WS-Mediator for Improving Dependability of Service
Composition

Thesis by

Yuhui Chen

In Partial Fulfilment of the Requirements
for the Degree of
Doctor of Philosophy

NEWCASTLE UNIVERSITY LIBRARY

Trheses L3385

Newcastle University
Newecastle upon Tyne, UK

July, 2008

Abstract

Abstract

Web Services and service-oriented architectures (SOAs) represent a new paradigm for
building distributed computing applications. In recent years, they have started to play
a critical role in numerous e-Science and e-Commerce applications. The advantages
of Web Services, such as their loosely coupled architecture and standardized
interoperability, make them a desirable platform, especially for developing large-scale

applications such as those based on cross-organizational service composition.

However, the Web Service technology is now facing many serious issues that need to
be addressed, one of the most important ones being the dependability of their
composition. Web Service composition relies on individual component services and
computer networks, particularly the Internet. As the component services are
autonomous, prior to use their dependability is unknown. In addition to that, computer
networks are inherently unreliable media: from the user’s perspective, network
failures may undermine the dependability of Web Services. Consequently, failures of
individual component services and of the network can undermine the dependability of

the entire application relying on service composition.

Our research is intended to contribute to achieving higher dependability of Web
Service composition. We have developed a novel solution, called WS-Mediator
system, implementing resilience-explicit computing and fault tolerance mechanisms
to improve the dependability of Web Service composition. It consists of a number of
subsystems, called Sub-Mediators, which are deployed at various geographical
locations across the Internet to monitor Web Services and dynamically generate Web

Service dependability metadata in order to make resilience-explicit decisions. In

Abstract

addition to applying the fault tolerance mechanisms that deal with various kinds of
faults during the service composition, the resilience-explicit reconfiguration
mechanism dynamically selects the most dependable Web Services to achieve higher
service composition dependability fault tolerance.

A specific instance of the WS-Mediator architecture has been developed in the Java
Web Service technology. A series of experiments with real-world Web Services, in
particular in the bioinformatics domain, have been carried out using the Java WS-
Mediator. The results of the experiments have demonstrated the applicability of the

WS-Mediator approach.

Acknowledgements

Acknowledgements

It is a pleasure to thank the people who contributed in various ways to this thesis,

making it possible.

First, 1 would like to thank my PhD supervisor, Prof. Alexander (Sascha)
Romanovsky. With his enthusiasm, inspiration and encouragement, he helped me to
carry out the research and complete the work in various ways, providing explanation
when necessary, advising me on my reading as well as the relevant work in close

research domains, and many more. I would have been lost without his huge support.

I would also like to thank Dr. Aad van Moorsel and Dr. Neil Speirs, the members of
my thesis committee board. They provided invaluable comments and suggestions,

helping to keep the work on the right track.

There are many other people who assisted me at different stages of the research. I
would like to express my gratitude to them. [am especially grateful to Dr. Peter Li
and Dr. Panayiotis Periorellis for their kind assistance with the experimental work on
the Web Services used in their research projects. They provided us with the

information on the Web Services, helping us to set up the experiments.

I wish to express my warm and sincere thanks to Mrs. Mila Romanovskaya. She

greatly helped me to proof read and edit the thesis.

This list would not be complete without my family, on whose constant encouragement
and love I have relied throughout my time at University. Without their unflinching
support and understanding, it would have been impossible for me to finish this study.

It is to them that I dedicate this research.

i

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6;
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:

Figure 4-9:

List of Figures

List of Figures

Typical interaction in Web Servicesoooveueeeeeeororoeeeooeeenn. 11
The automated travel booking process..................oouvveeeeereeeesrosrererereesnan. 12
Performance metrics obtained using the WSSDATcccoccocooovvnnennne. 19
The automated travel booking process with multiple travel agencies34
The automated travel booking process implementing service diversity...35
The overlay architecture of the WS-Mediator system.cco.ouen..... 46
Deployment of the WS-Mediator system................cccceeeeevniinrieeereriennn. 47
The internal structure of the Sub-Mediator................cccceeveveviririeveennnnn. 48
Assembly of BLP business procedures and internal activities 51
The resilience-explicit service composition in travel booking use case...56
The use case of the Service Alternative execution mode...............c.......... 60
The use case of the N-version programming execution mode.................. 61
The use case of the Message Routing execution mode...........c.ccccocerennecee 62
Travel booking use case with the WS-Mediator system...............ccccceueueee 65
Basic architecture of Web Servicescccconivevnneieinnninccenineneeenens 69
The architecture of Web Service Client.........ocoveveeinriiiicecinnnncieennnens 70
Web Service application with the Java WS-Mediator ... 71
Internal structure of the Sub-Mediator Elite.ccccccoeiiiiiiinnnis 72
An example of the test SOAP messagecocooevvioiiceniicccnninnnnens 75
An example of the test POliCy..........cceeieiniiniiiiin e, 75
An abstract of the service request SOAP messageccccooeeerviiininnns 78
An example of the Web Service Registry.......cccooveivinninnncccininnnnn. 80
An abstract model of the dependability metadata of a Web Service 80

Figure 4-10: An example of the Sub-Mediator Registrycccoomiiinencnenn 82

v

List of Figures

Figure 4-11: An example of the dependability metadata of a Sub-Mediator 82
Figure 4-12: An abstract model of the individual execution policy................. 83
Figure 4-13: An example of the global execution policy................ccouveeoreoreeeeeren.... 86
Figure 4-14: The execution sequence of the Dynamic Reconfiguration Engine......... 88

Figure 4-15: The execution sequence of the service alternative execution mode 90

Figure 4-16: Execution sequence of the N-version programming execution mode......93

Figure 4-17: The execution sequence of the multi-routing execution mode 95
Figure 5-1: Dependability monitoring of autonomous Web Services 102
Figure 5-2: Dependability monitoring result of the GOLDPeople.......................... 104
Figure 5-3: Dependability monitoring result of the GOLDPolicies 104
Figure 5-4: Evaluation of the Service Alternative execution mode.................coeuneee 108
Figure 5-5: Results of the service alternative execution mode...........cccoovrurreercrinnnnne. 109
Figure 5-6: Evaluation of the N-version programming execution mode. 110
Figure 5-7: Results of the N-version programming execution modecccceeene. 111
Figure 5-8: Evaluation of the multi-routing execution mode.ccccoceereruecrrrencnnee 112
Figure 5-9: Results of the Multi-Routing execution modec.coeceveeirennencnnne. 112
Figure A-1: The architecture of the WSSDAT.......cccccoiiriniinine et 138
Figure A-2: GUI for Web Services information inputsccooevniiiiiiiimnennnnn. 139
Figure A-3: GUI for test information displayccoeeeviieieiiininiiiiiieneene, 140
Figure A-4: Test ProCeAUIE......c.ccocerriiitiiireciireitet ettt 142
Figure B-1: Class diagram of the Sub-Mediator Elitecccccoiniioinniniinninnn 143
Figure B-2: The Service Processing Engine of the WS-Mediator Elite 144
Figure B-3: Interpreting the global execution policy................cccccocovviiiiiiiciinnnnne. 145
Figure B-4: The individual execution policycccccoovmiiniinininneecniececn. 146

Figure B-5: The Dynamic Reconfiguration Engine of the Sub-Mediator Elite......... 148

List of Figures

Figure B-6: Service Alternative Redundancy F-T execution mode........................... 149

Figure B-7: N-Version Programming execution mode.............ccccccvouvrmmencencivncnnne. 150

Figure B-8: The Multi-Routing Execution mode

Vi

List of Tables

Table 5-1: Dependability monitoring results of the public Web Services

List of Tables

Vil

Contents

Contents

1. Introduction 1
1.1 MOtIVALION........oi e 1
1.2 OurResearch...........cccoiiiieeeceeeeeeeeeeeeeee e, 3
1.3 Our Contributionsc.c.oouoiueviueeceeieeeceeee e 4
1.4 Thesis OULHNEoovuieeriiieeece e eeeeeen 6
2. Dependability of Service-Oriented Architecture 7
2.1 INErOQUCHON. ...t 7
2.2 PrelimiNariesc.ooouveriiniuiieneieieietece ettt eeeeeeene s 8
2.2.1 Service-Oriented ArCRIteCUre ..., 8
222 Web SErviCesucuceceieiiiirireseeeeseeteeeeeieee e e et esesaens 8
2.2.3 Dependability..............ccvvvoveiecisieeieeee e 9
2.3 Dependability of SOA and Web Services.........ccoovvvvvveveerieesesieirieieeenens 10
2.3.1 Overview of SOA and Web Servicescoeveevevneeneveevinneann, 10
2.3.2 Dependability of Web ServiCescoececueeeeeeeeererersesiessesesenenns 13
2.3.3 Our experiments on the dependability of Web Services....................... 16
2.34 Means for Achieving Dependability............uceeeeveveeveeeiaeeeecieeennn. 20
2.3.5 Fault tolerance in SOAccocoovovvviiiiiineieeiecce e 22
2.4 Overview of the EXisting Workccocooniiiiiininniniiineneeeeecreeieae 25
24.1 Application-level ProtoColsccccoovvevvinmerninnnnincceeeenenens 26
242 Exception Handling Approachescccccccceneneenncccccniennecennns 26
2.4.3 System Diagnosis Approachesccccvvvecveecnnncnneinneeeeeeene 28
244 Approaches to Dependable Service Composition................................ 30
25 Problems Involved in Web Service Composition.........ccccceoveverinneneecennn. 34
2.6 CONCIUSIONS....eeviirreiresieecnteteteee ettt e s s sa e emanaens 39
3. The WS-Mediator SYStemccccecerserssecsensenssessassaessasssessessessaessessenee 41
3.1 INEPOAUCEION .. cvvvievereet et eeeee st seeereeee et er e e sneemen e s 41
3.2 Research ObJECtiVES. ..ccccooiiiiiiiiiecrceie ittt 42
3.3 Overview of the WS-Mediator........cccccoveerericniniiiiiiiiin s 43
3.4 System ArChiteCtUre.......cocooviiiiiiiiiiineeeee s 47
34.1 Sub-Mediator SIUCIUFecccovemnmririiiiiiii e 48
342 Sub-Mediator Interface (SMI)............ccccccominniiniiiiiiinee 49

viii

Contents

3.4.3 Business Logic Processor (BLP)cooeoveeveereeeeeeeeeeeeeoeeoe! 51
344 POLicy SYStEm (PS)c..ueecoeeeeeeeeeeeeeeeeeeseeeeeeeeses oo st
345 Database System (DS).................ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeoeeeeeo 52
346 Dependability Monitoring Mechanism (DMM)ooooeoeeeeeen.. 52
3.4.7 Dependability Assessment Mechanism (DAM) ..., 53
3.4.8 Resilience-explicit Dynamic Reconfiguration mechanism (REDRM) .54
349 Fault-tolerance mechanisms (FTMS)............ooooevoemeeeeeeeeeeeereson. 59
3410 Web Service Invocation Mechanism (WSIM)cooooooeerereeen.. 63
3.5 Application of the WS-Mediatorccoeevovrreeeeiececeeececeeeeeeee e, 63
3.6 CONCIUSIONS........ocuiiiiiieicieiest et 66
4. Java WS-Mediator ... 68
4.1 INrOdUCHION ..ottt 68
42 Java Web Service middleware...........ccoeeveeueeiericieiiiiieiceeeeeeeen 68
43 Structure of the Java WS-Mediator...........cococooeeiiieiiiiiicececece e 71
4.3.1 Structure of the Sub-Mediator Elite...................ccovemveeicevrinraeennn. 72
4.3.2 Java APIs of the Sub-Mediator Eliteocceeueemeceeeeeeeeeeeeeennnne., 74
4.3.3 Business Logic ProCeSSOF (BLP)ooooueeeeeeeceeeeeeeieeeeeecereeeenen 78
4.3.4 Database SYSIEMccccoveeeoneieeeeeee ettt aeain 78
4.3.5 POLICY SYSIEM ..ottt 82
4.3.6 Dependability Monitoring Mechanism (DMM)ccccooovveeunenen. 86
4.3.7 Dynamic Reconfiguration Mechanism (DRM)ccccvvercvrcvecnnennns 88
438 Fault-tolerance Execution Modescccccocevmvninvncnrcnncnnenn. 89
4.4 CONCIUSIONS.....iviitiiiiieie ittt et e 96
5. Evaluation.. Ceessstessressstssstssstosstissatesstessasesasssstestessaserarerarsanssae 97
5.1 IREFOAUCEION. ..c.eeuiieie ittt e 97
5.2 Evaluation ObJECHVESccciiveviiirinieenre ettt sresseaeenens 97
5.3 Evaluation of Dependability MoOnitoring........cccecveeeiceancniiininenienriienenn 99
5.3.1 Dependability Monitoring of Public Web Services...........ccceenuenne. 100
532 Dependability Monitoring of the GOLD Web Services 103
5.4 Experiments with Bioinformatics Web Servicesccccocinnininnnn. 105
5.4.1 Service Alternative Execution Mode....................ccococevenvnvcnnnncnnncn. 108
54.2 N-version Programming Execution Modeccccccccuenni. 109
543 Multi-routing Execution Mode with the Planetlab 11

1X

Contents

5.5 CONCIUSIONS ..., 113
6. Conclusions and Suggestions for Future Workcceunnn...... 114

6.1 SUMMATY ..o 114

6.2 Suggestions for Future Work ... 116
BiDLIOZIaPR .ottt cetreeeesareeeseresneessaesosses e e sssaeas 121
List of ADDreviationseeicvinercieirenenenntenreenesneseeeeenessseseoseee 134
Appendix A — The WSSDAT toolooriinrnerncnerceenneenevesnerenens 135
Appendix B — Implementation of Java Sub-Mediator Elite............. 142
Appendix C — Dependability metadata...........ccocveeeereciienrnnnnneennnenene 152
Appendix D — Dependability metadata database in XML................ 153
Appendix E — Implementation of Java client application................. 158
Appendix F — Example of the valid result from DDBJ 168
Appendix G - Execution sequence of unsuccessful process.............. 171
Appendix H - Execution sequence of successful process................... 175
Appendix | — Dependability metadata of VBIcceceeueennenne. 180

Introduction

1. Introduction

1.1 Motivation

Web Services [1] and service-oriented architectures (SOAs) [2] represent a new
paradigm for building distributed computing applications [3, 4]. Their applications
vary from e-Commerce [5] applications, for example, Internet search engines [6] or
online auctions [7], to complex large-scale e-Science projects [8, 9]. The advantages
of Web Services, such as their loosely coupled architecture and standardized
interoperability, are attracting more and more users, along with growing body of work
in the relevant research and development domains. Users’ demand for Web Services
seems to be driving the technology further. However, all the opportunities that this
paradigm has brought notwithstanding, the Web Service technology at present is still
far from maturity. The overwhelming pace of technological progress has also,
inevitably, caused problems which may undermine the future of Web Services.

Among these, their dependability is one of the most critical issues to be addressed.

Web Services have addressed many issues existing in the conventional technologies,
such as Enterprise Application Integration (EAI) [10] and Common Object Request
Broker Architecture (CORBA) [11, 12], to name just two of the more popular ones,
extensively applied in the past decades. In these conventional distributed applications,
service integration commonly relies on centralized brokers, or coordinators, which
implement objects-based or message-based interoperability [4] with the participating
component services and interact with them to perform automated business processes.
The limitation of such paradigm lies in the fact that the middleware has to be
centralized and trusted by all participating component service providers.

Consequently, this becomes an issue of the integration of cross-organizational

Introduction

autonomous and heterogeneous services, especially when development cost, security
and confidentiality are concerned [4]. Web Services resolve these issues with their
loosely-coupled interaction pattern, standardized interoperability, extended peer-to-
peer integration fashion, etc. [4]. In Web Services, functionalities implemented by the
internal business procedures are deployed and exposed as services that can be
discovered and accessed through the Web. The interaction between the client and the
services generally relies on the SOAP/HTTP message binding [13-15]. The client, a
business logic application (e.g. e-Science or e-Commerce workflow), invokes Web
Services by sending them a SOAP message [2, 15], with the service request attached.
Web Services receive and parse the SOAP message, process the business logic
according to the service request, and return the results to the client via SOAP
messages. During the integration, the client does not necessarily know anything about
the Web Services involved other than their WSDL interface [16]; the communication
between them is guaranteed by the standardized interoperability, and no third party
service broker or coordinator is required. Therefore, compared with the conventional
technologies, the integration of autonomous and independent services is achieved in

Web Services at a low cost. [17]

Nevertheless, even with the advantages described above, Web Services are not a
magic solution to all problems of distributed applications. Similarly to other
distributed technologies, Web Service middleware relies on the existing underlying
middleware, such as network protocols, to implement the essential low-level services
[4]. Naturally, they inherit many of the dependability issues the conventional
infrastructure suffers from. For example, the interaction between the client and the
Web Services relies on the Web or other networks, which are inherently unreliable

media that may cause a loss, delay or damage of the message [3, 18-20]; Web

Introduction

Services are deployed on application servers, which may become unreliable or out-of-
service, due to system maintenance or other internal activities [20, 21]; the design or
implementation of the Web Service business procedure may contain faults and result
in their erratic behaviour [20-22]. Thus, their dependability is a vital issue in
dependability-critical applications, even more so in those based on a service
composition in which a service, as an undependable component, can undermine the
dependability of the entire application. It is only logical that the dependability of Web

Services as a research domain has attracted active interest in recent years.
1.2 Our Research

This dissertation reports our work in developing solutions to improving the
dependability of Web Services. We started the research by investigating the
dependability means in the context of Web Services, followed with an in-depth
analysis of dependability issues in Web Services based on our experiments with
several real-world Web Services. At the same time, we studied related work
conducted by other researchers working in similar research areas. As a result, we have
developed a novel solution to improving the dependability of Web Services.
Conceptually, this solution is based on our understanding of the specific dependability
characteristics of Web Services. It addresses some dependability issues that have not
yet been covered by the existing work. In particular, our research focuses on the
problem domain from certain original perspectives, avoiding duplicating others’
work. We have adopted several novel approaches and concepts in the solution
proposed, developed certain unique mechanisms to ensure the novelty, feasibility and
efficiency of our approach, and proved them in a series of experiments with real-

world Web Services. This work has been reported at various academic events and

Introduction

conferences, including the International Conference on Dependable Systems and
Networks 2006 [23], UK e-Science All Hands Meeting 2006 [24], the 3rd
International Service Availability Symposium [37], ReSIST Student Seminar 2007
[25], etc. A comprehensive description of the WS-Mediator approach is published by

the IT Professional magazine [26] in this year’s May/June issue.
1.3 Our Contributions

While the recent active research effort aiming at the dependability of Web Services
has developed some effective solutions, including those focusing on service
composition, we believe that there are still many issues remaining in this domain,
particularly concerning the dependability of service composition that relies on
autonomous Web Services. Our approach does not follow the methodology
commonly applied in other related work. We have learnt from our experiments and
studies of related work that in SOA the client’s perspective on the services might be
dramatically affected by the network consequences. This calls for solutions that would
improve the dependability of Web Service composition from the client’s perspective,
ensuring the continuity of the service provided to it. In order to address the
outstanding dependability issues in the existing Web Service applications, our
solution is based, in addition to the classic fault tolerance techniques, on certain novel
concepts, such as Resilience-explicit computing [27], path diversity, etc. The

contributions of our work are as follows:

e We have developed a WS-Mediator solution to improving the dependability of
Web Service applications. The approach offers an off-the-shelf mediator
system to ensure the dependability of service composition based upon the

existing legacy Web Services.

Introduction

e We have devised a WS-Mediator architecture which employs the
dependability monitoring of Web Services, resilience-explicit dynamic
reconfiguration of service composition as well as fault tolerance mechanisms
to accomplish a smart system that can explicitly select most appropriate
components to improve the dependability of the entire service composition.

e We have implemented a prototype of the WS-Mediator using the Java Web
Service technology. The Java WS-Mediator implements a Web Service
dependability monitoring mechanism to achieve the dependability of the
services from the client’s perspective. Its novel Resilience-explicit dynamic
reconfiguration mechanism allows an on-the-fly dynamic integration of
component services to utilize the richness of service redundancy available in
the Web Service infrastructure, and optimizes the conventional service
diversity strategies. The off-the-shelf fault tolerance mechanisms allow the
system to cope with various types of faults. Moreover, the Java WS-Mediator
can be deployed on a personal computer and seamlessly integrated into the
existing Java client applications. It can be especially beneficial for the
development of new Java client applications by providing intuitive invocation
APIs to utilize the functionalities provided by the WS-Mediator for improving
their dependability.

e We have conducted a number of experiments with real-world Web Services to
evaluate the WS-Mediator approach and the Java WS-Mediator. The results of
the experiments demonstrate the applicability and effectiveness of this

solution.

Introduction

1.4 Thesis Outline

The dissertation is organised as follows:

e Chapter 2 explains the fundamental concepts and definitions of SOA and Web
Services. We define dependability in the context of Web Services and analyse
their dependability. Finally, we summarize some related work in the area.

e Chapter 3 presents our WS-Mediator approach. In this chapter we discuss our
objectives and introduce the notion of the WS-Mediator as well as explaining
the WS-Mediator architecture and its components in detail.

e Chapter 4 introduces a prototype of the WS-Mediator. In this chapter, we
explain how to implement the WS-Mediator system using the Java Web
Service technology.

e Chapter 5 reports on the experiments conducted to evaluate the WS-Mediator
approach. The results of the experiments with real-world Web Services are
analysed to demonstrate the applicability of the WS-Mediator approach.

e Chapter 6 concludes this dissertation, offering our vision of the possible

further development of the WS-Mediator system.

Dependability of Service-Oriented Architecture

2. Dependability of Service-Oriented Architecture

2.1 Introduction

In this chapter, we will analyse dependability issues in the context of SOA and Web
Services. Even though Web Services are becoming, with all their promising potential,
a fundamental technology and platform in many distributed computing applications
[6-9], they are now facing a range of critical challenges, dependability being one of
the most crucial. In this chapter, we will introduce the general concept of
dependability and discuss dependability means in the context of Web Services. We
will then provide a brief overview of the background and foundation that our work is

built upon.

The chapter is organized as follows: section 2.2 defines the basic terms and introduces
the problem domain. Section 2.3 presents our analysis of dependability issues in the
context of Web Services. We will then describe our experiments involving several
Web Services used in the bioinformatics domain. These experiments have helped us
to understand the dependability behaviour of real-world Web Services. Finally, some
classic theories and technologies for achieving dependability are discussed. Section
2.4 introduces our study of the existing work concerned with improving Web Service
dependability. Section 2.5 specifically analyses dependability issues in Web Service
composition. Section 2.6 concludes the chapter and summarizes the key points

covered in it.

Dependability of Service-Oriented Architecture

2.2 Preliminaries

Although often used, the terms SOA4 and Web Services are not always consistently

defined. It is, however, essential here to clearly define these terms as fundamental for

this dissertation.
2.2.1 Service-Oriented Architecture

In this dissertation, we follow the definitions of SOA and Web Services provided by

the World Wide Web Consortium (W3C) [2]:

Service-Oriented Architecture: A set of components which can be invoked, and whose

interface descriptions can be published and discovered.

The above is a basic definition which describes what SOA is, and yet it is rather
abstract: it does not make the underlying concepts and technologies it relies on
explicit. It is the specification [1] that refines the definition, presenting SOA as a form
of distributed systems architecture in which services implement abstracted interface
for exchanging messages with clients. The machine-processable abstracted interface
describes only those details of services that are important for using them. Their
implementation details and internal structure are hidden from clients. The message
exchange between services and clients relies on the underlying computer network,
such as the Internet. The actual technologies for constructing a SOA are not made

specific in these definitions and may vary in realistic applications.
2.2.2 Web Services

The definition of Web Services is given in [2] as follows:

Dependability of Service-Oriented Architecture

Web Service: a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web Service
in a manner prescribed by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related

standards.

Comparing the above definition with that of SOA, it becomes clear that Web Services
are a form of SOA. The definition specifically constrains the underlying technologies
involved in constructing Web Services. Some of these technologies, such as the Web
Service Description Language (WSDL) [16] and the Simple Object Access Protocol
(SOAP) [15], have been purposefully developed for Web Services, while others have
been adopted from the existing standards and protocols, such as the Hyper-Text

Transport Protocol (HTTP) [14] and the Extensible Markup Language (XML) [28].
2.2.3 Dependability

In this dissertation, we start with the definition of dependability given in paper [21], a
well known and widely accepted source which offers a comprehensive clarification of

the basic concepts and means of dependability in computing systems:
Dependability: the ability to deliver service that can justifiably be trusted.

The above definition is universally recognised in related research domains. It is,

however, very abstract and brief. Paper [21] offers an alternative definition:

Dependability: the ability to avoid service failures that are more frequent and more

severe than is acceptable to the user(s).

Dependability of Service-Oriented Architecture

The above further refines the definition of dependability. Although it is still abstract,
it precisely defines the criterion for deciding if a system is dependable. The paper
specifies the attributes of dependability as reliability, availability, safety, security,
survivability and maintainability [21]. Thus, researchers can identify and specify the
means of dependability in their specific research domains according to the above

taxonomy.
2.3 Dependability of SOA and Web Services

SOA and Web Service technologies have been developing very fast in recent years,
becoming critical in many commercial and scientific distributed computing
applications [6-9] and thus prompting a great deal of research interest in the issue of
their dependability. The term dependability covers varied characteristics, while
dependability means may vary from one context to another. It would not be feasible to
cover all of its aspects in our research. In this section, we will describe the
dependability means we are concerned with in our study. We will also offer a specific
analysis of the dependability issues commonly manifested in the existing Web Service
applications. Lastly, we will report on our studies of some relevant work conducted

by other researchers working in related fields.
2.3.1 Overview of SOA and Web Services

SOA and Web Services implement standardized interoperability [13] between
services and clients. These services are software components implementing
capabilities and functionalities, and can be discovered and accessed via computer
networks, especially the Internet. Their implementation details are invisible to clients.

However, their interface needs to be defined, described and published in a machine-

Dependability of Service-Oriented Architecture

processable format. The definition of Web Services specifically states that their

interface should be described in the WSDL. Clients interact with them through SOAP

messages relying on the underlying network protocols such as HTTP.

Service requestor

Client Application
/]

K

Web Services

4
4

/

uUDDI

Services Registry

Web Services
Middleware
(SOAP)

/

Servicé Looking-up

\

\

\

Service publishing
A}

\

N

Middleware
(SOAP)

SOAP/HTTP

Service provider

[Service Implementalnon]

Web Services
Middleware
(SOAP)

Figure 2-1: T'ypical interaction in Web Services

In Web Services, clients and services are assumed to be loosely-coupled, which

means that they are stand-alone systems independent of each other [4]. The services

arc normally autonomous, and developed and deployed by different service providers.

Because of the nature of Web Services. the services developed by the same service

providers can also, to some extent, be regarded as autonomous of cach other. Clients

can discover services through various discovery services, such as the UDDI [29]. The

discovered information is sufficient for implementing invocations to Web Services.

The Web Service implementation details and internal structure are hidden from

clients. Figure 2-1 shows the typical Web Service architecture.

11

Dependability of Service-Oriented Architecture

In Web Services, the term client is often used to refer to the application software
which invokes Web Services to perform business processing logic (e.g. an e-Science
or e-commerce workflow), and Web Services act as clients when they invoke other
Web Services to implement their internal business logic [4]. In this dissertation. the
term client refers to the client application that invokes Web Services. unless stated
otherwise. Web Service applications often rely on service composition, which

integrates multiple Web Services to implement the entire business logic.

—
HTTP/SOAP Flight Booking

= — (Web Services) ’
~)
? INACI' t T (T I A
len ravel Agency ||/ T
}\ application |4 TR SUAR (Web Services) £ HTTP/SOAP Hotel Booking
‘ ‘ T (Web Services)
Customer | 4 J

Figure 2-2: The automated travel booking process based on Web Service composition

We will use an automated rravel booking use case (see Figure 2-2) to explain how the
Web Service applications function. A travel booking procedure comprises a set of
operations intended to meet a customer’s request to book a journey via a travel agency
for him/her. The procedure consists of the following steps: a booking request, booking
processing, booking quotation, and booking fulfilment. To start the booking procedure,
the customer sends a booking request to the travel agency for them to book a flight to
his/her destination as well as hotel accommodation for his/her stay there. The travel
agency starts processing the booking when it receives a booking request. Processing
involves the analysis of the booking request placed by the customer and other internal
business processing logic, including finding the appropriate flight and hotel. booking
a flight with an airway company and booking a room with a hotel. registering the

booking details in the database, and so on. Therefore, along with the Web Services

Dependability of Service-Oriented Architecture

offered by the travel agency, the airway company and the hotel also need to provide
Web Services for the relevant processes to be carried out. Booking fulfilment involves
sending the booking reference, flight details, and hotel details to the customer. Note
that in this abstract travel booking use case we only focus on the computing systems
that are involved in the procedure, unconcerned with the details of the actual business

activities.

In order to deal with the issue of possible conflicts within Web Service specifications
[4], the Web Service Interoperability Organization (WS-I) [30] has instituted the Web
Service interoperability profile [13] to promote and standardise the interoperability of
Web Services by clarifying such specifications. [t consists of some non-proprietary
Web Service specifications, further refining the mechanisms defined in Web Service
specifications, such as SOAP message binding, Web Service publishing, etc., to
construct an interoperable Web Service infrastructure. The WS-I profile is well
recognised and supported by the majority of the Web Service middleware {31-33],
therefore it is safe to assume Web Services to be universally interoperable in scientific
research unless there are specific circumstances to make this false. Thus, in the travel
booking use case, the travel agency can freely invoke the flight booking and hotel
booking Web Services without the service providers having to participate for the

interaction to occur.
2.3.2 Dependability of Web Services

Because of the nature of their architecture, unreliability is an intrinsic characteristic in
distributed systems. It is therefore essential to consider dependability issues as the
architectural implication for distributed systems [1]. Many researchers are aware of

this, reporting on and discussing their relevant experiences [18, 19, 34-36]. Our

13

Dependability of Service-Oriented Architecture

experiments (37, 38], conducted upon the real-world bioinformatics Web Services
(see section 2.3.3), have also revealed some important aspects of the dependability

issues of real-world Web Services used in scientific applications.

Web Services implement capabilities and functionalities via computer networks,
especially the World Wide Web (Web) [39]. They are typically autonomous and
deployed by various companies or organizations to loosely couple with clients. The
result of this manner of composition has been a wide range in the dependability
characteristics of the Web Services being developed, especially those built upon
legacy components. The hardware and software faults in Web Services or other
internal activities can lead to failures of the client. Because Web Services are
administrated by various independent providers, it is difficult to develop the
corresponding handling mechanisms in the client application. For example, a Web
Service can develop halt failures [21] when it is shut down without informing its
clients. When the client invokes the service, an exception will arise indicating the
unavailability of the service, yet without detailed information about the failure.
Without collaboration from the service provider, it is difficult to implement further
actions to handle the failure because of the lack of information about the state of the
service. Some Web Services can return error messages to their clients, indicating an
exceptional state of the service. However, these error messages are normally

insufficient for implementing handling mechanisms at the client side.

The network which the Web Service infrastructure relies on is an unreliable medium
[18, 19, 34]. There are many common network-related problems, such as latency of
response, loss of messages, corrupted messages, traffic congestion, etc. The services

can be inaccessible entirely because of network failures. For instance, paper [18]

14

Dependability of Service-Oriented Architecture

points out that “local and network conditions are far more likely to impede service
than server failures”. This conclusion is further supported by paper [19]: “Network-
related outages can potentially render more than 70% of the hosts inaccessible to the
user. Host-related failures tend to be of a shorter duration than failures that might
involve the network”. The development of dependable Web Service applications thus
calls for solutions capable of dealing with exceptional behaviours of individual

component Web Services as well as network failures [40].

According to the classification and taxonomy proposed in papers [20, 21], the issues

described above can be grouped into the following types of failures:

o Service failure: an event that occurs when the delivered service deviates from
correct service.

e Network failure: An event that occurs during the exchange of messages
between the client and the service, including delay, loss and change of the

content of the message.
In turn, service failures can be classified as follows:

e Omission failures: The service omits to respond to an input. It can be the result
of a system crash, poor system maintenance and hardware or software
component failures.

e Erratic failures: Service responds to the inputs; however, the result is

incorrect, or the response time is unreliable or abnormal.
Network failures can be further grouped in the following way:

e Omission failures: message lost during an exchange of messages.

15

Dependability of Service-Oriented Architecture

o Timing failures: unusual network latency during an exchange of messages.

o Content failures: the content of the message changed during an exchange of

messages.
2.3.3 Our experiments on the dependability of Web Services

To analyse the dependability of realistic Web Services, we have conducted some
experiments with real-world Web Services, developing a Web Service dependability
Assessment Tool (WSsDAT) in order to assess Web Service dependability [37]. The
tool can continuously monitor a number of Web Services and generate metrics from
the monitoring results to present the dependability characteristics of the services.
More details about the WSsDAT tool can be found in Appendix A. Some of the

experiments, in which the tool was used, are reported in papers [37, 38].

Here we briefly report the experiment with two BLAST Web Services, commonly
used in Bioinformatics research [41], which provide similar functionalities. In the
experiment, we used the WSsDAT to monitor the BLAST Web Services from three
locations simultaneously to observe the differences in their behaviour and how the

locations (networks) affect the dependability. Below are listed the two Web Services:

o EBI BLAST Web Service', deployed by the European Bioinformatics Institute

(EBI), Cambridge, UK [41]
¢ DDBJ BLAST Web Service?, hosted by the DNA Databank, Japan [42]

Two WSsDAT tools were located in Newcastle upon Tyne, UK: one was deployed

from the campus network at Newcastle University, whilst the other one was hosted on

! http://ww.ebi.ac.uk/collab/mygrid/service4/soap/services/alignment::blasm_ncbi?wsdl
? htp://xml.nig.ac.jp/wsdl/Blast.wsdl

16

Dependability of Service-Oriented Architecture

a computer connected to it with IMB broadband via a domestic Internet Service
Provider, Telewest Broadband (UK) [43]. The remaining WSsDAT was deployed in

the China Education and Research Network (CERNET) in Tianjin [44].

In order to observe the variances of the dependability and performance metrics over
different periods - during working days, the weekend, daytime and night time - the
two BLAST services were monitored continuously for over a month. Here we report a
set of data collected from Friday, March 18, 2005 until Sunday, March 20, 2005. The
total duration was 72 hours and the interval between the successive service
invocations was 30 minutes. All measurements were stored in a database for further

analysis.

During the experiment, the EBI BLAST service behaved very erratically. Below is a

report of the results collected concerning the service:
e Successively tested 132 times in 72 hours at each location
¢ Domestic Broadband (Telewest), Newcastle Upon Tyne, UK

o Average response time: 842.1s (239s ~ 760s)

o Failure rate: 58.3% (76 invalid results)

o Newcastle University Campus Network

o Average response time: 764.6s (240s ~1000s)

o Failure rate: 62.9% (82 invalid results)
e CERNIC, China

o Average response time: 945.7s (261s ~1886s)

17

Dependability of Service-Oriented Architecture

o Failure rate: 43.2% (56 invalid results)

All of the failures were caused by the EBI service returning the SOAP message, with
the error message “Gateway failure” attached. The error message seemed to indicate
the failure of an internal service component. However, without collaboration by the

service provider we do not have information about the failure.

In contrast, the dependability of the DDBJ service was very good during the
experiment, with no failures recorded. There were two delays registered at each of the

three roots, indicating unknown states of the service or some part of the network.

Successively tested 132 times in 72 hours at each location

o 100% successful

Domestic Broadband (Telewest), Newcastle Upon Tyne, UK

o Average response time: 103.1s

o Delays: 180s, 728s

Newcastle University Campus Network

o Average response time: 97.8s

o Delays: 369s, 925s

CERNIC, China

o Average response time: 130.0s

o Delays: 397s, 940s

18

Dependability of Service-Oriented Architecture

Figure 2-3 shows the charts drawn from these results. Our experiment shows that the
dependability of a BLAST service can vary dramatically. This empirical conclusion
can be extended to the global Web Service infrastructure, where the dependability of

services are all different from the user’s perspective [18, 38].

EBlI/Cambridge Blast DDBJ/Japan Blast
- J T i T T =y
2 : . I I ‘
I |
g g | | : : Y ,[
: ! : : : : e
S 1. | (Exceptions) | | & - | | |
@ I . | I ‘
% : : ' | |
g s | T I : :: {
g :(Vahd results) 7(("0')}1_‘! ll |
L oV 185508 T ET T i 20 2008 o oo 0
Oate
- ; 1 (9253)
= 1 |
£ 7 'w I | ' l
B 1 |) ¢ ‘
s & | (Exceptions) | £ : ‘
[#=] ook 1 %00 i '
? 5 : I 5 (:m.)l '
% %0 |) ‘ ¢ L i| {
I I ' |
2 "
4 (Valid results) | J -~ o g
Tl 1 2008 T BN 12008 B U 0 v I T o BT
Dato
i : ‘ (940s)]
Cilby : (memm)g 1 =2 | i
21 5 E |
= #0090 = e ¥ xc 4
2 § ' s | g T (3975)
I A\ ‘ { 2 *
'“"[l r‘wﬁ« l ‘ ¥ LMHLM. ‘ |
I ‘ ' |
i [\ W
L 1 (Valid rcsults)' | {
o L i h.ﬁnjj L T . i T)
Date Dato

Figure 2-3: Performance metrics obtained using the WSsDAT from the BLAST
services deployed at the EBI and DDBJ when invoked from the University of
Newecastle campus network, a commercial broadband supplier (UK) and from China.

Service failures have been shaded in grey.

Dependability of Service-Oriented Architecture

With the superior richness of services offered by SOA, Web Service applications
extensively use this diversity to improve the dependability of service composition
(see, for example, the solutions proposed in [40, 45-48], to name a few). This strategy
is based on the fact that, in SOA, different service providers may provide similar
services which can be used as redundancy and alternatives to each other. We believe
that the information collected in our experiments can be used to understand the
behaviour of the BLAST Web Services and thereby allow scientists to select those
that are the most reliable for use in their data analyses. This makes it possible to select
Web Services from among similar services based upon their dependability behaviour.
Our experiments indicate that, based on the comparison of its dependability
characteristics with those of the EBI BLAST service, the DDBJ BLAST service
should be the first choice for users. Furthermore, the fact that it is possible to deploy
and use the WSsDAT in different physical locations can lead to insights on how the
network can affect the dependability and performance of Web Services, pointing
towards the idea of on-location monitoring of Web Service dependability at the client

side.
2.3.4 Means for Achieving Dependability

There are many techniques used to achieve dependability. Paper [21] groups them in

the following categories:

Fault prevention

Fault tolerance

Fault removal

Fault forecasting

Dependability of Service-Oriented Architecture

Current research on the dependability of Web Services implements the above

approaches - individually or in combination - to deal with different types of failures

[21].

Fault prevention can eliminate a number of faults hidden in the design and
implementation of the system. It has to be applied during the system design stage by

employing quality control techniques such as modularization, structured

programming, etc. [21].

Fault-tolerance mechanisms act upon errors to maintain the continuity of services.
The aim of fault tolerance is to avoid system failures in spite of the remaining faults.
It typically consists of two phases: error detection and system recovery [21]. Error
detection is used to identify the presence of errors, whilst system recovery is aimed at,
by applying error and fault handling, transforming a system state that contains one or
more errors and (possibly) faults into a state without detected errors or faults that
could be activated again. Error handling eliminates errors from the system state,

whilst fault handling prevents faults from being activated again [21, 49].

Fault forecasting performs qualitative evaluation of component failures and
quantitative evaluation of the probability of failures with respect to fault occurrence or
activation. The dependability attributes of a system may change during the life cycle
of the system because of system aging. By employing modelling and testing
techniques, dependability attributes can be evaluated, and the probabilistic estimates
of dependability measures can help to make changes to the system to avoid system
failures. Thus, in fault-tolerant systems, fault forecasting can evaluate the
effectiveness of fault tolerance mechanisms and lead to improvements in the

implementation of fault tolerance mechanisms. More examples can be seen in papers

21

Dependability of Service-Oriented Architecture

[50, 51], which report how to use the fault-injection technique to assess the

dependability of Web Services.

Fault removal is generally applied in the development phase or during system
maintenance. It focuses on discovering potential faults in a system and removing them

to avoid failures [21].
2.3.5 Fault tolerance in SOA

With their complex architecture and complicated application scenarios, Web Service
applications are doomed to a potentially high rate of failures. This calls for a variety
of methods to be designed to minimize failures occurring in Web Services and in their
interaction with clients. Nevertheless, faults can never be completely removed from
real-world systems, nor can the occurrence of errors be ever entirely prevented [22].
In this respect, the application of appropriate fault tolerance (FT) techniques is critical
for improving the dependability of Web Service applications. Generally speaking, in
fault tolerance, system recovery consists in error handling and fault handling. Error

handling may involve the following forms {21]:

e Rollback, which brings the system back to a correct state saved at checkpoints
before the occurrence of errors.

e Roll forward, where the state without detected errors is a new state.

e Compensation, where the erroneous state contains enough redundancy to

enable errors to be masked.

Fault handling prevents located faults from being activated again, by employing the

following steps [21]:

22

Dependability of Service-Oriented Architecture

e Fault diagnosis, which identifies and records the location and type of cause(s)
of error(s).

e Fault isolation, which excludes the faulty components from service processing.

e Reconfiguration, which switches service processing from faulty to redundant

components.

¢ Reinitialization, which sets the new system configuration.

The selection of the fault tolerance techniques strongly depends on the fault
assumptions made, and mostly lead to two basic fault tolerance strategies: backward
and forward recovery [21, 52]. Backward recovery typically implements the recovery
block fault tolerance technique [52, 53] to maintain the continuity of the service in
spite of faults. If errors occur during the transaction, the system rolls back to a
previous correct state, and then applies a retry or service diversity to tolerate the

faults.

In contrast to backward, forward recovery transforms the system into a correct state. It
mainly relies on exception handling [20] techniques to tolerate errors occurring during
transactions. Exception handling mechanisms can be found in many mainstream
programming languages, for example Java, C++, and etc. They provide methods and
tools to handle exceptional states and activities during the execution of software so as

to achieve more reliable and robust software and systems.

N-version programming [54] is an important compensation technique, typically
employed in dependability-critical applications. It is used for tolerating design and
implementation faults. The approach requires multiple versions of software or
components to be developed by independent developers to identical specifications.

Although it is still impossible to avoid all of them, the approach can sufficiently

23

Dependability of Service-Oriented Architecture

minimize the probability of common faults, thereby improving the reliability of
system software [55]. In practice, however, the cost of applying the N-version
programming approach is high and its effectiveness often overestimated, resulting in

misjudgements of the reliability of the software or the system [55].

In the context of SOA, there has been some research focusing on applying the
Recovery block [52, 53] and N-version programming [54-56] techniques, which
employ the diversity approach to implement fault tolerance mechanisms. This

normally includes service and messaging path diversity.

Diversity is a natural advantage of Web Services because of their loosely coupled
architecture and standardised interoperability. Several Web Services implementing
similar functionalities are likely to be found in the growing Internet world, and can be
used for implementing service diversity. Furthermore, there is normally path diversity
to be found on the Internet. A lot of applications [46, 47, 57] utilize similar services to
implement the diversity approach. In Recovery blocks, diverse services can be used as
alternatives replacing the faulty services to maintain continuous service. The approach
can be especially beneficial for employing N-version programming in an application,
with the development cost dramatically reduced by using the existing services as
redundancy. This strategy may potentially be at risk from the problem of common
faults, whereby the services may share the same faulty services as external component
services. However, the probability of such problems can be minimized by applying

appropriate techniques, such as the solution proposed in paper [58].

24

Dependability of Service-Oriented Architecture

2.4 Overview of the Existing Work

As part of our research of Web Service dependability, we have studied the existing
work, focusing on improving Web Service dependability and constructing dependable
Web Service applications. Such solutions typically rely on the techniques outlined in
section 2.3.4. There are too many different factors in the dependability of Web
Services, and it is impossible to deal with all kinds of faults in one solution.
Therefore, various approaches have been developed based upon particular fault

assumptions.

In general, depending on their purposes, these can be classified into two categories:
one aimed at developing dependable Web Services, and the other at dependable
applications based on Web Service composition. Approaches of the first kind adopt
various dependability-attaining techniques in service design and development to
improve their dependability. According to their fault assumptions and the
implementation of dependability-attaining techniques, many of them can be classified
as application-level protocols, exception handling, system diagnosis and modelling,
etc. Approaches of the second type often adopt service diversity and dynamic
reconfiguration of service composition to improve the dependability of the entire
application. These solutions are typically complex. Most of them implement the
broker/proxy-type architecture and apply multiple dependability-attaining techniques
in different combinations to deal with various types of faults. Below we will briefly

introduce some typical work to summarize the current state of research in this domain.

25

Dependability of Service-Oriented Architecture

2.4.1 Application-level Protocols

Current W3C Web Service specifications do not define standards and mechanisms to
guarantee the Quality of Service (QoS) and dependability of Web Services.
Additional protocols and standards have been developed to standardize the
implementation of QoS and dependability mechanisms. Such protocols and standards
particularly focus on application-level messaging dependability in addition to the
lower-level network protocols, most commonly HTTP [14]. The Service Reliability
(WS-Reliability) specification [59] is one of such solutions, which has been formally

declared as an OASIS [59] standard.

The WS-Reliability defines a protocol that guarantees the reliability of SOAP
message delivery. It can cope with failures of software components, the system and
the network during message delivery between distributed applications. This
application-level messaging protocol is designed to prevent duplicates and loss of
messages, and to guarantee message ordering. It cannot, however, deal with service
failures or unavailability of particular services. Therefore, it requires upper-level fault

tolerance mechanisms to deal with other types of failures.

2.4.2 Exception Handling Approaches

Exception handling is a classic fault tolerance technique [20]. Solutions based on it
implement exception handling mechanisms to cope with errors occurring in Web
Services, therefore achieving a highly dependable individual Web Service. Some of
these emphasise the tolerance of internal hardware and software faults, while others

also deal with network failures.

26

Dependability of Service-Oriented Architecture

AmberPoint Inc. [60] presents a solution for managing exceptions in a commercial
Web Service environment. The solution implements an intermediary-based Exception
Manager (EM) to detect run-time exceptions in a set of Web Services. The EM
executes localized resolutions to deal with exceptions. The approach overcomes the
shortcomings of the traditional programmatic exception handling mechanisms applied

in the context of Web Services.

Salatge and Fabre [46] introduce a connector-based solution for ensuring the
dependability of Web Services for clients. It proposes a special language for
implementing fault tolerance connectors to couple services and clients. Clients, Web
Service providers or dependability experts can implement the connectors in their
applications. The connectors implement error handling mechanisms to deal with
failures and exceptions during communication between clients and services. They can
also collect error information during execution in order to monitor the health of Web
Services. In addition to the above techniques, the service redundancy strategy is also
employed in this solution, based upon the Ontology technology. The solution can
improve the robustness of communication between clients and services. It is
especially suitable in developing a Web Service application in which clients and
service providers are correlative and can efficiently cooperate in implementing

connectors.

Dobson [61] proposes a container-based approach to fault tolerance in SOA. This
work is based on the assumption that, in SOA, services may fail for many reasons,
including resource starvation, faults in implementation and network instability. The
authors have developed a notion of fault-tolerant service container, an extensible

architecture, to employ component diversity in a SOA application. The container is

27

Dependability of Service-Oriented Architecture

configured with a fault tolerance policy. It allows the use of fault tolerance
mechanisms to leverage the existing services at the application level. A sofiware
development kit (SDK) and a deployment tool are developed to implement the
container. This container-based approach addresses the problem of the traditional
hardware redundancy strategy commonly adopted by service providers. It achieves
redundancy at the service level, allowing both software and hardware redundancy.
The approach can employ service diversity by binding services available at a service
marketplace. In this way, service redundancy can be achieved at low cost. The
container acts as a proxy to the actual services. It intercepts messages transmitted
between the client and the services and applies exception handling techniques to deal
with failures of services. Such message interception is transparent to both the client
and service provider, and controlled by the fault tolerance policy model. The fault
tolerance procedures in the container implement the actions of fault tolerance policy

models.

The solutions based upon exception handling techniques can improve Web Service
dependability and/or the interaction between services and clients. They are often
highly application-specific and especially suitable for those service providers which
offer dedicated client-applications to their clients to improve the usability of their
services. As exception handling mechanisms need to be developed in the design and
implementation stages, such solutions can hardly benefit the existing legacy Web
Services without modification. Users may be able to employ them for implementing

their client applications; this, however, requires collaboration from providers.

2.4.3 System Diagnosis Approaches

28

Dependability of Service-Oriented Architecture

In developing systems, some approaches apply diagnosis and assessment techniques
to achieve highly dependable Web Services. These approaches commonly implement
system diagnosis and assessment mechanisms to assess the dependability of internal

and external system components, and act upon diagnosis results to avoid failures.

Ardissono, Furnari, Goy, Petrone and Segnan [62] present an approach relying on
consistency-based diagnosis aimed to achieve intelligent exception management. This
approach applies fault tolerance to compose Web Services by implementing exception
handling which relies on smart failure identification and diagnostic information-aware
exception handlers. In addition to the traditional model-based diagnosis approaches,
this work allows local diagnosers to analyse exceptions that arise in each component
Web Service and to extend the diagnostic-reasoning information in the business logic
description of each component Web Service. A global diagnoser is then introduced to
conduct global reasoning. It identifies the causes of exceptions by consulting the local
diagnosers. The existing component Web Services need to be modified so that they
can interact with the corresponding local diagnosers and achieve diagnostic

information awareness.

Vieira, Laranjeiro, and Madeira [50] propose a fault injection technology for
assessing Grid Web Service dependability. The authors have developed a fault
injection toolkit, which allows network-level fault injection for real-time middleware
message interception and fault injection. The toolkit can precisely inject specific
rather than random faults into middleware messages, which makes it valuable for
assessing Grid middleware for constructing dependable Grid applications. The toolkit

can also be used as a tool to test individual Web Services.

29

Dependability of Service-Oriented Architecture

The above summarises some typical approaches based upon system diagnosis and
assessment. Such approaches can help developers to build highly dependable Web
Services, such as dependability-critical applications where service dependability is
vital. It is difficult to apply such solutions in the existing systems, and the

development cost of such solutions is quite high.
2.4.4 Approaches to Dependable Service Composition

The solutions aimed at improving the dependability of Web Service composition
typically implement the service broker architecture and fault tolerance mechanisms.
They intercept communication between the client and Web Services and act upon
exceptions and failures to maintain service continuity. As for those applications that
integrate Web Services dynamically discovered from registries and invoke them
according to their WSDL interface, it is difficult to implement specific fault tolerance
mechanisms to ensure the dependability of service composition because of the lack of
information. In such circumstances, functionally similar Web Services are often used

to employ the service diversity strategy.

Alwagait and Ghandeharizadeh [45] propose a dependable Web Service framework
(DeW) for solving problems caused by service migration. When a Web Service
migrates to a different location or gets disconnected from the Internet, clients
typically have to manually rediscover the service or its replicas from the UDDI and
modify their application code to invoke them to the new location. The DeW
implements Web Service registry proxies to automatically re-direct the client’s
invocation of a service to the old location to the new location of the service or its
replicas. When a Web Service migrates, the service provider can register the new

location of the service or its replica in the DeW. When the client invokes the service

30

Dependability of Service-Oriented Architecture

using its old location, an exception will rise. The exception will be handled by the
DeW proxy, which will find the new location of the service or its replicas, and

redirect the client’s invocation there.

Laranjeiro and Vieira [48] propose a mechanism for adopting service diversity into
composite Web Service applications. It simplifies the implementation of service
redundancy commonly applied in the context of Web Service architecture. The
mechanism, called Fault tolerant Web Services (FTWS), allows programmers to
specify alternative Web Services for each operation and offers a set of artefacts that
simplify the software design and coding process. It is able to deal with all aspects
related to the redundant Web Service invocation and responses voting, as well as
evaluating and comparing the alternative services. The evaluation procedure generates
data for resolving voting impasses. When developing a SOA application,
programmers normally have to select component Web Services and redundant
alternative Web Services when constructing composite ones. It is their job to code all
the service redundancy and voting mechanisms. Such procedures are typically error-
prone. With the FTWS deployed as a proxy Web Service, it can automatically deal
with all aspects related to service redundancy and responses voting. In short, it is an
off-the-shelf proxy Web Service that implements service redundancy and voting

mechanisms to simplify the development of composite Web Services.

Tsai, Song, Paul, Cao, and Huang [47] propose a framework that extends the existing
Web Services to achieve dynamic reconfiguration for Web Services. It can perform
automatic reconfiguration of participating services at run-time to cope with service
unavailability, network inability as well as software and hardware failures. This

framework extends the current WSDL interface specification, specifying a service by

31

Dependability of Service-Oriented Architecture

its interface, scenarios and constraints (ISC), i.e. representing its actors, conditions,

data, actions, timing and events (ACDATE). The ISC specification specifies the static

and dynamic structure of services.

The authors have developed a run-time distributed dynamic reconfiguration tool based
on the ISC. The Dynamic Reconfiguration Service framework (DRS) uses the ISC
specification for improving Web Service dependability, maintaining a service registry
for monitoring and managing registered Web Services. It is implemented and
deployed with redundancy to avoid a single point of failure. Multiple DRSs can be
deployed in each system layer, communicating and synchronizing with each other to
enhance the dependability of the framework. Every DRS has a Service Directory (SD)
and a Standard Service Naming Directory (SSND) for managing Web Services and
needs to interact with services providers to obtain information for them. The DRS can
track the status of participating Web Services and rank them according to user
feedback reports from participating agents. It generates a proxy agent for each
abstract node in its SD. When the client invokes a participating Web Service, it is the
proxy agent rather than the actual address of the service that is invoked. The DRS
implements auditing agents to monitor the status of participating services at run-time
and to generate a profile for each active service. With the DRS performing dynamic
reconfiguration at run-time, if a participating service becomes unreliable, the client’s

invocation can be automatically switched to an alternative service.

Townend, Groth and Xu [58] propose a provenance-aware weighted fault tolerance
scheme for developing dependable Web Service applications. This approach identifies
common-mode failures in applications using multi-version design. It introduces a

provenance system to record the flow of data from a service to identify shared

32

Dependability of Service-Oriented Architecture

services. The recorded provenance information can be used to determine weighting of
the results delivered by each service for result voting. The results from those services
whose weightings are below the threshold are eliminated from the voting procedure.
A Java-based Web Service implementation of the Provenance Recording Protocol,

called Provenance Recording for Services, is implemented to support a provenance-

aware SOA.

The service broker architecture was popular in the conventional distributed
applications, such as the message broker in EAI and the object request broker in
CORBA [4]. In these systems, the service broker was the key service component for
performing service integration. The client’s business logic depends on the service
broker for interaction with participating component services in order to execute
business processes. However, the service broker can at the same time cause problems
in developing cross-organizational applications because of its lack of ability to
integrate autonomous component services. Because of their standardized
interoperability, these limitations do not apply to the service broker in Web Services.
Therefore, the dependability-improving service brokers proposed in the above
solutions are feasible in Web Service applications. In fact, the Web Service
specification [1] describes a Web Service called Web Service intermediary which
develops value-adding services between the client and Web Services, and which can
be used to implement service brokers in the way fully compliant with Web Service
specifications. Unfortunately, the potential of this architecture is not recognised in the
above solutions, where the researchers develop their own architecture to implement
service brokers. As a result, these solutions can hardly be seamlessly integrated into

the existing applications, and they do not support on-the-fly dynamic service

33

Dependability of Service-Oriented Architecture

integration that would allow new component services to be integrated in service

composition without recompiling the client applications and the service broker.
2.5 Problems Involved in Web Service Composition

Among the many studies aimed at improving Web Service dependability, those
developing dependable Web Service composition constitute a significant part,
emphasising how important it is to ensure the dependability of applications based on
service composition. However, although the existing work has addressed certain

dependability issues effectively, there are still some problems

remaining.
7
Flight booking
HTVTVP/’SiOAP (Web Services)
Airway 1
P
Travel booking | / 7
HTTPISOAP | (web Services) |¥_ HTTPISOAP = Hotel booking
— Travel agency 1 || s (Web Services)
E—— v Hotel 1
Q@ Client
| application W e e |
/\ S e e HTTP/SOAP Flight booking
Customer ‘ \ HTTP/SOAP Travel booking = — — (Web Services)
(Web Services) | < Airway 2

Travel agency 2 | |

P> S5 = s v
Hotel booking
————— (Web Services)
Hotel 2 J

_HTTP/SOAP

Figure 2-4: The automated travel booking process with multiple travel agencies

Web Service composition relies on multiple component services to implement entire
business processes. These component services are developed and administrated by
different service providers. In reality, there is no guarantee that all component
services are highly dependable. For instance, in the fravel booking use case, by
employing appropriate dependability solutions the Web Services provided by the

travel agency and the airway company can be developed in such a way as to meet a

Dependability of Service-Oriented Architecture

high dependability standard because this is essential for these businesses. However, it
might be seen as less important to the hotel business, with the development of highly
dependable Web Services restricted by a limited budget. Therefore, the dependability
of the entire travel booking process can be eventually undermined by undependable

hotel booking Web Services.

In such circumstances, it is well worth employing service diversity strategy to develop
a client application. As there are several travel agencies offering the same business.
the client can send quotation requests to multiple agencies, booking the journey with
one of them (see Figure 2-4). Thus, things become less problematic to the customer,
as long as one of the travel agencies can eventually complete the booking process.

VFllghl booking
_——— (Web Services)

// e Airway 1 J
| Travel booking ¢ ~ e r——
y (Web Services) |y S Hotel booking |
Travel agency 1 ‘J‘\ / — (Web Services) |
Y 7 PR AT sl Hotel 1)
Q Client ||/ iy
" applicat e
k application A, et -
‘ ‘ . /’,’ #5 ~ | Flight booking |
Customer Travel booking ||« (Web Services) |
(Web Services) Bl Airway 2)
Travel agency 2 S

~~ Hotel booking
(Web Services)
Hotel 2

§
~ 1

|

1

|

Figure 2-5: The automated travel booking process with multiple travel agencies
implementing service diversity. The solid lines represent primary routes and the

dashed lines alternative routes.

However, the situation is very different for the travel agencies from what it is for the
customer. The travel agencies have to compete with each other, and the dependability

of their services is their key to success (note that we are not concerned here with other

s
n

Dependability of Service-Oriented Architecture

business factors, such as price, service quality, etc.) Therefore, the travel agencies
also need to build service diversity into their travel booking services, to prevent their
business from failing due to undependable external component services, such as the
Web Services provided by the participating business partners, and the network needed
to access them. In a scenario, the use case illustrated in Figure 2-4 may turn into that
in Figure 2-5, in which both travel agencies (TA), TAl and TA2 use the same
Airways (AW), AW1 and AW2, and hotels (HT), HT1 and HT?2, as external services.
However, these Web Services have different dependability characteristics. The
selection of the appropriate components during service composition is one of the most

important elements in defining the dependability of the entire application.

The service diversity strategy and the proxy/broker architecture have been extensively
employed in solutions for developing dependable Web Service applications. However
the limitations of those solutions have restricted their applicability and efficacy in

real-world applications. In the following, we discuss some of these limitations.

There are two ways to apply service diversity: service alternatives as used in the
Recovery block [52, 53] fault tolerance technique and service redundancy as used in
N-version programming [52-55]. In this dissertation, we draw the following

distinction between them:

¢ Service alternative: component services are used as alternatives to the primary
service, and the business logic processor only invokes them when the primary
service fails to deliver valid results.

o Service redundancy: component services are used synchronously, the business
logic processor invokes them at the same time and processes the results

returned from them according to certain preference.

36

Dependability of Service-Oriented Architecture

The above diversity strategies have been employed in some of the existing solutions.
However, to the best of our knowledge, the existing work does not provide features

for making justified selection of the diversity strategies and component services.

In practice, it is difficult to choose which diversity strategy to use, because their
applicability largely depends on the environmental variables, such as network
bandwidth, system capacity, etc. [36]. These variables are especially restrictive in the
service redundancy approach. It may straightforward applying the approach to the
simple business model illustrated in Figure 2-5, yet as the number of redundant
component services grows, the approach becomes less applicable, possibly
undermining the dependability of the application [36]. We believe the above issue

was not sufficiently addressed in the existing work.

Many solutions employ the service alternative diversity strategy, because of its
simplicity. However the strategy for selecting the component services is seldom
discussed. Obviously, which primary component service is selected mostly defines
how efficient and feasible the service alternative approach will be. A highly
dependable primary service can benefit the performance of the entire service
composition. Unfortunately, to the best of our knowledge, there is no satisfactory
solution currently to help application developers to select component services.
Although some solutions implement service ranking mechanisms, such as in [47],
there is not enough information to reflect the changing behaviour of Web Service
dependability. Moreover, computer networks play a very important role in Web
Services, with the dependability of the computer network between the client and

services crucial for service composition. The dependability of a Web Service may

37

Dependability of Service-Oriented Architecture

change dramatically from one client’s perspective to another’s, because of the

different networks between clients and the service provider.

Many solutions use similar services to implement service diversity. However even
though the candidate services provide similar functionalities, their interfaces, required
input parameters, etc. can be very different. Some solutions propose interface
mapping mechanisms to deal with the issue; in addition to the difficulties of
implementing and maintaining such mechanisms and mapping registries, these
approaches often undermine the compatibility with some Web Service security
mechanisms [13]. For example, it is unlikely that an encrypted SOAP message
provided by the client can be decrypted by all candidate services, and that a security
key issued by a service will be accepted by other services. For similar reasons, those
approaches are often inapplicable for the stateful Web Services *, whereas if a service
fails in the middle of the business logic process, diverting the client’s request to other
candidate services will cause problems, because they do not contain the states or their

internal business logic implementations can be very different.

We can now summarise several problems still existing in Web Service composition

which have not yet been satisfactorily dealt with in the relevant work:
¢ Dynamically selecting appropriate fault tolerance mechanisms

e Dynamically selecting diverse component services in corresponding

mechanisms

o Failures of component services undermining the dependability of service

composition

* hitp://xml.coverpages.org/stateful WebServices.html

38

Dependability of Service-Oriented Architecture

* Network failure can undermine the dependability of Web Services from the
client’s perspective
¢ Compatibility with Web Service security mechanisms

e Compatibility with stateful Web Services.
2.6 Conclusions

The dependability of Web Services is an active and important research domain. The
loosely-coupled distributed architecture of Web Services has brought benefits for
developing e-Science and e-commerce applications. However, such architecture is
inherently undependable. Research on the dependability of Web Service applications
needs to deal with both service failures and network failures. It is also very important
that such solutions need to be compliant with the Web Service specifications [1] and
the WS-I interoperability profile [30]. There have been many approaches developed to
ensuring the dependability of Web Service and service composition. However, our
analysis shows that the limitations of those solutions restricted their applicability and
efficacy. There is a need for solutions to help develop dependable Web Service
applications. We conclude that such solutions will need to improve the dependability
of the existing legacy Web Services for clients without modifying them, thus benefit
clients whose applications rely on the services dynamically discovered from the
UDDI or other registries and employed in their applications. This can minimize the
development cost whilst fully utilizing the richness of services in the Web Service
world. New solutions are needed to improve the dependability of Web Service
applications from the user’s perspective to minimize the problems caused by service
and network failures. New techniques are also required for improving the efficiency

of such solutions by explicitly utilizing service diversity strategies and using the most

39

Dependability of Service-Oriented Architecture

dependable components to ensure dependable service composition. Moreover, the
solutions should have better compatibility with Web Service security mechanisms and
stateful Web Services. The above considerations motivated our research on improving

the dependability of Web Services.

40

The WS-Mediator System

3. The WS-Mediator System

3.1 Introduction

In this chapter, we present the WS-Mediator approach. Generally speaking, the WS-
Mediator is a2 Web Service intermediary system which implement an overlay
architecture [63-65], resilience-explicit computing [27] and fault tolerance
mechanisms to improve the dependability of Web Service composition. It explicitly
mediates clients’ requests to Web Services in accordance with the dependability
behaviour of these services and of the communication media (the Internet). The WS-
Mediator is implemented as a distributed network of dedicated services (called Sub-
Mediators) which allows monitoring of the dependability of the Web Services from
different locations. Monitoring results are used to dynamically generate and update
the dependability metadata of these Web Services, which makes it possible to achieve
explicit dynamic adaptation of Web Service composition at run-time. The system can
be seamlessly employed by applications, to provide off-the-shelf (ready-made) fault
tolerance mechanisms for improving the dependability of service composition without
modifying component services. This is especially beneficial for integrating

autonomous Web Services.

The chapter is organised as follows. Section 3.2 defines the objectives of the solution,
while section 3.3 overviews the architecture of the WS-Mediator system. Section 3.4
explains the structure and internal components of Sub-Mediator, and describes the
design principle of the WS-Mediator system in detail, with a particular focus on the
functional components. Section 3.5 demonstrates how to use the WS-Mediator system
in applications. Finally, section 3.6 concludes this chapter and highlights its main

contributions.

41

The WS-Mediator System

3.2 Research Objectives

In the previous chapter, we briefly overviewed relevant work on improving Web
Service dependability, highlighting the problems that have not been sufficiently
addressed in the existing solutions, which do not fully explore the impact of the
Internet and the quality of the service received by clients. Some solutions allow
clients to utilize service diversity in their applications. However, they neither support
justified selection of the diversity strategies nor select the component services
dynamically according to their changing dependability behaviours. Moreover, the
client application and the service brokers implementing these solutions often need to
be recompiled every time new component services are added to the composition
schema. Besides, these solutions tend to require a degree of collaboration from service
providers as additional information has to be obtained to implement relevant
mechanisms [46, 58]. This is, however, rarely suitable in cross-organizational

applications, thus eliminating the applicability of these solutions.

Yet ensuring the dependability of service composition with autonomous Web Services
is an important issue. Motivated by the problems described in section 2.5, our work
aims to tackle them, and accordingly we define the objectives for our approach in the

following way:

e To propose a solution to improving the dependability of Web Service
composition, which can maintain the continuity of services despite failures of
component services and network.

e This solution should be compliant with the Web Service specifications and
interoperability, and support on-the-fly dynamic integration of component

services according to their dependability characteristics.

42

The WS-Mediator System

e To make it possible to carry out an easy dynamic integration of new
component services to business logic to employ service diversity in service
composition.

e To develop a dependability monitoring mechanism to assess the dependability
of component services from the client’s perspective and generate
dependability metadata representing the dependability behaviour of
component services.

¢ To provide off-the-shelf fault tolerance mechanisms and dynamic

reconfiguration of these to deal with various fault assumptions.

As a result of our research, we have developed an architectural solution achieving the

above objectives. Below we will present the approach in detail.
3.3 Overview of the WS-Mediator

Our solution, the WS-Mediator (Web Service Mediator) system, realizes an off-the-
shelf mediator architecture [66] to ensure the dependability of Web Service
applications. The WS-Mediator system implements the Web Service intermediary
architecture [1]. Being autonomous of the client, it mediates between the client and
Web Services to ensure the continuity of services by employing resilience-explicit

computing and fault tolerance mechanisms.

The term Resilience-Explicit Computing refers to “the explicit use of information
(metadata) on the resilience characteristics of system components, infrastructure and
environment to guide decision-making at either design time or in the running system”
[27. 63, 65]. Resilience-explicit computing is specifically addressing dependability

issues in SOA to achieve highly dependable SOA applications.

43

The WS-Mediator System

In theory, resilience-explicit computing originally refers to the situation in which a
client imposes a dependability requirement when attempting integration with services,
whilst the services present dependability metadata at their interface [65]. In practice,
the above service lookup and integration process can be carried out by introducing
into the architecture a special service that can mediate between the client and the
services to match the dependability requirement of the client and the dependability
metadata of the services by employing explicit reasoning about service composition.
In the current Web Service technology, there is no standard definition of how
dependability metadata should be presented at the Web Service interface, nor is there
a standard way to implement them so that they can be universally understood by the
client. A special service should therefore be developed to resolve this issue. This
could, for instance, behave as a service coordinator between the client and the
services, and implement a conversion mechanism to convert the dependability
metadata from different services to a standard format that can be understood by the

client.

Our WS-Mediator approach followed the above route, extending it to adopt some
concepts and mechanisms from adaptive fault tolerance technology [67, 68], which
has already been applied in developing dependability-critical applications (e.g. [69])

for many years, to resolve the dependability issues in Web Service composition.

In SOA, from some perspectives the distinction between a service provider and a
client is blurred. When it invokes other Web Services, a service provider acts as a
client [4]. The WS-Mediator monitors the dependability of Web Services and
generates dependability metadata from monitoring results. The system overlay

architecture [63-65] allows the subsystem, i.e. Sub-Mediators, to be deployed at

44

The WS-Mediator System

various locations in the Internet. In practice, the Sub-Mediator can be deployed at the
same root where the client application executes. Thus, Sub-Mediators can perform on-
location monitoring of component services to consider the network impact. The
notion of on-location monitoring implies that it is performed at the client side by
distributed Sub-Mediators to realise the dependability behaviour of Web Services
from the client’s perspective (see Figure 3-1). Sub-Mediators can also utilize the
overlay architecture to implement message-routing strategies to deal with network-
related faults. The dependability Web Service metadata are used by the resilience-
explicit dynamic reconfiguration mechanism to make decisions about which Web
Service to select as the most appropriate for performing dynamic service composition
during the business procedure. This novel approach improves the efficiency and
feasibility of service diversity by applying it according to the dependability of
component services. The system does not limit the selection of candidate component
services, allowing new component services to be introduced into service composition
without modification or recompiling of any of its service components. Clients can
flexibly provide a number of candidate Web Services at run-time for implementing

service diversity.

Unlike the existing solutions (e.g. [46-48]), our approach does not create additional
difficulties for adapting systems to their applications. Furthermore, the system
provides integrated off-the-shelf fault tolerance mechanisms corresponding to various
fault assumptions and application scenarios, to be integrated into the client application
at run-time, thereby reducing the development cost of a dependable service

composition.

45

The WS-Mediator System

Figure 3-1: The overlay architecture of the WS-Mediator system allows monitoring
the dependability of Web Services from different locations by a dedicated global
network of Sub-Mediators. The system helps the clients to dynamically select the best
Web Services for service composition, and apply fault tolerance mechanisms to ensure

dependable applications.

The flexible and scalable architecture of the WS-Mediator allows it to be easily
tailored for various specific applications. There are many ways to deploy Sub-
Mediators - for example, they can be deployed on a local network, to be shared by
local clients; or a virtual organization could deploy a Sub-Mediator on each node of
the framework to construct the WS-Mediator system. A company could deploy a
number of Sub-Mediators at different locations to utilize the WS-Mediator
architecture so as to improve the dependability of their services for globally
distributed users. Figure 3-1 illustrates the general architecture of the WS-Mediator

system. Below we will explain its architecture and system components in detail.

46

The WS-Mediator System

I WS-Medstc; - s m g e |
| |
| [—— | Web Services
| |
| Sub-Mediator |
| —7 | urTPISOAP
| HTTP/SOAP |
1 e
Client || ' . ‘
o ‘ : | Sub-Mediator T —}———HTTP/ISOAP- —— Web Services
_ T | | 4 I L.y
ol | |
| HTTP/SOAP |
| | HTTP/SOAP
| | | I
| Sub-Mediator I i
|
: | : Web Services

Figure 3-2: Deployment of the WS-Mediator system, which consists of a number of
Sub-Mediators which implement an interface that accepts invocations from the client.
They monitor Web Services and other Sub-Mediators and generate dependability
metadata so that resilience-explicit computing can be performed. The system also
applies fault tolerance techniques to deal with faults. The dashed lines represent

optional message routes.

3.4 System Architecture

The WS-Mediator system consists of a set of interconnected Sub-Mediators, forming
an overlay architecture [64] (see Figure 3-2). Sub-Mediators are globally distributed
over the Internet to monitor the dependability of Web Services, and provide accurate
dependability metadata, presenting Web Service dependability characteristics from
the client’s perspective. They are functionally identical; if implementation diversity is
intended, however, their implementations can be different. The client invokes a Sub-
Mediator as the portal of the WS-Mediator system. Sub-Mediators intercept the

interaction between the client and component services, performing resilience-explicit

47

The WS-Mediator System

computing and applying fault tolerance techniques to improve the dependability of
service composition. Below we will describe the Sub-Mediator functionalities and its

internal structure.

Sub-Mediator

Interface

Resilience-explicit

Policy system

m

|
Database system |

Web Services
invocation
mechanism

dynamic Fault tolerance ‘ ‘
reconfiguration mechanisms |
mechanism L |

Dependability Dependability
monitoring assessment [‘
mechanism

mechanism | ‘

Figure 3-3: The internal structure of the Sub-Mediator

3.4.1 Sub-Mediator Structure

Figure 3-3 illustrates the internal structure of the Sub-Mediator. The Sub-Mediator
implements an interface (SMI) to accept the client’s invocation. The client’s request is
parsed and realized by the Business logic processor (BLP), which controls other
internal components, performing business logic procedures to fulfil the client’s
request. The Resilience-explicit dynamic reconfiguration (REDRM) implements a
resilience-explicit computing mechanism to dynamically select and integrate the best
component services in service composition according to their dependability metadata.

Preferences in this selection are constrained by policies defined by the client and

48

The WS-Mediator System

managed by the Policy system (PS) of the Sub-Mediator. The Fault-tolerance
mechanisms (FTMs) implements different fault tolerance techniques to deal with
different kind of faults. The client can define corresponding policies to select the
appropriate fault tolerance mechanisms to improve service composition dependability.
The Web Service invocation mechanism (WSIM) invokes the Web Services and
collects results. These are processed by the BLP and returned to the client via the
SMI. The dependability metadata of the Web Services is stored in the Database
system (DS), which also comprises information about Web Services and other Sub-
Mediators. The client can submit and edit information about Web Services to the DS
and retrieve the Web Service dependability metadata via the WSI. The dependability
monitoring mechanism (DMM) successively monitors the Web Services and Sub-
Mediators registered in the DS. The Dependability Assessment (DA) mechanism
processes monitoring results by the DMM to assess the dependability of Web Services

and Sub-Mediators and to generate their dependability metadata.
3.4.2 Sub-Mediator Interface (SMI)

The Sub-Mediator interacts with the client via the SMI, which can be implemented in
different forms, such as APIs and Web Services, according to the concrete
implementation of the Sub-Mediator. Essentially, the SMI should have the following

functionalities:

(o]

Accepting a client’s service request for dynamically mediated service
composition with candidate Web Services

o Accepting service policies as defined by the client

o Accepting information submission by Web Services

o Accepting a client’s request for Web Service dependability metadata

49

The WS-Mediator System

o Retumning mediated results to the client

o Returning Web Service dependability metadata to the client for dependability

analysts.

The mediating service is the main service provided by the WS-Mediator system.
When the client (e.g. an e-Science workflow) requests the WS-Mediator to mediate
service composition, it needs to provide one or several candidate Web Services, and
an invocation message to be sent to each candidate Web Service. The number of the
candidate services depends on the intended fault tolerance mechanisms. The
invocation message carries the actual request to each corresponding Web Service. The
Sub-Mediator generates a mediated result, based on the results collected from
candidate Web Services, according to service policies. The mediated result needs to
indicate the source of the initial results, i.e. the candidate Web Services which
returned the results that it generated from. In case of no candidate returning a valid
result, or other types of failures, the mediated results need to attach an error message

indicating the type and details of the error.

The Sub-Mediator allows the client to submit and edit information about Web
Services, e.g. the endpoint address, the required message binding methods, etc. via the
SMI to help the WS-Mediator system to monitor Web Services. This information is
then stored in the DS, and Web Services monitored by the Sub-Mediator. The client
can also retrieve Web Service dependability metadata via the SMI for dependability
analysis. For example, a Sub-Mediator can request the dependability metadata on

particular Web Services to identify the best messaging routes.

50

The WS-Mediator System

3.4.3 Business Logic Processor (BLP)

The BLP controls the business logic process in order to fulfil the client’s request. It
parses the client’s request and service policies, assembles the business process
procedures and carries out a set of activities to perform the procedures. Figure 3-4
illustrates the assembly of BLP business procedures and execution activities. The

actual process of each procedure node is carried out by the corresponding

mechanisms.
3.4.4 Policy System (PS)

The PS manages two types of policies: service and system configuration policies.
They define essential and optional configuration parameters to constrain the execution

of service procedures as well as internal behaviours.

PS
Parse request Parse policies ‘

Select FTMs FTMs
Perform service
procedures
Select WSs REDR
Process results ‘
Invoke WSs
WSIM

Figure 3-4: Assembly of BLP business procedures and internal activities

51

The WS-Mediator System

Service policies comprise a set of entities allowing the client to define service
preference and other processing parameters, such as constraints on the invocation
method used for invoking component services, selection of fault tolerance

mechanisms, criteria for selecting candidate component services, etc.

System configuration policies contain entities representing system settings. They set
parameters to define the corresponding behaviours of the system and its components.
For example, they can set the maximum number of synchronous invocations the

system allows at a time, the maximum number of entities that the DS can store, etc.
3.4.5 Database System (DS)

The DS comprises two databases: the Web Service database (WSD) and the Sub-
Mediator database (SMD). The WSD stores information on the registered Web
Services and their dependability metadata, whilst the SMD stores information on the
registered Sub-Mediators and their dependability metadata. The information on Web
Services needs to be sufficient for the Sub-Mediator to invoke and monitor them,
including their endpoint address, operation name and so on. Different operations
offered by the same Web Services are regarded as different services. The
dependability metadata comprises entities representing the Web Service dependability
characteristics, such as their dependability rank, average response time, major types of

failures, etc. The structure and content of the SMD is similar to that of the WSD.
3.4.6 Dependability Monitoring Mechanism (DMM)

The DMM monitors the dependability of both Web Services and Sub-Mediators. It
retrieves the information on Web Services and Sub-Mediators from the DS to

compose test scripts to invoke the services and collect their dependability metrics,

52

The WS-Mediator System

such as the availability measurement (m), round-trip response time (7), type of failure
(), etc. The test scripts run continuously, with the interval defined by the system
configuration policies, which also define the dependability metrics, €.g. m, 1, f, that the
test script needs to collect. For instance, when the DMM monitors a Web Service
(WS), it invokes it using the test script and waits for a response. If it returns a valid
result that does not contain any error message, then its availability measurement (m)
increases. The round-trip response time of the invocation is recorded for calculating
the average response time (r) of a WS. If it returns an invalid response, its m
decreases, and the error message is logged in the database for the type of failures
statistic (f). If it fails to respond, or an exception arises during the invocation, its m

also decreases, and the type of the exception is also logged for the statistic f.
3.4.7 Dependability Assessment Mechanism (DAM)

The DAM assesses the dependability metrics of services and their dependability
characteristics to generate dependability metadata. It can generate and update both
permanent dependability metadata (m, ¢ f), which represent the long-term
dependability characteristics of services, and temporary dependability metadata (m, ¢,
J) defining their short-term dependability characteristics. The system configuration
policies determine the time frame for calculating the short-term dependability
metadata (m, ¢ f). Theoretically, the short-term dependability metadata more
accurately represent the dependability of component services during run-time
dynamic service composition, whilst the long-term dependability metadata can help to

understand the changing behaviour of services.

53

The WS-Mediator System

3.4.8 Resilience-explicit Dynamic Reconfiguration mechanism (REDRM)

The REDRM component dynamically selects and integrates component services
according to their dependability metadata (m, ¢, f). Until now, solutions implementing
service diversity have not emphasised strategy of selecting candidate services. The
execution order of the alternative services has been decided randomly by the service
diversity mechanism, without reasoning. However, as shown in our experiments [37,
38], the dependability characteristics of a Web Service may change from one moment
to another. For instance, the availability (m) and the round-trip response time () of the
service can vary dramatically, and the service suffers from different type of failures (/)
at different times. Moreover, the above characteristics can also vary from different
clients’ viewpoints as well as becoming less predictable because of the variations in
the network and other relevant environmental factors. In section 2.5, the use case
illustrated in Figure 2-5 demonstrates that inappropriately selecting primary
component services when applying service diversity may undermine the efficiency of
service composition. Therefore, we introduce resilience-explicit computing for
making decisions about selecting component services in dynamic service composition
to improve the feasibility and efficiency of the service diversity approach. The Sub-
Mediator uses the candidate Web Services provided by the client to implement service
diversity. Before carrying out service composition, the REDRM uses the relevant
service policies defined by the client to sort the candidate services by their
dependability metadata (m, ¢, f) in the DS. The best Web Services are used primarily
to perform service integration, whilst the others are used as alternatives. The
following shows how to apply resilience-explicit dynamic reconfiguration in service
composition:

Service composition: /* collect component services

54

The WS-Mediator System

Aggregation A = {s, s, ... S5}
Dependability metadata: /* set the criterion for dynamic selection

Criterion C = m: availability /* the criterion set by the selection policy
Sort component services: /* sort services according to metadata

Order O = (A —sorted)

Adaptation: replace (Service S, O) /* switch to new component services

Below is an example which shows how to apply resilience-explicit computing in the

design of an application implementing service alternatives:

Set
{sy | services (n)} : list of candidate component services
criterion = m (availability) : parsed from selection policy
threshold t : parsed from selection policy
Retrieve
{a, | availability (n)} = m,. metadata (m) of s,
Filter
{ca | candidates (n)} = s, where a, is equal to or greater than t
Sort Cq : sort according to a,
Composition
Try
service S =)
response r = invoke (c;);
if (r is valid) then Finish
else replace S with next ¢,
Try ... /* try alternatives

55

The WS-Mediator System
Finish

return r /* return response to the upper level class

The benefits of this approach are clear. Integrating explicitly selected component
services can maximize the dependability and performance of service composition as
the less dependable component services are avoided to prevent them from

undermining the dependability of the entire application.

Flight booking
(Web Services)
Airway 1

")

o
Travel booking
(Web Services)

| Travel agency 1 |

==]
Hotel booking
1 (Web Services)
Hotel 1

)

i application Flight booking ’!

/‘»,; ‘ (Web Services) J

Customer Airway 2

Travel booking

(Web Services) service composition =~~~ _ “~ Hotel booking 1

‘ Travel agency 2 T T T == (Web Services) |

> Hotel 2 y

Figure 3-5: The resilience-explicit service composition in travel booking use case. The
solid lines represent fixed message routes, and the dashed lines redundant/alternative

message routes.

Here we use the rravel booking use case to demonstrate the feasibility of resilience-
explicit computing in service composition. The rravel booking illustrated in Figure 3-
5 extends the one illustrated in Figure 2-5, where both travel agencies (TA), TAIl and
TA2 use the same Airways (AW), AW1 and AW2, and hotels (HT), HT1 and HT2. as
external component services. Normally, TAl uses AWI and HTI as primary
component services for travel booking, with AW2 and HT2 used as alternatives if
AWI or HTI fails. TA2 implements resilience-explicit service composition in its
travel booking business procedure. AW1, AW2. HT1 and HT?2 are equally used as

redundant component services. When TA2 receives a quotation request from the

The WS-Mediator System

client, the resilience-explicit computing mechanism checks the dependability
metadata (m, r) of AW, AW2, HT1 and HT2, and selects the most dependable ones
to perform service composition. Let us assume that the HT1 is an undependable Web
Service, whilst HT2 is very dependable, and that TA2 uses HT2 primarily to check
the hotel. At the same time, the performance of AW2 is better than of AWI1, and TA2
uses AW2 to check the flight. In this scenario, TA2 achieves the best dependability

and shortest response time for the client.

In contrast, when TA1 receives a guotation request from the client, it invokes AW1
and HTI to check their availability. However, as we already know, HT1 is an
undependable Web Service and therefore fails to respond to TA1 enquiry. Therefore,
TA1 has to switch to HT2 to check the availability. Meanwhile, although AWI is
slower than AW2, it successfully delivers the response to TAl. Eventually, TAl
retumns the booking quotation; however, it loses the competition against TA2, which
delivers faster response because of the superior service implementation. Below we

demonstrate how to apply resilience-explicit computing in designing TA2:

Services

{hotel | HT1, HT2 }

{airway | AW, AW2 }
Metadata

{m (%) | HT1: 60%, HT2: 90%, AW1: 90%, AW2: 90% }

{r (ms) | HT1: 500ms, HT2: 400ms, AW1: 800ms, AW2: 600ms }
Selection policy

{primary_criterion : m (availability) | no threshold;

Second _criterion: r (response time) | no threshold }

57

The WS-Mediator System

Sort

{hotel | HT2, HT1} /* myr> > myr

{airway [AW2, AW1} /* maw; = maw; but raws <raw;
Composition

Try check hotel
hotel h = HT2
response rh = invoke (h)
if (r is valid) then Finish hotel booking
h=HTI1

Try ...

Finish hotel booking

Try check flight
airway a= AW2
response ra = invoke (h)
if (r is valid) then Finish airway booking
a=AWI

Try ...

Finish check flight

Finalize
quotation = rh + ra + service charge

return quotation

There are also other benefits gained through resilience computing. For example, the
REDRM can appropriately set relevant parameters when integrating component
services according to the information in the dependability metadata. The information

may contain average or maximum response time of the component service, and the

58

The WS-Mediator System

REDRM can set the invocation time-out parameter according to the response times to

improve the performance of service composition.
3.4.9 Fault-tolerance mechanisms (FTMs)

The Sub-Mediator implements fault tolerance techniques to tolerate temporary and
permanent service and network failures. They are implemented as different fault
tolerance execution modes aggregated in the FTMs. There are currently three types of

fault tolerance execution modes included.
A. Service Alternative Execution Mode

The Service Alternative execution mode implements the Recovery block fault
tolerance technique [52] to apply the service diversity strategy [20]. When the client
selects the Service Alternative execution mode and provides a number of Web
Services as candidates, the REDRM mechanism will first check the dependability
metadata of the candidate Web Services, removing the Web Services that do not meet
the acceptance thresholds from the candidate list. Then the REDRM sorts the Web
Services according to prior criteria defined in the service policies comprised in the PS.
The Web Service with the best dependability metadata will be selected as the primary
one and the others used as alternatives. If the primary Web Service fails, the next best
alternative Web Services will be invoked. Eventually, when a valid result is recetved
from a Web Service, the execution will be terminated. The result will then be
delivered to the BLP, which uses it to generate the mediated result to be sent to the
client as the response to the service request. Figure 3-6 illustrates the use case of the

Service Alternative execution mode.

59

The WS-Mediator System

Check global policy

Select primary WS

Check individual policy

Validate the response

Invoke WS

Change WS

Figure 3-6: The use case of the Service Alternative execution mode

B. N-version Programming Execution Mode

The N-version Programming execution mode implements the N-version Programming
technique [70]. The N-version Programming mode invokes a number of Web Services
simultaneously, and the results received from Web Services will be processed
according to the corresponding service policies. Note that the technique used in Web
Services is sometimes different from the classical N-version programming technique
applied in conventional software/system development, where the multiple versions are
mostly developed from the same requirements and specifications, and their processing
results can be voted for result validation. With Web Services, similar Services can be
used for implementing service diversity; they are, however, very likely to be irrelative
to each other, not meeting the same implementation specifications. Thus, the results
can only be voted after transforming and matching processes, which mechanisms are

not intended in the WS-Mediator system. Using the result voting mechanism in this

60

The WS-Mediator System

execution mode is subject to applicability. Fi gure 3-7 illustrates the use case of the N-

version programming execution mode.

Check global policy

invoke WSs

Valldate the response

Change WS

Figure 3-7: The use case of the N-version Programming execution mode

C. Message Routing Execution Mode

The Message Routing execution mode implements a unique fault tolerance
mechanism which extends the conventional Message Routing diversity strategy to
achieve explicit selection of message routing. When this execution mode is selected,
the Sub-Mediator checks the dependability metadata of each candidate Web Service
from the Sub-Mediators registered in its Sub-Mediator registry. If the dependability
metadata of a Web Service in the participating Sub-Mediators meet the parameters
defined in the service policies, the Sub-Mediator can be selected as a message routing
intermediary. Once the required number of intermediaries is satisfied, the local Sub-
Mediator passes the invocation details of the Web Service to the intermediary Sub-

Mediators. The intermediary Sub-Mediators then invokes the Web Service from their

61

The WS-Mediator System

locations. The results will be retuned to the local Sub-Mediator. If more than one
message route is selected, the results will be processed according to the service

policies. Figure 3-8 illustrates the use case of the Message Routing execution mode.

Check the globat policy

invoke SMs

(Vote results) Check the dependability

Select Messaye routes metadata of the WS

Validate the response Change WS

Invoke SMs

Figure 3-8: The use case of the Message Routing execution mode.

D. Dynamic Reconfiguration of Fault-tolerance Mechanisms

The fault tolerance mechanisms are designed to deal with various types of failures as
well as different types of application scenarios. The efficiency of the WS-Mediator
system greatly relies on the selection of fault tolerance mechanisms during service
composition. Resilience-explicit computing can also be applied in making decisions
about the selection of fault tolerance mechanisms. The novelty of our approach is that
the resilience-explicit dynamic reconfiguration mechanism consults the statistic of
type of failures (f) of Web Services to select the most appropriate fault tolerance

mechanism for dealing with typical failures of Web Services. For instance, if a Web

62

The WS-Mediator System

Service often fails because of network-related failures, then it may be advisable to
apply the message routing execution mode integrated with the service; if a Web
Service only rarely fails due to temporary faults, such as an occasional time-out,
system maintenance, and so on, it can be a good choice to make it the primary service
and apply the service alternative execution mode, whilst using other, less dependable
ones, as alternatives. Furthermore, it is also feasible to automatically select the N-
version programming execution mode when the availability measurement (m) of all

candidate Web Services is much lower than certain standards.
3.4.10 Web Service Invocation Mechanism (WSIM)

The development of Web Services relies on Web Service middleware provided by a
variety of organizations and companies [31-33], which implements mechanisms
defined in the Web Service specifications. As this middleware commonly supports
different message binding methods, invocation methods, etc., the WSIM needs to
aggregates different message binding and invocation methods to suit different Web
Services. The message binding method and invocation type can be defined in the

service policies.
3.5 Application of the WS-Mediator

Applying the WS-Mediator is easy. It can be seamlessly integrated in Web Service
composition applications. It does not require component services to be modified,
because of its compliance with the interoperability standards. The WS-Mediator
simplifies the development of the client application by enhancing service composition
procedures and fault tolerance mechanisms with the off-the-shelf functionalities

implemented in the WS-Mediator. Therefore, the client application only needs to

63

The WS-Mediator System

provide candidate component services and define service policies for the WS-
Mediator, avoiding the complexity of service composition. Moreover, the WS-
Mediator can dramatically improve the dependability and performance of service
composition without increasing the complexity and cost of application development,
and these benefits become more prominent when the scale of service composition

increases, involving more component services.

Moreover the WS-Mediator approach improves the applicability and efficacy of the
service diversity strategy based on the functionally-similar autonomous services
without undermining the compatibilities with Web Services security mechanisms and
stateful Web Services. The approach allows the client to set specific requests
(including encrypted messages) and service policies for each candidate services so
that the system explicitly selects the best component services during dynamic
composition. In the case of stateful Web Service composition, the system allows the
client to decide how to continue the execution of a workflow when a failure occurs in
the middle of the interactions with a stateful component service. For example, the
client can provide replica services as alternatives so that these replica services can
retrieve the processing state and continue the business logic process; or the client can
decide to abandon the interrupted business logic process and use other similar services

to process the business logic from the top.

While providing flexible transaction-oriented fault tolerance to improve the
dependability of service composition, the WS-Mediator system does not interfere with
the execution of the client application. We believe that the client will typically be in a
better position to choose how to compose the business logic and decide how to control

the workflow, while the WS-Mediator system can help the client application to use

64

The WS-Mediator System

the best services and improve the dependability of the transactions between the client

and the services.

Flight booking
(Web Services) 2
P! A:rwayj J

: = ’
Travel booking o o -

_———+ (WebServices) &~ ,\/\ Hotel booking ||
/ Travel agency 1 D = |

i

|
] (Web Services) |
/ x R % -~ Hotel 1)

y ey EE T — o sl i
o Client | . T
application = WS‘Mec_hator | s I A== =
/ (Sub-Mediator 1) .~ P ~ Flight booking
Customer Y 7 Ty (Web Services)
| £ =, Airway 2 J
\ A T — ¢ ™
\ Travel booking WS-Mediator |V, ~< - -
~~4 (Web Services) = (Sub-Mediator 2) = __ "~ Hotel booking
Travel agency 2 /l /‘ T T == ——— (Web Services)

Hotel 2)

Figure 3-9: Travel booking use case with the WS-Mediator system. The solid lines

represent fixed primary and the dashed lines redundant/alternative message routes.

Here we use the travel booking use case again to demonstrate the advantages of the
WS-Mediator system. Figure 3-9 illustrates the rravel booking use case that integrates
the WS-Mediator system into service composition. The client application and TA2
both develop their business logic relying on the WS-Mediator system, whilst TAI
retains the conventional implementation. TA2 relies on Sub-Mediator2 to implement
dynamic integration with AWI1, AW2, HT1 and HT2, applying fault tolerance
mechanisms in the interaction between TA2 and the external component services.
Obviously, TA2 provides higher dependability and better performance than TA1 does.
Sub-Mediator] monitors the dependability of TA1 and TA2. When the client requests
the WS-Mediator to perform service composition for rravel booking, TA2 will be
selected by Sub-Mediator2 to fulfil the booking request. While in reality TA2 may fail
to deliver the service to the client during the process of the booking process because
of failures of component services or the network beyond what the fault tolerance

mechanisms can deal with, the dependability metadata provide quantitative evidence

o)
n

The WS-Mediator System

suggesting TA2 is less likely to fail than TALI. Thus, the performance of the travel

booking procedure is optimized because all participating component services are

explicitly selected. Consequently, TA1 will lose business when competing with TA2,

until its dependability improves. In real-world applications, there are far more travel

agencies other than TA1 and TA2 offering similar services, as well as more airway

companies and hotels. It is difficult to decide which service is trustworthy and

dependable, without the help of the WS-Mediator system.

3.6 Conclusions

In section 3.2, we have outlined the objectives we set for our research. We believe

these have been successfully achieved in the WS-Mediator approach:

A.

The WS-Mediator is a generic solution reinforcing and extending the existing
work on improving the dependability of Web Services via its overlay
architecture to ensure the continuity of services.

The innovation of the WS-Mediator lies in its off-the-shelf mediating
architecture and resilience-explicit computing, which allow dynamic
integration of Web Services according to their dependability behaviour.

The WS-Mediator supports genuine on-the-fly integration with Web Services
via its interoperable Web Service interface and invocation mechanism.

The Policy-driven dynamic reconfiguration of the fault tolerance mechanisms
makes the WS-Mediator applicable to dealing with various types of faults and
the changing behaviour of Web Services and the network.

The WS-Mediator is compliant with the Web Service interoperability

standards.

66

The WS-Mediator System

F. The flexible and scalable design of the approach allows it to be extended or

tailored to suit specific applications.

In this chapter, we have described the architecture of the WS-Mediator system and
explained the functionalities of the system components. We have specifically focused
on how to generate dependability metadata according to monitoring results, and how
to utilize these metadata in resilience-explicit computing to achieve dynamic service
composition with the most dependable Web Services. Moreover, the WS-Mediator
improves the dependability of service composition by employing a variety of fault

tolerance techniques.

67

Java WS-Mediator

4. Java WS-Mediator

4.1 Introduction

In this chapter we present the Java WS-Mediator, which is a prototype of the WS-
Mediator system implemented using the Java Web Service technology [71]. The Java
WS-Mediator has been developed with the aim of evaluating the WS-Mediator
approach and demonstrating the applicability of the approach in a number of realistic
Web Service applications. We chose Sun Microsystems Glassfish [33] as the Java
Web Service platform for the development of the prototype. Our implementation
supports two types of Sub-Mediator. The Sub-Mediator Elite is implemented as an
additional layer on top of the Glassfish Java Web Service Middleware. It can be easily
deployed on a personal computer to enable WS-Mediator Java APIs to be invoked by
the client application. The Web Service intermediary Sub-Mediator implements Web
Service interface and is developed to be deployed on the Glassfish application server.
It uses the Sub-Mediator Elite as the underlying middleware to achieve the designed

functionalities.

The chapter is organised as follows: section 4.2 briefly introduces the Java Web
Service technology, section 4.3 presents the design of the Java WS-Mediator, and

section 4.4 concludes this chapter.
4.2 Java Web Service middleware

Web Services is a paradigm of distributed systems that extends the conventional peer-
to-peer middleware protocols to override some shortcomings of the conventional
distributed systems. The implementation of Web Services relies on middleware

infrastructure known as Web Service middleware. This middleware shares the

68

Java WS-Mediator

underlying infrastructure with the conventional middleware to provide fundamental

underlying services such as transaction support, etc. See a representation of Web

Service architecture in Figure 4-1.

(Web Service interface\’ Client i i
. ient invoca
Ecoess to internal systenﬂﬁ e on;

Web Service middleware

Integration logic

Conventional middleware
(includes middleware services)

T

other tiers other tiers

Figure 4-1: Basic architecture of Web Services. [1]

The client application also relies on Web Service middleware which implements
underlying protocols atop conventional middleware. The architecture of the client

application is illustrated in Figure 4-2.

Web Service middleware can be developed based upon different technologies.
Today’s middleware typically relies on the .NET [72] or J2EE [73]. While comparing
these is beyond the scope of this dissertation, our choice of the Java Web Services
based on the J2EE technology to develop the WS-Mediator was prompted by the
platform-independent nature of the J2EE technology. Besides there are sufficient
recourses and supports available for Java Web Services free of charge, which makes

them a cost-efficient platform to conduct academic research and experiments.

69

Java WS-Mediator

C Client applicationji——#

Web Service middieware

Invoking Web Services

(includes middleware services)

1
' Conventional middleware

other tiers other tiers

Figure 4-2: The architecture of Web Service client

There are several implementations of the Java Web Service middleware developed by
different providers, such as Aparche Axis [32], JBoss [31], and Glassfish [33]. All of
them are sufficient for developing complex Web Service applications. While each has
its unique features and advantages over the others, we chose Glassfish for the

following reasons:

e Its comprehensive development environment and tools integrated in the
NetBeans IDE for developing Web Service applications [74].

e Sufficient support of dynamic Web Service invocation provided by the
powerful Dispatch<T> interface.

e Compliancy with the current Web Service specifications and Web Service
Interoperability standards.

* Open-source project with strong industrial support by both Sun Microsystems

and Microsoft.

70

Java WS-Mediator

Sub-Mediator

@ Web Service
Interface

| Web Service Raquestor

| Web Service middleware
Client application /,, dieware " Web Service Provider
; ~

i .
i 4
| &7 Y =
0(7\\ Jd o, Web Service interface
S % usaidhaingibagis +|
g N Business Logic
., |
——a invocation =1
Web Service middleware J' » | Web Service middleware

Figure 4-3: Web Service application with the Java WS-Mediator

Below is the development environment and packages for implementing the Java WS-

Mediator:

Development IDE: NetBeans v5.5.1 [74]

e Java SDK: J2EE v1.5
e Web Service platform: Glassfish V2
e Java Web Service API: JAX-WS 2.1 [75] and JAX-RPC 1.6

4.3 Structure of the Java WS-Mediator

The WS-Mediator system is structured of functionally identical Sub-Mediators. These
can be implemented in different forms, as long as they agree with the fundamental
principles and designed functionalities presented in chapter 3. We have developed a
special Java WS-Mediator middleware called Mediator-Elite to accomplish the

designated structure and functionalities of the Sub-Mediator.

71

Java WS-Mediator

Sub-Mediator Elite

1
o— Java APls L———ﬁ Business Logic Processor Policy System
Sub-Mediator Web Service
Database Accessing ——% Database Accessing }—
Bridge Bridge

Dynamic
Reconfiguration
Engine
—

L4 Database F:;,‘:;:::::::e Database

(Sub-Mediators) NVQ:ervioes))
Sub-Mediator Web Eer_vice Web Service
Monitoring Invocation Monitoring
Mechanism
j
SOAP é SOAP SOAP

Figure 4-4: Internal structure of the Sub-Mediator Elite, which implements Java APls
as interface to accept invocations from the client application. It monitors Web
Services and other Sub-Mediators registered in its database, and generates their

resilience metadata to perform resilience-explicit dynamic reconfiguration.

4.3.1 Structure of the Sub-Mediator Elite

The Sub-Mediator Elite is implemented as an additional layer atop the Glassfish Web
Service middleware. It can be deployed on personal computers. The Java client
application can invoke the Java APIs of the Sub-Mediator Elite to use it as a locally
deployed Sub-Mediator. The Sub-Mediator Elite can also be used for implementing
the Web Service intermediary type Sub-Mediator by deploying it on the Glassfish
Application Server, as well as realizing a Web Service interface corresponding to the
Java APIs of the Sub-Mediator Elite (see Web Service architecture with the Java WS-

Mediator shown in Figure 4-3).

72

Java WS-Mediator

Figure 4-4 illustrates the internal structure and components of the Sub-Mediator Elite.
It implements Java APIs (JAPIs) to accept the invocation from the client application.
The BLP parses the client’s requests and service policies, and assigns tasks to the
corresponding components to implement the business logic process procedures. The
Web Service Database (WSD) stores the information about Web Services and keeps
their dependability metadata. The Web Service Database Accessing Bridge (WSDAB)
allows editing the information about Web Services and retrieving their dependability
metadata. The Sub-Mediator Database (SMD) stores the information about other Sub-
Mediators and keeps their dependability metadata. The Sub-Mediator Database
Accessing Bridge (SMDAB) edits the information about the Sub-Mediators and
retrieves their dependability metadata. The Dynamic Reconfiguration Engine (DRE)
implements a resilience-explicit mechanism to integrate Web Services and apply
fault-tolerance techniques. It selects the most desirable, according to the service
policies, Web Services and then chooses fault tolerance execution modes to perform
service composition. The Fault-tolerance Mechanisms (FTMs) implement different
fault tolerance execution modes to deal with different fault assumptions. The Web
Service Monitoring (WSM) and Sub-Mediator Monitoring (SMM) monitor Web
Services and Sub-Mediators respectively and generate their dependability metadata.
The Web Service Invocation Mechanism (WSIM) implements various message
binding and invocation methods to improve the interoperability with real-world Web
Services. In the following sections we will describe the functionalities of each

component in detail.

73

Java WS-Mediator

4.3.2 Java APIs of the Sub-Mediator Elite

The Sub-Mediator accepts service requests via its JAPIs interface. There are three

basic types of service requests classified by their purpose:

e Accessing the Web Service database
e Accessing the Sub-Mediator database

¢ Requesting mediating services

The above requests are dealt with by corresponding service components. Below is an

explanation of each type of service requests.
A. Accessing Web Service Database

The Sub-Mediator Elite allows adding, editing, and removing the information about
Web Services via the WSDAB. After the client adds a Web Service to the WSD, it is
periodically monitored by the Sub-Mediator Elite for later use. The client needs to

provide the following information associated with it:

o Endpoint address of the Web Service
e Operation name

o Description of the Web Service

o Test SOAP message

e Test policy

The endpoint address and operation name are used for identifying the Web Service
and the client-intended service function provided by the Web Service. Different

operations provided by the same Web Service are regarded as different entities. The

74

Java WS-Mediator

description gives a briefly memo about the Web Service. The WSM mechanism uses
the test SOAP message to invoke the Web Service and the corresponding service

operation. Figure 4-5 shows a simple example of the test SOAP message:

<soapenv:Envelope xmlns:soapenv=\"http://schcmas.xmlsoap.org/soap/envelope/\">

<soapenv:Body>
<addNumbers xmlns=\"http://mediator.wsmediator.org\">
<arg0>10</arg0>
<argl>20</argl>
</addNumbers>
</soapenv:Body>

</soapenv:Envelope>

Figure 4-5: An example of the test SOAP message

The test policy is used for defining relevant parameters, such as the invocation method

and expected timeout. Figure 4-6 illustrates an abstract model of the rest policy:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.0rg/ws/2004/09/policy"

xmlns:wsmip="http://schemas.wsmediator.org/testpolicy/policy">

<wsp:ExactlyOne>
<wsp:All>

<parameter]>{value}</parameter]>

<parameterN> {value}</parameterN>

</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Figure 4-6: An example of the test policy

75

Java WS-Mediator

The client can also edit and remove the existing Web Services from the WSD, as well
as retrieve the information about Web Services by providing their endpoint address
and operation name. The client can request the dependability metadata of a Web

Service via the corresponding JAPIs. The dependability metadata will be capsulated

in a SOAP message returned to the client.
B. Accessing the Sub-Mediator Database

The client can add and edit information about other Sub-Mediators in the SMD. In

order to add a Sub-Mediator, the client needs to submit the following items:

o Endpoint address of the Sub-Mediator
e lts Location and ISP

e Briefmemo

The endpoint address is used for identifying the Sub-Mediator. The test script for
monitoring a Sub-Mediator is automatically generated by the SMM mechanism. The
client may request the dependability metadata of Sub-Mediators by providing the
endpoint address. The dependability metadata of a Sub-Mediator will be attached into

the SOAP message sent to the client.
C. Requesting Mediating Services

The most important type of requests is for mediating services. It is the core service
offered by the WS-Mediator system. The client invokes the corresponding API to
submit a mediating service request. The following information needs to be attached to

a service request message:

e One or more candidate Web Services

76

Java WS-Mediator

e Endpoint addresses of the Web Services

o Operation names of the services being invoked

o SOAP messages to each candidate Web Service

o An individual execution policy associated with each Web Service

o A global execution policy

The candidate Web Services are not limited to those existing in the WSD. However,
only the Web Services that have already been monitored by the Sub-Mediator can be
used explicitly since only their dependability metadata are available. The SOAP
message associated with each candidate Web Service is identical to that used for
invoking the Web Service directly from the client without using the Sub-Mediator.
The individual execution policy constrains the instruction indicating how to process a
candidate Web Service. The global execution policy indicates how to process the
client’s request. An abstract example of the service request SOAP message is

illustrated in Figure 4-7.

<SOAP abstract>

<ws>
<endpointAddress>{ EndpointAddress_ws1}</endpointAddress>
<functionName> {FunctionName_ws1} </functionName>
<SOAPMessage>{SOAP to_wsl}</SOAPMessage>
<individualPolicy>{InExPolicy XML _ws1}</ individualPolicy>

</ws>

<ws>
<endpointAddress> { EndpointAddress_ws2} </endpointAddress>
<functionName> { FunctionName_ws2}</functionName=>

<SOAPMessage>{SOAP_to_ws2}</SOAPMessage>

77

Java WS-Mediator

<individualPolicy>{InExPolicy_XML_wsZ}</ individualPolicy>

</ws>

<ws>

<endpointAddress>{EndpointAddress_ws3} </endpointAddress>
<functionName>{FunctionName_ws3}</functionName>
<SOAPMessage>{SOAP_to_ws3} </SOAPMessage>
<individualPolicy>{InExPolicy XML ws3}</ individualPolicy>

</ws>

<globalExecutionPolicy>
{GlobalExecutionPolicy XML}

</globalExecutionPolicy>

</SOAP abstract>

Figure 4-7: An abstract of the service request SOAP message

4.3.3 Business Logic Processor (BLP)

The BLP implements service operations corresponding to the Web Service Interface,
diverting service requests to the corresponding service processing components. A
service request for accessing the WSD will be diverted to the WSDAB, one for

accessing the SMD to the SMDAB, and one for mediating services to the DRE.

When service components complete the execution of service requests, they pass the
results back to the BLP, which assembles the processing result into a SOAP message

and returns it to the client.
4.3.4 Database System

There are two databases comprised in the DS of the Sub-Mediator Elite. The WSD

consists of the Web Service Registry and the Web Service Dependability Metadata

78

Java WS-Mediator

Database. The SMD consists of the Sub-Mediator Registry and the Sub-Mediator

Dependability Metadata Database.

A. Web Service Database (WSD)

The Web Service Registry maintains the information about a number of Web Services

added by the clients and the system administrators. It contains the information

associated with each Web Services:

* Endpoint address of the Web Service
o Operation name

® Description of the Web Service

¢ Test SOAP message

o Test policy

The above information is used for monitoring Web Services. Figure 4-8 illustrates an

abstract model of the Web Service Registry in the XML format.

<?xml version="1.0" encoding="UTF-8"?>
<webServicesRegistry>
<ws>
<endpointAddress>{Endpoint_ws1}</endpointAddress>
<operationName>{Operation_ws| }</operationName>
<description>{Memo_Text_ws1}</description>
<testSOAPMessage>{TestSOAPMessage ws1 } </testSOAPMessage>
<testPolicy>{TestPolicy_ws]}</testPolicy>
</ws>

<ws>

79

Java WS-Mediator

<endpointAddress> { Endpoint_ws2}</endpoinlAddress>
<operationName> {Operation_ws2}</ operationName>

<description>{ Memo_Text_ws2}</ description>
<testSOAPMessage>{TestSOAPMessage_wsZ}</testSOAPMessage>
<testPolicy>{TestPolicy_ws2} </testPolicy>

</ws>

</webServicesRegistry>

Figure 4-8: An example of the Web Service Registry

The Web Service Dependability Metadata Database stores the dependability metadata
of the corresponding Web Services, i.e. attributes which represent their dependability
characteristics. Figure 4-9 illustrates an abstract model of the dependability metadata

of a Web Service in the XML format.

<?xml version="1.0" encoding="UTF-8"?>

<ws service={Name_of wsl}>
<endpointAddress>{Endpoint_ws|}</endpointAddress>
<operationName>{Operation_ws1}</operationName>
<dependabilityAttribute1>{value} </dependabilityAttribute 1>

<dependabilityAttribute2> {value} </dependabilityAttribute2>

<dependabilityAttributeN>{value} </dependability AttributeN>
<fws>

Figure 4-9: An abstract model of the dependability metadata of a Web Service

If a Web Service registered in the Web Service Registry is not used for a certain

period of time, it will be removed from the database, along with its metadata.

80

Java WS-Mediator

B. Sub-Mediator Database (SMD)

The Sub-Mediator Registry contains the following information about a number of

Sub-Mediators:

e Endpoint address of the Sub-Mediator
o The Location and ISP of the Sub-Mediator

o Memo

Sub-Mediators implement a universal test service for monitoring. The Sub-Mediator
Monitoring Mechanism uses the endpoint address of the Sub-Mediator to
automatically generate the test script. The endpoint address can be used to identify the
Sub-Mediator in the Sub-Mediators Registry. The location and ISP of the Sub-
Mediator help the client to locate it and can also be used for implementing message
routing strategies. The memo briefly describes the Sub-Mediator. Figure 4-10 gives an

abstract model of the Sub-Mediator Registry.

<?xml version="1.0" encoding="UTF-8"?>
<subMediatorRegistry>
<ws>
<endpointAddress>{Endpoint_sml} </endpointAddress>
<location> {city, country}</location>
<isp>{NameofISP}</isp>
<memo>{MemoText_sml } </memo>
</ws>
<ws>
<endpointAddress> {Endpoint_sm2} </endpointAddress>

<location> {city, country } </location>

81

Java WS-Mediator
<isp>{NameofISP} </isp>
<memo>{MemoText_sm2}</memo>

</ws>

</ subMediatorRegistry >

Figure 4-10: An example of the Sub-Mediator Registry

The Sub-Mediator Dependability Metadata Database stores the dependability

metadata of Sub-Mediators in the registry. Figure 4-11 shows an abstract model of the

dependability metadata of a Sub-Mediator in the XML format:

<?xml version="1.0" encoding="UTF-8§"?>

<sm service={Name_of sm1}>
<endpointAddress>{Endpoint_sm1}</endpointAddress>
<operationName> {Operation_sm1}</operationName>
<dependabilityAttribute 1> {value} </ dependabilityAttribute 1>

<dependabilityAttribute2> {value} </dependabilityAttribute2>

<dependabi1ityAttributeN>{value}</dependabilityAttributeN>

</sm>

Figure 4-11: An example of the dependability metadata of a Sub-Mediator

4.3.5 Policy System

There are three types of policies implemented in the Sub-Mediator Elite, listed below:

® Test Policy
* Individual execution policy

® Global execution policy

82

Java WS-Mediator

As the fest policy was introduced above, we will now focus on the individual

execution policy and global execution policy.

A. Individual Execution Policy

As mentioned already, when the client invokes a Sub-Mediator requesting mediator
services, it needs to define an individual execution policy for each candidate Web
Service. The individual execution policy is an instruction for processing invocation for
every Web Service, which may set, for example, the invocation method, the timeout
parameter, etc. However, it can be omitted from the service request, with the Sub-
Mediator using the system default settings to set parameters for invoking the Web

Service. Figure 4-12 shows an abstract model of the individual execution policy:

<?xml version="1.0" encoding="UTF-8"?>
<wsp:Policy xmlns:wsp = http:/schemas.xmlsoap.org/ws/2004/09/policy
xmlns:wsmip = "http://schemas.wsmediator.org/individualPolicy/policy">
<wsp:ExactlyOne>
<wsp:All>
<parameter]>{value}</parameter1>

<parameter2>{value}</parameter2>

<parameterN>{value} </parameterN>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Figure 4-12: An abstract model of the individual execution policy

83

Java WS-Mediator

To implement the individual execution policy described above, we have developed a
WS-Mediator Policy framework, extending the WS-Policy framework in [76]. Below
we show the individual execution policy specially developed in one of our

experiments, followed by a brief explanation of each policy entity:

<?xml version="1.0" encoding="UTF-§"7>
<wsp:Policy xmins:wsp = http://schemas.xmlsoap.org/ws/2004/09/policy
xmins:wsmip = "http://schemas.wsmediator.org/indevidualPolicy/policy">
<wsp:ExactlyOne>
<wsp:All>
<bindingMethod>SOAP1 IHTTP</bindingMethod>
<invocationMode>Sync</invocationMode>
<timeout>20000ms</timeout>
<autotimeout>maximum</autotimeout>
<retryAfterFailure>3</retryAfierFailure>
<retryInterval>3000ms</retryInterval>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>
* <bindingMethod>: this indicates the binding method of the SOAP message.

Web Service invocation APIs should follow the binding method while

invoking the Web Service. Default value: SOAP1 IHTTP

* <invoactionMode>: this entity indicates the invocation method of the Web
Service. There are three types of invocation methods: synchronous,
asynchronous invocation and the conventional RPC (Remote Procedure Call)

invocation. Default value: Sync (Synchronous invocation)

84

Java WS-Mediator

* <timeour>: this sets the timeout parameter for an invocation. If the invocation
does not complete in the timeout period, it will be terminated and a timeout
exception will be raised. The value of the timeout parameter can be

automatically set by the Sub-Mediator when the value is set as Oms.

¢ <autotimeour>: the Sub-Mediator can automatically set the timeout
parameter for invoking a particular Web Service according to dependability
metadata. There are three options: average, minimum and maximum,

representing average, minimum and maximum response time.

o <retryAfierFailure>: the Sub-Mediator implements the retry strategy to
tolerate temporary service and network failures. This entity sets the number of
retry invocations of a particular Web Service before giving up.

o <retrylnterval>: this entity sets the interval between retries.
B. Global Execution Policy

When the client requests a mediating service from a Sub-Mediator, it needs to attach a
global execution policy to the service request message. The global execution policy is
an instruction which indicates how to process the entire service request. It sets
important parameters for performing service procedures according to the service

request. Figure 4-13 shows an abstract model of the global execution policy:

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/polic.y .
xmlns:wsmgp="http://schemas.wsmediator.org/globalPolicy/policy">

<wsp:ExactlyOne>
<wsp:All>

<wsmExecutionMode:executionModel execution="true">

85

Java WS-Mediator

<exeModel _parameter]>{value}</ exeMode! parameter]>

<exeMode!_parameter2>{value}</ exeModel _parameter2>

<exeModel_parameterN>{value}</ exeModel _parameterN>

</ wsmExecutionMode: executionMode 1>
<wsmExecutionMode: executionMode?2 execution="false">
<exeMode2_parameter1>{value}</ exeMode2_parameter]>

<exeMode2_parameter2>{value}</ exeMode2_parameter2>

<exeMode2_parameterN>{value}</ exeMode2 parameterN>
</ wsmExecutionMode: executionMode2>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Figure 4-13: An example of the global execution policy

The above abstract model has also been also implemented upon the WS-Mediator
Policy framework. Node <wsmExecutionMode> represents fault tolerance
mechanisms. The boolean attribute “execution” indicates whether the execution mode
is selected. The concrete implementation of the global execution policy can be found

in section 4.3.8.
4.3.6 Dependability Monitoring Mechanism (DMM)

The Sub-Mediator Elite implements monitoring mechanisms to periodically monitor
the registered Web Services and Sub-Mediators. The monitoring mechanisms
generate dependability metadata according to monitoring results. These dependability

metadata are used for resilience-explicit computing. Because the monitoring 1s

86

Java WS-Mediator

performed by each Sub-Mediator itself, the generated dependability metadata present
the dependability of Web Services from the perspective of the Sub-Mediator. If the
Sub-Mediator is deployed close enough to the client, the metadata can accurately

present the dependability of the Web Services from the client’s perspective.
A. Web Service Monitoring (WSM)

The WSM mechanism retrieves the information about Web Services from the Web
Service Registry, using it to periodically invoke them. Having sent a fest SOAP
message to invoke a Web Service, the mechanism waits a certain period of time
defined by the test policy for the result. If the latter is not returned until timeout, the
test fails, and the dependability rank of this Web Service will be reduced. If the result
is received before timeout, the monitoring mechanism checks the validity of the
result. When the fest policy specifies an expected result, the monitoring mechanism
compares the received result with the expected SOAP message. If the messages match,
the result is valid, and then the dependability rate of the Web Service will increase. If
the expected SOAP message is not given, the monitoring mechanism will check the
semantic validity of the result. Unless there is an error message attached to the SOAP
message, the result will be regarded as valid. The monitoring mechanism also records
the response time of the successful invocations, and calculates the average, minimum

and maximum response time of Web Services.
B. Monitoring Sub-Mediators

A Sub-Mediator monitors other Sub-Mediators registered in its Sub-Mediator

Registry. 1t invokes the other Sub-Mediators via a special test interface to check their

87

Java WS-Mediator

dependability, upon which the test results are processed for updating the dependability

metadata of the Sub-Mediators.

‘Global Policy I ‘Database l :Fault-Tolerance Engines

‘AR_Engine | ‘NVP_Engine | ‘MR_Engine

CheckGlobalPolicy()

Lo

CheckWSmetadata()

selectWSs()

selectFaultToleranceMode()

returnResults()

———————

- —___W ________+___
_Jh____.v____.._______.___1

Figure 4-14: The execution sequence of the Dynamic Reconfiguration Engine

4.3.7 Dynamic Reconfiguration Mechanism (DRM)

The DRM is the core component of the Sub-Mediator Elite, which dynamically
reconfigures service composition and fault tolerance mechanisms, implementing
resilience-explicit computing algorithms to suit different fault tolerance mechanisms.
The execution procedure of the DRM starts with checking the global execution policy
to decide which fault tolerance mechanism to apply, and the user-defined criterion
(e.g. m, £ 1) to select component services. Then the DRM checks the metadata of
component services and dynamically sorts them according to their dependability
metadata. If the dependability metadata of a component service is lower than the user-
defined threshold (e.g. Fus < Fimeshoid), the component service will be removed from

the candidate list. At the end, the sorted list of component services is passed to the

88

Java WS-Mediator

selected fault tolerance execution mode to perform service composition. Figure 4-14

illustrates the execution sequence of the DRM.
Below is the DRM execution procedure:

List of component services
services = {ws; ... wsy}

Global execution policy
execution_mode = {Service Alternatives | NVP | Multi-routing}
primary_criterion = {metadata | m, 7, /| threshold};
second_criterion = {metadata | m, r, f};

Metadata
{ws | m (%), r (ms)}

{wsn | m (%), r (ms)}

Sort

services_sort = services sorted by primary_criterion/second_criterion
Execute

execute(execution_mode)
End

4.3.8 Fault-tolerance Execution Modes

The DRM invokes the fault tolerance mechanisms to perform service composition.
The execution procedures in the fault tolerance execution modes are different and
component services are used differently, according to the particular fault tolerance

techniques.

89

Java WS-Mediator

A Engine Sy e B oy iy e N e s o | e

T

F"

F
]

checkResuit
while invalid or v

e S o B e B
- —— - ’-—_—_-—_———.———_——.}.——!I——————_——-————
e e B
ol]

B i . S e A . L b N
- L-...nL_..__..________..-___——-..__.___.._-

SN 0 i 1 I O

Figure 4-15: The execution sequence of the service alternative execution mode

A. Service Alternative Execution Mode.

Figure 4-15 illustrates the execution sequence of the Service Alternative execution
mode. At beginning of the execution sequence, the execution engine checks the global
execution policy to set the relative execution parameters. The global execution policy
defined for the Service Alternative execution mode is illustrated below, followed by

the explanation of the main entities.

<?xml version="1.0" encoding="UTF-8"?>

<wsp:Policy xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy A
xmlns:wsmgp="http://schemas.wsmediator.org/globalPohcy/pohcy">

<wsp:ExactlyOne>
<wsp:All>

<wsmFTMode:ServiceAlternatives execution="true">

90

Java WS-Mediator
<priority>{value}</priority>
<dependabilityAcceptance>{value} </dependabilityAcceptance>
<responseTimeAcceptance> {value} </responseTimeAcceptance >
<timeout>{value } </timeout>
</wsmFTMode:ServiceAlternatives>
</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

<wsmFTMode.ServiceAlternatives execution="true">: this entity defines the
fault tolerance execution mode. Here it indicates the Service Redundancy
execution mode. The value “true” of the attribute execution indicates this fault
tolerance execution mode is selected for processing the request. The nested

entities are the parameters for this execution mode.

<priority>: this sets the criterion for sorting candidate Web Services. Web
Services can be sorted according to their dependability rate or average
response time, as shown by their dependability metadata.
<dependabilityAcceptance>: this entity sets the minimum acceptance of the
dependability rate. The Web Services with a dependability rate lower than
that will be removed from the list of candidate Web Services.
<responseTimeAcceptance>: this entity sets the maximum acceptance of the
minimum response time. If the minimum response time of any Web Service is
greater than the maximum acceptance, the Web Service will be removed from

the list of candidate Web Services.

91

Java WS-Mediator

o <timeout>: this sets the timeout parameter for the entire service request. If the
Sub-Mediator cannot complete the request before timeout, it will return an

error message to the client.

Once the execution parameters are set, the execution engine checks dependability
metadata to set the parameters for invoking component services. For example, the
maximum response time of a component service recorded in the dependability
metadata can be used to set the timeout parameter of the invocation. Then the
execution engine selects the first component service in the sorted list and invokes the
service to perform service integration. Once the component service has returned the
result, the execution engine checks its validity. If it is valid, the execution engine
finalizes the execution procedure and returns it to the BLP. If the component service
fails to deliver valid results, the next component service in the list will be invoked,

and so on.

liwl| Engine | [nve_poiey| [ws proc) ['Resuts_Cache | l'Rauulllu_ProcJ lSOM:_Pch st_?mgﬂ [Ws_invoke_Engina |
{
l

!JIOGGHWSI()

chackpollcy()

|

___}.____L__________-T________--____L___]

bullginvocationinfo()

invokeWS()

For num of WSs

End for

For num of WSs
L returnResults()

—

; cacheResull()

[t vaild, break)
(Optional)

End for

M

'l finalizeCache(}

t
| generateResull()
f

|
updateWSmetadata()

- e = ——— = —— = ——— - e] —-— W - ——-——
- - = = —— - — o = = r W = = —————————]

SN I SR A R
e

S _-L._.__________.L_______..__W___,L______

92

Java WS-Mediator

Figure 4-16: Execution sequence of the N-version programming execution mode

B. N-Version Programming Execution Mode

Figure 4-16 presents the execution sequence of the N-Version Programming
execution mode. First of all, the execution engine checks the global execution policy
to set the relative execution parameters, such as the number of synchronous
invocations, the number of expected results, etc. The global execution policy defined
for the N-Version Programming execution mode is illustrated below, followed by the

explanation of the main entities.

<wsmFTMode:nVersionProgramming execution="true">
<priority>{value}</priority>
<dependabilityAcceptance>{value}</dependabilityAcceptance>
<responseTimeAcceptance>{value} </responseTimeAcceptance >
<resultsProcessing> {value} </resultsProcessing>
<numberOfSynclnvocation> {value} </numberOfSynclnvocation>
<numberOfExpectedResults>{ value } </numberOfExpectedResults>
<timeout>{value}</timeout>

</wsmFTMode: nVersionProgramming >

o <resultsProcessing>: this defines how to process the results returned from
candidate Web Services. There are three options: vote, quickest, and ail. In the
vote option, the service request terminates when result voting is completed. In
the quickest option, the entire service request terminates when a valid result is
received. In the all option, the service request terminates until the invocations

to the Web Services are all completed.

93

Java WS-Mediator

o <numberOfSynclnvocation>: in the N-Version Programming execution mode,
a number of Web Services will be invoked simultaneously. This entity defines
the maximum number of simultaneous invocations allowed at a time.

o <numberOfExpectedResults>: If the number of candidate Web Services is
greater than the number of allowed simultaneous invocations, they will be
divided into groups and invoked in a certain order. This entity defines the
number of expected results. Once there are enough results received, the

execution will be terminated.

Once the execution parameters are set, the execution engine selects the required
number of component services from the candidate list, and invokes them
synchronously. The results returned from component services are checked by the
execution engine. If some of the invoked services fail to deliver valid results, the
execution engine retrieves alternative component services from the list and invokes
them until the expected number of valid results is fulfilled. Then the execution engine

finalizes the execution procedure and processes the received results.
C. Multi-Routing Execution Mode

Figure 4-17 illustrates the execution sequence of the Multi-Routing execution mode.
The execution engine interprets the global execution policy to define the execution
procedure and set execution parameters. Then it checks the dependability of Sub-
Mediators and selects the defined number of Sub-Mediators to implement the Multi-
Routing Strategy. Similar to the N-Version Programming execution mode, the
execution engine invokes the selected Sub-Mediators synchronously and validates the
results returned by them. The execution procedure terminates when the expected

number of valid results are received.

94

Java WS-Mediator

FMR_roucﬂ [:SubMed_Metadate | [Resuts_cache | [Resus_proc | | -Dispatch_engine |

! eneckpolioy) !

sslectSubMediators()
I l

For num of SMs |
| invokeSubMediator()

End for ll

For num of SMs |
1 retumResults()
¥

" cacheResult()

[H vaild, break] '|
et —
End for I

I {resultsVoting()]

—

finalizeCache()

-7---

e

[R S

R s LT EE et

S P MU EDENEE S

RPN 'SP NP IS

|
{
t
|
', generateResult()
—_

|
|
f
|
1

—_——e—r e — e —— e e e — e ————
et — — ——— ————— = = = o~ ——] — =]

e e —— . ——————

_——t-—f—————

Figure 4-17: The execution sequence of the muiti-routing execution mode

The global execution policy corresponding to the Message Routing execution mode is

illustrated below, followed by the explanation of the main entities.

<wsmFTMode:MessageRouting execution="true">
<dependabilityAcceptance> {value}</ dependabilityAcceptance>
<responseTimeAcceptance>{value} </responseTimeAcceptance >
<resultsProcessing> { value} </resultsProcessing>
<numberOfRoutes> { value}</ numberOfRoutes>

<timeout>{value}</timeout>

</wsmFTMode: MessageRouting >

95

Java WS-Mediator

o <dependabilityAcceptance>: this entity sets the minimum acceptance of the
dependability rate. If the dependability rate of a Web Service recorded on the
participating Sub-Mediator is lower than that, the Sub-Mediator will not be
selected as an intermediary for implementing the message routing.

o <responseTimeAcceptance>: this entity sets the maximum acceptance of the
minimum response time. If the minimum response time of a Web Service
registered on the participating Sub-Mediator is greater than the maximum
acceptance, the Sub-Mediator will not be selected as an intermediary.

o <numberOfRoutes>: this entity defines the number of the messaging routes,
i.e. the number of Sub-Mediators that will be selected as intermediaries.

e <timeout>: this sets the timeout parameter for the entire service request. If the
Sub-Mediator cannot complete the request before timeout, it will return an

error message to the client.
4.4 Conclusions

In this chapter, we presented the Java WS-Mediator, a prototype of the WS-Mediator
system based on the Java Web Service te-chnology. The Java WS-Mediator system is
constructed of Java Sub-Mediators. The chapter also proposed an implementation of
the Sub-Mediator Elite as a lightweight Sub-Mediator for local deployment, used to
develop the Web Service type Sub-Mediators. In addition, we explained the structure
and execution sequences of the components and mechanisms. Overall, the Java WS-
Mediator proves the WS-Mediator approach can be realized on the basis of the current

Web Service technologies.

96

Evaluation

5. Evaluation

5.1 Introduction

In this chapter, we describe our evaluation of the WS-Mediator approach. We have
conducted a series of experiments with different application scenarios, carefully
selected to represent typical Web Services applications occurring in the real world. In
these experiments, we utilized the Java WS-Mediator to implement several composite
applications based on real-world Web Services, developed and deployed by a variety
of independent Web Service providers. The analysis of the results of the experiments

will demonstrate the applicability and effectiveness of the WS-Mediator approach.

This chapter is organized as follows: section 5.2 introduces the objectives of the
experiments and provides a brief outline of the evaluation of the approach. Section 5.3
reports the experiments that monitor the dependability of several real-world Web
Services. We will use the results of the experiments to prove the feasibility of on-
location monitoring of the dependability of generic Web Services. In section 5.4, we
will focus on an experiment conducted with an e-Science application. This experiment
was conducted upon three Web Services frequently used in Bioinformatics research.
We have developed a realistic application based upon the Java WS-Mediator to
demonstrate how to improve the dependability of e-Science workflows by adopting

the WS-Mediator approach. Section 5.5 concludes this chapter.
5.2 Evaluation Objectives

The evaluation of the WS-Mediator approach is based on our experiments on the real-
world Web Services. The approach was developed as a result of our studies of the

latest Web Services technologies and other relevant work. The design of the solution

97

Evaluation

is compliant with the current Web Service specifications and standards. However, the
applicability and the effectiveness of the approach can only be verified in real-world
applications. The WS-Mediator is a generic solution that can be tailored to fit
different application scenarios. We have conducted a series of experiments to verify
its applicability by developing realistic applications using the prototype
implementation of the approach, the Java WS-Mediator. The experiments were

carefully planned to achieve the following objectives:

¢ To evaluate the applicability of monitoring Web Service dependability. Web
Services can be autonomously deployed by independent Web Service
providers or explicitly deployed by the participating providers within a virtual
organization.

e To evaluate the effectiveness of the resilience-explicit dynamic
reconfiguration of dynamic service composition. The resilience-explicit
dynamic reconfiguration mechanism of the WS-Mediator calculates
dependability metadata to make run-time decisions for selecting component
Web Services. The experiments need to produce quantitative results to prove
the effectiveness of the approach.

e To evaluate the applicability of fault-tolerance execution models. The fault-
tolerance mechanisms that are designed to deal with the designated faults are
selected by the client and dynamically applied at run-time. We need these
experiments to prove that the dynamic reconfiguration of fault-tolerance
mechanisms can provide flexible means of achieving Web Service
dependability based on specific fault assumptions.

e To verify the ease of developing Web Service applications using the WS-

Mediator system.

98

Evaluation

o To verify the message intercepting ability of the WS-Mediator system.

The above are the most important objectives of our experiments, which evaluate the
core concepts and components of the WS-Mediator approach. There were also many
other experiments conducted to evaluate various aspects of the approach and its

prototype implementation, which are not as central for this dissertation.
5.3 Evaluation of Dependability Monitoring

Monitoring Web Service dependability is the fundamental part of the WS-Mediator
approach. The dependability monitoring mechanism assesses the dependability of
Web Services and generates their dependability metadata. Resilience-explicit
computing adapted to the WS-Mediator approach relies on dependability metadata to
make decisions. Our research emphasises the notion of Web Service dependability
from the client’s perspective. This requires on-location monitoring of Web Services at
the same locations where clients run their applications. In chapter 4, we described
how this approach was achieved in the Java WS-Mediator. The experiments reported
in this section will emphasize the feasibility of the approach by demonstrating the

dependability monitoring of real-world Web Services using the Java WS-Mediator.

As we have shown above, Web Services used in an application can either be deployed
by autonomous providers or by cooperative providers to the client. These autonomous
Web Services can be discovered from the UDDI or from another registry of Web
Services. Commonly, providers only reveal limited information that is sufficient only
for invoking their Web Services. No collaboration between the client and the service
provider is expected in such application scenarios, and so such Web Services are

typically regarded by clients as black box components. Since message-exchanging

99

Evaluation

between the client and Web Services is guaranteed by the Web Service
Interoperability standards, the implementation of the client application and of Web
Services both need to be compliant with the Web Services Interoperability. This is
one of the fundamental principles in developing a generic Web Service, although this
may not be a crucial criterion for the Web Services that are developed only to serve
the correlative clients, because of the possibility of implementing corresponding
mechanisms in the client application. However, unless this may bring additional
benefits, it is always undesirable to undermine the interoperability of a Web Service.
Most Web Services and client applications are developed upon the existing Web
Services middleware (e.g. Aparche Axis [32], JBoss [31], and Glassfish [33]) which
provides underlying infrastructure to support the interoperability of the Web Service
applications by default, and so for a generic solution such as the WS-Mediator, it is
safe to consider the Web Services as universally interoperable. Furthermore, specific
mechanisms can always be implemented in addition to the standard invocation
mechanisms to cope with the corresponding changes at the Web Service side. Below
Web Services are assumed to be interoperable, enabling the invocation mechanisms of

the Java WS-Mediator to invoke them without modification.

The evaluation of dependability monitoring was conducted on a number of
autonomous Web Services in addition to those deployed by our colleagues for their

research project. In the following text, we will report the experiments.
5.3.1 Dependability Monitoring of Public Web Services

In order to validate the ability of the Sub-Mediator Elite to monitor the dependability
of real-world Web Services, we randomly discovered some publicly deployed Web

Services from a popular Web Services publisher, The XMethods [1]. These Web

100

Evaluation

Services are deployed by different service providers and upon different platforms, as

listed below:

e WSI: Get conversion rate from one currency to another currency
Endpoint: http://www.webservicex.com/CurrencyConvertor.asmx?wsdl

o WS2: Lotto Number Generator
Endpoint: http://reto.checkit.ch/Scripts/Lotto.d1l/wsdl/IgetNumbers

e WS3: Returns the date of Easter for a given year
Endpoint: http://www.stgregorioschurchdc.org/wsdl/Calendar.wsdl

e WS4: Translate English to Pig Latin

Endpoint:

htttp://www.aspxpressway.com/maincontent/webservices/piglatin.asmx?wsdl
e S5: Find a ZIP Code given a U.S. City and State
Endpoint: http://ws.strikeiron.com/InnerGears/ZipByCityState2? WSDL

We deployed the Sub-Mediator Elite on a computer connected to the Campus network
of Newcastle University and registered the selected Web Services for dependability
monitoring. These Web Services all provide very simple services, returning responses
according to the client’s inputs. A test script was written for each Web Service
according to its WSDL interface, and a global test policy defined to set the parameters

for monitoring them. During the experiments, 100 invocations were made on each

101

Evaluation

Web Service with the interval between each invocation being 60 minutes (see Figure

Sub-Mediator Elite
BLP
WSD Test policy

Web Services
‘ Monitoring mechanism

-

Ws4 WsSs5

N

R

Figure 5-1: Dependability monitoring of autonomous Web Services

There were no technical problems in the interaction between the Sub-Mediator Elite

and the Web Services. The Sub-Mediator Elite invoked the Web Services successfully

and received expected results from the Web Services except for failures of some of

the Web Services.

Average Failures
Web Dependability | Unusual
Invocations | response Service | Omission | time
Services rate delays

time failures failures out

ws1 100 152 100% 3 0 0 0

WS2 100 175 100% 7t 0 0 0

WS3 100 132 93% 5 0 3 4

WVS4 100 186 17% 0 83 0 0

WS5 100 119 95% 9 1 g2 2

Table 5-1: Dependability monitoring results of the public Web Services

Table 5-1 shows the results of dependability monitoring. Four of the Web Services

achieved a high rate of dependability during the monitoring. The WS4, which

102

Evaluation

translates English to Pig Latin, was successfully invoked 17 times but became
inactive thereafter, providing only an error message indicating that unknown service
failures occurred in the service. The WSI and WS2 were the most reliable, although
several unusual delays occurred for unknown reasons (unusual delay refers to a valid
response from the service that takes over 2 times longer than the average response
time). The #S3 and W55 were less dependable with varied types of failures captured

during the monitoring.
5.3.2 Dependability Monitoring of the GOLD Web Services

The results presented in the previous section demonstrate the ability of the Sub-
Mediator Elite application to monitor the dependability of autonomous Web Services.
The monitoring mechanism of the Sub-Mediator Elite successfully recorded the
dependability behaviour of Web Services and generated their dependability metadata.
However, we could not obtain confirmation from the service providers about the
correctness of the monitoring results due to the autonomy of Web Services. In
addition, the reasons behind some of the failures and delays of the Web Services were
unknown to us. We have therefore conducted additional experiments to verify the
validity of dependability monitoring using two Web Services kindly provided to us by

colleagues working on the GOLD project [2]. These two Web Services were

e GOLDPeople: a Web Service returning the list of the people in the GOLD
project.
e GOLDPolicies: a Web Service returning the aggregation of the policies

developed for the GOLD project.

103

Evaluation
The two Web Services are formal Web Services deployed for research purposes.
However, they are by no means expected to be reliable because they are also used for

software testing and debugging. Therefore, these two Web Services may behave

unreliably when software testing and debugging are taking place on servers.

GOLDPeople

—— Average Response Time (ms)
600 —_ — - - i

400 - — — | |
Response Time (ms)

300 - — —

200

|

100 1 o o I Y 0 | | WAIATAY T o U 1 = o N 5) 1 -
77,5 . 11, W 759 0 VRV | R ;P)

N WAV I A WU

1 51 101 161 201 251 301 351 401
Invocations

Figure 5-2: Dependability monitoring result of the GOLDPeople

GOLDPolicies
1000

—— Average Response Time (ms)
800

700

Response Time (ms)

600

AL.‘L A. A‘N i‘ i” ll [I

| \
T W TUN Wl by W i S Al Vg o 1 e S LRSI

500

|

|

400 ‘

1 51 101 151 201 251 301 3s1 401 ‘
Invocations

Figure 5-3: Dependability monitoring result of the GOLDPolicies

104

Evaluation

The two Web Services are deployed on the campus network of Newcastle University.
We deployed the Sub-Mediator Elite on a computer connected to the same network.
The WS-Mediator Elite performed dependability monitoring on the two Web Services
and logged the returned results. Figure 5-2 and Figure 5-3 illustrate the results of the
dependability monitoring of the two Web Services, as shown in their dependability
metadata. The average response time of the GOLDPeople and GOLDPolicies are 77
and 526 milliseconds respectively. During the monitoring, the GOLDPolicies
remained 100% dependable. However, 13 service failures were recorded for the
GOLDPeople service based on its dependability rate of 96%. The error messages
indicated internal server failures in the GOLDPeople services representing ongoing

unusual activities taking place on the server which were confirmed by our colleagues.

The dependability monitoring of the GOLD services proves the applicability and
feasibility of on-location dependability monitoring mechanism implemented in the
WS-Mediator. The generated dependability metadata can accurately represent the
dependability behaviour of Web Services. The above experiment was reported in the

UK All Hands Meeting 2006 [3].
5.4 Experiments with Bioinformatics Web Services

The experiments reported above prove the capability and feasibility of dependability
monitoring using the WS-Mediator. They provide effective and quantitative evidence
concerning the dependability behaviour of Web Services. The dependability metadata
generated serve as a sufficient precondition to achieve resilience-explicit computing.
Thus we were able to carry out a complete evaluation of the entire WS-Mediator
system. Below we report experiments on three Bioinformatics Web Services aimed at

demonstrating the applicability and effectiveness of the WS-Mediator approach.

105

Evaluation

In chapter 2, we presented experimental work analyzing the dependability of two
BLAST Web Services used in the bioinformatics domain [4]. BLAST is an algorithm
which is commonly used in in silico experiments in bioinformatics to search for gene
and protein sequences that are similar to a given input query sequence [5]. We
discovered dramatically different dependability characteristics of the BLAST Web
Services. Dependability characteristics of each BLAST Web Service also varied when
monitored from different geographical locations. Our analysis shows that the existing
BLAST services are likely to offer a reasonable degree of diversity despite the fact
that they all execute the same basic matching algorithms. This is due to differences
between the DBs, the specific BLAST searches they execute, the hardware they are
deployed on and the software code they run. This adds to the diversity of their

geographical locations.

[n order to evaluate the WS-Mediator approach, we conducted experiments on three
BLAST Web Services with the Java WS-Mediator deployed on a computer in the
campus of Newcastle University, UK. The experiments demonstrate the applicability
of the WS-Mediator approach by employing it to real Web Services used in e-Science

environment. The three BLAST Web Services involved in this case study are:

o The BLAST Web Service deployed by the European Bioinformatics Institute

(EBI), Cambridge, UK [6]

o The BLAST Web Service hosted by the DNA Databank, Japan (DDBJ) [7]
o The BLAST Web Services hosted by Virginia Bioinformatics Institution

(VBI), USA [8]

106

Evaluation

Before the experiment started, test scripts were submitted for monitoring each Blast
Web Service and generating their dependability metadata (see Appendix C for the
pattern and explanation of dependability metadata). The three services were
monitored synchronously at an interval of 5 minutes between invocations. Appendix
D shows some of the dependability metadata. Thus, the Java WS-Mediator can use
the dependability metadata to perform resilience-explicit computing and to select the

appropriate Web Services for service composition.

In our experiments, we have developed a Java client application based upon the Java
WS-Mediator. This application (see Appendix E) uses the three BLAST Web Services
as candidates and searches the genetic databases of the three Blast Web Services for a
match to an input query sequence. An example of the expected result is shown in
Appendix F. The Java client application invokes the request every 30 minutes. If
erroneous replies are returned from a service, the client application makes three tries
before switching to the redundant services. The interval between retries is 30 seconds.
The timeout periods of the three Web Services are set automatically by the Sub-
Mediator according to their maximum response time recorded in the metadata. We
used the Service alternatives, N-version programming and Multi-routing execution
modes in the experiments and logged the execution results for analysis. The example
of successful and unsuccessful execution results of the business process are shown in
Appendix G and Appendix H respectively. The execution results list the execution
procedures performed during the business logic processing, and show the result of
each step carried out during the execution. The final result of service execution and

the execution report are attached to the execution results.

107

Evaluation

LTS TET—

DDBJ
Web Services

R S T

| A

Client
Application

EBI
Sub-Mediator Elite | % __ Web Services

N e

|

i\
|

o VBI
Web Services

Figure 5-4: Evaluation of the Service alternative execution mode. The solid lines

represent fixed or primary, and the dashed lines alternative message routes

5.4.1 Service Alternative Execution Mode

Figure 5-4 shows the application for evaluating the Service alternative execution
mode. In the experiment, we set the dependability measurement (m) as the criterion
for selecting the best component service. At the beginning of the run, the three
BLAST Web Services were dynamically ordered by the WS-Mediator according to
their dependability measurement (1) during the preceding execution. As the DDBJ
was the most dependable Web Service, it was used as the primary BLAST Web
Service. However, at some moment during the execution, the DDBJ became
unreliable, repeating the message: “The search and analysis service is very busy now.
Please try again later.” In these circumstances, the WS-Mediator switched to using
the VBI after failed attempts with the DDBJ. The VBI returned valid results in most
attempts. Because the DDBJ was not in a dependable state, its dependability
Mmeasurement (m) dropped dramatically. Figure 5-5 shows the results of the

experiment. From the moment shown in Figure 5-5 as point (A), the VBI became the

108

Evaluation
most dependable Web Service and was therefore chosen as the primary Web Service
to be invoked. There was an interesting contrast of two switching sequences during
the invocations. As shown in Figure 5-5, there were two entirely failed executions
during the experiment. In the first one (see Figure 5-5, Point (B)), the DDBJ was the
first Web Service to be called, the VBI was the second one and the EBI was the last
one. In the second (see Figure 5-5, Point (C)), the VBI became the primary Web
Service. It was called first, followed by the DDBJ. The EBI was still the last one to be
attempted. The logged metadata generated by the monitoring mechanism ensured that
the switching sequences were correct according to the dependability metadata at the
time. In this execution mode, the average overhead of the Java WS-Mediator is only
about 100 milliseconds. The average response times of the DDBI. VBI and EBI were

about 24 seconds, 29 seconds and 63 seconds respectively.

Service Alternatives

160000 ———— — —

° ° ° ° e000000e0 eeco0ece
W*HH—KH**%*WX—H m&**«

100000

150000

“a
)]
o -
® 200000
by

it
@
2150000 %
o ==
a
N
2 100000

10000 i (A)

0o o o e e e e
LSRG O E1C 180 16 1¥ 190 3t 23 85 2T 20 81 8 37 39 11 1 7

Execution Sequece

Figure 5-5: Results of the Service alternative execution mode
34.2 N-version Programming Execution Mode

Figure 5-6 shows the application for evaluating the N-version programming execution

109

Evaluation
mode. In this experiment, all of the three Web Services were invoked simultaneously.
Once the quickest result is obtained from a Web Service, the execution terminates.
This strategy is slightly different from the classic N-version programming technique,
which commonly requires voting on results. However, in real-world Web Services
applications, it is not always possible to vote on the results received from diverse
services. The results can be semantically equivalent or similar when the SOAP
messages are literally different. Therefore, in the WS-Mediator, result voting is

optional. We believe the client should have better knowledge about how to process

the results.

P =S s e |

1

ot DDBJ i
= Web Services

Client
Application

il VB
Web Services |

Figure 5-6: Evaluation of the N-version programming execution mode. The solid line

represents a fixed message route, and the dashed lines redundant message routes

Figure 5-7 shows a proportion of the results collected in the N-version programming
execution mode. Because the DDBJ and the EBI were, for unknown reasons, in very
unstable states, they failed to provide valid results to the invocations. The final results

of all executions were returned from the VBI. In this execution mode, the overhead of

110

Evaluation

the Java WS-Mediator was about 130 milliseconds. It was slightly higher than that in

the Service alternative execution mode.

N=-version Programming

70000

® © © 0 © 0 & 0 © © ¢ © o o o 0 o ° 0 0 o
M MO A S M SHHI P O SRV SO MR IR AR A S SRR O A S
60000 +

30000 |
10000 |

30000

Response time(ms)

1 fe

20000 |

10000 |

Execution sequence

Figure 5-7: Results of the N-version programming execution mode

5.4.3 Multi-routing Execution Mode with the Planetlab

We deployed six Remote Sub-Mediators at six different sites on PlanetLab in the
Multi-routing execution mode. PlanetLab is an open platform for developing,
deploying, and accessing planetary-scale services [9].which provides a global

research network for developing and experimenting with network services.

The six sites where we deployed the Sub-Mediators were located in China, UK and
USA as illustrated in Figure 5-8. In each country, we deployed two Sub-Mediators in
two different cities. The geographical locations of the Sub-Mediators were registered
in the Mediator-Elite deployed on a computer in the Campus network of Newcastle
University. This computer acted as the client’'s terminal. Such deployment was

implemented with applying geographical diversity in mind. However, 1t 1s worth

Lk

Evaluation

mentioning that this experiment did not emphasize the selection of diverse network

paths between the sites and the possible network overlap between the Sub-Mediators

and the candidate Web Services. This experiment was designed only to validate the

applicability and functionality of the WS-Mediator.

Client

Application

PlanetLab Network

. Sub-Mediator
L= Beijing. China |
-z — N

-
-
Z

i |

// _ | Sub-Mediator

7 e + = Shanghai, China ==

’ - \
-’
AN N \
< Sub-Mediator \ N\
/

7 1 == Newcastie, UK T~ NN
vl e e s \
/, L NS \ \

e % SO\

L e B | ub-Mediator T

Sub-Mediator Elite : S Cambridge. UK
X, TS = /
< < — e /
b ~ ST -~ / /"
~ o "~ ~ _ Sub-Mediator v
N Washington, US /
S /

~
~
= Sub-Mediator
\1 New York US |
|

vBi

7 Web Services |

Figure 5-8: Evaluation of the multi-routing execution mode. The solid lines represent

fixed or primary message routes, and the dashed lines alternative routes.

Response time (ms)

120000

100000

80000

60000

40000

20000

Multi-routing

S s T e, A e

Executions

—— Fmal
—8— Washmgton
—a— Shanghai

—— Newcastle

Figure 5-9: Results of the Multi-Routing execution mode

Evaluation

In this experiment we chose the VBI BLAST as the ultimate Web Service. Three
routes with dependability acceptance of 70%were required. The level of routing
diversity was set as “Country”. During the execution, The Sub-Mediators located in
Shanghai (China), Newcastle upon Tyne (UK), and Washington (USA), were selected
as the routing intermediate nodes according to their dependability metadata (see
Appendix I). Figure 5-9 shows some results obtained in this experiment. During the
experiment, the three Sub-Mediators and the VBI BLAST Web Service performed
reliably. Most of the time, the Sub-Mediator deployed in Newcastle upon Tyne (UK),
delivered the quickest responses, while the one in Shanghai (China), was the slowest
one. In this execution mode, the average overhead of the WS-Mediator was about 140

milliseconds.
5.5 Conclusions

The experiments reported in this chapter demonstrate the applicability of the WS-
Mediator approach. The experiments were conducted with realistic Web Services
deployed by diverse service providers in real-world environments. The results of the
experiments have proved that the WS-Mediator is capable of providing the required
functionalities. The quantitative evidence supports the evaluation of the approach as
feasible and effective. The experiments conducted with the BLAST Web Services
have clearly manifested the benefits of using the WS-Mediator approach with real-

world Web Service applications.

113

Conclusions and Suggestions for Future Work

6. Conclusions and Suggestions for Future Work

In this chapter, we summarize our work and make suggestions for further work. In
section 6.1, we summarize our research and studies reported in each chapter. In
section 6.2, we outline certain possible extensions that could be made to our solutions.
In addition, we discuss how the knowledge gained in this study can be applied in

future work to improve the dependability of Web Service applications.
6.1 Summary

Web Service technology is developing very fast, and has started to play a critical role
in more and more e-Commerce and e-Science applications. Due to the complexity of
architecture and complicated application scenarios of Web Services, their
dependability is a challenging research topic. While there have been many approaches
developed to improving the dependability of individual Web Services and Web
Service composition applications, there is still a need for solutions that would ensure
the dependability of Web Service composition given the persistence of varied types of
faults in the infrastructure. It is therefore essential to analyse concrete dependability
characteristics of Web Services and involved components, such as individual
component services, networks, etc. and develop solutions to cope with specific fault

assumptions.

Web Service composition is an activity involving integration of several component
services over computer networks. For instance, in the travel booking use case, the
travel agent has to invoke both an airway company and a hotel to follow the business

process logic. In practice, applications (e.g. [8, 9]) will be much more complicated

114

Conclusions and Suggestions for Future Work

and service composition will involve far more component services for the business
process logic to be implemented. The dependability of service composition relies on
the dependability of individual component services and of the networks. Failures of a
single node (e.g. a component service or a segment of the network) can undermine the
dependability of the entire application. In our example, the travel booking process
cannot be accomplished until the travel agent receives valid results from both the
airway company and the hotel. However, in reality, it is impossible to ensure that
Web Services do not fail during the integration; moreover, computer networks are
inherently unreliable. Hence, solutions for improving the dependability of service
composition need to deal with failures of individual component services and networks

to ensure the continuity of services.

All this has prompted us to develop an approach focusing on the dependability of
Web Service composition specifically from clients’ point of view, with network
failures considered to be part of the dependability characteristics of component Web
Services. Compared to the existing solutions, the WS-Mediator approach innovatively
adapts the resilience-explicit computing technology to improve the efficacy of fault
tolerance techniques (including the service diversity strategy), commonly employed in
other solutions. The WS-Mediator system utilises Sub-Mediators, deployed on the
overlay architecture, to monitor the dependability of component services, generate
dependability metadata reflecting clients’ point of view and apply fault tolerance
techniques to deal with faults. Dependability metadata consist of various attributes
that represent the dependability characteristics of Web Services, such as response
time, availability rate, types of failures, etc. The resilience-explicit dynamic
reconfiguration mechanism of the WS-Mediator system makes run-time decisions

according to these metadata to dynamically select the most dependable component

115

Conclusions and Suggestions for Future Work

services for assembling the business process logic. In addition, the system implements
a number of fault tolerance mechanisms (such as recovery blocks, N-version

programming and path diversity) to deal with various types of faults in order to ensure

the overall dependability of the service composition.

A prototype of the WS-Mediator system, called Java WS-Mediator, has been
implemented using the Java Web Service technology. We have conducted a series of
experiments with several real-world Web Services (e.g. the BLAST Web Services
commonly used in the bioinformatics domain, and Web Services deployed by the
GOLD project, etc) to evaluate our solution, and their results have demonstrated the

applicability and efficacy of the WS-Mediator approach.
6.2 Suggestions for Future Work

The architecture of the WS-Mediator system is flexible and scalable, and there are
many ways in which our system could be extended in future research. Below we

outline several promising extensions:

1. The efficacy of the WS-Mediator approach relies on dependability metadata
and the design and implementation of the dynamic reconfiguration
mechanism. Currently, the WS-Mediator system generates dependability
metadata comprising attributes such as response time (r), availability
measurement (m) and types of failures (f). The dynamic reconfiguration
mechanism utilises these attributes to select the most appropriate component
services. In future development, this solution could be extended to a
comprehensive metadata framework comprising more attributes to represent

other dependability characteristics of Web Services, including their changing

116

Conclusions and Suggestions for Future Work

dependability behaviour. For example, the response time (r) or availability
measurement (m) of a service may be consistently different at different times
of the day or on different days of the week because of the variations in the way
the service is accessed. Therefore, metadata may comprise an attribute
recording the average response time (r) or availability measurement (m) at a
certain time of the day, on a certain day of the week, etc. Another example
would be an attribute registering the average system down time [19, 34] after
the occurrence of each type of failure, which would allow the service
composition mechanism to decide when to retry the service after the
occurrence of a certain type of failure. The dynamic reconfiguration
mechanism could then be accordingly extended by more advanced algorithms
corresponding to each particular attribute of metadata or their combinations. In
particular, when the response time (r) or availability measurement (m) is
chosen as a criterion for selecting component services, a new algorithm
should be able to use a time slice of historic response time (») or availability
measurement (m) of a candidate service to forecast its changing dependability
behaviour. Thus the algorithm can explicitly decide if it is reasonable to use
the service at a certain time regardless of its overall response time (r) or
availability measurement (m).

The WS-Mediator system implements a number of fault tolerance mechanisms
as fault tolerance execution modes to deal with different types of faults. There
are two major ways to select a fault tolerance mechanism during service
composition: explicit selection by the client and automatic selection by the
WS-Mediator system. The client can select a particular fault tolerance

execution mode and set relevant parameters in the global execution policy. In

117

Conclusions and Suggestions for Future Work

practice, however, because the dependability characteristics of autonomous
component services are unknown, it may be difficult for the client to select the
appropriate fault tolerance execution mode. The dynamic reconfiguration of
the WS-Mediator system is designed to automatically select the most
appropriate fault tolerance mechanisms according to the types of failures (f)
captured in the dependability metadata related to particular component
services. Currently, the efficacy of the approach is restricted by the simple
form in which dependability metadata are recorded (for example, the types of
failures are saved and analysed at a very coarse level). This could be improved
in the future by developing a more efficient dynamic reconfiguration
mechanism in conjunction with a more comprehensive metadata framework.
In particular, specific algorithms could be developed to identify the common
types of failures in component services at a much finer level (e.g. following
the classification from [81]) and to select the suitable fault tolerance
mechanisms to be applied in service composition.

. The current development of the WS-Mediator system does not explicitly
address security issues, and yet Web Service security is emerging as an active
research topic today. There are several types of security techniques developed
for Web Services, one of the most important being the OASIS Web Services
Security (WSS) TC [82]. The WS-Mediator system implements the standard
Web Service intermediary architecture, which is extensively employed in
many applications implementing value-adding services between clients and
Web Services. The special requirements of the Web Service architecture is
realised in the research on security of Web Services. Paper [83] emphasises

that the development of security models and mechanisms in Web Services

118

Conclusions and Suggestions for Future Work

should be compatible with Web Service architecture, including such
components as intermediaries. Therefore, in theory, the WS-Mediator should
be compatible with those applications that employ security models and
mechanisms described in [82]. This supposition needs, however, to be
investigated in future work.

. The Business Process Execution Language (BPEL) [84] has been extensively
used in developing e-Commerce and e-Science applications in the past few
years. Compared to the Java Web Service technology, BPEL simplifies service
composition by specifically focusing on the description of the business process
logic, with other jobs left to the underlying middleware. The WS-Mediator
system offers the standard Web Service interface and can therefore be
seamlessly integrated into applications developed in the BPEL. The executable
process can directly invoke the WS-Mediator system to perform service
composition. However, generally speaking, the BPEL is not as powerful as a
general-purpose programming language like Java with regard to tasks such as
message processing, etc. Therefore, it is well worth investing some effort in
the future in improving the applicability of the WS-Mediator system to the
development of applications in the BPEL.

. The WS-Mediator approach addresses network-related issues in Web Service
composition, using the message routing diversity mechanism to deal with
some of them. Currently, message routing diversity is achieved by using
several remote Sub-Mediators as intermediary nodes. However, some overlaps
of message paths may still happen when we use this application-level message
routing approach. In future, the message routing diversity mechanism could be

implemented in a more elaborate way to discover low-level message paths by

119

Conclusions and Suggestions for Future Work

tracing messages sent to services. This message routing information needs to
contain specific network routes along which messages between the client and
the service travel. By comparing message routing paths to a particular service
from different Sub-Mediators, the WS-Mediator should be able to effectively
select the less overlapping paths to implement path diversity to the service.
Furthermore, by tracing messages, the WS-Mediator might be able to identify
the dependability characteristics of particular networks and select message
routing paths during service composition accordingly.

. The WS-Mediator system monitors Web Services at different locations in the
Internet and dynamically assesses their dependability. The dependability
metadata generated by Sub-Mediators can help clients to select the most
dependable services, taking into consideration the impact of the network.
Currently, these dependability metadata can be retrieved via the Web Service
interface of Sub-Mediators. In future, it would be possible to publish these
dependability metadata on a special Web site. The system would automatically
detect the IP address of the user who accessed it and dynamically publish
dependability metadata generated by the Sub-Mediator closest to the user.
This would help users to easily find out how dependable Web Services
were and use them accordingly. At the same time, Web Service providers
could use the Web site to obtain the dependability metadata about their

services generated by Sub-Mediators distributed across the Internet.

Bibliography

Bibliography

1. W3C. (2004). 'Web Services Architecture', [cited 30 Jan 2008]; Available
from: http://www.w3.0rg/TR/2004/NOTE-ws-arch-

2004021 1/#service_oriented_architecture

2. W3C. (2004). 'Web Services Glossary -W3C Working Group Note 11
February 2004'". [cited 30 Jan 2008]; Available from:

http://www.w3.org/TR/ws-gloss/

3. Attiya, H. and Welch, J., 2004. Distributed Computing: Fundamentals,
Simulations, and Advanced Topics. 2™ edition. Wiley series on parallel and

distributed computing. New Jersey: John Wiley & Sons.

4, Alonso, G., Casati, F., Kuno, H., and Machiraju, V., 2004. Web Services:

Concepts, Architecures and Applications, Berlin: Springer.
5. Laudon, K.C. and Traver, C.G., 2002. E-Commerce. Boston: Addison Wesley.

6. Google. 'Google SOAP Search API (Beta)'. [Retrieved: 03 March 2008];

Available from: http://code.google.com/apis/soapsearch/reference.html

7. Ebay. (2008). 'Ebay Developers Program'. [Retrieved: 03 March 2008];

Available from: http://ebaydeveloper.typepad.com/

8. Townend, P., Xu, J., Yang, E., Bennett, K., Charters, S., Holliman, N.,
Looker, N., and Munro, M., 2005. 'The e-Demand project: a summary'. in

Proceedings of the Fourth UK eScience All-Hands Meeting. Nottingham, UK.

121

10.

11

12.

13.

14.

15.

16.

Bibliography

Hiden, H., Conlin, C., Perrioellis, P., Cook, N., Smith, R., and Wright, A.R.
(2006). 'The GOLD Project: Architecture, Development and Deployment'.

[Retrieved: 30 Jan 2008]; Available from:

http://www.ncl.ac.uk/ceam/research/publication/46755

Gable, J. (2002). "Enterprise application integration’. Information Management
Journal, Issue: March/April 2002. [Retrieved: March/April 2002]; Available

from: http:/findarticles.com/p/articles/mi_qa3937/is_200203/ai_n9019202

Object Management Group. (2007). 'Catalog of Specialized CORBA
Specifications'. [Retrieved: 30 Jan 2008]; Available from:

http://www.omg.org/technology/documents/spec_catalog.htm

Orfali, R., harkey, D., and Edwards, J., 1997. Instant CORBA. USA: John

Wiley & Sons, Inc.

WS-I. (2007). 'Basic Profile Version 1.2'. [Retrieved: 30 Jan 2008]; Available

from: http://www.ws-i.org/Profiles/BasicProfile-1_2(WGAD).html

W3C. (2007). 'HTTP - Hypertext Transfer Protocol'. [Retrieved: 30 Jan 2008};

Available from: http://www.w3.org/Protocols/

W3C. (2007). 'SOAP Version 1.2'. [Retrieved: 30 Jan 2008]; Available from:

http://www.w3.org/TR/soap/

W3C. (2001). 'Web Services Description Language (WSDL) 1.1'. [Retrieved:

30 Jan 2008]; Available from: http://www.w3.org/TR/wsdl

122

17.

18.

19.

20.

21.

22,

Bibliography
Ferguson, D.F., Storey, T., Lovering, B., and Shewchuk, J. (2003). 'Secure,
Reliable, Transacted Web Services: Architecture and Composition'.

[Retrieved: 25 Feb 2008]; Available from: http://msdn2.microsoft.com/en-

us/library/ms996535.aspx

Merzbacher, M. and Patterson, D., 2002. 'Measuring End-User Availability on
the Web: Practical Experience', in Proceedings of the International
Conference on Dependable Systems and Networks. IEEE Computer Society

Press. p. 473- 477

Kalyanakrishnan, M., Iyer, R.K., and Patel, J., 1997. ‘Reliability of Internet
Hosts - A Case Study from the End User's Perspective', in Proceedings of the
6th International Conference on Computer Communications and Networks.

IEEE Computer Society Press. p. 418-423

Cristian, F., 1991. 'Understanding fault--tolerant distributed systems', in

Communications of the ACM. Vol. 34, Issue 4: p. 56-78.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C., 2004. 'Basic
Concepts and Taxonomy of Dependable and Secure Computing, in /EEE
Transactions on Dependable and Secure Computing. IEEE Computer Society

Press. Vol. 1, No. 1: p. 11-33.

Lee, P.A. and Anderson, T., 1990. Fault Tolerance: Principles and Practice,
2" edition. J.C. Laprie, A. Avizienis, and H. Kopetz (editors). Springer-Verlag

New York, Inc.

123

23.

24.

25.

26.

27.

28.

29.

Bibliography

Chen, Y. and Romanovsky, A., 2006. 'A Mediator System for Improving
Dependability of Web Services', in Proceedings of the International
Conference on Dependable Systems and Networks - DSN 2006. Philadelphia,

USA. Vol. Supplemental: p. 132-133.

Atkinson, M. and Trefethen, A. (2006). 'UK e-Science ALL HANDS
MEETING'. [Retrieved: 30/12/2006]; Available from:

http://www.allhands.org.uk/2006/

Chen, Y., 2006. 'On Improving Dependability of Web Services by employing

the Mediator System', in ReSIST Student Seminar. San Miniato, Italy.

Chen, Y. and Romanovsky, A., 2008. 'WS-Mediator for Improving the
Dependability of Web Services Integration', in Journal of IT Professionals.

IEEE Computer Society Press. Vol.10, No. 3, Issue: May/June 2008: p. 29-35

Anderson, T., Andrews, Z., Fitzgerald, J., Randell, B., Glaser, H., and Millard,
1., 2007. 'The ReSIST Resilience Knowledge Base', in Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and

Networks. Edinburgh, UK, Vol. Supplemental.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., and Yergeau, F.
(2006). 'Extensible Markup Language (XML) 1.0 (Fourth Edition)'.

[Retrieved: 03 March 2008]; Available from: http://www.w3.org/TR/xml/

OASIS. (2004). 'UDDI Version 3.0.2". [Retrieved: 30 Jan 2008]; Available
from: http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-

v3.0.2-20041019.htm

124

30.

3L

32.

33.

34,

35.

36.

37.

Bibliography

Web Services Interoperability Organization. 'About WS-I'. [Retrieved: 30 Jan

2008]; Available from: http://www.ws-i.org/about/Default.aspx

JBoss Labs. 'JBoss Web Services'. [Retrieved: 16 Jan 2008]; Available from:

http://labs.jboss.com/jbossws/

The Apache Software Foundation, 'Web Services - Axis'. [Retrieved: 16 Jan

2008]; Available from: http://ws.apache.org/axis/

Glassfish Community. 'GlassFish Project - Documentation Home Page'.
[Retrieved: 27 March 2008]; Available from:

https://glassfish.dev.java.net/javaee5/docs/DocsIndex.html.

Oppenheimer, D., Ganapathi, A., and Patterson, D., 2003. 'Why Do Internet
Services Fail, and What Can Be Done About It?', in Proceedings of USENIX

Symposium on Internet Technologies and Systems. Seattle, USA, Vol. 3: p.1-1.

Han, I. and Watson, D., 2006. 'An Experimental Study of Internet Path
Diversity', in IEEE Transactions on Dependable and Secure Computing. IEEE

Computer Society Press. Vol. 3, Issue 4: p. 273 - 288.

Mendonga, N.C. and Silva, J.A.F., 2005. 'An Empirical Evaluation of Client-
side Server Selection Policies for Accessing Replicated Web Services', in
Proceedings of the 2005 ACM symposium on Applied computing. Santa Fe,

New Mexico: ACM. p. 1704-1708.

Chen, Y., Li, P., and Romanovsky, A., 2006. 'Web Services Dependability and
Performance Monitoring', in Proceedings of 21st Annual UK Performance

Engineering Workshop, UKPEW 2005. Newcastle Upon Tyne, UK.

125

38.

39.

40.

41.

42.

43,

Bibliography
Li, P., Chen, Y., and Romanovsky, A., 2006, 'Measuring the Dependability of

Web Services for Use in e-Science Experiments', in Service Availability. Book

series: Lecture Note of Computing Science. Springer: Berlin / Heidelberg. p.

193-205.

W3C. (2001). 'About the World Wide Web'. [Retrieved: 30 Jan 2008];

Available from: http://www.w3.org/WWW/

Tartanoglu, F., Issarny, V., and Romanovsky, A., 2003. 'Dependability in the
Web Services Architecture in Architecting Dependable Systems'. In
Architecting Dependable Systems. Book series: Lecture Notes in Computer

Science. Springer: Berlin / Heidelberg. Vol. 2677: p. 90-109.

Stevens, R.D., Robinson, A.J., and Goble, C.A., 2003. 'myGrid: Personalised
Bioinformatics on the Information Grid, in Journal of Bioinformatics. Vol.

Supplement 1(19), No. 19: p. 1302-i304.

Miyazaki, S. and Sugawara, H., 2000. 'Development of DDBJ-XML and its
application to a database of cDNA', in Journal of Genome Informatics.

Universal Academy Press, Inc (Tokyo). Issue 11: p. 380-381.

NTL Business Limited. (2008). 'ntl: Telewest business'. [Retrieved: 03 March
2008]; Available from:
http://www.ntltelewestbusiness.co.uk/products_soIutions/broadband_inteme

t_services.aspx

126

45,

46.

47.

48.

49.

Bibliography
CERNIC. (2008). 'China Education and Research Network (CERNET).
[Retrieved: 03 March 2008]; Available from:

http://www.edu.cn/HomePage/english/cemet/index.shtml

Alwagait, E. and Ghandeharizadeh, S., 2005. DeW: A Dependable Web
Services Framework', in Proceedings of the 14th International Workshop on
Research Issues on Data Engineering: Web Services Jor E-Commerce and E-
Government Applications (RIDE’'04). IEEE Computer Society Press, p. 111-
118.

Salatge, N. and Fabre, J.-C., 2007. 'Fault Tolerance Connectors for Unreliable
Web Services'. in Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE Computer Society

Press. p. 51-60.

Tsai, W.T., Song, W., Paul, R., Cao, Z., and Huang, H., 2004. 'Services-
Oriented Dynamic Reconfiguration Framework for Dependable Distributed
Computing'. in Proceedings of the 28th Annual International Computer
Software and Applications Conference (COMPSAC'04). IEEE Computer

Society Press, Vol. 01.

Laranjeiro, N. and Vieira, M., 2007. 'Towards fault tolerance in web services
compositions', in Proceedings of the 2007 workshop on Engineering fault

tolerant systems. Dubrovnik, Croatia: ACM.

Cristian, F., 1982. 'Exception Handling and Software Fault Tolerance', in

IEEE Transactions on Computers. Vol. 31. Issue 6: p. 531-540.

127

50.

S1.

52,

33.

54.

55.

Bibliography

Vieira, M., Laranjeiro, N., and Madeira, H., 2007. 'Assessing Robustness of
Web-Services Infrastructures'. in Proceedings of the 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks. IEEE

Computer Society Press.

Looker, N., Munro, M., and Xu, J., 2004. "WS-FIT: A Tool for Dependability
Analysis of Web Services'. in Proceedings of the 28th Annual International
Computer Software and Applications Conference - Workshops and Fast

Abstracts - (COMPSAC'04). IEEE Computer Society Press, Vol. 02.

Randell, B., Romanovsky, A., Rubira, C.MF,, Stroud, R.J., Wu, Z., and Xu,
J., 1995. 'From recovery blocks to concurrent atomic actions', in Predictably
Dependable Computing Systems, H. Kopetz, J.C. Laprie, R. Brian, and B.

Littlewood, (editors). Springer-Verlag New York, Inc. p. 87-101.

Randell, B. and Xu, J., 1994. 'The Evolution of the Recovery Block Concept',

in Software Fault Tolerance, M. Ly, (editor). J. Wiley. New York, p. 1-22.

Avizienis, A., 1985. 'The N-Version Approach to Fault-Tolerant Software', in
IEEE Transactions of Software Engineering. IEEE Computer Society Press.

Vol. 11, Issue 12: p. 1491-1501.

Knight, J.C. and Leveson, N.G., 1986. 'An experimental evaluation of the
assumption of independence in multiversion programming', in /[EEE
Transactions on Software Engineering. IEEE Computer Society Press. Vol.

12, Issue 1: p. 96-109.

128

56.

57.

8.

59.

60.

61.

Bibliography
Eckhardt, D.E., Caglayan, A K., Knight, J.C., Lee, L.D., McAllister, D.F.,
Vouk, M.A,, and Kelly, J.J.P., 1991. 'An Experimental Evaluation of Software
Redundancy as a Strategy for Improving Reliability', in IEEE T; ransactions on

Software Engineering. IEEE Computer Society Press. Vol.1 7, Issue 7: p. 692-

702.

Salas, J., Perez-Sorrosal, F., Patifio-Martinez, M., and Jiménez-Peris, R., 2006.
WS-replication: a framework for highly available web services, in
Proceedings of the 15th International Conference on World Wide Web
(Edinburgh, Scotland, May 23 - 26, 2006). WWW '06. ACM Press, New

York, NY, 357-366.

Townend, P., Groth, P., and Xu, J., 2005. 'A Provenance-Aware Weighted
Fault Tolerance Scheme for Service-Based Applications'. in Proceedings of
the Eighth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC'05). IEEE Computer Society Press.

OASIS. (2008). 'OASIS Web Services Reliable Messaging (WSRM) TC".
[Retrieved: 30 Jan 2008]; Available from: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrm

AmberPoint Inc. (2003). Report: Managing Exceptions in Web Services

Environments.

Dobson, G., 2005. 'A container-based mechanism for service fault tolerance’.
[Retrieved: 30 March 2008]; Available from:

http://www.dirc.org.uk/research/DIRC-Results/ServiceFaultTolerance.html

129

63.

64.

65.

60.

67.

Bibliography
Ardissono, L., Furnari, R., Goy, A, Petrone, (.. and Segnan, M.. 2006, 'Fault
Tolerant Web Service Orchestration by Means of Diagnosis”, in Proceedings
of the third European Workshop on Sofrware 4 rchitecture. Series: Lecture

Notes in Computing Science. Springer Berlin / Heidelberg. pp. 2-16.

Serugendo, G.D.M., Fitzgerald, J., Romanovsky, A., and Guelfi, N., 2007.'A
metadata-based architectural model for dynamically resilient systems’. in

Proceedings of the 2007 ACM symposium on Applied computing. Seoul,

Korea: ACM. p.566-572.

Goel, S., Talya, S.S., and Sobolewski, M., 2007. 'Service-based P2P overlay
network for collaborative problem solving', in Journal of Decision Support

Systems. Elsevier Science Publishers B. V. Vol. 42, [ssue 2: p. 347-36X.

Fitzgerald, J., Parastatidis, S., Romanovsky, A.. and Watson, P., 2004.
'Dependability-explicit Computing in Service-oriented Architectures'. in
Procecdings of the International Conference on Dependable Svsrems and

Networks. Florence, Italy. Vol. Supplement: p. 34-35.

Wiederhold, G., 1995. 'Mediation in information systems'., in Journal of AC M

Computing Surveys. ACM.Vol.27, Issue 7: p. 265-267.

Goldberg, J., Greenberg, 1., Clark, R.. Jensen, D.. Kim, K., and Wells. D..
(199-4). 'Adaptive Fault-Resistant Systems'. in SR/ Technical Report. SR1
International. [cited 11 April 2008]: Available from:

http://www.csl.sri.com/papers/sri-csl-93-02

68.

69.

70.

71.

73.

74

Bibliography

Fraga, J., Siqueira, F., and Favarim, F_, 2003. 'An Adaptive Fault-Tolerant
Component Model'. in Proceedings of International Workshop on Object-
Oriented Real-Time Dependable Svstems, 2003. WORDS 2003 Fall. 2003: p.

179-179.

Hecht, M., Hecht, H., and Shokri, E., 2000. 'Adaptive fault tolerance for
spacecraft’. in Proceedings of Aerospace Conference. Big Sky. MT. USA:

IEEE Computing Society press. Vol. 5: p. 521-533.

Avizienis, A. and Chen, L., 1977. 'On the Implementation of N-Version
Programming for Software Fault Tolerance During Execution', in Proceedings
of IEEE Ann. Int’l Computer Software and Applications Conf (COMPSAC

77). Chicago, IL: IEEE Computer Society press. p. 149-155.

Sun Microsystems Inc. 'Web Services Overview'. [Retrieved: 30 Jan 2008]

.

Available from: http:/java.sun.com/webservices/

Microsoft Corporation. .NET Framework'. [Retrieved: 16 Jan 2008];

Available from: http://msdn2.microsoft.com/en-gb/netframework/default.aspx

Sun Microsystems Inc. 'Java EE at a Glance'. [Retrieved: 16 Jan 2008];

Available from: http://java.sun.com/javace index.jsp

NetBeans. 'Documentation, Training & Support'. [Retrieved: 16 Jan 2008];

Available from: http://’www .nctbeans.org kb

Glasstish Community. 'Project Description. Metro Project’. [Retrieved: 16 Jan

2008]: Available from: https: jax-ws.dev java.net
ps:.]

76.

77.

78.

79.

80.

8.

Bibliography
W3C. (2006). 'Web Services Policy 1.2 - Framework (WS-Policy) "
[Retrieved: 30 Jan 2008]; Available from:

http://www.w3.org/Submission/WS—Policy/

XMethods. 'Welcome to XMethods'. [Retrieved: 30 Jan 2008]; Available

from: http://www.xmethods.net

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman. D.J.. 1990,
‘Basic local alignment search tool’, in Journal of Moleculur Biology. Issue

215: p. 403-410.

Virginia Bioinformatics Institute. (2007). 'Pathport, the pathogen portal
project'. [Retrieved: 30 Jan 2008]; Available from:

http://pathport.vbi.vt.edu/main/home.php

The Trustees of Princeton University. (2007) 'PLANETLAB'. [Retrieved: 30

Jan 2008]; Available from: https://www.planet-lab.org

Gorbenko, A., Mikhaylichenko, A., Kharchenko, V.. Romanovskyv, A (2007).
‘Experimenting With Exception Handling Mechanisms Of Web Scrvices
Implemented Using Ditferent Development Kits”, in CS-TR No 1010. School

of Computing Science, Newcastle University,

OASIS. (2006). "OASIS Web Services Security (WSS) TC". [Retrieved: 19
April 2008]: Available from: http:" www oasis-

open.org committees.tc_home.php?wg_abbrev=wss=announcements

83.

84.

Bibliography
IBM, Microsoft. (2002). ‘Security in a Web Services World: A Proposed

Architecture and Roadmap.’ [Retrieved: 19 April 2008]; Available from:

http://www.ibm.com/developerworks/library/speciﬁcation/ws-secmap,’

IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. (2007). ‘Business
Process Execution Language for Web Services version 1.1". [Retrieved: 30

March 2008]; Available from:

http://www.ibm.com/developerworks/library/speciﬁcation/ws—bpe1,

List of Abbreviations

List of Abbreviations

AW: Airway company

BLP: Business logic processor

DA: Dependability assessment mechanism
DMM: Dependability monitoring mechanism
DS: Database system

FTMS: Fault-tolerance mechanisms

HT: Hotel

PS: Policy system

REDRM: Resilience-explicit dynamic reconfiguration mechanism
SMD: Sub-Mediator database

SMI: Sub-Mediator Interface

SMM: Sub-Mediator monitoring mechanism
SOA: Service-oriented architecture

TA: Travel agency

WS: Web Service

WSD: Web Services database

WSIM: Web Service invocation mechanism
WSM: Web Services monitoring mechanism

Appendix A - The WSsDAT tool

Appendix A — The WSsDAT tool

Our work on the tool started with formulating the essential requirements which a
general Web Services dependability-monitoring tool needs to meet. The main
requirement is that such a tool should be able to monitor a Web Service continuously
for a preconfigured period of time and record various types of information in order for
the dependability of a service to be measured. Firstly, the tool should provide an
interface to accept user’s inputs and map these user inputs into internal processing
actions. Secondly, the tool has to be able to invoke the Web Service effectively and
wait for results; internal and external exceptions should be monitored during this
period. When the output of the service invocation is received. the response time for
the service should be recorded and analyzed. Idcally. the output of the senvice needs
to be assessed to determine whether the Web Service functioned properly and whether
it passed or failed according to the users’ demands. Moreover. when the test
invocation failed then any fault messages generated by the service should also be
documented. 1f available, these messages will provide insights behind the problems
causing the service failure. Finally. the tool should be able to produce reports of the

test and monitoring procedures.

Overview

The requirements of a general Web Services dependability-monitoring tool were
rcalised by the development of a Java-based application called Web Services
Dependability Assessment Tool (WSsDAT) which is aimed at evaluating the
dependability of Web Services. The tool supports various methods of dependability

testing by acting as a client invoking the Web Services under investigation. The tool

'
P

Appendix A ~ The WSsDAT tool

cnables users to monitor Web Services by collecting the following reliability

characteristics:

— Availability and Functionality: Calls are made to a Web Service at defined
intervals to check if the Web Service is functioning. The tool is able to test the
semantics of the response which are generated by the Web Service being
monitored. It is possible to pre-configure the tool using a regular expression
which represents the correct response expected by the scientist from a given Web
Service and ensure the service is functioning according to that expected by its
user. Results returned from a Web Service are recorded for further analysis
which can be manually carried out by a user.

— Performance: The WSsDAT measures the round-trip response time of calls
made to the Web Services. Average response time of successful calls is used as
performance metric of a Web Service.

~ Faults and exceptions: The tool records any faults generated by a failed
invocation of a Web Service. Internal and external cxceptions, for cxample,

networking timeout exceptions are also recorded for further analysis.

Further to the above metadata recorded by WSsDAT, the tool can also be used to test
and monitor the dependability of Web Services at geographically disparate locations
through the deployment of the tool on different computers. It is important to
understand the behaviour of a Web Service from the point of view of the clients. in
order to comprehend the networking consequences between the clients and the Web

Serviee.

Appendix A — The WSsDAT tool

General principles and architecture

One of the problems with using public scientific Web Services is that their interfaces
differ from one resource to another. Therefore, testers would normally have to write a
customized invocation script for each service because of the different interfaces and
parameters required. The WSsDAT is an off-the-shelf tool offering general solutions
for monitoring the dependability of Web Services. This tool is implemented using

Apache Axis JAX-RPC style SOAP processing APIs.

WwSs1

User's Inputs > Data
- | O

Information

User : i) g8 oty
database =©

A

/

Data Handler

Figure A-1: The architecture of the WSsDAT

The architecture of WSsDAT is shown in Figure A-1. It consists of three main
functional components, a graphical user interface (GUI), a Test Engine and a Data
Handler. The GUI captures the user’s request, and configures the test policy and
system settings. These inputs are modeled, mapped and stored in a database for
repeated use. The GUI is also a viewport which renders live dependability and
performance metrics of the Web Services being monitored. The Test Engine is
responsible for generating and executing invocation scripts using the modeled data

stored in the Web Services database to invoke Web Services. The Test Engine 1s able

137

Appendix A — The WSsDAT tool

to run a batch of tests and measurements concurrently. The Data Handler processes
and models all test and observation measurements data. After statistical analysis.
these data are subsequently stored in a MySQL database or as plain text files; relevant

information is passed and rendered in the viewport on the GUI.

onMNn Web Services Dependability Test Toclkit

| File Tool About

DEZE -
s

Over view WS informassion | Tes1 Policy

Wss WS Name: WSZ
Endpoint http://localkost:8080/axis/Test.jws?
Operation: test
Timeout(s): 10C
Return Type XSD_STRING ¥) a
Expected Result: pass
Parameter Type XSD_STRING E
Paramecter: pass
Parameters Type Parameters [Add
XSD_STRING pass R

(Enter | Next

Figure A-2: GUI for Web Services information inputs

Graphical user interface (GUI)

We designed and implemented the GUI by which users can interact with the
WSsDAT. Users can input information of Web Services on the GUI, set test
parameters and configure test policies, as shown in Figure A-2. The WSsDAT 1s
capable of testing multiple Web Services simultaneously. Each time the GUI accepts
inputs for one Web Service. Once user’s inputs are validated, these data are modeled

and saved in a database, and the Web Service is entered into a test array. The Web

138

Services in the test array are

modification and information

Appendix A — The WSsDAT tool

listed on the GUI and can be selected individually for

display. The viewport on the GUI renders information

of Web Services, such as errors, average response time, and graphs of response times.

The user can highlight a Web

nnoO

Service in the testing list for display. (See Figure A-3).

Web Services Dependability Test Toolkit

| File Tool About

BEEE-E

S =L — flOverviews| WS information Test Policy | . —
WSs Ws Name Endpoint Operation Starttime Average .. Response Pass rate Selecte
wSsi1 ws1 hup /localhost 8080/ test 00.00:00 878 905 100 ¥

ART 878 ms Tested Times 2134

Errors 0 Availability 100%

1000

800 ”E
600 - 2
400 |-

200

Figure A-3: GUI for test information display

Test engine

The Test Engine processes the user’s inputs and implements service invocation scripts

according to test policies. Tests on each Web Service are established as a single

thread and all tests are carried out in parallel. The number of test threads is only

s 0 e . < I
restricted by the computer system’s capability or restriction. Figure A-4 1s an UML

Appendix A - The WSsDAT tool

diagram showing how the Test Engine cooperates with other components in the

WSsDAT. The mechanism of a test procedure described briefly as following:

— The Test Engine assembles an invocation script for a Web Service to be
monitored according to user’s inputs.

~ The Test Engine invokes the Web Service with the test script. A timer is started
for measuring the response time. The start time of the invocation is logged.

- If a valid result is received from a Web Service, the result is passed to the Data
Handler along with other measurements such as start time and end time of the
invocation. The test is terminated and will be started again after the preset
interval.

— If an exception is detected during the invocation, the cxception message is logged
along with other dependability and performance metrics. The test is terminated
and a new invocation will be initiated after the preset interval.

- If the Web Service does not return any response after a preset timeout period. the
timeout exception is logged. The test is terminated and will start again after the
preset interval.

Relevant statistics and analysis are processed and logged after each invocation.
The Test Engine implements the SOAP message processing mechanism. It is able to
analyze the SOAP message received from the Web Services by reporting the error
message attached in the SOAP message and thereby allowing users of the tool to

understand what failures occurred during an unsuccessful invocation.

140

Appendix A — The WSsDAT tool

Data handler

The Data Handler processes all data generated during the test. After statistical
analysis, these data are stored in a MySQL database, and passed to the GUI if
appropriate. If a MySQL database is not installed on the computer, the WSsDAT has
an option to save these data in formatted text files. The contents of these files are
commented and split clearly and can be easily converted into Microsoft Excel or some

other statistics software which can import data from formatted text files such as

SPSs’.
(S,) (aahandier] [Database] (TestEngine]

1 1 1 1

ne | ' i
| User inputs |
: : SOAP/WSDL

CRp— i : é—b@ Web service
J Data
User ! :
=

Display Save

&

Figure A-4: Test procedure

*hitpy/. WWW.spss.com/SPSS/

141

Appendix B - Implementation of Java Sub-Mediator Elite

Appendix B — Implementation of Java Sub-Mediator Elite

We started implementing the Java WS-Mediator by using the UML modelling tool
[74] integrated in NetBeans to generate abstract classes of components. The
modelling technique allowed us to construct an abstract prototype of the WS-
Mediator and its components from scratch by defining attributes and operations to
present the functionalities and behaviours of components. Moreover, we were able to
validate the proposed system structure and components with Use Case and class
diagrams along with the modelling-based system validation techniques. The
modelling approach dramatically reduced the difficulty and complexity of the liva
WS-Mediator implementation. Figure B-1 presents the class diagram of the Sub-

Mediator Elite, illustrating the internal components of the implementation.

In the Sub-Mediator Elite, class Med Elite SOAPPort() acts as both service interface
and the BPL. The client application can invoke Java APls implemented in the
Med Elite SOAPPort() class to request different services. This class interprets the
client’s requests and assigns jobs to the corresponding components. Figure B-2
illustrates the dependency of the Med Elite SOAPPorts() class. The I'S_Bridge() and
the SubMed _Brisge() classes are the components for accessing the l'eh Service
database and the Sub-Mediator database. The Dynamic_Recon/ Engine() class
implements the Dynamic Reconfiguration Engine of the Sub-Mediator to process the
mediating service requests. The Aed Elite_PolicyPort() class interprets the global
evecution policy, while the WS _ReqPolicy_Parser() class extracts individual

evecution policies.

142

)11 10JRIPIJA-QNS Y} JO WRISRIP SB[:[-g 2431y

mepp l

Med_Elite_ SOAPPort
{ From medeer Ee)

q

SubMed_Bridge
| Fram medasor_Elte |

f

SubMed_Metadata
{ Fram medusior_Eite |

!

SubMed_Monitor
| Fraom medator_Ewte |

3

I

SubMed_Invoker
| Fram medane Eie |

wsReqPy

l

{ Fram medatr_Este |

Results_Cache
{ From medator Ele |

dre 7 wsp
WS_ReqPolicy_Parser Med_Elite_PolicyPort arp
{ From medair_Eite | = = =1 { Fram medator_Blte) . s
MR_Policy Med_Global _Policy
{ From medanor_Eiite | { From medsior_Elite |
map
weReqPy e 8 npp
“types > <<datsypes>
WS_Reqg_Policy NVP_Policy
Req = <<dmmypas> <<datypes>
A ety B | Isontnrae R0) AR_Policy Globals
MR_Engine by { Fram medianor_Ehte) { From medanor_Be |
{ From mediatr_Eiite)
Dynamic_Reconf_Engine
= { From medsor_Site | arp
mre
AR_Engine
@ are { From mediator_Ese |
wsList .
WS_Bridge wlist —T VAR
| From medasior_Eite | ‘ nvpe
=1 NVP_Engine
{ From medisor_Eite |
vusList
po-
weshieta r sp
nsMeta stProc
] weFyoe
WS_Metadata o - T
{ From medasor_Ee | _Proc soapProc
{ From medtor_Eite | wsProc l SOAP_Proc stProc
{ From mediator_Ehse |
K) WS_Invoke_Engine
Dispatch_Engine { Fram meditor_Eida |]
{ From medisor_Eie |
} $
WS _Monitor e iR F J o
{ Fram medanor Ehe | T
2 wsinfo Results_Proc XML_Proc
WS _Info re | Fram medasr_Ese | | Fram medan_Eite |

mlp

211 I0IBIDIIN-qNG BAR[JO uonejuawa|dwy — ¢ xmuaddw

Appenaix B — Implementation of Java Sub-Mediator Elite

Dynamic_Reconf_Engine
| Fram medater_Eie |

rlle By

WS _Bridge Med_Elite_PolicyPort SubMed_Bridge WS_Ri
= = o) eqPolicy_P.
{ From merdator_Exe | | From medstor S | { From medaor_Eime | (_rm:mm:_e.:sy
\
\
‘x

\\

\\

Med_Elite_SOAPPort
{ From medasor Eie |

Figure B-2: The Service Processing Engine of the WS-Mediator Elite

Below we discuss a simple client application developed using the APIs provided by
the Sub-Mediator Elite. The client requests a mediating service and provides two Web
Services, ws/ and ws2, as candidates. The client application creates an instance of the
Med Elite_PolicyPort() class, names it mesp, and then creates an instance of
SOAPProc() class, and names it soapProc. The SOAPProc() class implements various
methods for converting String and XML document into SOAP messages.

Method ws/() assembles the information about ws/. It invokes the
soapProc.bindingSOAP() method to convert String smRequest into a SOAP message,
and then uses soapProc.readFileCreatDocument() to generate an individual execution
policy from a XML file. The variable faults is a Java HashMap containing customized
error information for identifying specific error messages defined by the client. For
instance, faults.put("Result”, "busy") means if “busy” appeared in Element “Result” of
the SOAP message, this SOAP message will be regarded as invalid and carrying error
message. mesp.insert () passes the information about ws/ to the Sub-Mediator Elite.
After capsulating the information about ws/ and ws2, mesp.setGlobalPolicy() sets the
global execution policy for this mediating service request. mesp.execute() starts the

Sub-Mediator Elite to execute a service request.

144

Appenaix B — Implementation of Java Sub-Mediator Elite

The result of the execution will be returned as a Java Vector. The first element of

Vector will be the final result in the response to a service request. If no valid result is
obtained from candidate Web Services, an error message is returned as the result. The
last element of Vector is an XML processing report explaining its structure and
content. The report can be interpreted by a XML processing program to achieve
automatic processing of the results. The rest of the elements in Vector stores the
results returned from candidate Web Services.

import com.mediator.mediator_Elite.Med Elite. SOAPPort:
import com.mediator.mediator_Elite.SOAP_Proc;
public class TestCase |

private Med Elite. SOAPPort mesp;

private SOAP_Proc soapProc = new SOAP Proc();

public static void main(String[args) {
mesp = new Med Elite SOAPPort();
wsl();
ws2();
globalPolicy= soapProc.readFileCreateDocument("C:\\ globalPolicy.xml");
mesp.setGlobalPolicy(globalPolicy);
Vector results = mesp.execute();
1
i
private void ws1(){
QName serviceQName = new QName("http://xml.nig.ac.jp:80/xddbj/Blast", "Blast")
QName portQName = new QName("http://tempuri.org/Blast", "Blast");
SOAPMessage soapMessage = soapProc.bindingSOAP((String) smRequest);
xmlPolicy = soapProc.readFileCreateDocument("C:\\ws1 Policy.xml");
HashMap faults = new HashMap();
faults.put("Result", "busy");
mesp.insert (serviceQName, portQName, soapMessage, xmlPolicy, faults);
1
I
private void ws2() {

1
|

<<datatype>> <<datatype>> <<datatype>> <<datatype>>
Med_Global_Policy| NVP_Policy MR_Policy AR_Policy
{ From mediator_Elite } { From mediator_Elite } { From mediator_Elite } { From mediator_Elite }
e - .
0 o

Med_Elite_PolicyPort |~

{ From mediator_Elite }

Figure B-3: Interpreting the global execution policy

Appenuaix B — Implementation of Java Sub-Mediator Elite

Figure B-3 shows different types of execution policies extracted by th

e
Med_Elite_PolicyPort() class. As explained in chapter 3, the global execution policy
may change according to the execution mode. N VP _Policy, MR Policy and

AR _Policy present execution policies associated with the N-version programming, the

Multi-Routing and the Service Alternative Redundancy execution modes respectively.

WS_ReqPolicy_Parser <<datatype>>
{ From mediator_Elite } WS_Req_Policy

{ From mediator_Elite }

Figure B-4: The individual execution policy

As illustrated in Figure B-4, the WS ReqPolicy Parser() class extracts individual
execution policies from the service request SOAP message. An individual execution
policy is associated with each candidate Web Service. The Web Service Execution
Engine uses individual policies to decide how to invoke each of them.

Below is an example of an individual execution policy, followed with the explanation

of the entities.

<?xml version="1.0" encoding="UTF-8"?>
<wsp:Policy xmlns:wsp = http://schemas.xmlsoap.org/ws/2004/09/policy
xmlns:wsmip = "http://schemas.wsmediator.org/indevidualPolicy/policy">
<wsp:ExactlyOne>
<wsp:All>
<bindingMethod>SOAP1 1HTTP</bindingMethod>
<invocationMode>Sync</invocationMode>
<timeout>20000ms</timeout>

<autotimeout>maximum</autotimeout™>

146

Appendix B — Implementation of Java Sub-Mediator Elite

<retryAfterFailure-3-/retryA fterFailure>
<retryInterval>3000ms</retryInterval>
</wsp:All>
~/wsp:ExactlyOne>

</wsp:Policy~

» <bindingMethod>: this indicates the binding method of the SOAP message.
Web Service invocation APIs should follow the binding method to invoke the

Web Service. Default value: SOAP11HTTP

¢ <invoactionMode>: this entity indicates the invocation method to the Web
Service. There are three types of invocation methods: synchronous,
asynchronous invocation and the conventional RPC (Remote Procedure Call)

invocation. Default value: Sync (Synchronous invocation)

e <rimeout>: this sets the timeout parameter for an invocation. If it does not
complete in the timeout period, the invocation will be terminated and a
timeout exception will be raised. The value of the timeout parameter can be

automatically set by the Sub-Mediator if the value is set as Oms.

® <awotimeout>: the Sub-Mediator can automatically set the timeout
parameter for invoking a particular Web Service according to dependability
metadata. There are three options: average., minimum and maximum,

representing average, minimum and maxinmum response time.

e ~rewvofrerFailure>: the Sub-Mediator implements the retry strategy to
tolerate temporary scrvice and netwvork failures. This entity sets the number of
retry invocations of a particular Web Service before giving up.

* <yetryinterval>: this entity scts the interval between retries.

147

Appenaix B — Implementation of Java Sub-Mediator Elite

Class Dynanic_Reconf Engine() implements the Dynamic Reconfiguration Engine of
the Sub-Mediator Elite. Figure B-5 illustrates the dependent components of the
Dynamic Reconfiguration Engine. The WS Bridge() class implements methods to
allow access to the Web Service database. Currently, there are three fault tolerance
execution modes implemented in the Sub-Mediator Elite. AR_Engine(),NVP Engine()

and MR Engine() implement the Service Alternative Redundancy, the N-version

Programming (Service Diversity) and the Multi-routing execution mode.

NVP_Engine

{ From mediator_Elite }

I

WS _Bridge AR_Engine Aatypar> MR_Engine
{ From mediator_Elite } { From mediator_Elite } Med_Global_Policy { From mediator_Elite }

{ From mediator_Elite }

\ I //// i mri'/’_ //
oz et

Dynamic_Reconf_Engine |>—

{ From mediator_Elite }

Figure B-5: The Dynamic Reconfiguration Engine of the Sub-Mediator Elite

The modelled system design and implementation of the Sub-Mediator Elite allow
scalable and flexible adaptation of fault tolerance mechanisms by implementing them

as individual fault tolerance execution models.

148

Appendaix B — Implementation of Java Sub-Mediator Elite

Dispatch_Engine
SOAP_Proc { From medasor_ e)
{ Fram medaior_Eite | [<=—of =

e
AR_Policy
{ From medmor_Ehee)

$
AR_Engine 0—,

Results_Proc { From medanor_ e |
{ Fram medator_Ele)

WS _Metadata
! | Fram medao e |

— | :

Results_Cache WS_Bridge

| Fraom medator_ Site | | From medisor_Eite) ‘ Fm\:/j_Proc&' '

L

Figure B-6: Service Alternative Redundancy F-T execution mode

Figure B-6 illustrates the Service Alternative Redundancy execution engine and its
dependent components. The AR Policy execution policy constrains the execution of
the AR Engine() class. Class WS Metadata() implements methods to retrieve the
dependability metadata of Web Services. AR Engine() checks the dependability
metadata of candidate Web Services, and then sorts them according to AR Policy.
Class WS Proc() implements methods for processing Web Services, such as sorting.
The SOAP Proc() class helps AR _Engine() to collect the necessary information for
invoking Web Services. Dispatch_Engine() implements Dispatch<T> invocation API
for invoking Web Services. When AR Engine() receives a result via
Dispatch Engine(), it caches the result using the Results_Cache() class. If this result
fails the validity check, the AR Engine() class will retry the Web Service or switch to
an alternative Web Service. If a valid result is received or all Web Services have been
tried, the AR Engine() finalizes Result Cache and generates final results using the

Results_Proc() component.

149

Appendix B — Implementation of Java Sub-Mediator Elite

<<datatype>>
NVP_Policy
{ From mediator_Bite }
WS__Proc ‘ f Resuits_Cache
{ From mediator_Bite } i { From mediator_Bite)
e = NVP_Engine [7|
{ From mediator_Bite }
WS _Invoke_Engine < S Results_Proc
{ From mediator_Hite } I Finr { From med:z?or_ane }

WS_Bridge

{ From mediator_Hite }

Figure B-7: N-Version Programming execution mode

Figure B-7 illustrates the N-Version Programming execution engine and its dependent
components. It processes candidate Web Services according to NVP_Policy. Then it
invokes the defined number of Web Services synchronously. All of the results
returned from Web Services will be cached in Results Cache(). The NVP Engine()
also performs the validity check. If a valid result is received, it is an option for the
NVP Engine() to terminate invocations and deliver the valid result as the first
received result to the client. If a number of valid results are expected, the
NVP_Engine() will wait until enough results have been received. If a Web Service
fails an invocation before the expected number of valid results has been received, the
NVP_Engine() will invoke alternative Web Services to continue execution. Valid
results can be voted by the voting mechanism implemented in NVP_Engine();

however, it is an optional procedure.

Figure B-8 illustrates the Multi-Routing execution engine and its dependent

components. The MR_Engine() interprets the MR Policy to define the execution

150

Appendix B — Implementation of Java Sub-Mediator Elite

procedure and checks the dependability of Sub-Mediators via the methods
implemented in class SubMed Metadate(). Then MR _Engine() selects a defined
number of Sub-Mediators to implement the Multi-Routing Strategy. Similarly to the
N-Version Programming execution mode, execution can be terminated when a valid
result is received via a Sub-Mediator. Otherwise, MR Engine() waits until all results
are returned from Sub-Mediators or timeout. The results can be voted using the voting

mechanism implemented in MR Engine().

Dispatch_Engine Results_Proc prr— Results_Cache SubMed_Metadata
{ From mediator_Bite } { From mediator_Bite } MR_Policy { From mediator_Bite } { From mediator_Bite)
{ From mediator_Bite)|

\ g I A 2

\\0 MR_Engine _—
o

{ From mediator_Eite }

Figure B-8: The Multi-Routing Execution mode

The Dispatch_Engine() class implements dynamic Web Service invocation
mechanisms. It utilizes the powerful Dispatch<T> dynamic Web Service invocation
API provided by the JAX-WS 2.1 framework to achieve run-time dynamic integration
of Web Services. The Dispatch<T> API supports synchronous, asynchronous and
one-way invocation to suit different application scenarios. The Sub-Mediator Elite
fully supports various invocation methods. An invocation method can be selected by

an individual execution policy.

Appendix C — Dependability metadata

Appendix C — Dependability metadata

Below is given an example of dependability metadata implemented in the XML

format. Element <ws> indicates the name of the Web Service using its endpoint. The

nested elements represent various dependability attributes.

<?xml version="1.0"7>

<!-- Endpoint of the Web Service -->

<ws service="{http://xml.nig.ac.jp:80/xddbj/Blast} Blast">

WS>

<!-- dependability rank of the Web Service -->
<dependability>85%=</dependability>

<!-- the performance evaluation, e.g. the average responsc time -->

“performance>24141</performance>

<!-- The number of monitoring tests applied on the Web Services -->

<numOfTests>340</numOfTests>

<!-- The number of monitoring tests that returned valid results -->

<succTests>29(0</succTests>

<!I-- the average response time of the valid invocations -->

~aveResponseTime>24141ms</aveResponse Time>

<!-- the minimum response time of the valid invocation -->

<minimumResponseTime>1110ms</minimumResponse Time>

<!-- the maximum response time of the invocations -->

<maximumResponse Time>2730ms< maximumResponseTime>

._..
h
39

Appendix D - Dependability metadata database in XML

Appendix D — Dependability metadata database in XML

During dependability monitoring of Web Services, a time series of dependability
metadata are kept in the dependability database. The changing dependability
behaviour of Web Services can be understood by tracing their dependability metadata
at different times, which helps the resilience-explicit decision-making mechanism to
select the most desirable component services. Below is shown a fraction of the time-

logged dependability metadata collected from one of our experiments.

~xml version="1.0" encoding="UTF-8"7>
<report>
<Execution startTime="Wed Mar 14 12:38:58 GMT 2007">
<wslist>

<WS

service="{http://www.ebi.ac.uk'collab/mygrid scrviced soaprse

rvices/alignment::blastn_ncbi} AnalysisWSAppLablmplService

">
<dependability>58</dependability>
<performance>62500</performance>
<numOfTests>340< numOfTests>
<succTests>200</succTests>
<aveResponseTime>62500< aveResponse Time>
<minimumResponseTime>9999</minimumResponseTi
me>
<maximumResponseTime>61485</maximumResponse
Time>

</ws™

~ws service="{http: xml.nig.ac.jp:80/xddbj Blast; Blast">
<dependability ~83-/dependability>
<performance>2+141</performance=

<numOtTests>340~ numOfTests™

Appendix D - Dependability metadata database in X M|

<succTests>290</succTests>
<aveResponseTime>24141</aveResponseTime>
<minimunResponseTime>1 | 10</minimunResponseTi
me>
<maximumResponseTime>2750</maximumResponscT
ime>

</ws>

<ws

service="{http://pathport.bioinformatics.vt.edu:6565/axis/ ser i

ces/blastbt} BlastbtService">
<dependability>91</dependability>
<performance>28990</performance>
<numOfTests>340</numOfTests>
<succTests>310</succTests>
<aveResponseTime>28990-</aveResponse Time>
<minimunResponseTime>9999</minimunResponscTi
me>
<maximumResponseTime>36297</maximumResponse
Time>

</ws>

</wslist>
</Execution>
<Exccution startTime="Wed Mar 14 12:44:28 GMT 2007">
<wslist>

<ws

service="{http://www.ebi.ac.uk/collab/mygrid/service4 soap/se

rvices/alignment::blastn_ncbi} AnalysisWSAppLabImplService
<dependability>58</dependability>
<performance™>62500</performance>
<numOfTests>33 1</numOfTests>
<succTests>200</succTests>

~aveResponse Time>62500</aveResponse Time>

Appendix D - Dependability metadata database in XML

<m1n1munResponseTime>9999</minimunResponseTi

me>
<maximumResponseTime>6l485</maximumResponse
Time>

</ws>

<ws service=" {http://xml.nig.ac.jp:80 xddbj/Blast} Blast">
<dependability>85</dependability>
<performance>24141</performance>
<numOfTests>341</numOfTests>
<succTests>290</succTests>
<aveResponseTime>24141</aveResponseTime>
<minimunResponseTime>1110</minimunResponseTi
me>
<maximumResponseTime>275(- maximumResponseT
ime>

</ws>

<ws

service="{http://pathport.bioinformatics.vt.edu:6565 axis servi

ces/blastbt} BlastbtService">
<dependability>9 | </dependability=>
<performance>28983</performance>
<numOfTests>34 1 </numOfTests>
<succTests>3 1 1</succTests>
<aveResponseTime>28983< aveResponseTime>
<minimunResponseTime>9999</minimunResponsecTi
me>
<maximumResponseTime>36297-</maximumResponsc
Time>

</ws>

< wshist>
~/Exccution>
~Execution startTime="Wed Mar 14 12:49:58 GMT 2007">

~wslist™

N
th

<ws

Appendix D — Dependability metadata database in XML

service="{ http://www.ebi.ac.uk/collab/mygrid/service4/soap, se

rvices/alignment: :blastn_ncbi}AnalysisWSAppLabImplService

ll>

</ws>

<dependability>58</dependability>
<performance>62500</performance>
<numOfTests>342</numOfTests>
<succTests>200</succTests>
<aveResponseTime>62500</aveResponse Time>
<minimumResponseTime>9999</minimumResponseTi
me>
<maximumResponseTime>61485</maximumResponse

Time>

<ws service="{http://xml.nig.ac.jp:80/xddbj/Blast} Blast">

</ws>

<ws

<dependability>84</dependability>
<performance>24141</performance>
<numOfTests>342</numOfTests>
<succTests>290</succTests>
<aveResponseTime>24141</aveResponseTime>
<minimumResponseTime>1110</minimumResponseTi
me>
<maximumResponseTime>2750</maximumResponseT

ime>

service="{http://pathport.bioinformatics.vt.edu:6565/axis/servi

ces/blastbt} BlastbtService">

<dependability>91</dependability>
<performance>28977</performance>
<numOfTests>342</numOfTests>
<succTests>312</succTests>

<aveResponseTime>28977</aveResponseTime>

Appendix D — Dependability metadata database in XML

<mintmumResponseTime>9999</minimumResponseT1
me>
<maximumResponseTime>36297</maximumResponse
Time>
</ws>
</wslist>
</Execution™>

</report>

157

Appendix E - Implementation of Java client application

Appendix E — Implementation of Java client application

The Java code shown below is an example of the Java client application based upon
the Sub-Mediator Elite that uses three Blast Web Services as component services to
implement service diversity strategy by using the N-version programming fault
tolerance execution mode. We use comments in the code to explain how to implement
a Java client application with the APIs provided by the Sub-Mediator Elite.

/*
* TestCases.java

*

* Created on 21 February 2007, 17:43

*

*/
package com.mediator.test,

/* The Java application needs to import the necessary classes. Med Elite_SOAPPort
is the interface of the Sub-Mediator Elite. SOAP_Proc and XML_Proc provide

optional methods for processing SOAP messages and XML files. */

import com.mediator.mediator_Elite.Med_Elite SOAPPort;
import com.mediator.mediator_Elite. SOAP_Proc:

import com.mediator.mediator_Elite. XML _Proc:

import java.io.FileOutputStream;,

import java.io.PrintStream;

import java.util. Date;

import java.util. Vector:

import javax.xml.namespacc.QName;

import javax.xml.soap.SOAPMessage:

import org.omg. CORBA.DATA_CONVERSION:

Appendix E - Implementation of Java client application

import org.w3c.dom.Document;

/**
* (Y uhui Chen
*/

public class TestCases |

/* Creates the instance of the classes implemented in Sub-Mediator Elite. */
private Med Elite. SOAPPort mesp;

private SOAP_Proc soapProc = new SOAP_ Proc();

private XML Proc xmlp = new XML Proc();

/* Vector results is created for accepting the processing results returned from Sub-
Mediator Elite.*/

private Vector results;

public TestCases() {

/* The main method that implements the business logic */

public static void main(String[args) |

/* Creates a new instance of TestCases */

TestCases tes = new TestCases():
/* Creates an instance of Log_ Proc for logging the execution of the bustness
procedures */

Log_Proc logproc = new Log_Proc();

/* Initiates the logging buffer */

logproc.init():

/* Excceutes the business process *!

Appendix E - Implementation of Java client apphication

tcs.execute(logproc);

/* Prints the execution results returned from the Sub-Mediator Elite *

tes.printResult();

/* Assembling invocation to the Sub-Mediator Elite */

private long execute(Log_Proc logproc){

/* logs start time */
long t1 = System.currentTimeMillis();

mesp = null;

/* Initiates the interface of the Sub-Mediator Elite */

mesp =new Med_ Elite. SOAPPort();

/* Initiates the vector accepting the execution results*

results = new Vector();

/* Assembling invocations to the candidate Web Services */
wsl();
ws2():

ws3();

/* Imports the global execution policy*/

Document globalPolicy = null;

try |
globalPolicy =
xmlp.readFileCreatcDocument("E:\\Projects\\Mediator::doc “Current. globalP
olicy.xml");

t catch (Exception ¢x) |

excprintStack Trace():

160

Appendix E — Implementation of Java client application

/* Sets the global execution policy*/

mesp.setGlobalPolicy(globalPolicy);
Date startTime = new Date();

/* Invokes the Sub-Mediator to execute the dynamic service composition *.

results = mesp.execute();

/* Calculates the response time externally in the client application*/
long t2 = System.currentTimeMillis();

long responseTime = t2-t1;

/* Logs the relevant results */
logproc.append((Document)results.lastElement(), startTime.
String.valueOf(responseTime));

logproc.writeLog("E:\\Projects\\Mediator\\doc\\output\\log.xml"):

System Out.println("***********************")'

System.out.println("* Response Time (ms) : " + responseTime);

System out println("***********************”)~

return response Time;

/* Assembling the invocation to a candidate Web Service */

private void ws1(){

/* The Japanese DDBJ Blast Web Service */

QName serviceQName = new QName("http: xml.nig.ac.jp:80 xddb) Blast",
"Blast");

QName portQName = new QName("http: tempuri.org Blast”, "Blast"):

/* String smRequest is the invocation SOAP message to DDBJ *
String smRequest = "<soapenv:Envelope

; X IR I e
xmlns:soapenv=\"http://schemas.xmlsoap.org 'soap envelope ><soapenv:Bod

161

Appendix E - Implementation of Java client application

y><searchSimple

xmlns=\"http://xml.nig.ac jp:80/xddbj/B last\"><program>blastn</program><d

atabase>ddbjhum</database>~arg2>ccccacatca ccactttgga taacgccaaa

o

o
oo

tacaccttca acgggctagg atacttcctg ctggttcagg CCcaggacag aaattcttec tteetgct
agggceegeac tgececagact gattetgeca atgecacgaa cttcattgec tttgeggecc aatacaacac
cagcagectg aagtctceca tcacagttca gtggtttett gageccaatg acacaatccy agttgtacac
aataaccaaa cggtggcectt taacaccage gacactgaag acttgecegt attcaatgcce

actggtgtcc tactgatcca aaatggetee caagtctcag ccaactttga tgggacagtg

accatctetg tgattgetct ctccaacatce cttcacgect cctccagect gtcagaggag

taccgcaacc acacaaaggg ccttctggga gtctggaatg acaatccaga agatgactte
agaatgccca atggetccac catceectee aacacgteeg aggagactet tttccactat

ggaatgacat cggaaactaa cgggatagge ctecttgggg tgaggacaga ccctetgect

tctgagttta ctcccatctt cttgtcccaa ctgtggaaca agageggege cggteaagac

gaacagtggc cattgagate accageaact ctaaggatgt cgtattcage ctetecaaca
agtgcagtgg cctttgaget ctttgaaaac ggpagtitge acgtggacac caacateeee
agaagaacgt acctggagat tctagcaagy gatgtcaaga ctaacttgte atcggtacte
cagcctgaga cggtggcttg cttctgtagt aaggaggaac agtgtitgta caacgagac
agcaaagagg gcaactctte cactgaggtye accagetgea agtgcgatyg gaactectte

ggecgettgt gtgaacacte taaggaccte tgcactgage catgetteec taatgtggac

tgeattecte ggaaggecty tcaggeetge cetecaaaca tgactggaga tgggacgteat

s

tgtatagety tggagatete tgaattetge cagaaccatt cctgtectgt gaattactge tataaccarg
gecattgega catetetggg cctecagact gecageeceac ttgeacctge geeectgect

teactggtaa cegetgette ctggecgega acaatttcac tceecateate tataaagagc ttecetigay

gaccatcacy ctetetetea gggaggacga aaacgectct aacgetgacy teaatgecte

(L‘

ggtogcaaac gtactagaga acttggacat gegggctttt ctctccaaca gettagtgga

getgatacga accteteceg gageaccagt cettggeaag cceatteate actggaaggt

¢
&

cgtcteceac ttcaagtace gteecagggy accecteate cactatetga acaaccaact

gataageece gteatgoage cottectect ceaggetegg €aggagagac geaagagdag

&

—_

gEagaagce aggaagaacy tecgettett ceecateteg agggeagacy teeaggacgy

gatggccoctg aacctaagta tgctggacga gtacttcacg tgegatgget acaaaggcta

&

ceacttggte tacageecee aggatgaegt cacctgatg tcoccatgta gtgaggacta

162

Appendix E ~ Implementation of Java client application

ctgtcacaat ggaggccaat gcaageacct gecagatggg ccccagtgcea cgtgegcaac
cttcagcatc tacacatcct ggggegaacg ctgtgageat Ctaagcgtga aacttggggc
attcttcggg atcctctttg gageectggg tgeectettg ctactggcca tettageatg tetogtettt
cacttctgeg getgetecat gaacaagttc tectacccte tggactcaga

actgtga</arg2></searchSimple></soapenv:Body></soapenv:En\'elope>";

/* String xmlPolicy contains the individual execution service policy */

String xmlPolicy= "<wsp:Policy
xmins:wsp=\"http://schemas.xmlsoap.org/ws/2004/09 policy\"
xmlns:wsmip=\"http://schemas.wsmediator.org/indevidualPolicy policy "><w
sp:ExactlyOne><wsp:All><!-- Binging method --

><bindingMethod>SOAP1 1HTTP</bindingMethod><!-- Invocation mode:
RPC | Sync | Async --><invocationMode>Sync</invocationMode ><!-- time
out parameter --><timeout>20000</timeout><!-- auto-set time out parameter:
average | max --><autotimeout>average</autotimeout> <!-- How many time
to retry after failure--><retryAfterFailure>3</retry AfterFailure><!-- Interval
between retries --><retrylnterval>30</retrylnterval ~!-- apply multi-routing.
and number of routes --><multirouting>0<'multirouting ~=!-- start to monitor
this Web Service locally? no | locally | remotely--
><monitorThisWS>no</monitorThisWS><!-- find identical Wcb Scervices?
how many?--

><searchldentical WS>2</searchldentical W S></wsp:All>< wsp:ExactlyOne>

</wsp:Policy>";

/* The endpoint address of DDBIJ */
String endpointAddress = "http://xml.nig.ac.jp:80/xddbj Blast":

/* Binding the invocation message to DDBJ in the invocation SOAP message
sending to the Sub-Mediator Elite */

SOAPMessage message = soapProc.bindingSO AP(smRequest);

/* Binding relevant information for invoking the Sub-Mediator Elite*/
mesp.insertW S(endpointAddress. serviceQName, portQ\ame, message.

xmlPolicvy

Appendix E — Implementation of Java client apphcation

!
f

/* Assembling the invocation to another candidate Web Service */
private void ws2(){

String smRequest = "<soapenv:Envelope
xm]ns:soapenv:\"http://schemas.xmlsoap.org/soap/envelopc "><soapenv:Bod
y><getFFEntry
xmins=\"http://www.themindelectric.com/wsdl/DDBJA\"><accession>AB0000
50</accession></getF FEntry></soapenv: Body></soapenv:Envelope>":

QName serviceQName = new QName("http://xml.nig.ac.jp/xddbj DDBJ",
"DDBIJ");

QName portQName = new QName("http://xml.nig.ac.jp ' xddbj DDBJ",
"DDBI");

String xmlPolicy= "<wsp:Policy
xmlns:wsp=\"http://schemas.xmlsoap.org/ws/2004 09 policy "
xmlins:wsmip=\"http://schemas.wsmediator.org/indevidualPolicy policy\"><w
sp:ExactlyOne><wsp: All:<1-- Binging method --
><bindingMethod>SOAPI THTTP-/bindingMethod: - !-- Invocation mode:
RPC | Sync | Async --><invocationMode>Sync-:invocationMode= '-- time
out parameter --><timeout>30000~/timeout><!-- auto-set time out parametcr:
average | max --><autotimeout™averages autotimeout™> <!-- How many time
to retry after failurc--><retry AfterFailure>3< retry AfterFailure><!-- Interval
between retrics --><retryInterval>30</retryInterval=-:!-- apply multi-routing,
and number of routes --<~multirouting>0</multirouting><!-- start to monitor
this Web Service locally? no | locally | remotely--
><monitorThisWS>no</monitorThisWS><"-- find identical Web Services?
how many?--
><scarchldentical WS>2</scarchldentical WS>< wsp: All><wsp:ExactlyOne>
~/wsp:Policy>";

String endpointAddress = "http:, xml.nig.ac.jp xddbj. DDBJ";

SOAPMessage message = soapProc.bindingSOAP(smRequest):

mesp.iscertWS(endpointAddress,

serviceQName, portQName.message.xmlPolicy):

164

Appendix E — Implementation of Java client application

/* Assembling the invocation to another Web Service */
private void ws3(){

String smRequest = "<soapenv:Envelope
xmlns:soapenv=\”http://schemas.xmlsoap.org/soap/envelope/-”><soapenv:Bod
y=<execute
xmlns=\"http://www.themindelectric.com/wsdl/BlastDemo/A"><accession>AB
000050</accession></execute></soapenv:Body></soapenv:Envelope>":

(QName serviceQName = new QName("http://xml.nig.ac jpxddbj, BlastDemo".
"BlastDemo™");

QName portQName = new QName("http://xml.nig.ac.jp/xddbj 'BlastDemo",
"BlastDemo");

String xm!Policy= "<wsp:Policy
xmlns:wsp=\"http://schemas.xmlsoap.org/ws/2004/09/policy:"
xmlns:wsmip=\"http://schemas.wsmediator.org/indevidualPolicy/policy\"><w
sp:ExactlyOne><wsp:All><!-- Binging method --
><bindingMethod>SOAPI |HTTP</bindingMethod ~~!-- Invocation mode:
RPC | Sync | Async --><invocationMode>Sync<.invocationMode < '-- time
out parameter --><timeout>60000</timeout><!-- auto-set time out parameter:
average | max --><autotimeout>averagc< autotimeout> <!-- How many time
to retry after failure--><retryAfterFailure>3</retry A fterFailure><!-- Interval
between retrics --><retrylnterval>30</retrylnterval><!-- apply multi-routing,
and number of routes --><multirouting>0</multirouting><!-- start to monitor
this Web Service locally? no | locally | remotely--
><monitorThisWS>no</monitorThisWS><!-- find identical Web Services?
how many?--
~><searchldenticalW S>2</searchldentical WS>< wsp: All></wsp:ExactlyOne>
</wsp:Policy>";

String endpointAddress = "http:/’xml.nig.ac.jp/xddbj/BlastDemo™:

SOAPMessage message = soapProc.bindingSOAP(smRequest):

mesp.insertWS(endpointAddress, serviceQName, portQName, message.

xmlPolicy):

* Method for printing exccution results */

163

Appendix E — Implementation of Java client application

private void printResult(){
System.out.printin();
System.out.println("'======s====s==-e—c_=________«):

System.out.println("* Final result: *"):

System.out.printin(soapProc. SOAPToXMLString((SOAPMessage)results.ﬁrst
Element()));

System.out.println(" ====")

System.out.println("* Final report: *");

try |
xmlp.printNodeToConsole((Document)results.lastElement());
System.out.println();
/Ixmlp.printXML((Document)obj);
} catch (Exception ex) {
ex.printStack Trace();

}
//System.out.printin();

System.out.println("'=========== e st ")

/* Logs execution results in a file */
private void wrtFile(long rst)}
FileOutputStream out; // declare a tile output object

PrintStream p; // declare a print stream object

try

|
\

// Create a new file output stream
// connected to "myfile.txt”

out = ncw FileOutputStream("E:\\Projects\\Current\itestCase.txt");

// Conncect print stream to the output stream

166

Appendix E — Implementation of Java client application

p = new PrintStream(out);
p.append(String.valueOf(rst));

//p.close();
!

catch (Exception €)

{

System.err.println ("Error writing to file");

167

Appendix F — Example of the valid result from DDBJ

Appendix F — Example of the valid result from DDBJ

Here we show a valid result expected from the DDBJ Blast Web Service. which
contains a gene sequence being used in bioinformatics research.

A. Invoking DDBJ Web Service

Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/DDBIJ} DDBJ

Received response:

com.sun.xml.messaging.saaj.soap.verl 1 .Messagel [Implia,422d0b

B. The result returned from DDB.J.

* Final result: *
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org soap.cnvelope ™
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instancc"
soap:encodingStyle="http://schemas.xmlsoap.org soap. cncoding/"><soap:Body ><n:g
etFFEntryResponse xmlns:n="http://tempuri.org/DDBJ" > Result
xsi:type="xsd:string">LOCUS AB000050 1755bp DNA linear
VRL 05-FEB-1999
DEFINITION Feline panleukopenia virus DNA for capsid protein 2, complete cds.
ACCESSION ABO000050
VERSION AB000050.1
KEYWORDS capsid protein 2.
SOURCE Feline panleukopenia virus
ORGANISM Fcline parvovirus
Viruses; ssDNA viruses; Parvoviridae; Parvovirinae: Parvovirus.
REFERENCE 1 (bascs 1to 1755)
AUTHORS Horiuchi,M.
TITLE Direct Submission
JOURNAL Submitted (22-DEC-1996) to the DDBJ/EMBL:/GenBank databases.
Motohiro Horiuchi, Obihiro University of Agriculture and
Veterinary Medicine, Veterinary Public Health: Inada cho. Obihiro,
Hokkaido 080, Japan (E-mail:horiuchiw obihiro.ac.jp.
Tel:0155-49-5392, Fax:0155-49-5402)
REFERENCE 2 (bases | to 1735)
AUTHORS Horiuchi.M.
TITLE Evolutionary pattern of felinc panleukopenia virus ditfers from
that of canine parvovirus
JOURNAL Unpublished (1997)

168

Appendix F - Example of the valid result from DDBJ

COMMENT
FEATURES Location/Qualifiers
source 1..1755
/isolate="94-1"
/lab_host="Felis domesticus"
/mol_type="genomic DNA"
/organism="Feline panleukopenia virus"
CDS 1..1755
/product="capsid protein 2"
/protein_id="BAA19011.1"

franslation="MSDGAVQPDGGQPAVRNERATGSGNGSGGGGGGGSGGVGIST
GT

FNNQTEFKFLENGWVEITANSSRLVHLNMPESENYKRVVVNNMDKTAVKGN
MALDDTH

VQIVTPWSLVDANAWGY WFNPGDWQLIVNTMSELHLVSFEQEIFNVVLKTV
SESATQP

PTKVYNNDLTASLMVALDSNNTMPFTPAAMRSETLGFYPWKPTIPTPWRY YF
QWDRTL

IPSHTGTSGTPTNVYHGTDPDDVQFYTIENSVPVHLLRTGDEFATGTFFFDCKP
CRLT

HTWQTNRALGLPPFLNSLPQSEGATNFGDIGVQQDKRRGVTQMGNTDYITEA
TIMRPA

EVGYSAPY YSFEASTQGPFKTPIAAGRGGAQTDENQAADGDPRY AFGRQHG
QKTTTTG

ETPERFTYIAHQDTGRYPEGDWIQNINFNLPVTNDNVLLPTDPIGGKTGINYTN
IFNT

YGPLTALNNVPPVYPNGQIWDKEFDTDLKPRLHVNAPFVCQNNCPGQLFVK
VAPNLTN

EYDPDASANMSRIVTYSDFWWKGKLVFKAKLRASHTWNPIQQMSINVDNQF
NYVPNNI

GAMKIVYEKSQLAPRKLY™
BASE COUNT 618 a 271 ¢ Mog 520t
ORIGIN
| atgagteaty gageagttca accagacggt ggtcaaccty ctgtcagaaa tgaaagagcet
61 aca ;«:t I;Q;H: roote tggagecgeyg gatggtggtg gttctggggy tatggagatt
121 lutwg 1: E;ttcaataa tcagacggaa tttaaatttt tggaaaacgg gtgggtgsaa
I8 atcacageaa actcaageag acttgtacat ttaaatatge cagaaagtga aaattataaa

241 agagta ;ttﬂ taaataatat ggataaaact geagttaaag gaaatatggce tttagatgat
301 acteatgtae aaattgtaac acctiggtea tiggttgatg Laaa[wttg gegagtitgy

o080

361 tttaatecag gagattggea actaattgtt aatactatga gtgagttgca tttagttagt

169

/!

Appendix F — Example of the valid result from DDBJ

421 tttgaacaag aaatttttaa tgttgtttta aagactgttt cagaatctge tactcagcca

481 ccaactaaag tttataataa tgatttaact gcatcattga tggttgcatt agatagtaat
541 aatactatgc catttactcc agcagctatg agatctgaga cattgggttt ttatccatgg
601 aaaccaacca taccaactcc atggagatat tattttcaat gggatagaac attaatacca
661 tctcatactg gaactagtgg cacaccaaca aatgtatatc atggtacaga tccagatgat
721 gttcaatttt atactattga aaattctgtg ccagtacact tactaagaac aggtgatgaa
781 tttgctacag gaacattttt ttttgattgt aaaccatgta gactaacaca tacatggcaa
841 acaaatagag cattgggctt accaccattt ttaaattctt tgectcaate tgaaggagcet
901 actaactttg gtgatatagg agttcaacaa gataaaagac gtggtgtaac tcaaatggga
961 aatacagact atattactga agctactatt atgagaccag ctgaggttgg ttatagtgca
1021 ccatactatt cttttgaagc gtctacacaa gggccattta aaacacctat tgcageagga
1081 cgggggggag cgcaaacaga tgaaaatcaa gcageagatg gtgatccaag atatgeattt
1141 ggtagacaac atggtcaaaa aactactaca acaggagaaa cacctgagag atttacatat
1201 atagcacatc aagatacagg aagatatcca gaaggagatt ggattcaaaa tattaacttt
1261 aaccttcctg taacaaatga taatgtattg ctaccaacag atccaattgg aggtaaaaca
1321 ggaattaact atactaatat atttaatact tatggtcctt taactgcatt aaataatgta
1381 ccaccagttt atccaaatgg tcaaatttgg gataaagaat ttgatactga cttaaaacca
1441 agacttcatg taaatgcacc atttgtttgt cagaataatt gtcctggtca attatttgta
1501 aaagttgcge ctaatttaac gaatgaatat gatcctgatg catctgetaa tatgtcaaga
1561 attgtaactt attcagattt ttggtggaaa ggtaaattag tatttaaagc taaactaaga
1621 geatctcata cttggaatce aattcaacaa atgagtatta atgtagataa ccaatttaac
1681 tatgtaccaa ataatattgg agctatgaaa attgtatatg aaaaatctea actageacct
1741 agaaaattat attaa

</Result></n:getFFEntryResponse></soap:Body></soap:Envelope>

Appendix G - Execution sequence of unsuccessful process

Appendix G - Execution sequence of unsuccessful process

Here we give an example of a logged execution sequence. The logged file is
commented on during the execution and can be easily understood. In this example. no
valid results were received from candidate Web Services, as reported in the final

report section of the log.

init:

deps-jar:
compile-single:
run-single:

Binding Method: SOAPIIHTTP
Invocation mode: Sync

timeout (ms): 60000

Auto timeout rule: average

Retry times: 3

Retry interval: 30

Monitor this Web Service: no
Scarch identical Web Services: 2

Binding Method: SOAPIIHTTP
Invocation mode: Sync

timeout (ms): 60000

Auto timeout rule: average

Retry times: 3

Retry interval: 30

Monttor this Web Service: no
Scarch identical Web Services: 2

———=== Parsing Web Scrvice Request Policies ======

Binding Method: SOAPIIHTTP
Invocation mode: Syne
timeout (Ms): 60000

Auto timeout rule:
Retry times:
Retry interval:

average
1
R}

30

Monitor this Wb Service: no

Search identical Web Services: 2

171

Appendix G - Execution sequence of unsuccesstul process

====== Parsing Global Policies ======

Number of Web Services: 3
Priority: dependability
Dependability Acceptance: 80
Performance Acceptance: 300
Timeout: 1000

Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast} Blast
url: http://xml.nig.ac.jp:80/xddbj/Blast

dependability: 50

performance: 300

Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast} Blast
url: http://xml.nig.ac.jp/xddbj/DDBJ

dependability: 80

performance: 400

Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast} Blast
url: http://xml.nig.ac.jp/xddbj/BlastDemo
dependability: 80

performance: 500

Sorting Web Services according Dependability metadata.

Invoking Web Service (Sync): |http://xml.nig.ac.jp/xddbj DDBJ} DDBJ
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl [.Messagel 1lmplw dtd90f

Waiting for reply...

Invocation cxception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

Invoking Web Service (Sync): {http:/xml.nig.ac jp xddbyDDBJ} DDBJ
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl | .Messagel 1lmplw dfd90f

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

Invoking Web Serviee (Syne): {http://xml.nig.ac.jp xddbj/DDBJ} DDBJ
Outbound SOAP messagc:
com.sun.xml.messaging.saaj.soap.verl _1.Messagel 1Impla dfd90f

172

Appendix G - Execution sequence of unsuccessful process

Invocation exception: HTTP transport error: Java.net.UnknownHostE xception:
xml.nig.ac.jp

Invoking Web Service (Sync): {http:/, xml.nig.ac.jp/xddbj/BlastDemo} BlastDemo
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl | -Messagel 1Impl@cefdes

Invocation exception: HTTP transport error: Jjava.net.UnknownHostException:
xml.nig.ac.jp

Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/BlastDemo} BlastDemo
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl _1.Messagel 1Ilmplu cefded

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj BlastDemo} BlastDemo
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl 1 .Messagel 1Implia cefded

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

Invoking Web Service (Sync): {http://xml.nig.ac.jp:80./xddbj Blast! Blast
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl 1.Messagel [lmplia 79b7b0

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

Invoking Web Service (Sync): {http://xml.nig.ac.jp:830 xddbj Blast} Blast
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl _1.Messagel 1Impl@@ 79b7b0

Waiting for reply...

Invocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

Invoking Web Service (Sync): thttp: xml.nig.ac.jp:80 xddbj Blast} Blast
Outbound SOAP message:

com.sun.xm!l.messaging saaj.soap.verl 1. Messagel mpla 79b7b0

[nvocation exception: HTTP transport error: java.net.UnknownHostException:
xml.nig.ac.jp

173

Appendix G - Execution sequence of unsuccesstul process

* Final result: *

~soap:Envelope
xmlns:soap:”http://schemas.xmlsoap.org/soap/enve]ope/"><soap:Body><soap:Fault>
<faultcode>soap:Mediator</faultcode><faultstring>No valid result
received!</faultstring><detail/></soap:F ault></soap:Body></soap:Envelope>

* Final report: *

<?xml version="1.0" encoding="UTF-8"?><report><ws
service="1{http://xml.nig.ac.jp/xddbj/DDBJ} DDBJ"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/DDBJ} DDBJ"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage><, ws><ws
service="http://xml.nig.ac jp/xddbj/DDBJ} DDBJ"
validResult="false"><errorMessage>HTTP transport error:
Jjava.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/BlastDemo! BlastDemo"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage></ws><ws
service="{http://xml.nig.ac.jp/xddbj/BlastDemo} BlastDemo"
validResult="false"><errorMessage>HTTP transport crror:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage-~< ws><ws
service="{http://xml.nig.ac.jp/xddbj/BlastDemo} BlastDemo"
validResult="false"><errorMessage>HTTP transport crror:
Java.net.UnknownHostException: xml.nig.ac jp</errorMessage = ‘ws><ws
service =" {http://xml.nig.ac.jp:80/xddbj/Blast | Blast"
validResult="falsc">-crrorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage <. ws><ws
service="{http://xml.nig.ac.jp:80/xddbj/Blast} Blast"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac.jp</errorMessage><. ws><ws
service="{http://xml.nig.ac.jp:80/xddbj/Blast} Blast"
validResult="false"><errorMessage>HTTP transport error:
java.net.UnknownHostException: xml.nig.ac jp</errorMessage™>< ws></report>

s 3k e ok sk >k ok ik fe ke ke ok sk sk e e ke ok ok ok sk ok

* Response Time (ms) : 2012
K 2k 2 3k 3K e dle e sk 2k s dle sk ek sk 3k 3 ok ok 3k koK

BUILD SUCCESSFUL (total time: 2 seconds)

174

Appendix H - Execution sequence of successful process

Appendix H - Execution sequence of successful process

Here we give an example of a logged execution sequence of a successful business
process. In this example, a valid result was received from the DDBJ Web Service.
which terminated the entire execution, as the quickest response was expected. Details

can be found in the final report section of the log.

init:

deps-jar:

compile-single:

run-single:

====== Parsing Web Service Request Policies ======
Binding Method: SOAPIIHTTP
Invocation mode: Sync

timeout (ms): 60000

Auto timeout rule: average

Retry times: 3

Retry interval: 30

Monitor this Web Service: no

Search identical Web Services: 2

====== Parsing Web Service Request Policies ======
Binding Method: SOAPILIHTTP
Invocation mode: Sync

timeout (ms): 60000

Auto timeout rule: average

Retry times: 3

Retry interval: 30

Monitor this Web Service: no
Scarch identical Web Services: 2

Binding Method: SOAPIIHTTP
Invocation mode: Sync

timeout (Ms): 60000

Auto timeout rule: average

Retry times: 3

Retry interval: 30

Monitor this Web Service: no
Search identical Web Services: 2

Appendix H - Execution sequence of successful process

Number of Web Services: 3
Priority: dependability
Dependability Acceptance: 80
Performance Acceptanc: 300
Timeout: 1000

Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast} Blast
url: http://xml.nig.ac.jp:80/xddbj/Blast

dependability: 50

performance: 300

url: http://xml.nig.ac.jp/xddbj/DDBJ
dependability: 80
performance: 400

Web Service: {http://xml.nig.ac.jp:80/xddbj/Blast} Blast
url: http://xml.nig.ac.jp/xddbj/BlastDemo
dependability: 80

performance: 500

Sorting Web Services according Dependability metadata.

Invoking Web Service (Sync): {http://xml.nig.ac.jp/xddbj/DDBJ} DDBJ
Outbound SOAP message:

com.sun.xml.messaging.saaj.soap.verl _1.Messagel 1implw b48392
Waiting for reply...

Received response:
com.sun.xml.messaging.saaj.soap.ver! _1.Messagel 1lmpl422d0b

* Final result: *

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap,cnvelope "
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xs1="http://www.w3.0rg/2001/’XMLSchema-instance"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding "><soap:Body><n:g
ctFFEntryResponse xmlns:n="http:/ tempuri.org/DDBJ"><Result
xsi:type="xsd:string">LOCUS ~ AB000050 1755bp DNA linear
VRL 05-FEB-1999

DEFINITION Fcline panleukopenia virus DNA for capsid protein 2. complete cds.
ACCESSION AB000050

VERSION AB000050.1

KEYWORDS capsid protein 2.

176

Appendix H - Execution sequence of successful process

SOURCE Feline panleukopenia virus
ORGANISM Feline parvovirus
Viruses; ssDNA viruses; Parvoviridae; Parvovirinae: Parvovirus.
REFERENCE 1 (bases I to 1755)
AUTHORS Horiuchi,M.
TITLE Direct Submission
JOURNAL Submitted (22-DEC-1996) to the DDBJ, EMBL GenBank databases.
Motohiro Horiuchi, Obihiro University of Agriculture and
Veterinary Medicine, Veterinary Public Health; Inada cho, Obihiro,
Hokkaido 080, Japan (E-mail:horiuchi@obihiro.ac jp,
Tel:0155-49-5392, Fax:0155-49-5402)
REFERENCE 2 (bases 1 to 1755)
AUTHORS Horiuchi,M.
TITLE Evolutionary pattern of feline panleukopenia virus differs from
that of canine parvovirus
JOURNAL Unpublished (1997)

COMMENT
FEATURES Location/Qualifiers
source 1..1755
/isolate="94-1"
/lab_host="Felis domesticus"
/mol_type="genomic DNA"
/forganism="Feline panleukopenia virus"
CDS 1..1755

/product="capsid protein 2"
/protein_id="BAA19011.1"

/translation="MSDGAVQPDGGQPAVRNERATGSGNGSGGGGGGGSGGVGIST
GT

FNNQTEFKFLENGWVEITANSSRLVHLNMPESENYKRVVVNNMDKTAVKGN
MALDDTH

VQIVTPWSLVDANAWGVWENPGDWQLIVNTMSELHLVSFEQEIFNVVLKTV
SESATQP

PTKVYNNDLTASLMVALDSNNTMPFTPAAMRSETLGFYPWKPTIPTPWRYYF
QWDRTL

IPSHTGTSGTPTNVYHGTDPDDVQFYTIENSVPVHLLRTGDEFATGTFFFDCKP
CRLT

HTWQTNRALGLPPFLNSLPQSEGATNFGDIGVQQDKRRGVTQMGNTDYITEA
TIMRPA

EVGYSAPYYSFEASTQGPFKTPIAAGRGGAQTDENQAADGDPRYAFGRQHG
QKTTTTG

ETPERFTYIAHQDTGRYPEGDWIQNINENLPVTNDNVLLPTDPIGGKTGINYTN
IFNT

177

Appendix H - Execution sequence of successful process

YGPLTALNNVPPVYPNGQIWDKEFDTDLKPRLHVNAPF\'CQ\.\'CPGQLF\'K
VAPNLTN

EYDPDASANMSR[VTYSDFWWKGKLVFKAKLRASHTWNPIQQ\ISI\\'DNQF
NYVPNNI
GAMKIVYEKSQLAPRKLY"
BASE COUNT 618 a 271 ¢ 346 g 520t
ORIGIN
| atgagtgatg gagcagttca accagacggt ggtcaacctg ctgtcagaaa tgaaagagct

61 acaggatctg ggaacgggte tggaggeggg getggtegte gtctggggg tgtegogatt
121 tctacgggta ctttcaataa tcagacggaa tttaaatttt tggaaaacgg gteggtggaa
181 atcacagcaa actcaagcag acttgtacat ttaaatatgc cagaaagtga aaattataaa
241 agagtagttg taaataatat ggataaaact gcagttaaag gaaatatggc tttagatgat
301 actcatgtac aaattgtaac accttggtca ttggttgatg caaatgcttg gggagtttgg
361 tttaatccag gagattggca actaattgtt aatactatga gtgagttgea tttagttagt
421 tttgaacaag aaatttttaa tgttgtttta aagactgttt cagaatctgc tactcagcca
481 ccaactaaag tttataataa tgatttaact geatcattga tggttgcatt agatagtaat
541 aatactatgc catttactce agcagctatg agatctgaga cattgggttt ttatccatgg
601 aaaccaacca taccaactce atggagatat tattttcaat gggatagaac attaatacca
661 tctcatactg gaactagtgg cacaccaaca aatgtatatc atggtacaga tccagatgat
721 gttcaatttt atactattga aaattctgtg ccagtacact tactaagaac aggtgatgaa
781 tttgctacag gaacattttt ttttgattgt aaaccatgta gactaacaca tacatggcaa
841 acaaatagag cattgggctt accaccattt ttaaattctt tgectcaate tgaaggagct
901 actaactttg gtgatatagg agttcaacaa gatanaagac gtggtetaac tcaaatggga
961 aatacagact atattactga agctactatt atgagaccag ctgaggltgg ttatagtgea
1021 ccatactatt cttttgaage gtctacacaa gggccattta aaacacctat tecageagga
1081 cgggggpgag cgeaaacaga tgaaaatcaa geageagaty gteatccaag atatgeattt
1141 ggtagacaac atggtcaaaa aactactaca acaggagaaa cacctgagag atttacatat
1201 atagcacatc aagatacagg aagatatcca gaaggagatt ggaticaaaa tattaacttt
1261 aaccttectg taacaaatga taatgtattg ctaccaacag atccaattgg aggtanaaca
1321 ggaattaact atactaatat atttaatact tatggtcctt taactgcatt aaataatgta
1381 ccaccagttt atccaaatgg tcaaatttgg gataaagaat ttgatactga cttaaaacca
1441 agacttcatg taaatgcacc atttgtttgt cagaataatt gtcetggtea attatttgta
1501 anagttgcge ctaatttaac gaatgaatat gatcetgatg catetgetaa tatgtcaaga
1561 attgtaactt attcagattt ttggtgeaaa gotaaattag tatttaaage taaactaaga
1621 geatcteata cttggaatee aattcaacaa atgagtatta atgtagataa ccaatttaac
1681 tatgtaccaa ataatattgg agetatgaaa attgtatatg aaaaatctca actageacct
1741 agaaaattat attaa

1

~'Result></n:getFFEntryResponse™></soap:Body></soap:Envelope>

* Final report: *

= e mmm——ee =====X ML Message

~<?xml version="1.0" encoding="UTF-8"?>

<report™ .
~ws service="{http:, xml.nig.ac.jp/xddbj' DDBJ}DDBJ" validResult="true">

Appendix H - Execution sequence of successful process

<responseTime>5264</responseTime>
<errorMessage>null</errorMessage>
</ws>
</report>

o 4 o ok ok ok ok ok 2k o ok ok sk ok dk ok ok ok ok ok ok ok K

* Response Time (ms) : 7814

o ok ok ok s s ok o sk ok ok ok ok ok ok ok ok ok ok ok sk ok

BUILD SUCCESSFUL (total time: 9 seconds)

179

Appendix [- Dependability metadata of \'BI

Appendix | - Dependability metadata of VBI

Below are shown the dependability metadata of VBI stored on six Sub-Mediators

deployed on Planetlab:

s Sub-Mediator, Shanghai, China
<ws
service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt} Bla
stbtService">
<dependability>85</dependability>
<aveResponseTime>54607</aveResponse Time>
<maximumResponseTime>87267</maximumResponseTime>

</ws>

e Sub-Mediator, Bejjing, China
<ws
service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt} Bla
stbtService">
<dependability>65</dependability>
<aveResponseTime>59460</aveResponseTime>
<maximumResponseTime>88506</maximumResponseTime>

</ws>

¢ Sub-Mediator, Newcastle upon Tyne, UK
<ws
service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt} Bla
stbtService">
<dependability>91</dependability>
<aveResponse Time>28990</aveResponseTime>
<maximumResponseTime>36297< maximumResponseTime>

SOWST

180

Appendix | - Dependability metadata of V'BI

e Sub-Mediator, Cambridge, UK
<ws
service="{http://pathport.bioinformatics.vt.edu:6565/axis services blastbt! Bla
stbtService'">
<dependability>8&</dependability>
<aveResponseTime>26573</aveResponseTime>
<maximumResponseTime>32675</maximumResponseTime>

</ws>

¢ Sub-Mediator, Washington, USA
<ws
service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt} Bla
stbtService">
<dependability>96</dependability>
<aveResponseTime>23945</aveResponseTime>
<maximumResponseTime>29267</maximumResponseTime>

</ws>

e Sub-Mediator, New York, USA
<ws
service="{http://pathport.bioinformatics.vt.edu:6565/axis/services/blastbt} Bla
stbtService™>
<dependability>96</dependability>
<aveResponseTime>24901</aveResponse Time>
<maximumResponseTime>31297</maximumResponseTime>

</ws™

IN1

	489271_0001
	489271_0002
	489271_0003
	489271_0004
	489271_0005
	489271_0006
	489271_0007
	489271_0008
	489271_0009
	489271_0010
	489271_0011
	489271_0012
	489271_0013
	489271_0014
	489271_0015
	489271_0016
	489271_0017
	489271_0018
	489271_0019
	489271_0020
	489271_0021
	489271_0022
	489271_0023
	489271_0024
	489271_0025
	489271_0026
	489271_0027
	489271_0028
	489271_0029
	489271_0030
	489271_0031
	489271_0032
	489271_0033
	489271_0034
	489271_0035
	489271_0036
	489271_0037
	489271_0038
	489271_0039
	489271_0040
	489271_0041
	489271_0042
	489271_0043
	489271_0044
	489271_0045
	489271_0046
	489271_0047
	489271_0048
	489271_0049
	489271_0050
	489271_0051
	489271_0052
	489271_0053
	489271_0054
	489271_0055
	489271_0056
	489271_0057
	489271_0058
	489271_0059
	489271_0060
	489271_0061
	489271_0062
	489271_0063
	489271_0064
	489271_0065
	489271_0066
	489271_0067
	489271_0068
	489271_0069
	489271_0070
	489271_0071
	489271_0072
	489271_0073
	489271_0074
	489271_0075
	489271_0076
	489271_0077
	489271_0078
	489271_0079
	489271_0080
	489271_0081
	489271_0082
	489271_0083
	489271_0084
	489271_0085
	489271_0086
	489271_0087
	489271_0088
	489271_0089
	489271_0090
	489271_0091
	489271_0092
	489271_0093
	489271_0094
	489271_0095
	489271_0096
	489271_0097
	489271_0098
	489271_0099
	489271_0100
	489271_0101
	489271_0102
	489271_0103
	489271_0104
	489271_0105
	489271_0106
	489271_0107
	489271_0108
	489271_0109
	489271_0110
	489271_0111
	489271_0112
	489271_0113
	489271_0114
	489271_0115
	489271_0116
	489271_0117
	489271_0118
	489271_0119
	489271_0120
	489271_0121
	489271_0122
	489271_0123
	489271_0124
	489271_0125
	489271_0126
	489271_0127
	489271_0128
	489271_0129
	489271_0130
	489271_0131
	489271_0132
	489271_0133
	489271_0134
	489271_0135
	489271_0136
	489271_0137
	489271_0138
	489271_0139
	489271_0140
	489271_0141
	489271_0142
	489271_0143
	489271_0144
	489271_0145
	489271_0146
	489271_0147
	489271_0148
	489271_0149
	489271_0150
	489271_0151
	489271_0152
	489271_0153
	489271_0154
	489271_0155
	489271_0156
	489271_0157
	489271_0158
	489271_0159
	489271_0160
	489271_0161
	489271_0162
	489271_0163
	489271_0164
	489271_0165
	489271_0166
	489271_0167
	489271_0168
	489271_0169
	489271_0170
	489271_0171
	489271_0172
	489271_0173
	489271_0174
	489271_0175
	489271_0176
	489271_0177
	489271_0178
	489271_0179
	489271_0180
	489271_0181
	489271_0182
	489271_0183
	489271_0184
	489271_0185
	489271_0186
	489271_0187
	489271_0188
	489271_0189
	489271_0190
	489271_0191
	489271_0192

