

with ru(S, S') and r(S) given by (2.1) and (2.2) respectively.

(2.6)

For the purpose of accumulating costs, we consider the states of the above Markov

chain just after a transition instant if the latter is not associated with an arrival and

just before if an arrival occurs at that instant. Thus, if the chain is in state S and

there is no arrival, then the cost of the current step, vo(S), is equal to

N

vo(S) = L e;ji , (2.7)
;=1

taking the necessary adjustments to e; due to adjustment in the unit of time as given.

If the state is S and an arrival occurs, then in addition to vo(S), a holding cost

equal to Ci if Us = i is incurred.

Suppose that the objective is to minimize the average total cost incurred over a

finite period consisting of n steps of the Markov chain. Denote by Vn(S) the minimum

of that average, given that the current state is S and there is no arrival. Similarly,

let V;~(S) be the minimum average total cost, given that the current state is S and

an arrival occurs (with the a subscript denoting the arrival). These costs satisfy a set

of dynamic programming equations (for the general theory, see [19, 25]).

If there is no arrival in the current state, we have

Vn(S) = vo(S) + .xV,!'_1(S) + LQu(S,S')Vn- 1(S') , (2.8)

s'

where the first term in the right-hand side is the cost of the current step. The second

16

term expresses the fact that the next transition is an arrival with probability ;\; if so,

the incoming job sees state S and the consequent cost of the remaining n - 1 steps

is Vn~ 1 (S). The sum in the third term extends over the transitions S ~ S' which

do not involve an arrival: the next state is S' with probability qu(S, S'); if so, the

consequent cost of the remaining n - 1 steps is Vn-l(S').

When there is an arrival in the current state, one of the routing actions directing

the incoming job to queue i must be taken (i = 1,2, ... , N). The state then immedi

ately jumps to S + ei. The cost V:{S) is therefore obtained by adding to the current

holding cost, vo{S), the minimum of the consequences of this action (on the current

and subsequent n - 1 steps), over the possible actions:

Again, the sum in the right-hand side extends over the transitions S + ei --+ S' which

do not involve an arrival.

The above recurrences can, in principle, be solved by iteration, starting with the

initial values Vo{S) = vo{S) and Voa{s) = vo(S) + min(cl, C2, ..• , CN). In practice, the

state space must be made finite by bounding the queue sizes: ji $; Ji and for some Ji ,

where i = 1,2, ... , N. The consequences of such a truncation are that incoming jobs

are only routed to one of the queues for which j, < Ji ; if ji = JNi E {I, 2, ... , N},

new arrivals are lost.

The complexity of the iterative solution is of the order O(n n:l (2J,)), since the

size of the state space is n:l (2J,) and there are n steps (the summations in (2.8)

and (2.9) have no more than 4 terms each).

Having solved the equations, the value of i which achieves the minimum in the

right-hand side of (2.9) is the optimal routing action in state S, for the finite horizon n.

17

More commonly, one is interested in an infinit~horizon optimization. The objec

tive is to minimize the average total future cost, and in order that the latter is finite,

the cost of a step at distance n in the future is discounted by a factor an, for some

o ::; a < 1. Setting a = 0 implies that all future costs are disregarded; only the

current step is important. When a ---+ 1, the weight of a future step, no matter how

distant, approaches that of the current one.

Dynamic programming is a mathematical optimisation technique, which allows

the total cost of a decision to be minimised, including future consequences. Decisions

cannot be viewed in isolation since one must balance the desire for low present cost

with the undesirability of high future costs. The dynamic programming technique

captures this trade-off. At each stage, decisions are ranked based on the sum of the

present cost and the expected future cost, assuming optimal decision making for sub

sequent stages [4J.

Denote by V(S) the minimum average total future cost, given that the current

state is 8 and there is no arrival. Similarly, va(8) is the minimum average total

future cost, given that the current state is 8 and an arrival occurs. The corresponding

dynamic programming equations are

V(S) = vo(8) + aAva(8) + a Lq(S, 8')V(S') , (2.10)
s'

(2.11)

with the same restrictions on 8' as for (2.8) and (2.9), respectively.

Again, the optimal routing action in state S is specified by the value of i which

achieves the minimum in the right-hand side of (2.11).

18

The infinite horizon optimization leads to fixed-point equations, rather than recur

rent ones. Moreover, their solution, and the optimal policy, depend on the discount

factor a. The most important case, but also the most difficult to solve, is a ~ 1.

Three methods for computing the optimal policy numerically are described below. In

all cases, the state space is truncated by introducing the bounds ii :5 Ji , and impos

ing the appropriate policy restrictions on the boundaries ii = Ji (i = 1,2, ... , N)(see

above).

Cost Iteration

This algorithm applies when a < 1. Then (a) the total costs are finite and (b) the

finite horizon costs and policy converge to the infinite horizon costs and policy as

n ~ 00. The algorithm works as follows:

1. At iteration 0, set \'o(S) to vo(S) and Voa(s) to vo(S) + min(cl' C2,· .. ,CN), for

all states S.

2. At iteration n, compute Vn(S) and V,!'(S) according to (2.8) and (2.9) respec

tively, using Vn-1(S) and V,!'_l(S) from iteration n - 1. Terminate when

(2.12)

for some small €.

3. Return the policy specified by the values of i which achieve the minima in the

right-hand side of (2.9) on the last iteration.

The complexity of the Cost Iteration algorithm is of the order O(n n~l Ji), where

n is the number of iteration steps needed for convergence. That number depends on

the model parameters, on the discount factor, a, and on the desired accuracy, €.

19

Policy Stability

This is similar to cost iteration, but is applied with a = 1. Now Vn(S} and V:(S}

keep growing without bound, so a different termination criterion must be used. This

is based on convergence of policy, rather than convergence of cost. At each iteration,

the current 'optimal' policy is compared to the one from the previous iteration. The

algorithm terminates if the policy has not changed for k consecutive iterations, for

some k (e.g., k = 100). Return that policy.

The complexity of this algorithm is of the order O(n n!l J;}, where n is the num

ber of iteration steps needed to achieve policy stability. That number depends on the

model parameters and on the desired degree of stability, k.

Policy Improvement

Like cost iteration, this algorithm applies when the total costs are finite (a < I).

However, it iterates on policy rather than costs, and ensures that the optimal policy

is found.

1. Start by making an initial guess about the optimal policy, i.e. construct an

initial mapping, f(S}, from system states to routing actions. This could be a

simple heuristic such as f(S} = i if ji = min;1 j;l, (i.e. send new arrivals to the

shorter queue).

2. Treat this guess as the optimal stationary policy and write the corresponding

discounted cost equations. The only change with respect to (2.10) and (2.11)

is that in the right-hand side of (2.11) there is no mini; the routing action f(S}

is used. This new version of (2.10) and (2.11) is a set of simultaneous linear

equations for V(S) and va(s). Solve them and determine the costs associated

with policy f.

3. Now try to 'improve' policy f. For every state S, find the routing action i

20

which achieves the minimum value in the original equation (2.11). In other

words, minimize the total cost in state S, assuming that after the current step,

policy 1 will be used.

4. If the new routing actions are the same as I{S) for all S, then the policy 1

cannot be improved; it is optimal. Return I. Otherwise, replace I{S) by the

new policy and repeat from step 2.

In step 2, the simultaneous set of linear equations is very sparse and is normally solved

by iterations. Therefore, the complexity of the Policy Improvement algorithm is of the

order O{mn n!l (Ji)), where m is the number of steps in the iterative solution of the

simultaneous equations, and n is the number of policy improvement steps. The num

ber m depends on the model parameters, on the discount factor, and on the desired

accuracy; in addition, n depends on how close the initial guess is to the optimal policy.

Of the above three algorithms, only Policy Improvement is guaranteed to produce

the optimal routing policy in a finite number of steps (assuming that the simultaneous

equations are solved accurately).

Optimal routing policies can, in principle, be computed off-line and stored in the

form of decision tables. A dispatcher could then implement the policy by means of

table look-up. A part of such a decision table is illustrated in Table 2.1. For each

state where the queue sizes are in the range 0-18, server 1 is operative and server 2

is inoperative, the table indicates whether an incoming job should be sent to queue 1

or to queue 2. There are similar tables for the other three operative states (broken

operative, operative-operative and broken-broken). The parameters in this example

are). = 1, JL1 = 5, JL2 = 2.5, 6 = 0.4, 6 = 0.2, "11 = TJ2 = 0.1, C1 = C2 = 1. The

optimal policy was computed by the Policy Stability method.

This example shows that the optimal policy does not lend itself to simple charac

terization. Jobs are not always sent to the shorter queue. Sometimes they are sent to

21

h
0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1

jl 10 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1
13 2 1 1 1 1 1 1 1 1 1 1
14 2 2 1 1 1 1 1 1 1 1 1
15 2 2 2 1 1 1 1 1 1 1 1
16 2 2 2 2 1 1 1 1 1 1 1
17 2 2 2 2 2 1 1 1 1 1 1
18 2 2 2 2 2 2 1 1 1 1 1

Table 2.1: Optimal routing decisions: server 1 operative, server 2 broken

a queue where the server is inoperative, even though an operative sever is available.

There might be a rule of a 'threshold' type, i.e. 'if the difference between the two

queues is greater than a certain value, send the job to the shorter queue'. However,

what determines the value of that threshold, and how, is unknown.

In the absence of a characterization, there are clearly great practical difficulties

in implementing dispatchers based on table look-up. One would have to pre-compute

and store a large number of tables, corresponding to different sets of parameter values,

and then decide which table to use, depending on the currently observed conditions.
,

A more practicable approach would be to construct heuristic policies which, while

not optimal, perform reasonably well over a wide range of parameter values. Such

heuristics are introduced and evaluated in the next chapter.

22

2.4 Results

The first set of experiments carried out were to compare the three different methods of

producing the optimal policy. Due to the comprehensive nature of the optimisation

systems, only two servers are being considered. The state space is truncated at

J1 = J2 = 100, giving a total state space of size 400,000). The run times of the Cost

Iteration, Policy Stability and Policy Improvement algorithms, for different values of

the discount factor a, are illustrated in Figure 2.2.

1800 r--r-r--r-r--r-r--'-~,---,---,--;-----,
1600

:§' 1400
§ 1200
C)

~1000

.§ 800

... 600
.:=
o 400
.~

200

Policy Improvement ~
Policy Stability +

Cost Iteration e-

'0
00 o~~~~~~~~~~~

0.9450.950.9550.960.9650.970.9750.980.9850.990.995 1

Figure 2.2: Run times of different solution methods

In this model, the two queues differ only in the unit holding costs. The param

eters are: >. = 4, J.Li = 5, ~i = TJi = 0.1 (i = 1,2), Cl = 1, C2 = 5; i.e., each server

is available for half of the time on the average, and the total service capacity is 5.

The general pattern of behaviour of the three solution methods' run times do not de

pend strongly upon the system parameters. For low values of a, Policy Improvement

and Cost Iteration take much less time to solve than Policy Stability (which does not

depend upon a), but their run times rise to above, at values of a significantly below 1.

These parameters are normalized so that the uniformization constant becomes

23

A = 1. The termination criterion for Cost Iteration is f = 0.000001, while Policy

Stability terminates when the policy does not change for 100 consecutive iterations.

Since that algorithm does not depend on a, it is run only once; the resulting run time

is shown as a horizontal line.

Cost Iteration and Policy Improvement are very fast for a < 0.97, but start slow

ing down thereafter. The number of iterations performed by Cost Iteration varies

from 273 to 3637. Policy Stability performs 4291 iterations before the policy sta

bilizes. Policy Improvement carries out between 3 and 7 improvement steps, each

including the solution of a large set of simultaneous linear equations; that solution is

obtained by iterations, with f = 0.000001. However, the coefficient matrix becomes

ill-conditioned when a -+ 1. That explains the steep increase in the run times of

Policy Improvement when a is very close to 1.

To evaluate the performance of any routing policy, u, we use a single average cost

metric, Cu , which is computed as follows. First, find the steady-state distribution,

7ru(S) , of the system state under policy u. This is obtained by solving numerically

the balance equations,

7ru(S) = L 7ru(S')qu(S', S) , (2.13)
S'

(where the one-step transition probabilities qu(S', S) are given by (2.6)), together

with the normalizing equation,

L7ru(S) = 1. (2.14)
s

The state space is truncated as before.

The average cost incurred under policy u per unit time, Cu , is then given by

24

N

= LCiLu •i ,

i=l

(2.15)

where Lu,i is the average number of jobs in queue i under policy u.

Figure 2.3 compares the average costs of the optimal policies returned by the three

solution methods, for different values of a. The parameter values are the same as in

Figure 2.2.

r;J
~
~

0

.S
:E
0

::t::
CD

If
'"' ~

<:

160

150 Policp Improvement
olicy Stability ~

140 Cost Iteration

130

120

110

100

90L-~~~~~~~~~~~~~
0.9450.950.9550.960.9650.970.9750.980.9850.990.995 1

a

Figure 2.3: Effect of a on optimal policy

The remarkable feature of Figure 2.3 is the strong dependence between a and

the performance of the optimal policy. The optimal policy for a = 1, returned by

the Policy Stability algorithm, performs significantly better than the ones for a < 1

(the policies returned by Cost Iteration and Policy Improvement are very similar).

The differences in performance between a = 1 and a < 1 become small only when

a> 0.99. For these values of a, the necessary solution times for Policy Improvement

and Cost Iteration are much higher than the solution time for Policy Stability.

25

2.5 Conclusions

This section has explored an initial problem in the field of distributed processing and

job routing. Three approaches to computing the optimal routing table have been

implemented and found to be in agreement both in the general nature of the optimal

policy and also in the resulting values of the average holding cost.

It is clear from the description of the algorithms, however, that none of the ap

proaches are suitable for scaling up to systems with tens, or even hundreds of servers.

Therefore, there is a need for heuristics which are a good match to the efficiency

of allocation of the optimal policy but without the large storage and computational

needs of the optimal. This is the subject of the next chapter.

26

Chapter 3

Servers Subject to Breakdowns
and Repairs: Heuristic Policies

3.1 Motivation

The model from the previous chapter is now evaluated using a number of heuristics

for the allocation of incoming jobs to servers. Initially these are ('ompared to the

optimal policy, evaluated as in the previous chapter, for a small number of servers.

However as the computation of the optiIllal poli('y becomes overly ('XI)('llsiw as the

number of servers becomes large, they are later compared wit h one another in order

to find the heuristic which performs best.

3.2 Policies

1. Random

Send incoming jobs to queue i, with probability 1/1\' (i E 1, 2, ... , N), regardless

of the system state (other than in the cases where queues have reached their

truncation lengths).

This is the heuristic which requires the least state information, as all that is

necessary is which servers are able to receive incoming jobs. If the operational

parameters arc known, they could be. partially or completely, taken into account

to create a H'('ighted Random policy which can be expected to perform better,

but in this chapter only the unweighted version will be considered.

27

2. Selective

If no servers are operative, then route to server i with probability 1/ N; otherwise

send jobs to server i with probability bdO, where

(i E 1,2, ... , N). This is one of a class of policies discussed in [22].

This heuristic requires more information than the Random heuristic, as it re

quires, for each server, the current operative state, bi, but not the queue sizes.

3. Shortest Queue

Send jobs to queue i if ji = mini' ji" This policy requires the current queue

length, ji for each server, which is the greatest amount of information of all the

heuristics so far.

4. Selfish

If a job finds state S on arrival, evaluate the expected non-discounted cost,

d(S, i), which it would incur if sent to queue i:

d(S,i) = Ci (ji + 1)--'-' + __ I • [
I~'+T/ I-b]

J.Li "Ii "Ii

Where
1 ~i + "Ii ---

J.Li "Ii

is the average service period, taking into account the periods of unavailability,

and
1- bi

"Ii

is the average time remaining of the current, if any, unavailable period.

Send the job to queue i if d(S, i) = mindd(S, i')).

This heuristic, and the Index heuristic following, require full state information

for each server.

28

5. Index Heuristic

Whittle's idea [26] was to expand the class of stationary policies by including

certain unrealizable policies. Suppose that, at an arrival epoch, a routing func

tion u may add a job to any number of queues simultaneously. Let f3; (u) be the

resulting steady state arrival rate into queue i. Routing function u is then said

to be 'broadly admissible' if the overall arrival rate under u is ..\ (which, as at

some arrival epochs, a job may be added to multiple queues, necessitates that

at others the arriving job is added to none, i.e. the job is lost):

N

L:f3i(U) =..\,
i=1

or
N

L:[..\ - f3i(U)] = (N - 1)..\ . (3.1)
i=1

Whittle's relaxed optimization problem, which replaces (2.4), is to find

N

(J"'in = i~f L: c;Lu.; , (3.2)
;=1

where the minimum extends over all broadly admissible routing functions. Since

h I "d t h -=me in < e min t at c ass IS WI er, we mus ave _ .

The constraint (3.1) can be included in the minimization (3.2) by means of a

Lagrangian multiplier, w:

N

cmin(w) = i~ L:(c;Lu,i - wgu) , (3.3)

;=1

where
N

gu = L:[..\ - f3i(U)] - (N - 1)..\ .
;=1

29

This last problem can be decomposed into a sum of N separate optimizations:

N

Cmin(w) = L qnin(w) - w(N - l)A , (3.4)
i=1

where

(3.5)

Note that the last term in (3.4) does not depend on the policy.

The optimization problem (3.5), referred to as 'problem (i,w)', is set in the

context of an isolated single server queue with arrival rate A, service rate I'i,

and breakdown and repair parameters ~i and TJi respectively. The system state

is a pair, Si = (ji, bi), where ji is the number of jobs present and b; is 0 if

server i is inoperative, 1 if operative. The 'routing policy' in this case consists

in deciding whether an incoming job which sees state S; should be accepted or

rejected. If accepted, the job incurs a holding cost of c; per unit time spent in

the system; if rejected, it incurs cost w.

It is reasonable to assume that the optimal policy for problem (i, w) is of the

threshold type, i.e. there are two integers, TJ(w) and Tt(w), such that

An incoming job which finds state Si = (ji, b;) is accepted if either b; = 0

and j; ~ TJ(w), or bi = 1 and j; ~ Tt(w).

Moreover, since the higher the cost of rejection, the greater the incentive to

accept jobs, it is likely that both TJ(w) and Tt(w) are non-decreasing in w.

It can be shown that, under these monotonicity conditions, there exists a La

grangian multiplier, w·, such that the solution to (3.3) is a solution to Whittle's

relaxed problem (3.2). Hence there is a solution to Whittle's problem in the

form of a superposition of optimal policies for the single queue problems (i, w*).

30

Now we can define the Whittle index, Wi(Si), for queue i in state Si:

Wi(Si) = { inf{w I T~(w) ~ ji} if bi = 0 .

inf{w I Ti{w) ~ ji} if bi = 1
(3.6)

In other words, the index is the minimum rejection cost that would cause an

incoming job to be accepted, when faced with the given queue size and server

availability.

Returning to the original routing problem with N queues, the new heuristic

policy works as follows:

Index routing. Send jobs to the queue with the smallest Whittle index, i.e. to

queue i if Wi(Si) :::; Wk{Sk) for all k = 1,2, ... , N.

For a given set of parameters, the indices are computed numerically, off-line,

and tabulated. That computation involves finding, for a given queue and a

given w, the optimal pair of thresholds Tj(w) and Tt{w); the cost of each pair

is calculated by solving the finite-state model for that queue. Repeating that

procedure for different values of w yields the index corresponding to state Si,

according to (3.6).

Having computed the indices for all states, the index routing policy would be

implemented in practice by means of table look-up.

A part of an index table is shown in Table 3.1. It concerns an asymmetric 2-

server system. The parameters are: A = 4, J.Ll = 5, J.L2 = 10, ~i = 0.3, l1i = 0.1,

c; = 1 (i = 1,2). The table shows the queue 1 and queue 2 indices for queue

sizes from 0 to 8.

j 0 1 2 3 4 5 6 7 8

W1 1.00 1.00 5.66 17.29 31.68 50.31 79.91 107.41 144.38

W2 1.00 1.00 5.66 13.14 20.87 28.05 37.71 39.59 53.22

Table 3.1: Whittle indices for queue 1 and queue 2

31

There are, of course, many other policies which could have been considered, which may

out-perform some or most of the above. The selected set does permit the observation

of the variation in performance as more stat information is taken into account.

3.3 Results

3.3.1 Two servers

The results covered in this section will involve a system of two servers, and allows

comparison of the optimal policy, calculated using the Policy Stability algorithm,

with the heuristics described in Section 3.2. For the remainder of this chapter, unless

noted otherwise, the holding costs Ci are taken to be 1.

For small to moderate numbers of servers, exact solutions of the balance equations

(see Equation 2.13 and Equation 2.14) are computed, giving solutions to the steady

state distribution of the system under the given policy, from which the average hold

ing cost can be computed (using Equation 2.15), as in Chapter 2.

Figure 3.1 illustrates the comparison of heuristics with the optimal policy for a

model where ILl = 5, IL2 = 2.5, TJ1 = 1J2 = 0.1, 6 = 0.4, ~2 = 0.2; server 1 is faster but

less reliable than server 2. The system is stable when ..\ < 1.83.

It can be observed that the dynamic heuristics (the Shortest Queue, Selfish and

Index) are close to optimal. The static (Random) and semi-static (Selective) policies

are less efficient, especially as the load increases. In this model, the Random policy

performs better then the Selective policy at heavier loads, which is contrary to ex

pectation, and is probably a feature of the parameters chosen.

The next experiment compares the performance of the optimal and heuristic poli

cies when the asymmetry of the two servers increases. The arrival rate is fixed at

32

140

120 +
rJ
..... 100 Random~
fIl Se~ctive·· .. 0

U Shortest ueue--B-
gp SO ~elfish ..)(...

..... Index o ICY ~
::9 Optimal· * ..
0 60 ::z::
Q,)

~
'"' ~ 40
<

20

0
0.2 0.4 0.6 o.S 1 1.2 1.4 1.6 l.S

Figure 3.1: Increasing arrival rate

A = 4, as is the service rate of server 1, J-ll = 5, and the breakdown and repair rates,

~1 = ~2 = 0.3, "'1 = "'2 = 0.1. What varies is the service rate of server 2, J.l2. The

results are shown in Figure 3.2.

As expected, the average costs decrease as the total service rate increases. The

Selfish and Index heuristics are once again close to optimal (with the Selfish slightly

more efficient than the Index heuristic), but now the Shortest Queue policy is signif

icantly poorer, with the Random and Selective policies much worse.

Another way of increasing the asymmetry between the nodes is to increase the dif

ference between the average lengths of their operative and inoperative periods. This

is done in the experiment illustrated in Figure 3.3. The arrival and service parameters

are fixed, A = 4, J-ll = 5, J-l2 = 25, as are the breakdown and repair rates of server 1,

"'1 = 0.1, 6 = 0.3. The operative and inoperative periods of server 2 increase (~ and

'" decrease), while their ratio remains fixed, ~2 = 3'172.

33

150r----r----r----.----.----.----~--~--___

140

130
rJ _ 120
+"

8 110

~ 100

~ 90

CLl 80 ! 70
60

50

Random -e
Sekctive . -+ ..

Shortest (.lueue ~

Index~~!~~
Opt' . * ..

40~--~----~--~----~--~----~--~--~

10 12 14 16 18 20 22 24 26
J.L2

Figure 3.2: Changing service rate at server 2

Note that, although the average service capacity does not change when the op

erative and inoperative intervals increase in fixed ratio, the average queue sizes, and

hence costs, nevertheless increase. This is a known phenomenon. In this case, that

increase is slowed as server 1 can absorb some of the load during the long inoperative

periods of server 2.

The Index policy is a very close match to the Optimal policy. At short opera

tive and inoperative periods, the Selfish heuristic is near optimal, but as the periods

increase, it moves further from optimality. The Shortest Queue heuristic, in compar

ison, is a relatively poor approximation to the optimal policy at short periods, but

becomes better as the periods are longer. The Random and Selective heuristics are

once again poor matches for the optimal policy over the entire experimental range.

34

150r---,---.----,---.----r---.---~--~--__

140

c5 130

...;- 120
~

C,) 110
~
:§ 100
~

~
~
<

.......................

Random~
Sewctive .. + ..

Shortest 4ueue --B
Selfish ..)(...

Index Policy -A
OptimaJ· * ..

50~---L--~----L---~---L--~ ____ L-__ ~ __ ~

10 20 30 40 50 60 70 80 90 100

Figure 3.3: Increasing operative and inoperative periods at server 2

3.3.2 More than two servers

In Figure 3.4, the effect of increasing the arrival rate to three servers is shown. All

servers are identical, with service rates J.Li = 2.2, breakdown rates ""i = 0.1 and repair

rates, ~i = 0.3. This gives a maximum stable arrival rate of A = 1.65, which is appar

ent on the figure.

It is clear that the Random policy is the furthest from optimal over the range,

followed by the Selective policy. This is due to the random nature of their allocation

procedures, not taking into account the queue lengths of the servers. The Shortest

Queue policy is a good fit in this experiment, due to the lack of variation between the

servers' parameters. However, the best policies are the Selfish and Index heuristics,

with little between them.

In the next experiment, there are two identical servers and the third varies in

service rate. The arrival rate is fixed at A = 4, as are the service rates for servers

35

rJ 250

~ 8 200

gp
~ 150

~ 100
'"' ~

<: 50

Random -t7-
Selective .. + ..

Shortest Queue ~
Selfish ..)(...

Index Policy ~

o~------~------~------~------~------~
1 1.2 1.4 1.6 1.8

Figure 3.4: Effect of increasing the arrival rate

1 and 2, at J.Ll = J.L2 = 5, and the breakdown and repair rates of all servers, at

"l1 = "l2 = "l3 = 0.1 and ~1 = "l2 = "l3 = 0.3. The minimum stable value of J.L3 = 6.

The results are illustrated in Figure 3.5.

Across the entire experimental range, the Selfish heuristic is a very close match to

the Optimal policy. At low J.L3, the Shortest Cost heuristic is a good approximation to

the optimal, but as J.L3 increases, it becomes steadily worse until it becomes as poor as

the Selective policy. For the entire range, the Random policy is a poor approximation

to the Optimal.

Figure 3.6 is essentially the same experiment as carried out in Figure 3.3, but with

3 servers. The difference is that the arrival rate is doubled, A = 8, servers 1 and 2

have the same parameters as server 1 did (J.Ll = J.L2 = 5, "l1 = 'TJ2 = 0.1, 6 = 6 = 0.3),

and server 3 has twice the service rate as server 2 did, J.L3 = 50. Once again, the

operative and inoperative periods are increased in ratio, 6 = 3"l3.

36

6 8 10 12

~y:~.
Shortest Queue --Er

Se.lfish ..)(...
Optlmal-A-

....

14 16 18

Figure 3.5: Changing service rate at server 3

20

As expected, the Selfish heuristic is close to the Index policy at small values of

operative and inoperative periods, but becomes a worse fit as the periods increase in

length. The other heuristics also behave in the same manner as before.

The remaining experiments consider situations with a much larger number of

servers (up to 20). Therefore, the steady state distribution of the system is no longer

practical to calculate, and so the distribution as a results of simulation will be used in

its place. In addition, the Optimal Policy can no longer be computed in a reasonable

amount of time and so the heuristic policies will be compared against one another.

Simulation

A simulation of a large number of state transitions can be carried out as follows:

1. Calculate the total instantaneous transition rate, r(S), for the current state, S

(see Equation 2.2).

2. Compute the exponentially distributed amount of time the current state has

37

260r---,---1I---.---,----,---.---.---~--~

240

.;-
~ 220
o

~ 200 ;g
Q.)

~ 180
I-<

~
<

160

..................................

Random~
Se~tive··+ ..

Shortest \..lueue --e
Selfish ..)(...

Index Policy -8-

140,~--~--~----L---~---L--~----L---~ __ ~
10 20 30 40 50 60 70 80 90 100

1...
1/3

Figure 3.6: Increasing operative and inoperative periods at server 3

been occupied, with a mean of r(S).

3. Increment the logged amount of time the current state has been occupied.

4. Randomly determine the new state, Sf according to the system parameters

and the allowed transitions from the current state S, with one-step transition

probabilities under policy u,

qu(S, Sf) = ru(S, Sf)jr(S)

with ru(S, Sf) and r(S) given by 2.1 and 2.2 respectively.

Once the simulation is complete, compute 7l"u(S) by dividing each element of the log

of occupancy by the total elapsed time. Then, calculate the average cost incurred

under policy u per unit time, Cu by

(3.7)

38

500~~'----'----'----'---'r---.----. __ ~

c5 400

i
u 300

i
::t: 200

~
~
< 100

5 6
J.Li

7

Ra.ndom~
Se~tive· .+ ..

Shortest '-lueue ~
Selfish ..)(...

Index Policy ~

8 9

Figure 3.7: Varying service rate of all servers

where ji is the number of jobs in queue i, in state S.

10

The first experiment with large N is to vary the service rate. The arrival rate

is fixed, A = 10, as are the breakdown and repair rates, T} = 0.1, (= 0.3, of all 20

servers. Figure 3.7 illustrates the result.

The static (Random) and semi-static (Selective) heuristics remain unstable at J.L

above the minimum necessary for a balanced system, and as J.L increases, are always

far worse performed than the dynamic heuristics. Between the dynamic heuristics,

the Shortest Queue heuristic is the worse performing, as expected, and there is little

between the Selfish and Index heuristics.

An interesting experiment to try is to increase the number of servers in propor

tion to an increase in arrival rate. The results are illustrated in Figure 3.8, where

up to 20 identical servers, with service rate J.L = 8.8, and operative and inoperative

39

200
+

rJ + Ra.ndom~ 150 Se~tive·· .. .;- Shortest ueue-B-
fS + ~eth")('" U Index o'cy~
~

:§ 100 +
0

::t:

i
~
< 50 +

O~--~---L----L---~ __ ~ ____ L-__ ~ __ ~ __ ~

2 4 6 8 10 12 14 16 18 20
J..L

Figure 3.8: Increasing number of servers, with a constant load

rates, TJi = 0.1, ~i = 0.3 are served by an incoming stream of jobs with arrival rate

>. = l.4N, where N is the number of servers. Therefore, the average system load

should be constant, regardless of the number of servers, at 64%.

It is clear that the Random and Selective heuristics are unable to successfully

deal with this situation, as the average holding costs rise in approximate proportion

to the arrival rate. The remaining heuristics perform much more satisfactorily, with

the Shortest Queue slowly rising with N, presumably due to the increasing number

of jobs routed to inoperative servers. Both the Selfish and Index heuristics do not

significantly change with increasing N, after a small period of adjustment at low N,

indicating that they are routing the incoming jobs in an acceptable manner.

In the remaining experiments, there are two groups of nodes, with the same num

ber of servers in each. All the servers in group 1 have the same J..L, TJ and ~, as do

those in group 2.

40

In Figures 3.9 and 3.10, an interesting variation is considered, where one group of

servers becomes faster, but with longer average inoperative periods. Once again, there

are 20 servers, with one group having fixed service rate, J..Ll = 2.2, and breakdown and

repair rates, XiI = 1/1 = 0.3. The other group has a fixed breakdown rate of ~2 = 0.3,

but the service and repair rate are related by 1J2J..L2 = 0.88.

As each queue is truncated at ji = 100 (i = 1,2, ... ,20)' average holding costs

close to 2, 000 represent parameter values and heuristics for which most of the queues

are saturated for most of the time. From Figure 3.9, it is clear that this condition

applies over the entire range for both the Random and Selective heuristics.

The overall system load of this experiment is not a constant, and is plotted in Fig

ure 3.11. This provides one explanation of why the Random and Selective heuristics

perform very badly. As the system as a whole is highly loaded, static and semi-static

policies will tend to perform badly.

From Figure 3.10, we can see that the Shortest Queue heuristic performs slightly

worse than the Index and Selfish heuristics, with little difference between the latter

two.

In Figure 3.12, we see the effect of increasing the service rate of one groups of

servers, while keeping the effective service rate (taking into account the operative and

inoperative periods) constant. It it clear, once again, that the Random and Selective

policies are greatly suboptimal, with no real difference in their performances.

In Figures 3.13 and 3.14, the service rates for servers in one group are increased,

with the breakdown and repair rates also increasing in proportion. There are 20

servers, in two groups. The total arrival rate is fixed at A = 40. For the group of

servers with fixed parameters, the arrival rate, J..L2 = 2.2, the breakdown rate, 112 = 0.3,

and the repair rate, 6 = 0.9. The system as a whole is stable for J..Ll > 14.

41

2000

1800

rJ 1600

~ 1400
0

o 1200

I 1000
0

::t: 800
Q)

~ 600
~

<: 400

200

0
4 6 8 10

Random~
Sewctive .. + ..

Shortest '-.!ueue -B
Selfish ..)(...

Index Policy ~

12 14
J.L

16 18

Figure 3.9: The effect of increasing service rate and inoperative periods

From the first graph (Figure 3.13), two observations can be easily made, that

there is little difference between the Random and Selective heuristics, and also that

they are both very far from optimal. Considering the detail plot (Figure 3.14), we

can see that the Shortest Queue policy is quite close to optimal over the considered

range, but overall the Selfish heuristic is very close to optimal over the entire range.

In Figure 3.15, the arrival rate is varied. There are 20 servers, in two groups.

The service rates for both groups are the same, J.L = 2.2, and the breakdown and

repair rates are very different between the two groups (~1 = 0.3, 6 = 0.03, "'1 = 0.1,

'T12 = 0.01), giving rise to the operative and inoperative periods being on average 10

times longer for servers in group 2 as compared to those in group 1. The system is

stable for). < 11.

42

600

500
\.5
....
~ 400

0

E 300
0 ::r:
Q,)

l?! 200
~

-<
100

0
4 6 8 10

Shortest Queue ~
Selfish ..)(...

Index Policy ~

12 14 16 18

Figure 3.10: The effect of incre3.'ling service rate and inoperative periods (detail)

The first observation is that the Random and Selective heuristics are much worse

than the other three, with the Selective heuristic slightly outperforming the Random,

due to the fact that it will not route to inoperative servers when there are operative

ones for incoming jobs to go to. The dynamic policies are in close agreement, with the

Shortest Queue heuristic being slightly the worst, 3.'l it will route to the server with

the shortest queue, even if it is inoperative, the effect of which will be exacerbated by

the possibility that that server is in group 2, and hence likely to remain inoperative

for a significant amount of time.

3.4 Conclusions

In this chapter, a number of heuristic policies for routing jobs between servers have

been evaluated, and two policies have been found which consistently perform close to

the optimal policy in experiments where there are a small number of servers.

43

105

100

95
]
.s

90

85

80
4 6 8 10 12 14 16 18

J.l

Figure 3.11: The effect of increasing service rate and inoperative periods (System
load)

In addition, these policies always perform as well as all other policies under con

sideration, and usually perform much better. The Index Policy requires an initial

set-up phase, and storage of the form N M, where N is the number of servers, and

M is the desired queue truncation size. Therefore, it is suitable for systems where

the configuration does not vary very often, and which has sufficient storage space

to store the indices. The benefit is the ease of determining which server to route

an incoming job to. The Selfish Policy requires no set-up time, and no additional

storage, other than the system state and parameters, but must compute the expected

non-discounted cost for each server, adding a significant overhead.

44

50r-----rl-------,-------,------.-----~

\.5 40

20 40
ILl

Random ~
Sekctive .. + ..

Shortest l.lueue --B
Selfish ..)(0 ••

Index Policy ~

60 80 100

Figure 3.12: The effect of increasing service rate, while keeping effective service rate
constant

:0

~- 1500
~
o
bO

~ 1000

Q)

~
I-<
~ 500

-<

Random ~
Selective .. + ..

Shortest ~ueue --B
Selfish ..)(...

Index Policy -A-

o~~~~~~~~~~~
13 14 15 16 17 18 19

ILl

Figure 3.13: Effect of increasing service rate and breakdown rates, in proportion

45

c'" 400
....,
'f~

Cl

U 300
b.O
>=l :.a

"0
:r:: 200

~
I-<

~ -r: 100

Shortest Queue -ft
Selfish ..)(...

Index Policy ~

o ~ ____ -L ______ ~ ____ -L ______ L-____ -L ____ ~ ____ ~

13 14 15 16 17 18 19

Figure 3,14: Effect of increasing service rate and breakdown rMes. ill proportion
(detail)

600

500
. '" 'v Random ---t-
+> Se~ctive
[f] 400 Shortest ueue-ft-0

C) ~elfish .. K ..

b.O Index 0 icy ~
>=l :.a 300

"0 :\" :r:: 't'
<l)

\

~ 200
I-<
<l)

::-
<t:

100

0
10 :2 6 8

.A

Figure 3.15: Increasing Arrival Rate

..16

Chapter 4

Two Servers with One-Way
Transfers

4.1 Motivation

The context of this chapter is once again the need to balance the offered load between

servers in the system. In this case the jobs are directly submitted to one of the senTrS

in the system, where it then either waits to commence service, or transfers to another

from where it expects to complete service sooner.

Posed in its full generality, this is a complex problem, which is unlikely to yield

an exact and explicit solution. This chapter considers a simpler problem of the same

forlll, where transfers are only permitted from server 1 to server 2. This systeIll can

then \)(' solved exactly. An approximate solution approach is also developed. which

is evaluated and found to be a good approximation to the exact solution.

4.2 Model

Jobs arrive into single-server, unbounded queues, 1 and 2. in independent Poisson

S(.]THlllS with rates AI, and A2, respectively. The required sen-ice times at the two

servers arc indqwIldcIlL exponentially distributed random \-ariables with means 1/111,

and 1//12. n'sp('ctiwl~'_ Each job entering queue 1 is assigned, on arriyal. an inde

pendent tinH'out period, which is distributed exponentially, with mean 1/'IjJ. Any job

whose timeout period expires before it commences services is instantaneously trans

ferred to server 2. Therefore, if there are i jobs in queue 1 (i > 1), the rate of transfers

to queue 2 is (i - 1)"p. The system is illustrated in Figure 4.1.

Define L1 and L2 to be the steady state numbers of jobs in queue 1 and 2, respec-

A1 j1
1'1 , I I I I I 10

A2
!"p i2

, I I I I 10 1'2

Figure 4.1: Two queues with deadline-driven transfers

tively. Then, we split L2 into L21 and L 22 , where L21 is the average number of jobs

in queue 2 that were transferred from queue 1, and L22 is the average number of jobs

in queue 2 that originally arrived at queue 2. These three properties are the system

performance measures. The optimization problem consists of finding the value of "p

that minimizes a cost function of the form

(4.1)

where C1, C2 and C3 are given holding costs. For example, if C1 = C2 = C3 = 1, then the

objective is to minimize the total average number of jobs in the system. If C1 = C2 = 1

and C3 = 0, then we want to minimize the average number of jobs originally submitted

to queue 1.

To determine the performance measures, it is necessary to find the joint distri

bution of the two queue sizes. Let Pi,j be the steady-state probability that there

are i jobs in queue 1, and j jobs in queue 2. These probabilities satisfy the balance

48

equations:

[AI + A2 + JLl t5(i > 0) + JL2t5(j > 0) + (i - 1)1/Jt5(i > O)]Pi,j
(4.2)

where all probabilities with a negative index are 0 by definition. The boolean indica

tor function, 6(B) is 1 if B is true, 0 otherwise.

Introducing the generating function

00 00

g(x, y) = L LPi,jXiyi , (4.3)
i=O j=O

the balance equations can be re-written as

[AI(1- x) + A2(1 - y) + JLI{1 - ~) + JL2 (1 - ~) - t/I (1 - ~)] g{x, y)

[(1) (Y)] (1) ag{x,y) = JLI 1 -;; - t/I 1 - ;; g(O, y) + JL2 1 - Y g{x,O) + t/I(y - x) ax .

(4.4)
This equation, together with the fact that g(x, y) is an analytic function in the interior

of the unit disc which satisfies the normalizing condition,

g(l, 1) = 1 , (4.5)

should in principle determine g(x, y) and hence the joint distribution ofthe two queue

sizes. Unfortunately we have not been able to find the solution.

However, useful information can be generated from 4.4. Setting y = 1 gives an

equation for the marginal distribution of queue 1:

ag(x,l)
(AI X + t/I - JLI) g(x, 1) + (JLl - t/I) Po,. = t/lx ax ' (4.6)

where Po,. = g(O,I) is the marginal probability that queue 1 is empty. This is an

ordinary first-order linear differential equation, which can be solved in closed form.

49

Defining u(x) = g(x, 1), we can re-write equation 4.6 as

'() [J.lI - 'I/J AI] ('I/J - J.lI U X + ---- ux)+--Po.=O
'l/Jx 'I/J 'l/Jx' (4.7)

However, it should be emphasized that a non-negative solution exists for all values

of the parameters, as long as 'I/J > O. Hence, queue 1 is stable whenever 'I/J > 0 (this

is also intuitively obvious, since the job transfer mechanism prevents queue 1 from

growing too large). The probability Po, is determined from the condition that g{x, 1)

is finite at x = 0; this gives

(4.8)

Alternatively, the marginal probabilities Pi,. can be obtained numerically from the

Birth-and-Death equation for queue 1 (see [2]):

AIPi, = (J.ll + i'I/J)Pi+l, i = 0,1, ... , (4.9)

together with the normalizing equation.

The performance measure Ll can be expressed in terms of Po" Setting x = 1 in

(4.6) gives

(4.1O)

This yields a finite value for L1, provided that 'I/J > O.

Next, we find the stability condition for queue 2. Consider the distribution of the

total number of jobs in the system, whose generating function is obtained by setting

x = y in (4.4). After simplification, this gives

50

Now set x = 1 in (4.11):

(4.12)

Since queue 2 is stable if, and only if, the probability that it is empty is non-zero, i.e.

p"o > 0, we have the following ergodicity condition:

(4.13)

This condition depends on the value of 1/J through Po,.. When (4.13) is satisfied, the

performance measures L21 and L22 are finite.

It is worth pointing out, for future reference, that the difference, '\1,2, between the

arrival rate into queue 1 and the service completion rate at server 1,

(4.14)

represents the average number of jobs transferred from queue 1 to queue 2 per unit

time. That 'internal' traffic rate is strictly positive when 1/J > O.

It is possible to express L21 and L22 in terms of the total average number of jobs

in queue 2, L2• Note that, according to the PASTA property of the Poisson process,

a job arriving externally into queue 2 sees, on the average, L2 jobs there, excluding

itself (this is not true for the jobs transferring from queue 1). Hence, the average

response time of an external arrival into queue 2 is (L2 + 1)/#2. By Little's theorem,

the average number of jobs in queue 2 that arrived into it from outside is equal to

(4.15)

The average number of jobs in queue 2 that arrived into it from queue 1 is therefore

given by
'\2 '\2

L21 = L2 - L22 = L2(1 - -) - - .
#2 #2

(4.16)

Thus, the problem reduces to being able to compute L2 ·

51

4.3 Exact and approximate solutions

Since queue 1 is always stable, it can always be truncated without a significant loss

of accuracy. Choose an arbitrary error bound, to > O. Using (4.8) and (4.9), find an

integer N such that
N

LPi, > 1- to. (4.17)
i=O

That is always possible. Then, if queue 1 is truncated at threshold N, i.e. new

arrivals are not allowed to join it when there are N jobs present, only states with a

total probability less than f will become unreachable.

With that truncation, queue 2 can be treated as an unbounded queue whose

instantaneous transition rates are modulated by a finite state Markovian environment

(the size of queue 1). It can then be solved by spectral expansion [14, 15]. Define the

row vectors of probabilities corresponding to states with j jobs in queue 2:

Vj = (PO,j,P1,j, ... ,PN,j) ; j = 0,1, (4.18)

Defining A as the transition matrix of purely lateral transitions

0).1 0 0

J.L1 0).1 0

0 J.L1 0 (4.19)

).1

0 0 J.L1 0

B as the transition matrix of one-step upwards transitions

).2 0 0 0

0).2 0 0

0 1/J).2 0 (4.20)

0

0 0 (N - 1)1/J).2

52

and C as the transition matrix of one-step downwards transitions

JL2 0 0 0

0 JL2 0 0

0 0 JL2 0 (4.21)

0

0 0 0 JL2

Let DA, DB and DC be diagonal matrices, defined by their diagonal elements as,

N N N

DA(i,i) = :LA(i,k); DB(i,i) = :LB(i,k); DC(i,i) = :LC(i,k). (4.22)
k=O k=O k=O

Then, the solution of the balance equations (4.2) has the form

N+l

Vj = :L D:kUkx{ ; j = 0,1, ... , (4.23)
k=l

where Xk are the eigenvalues of a matrix polynomial, Q, in the interior of the unit

disc, Uk are the corresponding left eigenvectors, and D:k are some (possibly complex)

constants, where

(4.24)

The unknown coefficients D:k are determined from the balance equations for j = 0

(which have not been used in the matrix polynomial) and the normalizing equation.

Having evaluated the spectral expansion solution, the marginal distribution of the

number of jobs in queue 2 is given by

N+1

p.,j = :L D:k(Uke)x{ ; j = 0,1, ... , (4.25)
k=l

where e is a column vector with (N + 1) elements, all of them equal to 1. The average

53

number of jobs in queue 2 is equal to

(4.26)

All performance measures are now available and can be computed for different

values of the control variable, 1jJ, in order to find the optimum. However, although

the numerical solution is not difficult to implement, is fast, and yield accurate results

in most cases of interest, there are parameter values which cause numerical problems.

In particular, when the truncation threshold N is large, and 1jJ is large, the matrix

whose eigenvalues need to be computed tends to become ill-conditioned.

To cope with these difficulties, and to provide a 'rough-and-ready' alternative

to the full solution, we propose a simple approximation which requires almost no

computational effort.

Poisson approximation

Assume that the instants of job transfers from queue 1 to queue 2 form a Poisson

process, with rate given by (4.14). Then queue 2 can be treated as an isolated M/M/1

queue with arrival rate A2+Al,2 and service rate J1.2. That queue is stable when (4.13)

is satisfied, and its average queue size is equal to

(4.27)

Intuitively, it can be expected that the Poisson approximation will underestimate

the average size of queue 2. This is because the assumption of a constant rate of

transfer eliminates some of the variability of the transfer process. The smaller the

value of 1jJ, the less bursty the transfers and therefore the more accurate the approx

imation will be.

54

4.4 Results

The first experiment consists of evaluating the cost function, C = Ll + ~1 + Ln

(total average number of jobs in the system), for different values of 1/1, while keeping

the arrival and service rates fixed. The offered loads at queue 1 and queue 2 are 0.9

and 0.5, respectively (AI = 2.7, A2 = 1, JLl = 3, JL2 = 2). Therefore, we can expect

that performance would benefit from some transfers.

In Figure 4.2, the exact values of the cost function are compared to those obtained

from the Poisson approximation. It is clear that the Poisson approximation is quite

accurate. At low values of 1/1, it is almost exact, but the expected underestimation

becomes more apparent as 1/1 increases. The optimal value of 1/1 is approximately 0.2,

according to the exact solution, which is small compared to the service rate at server

1. The optimum value of 1/1 obtained from the Poisson approximation is 0.25, which

is not too dissimilar to the exact value.

Exact ~
Poisson··+· .

+ +.+.+ + +
+.+ + ++ .. '

0.25 0.3 0.35 0.4 0.45 0.5

1/1

Figure 4.2: Cost as a function of 1/1, C = Ll + ~l + ~2

55

The error comes from the assumption in the Poisson approximation that the trans

fer rate is constant relative to the length of queue 1, which is not true. Therefore,

as noted above the Poisson approximation will tend to underestimate the length of

queue 2, and hence will predict a larger than ideal 'optimal' value of 1/J.

In Figure 4.3, the same experiment is carried out once more, except that this

time, the cost function is the average number of jobs originally arriving into queue

1, C = Ll + L21 • In this case, as we are not considering the average number of jobs

which originally arrived into queue 2, we would expect the optimal value of 1/J to be

greater than before. For this experiment, the exact solution produces an optimal

value of 1/J of approximately 0.35. As before, the Poisson approximation predicts an

optimal1/J that is slightly larger, at 0.4.

7.5

7

6.5

6

\..) 5.5

.... 5 Cll
0

0 4.5

4

3.5

3

2.5
0

Exact ~
Poisson··+ .

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1/J

Figure 4.3: Cost as a function of 1/J, C = Ll + ~1

Another noticeable difference to the previous figure, is the much shallower rise in

C with 1/J above optimal. This is not unexpected, as the effect of transferring too

56

many jobs from queue 1 to queue 2 will mostly be to increase the amount of time

incoming jobs to queue 2 will have to wait.

Figures 4.4 and 4.5 illustrate an experiment where Al varies, where the cost func

tion is the total average number of jobs in the system. The static parameters are the

arrival rate into queue 2, A2 = 1, and the service rates of queues 1, J1.1 = 3, and 2,

J1.2 = 2.

0.25

0.2

~ 0.15
(il

.§
-+"
~

0.1 0

0.05

0
0

Exact --+
Poisson··+· .

0.5 1

+

1.5

+

+

2

+
+

2.5

+
+

+
+

3

Figure 4.4: Optimal'I/J as a function of AI, C = Ll + L21 + ~2

3.5

Figure 4.4 shows the value of 'I/J which each of the solvers calculate to be the

optimal value. We can easily see that as before, the optimal values of 'I/J computed

by each solver differ, in this case by a maximum of approximately 0.7. At the point

Al = 2.7, we can see the the difference in values of'I/J is around 0.7, which is the

same value as the separation between minima observed in Figure 4.2. Both solvers

exhibit the same behaviour, with zero transfers for a low arrival rate, rising to a maxi

mum at A ~ 2.5 and then decreasing, as the system as a whole becomes highly loaded.

57

Figure 4.5: Cost as a function of A!, C = Ll + L21 + L22

In Figure 4.5, the same experiment is carried out, but now the cost function,

C = Ll + L21 + L 22 , is evaluated for each of the solvers. From this, it can be seen

that in spite of the differing values of 'If;, the exact cost of the Poisson approximation

is indistinguishable from the cost of using the value of 'If; computed with the exact

solver, until the system as a whole becomes close to saturation.

When the system becomes close to saturation, the effect of the discrepancy be

tween the optimal value of 'If; and that calculated by the approximation becomes

greater, and the percentage error in achieved costs increases towards saturation. The

same behaviour is observed in the case where the cost function is the average number

of jobs originally submitted to queue 1, C = Ll = L 21 .

In Figures 4.6 and 4.7, we can see the benefit that an optimal value of 'If; has upon

the cost function. The cost values achievable by the optimal policy are compared

58

with transferring too few jobs, 'IjJ = 0, or too many, 'IjJ = ILl. Note that setting 'IjJ = ILl

makes queue 1 behave as an M/M/oo queue.

20r----,-----.----,-----,----. __ ~~--~

15

~

tilO
o

C,)

5

Exact solution tOptimal Wj ~
Poisson approx. Optimal i/J .. + ..

Exact sol~ ion ('IjJ = 0 -B
Exact solutIOn ('I/J = ILl ..)(...

x

O~--~-----L----~--__ L_ __ ~ ____ _L __ ~

o 0.5 1 1.5 2 2.5 3 3.5

Figure 4.6: The benefits of optimization, C = L1 + L21 + L22

Once again, the arrival rate into server 1, >'1 is varied, and the other system pa

rameters are held constant.

As expected, when the offered load is low, there is little benefit to optimizing

the transfer rate. However, as the load increases, a well-chosen 'IjJ can make a big

difference. Under the policy 'IjJ = 0, queue 1 saturates at >'1 = 3; when 'IjJ = JJb

queue 2 saturates at approximately >'1 = 2.9. Alternatively, using a well-chosen 'IjJ

(either the optimal value, or the value obtained using the Poisson approximation)

keeps both queues stable for offered loads of up to approximately >'1 = 3.99. This

cannot be significantly improved upon, as >'2 = 1, and the total available service

capacity, JJl + JL2 = 5. Note once again that the costs of the policy suggested by the

Poisson approximation are almost optimal over the entire range of >'1, despite the

59

20~---'-----'----'-----r----,--~~ __ ~

15

u
~ 10
o

U

5

Exact solution ~OPtimal Wj-&
Poisson approx. Optimal W .. +

Exact solu. ion (W = 0 -e
Exact solutIOn (ijJ = ILl ..)(...

o .. ~ ~~~~--~~
0.5 1 1.5 2 2.5 3 3.5

Figure 4.7: The benefits of optimization, C = L1 + L21

overestimation of the optimal 1/).

4.5 Conclusions

This chapter has shown that a simple approximation is a good fit for the simple

two-server system with transfers, when compared with the exact solution obtained

by solving the balance equations using the spectral expansion technique.

The approximation is a ver,V good fit across most s,VstC'1l1 parameters. The cxccp-

tion is when the system is highly loaded. In this case, the discrepancy between the

optimal transfer rate and that obtained from the approximation causes the optimal

polic.\! to noticeably out-perform the Poisson approximation.

It. is apparent that, for most s.\·stem parameters, the simple arld computationall)'

60

less intensive approximation will perform adequately for computing a good value for

a suggested transfer rate in this simple two server case.

This work will be expanded on in the next chapter where systems of servers with

transfers will be considered which are not explicitly solvable.

61

Chapter 5

Servers with General Job 'fransfers

5.1 Motivation

This chapter will build upon the model considered in the previous cliaplPr, but in

stead of transfers only allowed in one direction between two servers, tliey are now

permitted between any servers in a system of many more than two servers.

This leads to the conclusion that the system will not be exactly solvable and so

an iterative approximation technique will be used to find the distribution of jobs in

the system a.s a whole, alld hence evaluate a cost function.

5.2 Model Definition

Suppose now that the system consists of N servers and queues, numbered 1.:2 ,\,.

Jobs arrive externally into queue i in an independent Poisson stream with rate). •.

The required servin' times at server i are distributed exponentially wit h mean 1/ J!i.

Each job joining queue oi, whether e}..'ternally or from another queue, is assigned

an independent time-out period which is distributed exponentially with mean 1/1;J,.

Any job whose time-out period expires before it reaches the server is instantaneously

transferred from queue i to queue j with probability qi,j' The system is illustrated in

figure 5.1.

6:2

_"-=-1 ----, I 111110-1'-1--
r-----------...flPl.:

2
I'l/Jl

I

1 11110

Iw
'----__ ---'---Il.........J1 I 0

Figure 5.1: 3 servers with job transfers

A matrix of transfer probabilities, Q = {qi,j }i'j=1, all of whose row sums are equal

to 1, defines a 'transfer policy' for the system. We consider policies which transfer

from queue i either all jobs that time out in it, or none of them. In other words, either

qi,i = 0 (and the other probabilities in row i add up to 1), or qi,i = 1 (and qij = 0

for j =I i; in that case, the parameter 'l/Ji is irrelevant and can be replaced by 0). For

the moment, the transfer policy is assumed to be given; later we shall examine the

effects of different transfer policies on the performance of the system.

When jobs are transferred in all directions, no queue can be analyzed indepen

dently of the others. An exact solution for the general model, even of the sort de

scribed in Section 4.3, is unattainable. We therefore seek an acceptable approxima

tion.

Denote by Pi,n the steady-state marginal probability that there are n jobs in queue

i (including the one in service, if any). Let 'Yi be the total arrival rate into queue

i (it includes the external arrivals and the transfers from other queues). Since jobs

complete service in queue i at the rate of l'i(l - Pi,O), the rate at which jobs are

transferred away from queue i is equal to 'Yi - J.Li(1 - Pi,O) (note that if qi,i = 1, then

'Yi = J.l.i(l - Pi,O), and that jobs may be transferred even if they have already been

transferred from another server). Hence, the internal traffic rate from queue i to

63

queue j, "Ii,j, is given by

(5.1)

Therefore, the total arrival rates, "Ii, satisfy the following set of traffic equations:

N N N

"Ii = Ai + L "Ij,; = Ai + L "Ijqj,i - L J.Lj(l - Pj,O)Qj,i . (5.2)
j=l j=l j=l

Unfortunately, we cannot use (5.2) to determine "Ii exactly. This is because the

probabilities Pj,O are unknown; they depend in a non-trivial way on all system param

eters. However, an approximate solution can be obtained as follows:

1. Assume that the process of arrivals into queue i, merging external and internal

arrivals, is Poisson. Make initial guesses for the rates "Ii and 'YiJ, choosing them

to be underestimates; e.g. "Ii = Ai, "Ii,j = 0, (i,j = 1,2, ... , N).

2. For each i = 1,2, ... , N do the following:

(a) treating queue i in isolation, with arrival rate "Ii, service rate J.L; and reneg

ing rate ?/!i(1 - q;,i), compute Pi,O according to (4.8) or (2.13);

(b) for each j = 1,2, ... , N, compute 'Yi,j according to (5.1) and update 'Yi

according to (5.2).

3. Iterate step 2 until the successive estimates are sufficiently close (e.g., until the

sum of the absolute values of the differences, l'Yi(next) - "Ii(last)l, is less than

some small €).

The above solution will be referred to as the 'Poisson approximation'. Whenever

the system is stable, the iterations have been observed to converge. While having no

proof, we can offer the following intuitive argument to explain why this should be so:

each application of step 2 tends to increase the internal traffic between queues, and

hence the total arrival rates. Thus, the sequence of successive estimates is monotone,

and since it is bounded in a stable system, it converges to the fixed point of equations

64

(5.2).

The computed values "Ii and Pi,O yield, according to (4.1O), estimates for the

average number of jobs in queue i, Li . In this general model, there are no expressions

for the numbers of jobs in queue i that originated in queue j. The overall system

performance will be measured by a cost function, C, which takes into account queue

sizes and internal traffic:

N N N

C = LCiLi + LLCi,j"liJ, (5.3)
i=1 i=1 j=1

where the coefficients Ci and Ci,j reflect the job holding costs in queue i per unit time,

and the job transfer costs from queue i to queue j, respectively.

The reason for including the second term in (5.3) is as follows. If jobs can be

transferred from queue i to queue j and also from queue j to queue i, and if those

transfers do not incur costs, then the best time-out intervals in both queues are O.

Instantaneous transfers away from busy servers have the effect of creating a common

queue for the two servers, which is the most efficient utilization of resources. However,

in practice transfers do incur costs; the cost function should penalize not only long

queues but also large numbers of transfers.

Having a computational procedure that determines C for a given set of parameters,

one can address the problem of choosing the transfer policy Q, and the time-out rates

1/Ji, so as to optimize the system performance. Some results along those lines are

reported in the next section, where the performance of several heuristic policies are

evaluated and compared.

65

5.3 Policies

In principle, if all parameters are known, one could search through the set of aU

feasible matrices Q (or rather a reasonably dense finite subset) and then through aU

values of ~i (again, a suitable finite subset), in order to find the best policy. We have

done this for a model with 3 queues, and where applicable is plotted as the Optimal

policy, as it determines the best of all possible policies. However, the brute force

approach is generally impractical, not only because of the size of the search space

but also because of the limited information available. Thus, it may be reasonable

to assume that server i knows the speeds of the other servers (parameters J.Li), but

not the corresponding arrival rates (Ai), and hence defining heuristic transfer policies.

In general, the best transfer rates are determined by computing the cost function:

N N N

C = Ch L Li + Ct L L 'Yi,i . (5.4)
i=1 i=1 j=1

where Ch is the holding cost per job, and Ct is the transfer cost, which we have deter

mined should be 5 - 10 times larger than Ch.

In practice, as the possible values of 'l/Ji are infinite, the cost function is evaluated

for a set of values within a certain range, using the Poisson approximation method,

described in Section 5.2, and choosing the rates that give the smallest cost. This

is simplified by the observed behaviour of the cost as 'l/J is varied (see, for example,

Figure 4.2, from which it is clear it is a convex function).

We have evaluated the performance of a few simple and easily implementable

heuristic policies which do not require knowledge of arrival rates. Their definitions

are as follows:

1. No transfers: The matrix Q is the unit matrix of size N. Alternatively, all

transfer rates are O.

66

2. Uniform: Jobs are transferred from queue i to queue j (j =F i) with probability

l/(N -1).

3. Speed-weighted: Jobs are transferred from queue i to queue j (j =F i) with

probability proportional to I£j (normalized 80 that the ith row-sum of Q is 1).

4. Fastest other: Number the queues in non-increasing order of service rates.

Queues 2,3, ... N send their transfers to queue 1; those from queue 1 go to

queue 2.

5. Next faster: Number the queues in non-increasing order of service rates. Jobs

from queue i are transferred to queue i-I (i> 1); there are no transfers from

queue 1.

6. Equal load: This policy does not employ time-outs, but achieves equal loads at

all queues by transferring jobs at moments of arrival. More precisely, every job

arriving into queue i is sent to queue j with probability I£jl(1£1 + JL2 + ... + ItN);

that decision involves an immediate transfer if j =F i.

7. Optimal: As described in the discussion in this section.

In the following experiments, it is assumed that the holding costs at all queues are

equal; the transfer costs between any two queues are also equal, but grater than the

holding costs by a factor of 5. Thus, the performance of the system is measured by

the cost function:
N N N

C = L L; + 5 L L 1';,j . (5.5)
;=1 ;=1 j=1

Under policies 1 and 6, the model consists of N independent MIMl1 queues.

5.4 Results

Figure 5.2 illustrates the benefit obtained by applying job timeouts and hence tran.s-

fers in both directions between two queues. In this experiment, the external arrival

rate into queue 1 is varied, while holding the arrival rate into queue 2 constant,

67

~2 = 1.5, as well as the service rate of each queue, JLi = 1.8. In this figure, the

vertical bar at ~l = 1.5 represents the point at which the most highly loaded server

changes from being server 2 (at ~1 < 1.5) and becomes server 1 (at ~1 > 1.5).

At low ~l. there is little difference between only transferring in one direction, and

transferring in both. This is due to the relatively large available service capacity,

so when transfers of jobs are permitted from queue 1 to queue 2, very few jobs will

timeout and transfer. However, as ~1 becomes larger, the average queue length at

queue 1 will increase, and so the optimal behaviour will be to transfer jobs between

queues in both directions.

20

18

cJ 16
....
(J)

0 14 0
b.O

;@ 12
'0
::r: 10

<1.l

~
I-< 8
~

<: 6

Poisson (2 way) -+
Poisson (high load-low loaa) . + ..

+

4~~~~~~~~ __ ~~~
1.2 1.4 1.6 1.8 o 0.2 0.4 0.6 0.8 1

Figure 5.2: The benefits of two-way transfers

The next figure (5.3) illustrates the optimal values of 1/Ji obtained using the Pois

son approximation, with the same system parameters as before. As expected, when

the external arrival rate into server 1)1, is low, there are no transfers from server 1

to server 2, and the transfer rate from server 2 to server 1 is high. As ~1 increases,

68

the optimal transfer rate from server 2 decreases as the average queue length of server

1 increases.

When the external arrival rate into server 1 is the same as that into server 2 ,
the optimal transfer rate from each server is the same, due to all parameters of each

server being equal. When the overall system load is greater than :::::: 0.75, the transfer

rate of each server is above zero.

0.25 r--,---..,.---,----,----.---,r--.----r--------,

Figure 5.3: Optimal transfer rates

In Figure 5.4, the effect of varying the arrival rate into one server, while keeping

the parameters of the remaining servers constant (there are 3 servers in total). The

arrival rates into servers 2 and 3 are A2 = 0.2 and A3 = 0.8 and the arrival rates are

J.tl = 1.5, J.t2 = 1.2 and J.t3 = 1.0.

As expected, the No Reneging policy performs badly across the full parameter

range. In general, the Equal Load policy is far from optimal, as jobs are transferred

69

20

18

16

rJ 14
....
CI.l 12 0

\.)
Q)

10 l?t
r-.

~
< 8

6 . * .
4

2
0 0.2

. * . . * .

0.4

Uniform ~
Fastest Otl1e:r .. + ..

Speed weighted -B
Next faster ..)(...

N~~~~~~.
Optimal-

*.
. * .

. *.
. * .

0.6 0.8 1

Figure 5.4: Effect of varying arrival rate

1.2 1.4

on arrival to ensure that the applied loads on each server is constant, even if there

is free capacity at the server to which it originally arrived. At low values of All the

Just Faster policy is close to optimal. However, once the arrival rate into server 1 is

over 1, it rapidly becomes further from optimal. This is due to the policy behaviour,

where jobs are transferred from server 1 ~ 2, but jobs can be also be transferred from

3 ~ 1, and also 2 ~ 1 (In fact, it starts to become worse than Optimal at :::::: 0.5, but

the effect is small until :::::: 1).

The All Others and Probabilistic policies are equally close to optimal across the

whole range of the experiment, and are both only slightly outperformed by the Fastest

Other policy which is about 50% closer to optimal.

Figure 5.5 shows the effect of increasing the number of servers in each of two

groups. The arrival rates into group 1 servers, Al = 1.0, and the arrival rate into

group 2 servers, A2 = 1.5, are kept constant, as are the service rates of both groups,

70

J.Ll = 1.4 and J.L2 = 1.6.

When N = 2, the policies split into two, with the Equal Load, No Reneging and

Just Faster policies in the worst performing group, with Equal Load performing just

better than the other two, which remain together across the whole experiment. As

N increases, the Equal Load policy becomes gradually much worse performing than

the others in its group, due to the inability to take advantage of variations in queue

length, after the arrival of the jobs.

In the lower group of policies, the Fastest Other policy gradually worsens, com

pared to the rest of the group, but never to the extent that it meets the worse

performing group of policies. The All Others and Probabilistic policies produce the

same average costs over the whole range of the experiment, and are overall the best

performing.

90~----~----~------,------,------,-----,

80

70

cJ 60

~ 50 o
Q)

~ 40
~
~ 30

20

Uniform -&
Fastest Othet .. + ..

Speed weighted -e
Next faster ..)(...

NQ trapefere ~
J:;qua load· * .. *

+

OL2----~3------~4------L5----~6~----~7----~8

Servers

Figure 5.5: The effect of increasing group size

For all tested examples for N > 3, the same general behaviour was observed, with

71

Speed Weighted and Uniform both performing well, and increasingly better than all

other policies. When the number of servers is fixed at a large (N > 3) fixed value, and

one of the system parameters is varied as above, the Fastest Other policy performs

worse than the noted best pair of policies. This is due to their ability to transfer to

any other server, whereas the Fastest Other policy only ever transfers jobs to one of

two servers.

5.5 Conclusions

For systems of servers with general transfers, an iterative approximation approach

was used to find the cost of various transfer policies, according to a cost function

which includes both holding cost and cost of job transfers. All these policies were

simple in terms both of their description and implementation and several were found

to perform well in comparison to the best policy found by a brute force search ap

proach.

It was observed that policies which performed well over a broad range of system

parameters and sizes had the general characteristic of transferring jobs to any other

server, which prevents anyone queue from growing large while others have fewer or

no jobs waiting.

72

Chapter 6

Unreliable Servers with Job
Transfers

6.1 Motivation

In service provisioning systems such as a Compu! ing Grid, it is likely that senws

will undergo periods where they are unavailable to s('[vi('(' johs for the s\'81 (,ilL In the

case of transfer-based systems as discussed over the last two chapters, if the expected

duration of the unavailable period is low it may allow a job to complete sen'ice earlier

(or give it a. smaller expected cost) if it waits for the period to expire rather than

transferring to another server in the system.

The system in this chapter is of this form. Once again, the distribution of jobs in

the system is evaluated using an iterative approximation approach, and then a cost

function is evaluated to allow transfer policies to be compared.

6.2 Model Definition

The system consists of N sern'rs. each with a separate queue. Jobs arrive externally

into queues i in an independent Poisson stream with rate Ai i = 1,2, .. ,. S, The

servin' times at server i are independent, exponentiall.\' distributed random variables

with mean lip" Each server goes through alternating independent periods of being

available and unavailable, or operative and inoperatiw. ""e shall call the end points of

73

those periods 'breakdowns' and 'repairs', respectively, although in practice the main

reason for the occurrence of periods of unavailability is that the server is occupied

with other, higher priority tasks. The operative and inoperative periods for server i

are distributed exponentially with means 1/l;.i and I/TJ" respectively.

Whenever a queue is not empty and its server is available, one of the jobs in it

is being served. Services interrupted by breakdowns are eventually resumed from

the point of interruption, but not necessarily on the same server. Each job in queue

i which is not being served is assigned an independent time-out period which is

distributed exponentially with mean l/,l/Ji,o if the server is inoperative, and mean

1/1/Ji,1 if the server is operative. Any job whose time-out period expires before it

reaches the server is instantaneously transferred to another queue, determined by the

transfer policy adopted (e.g., the destination queue may be chosen at random). A

three-server system is illustrated in Figure 6.1.

81 = (jb bl) . I I I I I 10
1/J~,1 l$l:~ s, ~ (j" b,)~ 1/J2,1 . I I I I I
1/Jg,2 11/Jg,3
1/JJ,2 1/JJ,3 83 = (j3, ba) 0

I I I

Figure 6.1: Unreliable Servers with Job Transfers

Note that if there are j > 0 jobs in queue i, then the instantaneous rate of

transfers from that queue is (j - l)1/Ji,1 if the server is operative (since one of the jobs

is being served), and j1/J"o if the server is inoperative. Also, if the server changes state

from operative to inoperative or vice versa, then all waiting jobs have their time-out

intervals re-sampled with the new mean.

Denote by Li the steady state average numbers of jobs in queue i. Let also (JiJ be

the steady state average number of transfers from queue i to queue j per unit time.

74

Suppose that it costs Cj to keep a job in queue i per unit time, and it costs Cj,j to

transfer a job from queue i to queue j. Then, the total average cost per unit time in

the steady state is given by

N N

C = ""' r''£' + ""' r' . . [3 ... ~ ">. ~ ">,] .,] (6.1)
i=l i,;=l

The ergodicity condition for this system is, in general, unknown. What we can

say is that server i is operative for a fraction TJd(~i +TJi) ofthe time. Hence, the total

available service capacity, J..L, is equal to

N

""' J..LiTJi J..L=~--.
i=l ~i + TJi

(6.2)

Clearly, the total external arrival rate must be lower than the available service

capacity:

(6.3)

However, although this condition is necessary for stability, it may not be sufficient.

The load-balancing mechanism using job transfers does not preclude situations where

some servers are operative and idle, while others have more than one job in their

queues.

The performance of the system is controlled by means of the time-out intervals,

and also the job transfer policy. The objective is to choose those parameters so as

to minimize the cost function (6.1). In order to do that, we need to provide solution

methods for determining the performance measures Li and Pi';' That will be the aim

of sections 6.3 and 6.4.

6.3 An isolated queue

Consider a single queue with Poisson input, intermittently available server, and time

outs resulting in departures (reneging). Omitting the queue index, the parameters

75

are ~ (arrival rate), IL (service rate), ~ (breakdown rate), TJ (repair rate), 1/Jo (reneging

rate during inoperative periods) and 1/;1 (reneging rate during operative periods).

The system state is described by a pair of integers, (i,j), where j = 0, I, ... is the

number of jobs present and i = 0 if the server is inoperative, i = 1 if it is operative.

Denote by Pi,j the equilibrium probability of state (i, j). These probabilities satisfy

the following set of balance equations.

{~ + j1/;o + TJ)Po,j = ~PO,j-1 + (j + 1)1/;oPo,j+1 + ~P1,j , (6.4)

[~+ IL6(j > 0) + (j - 1)1/;1 + ~lp1,i = ~P1,j-1 + (IL + j1/;t)P1,j+1 + TJPoJ , (6.5)

where all probabilities with a negative index are 0 by definition; the Boolean indicator

function, 6{B), is 1 if B is true, 0 otherwise.

It is convenient to introduce the generating functions

00

go{z) = LPO,jzj
i=O

00

gl{Z) = LP1JZ
j

.
j=O

(6.6)

Multiplying (6.4) by zi and summing over all j, those balance equations can be re

written as

I 1 [TJ] ~gl (z)
go{z) = 1/;0 ~ + 1 - z go(z) - 1/;0(1 - z) . (6.7)

Similarly, equations (6.5) yield

This is a set of two first order linear differential equations with two unknown

functions, involving also the probability, P1,0 = gl (0), that the server is operative and

idle. The following are some simple consequences from these equations.

In order that g~(I) and g~(I) be finite, we must have TJgo(l) = ~gl(1). This,

together with the normalizing equation, go (I) + gl (1) = 1, provides the marginal

probabilities of the server being inoperative and operative (also obtainable directly

76

from the nature of breakdowns and repairs)

90(1) = -~- ; 9l(1) = _1]_ .
~+1] ~+1] (6.9)

Next, setting z = 1 in (6.7) and (6.8) and applying L'Hopital's rule, we obtain

9~(1) = ~O [Aa + ~9~(1) -1]9~(1)] , (6.10)

9~(1) = ~I [(A - j.t + 1/JI){l - a) + (j.t - 1/JdPl,O + 1]9~(1) - ~9~(1)] , (6.11)

where a = 90(1) = ~/(~ + 1]) is the probability that the server is inoperative.

These equations can be solved to yield an expression for the average number of

jobs present, L = 9b(1) + 9i(1), in terms of Pl,O.

L = {~+ 1] + VJo)[A - (j.t - 1/Jd(l - a - Pl,O)]- aA(1/Jo - 1/Jd
1/J01/Jl + ~1/Jo + WI .

(6.12)

The other performance measure for the isolated queue is the average number of

jobs that renege per unit time, denoted by (3. Since the reneging jobs are those arrivals

that do not complete service, and since jobs are completed at rate J.L when the server

is operative and not idle, we can write

(6.13)

It now remains to determine the probability Pl,O. There are several ways of ap

proaching this task.

6.3.1 Integrals and iterations

Treating the function 9l(Z) which appears in the right-hand side of (6.7) as known,

and applying the known formula for the solution of the first-order linear differential

77

equation (e.g., see [18]), we can write, after some manipulation,

(6.14)

Similarly, by solving (6.8), gl(Z) can be expressed in terms of an integral involving

go(z) and PI,O.

J.L - 'l/J1 11 -~X(1).L .1!..-2] - P1,0----:;S;- z e "'1 - X "'1 X "'1 dx . (6.15)

Assume that 'l/J1 < J.L (this is the case of practical interest, since the timEH>ut

interval is unlikely to be smaller than a service time when the server is opera.tive).

Then the finiteness of gl(O) implies that the square brackets in the right-hand side of

(6.15) must vanish at z = o. Hence,

(6.16)

The last three equations suggest an iterative scheme for computing the solution.

Start by making an initial guess for the function go(z). For example, treat the queue

during inoperative periods as an M/M/oo queue with parameters oX and 'l/Jo, and use

go(z) = aexp(oX(z - 1)/'l/Jo). This, together with (6.16), provides an initial estima.te

for P1,O and also, using (6.15), a first estimate for gl(Z). Equation (6.14) then yields

a second estimate for go(z), and so on, until some termination criterion is satisfied.

Although the above scheme is viable and has been implemented, we do not really

recommend it as a solution method. It suffers from numerical instability problems,

particularly in the neighborhoods of z = 0 and z = 1, which require careful handling.

78

6.3.2 Long operative/inoperative periods

In real systems the periods of availability and unavailability tend to be much larger

than the interarrival and service times. It is therefore worth considering the asymp

totic performance of the queue as ~ -- 0 and 1] -- 0, while keeping their ratio constant

(Le., the steady state probability that the server is inoperative, 0', is fixed).

Setting ~ = 1] = 0 in (6.7) turns that equation into

g~{z) = ~go{z) . (6.17)

The solution which satisfies go(1) = 0' is, as expected, the normalized generating

function of the corresponding MIMloo queue.

()
..<\..(%-1)

go z = ae"'o . (6.18)

Similarly, the limiting equation (6.8) is

(6.19)

Its solution satisfying gl(1) = 1 - 0' is given by

Again assuming that 'l/J1 < j.L, the square brackets in the right-hand side of (6.20)

must vanish at z = O. This leads to an expression for P1,O which, after integrating by

parts and changing variables, can be written as

(6.21)

where 'Y{x, y) is the incomplete gamma function:

79

Equation (6.21) provides a simple and robust approximation for the performance

measures when the periods of availability and unavailability are long.

6.3.3 Exact solution when 'l/JI = 0

Intuitively, one might expect that setting 'l/Jl = 0, i.e. not transferring jobs away from

a queue when its server is operative, would be quite a good policy. Indeed, that turns

out to be the case (see Section 6.5). Hence, that special case is of interest in its own

right. Moreover, the simplification involved is enough to enable us to obtain an exact

solution in closed form.

The differential equation (6.7) for go(z) remains unchanged. However, when 'l/Jl =

0, the balance equations (6.5) lead to an algebraic, rather than differential, equation

for gl(Z):
1Jz JL(l - z)

gl(Z) = d(z)go(z) - d(z) Pl,O, (6.22)

where

d(z) = (AZ - JL}(l - z) + ~z .

Substituting (6.22) into (6.7) and simplifying, we get

I [A 1J(AZ-JL)] ~JL
go(z) = 'l/Jo + 'l/Jod(z) go(z) + 'l/Jod(Z)Pl,O . (6.23)

Note that apart from the function go(z), this equation involves only the constant Pl,O,

not another unknown function.

Now, since the quadratic polynomial d(z) is negative at z = 0, positive at z = 1

and negative at z = 00, its two zeros, Zl and Z2, are real and satisfy ° < Zl < 1 and

1 < Z2. Writing d(z) = A(Z - Zt}(Z2 - z) and decomposing the second term in the

square brackets in (6.23) into elementary fractions, that equation can be fe-written

as
(6.24)

80

where
Zl

a = 77"-~-:-----:-
(1 - Zt}(Z2 - Zl)

The solution of (6.24) is given by

where C is determined by the normalization 90(1) = 0':

The desired expression for Pl,O is provided by remarking that a > 0, and go(zd

is finite. Hence, the square bracket in the right-hand side of (6.25) must vanish at

z = Zl, which yields

(6.26)

6.3.4 Truncated state space

The general model of the isolated queue, when ~ and TJ are not necessarily small and

1/Jl is not 0, can also be tackled by truncating the state space and solving numerically

the resulting finite set of linear balance and normalizing equations. This can be done

without significant loss of accuracy.

Let 1/J > ° be the smaller of 1/J0 and 1/Jl: 1/J = min(1/Jo, 1/Jd· If the queue is replaced

by one where the server is unavailable all the time and the time-out parameter is 1/J,

then the departure rate would decrease and the tail of the queue size distribution

would become thicker. Moreover, the modified queue behaves like an MjMjoo queue

with parameters A and 1/J.

81

Choose an arbitrary error bound, f > 0, and find an integer m such that

(
A)m+l 1
-:;[; (m + I)! < f . (6.27)

That is always possible. Then, the above argument shows that if the original queue

is truncated at threshold m, i.e. new arrivals are not allowed to join it when there

are m jobs present, the sum of the probabilities of the neglected states is less than f.

We have found that this approach is in fact efficient and easily implement able,

using either direct or iterative solution techniques.

6.4 Approximate solution for N queues

Let us now return to the general model of Section 6.2, consisting of N queues with

different parameters. Any job whose time-out period expires before it reaches the

server in queue i, is instantaneously transferred to queue j with probability qi,j (that

probability does not depend on the operative state of server j because the latter is

assumed unknown).

A matrix of transfer probabilities, Q = {qi,j H~=l' all of whose row sums are equal

to 1, defines a 'transfer policy' for the system. We consider policies which transfer

from queue i either all jobs that time out in it, or none of them. In other words, either

qi,i = 0 (and the other probabilities in row i add up to 1), or qi,i = 1 (and qi,j = 0

for j '# i; in that case, the parameters 'l/Jo and 'l/Jl are irrelevant. For the moment, the

transfer policy is assumed to be given; later we shall examine the effects of different

transfer policies on the performance of the system.

When jobs are transferred in all directions, the queues are coupled and their

joint and marginal distributions are intractable. We therefore seek an acceptable

approximation.

Denote by "Ii be the total arrival rate into queue i in the steady state, under policy

Q (that rate includes the external arrivals and the transfers from other queues). Let

f3. be the rate at which jobs are transferred away from queue i. The transfer rate from

82

queue i to queue j is then equal to f3iqi,j, and we can write a set of traffic equations

for Ii.
N

Ii = Ai + 2: f3jqj,i .
j=1

(6.28)

Unfortunately, the quantities f3i are unknown; they depend in a non-trivial way on

all system parameters. However, an approximate solution can be obtained as follows:

1. Assume that the process of arrivals into queue i, merging external and internal

arrivals, is Poisson. Make initial guesses for the rates Ii, choosing them to be

underestimates; e.g. Ii = Ai, i = 1,2, ... , N.

2. For each i = 1,2, ... , N, treating queue i in isolation and applying one of the

solution methods described in section 3, determine f3i according to (6.13) (with

A replaced by Ii).

3. Using (6.28), compute a new estimate for Ii.

4. Iterate from step 2 until the successive estimates are sufficiently close (e.g., until

the sum of the absolute values of the differences, hi (next) - 'Yi(last)l, is less

than some small f).

5. Determine the cost of the system, based on the average numbers of jobs in queue

i, Li , (computed according to (6.12)), and the average transfer rates, f3i.

The above solution will be referred to as the 'Poisson approximation'. Whenever

the system is stable, the iterations have been observed to converge. While having no

proof, we can offer the following intuitive argument to explain why this should be

so: each application of steps 2 and 3 tends to increase the internal traffic between

queues, and hence the total arrival rates. Thus, the sequence of successive estimates

is monotone, and since it is bounded in a stable system, it converges to the fixed

point of equations (6.28).

Having a computational procedure that determines the objective function for a

given set of parameters, one can address the problem of choosing the transfer policy Q,

and the time-out rates, so as to optimize the system performance. When N is small,

83

one could search through the set of all feasible matrices Q (or rather a reasonably

dense finite subset), and through all values of "po and "pl for each queue (again, a

suitable finite subset), in order to find the best configuration.

However, the brute force approach is generally impractical, not only because of the

size of the search space but also because of the limited information available. Thus,

it may be reasonable to assume that server i knows the speeds of the other servers

(parameters J.Lj), or their effective speeds (parameters J.Lj = J.Lj1/jf(f.j + 1/j», but not

the corresponding arrival rates (Aj). It is therefore worth introducing and evaluating

some heuristic policies that one might consider implementing. Some of the following

simple heuristics assume knowledge of effective service rates; none rely on knowing

the arrival rates or the current states of servers and queues.

1. No transfers: The matrix Q is the unit matrix of size N. Alternatively, all

transfer rates are O.

2. Uniform: Jobs are transferred from queue i to queue j (j =I- i) with probability

l/(N - 1).

3. Speed-weighted: Jobs are transferred from queue i to queue j (j =I- i) with

probability proportional to J.Lj (so that the ith row of Q adds up to 1).

4. Equal load: This policy does not employ time-outs, but achieves equal loads at

all queues by transferring jobs at moments of arrival. More precisely, every job

arriving into any queue, i, is sent to queue j with probability J.Lj f (J.Li + Jl2 +
... + J.LN); that decision involves an immediate transfer if j =I- i.

5. Fastest other: Number the queues in decreasing order of effective service rates

(parameters J.Lj). From queue 1, jobs are transferred to queue 2; from any other

queue they are transferred to queue 1.

6. Round-robin: Using the same numbering as in policy 5, transfer jobs from queue

i to queue i + 1 if i < N, and from queue N to queue 1.

84

Under policies 1 and 4, the model consists of N independent MIMII queues. For

the other policies, the cost function would normally be computed by means of the

Poisson approximation.

6.5 Numerical results

Several numerical and simulation experiments were carried out, attempting to answer

the following questions:

1. Is the Poisson approximation acceptable?

2. How should one choose the time-out rates, '¢;,o and '1/;;,1. at queue i?

3. What gains in performance can be expected by using good choices of '1/;;,0 and

'1/;;,1 as opposed to bad ones?

4. How do the heuristic policies compare to each other and to the optimal policy

(when the latter can be computed)?

In all cases, the holding costs at all queues are assumed equal. The transfer costs

are also equal, but are greater than the holding costs by a factor of 10. Thus, the

coefficients of the cost function are C; = 1, C;,i = 10.

The first experiment examines the way performance is influenced by changing

time-out parameters, in the context of a system with two queues. At the same time,

the results provided by the Poisson approximation are compared with those obtained

from simulations.

The two service rates are equal, as are the average operative and inoperative

intervals. Each server is available 50% of the time. The arrival rates are chosen

so that both queues are quite heavily loaded; the external offered load at queue 1

is 0.7, while that at queue 2 is 0.8. The average time-out intervals at queue 2 do

not depend on the state of the server and are fixed at just over two service times:

'1/;2,0 = '1/;2,1 = 0.4.

85

100n----n~~~-.~~_,----~----__
. Poisson (1/Jl,l - OJ ~

PO.lS8on (1/Jl,O == 1/Jl,l . + ..
. Slm\1latlOn (1/Jl,l = U -B-

SlmulatlOn(1/Jl,O == 1/Jl,l ..)(- .. 80

.

L...J

• oX'" ••••••• ·x··· ··x···
40 ~~ t>OO(xJ<X' _ -R--_-B----Br----,

L.J -u

20,1.. * .. .+ .
v V v

O~----~------~-----L------L-----~
o 0.1 0.2 0.3 0.4 0.5

Figure 6.2: Effect of time-out ~ifes in a 2-queue system
Al = 0.385, A2 = 0.44, J.Li = 1.1, 'i = 'fJi = 0.1, 1/J2,O = 1/J2,1 = 0.4

In Figure 6.2, the average cost is plotted against 1/Jl,O, the time-out rate in queue 1

when the server is inoperative. The rate 1/Jl,l is either equal to 1/Jl,O (state-independent

timeouts), or is O. The following remarks are suggested by these results.

• There is an optimal value for the time-out parameter. When 1/Jl,O is too small,

the holding costs in queue 1 are dominant; that queue becomes saturated due to

transfers from queue 2. As 1/Jl,O increases, the holding costs in queue 1 decrease,

while those in queue 2, and the costs due to transfers, increase. However, the

latter effects are less pronounced.

• The Poisson approximation underestimates the true costs. This is not really

surprising, because the real arrival process has a higher variance than is implied

by the Poisson assumption (particularly when 1/Jl,O and 1/Jl,l are different).

• The approximation overestimates the optimal value of the time-out parameter,

but not by much. This is a consequence of the cost underestimation.

• Lower costs can be achieved by using state-dependent time-out rates than state

independent ones. In particular, it is better not to transfer jobs from a queue

during operative periods.

86

Intuitively, the best time-out policy should depend on the lengths of operative

and inoperative intervals. This is illustrated for a two-queue system in Figure 6.3,

where the average operative periods at the two servers are equal, and are also equal

to the average inoperative periods. Those lengths are increased and the costs of the

following three policies are plotted:

....
00
0

0
Q)

~
1-0

~
-<

30r----.----,-----,----.----~--~

25

20

15

10
0 10 20 30 40 50

1/~(= 1/T})

Figure 6.3: Increasing operative/inoperative periods
A1 = 0.495, A2 = 0.44, J.Li = 1.1

60

(a) State-independent time-outs; the values of 1/1;,0 = 1/1;,1 (i = 1,2) are chosen

optimally by means of a search.

(b) No time-outs during operative periods (1/1;,1 = 0), quickly clear the queue when

the server breaks down (large value for 1/1;,0, here chosen equal to J.Li).

(c) Optimal time-outs; the values of 1/1;,0 and 1/1;,1 (i = 1,2) are chosen by means of

an exhaustive search.

All costs are computed using the Poisson approximation. This will be the case

from now on.

Figure 6.3 shows that the state-independent time-out policy is almost optimal

when the operative/inoperative intervals are short, but becomes very poor when

87

those intervals are large. Conversely, policy (b) performs badly when the opera

tive/inoperative intervals are short, but becomes almost optimal when the intervals

are large. Since the latter case is most likely to occur in practice, the policy that

does not transfer jobs during operative periods and quickly clears the queue after a

breakdown, is a good candidate for adoption.

In the third experiment, the same 2-queue system is subject to an increasing

offered load at queue 1 (increasing AI), while the other parameters are kept fixed. The

operative and inoperative intervals are quite large. Figure 6.4 shows the costs achieved

by the three policies (a), (b) and (c). These results confirm the near-optimality of

policy (b), and emphasize the increasingly higher costs of state-independent time-outs

relative to the state-dependent ones.
30.---.---.--,,--,---.---'---.---.---r--~

25 'ljJi 0 = 'IjJ.,1 --tr
6ptimal .. + ..

'ljJi,O = 4, 'ljJi,l = 0 ~
~
U 20

Q)

~
1-0

~ 15
<

10

5~~~-L __ ~~ __ -L--~~---L--L-~
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Al

Figure 6.4: Increasing load at queue 1
A2 = 0.44, J.tl = J.t2 = 1.1; ~. = Tli = 0.01

The last two experiments concern systems with more than two queues. They

address the issue of transfer policy (i.e., where should one send a timed-out job), by

evaluating and comparing the costs of the six heuristics defined in the last section.

In Figure 6.5, the model consists of three queues with different arrival and service

parameters. The arrival rate at queue 1 is increased, all other parameters remain

fixed. The time-out parameters at all queues are ,pi,1 = 0, ,pi.! = Jl.i. The breakdown

88

and repair rates are equal, so the availability of all servers is 50%.

20°r-----,-----,---Tl,----,.-~~~

150

N.u tr3ll&fere ~
~qual. load .. + ..

U ruforIQ -e
Speed-weighted· .)(0 ••

Fastest other ~
Round-Robin' * ..

+ .
. ++

0.5 1 1.5

+

+

2 2.5

Figure 6.5: Different transfer policies in a system with 3 queues
A2 = 0.2, A3 = 0.8 J.Ll = 3, J.L2 = 2.4, J.L3 = 2, {i = 1/i = 0.1

As may be expected, the No transfer policy has the worst performance. It incurs

large holding costs because queues grow during inoperative periods. Also, queue 1

becomes unstable at Al = 1.5. The Equal load policy avoids early instability but

it, too, incurs high holding costs during inoperative periods; in addition, its transfer

costs are high because many jobs are transferred on arrival. The Fastest other policy

performs well for low values of Al but as the latter increases the cost escalates sharply.

This is because both queues 2 and 3 send their transfers to queue 1, eventually

saturating it.

The three policies Uniform, Round-Robin and Speed-weighted, perform well through

out the range of Al values; There is little to choose between them, although Speed

weighted is slightly better than the other two. We conjecture that these policies are

close to optimal.

In the final experiment, the number of queues is even and increases. Half of the

queues have higher arrival rates and faster servers than the other half. The time-out

parameters are the same as before. Again, all servers are 50% available.

89

1000

800

~

~
600 0

i ...
400 ~

<
200

0
....

0 5 10
N

~~~~~~T 
~U~OrIll -BSpeed-weI ted· .)( ... 

Round- bin· * .. 

15 20 

Figure 6.6: Policy comparison for increasing number of queues 
>'2i = 1.875, >'2i+l = 0.125, J.L2i = 5, JL2i+l = 1, ~i = 1/i = 0.1 

The comparisons illustrated in Figure 6.6 show similar trends to those in Figure 

6.5. The differences between the three best policies become more pronounced for 

higher values of N. The Speed-weighted policy outperforms Round-Robin, which in 

turn outperforms the Uniform policy. This is not too surprising. 

It should be noted that the Fastest Other policy has not been plotted on this graph. 

This is because, though the policy performs well for N ~ 6, for larger numbers of 

servers, the system is saturated, as all jobs which time-out are transferred to either 

queue 1 or queue 2, and they remain within this pair, transferring from 1 to 2 and 

back again until service commences, whereas all other policies allow jobs to transfer 

to all servers. 

6.6 Conclusions 

In this chapter, the approximate iterative approach was used to determine behaviour 

of the system as the transfer rate from a server is varied, and hence the optimal value 

for a given set of parameters. This was then used to compare a number of policies, 

one of which tends to outperform all others under consideration. 

90 



The approximation used in this chapter, of not timing out when operative and 

quickly clearing the queue when inoperative, assumes that the operative and inop

erative periods are large and performs very badly when this assumption does not hold. 

When the overall system load is high the difference between the optimal transfer 

policy and the simple heuristic increases. In general, the approximation performs well 

and is a computationally inexpensive heuristic. 

91 



Chapter 7 

Conclusions 

7.1 Contributions 

This thesis has been concerned with methods for balancing the offered load between 

MIMI! servers with negative exponentially distributed breakdowns and subsequent 

repairs. Two approaches are considered to achieve a balanced offered load. 

In Chapters 2 and 3 the problem under consideration was that of dynamic rout

ing where incoming jobs are routed to one of the servers in the system upon arrival, 

remaining with this server until service is complete. This approach is sensible for sit

uations where server states are known centrally, and the cost of centralised transfers 

is low. This model lends itself to exact solution and in Chapter 2, three approaches 

to compute the optimal routing policy were presented and evaluated. However, this 

computation suffered from complexity issues due to the size of the state space, and 

the necessary number of iterations to converge to the optimal policy. So, for practical 

purposes, a number of easily computed heuristic policies were described in Chapter 3. 

When compared to the optimal policy two of these were found to compare favourably, 

as suggested by various simulation results. 

In Chapter 4, a preliminary system for balancing the offered load using dynamic 

job transfers was considered. A system of two servers allowing job transfers in only 

one direction was considered, with servers always available. The benefit of this sys-

92 



tem over a more general case is that the system is exactly solvable. The optimal 

transfer rate for a range of system parameters was computed by solving the balance 

equations for the system as a whole, using the technique of spectral expansion. The 

behaviour of the exact solution was also compared against an approximate technique, 

and shown to be in good agreement. 

This system was then extended in Chapter 5 to a system with general transfers 

between N always available servers. As the system is now no longer exactly solvable, 

the approximate technique was used to determine the distribution of jobs in the sys

tem and hence the average number of jobs in the system and the average transfer ra.te 

in the system. A number of easily computed heuristic policies for determining the 

transfer destination were evaluated and compared with an 'optimal' transfer policy, 

obtained by a brute force search through possible policies, and several were found to 

perform well. 

Finally, in Chapter 6, the problem was extended further to allow the servers to 

go through periods of availability and unavailability. The approximate technique was 

used to compare a number of different heuristics with the same type of 'optimal' 

transfer policy as in the previous chapter. As before, a heuristic policy for the trans

fer destination was presented which performed well in comparison to the optimal and 

which was significantly better over a range of parameters than the other heuristics 

under consideration. 

7.2 Application 

In the introduction, the applicability of this research was targeted on distributed com

puting and in particular the Computing Grid. This is a diverse and loosely connected 

research area, and so a discussion of the applicability of this research will consider 

one field, that of mobile ad-hoc networks. 

93 



Figure 7.1: A mobi l ad-h c network , with all rout r onn d 

A mobile ad-hoc n twork is a wireless n twork f rn bil rouLer onn L d b. 

wireless links. As the routers a re free to move and onn t t a varying numb r or 

other routers based on some criterion usually d istan e, th n Lwork topology an 

change rapidly and unpr dictably (see Figur 7.1). 

As the presence of a onnect ion b tween a pair of r uter i govern d by lh 

d i tance between them , it is possible that a router rna b orne entirely eparaL d 

from the rest of the network , or that the network its If rna fra tur in to ub-n twork 

which are d isconnected from one another (se Figur 7.2. 

onsidering the sit uation wher a t ream of data i to be ent from an originating 

s rv r through the ad-hoc network to a destination er r , each packet can be tr ated 

as a job. If Lh order f pa ket may be received in any order, t hey an be rout d 

94 



Figure 7.2: A mobile ad-hoc n twork , with on router ut. of cont.a t. 

95 



Figure 7.3: Two servers, with path thr ugh a mobile ad-hoc n t\ ork 

independently t hrough any path from the source to th d t inat ion. 

From the point of view of th tran mission end-points, th 

omplete when it has successfully reached the dest ination. Th r [or , it i r nabl 

t o treat a pa th which the packet takes through the ad- h network to be a erv r ( 

Figure 7.3). 

As a server in this appli ation con ists of a nu mb r of router and the transmi ion 

b tw en them, th transmis ion time from our to d tination along a particular 

path i equjvalent to the av rage rvi time of a erver in till the is. 

96 



Figure 7.4: Two s rvers , with one int rrup t d path and on avai labl path Lhrough a 
mobile ad-hoc network 

When a router within the ad-hoc network chang location nough to aff ct th 

network topology, it can cause the selected path betwe n origin and d LinaLion Lo Il 

longer be valid , which maps in this body of work to a rver b oming una ailabl . 

If a path becomes unavailable the pack t stream mu ith r take an alternate 

route to the destinat ion , whlch is equivalent to a transfer b tween erver or \ ait for 

th pa th to be restored. In the case where an alternate route i taken packet which 

already tarted transmjssion xperience a tran fer d la b undergoing a t ransfer rout 

onto the new route, whjch may be of zero length and hence d la. pon completion 

of this tran fer dela the packet will join the new rout . Thi transfer d la, is a 

97 



property of the application which is not modelled in this research. 

7.3 Future Work 

In this thesis, the routing of jobs from the dispatcher to the servers and the transfer 

of jobs between servers are instantaneous. This is not very realistic and as the geo

graphic separation between the source and destination of the transfer increases, so we 

can expect the transfer time to rise. Therefore, a good extension to the work covered 

in this thesis would be to allow for transmission delays. 

In Chapter 6, the case of servers with long operative and inoperative periods is 

considered. This generates the problem where the specific response time of jobs ar

riving just before failure, and the utilisation of servers just after repair is very bad. 

Transfer could potentially reduce this by transferring jobs away from recently failed 

nodes, and towards recently repaired ones. This would be an interesting and probably 

fruitful further investigation. 

Additionally in this thesis, two approaches to load balancing have been consid

ered and solved separately. There is no reason why a system could not be considered 

where small groups of servers, presumably in close geographical proximity, could be 

supplied with jobs from a local dispatcher, and jobs which reach their deadline would 

then be transferred between groups of servers. 

In addition, every model in this thesis has assumed that the number of servers in 

the system is a constant. This does not reflect an observed feature of computational 

resources allocation that, as time goes by, the degree of interconnection between pre

viously separate systems increases. Therefore, it may be of interest to consider a load 

balancing system where the total number of servers in the system increases, and the 

total incoming load also increases with time. 

98 



In this thesis it has been assumed that the information which decisions are based 

on is up to date. However, as geographical separation increases, this assumption will 

become increasingly invalid. Thomas, Bradley and Knottenbelt [21] looked at this 

problem in a static allocation model, and showed that a small delay in failure infor

mation propagation can have a significant negative impact. 

Both of these models could be analysed using the techniques developed and dis

cussed in this thesis. Especially in the former case, the model description and hence 

the computation requirements would be higher than in the models considered here. 

99 



Bibliography 

[1] Eithan Altman and Uri Yechiali. Analysis of customers' impatience in queues 

with server vacations. Queueing Systems, 52:261-279, 2006. 

[2] C.J. Ancker and A. Gafarian. Queueing with impatient customers who leave at 

random. Journal of Industrial Engineering, 13:84-90, 1962. 

[3] Jongho Bae, Sunggon Kim, and Eui Yong Lee. The virtual waiting time of the 

M/G/1 queue with impatient customers. Queueing Systems, 38:485-494, 2001. 

[4] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume I. 

Athena Scientific, 1995. 

[5] Nam Kyoo Boots and Henk Tijms. A multiserver queueing system with impatient 

customers. Manage. Sci., 45(3):444-448, 1999. 

[6] Bong Dae Choi, Bara Kim, and Dongbi Zhu. MAP IM/c queue with constant 

impatient time. Mathematics of Operations Research, 29(2):309-325, May 2004. 

[7] Amy Csizmar Dalal and Scott Jordan. Optimal scheduling in a queue with 

differentiated impatient users. Performance Evaluation, 59:73-84, 2005. 

[8] Edmundo de Souza e Silva and H. Richard Gail. Performability Modelling: Tech

niques and Tools, chapter "The Uniformization Method in Performability Anal

ysis", pages 31-41. Wiley, John & Sons, Incorporated, 2001. 

[9] R.D. Foley and D.R. McDonald. Join the shortest queue: stability and exact 

asymptotics. Ann. Appl. Probab., 11:569-607, 2001. 

100 



[10] K. D. Glazebrook and C. Kirkbride. Dynamic routing to heterogeneous collec

tions of unreliable servers. Queueing Systems, 55{1}:9-25, 2007. 

[11] William J. Gray, P. Patrick Wang, and Meckinley Scott. A queueing model 

with multiple types of server breakdowns. Quality Technology and Quantitative 

Management, 1{2}:245-255, 2004. 

[12] Qi-Ming He and Marcel F. Neuts. Two MIMll queues with transfers of c~ 

tomers. Queueing Systems, 42:377-400, 2002. 

[13] Liqiang Liu and Vidyadhar G. Kulkarni. Explicit solutions for the steady state 

distributions in MIPHll queues with workload dependent balking. Queueing 

Systems, 52:251-260, 2006. 

[14] I. Mitrani. The Spectral Expansion Solution Method for Markov Processes on 

Lattice Strips (in Advances in Queueing), chapter 13. CRC Press, 1995. 

[15] I. Mitrani. Spectral expansion solutions for markov-modulated queues. Springer 

LNCS 2459, pages 17-35, 2002. 

[16] I Mitrani and P.E. Wright. Routing in the presence of breakdowns. Performance 

Evaluation, 20:151-164, 1994. 

[17] Ali Movaghar. On queueing with customer impatience until the beginning of 

service. Queueing Systems, 29:337-350, 1998. 

[18] A. D. Polyanin and V. F. Zaitsev. Handbook of Exact Solutions for Ordinary 

Differential Equations. Chapman and Hall, 2003. 

[19] S. M. Ross. Introduction to Stochastic Dynamic Progmmming. Academic Press, 

1 edition, 1986. 

[20] Nahum Shimkin and Avishai Mandelbaum. Rational abandonment from tele

queues: Nonlinear waiting costs with heterogeneous preferences. Queueing Sys

tems, 47:117-146, 2004. 

101 



[21] N. Thomas, J. T. Bradley, and W. J. Knottenbelt. Stochastic analysis of 

scheduling strategies in a grid-based resource model. lEE Software Engineer

ing, 151(5):232-239, 2004. 

[22] N. Thomas and I. Mitrani. Routing among different nodes where servers break 

down without losing jobs. IEEE International Computer Perfonnance and De

pendability Symposium (IPDS'95), page 0246, 1995. 

[23] Kuo-Hsiung Wang, Tsung-Yin Wang, and Wen-Lea Pearn. Maximum entropy 

analysis to the N policy M/G/1 queueing system with server breakdowns and 

general startup times. Applied Mathematics and Computation, 165(1):45-61, 

2004. 

[24] Amy Ward and Peter Glynn. A diffusion approximation for a GI/GI/1 queue 

with balking or reneging. Queueing Systems, 50(4):371-400, August 2005. 

[25] P. Whittle. Optimization over Time: Dynamic Programming and Stochastic 

Control, volume 1. John Wiley & Sons, 1982. 

[26] P. Whittle. Restless bandits: Activity allocation in a changing world. Journal 

of Applied Probability, A25:287-298, 1988. 

[27] S.H. Xu and Y.Q. Zhao. Dynamic routing and jockeying controls in a two-station 

queueing system. Adv. in Appl. Probab., 28:1201-1226, 1996. 

[28] Sergey Zeltyn and A vishai Mandelbaum. Call centers with impatient customers: 

Many-server asymptotics of the M/M/n + G queue. Queueing Systems, 51(3-

4):361-402, December 2005. 

[29] Y. Zhao and W.K. Grassmann. Queueing analysis of a jockeying model. Opera

tions Research, 43:520-529, 1995. 

102 


	446190_0001
	446190_0002
	446190_0003
	446190_0004
	446190_0005
	446190_0006
	446190_0007
	446190_0008
	446190_0009
	446190_0010
	446190_0011
	446190_0012
	446190_0013
	446190_0014
	446190_0015
	446190_0016
	446190_0017
	446190_0018
	446190_0019
	446190_0020
	446190_0021
	446190_0022
	446190_0023
	446190_0024
	446190_0025
	446190_0026
	446190_0027
	446190_0028
	446190_0029
	446190_0030
	446190_0031
	446190_0032
	446190_0033
	446190_0034
	446190_0035
	446190_0036
	446190_0037
	446190_0038
	446190_0039
	446190_0040
	446190_0041
	446190_0042
	446190_0043
	446190_0044
	446190_0045
	446190_0046
	446190_0047
	446190_0048
	446190_0049
	446190_0050
	446190_0051
	446190_0052
	446190_0053
	446190_0054
	446190_0055
	446190_0056
	446190_0057
	446190_0058
	446190_0059
	446190_0060
	446190_0061
	446190_0062
	446190_0063
	446190_0064
	446190_0065
	446190_0066
	446190_0067
	446190_0068
	446190_0069
	446190_0070
	446190_0071
	446190_0072
	446190_0073
	446190_0074
	446190_0075
	446190_0076
	446190_0077
	446190_0078
	446190_0079
	446190_0080
	446190_0081
	446190_0082
	446190_0083
	446190_0084
	446190_0085
	446190_0086
	446190_0087
	446190_0088
	446190_0089
	446190_0090
	446190_0091
	446190_0092
	446190_0093
	446190_0094
	446190_0095
	446190_0096
	446190_0097
	446190_0098
	446190_0099
	446190_0100
	446190_0101
	446190_0102
	446190_0103
	446190_0104
	446190_0105
	446190_0106
	446190_0107
	446190_0108
	446190_0109
	446190_0110
	446190_0111

