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Chapter 1 

Introduction 

In order to be able to think clearly about any subject we need precise definitions of its basic 

terminology and concepts. If one reads the literature describing fault tolerant computing 

there is less agreement on fundamental models, concepts and terminology than would 

perhaps be expected. There are well established usages in particular subcommunities, 

such as at Newcastle University[21] or UCLA[4], and many individual workers take care 

to use terms carefully. Unfortunately there are many other papers in which different 

terms are freely applied to concepts in an arbitrary and inconsistent way. 

At the tenth IEEE Conference on Fault Tolerant Computing (FTCS-IO), in Japan, a group 

of people involved in fault tolerant computing recognised the problem after discovering 

in many of the papers inconsistencies in concepts and terminology. So the following 
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year a joint session of IFIP WG10.4 "Reliable Computing and Fault Tolerance" and the 

IEEE Computer Society Technical Committee on Fault Tolerant Computing was held 

just before FTCS-ll in Portland, Maine. The session was devoted to presentations on 

concepts and terminology, and discussion of the problem. 

At FTCS-11, D. E. Morgan was requested to organize a joint subcommittee of the two 

groups and this sub-committee, "Joint Subcommittee on Models, Fundamental Concepts 

and Terminology", had its first meeting in September 1981. This group met over the next 

two years, including a panel session at FTCS-12, to discuss the problem of the lack of 

definitive terms for fault tolerant computing. The session was organised and chaired by 

Morgan and papers were presented by T. Anderson[2], A. Avizienis[4]' J. C. Laprie[19], 

H. Kopetz[17] and A. S. Robinson[23]. 

The work in this thesis grew out of their definitions, more specifically those of Anderson 

and Lee[2,3]' Laprie[19,18] and, in addition to those represented on the panel, Cristian[10]. 

The approach taken in this thesis is to produce a formal model of system structure and 

behaviour, and to define the basic concepts and terminology in terms of that model. We 

are unable to produce a single unified model and instead produce two separate models, 

one for system structure and one for system behaviour. However, we are able to deal 

with some other important concepts which are not specific to fault tolerant computing, 

namely the two related concepts: atomicity of action and behavioral abstraction. 
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This thesis develops a model of structure using the theory of directed graphs, based on the 

work of Laprie[18]' Best[6,7] and Parnas[22]. The idea behind the model is that structure 

is a relationship between components of the system and that there is a basic relationship, 

'is a component of', which is meaningful for all systems. That is, all systems are composed 

of components, which themselves are composed of components and so on[21]. This gives 

us a tree based organisation for our systems. 

Further, other relationships between components, for example 'uses', are orthogonal to 

'is a component of'. This is because other relationships which describe how we see the 

system to be structured, only have meaning between components that are not contained 

within one another. For example, a factory does not 'use' a machine. A machine 'is a 

component of' a factory, a worker 'uses' a machine. This is based on Laprie's Layer

Component graphs[18] and is discussed in detail in Chapter 3. 

Our model defines the idea of a 'level of detail' as a cut through the tree based on 'is a 

component of', and lets us consider the orthogonal relations at any level of detail. The 

model is based on Best's structured occurrence graphs[7]. These 'levels of detail' are 

ordered in a lattice with the entire system at the top and the maximum decomposition 

at the bottom. This means that the 'highest' level of detail contains the least amount of 

detail and vice versa. We call our model "structured graphs". 

This thesis applies structured graphs to the problem of defining the concept of atomicity 

of action. This is where we view a group of actions as having the same properties as a 
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'primitive' action, i.e. such a group of actions can sensibly be viewed as being indivisible. 

\Ve define a structuring relationship ('is a component of') for events, and a relationship 

'immediately succeeds' which is orthogonal to this structuring relationship. This defines 

a structure graph and we argue that the presence of loops in a level of detail of that graph 

means that some action is non-atomic and then go on to argue that a group of actions 

are atomic if nothing outside that group 'interferes' with the action, i.e. occurs strictly 

after one part of the action and strictly before another. We compare our formalisation 

with a previous one by Best[7]. 

We develop a model of system behaviour based on the theory of traces[8,14]. We do not 

equate the specification with the system, as is common in such approaches to modelling 

system behaviour. This would make it impossible to define the concept of failure. In the 

model the system interacts with its environment by the passage of objects through its 

interface. The interface is the dividing line between the system and its environment. 

Three different concepts of abstraction which can be applied to the interface of a system 

are considered in terms of the model, the first two are taken from the work of Brookes, 

Hoare and Roscoe[8]. 

The first of the abstraction concepts we deal with is 'hiding'. This is a process where 

we ignore the parts of the system interface which are irrelevant to the problem under 

consideration. For example, when considering the behaviour of our program on a time

sharing computer we normally only consider the behaviour of the computer at our terminal 
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and 'ignore' what is occuring on terminals other than our own. 

The second concept is 'resorting'. Here we change our interpretation of the objects 

passing through the interface. For example, one can consider the signals passing through 

a terminal port on a computer as purely electrical signals, as bit patterns, as numbers or 

as characters. 

The final concept is 'collapsing'. This process allows us to aggregate parts of the interface 

into a single part. For example, we take 8 one-bit channels and consider them together 

as a single channel through which passes an integer in the range -128 to +127. Formally, 

resorting is a special case of collapsing where we collapse a single part of the interface 

to a new single part of the interface. The concept of collapsing is closely related to the 

concept of atomicity and we discuss this relationship. 

State is considered and we argue that the notion of state is actually (and perhaps sur

prisingly) an external phenomenon. That is, to predict the state of the system (or of a 

component) we require no knowledge as to the structure of that system (or component). 

State is the changing part of a model which tells us what the system is going to do next. 

The model could have come from observation, knowledge of how the system is constructed 

or knowledge of how the system should behave. It can be seen from this that the state 

of a system is defined with respect to a model of that system's behaviour. 

The way in which the state of the system is represented is not fixed. A representation 
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is chosen as best suits the use to which our model of state is being put. For example, 

a programmer debugging a program has a different view of the programs state than 

a user would. The programmer would view its state in a way which related to the 

internal structure of the program. The user would view the state in terms of the domain 

application. 

We call this view of state the 'external state' and define the minimal set of states to be 

any set isomorphic to the set of future behaviours. We go on to define the 'internal state' 

of a system at a level of detail to be the ordered set of external states of its components 

given by that level of detail. Thus, the internal state at the 'highest' level of detail, that 

is the one containing the lowest amount of detail and so representing the system as a 

whole, is the same as the external state of the system. 

Based on our concept of state we describe what we mean by programming a system and 

this leads us to the concepts of a program and of an interpreter. We discuss interpreters 

and interpretive extensions. 

We define failure as deviation of system behaviour from that defined by a specification. 

That is, a system fails with respect to a specification. If two people differ in their opinion 

about whether a system has failed, that is, one says the system has failed and the other 

says it hasn't, then they must be working with different specifications. They may, of 

course, arrive at these different specifications through different interpretations of the 

same document. Also, we use the concept of failing with respect to a specification to 
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construct a hierarchy of failure modes based upon a set of specifications[19]. We use this 

to consider graceful degradation and compensation. 

We say that the state of a system is erroneous if it is different from the 'correct' state 

and the system may fail at some future time, after a sequence of valid interactions with 

the environment. Given our definition of state, this will require two specifications, one 

describing the 'required' system behaviour and one defining the 'actual' system behaviour. 

The second of these specifications is acting as a model of the systems actual behaviour. 

The first is a specification of the systems required behaviour. Two specifications provide 

us with two states, since states are defined with respect to specifications. One is the 

'actual' and erroneous state, that is the state (we believe) the system is in. The other is 

the 'correct' state, the state the system should have been in, had it functioned correctly. 

We define an error as the difference between the erroneous state and the correct state. 

How we decide on the difference between two states is dependent on the representation 

we have chosen for those two states. 

Hence, errors are defined with respect to two specifications. 

We discuss error propagation and error recovery. Because we have two separate models 

of behaviour and structure rather than a single unified one, we are unable to be as precise 

as would have been desirable. 

We describe what a failure is and what an error is and argue that these are both external 
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phenomena, in the sense that we have to have no knowledge of the internal structure of a 

system to define them, recognise them or locate them. We next look at the cause of these 

phenomena. We define a fault to be the possible cause of a failure, following Laprie[18J. 

We discuss fault avoidance, that is how not to create faults, fault removal, that is how 

to identify and remove faults, and fault tolerance, that is how to stop an existing fault 

actually causing a failure. 

This thesis is structured into six chapters; the first is this introduction. The second is a 

literature survey discussing the work which has influenced the contents of this thesis and 

putting the thesis into historical perspective. It also compares and contrasts a number of 

definitions for reliability terminology given by different people. 

The third chapter looks at structure and defines our model of system structure, structured 

graphs, based on the theory of directed graphs[9]. It also applies this model to the concept 

of atomicity of action. This chapter is an improved and corrected version of the paper 

awarded the Phillip Merlin Memorial Prize for 1984[12J. 

In the fourth chapter we consider a model of system behaviour, based on the theory 

of traces which underlies Hoare's CSP[8,14]. Using this model we consider behavioral 

abstraction and the concept of state. 

Chapter five considers a number of reliability concepts. In particular it gives preclse 

definitions for failure, error and fault. The final part of this chapter examines how our 
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definitions relate to those of others described in chapter two. 

Finally, in chapter six we draw together the work we have done and consider how it could 

be improved and extended. 
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Chapter 2 

Related Work 

In this chapter we consider related work which has defined terminology and concepts in 

the area of fault tolerance and reliability. 

2.1 Melliar-Smith 

The definitions given by Melliar-Smith and Randell[21] are in many ways the closest to 

ours and we can trace our approach back to them. Systems are defined as being made 

up of components (which are themselves systems) related in such a way as to provide 

a defined service. The internal state of a system is defined as "the aggregation of the 

external states of its components." The external state of a system is defined to be "the 
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result of the conceptual abstraction function applied to its internal state." Though we 

make use of the same definition of internal state, we take a more abstract approach to 

the definition of state. However, there appear to be two deficiencies with the approach 

to state taken. The first is seen in the following: "During a transition from one external 

state to another external state, the system may pass through a number of internal states 

for which the abstraction function, and hence the external state, are not defined." This 

implies that the system can exist without being in any particular external state. We do 

not accept this. The second problem with the approach to state is the common one of 

confusing the state of the system and the output of the system. We will return to this in 

the next section. 

A failure is defined in what can be considered to be the standard way as: "a failure of a 

system occurs when that system does not perform its service in the manner specified." 

The definition of error accepts, as we do, the subjective nature of identifying erroneous 

states. "We term an internal state of a system an erroneous state when that state is such 

that there exists circumstances (within the specification of use of the system) in which 

further processing, by the normal algorithms of the system, will lead to a failure which 

we do not attribute to a subsequent fault." This differs in two ways from our approach. 

Firstly, with our more precise view of state we can define an erroneous external state and, 

secondly, we do not need to introduce the concept of fault to define an erroneous state. 

A fault is defined as the cause of an erroneous state and a potential fault is a construction 
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within the system that may cause the system to enter an erroneous state. We would 

argue that this is not a usefule distinction to make. The only difference between these 

definitions is that a fault has already caused the system to enter an erroneous state 

whereas a potential fault might have this effect at a later time. There is no real reason to 

distinguish between the two situations since a fault does not change just because it has 

caused an error. We need only have one word: fault. 

2.2 Avizienis 

The description given here of the work of Avizienis is taken mainly from two papers[4,1]. 

"A system is an interacting set of subsystems embedded in an environment that provides 

inputs to the system and accepts output from the system. A subsystem itself is composed 

of subsystems, and so on, to a desired level of decomposition onto the smallest meaningful 

~ lements". A vizienis then goes on to define the expected behaviour of a system as "a time

dependent sequence of output states that agrees with the initial specifications from which 

the system has been derived" . 

We believe that there are two problems with this definition. For the first let us consider 

an interactive computer system. When we are typing at a terminal we usually see the 

characters we are typing being echoed on the screen. This typing of a character followed 

by an echo is two events, an input followed by an output. However, we often abstract 
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from sets of events like this and view them as single events. In this example, when we 

use a terminal we normally see the typing of a character followed by its echoing to the 

screen as a single input event. If the system did not echo the character we would look 

on it as failure of the system at an input event (at this level of abstraction), not as a 

failure at an output event. So in order to discuss failure and other reliability concepts 

a characterisation of behaviour in terms of outputs alone is not good enough. We need 

to consider inputs as well. Of course we need only consider outputs if the system is an 

"output only" system, for example a clock. 

The second problem is that of state. It is of vital importance to differentiate between 

the state of a system and its output. We will illustrate this with an example; consider 

a system which has three lights, red, green and blue, and these flash in the order red, 

green, blue, green, red, green, blue, green, red, .... This system has three outputs (red, 

green and blue), but four states (which we can call red, blue, green-going-to-red and 

green-going-to-blue). When it is outputting green it can be in one of two distinct states. 

That is, the current or last output of a system is not sufficient to determine the state of 

the system nor to predict the expected future behaviour. 

So, we would prefer to have the expected behaviour defined as a time-dependent sequence 

of events (and values) at the system interface that agrees with the initial specifications 

from which the system has been derived. 

An error is defined to be an undesired event that occurs when the actual system behaviour 
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Figure 2.1: The Four Universe Model 

deviates from the expected behaviour. This definition differs markedly from the one we 

will use. A fault is then defined as the cause of an error and a failure is the occurence of 

an error or errors that is specified to be a failure condition. An error is recognised as a 

failure by failure criterion 

Based on these definitions A vizienis moves on to present a model representing the different 

views people have of the same system. He calls this the "Four Universe" model because it 

is based on the four universes of observation and interpretation: (1) physical; (2) logical; 

(3 ) informational; and (4) external (see figure 2.1). 

This structure has some similarity to the ideas of interpretive interfaces[16] as used by 

Anderson and Lee. That is, we can view each layer (universe) as being interpreted by the 

layer below. 

17 



A vizienis argues that each one of these four universes contains its own consistent set of 

fundamental concepts, models and terminology. The design requirements, performance 

measures, forms of expected behaviour, test procedures and acceptance criteria can be 

completely stated in terms of the given universe. Avizienis then argues that we can use 

the terms that are already in accepted use for each of the different universes. The problem 

with this approach is that people do not work purely within a single universe, terms are 

needed that are consistent and applicable across all universes. 

2.3 Anderson and Lee 

The following description of the definitions used by Anderson and Lee is taken mainly 

from one paper[2] and a book[3]. A system is defined as "any identifiable mechanism 

which maintains a pattern of behaviour at an interface with its environment". A system 

consists of components (subsystems) which interact under the control of a design. 

"The external behaviour of the system can be described in terms of a finite set of external 

states, together with a function defining transitions between states. The environment 

provides inputs as stimuli and perceives the system as passing through a sequence of 

external states at discrete instances of time". Again, as we did with Avizienis' defintions, 

we would question whether this is right. We need to distinguish between states and 

outputs. The environment cannot perceive the state of the system; it can only perceive 
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outputs and so we, part of the environment, can deduce the state. 

The concept of the design is important in the definitions of Anderson and Lee. The design 

of a system is that part of the system which actually supports and controls the interaction 

of the components. The design needs to be part of the system because a design fault is a 

defect which is actually present in a system. Internal state transitions are a consequence 

of changes of state by the components; these changes are determined by interactions 

between the components. The pattern of these interactions is specified and controlled by 

the design of the system, which also determines the way in which interactions between 

the system and the environment impinge upon the components. 

Anderson and Lee consider levels of abstraction within a system. That is they can regard 

a system in many different ways. For example, a computer system can be regarded in 

terms of circuit boards, chips and wires or as set of communicating processes. 

A particularly important change in view can be identified at an interpretive interface 

where a component of a system is interpreted (i.e. executed) by, and thereby governs 

and directs the operation of, the rest of the system. When this is the case Anderson and 

Lee regard the interpreted component as the design of a system whose components are 

abstractions of the other components of the original system. 

The paradigm here is, of course, the interface between hardware and software in a com

puting system. It will often be more useful to regard software as the design of an abstract 
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system rather than merely as a bit-pattern. 

In order to define when a system fails, corresponding to A vizienis 's failure criterion, 

Anderson and Lee have an authoritative specification which can be applied as a test in 

any situation to determine whether the behaviour of the system should or should not be 

deemed acceptable. For the purpose of definition the role of the specification is absolute. 

They do not recognise that, since the only role of the authoritative specification is to 

identify acceptable/unacceptable behaviours, it does not have to be in a form which 

would allow the easy construction of a system. In fact the authoritative specification 

does not need to exist when construction of the system begins. 

A failure is said to occur when the behaviour of the system first deviates from that 

required by the specification of the system. 

An occurence of system failure must be due to the presence of defects within the system. 

Such deficiencies are referred to as faults when they are internal to a component or the 

design, or as errors when the state of the system is defective. 

When a system fails its state will, at some previous point in time, have deviated from what 

is valid, that is the system must have entered an erroneous state. This will have occured 

at some time before (or possibly when) the system fails. This occurs either because a 

component fails or because there is a problem in the design of the system. An error is the 
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part of the state which would have to be changed to make the state valid. There could 

be a choice of parts which might be changed to make the state valid, which of these is to 

be called the error is a subjective judgement. 

2.4 Laprie 

Laprie introduces a 'new' word dependability which he defines as "the quality of the 

delivered service such that reliance can justifiably be placed on this service". 

Laprie goes on to define a failure as a deviation of delivered service from that specified. A 

fault (eg progranuner's mistake, short circuit on VLSI device) as the cause of a latent error 

(eg erroneous code, gate stuck at zero) which becomes an effective error (eg by execution 

of program module with appropriate input, by attempt to use stuck gate) when activated 

and may then result in a failure if steps are not taken by the system to render it latent 

once more. 

An error is the manifestation in the system of a fault, and a failure is the manifestation 

in the service of an error. 

We would argue that we do not need to have these concepts of latent and effective errors. 

Firstly, we can consider carefully what we mean by the state of a system, use that to define 

error and we make use of the concept of error propagation to show how an error can, over 
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time, affect larger and larger parts of a system and so lead to failure. This removes the 

need to distinguish between latent errors and faults. Secondly, there is a problem if we 

consider Laprie's examples for fault and latent error. He says that a short circuit on a 

VLSI device is a fault and a gate stuck at zero is a latent error. From these examples it 

seems strange to distinguish a fault from a latent error. The short circuit and the gate 

stuck at zero they may be the same behaviour seen from different viewpoints. Hence, we 

will make use of only two concepts, excluding failure: error, for something 'wrong' in the 

state of the system; and fault, for something 'wrong' in the structure of system. (In later 

papers than those considered here [5] Laprie does not have the the concepts of latent and 

effecti ve errors.) 

Laprie also develops a model of structure. This is based on two transverse relations details 

and uses. The details relation is one which addresses what makes up a system, details 

defines an order so we can talk about higher and lower in the details hierarchy. For 

example, consider a computer which consists of a CPU, semiconductor memory, an 10 

driver and a disk. The CPU and the memory details the 'processor', the 10 driver and 

the disk details the 'mass storage', and the processor and the mass storage details the 

computer. The uses relation embodies the concept of "uses the service of". A processor 

uses the service of a disk, a program uses the service of the operating system. The reason 

that the relations are transverse is that something higher in the details hierarchy cannot 

use something lower and something lower cannot use something higher. For example, a 

computer system does not use its processor, because the processor details the computer 
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system. 

Laprie defines two further concepts, these are layer and component. "If at a 'level' all the 

elements can be ordered according to the relation uses then the elements are all layers 

otherwise they are all components." 

This model has a number of problems. The first of these problems is that Laprie does 

not properly define what is meant by a level in the tree formed by the details relation. 

We assume that a level is a set of elements with a common predecessor. It is not clear 

whether two layers in different levels can be related though one could assume this given 

the sentence "a component in a given layer may use the services of several components 

of lower layers and the service it delivers may be used by several components of upper 

layers." If one can relate the elements in different layers no consistency rules are given. 

Laprie argues that an interpreter can be viewed as one layer and the program it interprets 

as a higher layer. It is hard to see which way round the uses relationship should go. Does 

a program use an interpreter to be executed or does an interpreter use a program in order 

to know what to do. 

If we try and relate the ideas of the previous paragraph to the models developed in this 

thesis we encounter a further problem, as the program is part of the state of its interpreter 

and we find it difficult to consider it as a separate component. 
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2.5 Kopetz 

Kopetz does not consider systems in general but identifies a particular type of component 

of a system which he wishes to consider. This component is a stored program computer, 

which we will abbreviate to SPC. Every SPC is embedded in a process of its environment 

which provides input data to and accepts output data from this SPC. It is assumed 

that there exists an authoritative specification for the operation of an SPE and some 

expectations about the behaviour of its environment. This second assumption allows 

Kopetz to have a concept of an input fault, that is when the environment provides an 

input which is outside those defined by the expectations we have of its behaviour. 

An SPC carnes out computation and consists of a machine and two data structures, 

which are called the i-state and the h-state. The machine contains a set of processors 

which execute the stored program and a read/write memory which can store programs 

and data. The i-state specifies the contents of the memory which are not changed during 

computation; that is, the i-state is static. The h-state comprises all information which has 

been accumulated in the history of the SPE. The h-state is dynamic and can be changed 

by computation. The computation consists of a sequence of activities which take input 

and the current h-state and from this generate an output and a new h-state. Activities 

have duration whereas events, such as the start or finish of an activity, have no duration. 

Figure 2.2, from [17] shows this model of a computation. 
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Figure 2.2: A Model of Computation 

A failure is an event, i.e. a happening at a given point in real-time, while a fault is a state, 

i.e. an attribute value of an object which is invalid for a certain time interval. Since a 

state change is an event, two events can be associated with every fault: the fault starting 

event and the fault finishing event. A failure is always a fault starting event. The fault 

terminating event can be the completion of a repair action or some other event which 

causes the disappearance of the fault. 

If, during the duration of a fault, an activity interacts with the object which is at fault a 

consequent failure of this activity may occur. That is from the point of failure onwards 

the activity will be at fault. This new fault will remain in the system until its terminating 

event has occured. 
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Kopetz applies the word fault to invalid state. This distinguishes him from the majority 

of others who use the term error. However, because Kopetz views the program as part 

of the state of his SPC the word fault can be applied to something being wrong with the 

program (i-state). Though we use both fault and error in our definitions we recognise 

that they are two names for the same basic concept, namely some condition of the system 

not being as it should be. 

2.6 Robinson 

In most papers which deal with defining the concept of failure there is an assumption that 

we have some authoritative specification with which we can compare system behaviour. 

A S Robinson looks at this assumption and considers what constitutes an "authoritative 

system reference (ASR)", as he calls it. He also considers the problems of the many levels 

in a computer system, the physical level, the logic level etc (after A vizienis) and asserts 

that when a system is being constructed there will be many ASR's, probably one for each 

level, which together build up into an overall ASR. For example, a computer system has 

a specification for its hardware and (possibly) another for its software. This means that 

when we are discussing errors and failures in a system we need to know which level and 

thus which ASR we are dealing with. 

"The term error is used to indicate that an action or a value is not as it should be. Thus, 
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an error is made (action); a value is in error (state)". The explanation given for this 

use is that Robinson is trying to produce definitions that are 'consistent' with "general 

engineering usage". The use of error to refer to two distinct concepts, namely an action 

and a condition, overloads a word which is misused in too many other ways already. 

A failure is defined as "an event corresponding to the first occurrence of a generated output 

error" and a fault is defined as "a defect in a physical system that has the potential for 

generating errors in operational use". Both these definitions suffer from a lack of rigour. 

Is the output error an event or a state? If it is a state then our arguments earlier concering 

the need to distinguish between the output and the state apply. If it is an event then 

a failure could have been defined as: the first occurrence of a perceivable error. What 

is meant by a physical system? Does Robinson intend that a program cannot contain a 

fault? 

2.7 Cristian 

Our discussion is based on an IBM Technical Report[lO). Cristian, because of his view 

that there is a substantial difference between hardware and software faults, does not 

attempt to give definitions that cover both the physical nature of hardware faults and the 

logical nature of software faults. He assumes ideal (fault-free) hardware and focuses only 

on the software issues. He considers only sequential programs and gives mathematically 

27 



rigorous definitions using a relational approach to the semantics of programs[6]. 

He defines the standard domain for a program as the set of initial states for which the 

program terminates and for which the initial and final states satisfy the program's spec

ification. The failure domain is the set of initial states which are not in the standard 

domain. (Cristian also consider exception handling and this adds additional domains.) 

A design is a pair consisting of a specification and a program. 

An invocation of a program in its failure domain is a failure occurence. This definition 

does not imply that failure occurences are actually recognised. If the failure domain of 

a program is non-empty then its design is said to contain a design fault. This may be a 

specification fault, if no program response is specified for a possible input, or a coding 

fault, if the result actually produced by the program contradicts the specification. 

Consider the situation where a coding fault exists in a program. It is then possible that 

an invocation of the program from some initial state terminates in some final state that 

is different to the final state prescribed by the specification. Such a final state is an 

erroneous state. In a erroneous state there exist variables that have values which are 

different from the values they should have, as defined by the specification. A variable 

value that is different from the value that a specification prescribes is an error. In this 

case, one cannot properly define errors in the case of specification faults since the final 

state is undefined, hence the proper values for the variables are undefined. 
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The definitions of reliability concepts by Cristian are rigorous and precise and where 

possible we have attempted to remain consistent with his definitions. This has not been 

entirely possible due to the greater complexity of the object we have been trying to model, 

namely a system. However, his concept of state and error has influenced our approach. 

2.8 BS5760/BS4778 

BS5760 "Reliability of Constructed or Manufactured Products, Systems, Equipments 

and Components" describes the concepts associated with software reliability using the 

diagram in figure 2.3. BS5760 does not explain the 'revealing mechanism'. How does the 

environment interact with the system in such a way that faults within the system manifest 

themselves? An error is defined as "a human action that produces an unintended result", 

a fault as "an incorrect portion of software which has the potential of causing failure" 

and a software failure as "a failure caused by a software fault". A failure is defined as "a 

deviation of system behaviour from that required". 

BS5760 also goes on to say: "It should be remembered that software itself does not fail. 

Faults already present in software lead to failure of the system under certain conditions." 

The reason for this is to remain consistent with the ISO (BS4778) definition for a failure: 

"the termination of the ability of a functional unit to perform its required function". That 

is, the unit could perform its function to specification, all valid inputs would produce the 
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Figure 2.3: Error, Fault, Failure relationship 

correct output. Then at some point in time some failure event occurs, internal to the 

unit, and from that point onwards the unit would be unable to act according to its 

specification. An example of a failure event would be a change in the structure of the 

unit due to physical aging and wearout. Such a definition is not applicable to software. 

There is no internal mechanism which can turn software which meets its specification 

into software which doesn't. 
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Chapter 3 

System Structure 

In this chapter we consider the structure of objects. We clarify an aspect of the concept of 

abstraction, that of collapsing or aggregation, by considering two views of structure. The 

approach we take is to first consider one of these views and a corresponding formalization, 

namely directed graphs; the other view is then examined and we show that it is simply 

a special case of the former. It is a special case in that rather than defining a general 

directed graph it defines a tree. 

This leads us to the concept of "collapsing", a technique of abstraction which groups 

objects together and "collapses" them to a single object. We formalize this by developing 

a model of structure called "structured graphs" . 
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Finally we use structured graphs to produce a mathematical model of atomic actions , 

correcting a previous model[6]. 

The following definition is by Parnas[22]. 

Definition 3.1 Structure refers to a partial description of an object showing it as a 

collection of parts and showing some relations between the parts. 

The obvious way to formalize this is to use a pair (X, U) where X is a set representing 

the parts and U ~ X x X is a set representing the relations between the parts. The pair 

(X, U) is a directed graph. 

3.1 Directed Graphs 

The notation we use in our presentation of directed graphs is drawn from [9], as are most 

of our basic definitions. Also, since we deal only with directed graphs, we shall simply 

use the word graph when referring to directed graphs. 

Definition 3.2 A graph G = (X, U) is an ordered pair, where X is a finite non-empty 

set of nodes and U is a finite set of arcs, with U ~ X x X. 
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Figure 3.1: Graph of example 3.1 

A graph can be depicted by a diagram in which nodes are represented by points m 

the plane and each arc (x, x') E U is represented by an arrow drawn from the point 

representing x to the point representing x'. 

Example 3.1 Figure 3.1 represents the graph G = (X, U) where X = {Xl, X2, X3, X4} 

and U = {(Xl> X2), (Xl> X4), (X2' X2), (X2' X4), (X3' X2), (X4' Xl)' (X4' X3)}' 

Definition 3.3 In a graph G = (X, U) a node x is called a successor of a node x' if 

(X', x) E U. Similarly, a node X is called a predecessor of x' if(x,x') E U. 

The set of all successors of x is denoted by r+(x), the set of all predecessors by r-(x). 

We denote r+(x) u r-(x) by r(x), the set of all neighbours of x. 
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Figure 3.2: Subgraph of example 3.3 

Example 3.2 In the graph of example 3.1 the node X2 has successors X2 and X4, and 

predecessors Xl, x2 and X3. 

Definition 3.4 Let G = (X, U) be any graph then, given a set Y such that Y ~ X, we 

define the subgraph H of G generated by Y as H = (Y, Uy ) where Uy = Un (Y x Y). 

Example 3.3 Figure 3.2 shows the subgraph of Figure 3.1 generated by {Xl, X2, X4}. 

Definition 3.5 A path m is defined as a finite set of arcs of the form: 

m = (xo, xd, (Xl, X2), ... , (Xr-l, x r) 

The number of arcs in the sequence is called the order of the path. The node designated 

by Xo is called the initial endpoint of the path and the node designated by Xr is the final 
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or terminal endpoint of the path. 

A path whose endpoints are distinct is said to be open; whereas one whose endpoints 

coincide is called a closed path or cycle. 

We observe that a path is completely determined by the sequence of nodes which it visits. 

We shall often find it convenient to specify a path by listing this node sequence rather 

than the more strictly correct arc sequence. 

Example 3.4 In the graph of figure 3.1 the arc sequence: 

is a path of order 6. The path can also be described by the node sequence: 

The node sequence X2, X4, Xl, X2 is a cycle of order 3. 

Definition 3.6 Let G = (X, U) be any graph, and let X be one of its nodes. Then any 

node x' (not necessarily distinct from x) for which there exists a path from X to x' is 

called a descendant of x; while any node x' (not necessarily distinct from x) for which 

there exists a path from x' to x is called an ascendant of x. 

It will be observed that a node x' can be both a descendant and an ascendant of Xj this 

occurs whenever there exists a cycle passing through both x and x'. 
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We shall denote the set of descendants of a node x by r+(x) and the set of ascendants 

by r-(x). 

A node x' is said to be accessible from a node x if x' is a descendant of x or x' = x· , 

similarly, x' is said to be converse-accessible from x if x' is an ascendant of x or x' = x. 

The set of nodes which are accessible and converse-accessible from x will be denoted by 

* * r+ (x) and r- (x) respectively. 

Clearly 

* r+ (x) {x} U r+(x) 

* r- (x) {x} u r-(x) 

A A 1\ * * * 
We will also denote r+(x) u r-(x) by r(x) and r+ (x)u r- (x) by r (x). 

When needing to refer to more than one graph we will use the graph as a subscript. For 

• 
example rj: (x). 

Example 3.5 On the graph G = (X, U) of figure 3.1, r+(x) = X and r-(x) = X, for 

all x EX, since all nodes x E X are on paths to all other nodes. 

Graphs which contain no cycles are often useful; such graphs are given a name. 

Definition 3.7 A n acyclic graph is a graph which does not contain any cycles, that is, 

one for which for all nodes x, x (/. r+ (x). 
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When we examine an object, and consider its structure, we usually refer to the parts of 

the objects as components. Furthermore, we can often identify levels of components or, 

at least, we often refer to components being below (or above) other components. That 

is, the object is structured as a hierarchy of components. When an object is structured 

as a hierarchy the relationships between the components define an order, below or above 

for example. It can be shown than any order defines an acyclic graph, though we do not 

do so here, and so we reach the following definition. 

Definition 3.8 An object is hierarchically structured when the graph representing the 

structure of that object is acyclic. 

Another concept we will make use of is that of a "cut". Although this concept will only 

be applied to trees (to be defined), we will define it here in its full generality. A cut breaks 

a graph into three parts, those elements which are in the cut, those which are 'before' the 

cut and those which are 'after' the cut. 

Definition 3.9 Let G = (X, U) be a graph and C ~ X; let 

c+ = U r+(x) 
xEC 

c- U r-(x) 
xEC 

C is a cut through G if and only if 
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Figure 3.3: Graph of example 3.6 

C n c+ = C n c- = C- n C+ = 0 

Cuc+ uc- = X 

Xs 

Example 3.6 {X6, X1, xs} is a cut through the graph of figure 3.3. 

There is a special case of an acyclic (directed) graph which we will make use of. We will 

introduce it by example. 

Let us consider a book; we can say a book 'contains' Chapter 1, Chapter 2 etc. and 

Chapter 1 'contains' Section 1, 2 etc. If we draw the graph of 'contains', Figure 3.4, we 
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Book 

Figure 3.4: A Book 

find it looks like an upside down tree. 

Definition 3.10 A tree is an acyclic graph in which just one node has no predecessors 

(this node is known as the root), and every other node has exactly one predecessor. The 

set of nodes which have no successors are called the leaves of the tree. 

Definition 3.11 Let G = (X, U) be tree, then a sub-tree ofG is a sub-graph ofG which 

is also a tree. 

Horning and Randell[15] consider structure to be "tree" based, each component of an 

object consisting of further components, this subdivision continuing until we wish to 

stop. The undivided components are normally referred to as atomic (not to be confused 

with atomic actions, which are discussed later in this chapter). It is immediately obvious 

that this is a special case of definition 3.1 with the relation 'is a component of'. The 

corresponding graph is, of course, a tree. 
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Let us agam consider the example of a book, which consists of chapters, where each 

chapter consists of sections and each section consists of paragraphs; there is obviously 

a tree structure for the book described by 'consists of'. There is also a relation 'occurs 

before' between the components of the book. We can say that chapter 4 occurs before 

section 5.1 but we cannot say section 3.2 occurs before chapter 3, since these two are 

not 'comparable'. The condition for comparability between two components x and y is 

x fj. t(y) 

We are moving to define two relations over a set of elements, one relation is of a 'consists 

of' or 'contains' type and defines a tree, and the other relation can be considered in some 

sense 'orthogonal' to the first, for example 'uses' or 'occurs before'. 

If we consider as another example a computer program and assume there is no nesting 

of procedures, we can describe a 'uses' relation between the procedures. We can group 

together those procedures which are related by some criterion. We can repeat this process, 

grouping together related groups, until we have only a single object to consider; we are 

establishing a tree structure for the program. We will find that at any stage in this 

grouping the relation 'uses' can easily be kept meaningful by using the rule: if a component 

of x 'uses' a component of y then x 'uses' y, provided that x and yare distinct. 

The reason for the final proviso is that when viewing an object from "outside" we should 

not be interested in its internal structure and so x 'uses' x will be irrelevant. The extended 

'uses' relation obeys the condition for comparability given above and in the next section 
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we consider a formalization of objects structured by two relations one of which defines a 

tree. 

3.2 Structured Graphs 

We wish to be able to group together parts of our graph to hide "details". The approach 

we will take to this is to pick out the subgraph representing the part we wish to group 

together and replace that subgraph with a single new node, all arcs leading into and out 

of the subgraph are replaced by arcs ending and starting with the new node. We can 

then choose another part we wish to "collapse" and repeat the process on that part. We 

demand that the "collapsing" must occur one subgraph at a time so that overlapping of 

our newly introduced nodes is precluded. This means that we get a well nested structure 

and so the collapsings can be represented by a tree. 

Example 3.7 Figure 3.6 shows the graphs obtained by the "collapsings" of the graph 

on the left in figure 3.5, according to the tree on the right in figure 3.5. 

The above leads us to the following definition. 

Definition 3.12 A structured graph S = (T, G) is an ordered pair where T = (E, U) is 

a tree, called the structure tree, and G = (B, R) is a graph, called the basic graph, where 
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Figure 3.5: A Structured Graph 

B ~ E is the set of leaves of T. 

Definition 3.13 Let S = (T, G) be a structured graph, with T = (E, U) and G = (B, R) 

* 
and let x E E, then we define x =rt (x) n B. x is the set of leaves of the subtree of T 

rooted at x. 

Example 3.8 The leaves of the subtree rooted at A in figure 3.5. 

Definition 3.14 Let S = (T, G) be a structured graph, with T = (E, U) and G = (B, R), 
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Figure 3.6: Collapsed Graphs 
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and let C be a cut through T, then we say that the graph G' , defined by G' = (C, P) where 

p = {(x,y) E C xC: x # y and (3m E x,n E y: (m,n) E R)} u 

(x,x)ECxCnR 

is a level of detail of S. 

Example 3.9 The graphs of figure 3.6 are levels of detail of the structured graph 

represented by figure 3.5. 

Lemma 3.1 The basic graph is a level of detail. 

Proof Let S = (T, G) be a structured graph with T = (E, U) is a tree and G = (B, R). 

B is cut through T and 

{(x, y) E B x B : x # y and (3m E X, n E if : (m, n) E R)} U (x, x) E C x en R 

= {(x,y) E B x B: x # y and (x,y) E R} U (x,x) E C x CnR, since z = {z} when 

z E B 

= {(x, y) E B x B : (x, y) E R} 

= R, since R ~ B x B 0 

Lemma 3.2 Let x be the root of the structure tree. The graph ({ x}, 0) is a level of detail. 

Proof Obvious 0 
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Definition 3.15 Let 5 = (T, G) be a structured graph and let G' = (B', R') be a level of 

detail of 5. Also let T = (E, U) and choose a non-leaf node A E E such that rj;(A) ~ B'. 

We define the collapsing of A in G' as the construction of the graph G'[A] where 

G'[A] (B'[A], R'[A]) 

B'[A] (B' \ rj;(A)) U {A} 

R'[A] {(x, y) E B'[A] X B'[A] : (x, y) E R'} U 

{(x,A): x E B'[A],(3y E rj;(A): (x,y) E R')} u 

{(A, y) : y E B'[A], (3x E rj;(A) : (x, y) E R')} 

Example 3.10 Consider the two graphs on the left in figure 3.6. The bottom graph can 

be created by the collapsing of B in the top graph. 

Lemma 3.3 Let 5 be a structured graph, G' = (B', R') be a level of detail of 5 and A be 

a non-leaf node in the structure tree of 5 such that rj;(A) ~ B'. G'[A] is a level of detail 

of5. 

Proof 

Let 5 = (T, G) with T = (E, U) and G = (B, R). Let G' = (B', R'). It can be seen that 

B'[A] is a cut. 

R'[A] 

= { By definition} 
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{(x, y) E B'[A] x B'[A] : (x, y) E R'}U 

{(x,A): x E B'[A],(3y E rj;(A): (x,y) E R')}U 

{(A, y) : y E B'[A], (3x E rj;(A) : (x, y) E R')} 

= {G' is a level of detail, so (x,y) E R' = ((x,y) E B' X B') 1\ (3m E x,n E y: (m,n) E 

R))} 

{(x, y) E B'[A] \ A X B'[A] \ A: (3m E x, n E iJ: (m, n) E R)}u 

{(x,A) : (x E B'[A] \ A) 1\ (3m E x,n E A: (m,n) E R)}U 

{(A, y) : (y E B'[A] \ A) 1\ (3m E A, n E y: (x, y) E R)} 

= 

{(x, y) E B'[A] X B'[A] : (3m E x, n E iJ: (m, n) E R)} 0 

Lemma 3.4 Let S = (T, G) with T = (E, U) and G = (B, R). Let G' = (B', R') and 

G" = (B", R") be levels of detail of S with rj;(A) ~ B' and rj;(A) ~ B". lfG'[A] = G"[A] 

then G' = G". 

Proof Obvious, from the definition of collapsing 0 

Definition 3.16 Let S = (T, G) be a structured graph and let G" = (B", R") be a level 

of detail of S. Also let A E B", with A a non-leaf node. We define the opening of A in 

G" as any level of detail [A]G" with the property ([A]G")[A] = G". 

Lemma 3.5 Let S = (T, G) be a structured graph and let G" = (B", R") be a level of 
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detail of S. Also let A E B", with A a non-leaf node. [A]G" exists and is unique. 

Proof Let us consider the level of detail G' defined by G'[A] = G". Then ([A]G")[A] = G' 

and so an [AlG" with the required property exists. 

Let [AlG' = GI and [AlG' = G2 be different. From the definition GdA] = G' = G2 [A]. 

By lemma 3.4 G I = G 2 and so [AlG' is unique 0 

Lemma 3.6 Let S = (T, G), T = (E, U), be a structured graph and let G' = (B', R') be 

such that B' c E. G' is a level of detail of S if and only if there exists AI, ., . , An E E 

such that G[AIl ... [Anl = G'. That is, all levels of detail can be constructed by repeated 

collapsings and all graphs constructed by repeated collapsings are levels of detail. 

Proof The theorem is obviously true for the basic graph, for which n = O. 

That all repeated collapsings of the basic graph are levels of detail is proved by induction 

over the number of collapsings, with lemma 3.1 as the basis and lemma 3.3 as the inductive 

step. 

The converse is proved as follows: take G', either G' = G or there exists some node An 

of G' which is not a node of G, and we can then open An to produce a new level of detail 

[An]G'. This process can be repeated, but must eventually terminate since T is a finite 

tree. We will then have G = [All ... [AnlG' and so G[All ... [Anl = G' 0 
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3.3 Atomic Actions 

Intuitively, an atomic action is a group of events that enjoys the status of a simple 

"primitive" with regard to its environment. At the same time it may, however, possess 

a "complicated" internal structure (this is the same use as is found in [20] and [6]). By 

primitive we mean that no event outside the action needs to occur during the action. If 

such events exist we say that they interfere with that action. 

Atomic actions are important in the study of the dynamic behaviour of systems. They 

have been used, for example, in the analysis of orphans in a distributed system [24] and, 

widely, in database systems, where they are more commonly called "transactions" [13]. 

We develop two dynamic atomicity criteria; they are dynamic because we take individual 

computations as our basic objects. We will use occurrence graphs, a particular type of 

directed graph, as our formal model of computations. An occurrence graph serves to 

model a single computation as a set of interdependent events, the dependencies arising 

from the semantics of a particular computation. We represent the grouping of events by 

making use of structured occurrence graphs, an application of structured graphs. 

The work presented here derives directly from the application of occurrence graphs to 

the formalization of the concept of atomic actions in [6]. One of our two criteria is in 

fact identical to one given in [6] and the other is closely related. Other formalisms could 
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be used to investigate the concept of atomicity. Structured occurence graphs are used 

because they are an example of structured graphs and because they relate easily to the 

work of Best on which our work is based. 

We will first define structured occurrence graphs and then use them to formally define our 

two atomicity criteria. The first is a global atomicity criterion, related to "serialisability". 

The events in the computation have some ordering on their occurence. The serialisability 

criterion states when the computation can be realised by some total order of the events 

occurence, that is the events can occur one at a time in a particular sequence. This total 

order needs to be 'compatible' with the ordering. That is the computation carried out 

with no events occuring concurrently will 'produce the same result' as the computation 

restricted so that events can occur concurrently as defined by their ordering. Our global 

criterion is identical to the global criterion found in [6]. 

The second of our criteria is a local atomicity criterion, "interference freeness". Informally, 

no activity can exist outside of the atomic action which has to occur during it, i.e. interfere 

with it. Two lemmas are established, one connecting our local and global criteria and the 

other relating to the internal structure of atomic actions. 

Our local criterion is a modification of the local criterion from [6]. We will therefore state 

the local criterion from [6] and discuss why a new one is required. A theorem is proved 

connecting these two local criteria. 
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Definition 3.17 Let S = (T, G) be a structured graph where T = (E, U) and G = (B, R). 

If elements of B represent events, the elements of R represent precedence relations between 

those events, and G is acyclic, then we say that S is a structured occurrence graph. 

We are dealing here with the occurence of events. So, our precedence relations represent 

the ordering of events in time. 

Nodes of the structure tree represent events. Non-leaf nodes of the structure tree will be 

referred to as actions, they represent groups of events. Leaf nodes of the structure tree 

will be referred to as basic events. 

Definition 3.18 Let S = (T, G) be a structured occurrence graph and let G' = (B', R') 

be any level of detail of S with x, y E B'. 

We say x immediately precedes y, written x -< .y, if and only if (x, y) E R', 

x precedes y, x -< y, if and only if there exists a path in G' starting with x and finishing 

with y, and 

x concurrent with y, x II y, if and only if x -j:. y and y -j:. x. 

Now, consider the structured occurrence graph of figure 3.7 and then look at the level 

of detail, which is shown in figure 3.8, defined by the cut {e2,A}. We have, by the 

50 



z 

Figure 3.7: A Structured Occurence Graph 

collapsing to create that level of detail, introduced a cycle. This cycle exists because e2 

occurs "during" A. That is, e2 occurs after one event within A, el, but before another, 

e3. So there can exist no total order for the events which can include both e2 and A. 

Definition 3.19 Let S be a structured occurrence graph. We say S satisfys atomicity if 

and only if all levels of detail of S are acyclic. 

In a computation that does not satisfy atomicity we will find that some events are inter

fered with and some events interfere, others may do both. For example, from figure 3.7 

and figure 3.8, we see that A is interfered with by e2 and e2 interferes with A. We will 

say that an event A is atomic if and only if it is not interfered with; that is, there does 
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Figure 3.8: Level of Detail 

not exist an event e, outside of A, that occurs after one part of A and before another. An 

elementary observation is that the elements of the basic graph G must be atomic, since 

there are no cycles in the basic graph of a structured occurence graph. 

Definition 3.20 Let S = (T, G) be a structured occurrence graph where T = (E, U), 

G = (B, R) and let L = (B', R') be a level of detail of S with x, y E B'. Then y interferes 

with x at L if and only if x -< y -< x and there exists an Xl, X2 E X such that Xl -< y -< X2 

and X2 I< Xl at the level of detail defined by the cut (B' \ {x}) U x. 

This definition formalises our concept of interference. It states that an event y interferes 

with another event X if and only if there exists two basic events within X such that y 

has to occur before one and after the other. Using this definition we can state our local 

atomicity criterion. 
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Definition 3.21 Let 5 = (T, G) be a structured occurrence graph and D be the set of all 

levels of detail of 5 which include an event e. We say e is atomic if and only if for all 

levels of detail (B', R'), such that e E B', we have that for all e' E B', e' does not interfere 

with e at the level of detail (B', R') . 

That is, an event is atomic if there is no event which interferes with it at any level of 

detaiL 

Lemma 3.7 Let 5 = (T, G) and 5' = (T', G) be structured occurrence graphs with T = 

(E, U)J T' = (E', U'), G = (B, R) and x E EnE' such that XT = XTI J and the sub-trees 

* * 
generated by (U x E C :r;z: (x)) and (U x E C :r;Z:1 (x)), where C is the cut (B \ x) u {x}, 

are equal. Then x is atomic in 5 if and only if x is atomic in 5'. 

Proof Since the basic graphs of 5 and 5' are equal and the structure trees excluding 

the sub-trees rooted at x are equal, any level of detail of 5 which contains x is a level of 

detail of 5', and vice-versa. 

We also have XT = XT' so for any cut B' containing x, which will exist in both structure 

trees, the level of detail defined by (B' \ {x}) U x is the same in both 5 and 5'. 

Hence, from definitions 3.20 and 3.21, x is atomic in 5 if and only if x is atomic in 5' 0 

The previous lemma shows that whether an event is atomic or not does not depend on 
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its internal structure, but only on the basic events that make it up and on the structure 

of the events outside it. 

Example 3.11 Looking at the structured occurrence graphs of figures 3.9 and 3.10, we 

see that Z is atomic in both cases. 

Our local and global atomicity criteria are related in a very obvious way as we will show 

in corollary 3.10. 

Interference of x with y can also be characterized by the fact that, at some level L, x and 

yare on a cycle which is eliminated when y is opened, i.e. at [y]L. 

Lemma 3.8 Let 5 = (T, G) be a structured occurrence graph and let L = (B, R) be a 

level of detail of 5 with x, y E B, and x and y on a cycle. Consider [x]L, if there does 

not exist an x' E rt (x) such that x' and yare on a cycle then y interferes with x 

Proof 

Cycle disappears 

:::::} 

:lx', x" E rt(x) : x' -< y -< x" and x" -f. x' 

iff { Opening up x' and x" } 

:lXl E X',X2 E x",x',x" E rt(x): Xl -< y -< X2 and X2 -f. Xl 

iff { Eliminating x' and x" } 
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:3xI , X2 Ex: Xl -< y -< X2 and X2 f< Xl 

iff { By definition 3.20 } 

y interferes with X 0 

Example 3.12 For the structured occurrence graph of figure 3.7, at the level of detail 

defined by {e2, A}, e2 and A are on a cycle which is eliminated when A is opened. 

Lemma 3.9 Let S = (T, G) be a structured occurrence graph with T = (E, U) and let 

L = (B, R) be a level of detail of S: 

1. If there is no level of detail in which A -< A then A is atomic. 

2. If e -< e for some e E B then there exists an e' E B such that e -< e' -< e at Land 

e' is not atomic. That is) if there is a cycle at L then some event in that cycle is 

not atomic. 

Proof 

1. For something to interfere with A it must be on a cycle with it, by definition 3.20. 

So if A is not on a cycle then A must be atomic 

2. Since the basic graph is acyclic, if there is a cycle there must exist some sequence 

of openings that make it disappear. Therefore, by lemma 3.8, there must be a 
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non-atomic event on that cycle. 

o 

Corollary 3.10 A structured Occurrence graph satisfies atomicity if and only if all of its 

events are atomic. 

Proof If the structured occurence graph satisfys atomicity then all levels of detail are 

acyclic and so at no level is any event involved in a cycle; therefore, by lemma 3.9(i), all 

events must occur atomically. 

If all the events occur atomically then by lemma 3.9(ii)' no event can be involved in a 

cycle at any level of detail, since if it was that would imply the existence of a non-atomic 

event; hence, all levels of detail must be acyclic and so the graph satisfys atomicity. 0 

We will now consider Best's local criterion from [6J, which our local criterion was based 

upon, and explain why we felt a new criterion was necessary. Best gives the following, 

which has been altered to rna tch our nota tion: 

In a given structured occurrence graph (T, G), 

1. Basic events occur atomically, 

2. An action A occurs atomically if and only if 
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(a) Va E rj:(A), a occurs atomically, and 

(b) for all levels L, whenever e -< A -< eat L then 3a E rHA) such that e -< a -< e 

at [AlL. 

To illustrate what we consider to be wrong with this definition let us consider the struc

tured occurrence graphs of figure 3.9 and figure 3.10. Consider all the levels of detail 

which contain Z. There is in fact only one and it is illustrated in figure 3.11. 

Now we ask, is Z atomic? By our local criterion it is for both structured occurence 

graphs, since it never appears on a cycle. However, by Best's definition Z is not atomic 

in the structured occurrence graph defined by figure 3.9(b). This is because the events 

A21 and A22 are not atomic. We claim that since there is nothing that can interfere with 

Z, see figure 3.11, then this is not a sensible conclusion to reach. 

A discussion of the extent to which any formal theory based on structured occurrence 

graphs can capture our intuitive notions of atomic actions can be found in [6] and [7]. 
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(a) 

(b) 

Figure 3.9: Structure Trees 
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Figure 3.10: Basic Graph 

z 

Figure 3.11: A Level of Detail 
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Chapter 4 

System Behaviour 

In this chapter we introduce a model of system behaviour based on the theory of traces. 

The theory of traces models behaviour in terms of the sequence of interactions taking 

place between the system and its environment. We consider the concept of abstraction 

when applied to the behaviour of a system and also the idea of programming a system. 

A system is an object, either material or conceptual, having interacted, interacting or 

being able to interact with other objects, thus other systems. So, the basic property of a 

system is that it is (potentially) active. 

We refer to the conglomeration of objects with which a system interacts as its environ

ment; obviously this, viewed as a single object, is also a system. 
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Between the system and its environment there is a boundary; ie. a place, material or 

conceptual, at which the system "stops" and the environment "starts". Interactions 

between the system and its environment take place at this boundary and this is referred 

to as the system interface. We take an interaction to be the passage of some object 

through the interface. 

What we have done is to split the "universe" into two duals, the system and its environ

ment, which interact at a single interface. The reason we refer to them as duals is that if 

5 is a system and E is the environment of 5, then 5 is the environment of E. 

When we consider the interface of a particular system we see that it consists of many 

places at which interactions can occur. We call these places ports. To simplify, we 

stipulate that objects may only pass through a particular port in one direction, either 

into or out of the system. Those ports through which objects pass into the system are 

called inports, those through which objects pass out are called outports. Objects which 

pass through a particular port will all belong to some related set of objects, this set is 

known as the sort of the port; c.f. the typing of variables in a programming language. 

4.1 Traces 

Definition 4.1 An interface N is a triple (iN, oN, sN) where iN and oN are sets of ports} 
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Adder outl---+-

----I..!lnl 

Figure 4.1: Diagrammatic Representation of a System 

the inports and the outports respectively, and sN is a mapping from ports to sorts. An 

interface must satisfy the following conditions: 

1. iNn oN = 0, 

2. domain( sN) ~ (iN u oN). 

We can use i, 0 and s as operators on interfaces. For example, given an interface N then 

i applied to N, iN, will return the set of inports of N. 

We will represent systems and their interfaces pictorially using diagrams like the one 

shown in figure 4.1. 

Example 4.1 The system represented in figure 4.1 is named Adder, and has interface 
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An interaction is the passage of an object from the system to the environment or vice-, 

versa, through a particular port. We will, therefore, model each interaction by a dotted 

pair; for example, m.o, where m is the port at which the interaction takes place and 0 

is the object being passed through the port, for an interface N, where 0 E sN(m). In 

order to simplify our model we assume that interactions are instantaneous and only one 

interaction takes place at anyone time. We will ignore the interval of time seperating 

interactions. 

Definition 4.2 The alphabet of a system S is the set of all interactions in which it could 

participate, and we denote this by as. Hence, as = {m.o : m E iN u oN, 0 E sN(m)} 

where S has interface N. 

Definition 4.3 The trace of a system is a recording of its behaviour as the sequence of 

interactions in which it has participated up to that moment. Initially we take the trace to 

be empty. The trace of a system is an element of as·. 

Let us consider a system S which has participated in some trace t and may now take part 

in some interaction from the set Y. Its environment E, which has also participated in t, 

is now able to take part in any interaction from some set X. We might assume that S 

and E would take part in an interaction from X n Y. This is too strong. We say that if 
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S takes part in an interaction it will take part in one from X n Y, it may, however, take 

part in no interactions and so will 'halt', that is do never do anything ever again. In this 

case, if S 'refuses' to interact with its environment, X is a refusal of S after t. After a 

different trace X need not be a refusal. Refusals are of interest when considering system 

behaviour because we are not only concerned with what a system will do but with what it 

will not do. This allows us to deal properly with non-determinism because an interaction 

can both a valid next interaction for the system after some trace and an element of a 

refusal after the same trace. The 'choice' between whether to take part in the interaction 

or 'halt' is considered to be non-deterministic. Though aE is not necessarily the same as 

as since we are interested in S we will define a refusal of a system S to be a subset of 

as. 

We wish to record the behaviour of a system as a pair of a trace and a refusal. If the 

system after a trace t does not refuse the set offered by the environment we will, by 

convention, denote this by t,0. If the system does refuse a set X we will denote this by 

t,X. 

Definition 4.4 A behaviour of a system S is a pair (t, X) with a trace tEaS· and a 

refusal X ~ as. 

Definition 4.5 A (behavioural) specification of a system S is a predicate P over as· x 

as, and, given tEaS· and X ~ as, P( t, X) means t is an acceptable trace of Sand 
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that X is an acceptable refusal of S after t. That is (t, X) is an acceptable behaviour of 

S. 

We choose this approach to specifying and modelling system behaviour because it is 

abstract, captures many of the properties of 'real' system behaviour and is fairly straight

forward to use to define our reliability concepts in a way that can be related to the 'real' 

behaviour of systems. This approach gives some insight into the concept of state, in 

particular it helps us recognise that state is an external phenomenon. That is, state is 

part of our perception of a system it is not intrinsic to the system. We will come back to 

state towards the end of this chapter. 

A specification P must have the following properties, reflecting natural properties of the 

behaviour of systems: 

1. P( 0,0), the system has done nothing, 

2. P(t,X) * W ~ X: P(t,Y), if the system can refuse X after t it can refuse any 

subset of X after t, 

3. P(t,0) * Vr ~ t : P(r,0), if the system can participate in t it must be able to 

participate in any prefix of t, 

4. Vx E as : P(t, X) * P(t 1\ (x), 0) V P(t, X U {x}), if x is a possible interaction for 

the system, it must either be able to participate in it or refuse to participate in it. 

65 



Example 4.2 The following is a specification of the system, Adder, of figure 4.1, which 

adds two numbers: 

P( 0, R) if R ~ {out.l, out.2}, 

P((ink.x},R) if R ~ {out.i,ink.j: i,j E {O,l}},x E {O,l},k = 1,2, 

P( (inl'X, in2'Y)' R) if R ~ {inl.i, in2.j : i, j E {a, I}}, x, Y E {a, I}, 

P((in2.x,inl.y},R) if R ~ {inl.i,in2.j: i,j E {O,l}},x,y E {O,l}, 

P( (inl'x, in2'Y' out.x + y), R) if R ~ {inl.i, in2.j : i, j E {a, I}}, x, y E {a, I}, 

P((in2.x,inl.y,out.x + y},R) if R ~ {inl.i,in2.j,out.k: i,j,k E {O,l}},x,y E {O,l}. 

We do not recommend our modelling approach as a specification technique. However 

trace based methods are useful in the specification of communicating systems[14]. 

Definition 4.6 We say a system S satisfies a specification P if and only if for all be

haviours (t, X) of S, P(t,X). We abbreviate S satisfies the specification P to S sat P. 

The following will hold concerning this relation: 

1. S sat true, 

2. S sat (Vi: Pi) if (Vi: S sat Pi) 

3. S sat Q if (S sat P) 1\ (P ::::;. Q) 

Let us consider example 4.1, if a number is input to the system it does not cease to be a 
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system, so its future behaviour must obey some specification. 

Definition 4.7 The operation after is defined by the following (where S is a trace): 

(5 after s) sat P(t,X) ifandonlyif(3Q: P(t,X) = Q(sl\t,X)I\(5 sat Q)). 5 after S 

has the same interface as 5. 

In the previous definition we should also show that if Q has the four properties we require 

of a specification then P will also have those four properties. This is required to show that 

our definitions are valid. It is simple to demonstrate but to do this for all our definitions 

would greatly lengthen them. So we will omit these proofs. 

Example 4.3 (Adder after (inl.1)) sat Q where 

Q(O,R) if R ~ {inl.i, out.j : i, j E {O, l}}, 

if R ~ {inl.i,in2.j: i,j E {O,l}},x E {O,l}, 

Q((in2.x,out.x + l),R) if R ~ {inl.i,in2.j,out.k: i,j,k E {O,l}},x,y E {O,l}. 

We still have to consider inl, because it is still part of the interface of Adder. 

We will define a number of "operations" on systems. These operations do not change the 

system but only our view of it. We will define these changes of view, i.e. operations, by 

considering the change in the interface and what specification our new view of the system 

satisfies. 

Consider the two specifications given below: 
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Q(O,R) if R ~ {out.i: i E {O,l}}, 

Q( (in.x), R) if R ~ {in.i : i E {a, l}}, x E {a, l}, 

Q((in.x,out.x + l),R) if R ~ {in.i,out.j: i,j E {O,l}},x,y E {O,l}, 

P(O,R) if R ~ {put.i : i E {a, l}}, 

P( (get.x), R) if R ~ {get.i : i E {a, l}}, x E {a, l}, 

P((get.x,put.x + l),R) if R ~ {get.i,put.j: i,j E {O,l}},x,y E {O,l}. 

These could be different views of the same system; the difference being that we have 

changed the names of the ports. 

In the definitions and proofs that follow t, t', til, ... , represent traces, X, X', X", ... , 

represent refusals and P, Q, R, ... , represent specifications. 

Definition 4.8 Let S be a system with interface N, and let x E iNuoN and y (j. iNuoN. 

We define S ren X, y, S with x renamed as y, by the following, (let N' denote the interface 

of S ren x, y) 

{ (iN \ {x}) u {v} if x E iN 
iN' -

iN otherwise 

{ (oN\{x})U{y} if x E oN 
oN' 

oN otherwise 

{ sN(x) if z = y 
sN'(z) 

sN(z) otherwise 
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and (S ren x, y) sat P(t, X) if and only if 

:JQ, t', X' : (t' = f*t) 1\ (X' = f*X) 1\ (Q(t' , X') = P(t, X)) 1\ (S sat Q(t', X')) 

where 

{ 

x.a if z = y 
J(z.a) = 

z.a otherwise 

The following lemma states that the future behaviour of the system is independent of the 

names of the ports in the systems previous behaviour. 

Lemma 4.1 ((S ren x,y) after s) sat P(t,X) 

if and only if 

((S after f*s) ren x,y) sat P(t,X) 

where 

{ 

x.a if z = y 
J(z.a) = 

z.a otherwise 

Proof 

((S ren x,y) after s) sat P(t,X) 

iff {definition 4.7} 

:JQ : (P(t, X) = Q(s 1\ t, X)) 1\ (S ren x, y) sat Q(s 1\ t, X)) 

iff {definition 4.8} 

:JQ: (P(t, X) = Q(s 1\ t, X)) 1\ (:JR, t', X': (t' = J*(s 1\ t)) 1\ (X' = J*X) 1\ 

(R(t', X') = Q(s 1\ t, X)) 1\ (S sat R(t', X'))) 
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iff {Eliminating Q} 

3R, t', X' : (t' = 1*(81\ t)) 1\ (X' = I*X) 1\ (R(t', X') = P(t, X)) 1\ (S sat R(t', X')) 

iff {t':= (f*8) 1\ t"} 

3R, t", X' : (t" = 11it)I\(X' = J*:X)1\ (R((f*S)l\t", X') = P(t, X))I\(S sat R((f*S)l\t", X')) 

iff {Introduce Jl,f: M(t", X') = R((f*S) 1\ t", X') } 

3M, til, X' : (til = I*t) 1\ (X' = I*X) 1\ (M(t",X/) = P(t,X)) 1\ (S sat M(t",X')) 

iff {definition 4.7} 

3M, t", X' : (til = 11t)I\(X' = 1-kX)1\ (M(t", X') = P(t, X))I\((S after I*,) sat M(t", X')) 

iff {definition 4.8} 

((S after 1*8) ren x,y) sat P(t,X) 0 

4. 2 Abstraction 

We are now going to consider three forms of behavioural abstraction. Abstraction is the 

viewing of behaviour in a different way; this often leads to a loss of information and detail, 

but a reduction in clutter can lead to greater understanding. 
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4.2.1 Hiding 

The first form of abstraction is the most elementary; we ignore completely those ports we 

are not interested in. Let C ~ iN U oN then we write S hide C to indicate the system S 

with the ports C ignored. 

Example 4.4 (Adder hide {ind) sat Q where 

Q(O, R) if R ~ {out.j : j E {O,l}}, 

Q(( in2. x ),R) if R~ {in2.j:j E {O,l}},x E {O,l}, 

Q(( in2. x ,out.y),R) if R ~ {in2.i,out.j: i,j E {O,l}},x,y E {O,l}. 

Consider a system S which satisfies the specification P given by: 

P( 0,0), 

P(O, {a}), 

P(x,0) if x E {c}* and 

P(x/\(a),X) if XE{c}*/\X~{a,c}. 

What specification does S hide {c} satisfy? This gives rise to a problem because we 

are ignoring possibly infinite sequences of interactions. We will include the simplification 

that we cannot ignore potentially unbounded sequences of communication. That is, we 

cannot hide ports on which such sequences can occur. How to deal with the problem of 

unbounded sequences of communication in trace theory was dealt with by Brookes and 

Roscoe[14]. 
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Definition 4.9 Let 5 be a system with interface N, and let C be a set of ports with 

C ~ iN u oN, then 5 hide C has interface (iN \ C, oN \ C, sN) and 

(5 hide C) sat P(t, X) if and only if 

3Q,t',X': (t = br>t') 1\ (X = bt> X') 1\ (Q(t',X') = P(t,X)) 1\ (5 sat Q(t', X'))) where 

b(x) = (x E C). 

The next lemma shows that the future behaviour of the system is independent of what 

was ignored in the past. 

Lemma 4.2 ((5 after s) hide C) sat P(t,X) iff 

((5 hide C) after b t> s) sat P(t, X) 

where b(x) = (x E C). 

Proof 

((5 hide C) after bt>s) sat P(t,X) 

iff {definition 4.7} 

3Q : (P(t, X) = Q((b t> s) 1\ t, X)) 1\ ((5 hide C) sat Q((b t> s) 1\ t, X)) 

iff {definition 4.9} 

3Q: (P(t, X) = Q((bt>s)l\t, X))1\(3R, t', X' : ((bt>s)l\t = bt>t')I\(X = bt>X')I\(R(t', X') = 

Q((bt> s) 1\ t,X)) 1\ (5 sat R(tl,X'))) 

iff {Eliminate Q} 

3R, t', X' : ((b t> s) 1\ t = b t> t') 1\ (X = b t> X') 1\ (R(t', X') = P(t, X)) 1\ 5 sat R(t', X')) 
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iff {t' := s /\ til} 

3R, til, X' : (t = (b t> t")) /\ X = b t> X' /\ (R(s /\ t", X') = P(t, X)) /\ (5 sat R(s /\ t", X')) 

iff {Introduce M: M(t", X) = R(s /\ t", X) 

3M, R, t", X': (t = (b t> t")) /\ (X = b t> X') /\ (M(t", X) = P(t, X)) /\ (5 sat M(t", X'))) 

iff {definition 4.7} 

3M, t", X' : (t = bt>t")/\(X = bt>X/)/\(M(t", X) = P(t,X))/\((5 after s) sat M(t", X')) 

iff {definition 4.9} 

((5 after s) hide C) sat P(t,X) 0 

The following lemma says that the hiding of port is the same as renaming a port and 

then hiding it. 

Lemma 4.3 (5 hide {c}) sat P( t, X) if and only if 

((5 ren c, d) hide {d}) sat P(t, X). 

Proof 

Let b(x) = x = d, b'(x) = X = c, 

{ 

c if x = d 
f(x) = x 

otherwise 

{ 

d if x = c 
g(x) = x 

otherwise 

((5 ren c,d) hide {d}) sat P(t,x) 

iff {definition 4.9} 
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:JQ,t',X': (t = be-t')I\(X = be-X') 1\ (Q(t',X') = P(t,X))I\((S ren c,d) sat Q(t', X')) 

iff {definition 4.8} 

:JQ,t',X': (t = be- t') 1\ (X = be- X') 1\ (Q(t',X') = P(t,X)) 1\ (:JR,t",X" : (t" = f*t') 1\ 

(X" = f*X') 1\ (Q(t', X') = R(t", X")) 1\ (S sat R(t", X"))) 

iff { f is invertible} 

:JR,t",X": (t = be-(g-Jd")) 1\ (X = be-(g*X"))I\(R(t", X") = P(t,X))I\(S sat R(t", X")) 

iff { b e- (g*s) = b' e- s} 

:JR, t", X" : (t = b' e- til) 1\ (X = be-X") 1\ (R( t", X") = P( t, X)) 1\ (S sat R( t", X")) 

iff { definition 4.9} 

(S hide {c}) sat P(t,X) 0 

4.2.2 Resorting 

The second form of abstraction we consider is to change how we view the objects passing 

through the interface; for example, an eight-bit outport (i.e. one producing eight-bit 

numbers) can be regarded as a port producing characters. Let S be a system with 

interface N and let c E W U oN and f be a function from sN(c) to some sort, we write 

(S res c, J) to indicate the system S with the port c, of N, abstracted by the application 

of f to the objects passing through c. 

Example 4.5 Xor = ((Adder res in}, truth) res in2, truth) res out, truth where 

truth(O) = false 
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truth(l) = true 

Definition 4.10 Let S be a system with interface N, let c be a port and f a function 

from sN( c) to some sort U, then S res c,f has interface (iN, oN, sN U {c f---t U}) and 

S res c, f sat P(t, X) if and only if :JQ, t', X' : (t = g*t' ) 1\ (X = g*X/) 1\ 

((Q(t', X') = P(t, X)) * (S sat Q(t', X'))), where 

{

c. f ( a ) if z = c 
g(z.a) = 

z.a otherwise 

Lemma 4.4 ((S after s) res c,f) sat P(t,X) iff(S res c,f after g*s) sat P(t,X) 

where 

{ 

c·f(a) 
g(z.a) = 

z.a 

Proof 

if z = c 

otherwise 

(S res c,f after g*s) sat P(t,X) 

iff {By definition 4.7} 

3Q: (P(t,X) = Q((g*8) 1\ t,X)) 1\ (S res c,f) sat Q((g*8) 1\ t,X) 

iff {By definition 4.10} 

3R, t', X' : (((g*8) 1\ t) = g*t' ) 1\ (X = g*X/) 1\ (R(t', X') = P(t, X)) 1\ (S sat R(t', X')) 
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iff {t' := s 1\ til} 

:lR, t", X' : (t = g*t") 1\ (X = 9 * X') 1\ (R(s 1\ t", X') = P(t, X)) 1\ 5 sat R(s 1\ t", X') 

iff {Introduce .!VI} 

3M,R,t",X' : (t = g*t") 1\ (X = g*X') 1\ (M(t",X') = R(s 1\ t",X') = P(t,X)) 1\ 

(5 sat R(s 1\ t", X')) 

iff {Eliminate R} 

3M,t",X' : (t = f}*t") 1\ (X = g0(')I\(M(t",X') = P(t,X))I\((5 after s) sat M(t", X')) 

iff {By definition 4.10} 

(5 after s) res c,f sat P(t,X) 0 

The following lemma shows the independence of the rename and resort abstractions. 

Lemma 4.5 ((5 res c,f) ren c,d) sat P(t,X) iff ((5 ren c,d) res d,j) sat P(t,X) 

Proof 

Let 

{ 

c.a 
g(z.a) = 

z.a 

if z = d 

otherwise 

{ 

d.a 
g'(z.a) = 

z.a 

if z = c 

otherwise 

{ 

c.f(a) 
h(z.a) = 

z.a 

if z = c 

otherwise 
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{ 

d.f( a) if z = d 
h'(::.a) = 

z.a otherwise 

((S res c, f) ren c,d) sat P(t,X) 

iff {By definition 4.8} 

3Q, t', X' : (t' = g*t) 1\ (X' = 9 * X) 1\ (Q(t', X') = P(t, X)) 1\ ((S res c, f) sat Q(t', X')) 

iff {By definition 4.10} 

3Q,t',X': (t' = g*t) 1\ (X' = g*X) 1\ Q(t',X') = P(t,X) 1\ (3R,tl ,X": (t' = h*t") 1\ 

(X' = h*X") 1\ (Q(t',X') = R(tl,X")) 1\ (S sat R(t", X"))) 

iff {Eliminate Q} 

3R, til, X" : (g*t = h*t") 1\ (g*X = h*X") 1\ (P(t, X) = R(t", X")) 1\ (S sat R(t", X")) 

iff {g is invertible} 

3R, til, X" : (t = (g' 0 h f*t") 1\ (X = (g' 0 h Mil) 1\ (P( t, X) = R( til, X")) 1\ (S sat R( til, X")) 

iff {g' 0 h = h' 0 g} 

3R, til, X" : (t = (h'ogf*t")I\(X = (h'og)0C')1\ (P(t, X) = R(t", X"))I\(S sat R(t", X")) 

iff {Introduce M, t' and X'} 

3M, R, til, X", t', X' : (t = h'*t') 1\ (X = h'*X') 1\ (t' = g*t") 1\ (X' = 9 * X") 1\ 

(P(t,X) = M(t',X') = R(tl,X")) 1\ (S sat R(t", X")) 

iff {By definition 4.8} 

3M, t', X': (t = h'*t')I\(X = h'*X') 1\ (P(t, X) = M(t', X'))I\((S ren c, d) sat M(t', X')) 

iff {By definition 4.10} 

((S ren c, d) res d, f) sat P(t, X) 0 
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We now show that changing the way we view interactions at a port and then ignoring 

that port is equivalent to just ignoring the port. 

Lemma 4.6 ((S res e,f) hide {e}) sat P(t,X) if and onlyif(S hide {e}) sat P(t,X) 

Proof 

Let b( x) = x = e and 

{ 

e.f(a) if z = e 
g(z.a) = 

z.a otherwise 

((S res e,f) hide {e}) sat P(t,X) 

iff {By definition 4.9} 

~Q, t',X': (t = br> t') 1\ (X = br> X') 1\ (Q(t', X') = P(t,X)) 1\ ((S res e,f) sat P(t,X)) 

iff {By defintion 4.10} 

~Q, t',X': (t = br> t') 1\ (X = br> X') 1\ (Q(t',X') = P(t,X)) 1\ 

(~R, til, X": (t' = 9 * til) 1\ (X' = g*X") 1\ (R(t", X") = Q(t', X')) 1\ (S sat R(t", X"))) 

iff {Eliminate Q} 

~R, til, X" : (t = br> 9 * til) 1\ (X = br> (9* X")) 1\ (R( til, X") = P( t, X)) 1\ (S sat R( til, X")) 

~R, til, X" : (t = b r> til) 1\ (X = b r> X") 1\ (R(t", X") = P(t, X)) 1\ (S sat R(t", X")) 

iff {By definition 4.9} 

(S hide {e}) sat P(t, X) 0 
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4.2.3 Collapsing 

The final method of abstraction we will deal with is the collapsing of a group of interactions 

on a number of ports to an interaction on one port; for example, viewing eight one-bit 

ports as one eight-bit port. We will refer to each group of interactions that are to be 

collapsed down to a single interaction as an action. 

Example 4.6 Let us consider the Adder of figure 4.1. We wish to view this system as 

one which inputs a two bit number and produces a parity bit by adding the bits of the 

number together. It has interface I = ({ in}, {out}, {in I---t {00, 01,10,11}, out I---t {O, I}}). 

Q( (), R) if R ~ {in.i : i E sl(in)} 

Q( (in.i), R) if i E sl(in) 1\ R ~ {out.j : j -=I sun:( i)} 

Q((in.i, out.sun:(i)} , 0) if i E sl(in) 

where 

sum(OO) = ° 
sum(Ol) = 1 

sum(10) = 1 

sum(l1) = 0 

An action is a group of interactions. In the above example we have (inl'O, in2'0) I---t (in.O) 

and (in2'O, inl'O) I---t (in.O). So we have a pair of interactions which make up an action but 

this action has two "forms". By "forms" we mean the allowable sequences of interactions 
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that make up an individual action. We will formally define forms, but first let us define 

the merging of traces. 

The ordered merge of two traces is the set of traces in which each of the traces in the set 

contains the same bag of interactions as the two traces and all the interactions on any 

given port in all of the traces in the set are in the order they would have been in had the 

first trace followed the second trace. 

Definition 4.11 The ordered merge of two traces rand s is the set of traces: 

{t: (t = ro /\ S1 /\ r1'" rn-1 /\ Sn /\ rn) /\ 

(rO /\ ... /\ rn = r) /\ (S1 /\ ... /\ Sn = S) /\ (rO"# 0) /\ 

(V ports c: (b(c.a) = a) /\ b r:>t = b r> (r /\ s))}. 

The ordered merge of a sequence of traces is earned out by taking the first two traces, 

merging them, merging the result with the next trace in the sequence and so on. The 

ordered merge of a sequence of traces is written merge(tl, . .. ,tn)' 

Definition 4.12 Let 5 be a system with interface I, A ~ (if U oJ) and F a set of traces. 

The ports used in F must be a subset of A. 

(A, F) is the forms of an action on 5 if and only ifVt E merge(Pl,· .. ,Pm, U1, .. ·, Un) : 

(pi E F) /\ (Uj E {t: t < s,s E F}) /\ t is a valid trace of (5 hide ((iT U oJ) \ A)) 
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« is the prefix relation on traces) 

When writing down a form we will often only write down the sequence of interactions, 

since the set of ports involved is then obvious. 

Example 4.7 The forms of the action in the previous example are: 

{(inl'O, in2'0), (inl.1, in2'0), (inl'O, in2.1), (inl.1, in2.1), 

(in2 .0, inl'O), (in2.1, inl'O), (in2 .0, inl.1), (in2.1, inl.1) } 

Why have we defined the forms of an action in this way? It means that actions can 

overlap but we can say of any two actions that the last interaction of the first action will 

occur before the last interaction of the second action. So not only do actions start in 

some order they also finish in the same order. The restriction is stronger than just this 

because we allow an action to have an interaction on a particular port only after all the 

actions which started earlier have ceased to use that port. 

Now that we have considered what groups of interactions form valid actions we move on 

to consider how to replace these actions with a single interaction. 

Example 4.8 Let S sat Q where 

Q( 0, {b.O}) 

Q( (a.O), {a.O, c.O}) 

Q( (c.O), {a.O, c.O}) 
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Q( (a.O, b.O), {a.O, b.O} ) 

Q((c.O,b.O), {b.O,c.O}) 

Q( (a.O, b.O, c.O), {a.O, b.O, c.O} ) 

Q( (c.O, b.O, a.O), {a.O, b.O, c.O}) 

and let us consider the forms of an action on 5 {(a.O, c.O), (c.O, a.O)}. 

Looking at example 4.8 we can see that we have valid forms for an action. What we wish 

to do is collapse the action defined by this form to a new interaction d.O (say). That is we 

wish to replace a.O and c.O together by d.O. But we cannot collapse this action to a single 

interaction because b.O must occur between a.O and c.O. If a.O and c.O were collapsed to a 

single interaction then b.O would have to occur simultaneously with this new interaction. 

This is not possible because, by our original assumptions, we only allow one interaction 

to occur at a time. Therefore collapsing can only have meaning, within our trace based 

model, if there are no interactions outside the action which have to occur "during" the 

action. This is, of course, atomicity. So, we define an atomicity criteria. 

Informally the atomicity criteria is: Given a set of ports on which the actions are to occur, 

and a set of allowable forms of those actions, the actions will be atomic, if and only if, for 

every valid trace of the system there exists another valid trace which contains the same 

interactions but is of the form - ("non-action interactions" /\ "action interactions") ... /\ 

"interactions, but only unfinished actions", and the system has the same future behaviour 

"after" either trace. 
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This leads us to the following definition. 

Definition 4.13 Let S be a system with interface N and let P be a specification with 

S sat P. Let A be a set of ports of S, with either A ~ iN or A ~ oN, and let (A, F) be 

the forms of an action on S then we say the actions on A defined by F are atomic if and 

only if 

(Vt,X: P(t,X) =} (3ni E (as \ A)*, Pi E F,Ui E t: t < s,s E F: 

(Vs, Y : P(no /\ PI /\ nl /\ ... /\ Pk /\ nk /\ Ul ... /\ Um-k /\ nm /\ s, Y) = P(t /\ s, Y))/\ 

b t> t = nl /\ . . . /\ n m )) 

where 

b(d.a) = dE A. 

We have a further problem to consider concerning collapsing actions; what happens if 

during an action the system can refuse to finish it; i.e. the system can refuse the next 

interaction in the sequence (as defined by the forms of the action)? We will take this 

to mean that the system can refuse the whole action, and when we come to define our 

collapsing we will say that the system can refuse the interaction the action collapses to. 

We will write S col A, F, c, f to indicate that interactions on the ports A as defined by 

the forms (A, F) are collapsed to interactions on the port c by way of f. That is we will 

take the actions defined by F which are behaviours of S and for each of these map them 
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onto an interaction on the port c using the function f, which is a mapping from F to 

some sort. 

Definition 4.14 Let S be a system with interface N. Let A be a set of ports of S, let 

(A, F) be the forms of an action on S with the actions defined atomic and let c be a port 

and f be a function with F ~ domain(f). 

(S col A,F,c,j) sat P(t,X) if there exists s,Y,no, ... ,nm,Pl···Pk,Ul, ... ,Um-k 

ni r:j. F, Pi E F, Ui < riwhereri E F 

t = no /\ C.f(Pl) ... /\ c.f(Pk) /\ nk, 

X = be> Yu {c.f(r) : ((Ui /\ (y)) ::; r) /\ (r E F) /\ (y E Y)}, 

b(d.a) = dE A, 

(Vv, Z : Q(s /\ v, Z) = Q(no /\ Pl' ., /\ Pk /\ nk /\ Ul •.. /\ Um-k /\ nm /\ v, Z)) and 

P(t, X) = Q(s, Y) and 

S sat Q(s,Y). 

The concept of collapsing requires more work. In particular, it needs to be shown that 

the specification produced by the collapsing operation meets our four requirements. Also, 

we need to relate collapsing to the other forms of abstraction. 
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4.3 States 

Consider a box with three lights on it; a red light, a green light and a blue light. Initially 

the red light is on and the behaviour of the system is for the red to go off, the green to 

come on, the green to go off, the blue to come on, the blue to go off, then the green to 

come on, etc. The lights cycle through red, green, blue, green, red, green, blue, green, .... 

If the green light is on we cannot deduce from the specification and the current output 

alone whether the red or the blue light will come on next. We need some additional piece 

of information. Loosely, we call this piece of information the state of the system. 

For our box we could describe four states: red, blue, green going to blue and green going 

to red. Or, alternatively, red, blue, green after red, and green after blue. 

So, the state of a system S is any amount of information, extra to its specification, which 

will allow us to predict the future behaviour of S. This state is not directly observable by 

the environment but is deduced from the systems behaviour. Given a system we need to 

know both its specification and its state in order to be able to predict its future behaviour. 

Our choice of how we represent the state will vary according to the circumstances. 

Example 4.9 We can represent the state of a simple four-bit memory chip as a state 

table: 

85 



Addr Data 

00 0001 

01 0010 

10 0100 

11 1000 

or as a function: 

data(addr) = 2addr 

Definition 4.15 Let S be a system and P a specification with S sat P(t, X), the minimal 

set of states of S is any set isomorphic to the set 

{((r,X): P(s/\ r,X)}: P(s,Y)}; 

that is the set of sets of future behaviours. 

We choose future behaviours for our definition in preference to past behaviours because 

it allows us to deal with non-deterministic systems and lets us have the idea of hidden 

state changes. It can also be seen from this definition that the states of a system are 

defined with respect to [a specification. 

The system takes part in a series of interactions and as it interacts its state may change. 

Such state transitions are easily deducable by the environment since it can observe the 
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interaction. However a system could be designed such that if one presses a button within 

two seconds it flashes a green light and if one takes more than two seconds it flashes a red 

light. The future behaviour of the system is not dependent only upon interactions with 

the environment, i.e. pressing the button, the system may also go through state changes, 

which are not as immediately obvious. We refer to such state changes as hidden state 

changes. 

Example 4.10 Let us say that our box is non-deterministic in going from green to red 

or blue. That is we do not know whether it is in the state green going to blue or green 

going to red until a output appears. 

Definition 4.16 Let S be a system and P a specification with S sat P( t, X) The set of 

states of S is any set for which there exists a function whose image is the whole set 

{{(r, Y) : P(s 1\ r, X)} : P(s, V)}. 

Because we can choose any representation for the state, we could choose one that was 

structured, according to our definition of chapter 3. The structure we choose for our state 

is often based on our knowledge of the structure of the system. This relationship between 

the structure of the state and the structure of the system is probably the cause of the 

belief that the state of the system is in some way internal to the system. 
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4.3.1 Internal State 

When we are interacting with a system we have some idea of its state. We call this the 

external state of a system. We can also define the internal state of a system at a level 

of detail to be the ordered set of external states of its components given by that level of 

detaiL Thus, the internal state at the 'highest' level of detail (that is the one containing 

the lowest amount of detail and so representing the system as a whole) is the same as the 

external state of the system. 

There will exist a mapping which will allow us to deduce the state of the system at some 

level of detail from the state at some lower level of detail, for example we can deduce the 

external state of the system from an internal state. This mapping is of course dependent 

on how the system is believed to work. This means that in fact for any level of detail 

there are two ways of deducing the state. One is an inward looking approach from the 

specification of the system and its past behaviour and the second an outward approach 

mapping the state from a lower level of detaiL These two approaches will give the same 

result, assuming the mappings are correctly defined, except in the presence of failures. 

We will discuss this again in the next chapter. 

As the components function and produce outputs we will get state changes which are 

visible (i.e. an interaction takes place) from the current level of detail but which may not 

be visible at a higher level of detail (i.e. there is no observable interaction). However this 
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internal state may affect the external state, this is a hidden state change. 

It will also be noticed that the time granularity for the level of detail is ordered in 

the reverse of the level of detail. That is interactions and state changes happen more 

frequently at lower level of detail than at higher. This is because interactions and state 

changes can only occur at a higher level of detail if an interaction and state change occurs 

at a lower level of detail, but not vice-versa. 

4.3.2 Programs and Interpreters 

We have been given a specification Q and we wish to build a system which meets that 

specification. If we have a system 5 we could attempt to construct a trace s such that 

(5 after s) sat Q. If we manage to construct such a trace we say we have programmed 

5 using s. 

Consider the state of 5 after s, we can choose a representation of the states of 5 such 

that we can distinguish some part of the state which is fixed for future behaviours. This 

corresponds to Kopetz's i-state and we refer to it as the program. The other part of the 

state corresponds to Kopetz's h-state. 

Having programmed 5 using s to meet some specification Q we could then program it 

using t to meet some specification P, i.e. (5 after s) after t. We can then distinguish 
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in the state a hierarchy of programs each dependant in some way on a previously entered 

program. We call such programs interpreters. 

The hierarchies and how they interelate are products of our model of system state and 

how we understand the execution of programs, that is how the programmable system 

operates. But normally when we deal with a program we consider its meaning in isolation 

from the machine on which it operates. That is the program has an operational meaning, 

through the language the program is written in and the semantics of the language, which 

is independent of the system interpreting the program, this has been called abstract 

execution[16]. 
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Chapter 5 

Reliability Concepts 

We now use the models and concepts we have developed, in previous chapters, to give 

precise definitions for a number of important reliability concepts. 

5.1 Failure 

We define failure to be the deviation of the system's actual behaviour from its required 

behaviour. Normally from this one would say that in order to determine whether a system 

has failed we need to know what the required behaviour is. However, we wish to make a 

stronger statement than this; in order for a system to fail we must know what the required 

behaviour is. If we do not know what the required behaviour is the system cannot fail. 
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We are emphasising that failure is a subjective and not an absolute phenomenon. 

We ascertain the required behaviour from a specification. A specification is something 

which tells us whether a particular behaviour is valid. For example, the specification of 

chapter four told us whether a particular behaviour, formalised as a trace and a refusal , 

was valid. 

So, a system fails with respect to a particular specification. Different 'users' of a system 

may have different specifications for that system and because they have different ideas 

of how the system should behave will have different views of when it has failed. For 

computer systems there usually exists a unique specification that allows us to talk about 

a system failing in some absolute sense, however other types of systems, for example 

human based systems, rarely have any explicit specification. 

We cannot discuss the failure of a system for behaviour not covered by its specification 

or for behaviour which is outside the control of the system. 

Behaviour not dealt with by a specification cannot be said to be valid or invalid with re

spect to that specification. For example, when dealing with a computer system we usually 

only consider the stream of bits passing into and out of the system in our specification, 

so if, when we touch it, it gives us an electric shock we cannot say whether it has failed 

or not, with respect to this specification. 
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In the terms of our model of chapter four, we are only interested in interactions which 

are in the alphabet of the system. If the system takes part in interactions outside its 

alphabet we can come to no conclusions concerning their validity and so such interactions 

will be ignored. Some authors have a concept of exceptional inputs. We do not have 

this concept. Inputs not defined by a specification are ignored in order to consider such 

inputs we require a specification which covers them. This leads us to having multiple 

specifications. We will discuss this in more detail later in this chapter. 

We can not say a system fails if it accepts (in the sense of the chapter 4) inputs outside 

its specification, since the inputs given to it by the environment are outside its control. 

Not only does a system not fail when it accepts an input outside its specification but it 

can not fail at any time thereafter. 

There are two ways in which a system can deviate from its specification: 

1. It doesn't do something it should, or 

2. It does something it shouldn't. 

A system fails at the moment in time when its behaviour deviates from that required. 

This must be emphasised, a system fails at the time the behaviour deviates, not at the 

time when it is observed to have deviated. In fact a system failure does not have to be 

observed in order to have occurred. 
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We can not divorce time from the concept of failure. For example, even though the system 

has done the right things in the right order, it may have done them at the wrong time. 

Example 5.1 We could easily construct a "clock" which changed the time every 1.5 

seconds. From a trace based view this clock might meet its specification. However it is 

obvious that it cannot meet the usual specification of a clock. 

This is a limitation of the trace based approach we have used for the formalisation of our 

definitions. However, the definitions provide a framework and are helpful in understanding 

the reliability concepts we consider. 

We now define failure in terms of our model of behaviour. 

Definition 5.1 Let S be a system with interface N and let P be a specification. Let S 

have participated in some trace t E as*, such that P( t, 0) is true; that is t is an acceptable 

behaviour of S according to P, and let the environment offer some set of interactions X, 

with X ~ as. Then S fails with respect to P if and only if one of the following is true: 

1. S refuses to interact and :3m.i EX: -,P( t, {m.i}), or 

2. S participates in some interaction m.i E X, mE oN and -,P(t 1\ (m.i), 0). 
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5.1.1 Specifications 

Specifications, as we will see in this section, are complex objects, made up of sub

specifications for the many different aspects of system use and behaviour. These sub

specifications may cover behaviour in the presence of failures, performance, reliability 

etc. First, we consider the hierarchy of specifications needed to define the concept of 

acceptance and failure modes. 

Different failures can have different consequences for the environment; from being almost 

indistinguishable from the required service to having catastrophic impact on the environ

ment. When a system fails we need to be able to specify its behaviour after the failure. To 

do this we require an additional specification which specifies the behaviour of the system 

in the presence of such failures, even if it is 'don't care' or stop. We will usually have 

a set of such specifications one for each 'type' of failure. These specifications define not 

only the behaviour of the system after the failure but that after it. This will allow us to 

distinguish, for example, the types of two failures even though the actual failure events 

might be identical. 

The system could then fail with respect to one of these specifications and we will require 

additional specifications to deal with this. These specifications will form a hierarchy of 

specifications with a top, the 'normal' behaviour of the system, and a bottom. If no 

bottom is explicitly defined we can use the specification stating that any behaviour is 
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acceptable (This is true in our model of chapter four). 

Each of these specifications defines what we call a mode of behaviour of the system. We 

seperate the modes into two distinct sets called the acceptance modes and the failure 

modes. If the system is in an acceptance mode then it is behaving in a way which we 

find acceptable, if it is in a failure mode then it is behaving in a way which we find 

unacceptable. We associate different aspects of failure with different failure modes; for 

example, one aspect could be security and another safety. 

This separation into acceptance and failure modes is subjective. Whether a particular 

mode is a failure or acceptance mode will differ according to a persons viewpoint. 

Definition 5.2 Let S be a system, let Ql, ... , Qn, PI, .. . , Pm be specifications: 

Vi E {I ... n}, j E {I ... m} , 

QI ~ Qi 

QI ~ Pj 

Pj~Pm 

Qi~ Pm 

Let there exist sets A = {aI, ... , an} and E = {el," . , em}, with A n E = 0, such that ai 

is associated with Qi and ei is associated with Pi' We call the ai acceptance modes and 

the ei failure modes of S. 
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Let ai E A be an acceptance mode of S and let (t, X) be a behaviour of S. S is in mode 

ai after t,X if and only ifQi(t,X) and (Vj f- i: QAt,X) =} ,(Qj =} Qi)). 

Let ei E E be a failure mode of S and let (t, X) be a behaviour of S. S is in mode ei after 

t,X if and only if Pi(t,X), (Vj: 'Qj(t,X)) and (Vj f- i: Pj(t,X) =} '(Pj =} Pi)). 

When a system fails it may place objects in the environment in unacceptable states. 

In order to allow the environment to recover, or to limit the effects of this the system 

may produce some output which informs the environment of the problem and which will 

help in the process of limitation and recovery. This behaviour of the system is called 

compensation This output will be defined by one of the specification described above. 

We use this approach when we are trying to define acceptable behaviour in the presence 

of failures. The term graceful degradation is often used to describe systems which will 

pass through a series of acceptance modes, each 'less' acceptable than its predecessor. 

In fact it is common to split failure into three modes: 

1. Minor: minimal effect on system function; for example, a spelling mistake on a 

prompt. 

2. Major: major effect on system function; for example, system shutsdown unneces

sarily. 
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3. Critical: failure endangers human life. 

There is no problem with the definition of failure when we have this multitude of spec

ifications. What we must be careful to do is always to stipulate which specification the 

system has failed with respect to. For example, when specifying graceful degradation we 

need to specify each of the acceptance modes of the system. So the specification of grace

ful degradation will contain a number of sub-specifications. The system may fail with 

respect to some of these sub-specifications without failing with respect to the specification 

for graceful degradation. 

As well as properties, such as graceful degradation, there are many other aspects of a 

system's use and behaviour that we may wish to specify. For example, maintainability, 

performance etc. 

In fact we may not be able to distinguish two modes of behaviour of a system except by 

considering such aspects. For example, a system operating in either of the modes a2 and 

al might produce the same result from the same input only in different lengths of time. 

Another aspect of a systems behaviour is reliability and we can associate probabilities 

or other measures of reliability with each mode. This gives us a reliability specification, 

which can stipulate how often particular types of behaviour are permitted to occur. 

We see from this that a full behavioural specification for a system is made up of many 
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specifications each dealing with a di:ferent aspect of a system's behaviour. And that a full 

system specification will deal with aspects of a system other than behaviour for example , , 

main taina bili ty. 

5.1.2 Conclusion 

To conclude this section let us reiterate our first sentence: Failure is the deviation of 

the system's actual behaviour from its required behaviour as defined by a particular 

specifica tion. 

As we have discussed, these specifications will in fact be much more complex objects than 

we considered in chapter four. However, this simplistic view of specifications is still useful 

and hence we will continue to use it. 

5.2 Errors 

In order to discuss errors we need not only a specification which tells us how the system 

should behave but also something to describe how (we believe) it is actually behaving. 

What we need in fact is the 'real' or 'correct' specification of the system. That is, the , , 

specification which is always correct in predicting the systems behaviour. Of course, this 

specification does not in general exist due to non-determinism and component failure. , " 
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Usually, however, we can at any point in time produce an approximation to it. For 

example, when a system fails we can construct a specification that provides a prediction 

of the system's future behaviour. This new specification can be constructed from the 

given system specification, our knowledge of the internals of the system and the fact of 

the system's failure. Also when a system fails is may move into a different but defined 

mode of behaviour, in which case we will have a specification for that mode which can 

be used as an approximation. It is probable that this new specification is not a correct 

specification of the system's behaviour. 

These two specifications, the one that defines the required behaviour and the one that 

defines the 'actual' behaviour define two sets of states and state transitions. States of the 

system defined with respect to the specification of the actual behaviour can be considered 

to be the 'actual' states of the system. States of the system defined by the specification 

of required behaviour can be considered to be the 'correct' states of the system. 

So, after some trace, the system fails with respect to the specification defining the required 

behaviour. It cannot fail with respect to the one defining the actual behaviour. Since 

states are defined with respect to specifications, the two specifications will define two 

distinct sequences of states for the system, both of the same length. There will exist 

a prefix which is the same for both sequences of states. However, at some point the 

sequences of states will diverge, possibly well in advance of the failure. At any point 

after that divergence the 'actual' and 'correct' state of the system will differ. When the 
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'actual' and 'correct' state differ we say that the state of the system is erroneous and 

the difference between the two states we call an error. A point to remember is that the 

erroneous state is the one defined by the specification giving the 'actual' behaviour. That 

is the erroneous state is the 'actual' state not the 'correct' state 

In fact we need to consider the possibility that a system can be in an erroneous state even 

though it does not fail. What matters is that there exists a legal sequence of interactions 

which could take it from its current state to a failure. One has to be careful here. If 

a system does not meet a specification there must exist a sequence of legal interactions 

which take it from its initial state to a failure with respect to that specification. Does 

this mean that the initial state of the system can be considered to be erroneous? Not 

necessarily. Whether a state is erroneous depends on whether it differs from the 'correct' 

state and so depends upon our specification of the 'actual' behaviour and on our choice 

of associated states. 

We have defined an error as the difference between the 'actual' state and the 'correct' 

state. However, we have not defined what we mean by difference nor can we. What is 

meant by the difference between two states must be decided by how we choose to represent 

those states. For example, if I talk about the state of an integer variable, then the error 

could be a number, but if that integer variable represents a colour I might be able to say 

no more than that the colour is wrong. 

One can see that the choice of the representation of the state for the two specifications is 
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crucial if we are going to have a meaningful concept of an error for a particular system. 

However, it is not a great problem since our choice of representation for the state is 

normally based on some knowledge of the system's internal structure and behaviour. 

Definition 5.3 Let S be a system, Q and P be specifications, and let S sat Q. (P is 

the specification of the required behaviour of Sand Q is the specification of the 'actual' 

behaviour of S). 

Let there exist some trace tEaS·, such that Q (t, 0) and P ( t, 0) are true and 

:Js : -,P(t 1\ s,0) 1\ Q(t 1\ s,0) 1\ (Vn < t 1\ s: P(n,0))) 

Let P and Q both define the sequence of states r for S given t, let P define the sequence of 

states (r 1\ (Pl' .. Pn)) for S given t 1\ s and let Q define the sequence of state (r 1\ (ql ... qn)) 

for S given t 1\ s. If qi =1= Pi then we say that qi is an erroneous state of S with respect to 

P. The 'difference' between qi and Pi is referred to as an error. 

An error is defined with respect to two specifications. The 'current' state of a system is 

erroneous with respect to those specifications if the the two states defined with respect 

to the two specification are different and there is a trace of interactions, valid by the 

specification of the required behaviour, which can lead to a failure. 

We could have taken an alternative approach to defining an error. Rather than having to 

find a specification from which to produce the 'actual' state of the system we could have 
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considered the internal state of the system. We could then have used a mapping from 

internal states to external states. The approach taken here is more general because it does 

not exclude the internal state approach since the specification of the 'actual' behaviour 

could be obtained by looking at the internal structure and behaviour of the system. The 

approach adopted here also allows us tOOCo make use of other sources of knowledge, 

such as an understanding of the semantics of a program. 

We can define an internal state of a system at a level of detail to be erroneous if at least 

one of the external states of the components that comprise it is erroneous. It is possible 

that the state of the system could be considered erroneous even though the internal states 

at all levels of details were not erroneous. That is, the system can fail even though none of 

the components do. This can happen through a design fault, which we will consider later 

in the chapter. The converse is also possible, that the state of the system is not erroneous 

even though the internal state of the system is. The internal error in the system may be 

masked and never affect the system environment. 

It is possible for a system to accept an input where that interaction is not a continuation 

of a valid trace with respect to a specification P (say). The system has not failed, nor 

can it ever fail, with respect to P but its state is now invalid, in the sense that P can 

no longer be used to predict future behaviour and so to define the state of the system. 

However, if we have a specification which does define the behaviour of the system after 

such an input we can define the state of the system. The states so defined are frequently 
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referred to as being ('rrorW()I)" but \\'(" ((JIl~idc~r dli, icy hr" a cas'led ';'J~c'~",~ 'J! • : .......... :::. ,',::: 

W" will jllc;t rder to s1lch stid(>', as being; invitlid with rr"~I)H· "J P. 

5.3 Faults 

Let 5 be a system that has failed. \Ve now wish trJ consider why 5 ha~ :'01:><1 The 

'algorithm' given below does not puport to say how debll£g;iru!, should he carried 1I11t. I: 

is purely a way of defining what a fault is, 

Let us choose a level of detail with components C. Looking itt tilt' C Wt' wJll r~:jd dla: 

the interaction, with the environment, we recognise as it failure Wil~ cani,,! O\l! ),V "Il<' "f 

these e" en (say). Let us consider the behaviour of en: 

1. en failed. The interactions which en took part in, until the one in qn'~tioll. I:JI" 

the specification of required behaviour for en and the interaction in (l': .. ~t:"!l did 

not. In order to find the cause of the failure of 5 we now need to locate tllf' cau," 

of the failure of en. If en is not a basic element we choose a lewl "f dd";! "f en 

and carryon looking. If en is a basic element the failure is attributed to it 

,) en's behaviour did not agree with the specification of its required beha\':"':~ bl:· 

en did not faiL This can only happen if en takes part in an lIl\eraction \):1 a:} ::::p',rr 

and receives an invalid input. en cannot be 'blamed' for the failure. \\'e :.'\', fl<'P': 
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to look at the source of the invalid input. Since the system has failed the source 

cannot be the environment. So it must have been another component em which 

produced the invalid input. So we carryon looking with that component em. 

3. en has kept to its specification. Let us consider a system with two components. 

The first component outputs zero or one to the environment and then outputs the 

same value to the other component This second component then inverts the value 

and outputs this new value to the environment. If the first component outputs one 

value to the environment and a different value to the second component the system 

will fail when the second component produces its output even though the second 

component will not have failed! So when en has kept to its specification we need 

to consider all the components connected to it in order to try and find out why S 

failed. 

So by examining en we have identified more components to examine. We continue to 

examine components until either we have a basic component which has failed or we have 

no more components to examine. In the first case we call the component a fault. In the 

second, since there is no failed component, there must be something intrinsically wrong 

with the system and we say we have a design fault. 

It must be remembered that applying the above rules to locate a fault will give different 

results depending on the level of detail we begin at. The reason for this is that when 

we look at a component Cp (say) we might identify that it did not fail because of some 
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earlier invalid interaction. However, if we were to choose a level of detail where C was 
p 

split into a number of components we might find that one of those had failed, causing the 

system failure, and that the invalid interaction involved another unrelated component. 

This problem is one of the reasons we often find it difficult to locate faults. 

Consider the case where Cn has not failed but took part in an invalid interaction and 

the system failure can be traced to another component Cm (say). The state of Cm may 

be erroneous. The failure of Cm will cause some neighbouring components to move into 

invalid states. The components will interact with their neighbours and so move them into 

invalid states. After a number of these Cn will move into an invalid state. So starting from 

a single component containing an error larger parts of the internal state of the system 

become invalid. We call this error propagation. 

When considering the case of a design fault we often wish to be more specific and identify 

what is wrong. To do this we need a 'correct' system structure to compare our 'faulty' 

system against. We then say that the design fault is the difference between the 'correct' 

and the 'faulty' system structure. In fact we can identify a 'correct' structure for the 

system where a component has failed and so define a fault to be the difference between 

the 'correct' and 'actual' structure. This is similar to our definition of error. 

So a fault is that part of the system which is not as it should be. This is the cause of 

the error and so, by error propagation, the cause of the failure. That is, a failure is the 

manifestation of an error and an error is the manifestation of a fault. 
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5.4 Fault Prevention 

The goal of fault prevention is to prevent faults from being present in the system. There 

are two aspect to fault prevention, fault avoidance and fault removal. 

1. Fault avoidance is concerned with using methods and techniques which avoid the 

introduction of faults into the system during design and construction. For software, 

these techniques have made substantial progress in the last five years, particularly 

in the application of mathematically based methods to large problems[ll]. How

ever, there is no evidence that these methods will ever totally prevent faults being 

introduced into systems. 

2. Fault removal is concerned with discovering and removing any faults which exist 

in the system after design and construction. Again, for software, these techniques 

have improved over recent years with the development of support tools and a better 

understanding of the underlying principles. For example, we now see static code 

analysis as well as dynamic testing. However, there is no evidence that we will ever 

have methods that will allow us to find all the faults present in a system. 
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5.5 Fault Tolerance 

Fault tolerance is concerned with constructing systems which tolerate faults. That is, fault 

tolerant systems aim to provide the required behaviour even though faults are present in 

the system. Such an approach is necessary because, as we have noted above, systems are 

certain to contain faults despite the application of fault prevention techniques. 

Within a fault tolerant system there are five phases of behaviour which make up the 

system's response to a fault: error detection, damage assessment, error recovery, fault 

treatment and continued service. These techniques form the basis of all fault tolerant 

techniques and thus should form the basis for the design and implementation of a fault 

tolerant system. Any approach to fault tolerance will be contain some, but not necessarily 

all of these phases. 

5.5.1 Error detection 

In order to tolerate a fault, it or its effects must be detected. Usually faults are not 

directly detected by the system. But, since any manifestation of the fault will generate 

errors, which may propagate through the system the existence of the fault can be detected 

indirectly by detecting an invalid state in a component. In order to be able to detect this 

invalid state the system must have some 'knowledge' of the correct state with which to 
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compare the actual state. 

We must remember here that the system's external state does not neccesarily contain an 

error, since the measures for fault tolerance within the system may guarantee that, with 

the particular type of fault that exists, the system can never fail, and so the external state 

cannot be considered erroneous. However, it is possible that we do consider the system's 

external state to contain an error because the system could (later) fail but our measures 

manage to move the system into an error free state before this failure occurs. 

5.5.2 Damage assessment 

Because of the delay between the manifestation of the fault and its detection many com

ponents may now be in an invalid state due to error propagation. Before any attempt 

is made to make the state of these components valid, the full extent of the damage may 

need be assessed. The extent of this assessment will depend on decisions made by the 

system designers concerning damage confinement and on the techniques used for identi

fying damage. In fact, damage assessment may not be carried out because the designed 

have assumed a fixed extent for the error propogation. 
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5.5.3 Error recovery 

A fault within a system has manifested. The state of the system, at many levels of detail, 

is erroneous. \Ve have detected this and decided on which components we consider to be 

in invalid states. The system now needs to take some action such that the internal state 

of all levels of detail become error free. We call this error recovery. If the system does 

not take such action to correct its state then system failure may occur. 

There are two ways in which the system can perform error recovery: 

1. Forward error recovery: The system deduces from the current state a (hopefully) 

correct state. Alternatively, more than one component of the system may have 

carried out the computation and the system may be in a position to decide that 

the state of one (or more) of these components is not in error and use this 'correct' 

state to correct the states of the components which are in error. 

2. Backward error recovery: The system reverts back to some stored state from earlier 

in the computation. It is hoped that this earlier state is correct and that the error 

detected was introduced later, after the time when this state was the current state. 
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5.5.4 Fault treatment 

Although the error recovery phase may have returned the system to an error free state 

it is necessary, in order to enable the system to provide continued service, to ensure that 

the fault does not immediately recur. The techniques for fault treatment go through the 

same type of steps as we have outlined above for errors. This is not surprising, given 

the similarity between the definitions of error and fault. The fault is detected, the fault 

is then located and following this the fault is repaired. If the fault is thought to be 

temporary no action will be taken. 

5.5.5 Continued service 

An error is the system state is discovered, located and removed, and then the cause of this 

error is located and removed. The system may then continue to provide normal service. 

Of course, our measures for fault tolerance may not be effective and the system not be 

able to provide continued service. 

In the following example we will ignore interactions with the environment; this is a sim

plification required by the lack of a connection between our model of behaviour (traces) 

and our model of structure (structured graphs). It does not weaken its main point. 

Example 5.2 Let us consider a system S with components C and C' . In the normal 
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functioning of S it is required that C sat P and C' sat P'. Say C fails with respect to 

P by interacting illegally (according to P and P') with C'. So we have: 

P(r, 0) 1\ P'(r,0) 1\ -'P(r 1\ (1),0) 1\ -'P'(r 1\ (1),0) 

Now suppose, in fact, that we have built C and C' to satisfy specifications Q and Q', 

respectively, and C has not failed with respect to Q. Though, because of the illegal 

interaction with C, C"s future behaviour is not defined with respect to P', it is defined 

with respect to Q'. SO, C and C' now interact with each other according to Q and Q'. 

SO we could have: 

Q(r 1\ (1) 1\ 8 1\ t, 0) 1\ Q'(r 1\ (1) 1\ 81\ t, 0) 

such that: 

P(r 1\ t, 0) 1\ P'(r 1\ t, 0) 1\ (V8' ::; 8 : -,P(r 1\ 8',0) 1\ -,P'(r 1\ 8', 0)) 

In this example we can consider 8 to be the error recovery and fault treatment and t to 

be continued service. That is, after C has taken part in 8 we can consider its state to 

have been returned to what it was after r and can now return to using P (and P') as the 

specification of C (and C'). 

We should note that this means we require additional specifications to describe the be

haviour of components in the presence of failures and to describe how errors and faults 

are to be fixed. 

Example 5.3 Figure 5.1 shows the usual triple modular redundancy pattern for a system. 
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Figure 5.1: Triple Modular Redundancy 

We will show how it uses the five phases of fault tolerance. 

1. Error detection: The voting mechanism(V) detects an error in a component. The 

'knowledge' of the correct state of the system comes from the assumption that "two 

out of three must be right". Of course, this assumption may not always be correct. 

2. Damage assessment: It is assumed all of the state of the component which appears 

to have produced an incorrect output (the 'faulty' component) is erroneous. 

3. Error recovery: There are a number of options. The 'faulty' component can be 

allowed to continue to function with no alteration. Alternatively, the 'faulty' com

ponent can be sent a signal indicating that it has failed and the component then 

attempts to correct itself. Finally, some other component can be signalled that 
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ensure 
by 
else by 
else error 

Figure 5.2: Example of a Recovery Block 

there is an error and this component takes some action to correct the state of the 

'faulty' component. For example, by setting the state of the 'faulty' component 

from the state of another component which is believed to be functioning correctly. 

4. Fault treatment: There are two main possibilities here. Firstly, the fault is ignored 

and continued service is ensured by the correctly functioning components masking 

the faulty component. Secondly, the system could be reconfigured to use only 

two components or to switch out the faulty component and make use of a new 

component. 

5. Continued Service: The system continues in a (hopefully) correct state, possibly 

with the 'faulty' component replaced with another, hopefully, fault free component. 

Example 5.4 A recovery block, figure 5.2, is another example of a fault tolerant struc-

ture, this time one used within programs. The five phases are as follows: 

1. Error detection: C1 is executed and then the assertion B is evaluated. If B evaluates 

to true then we assume that C1 has functioned correctly and execution of the 
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program continues from the statement immediately following the recovery block. 

However, if B evaluates to false then we assume that the state is invalid. For 

example, if C1 was a sort routine then B might check that the result was in the 

correct order. 

2. Damage assessment: No damage assessment is carried out. It is a design assumption 

that the state on entry to the recovery block was not invalid and so only those parts 

of the state which have been modified within C1 are damaged. 

3. Error recovery: The state is returned to a correct state by reverting to the state 

before the recovery block was entered. 

4. Fault treatment: The system attempts to avoid immediate recurrence of the fault by 

making use of an alternate, in this case C2 • However, since subsequent executions 

of the recovery block will again use Cll no long term fault treatment is carried out. 

5. Continued service: The system will either continue after the recovery block in a 

(hopefully) correct state, or, if the assertion cannot be satisfied by any of the al

ternates then, either the program will be aborted or some other measure will be 

needed 
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5.6 Faults and Errors, Programs and Programmers 

Let? be a system with specification P and Q be a specification for which we are trying to 

construct a program which S will execute. Let p be a program with the trace s represent 

the loading of the program pinto S. Let t be a trace and e an output interaction such 

that P( s 1\ t, 0), Q( t, 0), P( s 1\ t 1\ (e), 0) and --,Q( t 1\ (e), 0). Our system has not failed with 

respect to P, but S after s has failed with respect to Q. SO the failure of S cannot be 

the cause of the failure of S after s. Therefore, for the cause of the failure of S after s 

we need to look at s and, if we assume s is the correct trace to load p, then we come to 

p and we say that p must contain the fault. 

Now, consider a program pi and let us load it into S using a trace S'. If (S after S') sat Q 

then pi is a 'correct' program for Q, assuming s' is the correct trace to load p'. Now p 

and pi will be different, these differences are faults. 

This definition of fault is consistent with our earlier definition since when we are consid

ering a programmed system we wish to consider the program to be part of the structure 

of that system. Another point to note is that if we are given S after s, understanding 

that it satisfies Q, the fault is already present in that system and so program faults are 

design faults 

Let us now consider the introduction of faults into a program. This has been discussed 
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in other works in this area, for example[lO]. The program, and its associated loading 

trace, is an output from a programming system and if the program is not correct then 

this programming system has failed. That is, the programming system is given as input 

some requirement/specification which defines what the program to be produced will do. 

For example, the programming system which produced p above might have been given 

the specifications P, the specification of the system to be programmed, and Q, the spec

ification of the required behaviour of the programmed system. The specification of the 

programming system will be such that if it produces outputs, such as p and s, that mean 

that the programmed system does not have the required behaviour then we can say that 

the programming system has failed. 

Let us consider the state of the programming system. We can choose a representation 

of the state such that we can recognise the program in the state. So, if some part of 

the programming system were to fail, for example a programmer makes a mistake, then 

it might cause, either directly or through error propagation, the program to become 

invalid. So looking at the external state we can see that the program contains an error, 

that is, it is different from what it should be. This program will become the output 

of the programming system, will be loaded into the programmed system, and then this 

programmed system may fail. So when we consider the program to be part of the state of 

the programming system we should refer to errors and when we consider the program to 

be part of the structure of the programmed system we should refer to faults. However, in 

general, this distinction is not important and so we will use error and fault interchangably. 
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Chapter 6 

Conclusion 

In this chapter we review the work covered by this thesis and consider what has been 

achieved. 

We originally wished to produce a single formal model of system structure and behaviour, 

and to define basic concepts and terminology for fault tolerant systems in terms of that 

model. However, we have been unable to produce a single unified model and have instead, 

in this thesis, produced two separate models, one for system structure and one for system 

behaviour. Having separate models has not greatly limited our ability to give precise 

definitions of our concepts and terminology. The problems that have arisen are in the 

areas of state and error. Although we say "The structure we choose for our state is often 

based on our knowledge of the structure of the system"; since we did not relate structure 
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and behaviour we could not relate structure and state and so can . 'd h , gIve no gm ance on t e 

choice of representations for external state. The inability to relate structure, behaviour 

and state came through in our discussion of error propogation. We were unable to discuss 

information flow with any real degree of formality. 

However, we were able to deal with some other important concepts which are not directly 

relevant to fault tolerant computing, namely the two related concepts: atomicity of action 

and behavioral abstraction. 

Structured graphs, the model of structure we have developed, are based on the idea that 

the relationship 'is a component of' is fundamental and can always be given meaning 

when we are discussing the structure of an object. This relationship gave us a tree based 

organisation. Other, for example 'uses', relationships between components are orthogonal 

to 'is a component of'. This is because other relationships which describe how we see the 

system to be structured only have meaning between components that are not contained 

within one another. We defined a 'level of detail' as a cut through the tree based on 'is 

a component of', and gave meaning to the orthogonal relations for any level of detail. 

We developed a descriptive model of system behaviour based on the theory of traces. In 

the model the system interacts with its environment by the passage of objects through 

its interface and we considered the behaviour of the system in terms of the interactions 

the system will participate in and those it will refuse to participate in. We considered 

three different concepts of abstraction which can be applied to the interface of a system 
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in terms of the model. 

The first is 'hiding', where we ignore the parts of the system interface which are irrelevant 

to the problem under consideration. For example, when considering the behaviour of our 

program on a time-sharing computer we ignore all other terminals. 

The second is 'resorting', where we change our interpretation of the objects passmg 

through the interface. For example, one can consider the signals passing through a ter

minal port on a computer as purely electrical signals, as numbers, or as characters. 

The third is 'collapsing', where we aggregate parts of the interface into a single part. For 

example, we take 8 one-bit ports and consider them together as a single port through 

which passes an integer in the range -128 to +127. That the concept of collapsing is related 

to the concept of atomicity, which was defined using structured graphs, is obvious. What 

is still needed is for a formal relationship to be proven between them, but we did not 

attempt this. 

In many ways perhaps the most suprising conclusion of this thesis is that state is an 

external phenomenon. That is, knowledge of the state of the system (or of a component) 

requires no knowledge of the structure of that system (or component). State is the 

changing part of a model which tells us what the system is going to do next, or more 

formally the minimal set of states is any set isomorphic to the set of possible future 

behaviours of a system (after any past behaviour). The representation for the state is 
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decided by the 'observer'. vVe have called this the 'external state' of the system. We went 

on to define the 'internal state' of a system at a level of detail to be the ordered set of 

external states of its components given by that level of detail. This view of state is we , 

believe, much more precise than those of previous authors, who frequently confuse the 

concepts of state and output. Based on this concept of state we described what we mean 

by programming a system and the concepts of a program and of an interpreter. 

When we come to look at a system we have a lot of decisions to make concerning the 

'level of abstraction' we are going to use. We need to decide upon the level of detail 

we are going to look at, which of the (possibly) many specifications we are going to use 

for the system and each of the components, how are we going to represent the external 

and internal states of the system, which parts of the system and component interfaces 

we are going to hide, resort or collapse. This is in fact the danger of the phrase 'level of 

abstraction'. It is hardly ever clearly defined and can be interpreted in many different 

ways. This is why we defined the term 'level of detail'. 

We define failure as deviation of system behaviour from that defined by a specification. 

That is, a system fails with respect to a specification. We could put this loosely as a 

'failure is the difference between the 'actual' and 'correct' behaviour'. 

Our precision with state has allowed us to be much more precise about error. We say 

that the state of a system is erroneous if it is different from the 'correct' state and 

the system may fail at some future time, after a sequence of valid interactions with 
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the environment. Given our definition of state, this will require two specifications, one 

describing the 'correct' system behaviour and one defining the 'actual' system behaviour. 

Two specifications provide us with two states, since states are defined with respect to 

specifications. One is the' actual' (erroneous) state, that is the state (we believe) the 

system is in, and one is the 'correct' state, the state the system should have been in, had 

it functioned correctly. We define an error as the difference between the erroneous state 

and the correct state. Hence, errors are defined with respect to two specifications. 

Through consideration of how failures and errors occur we come to the concept of a fault, 

which we define to be the difference between the 'actual' and 'correct' structure. Because 

we have two separate models of behaviour and structure rather than a single unified 

one, we are unable to be as precise as we would have liked about the cause-effect path 

that leads from a fault to a failure via an error. We need a model that brings together 

structure and behaviour. Such a model should allow one to derive system behaviour from 

system structure and component behaviour, and to discuss the information flow between 

components. 

We discussed how a program could cause a system to fail. This ought to be related more 

closely to work by Cristian[10j. Cristian already has formal definitions for fault, error and 

failure for programs. Though our defintion of a program fault is equivalent to Cristian's 

a formal relationship has not been shown. 

We have been more precise about failure, fault and error than most previous authors, 
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except Cristian[10]. We have also resolved the confusion many authors have had between 

states and outputs. We have given a formal definition of programs and programming but 

this has not been related to the structure and semantics of programs. 

Finally, to state our definitions in an informal way: we have defined a failure to be the 

difference between actual and correct behaviour, an error to the difference between actual 

and correct state and a fault to be the difference between actual and correct structure, 

the 'cause of a failure'. 
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Notation 

This appendix lists the notation used in the thesis: 

0 Empty set 

{, ... }, {:} Set constructors {a, b, c}, {x : P(x)} 

U Union { a, b} u {b, c} = {a, b, c} 

n Intersection {a,b} n {b,c} = {b} 

E Element of a E {a,b,c} 

C Subset {a} ~ {a, b,c} 

\ Set difference {a,b} \ {b,c} = {a} 

XxY Powerset {a} X {b,c} = {{a,b},{a,c}} 

1\ Logical and al\b 

Equal a=b 

=* Implications P=*Q 

:J There exists :Jx : P(x) 
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v 

f'+(X) 

f'-(X) 

f'(X) 

* r+ (x) 

~ 

r- (x) 

* r (x) 

c+ 

c-

G[A] 

[A]G 

-<. 

-< 

II 

() 

(, ... ) 

/\ 

* 

* 

For all Vx : P(x) 

Accessible, see page 35 

Converse-accessible 

Neighbours 

Accessible, including self 

Converse-accessible, including self 

Neighbours, including self 

Descendants of a set of nodes 

Ascendents of a set of nodes 

Leaves of a subtree of T, rooted at a node x, see page 42 

Collapsing of a node A in a level of detail G, see page 45 

Opening of a node A in a level of detail G, see page 46 

Immediately precedes, see page 50 e -< ·e' 

Precedes e -< e' 

Concurrent with e II e' 

Pair constructor (c.f. Lisp) m.x 

Empty list 

List constructor (1,2,3) 

List append (1) /\ (2,3) = (1,2,3) 

Closure {1, 2}* = {O, (1), (2), (1, 2)} 

Map function over list inc * (1, 2) = (2,3) 
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1, 0, s 

after 

ren 

hide 

res 

col 

Filter list, removing those that match even [> (1,2) = (1) 

Alphabet, see page 63 

Inports, outports and sorts, see page 61 

After, see page 67 

Rename, see page 68 

Hide, see page 71 

Resort, see page 75 

Collapsing, see page 84 
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