
WS-Mediator for Improving Dependability of Service
Composition

Thesis by

Yuhui Chen

In Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philosophy

NEWCASTLE UNIVERSITY LIBRARY

20732 14 740

Newcastle University
Newcastle upon Tyne, UK

July, 2008

Abstract

Abstract

Web Services and service-oriented architectures (SOAs) represent a new paradigm for

building distributed computing applications. In recent years, they have started to play

a critical role in numerous e-Science and e-Commerce applications. The advantages

of Web Services, such as their loosely coupled architecture and standardized

interoperability, make them a desirable platform, especially for developing large-scale

applications such as those based on cross-organizational service composition.

However, the Web Service technology is now facing many serious issues that need to

be addressed, one of the most important ones being the dependability of their

composition. Web Service composition relies on individual component services and

computer networks, particularly the Internet. As the component services are

autonomous, prior to use their dependability is unknown. In addition to that, computer

networks are inherently unreliable media: from the user's perspective, network

failures may undermine the dependability of Web Services. Consequently, failures of

individual component services and of the network can undermine the dependability of

the entire application relying on service composition.

Our research is intended to contribute to achieving higher dependability of Web

Service composition. We have developed a novel solution, called WS-Mediator

system, implementing resilience-explicit computing and fault tolerance mechanisms

to improve the dependability of Web Service composition. It consists of a number of

subsystems, called Sub-Mediators, which are deployed at various geographical

locations across the Internet to monitor Web Services and dynamically generate Web

Service dependability metadata in order to make resilience-explicit decisions. In

Abstract

addition to applying the fault tolerance mechanisms that deal with various kinds of

faults during the service composition, the resilience-explicit reconfiguration

mechanism dynamically selects the most dependable Web Services to achieve higher

service composition dependability fault tolerance.

A specific instance of the WS-Mediator architecture has been developed in the Java

Web Service technology. A series of experiments with real-world Web Services, in

particular in the bioinformatics domain, have been carried out using the Java WS­

Mediator. The results of the experiments have demonstrated the applicability of the

WS-Mediator approach.

11

Acknowledgements

Acknowledgements

It is a pleasure to thank the people who contributed in various ways to this thesis,

making it possible.

First, I would like to thank my PhD supervisor, Prof. Alexander (Sascha)

Romanovsky. With his enthusiasm, inspiration and encouragement, he helped me to

carry out the research and complete the work in various ways, providing explanation

when necessary, advising me on my reading as well as the relevant work in close

research domains, and many more. I would have been lost without his huge support.

I would also like to thank Dr. Aad van Moorsel and Dr. Neil Speirs, the members of

my thesis committee board. They provided invaluable comments and suggestions,

helping to keep the work on the right track.

There are many other people who assisted me at different stages of the research. I

would like to express my gratitude to them. I am especially grateful to Dr. Peter Li

and Dr. Panayiotis Periorellis for their kind assistance with the experimental work on

the Web Services used in their research projects. They provided us with the

information on the Web Services, helping us to set up the experiments.

I wish to express my warm and sincere thanks to Mrs. Mila Romanovskaya. She

greatly helped me to proofread and edit the thesis.

This list would not be complete without my family, on whose constant encouragement

and love I have relied throughout my time at University. Without their unflinching

support and understanding, it would have been impossible for me to finish this study.

It is to them that I dedicate this research.

III

List of Figures

List of Figures

Figure 2-1: Typical interaction in Web Services 11

Figure 2-2: The automated travel booking process .. 12

Figure 2-3: Performance metrics obtained using the WSsDAT 19

Figure 2-4: The automated travel booking process with mUltiple travel agencies 34

Figure 2-5: The automated travel booking process implementing service diversity ... 35

Figure 3-1: The overlay architecture of the WS-Mediator system46

Figure 3-2: Deployment of the WS-Mediator system47

Figure 3-3: The internal structure of the Sub-Mediator .. .48

Figure 3-4: Assembly of BLP business procedures and internal activities 51

Figure 3-5: The resilience-explicit service composition in travel booking use case ... 56

Figure 3-6: The use case of the Service Alternative execution mode 60

Figure 3-7: The use case of the N-version programming execution mode 61

Figure 3-8: The use case of the Message Routing execution mode 62

Figure 3-9: Travel booking use case with the WS-Mediator system 65

Figure 4-1: Basic architecture of Web Services .. 69

Figure 4-2: The architecture of Web Service client... .. 70

Figure 4-3: Web Service application with the Java WS-Mediator 71

Figure 4-4: Internal structure of the Sub-Mediator Elite ... 72

Figure 4-5: An example of the test SOAP message ... 75

Figure 4-6: An example of the test policy 75

Figure 4-7: An abstract of the service request SOAP message 78

Figure 4-8: An example of the Web Service Registry ... 80

Figure 4-9: An abstract model of the dependability metadata ofa Web Service 80

Figure 4-10: An example of the Sub-Mediator Registry ... 82

IV

List of Figures

Figure 4-11: An example of the dependability metadata of a Sub-Mediator 82

Figure 4-12: An abstract model of the individual execution policy 83

Figure 4-13: An example of the global execution policy ... 86

Figure 4-14: The execution sequence of the Dynamic Reconfiguration Engine 88

Figure 4-15: The execution sequence of the service alternative execution mode 90

Figure 4-16: Execution sequence of the N-version programming execution mode 93

Figure 4-17: The execution sequence of the multi-routing execution mode 95

Figure 5-1: Dependability monitoring of autonomous Web Services 102

Figure 5-2: Dependability monitoring result of the GOLDPeople 104

Figure 5-3: Dependability monitoring result of the GOLDPolicies 104

Figure 5-4: Evaluation of the Service Alternative execution mode 1 08

Figure 5-5: Results of the service alternative execution mode 109

Figure 5-6: Evaluation of the N-version programming execution mode 110

Figure 5-7: Results of the N-version programming execution mode 111

Figure 5-8: Evaluation of the multi-routing execution mode 112

Figure 5-9: Results of the Multi-Routing execution mode .. 112

Figure A-I: The architecture of the WSsDAT ... 138

Figure A-2: Gur for Web Services information inputs ... 139

Figure A-3: GUI for test information display .. 140

Figure A-4: Test procedure .. 142

Figure B-1: Class diagram of the Sub-Mediator Elite ... 143

Figure B-2: The Service Processing Engine of the WS-Mediator Elite 144

Figure B-3: Interpreting the global execution policy ... 145

Figure B-4: The individual execution policy 146

Figure B-5: The Dynamic Reconfiguration Engine of the Sub-Mediator Elite 148

v

List of Figures

Figure B-6: Service Alternative Redundancy F-T execution mode 149

Figure B-7: N-Version Programming execution mode .. 150

Figure B-8: The Multi-Routing Execution mode ... 151

vi

List of Tables

List of Tables

Table 5-1: Dependability monitoring results of the public Web Services 102

\11

Contents

Contents

1. Introduction .. 1

1.1 Motivation .. 1

1.2 Our Research .. 3

1.3 Our Contributions .. 4

1.4 Thesis Outline .. 6

2. Dependability of Service-Oriented Architecture 7

2.1 Introduction .. 7

2.2 Preliminaries .. 8

2.2.1 Service-Oriented Architecture ... 8

2.2.2 Web Services .. 8

2.2.3 Dependability ... 9

2.3 Dependability of SO A and Web Services .. 10

2.3.1 Overview of so A and Web Services .. 10

2.3.2 Dependability of Web Services .. 13

2.3.3 Our experiments on the dependability of Web Services 16

2.3.4 Means for Achieving Dependability ... 20

2.3.5 Fault tolerance in SOA .. 22

2.4 Overview of the Existing Work ... 25

2.4.1 Application-level Protocols ... 26

2.4.2 Exception Handling Approaches ... 26

2.4.3 System Diagnosis Approaches ... 28

2.4.4 Approaches to Dependable Service Composition 30

2.5 Problems Involved in Web Service Composition .. 34

2.6 Conclusions .. 39

3. The WS-Mediator System ... 41

3.1 Introduction .. 41

3.2 Research Objectives ... 42

3.3 Overview of the WS-Mediator.. ... 43

3.4 System Architecture ... 47

3.4.1 Sub-Mediator Structure .. .48

3.4.2 Sub-Mediator Interface (SM]) .. 49

V11l

Contents

3.4.3 Business Logic Processor (BLP) ... 51

3.4.4 Policy System (PS) ... 51

3.4.5 Database System (DS) .. 52

3.4.6 Dependability Monitoring Mechanism (DMM) 52

3.4.7 Dependability Assessment Mechanism (DAM) 53

3.4.8 Resilience-explicit Dynamic Reconfiguration mechanism (REDRM) .54

3.4.9 Fault-tolerance mechanisms (FTMs) ... 59

3.4.10 Web Service Invocation Mechanism (WSIM) 63

3.5 Application of the WS-Mediator ... 63

3.6 Conclusions .. 66

4. Java WS-Mediator ... 68

4.1 Introduction .. 68

4.2 Java Web Service middleware ... 68

4.3 Structure of the Java WS-Mediator.. .. 71

4.3.1 Structure of the Sub-Mediator Elite ... 72

4.3.2 Java APIs of the Sub-Mediator Elite ... 74

4.3.3 Business Logic Processor (BLP) ... 78

4.3.4 Database System .. 78

4.3.5 Policy System ... 82

4.3.6 Dependability Monitoring Mechanism (DMM) 86

4.3.7 Dynamic Reconfiguration Mechanism (DRM) 88

4.3.8 Fault-tolerance Execution Modes .. 89

4.4 Conclusions .. 96

5. Evaluation ... 97

5.1 Introduction .. 97

5.2 Evaluation Objectives .. 97

5.3 Evaluation of Dependability Monitoring ... 99

5.3.1 Dependability Monitoring of Public Web Services 1 00

5.3.2

5.4

5.4.1

5.4.2

5.4.3

Dependability Monitoring of the GOLD Web Services 103

Experiments with Bioinformatics Web Services 105

Service Alternative Execution Mode .. 108

N-version Programming Execution Mode ... 109

Multi-routing Execution Mode with the Planetlab III

IX

Contents

5.5 Conclusions .. 113

6. Conclusions and Suggestions for Future \\ork 1 U

() I Summary 11.:1-

6.2 Suggestions for Future Work ... 116

Bibliography .. 121

List of Abbreviations .. 134

Appendix A - The WSsDAT tool .. 135

Appendix B - Implementation of Java Sub-:vIediator Elite U2

Appendix C - Dependability metadata ... 152

Appendix D - Dependability metadata database in x:\IL. 153

Appendix E - Implementation of Java client application 158

Appendix F - Example of the valid result from DDBJ 168

Appendix G - Execution sequence of unsuccessful process 171

Appendix H - Execution sequence of successful process 175

Appendix I - Dependability metadata of VBf t 80

Introduction

1. Introduction

1.1 Motivation

Web Services [1] and service-oriented architectures (SOAs) [2] represent a new

paradigm for building distributed computing applications [3, 4]. Their applications

vary from e-Commerce [5] applications, for example, Internet search engines [6] or

online auctions [7], to complex large-scale e-Science projects [8, 9]. The advantages

of Web Services, such as their loosely coupled architecture and standardized

interoperability, are attracting more and more users, along with growing body of work

in the relevant research and development domains. Users' demand for Web Services

seems to be driving the technology further. However, all the opportunities that this

paradigm has brought notwithstanding, the Web Service technology at present is still

far from maturity. The overwhelming pace of technological progress has also,

inevitably, caused problems which may undermine the future of Web Services.

Among these, their dependability is one of the most critical issues to be addressed.

Web Services have addressed many issues existing in the conventional technologies,

such as Enterprise Application Integration (EAI) [10] and Common Object Request

Broker Architecture (CORBA) [II, 12], to name just two of the more popular ones,

extensively applied in the past decades. In these conventional distributed applications,

service integration commonly relies on centralized brokers, or coordinators, which

implement objects-based or message-based interoperability [4] with the participating

component services and interact with them to perform automated business processes.

The limitation of such paradigm lies in the fact that the middleware has to be

centralized and trusted by all participating component service providers.

Consequently, this becomes an issue of the integration of cross-organizational

Introduction

autonomous and heterogeneous services, especially when development cost, security

and confidentiality are concerned [4]. Web Services resolve these issues with their

loosely-coupled interaction pattern, standardized interoperability, extended peer-to­

peer integration fashion, etc. [4]. In Web Services, functionalities implemented by the

internal business procedures are deployed and exposed as services that can be

discovered and accessed through the Web. The interaction between the client and the

services generally relies on the SOAP/HTTP message binding [13-15]. The client, a

business logic application (e.g. e-Science or e-Commerce workflow), invokes Web

Services by sending them a SOAP message [2, 15], with the service request attached.

Web Services receive and parse the SOAP message, process the business logic

according to the service request, and return the results to the client via SOAP

messages. During the integration, the client does not necessarily know anything about

the Web Services involved other than their WSDL interface [16]; the communication

between them is guaranteed by the standardized interoperability, and no third party

service broker or coordinator is required. Therefore, compared with the conventional

technologies, the integration of autonomous and independent services is achieved in

Web Services at a low cost. [17]

Nevertheless, even with the advantages described above, Web Services are not a

magic solution to all problems of distributed applications. Similarly to other

distributed technologies, Web Service middleware relies on the existing underlying

middleware, such as network protocols, to implement the essential low-level services

[4]. Naturally, they inherit many of the dependability issues the conventional

infrastructure suffers from. For example, the interaction between the client and the

Web Services relies on the Web or other networks, which are inherently unreliable

media that may cause a loss, delay or damage of the message [3, 18-20]; Web

2

Introduction

Services are deployed on application servers, which may become unreliable or out-of­

service, due to system maintenance or other internal activities [20, 21]; the design or

implementation of the Web Service business procedure may contain faults and result

in their erratic behaviour [20-22]. Thus, their dependability is a vital issue in

dependability-critical applications, even more so in those based on a service

composition in which a service, as an undependable component, can undermine the

dependability of the entire application. It is only logical that the dependability of Web

Services as a research domain has attracted active interest in recent years.

1.2 Our Research

This dissertation reports our work in developing solutions to improving the

dependability of Web Services. We started the research by investigating the

dependability means in the context of Web Services, followed with an in-depth

analysis of dependability issues in Web Services based on our experiments with

several real-world Web Services. At the same time, we studied related work

conducted by other researchers working in similar research areas. As a result, we have

developed a novel solution to improving the dependability of Web Services.

Conceptually, this solution is based on our understanding of the specific dependability

characteristics of Web Services. It addresses some dependability issues that have not

yet been covered by the existing work. In particular, our research focuses on the

problem domain from certain original perspectives, avoiding duplicating others'

work. We have adopted several novel approaches and concepts in the solution

proposed. developed certain unique mechanisms to ensure the novelty, feasibility and

efficiency of our approach, and proved them in a series of experiments with real­

world Web Services. This work has been reported at various academic events and

3

Introduction

conferences, including the International Conference on Dependable Systems and

Networks 2006 [23], UK e-Science All Hands Meeting 2006 [24], the 3rd

International Service Availability Symposium [37], ReSIST Student Seminar 2007

[25], etc. A comprehensive description of the WS-Mediator approach is published by

the IT Professional magazine [26] in this year's May/June issue.

1.3 Our Contributions

While the recent active research effort aiming at the dependability of Web Services

has developed some effective solutions, including those focusing on service

composition, we believe that there are still many issues remaining in this domain,

particularly concerning the dependability of service composition that relies on

autonomous Web Services. Our approach does not follow the methodology

commonly applied in other related work. We have learnt from our experiments and

studies of related work that in SOA the client's perspective on the services might be

dramatically affected by the network consequences. This calls for solutions that would

improve the dependability of Web Service composition from the client's perspective,

ensuring the continuity of the service provided to it. In order to address the

outstanding dependability issues in the existing Web Service applications, our

solution is based, in addition to the classic fault tolerance techniques, on certain novel

concepts, such as Resilience-explicit computing [27], path diversity, etc. The

contributions of our work are as follows:

• We have developed a WS-Mediator solution to improving the dependability of

Web Service applications. The approach offers an off-the-shelf mediator

system to ensure the dependability of service composition based upon the

existing legacy Web Services.

4

Introduction

• We have devised a WS-Mediator architecture which employs the

dependability monitoring of Web Services, resilience-explicit dynamic

reconfiguration of service composition as well as fault tolerance mechanisms

to accomplish a smart system that can explicitly select most appropriate

components to improve the dependability of the entire service composition.

• We have implemented a prototype of the WS-Mediator using the Java Web

Service technology. The Java WS-Mediator implements a Web Service

dependability monitoring mechanism to achieve the dependability of the

services from the client's perspective. Its novel Resilience-explicit dynamic

reconfiguration mechanism allows an on-the-fly dynamic integration of

component services to utilize the richness of service redundancy available in

the Web Service infrastructure, and optimizes the conventional service

diversity strategies. The off-the-shelf fault tolerance mechanisms allow the

system to cope with various types of faults. Moreover, the Java WS-Mediator

can be deployed on a personal computer and seamlessly integrated into the

existing Java client applications. It can be especially beneficial for the

development of new Java client applications by providing intuitive invocation

APIs to utilize the functionalities provided by the WS-Mediator for improving

their dependability.

• We have conducted a number of experiments with real-world Web Services to

evaluate the WS-Mediator approach and the Java WS-Mediator. The results of

the experiments demonstrate the applicability and effectiveness of this

solution.

5

Introduction

1.4 Thesis Outline

The dissertation is organised as follows:

• Chapter 2 explains the fundamental concepts and definitions of SOA and Web

Services. We define dependability in the context of Web Services and analyse

their dependability. Finally, we summarize some related work in the area.

• Chapter 3 presents our WS-Mediator approach. In this chapter we discuss our

objectives and introduce the notion of the WS-Mediator as well as explaining

the WS-Mediator architecture and its components in detail.

• Chapter 4 introduces a prototype of the WS-Mediator. In this chapter, we

explain how to implement the WS-Mediator system using the Java Web

Service technology.

• Chapter 5 reports on the experiments conducted to evaluate the WS-Mediator

approach. The results of the experiments with real-world Web Services are

analysed to demonstrate the applicability of the WS-Mediator approach.

• Chapter 6 concludes this dissertation, offering our vision of the possible

further development of the WS-Mediator system.

6

Dependability of Service-Oriented Architecture

2. Dependability of Service-Oriented Architecture

2.1 Introduction

In this chapter, we will analyse dependability issues in the context of SOA and Web

Services. Even though Web Services are becoming, with all their promising potential,

a fundamental technology and platform in many distributed computing applications

[6-9], they are now facing a range of critical challenges, dependability being one of

the most crucial. In this chapter, we will introduce the general concept of

dependability and discuss dependability means in the context of Web Services. We

will then provide a brief overview of the background and foundation that our work is

built upon.

The chapter is organized as follows: section 2.2 defines the basic terms and introduces

the problem domain. Section 2.3 presents our analysis of dependability issues in the

context of Web Services. We will then describe our experiments involving several

Web Services used in the bioinformatics domain. These experiments have helped us

to understand the dependability behaviour of real-world Web Services. Finally, some

classic theories and technologies for achieving dependability are discussed. Section

2.4 introduces our study of the existing work concerned with improving Web Service

dependability. Section 2.5 specifically analyses dependability issues in Web Service

composition. Section 2.6 concludes the chapter and summarizes the key points

covered in it.

7

Dependability of Service-Oriented Architecture

2.2 Preliminaries

Although often used, the tenns SOA and Web Services are not always consistently

defined. It is, however, essential here to clearly define these tenns as fundamental for

this dissertation.

2.2.1 Service-Oriented Architecture

In this dissertation, we follow the definitions of SOA and Web Services provided by

the World Wide Web Consortium (W3C) [2]:

Service-Oriented Architecture: A set of components which can be invoked, and whose

interface descriptions can be published and discovered.

The above is a basic definition which describes what SOA is, and yet it is rather

abstract: it does not make the underlying concepts and technologies it relies on

explicit. It is the specification [1] that refines the definition, presenting SOA as a fonn

of distributed systems architecture in which services implement abstracted interface

for exchanging messages with clients. The machine-processable abstracted interface

describes only those details of services that are important for using them. Their

implementation details and internal structure are hidden from clients. The message

exchange between services and clients relies on the underlying computer network,

such as the Internet. The actual technologies for constructing a SOA are not made

specific in these definitions and may vary in realistic applications.

2.2.2 Web Services

The definition of Web Services is given in [2] as follows:

8

Dependability of Service-Oriented Architecture

Web Service: a software system designed to support interoperable machine-to­

machine interaction over a network. It has an interface described in a machine­

processable format (specifically WSDL). Other systems interact with the Web Service

in a manner prescribed by its description using SOAP messages, typically conveyed

using HTTP with an XML serialization in corljunction with other Web-related

standards.

Comparing the above definition with that of SOA, it becomes clear that Web Services

are a form of SOA. The definition specifically constrains the underlying technologies

involved in constructing Web Services. Some of these technologies, such as the Web

Service Description Language (WSDL) [16] and the Simple Object Access Protocol

(SOAP) [15], have been purposefully developed for Web Services, while others have

been adopted from the existing standards and protocols, such as the Hyper-Text

Transport Protocol (HTTP) [14] and the Extensible Markup Language (XML) [28].

2.2.3 Dependability

In this dissertation, we start with the definition of dependability given in paper [21], a

well known and widely accepted source which offers a comprehensive clarification of

the basic concepts and means of dependability in computing systems:

Dependability: the ability to deliver service that can justifiably be trusted.

The above definition is universally recognised in related research domains. It is,

however, very abstract and brief. Paper [21] offers an alternative definition:

Dependability: the ability to avoid service failures that are more frequent and more

severe than is acceptable to the user(s).

9

Dependability of Service-Oriented Architecture

The above further refines the definition of dependability. Although it is still abstract,

it precisely defines the criterion for deciding if a system is dependable. The paper

specifies the attributes of dependability as reliability, availability, safety, security,

survivability and maintainability [21]. Thus, researchers can identify and specify the

means of dependability in their specific research domains according to the above

taxonomy.

2.3 Dependability of SOA and Web Services

SOA and Web Service technologies have been developing very fast in recent years,

becoming critical in many commercial and scientific distributed computing

applications [6-9] and thus prompting a great deal of research interest in the issue of

their dependability. The term dependability covers varied characteristics, while

dependability means may vary from one context to another. It would not be feasible to

cover all of its aspects in our research. In this section, we will describe the

dependability means we are concerned with in our study. We will also offer a specific

analysis of the dependability issues commonly manifested in the existing Web Service

applications. Lastly, we will report on our studies of some relevant work conducted

by other researchers working in related fields.

2.3.1 Overview of SOA and Web Services

SOA and Web Services implement standardized interoperability [13] between

services and clients. These services are software components implementing

capabilities and functionalities, and can be discovered and accessed via computer

networks, especially the Internet. Their implementation details are invisible to clients.

However. their interface needs to be defined, described and published in a machine-

\0

Dependability of Service-Oriented Architecture

processable fonnat. The definition of Web Services specifically states that their

interface should be described in the WSDL. Clients interact with them through SOAP

messages relying on the underlying network protocols such as HTTP.

Service requestor

Client Application

IJ/
Web Services

Middleware ~

(SOAP)

/
/

UDDI

Services Registry

Web Services
Middleware

(SOAP)

, ,
Service Looking-up Service publishing ,

/
,

/ ,

SOAP/HTTP

,
~

Figure 2-1; Typical interaction in \\ eb Services

Service provider

Service Implementalton J

Web Services
Middleware

(SOAP)

In Web Services, clients and serviccs are assumed to be loosely-coupled, which

mcans that they arc stand-alone systems independent of each other [-+]. The senlces

arc nonnaIIy autonomous, and developed and deployed by different sen ice pro\idcrs.

Because of the nature of Web Services. the services developed by the same sen ice

providers can also, to some extent, be regarded as autonomous of each other. Clients

can discover serVlces through various discO\ery services, such as the lIDDI [29]. The

discovered information is sufticient for implementing ll1\ocations to Web Sen ices.

The Web Service implementation details and internal structure are hidden from

clients. Figure 2-1 shows the typical Web Sen ice architecture.

II

Dependability of ervice-Ori nted rchitecrure

In Web ervices , the term client i often u ed to refer to the application oftware

which in vokes Web Services to perform bu me s proce ing logic (e.g. an e- clence

or e-commerce workflow), and Web Services act a client when they in oke other

Web Services to implement the ir internal busines logic [4]. In thi dissertation, tbe

term client refers to the c lient application that invokes Web Service , unl e tated

otherwise. Web Serv ice appli ca ti ons often rely on service composition, which

integrates multiple Web Services to impl ement the entire bus ine logic .

Customer

Client
application

HTTP/SOAP Travel Agency
(Web Services)

HTTP/SOAP
Flight Booking

(Web Services)

HTTP/SOAP Hote l Booking
(Web Services)

Figure 2-2: The automated travel booking process based on Web ervice composition

We will use an automated travel booking use ca e (ee Figure 2-2) to expl a in ho\ th

Web Serv ice appli ca ti ons function . A travel booking procedure compri e a et of

operati ons intended to meet a customer ' reques t to book a journey ia a trave l agency

fo r him/ her. T he procedure cons ists of the fo ll owi ng t ps: a booking reque t, booking

processin a, booking quotation, and bookin a ji,(/ ilme/1t . To start the booking procedure,

the cu tomer sends a booking request to the travel agency for them to book a flight to

hi s/her de tination as we ll as hote l accommodation fo r his/her tay there . The tra e l

agency starts processing the bookina when it receive a bookina reque t. Proces ing

invol c the ana ly i of the booking reque t placed b the customer and other internal

busincss proce-si ng logic, including find ing the appropriate fli ght and hotel. booking

a fli ght with an ai rway compan and booking a room \ ith a hotel , regi tering the

b ok ing de tai l ' in thc databa e. and so on . Therefore. a long with the Web en iJce

1-

Dependability of Service-Oriented Architecture

offered by the travel agency, the airway company and the hotel also need to provide

Web Services for the relevant processes to be carried out. Bookingfulfilment involves

sending the booking reference, flight details, and hotel details to the customer. Note

that in this abstract travel booking use case we only focus on the computing systems

that are involved in the procedure, unconcerned with the details of the actual business

activities.

In order to deal with the issue of possible conflicts within Web Service specifications

[4], the Web Service Interoperability Organization (WS-I) [30] has instituted the Web

Service interoperability profile [13] to promote and standardise the interoperability of

Web Services by clarifying such specifications. It consists of some non-proprietary

Web Service specifications, further refining the mechanisms defined in Web Service

specifications, such as SOAP message binding, Web Service publishing, etc., to

construct an interoperable Web Service infrastructure. The WS-I profile is well

recognised and supported by the majority of the Web Service middleware [31-33],

therefore it is safe to assume Web Services to be universally interoperable in scientific

research unless there are specific circumstances to make this false. Thus, in the travel

booking use case, the travel agency can freely invoke the flight booking and hotel

booking Web Services without the service providers having to participate for the

interaction to occur.

2.3.2 Dependability of Web Services

Because of the nature of their architecture, unreliability is an intrinsic characteristic in

distributed systems. It is therefore essential to consider dependability issues as the

architectural implication for distributed systems [1]. Many researchers are aware of

this, reporting on and discussing their relevant experiences [18, 19, 34-36]. Our

13

Dependability of Service-Oriented Architecture

experiments [37, 3S], conducted upon the real-world bioinformatics Web Services

(see section 2.3.3), have also revealed some important aspects of the dependability

issues of real-world Web Services used in scientific applications.

Web Services implement capabilities and functionalities via computer networks,

especially the World Wide Web (Web) [39]. They are typically autonomous and

deployed by various companies or organizations to loosely couple with clients. The

result of this manner of composition has been a wide range in the dependability

characteristics of the Web Services being developed, especially those built upon

legacy components. The hardware and software faults in Web Services or other

internal activities can lead to failures of the client. Because Web Services are

administrated by various independent providers, it is difficult to develop the

corresponding handling mechanisms in the client application. For example, a Web

Service can develop halt failures [21] when it is shut down without informing its

clients. When the client invokes the service, an exception will arise indicating the

unavailability of the service, yet without detailed information about the failure.

Without collaboration from the service provider, it is difficult to implement further

actions to handle the failure because of the lack of information about the state of the

service. Some Web Services can return error messages to their clients, indicating an

exceptional state of the service. However, these error messages are normally

insufficient for implementing handling mechanisms at the client side.

The network which the Web Service infrastructure relies on is an unreliable medium

[IS. 19,34]. There are many common network-related problems. such as latency of

response. loss of messages. corrupted messages, traffic congestion, etc. The services

can be inaccessible entirely because of network failures. For instance, paper [IS]

14

Dependability of Service-Oriented Architecture

points out that "local and network conditions are far more likely to impede service

than server failures". This conclusion is further supported by paper [19]: "Network­

related outages can potentially render more than 70% of the hosts inaccessible to the

user. Host-related failures tend to be of a shorter duration than failures that might

involve the network". The development of dependable Web Service applications thus

calls for solutions capable of dealing with exceptional behaviours of individual

component Web Services as well as network failures [40].

According to the classification and taxonomy proposed in papers [20, 21], the issues

described above can be grouped into the following types of failures:

• Service failure: an event that occurs when the delivered service deviates from

correct service.

• Network failure: An event that occurs during the exchange of messages

between the client and the service, including delay, loss and change of the

content of the message.

In tum, service failures can be classified as follows:

• Omission failures: The service omits to respond to an input. It can be the result

of a system crash, poor system maintenance and hardware or software

component failures.

• Erratic failures: Service responds to the inputs; however, the result IS

incorrect, or the response time is unreliable or abnormal.

Network failures can be further grouped in the following way:

• Omission failures: message lost during an exchange of messages.

15

Dependability of Service-Oriented Architecture

• Timing failures: unusual network latency during an exchange of messages.

• Content failures: the content of the message changed during an exchange of

messages.

2.3.3 Our experiments on the dependability o/Web Services

To analyse the dependability of realistic Web Services, we have conducted some

experiments with real-world Web Services, developing a Web Service dependability

Assessment Tool (WSsDAT) in order to assess Web Service dependability [37]. The

tool can continuously monitor a number of Web Services and generate metrics from

the monitoring results to present the dependability characteristics of the services.

More details about the WSsDA T tool can be found in Appendix A. Some of the

experiments, in which the tool was used, are reported in papers [37, 38].

Here we briefly report the experiment with two BLAST Web Services, commonly

used in Bioinformatics research [41], which provide similar functionalities. In the

experiment, we used the WSsDA T to monitor the BLAST Web Services from three

locations simultaneously to observe the differences in their behaviour and how the

locations (networks) affect the dependability. Below are listed the two Web Services:

• EBI BLAST Web Service l
, deployed by the European Bioinformatics Institute

(EBl), Cambridge, UK [41]

• DDBJ BLAST Web Service2
, hosted by the DNA Databank, Japan [42]

Two WSsDAT tools were located in Newcastle upon Tyne, UK: one was deployed

from the campus network at Newcastle University, whilst the other one was hosted on

I http://www.ebi.ac.uklcollab/mygridlservice4/soap/services/alignment: :blastn _ ncbi?wsdl
1 http://xml.nig.ac.jp/wsdllBlast.wsdl

16

Dependability of Service-Oriented Architecture

a computer connected to it with I MB broadband via a domestic Internet Service

Provider, Telewest Broadband (UK) [43]. The remaining WSsDAT was deployed in

the China Education and Research Network (CERNET) in Tianjin [44].

In order to observe the variances of the dependability and performance metrics over

different periods - during working days, the weekend, daytime and night time - the

two BLAST services were monitored continuously for over a month. Here we report a

set of data collected from Friday, March 18,2005 until Sunday, March 20, 2005. The

total duration was 72 hours and the interval between the successive service

invocations was 30 minutes. All measurements were stored in a database for further

analysis.

During the experiment, the EBI BLAST service behaved very erratically. Below is a

report of the results collected concerning the service:

• Successively tested 132 times in 72 hours at each location

• Domestic Broadband (Telewest), Newcastle Upon Tyne, UK

o Average response time: 842.1s (239s - 760s)

o Failure rate: 58.3% (76 invalid results)

• Newcastle University Campus Network

o Average response time: 764.6s (240s -1000s)

o Failure rate: 62.9% (82 invalid results)

• CERNIC, China

o Average response time: 945.7s (261s -1886s)

17

Dependability of Service-Oriented Architecture

o Failure rate: 43.2% (56 invalid results)

All of the failures were caused by the EBI service returning the SOAP message, with

the error message "Gateway failure" attached. The error message seemed to indicate

the failure of an internal service component. However, without collaboration by the

service provider we do not have information about the failure.

In contrast, the dependability of the DDB] service was very good during the

experiment, with no failures recorded. There were two delays registered at each of the

three roots, indicating unknown states of the service or some part of the network.

• Successively tested 132 times in 72 hours at each location

o 100% successful

• Domestic Broadband (Telewest), Newcastle Upon Tyne, UK

o Average response time: 103.1 s

o Delays: 180s, 728s

• Newcastle University Campus Network

o Average response time: 97.8s

o Delays: 369s, 925s

• CERNIC, China

o Average response time: l30.0s

o Delays: 397s, 940s

18

Dependabilityof ervice-Oriented rchitecture

Figure 2-3 shows th e charts drawn from the e re ul t . Our experiment ho\ that the

dependabi li ty of a BLAST service can vary dramaticall y. Thi s empirical conclu ion

can be ex tended to the g lobal Web Service infrastructure, where the dependability of

services are a ll different fro m the user 's per pecti ve [1 8,38].

EBVCambridge Blast DDBJ/Japan Blast
~r-------~r---------~----____ --, ,..,

I I
I I
I I (rns)
I I
I I
I I
I I
I I
I I
I I

(180' jt l I

• " loW 111 lID ,.MII$ ~-~

~r---------~--------~----------, '..,'r---------~--------~--------__,
(925"

00 ..

- ,..,
(940.)

E 'tclO
(Exceplions~

:3

'" ~ '" ~ "" .:
~ U

" £ ... , , ,
: (Valid resu lls) :

Do'o

F ' 2 3 P f' Inetrl'c.S obtal' lled usin!! the WSsDA T from the BL ST Igure -: er ormance. ~

services deployed at the EBI and DDBJ when invoked from the ni versit)' of

cwcastle campus network, a commercial broadband supplier (UK) and from C hina,

ervice failures have been shaded in grey,

19

Dependability of Service-Oriented Architecture

With the superior richness of services offered by SOA, Web Service applications

extensively use this diversity to improve the dependability of service composition

(see, for example, the solutions proposed in [40,45-48], to name a few). This strategy

is based on the fact that, in SOA, different service providers may provide similar

services which can be used as redundancy and alternatives to each other. We believe

that the information collected in our experiments can be used to understand the

behaviour of the BLAST Web Services and thereby allow scientists to select those

that are the most reliable for use in their data analyses. This makes it possible to select

Web Services from among similar services based upon their dependability behaviour.

Our experiments indicate that, based on the comparison of its dependability

characteristics with those of the EBI BLAST service, the DDB] BLAST service

should be the first choice for users. Furthermore, the fact that it is possible to deploy

and use the WSsDA T in different physical locations can lead to insights on how the

network can affect the dependability and performance of Web Services, pointing

towards the idea of on-location monitoring of Web Service dependability at the client

side.

2.3.4 Means/or Achieving Dependability

There are many techniques used to achieve dependability. Paper [21] groups them in

the following categories:

• Fault prevention

• Fault tolerance

• Fault removal

• Fault forecasting

20

Dependability of Service-Oriented Architecture

Current research on the dependability of Web Services implements the above

approaches - individually or in combination - to deal with different types of failures

[21].

Fault prevention can eliminate a number of faults hidden in the design and

implementation of the system. It has to be applied during the system design stage by

employing quality control techniques such as modularization, structured

programming, etc. [21].

Fault-tolerance mechanisms act upon errors to maintain the continuity of services.

The aim of fault tolerance is to avoid system failures in spite of the remaining faults.

It typically consists of two phases: error detection and system recovery [21]. Error

detection is used to identify the presence of errors, whilst system recovery is aimed at,

by applying error and fault handling, transforming a system state that contains one or

more errors and (possibly) faults into a state without detected errors or faults that

could be activated again. Error handling eliminates errors from the system state,

whilst fault handling prevents faults from being activated again [21,49].

Fault forecasting performs qualitative evaluation of component failures and

quantitative evaluation of the probability offailures with respect to fault occurrence or

activation. The dependability attributes of a system may change during the life cycle

of the system because of system aging. By employing modelling and testing

techniques, dependability attributes can be evaluated, and the probabilistic estimates

of dependability measures can help to make changes to the system to avoid system

failures. Thus, in fault-tolerant systems, fault forecasting can evaluate the

effectiveness of fault tolerance mechanisms and lead to improvements in the

implementation of fault tolerance mechanisms. More examples can be seen in papers

21

Dependability of Service-Oriented Architecture

[50, 51], which report how to use the fault-injection technique to assess the

dependability of Web Services.

Fault removal is generally applied in the development phase or during system

maintenance. It focuses on discovering potential faults in a system and removing them

to avoid failures [21].

2.3.5 Fault tolerance in SOA

With their complex architecture and complicated application scenarios, Web Service

applications are doomed to a potentially high rate of failures. This calls for a variety

of methods to be designed to minimize failures occurring in Web Services and in their

interaction with clients. Nevertheless, faults can never be completely removed from

real-world systems, nor can the occurrence of errors be ever entirely prevented [22].

In this respect, the application of appropriate fault tolerance (FT) techniques is critical

for improving the dependability of Web Service applications. Generally speaking, in

fault tolerance, system recovery consists in error handling and fault handling. Error

handling may involve the following forms [21]:

• Rollback, which brings the system back to a correct state saved at checkpoints

before the occurrence of errors.

• Roll forward, where the state without detected errors is a new state.

• Compensation, where the erroneous state contains enough redundancy to

enable errors to be masked.

Fault handling prevents located faults from being activated again, by employing the

following steps [21]:

22

•

•

•

Dependability of Service-Oriented Architecture

Fault diagnosis, which identifies and records the location and type of cause(s)

of error(s).

Fault isolation, which excludes the faulty components from service processing.

Reconfiguration, which switches service processing from faulty to redundant

components.

• Reinitialization, which sets the new system configuration.

The selection of the fault tolerance techniques strongly depends on the fault

assumptions made, and mostly lead to two basic fault tolerance strategies: backward

and forward recovery [21, 52]. Backward recovery typically implements the recovery

block fault tolerance technique [52, 53] to maintain the continuity of the service in

spite of faults. If errors occur during the transaction, the system rolls back to a

previous correct state, and then applies a retry or service diversity to tolerate the

faults.

In contrast to backward, forward recovery transforms the system into a correct state. It

mainly relies on exception handling [20] techniques to tolerate errors occurring during

transactions. Exception handling mechanisms can be found in many mainstream

programming languages, for example Java, C++, and etc. They provide methods and

tools to handle exceptional states and activities during the execution of software so as

to achieve more reliable and robust software and systems.

N-version programming [54] is an important compensation technique, typically

employed in dependability-critical applications. It is used for tolerating design and

implementation faults. The approach requires multiple versions of software or

components to be developed by independent developers to identical specifications.

Although it is still impossible to avoid all of them. the approach can sufficiently

23

Dependability of Service-Oriented Architecture

minimize the probability of common faults, thereby improving the reliability of

system software [55]. In practice, however, the cost of applying the N-version

programming approach is high and its effectiveness often overestimated, resulting in

misjudgements of the reliability of the software or the system [55].

In the context of SOA, there has been some research focusing on applying the

Recovery block [52, 53] and N-version programming [54-56] techniques, which

employ the diversity approach to implement fault tolerance mechanisms. This

normally includes service and messaging path diversity.

Diversity is a natural advantage of Web Services because of their loosely coupled

architecture and standardised interoperability. Several Web Services implementing

similar functionalities are likely to be found in the growing Internet world, and can be

used for implementing service diversity. Furthermore, there is normally path diversity

to be found on the Internet. A lot of applications [46, 47, 57] utilize similar services to

implement the diversity approach. In Recovery blocks, diverse services can be used as

alternatives replacing the faulty services to maintain continuous service. The approach

can be especially beneficial for employing N-version programming in an application,

with the development cost dramatically reduced by using the existing services as

redundancy. This strategy may potentially be at risk from the problem of common

faults, whereby the services may share the same faulty services as external component

services. However, the probability of such problems can be minimized by applying

appropriate techniques, such as the solution proposed in paper [58].

24

Dependability of Service-Oriented Architecture

2.4 Overview of the EXisting Work

As part of our research of Web Service dependability, we have studied the existing

work, focusing on improving Web Service dependability and constructing dependable

Web Service applications. Such solutions typically rely on the techniques outlined in

section 2.3.4. There are too many different factors in the dependability of Web

Services, and it is impossible to deal with all kinds of faults in one solution.

Therefore, various approaches have been developed based upon particular fault

assumptions.

In general, depending on their purposes, these can be classified into two categories:

one aimed at developing dependable Web Services, and the other at dependable

applications based on Web Service composition. Approaches of the first kind adopt

various dependability-attaining techniques in service design and development to

improve their dependability. According to their fault assumptions and the

implementation of dependability-attaining techniques, many of them can be classified

as application-level protocols, exception handling, system diagnosis and modelling,

etc. Approaches of the second type often adopt service diversity and dynamic

reconfiguration of service composition to improve the dependability of the entire

application. These solutions are typically complex. Most of them implement the

broker/proxy-type architecture and apply multiple dependability-attaining techniques

in different combinations to deal with various types of faults. Below we will briefly

introduce some typical work to summarize the current state of research in this domain.

25

Dependability of Service-Oriented Architecture

2.4.1 Application-level Protocols

Current W3C Web Service specifications do not define standards and mechanisms to

guarantee the Quality of Service (QoS) and dependability of Web Services.

Additional protocols and standards have been developed to standardize the

implementation of QoS and dependability mechanisms. Such protocols and standards

particularly focus on application-level messaging dependability in addition to the

lower-level network protocols, most commonly HTTP [14]. The Service Reliability

(WS-Reliability) specification [59] is one of such solutions, which has been formally

declared as an OASIS [59] standard.

The WS-Reliability defines a protocol that guarantees the reliability of SOAP

message delivery. It can cope with failures of software components, the system and

the network during message delivery between distributed applications. This

application-level messaging protocol is designed to prevent duplicates and loss of

messages, and to guarantee message ordering. It cannot, however, deal with service

failures or unavailability of particular services. Therefore, it requires upper-level fault

tolerance mechanisms to deal with other types of failures.

2.4.2 Exception Handling Approaches

Exception handling is a classic fault tolerance technique [20]. Solutions based on it

implement exception handling mechanisms to cope with errors occurring in Web

Services, therefore achieving a highly dependable individual Web Service. Some of

these emphasise the tolerance of internal hardware and software faults, while others

also deal with network failures.

26

Dependability of Service-Oriented Architecture

AmberPoint Inc. [60] presents a solution for managing exceptions in a commercial

Web Service environment. The solution implements an intermediary-based Exception

Manager (EM) to detect run-time exceptions in a set of Web Services. The EM

executes localized resolutions to deal with exceptions. The approach overcomes the

shortcomings of the traditional programmatic exception handling mechanisms applied

in the context of Web Services.

Salatge and Fabre [46] introduce a connector-based solution for ensuring the

dependability of Web Services for clients. It proposes a special language for

implementing fault tolerance connectors to couple services and clients. Clients, Web

Service providers or dependability experts can implement the connectors in their

applications. The connectors implement error handling mechanisms to deal with

failures and exceptions during communication between clients and services. They can

also collect error information during execution in order to monitor the health of Web

Services. In addition to the above techniques, the service redundancy strategy is also

employed in this solution, based upon the Ontology technology. The solution can

improve the robustness of communication between clients and services. It is

especially suitable in developing a Web Service application in which clients and

service providers are correlative and can efficiently cooperate in implementing

connectors.

Dobson [61] proposes a container-based approach to fault tolerance in SOA. This

work is based on the assumption that, in SOA, services may fail for many reasons,

including resource starvation, faults in implementation and network instability. The

authors have developed a notion of fault-tolerant service container, an extensible

architecture, to employ component diversity in a SOA application. The container is

27

Dependability of Service-Oriented Architecture

configured with a fault tolerance policy. It allows the use of fault tolerance

mechanisms to leverage the existing services at the application level. A software

development kit (SDK) and a deployment tool are developed to implement the

container. This container-based approach addresses the problem of the traditional

hardware redundancy strategy commonly adopted by service providers. It achieves

redundancy at the service level, allowing both software and hardware redundancy.

The approach can employ service diversity by binding services available at a service

marketplace. In this way, service redundancy can be achieved at low cost. The

container acts as a proxy to the actual services. It intercepts messages transmitted

between the client and the services and applies exception handling techniques to deal

with failures of services. Such message interception is transparent to both the client

and service provider, and controlled by the fault tolerance policy model. The fault

tolerance procedures in the container implement the actions of fault tolerance policy

models.

The solutions based upon exception handling techniques can improve Web Service

dependability and/or the interaction between services and clients. They are often

highly application-specific and especially suitable for those service providers which

offer dedicated client-applications to their clients to improve the usability of their

services. As exception handling mechanisms need to be developed in the design and

implementation stages, such solutions can hardly benefit the existing legacy Web

Services without modification. Users may be able to employ them for implementing

their client applications: this, however, requires collaboration from providers.

2.4.3 System Diagnosis Approaches

28

Dependability of Service-Oriented Architecture

In developing systems, some approaches apply diagnosis and assessment techniques

to achieve highly dependable Web Services. These approaches commonly implement

system diagnosis and assessment mechanisms to assess the dependability of internal

and external system components, and act upon diagnosis results to avoid failures.

Ardissono, Furnari, Goy, Petrone and Segnan [62] present an approach relying on

consistency-based diagnosis aimed to achieve intelligent exception management. This

approach applies fault tolerance to compose Web Services by implementing exception

handling which relies on smart failure identification and diagnostic information-aware

exception handlers. In addition to the traditional model-based diagnosis approaches,

this work allows local diagnosers to analyse exceptions that arise in each component

Web Service and to extend the diagnostic-reasoning information in the business logic

description of each component Web Service. A global diagnoser is then introduced to

conduct global reasoning. It identifies the causes of exceptions by consulting the local

diagnosers. The existing component Web Services need to be modified so that they

can interact with the corresponding local diagnosers and achieve diagnostic

information awareness.

Vieira, Laranjeiro, and Madeira [50] propose a fault injection technology for

assessing Grid Web Service dependability. The authors have developed a fault

injection toolkit, which allows network-level fault injection for real-time middleware

message interception and fault injection. The toolkit can precisely inject specific

rather than random faults into middleware messages, which makes it valuable for

assessing Grid middleware for constructing dependable Grid applications. The toolkit

can also be used as a tool to test individual Web Services.

29

Dependability of Service-Oriented Architecture

The above summarises some typical approaches based upon system diagnosis and

assessment. Such approaches can help developers to build highly dependable Web

Services, such as dependability-critical applications where service dependability is

vital. It is difficult to apply such solutions in the existing systems, and the

development cost of such solutions is quite high.

2.4.4 Approaches to Dependable Service Composition

The solutions aimed at improving the dependability of Web Service composition

typically implement the service broker architecture and fault tolerance mechanisms.

They intercept communication between the client and Web Services and act upon

exceptions and failures to maintain service continuity. As for those applications that

integrate Web Services dynamically discovered from registries and invoke them

according to their WSDL interface, it is difficult to implement specific fault tolerance

mechanisms to ensure the dependability of service composition because of the lack of

information. In such circumstances, functionally similar Web Services are often used

to employ the service diversity strategy.

Alwagait and Ghandeharizadeh [45] propose a dependable Web Service framework

(DeW) for solving problems caused by service migration. When a Web Service

migrates to a different location or gets disconnected from the Internet, clients

typically have to manually rediscover the service or its replicas from the UDor and

modify their application code to invoke them to the new location. The DeW

implements Web Service registry proxies to automatically re-direct the client's

invocation of a service to the old location to the new location of the service or its

replicas. When a Web Service migrates, the service provider can register the new

location of the service or its replica in the DeW. When the client invokes the service

30

Dependability of Service-Oriented Architecture

using its old location, an exception will rise. The exception will be handled by the

DeW proxy, which will find the new location of the service or its replicas, and

redirect the client's invocation there.

Laranjeiro and Vieira [48] propose a mechanism for adopting service diversity into

composite Web Service applications. It simplifies the implementation of service

redundancy commonly applied in the context of Web Service architecture. The

mechanism, called Fault tolerant Web Services (FTWS), allows programmers to

specify alternative Web Services for each operation and offers a set of artefacts that

simplify the software design and coding process. It is able to deal with all aspects

related to the redundant Web Service invocation and responses voting, as well as

evaluating and comparing the alternative services. The evaluation procedure generates

data for resolving voting Impasses. When developing a SOA application,

programmers normally have to select component Web Services and redundant

alternative Web Services when constructing composite ones. It is their job to code all

the service redundancy and voting mechanisms. Such procedures are typically error­

prone. With the FTWS deployed as a proxy Web Service, it can automatically deal

with all aspects related to service redundancy and responses voting. In short, it is an

off-the-shelf proxy Web Service that implements service redundancy and voting

mechanisms to simplify the development of composite Web Services.

Tsai, Song, Paul, Cao, and Huang [47] propose a framework that extends the existing

Web Services to achieve dynamic reconfiguration for Web Services. It can perform

automatic reconfiguration of participating services at run-time to cope with service

unavailability, network inability as well as software and hardware failures. This

framework extends the current WSDL interface specification, specifying a service by

31

Dependability of Service-Oriented Architecture

its interface, scenarios and constraints (lSC), i.e. representing its actors, conditions,

data, actions, timing and events (ACDA TE). The ISC specification specifies the static

and dynamic structure of services.

The authors have developed a run-time distributed dynamic reconfiguration tool based

on the ISC. The Dynamic Reconfiguration Service framework (DRS) uses the ISC

specification for improving Web Service dependability, maintaining a service registry

for monitoring and managing registered Web Services. It is implemented and

deployed with redundancy to avoid a single point of failure. Multiple DRSs can be

deployed in each system layer, communicating and synchronizing with each other to

enhance the dependability of the framework. Every DRS has a Service Directory (SD)

and a Standard Service Naming Directory (SSND) for managing Web Services and

needs to interact with services providers to obtain information for them. The DRS can

track the status of participating Web Services and rank them according to user

feedback reports from participating agents. It generates a proxy agent for each

abstract node in its SD. When the client invokes a participating Web Service, it is the

proxy agent rather than the actual address of the service that is invoked. The DRS

implements aUditing agents to monitor the status of participating services at run-time

and to generate a profile for each active service. With the DRS performing dynamic

reconfiguration at run-time, if a participating service becomes unreliable, the client's

invocation can be automatically switched to an alternative service.

Townend, Groth and Xu [58] propose a provenance-aware weighted fault tolerance

scheme for developing dependable Web Service applications. This approach identifies

common-mode failures in applications using multi-version design. It introduces a

provenance system to record the flow of data from a service to identifY shared

32

Dependability of Service-Oriented Architecture

services. The recorded provenance infonnation can be used to detennine weighting of

the results delivered by each service for result voting. The results from those services

whose weightings are below the threshold are eliminated from the voting procedure.

A Java-based Web Service implementation of the Provenance Recording Protocol,

called Provenance Recording for Services, is implemented to support a provenance­

aware SOA.

The service broker architecture was popular in the conventional distributed

applications, such as the message broker in EAI and the object request broker in

CORBA [4]. In these systems, the service broker was the key service component for

perfonning service integration. The client's business logic depends on the service

broker for interaction with participating component services in order to execute

business processes. However, the service broker can at the same time cause problems

in developing cross-organizational applications because of its lack of ability to

integrate autonomous component services. Because of their standardized

interoperability, these limitations do not apply to the service broker in Web Services.

Therefore, the dependability-improving service brokers proposed in the above

solutions are feasible in Web Service applications. In fact, the Web Service

specification [I] describes a Web Service called Web Service intennediary which

develops value-adding services between the client and Web Services, and which can

be used to implement service brokers in the way fully compliant with Web Service

specifications. Unfortunately, the potential of this architecture is not recognised in the

above solutions, where the researchers develop their own architecture to implement

service brokers. As a result, these solutions can hardly be seamlessly integrated into

the existing applications, and they do not support on-the-fly dynamic service

33

Dependability of Service-Oriented Arehitectur

integration that would a ll ow new component service to be integrated in ervlce

compo ition without recompiling the client applicat ion and the ervice broker.

2.5 Problems Involved in Web Service Composition

Among the many studi es aimed at improving Web Service dependabi li ty, tho e

developing dependab le Web Service composition constitute a significant part,

emph asising how important it is to ensure the dependability of applicati on ba ed on

service composition. However, a lthough the exi ting work ha addressed certain

dependability Issues

remammg.

Customer

Client
application

effective ly, there

Travel booking
(Web Services)
Travel agency 1

HTTP/SOAP Travel booking
(Web Services)
Travel agency 2

are ti II some probl em

HTIP/SOAP

HTIP/SOAP

Flight booking
(Web Services)

Airway 1

Hotel booking
(Web Services)

Hotel 1

HTIP/SOAP Flight booking
- (Web Services)

Airway 2

HTIP/SOAP Hotel booking
---- (Web Services)

Hotel 2

Figure 2-4: T he auto mated travel booking process with multiple travel agencies

Web ervice composition re li es on multiple component serv ices to implement en tire

businc s processes. These component services are deve loped and admini strated by

different se r ice providers. In rea lity, there is no guarantee that a ll component

servi es are highly dependable. For instance, in the travel bookinG u e ca e, b

emp l ing appropriate dependab ility so luti ons the Web Services pro ided b the

tra e l agcnc and the a irwa compan can be de e loped in uch a way as to meet a

34

Dependability of Service-Oriented r hi te rD re

hi gh dependability standard because thi s is e ential for the e bu ine e . Howe\er, it

might be seen as less important to the hote l busine , with the de elopment of highl y

dependable Web Services restri cted by a limi ted budget. Therefore, the dependability

of the entire travel booking process can be eventua ll y undermined by undependable

hotel booking Web Services.

In such circumstances, it is well worth employing service diver ity trategy to de elop

a client appli cation. As there are several travel agencies offeri ng the same bu ine ,

the client can send quotation requests to multipl e agencies, booking the joull1ey with

one of them (see Figure 2-4). Thus, thing become Ie s probl emati c to the cu tomer,

as long as one of the travel agencies can eventuall y complete the booking proce .

Customer

Client
applica tion

Travel booking
(Web Services)
Travel agency 1

Trave l booking
(Web Services)
Trave l agency 2

\

Flight booking
----- (Web Services)

Airway 1

II I

Hotel booking
(Web Services)

Hotel 1
\\ I //
Ii' -./
A// --

)/\ - Flight booking
....----~ (Web Services)

Airway 2

~ Hotel booking
~--- (Web Services)

Hotel 2

Figure 2-5 : The automated travel booking process with multiple travel agencies

implementing se rvice diversity. The solid lines represent primary routes and the

dashed lines alternative routes.

However, the ituation i velY different fo r the tra el agencies fro m what it i for the

ell tomer. The tra el agencie ha e to compete \ ith each other, and the dependability

of their cr ices is their ke to llcces (not that we are not concerned h re \vith other

Dependability of Service-Oriented Architecture

business factors, such as price, service quality, etc.) Therefore, the travel agencies

also need to build service diversity into their travel booking services, to prevent their

business from failing due to undependable external component services, such as the

Web Services provided by the participating business partners, and the network needed

to access them. In a scenario, the use case illustrated in Figure 2-4 may tum into that

in Figure 2-5, in which both travel agencies (TA), TAl and TA2 use the same

Airways (A W), AWl and A W2, and hotels (HT), HTl and HT2, as external services.

However, these Web Services have different dependability characteristics. The

selection of the appropriate components during service composition is one of the most

important elements in defining the dependability of the entire application.

The service diversity strategy and the proxylbroker architecture have been extensively

employed in solutions for developing dependable Web Service applications. However

the limitations of those solutions have restricted their applicability and efficacy in

real-world applications. In the following, we discuss some of these limitations.

There are two ways to apply service diversity: service alternatives as used in the

Recovery block [52, 53] fault tolerance technique and service redundancy as used in

N-version programming [52-55]. In this dissertation, we draw the following

distinction between them:

• Service alternative: component services are used as alternatives to the primary

service, and the business logic processor only invokes them when the primary

service fails to deliver valid results.

• Service redundancy: component services are used synchronously, the business

logic processor invokes them at the same time and processes the results

returned from them according to certain preference.

36

Dependability of Service-Oriented Architecture

The above diversity strategies have been employed in some of the existing solutions.

However, to the best of our knowledge, the existing work does not provide features

for making justified selection of the diversity strategies and component services.

In practice, it is difficult to choose which diversity strategy to use, because their

applicability largely depends on the environmental variables, such as network

bandwidth, system capacity, etc. [36]. These variables are especially restrictive in the

service redundancy approach. It may straightforward applying the approach to the

simple business model illustrated in Figure 2-5, yet as the number of redundant

component services grows, the approach becomes less applicable, possibly

undermining the dependability of the application [36]. We believe the above issue

was not sufficiently addressed in the existing work.

Many solutions employ the service alternative diversity strategy, because of its

simplicity. However the strategy for selecting the component services is seldom

discussed. Obviously, which primary component service is selected mostly defines

how efficient and feasible the service alternative approach will be. A highly

dependable primary service can benefit the performance of the entire service

composition. Unfortunately, to the best of our knowledge, there is no satisfactory

solution currently to help application developers to select component services.

Although some solutions implement service ranking mechanisms, such as in [47],

there is not enough information to reflect the changing behaviour of Web Service

dependability. Moreover, computer networks play a very important role in Web

Services, with the dependability of the computer network between the client and

services crucial for service composition. The dependability of a Web Service may

37

Dependability of Service-Oriented Architecture

change dramatically from one client's perspective to another's, because of the

different networks between clients and the service provider.

Many solutions use similar services to implement service diversity. However even

though the candidate services provide similar functionalities, their interfaces, required

input parameters, etc. can be very different. Some solutions propose interface

mapping mechanisms to deal with the issue; in addition to the difficulties of

implementing and maintaining such mechanisms and mapping registries, these

approaches often undermine the compatibility with some Web Service security

mechanisms [13]. For example, it is unlikely that an encrypted SOAP message

provided by the client can be decrypted by all candidate services, and that a security

key issued by a service will be accepted by other services. For similar reasons, those

approaches are often inapplicable for the stateful Web Services 3, whereas if a service

fails in the middle of the business logic process, diverting the client's request to other

candidate services will cause problems, because they do not contain the states or their

internal business logic implementations can be very different.

We can now summarise several problems still existing in Web Service composition

which have not yet been satisfactorily dealt with in the relevant work:

• Dynamically selecting appropriate fault tolerance mechanisms

• Dynamically selecting diverse component servIces In corresponding

mechanisms

• Failures of component services undermining the dependability of service

composition

J http://xml.coverpages.org/statefuIWebServices.html

38

Dependability of Service-Oriented Architecture

• Network failure can undermine the dependability of Web Services from the

client's perspective

• Compatibility with Web Service security mechanisms

• Compatibility with stateful Web Services.

2.6 Conclusions

The dependability of Web Services is an active and important research domain. The

loosely-coupled distributed architecture of Web Services has brought benefits for

developing e-Science and e-commerce applications. However, such architecture is

inherently undependable. Research on the dependability of Web Service applications

needs to deal with both service failures and network failures. It is also very important

that such solutions need to be compliant with the Web Service specifications [1] and

the WS-I interoperability profile [30]. There have been many approaches developed to

ensuring the dependability of Web Service and service composition. However, our

analysis shows that the limitations of those solutions restricted their applicability and

efficacy. There is a need for solutions to help develop dependable Web Service

applications. We conclude that such solutions will need to improve the dependability

of the existing legacy Web Services for clients without modifying them, thus benefit

clients whose applications rely on the services dynamically discovered from the

UDDI or other registries and employed in their applications. This can minimize the

development cost whilst fully utilizing the richness of services in the Web Service

world. New solutions are needed to improve the dependability of Web Service

applications from the user's perspective to minimize the problems caused by service

and network failures. New techniques are also required for improving the efficiency

of such solutions by explicitly utilizing service diversity strategies and using the most

39

Dependability of Service-Oriented Architecture

dependable components to ensure dependable service composition. Moreover, the

solutions should have better compatibility with Web Service security mechanisms and

stateful Web Services. The above considerations motivated our research on improving

the dependability of Web Services.

40

3. The WS-Mediator System

3.1 Introduction

The WS-Mediator System

In this chapter, we present the WS-Mediator approach. Generally speaking, the WS­

Mediator is a Web Service intermediary system which implement an overlay

architecture [63-65], resilience-explicit computing [27] and fault tolerance

mechanisms to improve the dependability of Web Service composition. It explicitly

mediates clients' requests to Web Services in accordance with the dependability

behaviour of these services and of the communication media (the Internet). The WS­

Mediator is implemented as a distributed network of dedicated services (called Sub­

Mediators) which allows monitoring of the dependability of the Web Services from

different locations. Monitoring results are used to dynamically generate and update

the dependability metadata of these Web Services, which makes it possible to achieve

explicit dynamic adaptation of Web Service composition at run-time. The system can

be seamlessly employed by applications, to provide off-the-shelf (ready-made) fault

tolerance mechanisms for improving the dependability of service composition without

modifying component services. This is especially beneficial for integrating

autonomous Web Services.

The chapter is organised as follows. Section 3.2 defines the objectives of the solution,

while section 3.3 overviews the architecture of the WS-Mediator system. Section 3.4

explains the structure and internal components of Sub-Mediator, and describes the

design principle of the WS-Mediator system in detail, with a particular focus on the

functional components. Section 3.5 demonstrates how to use the WS-Mediator system

in applications. Finally, section 3.6 concludes this chapter and highlights its main

contributions.

41

The WS-Mediator System

3.2 Research Objectives

In the previous chapter, we briefly overviewed relevant work on improving Web

Service dependability, highlighting the problems that have not been sufficiently

addressed in the existing solutions, which do not fully explore the impact of the

Internet and the quality of the service received by clients. Some solutions allow

clients to utilize service diversity in their applications. However, they neither support

justified selection of the diversity strategies nor select the component services

dynamically according to their changing dependability behaviours. Moreover, the

client application and the service brokers implementing these solutions often need to

be recompiled every time new component services are added to the composition

schema. Besides, these solutions tend to require a degree of collaboration from service

providers as additional information has to be obtained to implement relevant

mechanisms [46, 58]. This is, however, rarely suitable 10 cross-organizational

applications, thus eliminating the applicability of these solutions.

Yet ensuring the dependability of service composition with autonomous Web Services

is an important issue. Motivated by the problems described in section 2.5, our work

aims to tackle them, and accordingly we define the objectives for our approach in the

following way:

• To propose a solution to improving the dependability of Web Service

composition, which can maintain the continuity of services despite failures of

component services and network.

• This solution should be compliant with the Web Service specifications and

interoperability, and support on-the-fly dynamic integration of component

services according to their dependability characteristics.

42

•

The WS-Mediator System

To make it possible to carry out an easy dynamic integration of new

component services to business logic to employ service diversity in service

composition.

• To develop a dependability monitoring mechanism to assess the dependability

of component services from the client's perspective and generate

dependability metadata representing the dependability behaviour of

component services.

• To provide off-the-shelf fault tolerance mechanisms and dynamic

reconfiguration of these to deal with various fault assumptions.

As a result of our research, we have developed an architectural solution achieving the

above objectives. Below we will present the approach in detail.

3.3 Overview of the WS-Mediator

Our solution, the WS-Mediator (Web Service Mediator) system, realizes an off-the­

shelf mediator architecture [66] to ensure the dependability of Web Service

applications. The WS-Mediator system implements the Web Service intermediary

architecture [I]. Being autonomous of the client, it mediates between the client and

Web Services to ensure the continuity of services by employing resilience-explicit

computing and fault tolerance mechanisms.

The term Resilience-Explicit Computing refers to "the explicit use of information

(metadata) on the resilience characteristics of system components, infrastructure and

environment to guide decision-making at either design time or in the running system"

[27. 63, 65]. Resilience-explicit computing is specifically addressing dependability

issues in SOA to achieve highly dependable SOA applications.

43

The WS-Mediator System

In theory, resilience-explicit computing originally refers to the situation in which a

client imposes a dependability requirement when attempting integration with services,

whilst the services present dependability metadata at their interface [65]. In practice,

the above service lookup and integration process can be carried out by introducing

into the architecture a special service that can mediate between the client and the

services to match the dependability requirement of the client and the dependability

metadata of the services by employing explicit reasoning about service composition.

In the current Web Service technology, there is no standard defrnition of how

dependability metadata should be presented at the Web Service interface, nor is there

a standard way to implement them so that they can be universally understood by the

client. A special service should therefore be developed to resolve this issue. This

could, for instance, behave as a service coordinator between the client and the

services, and implement a conversion mechanism to convert the dependability

metadata from different services to a standard format that can be understood by the

client.

Our WS-Mediator approach followed the above route, extending it to adopt some

concepts and mechanisms from adaptive fault tolerance technology [67, 68], which

has already been applied in developing dependability-critical applications (e.g. [69])

for many years, to resolve the dependability issues in Web Service composition.

In SOA, from some perspectives the distinction between a service provider and a

client is blurred. When it invokes other Web Services, a service provider acts as a

client [4]. The WS-Mediator monitors the dependability of Web Services and

generates dependability metadata from monitoring results. The system overlay

architecture [63-65] allows the subsystem, i.e. Sub-Mediators, to be deployed at

44

The WS-Mediator System

various locations in the Internet. In practice, the Sub-Mediator can be deployed at the

same root where the client application executes. Thus, Sub-Mediators can perfonn on­

location monitoring of component services to consider the network impact. The

notion of on-location monitoring implies that it is perfonned at the client side by

distributed Sub-Mediators to realise the dependability behaviour of Web Services

from the client's perspective (see Figure 3-1). Sub-Mediators can also utilize the

overlay architecture to implement message-routing strategies to deal with network­

related faults. The dependability Web Service metadata are used by the resilience­

explicit dynamic reconfiguration mechanism to make decisions about which Web

Service to select as the most appropriate for perfonning dynamic service composition

during the business procedure. This novel approach improves the efficiency and

feasibility of service diversity by applying it according to the dependability of

component services. The system does not limit the selection of candidate component

services, allowing new component services to be introduced into service composition

without modification or recompiling of any of its service components. Clients can

flexibly provide a number of candidate Web Services at run-time for implementing

service diversity.

Unlike the existing solutions (e.g. [46-48]), our approach does not create additional

difficulties for adapting systems to their applications. Furthennore, the system

provides integrated off-the-shelf fault tolerance mechanisms corresponding to various

fault assumptions and application scenarios, to be integrated into the client application

at run-time, thereby reducing the development cost of a dependable service

composition.

45

The WS-Mediator y tern

Client • .s.o-gp • \!"o

~ •. ~ a
- !§, P Workflow
.-5J~
Sub_ ~~

Mediator

Figure 3-1 : The overlay architecture of th e WS-Mediator system allows monitorin g

the dependability of Web Services from different locations by a dedicated global

network of Sub-M ediators. The system helps th e clients to dynamically select the best

Web Services for se rvice composition , and apply fault tolerance mechanisms to ensure

dependable applications.

The fl ex ible and ca lable architecture of the WS- Medi ator a ll ow it to be ea il y

ta il ored for va ri ous spec ific applica tions. There are many way to dep loy Sub-

Mediators - for example, they can be deployed on a loca l network, to be hared by

loca l c li ents; or a v irtua l organi zation could depl oy a Sub-Mediator on each node of

the framework to construct the WS-M ediator sy tem . A company could de pl oy a

number of Sub- Mediators at di fferent locations to uti li ze the WS-Mediator

archi tecture so a to improve the dependabili ty of the ir serv ices fo r g loba lly

distributed u ' ers. Figure 3- 1 illu tra tes the genera l architecture of the WS-Mediator

ystem. Below we wi ll expl ain its architecture and sys tem components in detail.

-+6

I
I
I

. -~
I
I
I

-' I

The WS-Mediator tern

.-~ Sub-Mediator

HTTP/SOAP

Client
appl ication

./
---- - I--j Sub-Mediator 7"";::c--t---HTTP/SOAP--- Web Services

I
I
I
I
I

HTTP/SOAP

I

I Sub-Mediator

I
I
L- ______ ...J

HTTP/SOAP

Web Services

Figure 3-2: Deployment of the WS-Mediator system, which consists of a number of

Sub-Mediators which implement an interface that accepts in vocation from th e cli ent.

They monitor Web Services and other Sub-M ediators and generate depend ability

metadata so that resilience-ex plicit computing can be performed. T he system also

applies fault tolerance techniques to deal with faults. The dashed lines represent

optional message routes.

3.4 System Architecture

The WS- Medi ator sys tem consists of a set of interconnected Sub- Med iators, fo nning

an overl ay architecture [64] (ee Figure 3-2). Sub- Mediators are globally distributed

over the Internet to monito r the dependabili ty of Web Serv ices , and prov ide accura te

dependability metadata, presenting Web Serv ice dependabili ty characteri sti cs fro m

the cli ent's perspecti ve. They are functionally identica l; if implementa tion di vers ity is

intended, ho'i er, the ir implementations can be di ffe rent. The c lient invokes a Sub-

Mediat r a the po rta l of the W -Mediator system. Sub-Mediators intercept the

interaction b t\ ecn the c lient and component ervices, perfo rming re ilience-explicit

The WS- Media tor y tern

computing and appl ying faul t to lerance techniques to improve the dependabili ty of

ervice composition. Be low we will describe the Sub-Mediator functionali tie and it

internal structure.

Sub-Mediator I

Business logic processor

I

Resilience-explici t I I

dynamic Fault tolerance
reconfiguration mechanisms

mechanism

Web Services
Interface invocation

Policy system Database system
mechanism

- l
- - -

Dependabili ty

I
Dependabi li ty

monitoring assessment
mechanism mechanism -

Figure 3-3 : The internal structure of th e Sub-M ediator

3.4.1 Sub-Mediator Structure

Figure 3-3 illustra tes the interna l structure of the Sub-Mediator. The Sub- Mediator

implements an interface (S MI) to accept the cli ent ' s invoca tion. T he c li ent ' request i

par cd and rea li zed by the Business logic processor (BL P), whi ch control s other

intcm a l components, perfollning business logic procedures to fu lfi l the c lient ' s

request. The R s ilience-explic it dynami c reconfiguration (RED RM) impl ements a

res ilien e-explicit computing mechanism to dynamica ll y se lect and integrate the best

component e t tce in ser ice compositi on according to their dependabili ty metadata.

PreD~r nc s tn thi se lection are on tra ined b po licie defin ed by the c li ent and

4

The WS-Mediator System

managed by the Policy system (PS) of the Sub-Mediator. The Fault-tolerance

mechanisms (FTMs) implements different fault tolerance techniques to deal with

different kind of faults. The client can define corresponding policies to select the

appropriate fault tolerance mechanisms to improve service composition dependability.

The Web Service invocation mechanism (WSIM) invokes the Web Services and

collects results. These are processed by the BLP and returned to the client via the

SMI. The dependability metadata of the Web Services is stored in the Database

system (OS), which also comprises information about Web Services and other Sub­

Mediators. The client can submit and edit information about Web Services to the OS

and retrieve the Web Service dependability metadata via the WSI. The dependability

monitoring mechanism (DMM) successively monitors the Web Services and Sub­

Mediators registered in the OS. The Dependability Assessment (DA) mechanism

processes monitoring results by the DMM to assess the dependability of Web Services

and Sub-Mediators and to generate their dependability metadata.

3.4.2 Sub-Mediator Interface (SMl)

The Sub-Mediator interacts with the client via the SMI, which can be implemented in

different forms, such as APls and Web Services, according to the concrete

implementation of the Sub-Mediator. Essentially, the SMI should have the following

functionalities:

o Accepting a client's service request for dynamically mediated service

composition with candidate Web Services

o Accepting service policies as defined by the client

o Accepting information submission by Web Services

o Accepting a client's request for Web Service dependability metadata

49

The WS-Mediator System

o Returning mediated results to the client

o Returning Web Service dependability metadata to the client for dependability

analysis.

The mediating service is the main service provided by the WS-Mediator system.

When the client (e.g. an e-Science workflow) requests the WS-Mediator to mediate

service composition, it needs to provide one or several candidate Web Services, and

an invocation message to be sent to each candidate Web Service. The number of the

candidate services depends on the intended fault tolerance mechanisms. The

invocation message carries the actual request to each corresponding Web Service. The

Sub-Mediator generates a mediated result, based on the results collected from

candidate Web Services, according to service policies. The mediated result needs to

indicate the source of the initial results, i.e. the candidate Web Services which

returned the results that it generated from. In case of no candidate returning a valid

result, or other types of failures, the mediated results need to attach an error message

indicating the type and details of the error.

The Sub-Mediator allows the client to submit and edit information about Web

Services, e.g. the endpoint address, the required message binding methods, etc. via the

SMI to help the WS-Mediator system to monitor Web Services. This information is

then stored in the OS, and Web Services monitored by the Sub-Mediator. The client

can also retrieve Web Service dependability metadata via the SMI for dependability

analysis. For example, a Sub-Mediator can request the dependability metadata on

particular Web Services to identify the best messaging routes.

50

The WS-Mediator System

3.4.3 Business Logic Processor (BLP)

The BLP controls the business logic process in order to fulfil the client's request. It

parses the client's request and service policies, assembles the business process

procedures and carries out a set of activities to perform the procedures. Figure 3-4

illustrates the assembly of BLP business procedures and execution activities. The

actual process of each procedure node is carried out by the corresponding

mechanisms.

3.4.4 Policy System (PS)

The PS manages two types of policies: service and system configuration policies.

They define essential and optional configuration parameters to constrain the execution

of service procedures as well as internal behaviours.

SelectWSs REDR

Process results

WSIM

Figure 3-4: Assembly of HLP business procedures and internal activities

51

The WS-Mediator System

Service policies comprise a set of entities allowing the client to define service

preference and other processing parameters, such as constraints on the invocation

method used for invoking component services, selection of fault tolerance

mechanisms, criteria for selecting candidate component services, etc.

System configuration policies contain entities representing system settings. They set

parameters to define the corresponding behaviours of the system and its components.

For example, they can set the maximum number of synchronous invocations the

system allows at a time, the maximum number of entities that the DS can store, etc.

3.4.5 Database System (DS)

The DS comprises two databases: the Web Service database (WSD) and the Sub­

Mediator database (SMD). The WSD stores information on the registered Web

Services and their dependability metadata, whilst the SMD stores information on the

registered Sub-Mediators and their dependability metadata. The information on Web

Services needs to be sufficient for the Sub-Mediator to invoke and monitor them,

including their endpoint address, operation name and so on. Different operations

offered by the same Web Services are regarded as different services. The

dependability metadata comprises entities representing the Web Service dependability

characteristics, such as their dependability rank, average response time, major types of

failures, etc. The structure and content of the SMD is similar to that of the WSD.

3.4.6 Dependability Monitoring Mechanism (DMM)

The DMM monitors the dependability of both Web Services and Sub-Mediators. It

retrieves the information on Web Services and Sub-Mediators from the DS to

compose test scripts to invoke the services and collect their dependability metrics,

52

The WS-Mediator System

such as the availability measurement (m), round-trip response time (t), type of failure

(j), etc. The test scripts run continuously, with the interval defined by the system

configuration policies, which also define the dependability metrics, e.g. m, t,j, that the

test script needs to collect. For instance, when the DMM monitors a Web Service

(WS), it invokes it using the test script and waits for a response. If it returns a valid

result that does not contain any error message, then its availability measurement (m)

increases. The round-trip response time of the invocation is recorded for calculating

the average response time (r) of a WS. If it returns an invalid response, its m

decreases, and the error message is logged in the database for the type of failures

statistic (j). If it fails to respond, or an exception arises during the invocation, its m

also decreases, and the type of the exception is also logged for the statistic f

3.4.7 Dependability Assessment Mechanism (DAM)

The DAM assesses the dependability metrics of services and their dependability

characteristics to generate dependability metadata. It can generate and update both

permanent dependability metadata (m, t, j), which represent the long-term

dependability characteristics of services, and temporary dependability metadata (m, t,

.fJ defining their short-term dependability characteristics. The system configuration

policies determine the time frame for calculating the short-term dependability

metadata (m, t, j). Theoretically, the short-term dependability metadata more

accurately represent the dependability of component services during run-time

dynamic service composition, whilst the long-term dependability metadata can help to

understand the changing behaviour of services.

53

The WS-Mediator System

3.4.8 Resilience-explicit Dynamic Reconjiguralion mechanism (REDRM)

The REDRM component dynamically selects and integrates component services

according to their dependability metadata (m, 1,.1). Until now, solutions implementing

service diversity have not emphasised strategy of selecting candidate services. The

execution order of the alternative services has been decided randomly by the service

diversity mechanism, without reasoning. However, as shown in our experiments [37,

38], the dependability characteristics ofa Web Service may change from one moment

to another. For instance, the availability (m) and the round-trip response time (I) of the

service can vary dramatically, and the service suffers from different type of failures (j)

at different times. Moreover, the above characteristics can also vary from different

clients' viewpoints as well as becoming less predictable because of the variations in

the network and other relevant environmental factors. In section 2.5, the use case

illustrated in Figure 2-5 demonstrates that inappropriately selecting primary

component services when applying service diversity may undermine the efficiency of

service composition. Therefore, we introduce resilience-explicit computing for

making decisions about selecting component services in dynamic service composition

to improve the feasibility and efficiency of the service diversity approach. The Sub­

Mediator uses the candidate Web Services provided by the client to implement service

diversity. Before carrying out service composition, the REDRM uses the relevant

service policies defined by the client to sort the candidate services by their

dependability metadata (m, I, j) in the DS. The best Web Services are used primarily

to perform service integration, whilst the others are used as alternatives. The

following shows how to apply resilience-explicit dynamic reconfiguration in service

composition:

Service composition: 1* collect component services

54

The WS-Mediator System

Aggregation A = {Sl' S2, ... sn}

Dependability metadata: /* set the criterion for dynamic selection

Criterion C = m: availability /* the criterion set by the selection policy

Sort component services: /* sort services according to metadata

Order 0 = (A - sorted)

Adaptation: replace (Service S, 0) /* switch to new component services

Below is an example which shows how to apply resilience-explicit computing in the

design of an application implementing service alternatives:

Set

{sn I services (n)} : list of candidate component services

criterion = m (availability) : parsed from selection policy

threshold t: parsed from selection policy

Retrieve

{an I availability (n)} = mn: metadata (m) ofsn

Filter

{cn I candidates (n)} = Sn where an is equal to or greater than t

Sort Cn : sort according to an

Composition

Try

Try ...

service S = c(

response r = invoke (c();

if(r is valid) then Finish

else replace S with next Cn

/* try alternatives

55

The WS-Mediator y tern

Finish

return r 1* return response to the upper leve l class

The benefits of thi s approach are clea r. Integrating expli citly se lected component

services can max imi ze the dependability and performance of service compos iti on as

the less dependable component se rvices are avoided to prevent them from

undermining the dependabi lity of the entire application.

T ravel booking
(Web Services)
Travel agency 1

Travel booking
(Web Services)
Travel agency 2

Flight booking
------- (Web Services)

/
/

/

/.... AIrway 1

_ '" _ / / Hotel booking
''::-' ----/-r--__ (Web Services)

'\ " / tiolel1
\ /

" --i.1 __ ..::/'

" 1;'-
, I /

'-'/ //
I /

- Fl ight booking
(Web Services)

Airway 2 ~ ____ -. I /

'// Resi lience-explici t
service composition Hotel booking

- - - - ..., (Web Services)
Hotel 2

Figure 3-5: The resilience-explicit service composition in travel booking use case. The

solid lines represent fixed message routes, and the dashed lines redundant/alternative

message routes.

Here we use the travel booking use case to demonstrate the fea ibility of res ili ence-

explicit computing in service composition. The travel booking illustrated in Figure 3-

5 extends the one illustrated in Figure 2-5 , where both travel agencies (T A) , TA I and

T A2 use the same Airways (A W), AWl and A W2, and hote ls (HT), HT I and HT2, as

extern al component services. Nomlally , TAl uses AWl and HTI as primary

component erv ices for travel booking, with A W2 and HT2 used as a lternatives if

W I or HT I fail s. TA2 implements res ilience-ex pli cit serv ice composition in its

tra el booking business procedme. AW l , A W2, HT I and HT2 are eq ually used as

rcdundant component se r ices. When T A2 recei es a quotation reque t from the

56

The WS-Mediator System

client, the resilience-explicit cornputing mechanism checks the dependability

metadata (m, r) of AWl, A W2, HTl and HT2, and selects the most dependable ones

to perform service cornposition. Let us assume that the HTl is an undependable Web

Service, whilst HT2 is very dependable, and that T A2 uses HT2 primarily to check

the hotel. At the sarne tirne, the performance of A W2 is better than of A WI, and T A2

uses A W2 to check the flight. In this scenario, T A2 achieves the best dependability

and shortest response time for the client.

In contrast, when TAl receives a quotation request from the client, it invokes A WI

and HTl to check their availability. However, as we already know, HTl is an

undependable Web Service and therefore fails to respond to TAl enquiry. Therefore,

TAl has to switch to HT2 to check the availability. Meanwhile, although AWl is

slower than A W2, it successfully delivers the response to TAL Eventually, TAl

returns the booking quotation; however, it loses the competition against T A2, which

delivers faster response because of the superior service implementation. Below we

demonstrate how to apply resilience-explicit computing in designing T A2:

Services

{hotel I HTI, HT2 }

{airway I AWl, A W2 }

Metadata

{m (%) I HTl: 60%, HT2: 90%, AWl: 90%, AW2: 90%}

{r (rns) I HTl: 500rns, HT2: 400rns, AWl: 800rns, AW2: 600rns }

Selection policy

{prirnary_criterion : m (availability) I no threshold;

Second criterion: r (response tirne) I no threshold}

57

The WS-Mediator System

Sort

{hotel I HT2, HTl} 1* mHT2 > mHT]

{airway I AW2, AWl} 1* mAW2 = mAW] but rAW2 < rAW]

Composition

Try check hotel

hotel h = HT2

Try ...

response rh = invoke (h)

if (r is valid) then Finish hotel booking

h=HTl

Finish hotel booking

Try check flight

Try ...

airway a= A W2

response ra = invoke (h)

if (r is valid) then Finish airway booking

a=AWI

Finish check flight

Finalize

quotation = rh + ra + service charge

return quotation

There are also other benefits gained through resilience computing. For example, the

REDRM can appropriately set relevant parameters when integrating component

services according to the information in the dependability metadata. The information

may contain average or maximum response time of the component service, and the

58

The WS-Mediator System

REDRM can set the invocation time-out parameter according to the response times to

improve the performance of service composition.

3.4.9 Fault-tolerance mechanisms (FTMs)

The Sub-Mediator implements fault tolerance techniques to tolerate temporary and

permanent service and network failures. They are implemented as different fault

tolerance execution modes aggregated in the FTMs. There are currently three types of

fault tolerance execution modes included.

A. Service Alternative Execution Mode

The Service Alternative execution mode implements the Recovery block fault

tolerance technique [52] to apply the service diversity strategy [20]. When the client

selects the Service Alternative execution mode and provides a number of Web

Services as candidates, the REDRM mechanism will first check the dependability

metadata of the candidate Web Services, removing the Web Services that do not meet

the acceptance thresholds from the candidate list. Then the REDRM sorts the Web

Services according to prior criteria defined in the service policies comprised in the PS.

The Web Service with the best dependability metadata will be selected as the primary

one and the others used as alternatives. If the primary Web Service fails, the next best

alternative Web Services will be invoked. Eventually, when a valid result is received

from a Web Service, the execution will be terminated. The result will then be

delivered to the BLP, which uses it to generate the mediated result to be sent to the

client as the response to the service request. Figure 3-6 illustrates the use case of the

Service Alternative execution mode.

59

Check global policy

BlP

Validate the response InvokeWS

The WS-Mediator System

Ched< dependability
metadata

SortWSs

ChangeWS

Figure 3-6: The use case of the Service Alternative execution mode

B. N-version Programming Execution Mode

The N-version Programming execution mode implements the N-version Programming

technique [70]. The N-version Programming mode invokes a number of Web Services

simultaneously, and the results received from Web Services will be processed

according to the corresponding service policies. Note that the technique used in Web

Services is sometimes different from the classical N-version programming technique

applied in conventional software/system development, where the multiple versions are

mostly developed from the same requirements and specifications, and their processing

results can be voted for result validation. With Web Services, similar Services can be

used for implementing service diversity; they are, however, very likely to be irrelative

to each other, not meeting the same implementation specifications. Thus, the results

can only be voted after transforming and matching processes, which mechanisms are

not intended in the WS-Mediator system. Using the result voting mechanism in this

60

The WS-Mediator System

execution mode is subject to applicability. Figure 3-7 illustrates the use case of the N­

version programming execution mode.

Ched< de~ metadata

Check global policy

SortWSs

Select mulUpie WSs

BLP

Chacl< Individual policy

ChangeWS

Figure 3-7: The use case of the N-version Programming execution mode

C. Message Routing Execution Mode

The Message Routing execution mode implements a unique fault tolerance

mechanism which extends the conventional Message Routing diversity strategy to

achieve explicit selection of message routing. When this execution mode is selected,

the Sub-Mediator checks the dependability metadata of each candidate Web Service

from the Sub-Mediators registered in its Sub-Mediator registry. If the dependability

metadata of a Web Service in the participating Sub-Mediators meet the parameters

defined in the service policies, the Sub-Mediator can be selected as a message routing

intermediary. Once the required number of intermediaries is satisfied, the local Sub­

Mediator passes the invocation details of the Web Service to the intermediary Sub­

Mediators. The intermediary Sub-Mediators then invokes the Web Service from their

61

The WS-Mediator System

locations. The results will be retuned to the local Sub-Mediator. If more than one

message route is selected, the results will be processed according to the service

policies. Figure 3-8 illustrates the use case of the Message Routing execution mode.

Check the global policy

Invoke SM.

Figure 3-8: The use case of the Message Routing execution mode.

D. Dynamic Reconfiguration of Fault-tolerance Mechanisms

The fault tolerance mechanisms are designed to deal with various types of failures as

well as different types of application scenarios. The efficiency of the WS-Mediator

system greatly relies on the selection of fault tolerance mechanisms during service

composition. Resilience-explicit computing can also be applied in making decisions

about the selection of fault tolerance mechanisms. The novelty of our approach is that

the resilience-explicit dynamic reconfiguration mechanism consults the statistic of

type of failures (j) of Web Services to select the most appropriate fault tolerance

mechanism for dealing with typical failures of Web Services. For instance, if a Web

62

The WS-Mediator System

Service often fails because of network-related failures, then it may be advisable to

apply the message routing execution mode integrated with the service; if a Web

Service only rarely fails due to temporary faults, such as an occasional time-out,

system maintenance, and so on, it can be a good choice to make it the primary service

and apply the service alternative execution mode, whilst using other, less dependable

ones, as alternatives. Furthermore, it is also feasible to automatically select the N­

version programming execution mode when the availability measurement (m) of all

candidate Web Services is much lower than certain standards.

3.4.10 Web Service Invocation Mechanism (WSIM)

The development of Web Services relies on Web Service middleware provided by a

variety of organizations and companies [31-33], which implements mechanisms

defined in the Web Service specifications. As this middleware commonly supports

different message binding methods, invocation methods, etc., the WSIM needs to

aggregates different message binding and invocation methods to suit different Web

Services. The message binding method and invocation type can be defined in the

service policies.

3.5 Application of the WS-Mediator

Applying the WS-Mediator is easy. It can be seamlessly integrated in Web Service

composition applications. It does not require component services to be modified,

because of its compliance with the interoperability standards. The WS-Mediator

simplifies the development of the client application by enhancing service composition

procedures and fault tolerance mechanisms with the off-the-shelf functionalities

implemented in the WS-Mediator. Therefore, the client application only needs to

63

The WS-Mediator System

provide candidate component services and define service policies for the WS­

Mediator, avoiding the complexity of service composition. Moreover, the WS­

Mediator can dramatically improve the dependability and performance of service

composition without increasing the complexity and cost of application development,

and these benefits become more prominent when the scale of service composition

increases, involving more component services.

Moreover the WS-Mediator approach improves the applicability and efficacy of the

service diversity strategy based on the functionally-similar autonomous services

without undermining the compatibilities with Web Services security mechanisms and

stateful Web Services. The approach allows the client to set specific requests

(including encrypted messages) and service policies for each candidate services so

that the system explicitly selects the best component services during dynamic

composition. In the case of stateful Web Service composition, the system allows the

client to decide how to continue the execution of a workflow when a failure occurs in

the middle of the interactions with a stateful component service. For example, the

client can provide replica services as alternatives so that these replica services can

retrieve the processing state and continue the business logic process; or the client can

decide to abandon the interrupted business logic process and use other similar services

to process the business logic from the top.

While providing flexible transaction-oriented fault tolerance to improve the

dependability of service composition, the WS-Mediator system does not interfere with

the execution of the client application. We believe that the client will typically be in a

better position to choose how to compose the business logic and decide how to control

the workflow, while the WS-Mediator system can help the client application to use

64

The -Mediator tern

the best services and improve the dependabili ty of the tran action between the client

and the services.

Customer

Client
application

Travel bookmg / ---i (Web ServIces)
I Travel agency 1

I

--,­
I
\
\ ,

Fhght boo ng
------ (Web ServICeS)

/
/

/
/

Alrwa 1

_
__ --,-:.._/ __ Hotel boo ng

; (Web ServICeS)
, /' Hotell , /,

',~ ~ --1- _<"'/
...... / /-

............. / /// , '
I /-----.'/ '

- Flight bookIng
(Web ServICeS)

~rw~

/

, Hotel bookIng
- - - - - - (Web ServICeS)

Hotel 2

Figure 3-9: Travel booking use case with the WS-Mediator system. T he solid lines

represent fixed primary and the dashed lines redundant/a lternati ve message routes.

Here we use the travel booking u e case aga in to demon trate the ad antage of the

WS-M ediator system. Figure 3-9 illustrates the travel booking use ca e that integra te

the WS-Mediator system into service composition. The client appl ica ti on and T 2

both develop their business logic relying on the WS-M ediator sys tem, wh il t T

retains the conventional implementation . T A2 relies on Sub-Mediator2 to implement

dynami c integrati on with AW l , A W2, HTI and HT2, applying fa ul t tolerance

mechanisms in the interaction between T A2 and the ex tema l component ervlce .

Obviously, TA2 provides hi gher dependabi lity and better perfOlmance than T I does .

ub-Med iator l monitors the dependability of TA l and TA2. W11en the cli ent reque ts

the W -Mediator to perfonn service compo ition for travel booking, TA2 wi ll be

elected by Sub-Mediator2 to fulfil the booking request. Wl1i le in rea li ty TA2 may fai l

to de li ver the ervice to the client during the process of the booking proce s becau e

f fai lure of component ser ices or the net\,york beyond what the fault tolerance

mechani m can dea l with, the dependability metadata provide quantitati e evidence

6 -

The WS-Mediator System

suggesting T A2 is less likely to fail than TAl. Thus, the performance of the travel

booking procedure is optimized because all participating component services are

explicitly selected. Consequently, TAl will lose business when competing with T A2,

until its dependability improves. In real-world applications, there are far more travel

agencies other than TAl and T A2 offering similar services, as well as more airway

companies and hotels. It is difficult to decide which service is trustworthy and

dependable, without the help of the WS-Mediator system.

3.6 Conclusions

In section 3.2, we have outlined the objectives we set for our research. We believe

these have been successfully achieved in the WS-Mediator approach:

A. The WS-Mediator is a generic solution reinforcing and extending the existing

work on improving the dependability of Web Services via its overlay

architecture to ensure the continuity of services.

B. The innovation of the WS-Mediator lies in its off-the-shelf mediating

architecture and resilience-explicit computing, which allow dynamic

integration of Web Services according to their dependability behaviour.

C. The WS-Mediator supports genuine on-the-fly integration with Web Services

via its interoperable Web Service interface and invocation mechanism.

D. The Policy-driven dynamic reconfiguration of the fault tolerance mechanisms

makes the WS-Mediator applicable to dealing with various types of faults and

the changing behaviour of Web Services and the network.

E. The WS-Mediator is compliant with the Web Service interoperability

standards.

66

The WS-Mediator System

F. The flexible and scalable design of the approach allows it to be extended or

tailored to suit specific applications.

In this chapter, we have described the architecture of the WS-Mediator system and

explained the functionalities of the system components. We have specifically focused

on how to generate dependability metadata according to monitoring results, and how

to utilize these metadata in resilience-explicit computing to achieve dynamic service

composition with the most dependable Web Services. Moreover, the WS-Mediator

improves the dependability of service composition by employing a variety of fault

tolerance techniques.

67

Java WS-Mediator

4. Java WS-Mediator

4.1 Introduction

In this chapter we present the Java WS-Mediator, which is a prototype of the WS­

Mediator system implemented using the Java Web Service technology [71]. The Java

WS-Mediator has been developed with the aim of evaluating the WS-Mediator

approach and demonstrating the applicability of the approach in a number of realistic

Web Service applications. We chose Sun Microsystems Glassfish [33] as the Java

Web Service platform for the development of the prototype. Our implementation

supports two types of Sub-Mediator. The Sub-Mediator Elite is implemented as an

additional layer on top of the Glassfish Java Web Service Middleware. It can be easily

deployed on a personal computer to enable WS-Mediator Java APIs to be invoked by

the client application. The Web Service intermediary Sub-Mediator implements Web

Service interface and is developed to be deployed on the Glassfish application server.

It uses the Sub-Mediator Elite as the underlying middleware to achieve the designed

functionalities.

The chapter is organised as follows: section 4.2 briefly introduces the Java Web

Service technology, section 4.3 presents the design of the Java WS-Mediator, and

section 4.4 concludes this chapter.

4.2 Java Web Service middleware

Web Services is a paradigm of distributed systems that extends the conventional peer­

to-peer middleware protocols to override some shortcomings of the conventional

distributed systems. The implementation of Web Services relies on middleware

infrastructure known as Web Service middleware. This middleware shares the

68

Java WS-Mediator

underlying infrastructure with the conventional middleware to provide fundamental

underlying services such as transaction support, etc. See a representation of Web

Service architecture in Figure 4-1.

Web Service interface

access to internal systems

Service interface

Integration logic

other tiers

Conventional middleware
(includes middleware services)

Client invocation

other tiers

Figure 4-1: Basic architecture of Web Services. II)

The client application also relies on Web Service middleware which implements

underlying protocols atop conventional middleware. The architecture of the client

application is illustrated in Figure 4-2.

Web Service middleware can be developed based upon different technologies.

Today's middleware typically relies on the .NET [72] or J2EE [73]. While comparing

these is beyond the scope of this dissertation, our choice of the Java Web Services

based on the J2EE technology to develop the WS-Mediator was prompted by the

platform-independent nature of the J2EE technology. Besides there are sufficient

recourses and supports available for Java Web Services free of charge, which makes

them a cost-efficient platform to conduct academic research and experiments.

69

Java WS-Mediator

other tiers

Client application

Conventional middleware
(includes middleware services)

Invoking Web Services

other tiers

Figure 4-2: The architecture of Web Service client

There are several implementations of the Java Web Service middleware developed by

different providers, such as Aparche Axis [32], JBoss [31], and Glassfish [33]. All of

them are sufficient for developing complex Web Service applications. While each has

its unique features and advantages over the others, we chose Glassfish for the

following reasons:

• Its comprehensive development environment and tools integrated in the

NetBeans IDE for developing Web Service applications [74].

• Sufficient support of dynamic Web Service invocation provided by the

powerful Dispatch<T> interface.

• Compliancy with the current Web Service specifications and Web Service

Interoperability standards.

• Open-source project with strong industrial support by both Sun Microsystems

and Microsoft.

70

Web ServIce Requestor

Web Service
Interlace

I

Java \ -YJ dialor

Web SefVIce PrOVIder
Client . PPllca;,on j

, , . .$' , '------___ ----1 ', <,
./b~ /' " .. ~o~ Web Servw:e Interface

/.;/ '"_ _ .. :::{ 'I __ Bu_s'_ne_SS_L_og_'C_~1
L--_w_eb_s_e",_'_ce_m_id_dl_ew_.'_e_!-t---------.:==-----------+-. ~eb Service mtdd1eware

Figure 4-3 : Web Service application with the Java WS-Mediator

Below is the development environment and packages fo r implementing the Ja a

Medi ator:

• Development lD E: NetBeans vS.S. 1 [74J

• Java SDK: J2 EE v 1.5

• Web Service platform: Glassfi sh V2

• Java Web Service APl: JAX-WS 2. 1 [7SJ and JAX-RPC 1.6

4.3 Structure of the Java WS-Mediator

The W -Mediator sys tem is structured of functi onall y identica l Sub- Mediator . The e

ca n be implemented in di fferent form , as long as they agree with the funda mental

principle and de igned functi onaliti es presented in chapter 3. We have deve loped a

"pecial Java WS-M ediator middleware ca lled Mediator-Elite to accompli h the

de ignated structure and functionalities of the Sub- Mediator.

Java WS-Mediator

Sub-Mediator
Database Accessing

Bridge

Sub-Mediator Elite

Business Logic Processor

Dynamic

Web Service
Database Accessing

Bridge

Reconfiguration +-----~
En ine

Figure 4-4: Internal structure of the Sub-Mediator Elite, which implements Java APIs

as interface to accept invocations from the client application. It monitors Web

Services and other Sub-Mediators registered in its database, and generates their

resilience metadata to perform resilience-explicit dynamic reconfiguration.

4.3.1 Structure of the Sub-Mediator Elite

The Sub-Mediator Elite is implemented as an additional layer atop the Glassfish Web

Service middleware. It can be deployed on personal computers. The Java client

application can invoke the Java APIs of the Sub-Mediator Elite to use it as a locally

deployed Sub-Mediator. The Sub-Mediator Elite can also be used for implementing

the Web Service intermediary type Sub-Mediator by deploying it on the Glassfish

Application Server, as well as realizing a Web Service interface corresponding to the

Java APIs of the Sub-Mediator Elite (see Web Service architecture with the Java WS-

Mediator shown in Figure 4-3).

72

Java WS-Mediator

Figure 4-4 illustrates the internal structure and components of the Sub-Mediator Elite.

It implements Java APls (JAPls) to accept the invocation from the client application.

The BLP parses the client's requests and service policies, and assigns tasks to the

corresponding components to implement the business logic process procedures. The

Web Service Database (WSD) stores the information about Web Services and keeps

their dependability metadata. The Web Service Database Accessing Bridge (WSDAB)

allows editing the information about Web Services and retrieving their dependability

metadata. The Sub-Mediator Database (SMD) stores the information about other Sub­

Mediators and keeps their dependability metadata. The Sub-Mediator Database

Accessing Bridge (SMDAB) edits the information about the Sub-Mediators and

retrieves their dependability metadata. The Dynamic Reconfiguration Engine (DRE)

implements a resilience-explicit mechanism to integrate Web Services and apply

fault-tolerance techniques. It selects the most desirable, according to the service

policies, Web Services and then chooses fault tolerance execution modes to perfonn

service composition. The Fault-tolerance Mechanisms (FTMs) implement different

fault tolerance execution modes to deal with different fault assumptions. The Web

Service Monitoring (WSM) and Sub-Mediator Monitoring (SMM) monitor Web

Services and Sub-Mediators respectively and generate their dependability metadata.

The Web Service Invocation Mechanism (WSIM) implements various message

binding and invocation methods to improve the interoperability with real-world Web

Services. In the following sections we will describe the functionalities of each

component in detail.

73

Java WS-Mediator

4.3.2 Java APls of the Sub-Mediator Elite

The Sub-Mediator accepts service requests via its JAPIs interface. There are three

basic types of service requests classified by their purpose:

• Accessing the Web Service database

• Accessing the Sub-Mediator database

• Requesting mediating services

The above requests are dealt with by corresponding service components. Below is an

explanation of each type of service requests.

A. Accessing Web Service Database

The Sub-Mediator Elite allows adding, editing, and removing the information about

Web Services via the WSDAB. After the client adds a Web Service to the WSD, it is

periodically monitored by the Sub-Mediator Elite for later use. The client needs to

provide the following information associated with it:

• Endpoint address of the Web Service

• Operation name

• Description of the Web Service

• Test SOAP message

• Test policy

The endpoint address and operation name are used for identifying the Web Service

and the client-intended service function provided by the Web Service. Different

operations provided by the same Web Service are regarded as different entities. The

74

Java WS-Mediator

description gives a briefly memo about the Web Service. The WSM mechanism uses

the test SOAP message to invoke the Web Service and the corresponding service

operation. Figure 4-5 shows a simple example of the test SOAP message:

<soapenv:Envelope xmIns:soapenv=\''http://schemas.xmlsoap.orgisoap/envelopel\''>

<soapenv:Body>

<addNumbers xmlns=\''http://mediator.wsmediator.org\''>

<argO> lO</argO>

<argl >20</argl >

</addNumbers>

</soapenv:Body>

</soapenv:Envelope>

Figure 4-5: An example of the test SOAP message

The test policy is used for defining relevant parameters, such as the invocation method

and expected timeout. Figure 4-6 illustrates an abstract model of the test policy:

<wsp:Policy xmlns:wsp=''http://schemas.xmlsoap.orglws/2004/09/policy''

xmlns:wsmip=''http://schemas. wsmediator.orgltestpolicy/policy">

<wsp:ExactlyOne>

<wsp:AII>

<parameter I > {value} </parameter I >

<parameterN> {value} <lparameterN>

</wsp:AII>

<lwsp:ExactlyOne>

<lwsp:Policy>

Figure 4-6: An example of the test policy

75

Java WS-Mediator

The client can also edit and remove the existing Web Services from the WSD, as well

as retrieve the information about Web Services by providing their endpoint address

and operation name. The client can request the dependability metadata of a Web

Service via the corresponding JAPIs. The dependability metadata will be capsulated

in a SOAP message returned to the client.

B. Accessing the Sub-Mediator Database

The client can add and edit information about other Sub-Mediators in the SMD. In

order to add a Sub-Mediator, the client needs to submit the following items:

• Endpoint address of the Sub-Mediator

• Its Location and ISP

• Briefmemo

The endpoint address is used for identifying the Sub-Mediator. The test script for

monitoring a Sub-Mediator is automatically generated by the SMM mechanism. The

client may request the dependability metadata of Sub-Mediators by providing the

endpoint address. The dependability metadata of a Sub-Mediator will be attached into

the SOAP message sent to the client.

C. Requesting Mediating Services

The most important type of requests is for mediating services. It is the core service

offered by the WS-Mediator system. The client invokes the corresponding API to

submit a mediating service request. The following information needs to be attached to

a service request message:

• One or more candidate Web Services

76

Java WS-Mediator

• Endpoint addresses of the Web Services

• Operation names of the services being invoked

• SOAP messages to each candidate Web Service

• An individual execution policy associated with each Web Service

• A global execution policy

The candidate Web Services are not limited to those existing in the WSD. However,

only the Web Services that have already been monitored by the Sub-Mediator can be

used explicitly since only their dependability metadata are available. The SOAP

message associated with each candidate Web Service is identical to that used for

invoking the Web Service directly from the client without using the Sub-Mediator.

The individual execution policy constrains the instruction indicating how to process a

candidate Web Service. The global execution policy indicates how to process the

client's request. An abstract example of the service request SOAP message is

illustrated in Figure 4-7.

<SOAP abstract>

<ws>

</ws>

<ws>

<endpointAddress> {EndpointAddress _ ws I }<lendpointAddress>

<function Name> {FunctionName _ ws I} </functionName>

<SOAPMessage> { SOAP_to _ ws I} </SOAPMessage>

<individuaIPolicy> {lnExPolicy _ XML _ ws I }<I individualPolicy>

<endpointAddress> {EndpointAddress _ ws2} <lendpointAddress>

<functionName> {FunctionName _ ws2} <lfunctionName>

<SOAPMessage> {SOAP _to_ws2} </SOAPMessage>

77

Java WS-Mediator

</ws>

<ws>

</ws>

<individual Policy> { lnExPoIicy _ XML _ ws2 } </ individualPolicy>

<endpointAddress> {EndpointAddress _ ws3 } </endpointAddress>

<functionName> {FunctionName _ ws3 } </functionName>

<SOAPMessage> {SOAP_to _ ws3 } </SOAPMessage>

<individualPolicy> {lnExPolicy _ XML _ ws3 }</ individualPolicy>

<globalExecutionPolicy>

{G1obaIExecutionPolicy _ XML}

</globalExecutionPolicy>

</SOAP abstract>

Figure 4-7: An abstract of the service request SOAP message

4.3.3 Business Logic Processor (BLP)

The BLP implements service operations corresponding to the Web Service Interface,

diverting service requests to the corresponding service processing components. A

service request for accessing the WSO will be diverted to the WSOAB. one for

accessing the SMO to the SMOAB, and one for mediating services to the ORE.

When service components complete the execution of service requests, they pass the

results back to the BLP, which assembles the processing result into a SOAP message

and returns it to the client.

4.3.4 Database System

There are two databases comprised in the OS of the Sub-Mediator Elite. The WSO

consists of the Web Service Registry and the Web Service Dependability Metadata

78

Java WS-Mediator

Database. The SMD consists of the Sub-Mediator Registry and the Sub-Mediator

Dependability Metadata Database.

A. Web Service Database (WSD)

The Web Service Registry maintains the information about a number of Web Services

added by the clients and the system administrators. It contains the information

associated with each Web Services:

• Endpoint address of the Web Service

• Operation name

• Description of the Web Service

• Test SOAP message

• Test policy

The above information is used for monitoring Web Services. Figure 4-8 illustrates an

abstract model of the Web Service Registry in the XML format.

<?xml version="l.O" encoding="UTF-8"?>

<webServicesRegistry>

<ws>

<endpointAddress> {Endpoint_ ws I } </endpointAddress>

<operationName> {Operation _ ws I} <loperationName>

<description> {Memo _ Text_ ws I} </description>

<testSOAPMessage> {TestSOAPMessage _ ws 1 } <ltestSOAPMessage>

<testPolicy> {TestPolicL ws I }<ltestPolicy>

<lws>

<ws>

79

Java WS-Mediator

<endpointAddress> {Endpoint_ ws2} </endpointAddress>

<operationName> {Operation_ ws2 } </operationName>

<description> {Memo _ Text_ ws2 } </description>

<testSOAPMessage> {TestSOAPMessage _ ws2 } </testSOAPMessage>

<testPolicy> {TestPolicy _ ws2} </testPolicy>

</ws>

</webServicesRegistry>

Figure 4-8: An example of the Web Service Registry

The Web Service Dependability Metadata Database stores the dependability metadata

of the corresponding Web Services, i.e. attributes which represent their dependability

characteristics. Figure 4-9 illustrates an abstract model of the dependability metadata

of a Web Service in the XML format.

<?xmI version=II.0" encoding=IUTF-8"?>

<ws service={Name_oCwsl}>

</ws>

<endpointAddress> {Endpoint_ ws I } </endpointAddress>

<operationN arne> {Operation _ ws I } <loperationN ame>

<dependability Attribute I > {value} </dependability Attribute I >

<dependability Attribute2> {value} </dependability Attribute2>

<dependability AttributeN> { value} </dependability AttributeN>

Figure 4-9: An abstract model of the dependability metadata of a Web Service

If a Web Service registered in the Web Service Registry is not used for a certain

period of time, it will be removed from the database, along with its metadata.

80

Java WS-Mediator

B. Sub-Mediator Database (SMD)

The Sub-Mediator Registry contains the following information about a number of

Sub-Mediators:

• Endpoint address of the Sub-Mediator

• The Location and ISP of the Sub-Mediator

• Memo

Sub-Mediators implement a universal test service for monitoring. The Sub-Mediator

Monitoring Mechanism uses the endpoint address of the Sub-Mediator to

automatically generate the test script. The endpoint address can be used to identify the

Sub-Mediator in the Sub-Mediators Registry. The location and ISP of the Sub­

Mediator help the client to locate it and can also be used for implementing message

routing strategies. The memo briefly describes the Sub-Mediator. Figure 4-10 gives an

abstract model of the Sub-Mediator Registry.

<?xml version="l.O" encoding="UTF-8"?>

<subMediatorRegistry>

<ws>

<endpointAddress> {Endpoint_ sm I} </endpointAddress>

<location> {city, country} </Iocation>

<isp> {NameoflSP} </isp>

<memo> {MemoText_sml }</memo>

</ws>

<ws>

<endpointAddress> {Endpoint_ sm2} </endpointAddress>

<location> {city, country} <!location>

81

<isp> {NameofiSP } <lisp>

<memo> {MemoText_sm2} <Imemo>

</ws>

<I subMediatorRegistry >

Figure 4-10: An example of the Sub-Mediator Registry

Java WS-Mediator

The Sub-Mediator Dependability Metadata Database stores the dependability

metadata of Sub-Mediators in the registry. Figure 4-11 shows an abstract model of the

dependability metadata of a Sub-Mediator in the XML fonnat:

<?xml version="I.O" encoding="UTF-8"?>

<sm service={Name_oCsml}>

<endpointAddress> {Endpoint_ sm I} </endpointAddress>

<operationName> {Operation_ sm I} </operationName>

<dependability Attribute I> {value} </dependabilityAttribute I >

<dependability Attribute2> {value} </dependability Attribute2>

<dependability AttributeN> {value} </dependability AttributeN>

<Ism>

Figure 4-11: An example of the dependability metadata of a Sub-Mediator

4.3.5 Policy System

There are three types of policies implemented in the Sub-Mediator Elite, listed below:

• Test Policy

• Individual execution policy

• Global execution policy

82

Java WS-Mediator

As the test policy was introduced above, we will now focus on the individual

execution policy and global execution policy.

A. Individual Execution Policy

As mentioned already, when the client invokes a Sub-Mediator requesting mediator

services, it needs to define an individual execution policy for each candidate Web

Service. The individual execution policy is an instruction for processing invocation for

every Web Service, which may set, for example, the invocation method, the timeout

parameter, etc. However, it can be omitted from the service request, with the Sub­

Mediator using the system default settings to set parameters for invoking the Web

Service. Figure 4-12 shows an abstract model of the individual execution policy:

<?xml version=" I .0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp = http://schemas.xmlsoap.orglws/2004/09/policy

xmlns: wsmip = ''http://schemas.wsmediator.orglindividualPolicy/poIicy''>

<wsp:ExactiyOne>

<wsp:AII>

<parameter I > {value} </parameter I >

<parameter2> {value} </parameter2>

<parameterN> {value} </parameterN>

</wsp:AII>

</wsp:ExactiyOne>

</wsp:PoIicy>

Figure 4-12: An abstract model of the individual execution policy

83

Java WS-Mediator

To implement the individual execution policy described above, we have developed a

WS-Mediator Policy framework, extending the WS-Policy framework in (76]. Below

we show the individual execution policy specially developed in one of our

experiments, followed by a brief explanation of each policy entity:

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp = http://schemas.xmlsoap.orglws/2004/09/policy

xmlns:wsmip = ''http://schemas.wsmediator.orgiindevidualPolicy/policy''>

<wsp:ExactlyOne>

<wsp:All>

<bindingMethod>SOAP IIHTTP</bindingMethod>

<invocationMode>Sync</invocationMode>

<timeout> 20000ms</timeout>

<autotimeout>maximum</autotimeout>

<retry AfterFailure> 3 </retry AfterFailure>

<retryInterval>3000ms</retryInterval>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

• <bindingMethod>: this indicates the binding method of the SOAP message.

Web Service invocation APIs should follow the binding method while

invoking the Web Service. Default value: SOAP 1 1 HTTP

• <invoactionMode>: this entity indicates the invocation method of the Web

Service. There are three types of invocation methods: synchronous,

asynchronous invocation and the conventional RPC (Remote Procedure Call)

invocation. Default value: Sync (Synchronous invocation)

84

Java WS-Mediator

• <timeout>: this sets the timeout parameter for an invocation. If the invocation

does not complete in the timeout period, it will be terminated and a timeout

exception will be raised. The value of the timeout parameter can be

automatically set by the Sub-Mediator when the value is set as Oms.

• <autotimeout>: the Sub-Mediator can automatically set the timeout

parameter for invoking a particular Web Service according to dependability

metadata. There are three options: average, minimum and maximum.

representing average, minimum and maximum response time.

• <retryAfterFailure>: the Sub-Mediator implements the retry strategy to

tolerate temporary service and network failures. This entity sets the number of

retry invocations of a particular Web Service before giving up.

• <retrylnterval>: this entity sets the interval between retries.

B. Global Execution Policy

When the client requests a mediating service from a Sub-Mediator, it needs to attach a

global execution policy to the service request message. The global execution policy is

an instruction which indicates how to process the entire service request. It sets

important parameters for performing service procedures according to the service

request. Figure 4-13 shows an abstract model of the global execution policy:

<?xml version="I.O" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp=http://schemas.xmlsoap.orglws/2004/09/policy .
xmlns:wsmgp=''http://schemas.wsmediator.orgiglobalPolicy/pohcy">

<wsp:ExactiyOne>

<wsp:All>

<wsmExecutionMode:executionMode I execution="true">

85

Java WS-Mediator

<exeMode I--'parameter I > { value} <I exeMode Iyarameter I>

<exeMode l--'parameter2> { value} <I exeMode lyarameter2>

<exeMode l--'parameterN> { val ue } </ exeMode lyarameterN>

</ wsrnExecutionMode: executionModel>

<wsmExecutionMode: executionMode2 execution="false">

<exeMode2 yarameter 1> { value} </ exeMode2 yarameter I >

<exeMode2 --'parameter2> { value} </ exeMode2 yarameter2>

<exeMode2 yarameterN> {value }</ exeMode2 yarameterN>

</ wsrnExecutionMode: executionMode2>

</wsp:AIl>

</wsp:ExactlyOne>

</wsp:Policy>

Figure 4-13: An example of the global execution policy

The above abstract model has also been also implemented upon the WS-Mediator

Policy framework. Node <wsmExecutionMode> represents fault tolerance

mechanisms. The boolean attribute "execution" indicates whether the execution mode

is selected. The concrete implementation of the global execution policy can be found

in section 4.3.8.

4.3.6 Dependability Monitoring Mechanism (DMMJ

The Sub-Mediator Elite implements monitoring mechanisms to periodically monitor

the registered Web Services and Sub-Mediators. The monitoring mechanisms

generate dependability metadata according to monitoring results. These dependability

metadata are used for resilience-explicit computing. Because the monitoring is

86

Java WS-Mediator

perfonned by each Sub-Mediator itself, the generated dependability metadata present

the dependability of Web Services from the perspective of the Sub-Mediator. If the

Sub-Mediator is deployed close enough to the client, the metadata can accurately

present the dependability of the Web Services from the client's perspective.

A. Web Service Monitoring (WSM)

The WSM mechanism retrieves the infonnation about Web Services from the Web

Service Registry, using it to periodically invoke them. Having sent a test SOAP

message to invoke a Web Service, the mechanism waits a certain period of time

defined by the test policy for the result. If the latter is not returned until timeout, the

test fails, and the dependability rank of this Web Service will be reduced. If the result

is received before timeout, the monitoring mechanism checks the validity of the

result. When the test policy specifies an expected result, the monitoring mechanism

compares the received result with the expected SOAP message. If the messages match,

the result is valid, and then the dependability rate of the Web Service will increase. If

the expected SOAP message is not given, the monitoring mechanism will check the

semantic validity of the result. Unless there is an error message attached to the SOAP

message, the result will be regarded as valid. The monitoring mechanism also records

the response time of the successful invocations, and calculates the average, minimum

and maximum response time of Web Services.

B. Monitoring Sub-Mediators

A Sub-Mediator monitors other Sub-Mediators registered in its Sub-Mediator

Registry. It invokes the other Sub-Mediators via a special test interface to check their

87

Java WS-Mediator

dependability, upon which the test results are processed for updating the dependability

metadata of the Sub-Mediators.

~ I :Global Policy I
I

I
I
I

I
I

CheckGlobalPolicy()

CheckWSmetadataO

I
I

~

I

I selectWSsO
I
I
I
I
I

~ I

I
I
I

~

I
selectFaultToleranceModeO I

returnResultsO

I :Database I
I
I
I
I
I
I
I
M

: F au!!-T oierance Engines
cAR_Engine I"NVP _Engine IMR_Engine

Figure 4-14: The execution sequence of the Dynamic Reconfiguration Engine

4.3.7 Dynamic Reconfiguration Mechanism (DRM)

The DRM is the core component of the Sub-Mediator Elite, which dynamically

reconfigures service composition and fault tolerance mechanisms, implementing

resilience-explicit computing algorithms to suit different fault tolerance mechanisms.

The execution procedure of the DRM starts with checking the global execution policy

to decide which fault tolerance mechanism to apply, and the user-defined criterion

(e.g. m. f, r) to select component services. Then the DRM checks the metadata of

component services and dynamically sorts them according to their dependability

metadata. If the dependability metadata of a component service is lower than the user-

defined threshold (e.g. rws < r1hreshold), the component service will be removed from

the candidate list. At the end, the sorted list of component services is passed to the

88

Java WS-Mediator

selected fault tolerance execution mode to perform service composition. Figure 4-14

illustrates the execution sequence of the DRM.

Below is the DRM execution procedure:

List of component services

services = {WSI ... wsn}

Global execution policy

execution_mode = {Service Alternatives I NVP I Multi-routing}

primary_criterion = {metadata I m, r,f I threshold};

second_criterion = {metadata I m, r,f};

Metadata

Sort

{WSI I m (%), r (ms)}

{wsn 1m (%), r (ms)}

services_sort = services sorted by primary_criterion/second _criterion

Execute

execute(execution_mode)

End

4.3.8 Fault-tolerance Execution Modes

The DRM invokes the fault tolerance mechanisms to perform service composition.

The execution procedures in the fault tolerance execution modes are different and

component services are used differently, according to the particular fault tolerance

techniques.

89

Java WS-Mediator

ISA_EnuJn°1
1

'1 ;SA_POIICY I
1

I ;WS_Meladafa I
1
1

(.ws-rrocl
1
1
1
1
1
1
1
1
1
1

I-_Cachel
1
I
I
I
1
I
I
1
I
1
1
I
I
I

I-_Pme II SOAP _Pme II ws_;--II ~_e.-I
I
I
I
I

: pw*pp!ieY0

1
, chackWSmetadat.O
1

OOloopl_O

~
1
I proceuWSIO

1

I

: b"UdlnllllGlljpnlnlpll :

I
I InyPkIWSO
I
~ returnR!!UltsO
1
I cacheRnullQ

1 chOCkRHullO
while invalid or~ • ____ ..J
rmcomplele Ir

Rn'pzeCec;bftO

g.n'ClCta,.yuo
I

updlltWSmetadatsO :

1
1
1

Figure 4-15: The execution sequence of the service alternative execution mode

A. Service Alternative Execution Mode.

Figure 4-15 illustrates the execution sequence of the Service Alternative execution

mode. At beginning of the execution sequence, the execution engine checks the global

execution policy to set the relative execution parameters. The global execution policy

defined for the Service Alternative execution mode is illustrated below, followed by

the explanation of the main entities.

<?xml version=" 1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp=http://schemas.xmlsoap.org/wsl2004/09/policy
xmlns:wsmgp=''http://schemas.wsmediator.org/globalPolicy/policy">

<wsp:ExactJyOne>

<wsp:AlI>

<wsmFTMode:ServiceAltematives execution="true">

90

Java WS-Mediator

<priority> {value} </priority>

<dependability Acceptance> {value} </dependability Acceptance>

<responseTimeAcceptance> {value } <lresponse TimeAcceptance >

<timeout> { value} </timeout>

</wsmFTMode:ServiceAltematives>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

• <wsmFTMode:ServiceAlternatives execution="true">: this entity defines the

fault tolerance execution mode. Here it indicates the Service Redundancy

execution mode. The value "true" of the attribute execution indicates this fault

tolerance execution mode is selected for processing the request. The nested

entities are the parameters for this execution mode.

• <priority>: this sets the criterion for sorting candidate Web Services. Web

Services can be sorted according to their dependability rate or average

response time, as shown by their dependability metadata.

• <dependabi/ityAcceptance>: this entity sets the minimum acceptance of the

dependability rate. The Web Services with a dependability rate lower than

that will be removed from the list of candidate Web Services.

• <responseTimeAcceptance>: this entity sets the maximum acceptance of the

minimum response time. If the minimum response time of any Web Service is

greater than the maximum acceptance, the Web Service will be removed from

the list of candidate Web Services.

91

Java WS-Mediator

• <timeout>: this sets the timeout parameter for the entire service request. If the

Sub-Mediator cannot complete the request before timeout, it will return an

error message to the client.

Once the execution parameters are set, the execution engine checks dependability

metadata to set the parameters for invoking component services. For example, the

maximum response time of a component service recorded in the dependability

metadata can be used to set the timeout parameter of the invocation. Then the

execution engine selects the first component service in the sorted list and invokes the

service to perform service integration. Once the component service has returned the

result, the execution engine checks its validity. If it is valid, the execution engine

finalizes the execution procedure and returns it to the BLP. If the component service

fails to deliver valid results, the next component service in the list will be invoked,

and so on.

I :NVP _Engine I
I

I :NVP _Policy I
I

Farnum QfWSa

End for

For num of WSs

PfY1lI~. breokl
IOpllonll)

End for

: chackpollcyO

I
I
: prcce •• WS·O

: bulldlnvocatlonlnfo{)

I
I
I lnV<>keWSO
I
I
I
I
~ relumResultaO

: tlcheR,sullO

I
rkRISY!!O

I
I
rUJI'VOUDQO I

I

: flnallzoCachoO

I
I general.ReaLlIIO
I

: UpdaleWSmeladataO

I
~

I :Ws-.Proc I
I
I
I
I
I
~

92

Java WS-Mediator

Figure 4-16: Execution sequence of the N-version programming execution mode

B. N-Version Programming Execution Mode

Figure 4-16 presents the execution sequence of the N- Version Programming

execution mode. First of all, the execution engine checks the global execution policy

to set the relative execution parameters, such as the number of synchronous

invocations, the number of expected results, etc. The global execution policy defined

for the N-Version Programming execution mode is illustrated below, followed by the

explanation of the main entities.

<wsmFTMode:n VersionProgramming execution="true">

<priority> {value} </priority>

<dependability Acceptance> {value} </dependability Acceptance>

<responseTimeAcceptance> {value} </responseTimeAcceptance >

<resultsProcessing> {value} </resultsProcessing>

<numberOfSynclnvocation> {value} </numberOfSynclnvocation>

<numberOfExpectedResults> {value} </numberOtExpectedResul 18>

<timeout> {value} </timeout>

</wsmFTMode: nVersionProgramming >

• <resultsProcessing>: this defines how to process the results returned from

candidate Web Services. There are three options: vote, quickest, and all. In the

vote option, the service request terminates when result voting is completed. In

the quickest option, the entire service request terminates when a valid result is

received. In the all option, the service request terminates until the invocations

to the Web Services are all completed.

93

•

Java WS-Mediator

<numberOjSyncInvocation>: in the N-Version Programming execution mode,

a number of Web Services will be invoked simultaneously. This entity defines

the maximum number of simultaneous invocations allowed at a time.

• <numberOjExpectedResults>: If the number of candidate Web Services is

greater than the number of allowed simultaneous invocations, they will be

divided into groups and invoked in a certain order. This entity defines the

number of expected results. Once there are enough results received, the

execution will be terminated.

Once the execution parameters are set, the execution engine selects the required

number of component services from the candidate list, and invokes them

synchronously. The results returned from component services are checked by the

execution engine. If some of the invoked services fail to deliver valid results, the

execution engine retrieves alternative component services from the list and invokes

them until the expected number of valid results is fulfilled. Then the execution engine

finalizes the execution procedure and processes the received results.

C. Multi-Routing Execution Mode

Figure 4-17 illustrates the execution sequence of the Multi-Routing execution mode.

The execution engine interprets the global execution policy to define the execution

procedure and set execution parameters. Then it checks the dependability of Sub­

Mediators and selects the defined number of Sub-Mediators to implement the Multi­

Routing Strategy. Similar to the N-Version Programming execution mode, the

execution engine invokes the selected Sub-Mediators synchronously and validates the

results returned by them. The execution procedure terminates when the expected

number of valid results are received.

94

Java WS-Mediator

! :MR_Eninge !
I

I:MRYoIiCY!
I

! :SubMed_Meladate I
i

!Results_cache I 1:_ Procl 10ispaIdt -Engno I
: chockpoilcyO I

~
I I
I I
I checkSubMeiadaiaO I
I I
I I
~ aalectSubMedlalolllO I

I I I
I

For num 0/ SM. : I I
I I

I invokeSubMedlalor() I ,
Endlor I I I

I I I
For num 0/ SM. , I I

I
rolumRe.ultaO

I I

~
, I
I I

I cacheRoBull() I I , , • I I I

(If valid, break] :
, I
I ,

(OpUonal) ~ I I
Endlor I I I I ,

(r •• ullsVoling()] I , I

~
I I I
I I I
I I I

flna'lzoCachoO
, I I , j I
I , I , I I

goneraleResullO I I I
I I • , I I , I I
I

, I , I I
I I

,

Figure 4-17: The execution sequence of the multi-routing execution mode

The global execution policy corresponding to the Message Routing execution mode is

illustrated below, followed by the explanation of the main entities,

<wsmFTMode:MessageRouting execution="true">

<dependability Acceptance> {value} </dependability Acceptance>

<response TimeAcceptance> { value} </response TimeAcceptance >

<resuItsProcessing> {value} </resuItsProcessing>

<numberOfRoutes> {value}<I numberOfRoutes>

<timeout> {value} <ltimeout>

<lwsmFTMode: MessageRouting >

95

Java WS-Mediator

• <dependabilityAcceptance>: this entity sets the minimum acceptance of the

dependability rate. If the dependability rate of a Web Service recorded on the

participating Sub-Mediator is lower than that, the Sub-Mediator will not be

selected as an intermediary for implementing the message routing.

• <responseTimeAcceptance>: this entity sets the maximum acceptance of the

minimum response time. If the minimum response time of a Web Service

registered on the participating Sub-Mediator is greater than the maximum

acceptance, the Sub-Mediator will not be selected as an intermediary.

• <numberOjRoutes>: this entity defines the number of the messaging routes,

i.e. the number of Sub-Mediators that will be selected as intermediaries.

• <timeout>: this sets the timeout parameter for the entire service request. If the

Sub-Mediator cannot complete the request before timeout, it will return an

error message to the client.

4.4 Conclusions

In this chapter, we presented the Java WS-Mediator, a prototype of the WS-Mediator

system based on the Java Web Service technology. The Java WS-Mediator system is

constructed of Java Sub-Mediators. The chapter also proposed an implementation of

the Sub-Mediator Elite as a lightweight Sub-Mediator for local deployment, used to

develop the Web Service type Sub-Mediators. In addition, we explained the structure

and execution sequences of the components and mechanisms. Overall, the Java WS­

Mediator proves the WS-Mediator approach can be realized on the basis of the current

Web Service technologies.

96

5. Evaluation

5.1 Introduction

Evaluation

In this chapter, we describe our evaluation of the WS-Mediator approach. We have

conducted a series of experiments with different application scenarios, carefully

selected to represent typical Web Services applications occurring in the real world. In

these experiments, we utilized the Java WS-Mediator to implement several composite

applications based on real-world Web Services, developed and deployed by a variety

of independent Web Service providers. The analysis of the results of the experiments

will demonstrate the applicability and effectiveness of the WS-Mediator approach.

This chapter is organized as follows: section 5.2 introduces the objectives of the

experiments and provides a brief outline of the evaluation of the approach. Section 5.3

reports the experiments that monitor the dependability of several real-world Web

Services. We will use the results of the experiments to prove the feasibility of on­

location monitoring of the dependability of generic Web Services. In section 5.4, we

will focus on an experiment conducted with an e-Science application. This experiment

was conducted upon three Web Services frequently used in Bioinformatics research.

We have developed a realistic application based upon the Java WS-Mediator to

demonstrate how to improve the dependability of e-Science workflows by adopting

the WS-Mediator approach. Section 5.5 concludes this chapter.

5.2 Evaluation Objectives

The evaluation of the WS-Mediator approach is based on our experiments on the real­

world Web Services. The approach was developed as a result of our studies of the

latest Web Services technologies and other relevant work. The design of the solution

97

Evaluation

is compliant with the current Web Service specifications and standards. However, the

applicability and the effectiveness of the approach can only be verified in real-world

applications. The WS-Mediator is a generic solution that can be tailored to fit

different application scenarios. We have conducted a series of experiments to verify

its applicability by developing realistic applications using the prototype

implementation of the approach, the Java WS-Mediator. The experiments were

carefully planned to achieve the following objectives:

• To evaluate the applicability of monitoring Web Service dependability. Web

Services can be autonomously deployed by independent Web Service

providers or explicitly deployed by the participating providers within a virtual

organization.

• To evaluate the effectiveness of the resilience-explicit dynamic

reconfiguration of dynamic service composition. The resilience-explicit

dynamic reconfiguration mechanism of the WS-Mediator calculates

dependability metadata to make run-time decisions for selecting component

Web Services. The experiments need to produce quantitative results to prove

the effectiveness of the approach.

• To evaluate the applicability of fault-tolerance execution models. The fault­

tolerance mechanisms that are designed to deal with the designated faults are

selected by the client and dynamically applied at run-time. We need these

experiments to prove that the dynamic reconfiguration of fault-tolerance

mechanisms can provide flexible means of achieving Web Service

dependability based on specific fault assumptions.

• To verify the ease of developing Web Service applications using the WS­

Mediator system.

98

Evaluation

• To verify the message intercepting ability of the WS-Mediator system.

The above are the most important objectives of our experiments, which evaluate the

core concepts and components of the WS-Mediator approach. There were also many

other experiments conducted to evaluate various aspects of the approach and its

prototype implementation, which are not as central for this dissertation.

5.3 Evaluation of Dependability Monitoring

Monitoring Web Service dependability is the fundamental part of the WS-Mediator

approach. The dependability monitoring mechanism assesses the dependability of

Web Services and generates their dependability metadata. Resilience-explicit

computing adapted to the WS-Mediator approach relies on dependability metadata to

make decisions. Our research emphasises the notion of Web Service dependability

from the client's perspective. This requires on-location monitoring of Web Services at

the same locations where clients run their applications. In chapter 4, we described

how this approach was achieved in the Java WS-Mediator. The experiments reported

in this section will emphasize the feasibility of the approach by demonstrating the

dependability monitoring of real-world Web Services using the Java WS-Mediator.

As we have shown above, Web Services used in an application can either be deployed

by autonomous providers or by cooperative providers to the client. These autonomous

Web Services can be discovered from the uoor or from another registry of Web

Services. Commonly, providers only reveal limited information that is sufficient only

for invoking their Web Services. No collaboration between the client and the service

provider is expected in such application scenarios, and so such Web Services are

typically regarded by clients as black box components. Since message-exchanging

99

Evaluation

between the client and Web Services is guaranteed by the Web Service

Interoperability standards, the implementation of the client application and of Web

Services both need to be compliant with the Web Services Interoperability. This is

one of the fundamental principles in developing a generic Web Service, although this

may not be a crucial criterion for the Web Services that are developed only to serve

the correlative clients, because of the possibility of implementing corresponding

mechanisms in the client application. However, unless this may bring additional

benefits, it is always undesirable to undermine the interoperability of a Web Service.

Most Web Services and client applications are developed upon the existing Web

Services middleware (e.g. Aparche Axis [32], JBoss [31], and Glassfish [33]) which

provides underlying infrastructure to support the interoperability of the Web Service

applications by default, and so for a generic solution such as the WS-Mediator, it is

safe to consider the Web Services as universally interoperable. Furthermore, specific

mechanisms can always be implemented in addition to the standard invocation

mechanisms to cope with the corresponding changes at the Web Service side. Below

Web Services are assumed to be interoperable, enabling the invocation mechanisms of

the Java WS-Mediator to invoke them without modification.

The evaluation of dependability monitoring was conducted on a number of

autonomous Web Services in addition to those deployed by our colleagues for their

research project. In the following text, we will report the experiments.

5.3.1 Dependability Monitoring of Public Web Services

In order to validate the ability of the Sub-Mediator Elite to monitor the dependability

of real-world Web Services, we randomly discovered some publicly deployed Web

Services from a popular Web Services publisher, The XMethods [I]. These Web

100

Evaluation

Services are deployed by different service providers and upon different platforms, as

listed below:

• WSJ: Get conversion rate from one currency to another currency

Endpoint: http://www.webservicex.comiCurrencyConvertor.asmx?wsdl

• WS2: Lotto Number Generator

Endpoint: http://reto.checkit.ch/Scripts/Lotto.dlllwsdIlIgetNumbers

• WS3: Returns the date of Easter for a given year

Endpoint: http://www .stgregorioschurchdc.orglwsdIlCalendar. wsdl

• WS4: Translate English to Pig Latin

Endpoint:

htttp://www.aspxpressway.comimaincontentiwebservices/piglatin.asmx?wsdl

• WS5: Find a ZIP Code given a U.S. City and State

Endpoint: http://ws.strikeiron.comiInnerGears/ZipByCityState2?WSDL

We deployed the Sub-Mediator Elite on a computer connected to the Campus network

of Newcastle University and registered the selected Web Services for dependability

monitoring. These Web Services all provide very simple services, returning responses

according to the client's inputs. A test script was written for each Web Service

according to its WSDL interface, and a global test policy defined to set the parameters

for monitoring them. During the experiments, 100 invocations were made on each

101

E\aluation

Web Service with th e interval between each invocation being 60 minute ee Figure

5- 1).

Sub·Medlator Elite

BLP I

Web Services
Monitonng mechanism

Figure 5-1: Dependability monitorin g of autonomous Web ervices

There were no technical prob lems in the interaction between the Sub-Med iator lite

and the Web Services. The Sub-Mediator Elite invoked the Web ervice ucce fully

and received expected results from the Web Service except for fai lure of orne of

the Web Services.

Average Failures
Web Dependability Unusual

Invocations response Service Omission time
Services rate delays

time fai lures failures out

WS1 100 152 100% 3 0 0 0

WS2 100 175 100% 7 0 0 0

WS3 100 132 93% 5 0 3 4

WS4 100 186 17% 0 83 0 0

WS5 100 119 95% 9 1 2 2

Tab le 5-1 : Dt'pend ability monitoring r t's ults of the public Web Servict's

Table 5- 1 how the result of dependabi lity monitoring. Four of the Web Service

nehie ed a hi gh rate of dependability during the monitoring. The WS-1 , which

Evaluation

translates English to Pig Latin, was successfully invoked 17 times but became

inactive thereafter, providing only an error message indicating that unknown service

failures occurred in the service. The WSJ and WS2 were the most reliable, although

several unusual delays occurred for unknown reasons (unusual delay refers to a valid

response from the service that takes over 2 times longer than the average response

time). The WS3 and WS5 were less dependable with varied types of failures captured

during the monitoring.

5.3.2 Dependability Monitoring of the GOLD Web Services

The results presented in the previous section demonstrate the ability of the Sub­

Mediator Elite application to monitor the dependability of autonomous Web Services.

The monitoring mechanism of the Sub-Mediator Elite successfully recorded the

dependability behaviour of Web Services and generated their dependability metadata.

However, we could not obtain confirmation from the service providers about the

correctness of the monitoring results due to the autonomy of Web Services. In

addition, the reasons behind some of the failures and delays of the Web Services were

unknown to us. We have therefore conducted additional experiments to verify the

validity of dependability monitoring using two Web Services kindly provided to us by

colleagues working on the GOLD project [2]. These two Web Services were

• GOLDPeople: a Web Service returning the list of the people in the GOLD

project.

• GOLDPolicies: a Web Service returning the aggregation of the policies

developed for the GOLD project.

103

baluation

The two Web ervlce are forma l Web Service deployed for re earch purpo e .

However, they are by no means expected to be reliable because they are al 0 u ed for

oftware testin g and debuggi ng. Therefore, these two Web Service may bebave

unreliabl y when oftware testing and debugging are taking place on server .

GOLDPeople
~ r---________________________ ___

700

600

500

' 00

)00

200

Rosponse Time (ms)

51 101

--.-~ - -------

-I-

/- -

- .--

151 201
Invocations

251

- Average Response TIme (ms)

301 351 '01

Figure 5-2: Dependability monitoring res ult of th e GOLDPeop/e

GOLDPolicies
1~r---------------------------~~----------------------------------~

900

- Average Response Tlma (ms)

600

100

Responso T ime (ms)

~

500

.00L-----~--------------------------------------~'"~1 ------~~~,----~':01:_--~
51 101 151 201 251 ..,JV

Invocations

Figure 5-3 : Dependability monitoring result of the GOLDPo/icie

10-+

Evaluation

The two Web Services are deployed on the campus network of Newcastle University.

We deployed the Sub-Mediator Elite on a computer connected to the same network.

The WS-Mediator Elite performed dependability monitoring on the two Web Services

and logged the returned results. Figure 5-2 and Figure 5-3 illustrate the results of the

dependability monitoring of the two Web Services, as shown in their dependability

metadata. The average response time of the GOLDPeopie and GOLDPolicies are 77

and 526 milliseconds respectively. During the monitoring, the GOLDPolicies

remained 100% dependable. However, 13 service failures were recorded for the

GOLDPeopie service based on its dependability rate of 96%. The error messages

indicated internal server failures in the GOLDPeopie services representing ongoing

unusual activities taking place on the server which were confirmed by our colleagues.

The dependability monitoring of the GOLD services proves the applicability and

feasibility of on-location dependability monitoring mechanism implemented in the

WS-Mediator. The generated dependability metadata can accurately represent the

dependability behaviour of Web Services. The above experiment was reported in the

UK All Hands Meeting 2006 [3].

5.4 Experiments with Bioinformatics Web Services

The experiments reported above prove the capability and feasibility of dependability

monitoring using the WS-Mediator. They provide effective and quantitative evidence

concerning the dependability behaviour of Web Services. The dependability metadata

generated serve as a sufficient precondition to achieve resilience-explicit computing.

Thus we were able to carry out a complete evaluation of the entire WS-Mediator

system. Below we report experiments on three Bioinformatics Web Services aimed at

demonstrating the applicability and effectiveness of the WS-Mediator approach.

105

Evaluation

In chapter 2, we presented experimental work analyzing the dependability of two

BLAST Web Services used in the bioinformatics domain [4]. BLAST is an algorithm

which is commonly used in in silica experiments in bioinformatics to search for gene

and protein sequences that are similar to a given input query sequence [5]. We

discovered dramatically different dependability characteristics of the BLAST Web

Services. Dependability characteristics of each BLAST Web Service also varied when

monitored from different geographical locations. Our analysis shows that the existing

BLAST services are likely to offer a reasonable degree of diversity despite the fact

that they all execute the same basic matching algorithms. This is due to differences

between the DBs, the specific BLAST searches they execute, the hardware they are

deployed on and the software code they run. This adds to the diversity of their

geographical locations.

In order to evaluate the WS-Mediator approach, we conducted experiments on three

BLAST Web Services with the Java WS-Mediator deployed on a computer in the

campus of Newcastle University, UK. The experiments demonstrate the applicability

of the WS-Mediator approach by employing it to real Web Services used in e-Science

environment. The three BLAST Web Services involved in this case study are:

• The BLAST Web Service deployed by the European Bioinformatics Institute

(EBI), Cambridge, UK [6]

• The BLAST Web Service hosted by the DNA Databank, Japan (DDBJ) [7]

• The BLAST Web Services hosted by Virginia Bioinformatics Institution

(VBI), USA [8]

106

Evaluation

Before the experiment started, test scripts were submitted for monitoring each Blast

Web Service and generating their dependability metadata (see Appendix C for the

pattern and explanation of dependability metadata). The three services were

monitored synchronously at an interval of 5 minutes between invocations. Appendix

D shows some of the dependability metadata. Thus, the Java WS-Mediator can use

the dependability metadata to perform resilience-explicit computing and to select the

appropriate Web Services for service composition.

In our experiments, we have developed a Java client application based upon the Java

WS-Mediator. This application (see Appendix E) uses the three BLAST Web Services

as candidates and searches the genetic databases of the three Blast Web Services for a

match to an input query sequence. An example of the expected result is shown in

Appendix F. The Java client application invokes the request every 30 minutes. If

erroneous replies are returned from a service, the client application makes three tries

before switching to the redundant services. The interval between retries is 30 seconds.

The timeout periods of the three Web Services are set automatically by the Sub­

Mediator according to their maximum response time recorded in the metadata. We

used the Service alternatives, N-version programming and Multi-routing execution

modes in the experiments and logged the execution results for analysis. The example

of successful and unsuccessful execution results of the business process are shown in

Appendix G and Appendix H respectively. The execution results list the execution

procedures performed during the business logic processing, and show the result of

each step carried out during the execution. The final result of service execution and

the execution report are attached to the execution results.

107

Client
Application

Sub-Mediator Elite

\
\

"-
"­

"- -... -... -... -...

Evaluation

DDBJ
Web Services

EBI
Web Services

____ ~.J

VBI
Web Services

Figure 5-4: Evaluation of th e Service alternative exec ution mode. T he so lid lines

represent I1 xed or primary, and the dashed lines a ltern ative message rout es

5.4. I Service Alternative Execulion Mode

Figure 5-4 shows the app li cation for eva luating the Service a ltemative execution

mode. In the ex periment, we set the dependab ility measuremen t (m) as the criterion

for se lec ting the best component service . At the beginll ing of the run the th ree

BLAST Web Services were dynamically ordered by the WS-M ediator according to

the ir dependabi lity measurement (m) during the preceding execution . A th DDB]

was the mos t dependab le Web Service, it wa used as the primary BLAST Web

ervice. However, at some moment during the execution, the DDB] became

unre li ab le, repea ting the message : "The search and analy i service is vel} ' bu)' noll'.

PI ase Il y a "Ya in laler." In these circumstances, the WS-Mediator switched to u ing

th e VB I after failed attempts with the DDBJ . T he V B! retumed valid results in mos t

attempt . Becau e the DDBJ was not in a dependable state, it dependabilit

111 a urement (m) dropped dramatica ll y. Figure 5-5 shows the resu lts of the

experiment. From the moment shown in Figure 5-5 as point (A), the VBI became the

10

Evaluation

mo t dependable Web Service and was therefore chosen as the primary V eb rVlce

to be invoked. There was an interesting contrast of two switching equence during

the in voca ti ons. As shown in Figure 5-5 , there were two entirely failed execu ti on

during the experi ment. In the first one (see Figure 5-5 , Point (B)), tbe DDBJ wa the

first Web Service to be ca ll ed, the VBr was the second one and the EBI wa the la t

one. In the second (see Figure 5-5, Po int (e)), the VB! became the primary Web

Service. It was ca ll ed firs t, followed by the DDBJ. The EBl was sti ll the la t one to be

attempted. The logged metadata generated by the monitoring mecban ism en ured that

the switching sequences were correc t accord ing to the dependabi li ty metadata a t th e

time. In this execution mode, the average overhead of the Java WS-Mediator i onl y

abo ut 100 milli seconds. The average respon e time of the DDBI , VB I and EBI were

about 24 seconds, 29 seconds and 63 seconds respecti ve ly.

:lfi ()()U()

:IOOIJOlJ

....... :!501100
~

~
~
. ~(I(J()l)tI

w

~

~ Ifi OOOO
o
~
: lut)ono

:iO\lI1C,

Service Alternatives

• • • • •••••••••
:IE)I()I(iliJ)I()I(JIO(

.........
:IE~E)I(~E~1)1()I()I()I()I(lI(:oE-JH: :oE-lIHI: :oE-lIHI: :oE-JH:

I

~~~ (A) L I ... ".... ...- I - - - -- - ..I ... ..l 

~I ~I .! I., ... --. .,. ' I ,,","1 I I .... 
-1 ,\ 'I 11 U l :l 17 1 \l :! 1 :::1 :!!' ':.7 ::~ :11 J:t .l5 .1; .IY 11 13 h t" 19 :\ I 

Exec utio n Se Qu ece 

Figure 5-5: Res ults of the Service alternative execution mode 

5.-1.2 N-version ProgramminG Execufion Mode 

.....-- lJIIH I I~<H,I 

-- 'II ~\ 
tH n. 

-+- 1 ,. 1111" ~ 

~ ~,I H. II 

Figure 5-6 hows the app lication for eva luati ng the - ersion programming execution 

109 



E\aluation 

mode. In thi ex peri ment, all of the three Web Service were in oked imu ltaneou I 

Once the quickest result is obtained from a Web Service, the execution terminate 

This trategy i sli ghtl y different from the class ic -version programming technique, 

which commonl y requires voting on resul ts. However, in real-world Web Service 

app lication , it is not always possib le to vote on the results received from di er e 

ervices. The results can be semanticall y eq ui valent or similar when the SO P 

messages are literally different. Therefore, in the WS-Mediator, re ult voting 

optional. We beli eve the client should have better knowl edge about hO\i to proce 

the results. 

Client 
Application 

-.., 

Sub-Mediator Elite 

/ 
/ 

/ 

'" ...-

/ 
/ 

/ 

/ 
'" / 

-- - -------- --
\ 

\ 
"-

"-
'­

'-

----

DDBJ 
Web Services 

EBI 
Web Services 

VBI 
Web Services 

Figure 5-6: Evaluation of the N-version programmin g exec ution mode. The so lid line 

represents a fi xed message route, and the dashed lines redund ant message routes 

Figur 5-7 shows a proportion of the results collected in the j - er ion programming 

execution mode. Becau e the DDBJ and the EB I were, for unkno n reasons, in ery 

unstab le tate , they fa il ed to provide valid results to the invocations. The fin al re ults 

of all executions were retumed from the VB!. In this execution mode, the 0 erhead of 

110 



E\ aluation 

the Java WS-Mediator wa about 130 millisecond. It wa lightly higher than tbat in 

the Service alterna ti ve executi on mode. 

10000 

bOOO(J 

~ \OO{)O I 
] 1000{) I 

Ii JllIlOO I 
Co 

'" ~ 20000 

10000 

\-version Programming 

.. , 't . , 

I 7 \ :1 1'1 25 3 1 ;17 I:l 19 55 hi 07 7:l 

Exec ut io n se qu ence 
I " 

----__ F.81 I 
__ IR 1\ 

llDBJ J.pdn 
-+- F .. cut on T •• 
~ r lures 
~\,l 1d R('o;ull 

Figure 5-7: Res ults of th e N-version programmin g exec ution mode 

5.4.3 Multi-routing Execution Mode with the Planetlab 

We deployed SI X Remote Sub-Med iator at six different ite on Pl anetLab in the 

Mu lti -routing xecuti on mode. PlanetLab is an open platt! rm for de loping, 

deploying, and access ing pl anetary-sca le serv ices [9],whi ch pro ide a globa l 

research network for developing and experimenting with network service. 

The IX ite where we deployed the Sub-M ediators were located in China, K and 

as illustrated in Figure 5-8. 1n each country, we dep loyed two ub- ed iators in 

two different citi es. The geographica l loca tions of the Sub-Mediators \ er regi tered 

in the Media tor- li te deployed on a computer in the Campus network of Ne\ ca tie 

ni ver ity. Thi omputer acted as the cli ent' s tel1l1inal. Such deployment \Va 

implemented ith appl ying geographica l di ers ity in mind. Ho\ e er. it i worth 

III 



Evaluation 

mentioning that thi s experiment did not emphasize the elect ion of di er e n twork 

paths between the sites and the poss ible network overlap between the Sub- ediator 

and the candidate Web Service. Thi ex periment was de igned only to alidate the 

app licabi lity and functiona lity of the WS-Mediator. 

-;;;-
,g 
'" . ~ 
~ 
c 
0 
C. 

'" ., 
ex: 

PlanetLab Network 

Figure 5-8: Eva lua tion or the mul ti-routing execution mode. T he solid line rep re en t 

Iixed or prima ry message routes, a nd the dashed lines alternative rout es. 

Multi-ro uting 
120000 

100000 

80000 

60000 

40000 

20000 

10 l' 12 13 14 15 16 17 18 19 20 2 

Exec utions 

Figure 5-9: Results or the 't ulti-Ro uti ng execution mode 

--- Fmal 
~ \\ a~hUlgh)n 

-.- hanghal 

""""'*"- \e\\castlc 

II} 



Evaluation 

In this experiment we chose the VBI BLAST as the ultimate Web Service. Three 

routes with dependability acceptance of 70%were required. The level of routing 

diversity was set as "Country". During the execution, The Sub-Mediators located in 

Shanghai (China), Newcastle upon Tyne (UK), and Washington (USA), were selected 

as the routing intermediate nodes according to their dependability metadata (see 

Appendix I). Figure 5-9 shows some results obtained in this experiment. During the 

experiment, the three Sub-Mediators and the VBI BLAST Web Service performed 

reliably. Most of the time, the Sub-Mediator deployed in Newcastle upon Tyne (UK), 

delivered the quickest responses, while the one in Shanghai (China), was the slowest 

one. In this execution mode, the average overhead of the WS-Mediator was about 140 

milliseconds. 

5.5 Conclusions 

The experiments reported in this chapter demonstrate the applicability of the WS­

Mediator approach. The experiments were conducted with realistic Web Services 

deployed by diverse service providers in real-world environments. The results of the 

experiments have proved that the WS-Mediator is capable of providing the required 

functionalities. The quantitative evidence supports the evaluation of the approach as 

feasible and effective. The experiments conducted with the BLAST Web Services 

have clearly manifested the benefits of using the WS-Mediator approach with real­

world Web Service applications. 

113 



Conclusions and Suggestions for Future Work 

6. Conclusions and Suggestions for Future Work 

In this chapter, we summarize our work and make suggestions for further work. In 

section 6.1, we summarize our research and studies reported in each chapter. In 

section 6.2, we outline certain possible extensions that could be made to our solutions. 

In addition, we discuss how the knowledge gained in this study can be applied in 

future work to improve the dependability of Web Service applications. 

6.1 Summary 

Web Service technology is developing very fast, and has started to playa critical role 

in more and more e-Commerce and e-Science applications. Due to the complexity of 

architecture and complicated application scenarios of Web Services, their 

dependability is a challenging research topic. While there have been many approaches 

developed to improving the dependability of individual Web Services and Web 

Service composition applications, there is still a need for solutions that would ensure 

the dependability of Web Service composition given the persistence of varied types of 

faults in the infrastructure. It is therefore essential to analyse concrete dependability 

characteristics of Web Services and involved components, such as individual 

component services, networks, etc. and develop solutions to cope with specific fault 

assumptions. 

Web Service composition is an activity involving integration of several component 

services over computer networks. For instance, in the travel booking use case, the 

travel agent has to invoke both an airway company and a hotel to follow the business 

process logic. In practice, applications (e.g. [8, 9]) will be much more complicated 

114 



Conclusions and Suggestions for Future Work 

and service composition will involve far more component services for the business 

process logic to be implemented. The dependability of service composition relies on 

the dependability of individual component services and of the networks. Failures of a 

single node (e.g. a component service or a segment of the network) can undermine the 

dependability of the entire application. In our example, the travel booking process 

cannot be accomplished until the travel agent receives valid results from both the 

airway company and the hotel. However, in reality, it is impossible to ensure that 

Web Services do not fail during the integration; moreover, computer networks are 

inherently unreliable. Hence, solutions for improving the dependability of service 

composition need to deal with failures of individual component services and networks 

to ensure the continuity of services. 

All this has prompted us to develop an approach focusing on the dependability of 

Web Service composition specifically from clients' point of view, with network 

failures considered to be part of the dependability characteristics of component Web 

Services. Compared to the existing solutions, the WS-Mediator approach innovatively 

adapts the resilience-explicit computing technology to improve the efficacy of fault 

tolerance techniques (including the service diversity strategy), commonly employed in 

other solutions. The WS-Mediator system utilises Sub-Mediators, deployed on the 

overlay architecture, to monitor the dependability of component services, generate 

dependability metadata reflecting clients' point of view and apply fault tolerance 

techniques to deal with faults. Dependability metadata consist of various attributes 

that represent the dependability characteristics of Web Services, such as response 

time, availability rate, types of failures, etc. The resilience-explicit dynamic 

reconfiguration mechanism of the WS-Mediator system makes run-time decisions 

according to these metadata to dynamically select the most dependable component 

115 



Conclusions and Suggestions for Future Work 

services for assembling the business process logic. In addition, the system implements 

a number of fault tolerance mechanisms (such as recovery blocks, N-version 

programming and path diversity) to deal with various types of faults in order to ensure 

the overall dependability of the service composition. 

A prototype of the WS-Mediator system, called Java WS-Mediator, has been 

implemented using the Java Web Service technology. We have conducted a series of 

experiments with several real-world Web Services (e.g. the BLAST Web Services 

commonly used in the bioinformatics domain, and Web Services deployed by the 

GOLD project, etc) to evaluate our solution, and their results have demonstrated the 

applicability and efficacy of the WS-Mediator approach. 

6.2 Suggestions for Future Work 

The architecture of the WS-Mediator system is flexible and scalable, and there are 

many ways in which our system could be extended in future research. Below we 

outline several promising extensions: 

l. The efficacy of the WS-Mediator approach relies on dependability metadata 

and the design and implementation of the dynamic reconfiguration 

mechanism. Currently, the WS-Mediator system generates dependability 

metadata comprising attributes such as response time (r), availability 

measurement (m) and types of failures (j). The dynamic reconfiguration 

mechanism utilises these attributes to select the most appropriate component 

services. In future development, this solution could be extended to a 

comprehensive metadata framework comprising more attributes to represent 

other dependability characteristics of Web Services, including their changing 

116 



Conclusions and Suggestions for Future Work 

dependability behaviour. For example, the response time (r) or availability 

measurement (m) of a service may be consistently different at different times 

of the day or on different days of the week because of the variations in the way 

the service is accessed. Therefore, metadata may comprise an attribute 

recording the average response time (r) or availability measurement (m) at a 

certain time of the day, on a certain day of the week, etc. Another example 

would be an attribute registering the average system down time [19, 34] after 

the occurrence of each type of failure, which would allow the service 

composition mechanism to decide when to retry the service after the 

occurrence of a certain type of failure. The dynamic reconfiguration 

mechanism could then be accordingly extended by more advanced algorithms 

corresponding to each particular attribute of metadata or their combinations. In 

particular, when the response time (r) or availability measurement (m) is 

chosen as a criterion for selecting component services, a new algorithm 

should be able to use a time slice of historic response time (r) or availability 

measurement (m) of a candidate service to forecast its changing dependability 

behaviour. Thus the algorithm can explicitly decide if it is reasonable to use 

the service at a certain time regardless of its overall response time (r) or 

availability measurement (m). 

2. The WS-Mediator system implements a number of fault tolerance mechanisms 

as fault tolerance execution modes to deal with different types of faults. There 

are two major ways to select a fault tolerance mechanism during service 

composition: explicit selection by the client and automatic selection by the 

WS-Mediator system. The client can select a particular fault tolerance 

execution mode and set relevant parameters in the global execution policy. In 

117 



Conclusions and Suggestions for Future Work 

practice, however, because the dependability characteristics of autonomous 

component services are unknown, it may be difficult for the client to select the 

appropriate fault tolerance execution mode. The dynamic reconfiguration of 

the WS-Mediator system is designed to automatically select the most 

appropriate fault tolerance mechanisms according to the types of failures (f) 

captured in the dependability metadata related to particular component 

services. Currently, the efficacy of the approach is restricted by the simple 

form in which dependability metadata are recorded (for example, the types of 

failures are saved and analysed at a very coarse level). This could be imprOVed 

in the future by developing a more efficient dynamic reconfiguration 

mechanism in conjunction with a more comprehensive metadata framework. 

In particular, specific algorithms could be developed to identify the common 

types of failures in component services at a much finer level (e.g. following 

the classification from [81]) and to select the suitable fault tolerance 

mechanisms to be applied in service composition. 

3. The current development of the WS-Mediator system does not explicitly 

address security issues, and yet Web Service security is emerging as an active 

research topic today. There are several types of security techniques developed 

for Web Services, one of the most important being the OASIS Web Services 

Security (WSS) TC [82]. The WS-Mediator system implements the standard 

Web Service intermediary architecture, which is extensively employed in 

many applications implementing value-adding services between clients and 

Web Services. The special requirements of the Web Service architecture is 

realised in the research on security of Web Services. Paper [83] emphasises 

that the development of security models and mechanisms in Web Services 

118 



Conclusions and Suggestions for Future Work 

should be compatible with Web Service architecture, including such 

components as intermediaries. Therefore, in theory, the WS-Mediator should 

be compatible with those applications that employ security models and 

mechanisms described in [82]. This supposition needs, however, to be 

investigated in future work. 

4. The Business Process Execution Language (BPEL) [84] has been extensively 

used in developing e-Commerce and e-Science applications in the past few 

years. Compared to the Java Web Service technology, BPEL simplifies service 

composition by specifically focusing on the description of the business process 

logic, with other jobs left to the underlying middleware. The WS-Mediator 

system offers the standard Web Service interface and can therefore be 

seamlessly integrated into applications developed in the BPEL. The executable 

process can directly invoke the WS-Mediator system to perform service 

composition. However, generally speaking, the BPEL is not as powerful as a 

general-purpose programming language like Java with regard to tasks such as 

message processing, etc. Therefore, it is well worth investing some effort in 

the future in improving the applicability of the WS-Mediator system to the 

development of applications in the BPEL. 

5. The WS-Mediator approach addresses network-related issues in Web Service 

composition, using the message routing diversity mechanism to deal with 

some of them. Currently, message routing diversity is achieved by using 

several remote Sub-Mediators as intermediary nodes. However, some overlaps 

of message paths may still happen when we use this application-level message 

routing approach. In future, the message routing diversity mechanism could be 

implemented in a more elaborate way to discover low-level message paths by 

119 



Conclusions and Suggestions for Future Work 

tracing messages sent to services. This message routing information needs to 

contain specific network routes along which messages between the client and 

the service travel. By comparing message routing paths to a particular service 

from different Sub-Mediators, the WS-Mediator should be able to effectively 

select the less overlapping paths to implement path diversity to the service. 

Furthermore, by tracing messages, the WS-Mediator might be able to identify 

the dependability characteristics of particular networks and select message 

routing paths during service composition accordingly. 

6. The WS-Mediator system monitors Web Services at different locations in the 

Internet and dynamically assesses their dependability. The dependability 

metadata generated by Sub-Mediators can help clients to select the most 

dependable services, taking into consideration the impact of the network. 

Currently, these dependability metadata can be retrieved via the Web Service 

interface of Sub-Mediators. In future, it would be possible to publish these 

dependability metadata on a special Web site. The system would automatically 

detect the IP address of the user who accessed it and dynamically publish 

dependability metadata generated by the Sub-Mediator closest to the user. 

This would help users to easily find out how dependable Web Services 

were and use them accordingly. At the same time, Web Service providers 

could use the Web site to obtain the dependability metadata about their 

services generated by Sub-Mediators distributed across the Internet. 

120 



Bibliography 

Bibliography 

1. W3C. (2004). 'Web Services Architecture'. [cited 30 Jan 2008]; Available 

from: http://www.w3.orglTRl2004INOTE-ws_arch_ 

200402111#service _oriented_architecture 

2. W3C. (2004). 'Web Services Glossary -W3C Working Group Note II 

February 2004'. [cited 30 Jan 2008]; Available from: 

http://www.w3.orglTRlws-gloss/ 

3. Attiya, H. and Welch, 1., 2004. Distributed Computing: Fundamentals. 

Simulations, and Advanced Topics. 2nd edition. Wiley series on parallel and 

distributed computing. New Jersey: John Wiley & Sons. 

4. Alonso, G., Casati, F., Kuno, H., and Machiraju, V., 2004. Web Services: 

Concepts. Architecures and Applications, Berlin: Springer. 

5. Laudon, K.C. and Traver, e.G., 2002. E-Commerce. Boston: Addison Wesley. 

6. Google. 'Google SOAP Search API (Beta),. [Retrieved: 03 March 2008]; 

Available from: http://code.google.com/apis/soapsearch/reference.html 

7. Ebay. (2008). 'Ebay Developers Program'. [Retrieved: 03 March 2008]; 

Available from: http://ebaydeveloper.typepad.com/ 

8. Townend, P., Xu, J., Yang, E., Bennett, K., Charters, S., Holliman, N., 

Looker, N., and Munro, M., 2005. 'The e-Demand project: a summary'. in 

Proceedings of the Fourth UK eScience All-Hands Meeting. Nottingham, UK. 

121 



Bibliography 

9. Hiden, H., Conlin, C., Perrioellis, P., Cook, N., Smith, R., and Wright, A.R. 

(2006). 'The GOLD Project: Architecture, Development and Deployment'. 

[Retrieved: 30 Jan 2008]; Available from: 

http://www.ncl.ac.uk/ceam/researchlpublicationl46755 

10. Gable, J. (2002). 'Enterprise application integration'. Information Management 

Journal, Issue: MarchlApril2002. [Retrieved: MarchlApriI2002]; Available 

from: http://findarticles.com/p/articles/mi_ qa3937 lis _ 200203/ai_ n9019202 

II. Object Management Group. (2007). 'Catalog of Specialized CORBA 

Specifications'. [Retrieved: 30 Jan 2008]; Available from: 

http://www.omg.orgltechnology/documentslspec_catalog.htm 

12. Orfali, R., harkey, D., and Edwards, J., 1997. Instant COREA. USA: John 

Wiley & Sons, Inc. 

13. WS-I. (2007). 'Basic Profile Version 1.2'. [Retrieved: 30 Jan 2008]; Available 

from: http://www.ws-LorglProfileslBasicProfile-l_2(WGAD).html 

14. W3C. (2007). 'HTTP - Hypertext Transfer Protocol'. [Retrieved: 30 Jan 2008]; 

Available from: http://www.w3.org/Protocols/ 

15. W3C. (2007). 'SOAP Version 1.2'. [Retrieved: 30 Jan 2008]; Available from: 

http://www .w3 .orglTRIsoap/ 

16. W3C. (2001). 'Web Services Description Language (WSDL) 1.1'. [Retrieved: 

30 Jan 2008]; Available from: http://www.w3.orgITRlwsdl 

122 



Bibliography 

17. Ferguson, D.F., Storey, T., Lovering, B., and Shewchuk, J. (2003). 'Secure, 

Reliable, Transacted Web Services: Architecture and Composition'. 

[Retrieved: 25 Feb 2008]; Available from: http://msdn2.microsoft.com/en­

us/library/ms996535.aspx 

18. Merzbacher, M. and Patterson, D., 2002. 'Measuring End-User Availability on 

the Web: Practical Experience', in Proceedings of the International 

Conference on Dependable Systems and Networks. IEEE Computer Society 

Press. p. 473- 477 

19. Kalyanakrishnan, M., Iyer, R.K., and Patel, J., 1997. 'Reliability of Internet 

Hosts - A Case Study from the End User's Perspective', in Proceedings of the 

6th International Conference on Computer Communications and Networks. 

IEEE Computer Society Press. p. 418-423 

20. Cristian, F., 1991. 'Understanding fault--tolerant distributed systems', in 

Communications of the ACM Vol. 34, Issue 4: p. 56-78. 

2l. Avizienis, A., Laprie, J.-e., Randell, B., and Landwehr, C., 2004. 'Basic 

Concepts and Taxonomy of Dependable and Secure Computing', in IEEE 

Transactions on Dependable and Secure Computing. IEEE Computer Society 

Press. Vol. 1, No. I: p. 11-33. 

22. Lee, P.A. and Anderson, T., 1990. Fault Tolerance: Principles and Practice, 

2
nd 

edition. J.e. Laprie, A. Avizienis, and H. Kopetz (editors). Springer-Verlag 

New York, Inc. 

123 



Bibliography 

23. Chen, Y. and Romanovsky, A., 2006. 'A Mediator System for Improving 

Dependability of Web Services', in Proceedings of the International 

Conference on Dependable Systems and Networks - DSN 2006. Philadelphia, 

USA. Vol. Supplemental: p. 132-133. 

24. Atkinson, M. and Trefethen, A. (2006). 'UK e-Science ALL HANDS 

MEETING'. [Retrieved: 30112/2006]; Available from: 

http://www.allhands.org.ukl2006/ 

25. Chen, Y., 2006. 'On Improving Dependability of Web Services by employing 

the Mediator System', in ReSIST Student Seminar. San Miniato, Italy. 

26. Chen, Y. and Romanovsky, A., 2008. 'WS-Mediator for Improving the 

Dependability of Web Services Integration', in Journal of IT Professionals. 

IEEE Computer Society Press. Vo1.10, No.3, Issue: May/June 2008: p. 29-35 

27. Anderson, T., Andrews, Z., Fitzgerald, 1., Randell, B., Glaser, H., and Millard, 

1.,2007. 'The ReSIST Resilience Knowledge Base', in Proceedings of the 37th 

AnnualIEEEIIFIP International Conference on Dependable Systems and 

Networks. Edinburgh, UK, Vol. Supplemental. 

28. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., and Yergeau, F. 

(2006). 'Extensible Markup Language (XML) 1.0 (Fourth Edition)'. 

[Retrieved: 03 March 2008]; Available from: http://www.w3.orgITRlxmll 

29. OASIS. (2004). 'UDDI Version 3.0.2'. [Retrieved: 30 Jan 2008]; Available 

from: http://www . oasis-open. org/ commi ttees/uddi -spec/ doc/spec/v 3/uddi­

v3.0.2-20041019.htm 

124 



Bibliography 

30. Web Services Interoperability Organization. 'About WS-I'. [Retrieved: 30 Jan 

2008]; Available from: http://www.ws-i.orgiaboutJDefault.aspx 

31. 180ss Labs. '18oss Web Services'. [Retrieved: 16 Jan 2008]; Available from: 

http://labs.jboss.com/jbossws/ 

32. The Apache Software Foundation, 'Web Services - Axis'. [Retrieved: 16 Jan 

2008]; Available from: http://ws.apache.orglaxis/ 

33. Glassfish Community. 'GlassFish Project - Documentation Home Page'. 

[Retrieved: 27 March 2008]; Available from: 

https://glassfish.dev .java.netlj avaee5/ docs/DocsIndex.html. 

34. Oppenheimer, D., Ganapathi, A., and Patterson, D., 2003. 'Why Do Internet 

Services Fail, and What Can Be Done About It?', in Proceedings o/USENIX 

Symposium on Internet Technologies and Systems. Seattle, USA, Vol. 3: p. I - I. 

35. Han, J. and Watson, D., 2006. 'An Experimental Study of Internet Path 

Diversity', in IEEE Transactions on Dependable and Secure Computing. IEEE 

Computer Society Press. Vol. 3, Issue 4: p. 273 - 288. 

36. Mendonrya, N.C. and Silva, J.A.F., 2005. 'An Empirical Evaluation of Client­

side Server Selection Policies for Accessing Replicated Web Services', in 

Proceedings o/the 2005 ACM symposium on Applied computing. Santa Fe, 

New Mexico: ACM. p. 1704-1708. 

37. Chen, Y., Li, P., and Romanovsky, A., 2006. 'Web Services Dependability and 

Performance Monitoring', in Proceedings o/21st Annual UK Performance 

Engineering Workshop, UKPEW 2005. Newcastle Upon Tyne, UK. 

125 



Bibliography 

38. Li, P., Chen, Y., and Romanovsky, A., 2006. 'Measuring the Dependability of 

Web Services for Use in e-Science Experiments', in Service Availability. Book 

series: Lecture Note of Computing Science. Springer: Berlin / Heidelberg. p. 

193-205. 

39. W3C. (2001). 'About the World Wide Web'. [Retrieved: 30 Jan 2008]; 

Available from: http://www.w3.orgIWWW/ 

40. Tartanoglu, F., Issarny, V., and Romanovsky, A., 2003. 'Dependability in the 

Web Services Architecture in Architecting Dependable Systems'. In 

Architecting Dependable Systems. Book series: Lecture Notes in Computer 

Science. Springer: Berlin / Heidelberg. Vol. 2677: p. 90-109. 

41. Stevens, R.D., Robinson, A.J., and Goble, c.A., 2003. 'myGrid: Personalised 

Bioinformatics on the Information Grid', in Journal ofBioinformatics. Vol. 

Supplement 1 (19 ), No. 19: p. i302-i304. 

42. Miyazaki, S. and Sugawara, H., 2000. 'Development of DDBJ-XML and its 

application to a database of cDNA', in Journal of Genome Informatics. 

Universal Academy Press, Inc (Tokyo). Issue 11: p. 380-381. 

43. NTL Business Limited. (2008). 'ntl: Telewest business'. [Retrieved: 03 March 

2008]; Available from: 

http://www .ntltelewestbusiness.co. uk/products _ solutionslbroadband _interne 

t_ services.aspx 

126 



Bibliography 

44. CERNIC. (2008). 'China Education and Research Network (CERNET),. 

[Retrieved: 03 March 2008]; Available from: 

http://www.edu.cnlHomePage/english!cernetiindex.shtml 

45. Alwagait, E. and Ghandeharizadeh, S., 2005. 'DeW: A Dependable Web 

Services Framework', in Proceedings of the 14th International Workshop on 

Research Issues on Data Engineering: Web Services for E-Commerce and E­

Government Applications (RIDE'04). IEEE Computer Society Press, p. 111-

118. 

46. Salatge, N. and Fabre, J.-c., 2007. 'Fault Tolerance Connectors for Unreliable 

Web Services'. in Proceedings of the 37th Annual IEEE/IFIP International 

Conference on Dependable Systems and Networks. IEEE Computer Society 

Press. p. 51-60. 

47. Tsai, W.T., Song, W., Paul, R., Cao, Z., and Huang, H., 2004. 'Services­

Oriented Dynamic Reconfiguration Framework for Dependable Distributed 

Computing'. in Proceedings of the 28th Annual International Computer 

Software and Applications Conference (COMPSAC'04). IEEE Computer 

Society Press, Vol. 01. 

48. Laranjeiro, N. and Vieira, M., 2007. 'Towards fault tolerance in web services 

compositions', in Proceedings of the 2007 workshop on Engineeringfault 

tolerant systems. Dubrovnik, Croatia: ACM. 

49. Cristian, F., 1982. 'Exception Handling and Software Fault Tolerance', in 

IEEE Transactions on Computers. Vol. 31. Issue 6: p. 531-540. 

127 



Bibliography 

50. Vieira, M., Laranjeiro, N., and Madeira, H., 2007. 'Assessing Robustness of 

Web-Services Infrastructures'. in Proceedings of the 37th Annual IEEEIIFIP 

International Conference on Dependable Systems and Networks. IEEE 

Computer Society Press. 

51. Looker, N., Munro, M., and Xu, J., 2004. 'WS-FIT: A Tool for Dependability 

Analysis of Web Services'. in Proceedings of the 28th Annual International 

Computer Software and Applications Conference - Workshops and Fast 

Abstracts - (COMPSAC'04). IEEE Computer Society Press, Vol. 02. 

52. Randell, B., Romanovsky, A., Rubira, C.M.F., Stroud, R.J., Wu, Z., and Xu, 

J., 1995. 'From recovery blocks to concurrent atomic actions', in Predictably 

Dependable Computing Systems, H. Kopetz, J.C. Laprie, R. Brian, and B. 

Littlewood, (editors). Springer-Verlag New York, Inc. p. 87-101. 

53. Randell, B. and Xu, J., 1994. 'The Evolution of the Recovery Block Concept', 

in Software Fault Tolerance, M. Lyu, (editor). J. Wiley. New York, p. 1-22. 

54. Avizienis, A., 1985. 'The N-Version Approach to Fault-Tolerant Software', in 

IEEE Transactions of Software Engineering. IEEE Computer Society Press. 

Vol. II, Issue 12: p. 1491-1501. 

55. Knight, J.C. and Leveson, N.G., 1986. 'An experimental evaluation of the 

assumption of independence in multiversion programming', in IEEE 

Transactions on Software Engineering. IEEE Computer Society Press. Vol. 

12, Issue I: p. 96-109. 

128 



Bibliography 

56. Eckhardt, D.E., Caglayan, A.K., Knight, J.C., Lee, L.D., McAllister, D.F., 

Vouk, M.A., and Kelly, J.J.P., 1991. 'An Experimental Evaluation of Software 

Redundancy as a Strategy for Improving Reliability', in IEEE Transactions on 

Software Engineering. IEEE Computer Society Press. Vol.l7, Issue 7: p. 692-

702. 

57. Salas, J., Perez-Sorrosal, F., Patino-Martinez, M., and Jimenez-Peris, R., 2006. 

WS-replication: a framework for highly available web services, in 

Proceedings of the 15th International Conference on World Wide Web 

(Edinburgh, Scotland, May 23 - 26, 2006). WWW '06. ACM Press, New 

York, NY, 357-366. 

58. Townend, P., Groth, P., and Xu, J., 2005. 'A Provenance-Aware Weighted 

Fault Tolerance Scheme for Service-Based Applications'. in Proceedings of 

the Eighth IEEE International Symposium on Object-Oriented Real-Time 

Distributed Computing (ISORC'05). IEEE Computer Society Press. 

59. OASIS. (2008). 'OASIS Web Services Reliable Messaging (WSRM) TC'. 

[Retrieved: 30 Jan 2008]; Available from: http://www.oasis­

open.org/committees/tc _home. php?wg_ abbrev=wsnn 

60. AmberPoint Inc. (2003). Report: Managing Exceptions in Web Services 

Environments. 

61. Dobson, G., 2005. 'A container-based mechanism for service fault tolerance'. 

[Retrieved: 30 March 2008]; Available from: 

http://www.dirc.org.uklresearchiDIRC-Results/ServiceFaultTolerance.html 

129 



Bibliography 

02. Ardissono, L., Furnari, R., Goy, A., Petrone, G .. and Segnan, \1.. 2UOo. 'Fault 

Tolerant Web Service Orchestration by \1ean~ of Diagnosis', in Prr}(eedIl7~\ 

o/the third European Workshop on Software Architecture. Series: Lecture 

Notes in Computing Science. Springer Berlin / Heidelberg. pp. 2-16. 

63. Serugendo, G.D.M., Fitzgerald, J., Romanovsky, A., and Guelfi, :\., 2007. ':\ 

metadata-based architectural model for dynamically resilient systems'. in 

Proceedings a/the 2007 ACM.lymposium on Applied computing. Seoul. 

Korea: ACM. p.566-572. 

64. Goel, S., Talya, S.S., and Sobolewski, M., 2007. 'Service-based P2P overlay 

network for collaborative problem solving', in Journal ()//)cC/,i(}n Support 

Systems. Elsevier Science Publishers B. V. Vol. 42. Issue 2: p. 547-5(,;-( 

65. Fitzgerald, J., Parastatidis, S., Romanovsky, A .. and Watson, P., 2004. 

'Dependability-explicit Computing in Service-oriented Architectures', in 

P/"()('('ec/ings ojthe International Conj"erence on Dependahle S1"I1(,1I7.1 and 

Networks. Florence, Italy. Vol. Supplement: p. 34-35 

6<1. Wiederhold, G., 1995. 'Mediation 111 infornlation systems', in Journal (1/ I ('.\ f 

COI77/lllfing S//I"\'('1·.\'. ACM.VoI.27, Issue 7: p. 265-267. 

67. Goldberg, J., Greenberg, 1., Clark, R., knsen. D .. Kim, K .. and \\ells. D .. 

(1994). 'Adaptive Fault-Resistant Systems'. in SRI Technical Report. SRI 

International. [cited 11 April 2008]; :\ nilable from: 

http://www.csl.sri.com/papers/sri-cs 1-9 5-02 

130 



Bibliography 

68. Fraga, J., Siqueira, F., and Favarim, F., 2003. 'An Adaptive Fault-Tolerant 

Component Model'. in Proceedings a/International lI'or/.;,hi)j! on Ohject­

Oriented Real-Time Dependahle 5\'stems, 2003. WORDS ](j{j3 Fall. 2003: p. 

179-179. 

69. Hecht, M., Hecht, H., and Shokri, E., 2000. 'Adaptive fault tolerance for 

spacecraft'. in Proceedings of Aerospace Conference. Big Sky. \IT. USA 

IEEE Computing Society press. Vol. 5: p. 521-533. 

70. A vizienis, A. and Chen, L., 1977. 'On the Implementation of:\ - \' cr,ion 

Programming for Software Fault Tolerance During Execution', in Proceedings 

oj'fEEE Ann. Int'l Computer Sojtware and Applications Con/.' (( ,()\/I'SAC 

77). Chicago, IL: IEEE Computer Society rrcss p. [49-155. 

71. Sun Microsystems Inc. 'Web Services Overview'. [Retrie\cd: 30 Jan 20()X]; 

Available from: http://java.sun.com/webserviccs/ 

72. Microsoft Corporation. '.NET Framework'. [Retrieved: 16 Jan 200R]; 

A vai lable from: http://msdn2.microsoft.com/en-gb/netframework'defau[t.aspx 

73. Sun Microsystems Inc. 'Java EE at a Glance'. [Retricwd: 16 Jan 200X]; 

Available from: http://java.sun.com/javace index.jsp 

7-t. NctBeans. 'Documentation, Training & Support'. [Retrie\ cd: [6 Jan 2008]; 

Available from: httr:"w\\·w.nctbeans.org kb 

75. Glassfish Community. 'Project Description. Metro Project'. [Retrieved: [6 Jan 

2008]; :\\ailable from: https: jax-\\s.de\,ja\a.net 

131 



Bibliography 

76. W3C. (2006). 'Web Services Policy 1.2 - Framework (\\S-Policy) , 

[Retrieved: 30 Jan 2008J; Available from: 

http://www.w3.org/Submission/WS-policy/ 

77. XMethods. 'Welcome to XMethods'. [Retrieved: 30 Jan 2008J; Available 

from: http://www.xmethods.net 

78. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman. 0.1 .. 1990. 

'Basic local alignment search tool', in Journal ojJ/o/c:clI/UI' Biology. Issue 

215: p. 403-410. 

79. Virginia Bioinformatics Institute. (2007). 'Path port, the pathogen portal 

project'. [Retrieved: 30 Jan 2008]; Available from: 

http://pathport.vbi.vt.edu/main/homc.php 

80. The Trustees of Princeton University. (2007) 'PLANETLAB'. [RL'trIc\ cd 30 

Jan 2008J; Available from: https:l/www.planet-Iab.org 

:-11. Gorbenko, A., Mikhaylichenko, A., Kharchenko, V .. Romanmsky. A. (2007). 

'Experimcnting With Exception Handling Mechanisms Of \\cb Scn ICCS 

Implemented Using OitTerent De\L'lopment Kits', in CS-TR \;ll 1010. SL'ilolll 

of Computing Science, Newcastle University, 

:-12. OASIS, (2006). 'OASIS Web Services Security (\\SS) TC'. [Retric\(~d: 1 L) 

!'\pril2008J; A\ailable from: http: \\\\\\.oasis-

open.org committees.te J10me.php'?wg_ abbrc\=\\ ss::;:announcements 



Bibliography 

83. IBM, Microsoft. (2002). 'Security in a Web Services World: A Proposed 

Architecture and Roadmap.' [Retrieved: 19 April 2008]; Available from: 

http://www.ibm.com!deve I operworks/l ibrary Ispeci ficati on/ws-secmap . 

84. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. (2007). 'Business 

Process Execution Language for Web Services version 1.1 '. [Retrieved: 30 

March 2008]; Available from: 

http://www.ibm.com/developerworks/librarylspecification/\\.·s-bpel. 

I ' , -'-' 



Lht of Abbreviations 

List of Abbreviations 

AW: 

BLP: 

DA: 

DMM: 

os: 

FTMS: 

HT: 

PS: 

REDRM: 

SMD: 

SMI: 

SMM: 

SOA: 

TA: 

WS: 

WSD: 

WSIM: 

WSM: 

Airway company 

Business logic processor 

Dependability assessment mechanism 

Dependability monitoring mechanism 

Database system 

Fault-tolerance mechanisms 

Hotel 

Policy system 

Resilience-explicit dynamic reconfiguration mechanism 

Sub-Mediator database 

Sub-Mediator Interface 

Sub-Mediator monitoring mechanism 

Service-oriented architecture 

Travel agency 

Web Service 

Web Services database 

Web Service invocation mechanism 

Web Services monitoring mechanism 



Appendix A - The \\'S,D\ T tool 

Appendix A - The WSsDAT tool 

Our work on the tool started with formulating the essential requirements \\ hich a 

general Web Services dependability-monitoring tool needs to meet. The main 

requirement is that such a tool should be able to monitor a Web Senice continuously 

for a preconfigured period of time and record various types of information in order for 

the dependability of a service to be measured. Firstly, the tool should provide an 

interface to accept user's inputs and map these user inputs into internal processing 

actions. Secondly, the tool has to be able to invoke the Web Service effectivel~ and 

wait for results; internal and external exceptions should be monitored during this 

period. When the output of the service invocation is recei\ cd. the response time for 

the service should be recorded and analyzed. Ideally. the output of the sen Ice needs 

to be assessed to determine whether the Web Service functioned properly and \\ hether 

it passed or failed according to the users' demands. Moreover. when the test 

invocation failed then any fault messages generated by the senlCe should also be 

documented. If available, these messages will provide inSIghts behind the problems 

causing the service failure. Finally, the tool should be able to produce reports tlj' the 

test and monitoring procedures. 

Overview 

The requirements of a general \Veb Senices dependability-monitoring tool \\ere 

realised by the development of a J~l\a-based application called \\eb Services 

Dependability .\ssessment Tool (\\SsDA T) \\hich is aimed at e\aluating the 

dqk'ndability of Web Sen ices. The tool supports \arious methods of dependability 

testing by acting as a client 111\ ()king the \\'eb Senices under imestigation. The tool 



Appendix A -- The \\S,DA T tool 

enables users to monitor Web Services by collecting the following reliabilit\ 

characteristics: 

- Availability and Functionality: Calls are made to a Web Service at defined 

intervals to check if the Web Service is functioning. The tool is able to test the 

semantics of the response which are generated by the Web Service being 

monitored. It is possible to pre-configure the tool using a regular expression 

which represents the correct response expected by the scientist from a gm?n \\en 

Scrvice and ensure the service is functioning according to that expected by its 

user. Results returned from a Web Service are recorded for further anahsis 

which can be manually carried out by a user. 

- Performance: The WSsDA T measures the round-trip response time of calls 

made to the Web Services. Average response time of successful calls IS used as 

performance metric of a Web Service. 

- Faults and exceptions: The tool records any faults generated by a failed 

invocation of a Web Service. Internal and external exceptions, for example, 

networking timeout exceptions are also recorded for further analysIs. 

Further to the above metadata recorded by WSsDA T, the tool can also be used to test 

and monitor the dependability of Web Senices at geographically disparate locations 

through the deployment of the tool on different computers. It is important to 

understand the behaviour ofa Web Senice from the point ohie\\ of the clIents. in 

llnkr to comprehend the networking consequences bet\\een the clients and the \\eb 

Scnicc. 



Appendix A - The \! D T tool 

General principles and architecture 

One of the problems wi th using public scientific Web Service i that their interface 

differ from one resource to another. Therefore, tester would normally ha e to " rite a 

cu tomized invocation script for each service because of the different interface and 

parameters required. The WSsDA T is an off-the-shelf tool offering genera l olution 

for monitoring the dependability of Web Services. Th is too l i implemented u ing 

Apache Axis JAX-RPC sty le SOAP processing APls. 

OAT 

• GUt 

WSI 

I ( Invo~ng ) • 
WS n 

U.e, 
( InVO~ng ) • 

Figure A-I: The architecture of the WSsOA T 

The architecture of WSsDA T is shown in Figure A-I . It con i t of three ma1l1 

funct ional components, a graphica l user interface (GU I), a Test Engine and a Data 

Hand ler. The GU I captures the user's request, and configures the test polic and 

y tern ettings . These inputs are modeled, mapped and stored in a databa e for 

repeated use. The GU I is also a viewport whi ch renders li ve dependabili ty and 

performance metrics of the Web Services being monitored. The Test Engine is 

re ponsible for genera ting and executing invoca tion scripts using the modeled data 

st red in the Web Ser ices database to invoke Web ervice. The Te t Engi ne i- ab le 



Appendix A - The \! o T tool 

to run a batch of test and measurements concurrently. The Data Handl er proce 

and mode ls all tes t and observat ion measurements data. After tati tical anal 

the e data are subseq uently stored in a MySQL database or as plain text file ; relevant 

info rmation is passed and rendered in the viewport on the GUI. 

Web s.c"" CC~ Dc pend~D l ht~ TC:;1 Toclkl 

Endpoint 
Opcr:J.tb n; 

Timeout(s): 

j Over vtew 'N$........ TCSl PolK;' 

ws: 
http'! /lO(aJ~ost '8080/ ax,,/Te<t.Jw,' 
tc~1 

100 

Return type. XSDJ1RI NC =m 
~================~~ 

Expecud Result : pass 

Parameter T'/pe: -"XS= DS= TR:::IN:::C=============O:m=:O!. 
P"'fameter: pa~~ 

Parameters Type 

XSDSTRING 

Puameten 

pass 

Figure A-2: CU I for W eb Services informatio n inputs 

Grap"icaillser interface (GU/) 

We des igned and impl emented the GU I by whi ch users can interact \ ith the 

W sOAT. Us r can input info1l11ation of Web Serv ices on the G I, et te t 

parameter and con figure test po licies , as shown in Figure -2 . The Ss O T i 

apab le f testing mul tiple Web Sel ices simultaneous ly. Each time the G I accept 

inputs fo r one Web er ice. Once user 's inputs are va lidated, these data are mode led 

and sa cd in a da tabase, and the Web Service i entered into a test alTa . The W b 

13 



Appendix A - The o T tool 

Services in the tes t array are li sted on the GUI and can be se lected indi idually for 

modification and information di splay. The viewport on the G I renders information 

of Web Services, such as errors, average response time, and graph of respon e time 

The user can highlight a Web Service in the testing li st for di splay. (See Figure A-3). 

nnn 

W~I 

Test engine 

WSI 

A RT 
Errors 

'000 

000 

000 

400 

200 

Web Services Dependability Test Toollot 

EndpoInt Open.tlon SUrt tJme AVHilge _ Ruponn ~u rue SetKte 

hup J/locaJhos"l 80801. lcae 

,.. 

878 ms 
o 

00 00 00 171 905 100 '( 

rested rlmCl 21~ 

AvaJ lubliaty 100-. 

~ 

Figure A-3: CUI for test information display 

The Tes t Engine processes the user ' s inputs and impl ements service in ocation cript 

according to tes t po licies. Tests on each Web Ser ice are es tablished as a s ing le 

thread and all tests are can"ied out in para ll e l. T he number of tes t threads i on ly 

restri cted by the computer system 's capab ility or restri c tion. Figure A-4 i an L 

139 



Appendix A- The \\"SsDA T tool 

diagram showing how the Test Engine cooperates with other components In the 

WSsDA T. The mechanism of a test procedure described briefly as following: 

- The Test Engine assembles an invocation script for a Web Sen ICC to be 

monitored according to user's inputs. 

- The Test Engine invokes the Web Service with the test script. A timer is started 

for measuring the response time. The start time of the invocation is logged. 

- If a valid result is received from a Web Service, the result is passed to the Data 

Handler along with other measurements such as start time and end time of the 

invocation. The test is terminated and will be started again after the preset 

interval. 

- If an exception is detected during the invocation, the exception message is logged 

along with other dependability and performance metrics. The test IS temlinated 

and a new invocation will be initiated after the preset interval. 

- If the Web Service does not return any response after a preset timeout period, the 

timeout exception is logged. The test is temlinated and will start agalll after the 

preset interval. 

Rd:vant statistics and analysis are processed and logged after each invocation. 

The Test Engine implements the SOAP message processing mechanism. It IS able to 

analYl.e the SOAP message received from the Web Senices by reporting the error 

message attached in the SOAP message and thereby allo\\ing users of the tool to 

understand what failures occurred during an unsuccessful invocation. 

140 



Append ix A - The D T too l 

Data handler 

The Data Handler processes a ll data generated during tbe te t. After tati tical 

analysis, these data are stored in a MySQL database, and pas ed to the G I if 

appropri ate . If a MySQL database is not insta lled on the computer, the WSs DAT ha 

an op ti on to save these data in formatted text fi les . T he contents of the e fil e are 

commented and split c learl y and can be easily converted into M icrosoft Excel or some 

other tatistics software whi ch can import data from fo rmatted text fil es uch a 

aut I Dala1landler I I DIltabAIe I I Iellfnatne I 

r'- I r--I User Inputs I 
I , 

SOAPIWSDL , I 

~ 
I 
I ~---~. Web servICe 

Data 

"":" I 

,-L "-
UHr 

Display Save ---'" - --
'-

Figure A-4: Test procedure 

' hllp://\ ww.spss.con 

141 



Appendix B - Implementation of Java Sub-\lediator Elite 

Appendix B - Implementation of Java Sub-Mediator Elite 

We started implementing the Java WS-Mediator by using the U\;lL modelling tool 

[74] integrated in NetBeans to generate abstract classes of components. The 

modelling technique allowed us to construct an abstract prototype of the WS-

Mediator and its components from scratch by defining attributes and operations to 

present the functionalities and behaviours of components. Moreover, we were able to 

validate the proposed system structure and components with Use Case and class 

diagrams along with the modelling-based system validation techniques. The 

modelling approach dramatically reduced the difficulty and complexity of the Ja\a 

WS-Mediator implementation. Figure 8-1 presents the class diagram of the Sub-

Mediator Elite, illustrating the internal components of the implementation. 

In the Sub-Mediator Elite, class Me('-Elite _ SOAPPort() acts as both sef\ice interface 

and the 8PL. The client application can invoke Java APls implemented in the 

A/l'J I:"/i/l' SOIPPort() class to request different services. This class interprets the 

client's requests and assigns jobs to the corresponding components. Figure 8-2 

illustrates the dependency of the A!l'd_Elite_SOAPPorts() class. The ItS_Bridge(} and 

the SIIh/V!L'(,-Brisge(} classes are the components for accessing the Weh Sen'ice 

datahase and the SlIh- Mediator datahase. The DYl1amic_ Recol1'-Ellgine() class 

implements the Dl'namic Reconjl<'lIratiol1 Enville of the Sub-l\1ediator to process the • . b b 

mediatll1g servIce requests. The Med_ Elite _PolicyPort(} class interprets the global 

('\l'('lItiol1 polh:l', while the 

('.\ecl/tiol1 policies. 

142 



~ 
\.,.J 

.., 
,;0' 

'" .., 
'" co 
I 

("'J 
:; 
'" '" Q. ;;. 
~Q .., 
'" 3 
o ...., ... 
; 
'" '" r:T 
I 

'" Q. ;;. 
0-.., 
~ 
;; 

m epp 1 1 dre + ""'P 
WS_Req Poli c y_Parser Med_Elite_PolicyPort arp 

Med_El ite_SOAPPort 
{F<anm __ ao.} 

<<d:<oI)pe» ~ 
{Franm __ EIioo} 

< ... ~1)cV> 
(F ..... ..-_Boo) ~ 

MR_Policy Med_Global_Policy 

10-
{Framm ___ } {Franm __ Boo) 

mgp 

uusReqpy i ~ nVDD 

~ <~, < ... ~> 

r---'" 
WS_Req_ Policy 

~ 
NVP _ Policy 

SubMed_Bridge 
{F,anm __ ao.} { Franm __ ao.) <<d:<oI)pe» « ~> 

{F,anm _ _ ElIoo} AR_Policy Globals 

MR_Engine m pp 

{FruT1m ___ } {Framm _ _ Boo] 

{f ..... m __ EIioo] 

Dyna mic_Reconf _Engine 
~ 

? 
{franm __ Eiito} arp 

In r 

Sub Med_Metadata AR_Engine 
{F,an m __ Boo} 

t are 
{Franm _ _ a..) 

uusList 
WS_Bri dge \lU5List 9 nvpp 

{Franm __ ao.} 

~ nvpe 

b NVP _Engine 
{Fronm_~] io---

SubMed_Monitor "",List 
1 Fran mo:t:;r, _EMe J t-< 

uusM eta 

I rstPro c 
Sp 

+ 
"",Meta 

t ! w;;' f y WS_ Metadata 

IlU5p rocll 

{Franm _ _ &te) WS_Proc soapPro c de 
SubMed_ lnv o ke, 
t Frau ftla:k1.n7 _Bno) 

{From m __ Boo) SOAP _ P,oc rstPr oo 
I Fran nu:n .... _BllaJ 

Dispatch_Engine 
WS _Inv o ke _ Engi ne {Franm ___ J 

I<> t+ 
}, 

{F"""m __ EIIoeJ 

p 
WS_Monitor de 

re ' 0 
IlU5ReqPy { F..." m _ _ 8100} 

r 
't w;; lnfo Results_ Proc XML_ P,oc 

WS_lnfo ro I Fran nl~_a.aJ 
1 Fran m _ __ 1 

I-<l 
1 Framm _ _ 8Ioo) 

I 
Results _Cache ~ {Framm _ _ Booo} ml 

) 
-C 
-C 
9 
c 
>< 
CO 
I 

3 
-0 
(1l 

3 
(1l 
:l 
g 
o 
:l 

o ....., 
'­
'" < 
'" 
t:: 

?" 
;s: 
(1l 

9: 
'" (3 .., 
rn 
c; 



f"\ppenOlX B - Implementation of Ja a ub-Mediator Elite 

O~.mjc_Reconf _Engine 
(fr(n~_Elllc J 

L ~ 
WS_ Bddge Med_Elite_Poli cyPort Sub Med_Br idge W S_ReqPol, cy_PoIfS@( fFranfn~_a.eJ if'O'TI m~_a..e) ( ff'Q"ft mtdatl' _a.e J ( f""~_EMr.J 1 

\ 
~ 1 

Med_EJi te_ SOAPPort 
1 FI'O"n med-.dt7_a..cJ 

Figure B-2: The Service Processing Engine of the WS-Mediator Elite 

Below we di scuss a simple client application deve loped using the APl s pro ided by 

the Sub-Mediator Elite . The client reques ts a med iating service and provide two Web 

Services, ws I and ws2, as candidates. The client appli cation create an in tancc of th 

Med_ Elile_ PolicyPortO clas , nam es it mesp, and then creates an in tance of 

SOAPProcO class , and names it soapProc. The SOAPPro 0 class imp lements an u 

methods for converting String and XML documenl into SOAP messages. 

Method ws I 0 assemb les the informati on about lVs1. It invoke the 

·oapProc. bindingSOAPO method to convert Srring smRequesr into a OAP me age, 

and then uses soapProc. readFileCrealDocumenlO to generate an individual ex IIrion 

po/icy from a X ML fi le. The variab le/au /Is is a Java HashMap containing cu tom ized 

error information for identi fy ing specific error messages defined by the client. For 

instance,fau/rs .jJUI("Resu/r". "busv") means if "busy" appeared in Elemellf " Re ult" of 

the OA P mes ao-e thi s SOAP messao-e will be regarded a in alid and carrying error o , b ...... 

me age. m sp. in erl 0 passes the info1111ation about 11 's 1 to the Sub- ediator Eli te . 

fte r cap ul aring the infol111arion about 11's1 and 11's2, mesp. eIC/obaIPo/iC\'() et the 

R/oba/ exe 'III ion policy for thi medi ating sel ice reque t. lII esp.execule() start the 

ub-Mediator Elite to execute a service request. 

1-+4 



J-\ppel1OlX B - Imp lementation of Java Sub-Ylediator Elite 

The result of the execution will be returned as a Java Vector. The fir t element of 

Vector will be the fina l result in the response to a service reque t. If no a lid re ul t i 

obtained from candidate Web Services, an error message is returned a the re ult. The 

la t element of Vector is an XML processing report explaining its tructure and 

content. The report can be interpreted by a XML processi ng program to achieve 

automatic processi ng of the results . The rest of the elements in Vector stores the 

results returned from candidate Web Services . 

import com.medi ator.mediator _ Elite.Med _ Elite _ SOAP Port; 
import com.mediator.mediator_ Elite.SOA P _Proc; 
pub lic class TestCase { 

private Med_Elite_ SOAPPort mesp; 
private SOAP _ Proc soapProc = new SOAP _ ProcO; 

pub lic static void main(String[ args) { 

} 

Illesp = new Med_ Elite_ SOAPPortO; 
ws lO ; 
ws20; 
globa lPolicy= soapProc .readFi leCrea teDocument("C:\\ globaIPo licy.x ml ") ; 
lllesp.setG lobalPo l icy(g lobal Po l icy); 
Vector results = mesp.executeO; 

private void ws I 0 { 
QName serviceQNallle = new QNallle(''http ://xllll.ni g.ac.jp:80/xddbj/Blas t'' , "B last") ; 
QNallle portQNallle = new QName("h lt p ://te lllpuri .org/Blas t" . "B las t" ); 
SOA PMessage oapM essage = soapProc.bindingSOAP( (S tring) sIllReques t); 
xllllPolicy = soapProc.readFileCrea teDoculllent("C:\\ws I_ Poli cy.xllll ") ; 
l-IashMap faults = new l-I ashMapO; 
faults. put("Result" , "busy"); 
Illesp.insert (serviceQNallle, portQNallle, soap Message, xlllLPo li cy, fa ults) ; 

pri va te vo id ws20 { 

« datal ype» « datal ype» « datal ype» 

olicy 
ator_Ellte } 

« datal ype» 

Med_ Global_PoliC) NVP_Policy MR_P 
{ From mediator_Elite} { From mediator_Elite} (From medl 

~ \ 0 

~ 

Med_Elite_PolicyPort fer 
( From mediator_Elite) 

Fig ure B-3: Interpreting the global e:'(eclitioll policy 

AR_Policy 
( From medlator_Eltte) 

14 



r qJ/JCIIUI X B - Implementation of Ja a Sub-Mediator Elite 

Figure B-3 shows different types of execution poli cies extracted by the 

Med_£ lile_PolicyPortO class. As explained in chapter 3, the global execution policy 

may change accordi ng to the execution mode. NVP _Policy, MR _Polic)' and 

AR_Policy present execution po licies associated with the -version programming, the 

Multi-Routing and the Service Alternative Redundancy execution modes respecti ely. 

WS_ReqPolicY_Parser « datatype» 
{ From mediator_Elite } WS_ReCLPolicy 

10-----. 
{ From mediator_Elite} 

Figure 8-4 : The individual execlltion policy 

As illustrated in Figure B-4, the WS_ReqPolicy_ParserO cia s extracts indil 'idual 

execution policies fro m the service reques t SOAP me sage. An indi vid ual e ecuti on 

policy is associated with each candidate Web Service. The Web Service Execution 

Engine uses indiv idual pol ic ies to dec ide how to invoke each of them . 

Below is an exampl e of an individual execution policy, fo ll owed with the exp lanation 

of the entities. 

<?xlll l vers ion=" 1.0" encod ing="UTF-8"?> 

<wsp: Policy xlll lns:wsp = htlp :l/schelllas.x llllsoap.org/wsI2004/09/policy 

x mlns:wSlllip = ''http://schelllas.wsmediator.orgli ndeviduaIPoli c /pol icy"> 

<wsp: xactlyOne> 

<wsp: II> 

<bind ingMethod> OAP II HTTP</b indingMethod> 

<in voca tion lode>Sync</in voca ti onMode> 

<timeo ut 20000ms</t imeout> 

<allt otillleoLl t lll aX iI11U Ill</autolillleolll> 

146 



Appendix B -Implementation of Java Sub-\1ediator I::. lite 

<retry AfterFailurc~ 3~ !retry AfterFailure> 

<retry Interval> 3000ms</retry Interval> 

</wsp:AII> 

'!wsp:ExactlyOne> 

</wsp:Policy~ 

• <bindingMethod>: this indicates the binding method of the SOAP message. 

Web Service invocation APls should follow the binding method to invoke the 

Web Service. Default value: SOAPIIHTTP 

• <invoactionMode>: this entity indicates the invocation method to the \\eb 

Service. There are three types of invocation methods: synchronous. 

asynchronous invocation and the conventional RPC (Remote Procedure Call) 

invocation. Default value: Sync (Synchronous invocation) 

• '/imcoll/>: this sets the timeout parameter for an invocation. If it does not 

complete in the timeout period. the invocation will be tenninated and a 

timeout exception will be raised. The value of the timeout parameter can be 

automatically set by the Sub-Mediator if the \alue is set as Oms. 

• <all/o/iIllCOIl/": the Sub-Mediator can automatically set the timeout 

parameter for invoking a particular Web Seniee according to dependability 

metadata. There are three options: average, minimum and maximum, 

representing (/I'cragc. minimum and maximum response time. 

• "rcIIT.I/;crFuilure>: the Sub-Mediator implements the retry strategy to 

tolerate temporary se!'l'icc and network failures. This entity sets the number of 

retry invocations of a particular Web Service before gi\ing up. 

• < rcrrY/II/l'rml " : tillS entity sets the interval between retries. 



"ppeMIX 8 - Implementation of Ja a ub-Medi ator Elite 

Cia Dynanic_Reconf_EngineO implement the Dynamic Reconfigurarion Engine of 

the Sub-M ediator Elite. Figure 8-5 illustrates the dependent component of the 

Dynamic Reconfiguration Engine. The WS_BridgeO class implement method to 

allow access to the Web Service database. Curren tl y, there are three fault tolerance 

execution modes imp lemented in the Sub-Mediator Elite. AR_EngineO, VP _EngineO 

and MR_EngineO implement the Service Alternative Redundancy the -version 

Programming (Service Diversity) and the Multi-routing execution mode. 

NVP _Engine 
{From med ilido,_Elitf: } 

AR_Engine 
{ From medi.to ,_E litf } 

« d~ilty pf: _ ) 

Med_Globill_Policy 
{Flom medli to,_Elite} 

MR_Engine 
{From medIJtof_E " te } 

Figure 8-5: The Dy namic Recontiguration Engine of the ub-M ediator Elite 

The modelled system design and implementation of the Sub-Mediator Elite allo\ 

sca lable and fl ex ible adaptation of fault tolerance mechani sm by implementing them 

as individual fault tolerance executi on models. 

14 



f\ ppenOlx 8 - Implementation of Ja a ub-Ytediator lite 

Di spatch_Engine 
SOAP Proc 

IFranm~_Blle) i+--<> 
(FrD11 m~_Eile) 

'-I~ 

I-t' AR _Policy 
(frD11m~_aa.) 

t 
4-A R _ Engine 

Results Proc '-<> I fran m~_Ei.Oe) 
( fran m<lCbda _Bi!Ie ) WS Metadata 

I frD11 ~.a.-_a.., ) 
0----

i r w ~ 
Results Cache WS _Bridge 

( FrD11 me:bb-_ Ei1e ) (Fran m...:bD_Bile) 
WS Proc 

(Franm~_aa. ) 
L.. 

y 

Figure B-6: Service Altern at ive Redund ancy F-T execution mode 

Figure 8-6 ill ustrates the Service A I/erna /ive Redundancy execution engine and it 

dependent components. The A R_ Policy execution policy con trains the e cution of 

the AR_EngineO class. Class WS_ Me/ada/aO imp lement method to retrie e the 

dependabili ty metada ta of Web Services. AR_ Eng ineO check the dependabi li ty 

metadata of candidate Web Services, and then sort them according to A R _PO/i( l '. 

las WS_Proc() impl ements methods for processing Web Service, uch a orting. 

The SOA P _Proc() class helps AR _ Eng ine() to co ll ec t the necessary infol111ation for 

invoking Web Services . Dispa/ch_ Eng ine() implements Dispa/ch<T> invocation PI 

for invoking Web Services. When AR_ Engine() recel es a re ul t la 

Di pa/ch_Eng ine(), it caches the resul t using the Reslll /s_Cache() class. If thi re ult 

fa il s the alid ity check, the A R_ Eng ine() class will retry the Web Ser ice or witch to 

an altemati ve Web Service. If a alid result i recei ed or all Web Service ha e been 

tri d, the A R_ Engine() finalizes Reslllr Cache and generates fina l result u ing the 

Re IIlr Pro () component. 

1.+9 



Appendix 8 - lmplementation of Java ub-Mediator Elit 

« diltiltyp~ )' 

NVP _Policy 
{ From medi~or_8ite } 

WS_Proc 

J Resuns_Cache ( From med/iIlo,_8 it. ) 
{ F rum mediator _ 8i:e J 

I. --< ...... NVP _Engine I" 
{ From medi~or_9it e } 

WS _Invoke _Engine 
ResU/ls_Proc ( From m.diillo,_8 it. ) -

I 
( From mediidor_Bite) 

WS_Bridge 
{ From medi~or_8ite } 

Figure B-7: N-Version Programming execution mode 

Figure 8-7 ill ustrates the N- Version Programming execution eng ine and it dependent 

components . It processes candidate Web Services according to NVP _Policy. Then it 

invokes the defined number of Web Services synchronously. All of the re ul t 

returned from Web Services will be cached in Results_ CacheO . The NVP _EngineO 

also perfonn the va lidity check. If a valid result is received, it is an option for the 

NVP _EngineO to tel1l1inate invocations and deli ver the va lid re ult a the fir t 

received result to the client. If a number of va lid result are expected, the 

NVP_Eng ineO wi ll wait until enough results have been rece ived. If a Web er Ice 

fail an invocation before the expected number of va lid results ha been received, the 

NVP _ EngineO will invoke alternative Web Services to continue execution. alid 

result can be voted by the voting mechani sm implemented in VP _EngineO ; 

however, it is an optional procedure. 

Figure 8-8 illustrates the Multi-Routing e ecuti on engll1e and its dependent 

Olllponents. The MR_ EngineO interprets the MR Policy to define the execution 

I 0 



Appendi x B - Implementati on of Ja a ub-Ylediator lit 

procedure and checks the dependability of Sub-Mediator la the method 

implemented in class SubMed_MetadateO. Then MR_EngineO elect a d fined 

number of Sub-Mediators to implement the Multi-Routing Strategy. Similarl y to the 

N-Version Programming executi on mode, execution can be terminated when a alid 

re ult is received via a Sub-Mediator. Otherwise, MR_EngineO waits until all re ult 

are returned from Sub-M edi ators or timeout. The results can be voted using the oting 

mechanism implemented in MR_Engine(). 

DI. potch_Englne 
(From m.d!~or_8h) 

Resutt.s_Proc 
{From mtdi;rl:or_Bitt} 

Resutla_C.che 
(From m.d~or_811') 

Figure B-8 : The Multi-Routing Execution mode 

The Dispatch _ Engine() class implement dynamic Web 

SubMed_Metadu 
(From mluor_We ) 

ervlc 111 ocati on 

mechani sms. It utilizes the powerful Dispatch<T> dynamic Web Service in ocati on 

AP I prov ided by the JAX-WS 2. 1 fra mework to achieve run-time dynamic integrati on 

of Web Services . The Dispatch<T> API supports synchronous, a ynchronous and 

one-way invoca ti on to suit different application scenario. The Sub-Mediator Elite 

fu ll y upports va rious invoca ti on methods. An invocation method can be elected by 

an individ/lal exec/lfion policy. 

15 1 



Appendix C - Dependability meudata 

Appendix C - Dependability metadata 

Below is gIven an example of dependability metadata implemented in the '\\IL 

format. Element <ws> indicates the name of the Web Service using its endpoint. The 

nested elements represent various dependability attributes. 

<?xml version=" I.O"?> 

<!-- Endpoint of the Web Service --> 

<ws service=" {http://xml.nig.ac.jp:80/xddbjlBlast } Blast"> 

<!-- dependability rank of the Web Service --> 

<dependabi I i ty>8 5 %</ dependabi I i ty> 

<!-- the performance evaluation, e.g. the average response time --> 

."" performance> 24141 </performance> 

<!-- The number of monitoring tests applied on the Web Senlces --> 

<numOtTests> 340</numOtTests> 

<!-- The number of monitoring tests that retumed \alid results --> 

·"succTests>290~/succTests> 

<!-- the average response time of the valid II1Yocations --> 

·~aveResponseTime>2..j.1..j.1 ms</aveResponseTime> 

<!-- the minimum response time of the valid invocation --> 

<minimumResponseTime> III Oms<iminimumResponseTime> 

<!-- the maximum response time of the il1\ocations --> 

<ma\. imumRespol1seTime> 27 50ms,,- maximum Response Time> 

152 



Appendix D - Dependability metadata databasc in X\IL 

Appendix D - Dependability metadata database in XML 

During dependability monitoring of Web Services, a time senes of dependability 

metadata are kept in the dependability database. The changing dependabilit:-

behaviour of Web Services can be understood by tracing their dependabi I i ty metadata 

at different times, which helps the resilience-explicit decision-making mechanism to 

select the most desirable component services. Below is shown a fraction of the time-

logged dependability metadata collected from one of our experiments. 

c'lxml versjon~"I.O" encoding="UTF-8"?> 

<report> 

<Execution startTime="Wed Mar 14 12:38:58 GMT 2007", 

<wslist> 

<ws 

servicc=" ihttp://www.ebi.ac.uk.collab.mygrid scn ICC'+ soap/sc 

rvices/alignment:: blastn _ ncbi} Analysis WSAppLablmplService 

"> 

<iws" 

<dependability>58</dependability> 

<perfol111ance>62500</perfol111ance> 

<numOtT ests> 3.+0·· numOtT ests> 

<succTests>200<.,succTests> 

<aveResponseTime>62500< a\cResponscTimc> 

<minimumResponseTime>9999<!minimumRcsponseTi 

me> 

<maximumResponseTime>61'+~5</maximumResponse 

Time> 

'-\\5 scnicc=" (http xm1.nig.ac.jp:80,xddbj,Blast} Blast"> 

<dependabil ity"~5<!dependabi Ilty> 

<perf0l111ance> 2.+ 1.+ 1 </perfol111ance> 

<numOtT csts> 3.+0,- numOtT csts" 



</ws> 

<ws 

Appendix D - Dependability metadata database in \\IL 

<succTests>290</succTests> 

<ave Response Time> 24141 </aveRespon:'.c Time> 

<minimunResponseTime> 111 O</minimunResponseTi 

me> 

<maxim umResponse Time> 275 O</maximumResponse T 

ime> 

service=" {http://pathport. bioinformatics. vt.edu:6565/axisl sen I 

ces/blastbt} BlastbtService"> 

<dependability>91 </dependability> 

<performance> 2 8990</performance> 

<numOfT ests> 340</numOfT ests> 

<succTests> 31 O</succTests> 

<ave Response Time> 2899(J<, ave Response Time> 

<minimunResponseTime>9999</minimunResponseTI 

me> 

<maximumResponseTime>36:297</maximumResponse 

Time> 

</ws> 

</wslist> 

</Execution> 

<Execution startTime="Wed Mar 1.+ 12:.+.+:28 GMT 2007"> 

<wslist> 

<ws 

service=" {http://www.ebi.ac.uk/co\lab/mygrid/servlce.+ ·soap/sc 

rvices/alignment: :blastn _ ncbi} Analysis \\SAppLablmpISenice 

<dependability>58</dependability> 

<performance >6:2 500</performance> 

<numOfT ests> 3.+ I </numOfT csts> 

<succTcsts>200<. succ T csts> 

'-ave Response T ime>62500<a \cResponse Time> 



</ws> 

Appendix D - Dependability metadata databa~e 111 X\IL 

<mini munResponse T ime>9999</mi ni m un Response T i 

me> 

<maximumResponseTime>6I 485</maximumResponse 

Time> 

<ws service=" {http://xmI.nig.ac.jp:80xddbjlBlast} Blast"> 

<dependability>85</dependability> 

</ws> 

<ws 

<perfonnance> 24141 </perfonnance> 

<numOfT ests> 341 </numOfT ests> 

<succTests>290</succTests> 

<aveResponseTime>24141 </a veResponseTime> 

<minimunResponseTime> III O</minimunResponseTi 

me> 

<maximumResponseTimc>2750· maximumRcsponscT 

ime> 

service=" {http://pathport.bioinfonnatics. \t.edu:6565 ,1"\ i~ SC[\i 

ces/blastbt} BlastbtService"> 

</\vs:-> 

<dependability>9l </dependability > 

<perfo1111ance> 2X983</perfonnance> 

<numOfTests>341 </numOfT csts> 

<succTests> 3/1 <lsuccTcsts> 

<aveResponseTime>28983< awRcsponscTime> 

<mini munResponse T ime>9999</min imunRespon sc T i 

me> 

<maximumResponseTime> 36297<maximumResponsc 

Time> 

,,\vslist> 

,,'Exccution> 

"becution startTime="Wed Mar 14 12:49:58 G\lT 2007"> 

155 



Appendix D - Dependability metadata database in X\,IL 

<ws 

service=" {http://www.ebi.ac.uklcollab/mygridlservice4/soap se 

rvices/alignment:: blastn _ ncbi} Analysis WSAppLablmplService 

"> 

</ws> 

<dependability>58</dependability> 

<perfonnance>62500</perfonnance> 

<numOIT ests> 342</numOIT ests> 

<succTests> 200</succTests> 

<aveResponseTime>62500</aveResponseTime> 

<minimumResponse Time>9999</minimumResponse T i 

me> 

<maximumResponseTime>61485</maximumResponse 

Time> 

<ws service=" {http://xml.nig.ac.jp:80/xddbj/Blast} Blast"> 

<dependability>84</dependability> 

</ws> 

<ws 

<perfonnance> 24141 </perfonnance> 

<numOITests> 342</numOITests> 

<succTests>290</succTests> 

<aveResponseTime> 24141 </aveResponseTime> 

<minimumResponseTime> III O</minimumResponseTi 

me> 

<maximumResponseTime>2750</maximumResponseT 

ime> 

service=" { http://pathport. bioinfonnatics. vt.edu:65 65/axis/servi 

ceslblastbt} BlastbtService"> 

<dependability>91 </dependability> 

<perfonnance> 28977</perfonnance> 

<numOITests> 342</numOITests> 

<succTests> 312</succTests> 

<ave Response Time> 28977</aveResponse Time> 

156 



</ws> 

</wslist> 

</Execution> 

</report> 

Appendix D - Dependability metadata database in XML 

<minimumResponseTime>9999</minimumResponseTi 

me> 

<maximumResponseTime> 36297<!maximumResponse 

Time> 

157 



Appendix E - Implementation of Java client application 

Appendix E - Implementation of Java client application 

The Java code shown below is an example of the Java client application based upon 

the Sub-Mediator Elite that uses three Blast Web Services as component senices to 

implement service diversity strategy by using the ;'\;-\ersion programming fault 

tolerance execution mode. We use comments in the code to explain how to implement 

a Java client application with the APls provided by the Sub-Mediator Elite. 

/* 

* TestCases.java 

* 
* Created on 21 February 2007, 17:43 

* 
*/ 

package com.mediator.test; 

/* The Java application needs to import the necessary classes. \led_Elitc_SO.\PPort 

is the interface of the Sub-Mediator Elite. SOAP _Proc and '\\IL Proc provide 

optional methods for processing SOAP messages and XML files. * 

import com. mediator. mediator _ Elite.Med_ Elite _ SOAPPort; 

import com.mediator.mediatOI·_ Elite.SOAP _ Proc 

import com.mediator.mediator _ Elite.XML_Proc; 

import java.io.FileOutputStream; 

import ja\a.io.PrintStream; 

import ja\a.utiL Date; 

import ja \a .uti 1. \' ector; 

import ja\'l.\.xmLnamespace.QName; 

import ja\ a\.\1ll LSl1ap.SOAPl\ kssagc; 

import org.1ll11g.CORBADATA_ CONVERSlO:\: 

ISS 



Appendix E - Implementation of Java client application 

import org.w3c.dom.Document; 

/** 

* (uJ,Yuhui Chen 

*/ 

public class TestCases { 

/* Creates the instance of the classes implemented in Sub-Mediator Elite. */ 

private Med _ Elite _ SOAPPort mesp; 

private SOAP _Proc soapProc = new SOAP ]rocO; 

private XML_Proc xmlp = new XML_ProcO; 

/* Vector results is created for accepting the processing results retumed from Sub­

Mediator Elite. */ 

private Vector results; 

public TestCasesO { 

/* The main method that implements the business logic */ 

public static void main(String[ args) : 

/* Creates a new instance ofTestCases */ 

Tcst( 'ascs tcs = new TestCasesO; 

/* ('rcatcs an instance of Log_ Proc for logging the execution of the business 

procedures */ 

Log_Proc logproc = ncw Log_ProcO; 

1* Initiates the logging buffer *1 

logproc. initO; 

1* l·xcculcs the business process * 

159 



Appendix E - Implementation of Java client application 

tcs.execute(logproc ); 

/* Prints the execution results returned from the Sub-Mediator Elite * 
tcs.printResultO; 

/* Assembling invocation to the Sub-Mediator Elite */ 

private long execute(Log_Proc logproc){ 

/* logs start time */ 

long tl = System.currentTimeMillisO; 

mesp = null; 

/* Initiates the interface of the Sub-Mediator Elite */ 

mesp = new Med_Elite_SOAPPortO; 

/* Initiates the vector accepting the execution rcsults* 

results = new VectorO; 

/* Assembling invocations to the candidate Web Services */ 

wslO; 

ws2(); 

ws30; 

/* Imports the global execution policy*i 

Document global Policy = null; 

try 1 

global Policy = 

xmlp.readFileCreatcDocument("E:\\Projects\\Mediator doc Current globalP 

olicy.xml"); 

\ catch (Exception ex) 1 

cx.printStackTracc( ); 

160 



Appendix E - Implementation of Java client application 

/* Sets the global execution policy*/ 

mesp.setGlobaIPolicy(globaIPolicy); 

Date startTime = new DateO; 

/* Invokes the Sub-Mediator to execute the dynamic service composition * 

results = mesp.executeO; 

/* Calculates the response time externally in the client application*/ 

long t2 = System.currentTimeMillisO; 

long responseTime = t2-tl; 

/* Logs the relevant results */ 

logproc.append( (Documen t )results. lastEI emen t(), startT ime, 

String. valueOf( responseTime)); 

logproc. writeLog( II E:\ \Projects\ \Mediator\ \doc\ \output\ \Iog.xm I"): 

System.out.println("***********************"); 

System.out.println("* Response Time (ms) : II + responseTime); 

System.out.println("***********************"); 

return responseTime; 

1* Assembling the invocation to a candidate Web Scnicc */ 

private void ws 1 0 { 

1* The Japanese DDBJ Blast Web Service */ 

QName serviceQName = new QName("http:xml.nig.ac.jp:RO xddbj Blast", 

"Blast"); 

QName portQName = new QName("http: tcmpun.urg Blast", "Blast"); 

1* String smRequest is the invocation SOAP 1l1t:ssagc to DDBJ * 

String smRequest = "<soapenv:Envelope 

xmlns:soapenv=\"http://schemas.xmlsoap.org.soap cl1\elopc '''><soapcn\:Bod 

161 



Appendix E - Implementation of Java client application 

y><searchSimple 

xmlns=\''http://xml.nig.ac.jp:80/xddbjlBlastl''><program>blastn<iprogram><d 

atabase>ddbjhum</database.:.-<arg2>ccccacatca ccactttgga taacgccaaa 

tacaccttca acgggctagg atacttcctg ctggttcagg cccaggacag aaattcttcc ttcctgctgg 

agggccgcac tgcccagact gattctgcca atgccacgaa cttcattgcc tttgcggccc aatacaacac 

cagcagcctg aagtctccca tcacagttca gtggtttctt gagcccaatg acacaatccg agttgtacac 

aataaccaaa cggtggcctt taacaccagc gacactgaag acttgcccgt attcaatgcc 

actggtgtcc tactgatcca aaatggctcc caagtctcag ccaactttga tgggacagtg 

accatctctg tgattgctct ctccaacatc cttcacgcct cctccagcct gtcagaggag 

taccgcaacc acacaaaggg ccttctggga gtctggaatg acaatccaga agatgacttc 

agaatgccca atggctccac catcccctcc aacacgtccg aggagactct tttccactat 

ggaatgacat cggaaactaa cgggataggc ctccttgggg tgaggacaga ccctctgcct 

tctgagttta ctcccatctt cttgtcccaa ctgtggaaca agagcggcgc cggtgaagac 

ttgatctctg ggtgcaacga ggacgcacag tgcaagtttg acatcctggc cacaggaaac 

agagacatcg gacaaagcac caactcaatc cttagaacat tccggcacgt gaatggcacg 

ctcaaccagt acccaccccc tatccactac agcagcaaga ttcaagccta caaggggcga 

gaacagtggc cattgagatc accagcaact ctaaggatgt cgtattcagc ctctccaaca 

agtgcagtgg cctttgagct ctttgaaaac gggagtttgc acgtggacac caacatcccc 

agaagaacgt acctggagat tctagcaagg gatgtcaaga ctaacttgtc atcggtactc 

cagcctgaga cggtggcttg cttctgtagt aaggaggaac agtgtttgta caacgagacc 

agcaaagagg gcaactcttc cactgaggtg accagctgca agtgcgatgg gaactccttc 

ggccgcttgt gtgaacactc taaggacctc tgcactgagc catgcttccc taatgtggac 

tgcattcctg ggaagggctg tcaggcctgc cctccaaaca tgactggaga tgggcgtcat 

tgtgtagctg tggagatctc tgaattctgc cagaaccatt cctgtcctgt gaattactgc tataaccatg 

gccattgcga catctctggg cctccagact gccagcccac ttgcacctgc gcccctgcct 

ttt 'ac tcccatc'lt ' tataaagal'C ttccctrl!al! tcactggtaa ccgctgcttc ctggccggga acaa c < L c: c: __ 

gaccatcacg ctctctctca gggaggacga aaacgcctct aacgctgacg tcaatgcctc 

ggtggcaaac gtactagaga acttggacat gcgggctttt ctctccaaca gcttagtgga 

gctgatacga acctctcccg gagcaccagt ccttggcaag cccattcatc actggaaggt 

cgtctcccac ttcaagtacc gtcccagggg acccctcatc cactatctga acaaccaact 

g,ataagcgc( gtgatggagg ccttcctcct ccaggctcgg caggagaggc ggaagaggag 

tggagaagcc aggaagaacg tccgcttctt ccccatctcg agggcagacg tccaggacgg 

gatggccctg aacctaagta tgctggacga gtacttcacg tgcgatggct acaaaggcta 

t tatata tCL'l'catgta l!tl!al!gl!cta L'cacttggtc tacagcl'ccc aggatggcg cacc c>:= e =- __ ---

162 



Appendix I: - Implementation of Ja\a client application 

ctgtcacaat ggaggccaat gcaagcacct gccagatggg ccccagtgca cgtgcgcaac 

cttcagcatc tacacatcct ggggcgaacg ctgtgagcat ctaagcgtga aacttggggc 

attcttcggg atcctctttg gagccctggg tgccctcttg ctactggcca tcttagcatg tgtggtcttt 

cacttctgcg gctgctccat gaacaagttc tcctaccctc tggactcaga 

actgtga</arg2></searchSimple></soapenv:Body></soapenv:En\elope>"; 

/* String xmlPolicy contains the individual execution service policy */ 

String xmlPolicy= "<wsp:Policy 

xmlns:wsp=\''http://schemas.xmlsoap.orglws/2004/09 policy\" 

xmlns:wsmip=\''http://schemas. wsmediator.orgiindevidualPolicy pol icy ">< \\ 

sp:ExactlyOne><wsp:Al1><!-- Binging method -­

><bindingMethod>SOAPII HTTP</bindingMethod><!-- Invocation mode: 

RPC I Sync I Async --><invocationMode>Sync<!invocation\lnJL'><'-- time 

out parameter --><timeout>20000</timeout><!-- auto-set time out parameter: 

average I max --><autotimeout>average</autotillleout> <!-- How many time 

to retry after failure--><retry AfterFailure> 3<irctryAfterFailure><!-- IntL'nal 

between retries --><retrylnterval> 30<!retrylnten ai ~ .. '-- apply multi-routing. 

and number of routes --><multirouting>O< lllultiroutll1g " !-- start to monitor 

this Web Service locally? no I locally I remotely-­

><monitorThisWS>no</monitorThisWS><!-- find identical WL'b SL'n ICL'S') 

how many?--

><searchldenticaIWS> 2<C./searchldenticaIWS><1 \\sp:All><. \\ sp: E:\actiy( )1lL'> 

</wsp:Policy>"; 

/* The endpoint address of DDBJ */ 

String endpointAddress = "http:,i'xml.nig.ac.jp:80/:\ddbjHlast": 

/* Binding the imocation message to DDBJ in the il1\'ocation SOAP message 

sending to the Sub-Mediator Elite *1 

SOAPMessagL' message = soapProc.bindingSO.-\P(smRequest): 

1* Binding rek\ant infolll1ation for invoking the Sub-~ Iediator Elite* I 

mesp.insL'rt\\S( L'ndpointAddrL'ss. sL'r\iceQ~ame, portQ,\ame, message. 

:\lllii\)IIL'Y): 

163 



Appendix E - Implementation of lava client application 

1* Assembling the invocation to another candidate \\eb Senice *1 

private void ws20 { 

String smRequest = "<soapenv:Envelope 

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope "><soapenv:Bod 

y><getFFEntry 

xmlns=\"hUp:llwww.themindelectric.com/wsdI/OOBl '\"><accession>ABOOOO 

50</accession></getFFEntry></soapenv:Body></soapenv:Envelope>": 

QName serviceQName = new QName(''http://xml.nig.ac.jp/xddbj 00B1", 

"00B1"); 

QName portQName = new QName("http://xml.nig.ac.jpxddbj DOB1", 

"00B1"); 

String xmlPolicy= "<wsp:Policy 

xmlns:wsp=\''http://schemas.xmlsoap.org/ws/2004 09 policy" 

xmlns:wsmip=\"http://schemas.wsmediator.orgiimk\ idualPollcy policy\"><\\ 

sp:ExactlyOne><wsp:AI1-"/!-- Binging method--

><bindingMethod>SOAP II HTTP</bindingMethod'" '-- Invocation mode: 

RPC I Sync I Async --><invocationMode>Sync' invocation\lode' '-- time 

out parameter --><timeout>30000···itimeout><!-- auto-set time out parameter: 

average I max --><autotimeout··avcrage·· autotimeout> <!-- How many time 

to retry after failure--><retry AfterFailure> 3<,retry AfterFailure><! -- Inten ~ll 

between retries --><retrylnterval>30 .... retry Interval" '-- apply multi-routing. 

and number of routes -- ... ~multirouting>O<.multirouting><! -- start to monitor 

this Web Service locally? no I locally I remotely--

...... monitorThis WS>no-...,monitorThis WS>'.'-- find identical \\eb Senices') 

how many?-­

><searchldenticaIWS>2<searchldenticaIWS><,\\sp:AII"><lwsp:ExactlyOne> 

.../wsp: Policy>"; 

String endpointAddress = "http:. xmLnig.ac.jp xddbj 00B1"; 

SOAPMessage message = soapProc.bindingSOAP(smRequestl: 

mesp.insert WS( endpointAddress. 

sen iceQName,portQName.message,xmIPolicy): 

\64 



Appendix E - Implementation of Java client application 

1* Assembling the invocation to another Web Service *1 

private void ws30 { 

String smRequest = "<soapenv:Envelope 

xmlns: soapenv=\tlhttp://schemas.xmlsoap.org/ soapi envelope/· "><soapenv: Bod 

y><execute 

xmlns=\tlhttp://www.themindelectric.comlwsdIlBlastDemo!\tI><accession>AB 

000050<1 accession><1 execute><1 soapenv: Body><1 soapem': Enve lope>"; 

QName serviceQName = new QName("http:' xmLnig.ac,jp'xddbj, BlastDemo". 

tlBlastDemo tl ); 

QName portQName = new QName(tlhttp://xmLnig.ac.jp/xddbj IBlastDemo". 

tlBlastDemo tl ); 

String xmlPolicy= tI<wsp:Policy 

xmlns:wsp=\ tl http://schemas.xmlsoap.org/ws/2004/09/policy··" 

xmlns:wsmi p= \ ''http://schemas. wsmediator. orglindevidual Po I icy Ipo I icy\" ><\\ 

sp:ExactlyOne><wsp:AII><!-- Binging method --

><bindingMethod>SOAP II HTTP</bindingMethnJ .. '-- Invocation mode 

RPC I Sync I Async --><invocationMode>Sync<, imocatlOn\\Olk ,< '-- time 

out parameter --><timeout>60000</timeout><'-- auto-set time out parameter: 

average I max --><autotimeout>average'- autotimeout> <'-- How many time 

to retry after failure--><retryAfterFailure>3<,retryAfterFailure><'-- Interval 

between retries --><retry Interval> 30< retry I n terval><! -- app I y mul ti -routing. 

and number of routes --><multirouting>O</multirouting><'-- start to monitor 

this Web Service locally? no I locally I remotely-­

"',monitorThisWS>no</monitorThisWS><!-- find identical \\'eb ServIces') 

how many?--

",search IdenticalWS> 2<searchIdenticaIWS>< \\Sp: A 1I></wsp: ExactlyOne> 

</wsp:Policy>"; 

String endpointAddress = "http:xml.nig.ac,jp/xddbjiBlastDemo": 

SOAPl'vkssage message = soapProc.bindingSOAP(smRequest); 

mesp.insertWS(endpointAddress, serviceQ;-";ame, portQName, message. 

xmIPolicy): 

1* I\kthod for printing execution results *1 



Appendix E - Implementation of Java client application 

private void printResultO { 

System.out.println(); 

System.out.println("=============================" ): 

System.out.printIn("* Final result: *"): 

S ystem.out. printl n( soapProc. SO APT oX M L S tring( (SO AP Message )resul ts. first 

ElementO»); 

System.out.println("=============================" ): 

System.out.println("* Final report: *"); 

try { 

xmlp. printN odeToConsole( (Document )results.lastElement(»: 

System.out. println(); 

I Ixmlp. printXM L( (Document )obj): 

} catch (Exception ex) { 

ex.printStackTrace( ); 

IISystem.out. printlnO; 

Systeln.out.println("=============~==============="): 

1* Logs execution results in a tile *1 

private void wrtFile(long rst) l 

FileOutputStream out; II declare a tile output object 

PrintStream p; II declare a print stream object 

try 

II Create a new tile output stream 

II connected to "mytile.txt" 

out = nn\ FileOutputStream("E:\\Projects\\CUlTent\\testCase.txt"): 

II l\)nncct print stream to the output stream 

166 



Appendix E - Implementation of Java client application 

P =0 new PrintStream( out ); 

p.append(String.valueOf(rst); 

IIp.close(); 

catch (Exception e) 

System.err.printIn ("Error writing to file"); 

167 



Appendix F - Example of the valid result from DDBJ 

Appendix F - Example of the valid result from DDBJ 

Here we show a valid result expected from the DDBJ Blast Web Service. which 

contains a gene sequence being used in bioinformatics research. 

A. Invoking DDB} Web Service 

Invoking Web Service (Sync): {http://xmI.nig.ac.jp/xddbj/DDBJ} DDBJ 

Received response: 

com.sun.xmI.messaging.saaj.soap.verl _ I .Message 1_llmpJrc(422dOb 

B. Thl' rl'.lIIlt returnedfrom DDBJ. 

* Final result: * 
<soap:Envelope xmlns:soap=''http://schemas.xmlsoap.org soar en\elope " 
xmlns:soapenc=''http://schemas.xmlsoap.org/soap/encoding i

" 

xmlns:xsd=''http://www.w3.org/2001/XMLSchema'' 
xmlns:xsi=''http://www.w3.org/200 I /X M LSchema-instance" 
soap:encodingStyle=''http://schemas.xmlsoap.org soap encoding/"><soap: 8tH'!: ><n:g 
etFFEntry Response xmlns: n=''http://tempuri .org DO BJ""" Result 
xsi:type="xsd:string">LOCUS AB000050 1755 bp D\iA linear 
VRL 05-FEB-1999 
DEFINITION Feline panleukopenia virus DNA for capsid protein 2. complete cds. 
ACCESSION AB000050 
VERSION AB000050.1 
KEYWORDS capsid protein 2. 
SOURCE Feline panleUkopenia virus 
ORGANISM Feline parvovirus 

Viruses; ssDNA viruses; Parvoviridae; Parvovirinae: ParvO\irus. 
REFERENCE I (bases I to 1755) 
AUTHORS Horiuchi,M. 
TITLE Direct Submission 
JOURNAL Submitted (22-DEC - I 996) to the DDBJ/EMBLIGenBank databases. 

Motohiro Horiuchi, Obihiro University of Agriculture and 
Veterinary Medicine. Veterinary Publ ic Health; Inada cho, Obihiro, 
Ilokkaido 080, Japan (E-maiI:horiuchi\uobihiro.ac.jp. 
Tel:O 155 -49- 5 392. Fax:O I 55--+9-5-+(2) 

REFERENCE 2 (bases I to 1755) 
AUTHORS Horiuchi,M. 
TITLE F\olutionary pattem of feline panleukopenia virus differs from 

that of canine parn)\ irus 
JOURNAL Unpublished ( 1997) 



Appendix F - Example of the valid result from DDB) 

CO'v1MENT 
FEATURES 

source 
Locati on/Qual i fiers 

1..1755 
lisolate="94-1 " 
Ilab _ host="Felis domesticus" 
ImoUype="genomic DNA" 
lorganism="Feline panleukopenia virus" 

CDS 1..1755 
Iproduct="capsid protein 2" 
Iprotein_id="BAAI9011.1 " 

Itranslation="MSDGAVQPDGGQPAVRNERATGSGNGSGGGGGGGSGGVGIST 
GT 

FNNQTEFKFLENGWVEIT ANSSRLVHLNMPESE~YKR\'VV~:\\IDKTA \KG:\ 
MALDDTH 

YQIYTPWSLVDANA WGVWFNPGDWQLIVNTMSELHL VSFEQEIF:\V\'LKT\' 
SESATQP 

PTKYYNNDLTASLMVALDSNNTMPFTPAAMRSETLGFYP\\KPTIPTP\\RYYF 
QWDRTL 

IPSHTGTSGTPTNVYHGTDPDDVQFYTIENSVPYHLLRTGDEFATGTFFFDCKP 
CRLT 

HTWQTNRALGLPPFLNSLPQSEGATNFGDIGVQQDKRRGVTQMG\iTDYITE,\ 
TIMRPA 

EVGYSAPYYSFEASTQGPFKTPIAAGRGGAQTDE:\Q:\ADGDPRYAF(iRQHG 
QKTTTTG 

ETPERFTYIAHQDTGRYPEGDWIQNINFNLPVT\iD\iVLLPTDPIGGKTCil\iYT:\ 
IFNT 

Y (iPL T ALNNVPPVYPNGQIWDKEFDTDLKPRLHVN ;\PF\'CQ:\:\ C PGQL F\K 
VAPNLTN 

EYDPDASANMSRIVTYSDFWWKGKLVFKAKLRASHT\\:\PIQQ\ISI:\VD,\QF 
NYVPNNI 

GAMKIVYEKSQLAPRKL Y" 
BASE COUNT 6 I 8 a 271 c 3..+6 g 520 t 
ORIGIN 

1 atgagtgatg gagcagttca accagacggt ggtcaal~ctg ctgtcagaaa tgaaagagct 
61 acaggatctg ggaacgggtc tggaggcggg ggtggtggtg gttctggggg tgtggggatt 
121 tctacgggta ctttcaataa tcagacggaa tttaaatttt tggaaaacgg gtgggtggaa 
1 ~ 1 atcacagcaa actcaagcag acttgtacat ttaaatatgc cagaaagtga aaattataaa 
2..+ 1 agagtagttg taaataatat ggataaaact gcagttaaag gaaatatggc tttagatgat 
301 aL'tcatgtac aaattgtaac accttggtca ttggttgatg L'aaatgcttg gggagtttgg 
36 I ttlaatccag gagattggca act~Jattgtt aatactatga gtgagttgca tttagttagt 

169 



Appendix F - Example of the valid result from DDSJ 

II 

421 tttgaacaag aaatttttaa tgttgtttta aagactgttt cagaatctgc tactcagcca 
481 ccaactaaag tttataataa tgatttaact gcatcattga tggttgcatt agatagtaat 
541 aatactatgc catttactcc agcagctatg agatctgaga cattgggttt ttatccatgg 
60 I aaaccaacca taccaactcc atggagatat tattttcaat gggatagaac attaatacca 
661 tctcatactg gaactagtgg cacaccaaca aatgtatatc atggtacaga tccagatgat 
721 gttcaatttt atactattga aaattctgtg ccagtacact tactaagaac aggtgatgaa 
781 tttgctacag gaacattttt ttttgattgt aaaccatgta gactaacaca tacatggcaa 
841 acaaatagag cattgggctt accaccattt ttaaattctt tgcctcaatc tgaaggagct 
90 I actaactttg gtgatatagg agttcaacaa gataaaagac gtggtgtaac tcaaatggga 
961 aatacagact atattactga agctactatt atgagaccag ctgaggttgg ttatagtgca 
1021 ccatactatt cttttgaagc gtctacacaa gggccattta aaacacctat tgcagcagga 
1081 cgggggggag cgcaaacaga tgaaaatcaa gcagcagatg gtgatccaag atatgcattt 
1141 ggtagacaac atggtcaaaa aactactaca acaggagaaa cacctgagag atttacatat 
120 I atagcacatc aagatacagg aagatatcca gaaggagatt ggattcaaaa tattaacttt 
1261 aaccttcctg taacaaatga taatgtattg ctaccaacag atccaattgg aggtaaaaca 
1321 ggaattaact atactaatat atttaatact tatggtcctt taactgcatt aaataatgta 
1381 ccaccagttt atccaaatgg tcaaatttgg gataaagaat ttgatactga cttaaaacca 
1441 agacttcatg taaatgcacc atttgtttgt cagaataatt gtcctggtca attatttgta 
150 I aaagttgcgc ctaatttaac gaatgaatat gatcctgatg catctgctaa tatgtcaaga 
1561 attgtaactt attcagattt ttggtggaaa ggtaaattag tatttaaagc taaactaaga 
1621 gcatctc,ata cttggaatcc aattcaacaa atgagtatta atgtagataa ccaatttaac 
1681 tatgtaccaa ataatattgg agctatgaaa attgtatatg aaaaatctca actagcacct 
1741 agaaaattat attaa 

</Resul t></n :getFFEntryResponse></soap: Sody></soap: Enve lope> 
============================= 

I ~(I 



Appendix G - Execution sequence of unsuccessful process 

Appendix G - Execution sequence of unsuccessful process 

Here we give an example of a logged execution sequence. The logged file is 

commented on during the execution and can be easily understood. In this example, no 

valid results were received from candidate Web Services, as reported in the final 

report section of the log. 

init: 
deps-jar: 
compile-single: 
run-single: 

====== Parsing Web Service Request Policies ====== 

Binding Method: SOAP II HTTP 
Invocation mode: Sync 
timeout (ms): 60000 
Auto timeout rule: average 
Retry times: 3 
Retry interval: 30 
Monitor this Web Service: no 
Search identical Web Services: 2 

===== Parsing Web Service Request Policies ====== 

Binding Method: SOAP II HTTP 
Invocation mode: Sync 
timeout (ms): 60000 
Auto timeout rule: average 
Retry times: J 
Retry interval: 30 
Monitor this Web Service: no 
Scarch identical Web Scniccs: 

---=== Parsing Web Scnicc Request Policies ====== 

Binding Method: SOAP11HTTP 

Invocation mode: Sync 
timeout (illS) 60000 
Auto timeout rule: a\cragc 
Retry times: J 
Retry interval: 30 
Monitor this Wcb Scnicc no 
Search identical \\L'b SCI"\IL'CS 

171 



Appendix G - Execution sequence of unsucce,sful proees~ 

===== Parsing Global Policies ====== 

;\lumber of Web Services: 3 
Priority; dependability 
Dependability Acceptance: 80 
Performance Acceptance: 300 
Timeout: 1000 
Web Service: {http://xml.nig.ac.jp:80/xddbjlBlast}Blast 
uri: http://xml.nig.ac.jp: 80/xddbjlBlast 
dependability: 50 
performance: 300 

Web Service: {http://xml.nig.ac.jp:80/xddbjlBlast}Blast 
uri: http://xml.nig.ac.jp/xddbjlDDBJ 
dependability: 80 
performance: 400 

Web Service: {http://xml.nig.ac.jp:80/xddbjlBlast}Blast 
uri: http://xml.nig.ac.jp/xddbjlBlastDemo 
dependability: 80 
performance: 500 

Sorting Web Services according Dependability metadata. 
Invoking Web Service (Sync): ihttp://xml.nig.ac.jp/xddbjDDBJ:DDBJ 
Outbound SOAP message: 
com.sun.xml.messaging.saaj.soap.verl ~ I.Message I ~ Ilmpl(a dfd90f 

Waiting for reply ... 

Invocation exception: HTTP transport error: jan.net.UnknownHostException: 
xml.nig.ac.jp 
Invoking Web Service (Sync): {http: xml.nig.ac.JP xddbj/DDBJ} DDBJ 
Outbound SOAP message: 
com.slIn.xml.messaging.saaj.soap.veri ~ 1.l\lessage I~ I Impl(il dfd90f 

Waiting for reply ... 

lll\ocation exception: HTTP transport error: jma.net.UnknownHostException: 
xml.nig.ac.jp 
lll\oking \\eb Senice (Sync) {http:xml.nig.ac.jp xddbjiDDBJ}DDBJ 
Outbound SOAP message: 
com.sun.xml.messaging.saaj.soap. \er I ~ I.Message I ~ I Impl\£zdfd90f 

Waitl1lg for reply ... 

172 



Appendix G - Execution sequence of unsuccessful proccs~ 

Invocation exception: HTTP transport error: java.net.UnknownHostExceptlOn: 
xml.ntg.ac.Jp 

Invoking Web Service (Sync): {http:/.xml.nig.ac.jp/xddbjiBlastDemo}BlastDemo 
Outbound SOAP message: 

com.sun.xml.messaging.saaj.soap.verl_I.Message I_I Impl@;cefde4 

Waiting for reply ... 

Invocation exception: HTTP transport error: java.net.UnknownHostException: 
xml.nig.ac.jp 

Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/BlastDemo} BlastDemo 
Outbound SOAP message: 
com.sun.xml.messaging.saaj.soap. ver 1_I.Message I_I Impl(c! cefde.+ 

Waiting for reply ... 

Invocation exception: HTTP transport error: java.net. UnknownHostException: 
xml.nig.ac.jp 
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj.BlastDemo: BlastDemo 
Outbound SOAP message: 
com.sun.xml.messaging.saaj.soap.verl_I.Messagcl_llmpl{(/ cddC-f 

Waiting for reply ... 

Invocation exception: HTTP transport error: java.net.UnknownHostE.xccption: 
xml.nig.ac.jp 
Invoking Web Service (Sync): {http://xml.nig.ac.w ~()lxddbj Blast: Blast 
Outbound SOAP message: 
cOIll.sun.xml.messaging.saaj .soap. ver I_I. Message 1_lllllpll(/ 79b7bO 

Waiting for reply ... 

Invocation exception: HTTP transport error: ja\ a.net. UnknownHostException: 
xml.nig.ac.jp 
Invoking Web Service (Sync): {http://xml.nig.ac.jp:~O xddbj Blast) Blast 
Outbound SOAP message: 
cOIll.sun.xml.messaging.saaj.soap.verl_I.Message I_I ImplC£i 79b7bO 

Waiting for reply ... 

Invocation exception: HTTP transport error: ja\a.net.Unkl1l)\\ nHostException: 
xml.nig.ac.jp 
Invoking Web Service (Sync): ;http: xml.nig.ac.jp:~O xddbj Blast}BIast 
Outbound SOAP messa~c: 
com.sun.xllll.messaging~saaj .soap. \crl_I.:\ lessage 1_llmpl(/ 79b7bO 

Waiting for reply .. 

111\ l1l'atilln exception: HTTP transport crror: ja\ a.net.LlnknownHostException: 

xml.nig.ac.jp 

In 



Appendix G - Execution sequence of unsuccessful process 

====================~===----

* Final result: * 
/soap:Envelope 

xmlns: soap=''http://schemas.xmlsoap.org/soap/ envelope/"><soap: Body><soap: F aul t> 
<faultcode>soap: Mediator</faultcode><faultstring> ~ 0 valid resul t 
received! </faultstring><detail/></soap: Fault></soap:Bod y></soap:Envelope> 
============================= 
========================----

* Final report: * 
/')xml version=" 1.0" encoding="UTF -8 " ?><report><ws 
service=" {http://xml.nig.ac.jp/xddbjlDDBJ}DDBJ'' 
validResult="false"><errorMessage>HTTP transport error: 
j a va. net. U nknownHostException: xml.nig.ac .jp</ error \1 essage><1 \\s><ws 
service=" {http://xml.nig.ac.jp/xddbjlDDBJ}DDBJ'' 
validResult="false"><errorMessage>HTTP transport error: 
java. net. Unknown H ostException: xml. nig.ac .jp</ errorMessage><, ws>< \\s 
service=" : http://xml.nig.ac.jp/xddbjlDDBJ}DDBJ'' 
validResult="false"><errorMessage>HTTP transport error: 
j ava.net. U nknownH ostException: xml.n ig. ac .jp</ errorM essage></ws><ws 
service=" {http://xml.nig.ac.jp/xddbj/BlastDemo l BlastDemo" 
validResult="false"><errorMessage>HTTP transport error: 
java. net. Unknown HostException: xml. n ig. ac.j p</ errorM essage></w s>< \\s 
service=" {http://xml.nig.ac.jp/xddbjlBlastDemo}BlastDemo'' 
validResult="false"><errorMessage>HTTP transport error: 
java. net. UnknownHostException: xl11I.nig.ac .jp</errorMessage.~·· \\ s >< \\5 

service=" {http://xmI.nig.ac.jp/xddbjlBlastDemo} BlastDemo" 
validResult="false"><errorMessage>HTTP transport error: 
java. net. UnknownHostException: xmI.nig.ac.jp</errorMessage "' IWS><WS 
service'" {http://xml.nig.ac.jp:80/xddbj/Blast} Blast" 
validResult="false":---'~errorMessage>HTTP transport error: 
java. net. U nknownHostException: xml.nig.ac.jp</errorMessage:'< \\s><ws 
service=" {http://xml.nig.ac.jp:80/xddbjlBlast} Blast" 
validResult="false"><errorMessage>HTTP transport error: 
java. net. UnknownHostException: xml.nig.ac.jp</errorMessage '<' \\s><\\s 
service 0" {http://xml.nig.ac.jp:80/xddbjlBlast} Blast" 
validResult="false"><errorMessage>HTTP transport error: 
java. net. U nknownHostException: xm1.11 ig.ac .jp<.'error\ lessage'>o..:: \\s><!report> 
============================= 
*********************** 
* Response Time (ms): 2012 
*********************** 
BUILD SUCCESSFUL (total time: 2 seconds) 



Appendix H - Execution sequence of successful process 

Appendix H - Execution sequence of successful process 

Here we give an example of a logged execution sequence of a successful business 

process. In this example, a valid result was received from the DDB] \\' eb Senice. 

which terminated the entire execution, as the quickest response was expected. Details 

can be found in the final report section of the log. 

init: 
deps-jar: 
compile-single: 
run-single: 

====== Parsing Web Service Request Policies ====== 

Binding Method: SOAPII HTTP 
Invocation mode: Sync 
timeout (ms): 60000 
Auto timeout rule: average 
Retry times: 3 
Retry interval: 30 
Monitor this Web Service: no 
Search identical Web Services: :2 

====== Parsing Web Service Request Policies ====== 

Binding Method: SOAP II HTTP 
Invocation mode: Sync 
timeout (ms): 60000 
Auto timeout rule: average 
Retry times: J 
Retry interval: 30 
Monitor this Web Senice: no 
Search identical Web Senices: 

---=== Parsing Web Sen ice Request Policies ====== 

Binding Method: 
Invocation mode: 
timeout (ms): 

Sync 
60000 

SOAPIIHTTP 

Auto timeout rule: /J\'cragc 

Retry times: 3 
Retry interval: 30 
Monitor this \\'eb SenicL': no 
Search identical \\eb Senll'es 



Appendix H - Execution sequence of successful process 

====== Parsing Global Policies ====== 

Number of Web Services: 3 
Priority: dependability 
Dependability Acceptance: 80 
Performance Acceptanc: 300 
Timeout: 1000 
Web Service: {http://xml.nig.ac.jp:80/xddbjlBlast}Blast 
urI: http://xml.nig.ac.jp:80/xddbjlBlast 
dependability: 50 
performance: 300 

Web Service: : http://xml.nig.ac.jp:80/xddbjlBlast}Blast 
uri: http://xml.nig.ac.jp/xddbj/DDBJ 
dependability: 80 
performance: 400 

Web Service: {http://xml.nig.ac.jp:80/xddbjlBlast: Blast 
urI: http://xml.nig.ac.jp/xddbjlBlastDemo 
dependability: 80 
performance: 500 

Sorting Web Services according Dependability metadata. 
Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbjIDDBJ}DDBJ 
Outbound SOAP message: 
com.sun.xml.messaging.saaj .soap.ver I_I.Message I_I Impl((/ b4X392 

Waiting for reply ... 

Received response: 
com.sun.xml.messaging.saaj.soap. ver 1_I.Message I_I ImpIla 422dOb 

* Final result: * 
<soap:Envelope xmlns:soap=''http://schemas.xmlsoap.org/soap, cnH~Iopc " 
xmlns: soapenc=''http://schemas.xmlsoap . org/soap/ encoding/" 
\ mins:xsd=''http://www. w 3 .org/200 I/XMLSchema" 
xmlns:\si~"http: .\nv\v.w3.org/200IIXMLSchema-instance" 
soap:encodingStyle=''http://schemas.xmlsoap.org/soap/encoding·"><soap:Body><n:g 
ctFFEntryResponse xmlns:n="http::·tempuri.org/DDBJ"><Result 
\si:typc"xsd:string">LOCUS AB000050 1755 bp D:\A linear 
VRL 05-FEB-1999 
DEFINITION Feline panleukopenia virus DNA for capsid protein 2. complete cds. 
ACCESSION AB000050 
VERSION :\B000050.1 
U:YWORDS capsid protein 2. 

176 



Appendix H - Execution sequence of ~uccessful process 

SOURCE Feline panleukopenia virus 
ORGANISM Feline parvovirus 

Viruses; ssDNA viruses; Parvoviridae; Parvovirinae; Parvovirus. 
REFERENCE 1 (bases I to 1755) 

AUTHORS Horiuchi,M. 
TITLE Direct Submission 

JOURNAL Submitted (22-DEC-1996) to the DDBJ, E\;1BL GenBank databases. 
Motohiro Horiuchi, Obihiro University of Agriculture and 
Veterinary Medicine, Veterinary Public Health; Inada cho, Obihiro, 
Hokkaido 080, Japan (E-mail:horiuchi@obihiro.ac.jp. 
Tel:O 155-49-5392, Fax:0155-49-5402) 

REFERENCE 2 (bases 1 to 1755) 
AUTHORS Horiuchi,M. 

TITLE Evolutionary pattern of feline panleukopenia virus differs from 
that of canine parvovirus 

JOURNAL Unpublished (1997) 
COMMENT 
FEATURES 

source 
Location/Quali fiers 

1..1755 
lisolate="94-1" 
Ilab _ host="Felis domesticus" 
Imol_type="genomic DNA" 
lorganism="Feline panleukopenia virus" 

CDS 1..1755 
Iproduct="capsid protein 2" 
Iprotein _id="BAA 190 11.1" 

Itranslation="MSDGAVQPDGGQPA VRNERATGSGNGSGCiGGGGGSGGVGlST 
GT 

FNNQTEFKFLENGWVEIT ANSSRLVHLNMPESENYKRVVV\i\iMDKTA \'KG\; 
MALDDTH 

VQIVTPWSLVDANA WGVWFNPGDWQLlVNTMSELHLVSFEQEIF\iVVLKTV 
SESATQP 

PTKVYNNDLTASLMVALDSNNTMPFTPAAMRSETLGFYPWKPTIPTPWRYYF 
QWDRTL 

IPSHTGTSGTPTNVYHGTDPDDVQFYTIENSVPVHLLRTGDEFATGTFFFDCKP 
CRLT 

HTWQTNRALGLPPFLNSLPQSEGATNFGDIGVQQDKRRGVTQNIG;-.JTDYITEA 
TIMRPA 

EVGYSAPYYSFEASTQGPFKTPIAAGRGGAQTDE\;QA.ADGDPRYAFGRQHG 
QKTTTTG 

ETPERFTYIAHQDTGRYPEGDWIQNINFNLP\T\DN\·LLPTDPIGGKTGI.\:YT:'\ 
IFNT 



Appendix H - Execution sequence of succc~sful proce~s 

YGPL TALNNVPPVYPNGQIWDKEFDTDLKPRLHV:\APF\'CQ\:\:CPGQLF\'K 
VAP0<LTN 

EYDPDASANMSRIVTYSDFWWKGKLVFKAKLRASHTW\:PIQQ\ISI\:\D:-..rQF 
NYVPNNI 

GAMKIVYEKSQLAPRKL Y" 
BASE COUNT 618 a 271 c 346 g 520 t 
ORIGIN 

II 

1 atgagtgatg gagcagttca accagacggt ggtcaacctg ctgtcagaaa tgaaagagct 
61 acaggatctg ggaacgggtc tggaggcggg ggtggtggtg gttctggggg tgtggggan 
121 tctacgggta ctttcaataa tcagacggaa tttaaatttt tggaaaacgg gtgggtggaa 
18 I atcacagcaa actcaagcag acttgtacat ttaaatatgc cagaaagtga aaattataaa 
241 agagtagttg taaataatat ggataaaact gcagttaaag gaaatatggc tttagatgat 
30 I actcatgtac aaattgtaac accttggtca ttggttgatg caaatgcttg gggagtttgg 
361 tttaatccag gagattggca actaattgtt aatactatga gtgagttgca tttagttagt 
421 tttgaacaag aaatttttaa tgttgtttta aagactgttt cagaatctgc tactcagcca 
481 ccaactaaag tttataataa tgatttaact gcatcattga tggttgcatt agatagtaat 
541 aatactatgc catttactcc agcagctatg agatctgaga cattgggttt ttatccatgg 
601 aaaccaacca taccaactcc atggagatat tattttcaat gggatagaac attaatacca 
661 tctcatactg gaactagtgg cacaccaaca aatgtatatc atggtacaga tccagatgat 
721 gttcaatttt atactattga aaattctgtg ccagtacact tactaagaac aggtgatgaa 
781 tttgctacag gaacattttt ttttgattgt aaaccatgta gactaacaca tacatggcaa 
841 acaaatagag cattgggctt accaccattt ttaaattctt tgcctcaatc tgaaggagct 
901 actaactttg gtgatatagg agttcaacaa gataaaagac gtggtgtaac tcaaatggga 
961 aatacagact atattactga agctactatt atgagaccag ctgaggttgg ttatagtgca 
1021 ccatactatt cttttgaagc gtctacacaa gggccattta aaacacctat tgcagcagga 
1081 cgggggggag cgcaaacaga tgaaaatcaa gcagcagatg gtgatccaag atatgcattt 
1141 ggtagacaac atggtcaaaa aactactaca acaggagaaa cacctgagag atttacatat 
120 I atagcacatc aagatacagg aagatatcca gaaggagatt ggattcaaaa tattaacttt 
1261 aaccttcctg taacaaatga taatgtattg ctaccaacag atccaattgg aggtaaaaca 
1321 ggaattaact atactaatat atttaatact tatggtcctt taactgcatt aaataatgta 
1381 ccaccagttt atccaaatgg tcaaatttgg gataaagaat ttgatactga cttaaaacca 
1441 agacttcatg taaatgcacc atttgtttgt cagaataatt gtcctggtca attatttgta 
1501 aaagttgcgc ctaatttaac gaatgaatat gatcctgatg catctgctaa tatgtcaaga 
1561 attgtaactt attcagattt ttggtggaaa ggtaaattag tatttaaagc taaactaaga 
1621 gcatctcata cttggaatcc aattcaacaa atgagtatta atgtagataa ccaatttaac 
1681 tatgtaccaa ataatattgg agctatgaaa attgtatatg aaaaatctca actagcacct 
1741 agaaaattat attaa 

··Result><,'n :gct F F Entry Response~-.:: soap: Body></soap: Envelope> 

* F i na I report: * 

== ~========================\'\IL \lcssagc 
-=============~-======= 

,,'?:\ml \ersion=" 1,0" encoding="UTF-8",?> 
<report~ 

"ws sen ice=" {http:! :\mLnig,acjp/xddbj DDBl} DDB]" validResult="true"> 



Appendix H - Execution sequence of successful process 

</ws> 
</report> 

<responseTime>5264</responseTime> 
<errorMessage>null</errorMessage> 

=====================~===================~========~====== 

*********************** 
* Response Time (ms) : 7814 
*********************** 
BUILD SUCCESSFUL (total time: 9 seconds) 

179 



Appendix 1 - Dependability metadata of \"Bl 

Appendix I - Dependability metadata of VBI 

Below are shown the dependability metadata of VBl stored on six Sub-Mediators 

deployed on Planetlab: 

• Sub-Mediator, Shanghai, China 

<ws 

service=" {http://pathport.bioinformatics. vt.edu:6565/axis/serviceslblastbt} Bta 

stbtService"> 

</ws> 

<dependability>85</dependability> 

<aveResponse Time>54607 </aveResponse Time> 

<maximumResponseTime>87267</maximumResponseTime> 

• Sub-Mediator, Beijing, China 

<ws 

service=" {http://pathport. bioinformatics. vt.edu:6565/axis/services/blastbt} Bla 

stbtService"> 

</ws> 

<dependabitity>65</dependability> 

<aveResponseTime>59460</aveResponseTime> 

<maximumResponseTime>88506</maximumResponseTime> 

• Sub-Mediator, Newcastle upon Tyne, UK 

"ws 

service=" { http://pathport. bioinfo1l11atics. vt. edu: 65 65/ axis! services/b lastbt} Bla 

stbtService"> 

<dependability>91 </dependability> 

<aveResponseTime>28990<laveResponseTime> 

"maximumResponseTime> 36297< m3ximumResponseTime> 

180 



Appendix I - Dependability metadata of \'HI 

• Sub-Mediator, Cambridge, UK 

<ws 

service=" {http://pathport.bioinfonnatics. vt.edu:6565Iaxisservices blastbt: Bla 

stbtService"> 

</ws> 

<dependability>~~</dependability> 

<ave Response Time> 265 73</a veResponse Time> 

<maximumResponseTime>32675</maximumResponseTime> 

• Sub-Mediator, Washington, USA 

<ws 

service=" {http://pathport. bioinfonnatics. vt.edu: 6565/ax is/serviceslblastbt} Bla 

stbtService"> 

</ws> 

<dependabi I i ty>96</ dependabi I ity> 

<aveResponseTime>23945</aveResponseTime> 

<maximumResponseTime>29267</maximumResponseTlme> 

• Sub-Mediator, New York, USA 

<ws 

service=" { http://pathport.bioinfonnatics. vt.edu:6565/axis/servicesiblastbt} Bla 

stbtService"> 

....-:...../\VS~ 

<dependability>96</dependability> 

<aveResponseTime>2490 1 </aveResponseTime> 

<maximumResponseTime>31297</maximumResponseTllllc> 

1:\ 1 


	489271_0001
	489271_0002
	489271_0003
	489271_0004
	489271_0005
	489271_0006
	489271_0007
	489271_0008
	489271_0009
	489271_0010
	489271_0011
	489271_0012
	489271_0013
	489271_0014
	489271_0015
	489271_0016
	489271_0017
	489271_0018
	489271_0019
	489271_0020
	489271_0021
	489271_0022
	489271_0023
	489271_0024
	489271_0025
	489271_0026
	489271_0027
	489271_0028
	489271_0029
	489271_0030
	489271_0031
	489271_0032
	489271_0033
	489271_0034
	489271_0035
	489271_0036
	489271_0037
	489271_0038
	489271_0039
	489271_0040
	489271_0041
	489271_0042
	489271_0043
	489271_0044
	489271_0045
	489271_0046
	489271_0047
	489271_0048
	489271_0049
	489271_0050
	489271_0051
	489271_0052
	489271_0053
	489271_0054
	489271_0055
	489271_0056
	489271_0057
	489271_0058
	489271_0059
	489271_0060
	489271_0061
	489271_0062
	489271_0063
	489271_0064
	489271_0065
	489271_0066
	489271_0067
	489271_0068
	489271_0069
	489271_0070
	489271_0071
	489271_0072
	489271_0073
	489271_0074
	489271_0075
	489271_0076
	489271_0077
	489271_0078
	489271_0079
	489271_0080
	489271_0081
	489271_0082
	489271_0083
	489271_0084
	489271_0085
	489271_0086
	489271_0087
	489271_0088
	489271_0089
	489271_0090
	489271_0091
	489271_0092
	489271_0093
	489271_0094
	489271_0095
	489271_0096
	489271_0097
	489271_0098
	489271_0099
	489271_0100
	489271_0101
	489271_0102
	489271_0103
	489271_0104
	489271_0105
	489271_0106
	489271_0107
	489271_0108
	489271_0109
	489271_0110
	489271_0111
	489271_0112
	489271_0113
	489271_0114
	489271_0115
	489271_0116
	489271_0117
	489271_0118
	489271_0119
	489271_0120
	489271_0121
	489271_0122
	489271_0123
	489271_0124
	489271_0125
	489271_0126
	489271_0127
	489271_0128
	489271_0129
	489271_0130
	489271_0131
	489271_0132
	489271_0133
	489271_0134
	489271_0135
	489271_0136
	489271_0137
	489271_0138
	489271_0139
	489271_0140
	489271_0141
	489271_0142
	489271_0143
	489271_0144
	489271_0145
	489271_0146
	489271_0147
	489271_0148
	489271_0149
	489271_0150
	489271_0151
	489271_0152
	489271_0153
	489271_0154
	489271_0155
	489271_0156
	489271_0157
	489271_0158
	489271_0159
	489271_0160
	489271_0161
	489271_0162
	489271_0163
	489271_0164
	489271_0165
	489271_0166
	489271_0167
	489271_0168
	489271_0169
	489271_0170
	489271_0171
	489271_0172
	489271_0173
	489271_0174
	489271_0175
	489271_0176
	489271_0177
	489271_0178
	489271_0179
	489271_0180
	489271_0181
	489271_0182
	489271_0183
	489271_0184
	489271_0185
	489271_0186
	489271_0187
	489271_0188
	489271_0189
	489271_0190
	489271_0191
	489271_0192

