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ABSTRACT 

Programming, for the past thirty years, has been based on the 
sequential von Neumann computer model. However, there is a growing need 
to program decentralised computer systems ranging from mainframe comput­
ers that are geographically distributed, to miniature microcomputers on 
a single VLS I chip. Various pairings of programming languages and 
decentralised computers are being investigated: procedural languages 
with control flow, single-assignment languages with data flow, applica­
tive languages with reduction, object-oriented languages with actor, and 
finally predicate logic languages with logic architectures. 

This thesis investigates the programming of decentralised computers 
and consists of five major parts. Part 1 looks at four images of 
"future" computer systems: Fifth Generation Computers, Supercomputers, 
VLSI Processor Architectures and Integrated Communications & Computers. 
The former two images are "parallel machines", supporting logic and data 
flow programming, respectively. The latter two images are "decentral­
ised computers" supporting control flow programming. Part 1 concludes 
that a "decentralised computer" image is most appropriate for future 
computers. Part 2 classifies and analyses the major categories of pro­
gramming styles (i.e. procedural, object-oriented, functional, and 
logic). The analysis uses a Quicksort algorithm to contrast representa­
tive languages (i.e. PASCAL, MODULA-2, OCCAM, SMALLTALK, ID, FP, SASL, 
PROLOG and VISICALC) and relate their strength and weaknesses to their 
underlying computational mechanisms. It concludes that control flow 
(and procedural programming) is the most primitive and fundamental pro­
gramming model. 

Part 3 proposes the decentralised control flow programming model 
for future decentralised computers, which embodies the concepts underly­
ing modern operating systems such as UNIX, and is a generalisation of 
the traditional sequential von Neumann control flow model. Part 4 
presen ts two programming languages based on this model, called BAS IX_l 
and BASIX 2, which have been designed and implemented. The language 
BASIX 2 is-analysed and assessed using two example applications, namely 
a banking system and an expert system. Part 5 presents the BASAL pro­
gramming language, supporting a primitive form of decentralised control 
flow. For the assessment of the BASAL language two parallel sorts were 
chosen, using shared memory and message passing respectively. BASIX and 
BASAL are vehicles for exploring the decentralised control flow program­
ming style, rather than new languages being proposed. 



- ii -

ACKNOWLEDGEMENTS 

The author wishes to acknowledge: 

Dr. J. Eve, for supervising and encouraging the work carried out 
for this thesis. 

Drs. T. Anderson and P.C. Treleaven for providing support and use­
ful advice. 

Mr. D. Mundy, for collaboration on the design of the BASIX program­
ming languages, for writing the BASIX_2 interpreter, and for help­
ing with the testing of the application programs. 

Dr. C. Gerrard, Mr. R. P. Mahon, and Mr. M. Wardley, f or making 
available equipment and their expertise. 

The SERC of Great Britain, for funding the Research Associate post 
held by the author, and for the use of computer facilities. 



- iii -

CONTENTS 

1. INTRODOCTION ••••••••••••••••••••••••••••••••••••••••••••••• 1 

2. DECENTRALISED COMPUTER SYSTEMS ••••••••••••••••••••••••••••• 6 
2.1 Motivations ••••••••••••••••••••••••.••••••••••••••••••• 6 
2.2 Fifth Generation Computers •••••••••••••••.••.••••.•..•. 9 
2.3 Supercomputers •.••••••••••.••••..••••••••••••••••••••• 12 
2.4 Parallel Machines ••••••••••••••••••••.•••••••.•••••.•• 15 
2.5 VLSI Processor Architectures ••••••••••.••••••••••••••• 17 
2.6 Integrated Communications and Computers ••••••••••••••• 21 
2.7 Decentralised Computers .•••••••••••••••••••••••••••••• 24 

3. CLASSIFICATION OF PROGIlAMKING LANGUAGES ••••••••••••••••••• 28 
3.1 Very High Level Language Programming •••••••••••••••••• 28 
3.2 Computational Mechanisms ••••••••••••••••.•••.••••••.•• 36 
3.3 Quicksort ••••••••••••••••••.•••••••••••••••••••••••••• 39 

4. ANALYSIS OF PROCEDURAL AND OBJECT-oRIENTED PROGKAMKING •••• 43 
4.1 Procedural Prog ramming ••.•••••..•••••...•••••••••••.•• 43 

4.1.1 Conventional Languages •••••••••••••••••••••••••• 43 
4. 1. 2 Concurrent Languages ••••••••••••••••.••••.•••••• 48 

4.2 Object-Oriented Programming ••••••••••••••••••••••••••• 58 

5. ANALYSIS OF FUNCTIONAL AND LOGIC PROGRAMMING •••••••••••••• 64 
5.1 Functional Programming •••••••••••••••.•••••••••••••••• 64 

5.1.1 Data Flow Languages •••••••.••••..•••••••••••••.• 65 
5.1.2 Applicative Languages ••••••••••••••••••••••••••• 70 

5.2 Logic Programming ••••••••••••••••••••••••••••••••••.•• 78 
5.2.1 Horn Clauses Languages •••••••••••••••••••••••••• 78 

5.3 Application Programming ••••••••••••••••••••••••••••... 81 
5.3.1 Electronic Sheet Languages •••••••.••••.••••••••• 82 

6. DECENTRALISED CONTROL FLOW MODEL •••••••••••••••••••••••••• 86 
6.1 Choosing a Programming Model •••••••.•••••••••••••••••• 86 
6.2 Principles ••••••••••••...••••.•..••••••••••••••••••••• 89 
6.3 Computer Sys tem •••••••••••••••••••••••.•••••••••••••.. 93 
6.4 Information Structuring •••.••.••••.•••.•••.•••••••.••• 94 
6.5 Addressing Scheme ••••••••••••••••••••..••••••••••••.•• 95 
6.6 Program Representation •..•••••.••••••••••••••••••••••• 96 
6.7 Program Execution ••••••••••••••••••••••••••••••••••.•• 97 
6.8 Other Programming Models ••••••.•••••••••••••••••••••.• 98 

7. BASIX PROGRAMMING LANGUAGES ••••••••••••••••••••••••••••••• 101 
7.1 Design Philosophy ••••...••••••.•••••...••••.••••••.•• 101 
7.2 BASIX 1 Language •••••••••••••••••••••••••••••.•••.••. 102 
7.3 BASIX_2 Language ••••••.•.••••••.••••••••••••••••••••• 108 

8. ANALYSIS OF BASIX •••••••••••••••••••••••••••••••••••••••• 119 
8.1 Banking System •.••••••••••.•.•••••••.••••••.••••••••• 119 

8.1.1 description of application ..................... 119 
8.1.2 description of program ••••••••••••••••.••.••... 121 
8.1.3 assessment •••••••••••••••.•••••••.••.••.••••••. 128 

8.2 Expert System ••..•.•••.••••••.••••••••.••••.••••••.•. 129 
8.2.1 description of application •••••••••••••••.••••. 129 



- iv -

8.2.2 description of program ••••••••••.••••..•••••••• 131 
8.2.3 assessment .•••••••.•••••••••••.•••••••••••.•.•. 135 

8.3 Analysis and Assessment .•••••••••••.••.••••.••••••••. 136 

9. BASAL PROGRAMMING LANGUAGE ••••••••••••••••••••••••••••••• 140 
9.1 Design Philosophy •••••••••••••.•••••••••••••••••••••• 140 
9.2 RlMMS Multi-Microcomputer System .•••••••••••.••••..•• 142 

9.2.1 multi-microcomputer •••••••••••••••••••••••••••• 142 
9.2.2 microcomputer •••••••••••.•••••...•••••••••••••• 145 

9.3 BASAL Programming Language •••••••••••••.•••.••••••••• 148 
9.3.1 description •••••.•••••••••••.••.•••••••••.••••• 149 
9.3.2 implementation ••••••••••••••••••••••••••••••••• 158 

10. ANALYSIS OF BASAL ••••••••••••••••••••••••••••••••••••.•• 164 
10.1 Parallel (Shared Memory) Sort ••••••••••••.•••••••••• 165 

10.1.1 description of application ••.•.••••••••••••••• 165 
10.1.2 description of program •.•••••.•••••.•••••••••• 166 
10.1.3 assessment ••••••••••••••••••••.••••••••••••••. 169 

10.2 Parallel (Message Passing) Sort •••.••••••••••••••••• 169 
10.2.1 description of application ••..••••••.•••••.••• 169 
10.2.2 description of program •••••••••••••••••••••.•. 170 
10.2.3 assessment •.•••••••••••••••••••••••••••••••••• 173 

10.3 Analysis and Assessment •••••••••••••••••...••••••••• 174 

11. CONCLUSIONS ••••••••••••••••••••••••••••••••••••••••••••• 177 
11.1 Summary ......•.................•..........•......... 177 

11.1.1 Classification of Programming Styles ••••••••• 179 
11.1.2 Decentralised Control Flow Model •••••••••••••• 181 
11.1.3 BASIX Language •••••...••••••••••••••••••••••• 182 
11. 1.4 BASAL Language •••••••••••••••••••.••••••••••• 183 

11.2 Future Work •••••••••••••••..•.•••••••••••••••••••••• 184 
11.2.1 Classification of Programming Styles ••••••••• 184 
11.2.2 Decentralised Control Flow Model •.••••••••••• 185 
11.2.3 BASIX Language •••••••••••••••••••••.••••••••• 185 
11.2.4 BASAL Language ••••.•••••••••••••••••••.•••••• 186 

11.3 Final Conclusions ••••••••••••••••••••••••••••••••••• 187 

REFERENCES •••••••••••••••••••••••••••••••••••••••••••••••••• 189 

APPENDICES •••••••••••••••••••••••••••••••••••••••••••••••••• 194 
A.1 BASIX 1 Programming Language •••••••.••••.•••••••.•••• 194 
A.2 BASIX-2 Programming Language ••••••••••••••••••••••••• 199 
A.3 BASIX-3 Programming Languages •••••••••••••••••••••••• 203 
A.4 Banking System Application ••••••••••••••••••••••••••• 207 
A.5 Expert System Application •••••••••••••••..••••••••••• 215 
A.6 BASAL 1 Programming Language ••••••.•••••••.•••••••••• 223 
A.7 BASAL 2 Programming Language •••.•.••••••••••••••••••• 225 
A.8 Sorting Applications ••••••.••.••••••••••.•••••••••••• 228 



CHAPTER I - INTRODUCTION 

Since the introduction of the sequential (von Neumann) control flow 

computer thirty years ago, the traditional control flow programming 

model has changed little. But, by the end of the past decade, a trend 

towards distributed information processing started to take shape and 

nowadays more and more emphasis is being given to systems that communi­

cate and co-operatively process information - i.e. decentralised comput­

ers. This spectrum of decentralised computers ranges from mainframe 

computers that are geographically distributed, to miniature microcomput­

ers on a single VLSI chip. To allow all these computer systems to be 

programmed, to co-operate in the communication of information and in the 

execution of a program, it is necessary for them to conform to a common 

decentralised programming model. 

The various categories of programming models and associated 

languages that are being put forward as successors to the von Neumann 

control flow model are shown in Figure 1.1. They include control flow 

models and procedural languages, data flow models and single-assignment 

languages, reduction models and applicative languages, actor models and 

object-oriented languages, and logic models and predicate logic 

languages. Firstly, in a control flow model explicit flow(s) of control 

cause the execution of commands. In a procedural language (e.g. BASIC, 

FORTRAN) the basic concepts are: a global memory of cells, assignment as 

the basic action, and (sequential) control structures for the execution 

of statements. 
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Secondly, in a data flow model the availability of input operands 

triggers the execution of the command which consumes the inputs. In a 

single-assignment language (e.g. ID [5,6), LUCID (8), VAL (2), VALID 

[3)) the basic concepts are: data "flows" from one statement to another, 

execution of statements is data driven, and identifiers obey the so-

called single-assignment rule. 

Programming 1 1 single- 1 lobject- Ipredicate 
languages 1 procedural 1 assignment 1 applicativel oriented 1 logic 
-------------1----------1----------1-----------1--------1------
Programming 1 control 1 data 1 1 1 
models 1 flow 1 flow 1 reduction 1 actor 1 logic 

Figure 1.1: Categories of Programming Languages and Models 

Thirdly, there are reduction models and applicative languages. In a 

reduction model [11) the requirement for a result triggers the execution 

of the command that will generate the value. In an applicative language 

(e.g. Pure LISP, SASL [55), FP [9)) the basic concepts are: application 

of functions to structures, and all structures are expressions in the 

mathematical sense. 

Fourthly, there are the actor models and object-oriented languages. 

In an actor model the arrival of a message for a command causes the com-

mand to execute. In an object-oriented language (e.g. SMALLTALK [33)) 

the basic concepts are: objects are viewed as active, they may contain 

state, and objects communicate by sending messages. 

Lastly, there are logic models and predicate logic languages. In a 

logic model a command is executed when it matches a target pattern and 

parallelism or backtracking is used to execute alternatives to the com-

mand. In a predicate logic language (e.g. PROLOG [23,36)) the basic 

concepts are: statements are relations of a restricted form, and execu-

tion is a suitably controlled logical deduction from the statements. 
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With the exception of control flow, the above categories of pro­

gra=ing models and languages each propose a "revolutionary" approach to 

the succession of the traditional progra=ing model. The actual choice 

of a successor to the von Neumann control flow model is made difficult 

by obstacles in measuring the benefits and drawbacks of any of these 

novel progra=ing models (and their corresponding languages). Compared 

to control flow, each has a "higher-level" model of computation possibly 

constraining the range of algorithms the model can efficiently support. 

There exists, though, an alternative, "evolutionary" approach, in 

the form of a decentralised control flow progra=ing model. It involves 

the extension of control flow for parallel and distributed progra=ing 

allowing the interconnection of heterogeneous processors in a decentral­

ised system. An advantage of this approach is that it does not imply 

discarding the massive investment in traditional control flow computing. 

This thesis investigates the progra=ing of decentralised comput­

ers. It consists of five main parts: (i) an overview of decentralised 

computer sys tems, (ii) the classification and analysis of the various 

major progra=ing styles, (iii) the description of the decentralised 

control flow model, (iv) the presentation of the BASIX language embody­

ing this model, and (v) the presentation of the BASAL language, which 

embodies a primitive form of decentralised control flow. 

Chapter 2 is an overview of decentralised computer systems, looking 

at four images of "future" computers: Fifth Generation Computers, Super­

computers, VLSI Processor Architecture and Integrated Co=unications & 

Computers. The former two images are "parallel machines", supporting 

logic and data flow progra=ing, respectively. The latter two images 

are "decentralised computers" supporting control flow progra=ing. It 
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concludes that a decentralised computer image, capable of spanning 

heterogeneous processors, is most appropriate for future decentralised 

computers. 

Chapter 3 presents the major styles of programming (i.e. pro­

cedural, object-oriented, functional, logic and application) that may be 

important in the future. This Chapter also classifies and analyses these 

programming styles, based on the computational mechanisms that underlie 

the corresponding programming models. 

presented to be used as a common example. 

The Quicksort algorithm is 

Chapter 4 classifies and analyses Procedural and Object-Oriented 

programming styles, and Chapter 5 classifies and analyses Functional and 

Logic Programming styles, as well as Application Programming. The 

analysis is illustrated by programming languages that represent the 

individual characteristics of these programming styles. The semantics 

and syntaxes of these languages are described and their similarities and 

differences highlighted. The Quicksort algorithm is used as a common 

example, coded in the languages being described. The conclusion reached 

is that control flow, and procedural programming, is the most primitive 

and fundamental programming model. 

Chapter 6 presents the decentralised control flow model of program­

ming, which embodies the concepts underlying modern operating systems 

such as UNIX, and is a generalisation of the traditional sequential von 

Neumann control flow model. It is believed that this programming model 

should form the basis of future decentralised computer systems and their 

corresponding programming languages. The following chapters examine two 

languages BASIX and BASAL, which are meant to illustrate the style of 

decentralised control flow programming languages, not to propose new 
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languages. Both these languages are primitive and are "low-level" sys­

tem programming languages (cf. C) rather than high-level languages like 

PROLOG. 

Chapter 7 describes the BASIX programming language, which embodies 

the decentralised control flow model. The BASIX language is based on 

the fundamental concepts of UNIX and LISP, and on the simplicity of 

BASIC's syntax. It is intended as a "total system", providing a com-

plete, interactive, programming environment (cL SMALLTALK, VISICALC, 

OCCAM, etc.). BASIX has implicit and explicit parallelism, in the sense 

that a new user command is executed as a parallel process, and that the 

user can specify the parallel execution of commands. Two versions of 

the BASIX language - BASIX_l and BASIX_2 - are described. Chapter 8 is 

an analysis and assessment of the BASIX languages, and describes two 

application examples written in BASIX 2: a banking system and an expert 

system. These examples show the relationship of the language with the 

decentralised control flow model. 

Chapter 9 describes the BASAL language, which was designed for pro­

gramming a specific Multi-Microcomputer systems, based on a primitive 

form of decentralised control flow model. It extends the BASIC language 

in the sense that it allows parallelism and decentralised addressing. 

Chapter 10 is an analysis of BASAL, and describes two application exam­

ples: two parallel sorts, using shared memory and ~essage passing 

respectively. 

Las tly, Chapter 11, besides presenting the conclusions drawn from 

this work, describes the future work to be done in terms of the classif­

ication of programming styles, the decentralised control flow model, 

plus the BASIX and the BASAL programming languages. 
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CHAPTER 2 - DECENTRALISED COMPUTER SYSTEKS 

This chapter examines the various possible organisations for 

"future" computer systems [54]. 

2.1. MOTIVATIONS 

Many factors support the adoption of a radically new generation of 

general-purpose computers. Firstly, computing is moving from a sequen­

tial, centralised world to a parallel, decentralised world in which 

large numbers of computers are to be programmed to work together in com­

puting systems. Secondly, the handling of non-numerical data such as 

sentences, symbols, speech, graphics and images is becoming increasingly 

important. Thirdly, the processing tasks performed by computers are 

becoming more "intelligent", moving from scientific calculations and 

data processi~g, to artificial intelligence applications. Lastly, 

today's computers are still based on the thirty-year-old von Neumann 

architecture; essentially all that has happened is that the software 

systems have been repeatedly extended to cope with increaSingly sophis­

ticated applications. 

Important technological and social factors must also be considered. 

In technology, various separate areas of computing research are on the 

threshold of major advances [57]: 
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artificial intelligence - methodologies to express "knowledge" and 

to infer from this knowledge, as seen in expert systems; and 

human-oriented input-output in natural languages, speech and pic-

tures. 

software engineering - new higher level programming languages and 

computational models; and programming environments building upon 

systems such as the UNIX system. 

computer architectures - distributed architectures supporting com­

puter networks; parallel architectures giving high-speed computers 

for numerical calculations; and VLSI architectures to make full use 

of the potential of VLSI technology. 

VLSI technology - VLSI computer aided design systems including new 

methods for semi-automatic design of logic circuits; and new dev­

ices such as those using Gallium Arsenide and Josephson Junctions. 

For social fac tors notice: the evolution of computing from scientific 

applications in the 1950's, to include commercial and industrial appli­

cations in the 60's and 70's, and into consumer usage in the 80's and 

90's. At the opposite ends of this application spectrum are the so-

called Supercomputers and Fifth Generation Computers. Supercomputers 

handle the high-performance numerical applications. Fifth Generation 

Computers form the cornerstone of so-called intelligent consumer elec­

tronics - sophisticated televisions, video recorders, learning aids etc. 

- the next generation of wealth-creating consumer products [46]. The 

implication of all these factors taken together is that von Neumann 

(control flow) computers, originally designed in the 1950's for sequen­

tial computing, are no longer adequate for computation and that for the 

future a radical change in the computational concepts underlying 
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computers is required. 

There are at least four major areas of research involved in 

attempting to identify a future generation of computers, namely the 

investigation of: 

1. Fifth Generation Computers which embody "knowledge" bases and sup­

port problem-solving and inference functions; 

2. Supercomputers that utilise parallelism and support novel (very 

high level) forms of programming; 

3. VLSI Processor Architectures, system architectures specifically 

aimed at exploiting very large scale integration through new VLSI 

components, encompassing both general-purpose and special-purpose 

processors. 

4. Integrated Communications & Computers representing the fusion of 

wide-area networks, local area networks, and parallel computer 

architectures; 

Anyone of these four research areas could provide the new generation of 

computers. But each area's view of these computers seems very dif-

ferent, thus significantly affecting the style of future systems. The 

examination of these areas, and their likely impact, starts by present­

ing images of Fifth Generation Computers and of Supercomputers. 
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2.2. FIFTH GENERATION COMPUTERS 

Fifth Generation Computers are knowledge processing systems 

designed to support knowledge-based expert systems [22,60]. Expert sys-

tems embody modules of organised knowledge concerning specific areas of 

human expertise. They also support sophisticated problem-solving and 

inference functions, for the purpose of rendering to users intelligent 

advice on one or other specialised topics. Future expert systems will 

also provide human-oriented input-output in the form of natural 

languages, speech and picture images. For example, an expert system for 

medical diagnosis could operate in a way analogous to the way a physi-

cian, a surgeon and a patient interact and use their knowledge to make a 

diagnosis. 

In expert systems "knowledge" is often represented in terms of IF-

THEN rules of the form [20]: 

IF condition 1 and 
condition-2 and 

condition n 

THEN implication (with significance) 

where if all the conditions are true then the implication is true, with 

an associated local significance factor. During the search of a set of 

rules an overall significance factor is maintained and when this signi-

ficance becomes unacceptably low, then this search is abandoned and a 

new set of rules is searched. 

As observed by Japanese researchers [39,53], this struc ture of 

expert systems is most closely matched by the structure of logic pro-

gramming (its computational model). In a logic programming language, 

such as PROLOG, statements are relations of a restricted form called 
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"clauses", and the execution of such a program is a suitably controlled 

logical deduction from the clauses forming the program. The following 

program (23) consists of four clauses: 

father(bill, john). 
father(john, tom). 

grandfather(X, Z) 
grandfather(X, Z) 

father(X, Y), mother(Y, Z). 
father(X, Y), father(Y, Z). 

Figure 2.1: Logic Program for "family tree" 

The first two clauses define that bill is the father of john, and john 

is the father of tom. The second two clauses use the variables X,Y,Z to 

express the rule that X is the grandfather of Z, if X is the father of Y 

and Y is either the mother or father of Z. Such a program can be asked 

a range of questions, from is john the father of tom: "father(john, 

tom)?" to is there any A who is the grandfather of any C: 

"grandfather(A, C)?". 

The possible operation of a computer based on logic is illustrated 

below, using the program in Figure 2.1. Execution of, for example, 

"grandfather(bill, R)?" will match with each "grandfather( )" clause: 

grandfather(X=bill, Z=R) .- father(bill, Y), mother(Y, R). 

grandfather(X=bill, Z=R) 0- father(bill, Y), father(Y, R). 

both of which will attempt in parallel to satisfy their goals (called 

OR-parallelism). The first clause will fail, being unable to satisfy 

the "mother( )" goal from the program. The second clause has two goals 

"father( ), father( )" which it attempts to solve in parallel (called 

AND-parallelism). This involves pattern matching and substitution, to 

satisfy both the individual goals: 
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grandfather(X=bill, Z=R) .- father(bill, Y), father(Y, R) • 

. - father(bill, Y=john), father(Y=bill, R=john). 

and the overall consistency: 

.- father(bill, Y=john), father(Y=john, R=tom). 

Having illustrated the symbol manipulation operation of a computer 

based on logic, the possible organisation of such computers will be 

examined next. One possibility is a highly microprogrammed (control 

flow based) PROLOG machine [58,59], analogous to current LISP machines. 

Although a number of such designs can be expected in the near future, 

PROLOG machines are not true logic machines, just as LISP machines are 

not considered reduction machines. A logic organisation for Fifth Gen-

eration Computers is proposed in the Japanese FGCS Project plans [39]. 

Here Fifth Generation Computers are viewed as comprising three component 

machines, as shown in Figure 2.2. These machines though serving speci-

alised roles will be linked by a common logic machine language and 

architecture. 

Logic Machine Language 

I knowledge base I ! problem-solving I !"intelligent"! 
I machine I land inference I !interface ! 
! I Imachine I Imachine ! 

cf. filestore 
plus databases 

cf. central 
processing unit 

cf. input-output 
devices 

Figure 2.2: Fifth Generation Computer 

In summary, a Fifth Generation Computer is viewed as a parallel logic 

architecture supporting knowledge-based systems applications. 
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2.3. SUPERCOMPUTERS 

Supercomputers are aimed at large-scale numerical calculations and 

attempt to achieve a high performance by exploiting parallelism. They 

may be envisaged as parallel "mainframe" (cf. CRAY 1) computers buil t 

from identical, powerful processors whose instruction execution is based 

on a concurrent alternative to the traditional sequential control flow 

architecture. For Supercomputers, the most prominent category of paral­

lel architecture is data flow. In a data flow computer instruction exe­

cution is data driven; the availability of input operands triggers the 

execution of the instruction which consumes the inputs. The most impor­

tant properties of data flow are that instructions pass their results 

directly to all the consuming instructions and that an instruction is 

executed when it has received all its inputs - properties that influence 

the general-purpose nature of data flow. 

Data flow computers are most naturally programmed in a very high­

level form of programming called single-assignment languages [1]. 

Single-assignment languages are based on a rule stating: a variable may 

appear on the left-hand side of only one statement in a program frag­

ment. This allows the data dependencies in a program to be easily 

detectable and so statements may be specified in any order. As an 

illustration of single-assignment programming a procedure in ID [6] for 

inner-product (ai * bi) will be examined: 

procedure inner-product (a, b, n) 

initial s (- 0 

for i from 1 to n do 

new s (- s + (a[i]*b[i]) 

return s ) 
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Figure 2.3: Single-Assignment Program for "inner-product" 

This procedure takes as input two arrays "a" and "b", both of length 

"n", and returns their inner-product "s". These statements have the 

following interpretation: 

sO (- 0 

sl (- sO + (a[l) * b[l)) 

s2 (- sl + (a[2) * b[2)) 

sn (- sn-1 + (a[n) * b[n)) 

return sn 

and hence obey the single-assignment rule. Since execution is driven by 

the availability of data, all the multiplications can execute in paral­

lel, after which the tree of partial results will be summed to produce 

the result "sn". 

The possible operation of a computer based on data flow is illus­

trated by Figure 2.4, which represents the machine instructions 

corresponding to the inner-product example. In Figure 2.4 each data 

flow instruction consists of an operator, two input operands which are 

either literals or required data tokens, and a reference such as "il/2" 

defining a consumer instruction "i1" and argument position "2" for the 

result data token. Data tokens are used to pass data from one instruc­

tion to another and they are also used to cause the execution of 

instructions. An instruc tion is enabled for execution when all its 

input arguments are available, i.e. when all its data tokens have 

arrived. The operator then consumes the data tokens, performs the 
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required operation, and using the embedded reference stores a copy of 

the result data token into the consumer instruction(s). 

-:~~t----~~~---j 1 : I * Iv I v I i1 / 2 I 

a[2] b[2] 

----J-----~-----j2:1 * IV I vli2/21 
---------~--

---------f.-~:~--
11: I + I 0 I ~ I i2/11 

-------------:~~ 
i2:1 + I~ I'" li3/11 

-------------::-~ 
. 
• l"'sn- 1 

• 

~--- ------
in: I + I" I" I I 

--------------f.-
v 

sn 

Figure 2.4: Data Flow Program for "inner-product" 

Data flow computers are usually based on a packet communication 

machine organisation [18,50]. This organisation consists of a circular 

instruction execution pipeline of resources in which processors, commun-

ications and memories are interspersed with "pools of work", as shown in 

Figure 2.5. 
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-------------------------------------------------

I-~~~~~~~:~~~~~--I-->~-->I---:~~~~;~----I 
-----------------

t 
I 

I 
V o 

Figure 2.5: Packet Communication Computer 

The organisation views an executing program as a number of independent 

information packets all of which are conceptually active, which split 

and merge. For a parallel computer, packet communication is a very sim-

ple strategy for allocating packets of work to resources. Each packet 

to be processed is placed with similar packets in one of the "pools of 

work". When a resource becomes idle it takes a packet from its input 

pool, processes it and places a modified packe t in an output pool, 

returning then to the idle state. A number of data flow machines, based 

on packet communication, are already operational [50]. 

In summary, a future Supercomputer is viewed as a parallel (data 

flow) machine, supporting large-scale numerical calculations. 

2.4. PARALLEL MACHINES 

The above two areas of research, namely Fifth Generation Computers 

and Supercomputers, each view future computers as parallel machines, 

supporting a single form of very high level programming. In the former 

case, based on logic computation and in the latter, data flow computa-

tion. 
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There are, however, five main basic categories of computer archi­

tec ture on which future computers could be based, as discussed in the 

Introduction (see Figure 1.1). They range from "low level" architec-

tures, such as control flow, that specify how a computation is to be 

executed, to "high level" architectures, such as logic, that merely 

specify what is required. Associated with each category of computer 

architecture, is a corresponding category of programming languages. 

Recall, these are: control flow computers and procedural languages, 

data flow computers and single-assignment languages; reduction computers 

and applicative languages; actor computers and object-oriented 

languages, and finally, logic computers and predicate logic languages. 

For future computers, since each model (i.e. control flow, data 

flow, reduction, actor, logic) efficiently supports only a single 

corresponding programming style (i.e. procedural, single-assignment, 

applicative, object-oriented, predicate logic), a number of questions 

are raised: 

1. which programming model has the most general-purpose computational 

concepts (e.g. is best able to support the other models)? 

2. what programming style will be dominant in the 1990's (or will a 

number of styles be in use)? 

3. can Fifth Generation Computers, Supercomputers, and von Neumann 

computers be based on different computational concepts (since it 

would seem essential for them to work together in the future)? 
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4. is it realistic to expect that the massive investment in tradi-

tional control flow computing will be discarded? 

Since it seems naive to imagine that control flow computers will simply 

disappear (one only has to look at the longevity of FORTRAN), future 

computers may either continue to be dominated by control flow or will 

encompass various architectures. 

Thus the most urgent challenge for future computers seems not to be 

the identification of the "parallel machine" but to identify the pro­

gramming model for a "decentralised computer" that will allow dissimilar 

computers to work together. This is illustrated by Figure 2.6. 

DECENTRALISED COMPUTER ARCHITECTURE 

I Supercomputer I 
I I 

I von Neumann I 
I Computer I 

I Fifth Generation I 
I Computer I 

Figure 2.6: Future Decentralised Computer Architecture 

Identification of such a "decentralised computer" programming model 

is assisted by examining the latter two areas of research listed in Sec-

tion 2.1, namely VLS I Processor Archi tec ture and Integrated Communica-

tions & Computers. 

2.5. VLSI PR.OCESSOR. ARCHITECTURES 

Processor architectures to exploit very large scale integration 

(VLSI) are aimed at defining a new VLSI generation of components to 

succeed the conventional LSI microprocessor. Microprocessors containing 
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over 100,000 transistors are starting to become commonplace. However, 

attempting to make larger-scale single processors in VLSI scaled to sub­

micron dimensions becomes self-defeating, due to communication problems 

and the escalating costs of designing and testing such complex proces­

sors. One obvious solution (stimulated by the VLSI design philosophy of 

Mead and Conway [38]) is miniature microcomputers which can be repli­

cated like memory cells and operate as a multiprocessor architecture. 

These novel general-purpose and special-purpose microcomputers are often 

implemented by only a few different types of simple cells, and use 

extensive pipelining and multiprocessing to achieve a high performance. 

Examples [52] range from special-purpose multiprocessors such as Kung's 

Systolic Arrays to general-purpose multiprocessors such as Caltech's 

Tree Machine built from 1024 identical chips. 

For a semiconductor manufacturer to specify a new VLSI generation 

of components it is necessary to specify a system architecture defining 

communication and cooperation between both general-purpose and special­

purpose microcomputers. The fundamental problem to be solved is how to 

orchestrate a single computation so that it can be distributed across 

the ensemble of processors [45]. Two elegant VLSI system architectures 

(the former special-purpose and the latter general-purpose) are: Kung's 

Programmable Systolic Chip [24,37], and INMOS' Transputer [10] and OCCAM 

programming language [49] based on communicating processes. 

A more conventional approach is illustrated by the reduced instruc­

tion set multi-microcomputer system (RIMMS) [25,26] which is a network 

of primitive microcomputers. Figure 2.7 shows the organisation of 

RIMMS. 
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2: 1 

1 simple 1 
1 processor 1 
1---------1 
1256 word 1 
1 memory 1 

8 bit 

3: 1 
1 simple 1 
Iprocessorl 
1---------1 
1256 word 1 
1 memory 1 

8 bit 

1 microcomputer 1 word in memory 1 

Registers 

C Code pointer (program counter) 
D Data pointer (base register) 

4: 1 

1 simple 1 
Iprocessorl 
1---------1 
1256 word I 
1 memory I 

Figure 2.7: Reduced Instruction Set Multi-Microcomputer System 

The central idea in RIMMS, as illustrated by Figure 2.7, is that 

each microcomputer has its own 256 word local memory, but forms part of 

a global (two-level) address space. A microcomputer has a 16-bit word 

size, with each register, data element and address being 16 bits. 

Instructions, however, are 2 x 16 bits and use a 3-address format: 

M1 M2 M3 
5 bits 1 1 1 

01 
8 bits 

02 
8 bits 

03 
8 bits 

------------------------------------------------------------------
loperatorlmode bits 1 literal/address 1 literal/address 1 literal/address 1 
------------------------------------------------------------------

o literal 
1 address (memory [D+ signed literal]) 

There are less than 20 operators. Each microcomputer in the multi-

microcomputer system is addressable, and behaves as a combined memory 
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and processor that is able to service load, store and execute opera­

tions. The design of the multi-microcomputer system centres around the 

16-bit global address space. An address consists of two parts: the high 

8 bits define a specific microcomputer, while the low 8 bits define a 

word in that microcomputer's memory. Although a microcomputer can 

access any word in the global address space, an attempt to execute alien 

code causes execution to transfer to the specified microcomputer. The 

processor implementation has a simple von Neumann data path, with the 

addition of the two-level address space and the FORK instruction for 

parallelism. 

This design contains a number of key concepts. Firstly, although a 

microcomputer can make a data access to any word in the global address 

space, code is always executed by the local microcomputer. Secondly, a 

microcomputer has the ability, using a FORK instruction, to create a 

parallel flow of control in another (idle) microcomputer. Thirdly, a 

microcomputer executes a process to completion. (This atomic execution 

of local code removes many of the synchronisation problems typically 

found in control flow multi-processors.) Finally, to enable simple pro­

cess migration, the amount of state information held in the processor's 

register s is minimised. This is achieved by a microcomputer using a 

three-address instruction format and having only two visible registers: 

the code pointer (i.e. program counter) "e" and the data pointer (Le. 

base register) "D". 

In summary, the aim of VLSI processors such as INMOS' Transputer, 

the Programmable Systolic Chip, and RIMMS is to define a system archi­

tecture for a new VLSI generation of general-purpose and special-purpose 

components. 
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2.6. INTEGRATED COMMUNICATIONS & COMPUTERS 

Integrated data Communications & Computers represent the fusion of 

wide area computer networks, local area computer networks, and parallel 

computer architectures to form a fully integrated computer-

communications network. Data communications and computers, specifically 

computer networks and parallel computers, have in the past developed 

independently from each other, with advances in both technologies being 

sustained by the rapid development of semiconductor devices. However, 

the importance of fully integrating the spectrum of decentralised sys-

terns shown in Figure 2.8 has long been advocated [35]. To achieve this, 

it is clearly necessary for all component computers to conform to a com-

mon decentralised system architecture (some harmonious interface) 

allowing them to be programmed to cooperate in the communication of 

information and in the execution of a program. 

Inter-computer 
distance 

Computers 
located in 

1 1000 km 1 Continent 
1-------------1---------------
\ 100 km 1 Country 
\-------------1---------------
1 10 km \ City 
\-------------1---------------
1 1 km 1 Site 
\-------------1---------------
\ 100 m \ Building 
1-------------\---------------
\ 10 m \ Room 
\-------------1---------------
\ 1 m 1 Cabinet 
1-------------1---------------
\ 100 rom 1 Circuit board 
1-------------\---------------
\ 1 rom \ Chip 

wide 

area 

network Decentralised 

local 

area System 

network 

parallel Architecture 

computer 

arch. 

Figure 2.8: Spectrum of Decentralised Systems 
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In these decentralised systems the most important related issues 

are communications and addressing of information, rather than parallel­

ism and instruc tion execution. Thus the systems are usually based on 

control flow programming models enhanced with operating system concepts, 

as illustrated by the Newcastle Connection distributed UNIX system. The 

Newcastle Connection [16,47] is the name given to a novel software sub­

system added to a set of standard UNIX systems [44] in order to connect 

them together as a distributed system, initially using just a single 

Cambridge Ring [61] • The resulting distributed system (which could 

employ a variety of wide and local area networks) is functionally indis­

tinguishable at both the "Shell" command language level and at the sys­

tem call level, from a conventional centralised UNIX system. 

The secret of success of the Newcastle Connection is the hierarchi­

cal information and naming struc ture (for directories, files, devices, 

and commands) of UNIX. In the distributed system the structures of each 

component UNIX system are joined together as a single structure, in 

which each UNIX system behaves as a directory. This is illustrated by 

Figure 2.9. 
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Centralised Systems 

unixl 

us0<:s~ 
file ••• file ••• 

unix2 

use~" 
file ••• file •.• 

Decentralised System 

Newcastle 

unixl ~2 
use;;Z:~ 

file ••• file ••• 

use/, 

file ••• file 

Figure 2.9: The Newcastle Connection of UNIXes 

The result is that each user, on each UNIX system, can inspect any 

directory, read or write any file, use any device, or execute any com-

mand, regardless of on which physical system it belongs. For example if 

a user "userl" wishes to copy "cp" a file "filel" to another file 

"file2" on the same machine they type the command: 

cp filel file2 

and if file2 belongs to "user2" they type: 

cp filel luser2/file2 

whereas on the decentralised system to copy the file "filel" to file 

"file2" of "user2" on machine "unix2" they type: 

cp filel 1 •• /unix2/user2/file2 

For those unfamiliar with UNIX, the initial "I" symbol indicates that a 

path name starts at the root directory, and the" •• " symbol is used to 

indicate the parent directory. Perhaps the best analogy of the Newcas-

tIe Connection is with the naming structure of the international tele-

phone network. 
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In summary, Integrated Communications & Computers is viewed as a 

decentralised computer representing the fusion of wide area network, 

local area networks and parallel computers. 

2.7. DECENTRALISED COMPUTERS 

Decentralised computers integrate distributed, parallel and sequen-

tial computers. Their system architecture defines a minimum set of 

principles that hardware and software components must obey so that they 

can be configured to work together in a system. It is also important 

for programming such systems, that these principles are mirrored in both 

the hardware and software just as FORTRAN and the von Neumann model 

embody the same principles. 

A decentralised programming model provides a composite framework or 

image for future computers. This framework is even capable of spanning 

the four seemingly different views of: Fifth Generation Computers, 

Supercomputers, VLSI Processor Architectures, and Integrated Communica­

tions & Computers. For instance, future decentralised computers will be 

capable of specialisation, supporting a range of applications from the 

numerical calculations of Supercomputers to the symbol manipulation of 

Fifth Generation Computers. Programming languages will range from trad­

itional procedural ones, to very high level languages such as PROLOG. 

Machine organisations will support concurrency, possibly utilising data 

driven and demand driven techniques. Implementations will employ the 

latest general-purpose and special-purpose VLSI technology. Systems 

will be highly decentralised at all levels with computers linked 

together in an integrated computer-communications network. An attempt 

to illustrate this is shown in Figure 2.10. 



- 25 -
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Figure 2.10: Future Decentralised Computer Systems Architecture 

Given the technological and social factors (discussed in Section 2.1 -

Motivations) this "decentralised computer architecture" view of future 

computers would seem quite reasonable. 

In conclusion, the three organisations for computers are: sequen-

tial computers, parallel computers, and decentralised computers (see 

Figure 2. 11 ) • 
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von Neumann 
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Computer 

Future 
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Figure 2.11: Contrasting von Neumann, Parallel and Future Computers 

The von Neumann computer is sequential consisting of a single processor 

and memory. The parallel computer is, clearly, parallel being composed 

of sequential computers. Lastly, the future computer will be decentral-

ised (distributed + parallel), and will consist of parallel and sequen-

tial computers. Therefore, as illustrated by Figure 2.11, a decentral-

ised program model is capable of spanning distributed, parallel and 

sequential computers. 

Thus for future computers a decentralised computer architecture is 

sought, analogous to that of the international telephone network, sup-

porting the communication and cooperation of dissimilar 

hardware/software components. The essential properties are: 
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1. communication and cooperation of components 

2. addressing of distributed information 

3. extensible system of heterogeneous processors 

4. many programming styles are supported 

Properties 1-3 relate to system structuring and addressing issues, but 

property 4 relates to the choice of programming model (i.e. control 

flow, data flow, reduction, actor, logic) 

Recall, in the discussion on Parallel Machines (Section 2.4), it 

was argued that future decentralised computers will either continue to 

be dominated by control flow or will encompass various programming 

models. In the next three chapters, this choice is discussed, classify­

ing and presenting the major programming styles and analysing their 

advantages and disadvantages for computation. 
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CHAPTER. 3 - CLASSD'ICATIOII OP PJtOGIWIKDIG LAIIGUAGES 

This chapter attempts to classify some major styles of programming 

that might become important in the future. 

3.1. VEB.Y HIGH LEVEL LAllGUAGE PIl.OGJWDIlBG 

Computing is currently experiencing a veritable explosion of 

research into very high level programming notations. These include: 

procedural languages that aim to provide more effective programming 

environments such as ADA [43]; new languages based on novel models of 

computation such as PROLOG [36]; and application-oriented languages such 

as VISICALC [14] used for financial-modelling. In fact, in this latter 

area it is difficult to draw the boundary between application languages 

and packages, since today's packages may well be the programming 

languages of tomorrow. 

How can styles of high level programming be classified so as to 

make useful observations about their advantages and disadvantages for 

computation? One approach is to group them by application area - thus 

having string processing languages, numerical languages, artificial 

intelligence languages and so forth. For the present purposes, however, 

this is not the best approach; firstly because there are so many poten­

tial application areas, and secondly because some of the most striking 

differences between programming styles and languages have absolutely 

nothing to do with the advertised differences in their application 

areas. For example, FORTRAN and APL are both "numerical" languages yet 
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the differences between them are significant. These differences are 

closely bound up with different approaches to certain very basic ques­

tions such as how data is communicated in a program and the control 

structures supported. 

Since new programming languages often try to present a model of 

computation that closely represents the underlying machine architec­

ture, this discussion of programming will be strongly influenced by pro­

gramming models (as shown in Figure 1.1). Figure 3.1 illustrates the 

various categories of programming and example languages, some of which 

will be examined. In the future any of these categories of programming 

may become "mainstream" programming styles, especially when novel decen­

tralised computers (as discussed in the previous chapter) sympathetic to 

their support become available for use. Although most of these languages 

are termed general-purpose they rarely prove to be equally applicable to 

all classes of problems. It is therefore important to understand the 

strengths and weaknesses (and hence the potential for applications) of 

each category of programming. 
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shared memory 
message passing 

Object-Oriented Programming 

Functional Programming 

data flow 
applicative 

function-level 
pattern-matching 

Logic Programming 

Horn clauses 
predicate logic 

Application Programming 

"Electronic-sheet" 

Figure 3.1: Categories of Programming 

Examples 

BASIC, FORTRAN, PASCAL 

Concurrent PASCAL, MODULA 
CSP, OCCAM 

SMALLTALK, ACTl 

10, LUCID, VAL, VALID 

FP 
PURE LISP, SASL, HOPE 

PROLOG 
SETL 

VIS ICALC 

There are at least five major categories of programming: Pro-

cedural, Object-Oriented, Functional, Logic and Application programming. 

This examination of the various categories of programming is started by 

discussing the most dominant, procedural programming. 

In procedural programming there are concepts which are almost taken 

for granted: a global memory of cells, assignment as the basic action, 

and implicitly sequential control structures for the execution of state-

ments. In procedural programming there are two sub-classes of 

languages, namely the conventional sequential languages, and what is 

called concurrent languages (ex. Concurrent PASCAL) that have parallel 

control structures [48]. Most users of computers know of only one class 

of programming languages, what has therefore been called conventional 

languages. This class has developed for programming the traditional von 
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Neumann stored program computer. Hence the semantics of conventional 

languages reflec t the von Neumann programming model: global memory, 

fixed-size memory cells, assignment and sequential execution. 

Concurrent languages [15,48] extend this control flow programming 

model with parallel control structures based on processes, plus communi­

cation and synchronisation mechanisms. A process is an independent pro­

gram consisting of a private data structure and sequential code that can 

operate on the data. Concurrently executing processes cannot operate on 

the private data of one another; they can only interact usin~ the com­

munication mechanism. The communication mechanism is the way processes 

communica te data among themselves. The most commonly employed mechan­

isms are: unprotected shared (global) memory, shared memory protected by 

modules or monitors, message passing and the rendezvous [48]. The syn­

chronisation mechanism is the way processes enforce sequencing restric­

tions among themselves. The commonly employed mechanisms include: sig­

nals, synchronised sending, buffers, path expressions, events, condi­

tions, queues and guarded regions etc. [48]. Other important distin­

guishing features of concurrent programming languages include: process 

creation, whether processes are created "statically" during compilation 

or "dynamically" at runtime from the execution of the calls; process 

topology, where the interconnection links either remain static during 

execution or may dynamically change; process scheduling, defining how 

processes are assigned to the processors; and process termination, the 

condition when a process has finished execution and can be deleted. 

Concurrent languages can be broadly classified, by the nature of their 

communication mechanism into: shared memory and message passing. 
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In object-oriented programming, computation is based upon active 

objects, sometimes called actors, which communicate by passing messages. 

Every object belongs to a class and is created as an instance of that 

class. The class defines the detailed representation of its instances, 

the messages to which they can respond, and the methods for computing 

the appropriate responses. Stored in an instance are the particular set 

of values that define its state. Ingalls [33] uses the following exam­

ple to distinguish between object-oriented programming and procedural 

programming. 

to evaluate <some object> + 4 means to present + 4 as a mes­

sage to the object. The fundamental difference is that the 

object is in control, not the +. If <some object> is the 

integer 3 then the resul t will be the integer 7. However, if 

<some object> were the string META the result might be META4. 

In this way the conventional distinction between data and procedures is 

reduced, since the meaning rests with the objects of the system, and the 

code remains an abstract form, merely directing the flow of communica­

tion. 

In functional programming, languages operate by the application of 

functions to values. Functional programming lives in the "clean" 

mathematical world of equations: expressions, function applications and 

structured data; a world excluding sequentiality, assignment statements, 

and side-effects. Firstly, non-sequentiality. A functional program 

usually consists of a series of equations which are viewed as unordered 

apart from their data dependencies. Each equation specifies a calcula­

tion but the programmer specifies no additional sequencing information 

over and above that implied by the data dependencies. Thus statements 
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can appear in any order in a program. Secondly. absence of assignment. 

Functional programming does not contain the concept of assigning a value 

to a global memory as seen in the basis of procedural programming. 

Obviously. one still has to be able to associate a name with a value (as 

when one writes an equation "name=expression"); this is an essential 

feature of any usable language. The important difference is that a con­

ventional assignment statement is used to "overwrite" a previously 

existing value. whereas here the destructive assignment concept is not 

allowed. This implies the absence of side-effects. These features of 

functional programming mean that in anyone program. no two equations 

can have the same left-hand side for a statement of the form 

"name=expression". It also implies that all operations on data struc­

tures have to have a copying semantics. since a data structure cannot be 

overwritten or altered. 

Two important classes of functional pr08ramming languages wUl be 

identified: data flow languages (i.e. single-assignment) and applicative 

languages. Data flow languages are designed to facilitate programming 

of data flow computers (which were discussed in the previous chapter). 

and are concerned with the easy expression and exploitation of parallel­

ism. By data flow language one means any functional language based 

entirely upon the notion of data "flowing" from one function entity to 

another. or any language that directly supports such flOwing semantics. 

This flow concept gives data flow languages the advantage of easily 

expressing programs either textually or by equivalent directed graphs 

[17]. There are a number of interesting data flow languages including 

ID [6]. LUCID [8], VAL [2] and VALID [3]. Applicative languages are 

so-called because of the dominant role played by the applications of 

func tions to structures. Quoting Henderson [301 "Intuitively, a func-
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tion is a rule of correspondence whereby to each member of a certain 

class there corresponds a unique member of another class. That is to 

say, given two classes of individuals, respectively called the domain of 

the function and the range of the function, each member of the domain is 

made to correspond by the .function to exactly one member of the range." 

Thus the important notion associated with app1icative structure is that 

the value of an expression (its meaning) is determined solely by the 

values of its constituent parts. Thus, should the same expression occur 

twice in the same context, it denotes the same value at both 

occurrences. A language having this property for all its expressions is 

referred to as an app1icative language. 

In logic programming [19,36] a program consists of facts about a 

certain subject, stated as a collection of sentences which express 

information that can be used to solve problems or to answer questions. 

A sentence (i.e. clause) defines a relationship, and is either an asser-

tion: 

or an implication: 

bill is the father of john 

john is the father of tom 

X is the grandfather of Z if X is the father of Y 

and Y is the father of Z 

where john, tom, etc. are atoms and X,Y etc. are variables. Basically, 

logic i to solve goals, which succeed or fail, when programm ng attempts 

answering a question. For a given goal (initially the question), the 

fi d statements that can be made to match the system attempts to n any 

goal. If the matching statement is an assertion then the system is suc-
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cessful but, otherwise, it proceeds to solve the subgoals. This execu­

tion can be viewed as pattern matching: selection of the statements, and 

substitution: solving of the goals. 

Symbolic logic was first used as a formalisation of natural 

language and human reasoning. As a result it has long been appreciated 

in computing science that logic programming could yield very powerful 

languages, blurring not only the distinction between programs and data­

bases but also the distinction between programs and specifications [36]. 

Information can be expressed and problems can be formulated without con-

cern for specifying explicitly the details of execution or for effi-

ciency. However, logic programs can be given an operational, machine 

intelligible interpretation. 

Finally, in application programming, languages are being developed 

for specific application areas. One of the more interesting aspects of 

recent computing history is the explosive growth in the programming 

languages for specific application areas. Example areas include: 

financial-modelling [14], expert systems [60], and robotics [13]. How-

ever, in these application areas, the boundary between languages and 

certain software packages or utilities is cloudy. A prime example is 

VIS ICALC , and its derivatives, marketed as financial-modelling systems, 

but used in the additional fields of engineering, science, education and 

statistics. In fact, in any field where tabular reports of rows and 

columns of calculated numbers are required, the VISICALC language pro-

vides a very powerful tool. Cynics might say that there is currently 

more programming done in VISICALC-1ike languages than in all object­

oriented, functional and logic programming languages together. 
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Next, the major programming styles are classified in terms of their 

underlying computational mechanisms, so as to analyse their advantages 

and disadvantages in terms of these mechanisms. The computational 

mechanisms presented here generalise the set of mechanisms originally 

proposed for a novel computer architecture [50]. 

3.2. COKPUTATIORAL HECBANISHS 

Treleaven et aI, in their survey paper [50], proposed a classifica­

tion for data and demand driven computer architecture. This consisted 

of three ways in which an instruction could use an argument: "by 

literal ll
, IIby value ll

, "by reference", and three control patterns: 

"sequential", "parallel", and "recursive". Although adequate for the 

purpose, this classification has a number of weaknesses, the most impor­

tant of which is that it does not cover actor and logic architectures. 

Below, a more general classification is presented, oriented to program­

ming models and languages. It will be used in classifying and analysing 

the styles of programming presented above. 

"Programming model" is the term used in this Thesis to cover the 

way programs are represented and executed in a computer. For a program­

ming model there are two basic computational mechanisms, which are 

referred to here as the data mechanism and the control mechanism. The 

data mecbaniSlll defines the way a particular argument is communicated 

(and shared) by a number of commands. There are two basic types of com­

munication in computing: 

1. shared .eBOry - where a single copy of the argument is communicated 

via a shared memory, accessible to all commands. 
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2. .essage passing - where a unique copy of the argument is communi­

cated, via a message, from the source to the destination command. 

The control .ecbanisa defines how one command causes the execution of 

one or more other commands. There are four basic types of execution in 

computing: 

1. control driven - where a command is executed when it is selected by 

flow(s) of control. 

2. data driven - where a command is executed when some combination of 

its arguments is available. 

3. demand driven - where a command is executed when the result it pro­

duces is needed by another, already active command. 

4. pattern driven - where a command is executed when some enabling 

pattern (or condition) is matched. 

The relationship that is believed to exist between these data and 

control mechanisms and the major styles of programming is summarised in 

Figure 3.2. 
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Figure 3.2: Classification of Programming Styles 

It is believed that the properties of the programming styles and 

their associated languages relate directly to their choice of data 

mechanism and control mechanism. 

Firstly, the properties related to the data mechanisms will be sum-

marised. "Shared memory" has advantages for: the sharing of data struc-

tures, the taking of an unspecified number of copies of the data, and 

the ability, in certain models, to update the data. The disadvantages 

of "shared memory" relate to synchronising the reading and writing of 

data, not only in parallel systems, but also where a flow of control 

must be specified. "Message passing" has the advantages of synchronis-

ing communication of data, which is particularly useful between parallel 

processes, and the ability to be tied to the control mechanism as in 
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data flow. Disadvantages of "message passing" include the need often to 

know all the consumers of the messages and, possibly, the need to expli­

citly delete unused messages. 

Secondly, the properties related to the control mechanisms will be 

summarised. "Control driven" mechanisms have advantages such as the 

fact that they are very primitive and flexible, and provide maximum con­

trol over the execution of commands. This results in a separation of 

flows of control and flows of data in a program. Disadvantages also 

relate to this flexibility; as the sequence of execution of commands 

must be specified, this places an additional burden on the programmer, 

and it is easier to make mistakes. "Data driven" mechanisms have the 

advantage of specifying maximally parallel execution, but also the 

disadvantage of sometimes causing unnecessary computations. "Demand 

driven" mechanisms have the advantages of performing minimum work (since 

demands are only made when necessary), and of generating a hierarchical 

control pattern. A direct disadvantage is that the control pattern is 

restricted to such a tree structure. Lastly, "pattern driven" mechan­

isms have the advantage of being the highest level control mechanism 

requiring least control information to be specified by a programmer. 

Again, this leads to the disadvantage of the programmer sometimes having 

inadequate control over the execution of a program. 

3.3. QUICKSORT 

To facilitate comparison of Procedural, Object-oriented, Func­

tional, Logic and Application programming, simple programs for the 

Quicksort algorithm are used. Quicksort, invented by Hoare [31], is one 

of the best sorting algorithms known. Although in the worst case its 

execution time can be proportional to n**2, its average time is nlogn. 
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The essential idea of Quicksort is to partition the original set to be 

sorted by rearranging it into two subsets: the first subset, all of 

whose elements are less than some arbitrary "pivot" value chosen from 

the set, and the second subset, all of whose elements are greater than 

or equal to the pivot. Then the partitioning process is applied to the 

two subsets, until each subset contains only one element. When all sub-

sets have been partitioned, the original set has been sorted. 

To illustrate the Quicksort algorithm, Figure 3.3 shows the series 

of comparisons and exchanges for an array of 16 elements. The elements , 

being compared at each stage are indicated and square bracket symbols 

are used to delimit the subset. The sorting of a subset of the array 

"v" involves the "pivot" - the first element of the set - plus two 

pointers "i" and "j"; with "i = 1" and "j = 16" initially. Quicksort 

compares "v[i] (= pivot" and "v[j] )= pivot", exchanging "v[i}" and 

"v [j]" when it finds an out of order pair. This comparison is repeated 

until "i = j" at which point "v[i]" and the pivot are exchanged, insert-

ing the pivot element into its correct pOSition in the array. This is 

clearly indicated by the elements shown in Figure 3.3. Having parti-

tioned the elements to be sorted, Quicksort can be reapplied to the two 

subsets. 
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Stage Array 

1 512 087 503 061 908 170 897 426 765 275 154 509 612 677 653 703 
2 [512 087 703] 
3 [512 087 
4 [512 087 

653 ] 
677 ] 

5 [512 087 612 ] 
6 [512 087 509 ] 
7 [512 503 509 ] 
8 [512 061 509 ] 
9 [512 908 509 ] 

10 [512 509 908 ] 
11 [512 509 154 ] 
12 [512 170 154 ] 
13 [512 897 154 ] 
14 [512 154 897 ] 
15 [512 154 275 ] 
16 [512 426 275 ] 
17 [512 765 275 ] 
18 [512 275 765 ] 
19 [275 512 765 ] 
20 [275 087 503 061 509 170 154 426] [765 897 908 612 677 653 703] 
21 [275 087 426] [765 897 703] 
22 [275 087 154 ] [765 703 897] 
23 [275 503 154 ] [765 703 653 ] 
24 [275 154 503 ] [765 908 653 ] 
25 [275 154 170 ] [765 653 908 ] 
26 [275 061 170 ] [765 653 677 ] 
27 [275 509 170 ] [765 612 677 ] 
28 [275 170 509 ] [765 677 ] 
29 [170 275 509 ] [677 765 ] 
30 [170 087 154 061] [509 503 426] [677 703 653 612] [908 897] 
31 [170 087 061] [509 503 426] [677 703 612] [908 897] 
32 [170 154 061] [509 426] [677 612 703] [897 908] 
33 [ 170 061] [426 509] [677 612 653 ] 
34 [061 170] [426 503] [677 653 ] [897 908] 
35 [061 087 154] [653 677 ] [897 908] 
36 [653 612] 
37 [612 653] 
38 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908 

Figure 3.3: Quicksort partition exchange sorting 

In the example programs that follow in Chapters 4 and 5, Quicksort has 

been programmed in a relatively simplistic way attempting only to match 

the example languages to the structure of the algorithm. The array ini-

tialisation and input/output statements are usually omitted. 
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Using the above classification as a basis, the following two 

chapters present an examination of the advantages and disadvantages for 

program representation and execution of the major programming styles. 
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CHAPTER. 4 - ANALYSIS OF P1lOCED01lAL AND OlUECT-oJllEB'I'ED 

PllOGRAMHIBG 

This chapter analyses Procedural and Object-Oriented styles of pro­

gramming, identifying advantages and disadvantages. 

4.1. PllOCEDURAL PROGRAMHIBG 

Procedural programming is based on a "shared memory" data mechanism 

and a "control driven" control mechanism. For the data mechanism, data 

is communicated via shared memory cells and the basic action in pro­

cedural programming is assignment to memory. In addition, a cell is 

accessible to a group of commands, any of which may take as many copies 

as it requires or update the contents of a cell. For the control 

mechanism, execution is "control driven" and implicitly sequential. 

Explicit control structures are also provided for: unconditional (e.g. 

GOTO) , conditional (e.g. IF, CASE), and repetitive (e.g. FOR, REPEAT, 

WHILE) execution. 

4.1.1. Conventional Languages 

In conventional languages (e.g. PASCAL), besides the sequential 

"control driven" control mechanism, there are procedure and function 

CALLs, plus exception conditions such as ON in PL/I. These control 

structures could also be assumed to be "control driven", but seem more 

accurately to be "demand driven" and "pattern driven". respectively. 
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Although BASIC is perhaps the archetypal conventional language, PASCAL 

will be briefly examined. Since PASCAL contains both iterative and pro­

cedure call control structures, it also serves to introduce the program­

ming of the Quicksort examples. 

Figure 4.1 illustrates a conventional program in PASCAL based on a 

recursive algorithm, probably the simplest description of Quicksort. 

The heart of the program is the "sort" procedure, which partitions the 

elements of the array "v" to be sorted. To do this it is passed the 

indices "10" and "hi", indicating the range of elements to be parti­

tioned at this particular step. It chooses as the "pivot", " v [lo]". 

The inner loop of the algorithm (i.e. the iterative "repeat-until" 

statement), compares the elements and exchanges any pair that is out of 

order. When this loop exits, the elements have been partitioned, 

"pivot" is swapped with "v[i]", and the procedure recursively calls 

"sort" twice to partition the two subsets. 
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program Quicksort 

var 
v: array[1 •• 16] of integer; 

procedure sort(lo,hi: integer); 

var 
i,j: 

pivot: 
temp 

begin 

integer; 
integer; 
integer; 

if (10 < hi) 
begin 

then 

i:= 10; 
j:= hi; 
pivot:= 
repeat 

v[lo] ; 

while (j > i) and (v[j] >= pivot) do j:= j - 1; 
while (i < j) and (v[i] <= pivot) do i:= i + 1; 
if (i < j) then (* exchange out of order pair *) 

end; 
end; 

begin 

until (i >= j); 

begin 

end; 

temp:= v[i); 
v[i):= v[j]; 
v[j):= temp; 

(* move pivot to v[i] *) 
v [ 10] : = v [i) ; 
v[i) := pivot; 
(* sort subsets *) 
sort(lo, i-I); 
sort(i + 1, hi); 

sort(l, 16); 

end. 

Figure 4.1: Conventional (recursive) Program in PASCAL 

Recursive algorithms are sometimes less efficient than the 

equivalent iterative ones, often because of "demand driven" procedure 

call overheads, but for Quicksort this is not a significant effect, 

since the recursion is not in the innermost loop. As a contrast, Figure 

4.2 shows a PASCAL program based on an iterative algorithm but kept pur-

posely close in structure to the previous example. The inner loop is 
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identical. In Figure 4.2, a stack is used to store the pairs of indices 

"10" and "hi" of the subsets to be partitioned. Thus instead of calling 

a procedure "sort" to partition a subset, the pair of indices are placed 

on the stack. The outer loop repeatedly removes a pair of indices from 

the stack and partitions the set. When the stack is empty the array "v" 

has been sorted. 
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program Quicksort 

var 

v: 
stack: 

stackptr: 
pivot: 
10 ,hi: 
i,j : 
temp: 

array [1 •• 16] of integer; 
array [1 •• 20, 1 •• 2] of integer; 
0 •• 20; 
integer; 
integer; 
integer; 
integer; 

begin 

end. 

stackptr:= 1; 
stack[stackptr,I]:= 1; 
stack[stackptr,2]:= 16; 
repeat 

10:= stack[stackptr,I]; 
hi:= stack[stackptr,2]; 
stackptr:= stackptr - 1; 
if (10 < hi) then 
begin 

end; 

i:= 10; 
j:= hi; 
pivot:= v[lo]; 
repeat 

while (j ) i) and (v[j] )= pivot) do j:= j - 1; 
while (i < j) and (v[i) <= pivot) do i:= i + 1; 
if (i < j) then (* exchange out of order pairs *) 
begin 

end; 

temp:= v[i); 
v[i):= v[j); 
v [ j) : = temp; 

until (i )= j); 
(* move pivot to v[i) *) 
v [ 10) : = v [ i) ; 
v[i) := pivot; 
(* sort subsets *) 
stackptr:= stackptr + 1; 
stack[stackptr,I):= 10; 
stack[stackptr,2):= i-I; 
stackptr:= stackptr + 1; 
stack[stackptr,I):= i + 1; 
stack[stackptr,2):= hi; 

until stackptr < 1; 

Figure 4.2: Conventional (iterative) Program in PASCAL 
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Two of the principal concepts of the I f contro low model, namely 

"shared memory" communication of data and sequential "control driven" 

execution, are reflected in both programming examples examined. In both 

examples, the partitioning of the numbers is performed by rewriting the 

array. (An alternative strategy used in many of the programming 

languages, to be discussed, is to create two new arrays.) In addition, 

in the example in Figure 4.1, the two calls to "sort" clearly could be 

performed concurrently if parallel control driven structures were sup-

ported. Although almost no parallel control structures are found in 

conventional languages such extensions are found in the follOwing pro-

cedural classes of languages examined. 

4.1.2. Concurrent Languages 

In concurrent languages (e.g. MODULA-2 and OCCAM), as well as the 

sequential "control driven" structures, there are parallel processes and 

structures to handle problems of process communication and synchronisa-

tion. In concurrent (shared memory) languages, communication is via the 

"shared memory" data mechanism, concurrent access to which is synchron-

ised by "control driven" monitors (in MODULA-2) that guarantee mutual 

exclusion to accessing processes. In addition, MODULA-2 also provides a 

primitive "pattern driven" control mechanism, for synchronisation, in 

the form of a signal. 

In contrast, in concurrent (message passing) languages, a "message 

passing" data mechanism is used to handle synchronised communication 

between parallel processes with the "shared memory" mechanism being used 

for communication wi thin a process. In OCCAM, as well as the tradi-

tional control structures (e.g. IF, WHILE, FOR) there are also three 
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"control driven" structures, for sequential "SEQ", parallel "PAR" and , 
alternative "ALT" process execution. 

Shared Memory 

In shared memory communication, the synchronisation mechanism pro­

vides mutual exclusion on single bytes, words, or larger data struc-

tures. Examples of concurrent languages with shared memory communica-

tion include: MODULA-2, Concurrent PASCAL, and Path PASCAL. MODULA-2 

will be examined. 

MODULA-2 [63], one of the many languages designed by Wirth, extends 

Pascal with facilities for program structuring and concurrency. In 

MODULA-2, each program is declared as a module: 

MODULE name; 
<declarations> 
BEGIN 
<statements> 
END name. 

which encapsulates all of the data structures and procedures used by the 

program, and controls their usage by other programs. 

Concurrency is based on: processes, shared variables, signals and 

monitors. Execution of a concurrent process is started by using the 

system call "StartProcess (P,n)" where "P" is the procedure to be exe-

cuted and "n" is the size in words of the work space the process is to 

be allocated. Communication amongst processes occurs in two distinct 

ways, namely via common variables and so-called signals. 

Using shared memory (i.e. common variables) to transfer data among 

processes raises the problem of asynchronous access to this data. The 

MODULA-2 solution is a "monitor"; a module which guarantees mutual 

exclusion of accessing processes and thereby ensures integrity of its 
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local data. A module is designated to be a monitor by specifying a 

"[priority]" in its heading. Signals (pattern driven) serve to syn-

chronise processes, but do not carry data. Only two operations are 

applicable to signals: a process may "SEND" a signal and it may "WAIT" 

for a signal from some other process. Execution of a WAIT suspends the 

process. Execution of a SEND reactivates at most one process. These 

concurrency mechanisms are illustrated by Figure 4.3. 

Quicksort in MODULA-2 is perhaps best coded as a sequential recur­

si ve algorithm as in the PASCAL example in Figure 4.1. However, to 

illustrate the concurrency features of MODULA-2, an attempt has been 

made to code it using processes, signals and monitors. The example uses 

two modules called "Quicksort" and "monitor". "Quicksort" uses the pro­

cess "sort" to recursively partition the array "v", and it uses the mon­

itor "monitor[ 1]" to control the passing of the indices of the subsets 

(via a stack) to the sort processes. The algorithm thus combines the 

features of the recursive and iterative PASCAL examples. 

Execution is started by Quicksort placing the indices "( 1,16)" on 

the stack, and calling StartProcess to initiate "sort". The process 

sort partitions the array, places the limit of the two subse ts on the 

stack, and then calls StartProcess twice. These concurrent "sort" 

processes may access the stack in any order, but only one may do so at a 

time, since the stack is within a monitor. Termination of Quicksort is 

controlled by the SIGNAL "finished" and the "count" of the processes 

executing. For each process started, "count" is incremented and when a 

"sort" finishes "count" is decremented, and if "count" equals zero, the 

signal "finished" is sent to the main program, so it may terminate. In 

addition, notice at the end of "sort" the signal "forever" - this is 

used to keep the process from being deleted. 
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MODULE Quicksort; 
FROM ProcessSchedu1er IMPORT INITSIGNAL,SIGNAL,WAIT,SEND,STARTPROCESS, 

SENDDOWN; 
FROM SYSTEM IMPORT ADDRESS; 
FROM Storage IMPORT ALLOCATE, DEALLOCATE; 
FROM Input IMPORT ReadInt; 
VAR 

v 
finished: 
count 
wsp 

ARRAY [1 •• 16] OF INTEGER; 
SIGNAL; 
INTEGER; 

(* signals a process has finished *) 
(* count of processes executed *) 

ADDRESS; 
i INTEGER; 
num INTEGER; 

PROCEDURE sort; 
VAR 

10,hi 
i,j 
pivot 
temp 
wspl 
wsp2 
forever 

BEGIN 

INTEGER; 
INTEGER; 
INTEGER; 
INTEGER; 
ADDRESS; 
ADDRESS; 
SIGNAL; 

pop(10, hi); (* get limits of next subset *) 

IF (10 < hi) 
THEN 

i:= 10; 
j:= hi; 
pivot:= v[lo]; 
REPEAT 

WHILE (j ) i) AND 
WHILE (i < j) AND 
IF (i < j) THEN 

END; 
UNTIL (i )= j); 

(v[j] )= pivot) DO j:= j -
(v[i] <= pivot) DO i:= i + 

(* exchange out of order 
temp:= v[i]; 
v[i]:= v[j); 
v [ j] : = temp; 

(* move pivot to v[i] *) 
v[lo]:= v[i1; 

END; 

v[i] := pivot; 
(* store limits of subsets to be sorted *) 
push(10, i-I); 
push(i+l, hi); 
count:= count + 2; 
ALLOCATE (wsp 1, 200); 
STARTPROCESS(sort,wspl,200); 
ALLOCATE (wsp 2, 200); 
STARTPROCESS(sort,wsp2,200); 

count :- count - 1; 
IF count - 0 THEN SEND(finished) ELSE 

INITSIGNAL(forever); 
WAIT(forever); 

1 END; 
1 END; 
pair *) 



END; 
END sort; 

MODULE monitor[l]; 
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IMPORT SIGNAL,SEND,SENDDOWN,INITSIGNAL,WAIT; 
EXPORT push, pop; 
CONST N 16; 
VAR 

stack ARRAY [l •• N] OF ARRAY [1 •• 2] OF INTEGER; 
stackptr: [O •• N]; 
NotEmpty, NotFull : SIGNAL; 

PROCEDURE push (10, hi: INTEGER); 
BEGIN 

IF stackptr = N THEN WAIT(NotFull) END; 
stackptr := stackptr + 1; 
stack [stackptr, 1] := 10; 
stack [stackptr, 2] .- hi; 
SENDDOWN(NotEmpty); 

END push; 

PROCEDURE pop (VAR 10, hi: INTEGER); 
BEGIN 

10 := stack [stackptr, 
hi := stack [stackptr, 
stackptr := stackptr -
SEND(NotFull) ; 

END pop; 
BEGIN 

stackptr:= 0; 
INITSIGNAL(NotFull); 
INITSIGNAL(NotEmpty); 

END monitor; 

BEGIN 
(* initialisation *) 
INITSIGNAL(finished); 
FOR i:= 1 TO 16 DO 

ReadInt(num) ; 
v[i]:= num; 

END; 
push(1, 16); 

1] ; 
2]; 
l' , 

count:= 1; 
ALLOCATE(wsp,200); 
STARTPROCESS(sort,wsp,200); 
WAIT(finished) ; 

END Quicksort. 

Figure 4.3: Concurrent (shared memory) Program in MODULA-2 

It could be claimed that this form of concurrency (using "shared memory" 

data mechanism) is the most natural extension to conventional languages. 

In conventional languages data is communicated via variables; concurrent 
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languages (such as MODULA-2) use the same mechanism, namely shared 

memory. In contrast, the next class of languages uses a "message pass­

ing" data mechanism for communicating data amongst concurrent state­

ments. 

Message Passing 

In message passing communication, data is passed directly, using a 

channel or queue from the transmitting process to the receiving process, 

which stores the data locally in its private store. Examples of these 

types of programming languages include CSP [32) and OCCAM [49), as well 

as GYPSY, PARLANCE and PLITS [48). The OCCAM programming language will 

be examined. 

OCCAM [49), originating from Hoare's CSP, is based on processes 

which may be executed concurrently and may communicate using channels. 

The most direct implementation of an OCCAM program is a network of 

microcomputers each executing a process concurrently. However, the same 

program could also be implemented by a single time-shared processor. 

A process - the fundamental working element in OCCAM - is a single 

statement, group of statements, or group of processes. Programs are 

constructed from three primitive processes: assignment, output and 

input. Assignment "x:=y" sets the value of a variable to an expression. 

Output "c!y" is used to output a value of an expression "y" to a channel 

"c". Input "c?x" sets the value of a variable "x" to a value input from 

a channel "c". 

A channel is an unbuffered structure and allows information to pass 

in one direction only, synchronising the transfer of information. Thus 

a channel behaves as a read-only element to a receiving process and a 
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write-only element to the transmitting processing. The transmitter can 

only write when the channel is empty, While the receiver can only read 

when the channel is full. 

To control the order of execution of such processes OCCAM provides 

three "control driven" mechanisms: sequential (SEQ), parallel (PAR), and 

alternate (ALT) , as well as the traditional IF and WHILE constructs. 

SEQ and PAR precede a list of processes, defining sequential and paral-

leI execution, respectively. ALT causes exactly one of a list of 

processes to be executed, and will wait until at least one of the 

"guarding" conditions is true. 

These control mechanisms are illustrated by the Quicksort example 

in Figure 4.4. This program consists of two processes: "sort", which 

partitions the array of numbers to be sorted and merges the sorted sub-

sets; and "quicksort", which builds a tree of sort processes to perform 

the sorting: 

in out 
I i' 
V I 

I 
I SORT 
I I 
-----------
I l' I l' 

------ I 
I 
I I 

11 V I 01 

I 
I SORT I 
I process11 
I I 
----------
I tit 
V I V I 

3 4 

I ------
I 

I I 
i2 V· I 02 

I 
I SORT I 
Iprocess21 
I I 
----------
I tit 
V I V I 

5 6 
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The highest level sort process inputs the array of numbers to be sorted 

on "CHAN in". It partitions the array, sending numbers less than the 

pivot to sort process "1", and numbers greater than the pivot to sort 

process "2". Having partitioned the array, the highest level sort pro­

cess merges the sorted subsets that it receives from processes "1" and 

"2", and outputs the result on "CHAN out". Subsidiary sort processes 

operate in a similar way, (sort processes "1" and "2" then become the 

highest level sort processes, and so forth). Each array of numbers to 

be sorted is terminated by "-1". 

A sort process consists of six channels: "vin" - the numbers to be 

sorted; "lout" - the numbers to be sorted less than the pivot; "hout" -

the numbers to be sorted higher than the pivot; "lin" - the sorted 

numbers less than the pivot; "hin" - the sorted numbers higher than the 

pivot, and "vout" - the sorted numbers resulting from the merge of 

"lin", "pivot", and "hin". 

Since OCCAM's input/output only reads individual characters, to 

simplify the example, letters were included in the set to provide for 15 

entities to be sorted. The set to be sorted here can be, for example: 

7 3 1 0 2 5 4 6 B 9 8 A D C E 

so as to guarantee a well balanced tree. 

only work for such arrays, because 

(compile-time generated) in OCCAM. 

In fact, this Quicksort will 

processes must be statically 
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DEF n ... 15: 
DEF term = -1: 

PROC sort(CHAN vin,vout,lin,lout,hin,hout) 
VAR pivot, x: 
SEQ 

vin?pivot 
IF 
pivot (> term 

SEQ 
vin?x 
WHILE x (> term 

SEQ 

PAR 

IF 
x ( pivot 

lout!x 
x >= pivot 

hout!x 
vin?x 

lout! term 
hout! term 

lin?x 
WHILE x (> term 

SEQ 
vout!x 
lin?x 

vout! pivot 
hin?x 
WHILE x <> term 

SEQ 
vout!x 
hin?x 

vout! term: 

PROC quicksort(CHAN in,out) 
CHAN i[(4 * n) + 5], 0[(4 * n) + 5]: 
SEQ 

str.to.screen("QUICKSORT*C") 
PAR 

sort(in,out,0[1],i[I],0[2],i[2]) 
PAR c = [1 FOR (2*n) + 1] 

sor t (i [c] ,0 [c] ,0 [ (2 *c)+l] , i [ {2*c)+l] ,0 [ {2*c )+2] , i [ (2*c )+2) ): 



VAR input en] : 
CHAN in .out : 
SEQ 

SEQ i = [0 FOR n] 
SEQ 

keyboard? input[i] 
screen! input[i] 
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str .to .screen("*CDone Input*C") 
PAR 

SEQ 
SEQ i = [0 FOR n] 

in! input [i] 
in! -1 

quicksort(in,screen) 

Figure 4.4: Concurrent (message passing) Program in OCCAM 

OCCAM has two important, and interesting, features that should be 

noted. Firstly, it is a concurrent language specifically designed to 

facilitate the programming of a new generation of (networks of) micro-

computers [10]; an essential requirement for exploiting VLSI. Secondly, 

unlike most 0 ther procedural languages, it has a formal basis which 

opens up the potential of formal reasoning and transformation as design 

techniques. 

In summary, the main features of procedural programming related to 

the "shared memory" data mechanism are: shared memory cells, updatable 

cells, and assignment as the basic action; and related to the "control 

driven" control mechanism are: implicit sequential execution, plus 

explicit sequential and parallel control structures. Advantages of the 

"shared memory" data mechanisms include: its efficiency for supporting 

the sharing of data structures, the ability to take an unspecified 

number of copies of a cell's contents, and the updating of the contents. 

In fac t, these features can be viewed as a simple scheme for memory 

management. A major disadvantage with this data mechanism, as discussed 
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below, is synchronising access to a memory cell. An advantage of the 

"control driven" control mechanism for execution is that flows of data 

and control in a program are separate, and hence can be made identical 

or distinct. The related disadvantage of this control mechanism is that 

flows of control must be explicitly specified by the programmer. 

Due to these data and control mechanisms, procedural programming is 

very flexible and most algorithms can be expressed with reasonable effi­

ciency. But this flexibility also presents disadvantages: ensuring that 

the flow of control correctly synchronises the use of memory cells, and 

the difficul ty, for modular programming, of encapsulating information 

due to the general accessibility of cells. Parallelism also presents 

major problems for the unconstrained use of the "shared memory" data 

mechanism, and is really only overcome by the introduction of "message 

passing" • 

Next, object-oriented programming is examined, which may be viewed 

as attempting to generalise the concurrent languages concepts of moni­

tors and message passing. 

4.2. OBJECT-oRIENTED PROGRAMMING 

Object-oriented programming is based on a "message passing" data 

mechanism and a "pattern driven" control mechanism. For the data 

mechanism, data is communicated between the active objects (cf. 

processes) by "message passing", and wi thin a process, by the use of 

"shared memory". These variables represent the state of an object, and 

in SMALLTALK, for example, there are six different kinds of variables. 

For the control mechanism, execution of objects is viewed as "pattern 

driven", but, in SMALLTALK, execution within an object is "control 
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driven" and implicitly sequential. Each method (cf. entry point) within 

an object is identified by a message pattern consisting of a selector 

and names for the arguments. It is this pattern that is matched with 

that of the message. The remainder of the message is executed sequen­

tially. As well as the implicit "control driven" execution of a method, 

there are explicit control structures that provide conditional "if True" 

or "if False", and iterative "whileTrue" or "whileFalse" execution. 

SMALLTALK [4,33] illustrates the current state of object-oriented 

programming, and an examination of the format of classes, which is the 

natural unit of modularity in the language, follows. A class consists 

of three basic types of information: class name, variable declarations, 

and the "methods" describing the actions when a message arrives. Six 

kinds of variables may be used [33]: the instance variables, unique to 

each instance of the class; the pseudo-variable "self"; the actual mes­

sage arguments; temporary variables, created when a message is received; 

class variables , shared by all instances of the class; and global vari­

ables. 

The methods of a class specify what happens when its instances 

receive a particular message. These actions consist of sending other 

messages, assigning values to variables and returning a value to the 

original message. A method has three parts: a message pattern which is 

similar to a label, some temporary variable names, and expressions to 

process the received message (these three parts of a method are 

separated by vertical bars "I ") . The message pattern consists of a 

selector and names for the arguments. Expressions are separated by dots 

".", and the last one may be preceded by a vertical arrow indicating the 

value to be returned. These expressions contain conventional expres­

sions, assignment statements, as well as message-sending expressions 



- 60 -

that serve a similar role to procedure calls. 

A message-sending expression defines the receiver (cf. the pro­

cedure), the selector (cf. the entry point), and the arguments of the 

message. There are basically three types of message: firstly "unary" 

consisting of a single selector and no arguments, secondly "binary" con­

sisting of a single selector and a single argument, and lastly "keyword" 

where an "identifier:" is prefixed to each argument. For example: 

Message 

unary 

binary 

keyword 

Example 

name INC 

name + 1 

name s 1: 1 s 2: "a" 

Messages are evaluated left to right and, like with conventional expres­

sions, parenthesis can be used to change the order of evaluation. 

The two control structures in SMALLTALK described so far are the 

sequential "control driven" execution of expressions in a method and the 

"pattern driven" sending of messages that invoke other methods, that 

eventually return values. All other control structures are based on 

objects called blocks, each containing a sequence of expressions. Exe­

cution of blocks may themselves be controlled by conditional selectors 

"if True" or "if False" , and by conditional iteration "whi I eTrue " or 

"whileFalse". Examples of the use of these can be seen in the Quicksort 

program, which follows. 

Figure 4.5 shows a (restricted form of) class template [33] for 

sort. It contains a single instance variable called "result", and has a 

single method with selector "array". Sort is activated by a "pattern 

driven" keyword message containing two arguments: the array to be sorted 

and its size. These arguments are referred to as "v" and "n". Next, 
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the declaration of the temporary variables "low", "high", "i", "j", "k", 

and "pivot" is seen. The array "v" will be partitioned into "low" and 

"h" hIt hil """ d "k" "d" d / 19 , W e J an provl e ln exes counters for these two arrays. 

Sort starts by initialising these temporary variables, for instance set-

ting "pivot" to the first element "at:O" of "v". 

Next, array "v" is partitioned using the conditional iteration 

"[ ••• ] whileTrue [ ••• ]" which has the form of a WHILE-DO. Inside the 

iteration, the conditional selector IF-THEN-ELSE extracts elements from 

"v", inserting them in the array "low" if less than the "pivot", or into 

"high" if greater than the pivot. Having partitioned the array "v", 

sort is invoked (if necessary) for "low" and "high". Finally, the con-

tents of "low", "pivot" and "high" are stored into the array "result" 

which is returned to the invoking message. Since "result" is declared 

as an instance variable, ra ther than as temporary, its value will be 

retained to the next call, which is illustrative but not particularly 

sensible in this example. 



class Da.e 
sort 

instance variable 
result 

.ethods 
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array: v size: n I low high i j k pivot 
"initialise temporary variables" 
j (- k (- O. 
pivot (- vat: O. 
i (- 1. 
"partition array v" 

[i ( n] whileTrue: [ [(vat: i) ( pivot] 
if True: [low at: j put:( vat: i). 

j (- j +1 ] 
if False: [high at: k put:(v at: i). 

k (- k + 1 ] 
i (- i + 1 ]. 

"sort both subsets if necessary" 
[j > 1] if True: [low (- sort new array: low size: j]. 
[k > 1] if True: [high (- sort new array: high size: k]. 
"store sorted subsets into result" 
result (- low. 
result at: j put: pivot. 
i (- 0 
k timesRepeat : [ result at: (i + j + 1) put: (high at: i) i (- i + 1]. 
"return result array" 
~ result. 

Figure 4.5: Object-Oriented Program in SMALLTALK 

SIMULA [12] was the first language to explore object-oriented pro-

gramming for structuring information. It grafted the notion of objects 

onto an ALGOL-like base language, and provided for sharing amongst 

objects by organising them into classes. This work has been extended by 

incorporating message-passing in a number of languages, most notably the 

SMALLTALK series of languages. An important aspect of SMALLTALK is that 

it provides a "total" programming system unifying features, normally 

found in operating sys tems, wi th those of programming languages. In 

addition, object-oriented languages may be seen as attempting to combine 

concepts from procedural programming and functional programming. 
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In summary, the main features of object-oriented programming are: 

the use of active objects that retain state, the sharing of data between 

objects of a class using "shared memory", and the communication and exe­

cution of objects by "message passing". One of the major advantages of 

object-oriented programming and its associated concepts of class and 

instance is that it encourages modularity. Another advantage is that 

objects can act as templates for different types of data, and a further 

one, provided by the different types of "variables" as found in 

SMALLTALK, is that data can be shared by objects (of the same class) or 

can be only accessible wi thin a class. A possible disadvantage of 

object-oriented programming is the "pattern driven" execution based on 

the arrival of messages, which is, arguably, harder to understand for 

the traditional programmer than either "control driven" execution, or 

"demand driven" execution associated wi th procedure calls. A final 

specific criticism of SMALLTALK is that the control mechanism is res­

tricted to sequential execution. 

In object-oriented and procedural programming, a computation is 

performed by executing a series of actions in a precisely specified 

order. Each statement in these programming styles represents only one 

step in an algorithm. This implies that correctness of an individual 

statement cannot be determined by solely examining the statement. 

Instead, the entire algorithm in which the statement occurs must be exe­

cuted to determine if the statement is correct. In functional and logic 

programming, to be examined below, frequently it can be determined 

whether a statement is true by examining that statement only. The rea­

son is that functional programming is based on expressions and logic 

programming is based on relations. 
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CBAPrEB. 5 - AKALYSIS OF FDRCTIOIIAL AIm LOGIC PROGRAHHDiG 

This chapter analyses Functional and Logic styles of programming. 

identifying advantages and disadvantages. 

5.1. FDRCTIONAL PllOGllAHKIBG 

There has been a surge of interest in functional programming fol­

lowing the publication of John Backus' 1977 ACM Turing Award lecture 

[9]. After all, to quote Turner [56]. "it is not every day that the 

inventor of FORTRAN gets up and says that he now thinks that the inven­

tion of the assignment statement was a serious error!" The language most 

people first think of when functional programming is mentioned is LISP. 

However LISP is a functional language only if RPLACA. RPLACD. and all 

other functions with side-effects are avoided; this subset of the 

language is often called "Pure" LISP. Unfortunately. a number of people 

find the syntax of LISP clumsy. 

Functional programming is based on three different pairings of data 

and control mechanisms, as shown in Figure 3.2. (These, in fac t, 

correspond to the programming models: data flow. string reduction and 

graph reduction [50].) The essential concepts shared by all categories 

of functional languages are: expressions, function applications and 

recursive data structures. as well as the absence of: sequentiality, the 

assignment statement, and side-effects. The two important sub-classes 

of functional languages. identified in Chapter 3, are data flow (i.e. 

single-assignment) languages and applicative languages. 
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S.I.I. Data Flow Languages 

Recall, in the data flow programming model, a statement outputting 

(i.e. producing) a resul t, passes a separate copy by "message passing" 

to each statement wishing to input (i.e. consume) the value. There is 

no fundamental concept of variables - a "shared memory" data mechanism -

in a data flow program; data is passed directly from one statement to 

another. Execution of a statement is "data driven", with a statement 

being executed as soon as all its input values are available. State­

ments in data flow languages are similar to statements in conventional 

languages, but follow a single assignment rule: a name may appear on the 

left side of an assignment only once within the area of the program in 

which it is active. 

In the data flow languages, the data mechanism is "message pass­

ing", and the control mechanism is "data driven". For the data mechan­

ism, an important property is the copying semantics, which means that 

any operation on a data structure always creates a new structure (it is 

most unusual to find any "shared memory" data mechanism in data flow 

languages) • For the control mechanism, although execution is "data 

driven", statements in data flow language are superficially similar to 

statements in conventional languages, as can be seen from Figure 5.l. 

Explicit control struc tures are provided for conditional expressions 

(e.g. if-then-else), for iterative expressions (while-do, for-do) and 

for function calls. 

The most important copying semantics of data flow languages means 

that, for instance, an array is not modified by a subscripted assignment 

statement Uarray[index] :=value", but is processed by an operator which 
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creates a new array. In the ID language this operator appears as: 

new_array<- array + [index]value 

while in the VAL language it is written: 

new_array:= array[index:value] 

These single assignment statements are adequate for simple assignment of 

the form: 

name:= expression 

and even for conditional statements, as long as they are restricted to 

conditional expressions: 

name:= if expression then expression 

else expression 

Where the single assignment rule might appear to cause trouble is for 

iterative statements which imply the updating of variables. 

In data flow iteration, since there are no side-effects, the only 

state information in an iteration is the binding of loop variables, and 

the only activity that can occur is redefinition of these variables. An 

iteration therefore consists of [1]: 

1. the definition of the initial values of the loop variables, 

2. a termination test for the iteration, 

3. the definitions of the new values of the loop variables, and 
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4. the results to be returned when the loop terminates. 

As an illustration, an iteration to compute the ubiquitous factorial of 

"n" could be written in ID as: 

answer (- (initial j (- n; k (- 1; 
while j (> 0 do 

return k); 

new j (- j - 1; 
new k (- k * j; 

The last control structure is functions. To make functions as powerful 

as procedures in conventional languages (which can, in addition, exploit 

side-effects), data flow languages allow functions to return multiple 

values, or arrays, or even both. 

For the Quicksort example, an examination of ID [5) designed by 

Arvind and Gostelow at the University of California at Irvine, was 

chosen. Figure 5.1 shows the ID program for Quicksort, based on the 

recursive procedure sort. This procedure consists of two main state-

ments, the first "(low,j ••• " which partitions the array "v" into the 

subsets "low" and "high"; and the second "return ••• " that takes the two 

sorted subsets and the pivot "v[l)", creates a single array "t", and 

returns this sorted array. The first statement is iterative with the 

loop variables "low" and "high" which are arrays, "j" and "k" which are 

indexes/ counts for the two arrays, and "pivot". Initially, the arrays 

are set undefined, the indexes are set to zero, and the pivot becomes 

"v[l)". 

The body of the iteration is the for-statement. It compares each 

I " [ )" i h' l' h element;n the array "low" e ement v i aga nst t e p~vot, p ac~ng t e ~ 

and incrementing" j", if less than the pivot, else placing it in "high" 

and incrementing "k". When all elements of "v" have been partitioned, 

the arrays "low" and "high" are themselves sorted if they contain more 
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than one element. The iteration then returns the sorted arrays "low" 

and "high", and "J'" the number of I ."" e ements 1n low, which is used to 

merge the two arrays. 

Although not obvious from the iteration syntax, each loop variable 

must be redefined on each iteration. Thus the conditional statement 

would be more clearly expressed as: 

(new low[j+l], new j, new high[k+l], new k, new pivot) (-

(if v[i] ( pivot then v[i], j+l, high[k+l], k, pivot 
else low[j+l], j, v[i], k+l, pivot) 

reflecting the data driven nature of the execution. 

The result of the iterative statement is two sorted arrays, but 

before these can be returned by the procedure sort, they must be con-

catenated to form a single sorted array. This task is performed by the 

return statement using an iterative expression. It initially sets the 

array "t" to the contents of "low" with the pivot "v[l]", appended on 

the end (i.e. the j+1 element). Nex t, each element of "high" is 

appended to "t". Finally, notice in Figure 5.1 that two ID array opera-

tion formats are used. The normal assignment format is "new_array (-

array + [index] value"; however if the statement is a redefinition then 

the format is abbreviated to "new array[index] (- value". 
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procedure sort (v,n) 
(low, j ,high (­

(initial low (- ~ j (- OJ 
high (- A k (- 0; 
pivot (- v[l) 

for i from 2 to n do 
(if v[i) ( pivot 

then new low[j+l) (- v[i)j 
new j (- j+l 

else new high[k+l) (- v[i)j 
new k (- k+l) 

return (if j)l then sort(low,j) else 
j, 

low), 

(if k)l then sort(high,k) else high) 

return (initial t (- low+[j+l)v[l) 
for i from 1 to n-j-l do 

) 

new t (- t+[i+j+l)high[i) 
return t» 

Figure 5.1: Data Flow Program in ID 

Whereas ID, VAL and VALID were developed for programming data flow com-

puters, LUCID (and FP discussed below) was developed for its attractive 

mathematical properties and its amenability to program verification, but 

it is nevertheless a suitable language for data flow computation. 

The advantages of data flow languages like ID and VAL are that 

their single assignment syntax is similar to conventional languages, 

that parallelism is implicitly expressed, and they are natural for pro-

gramming data flow computers. Programming languages for such computers 

must satisfy two criteria: it must be possible to deduce the data depen-

dencies of the program operations; and the sequencing constraints must 

always be exactly the same as the data dependencies, so that the activa-

tion of statements can be based simply on the availability of data. 



- 70 -

5.1.2. Applicative Languages 

Here a distinction is made between two subsidiary classes of appli­

cative languages, which have been termed "function-level" and "pattern­

matching". Next, the two classes of applicative languages are examined. 

In the applicative (function-level) language, the data mechanism is 

"message passing" and the control mechanism is "demand driven". For the 

data mechanism, programs deal with structured data, and do not name 

their arguments. For the control mechanism, the role of control struc-

tures is handled by "combining operators" that directly manipulate their 

arguments. For example, FP is based on the use of so-called functional 

forms, namely operators such as Composition II II 

• • Insert "I", and 

ApplytoAlI "@". In addition. there are operators providing conditional 

expressions "(p -> f;g):x" and iterative expressions "(while p f):x". 

In applicative (pattern-matching) languages the data mechanism is 

"shared memory" and the control mechanism is "demand driven". For the 

data mechanism there are four types of argument: number. string, list. 

and function. For the control mechanism there are "demand driven" 

operators. such as "CONS", "Concatenate", and "Subrange"; conditional 

expressions. in which a boolean guard is written in front of an expres-

sion; and the basic concept of function application. Although the exe-

cution semantics is usually referred to as "pattern-matching", the con-

trol mechanism has been classified as "demand driven". so as to distin-

guish the underlying reduction semantics from the semantics of logic and 

object-oriented programming. 
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Function-Level 

Function-level languages denote a class of functional programming 

where the role of control structures is handled by "combining operators" 

that manipulate functions directly, without ever appearing to explicitly 

manipulate data. These functional programs deal with structured data, 

are often non-repetitive and non-recursive, are hierarchically struc-

tured and do not name their arguments. 

The best known example of a function-level app1icative language is 

Backus' FP [9) which has superficial similarities to APL. FP is founded 

on the use of a fixed set of combining forms called functional forms. 

The most important functional forms are Composition ".", Insert "/", and 

App1ytoAl1 "@" that combine existing functions to form new ones. If 

"f:x" is written for the result of applying "f" to the object "x", then 

"f.g" is the function obtained by applying first "g" and then "f" to the 

argument: 

(f.g): <xl,x2, ••• ,xn> is f: (g: <xl,x2, ••• ,xn» 

It/fIt is the function obtained by inserting "f" into the arguments; 

/f: <xl,x2, ••• ,xn> is f:<xl,f:<x2, ••• ,f:<xn» ••• > 

and "@f" is the function obtained by applying "f" to every member of the 

argument: 

@f ·<xlx2xn>1.·s<f:xl,f:x2, ••• ,f:xn) . " ... , 

Functional forms plus simple definitions are the only means of building 

new functions from existing ones. (In addition, partial results cannot 

be given a name.) All the functions of FP are of one type: they map 
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objects into objects, and always take a single arguments. 

Figure 5.2 shows the FP version of Quicksort (produced by a col­

league, D. Mundy) consisting of five definitions. Briefly, "sort" par­

ti tions the array; "merge" takes three lists and combines them; "strip" 

removes nulls from a list; "null" tests for null elements; and "It" is a 

"less than" conditional operator. 

Definition "sort" is a conditional expression with the following 

meaning: 

(p -) f;g):x is if (p:x)= true then f:x 
if (p:x)- false then g:x 

The initial part of sort "nu11-)id" tests for an empty list and returns 

it. The latter part "merge ••• " performs the partition and divides into 

five parts. Working from right to left. the construction: "[id.i)" 

extracts the pivot element: 

[id.l]:<xl.x2 •••• ,xn) is «xl,x2, ••• ,xn).xl) 

Next. distribute right "distr" generates a new list where a copy of the 

pivot is paired with each element: 

distr: «xl,x2, ••• ,xn),xl) is «xl.xl).<x2,xl), ••• ,<nn,xl» 

Then. the comparison operators ''It'', "eq", and "gt" are applied to the 

three copies of the list in parallel: 

[@( ••• ] < ) is <It: <xl,xl), ••• ,lt: <xn,xl», 
<eq: <xl,xl), ••• ,eq: <xn,xl», 
<gt: <xl,xl), ••• ,gt: <xn,xl» 

to produce three lists containing. respectively. all the values less 

than, equal, and greater than the pivot. 
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Definition "strip" is then applied, which the uses definition 
"null" to test for empty sequences, and removes them from the lists. 
Next, the construction "[sort ••• ]" is used to sort the partitioned sub-

sets. And finally "merge" is applied to concatenate the sorted lists. 

def sort null -) id; 
merge.[sort.l, 2, sort.3].@strip.[@(lt -) 1; []), 

@(eq -) 1; []), 

def merge = \apndr .apndl. [1, \ apndr.apndl. [2, 

def strip = I( null. 1 -) 2; apndl).apndr.[id, 

def null = eq. [ [ ] , id] ; 

def It = ge -) '0; , 1; 

sort (5 2 1 7 9 4 3 6 10 8 11 12 13 14 15 16) 

Notation: @ 

\ 
I , 

apply-to-all 
composition 
insert left 
insert right 
constant 

@(gt -) 1; [])].distr.[id,l]; 

3]]; 

[ ] ] ; 

Figure 5.2: Applicative (function-level) Program in FP 

The APL-like programming style of function-level applicative 

languages is clearly very concise and powerful. However, the fact that 

functions do not name their arguments implies that function level pro-

grams are sometimes difficult to understand. In contrast, in the second 

category of applicative languages, called "pattern-matching", naming of 

arguments by functions is an essential ingredient. 

Pattern-Hatching 

This category of applicative programming languages denotes a class 

of languages whose functions use "pattern-matching" in the binding of 

formal parameters and actual parameters. (Recall. this control 
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mechanism has been classified as "demand driven" so as to distinguish 

the underlying reduction semantics from the semantics of logic.) Typical 

of the many interesting pattern-matching languages is Turner's SASL 

[55]. The SASL system is interactive and includes built-in commands 

for: editing programs, and saving them in (and retrieving them from) 

files, etc. In addition the user can ask to have expressions evaluated 

(in the environment established by the program) and the result output at 

the te rminal. 

A SASL program is a collection of equations by means of which the 

user attaches names to various objects. There are four types of object: 

numbers, strings enclosed in double quotes, lists, and functions. 

Numbers and strings have the normal properties one could expect, with 

the usual kinds of operations defined on them. Lists are written using 

round brackets and commas: 

number ( 1,2,3,4,5,6,7,8,9,10) 

and elements of a list are accessed by indexing. For example the expres-

sion "number 3" would here give the result "3". 

I . 1 d "." Important ist operators ~nc u e . (corresponding to the LISP 

function "CONS") which adds a new element at the front: 

0:(1,2,3,4,5,6,7,8,9,10) gives (0,1,2,3,4,5,6,7,8,9,10) 

"++", which concatenates two lists: 

(1,2,3,4,5) ++ (6,7,8,9,10) gives (1,2,3,4,5,6,7,8,9,10) 

" __ ", which forms the difference of two lists: 

(1 2 3 4 5 6 7 8 9 10) -- (1 3,5,7,9) gives (2,4,6,8,10) 
ttl,t"" , 
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and lastly" •• ", which denotes the list of numbers , such as: 

(1 •• 10) gives (1,2,3,4,5,6,7,8,9,10) 

In addition, SASL supports infinite struc tures. For example "(1 •• )" is 

the list of all natural numbers starting at 1, and the equation "x=1 :x" 

defines "x" to be the infinite list all of whose elements are "1". 

Functions are denoted by writing down one or more equations with 

the name of the function (followed by some formal parameters) on the 

left and a value for the function on the right. For instance the obli­

gatory factorial is expressed as: 

fac 0 1 

fac n n > 0 -> n * fac{n - 1) 

The order in which equations are written has no logical significance. 

Where order is important a boolean "guard", such as "n > 0" above, is 

placed in front of an expression. More sophisticated forms of pattern-

matching involve the use of list structures in formal parameter posi-

tions as illustrated in the Quicksort example. 

The SASL program in Figure 5.3 consists of four equations, two per-

forming the sort and two handling the subsidiary partitioning operation. 

Sort differentiates between two types of parameter, the empty list "0" 

and non-empty lists "(a :x)". For an empty list, the first equation 

returns the empty list. For a non-empty list, the second equation uses 

the CONS operation in the formal parameter list "(a:x)" to give the name 

"a" to the first element of the list and "x" to the remainder of the 

list. The body of this equation consists of two parts, the subsidiary 

" () ()" i' th list "x" us~ng definition m,n - split a x which part t~ons e ~ 
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"a" as the pivot, then calls sort to partition the two subsidiary lists 

"m" and "n", and lastly concatenates the sorted lists. The meaning of 

"sort m ++ a : sort n" is 

concatenate (sort(m), cons(a,sort(n» 

Next, the two split functions will be examined. The split dif-

ferentiates between two types of "x" parameters, the empty list and 

non-empty lists. The empty list occurs with a one element array, in 

which case the list corresponding to "m" and "n" in the call are 

returned. For non-empty lists, the second parameter CONS is used in 

calling the head "b" and the remainder "x". Split then compares the 

extracted element "b" against the pivot "a": if less than, then "b" is 

inserted into the list "m" using the CONS operator 11.11 . , else fib" is 

inserted into "n". Then in both cases split is recursively called to 

extract the next element of the list "x". Notice firstly that the body 

of the second split operates like an IF-THEN-ELSE, and secondly there 

are no side-effects - the names "a", "b" etc. are formal parameters and 

are thus distinct in the four equations. 

DEF 
sort () 
sort (a 

split a () 
split a (b 

? 

() 
x) sort m ++ (a : sort n) 

WHERE m,n split a x () () 
m n = m,n 

x) m n = b < a -) split a x (b 
split a x m (b n) 

m) n 

Figure 5.3: Applicative (pattern-matching) Program in SASL 

Applicative languages have an additional powerful abstraction 

mechanism, called the higher order function [30], which is a function 

that returns another function as result. It works as follows. If a 
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function is defined to have say "n" arguments, it can be applied to less 

t han "n" (say "m") arguments. I th' h n 1S case t e result is a function of 

(n-m) arguments in which the first "m" arguments are "frozen in". The 

advantage of this abstraction mechanism is that a large number of analo­

gous functions can be built with little extra specification. 

In summary, the main feature of functional programming is baSically 

the "clean" mathematical world of equations. Advantages are the unifor-

mity of the structures manipulated, implicitly expressed parallelism 

from the "data driven" and "demand driven" control mechanism, plus the 

absence of: explicit sequential execution, assignment and side-effects. 

Specific advantages for data flow languages are the similarity of their 

syntax to conventional languages and their obvious qualities for pro-

gramming data flow computers. Specific advantages for applicative 

(function-level) languages are that they are often non-repetitive and 

non-recursi ve, hierarchically s truc tured, and do not name their argu­

ments. Specific advantages of applicative (pattern-matching) languages 

are the operators for manipulating lists, and higher-order functions. 

In functional programming the advantages and the disadvantages relate to 

the same concepts. Disadvantages of functional programming are, argu-

ably, the absence of any "control driven" execution, assignment state-

ments and side-effects. A specific disadvantage of data flow languages 

is the absence of a "shared memory" data mechanism, causing problems for 

the manipulation of data structures. Lastly, a specific disadvantage 

for applicative (function-level) languages is that they do not name 

their arguments, making programs terse and often difficult to under­

stand. 
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5.2. LOGIC PIlOGRAMHIBG 

Logic progrannning seems to be based on a "shared memory" data 

mechanism and a "pattern driven" control mechanism. For the data 

mechanism, data consists of sets of alternative values which can be 

numbers or strings. 

pattern-matching and 

For the control mechanism, execution is based on 

substitution. "Pattern driven" execution may 

select a number of alternative commands, which are executed in parallel 

(OR-parallelism). In turn a command may be executed by evaluating all 

the goals in parallel (AND-parallelism) and basically only succeeds if 

all goals succeed. 

Next, an examination of a class of logic progrannning based on the 

Horn clause subset of logic is made. 

5.2.1. Born Clause Languages 

For many applications of logic it is sufficient to restrict the 

form of clauses to those containing at most one conclusion. Clauses 

containing at most one conclusion are called Horn clauses, after the 

logician Alfred Horn. Each clause is either an assertion or an implica-

tion. In general, every assertion is an atom "A.", whereas every impli­

cation has the form "A if BI and B2 ••• and Bn." and all conclusions "A" 

and conditions "BI,B2, 

ship amongst individuals. 

Bn" are atoms, expressing a simple relation­

Individuals can be named by constants such as 

. h "X" The "A" numbers "I" and strings as "tom", or by varl.ables suc as • 

part of a clause is called the "head" and the "BI,B2, ••• ,Bn" is called 

the body, and is expressed in a language such as PROLOG as: 

head :- body. 
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whose form is illustrated by Figure 5.4. 

Basically, PROLOG attempts to solve goals sequentially from left to 

right. For a given goal, PROLOG attempts to find a clause whose head 

can be made to match the goal. If the clause is an implication then it, 

in turn, attempts to solve the subgoals. The possible results of a goal 

will be failure or success, plus possible values associated with vari­

abIes. To achieve success for a goal, all the subgoals must succeed. 

If one of the subgoals cannot be solved, PROLOG backtracks and tries to 

find another clause whose head matches the goal. If no untried clauses 

remain, then failure is returned for the goal. 

More detail on how PROLOG works can be found by examining the 

Quicksort example. It is interesting to note, in addition, the similar­

ities between this PROLOG program and the previous SASL example. In 

Figure 5.4 sort differentiates between two types of parameters, the 

empty list "[]" for which it returns an empty list "[]", and the non­

empty list "[XIL]" for which it returns the sorted list "R". For non­

empty lists, the second clause uses the CONS operator "I" in the formal 

parameter list "[XIL]" to set the first element to "X" and the remainder 

of the list to "L". The body of this clause consists of four subgoals: 

split using "X" as the pivot partitions the list "L" into the two subsi­

diary lists "LI" and "L2", sort takes a list and sets its result to the 

sorted list, and concat takes the two sorted lists plus the pivot and 

concatenates them to produce the result "R" of the sort clause. 

Next split's clauses will be examined. Split differentiates 

between three types of parameters: the empty list, the list whose first 

element is less than or equal to the pivot, and the list whose first 

element is greater than the pivot. For an empty list, split returns two 
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subsidiary empty lists. For non-empty lists, split uses CONS to set the 

first element of the list to "y" and the remainder of the list to "L". 

This "y" value is then compared against the pivot "X". If "y =( X" then 

the second split cause proceeds to partition the remainder of the list 

"L" by the reinvoking split. When this list has been partitioned into 

"LI" and "L2", "y" is CONS on the first list "[YILI)" and the two lists 

are returned by the clause. If "y > X" the second split clause fails, 

and execution proceeds to the third clause. It operates in a similar 

way, reinvoking split to partition the list "L" and using CONS to append 

"y" to the front of the second resul t list "[Y I L2)". 

The final two clauses in Figure 5.4 show the specification of con-

catenate. In the SASL example their role was performed by the "++" 

operator. In fact, the sort clauses can be specified so as to remove 

the need for the concat clauses, but this employs a slightly less 

straight forward program. 

so r t ([ ) , [ ) ) • 
sort([XIL),R) :-split(X,L,LI,L2),sort(LI,Rl),sort(L2,R2),concat(Rl,[XIR2),R). 

split( ,[),[],[). 
split(X,[YIL),[YILI),L2) :-Y =( X,split(X,L,Ll,L2). 
split(X,[YIL],LI,[YIL2) :-Y > X,split(X,L,LI,L2). 

concat([),L,L). 
concat([XIT),L,[XITL) :-concat(T,L,TL). 

Figure 5.4: Horn-Clause Program in PROLOG 

A number of additional points concerning PROLOG, but not 

highlighted by the Quicksort example, are worth noting. Firstly, a PRO­

LOG program may have more than one valid result, due to similar clauses. 

Once the first result is obtained, each additional result is obtained by 

typing "?" until failure is returned. Each causes PROLOG to search a 

further set of possible clauses. Secondly, there is great flexibility 
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in specifying the question asked to a PROLOG program. Thus a program 

can be given (what may be viewed as) the input and asked to ·deduce the 

output. Alternatively, the output can be given to the program, and PRO­

LOG can deduce the input. Lastly, there is clearly considerable poten­

tial for exploiting parallelism in the execution of PROLOG programs. 

This is pursued either by evaluating concurrently all of the heads that 

match a goal (this is referred to as OR-parallelism since any result is 

acceptable) or by evaluating all of the subgoals concurrently (this is 

referred to as AND-parallelism since all must succeed for the goal to 

succeed). 

In summary, the main features of logic programming are pattern­

matching (unification) and substitution. Advantages of logic program­

ming include the fact that it is the most "high level" programming 

model, in specifying "what" rather than "how" a computation is to be 

executed, and is the closest programming style to knowledge-based sys­

tems. Disadvantages of logic programming are that the notation is very 

concise and therefore terse, and hence difficult to understand when seen 

in the form of a program. In addition, the "pattern driven" mechanism 

can lead to a lack of control over evaluation of commands. 

5.3. APPLICATION PROGRAMHING 

Application programming styles contain languages covering many dif­

ferent pairings of data mechanisms and control mechanisms. For example, 

expert systems building tools [60] seem to contain a "shared memory" 

data mechanism and a "pattern driven" control mechanism. However, the 

"electronic sheet" languages (discussed below) seem best classified as 

having a "shared memory" data mechanism and a "data driven" control 
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mechanism. For the data mechanism, a memory location contains a value 

and possibly also an expression defining the value in terms of other 

memory cells. For the control mechanism, execution is "data driven" but 

not data flow; when the value of a location is changed, all other loca­

tions that use the value are notified and recalculate their values using 

this new information. Besides the "data driven" evaluation, a user may 

specify whether recalculation is to proceed down the columns or along 

the rows. (This is viewed as "control driven"). Note also the absence 

of conditional operators, which limits the scope of programming in cer­

tain of these languages. 

5.3.1. Electronic Sheet Languages 

VIS ICALC [14] was born out of the observation that many problems 

are commonly solved wi th a calculator, a pencil and a shee t of paper. 

With VISICALC the computer's screen becomes a "window" which looks upon 

a much larger "electronic sheet". The user can scroll this window in 

all four directions to look at any part of the sheet. 

VISICALC's sheet is organised as a grid of columns and rows. As 

can be can seen below, rows are numbered 1, 2, 3, etc. and columns are 

labelled A, B, C, and so on. At each intersection of a row and column 

there is a variable with a coordinate (i.e. identifier) AI, B3, C17, and 

so forth. Into each variable the user can enter one of three types of 

da ta: a string, a number, or an ari thmetic expression. When the con­

tents of a variable is changed. the VISICALC system automatically recal­

culates all the other related variables on the sheet. changing their 

values and displaying them on the screen if within the window. 
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Entry contents 

-------------------------------------------------
Entry line 
Prompt line 
Edit line 
column 
and 
row labels 

cursor 

B3 
VALUE 
+B2-Bl 

A 

1 COST 

2 SALE 

3 PROFIT 

4 

5 

6 

+B2 -Bl I 
I 
I B C I 

600 I 
I 

650 
I 

I 
50 I I 

I 
I 
I 
I 
I 
I 
I -------------------------------------------------

Figure 5.5: VISICALC Screen (abbreviated contents) 

Figure 5.5 presents an abbreviated layout for the VISICALC screen. 

The screen consists of two basic areas: the "control panel" consisting 

of three lines at the top, and the "window" at the bottom. Making up 

the control panel are the entry line, the prompt line, and the edit 

line. Information displayed on the entry line gives a full explanation 

concerning the variable highlighted by the cursor, including its name 

(i.e. coordinates), its contents, and the type. On the prompt line is 

displayed the type of entry VISICALC thinks you are making, and on the 

edit line is the actual input typed by the user. VISICALC is "syntax-

directed"; each time the user presses a key, VISICALC displays on the 

prompt line what can be typed next. 

Operations in VISICALC are either editing commands that manipulate 

the contents of the screen, or built-in functions and operators that may 

be used in arithmetic expressions. Commands include operations for 
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clearing a specific variable, row or column or the whole screen; for 

moving information between the screen and file; for'replicating the con­

tents of variables; and for printing. These commands are entered in the 

edit line. Built-in functions, as might be expected, provide generally 

useful operations such as minimum value "@MIN", sine "@SIN", and because 

it is a financial-modelling system, the net present value 

"@NPV(dr,range)" of the cash flows in "range", discounted at the rate 

specified by expression "dr". These built-in functions are used with 

the arithmetic operators (+,-,etc.) in the expressions stored in vari­

ables. 

Execution, or recalculation as it is called in VISICALC, occurs 

each time a variable is changed. VISICALC recalculates by starting at 

the upper left-hand corner of the sheet and working its way downward and 

to the right until it reaches the lower right-hand corner of the sheet. 

However, the system allows the user to select either of two possible 

orders: "down the columns" or "across the rows" first. 

As with previous programming languages, an attempt was made to pro-

gram Quicksort in VIS ICALC but this seems impossible, which is not 

surprising since VISICALC does not provide comparison operators or con-

ditional expressions. However, a reasonably respectable sort was coded, 

using the built-in functions "@MIN" and "@MAX", operating on a list of 

numbers, as shown in Figure 5.6. In this example, the numbers to be 

sorted are inserted into successive locations in column "A", providing 

the inputs for the expressions in column "B". Each expression compares 

two adjacent numbers and exchanges them if necessary. This process is 

i in columns "C", "D", "E" etc., repeated, using varying separat ons, 

causing the results to move left to right on the sheet. By presetting 

the numbers in column "A" to be largest number, and placing the 
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appropriate expressions in columns "B", "c" etc., a sort file can even 

be obtained to handle variable size arrays. 

A B C D E 
1 nl @MIN(Al,A2) Bl @MIN(Cl,C2) Dl 
2 n2 @MAX(Al,A2) @MIN(B2,B3) @MAX(Cl,C2) @MIN(D2,D3) 
3 n3 @MIN(A3,A4 ) @MAX(B2,B3) @MIN(C3,C4) @MAX(D2,D3) 
4 n4 @MAX(A3,A4) @MIN(B4,B5) @MAX(C3,C4) @MIN(D4,D5) 
5 n5 @MIN(A5,A6) @MAX(B4,B5) @MIN(C5,C6) @MIN(D4,D5) 
6 n6 @MAX(A5,A6) @MIN(B6,B7) @MAX(C5,C6) @MIN(D6,D7) 
7 n7 @MIN(A7,A8) @MAX(B6,B7) @MIN(C7,C8) @MAX(D6,D7) 
8 n8 @MAX(A7,A8) @MIN(B8,B9) @MAX(C7,C8) @MIN(D8,D9) 

Figure 5.6: "Electronic Sheet" Program in VISICALC 

Advantages of electronic sheet languages include the simple "data 

driven" programming model, the "electronic sheet" user-friendly 

input/output, and the ability to specify if evaluation is by columns or 

rows. Disadvantages relate to the simplicity of the system, such as the 

limited range of operators, which restricts the scope of the language. 

Having classified and analysed the major programming styles, a 

decentralised programming model will be chosen, in the next chapter, for 

future computers. 
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CIIAPTEB. 6 - DECElmlALrsED COBTJU)L FLOW IIODEL 

This chapter presents the decentralised control flow model, and 

justifies this choice by summarising the conclusions taken from: Chapter 

2 (Decentralised Computer Systems), Chapter 3 (Classification of Pro­

gramming Languages), Chapter 4 (AnalYSis of Procedural and Object­

Oriented Programming), and Chapter 5 (Analysis of Functional and Logic 

Programming) • 

6.1. CHOOSING A PR.OGR.AMHING HODEL 

In Chapter 2, two possible "images" for future decentralised com­

puters were presented, namely a parallel machine - consisting of identi­

cal powerful sequential processors, and a decentralised computer - con­

sisting of the minimum principles that distributed, parallel and sequen­

tial computers must obey so that they can work together as a system. 

The conclusion taken from Chapter 2 was that future computers will 

require a decentralised computer image. 

In Chapter 3, the fundamental computational (data and control) 

mechanisms that are believed to underlie programming languages were 

presented. In Chapters 4 and 5 these data and control mechanisms were 

used as a basis for analysing the major programming styles (i.e. pro­

cedural, object-oriented, functional and logic) and their underlying 

programming models (i.e. control flow, actor, data flow, reduction, and 

logic) • 
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Significantly (as shown by Figure 3.2) each category of programming 

model regards the data mechanisms and the control mechanisms as largely 

incompatible sets of alternative concepts. (For example, control flow 

models use "shared memory" and are "control driven", whereas data flow 

models use "message passing" and are "data driven".) Hence each category 

of programming, although Universal in the sense of a Turing machine, has 

specific advantages and disadvantages for computation, related to its 

choice of mechanisms. Two additional observations should be made con­

cerning the choice of mechanisms. Firstly, categories of programming 

models supporting "message passing" data mechanisms seem inevitably to 

also include a subsidiary mechanism for "shared memory". Secondly, 

categories of programming models supporting "data", "demand" and "pat­

tern driven" control mechanisms frequently have a subsidiary "control 

driven" mechanism, arguably to alleviate control problems [7]. 

Given the above considerations, then for computation "shared 

memory" seems the fundamental data mechanism and "control driven" execu­

tion seems the most primitive control mechanism. Using these mechan­

isms, it is relatively easy to implement and support the other mechan­

isms; the reverse appears not to be true. Control flow (and procedural 

programming) would seem therefore to embody the most fundamental compu­

tational concepts. 

The actual choice of programming model (see Figure 1.1) for future 

decentralised computers ranges from a low-level model, such as control 

flow, that specifies exactly how an algorithm is to be executed, to a 

higher-level model, such as logic, that merely specifies what algorithm 

is to be performed. Thus, for general-purpose computation, the essen­

tial choices are: 
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1. low-level model 

2. 

• flexibility of mechanisms 
• control over execution 
e.g. control flow 

high-level model 

· powerful abstraction mechanisms 

· safeness of programs 
e.g. logic, reduction 

This choice is analogous to that between the efficiency (but hazards) of 

assembly languages, and the power (but constraints) of high-level 

languages. High-level programming models are particularly attractive 

for languages, since they help manage software complexity. High-level 

(language) computers, on the other hand, have not been particularly suc-

cessful, due to the spectrum of applications to which general-purpose 

computers are applied. The programming model for a computer, which is 

implicitly required to support an open ended set of programming styles 

has, as its main requirement, to be flexible and unobtrusive. This 

Thesis is concerned with the programming of decentralised computers, and 

therefore, is oriented to a low-level programming model for computers. 

Thus, below, a control flow programming model is presented that 

embodies a "decentralised computer". This is referred to as the decen-

tralised control flow model. 

Next, a description of the principles of the decentralised control 

flow programming model is given, which is based on an earlier, highly 

recursive control flow model [51]. The recursive control flow model is 

closest in concept to reduction machines, having a highly recursive view 

of both computer and program structures. Operations are viewed as 

"editing" the program structure, causing programs to dynamically migrate 

between component machines. In contrast, the decentralised control flow 

model attempts to extend and generalise the von Neumann model for pro-
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gramming decentralised computers. These so-called principles should be 

viewed (and are described) as the " "t I h"" V1r ua mac 1ne underlying dec en-

tralised control flow programming. 

6.2. PRINCIPLES 

A good way of starting is by contrasting the decentralised control 

flow model wi th the von Neumann model. In the von Neumann model the 

main principles are: 

1. computer - a computer system comprising a processor and a memory; 

2. memory - a linear organisation of fixed-sized memory cells; 

3. addressing - a one-level address space of cells; 

4. program - a low-level machine language; 

5. communication - shared memory; 

6. execution - sequential, centralised control of computation. 

In the von Neumann model, a computer system comprises a vector of memory 

cells and a single processor. Each memory cell may contain just one 

elementary object (data or instruction) and has a unique address. The 

processor uses this address to perform a LOAD, STORE or EXECUTE opera-

tion on the contents of a memory cell. 

For a future generation of decentralised computers it is clearly 

appropriate to transfer into the computer's architecture the fundamental 

mechanisms of high-level languages (e.g. structured memory) and operat-

ing systems (e.g. filestore, contextual addressing, processes). 

Transferring these mechanisms from software to hardware should lead to 



- 90 -

more efficient representation and execution of programs. 

In the decentralised control flow model, the main principles are: 

1. computer - a computer system is a decentralised computer (a hierar­

chy of distributed, parallel and sequential computers); 

2. memory - a nested organisation of variable-size memory cells (like 

the file structure of an operating system); 

3. addressing - contextual address space of cells (like telephone 

numbers) ; 

4. program - a high-level machine language (as in LISP, where instruc­

tions may be recursively defined); 

5. communication - shared memory and message passing; 

6. execution - parallel, decentralised control of computation (as with 

UNIX commands). 

An essential concept in the decentralised control flow model is the 

direc t functional correspondence between the physical system and the 

logical information structure of the computer system: 
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Hardware 

1 2 3 

1 processor 1<==>1 processor 1<==>1 processor 1 
1-----------1 1-----------1 1-----------1 
1 memory 1 1 memory 1 1 memory 1 

Software 

1: 1 2: 1 3: 1 

Figure 6.1: Functional Correspondence of Hardware and Software 

In the system, the memory of each computer is viewed as a memory cell 

whose address is the hardware address of the computer. Inside a memory. 

further memory cells are represented. (Thus each computer has a unique 

address and operates like a memory bank belonging to a global memory.) 

The memory in such a computer allows each memory cell to contain a 

vector of subsidiary memory cells. For instance. an array of the 

numbers 0 to 9 can be represented by one memory cell containing the 

array, and subsidiary cells containing the individual numbers: 

1 

I I-~_I 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 9 1 

AddreSSing in the model is based on each memory cell being con­

sidered a context and each subsidiary cell having a unique "selector" 

within this context: 

3: 1:10 1 2:1113:12 1 10: 1 9 1 4: 

----------------------------------------------------
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Thus, wi thin the surrounding context, the address "3" 
may be used to 

access the whole array of numbers, while the address "3/2" allows access 

to the cell containing the number "1". 

Lastly, there is communication of data. I d n tra itional computers 

two operations may be performed on the contents of a memory cell: STORE 

and LOAD. STORE overwrites the content of the accessed cell, and LOAD 

takes a copy of the cell's content •. These operations support the shared 

memory semantics. To support message passing, and to integrate it with 

shared memory, two additional operations may be performed on the con­

tents of a memory cell: PUT and TAKE. 

shared memory message passing 

STORE addr PUT addr 
I I 

addr: addr: I "empty" I 

I I 
LOAD addr TAKE addr 

Figure 6.2: Memory Operations - LOAD, STORE, TAKE and PUT 

PUT may only store into an "empty" memory cell and TAKE may only remove 

a non-empty contents, replacing it with "empty". Both operations may be 

viewed as polling a memory cell until the cell is in the correct state. 

(Note STORE and LOAD operations are unaffected by a cell being "empty".) 

Illustrations of the various possible levels of implementation of 

the decentralised control flow model are provided by the Newcastle Con-

nection and the RIMMS multi-microcomputer, discussed in Chapter 2. For 

a more "idealised" computer implementation, each of the principles will 

be examined in turn. A good basis for such an implementation is pro-

vided by the Recursive Machine proposal of Barton and Wilner [62]. which 

initially inspired the following "virtual" machine. 
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6.3. C(Ml'OTEIl SYSTEH 

A decentralised control flow computer system, as illustrated in 

Figure 6.3, has a hierarchical structure, with each computer system 

being composed of a network of computers. Ea h c component computer sys-

tem operates like a memory cell servicing a primitive set of operations 

(LOAD, STORE, ••• ). The contents of a memory cell are manipulated by the 

associated processor. This associated processor may be accessed using 

its address by any computer in the contextual address space. 

Hardware 

1 : 

2: 

PRO C E S 
2: 

S 0 R 
3: 4: 

Iprocessorl<=>lprocessorl<=>lprocessorl<=>lprocessorl 
1---------1 1---------1 1---------1 1---------1 
I memory 1 I memory 1 1 memory I 1 memory 1 

M E M 0 R Y 

Software 

2: ( 1: ( ) 2:( ) 3:( ) 4:( ) . . . ) 

Figure 6.3: Decentralised Control Flow Computer 

As illustrated in Figure 6.3 there is a direct correspondence (at the 

higher levels) between the physical system structure and the logical 

information structure of the computer system. This is particularly 

important for programming, since each computer system in the hierarchy 

may be programmed as a single computer, and accessed by other computers 

using its address as if it were a simple memory cell storing a single 

object. In addition, a component computer is not constrained to provide 

a general-purpose service; it might in fact be special-purpose even to 

the extent of being a traditional memory cell. 
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6.4. ID'OBHAnOIf STlWCTUnlIIG 

Memory in the model consists of a nested organisation of variab1e­

size memory cells. Such a memory could be implemented by traditional 

LISP cells; however, delimited strings seem a more lidea1ised" implemen­

tation. 

When information is represented as nested delimited strings, a del­

imited string is considered a recursively-defined, variable-size memory 

cell. All information stored in a decentra1ised control flow computer 

forms a single delimited string. Thus the computer's memory is logi­

cally like the hierarchical file structure of most multi-user operating 

systems. A string consists of two alphabets of characters, namely (i) 

characters that delimit strings, and (11) data characters that form 

strings. For example, using brackets as delimiters, the array of the 

numbers 0 to 9 can be represented as: 

( (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) ) 

In the computer, the explicit delimiting characters would be left 

bracket "(" and right bracket ")", and the data characters are binary 

"0" and "1". Thus an array of the numbers 0 to 9 would be represented 

as: 

( (0) (1) (10) (11 ) (100) ••• (1001) ) 

It is unnecessary, however, to make all delimiters explicit. For exam­

ple, if a particular machine implementation used conventional fixed word 

size memory cells, then implicit brackets may be viewed as occurring on 

word, byte and even bit boundaries. But the implementation would then 

restrict the usage of these lower level strings. Thus the allocation of 

memory cells is context dependent; depending on whether the cell 
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corresponds to a "physical" computer or to a "virtual" delimited string. 

(A virtual cell is created by an access to an undefined structure, and 

is initially empty.) 

6.5. ADDIlESSDlG SCIIEHE 

Addressing of information is based on the concept of context, which 

is the model for references in operating system filestores and for tele-

phone numbers in the telephone network. As with telephone numbers in 

the international telephone network, an address is variable-length 

depending on the path between the point of reference and the target 

memory cell. 

In the contextual address space, each memory cell (i.e. delimited 

string) in the information structure is considered a context relative to 

which a related cell is identified by a selector, such as an integer in 

the range 1 •• n. An address is a sequence of selectors specifying a 

"path" from the point of reference in the structure to the target memory 

cell. Each selector identifies a memory cell relative to the current 

context, and moves the remainder of the address to the new context for 

its further interpretation. Example classes of selectors provided by 

the model could be: direct where "i" is the local address of a memory 

cell; computed where the result of a command "fn" is "i" which is the 

local address of the cell, and superior where" "defines the surround-

ing memory cell. 

For instance, to access the whole of the array shown on Section 6.4 

. "2" above, from elsewhere in the surrounding context 1tS selector, say , 

is used, whereas to access a subsidiary number "(100)" the address "2/5" 

is used. 
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2:( 1:(0) 2:(1) 3:(10) 4:(11) 5:(100) 

( (0) (1) (10) (11) (100) 

(100) 

) 

) 

Using a memory cell's address any of five system-wide operations may be 

performed on its contents (Le. LOAD, STORE, PUT, TAKE, EXECUTE). Thus 

both "shared memory" and "message passing" data mechanisms are supported 

by the model. 

6.6. PllOGllAH REPRESENTATION 

Program representation in the decentralised control flow program­

ming model is based on a single format. Each program object (i.e. exe­

cutable delimited string) is stored in a memory cell and consists of a 

list of commands separated by controls: 

(command control command control command ••• ) 

A control defines the order of execution of two adjacent commands which 

may be sequential or parallel, etc. A command consists of a list of 

arguments: 

(argO arg1 arg2 arg3 arg4 arg5 ••• ) 

The leftmost argument in each command defines the task or operation to 

be performed, and also the interpretation of the remaining arguments 

which are its parameters. A task or operation may be a simple operator 

such as "+": 

(operator argl arg2 arg3 arg4 ••• ) 

or the address of a procedure to be called: 

(address arg1 arg2 arg3 arg4 ••• ) 

Parameters are accessed like the contents of a memory cell by a command. 



- 97 -

An argument in a command is either the actual object or its correspond­

ing address: 

( object ) or address 

Examples of how the interpretation of each instruction is defined sys­

tematically by the leftmost argument are shown in Figure 6.4 (where 

lower level delimiters and, in some cases, mode information have been 

omitted for clarity). 

instruction: 

(argO argl arg2 arg3 arg4 ••• ) 

examples: 

typed operand (literal 26) 

expression (+ a b) 
(returning its result) 

expression (+ a b c) 
(storing its result) 

sub-program (sqrt c) 

Figure 6.4: Program Representation 

The information provided by "argO" includes the number of arguments, 

their order of evaluation (which may be in parallel), and whether they 

are used for input or output. 

6.7. PROGRAM EXECUTION 

Program execution in the decentralised control flow model is 

clearly "control driven", but is parallel. Each list of commands and 

each subsidiary command may be executed concurrently. The "process" 

managing the list of commands controls the invoking of its commands, and 

execution of a command is analogous to a function call. 
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"procedure call" (argO 1 2 3 arg arg arg arg4 ••• ) 

"procedure body" argO:( ) 

The "control driven" execution of commands is specified by the controls. 

Once a command is invoked, its arguments are evaluated on demand under 

the control of the leftmost argument. The operation is executed as the 

results of the evaluated arguments become available. 

6.8. OTIIEB. PR.OGRAHKING MODELS 

One of the aims of the decentralised control flow model is to 

introduce computational mechanisms from other programming models to make 

control flow more general-purpose. For instance, because of the five 

system-wide operations discussed in Section 6.5, the model is able to 

support the "shared memory" and "message passing" data mechanisms 

described in Chapter 3. 

The actual data mechanisms supported by a particular programming 

model are closely tied to the types of argument that may be specified in 

its commands. Figure 6.5 illustrates an interpretation of the union of 

argument types that are found, for example, in control flow, data flow 

and reduction programming models. In Figure 6.5, commands are 

represented by delimited strings and the argument type is underlined. 
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Meaning 

the literal type e.g. (+ 2 ••• ) is 
found in every programming model 

the unknown type e.g. (+ ( ) ••• ) 
is used, logically, by data-flow as 
a "place-holder" for dynamically 
generated values and delays evalua­
tion until the value is available 
for the command 

the address e.g. (+ l!. ••• ) 
is a reference used by control flow 
commands to load or store a value 
value 

the procedure call e.g. (p ••• ) is 
a reference used by reduction and 
causes the evaluation of the 
addressed operand 

the expression type e.g. ( ••• (+2 a) ••• ) 
is used by reduction for the nesting of 
commands 

Figure 6.5: Spectrum of Argument Types 

Similarly, the actual control mechanisms supported by a particular pro-

gramming model are closely tied to the implicit control structures found 

in any model. Decentralised control flow has an implicit "control 

driven" execution mechanism. However, "data" and "demand driven" con-

trol mechanisms are also supported. "Data driven" execution is sup-

ported by using the empty memory cell "()" to delay execution until the 

argument is available. "Demand driven" execution is supported by the 

built-in procedure call, discussed above. 

Finally, various developments at the University of Newcastle upon 

Tyne can be seen as based on a decentralised control flow programming 

model: the Newcastle Connection distributed UNIX system [16] (briefly 

described in Chapter 2); the LEGO recursive computer architecture [51], 

and the RIMMS Multi-Microcomputer System [25] (introduced in Chapter 2, 
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and described in more detail in Chapter 9). In addition, the decentral­

fsed control flow programming model provides the foundation of the BASIX 

and the BASAL programming languages described in the ensuing chapters. 

BASIX and BASAL are vehicles for exploring the decentralised control 

flow programming style, rather than proposed new languages. 
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CBAPTEIl 7 - BASIX PltOGJWDmlG LAIiGUAGES 

This chapter presents the ~ASIX programming languages, which are 

used to investigate languages embodying the full decentralised control 

flow model. 

7.1. DESIGN PHILOSOPHY 

The BASIX languages were designed to embody the decentralised con­

trol flow model, showing thus that the concepts of traditional computing 

could be effectively associated with more "revolutionary" concepts (such 

as those found in LISP and in the Shell of the UNIX operating system). 

This should be done by extending and general iSing the traditional con­

trol flow programming style, which is a subset of the decentralised con­

trol flow model. The aim of the two BASIX languages, BASIX 1 and 

BASIX 2 described below, is to "mirror" the decentralised control flow 

model. Recall, these languages are primitive and are low-level system 

programming languages (cf. C) rather than high-level languages (cf. PRO­

LOG). Thus the languages may appear rudimentary; for instance, they do 

not contain any data typing. In the syntax "0" defines zero or one 

occurrence and "{} ••• " defines zero or more occurrences of the enclosed 

string. 
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7.2. BASIX 1 LAlIGUAGE 

BASIX_I represents the first attempt to design a language based on 

decentralised control flow. Its design is based on the BAS language 

supplied with UNIX. 

BASIX_I's syntax (see Appendix A.I) may be viewed as a superset of 

BASIC, but it attempts to incorporate features from LISP and from UNIX. 

BASIX_I's commands can be simple statements as in BASIC, or can be del-

imited groups of statements or commands as in LISP. BASIX l's environ-

ment attempts to be similar to UNIX: when BASIX 1 is invoked, the user 

program has access to any "files" - viewed as data structures by the 

program - previously created. If any "name" argument is provided when 

BASIX 1 is invoked, the structures associated with this "name" are used 

for input before reading commands from the terminal. 

The description of BASIX_l can be divided in four levels: i) com-

mands; ii) statements; iii) expressions; and iv) names. 

Commands in BASIX 1 are of four types: 

statement 
integer statement 
(command{command} ••• ) 
integer(command{command} ••• ) 

"Statements" in BASIX 1 are immediately executed. "Integer statements" 

in BASIX 1 are known as internal commands stored for later execution, in 

sorted ascending order. The "(command {command} ••• )" commands are exe-

{ d} ) ", cuted when the ")" is reached, and the "integer(command comman ••• 

similarly to the integer statements, are stored for later execution. 
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Statements in BASIX_1 are very similar to BASIC, being either an 

expression or a command whose leftmost argument is a keyword: 

comment 
dim alphanumeric(integer 
done 
dump 

{, integer} ••• ) 

for name 
for name 

expression expression statement 
expression expression 

next 
fork expression 
join expression 
goto expression 
if expression statement 
if expression 

{ else . .. } 
fi 
let name = expression 
list {expression} {expression} 
print list 
prompt list 
return {expression} 
run 
save {expression} {expression} 
expression 

The statement "comment" is ignored, being used only to interject commen-

tary in a program. 

The statement "dim alphanumeric ( integer {, integer }... )" 

creates either temporary or semi-permanent data structures. When used in 

the form "dim alphanumeric ( integer {, integer }... )" it creates a 

semi-permanent data structure ("file") which will not be deleted at the 

end of the program. When used in the form "integer dim alphanumeric ( 

integer {, integer }... )" it creates a temporary data structure which 

will disappear at the end of the program. 

The statement "done" returns control to system level, and in "dump" 

the name and current value of every variable is printed. 
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I "f . n or name = expressl.on expression statement" and "for name = 

expression expression ••• next", the "for" statement repetitively exe­

cutes a statement (first form) or a group of statements (second form) 

under control of a named variable. The variable takes on the value of 

the first expression, then is incremented by one on each loop, not to 

exceed the value of the second expression. 

The statements, "fork" and "join", represent a new addition to a 

BASIC-like syntax. In the "fork expression", the expression is 

evaluated, truncated to an integer and a secondary thread of execution 

starts at the corresponding integer numbered command. The primary 

thread of execution continues to execute the statement following the 

"fork" • If executed from immediate mode, the internal statements are 

compiled first. In the "join expression" statement the expression is 

evaluated and truncated to an integer. This positive integer defines the 

number of threads of control to be received by the "join" before sequen-

tial execution (of the following statement) is resumed. 

In the "goto expression", the expression is evaluated, truncated to 

an integer and execution goes to the corresponding integer numbered 

statement. In "if expression statement" and "if expression ••• {else 

} fi", the "if" statement (first form) or group of statements 

(second form) is executed if the expression evaluates to non-zero. In 

the second form, an optional else allows for a second group of state-

ments to be executed when the expression evaluates to zero. 

The statement "let name = expression" is the assignment statement. 

The left operand must be the name of a variable or an array element. The 

result is the right operand. Assignment binds right to left. 
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The statement "list { expression} { expression }" is used to print 

out the stored internal arguments. If no arguments are given, all inter-

nal statements are printed. If one argument is given, only that internal 

statement is listed. If two arguments are given, all internal statements 

inclusively between the arguments are printed. In "print list" the list 

of expressions and strings are concatenated and printed. (A string is 

delimited by " characters), and the "prompt list" s,tatement is the same 

as print except that no newline character is printed. 

In "return { expression }" the expression is evaluated and the 

result is passed back as the value of a function call. If no expression 

is given, zero is returned. In the "run" statement control is passed to 

the lowest numbered internal statement. 

The "save { expression} { expression }" statement is like "list", 

except that the output is written on the file argument specified in the 

call of BASIX_1 (Le. "BASIX 1 {name}"). And, finally, "expression" is 

executed as described below. 

Expressions in BASIX 1 can be of six different kinds: 

number 
name 
(expression) 
expression 

expression operator expression 
nameO 

A "number" is used to represent a constant value, and is written in FOR­

TRAN style, containing digits, an optional decimal point, and possibly a 

scale factor consisting of an "e" followed by a possibly signed 

exponent. The expression "name" is used to specify a variable. 
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In an "(expression)", parentheses are used to alter normal order of 

evaluation. I" ." h n _express1on , t e result is the negation of the expres-

sion. In "expression operator expression", common functions of two 

arguments are abbreviated by separating the two arguments by an operator 

denoting the function. A complete list of operators is given below. In 

"name()" procedures or functions can be called by an expression followed 

by parentheses. The name yields an integer which represents the line 

number of the entry of the function in the internally stored statements. 

Names, in BASIX_l, have the following format: 

o (zero) 
alphanumeric 
expression 
namelname{lname} ••• 

When using the "0" the current context becomes the selected variable. 

An "alphanumeric" is used to specify a variable in the current context. 

Alphanumerics are composed of a letter followed by letters or digits. 

The "expression" is evaluated to an integer and used as a selector (i.e. 

index) for the name. The last form of "name" is "namelname{lname} ••• ". 

It indicates a sequence of names separated by bars, which show the 

changes of context. This concept is based on the way the UNIX system 

[16] handles its directories and files. (Note: Due to the problem of 

distinguishing between a number such as "1" and selector such as "1", 

"0" and "expression" cannot occur as the only selector of a name.) 

Operators in BAS IX_l contain two logical operators ("&", which is 

the logical AND, and "V", the logical OR); six relational operators « 

<= > >- = <», and five arithmetical operators (+ - * / **). The opera-

tor "&" has result "one" if both its arguments are non-zero. "V" has 

result "zero" if both of its arguments are zero. It has result "one" if 

either of its arguments are non-zero. The relational operators ( < less 
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than, <= less than or equal, > greater than, >= greater than or equal, = 

equal to, <> not equal to) return "one" if their arguments are in the 

specified relation. They return "zero" otherwise. 

As an illustration of the BASIC-like syntax of BASIX_1, Figure 7.1 

shows a program for Quicksort. This program uses an iterative algorithm 

and a stack to store the pairs of indices "10" and "hi" of the subsets 

to be partitioned. It is close in structure to the PASCAL program in 

Figure 4.1. The main point of interest in Figure 7.1 is the address 

selectors used to access the array "stack". 

01 dim v(l6) 
02 dim stack(4,2) 
03 let stackptr = 1 
04 let stackl(stackptr)ll = 1 
05 let stackl(stackptr)12 = 16 
06 let 10 = stackl(stackptr)ll 
07 let hi = stackl(stackptr)12 
08 let stackptr = stackptr - 1 
09 if 10 < hi 
10 let i = 10 
11 let j = hi 
12 let pivot vl(lo) 
13 if «j <= i) V (vl(j) < pivot» goto 16 
14 let j = j - 1 
15 goto 13 
16 if «i > j) V (i = j) V (VI(i) > pivot» goto 19 
17 let i = i + 1 
18 goto 16 
19 if (i >= j) goto 23 
20 let temp = vl(i) 
21 let vl(i) = vl(j) 
22 let vl(j) = temp 
23 if i < j goto 13 
24 let vl(lo) = vl(i) 
25 let vl(i) = pivot 
26 let stackptr = stackptr + 1 
27 let stackl (stackptr) I 1 = 10 
28 let stackl (stackptr) 12 = i - 1 
29 let stackptr = stackptr + 1 
30 let stackl (stackptr) I 1 = i + 1 
31 let stackl(stackptr)12 = hi 
32 fi 
33 if (stackptr )= 1) go to 06 
34 end 

Figure 7.1: Quicksort Program in BASIX 1 
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Finally, BASIX_1 is implemented by a translator, programmed by the 

author, and an interpreter (supporting the virtual machine), programmed 

by David Mundy. The translator, written in PASCAL, is very "conven­

tional", and does not warrant further description. 

This initial version of BASIX is close to conventional languages. 

In addition, BASI~l contains a number of major problems, such as: it 

does not support a "message passing" data mechanism, the FORK/JOIN 

parallelism constructs proved difficult to use in practice, and "files" 

may only contain data not code. Improving on this initial version of 

BASIX, is BAS IX_2, which is described in detail below. 

7.3. BASIX 2 LANGUAGE 

BASIX_2 [27,28], like BAS IX_1 , has a decentralised control flow 

programming model, and attempts to encompass more of the model. BASIX 2 

attempts to be a more "sophisticated" language than BASIX 1. For 

instance, BASIX_2 has a single notion of object which serves the roles 

of variables, lists, messages, programs, files and directories. A 

number of long-term goals were set off for BASIX 2. Firstly it should 

be an interactive language providing a complete programming environment 

as with an object-oriented language such as SMALLTALK [4]. Secondly its 

semantics should aim to be as simple as BASIC. Thirdly BASIX_2 should 

aim to be as modular and extensible as LISP. Lastly, it should have con­

trol structures for processes such as those mechanisms found in the UNIX 

Shell. The complete syntax of BASIX 2 is given in Appendix A.2. 

In the design of BASIX_2 it is envisaged that all users will share 

the same information structure and interact with the structure via their 

terminal screens. A user will have access to one or more current con-
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texts, with the contents of each context being displayed as a "window" 

on the user's terminal (currently only a single window is supported). A 

window corresponds to a virtual computing system and displays the object 

stored by its memory cell. A window as shown in Figure 7.2 is divided 

into three areas defining the name of the current context, the context's 

information structures, and the commands being executed. 

--------------------------------
I Context : 

--------------------------------
I Context : 

--------------------------------
Context 

I 
I 
I 
I 
I 
I 
I 
1 

name 
name 
name 

( 
( 
( 

) 
) 
) I 1 

1----
I I 
1-----

Command I 

Figure 7.2: Terminal "window" displaying a current context 

Information in any of these three areas may be changed by pOSitioning 

the cursor and typing the new information. A new context name changes 

the current context of the window and thus the contents displayed. New 

information changes the contents of the context, but does not cause exe-

cution. Lastly, a new user command is executed as a parallel process. 

lnfor.atiou Structure 

Information is represented as a single nested structure merging the 

concepts of directory, file, array, variable, message, and program etc. 

Each is a named object whose specific semantics is defined by which of 

the five system-wide operators (LOAD, STORE, ••• ) is performed on the 

object. A named object (Le. the contents of a memory cell) may be 

accessed as "shared memory", as "message passing", or as "program". 
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These are distinguished in the language in the following ways: 

Semantics Operation Usage of Name 

shared LOAD name ... . .. 
memory STORE name := ... 
message TAKE ... name [ ] . .. 
passing PUT name[] .- ... 
program EXECUTE name object 

EXECUTE name( ) 

Initially a named object is empty "()" and information is inserted 

either by a STORE or PUT operation. However should an empty memory cell 

have a TAKE or EXECUTE operation performed on it then the access is 

delayed until the information is inserted. 

Names 

A name consists of one or more selectors "{/}selector{/selector}" 

defining a path to the target object. Selectors are interpreted left to 

right, each selec tor moving the remainder of the name to an adjacent 

context. A selector may be: (i) an alphanumeric character string, (ii) 

a numeric character string, (iii) a bracketed object whose execution 

yields the selector, or (iv) a character defining one of the four acces-

sible contexts: 

Context Character 

local 

parameters $ 

non-local 

current / 

Explanation 

local objects of a program 

parameters of a called program 

non-local object of a program 

current context i.e. the "directory" 
of the program; this character may 
optionally occur at the start of a name. 

For example "$" is used to access standard input "$/1", standard output 
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"$/0", and the parameters "$/1", "$/2" ••• of a process: 

$:( I:input argO l:argl 2:arg2 3:arg3 4:arg4 O:output ) 

A number of additional points should be noted. Firstly, a numeric 

string or a bracketed object may not be currently specified as the first 

or only selector of a name, due to the problem for example of parsing 

"10" the number and "10" the name. Secondly, that for the object: 

Ita:( ••• i:(9) 9:(20) ... )" 

the name "a/i" .gives the "i" component "9", whereas the name "a/{i)" 

uses the contents of "i" as the selector to give "20". Lastly, as with 

most languages and operating systems, BASIX_2 automatically searches its 

four accessible contexts for a selec tor, in the order: local, parame­

ters, current and non-local contexts [28]. 

Program Representation 

Any program consists of "command { control command } ••• ", a list of 

commands separated by control symbols. The "control" symbols, based on 

UNIX, define the order of execution of the two adjacent commands, which 

may be sequential ";", pipelined "I" or parallel "&". They also define 

how the standard inputs and standard outputs of the commands are con­

nected together. BASIX 2 accepts commands of the form: 

name : object 

object 

The first command is a declaration used to create and label an object 

relati ve to the current context. Only the "name" is evaluated before 

the assignment. The second command is immediately executed and either 

returns some value to the user's screen or makes some change to the 

information structure. 
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The description of BASIX_2 programs can be divided in three levels: 

i) objects; ii) expressions; and iii) statements. 

Objects in BASIX 2 have the following syntax: 

expression 
statement 
( object { object } ••• ) 
(command { control command } ••• ) 

An "expression" in BASIX 2 is a sequence of statements or objects 

separated by operators. A "statement" is a list whose leftmost object 

is a keyword. An "( object { object} ••• )" is a list of one or more 

objects, data or program, separated by spaces or commas. Lastly, a "( 

command { control command }... )" is a series of commands separated by 

controls, each control defining the order of execution of the two adja-

cent commands. Thus, an object may be any recognisable construct such 

as: 

Construct Example 

expression a + b - c 

name x/y/1 

number 10 

data structure (a 10 (11 12» 

function call f(d, e) or f d e 

program (merge a1 a2 a3 a4 a; sort a b) 

and an executable object is a list of objects separated by blanks where 

"bl kit b The leftmost obJ"ect of the list an may e spaces or a comma. 

defines the task to be performed. There are basically three types of 

executable objects: 
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BASIX 2 Format Example 

procedure call object object { object } ••• sort infile outfile 

statement keyword { object l ... ifa>b ••• 

expression object { operator object } ••• c + d 

Expressions in BASIX 2 have the following syntax: 

number 
name 
name [] 
() 
quote object 
object 

object operator object 
name{ { object } ••• ) 
object object { object } ••• 

In the expression "number", the object is an integer number. In "name" 

the object, synonymous with the name, is treated as a variable. In 

"name[]", the object, synonymous with the name, is treated as a list or 

a message. The undefined object is represented by "()", and an access 

to it is delayed until its contents are available. In "quote object", 

the result is the unevaluated object. In "_object", the result is the 

negation of the expression. In "object operator object", the objects 

are evaluated as operands for the operator, and the whole expression 

returns a value. In II name { { object }... )11 a procedure or function 

with zero or more parameters may be specified in the traditional way as 

a name followed by the parameters in parentheses. The parameters may be 

separated by spaces or commas. Lastly, in "object object object 

} ••• ", a procedure or function with one or more arguments may be speci-

fied as an UNIX-like command. 

Statements in BASIX 2 have the following syntax: 
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(* commentary *) 
if { object -) object; } ••• { object} fi 
do { object -) object; } ••• { object} do 
for alphanumeric = object do object rof 
goto name 
cd name 
rm name { name } ••• 

The statement "(* commentary *)" is ignored, being only used to inter-

ject commentary in a program. 

Conditional and repetitive statements centre on the conditional 

"object -) object" which specifies that the second object is only exe-

cuted if the result of the "object -)" is true. The command "if ••• fi" 

consists of a list of commands which execute in turn until a conditional 

is true. This command may be used in the following ways: 

Traditional Construct BASIX 2 Format 

IF THEN if object -) object fi 

IF THEN if object -) object; 
ELSE object fi 

IF ... THEN if object -) object; 
ELIF object -) object; 
ELSE object fi 

The command "do ••• od" consists of a list of commands which execute 

repeatedly until no conditional is true. The statement may be used in 

the following ways: 

Traditional Construct BASIX 2 Format 

WHILE ••• DO ••• do object -) object od 

REPEAT ••• UNTIL object ; 
do object -) object od 

The command "for ••• rof" has the following format 

for alphanumeric = object do object rof 

and is intended to combine the traditional iterative command "for i 1 
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to n do ••• " with a command that replicates, such as the "SEQ i = [1 FOR 

n] "of OCCAM. Thi "f " s or command evaluates the first "object" and 

then replicates the second "object" replacing "alphanumeric" for each 

component of the resulting object. By using a quoted 'object list', 

which returns an unevaluated object, or "to" operator, that generates 

sequences, the statement may be used in the following ways: 

Traditional Construct BASlX 2 Format 

FOR i := 1 TO n DO a[i]:=O; for i 1 to n do a/i:=O rof 

FOR i IN abc d DO i:=O; for i 'a bcd' do i:=O rof 

WITH a.b.c DO j:=O; for i = 'albic' do i/j:=O rof 

The command "goto" has the format "goto name", and causes control to be 

transferred to the object defined by the local name. In order to change 

context to the object defined by name, the command "cd name" is used, 

and fIrm name { name } ••• " removes objects created by the program. 

Operators in BASIX 2 include an assignment (" :=") operator, which 

updates a "name : object" pair relative to the local context, if neces-

sary creating a pair. Both "name" and "object" are evaluated before the 

assignment. The arithmetical operators supported are those for addi­

tion, subtraction and multiplication (+ - *). Logical operators consist 

of "and", "or", and "not", and the relational operators are: = 0 < <= ) 

)=, returning true if their arguments are in the specified relation, 

otherwise returning false. Numeric sequences "I 2 3 4 ••• " and alpha­

betic sequences "a b cd ••• " are generated by the dyadic operator 

"to", and returned as an object, containing the sequence (see SASL, Sec-

tion 5.1.2). 
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Prograa Ezecution 

As a final illustration of the BASIX_2 language, a recursive Quick­

sort program "rquick" is shown in Figure 7.3. The Quicksort program in 

Figure 7.3 is divided into three parts: at the top is the declaration of 

the array "v" to be sorted, in the middle is the declaration of the pro­

gram object "rquick", and at the bottom is the call to rquick. The 

array to be sorted is in fact the sixteen numbers, 512 ••• 703. The 

corresponding implicit address selectors, from the left, are "1 2 3 

••• "; alternatively the selectors could have been declared explicitly: 

v:( 1:(512) 2:(087) 3:(503) 4:(061) 5:(908) 6:(170) ••• 16:(703) ) 

as is necessary when alphanumeric selectors are used. 
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(* the array to be sorted v[l] v[2] v[3] v[4] • • • v[n-l] v[n] *) 

v:( 

(* 

512 087 503 061 908 170 897 426 765 275 154 509 612 677 653 703 ) 

recursive Quicksort ----- rquick (10, hi : integer ) 

rquick:( 
10 := $/1 & hi := $/2 
if lo<hi -) 

(i := 10& 
j := hi; 
pivot := v/(j) (* pivot line *) 
do 

(i<j) -) ( 

*) 

do (i<j) and «v/(i) <= pivot» -) i := 
(j)i) and «v/(j) )= pivot» -) j := 
out of order pair *) 

do 
(* 
if 

i + 1 od 
j - 1 od 

fi 
) 

) 

) 
(i<j) -) exchange(v/(i), v/(j» fi 

od; 
exchange v/(i) v/(hi) (* move pivot to v(i) *) 
rquick 10 i-l& 
rquick 1+1 hi 

(* call Quicksort "rquick (1, n)" v[l] v[2] v[n] 

rquick 1 16 

Figure 7.3: Quicksort Program in BASIX 2 

*) 

In the program object "rquick" storage for the variables "10 hi i j 

pivot" is created on demand. The first line of rquick initialises "10" 

and "hi" from the first and second parameters in the call to rquick 

10 := $/1 & hi := $/2 

The control symbol "&" defines that the two commands are to be executed 

in parallel. Next comes the body of the Quicksort. It contains calls 

to two procedures: "exchange" which swaps two elements that are out of 

order, and the two "rquick"s that sort the subsets in parallel. Two 

formats for calls are illustrated, the traditional syntax 

"exchange( ••• )" and the list of objects "exchange ••• ", however the 

meaning is identical. Notice also that the array elements are accessed 
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as "v/(i)" and not as "v/i". Finally the reader may find it interesting 

to compare this BASIX_2 version with the recursive PASCAL version given 

in Figure 4.1. 

BASI~2 was designed jointly by David Mundy and the author, and a 

translator, implementing the major parts [40] of the BASIX_2 language 

(written at first in C, and then rewritten in LISP), was produced by 

Mundy. 

In the next chapter, two. application programs will be discussed, 

written in BASIX_2, as the basis of an assessment of the language. 
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CBAPTEB. 8 - AllALYSlS OF usn 

This chapter is an analysis of the BASIX programming languages, 

specifically BASIX_2, which is subsequently referred to as BASIX. Two 

applications are used for this analysis of BASIX: a simple Banking Sys­

tem and an Expert System. The current BASIX interpreter supports a sub­

set of the language; for illustration the Banking System is programmed 

using "full" BASIX, and the Expert System is programmed using the "exe­

cutable subset" of the language. Appendices A.4 and A.5 contain the 

listing of the Banking and Expert Systems. 

8.1. BANIaHG SYSTEM 

A simple banking system was chosen so as to demonstrate that BASIX 

can be used, successfully, for commercial applications. In addition, 

the banking application is meant to illustrate the uniform manipulation 

of files and variables, contextual addressing, etc. 

8.1.1. Description of Application 

This banking application system is a quite small and simple one: a 

current account system for a one-branch bank, which is called "Basbank". 

The clients of "Basbank" have only one type of account (current). Data 

maintained about the clients consist of name and address, as well as 

their balance, and the date of the last transaction. 
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The "Basbank'" s current account only allows two kinds of opera­

tions: deposits and withdrawals. All significant transactions data 

(e.g. client number, balance) are validated, and clients are then added 

to "Bas bank" , s master file, ordered by "client number". Client's bal­

ances are altered according to deposit or withdrawals, but their per­

sonal data (name and address) can also be changed. Lastly, clients can 

only be excluded from the master file when their current balance is 

zero. 

The "Basbank" system, as shown in Figure 8.1, consists of two main 

files (one containing the transactions, and the other the so-called 

"master" file or "old" file) and of one main program. The so-called 

"master" file holds all the data for the bank's clients. Each client 

has an individual record in the "master" file, composed of a client 

number, date of last update, name and address, and the current balance. 

The banking application system program is composed of three rou­

tines, namely: i) "validate", ii) "sort", and iii) "update", as can be 

seen on Figure 8.1 below. 
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/ / 
-------------

/ Transac tions / 
/ (transfile) / 

/ 
/ Master File 

/ (old file) 
---------------

][-~-------- ------~ 
I 
I VALIDATE 
I 

I I 
I I 
I I 

SORT 
I I 
I I 
I I 

I 
UPDATE I 

I ----------- ------------ ------------

BASBANl( 
I 
I 
I 

/ 
/ 

/ 

--~-----------------------------

------ --------- ---~-----------
/ / 

/ Occurrences / 
/ (errors,etc) / 

/ 
/ New Master 

/ (newfile) 

Figure 8.1: "Basbank" Banking System 

/ 
/ 

/ 

8.1.2. Description of Prograa 

The files used by the "Basbank" system are the "transactions" 

files, and the "master file". The "validate" routine (using the origi-

nal "transactions" file as input) generates a "transactions" file with 

valid data, which is subsequently used as input by the "sort" routine to 

generate the sorted "transactions" file. The "transactions" file holds 

information of three basic kinds: inclusions, al terations, and exclu-

sions. Firstly, those of type "1", which are inclusions of new clients, 

containing data such as the new client's number, the date of the inclu-

sion, the name and address of the new client, and the pertaining present 

balance: 
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001 1 280852 mar tina w. fe1icitas 6 new happiness lane 606660 I I I I I I I I I I I I I I - balance I I I - address I I I - name 
I I - date inclusion 
I - transaction code 
- client's number 

Secondly, those of type "2", which are alterations of client's data, 

where the value of deposits or withdrawals is conveyed, but also where 

information on changes to be made to existing data is supplied (e.g. 

correction of a client's name and/or address): 

006 2 291283 5678 ruddersville w. 000120 
I I I I I I I I no correction for name I - credit 
I I I I I I I - change of address 
I I - date transaction 
I - transaction code 
- client's number 

Lastly, those of type "3", which are exclusions of clients, containing 

client's number and date of exclusion. 

011 3 
I I 
I I 

060683 
I 
I 

I I - exclusion date 
I - transaction code 
- client's number 

An "inclusion" of a new client (transaction type "1") presupposes 

that the client is not yet in the "master" file, and therefore creates a 

client record containing information such as client number, date of 

creation of the record, name and address of the client, and current ba1-

ance. 
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An "alteration" of a client record (transaction type "2") presup­

poses that the client exists in the "master" file. The data to be 

al tered is optional, such as name and/or address. In the case of an 

withdrawal, the value of the debit is preceded by a minus sign ("-"), 

whereas for a deposit, only the value is specified. 

Finally, an "exclusion" (transaction type "3") has the prerequisite 

that the balance of the client to be excluded must be zero. The client 

and all the respective data are removed from the "master" file. 

The Banking program is divided in three main parts, namely: "val i-

date", "sort", and "update". 

The "validate" routine (seen in Figure 8.2) validates the informa­

tion given in the transactions, such as client number, type and date of 

transaction, client balance, value of the credit or debit (deposit or 

withdrawal), etc. It discards those transactions where one or more 

errors have been found, besides listing them. Those records which were 

successfully validated, are kept and used in the routines "sort" and 

"update". The "validate" routine in BASIX can be seen in Figure 8.2. 
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(*******************************************************************) 
(* validate - validates daily transactions input *) 
(*******************************************************************) 
validate: ( 

(* procedure okdate verifies if date is valid *) 
okdate: ( 

) ; 

if 
transrec/3/2 = 2 -) 

if (transrec/3/1 < 1) or (transrec/3/1 ) 29) -) 
errorflag:= 'true; 

fi; 
(transrec/3/2 4) or 
(transrec/3/2 6) or 
(transrec/3/2 9) or 
(transrec/3/2 11)-) 
if (transrec/3/1 ( 1) or (transrec/3/1 ) 30) -) 

errorflag:= 'true; 
fi; 

(transrec/3/1 ( 1) or (transrec/3/1 ) 31) -) 
errorflag:= 'true; 

fi 
if errorflag = 'true -) 'false; 'true; H; 

(* procedure nameok verifies if name is alphabetic *) 
nameok: ( 

for i = 1 to 20 do 
(if not «transrec/4/(i) )= 'a) and 

(transrec/4/(i) (= 'z» or 
(transrec/4/(i) "") or 
(transrec/4/(i) = "."» -) errorflag:= 'true; 

fi); 
rof 
if errorflag = 'true -) 'false; 'true; fi; 

) ; 
(* procedure addressok verifies if address is alphanumeric *) 
addressok: ( 

for 
(if 

fi); 
rof 

i = 
not 

1 to 20 do 
«(transrec/5/(i) )= 

(transrec/5/(i) (= 
«transrec/5/(i) )= 

(transrec/5/(i) (= 

(transrec/4/(i) 
(transrec/4/(i) 

'a) and 
'z» or 
'0 ) and 
'9» or 
II II) or 
"."»_) errorflag:='true; 

if errorflag 'true -) 'false; 'true; fi; 
) ; 

(* main body of validate *) 
i:= 1; 
errorflag:= 'false; 
transindex:= 1; 
e rrorindex: = 1; 
temptrans .- (); 
tempindex := 1; 
do 

(transrec:= transfile/(transindex)j 



) 
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transindex:= transindex + 1; 
transrec/1 <> 999) -) 
(if 

(transrec/1 )= 1) and (transrec/l <= 100) and 
(okdate() = 'true) -) 
(if 
transrec/2 3 -) (temptrans/(tempindex):= transrec; 

transrec/2 1-) 
tempindex:= tempindex + 1); 

(if (transrec/4 <> (» and 
(nameok() = 'true) and 
(transrec/5 <> (» and 

(addressok()='true)-)(temptrans/(transindex):=transrec; 

fi); 
tempindex;= tempindex + 1); 

transrec/2 = 2 -) 
(if «transrec/4 () or 

fi) ; 
fi) ; 

nameok() = 'true) and 
(transrec/5 = () or 
addressok()='true)-)(temptrans/(transindex):=transrec; 

tempindex:= tempindex + 1); 

(if errorflag 'true -) (errorfile/(errorindex):= transrec; 
errorindex:= errorindex + 1; 

fi); 
fi) ; 

od 
temptrans/(tempindex):= transrec; (* terminator 999 *) 
transfile:= temptrans; 

Figure 8.2: Validate - validates daily transactions 

The "sort" routine reads the file which contains the validated 

transactions for the banking system, sorting them is ascending order by 

client number and transaction type. The code for the "sort" routines in 

BASIX can be seen in Figure 8.3. This example uses a simple linear 

selection with exchange sort algorithm to sort the records of the input 

file, based on the fields "transfile/ () /1" and "transfile/ () /2", output-

ting the resulting sorted records. 
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(***************************************************************) 
(* sort - sorts daily transactions input *) 
(***************************************************************) 
sort: (i: = 1; 

) 

do 
transfile/(i)/1 <> 999 -) 

(j := i + 1; 
do 
transfile/(j)/1 <> 999 -) 
(if (transfile/(i)/1 ) transfile/(j)/l) or 

«transfile/(i)/1 transfile/(j)/l) and 
(transfile/(i)/2 ) transfile/(j)/2» -) 

( 
temp:= transfile/(i); 
transfile/(i):= transfile/(j); 
transfile/(j):= temp 

); 
fi; 

j:=j+l); 
od; 

i:=i+l); 
od; 

Figure 8.3: Sort - sorts daily transactions input 

Lastly, the "update" routine (shown in Figure 8.4) updates the 

"master" file wi th the validated, sorted transactions. Updates in the 

"master" file are of three basic types: i) inclusion of a new client; 

11) alteration of an existing client's data, and iii) exclusion of an 

existing client. The routine "update" in BASIX can be seen below. 
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(*************************************************************************) 
(* update - updates Master Fi-Ie with validate, sorted daily transactions *) 
(*************************************************************************) 
update : ( 

procupdate : ( if transrec/2 = 1 -) errorflag .- 'true; 
transrec/2 = 2 -) 

fi 
) ; 

(newrec/3 := transrec/3 
if transrec/4 <> () -> newrec/4:= transrec/4 fi; 
if transrec/5 <> () -> newrec/5:= transrec/5 fi; 
newrec/6:= newrec/6 + transrec/6; 

) ; 
transrec/2 = 3 -> 

(if exclflag 'false -> exclflag:= 'true; 
errorflag:= 'true; 
fi); 

transindex 
old index 
newindex 
transrec 
oldrec 
newfile 

.- 1; 
:= 1; 
:= 1; 
:= transfile/(transindex); 
:= oldfile/(oldindex); 
:= (); 

do 
(oldrec/l 
if 

<> 999) or (transrec/l <> 999) -) 

oldrec/l < transrec/l -) 
(newfile/(newindex):= oldrec; 
newindex:= newindex + 1; 
oldindex:= oldindex + 1; 
oldrec:= oldfile/(oldindex»; 

oldrec/l ) transrec/l -) 
(if transrec/2 = 1 -) 

(errorflag:= 'false; 
exclflag := 'false; 
newrec := transrec; 

do 

fi 

(transindex:= transindex + 1; 
transrec:= transfile/(transindex); 
newrec/l = transrec/l -) procupdate(); 

od; 
if (errorflag = 'false) and (exclflag = 'false) -) 

(newfile/(newindex):= newrec; 
newindex:= newindex + 1) 

fi; 
errorflag:= 'true; 

if errorflag = 'true -) 
(errorfile/(errorindex):= newrec; 
errorindex:= errorindex + 1; 

fi; 
) 

) ; 

oldrec/1 = transrec/l -) 
( newrec:= oldrec; 

oldindex:= oldindex + 1; 



) 

fi; 
od 

) ; 
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oldrec:= oldfile/(oldindex»; 
errorflag:= 'false; 
exclflag:= 'false; 
do newrec/l = transrec/l -) 

(procupdate( ); 

od; 

transindex:= transindex + 1; 
transrec:= transfile/(transindex); 

) ; 

if (errorflag = 'false) and (exclflag 
(newfile/(newindex):= newrec; 
newindex:= newindex + 1 

) 
errorflag = 'true -) 

(errorfile/(errorindex):= newrec; 
errorindex:= errorindex + 1; 
) ; 

fi 

newfile/(newindex):= oldrec; (* terminator 999 *) 

Figure 8.4: Update - updates "Master File" 

'false) -) 

Appendix A.4 contains a complete listing of the Banking System, together 

with a sample run. 

8.1.3. Assessment 

In general, BASIX proved to be quite a reasonable language for pro-

gramming the Banking System. This was helped by the fact that the von 

Neumann model is a subset of the decentralised control flow model, and 

the addressing scheme makes use of concepts similar to those of the UNIX 

operating system. The Banking System showed the addressing scheme to be 

a powerful tool in accessing the various contexts. Problems do arise 

with addressing, one is the impossibility of specifying a numeric string 

or expression as the only selector of a name such as differentiating 

between "I" the number and "1" the name. In order to solve this prob-

lem, "./1" is used to indicate the "name", and "1" remains as the 

"number". Another problem is that for the object: 
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a: ( •.. i: ( 9 ) ••• 9: (20) 

the name "a/1°" gO th" 0" "9" lves e 1 component , whereas the name "a/(i)" 

uses the contents of "i" as the selector, giving "20". This might prove 

confusing for "traditional" programmers. 

8.2. EXPERT SYSTEM 

Next, an Expert Systems application is examined. 

Recall, this application is coded in a (major) subset of the 

language which is supported by the current BASlX interpreter [401. The 

restrictions of the current BASIX implementation include: 

1. GOTOs are not supported, due to problems of implementing 

"name:object" pairs. 

2. code declarations must be quoted "name: QUOTE code" to stop the 

3. 

right hand-side object being evaluated by the interpreter. 

commands must be separated by explicit controls II. If , and "&", 

because "newline" must be interpreted differently in code and data. 

8.2.1. Description of Application 

This Expert System application is a simple rule-based expert system 

for the identification of animals, taken from an article by Richard Duda 

and John Gaschnig [20], and re-coded in BASIX. The expert system writ-

ten by Duda and Gaschnig implements a simple version of the backward-

chaining procedure used in another (medical) expert system called MYCIN. 

It is based on a set of fifteen rules for the identification of animals 

[20 ]. 
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Each rule has the form: 

Format 

«name> «a> ••• <a» «c> ••• <c») 

Example 

(R6 ("HAS POINTED TEETH" "HAS CLAWS" "HAS FORWARD EYES") ("IS CARNIVORE"» 

The name of the rule is not fixed (it can be any appropriate string). 

The antecedents <a> and the consequents <c> are delimited strings that 

correspond to propositions about the animal that may be either true or 

false. Should all antecedents be true, the program can use the rule to 

assert the truth of all consequents. Besides the rules, a set of 

hypotheses is also used (e.g. the animal is either a tiger, or a 

penguin, etc.). The aim of the program is to decide if one of the 

hypotheses is true, and a diagram of the way it works is shown below. 

In Figure 8.5, assertions are represented by boxes; ways of making com­

binations with assertions are the circles; and the rules are identified 

by Rl, R2, etc. 
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Icheetahl Igiraffel Izebral lostrichl I penguinl I albatrossl 

ungulate 

mammal carnivore 

Figure 8.5: A diagram of the expert system for identifying "animals" 
(reproduced from reference [20]) 

8.2.2. Description of Program 

As in the Duda and Gaschnig [20] program, the BASIX version tries 

each hypothesis separately. For each hypothesis, the program consul ts 

the set of rules to see if the hypothesis can be deduced. If a deduc-

tion can be made, the antecedents for the relevant rules become new 

sub-hypotheses to be established, and the program looks for rules for 

ded ucing these antecedents. The descriptions of the variables used in 
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the program can be seen below in Figure 8.6, followed by the program's 

main loop coded in the Executable Subset, which can be seen in Figure 

8.7. 

(* queries = array of asked questions *) 
(* facts array for facts *) 
(* hypo = array for top-level hypothesis *) 
(* curhyp current top-level hypotheses *) 
(* q array of rule numbers for deducing a goal hypothesis *) 
(* rules array for rules *) 
(* currule current rule index *) 
(* curante current antecedent *) 

Figure 8.6: Usage of Objects in Expert System 

As it can be seen in Figure 8.6 in the Expert Systems program, the 

object "queries" stores the asked questions while "facts" keeps the 

facts. By using the built-in function of the BASIX interpreter called 

LIMIT, it is possible to establish how many facts have been recorded, 

and how many questions have been asked. The object "hypo" stores the 

top-level hypothesis in the expert system, and "curhyp" stores the 

current top-level hypotheses. The rule numbers for deducing a goal 

hypothesis are kept in "q", and the rules themselves are stored in 

"rules". The objects "currule" and "curante" store the current rule 

index and the current antecedent. 
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SYSOUT:= QUOTE "Hello!"; 
IF (LIMIT rules) = 0 -> SYSOUT:= QUOTE "No rules."; 

(LIMIT rules) > 0 -> 
(IF (LIMIT hypo) = 0 -> SYSOUT:= QUOTE "No hypotheses."; 

(LIMIT hypo) > 0 -> 

FI); 

(SYSOUT: = QUOTE "I wi 11 use my "; 
SYSOUT:= LIMIT rules; 
SYSOUT:= QUOTE" rules t t t bli h II. o ry 0 esta s one of the following , 
SYSOUT:= LIMIT hypo; 
SYSOUT:= QUOTE" hypotheses."; 
FOR i IN 1 TO LIMIT hypo DO 
( SYSOUT:= name; SYSOUT:= hypo/(i»; 
ROF; 
DO (facts: 0; 

queries: 0; 
done: FALSE; 
curhyp: 1; 
DO (NOT done) AND (curhyp <= LIMIT hypo) -> 

(r: verify hypo/(curhyp) 1 1; 
IF NOT r -> curhyp:= curhyp + 1; 

r -> (SYSOUT:= QUOTE "I conclude that "; 
SYSOUT:= name; 
SYSOUT:= hypo/(curhyp); 
done:= TRUE); 

FI) ; 
OD; 
IF NOT done -> 

SYSOUT:= QUOTE "No hypothesis can be confirmed."; 
FI; 
SYSOUT:= QUOTE "r (restart) or q (quit) ?"; 
DO (response: SYSIN; 

OD; 

(response <> QUOTE "r") AND (response <> QUOTE "q"» -) 
TRUE; 

response = QUOTE "r") -) TRUE; 
OD) ; 

Figure 8.7: Main Loop of Expert System 

A search, chaining backwards through the rules, is made, and if no 

deductions can be achieved, the program asks the user if the sub-

hypothesis it is working on is true. 

As it can be seen on Figure 8.7 above, the main loop of the expert 

system se ts up the arguments, and calls "verify" to establish the truth 

of "hypo/(curhyp)" and returns the answer, which is stored in "rtf. If 

no answer is found, a message saying that no hypothesis can be confirmed 
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is printed. In case an answer is found, a conclusion is given, and the 

user is asked to restart or quit. 

The main routine in the program is called "verify", and it can be 

seen in Figure 8.8. 

verify: QUOTE (fact: ./1; 
currule: ./2; 
curante: ./3; 
q: 0; 
r: recall fac t; 
IF NOT r -> (inthen fact; 

FI; 
r); 

IF (LIMIT q) = 0 -> r:= ask fact currule curante; 
(LIMIT q) <> 0 -> 

(i: 1; 
DO (done: tryrule q/(1); 

IF NOT done -) 1:= 1 + 1; FI; 
(NOT done) AND (1 <= LIMIT q» -> TRUE; 

00; 
r:= done); 

FI); 

Figure 8.8: Verify Facts in Expert System 

Its function is to establish the truth of a hypothesis or sub-

hypothesis, represented by the argument "fact". If the truth of "fact" 
') 

has already been recorded, "verify" returns immediately. If there are 

no rules for deducing "fact", and if "verify" has not asked the' user 

about "fact", it then asks. Otherwise, "verify" applies "tryrule" to 

each of the rules in turn, until it either finds a successful answer or 

there are no more rules left. 

Other important subroutines are "inthen", which finds all the rules 

that have fact "fact" as a consequent, and subroutine "ask", which asks 

the user about "fact" and explains why it is asking. The subroutine 

"remember" records facts, and subroutine "testif" checks antecedents to 

see if rule "rule/(currule)" is applicable. "Rule" is applied by sub-

routine "usethen", which also prints new deductions. 
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A complete listing of the Expert Systems program, in the executable 

subset of BASIX, is given in Appendix A.5. 

8.2.3. Assess.ent 

Unlfke in the Banking application program, where specific fields of 

a conventional record were being dealt with, in the Expert System pro-

gram no urgent need to explicitly name fields was felt. In fact, most 

data was communicated using global variables as in BASIC. Access to 

stacks and arrays in BASIX is very similar to that in BASIC (e.g. s$(s1) 

= x$ in BASIC, and facts/(k) := fact in BASIX). The main difficulty was 

fel t in "mimicking" the control struc ture of the original program [20], 

such as the extensive use of "gosub" made in the BASIC version. As Full 

BASIX does not have "gosub/return" statements, artificial labels would 

have had to be created and placed at the beginning of certain state-

ments, to simulate control transfers and calls: 

"artificial" 
I 
I 

0790 

0820 

labels 
I 
I 

goto 0820 

$/O[]:= 'RESTART OR QUIT (R OR Q)' (* print *) 

For this reason the Expert System was coded to take advantage of some of 

the main features of BASIX (such as recursion) and to demonstrate the 

executable subset. The Executable Subset version, as would be expected, 

is considerably shorter and easier to understand than the original pro-

gram [20] in BASIC. 
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8.3. ANALYSIS AND ASSESSHENT 

Before presenting this assessment of BAS IX, it should be again 

noted that BASIX is a low-level system language (cL C - but without 

facilities such as data types), rather than a high-level language (cf. 

PROLOG), specifically designed to fully "mirror" the decentralised con­

trol flow programming model. In general, BASIX proved to be a reason­

able language in which to program, even in such two diversified fields 

as Banking and Expert Systems. The fact that the von Neumann model is a 

subset of the decentralised control flow model was made clear by the 

example programs. Next, the main concepts of BASIX will be accessed in 

turn, starting with information representation. 

The single concept of an object representing files and variables, 

etc. is powerful, combining attributes of the UNIX Shell with those of 

LISP and BASIC. 

In terms of addressing, the contextual addressing concepts prove 

flexible in accessing the various contexts and are reasonably natural to 

work with. However, this contextual addressing could prove tricky to 

use, (at least at early stages) by traditional programmers (especially 

those working in a commercial environment). An example is the differ­

ence between "tr/i" and "tr/(i)"; the former accesses a subsidiary 

object with explicit selector "i:( ••• )", while the latter uses the con­

tents of "i" as the selector. Other addressing problems relate to the 

different types of selectors. One of them is the impossibility of 

specifying a numeric string or an expression as the first or only selec­

tor of a name due to parsing problems. For example, it is difficult to 

differentiate "9" the number from "9" the name, unless some additional 

identification tag is applied. This is currently achieved in BASIX, by 
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using the special selector "." to define a name ". /9". Another area 

requiring further study is the relationship between control of contex-

tua1 addressing in programming languages and in operating systems. In 

BASIX, this involves the interaction between the special selectors (i.e. 

"$" " " "" "/") th 1" " 1 , .., ., at exp 1C1t y specify a contextual address, as 

opposed to some implicitly defined automatic search of surrounding con-

texts. This addressing problem is discussed in detail in [40]. 

Related to the addressing of objects is the support of both "shared 

memory" and "message passing" data mechanisms. If an object is accessed 

by "name", then it is treated as a variable, and if accessed by "name[]" 

it is treated as a message. This syntax and semantics have proved rea-

sonab1e to work with in other examples, and is in practice quite power-

fu1 to use [27,28]. 

Next, the representation and execution of programs. Since BASIX 

embodies procedural programming, its syntax and semantics are relatively 

traditional. There are, however, two problem areas: the first is the 

conditional and repetitive commands, and the second is the control 

operators ";", "newline", "I" and "&". The conditional and repetitive 

commands , although having the traditional function have ,in BASIX, been 

designed to span more conventional commands (e.g. IF-THEN, IF-THEN-ELSE, 

IF-THEN-ELSEIF-ELSE, WHILE-DO, REPEAT-UNTIL etc.) with the same basic 

set of constructs (e.g. IF-FI, DO-QD). In practice these constructs, in 

particular the "do-od", have proved difficult to use by those already 

acquainted with conventional languages. For the control operators, the 

problem relates to the "newline" which implicitly defines sequential 

execution. One of the aims of the BASIX language, like LISP, is to 

d d "h Y UnfortunatelY, in the represent programs an ata 1n t e same wa • 

current BASIX system, "newline" is an operator in programs, but should 
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be invisible in data. For this reason, explicit terminators are used in 

the executable subset of BAS IX. 

The major (and justifiable) criticism of BASIX 2 is that the 

designers have been over-ambitious, making the syntax too recursive, 

which has resulted in a somewhat confusing semantics. In addition. 

although "object" is a central concept in BASIX languages, this is not 

reflected in the BASIX 2 syntax. 

In BASIX languages there are essentially four types of object: 

expression 
statement 
({objects} ••• ) 
local_name:object 

An expression consists of one or more simple objects. separated by 

operators. A statement is a list of objects whose leftmost object is a 

keyword or the name of a program object. A bracketed list of objects 

may be code or data. Lastly, comes the declaration of a "name :objec t" 

pair in the local context. 

Control statements were identified as a problem area. For control 

statements, one simple strategy is to adopt Dijkstra's Guarded Commands 

[21] : 

IF {expression -) command} ••• FI 
DO {expression -) command} ••• OD 

however a compromise is made with "GOTO", by restricting it to a 

local context: 

GOTO local name 
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Names and selectors were also a problem area, both for syntax and 

semantics. A proposal is to define "names" as either: 

local name{.selector} •.• 
${.selector} ••• 

where "local name" is an alphanumeric character string, "$" identifies 

parameters, and "selectors" consist of: 

local name 
numeric 
(expression) 

This division should simplify both the syntax and semantics. 

Finally, as illustration of the effect of these changes, Appendix 

A.3 contains the syntax of the improved BASIX. 
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CHAPTER. 9 - BASAL PllOGIWDlDlG LANGUAGE 

This chapter presents the BASAL programming language, which is used 

to investigate languages (at the opposite end of the spectrum from 

BASIX) embodying a primitive form of decentralised control flow model. 

9.1. DESIGN PHILOSOPHY 

The programming model of the BASAL language [26], and of the RIMMS 

multi-microcomputer system [25], implements a subset of decentralised 

control flow. Its principles are: 

1. computer - a network of microcomputers, each comprising a primitive 

processor and memory; 

2. memory - a linear organisation of fixed-size memory cells; 

3. addressing - a two-level address space, defining a micro and its 

local memory; 

4. program - a low level machine language, where instructions consist 

of primitive operators and operands; 

s. communication - shared memory and message passing; 

6. execution - sequential and parallel control of computation. 
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Thus, the programming model can be seen as falling between that of the 

von Neumann model and the decentralised control flow model, described in 

Chapter 6. 

RIMMS (as introduced in Chapter 2) consists of identical component 

microcomputers with a 16-bit word size: each register, data element and 

address is 16 bits. Instructions, however, are 2 x 16 bits and use a 

3-address format. There are less than 20 operators. Each microcomputer 

in the multi-microcomputer system is addressable (has a unique address), 

and behaves as a combined memory and processor that is able to service 

load, store and execute operations. Design of the multi-microcomputer 

system centres around the 16-bit global address space. An address con­

sists of two parts: the high 8 bits define a specific microcomputer, 

while the low 8 bits define a word in that microcomputer's memory. 

Although a microcomputer can access any word in the global address 

space, an attempt to execute alien code causes execution to transfer to 

the specified microcomputer. 

BASAL is a parallel language (based on a subset of decentralised 

control flow) that extends BASIC and can be used for programming the 

RIMMS multi-microcomputer systems. It extends BASIC in four ways, 

firstly global or local identifiers may be used for names and labels; 

secondly both "shared memory" and "message passing" communication of 

data is supported; thirdly a new command "MICRO micro_name" causes all 

subsequent commands to be interpreted in microcomputer "micro_name"; and 

lastly, a program consists of a series of commands separated by con­

troIs: ";" and "newline" define sequential execution (of the two adja­

cent commands) while "&" defines parallel execution. 
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Before presenting the design and implementation of the BASAL pro­

gramming language (produced by the author), the RIMMS design (of Foti et 

a1 [25]) is described. 

9.2. R.IDS HULTI-HICB..OC(BfiJ(JTER. SYSTEK 

Traditionally, the trend in designing microprocessors and mainframe 

computers has been towards increasingly complex instruction sets and 

associated architectures [29]. In contrast, designs based on the so­

called reduced instruction set [41,42] philosophy have a simple set of 

instructions, and a correspondingly simple machine organisation tailored 

to the efficient execution of these instructions. The aim of the ongo­

ing RIMMS project is to design the simplest conventional microcomputer 

with primitive communications mechanisms that is able to form a com­

ponent of a tightly-coupled multi-microcomputer system. The architec­

ture of RIMMS is described in terms of two levels of machine: the 

multi-microcomputer level handles inter-process(or) communication sup­

porting non-local load, store and execute operations; and the microcom­

puter level services these operations and handles the atomic execution 

of a single process. 

9.2.1. Hul.ti~croca..puter 

RIMMS consists of a linear array of up to 255 microcomputers that 

communicate via a shared bus, as shown in Figure 9.1. Each microcom­

puter has a simple processor and 256 words of local memory. 
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------------------------------------------------------------------

8-bit global address 
-------------------------------------------------

1: I 2: I 

1 processor 1 I processor 1 
1-------------1 1-------------1 
I memory I 1 memory 1 
1(8-bit local 1 1(8-bit local I 

1 address) I 1 address) I 

Figure 9.1: Multi-Microcomputer System 

The system has a 16-bit address space: 

address 
global (8 bits) local (8 bits) 

microcomputer 1 memory cell 

Figure 9.2: RIMMS Address 

255: I 

I--~:~:=~:~:--I 
I memory I 
1 (8-bit local I 
I address) I 

The top 8 bits is a global address (in the range 1-255) defining a 

microcomputer, while the bottom 8 bits is a local address (in the range 

0-255) defining a word in its memory. (Global address 0 is the default 

for specifying the current local address space and is therefore not 

recognised at the Multi-Microcomputer level.) 

When one microcomputer wishes to communicate with another, for 

example to access its local memory, the microcomputer generates a 

"packet". The format of a packet, as shown in Figure 9.3, consists of a 

2-bit operation field, a 2x8-bit destination address, and a 16-bit 

operand. The 4 operations are: load from memory (LOAD), store into 

register (STORE_REG), store into memory (STORE_HEM), and execute 

instruction (EXECUTE). 
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global 
8 bits 

local 
8 bits 16 bits 

----------------------------------------
I operation I address operand 
----------------------------------------

Figure 9.3: Multi-microcomputer packet format 

The packet operations are defined as follows: 

LOAD - copies the contents of MEMORY [address) to the microcomputer's 

register defined by the 16-bit operand. This is implemented by the 

destination microcomputer generating a STORE REG packet. 

STORE_REG- places the operand in the microcomputer's register defined by 

the address. 

STORE MEM- places the operand into the MEMORY[address). 

EXECUTE- starts a new process whose code is at MEMORY [address) and data 

environment is at MEMORY[operand). 

For all these packets the global address defines the destination micro-

computer. 

Microcomputers take turns to send a packet on the bus. When a 

packet is sent the destination microcomputer may accept or reject the 

packet. In either case the source microcomputer relinquishes the bus. 

If rejected, the source microcomputer will re-attempt to send the packet 

at its next turn to use the bus. Whether a packet is accepted or 

rejected depends on the status of the processor and memory of the desti-

nation microcomputer. In simple terms, load and store operations may be 

serviced by the memory concurrently with the operation of the processor. 

However an execute packet may only be accepted when the processor is 

idle, having completed the execution of its previous process. Figure 
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9.4 lists the complete rules for processing packets. 

Packet Received 

LOAD STORE REG STORE HEM EXECUTE 
Processor Status 

BUSY 
EXECUTING error reject 

• WAITING accept reject 

IDLE error accept 

Memorl Status 
BUSY reject reject reject reject 

IDLE accept accept accept accept 

Figure 9.4: Microcomputer Status versus Packet Received 

In Figure 9.4, the term BUSY EXECUTING specifies that the processor is 

executing instructions, and BUSY WAITING specifies that the processor is 

executing but temporarily waiting for an operand to be loaded from a 

memory. 

Next, the architecture of a microcomputer is examined. 

9.2.2. Microcomputer 

A RIMMS microcomputer consists of three basic components: the local 

memory of up to 256x16-bit words, the memory controller, and the 16-bit 

processor for arithmetic, as illustrated by Figure 9.5. 

bus 

-------------------------------------------
1 Processor 1 Memory 1 
1 (ALU + registers) 1 Controller 1 
1-------------------------------------------1 
1 local memory I 
1 256 x 16-bit words 1 
-------------------------------------------

Figure 9.5: Microcomputer 
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The memory controller is connected to the global bus, and to the 

local processor and memory. It supports communication, in the form of 

Packets, between these three units. To hold k h a pac et, t e memory con-

troller has 3 registers: a 2-bit memory operation register, a 16-bit 

memory address register, and a 16-bit memory data register (see Figure 

9.6). 

memory operation register 
memory address register 
memory data register 

MOP 
MAR 
MDR 

Figure 9.6: Memory Controller Registers 

( 2 bits) 
(16 bits) 

These registers correspond to the operation, address and operand fields, 

respectively, of a packet. 

When a memory controller is idle it can receive a packet either 

from the local processor or from some other microcomputer. A packet 

from the processor can be destined for the local memory or for another 

microcomputer, whereas a packet from the bus can be destined for the 

local processor or memory. A packet's destination is specified by the 

top 8 bits of the address in MAR. 

The processor, the last component of the microcomputer, consists of 

an arithmetic logical unit (ALU) and seven registers supporting a I6-bit 

word size. Each register, data element and address is 16 bits. 

Instructions, however, are 32 bits and use a 3-address format. Figure 

9.7 shows the 7 registers of which only the first two are addressable. 

program counter 
data register 

instruction registers 
ALU register 1 
ALU register 2 
ALU register 3 

Figure 9.7: Processor Registers 

C 
D 

11,12 
Al 
A2 
A3 

(16 bits) 
(16 bits) 

(2x16 bits) 
(16 bits) , 
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C the program counter points to the local code currently being executed. 

D the data register points to the current data environment which may be 

anywhere in the address space. 11,12 holds the current 32-bit instruc-

tion. Al,A2,A3 are the input registers to the ALU, holding the current 

instruction's operands. Their contents have no meaning from one 

instruction to the next. 

An instruction's format, as illustrated by Figure 9.8, consists of: 

a 5-bit operator field, 3xl-bit mode (Mi) fields, and 3x8-bit operand 

(Oi) fields. Modes and arguments are interpreted as follows. If the 

value of mode bit Mi=O then the corresponding 8-bit operand 01 is 

treated as a literal. Oi is sign extended to 16 bits and the resulting 

argument is placed in the corresponding ALU register Ai. If the mode 

bit Mi=l then the 8-bit operand Oi is treated as a signed displacement 

relative to the data register D. The resulting address D+<>i is de-

referenced (via the multi-microcomputer level if necessary) and the 

memory contents is placed in the ALU register Ai. Notice that the modes 

and operands are interpreted independently both of the operator and of 

whether they are to be used for input and output by the ALU. However, 

the operator does determine how many of the three arguments are used by 

the ALU. 

Ml M2 M3 
5 bits 1 1 1 

o literal 

01 
8 bits 

02 
8 bits 

1 address (memory [D+ signed literal]) 

Figure 9.8: Microcomputer-Instruction Format (32 bits) 

03 
8 bits 
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The ALU supports only two information types: 16-bit integers (2's 

complement) and booleans (TRUE=FFFF, FALSEOFFFF), and following the 

reduced instruction set philosophy only a minimal set of operators are 

provided. These operators are listed in Figure 9.9. 

°Eeration Mnemonic 

arithmetic ADD 
SUB 

logical AND 
OR 
NOT 

shift LSHIFT 
ASHIFT 

compare EQ 
GT 

control IF 
FORK 
HALT 

movement MOVE 
STORE C 
LOAD D 
STORE D 

Figure 9.9 Processor Instruction Set 

Description 

logical shift 
arithmetic shift 
equals 
greater than 
if TRUE jump 
fork flow of control 
halt processor 
move argument to address 
store program counter 
load data register 
store data register 

Finally note that the reason for choosing a 3-address instruction 

format and only two addressable registers is to minimise the state 

information that needs to be moved from one microcomputer to another, 

when control is transferred. 

9.3. BASAL PROGRAMMING LANGUAGE 

BASAL is a parallel language (based on a subset of decentralised 

control flow) that extends BASIC, and can be used for programming 

multi-microcomputer systems having the RIMMS philosophy. BASAL extends 

BASIC in four ways: 
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1. multiple processes/processors 

2. a two-level address space for names and labels 

3. shared memory and message passing communication of data 

4. parallel execution from the "&" statement terminator 

9.3.1. Description 

In BASAL, a program consists of a series of commands separated by 

controls: ";" and newline define sequential execution (of the two adja-

cent commands), while "&" defines parallel execution. The description 

of BASAL can be divided into four levels: i) commands; ii) statements; 

iii) expressions; and iv) identifiers (i.e. labels and names). In the 

following description "{ }" defines zero or one occurrences, and "{ 

} ••• " defines zero or more occurrences, of the enclosed information. 

Commands in BASAL are of three types: 

MICRO micro name 
local label-statement 
statement 

For the "MICRO micro name" command, all instructions following that key-

word command are executed by the microcomputer "micro name". The 

labelled statement "local label statement" is similar to the BASIC one, 

being stored for later execution, with the "local_label" providing the 

reference in the corresponding micro. The "statement" is also similar 

to BASIC, in the sense that it is executed immediately. 

Statements in BASAL have much in common with BASIC, being either an 

expression or a command whose leftmost argument is a keyword: 
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expression 
DIM local_name (integer {, integer} ••• ) 
LET name = expression 
IF expression THEN local label 
FOR local_name = expression TO expression 
NEXT local name 
GOTO label-
GOSUB label 
RETURN 
STOP 
END 

"Expression" returns the result in place. "DIM local name 

(integer { , integer} ••• )" declares an array of the specified dimensions, 

designated by a name local to the current micro where it is being 

declared. 

The statement "LET name = expression" is the assignment statement 

in BASAL, and can assign a value to a variable in any micro. The condi-

tional statement "IF expression THEN local_label" provides the language 

with decision making ability, transferring control to the "local-label" 

if the the expression is true. In "FOR local name = expression TO 

expression", repetitive execution of the enclosed expressions is pro-

vided. This statement is connected with the "NEXT local name" state-

ment, which indicates the end of the corresponding loop. Clearly, the 

"local name" in "NEXT" must be exactly the one used after the "FOR" k.ey-

word. 

The "GOTO label" statement causes unconditional control transfer to 

the specified label, while the "GOSUB label" statement is the BASAL 

equivalent of a procedure call. For "GOTO" and "GOSUB" a "label" may 

identify a statement in the calling micro or any other micro. The 

"GOSUB" statement is used in connection with the "RETURN" statement, 

which returns control to the statement immediately after the calling 

"GOSUB" statement. The two final statements are the "STOP" statement, 
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that causes a microcomputer program to terminate and the "END" state-

ment, which marks the end of a BASAL program. 

Expressions in BASAL can be of seven different kinds: 

number 
name 
"character" 
expression 

(expression) 
expression operator expression 
? 

Here, a "number" can be any integer number; "name" is an identifier 

(local or global) of a variable, message or array element; "charac ter" 

can represent any ASCII character, but must be enclosed in double 

quotes; "_expression" represents the negation of the result of an 

expression (note that the sign is an underbar and not a minus, since 

there would be no way of telling apart an unlabelled statement composed 

of an arithmetic subtraction operation, from a labelled statement com-

mencing by a negative expression): 

10 -2345 from 10 -2345 

number 
(not label) 

arithmetic 
subtraction 

label negative expression 

"(expression)" represents a bracketed expression; "expression operator 

expression" allows the representation of arithmetical, logical and con­

ditional expressions; and finally, "?" identifies an empty data loca-

tion. 

Labels in BASAL have the following format: 

(micro name.}local label 
<micro-name) ::: A:.Z 
<local=label)::: 01 •• 79 

where "{}" indicates an optional field. Thus. a global label consists 
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of "micro name.local label" (e.g. "A.Ol"), and a local label consists of 

"local_label" (e.g. "01"). N ti (b f h o ce ecause 0 t e implementation) that 

labelled statements may only be labelled with a local label in the range 

"01" to "79", whereas "GOTO" and "GOSUB" may specify either a global or 

local label. 

Names in BASAL have the following format: 

{micro name.}local name{(expression{,expression} ••• )}{[]} 
<micro-name) ::= ~.Z 
<local=name) ::= alphanumeric 

A variable can be local (used inside the current micro): "local_name", 

or global (used in another micro): "micro name.local name". A 

"{micro_name.}" is a letter in the range of "A" to "Z", equivalent to a 

micro (i.e. first micro is "A", second is "B", etc.), and "local name" 

is any alphanumeric identifier. 

To indicate access to an array element, the 

" { micro_name. } local name" is followed by one or more expressions 

enclosed in brackets, and separated by commas: 

{micro_name.}local_name(expression{,expression} ••• ) 

To distinguish between "shared memory" and "message passing", to indi-

cate message passing, the "[]" symbol is used in the form: 

{micro_name.}local_name{(expression{,expression} ••• )}[] 

On the left of the assignment, it indicates a "PUT", and on the right 

side a "TAKE" operation. Recall, the empty memory cell used with "PUT" 

and "TAKE" is defined by the "?" symbol. Notice that PUT and TAKE 

operate on a single memory cell, polling a cell until it is in the 

correct state. 
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Operators in BASAL contain the four arithmetical operators (+ _ * 

I), three logical operators (AND, OR, NOT), and six relational operators 

«, <=, >, =>, <» • Finally, a complete syntax for the BASAL 

language is given in Appendix A.6. 

As the reader may have noted from the above descriptions of the 

RIMMS multi-microcomputer and the BASAL language, the initial RIMMS does 

not fully support BASAL (i.e. "message passing" is not implemented in 

the hardware). Thus here the use of BASAL for programming "RIMKS-like" 

systems will be discussed. 

In BASAL, microcomputers are allocated in a way analogous to the 

allocation of memory cells in a conventional computer. Thus two views 

are offered to a programmer or compiler. Due to the shared 16-bit 

address space, a system can be programmed as a single, sequential com-

puter (e.g. with up to 255x256 words of memory) or, more interestingly, 

as a parallel computer (e.g. with up to 255 processors each with 256 

words of memory). For instance a large sequential program, if allocated 

consecutive memory locations, will span a number of microcomputers. As 

control reaches the boundary of a microcomputer its program counter will 

contain a non-local address, causing control to migrate to the next pro-

cessor. 

For parallel execution, each process should be allocated a separate 

microcomputer. These processes are started in BASAL using either GOTO 

or GOSUB statements in conjunction with parallel controls "&": 

GOTO B.ll & 
GOTO C.22 & 

GOSUB B.ll & 
GOSUB C.22 & 

These statements are implemented in RIMMS by "FORK" instructions; a FORK 

may be thought of as a GOTO that not only transfers control but also 
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continues execution. 

Having initiated a number of parallel processes, synchronisation of 

their execution centres on three mechanisms which loosely equate to the 

semantics associated with a memory location: (i) command, (ii) variable, 

and (iii) message. 

Code in a microcomputer is executed atomically by a processor, thus 

behaving as an uninterruptable critical region which may be used to syn­

chronise access to shared data. In contrast, "LOAD" and "STORE" opera­

tions (giving the "shared memory" semantics) are unsynchronised and com­

pete for memory access. Lastly, "TAKE" and "PUT" operations support 

"message passing" semantics and may be used to pass a sequence of one or 

more values from a producer to a consumer process. 

Since BASAL provides both types of data communication that are 

found in computing, then the two common forms of parallelism (namely 

shared memory and message passing) are supported. This is illustrated 

by examining BASAL programs for Sort/Merge, shown in Figures 9.10 and 

9.11. Each program consists of 3 processes: "A" and "B" which sort 

their local arrays "V" into ascending order, and "c" which merges these 

two arrays and stores the results in its own array "V". 

In Figure 9.10 communication between the 3 processes is by shared 

memory. Execution of each process is started by the unlabelled "GOTO 

01" statement, which causes "A" and "B" to sort the contents of their 

arrays, and "c" to initialise "COUNT" and then "STOP" execution. When 

"A" and "B" finish execution each transfers control "GOTO C.03" to label 

"03" in process "C". This causes the decrementing of "COUNT". (The 

decrementing of "COUNT" works as a critical region because "c" is exe­

cuted atomically.) When both sorts are finished, "c" merges the two 



- 155 -

arrays. In doing this "c" initially stores two terminators "32677", in 

parallel "&", into the arrays and then uses the "FOR" loop to merge the 

200 values. 

MICRO A 
01 DIM V(101) 
02 FOR I = 1 TO 99 
03 FOR J = 1+1 TO 100 
04 IF V(I) (= V(J) THEN 08 
05 LET TEMP = V(I) 
06 LET V(I) = V(J) 
07 LET V(J) = TEMP 
08 NEXT J 
09 NEXT I 
10 GOTO C.03 
GOTO 01 

MICRO B 
01 DIM V(10l) 
02 FOR I = 1 TO 99 
03 FOR J = 1+1 TO 100 
04 IF V(I) (= V(J) THEN 08 
05 LET TEMP = V(I) 
06 LET V(I) = V(J) 
07 LET V(J) = TEMP 
08 NEXT J 
09 NEXT I 
10 GOTO C.03 
GOTO 01 

MICRO C 
01 DIM V(200) 
02 LET COUNT = 2 
03 LET COUNT = COUNT - 1 
04 IF COUNT <> 0 THEN 17 
05 LET A.V(101) 32677 & 
06 LET B.V(101) = 32677 & 
07 LET I = 1 & 
08 LET J = 1 
09 FOR K = 1 TO 200 
10 IF A.V(I) ) B.V(J) THEN 14 
11 LET V(K) = A.V(I) 
12 LET I = I + 1 
13 GOTO 16 
14 LET V(K) = B.V(J) 
15 LET J = J + 1 
16 NEXT K 
17 STOP 
GO TO 01 
END 

Figure 9.10: BASAL (shared memory) Sort-Merge 
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In the second Sort/Merge, in Figure 9.11, "A" and "B" are very 

similar to the corresponding processes in the previous example. The 

difference is statement "09" which passes each of the sorted values, as 

it becomes available, to "c" using message passing. Process "C", exe­

cuting concurrently with "A" and "B", then merges these values. Notice 

statement "03" in "C", that locations "A" and "B" are accessed as vari-

ables (rather than messages) and repeatedly tested until both are non­

empty. Then depending on which is the smallest, either "A[]" or "B[J" 

is accessed as a message and se t to empty so as to receive the next 

value from its process. 
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MICRO A 
01 DIM VOOO) 
02 FOR I = 1 TO 99 
03 FOR J = 1+1 TO 100 
04 IF V(I) <= V(J) THEN 08 
05 LET TEMP = V(I) 
06 LET V(I) = V(J) 
07 LET V(J) = TEMP 
08 NEXT J 
09 LET C.A[] = V(I) 
10 NEXT I 
11 LET C.A[] = V(100) 
12 LET C.A[] = 32677 
13 STOP 
GOTO 01 

MICRO B 
01 DIM V( 100) 
02 FOR I = 1 TO 99 
03 FOR J = 1+1 TO 100 
04 IF V(I) <= V(J) THEN 08 
05 LET TEMP = V(I) 
06 LET V(I) = V(J) 
07 LET V(J) = TEMP 
08 NEXT J 
09 LET C.B[] = V(I) 
10 NEXT I 
11 LET C.B[] = V(100) 
12 LET C.B[] = 32677 
13 STOP 
GOTO 01 

MICRO C 
01 DIM V(200) 
02 FOR K = 1 TO 200 
03 IF (A = ?) OR (B = ?) THEN 03 
04 IF A > B THEN 07 
05 LET V(K) = A[] 
06 GOTO 08 
07 LET V(K) = B[] 
08 NEXT K 
09 STOP 
GOTO 01 
END 

Figure 9.11: BASAL (message passing) Sort-Merge 

Next, the implementation of the BASAL programming language will be 

examined. 
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9.3.2. I.pl~ntatiOD 

BASAL is implemented by a translator that takes in a parallel BASAL 

program and outputs a sequential BASIC program. This BASIC program, 

when interpreted, simulates the execution of the BASAL program. The 

BASAL translator is written in PASCAL. 

The translation of BASAL to BASIC poses a number of problems: 

1. simulating the network of micros 

2. handling the two-level address space 

3. supporting the labelled and unlabelled statements 

4 handling the "shared memory" and "message passing" data mechanisms, 

and finally 

5 simulating parallel execution 

To simulate the network of micros , "micro_name", from command 

"MICRO micro_name", is prefixed to all local_names e.g. "XYZ" becomes 

(inside MICRO A) "A.XYZ". In addition, local labels are transformed 

into global labels: 

MMLLS 

I I 
I 

micro I system 
local 

by being prefixed with the equivalent MICRO number (e.g. MICRO A =) 01, 

etc.), and suffixed with a "system" label. Thus the two levels of 

address space of BASAL are supported by mapping all local names into 

global names, and local labels into global labels. 



- 159 -

Thus each micro occupies a range of labels. For example, 01000 to 

01999 is for MICRO A. To simulate the execution of multi-micros, cer­

tain ranges of labels are allocated for housekeeping functions, as shown 

in Figure 9.12. 

01000 GOTO PC(Ol) 
01010 } labelled statements 
01790 

01799 GOTO 01998 

01800 REM 
01810 } unlabelled statements 
01990 

01998 LET PC(Ol) = 01999 
01999 REM 

Figure 9.12: Allocation of Labels for MICRO A 

The statement labelled with "MMOOO" is the "GOTO PC(MM)", where "PC(MM)" 

has the role of the program counter for micro "MM". This so-called pro-

gram counter contains the address of the next statement to be executed 

whenever it is necessary to suspend execution. 

Labelled statements are allocated labels in the range "MMOI0" to 

"MM790". At the end of the labelled statements, comes labelled state-

ment "MM799", which is a "GOTO" that transfers control to the end of the 

statements for this micro. This will cause "PC(MM)" to be set to label 

"MM999", which will subsequently cause control to jump over this block 

of statements. 

Unlabelled user statements are allocated labels in the range 

"MM810" to "MM900". Before execution the "PC" of each micro is initial-

ised to "MM800", causing the execution of any unlabelled statements. 
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The handling of "shared memory" and "message passing" mechanisms 

will now be discussed. "Shared memory" semantics is directly supported 

by BASIC. For "message passing", however, it is necessary to test that 

a memory location is in the correct state, before the statement can exe-

cute. A BASAL statement of the following form should be considered: 

22 LET Xl] Y[] 

Here, the "X" defines a "PUT", and therefore the memory location must be 

• 
empty, and "y" defines a "TAKE", and therefore the location must be 

non-empty, before the statement can execute. This is achieved by gen-

erating the following code: 

01810 LET A.X = -32768 

01220 LET PC(Ol) = 01220 
01221 IF A.X <> -32768 THEN 01999 
01222 IF A.Y = -32768 THEN 01999 
01226 LET A.X A.Y 
01227 LET A.Y = -32768 

Figure 9.13: Code Generated to Support "Messages" Semantics 

In the code in Figure 9.13, the "empty" state is represented by " 

32786". For the "LET X[] = Y []" to operate, memory location "X" must be 

initially set to "empty". This is achieved by generating an unlabelled 

"LET" • 

01810 LET A.X = -32768 

as in Figure 9.13. Support of the actual assignment statement makes use 

of the "system" field in the label. The first statement at label 01220 

sets "PC(01)" to the address of the block of code. The next two state-

" " d h "A.Y";s "non-empty". If ments test that A.X is empty, an t at ... 

either of these tests fails, then execution branches to the end of this 
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micro's code (when the code of this micro is next executed, control will 

be transferred to retest this block of code). If both tests succeed, 

then the assignment is made, and "Y" is set to "empty". 

Next, the problems of simulating parallel execution must be dis­

cussed. This involves two considerations: firstly, that control cannot 

be transferred to an alien microcomputer if the microcomputer is already 

executing; and secondly, there is the support of "&" control. The first 

issue will be considered: when "GOTO", "GOSUB" or "RETURN" are to make a 

non-local transfer, it is necessary to test if the target microcomputer 

is already ac ti ve. To support this, additional "housekeeping" informa­

tion is generated. This makes use of the following: the array "PC" of 

program counters, and an array "STACK", which contains a stack for each 

microcomputer, and an array "STACKPOINTER", which points to the 

corresponding top of stack. 

The code generated for "GOTO", "GOSUB", and "RETURN" will now be 

examined: 
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GOTO B.01 

01810 LET PC(Ol) 01810 
01811 IF PC(02) <> 02999 THEN 01999 
01812 LET PC(Ol) = 01999 
01813 GOTO 02010 
01814 REM 

GOSUB B.01 

RETURN 

01810 LET PC(Ol) 01810 
01811 IF PC(02) <> 02999 THEN 01999 
01812 LET PC(Ol) = 01999 
01813 LET STACKPTR(02) = STACKPTR(02) + 1 
01814 LET STACK(02,STACKPTR(02» = 01816 
01815 GOSUB 02010 
01816 REM 

02810 LET PC(02) = 02810 
02811 LET I = STACK(02,STACKPTR(02» 
02812 IF I = 02 THEN 02814 
02813 IF PC(I) <> «I * 1000) + 999) THEN 02999 
02814 LET PC(02) = 02999 
02815 LET STACKPTR(02) = STACKPTR(02) - 1 
02816 GOTO STACK(02,STACKPTR(02) + 1) 
02817 REM 

Figure 9.14: Code Generated to Support "GOTO", "GOSUB", and "RETURN" 

For a non-local "GOTO", as shown in Figure 9.14, the local program 

counter is initially set to the address of the block of code. Next, the 

alien micro is tested to see if it is inactive (i.e. PC(MM) MM999). 

If not, then execution of the current micro is suspended. If control 

can be transferred, then the current micro is made inactive by setting 

its PC to "MM999". The "GOTO" is then performed. 

"GOSUB" is supported in a similar way, as shown in Figure 9.14. So 

that it is possible to "RETURN" control, and in order to check the 

status of the micro, "GOSUB" places the "label" of the current micro on 

the top of the destination micros stack. This is shown as statements 

01813-4 in the example. The use of this information is shown by the 
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code for "RETURN" on Figure 9.14. 

Lastly, the "&" will be examined. This is only important when it 

is used to terminate control statements. For example: "LET A = B & LET 

D = B" is implemented sequentially by the translator. However, if a 

statement like a "GOTO" is terminated by a "&", its semantics becomes 

similar to a "FORK". Therefore, when the code for "GOTO" is generated, 

and the statement is terminated by "&", the "PC" is set to the label of 

the statement following the "GOTO". For example, in Figure 9.14 if the 

statement had been "GOTO B.01 &", then the third line would have been: 

01812 LET PC(01) = 01814 

Whereas, if the "GOTO" is terminated by ";" or "newline", indicating 

sequential execution (which could transfer control out of the micro, and 

hence suspend its execution), then the "PC" is set to "01999" as above. 

In the next chapter, an analysis and assessment of the programming 

language BASAL will be made. 
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CBAPTEIl. 10 - ANALYSIS OF BASAL 

This chapter is an analysis of the BASAL programming language. As 

a vehicle for this analysis, the Quicksort example is again used. How­

ever, because BASAL, like BASIC, does not support recursion, the exam­

ples are not very "flattering" to BASAL. 

Four possible strategies in distributing code and data could be 

followed in programming the Quicksort algorithm in BASAL. Firstly, the 

sort code and the array of data could reside in the same microcomputer. 

Secondly, the sort code could be distributed, one process per microcom­

puter, but the array of data would reside in a single microcomputer. 

Thirdly, the sort code would reside in a single microcomputer, but the 

array of data could be distributed. Lastly, both the sort code and the 

array of data could be distributed across the microcomputers. In addi­

tion, since BASAL supports both a "shared memory" and a "message pass­

ing" data mechanism, then each of the algorithms may communicate data 

either via variables or by messages. 

In the following analysis, two Quicksort programs are presented. 

In both programs the strategy is to distribute the code (for parallel­

ism) but have the data resident in a single microcomputer. The first 

program is based on shared memory communication, and the second on mes­

sage passing communication. 
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10.1. pARAT,JEL (SBAllED HEHOB.Y) SOB.T 

The example of a parallel Quicksort using shared memory was chosen 

to demonstrate how BASAL deals with the communication and synchronisa­

tion associated with this form of parallelism. 

10.1.1. Description of Application 

The essential idea of Quicksort, as discussed in Chapter 3, is to 

partition the original set to be sorted by rearrlnging it into two sub­

sets; the first contains those elements which are less than some arbi­

trary "pivot" value chosen from the set, and the second those elements 

which are greater or equal to the value. Then the partitioning process 

is applied, in turn, to the two subsets, until each subset contains only 

one element. When all subsets have been partitioned, the original set 

has been sorted. In this case of a parallel sort, various "micros" per­

form the sorting of a given array in parallel, making use of shared 

memory. 

The example of parallel Quicksort using shared memory, written in 

BASAL, uses different "micros" for the comparisons, partitions and 

exchanges for an array of sixteen elements. "MICRO A" contains the 

array "V" and the main loop of the sort program. The remaining micros 

"B", "C", "D", etc. form a "tree" of processes, each containing a copy 

of a sort process. "MICRO A" invokes micros "B" and "C", in turn "MICRO 

B" invokes "D" and "E" etc. When the array is sorted, control is 

returned to "MICRO A". The sorting of a subset of the array "V" 

involves the "PIVOT" - the first element of the set - plus two pointers 

"I" and "J". "LO" and "HI" contain the lowest and highest numbers in 

the subset, and are stored into a micro before the micro's sort process 



- 166 -

is invoked. 

Since BASAL does not have repetitive statements such as "REPEAT 

UNTIL" and "DO WHILE", the commands to partition and exchange subsets in 

the array "V" have to be simulated by a series of "IFs" and "GOTOs". 

The program was written in BASAL, and run through the BASAL trans­

lator, producing BASIC code. This code, in turn, was then executed by a 

BASIC system. The BASAL translator, when generating BASIC, creates 

extra "housekeeping" code (as shown in Chapter 9) to drive the various 

separate "micros", such as the indication of where the instructions for 

each "micro" begin and finish, etc. 

10.1.2. Description of Program 

The first micro, "MICRO A", contains the main loop of the sort code 

and the array "V". The code for it in BASAL is summarised in Figure 

10.1. In this example the main statements of interest are statements 33 

to 38. These statements store the lowest and highest numbers of the two 

subsets to be sorted into micros "B" and "C", and then invoke the two 

micros using "GOSUB". 



MICRO A 
01 DIM V(l6) 
05 LET LO = 1& 
06 LET HI = 16 
10 IF LO )= HI THEN 39 
12 LET I = LO& 
13 LET J = HI 
14 LET PIVOT = V(LO) 
15 IF J <= I THEN 20 
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17 IF V(J) < PIVOT THEN 20 
18 LET J = J - 1 
19 GOTO 15 
20 IF I =) J THEN 25 
22 IF V(I) ) PIVOT THEN 25 
23 LET I = I + 1 
24 GOTO 20 
25 IF I =) J THEN 30 
27 LET TEMP = V(I) 
28 LET V(I) = V(J) 
29 LET V(J) = TEMP 
30 IF I < J THEN 15 
31 LET V(LO) = V(I) 
32 LET V(I) = PIVOT 
33 LET B.LO = LO& 
34 LET B.HI = I - 1 
35 GOSUB B.10& 
36 LET C.LO = I + 1& 
37 LET C.HI = HI 
38 GOSUB C.10 
39 STOP 

Figure 10.1: Quicksort (shared memory) Program in BASAL 

The sort code for "MICRO B", "MICRO C", etc., is similar to the one seen 

above until about line 33 where, for instance, in "MICRO B" it reads: 

MICRO B 
10 IF LO >= HI THEN 39 
12 LET I = LO& 
13 LET J = HI 

32 LET A.V(I) = PIVOT 
33 LET D.LO = LO& 
34 LET D.HI = I - 1 
35 GOSUB D. 10& 
36 LET E.LO = I + 1& 
37 LET E.HI = HI 
38 GOSUB E. 10 
39 RETURN 
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The code for the other micros from line 33 onwards is almost identical, 

only the appropriate variables for the specific "micros" being changed 

(e.g. for "MICRO CIt: LET E.LO = LO, LET E.HI = I-I, etc.) 

After being processed by the BASAL interpreter, the code generated 

for the parallel Quicksort ("MICRO A") is illustrated in Figure 10.2. 

Its approximate version is: 

10 DIM PC(26) 
20 DIM STACKPTR(26) 
30 DIM STACK(26,20) 

1000 GOTO PC(Ol) 
1010 DIM A. V(16) 
1100 IF A.LO >= A.HI THEN 1390 
1120 LET A.I = A.LO 
1130 LET A.J = A.HI 
1140 LET A.PIVOT = A.V(A.LO) 

1330 LET B.LO = A.LO 
1340 LET B.HI = A.I - 1 
1350 LET PC(Ol) = 1350 
1351 IF PC(02) <> 02999 THEN 01999 
1352 LET PC(Ol) = 01999 
1353 LET STACKPTR(02) = STACKPTR(02) + 1 
1354 LET STACK(02,STACKPTR(02» = 01356 
1355 GOSUB 2100 
1356 REM 

Figure 10.2: BASIC code for Figure 10.1 

The code generated by the BASAL translator for the other micros (B, C, 

etc.), is qui te similar to the one above, the main difference being 

(again) for lines corresponding to those ranging from 1330 and beyond, 

where for "MICRO B" it becomes "LET D.LO = B.LO", "LET D.HI = B.I - 1", 

etc. 
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10.1.3. Assessment 

This parallel version of Quicksort, using shared memory was 

slightly difficult to program, having in mind that BASAL does not have 

statements such as "REPEAT-UNTIL" and "DO-WHILE", and profuse use of 

"GOTOs" had to be made. The language proved simple to use for writing 

the commands for a single sort process. However, the manual replication 

of the code was very tedious. This is related to two problems, firstly 

the absence of recursion or a PAR-command (as in OCCAM) that replicates 

processes, and secondly that processes are allocated statically to 

microcomputers rather than dynamically. In fact, these problems clearly 

relate to the choice of BASIC as the basis of BASAL, rather than the 

programming model. 

10.2. PARALLEL (MESSAGE PASSING) SORT 

Next, the example of a parallel Quicksort using message passing is 

examined. It was chosen to demonstrate how BASAL deals with the commun­

ication and synchronisation associated with this form of parallelism. 

10.2.1. Description of Application 

This example of a parallel Quicksort exploits the "[ I" capability 

of BASAL, specially intended for use in message passing communication. 

Like in the example above, an array of sixteen elements is to be sorted, 

using a "tree" of micros, each containing a sort process. "MICRO A", 

containing the main loop, partitions the array passing elements less 

than or equal to the value of the pivot to "MICRO B", and elements 

greater than the pivot to "MICRO C". In turn, "MICRO B" partitions its 

subset passing elements to "0" and "E" etc. When the array is fully 
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partitioned, the elements are passed back up the "tree" of sort 

processes, until "MICRO A" reads and merges the final two sorted sub-

sets. 

10.2.2. Description of Program 

The first micro to attempt to sort the set of numbers in this exam-

pIe is, again, "MICRO A". The BASAL code corresponding to the process 

"MICRO A" is summarised in Figure 10.3. In Figure 10.3, a number of 

points should be noted. When "MICRO A" starts executing, it initially 

"forks" control to micros "B" and "c" to start them executing: 

GOTO B.Ol& 
GOTO C.Ol& 

Note, "MICRO A" partitions the array "V" putting elements into either 

"B.IN[]" or "C.IN[]". Lastly, a terminator "30999" is output to both 

messages. 



MICRO A 
01 DIM V(l6) 
05 GOTO B.Ol& 
06 GOTO C.Ol& 
10 LET PIVOT = V(I) 
11 FOR I = 2 TO 16 
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12 IF V(I) > PIVOT THEN 15 
13 LET B.IN[] = V(I) 
14 GOTO 16 
15 LET C.IN[] = V(I) 
16 NEXT I 
20 LET B.IN[] 30999& 
21 LET C.IN[] = 30999 
30 LET I = 1 
31 LET V(I) = B.OUT[] 
32 LET I = I + 1 
33 IF V(I - 1) <> 30999 THEN 31 
34 LET V(I - 1) = PIVOT 
36 LET V(I) = C.OUT[] 
37 LET I .. I + 1 
38 IF V(I - 1) <> 30999 THEN 36 
39 STOP 

Figure 10.3: Quicksort (message passing) Program in BASAL 

Having partitioned the array, "MICRO A" then attempts to take the two 

sorted subsets from "B.OUT[]" and "C.OUT[]" and merge them, placing the 

results back into the array "V". 

The code for "MICRO B" etc. is different in this version of Quick-

sort using message passing, as can be seen in Figure 10.4. Its opera-

tion is fairly straightforward, and should not require further explana-

tion. 
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MICRO B 
01 LET PIVOT = B.IN[] 
02 IF PIVOT = 30999 THEN 39 
03 GOTO D.Ol& 
04 GOTO E.Ol& 
10 LET X = B.IN[] 
11 IF X = 30999 THEN 20 
12 IF X ) PIVOT THEN 15 
13 LET D.IN[] X 
14 GOTO 10 
15 LET E.IN[] X 
16 GOTO 10 
20 LET D.IN[] 30999& 
21 LET E.IN[] 30999 
30 LET X = D.OUT[] 
31 IF X = 30999 THEN 34 
32 LET B.OUT[] = X 
33 GOTO 30 
34 LET B.OUT[] = PIVOT 
35 LET X = E.OUT[] 
36 IF X = 30999 THEN 39 
37 LET B.OUT[] X 
38 GOTO 35 
39 LET B.OUT[] 30999 
40 STOP 

Figure 10.4: Quicksort code for "MICRO B" (etc.) 

Finally, the BASIC code generated for the BASAL commands in "MICRO 

A" is illustrated in Figure 10.5. 
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10 DIM PC(26) 
20 DIM STACKPTR(26) 
30 DIM STACK(26,20) 
1000 GOTO PC(OI) 
1010 DIM A.V(16) 
1050 LET PC(Ol) = 01050 
1051 IF PC(02) <> 02999 THEN 01999 
1052 LET PC(Ol) = 01054 
1053 GOTO 02010 
1054 REM 

1100 LET A.PIVOT = A.V(l) 
1110 FOR A.I = 2 TO 16 
1120 IF A.V(A.I) > A.PIVOT THEN 1150 
1130 LET PC(OI) = 1130 
1131 IF B.IN <> -32768 THEN 1999 
1136 LET B.IN = A.V(A.I) 
1140' GOTO 1160 
1150 LET PC(Ol) = 1150 
1151 IF C.IN <> -32768 THEN 01999 
1156 LET C.IN = A.V(A.I) 
1160 NEXT A. I 

Figure 10.5: BASIC code for Figure 10.3 

Listings of the BASAL Quicksort programs, both shared memory and 

message passing, are given in Appendix A.8, together with the 

corresponding outputs for the translator. 

10.2.3. Assessment 

This parallel version of Quicksort using message passing presented 

similar difficulties in programming to the previous Quicksort examples. 

These are: the absence of commands to replicate code (e.g. recursion or 

PAR) and the fact that processes must be statically rather than dynami-

cally allocated. When comparing the two Quicksort algorithms, the mes-

sage passing version has the advantage over the shared memory that all 

micros are not competing for access of the array "V" in "MICRO A's" 
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memory. 

10.3. ANALYSIS AND ASSESSHEHT 

In general, BASAL is a very simple language to program in (like 

BASIC) and has the advantage of being very close to the underlying RIHMS 

architecture. However, this flexibility is at the expense of "safeness" 

in the parallel programs written. The three main "problem" statements 

are: 

LET name = expression 
GOTO label 
GOSUB label 

The "LET" can assign values, non-deterministically, anywhere in the glo-

bal address space. The "GOTO" can transfer control to any microcomputer 

(although, recall, control will only be transferred if the destination 

micro is hal ted) • "GOSUB" can call any label in the global address 

space, as if it were an "entry-point". In addition, parameters must all 

be passed by global variables. 

Besides this problem of encapsulating flows of data and control in 

BASAL programs, there is the previously mentioned problem of replicating 

processes and even of having dynamic process creation. This could be 

approached in two ways: either using recursion or a "PAR-statement" 

operating on "MICRO micro name". 

To improve encapsulation of information in a parallel language like 

BASAL, it is clearly necessary to restrict the flows of data and con­

trol. Flows of data can be restricted by introducing parameterised 

processes, as in OCCAM, and IMPORT/EXPORT statements, as in MODULA 2. 

For parameterised processes, the command "PROC 
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would replace "MICRO 

micro name". For IMPORT/EXPORT, two new statements would be introduced 

into BASAL: "IMPORT micro_name.local_name" defining non-local access to 

a variable, and "EXPORT local_name", defining a variable that may be 

accessed non-locally by another process. 

Flows of control can be restricted by only allowing GOTOs to 

transfer control locally, "GOTO local_label", and by replacing "GOSUB 

label" by "CALL micro_name{(local_name{,local_name} ••• )}. This res-

tricts a process to a single "entry-point" namely "micro_name", and 

defines the local names that are to be common to the two processes. 

(This assumes a "call-by-reference" form of parameter passing.) Thus, 

the new syntax is: 

PROC micro_name{(local_name{,local_name} ••• )} 

IMPORT micro name.local name 
EXPORT local-name 
GOTO local-label 
CALL micro=name{(local_name{,local name} ••• )} 

Next, the problems of replicating code and having dynamic creation of 

processes are examined. 

To improve the replication of code (while keeping the static allo-

cation of processes) the OCCAM "PAR i [1 FOR n]" could be adopted. 

This effect could be achieved in BASAL by introducing an optional 

integer field in the process declaration: 

PROC micro_name{(integer)} 

It defining the number of the copies of the process to be generated. 

would then be necessary to introduce an optional field into micro name 

"alphabetic {(integer)}" defining which process is being accessed. 

Although this change could be easily introduced into the BASAL syntax, 
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it seems to be inelegant when compared, say, to recursion which achieves 

a similar effect. 

Recursion seems the best approach to handle the dynamic creation of 

processe s. When the processes are declared, each could be statically 

allocated to a microcomputer. However, should any process be called 

recursively, then the process' code would be dynamically copied into a 

new (unallocated) microcomputer. The microcomputers could be envisaged 

as being allocated as if forming a stack. 

Finally, as an illustration of the effect of these changes, Appen­

dix A.7 contains the syntax of the improved BASAL. The main merit of 

BASAL is in the fact that it allows the parallel programming of multi­

microcomputers, but on the other hand still manages to have a simple 

syntax and semantics. 
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CHAPTER. 11 - COBCLUSIOBS 

This chapter presents the conclusions drawn from this investigation 

of programming decentralised computers. 

11.1. SUMHAB.Y 

A summary of the work presented in this Thesis is initially given. 

In Chapter 2, images of various computer systems that could be in 

operation in the future were described. These were: Fifth Generation 

Computers, Supercomputers, VLSI Processor Architectures, and Integrated 

Communications & Computers. The former two images are of "parallel 

machines" supporting a "revolutionary" new programming model, namely 

logic and data flow, respectively. The latter two images are of "decen­

tralised computers" supporting "evolutionary" control flow programming 

models. It concludes that a decentralised computer architecture capable 

of spanning distributed, parallel and sequential computers, is the most 

appropriate image for future computers. 

In Chapter 3, the major programming styles that could be used to 

program these future decentralised computers were presented and classi­

fied. These styles cover procedural programming, including conventional 

and concurrent languages; object-oriented programming; functional pro­

gramming, including data flow and applicative languages; and logic pro­

gramming; as well as new forms of application programming, including 

electronic-sheet languages. The basis for this classification of pro-
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gramming styles was the computational (data and control) mechanisms that 

underlie their programming models. 

In Chapters 4 and 5, each programming style was analysed, using a 

common Quicksort algorithm plus the data mechanisms and control mechan-

isms presented in Chapter 3. Chapter 4 analysed procedural programming 

including conventional and concurrent languages, and object-oriented 

programming, identifying their advantages and disadvantages. Chapter 5 

analysed functional programming including data flow and applicative 

languages, and logic programming including Horn clause languages. These 

Chapters concluded that control flow (and procedural programming) was 

the most primitive and fundamental programming model. 

In Chapter 6, based on the conclusions of Chapters 2 to 5, the so-

called decentralised control flow programming model was presented. This 

programming model embodies a "decentralised computer" image of computers 

and is based on control flow. It was shown how this model generalises 

the traditional von Neumann model and, in fact, already provides the 

basic concepts underlying modern operating systems. It was argued that 

the decentralised control flow programming model should form the basis 

of future decentralised computer systems and their corresponding pro-

gramming languages. 

In Chapters 7-10, two programming languages called BASIX and BASAL 

embodying the decentralised control flow model were presented. BAS IX 

and BASAL were used to investigate the style of decentralised control 

flow programming languages, and were not meant to propose new languages. 

Both these languages are primitive and are "low-level" system program­

ming languages (cf. C) rather than "high-level" languages (cf. PROLOG). 

b" the Chapter 7 presented the BASIX language which attempts to com lone 
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fundamental concepts of the UNIX Shell, LISP and BASIC. It is intended 

as a "total system", providing a complete interactive programming 

environment (cf. SMALLTALK). Chapter 9 presented the BASAL language, 

based on a primitive form of decentralised control flow, and designed 

for programming the RIMMS multi-microcomputer system. BASAL is a super­

set of BASIC. BASIX and BASAL can be viewed as representing the oppo­

site ends of the spectrum of languages based on the decentralised con­

trol flow model. 

Below the four major areas and contributions of this Thesis are 

summarised. They are: the classification of programming styles, the 

decentralised control flow model, the BASIX languages, and the BASAL 

languages. 

11.1.1. Classification of Programming Styles 

The classification and analysis of the major styles of programming 

(presented in Chapters 3, 4 and 5) attempt to quantify the observable 

advantages and disadvantages of programming languages. The belief is 

that these advantages and disadvantages directly relate to the computa­

tional mechanisms underlying the particular programming model associated 

with these languages. 

For a programming model there are two basic computational mechan­

isms referred to, in this Thesis, as the data mechanism and the control 

mechanism. The data mechanism defines the way a particular argument is 

communicated by a number of commands. There are two basic types, 

referred to as: "shared memory" and "message passing". The control 

mechanism defines how one command causes the execution of one or more 

other commands. There are four basic types referred to as: "control 
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driven", "data driven", "demand driven", and "pattern driven". 

In terms of the data mechanism, firstly "shared memory" has advan­

tages for sharing data structures and for allOwing an unspecified number 

of copies of data to be taken, but has the disadvantage of not support­

ing synchronised access to its contents, particularly by parallel com­

mands. Secondly, "message passing" has the advantage of synchronised 

communication of data, but has the disadvantages of not supporting shar­

ing of data structures and of often needing to know all consumer com­

mands. 

For the control mechanism: firstly "control driven" has the advan­

tage of being very primitive and flexible, but the disadvantage of being 

relatively easy to misspecify in terms of the sequences of execution; 

secondly, "data driven" has the advantage of being "naturally" parallel, 

but the disadvantage of being unable to control unnecessary evaluation; 

thirdly, "demand driven" has the advantage of performing minimum execu­

tion, but has the disadvantage of restricting the control pattern to a 

tree structure; and lastly, "pattern driven" has the advantage of being 

the highest level control mechanism, but, in consequence, the disadvan­

tage of sometimes not allowing sufficient control over the execution of 

a program. 

It was noted in Section 6.1 that, significantly, each category of 

programming models regards the data mechanisms and the control mechan­

isms as largely incompatible sets of alternative concepts. Hence each 

category, although Universal (cf. Turing machine) has specifiC advan­

tages and disadvantages for computation, related to its choice of data 

and control mechanisms. More significantly, the classification of pro­

gramming styles seems to show that "shared memory" is the most important 
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data mechanism and "control driven" execution is the most primitive con­

trol mechanism. Thus Section 6.1 concludes that control flow is the 

most fundamental programming model for computers. 

11.1.2. Decentralised Control Flow 

The decentralised control flow model, presented in Chapter 6, has 

the following principles: 

1. computer - a computer system is a decentralised computer (hierarchy 

of distributed, parallel and sequential computers); 

2. network - a nested organisation of variable-size memory cells (like 

the file structure of an operating system); 

3. addressing - a contextual address space of cells (like telephone 

numbers) ; 

4. program - a higher-level machine language (as in LISP, where 

instructions may be recursively defined); 

5. communication - shared memory and message passing communication of 

data; 

6. execution - parallel, decentralised control of computation (as with 

UNIX commands). 

An essential concept in this decentralised control flow model is the 

direct functional correspondence between hardware and software. In 

addition, memory is recursively structured allowing any level of object 

to be accessed and this makes it a flexible and powerful memory model. 
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The use of contextual addreSSing, as in modern operating systems, 

is another advantage. Memory cells close to the current context can be 

addressed using short addresses, with the length of these addresses 

increasing with the different levels to be reached. The concept of 

memory cells in the decentralised control flow model supports both 

"h d "d " ' "d ha s are memory an message pass1ng ata mec nisms, which gives it 

more flexibility than other programming models. One point that could be 

improved, though, is that more addreSSing modes (such as content 

addressing) would be beneficial to the model. 

Instructions in the decentralised control flow model have a Single 

format, with a procedure call mechanism being intrinsically built-in. 

The single format is quite simple. The fact that the way programs and 

data are presented is not strictly identical (as in LISP) requires 

improvemen t • 

One of the great strengths of the decentralised control flow model 

is to generalise sequential control flow. As a negative counterpart to 

that, the current program execution is conceptually quite complex, and 

the controls between commands are still a problem. Lastly, the support 

for other programming models is still not very effective at the moment. 

11.1.3. BASIX Languages 

The BASIX languages, mainly the BASIX_2 language presented in sec­

tion 7.3 has, like the decentralised control flow model it was designed 

to mirror, a recursive concept of "object". The "objects", very similar 

to LISP, are specified via the use of delimited strings. But, as it was 

1 2) 1 'k i LISP pro­pointed out above for the model (Section 11.. ,un 1 en, 

grams and data are not represented in exactly the same way. 
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Addresses in BASIX_2 can be individual selectors or a sequence of 

selectors, but the addressing notation has its problems. One of them is 

the case where "a/1"" means th "h h e component W1t t e explicit selector 

"i:( ••• )", while name "a/(i)" is equivalent to the traditional "a[i}". 

Beside that, locations can have numeric selectors, leading to the impos-

sibility of differentiating between numbers and selectors. This can be 

overcome by prefixing a single numeric selector with "./". 

One of the main positive points of the BASIX_2 language is that it 

has a traditional syntax, even though it is based on a decentralised 

programming model. The current problems in the language's syntax can be 

found, though, in the statements "if-fi" and "do-od", as well as in 

"for-rof". Ideally, the language would have both iterative statements 

and statements that replicate other statements. 

Finally, the fact that BASIX_2 attempts to generalise conventional 

languages makes it a powerful and "comprehensive" language, but this is 

perhaps offset by the fact that the current semantics tend to be some-

what complex. 

1l.1.4. BASAL Language 

The BASAL language, presented in Chapter 9, is a simple, easy to 

understand language, but it suffers from the normal problems of its 

parent BASIC, such as having a primitive notion of nested object, unlike 

BASIX which allows access to variables and files alike. 

The addressing scheme in BASAL is a two-level one, which is easy to 

understand, and the program representation is quite simple. The major 

problem of BASAL, as discussed in Section 10.3, is its inability to 

dynamically create processes, or even, as OCCAM does, of specifying the 
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replication of a group of processes that are based on the same code. 

Finally, BASAL is very close to traditional control flow (present-

ing no "traps" for s r f . u e s 0 conventl.onal languages), but it has the 

important advantage of supporting both "shared memory" and "message 

passing" data mechanisms. 

11.2. FUTDBE won 

Future work is clearly required in each of the four areas: the 

classification of programming styles, the decentralised control flow 

model, the BASIX languages, and the BASAL languages. 

11.2.1. Classification of Programming Styles 

The classification, and resulting analysis, of programming styles 

presented in Chapters 3, 4 and 5, make two possible contributions: 

firstly the data and control mechanisms may, in some sense, be fundamen-

tal to computation, contributing in the future to improvements in the 

design of programming languages, and secondly (even if this is not the 

case) the classification is believed to aid in understanding the various 

programming styles and the strengths and weaknesses of their associated 

programming languages. 

Having said ~his, no classification is likely to be perfect. For 

instance it is arguable whether the current classification clearly dif-

ferentiates between applicative (pattern-matching) languages, which are 

based on a graph reduction programming model, and logic languages, based 

on a logic model. So it will be necessary, in the future, to test the 

classification by using it to study other programming styles such as 

expert systems building languages [60]. 
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11.2.2. Deceutralised Control Flow 

Future work on the Decentralised Control Flow model can be identi-

fied in the areas of addressing, program representation, program execu-

tion, and supporting of other programming models. For addressing, one 

point that could be improved is to increase the number of addressing 

modes (such as content addressing). For program representation it would 

be interesting to have a fully recursive format for commands as in LISP. 

This would allow any argument of a command to be a complete program 

fragment. However, this would probably prove very complex to implement 

in a computer architecture, and may complicate the semantics of the 

model. Concerning support of other models, the decentralised control 

flow model currently supports "data driven" and "demand driven" execu-

tion. This leaves only the support of "pattern driven" execution of 

commands to be investigated. 

However the main problem to be tackled with the current decentral-

ised control flow model is to provide a good implementation (which 

should include memory management) of the information structure and the 

addressing scheme, both of which need to be made efficient. This should 

also help refine the semantics of the programming model. 

11.2.3. BASIX Language 

In BASIX_2 perhaps the major improvement needed would be to make 

d h S1." mple The concept of the language less recursive an t us more • 

"object" seems to cover too many semantic fields, and the language 

should benefit from the simplification. 
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Essentially four basic types of objects would be retained: "expres­

sion", "statement", "( {object} ••• )", and "local_name:object". An 

expression consists of one or more simple objects, separated by opera­

tors. A statement is a list of objects whose leftmost object is a key­

word or the name of a program object. A bracketed list of objects may 

be code or data, and lastly comes the declaration of a "name :object" 

pair in the local context. 

Control statements, which had proved difficult to use in the 

current version of the BASIX, could be simplified by using Dijkstra' s 

guarded commands: "IF {expression -) command} ••• FI" and "DO {expression 

-) command} ••• OD". The "GOTO" would be restricted to a local context, 

by using a "local name". Names and selectors (which have been one of 

BASIX more serious problems) could, in the future, be defined as: 

"local_ name{ • selec tor} ••• II and "$ {. selec tor} ••• ", " local_name" being an 

alphanumeric character string, and "selector" being redefined as either 

a "local_name", "numeric", or "(expression)", in the hope that this 

would bring about the simplifications of both syntax and semantics. 

11.2.4. BASAL Language 

In BASAL, it would be perhaps worthwhile to make the most primitive 

element not a word, but an object that may have structure. Also, in a 

parallel language such as BASAL, there is a need to encapsulate informa­

tion. This could be done by restricting the flows of data and control. 

The introduction of parameterised processes and of IMPORT/EXPORT state­

ments would deal wi th the restric tion of flows of data, while the flows 

of control would be restricted by only allowing GOTOs to transfer con­

trol locally. It would, also, be very useful to have some ability to 

reference files as in, say, delimited strings. 
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However. the most important current limitation in BASAL is the ina­

bility to replicate code or dynamically allocate processes to micros. 

In order to improve this. an optional integer field could be introduced 

in the process declaration. which would define the number of copies of 

the process to be generated. So that these processes could be accessed. 

an optional field would need to be included in "micro name" such as _ . 
"alphabetic { (integer)}" defining which process is being accessed. 

Another. more elegant solution, would be the introduction of recursion. 

The processes, when declared, would be statically allocated to a micro-

computer. In case of a process being called recursively, the code of 

that process would be copied (dynamically) into another (new, unallo-

cated) microcomputer. This idea would be analogous to a stack, formed 

by allocated microcomputers. 

11.3. FINAL CONCLUSIONS 

In the computer science community there is a growing belief that 

the traditional von Neumann computer may be superseded over the next 

decade by a new decentralised computer programming model. Various 

categories of programming models (Le. data flow, reduction, actor, 

logic) are being promoted as the von Neumann successor. The most prom­

inent are logic for Fifth Generation Computers and data flow for Super­

computers. A problem with these novel parallel models is that they are 

largely unproven and represent a "revolutionary" solution, which dis­

cards the massive investment in traditional control flow computing. 

However, it is felt that the evolutionary approach of a control 

flow model embodying a decentralised computer architecture - which is 

called decentralised control flow - is a more promising way of achieving 

h . i Japan's FGCS Project many of the very ambitious goals c aracter~s ng 
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[39,53]. This view, presented here, is partly conservative in recognis­

ing the greater practicality (in a world of existing systems and exper­

tise) of persuading individuals and organisations to tryout an evolu­

tionary development. However, there is also the belief that control 

flow is a more fundamental model of computation (see Section 6.1) than 

the four other categories of models. In addition, the decentralised 

control flow principles (described in Chapter 6) already form the basis 

of modern operating systems such as UNIX. In effect, the basic program­

ming model needed for future computers is already in use. 

In choosing a low-level programming language, it is believed that 

the next generation of decentralised control flow programming language 

should fall somewhere between the current BASIX and BASAL languages, 

attempting to capture the simplicity of BASAL, and the sophistication of 

BAS IX. 

In conclusion, highly parallel and decentralised programming models 

will, and should, only supplant the traditional von Neumann model if 

they can match the latter's generality and flexibility, as exemplified 

by the large variety of both conventional and very novel programming 

languages and styles that it supports with reasonable effec ti veness. 

The important aspect of the von Neumann model which gives this flexibil­

ity is that it is a control flow model allowing the programmer (or 

compiler/interpreter) direct control over the low level operation of the 

target machine when this is necessary. Thus, the key to the future gen­

eration of programming models would be identified as being some extended 

form of control flow which overcomes its deficiencies for decentralised 

concurrent systems, but retains its flexibility and generality. 
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APPEBDIX A.l - BASIX 1 Programug Language 

NAME 
BASIX 1 

SYNOPSIS 
BASIX 1 { name } 

DESCRIPTION 
BASIX 1 has a decentralised control flow operational model. Its 
syntax is a superset of BASIC, but it incorporates features both 
from LISP and from UNIX. BASIX 1 commands can be simple statements 
as in BASIC, or can be delimited groups of statements or commands, 
as in LISP. BASIX l's environment is similar to UNIX. When BASIX 1 
is invoked the user program input has access to any , files'-­
viewed as data structures by the program - previously created. If 
any 'name' argument is provided when BASIX 1 is invoked, the asso­
ciated structures are used for input before-reading the terminal. 

Commands have the following syntax: 

statement 
The statement is immediately executed. The result of an 
immediate command is printed. 

integer statement 
Integer numbered statements (known as internal commands) are 
stored for later execution. They are stored in sorted ascend­
ing order. 

( command { command } ••• ) 
The ( command { command }... ) is executed when the ')' is 
reached. 

integer ( command { command } ••• ) 
Similarly to the 'integer numbered statements', these are 
stored for later execution. 

Statements have the following syntax: 

C01lllllent 
This statement is ignored. It is used to interject commentary 
in a program. 

dt. alphanumeric ( integer {, integer } ••• ) 
This statement is used to create either temporary 
permanent data structures. When used in the form 

or semi-



done 
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dim alphanumeric ( integer {, integer } ••• ) 

it creates a semi-permanent data structure ('file') which will 
nfot be deleted at the end of the program. When used in the 

orm 

integer dim alphanumeric ( integer {, integer } ••• ) 

it creates a temporary data structure which will disappear at 
the end of the program. 

Return to system level. 

The name and current value of every variable is printed. 

for name expression expression statement 

for name expression expression 

next 
The for statement repetitively executes a statement (first 
form) or a group of statements (second form) under control of 
a named variable. The variable takes on the value of the 
first expression, then is incremented by one on each loop, not 
to exceed the value of the second expression. 

fork expression 
The expression is evaluated, truncated to an integer and a 
secondary thread of execution starts at the corresponding 
integer numbered command. The primary thread of execution 
continues to execute the statement following the 'fork'. Also 
see 'join' statement. 

join expression 
The expression is evaluated and truncated to an integer. This 
positive integer defines the number of threads of control to 
be received by the 'join' before sequential execution (of the 
following statement) is resumed. 

goto expression 
The expression is evaluated, truncated to an integer and exe­
cution goes to the corresponding integer numbered statement. 
If executed from immediate mode, the internal statements are 
compiled first. 

if expression statement 

d 
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if expression 

else 

fi 

} 

The 'if' statement (first form) or group of statements (second 
form) is executed if the expression evaluates to non-zero. In 
the second form, an optional else allows for a second group of 
statements to be executed when the first group is not. 

let name = expression 
This is the assignment statement. The left operand must be a 
name or an array element. The result is the right operand. 
Assignment binds right to left. 

list { expression } { expression } 
Is used to print out the stored internal arguments. If no 
arguments are given, all internal statements are printed. If 
one argument is given, only that internal statement is listed. 
If two arguments are given, all internal statements 
inclusively between the arguments are printed. 

print list 
The list of expressions and strings are concatenated and 
printed. (A string is delimited by " characters.) 

prompt list 
Prompt is the same as print except that no newline character 
is printed. 

return { expression } 
The expression is evaluated and the result is passed back as 
the value of a function call. If no expression is given, zero 
is returned. 

run 
Control is passed to the lowest numbered internal statement. 

save { expression } { expression } 
Save is like list except that the output is written on the 
file argument. 

expression 
The expression is executed for its side effects or for print-
ing as described above. 

Ezpressions have the following syntax: 
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number 
A number is used to represent a constant value. A number is 
written in Fortran style, and contains digits, an optional 
decimal point, and possibly a scale factor consisting of an 
'e' followed by a possibly signed exponent. 

(expression) 
Parentheses are used to alter normal order of evaluation. 

expression 
- The result is the negation of the expression. 

expression operator expression 

name 

Common functions of two arguments are abbreviated by the two 
arguments separated by an operator denoting the function. A 
complete list of operators is given below. 

A name is used to specify a variable. 

name( ) 
Procedures and functions can be called by an name followed by 
parentheses. The name evaluates to the line number of the 
entry of the procedure or function in the internally stored 
statements. This causes the internal statements to be com­
piled. 

Names have the following syntax: 

o (zero) 
The current context becomes the selected variable. 

alphanumeric 
An alphanumeric is used to specify a variable in the current 
context. Alphanumerics are composed of a letter followed by 
letters or digits. 

expression 
The expression is truncated to an integer and used as a 
specifier for the name. 

namelname{lname} ••• 
A name can also be a sequence of selectors, used to access 
structures such as arrays. 

The following is the list of operators: 

& V 
& (logical and) has result zero if either of its arguments are 
zero. It has result one if both its argume.nts are non-zero. 
V (logical or) has result zero if both of its arguments are 
zero. It has resul t one if either of its arguments are non-
zero. 

c 
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< <= > >= = <> 
The relational operators ( < less than, <= less than or equal, 
> greater than, >= greater than or equal, = equal to, 0 not 
equal to) return one if their arguments are in the specified 
relation. They return zero otherwise. Relational operators at 
the same level extend as follows: a > b > c is the same as a > 
b & b > c. 

+ - * / ** 
The arithmetic operators add, subtract, multiply, divide and 
exponentiation. 
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APPENDIX A.2 - BAS~2 Progr-mng Language 

NAME 
BASIX 2 

SYNOPSIS 
BASIX 2 

DESCRIPTION 
BAS~ has a decentralised control flow operational model. Its 
syntax attempts to combine some of the most important characteris­
tics of BASIC, UNIX Shell, and LISP. For instance, BASIX 2 has a 
single notion of object which serves the roles of variables~ lists, 
messages, programs, files and directories. BASIX 2 has a nested 
information structure and a contextual address space similar to the 
UNIX Shell - a hierarchy of "name : object" pairs. BASIX 2 com­
mands can be simple expressions and statements as in BASIC.-or can 
be delimited groups of commands as in LISP. Interaction is via 
terminal screens which display the information structures of active 
contexts as windows. (Shared contexts appear as identical win­
dows.) A window is divided into three areas: 

I Context : 

1 Context : 

Context 

name 
name 
name 

Command 

( 
( 
( 

) 
) 
) 

--------------------------------

I 
I 
1 
1 

1 

I 
I I 
1-----

1 1 1-----
defining the current context, the contents of the context, and the 
commands typed by the user. Information in any of the three. areas 
may be changed by positioning the cursor and typing the new ~nfor­
mation. A new context name changes the current context. New 
information changes the contents of the context. Lastly, a new 
command is executed. 

eo..&nds have the following syntax: 

name : object 
Declares a "name : object" pair relative to the local context. 
Only the "name" is evaluated before the assignment. 

object some value to the 
The object is executed and either returns 

h t the information struc-user's screen or makes some c ange 0 

ture. 
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Objects have the following syntax: 

expression 

An expression is a sequence of statements or objects separated 
by operators. 

statement 
A list whose leftmost object is a keyword. 

( object { object } ••• ) 

A list of one or more objects, data or program, separated by 
spaces or commas. 

( command { control command } ••• ) 
A series of commands separated by controls; each control 
defines the order of execution of the two adjacent commands. 

Expressions have the following syntax: 

name 

The object, synonymous with the name, is treated as a vari­
able. 

name[] 

The object, synonymous with the name, is treated as a list or 
a message. 

number 

() 

The object is an integer number. 

This is the "undefined" object, and any access to it is 
delayed until its contents are available. 

quote object 
The result is the unevaluated object. 

_object 
The result is the negation of the expression. 

object operator object 
The objects are evaluated as operands for the operator and the 
whole expression returns a value. 

name( { object } ••• ) 
A procedure or function with zero or more parameters may be 
specified in the traditional way as a name followed by the 
parameters in parentheses. The parameters may be separated by 
spaces or commas. 

object object { object } ••• 
A procedure or function with one or more arguments may be 
specified as an UNIX-like command. 
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Statements have the following syntax: 

(* commentary *) 
This statement is ignored. It ~s used to ~nterJ·ect ... ... commentary 
in a program. 

if { object -) object; } ••• { object} fi 
The list of commands is executed until an "object -)" evalu­
ates to true. 

do { object -) object; } ••• { object} od 
The list of commands is repeatedly executed until no "object 
-)" is true. 

for alphanumeric = object do object rof 
The "for" statement evaluates the left "object" and then 
replicates the right "object" substituting "alphanumeric" for 
each component of the resulting object. 

go to name 
Control is transferred to the object defined by the local 
name. 

cd name 
Change context to the object defined by name. 

rm name { name } ••• 
This statement is used to remove objects created by the pro-
gram. 

Names consist of sequences of selectors 
"{/}selector{/selector} ••• ", where selector has the following syn­
tax: 

alphanumeric 
An alphanumeric character string is used to specify an object 
in the local context. 

number 
A numeric character string is used to specify an object in the 
local context. 

( object ) 
The object is evaluated and its result used to specify an 

$ 

object in the local context. 

The parameters of a procedure or function is selected. It may 
be used to access the standard input "$/1", the standard out­
put "$/0", and the parameters "$/1 $/2 ••• ", any of which may 
be accessed as a an object. 
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(superior) 
The calling context is selected; used for moving up through 
the "dynamic chain" of the information structure. 

( self) 
The local context is selected. 

When the first symbol of a name, the current context is 
selected. This is analogous to the concept of root in UNIX. 

NOTE: "number" and "(object)" may not be used as the initial selec­
tor of a name. 

Operators consist of the following: 

:= 
Assignment operator updates a "name : object" pair relative to 
the local context, if necessary creating the pair. Both the 
"name" and the "object" are evaluated before the assignment. 

+ - * 
Arithmetic operators add, subtract and multiply. 

and or not 

to 

Logical operators. 

<> < <= > >= 
The relational operators return ~ if their arguments are in 
the specified relation, otherwise they return false. 

Numeric and alphabetic sequences are generated by the dyadic 
"to" operator, and returned as an object. 

Controls consist of the following: 

& 

Execution of "command I command 2" is sequential. 

Execution of "command I I command 2" is pipe-lined, with the 
output of "command_I"-being passed-as input to "command_2". 

Execution of "command_I & command_2" is in parallel. 



- 203 -

APPENDIX A.3 - BAS~3 Progra..ing Language 

NAME 
BASIX 3 

SYNOPSIS 
BASIX 3 

DESCRIPTION 
BASIX 3 is a decentralised control flow programming language and 
attempts to combine some of the most important characteristics of 
BASIC, UNIX Shell, and LISP. In the syntax below "{ }" defines 
zero or one, and "{ } ••• " defines zero or more occurrences of the 
enclosed constructs. 

Objects have the following syntax: 

expression 
An expression consists of one or more simple objects separated 
by operators. 

statement 
A statement is a list of objects whose leftmost object is a 
keyword or the name of a program object. 

({object} ••• ) 
A list of zero or more objects, data or code. 

local name:object 
Declares a name:object pair in the local context. The object 
is not evaluated. 

Commands have the following syntax: 

object 
The object is evaluated and either returns some value to the 
user's screen or makes some change to the information struc-
ture. 

(object {control object} ••• ) 
A series of commands separated by controls; each control 
defines the order of execution of the two adjacent commands. 

Expressions have the following syntax: 

( ) 
This is the empty object, and access to it using message pass­
ing semantics "narne[]" is delayed until its contents are 

available. 

TRUE I FALSE 
The logical values true and false. 
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number 
The object is an integer number. 

"string" 
The result is the unevaluated object. 

name{[]} 
When used in the form "name" the associated object is treated 
as shared memory, whereas in the form "name [ ]" the object has 
message passing semantics. "name := ••• " is a STORE; " ••• := 
name" is a LOAD; "name [ ] : = ••• II is a PUT which may only 
overwrite an emtpy object; and " ••• :=name[]" is a TAKE which 
may only access a non-empty object, setting it to empty. 

(expression) 
An expression delimited by brackets, which control the order 
of evaluation in the normal way. 

expression 
- The result is the negation of the expression. 

expression operator expression 
The expression is an arithmetic, logical, or conditional infix 
expression. 

name({expression {, expression} ••• }) 
The expression is a function or procedure call with zero or 
more arguments, separated by commas. 

Statements have the following syntax: 

(* comment *) 
This statement is ignored, being used to interject commentary 
in a program. 

IF {expression -) command} ••• PI 
Each guard expression is evaluated in turn, until an expres­
sion is true. If all expressions are false then the statement 
aborts. 

DO {expression -) command} ••• OD 
The guarded commands are repeatedly executed until none of the 
guards is true. 

POR local name := expression TO expression DO command ROP 
The FOR-statement iteratively executes command for the series 
of numeric or alphabetic value. 

GOTO local name 
Control is transferred to the object defined by the local 
name. 

d 
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CD name 
Change context to the object defined by name. 

name object {object} ••• 
A procedure with one or more parameters may be specified as a 
Unix-like command. 

Names have the following syntax: 

local name{.selector} ••• 
A name consists of a sequence of selectors preceded by an 
alphanumeric local name. 

${.selector} ••• 
The parameters of a procedure or function are accessed as the 
local name "$", which may be followed by a selector identify­
ing a specific parameter. 

Selectors consist of the following: 

local name 
An alphanumeric character string is used to specify an object 
in the local (or surrounding) context. The object can be any­
where in the context (also see numeric selector). 

numeric 
A numeric character string is used to specify an object in the 
local context. The specific object is found by counting from 
the left of the context "l:object 2:object 3: •••• ". It may be 
helpful to view numeric selectors as implicit local names. 

(expression) 
The expression is evaluated and its result is used to specify 
an object in the local context. 

Local name has the following syntax: 

alphanumeric 
An alphanumeric character string. 

Controls have the following syntax: 

Execution of "command_I; command_2" is sequential. 

& 
Execution of "command_l & command_21t is in parallel. 

Operators have the following syntax: 

:= 
Assignment operator updates a name:object pair relative. to)t~e 
local context. An object (if it does not already eX1.st 1.S 
created automatically by the access and set empty. The only 
way to delete an object is by assignment. 
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+ - * / 
Arithmetic operators add, subtract, multiply and divide. 

AND OR NOT 
Logical operators. 

<> > )= < <= 
The relational operators return TRUE if their arguments are in 
the specific relation, otherwise they return FALSE. 
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APPENDIX A.4 - Banking Systea Application 

A.4.1 Banking System Program (in Full BASIX) 

(*******************************************************************) 
(* validate - validates daily transactions input *) 

(*******************************************************************) 
validate: ( 

(* procedure okdate verifies if date is valid *) 
okdate: ( 

if 
transrec/3/2 = 2 -) 

if (transrec/3/1 < 1) or (transrec/3/1 ) 29) -) 
errorflag:= 'true; 

£1; 
(transrec/3/2 4) or 
(transrec/3/2 6) or 
(transrec/3/2 9) or 
(transrec/3/2 11)-) 
if (transrec/3/1 ( 1) or (transrec/3/1 ) 30) -) 

errorflag:= 'true; 
£1; 

(transrec/3/1 ( 1) or (transrec/3/1 ) 31) -) 
errorflag:= 'true; 

£1 
if errorflag = 'true -) 'false; 'true; fi; 

) ; 
(* procedure nameok verifies if name is alphabetic *) 

nameok: ( 
for i = 1 to 20 do 

(if not «transrec/4/(i) )= 'a) and 
(transrec/4/(i) (= 'z» or 
(transrec/4/(1) = II II ) or 
(transrec/4/(i) = "."» -) errorflag:= 'true; 

£1) ; 
rof 
if errorflag = 'true -) 'false; 'true; fi; 

); . I h i *) (* procedure addressok verifies if address ~s a P anumer c 
addressok: ( 

1 to 20 do for i = 
(if not «(transrec/S/(i) )= 'a) and 

'z» (transrec/S/(i) (= or 
«transrec/S/(i) >= '0) and 
(transrec/S/(i) (= '9» or 
(transrec/4/(i) II ") or 
(transrec/4/(1) "."»_> errorflag:='true; 

£1) ; 
rof 
if errorflag 'true -) 'false; 'true; fi; 

) ; 
(* main body of validate *) 

i:= 1; 
errorflag:= 'false; 
transindex:= 1; 
error index: = 1; 
temptrans := (); 
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tempindex := 1; 
do 

(transrec:= trans£ile/(transindex); 
transindex:= transindex + 1; 
transrec/1 <> 999) -> 
(if 
(transrec/1 >= 1) and (transrec/1 <= 100) and 
(okdate() = 'true) -> 
(i£ 
transrec/2 3 -> (temptrans/(tempindex):= transrec; 

tempindex:= tempindex + 1); 
transrec/2 1-> 
(if (transrec/4 <> (» and 

(nameok() = 'true) and 
(transrec/5 <> (» and 

(addressok()='true)->(temptrans/(transindex):Etransrec; 
tempindex;= tempindex + 1); 

fi); 
transrec/2 = 2 -> 
(i£ «transrec/4 () or 

£i); 
£i); 

nameok() = 'true) and 
(transrec/5 = () or 
addressok()='true)-)(temptrans/(transindex):-transrec; 

tempindex:= tempindex + 1); 

(if erroflag 'true -) (errofile/(errorindex):= transrec; 
errorindex:= error index + 1; 

fi); 
fi); 

od 
temptrans/(tempindex):= transrec; (* terminator 999 *) 
transfile:= temptrans; 
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(***************************************************************) 
(* sort - sorts daily transactions input *) 

(***************************************************************) 
sort: (i:= 1; 

) 

do 
transfile/(i)/l <> 999 -> 

(j := i + 1; 
do 
transfile/(j)/l <> 999 -> 
(if (transfile/(i)/1 > transfile/(j)!l) or 

«transfile!(i)!l = transfile!(j)!l) and 
(transfile/(i)/2 > transfile!(j)!2» -> 

( 

£1; 

temp:= transfile!(i); 
transfile/(i):= transfile!(j); 
transfile/(j):= temp 

) ; 

j:= j + 1); 
od; 

i:=i+1); 
od; 

d 
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(*************************************************************************) 
(* update - updates Master File with validate, sorted daily transactions *) 
(*************************************************************************) 
update : ( 

procupdate : ( if transrec/2 = 1 -) erroflag := 'true; 
transrec/2 = 2 -) 

fi 

(newrec/3 := transrec/3 
if transrec/4 <> () -) newrec/4:= transrec/4 fi; 
if transrec/S <> () -) newrec/S:= transrec/S fi; 
newrec/6:= newrec/6 + transrec/6; 

) ; 
transrec/2 = 3 -) 

(if exclflag = 'false -) exclflag:= 'true; 
erroflag:= 'true; 
fi) ; 

transindex 
old index 
newindex 
transrec 
oldrec 
newfile 

) ; 
:= 1; 
:= 1; 
:= 1; 
:= transfile/(transindex); 
:= oldfile/(oldindex); 
.- 0; 

do 
(oldrec/l 
if 

<) 999) or (transrec/l <> 999) -) 

oldrec/l < transrec/l -) 
(newfile/(newindex):= oldrec; 
newindex:= newindex + 1; 
oldindex:= oldindex + 1; 
oldrec:= oldfile/(oldindex»; 

oldrec/l ) transrec/l -) 
(if transrec/2 = 1 -) 

(errorflag:= 'false; 
exclflag := 'false; 
newrec := transrec; 

do 
(transindex:= transindex + 1; 
transrec:= transfile/(transindex); 
newrec/l = transrec/l -) procupdate(); 

od; 
if (errorflag = 'false) and (exclflag = 'false) -) 

(newfile/(newindex):= newreCj 
newindex:= newindex + 1) 

fi; 
errorflag:= 'true; 

fi 
if errorflag = 'true -) 

(errofile/(errorindex):= newrec; 
errorindex:= errorindex + 1; 

); 
fi; 

) 
oldrec/l = transrec/l -) 

( newrec:= oldrec; 
oldindex:= oldindex + 1; 
oldrec:= oldfile/(oldindex»; 
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H; 
od 

) ; 
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errorflag:= 'false; 
exclflag:= 'false; 
do newrec/l = transrec/l -) 

(procupdate( ); 

od; 

transindex:= transindex + 1; 
transrec:= transfile/(transindex); 

); 

if (errorflag = 'false) and (exclflag 'false)-) 
(newfile/(newindex):= newrec; 
newindex:= newindex + 1 

) 
errorflag = 'true -) 

(errorfile/(errorindex):= newrec; 
errorindex:= errorindex + 1; 
) ; 

H 

newfile/(newindex):= oldrec; (* terminator 999 *) 
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A.4.2 - Sample Run of Banking System 

$comment - banking system - section 1 - validate the transactions 

$comment list the transaction file. 

$copy transfile 
«005 3 (22 11 83» 

(006 3 (22 11 83» 
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666777) 
(010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444) 
(001 2 (22 11 83) (MURIEL ALBERTA NEWTH» 
(002 2 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK» 
(999 » 

End of file 

$comment - run the validate program. 

$run *lisp 
Execution begin 11:33:56 
(RESTORE "BASIX.OBJ") 
BASIX 
(VALIDATE transfile) 
(MTS) 

11-24-83 RESTORED 

$comment - list the validated transaction file 

$copy transfile 
«005 3 (22 11 83» 

(006 3 (22 11 83» 
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666777) 
(010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444) 
(001 2 (22 11 83) (MURIEL ALBERTA NEWTH» 
(002 2 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK» 
(999 » 

End of file 

$comment - banking system - section 2 - sort the transactions. 

$comment - run the sort program. 



$restart . 
(SORT transfile) 
(MTS) 
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$comment - list the sorted transaction file. 

$copy transfile 
«001 2 (22 11 83) (MURIEL ALBERTA NEWTH» 

(002 2 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK» 
(005 3 (22 11 83» 
(006 3 (22 11 83» 
(010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444) 
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666777) 
(999» 

End of file 

$comment - banking system - section 3 - apply the transactions. 

$comment - list the old customer file. 

$copy oldfile 
«001 1 (22 06 83) (AAAAAAAAAAAAAAA) (BBBBBBBBBBBBBBBBBBBB) 111222) 

(002 1 (22 06 83) (AAAAAAAAAAAAAAA) (BBBBBBBBBBBBBBBBBBBB) 333444) 
(003 1 (22 06 83) (EEEEEEEEEEEEEEEEEEEE) (FFFFFFFFFFFFFFFFFFFF) 555666) 
(004 1 (22 06 83) (GGGGGGGGGGGGGGGGGGGG) (HHHHHHHHHHHHHHHH) 777888) 
(005 1 (22 06 83) (11111111111111111111) (JJJJJJJJJJJJJJJJJJJJ) 999111) 
(006 1 (22 06 83) (~) (LLLLLLLLLLLLLLLLLLLL) 222333) 
(007 1 (22 06 83) (MMMMMMMMMMMMMMM) (NNNNNNNNNNNNNNNNNNNN) 444555) 
(008 1 (22 06 83) (00000000000000000000) (PPPPPPPPPPPPPPPPPPPP) 666777) 
(009 1 (22 06 83) (QQQQQQQQQQQQQQQQQQQQ) (RRRRRRRRRRRRRRR) 888999) 
(010 1 (22 06 83) (SSSSSSSSSSSSSSSSSSSS) (TTTTTTTTTTTTTTTTTTTT) 000111) 
(011 1 (22 06 83) (UUUUUUUUUUUUUUUUUUUU) (VVVVVVVVVVVVVVVVVVVV) 222333) 
(012 1 (22 06 83) (WWWWWWWWWWWWWWW) (XXXXXXXXXXXXXXX) 444555) 
(013 1 (22 06 83) (YYYYYYYYYYYYYYYYYYYY) (ZZZZZZZZZZZZZZZZZZZZ) 666777) 
(999» 

End of file 

$comment - run the update program. 

$restart 
(UPDATE oldfile transfile newfile) 
(altered 

(001 1 (22 11 83) (MURIEL ALBERTA NEWTH) (BBBBBBBBBBBBBBBBBBBB) 111222» 
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{altered 
{001 1 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK) 333444» 

{deleted 
{005 3 (22 11 83» 

{deleted 
{006 3 (22 11 83» 

{error - new client 
{010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444» 

{added 
{014 1 (22 11 83) (MARYANNIE JOHN SMITH) (I OLD OAKLAND AVENUE) 666000» 

(STOP) 

Execution terminated 12:22:52 T=9.909 RC=O $1.24 

$comment - list the new customer file. 

$copy newfile 
{{001 1 (22 11 83) (MURIEL ALBERTA NEWTH) (BBBBBBBBBBBBBBBBBBBB) 111222) 

(002 1 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK) 333444) 
(003 1 (22 06 83) (EEEEEEEEEEEEEEEEEEEE) (FFFFFFFFFFFFFFFFFFFF) 555666) 
(004 1 (22 06 83) (GGGGGGGGGGGGGGGGGGGG) (HHHHHHHHHHHHHHHHHHHH) 777888) 
(007 1 (22 06 83) (MMMMMMMMMMMMMMM) (NNNNNNNNNNNNNNNNNNNN) 444555) 
(008 1 (22 06 83) (00000000000000000000) (PPPPPPPPPPPPPPPPPPPP) 666777) 
(001 1 (22 06 83) (QQQQQQQQQQQQQQQQQQQQ) (RRRRRRRRRRRRRRR) 888999) 
(011 1 (22 06 83) (UUUUUUUUUUUUUUUUUUUU) (VVVVVVVVVVVVVVVVVVVV) 222333) 
(012 1 (22 06 83) (WWWWWWWWWWWWWWW) (XXXXXXXXXXXXXXX) 444555) 
(013 1 (22 06 83) (YYYYYYYYYYYYYYYYYYYY) (ZZZZZZZZZZZZZZZZZZZZ) 666777) 
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666000) 
(999 » 

End of file 
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APPENDIX A.5 - Expert Systea Application 

A.5.l Expert System Program (in executable subset of BASIX) 

(rules: QUOTE «rl 

(r2 

(r3 

(r4 

(r5 

(r6 

(r7 

(r8 

(r9 

(rIO 

(rll 

(r12 

(rl3 

(r14 

(r15 

("has hair") 
("is mammal"}) 
("gives milk") 
("is mammal"» 
("has feathers") 
("is bird"» 
("can fly" "lays eggs") 
("is bird"» 
("eats meat") 
("is carnivore")} 
("has pointed teeth" "has claws" "has forward eyes") 
("is carnivore"» 
("is mammal" "has hoofs") 
("is ungulate"» 
("is mammal" "chews cud") 
("is ungulate"» 
("is mammal" "is carnivore" "is tawny colour" 
"has dark spots") 

("is cheetah"» 
("is mammal" "is carnivore" "is tawny colour" 
"has black stripes") 

("is tiger"» 
("is ungulate" "has long neck" "has long legs" 
"has dark spots") 

("is giraffe")} 
("is ungulate" "has black stripes") 
("is zebra"» 
("is bird" "cannot fly" "has long legs" 
"is black and white") 

("is ostrich"» 
("is bird" "cannot fly" "can swim" 
"is black and white") 

("is penguin"» 
("is bird" "can fly well") 
("is albatross"»); 
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hypo: QUOTE ("is albatross" 
"is penguin" 
"is ostrich" 
"is zebra" 
"is giraffe" 
"is tiger" 
"is cheetah"); 

name: QUOTE animal; 

verify: QUOTE (fact: ./1; 
currule: ./2; 
curante: ./3; 
q: 0; 
r: recall fact; 
IF NOT r -) (inthen fact; 

FI; 
r); 

inthen: QUOTE (fact: ./1; 
q:= 0; 

IF (LIMIT q) = 0 -) r:= ask fact currule curante; 
(LIMIT q) <) 0 -) 

(i: 1; 
DO (done: tryrule q/(i); 

IF NOT done -) i:= i + 1; FI; 
(NOT done) AND (i <= LIMIT q» -) TRUE; 

OD; 
r:= done); 

FI); 

FOR i IN 1 TO LIMIT rules DO 
( rule: rules/(i); 

FOR j IN 1 TO LIMIT rule/3 DO 
( IF fact = rule/3/(j) -) (k: 1 + LIMIT q; 

q/(k):= i); 
FI); 

ROF) ; 
ROF) ; 

recall: QUOTE (fact: ./1; 
r: FALSE; 
FOR i IN 1 TO LIMIT facts DO 
( IF fact = facts/(i) -) r:= TRUE; FI); 
ROF; 
r); 

remember: QUOTE (fact: ./1; 
r: recall fact; 
IF NOT r -) (r:= TRUE; 

FI; 
r); 

tryrule: QUOTE (currule: ./1; 

k: 1 + LIMIT facts; 
facts/(k):= fact); 
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r: FALSE; 
IF testif currule -) r:= usethen currule; FI; 
r); 

testif: QUOTE (currule: ./1; 
r: TRUE; 
done: FALSE; 
rule: rules/{currule); 
j: 1; 
DO (NOT done) AND {j (= LIMIT rule/2) -) 

(r:= verify rule/2/(j) currule j; 
IF NOT r -) (r:= FALSE; done:= TRUE); 

OD; 
r); 

r -)j:=j+1; 
FI); 

usethen: QUOTE (currule: ./1; 
rule: rules/{currule); 
r: FALSE; 
FOR j IN 1 TO LIMIT rule/3 DO 
( IF remember rule/3/(j) -) 

(r:= TRUE; 
SYSOUT:= QUOTE "Rule "; 
SYSOUT:= rUle/I; 
SYSOUT:= QUOTE" deduces "; 
SYSOUT:= name; 
SYSOUT:= rule/3/(j»; 

FI) ; 
ROF; 
r); 

ask: QUOTE (fact: ./1; 
currule: • /2; 
curante: ./3; 
done: FALSE; 
r: FALSE; 
FOR i IN 1 TO LIMIT queries DO 
( IF fact = queries/(i) -) done:= TRUE; FI); 
ROF; 
IF NOT done -) 

(k: 1 + LIMIT queries; 
queries/(k):= fact; 
SYSOUT:= QUOTE "Is this true: "; 
SYSOUT:= name; 

FI; 

SYSOUT:= fact; 
SYSOUT:= QUOTE" '1 "; 
DO (response: SYSIN; 

IF response = QUOTE "y" -) (done:= remember fact; 
r:= TRUE; 

response 
response 

FI; 

QUOTE 
QUOTE 

NOT done) -) TRUE; 
OD); 

It n" 
"w" 

done:= TRUE); 
-) done: = TRUE; 
-) why fact currule curante; 



r); 

why: QUOTE (fact: ./1; 
currule: ./2; 
curante: ./3; 
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IF fact = hypo/(curhyp) -) 
(SYSOUT:= QUOTE "One of the possibilities is II. 

SYSOUT:= name; J 

SYSOUT:= fact; 
SYSOUT:= QUOTE "I cannot deduce this except by asking you. "); 
fact <) hypo/(curhyp) -) 

(rule: rules/(currule); 
SYSOUT:= QUOTE "I am trying to use rule "; 
SYSOUT:= rule/I; 
IF curante ) 1 -) 

(SYSOUT:= QUOTE "I already know that: "; 
FOR j IN 1 TO curante - 1 DO 
( SYSOUT:= name; SYSOUT:= rule/2/(j»; 
ROF); 

FI; 
SYSOUT: = QUOTE "If: "; 
FOR j IN curante TO LIMIT rule/2 DO 
( SYSOUT:= name; SYSOUT:= rule/2/(j»; 
ROF; 
SYSOUT:= QUOTE "Then: "; 
FOR j IN 1 TO LIMIT rule/3 DO 
( SYSOUT:= name; SYSOUT:= rule/3/(j»; 
ROF); 

FI) ; 

SYSOUT:= QUOTE "Hello!"; 
IF (LIMIT rules) = 0 -) SYSOUT:= QUOTE "No rules."; 

(LIMIT rules) ) 0 -) 
(IF (LIMIT hypo) = 0 -) SYSOUT:= QUOTE "No hypotheses."; 

(LIMIT hypo) ) 0 -) 
(SYSOUT:= QUOTE Itl will use my II; 
SYSOUT:= LIMIT rules; 
SYSOUT:= QUOTE" rules to try to establish one of the following n; 
SYSOUT:= LIMIT hypo; 
SYSOUT:= QUOTE" hypotheses."; 
FOR i IN 1 TO LIMIT hypo DO 
( SYSOUT:= name; SYSOUT:= hypo/(i»; 
ROF; 
DO (fac ts: 0; 

queries: 0; 
done: FALSE; 
curhyp: 1; 
DO (NOT done) AND (curhyp (= LIMIT hypo) -) 

(r: verify hypo/(curhyp) 1 1; 
IF NOT r -) curhyp:= curhyp + 1; 

r -) (SYSOUT:= QUOTE "1 conclude that "; 

FI); 
00; 
IF NOT done -) 

SYSOUT:= name; 
SYSOUT:= hypo/(curhyp); 
done:= TRUE); 



FI); 
FI) 
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SYSOUT:= QUOTE "No hypothesis can be confirmed."; 
FI; 
SYSOUT:= QUOTE "r (restart) or q (quit) 1"; 
DO (response: SYSIN; 

OD; 

(response <> QUOTE "r") AND (response 0 QUOTE "q"» -) 
TRUE; 

response = QUOTE "r") -) TRUE; 
OD); 
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A.5.2 - Sample Run of Expert System 

$comment - run the animals program 

$run *lisp 

Execution begins 17: 21: 36 

(RESTORE "BASIX.OBJ") 

BASIX 12-09-83 RESTORED 

(EXEC) 

(animals 0) 

Hello! 

I will use my 15 rules to try to establish one of the following 7 hypotheses. 

animal is albatross 
animal is penguin 
animal is ostrich 
animal is zebra 
animal is giraffe 
animal is tiger 
animal is cheetah 

Is this true: animal has feathers? 
w 

I am trying to use rule 3. 
If: animal has feathers 
Then: animal is bird. 
n 

Is this true: animal can fly? 
w 

I am trying to use rule r4. 
If: animal can fly 

animal lays eggs 
Then: animal is bird. 
n 

Is this true: animal has hair? 
w 

I am trying to use rule rl. 
If: animal has hair 
Then: animal is mammal. 
y 

Rule rl deduces animal is mammal. 

Is this true: animal has hoofs? 
w 
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I am trying to use rule r7. 
I already know that: animal is mammal. 
If: animal has hoofs 
Then: animal is ungulate. 
y 

Rule r7 deduces animal is ungulate. 

Is this true: animal has black stripes? 
w 

I am trying to use rule r12. 
I already know that: animal is ungulate. 
If: animal has black stripes 
Then: animal is zebra. 
n 

Is this true: animal has long neck? 
w 

I am trying to use rule rll. 

I already know that: animal is ungulate. 
If: animal has long neck 

animal has long legs 
animal has dark spots 

Then: animal is giraffe. 
y 

Is this true: animal has long legs? 
w 

I am trying to use rule rll. 
I already know that: animal is ungulate 

animal has long neck. 
If: animal has long legs 

animal has dark spots 
Then: animal is giraffe. 
y 

Is this true: animal has dark spots? 
w 

I am trying to use rule rll. 
I already know that: animal is ungulate 

animal has long neck 
animal has long legs. 

If: animal has dark spots 
Then: animal is giraffe. 
y 

Rule rll deduces animal is giraffe. 

I conclude that animal is giraffe. 

r (restar) or q (quit) ? 
r 
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Is this true: animal has feathers? 
w 

I am trying to use rule r3. 
If: animal has feathers 
Then: animal is bird. 
y 

Rule r3 deduces animal is bird. 

Is this true: animal can fly well? 
w 

I am trying to use rule r15. 
I already know that: animal is bird. 
If: animal can fly well 
Then: animal is albatross 
y 

Rule r15 deduces animal is albatross. 

I conclude that animal is albatross. 

r (restart) or q (quit) ? 
q 

Execution terminated 17:27:427 RC=O $3.04 
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APPENDIX A.6 - BASAL_l Progr....tug Language 

NAME 
BASAL 1 

SYNOPSYS 
BASAL 1 

DESCRIPTION 
In BASAL_l a program consists of a series of commands separated by 
controls: ";" and newline define sequential execution (of the two 
adjacent commands) while "&" defines parallel execution. 

Commands have the following syntax: 

HICB.O micro name 
All subsequent commands are interpreted in microcomputer 
"micro name" 

local label statement 
Stored for later execution 

statement 
Executed immediately 

Statements have the following syntax: 

expression 
Returns result in place 

DIM local name (integer {, integer} ••• ) 
Declares an array of the specified dimensions 

LET name = expression 
Assignment statement 

IF expression THEN local_label 
Conditional statement 

FOR local name = expression TO expression 
Repetitive execution of enclosed statements 

NEXT local name 
End of corresponding loop 

GOTO label 
Unconditional control transfer 

GOSUB label 
Procedure call 

RETUltN 
Return from procedure call 
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STOP 
Stop execution 

End of program 

Expressions have the following syntax: 

number 

name 

Integer number 

Identifier (local or non-local) of variable, message, or array 
element 

"character" 
ASCII character 

expression 
Negate result of expression 

(expression) 
Bracketed expression 

expression operator expression 
Arithmetical, logical and conditional expression 

? 
Empty 

{micro_name.}local_name {(expression {,expression} ••• )}{[]} 

Label 
{micro_name.}local_label 

Operator 

+ - * / 
Arithmetic operators 

AND OR NOT 
Logical operators 

< <= > >= = <> 
Conditional operators 

Notes 

<micro name> ::= A •• Z 

<local name> ::= alphanumeric 

<local_label>::= 01 •• 79 
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APPEliIDIX A.7 - BAS~2 Progr....tng Language 

NAME 
BASAL 2 

SYNOPSIS 
BASAL 2 

DESCRIPTION 
In BASAL_2 a program consists of a series of commands separated by 
controls: ";" and newline define sequential execution (of the two 
adjacent commands) while "&" defines parallel execution. 

Commands have the following syntax: 

PROC micro name{(local name{,local name} ••• )} 
All subsequent commands belong to process micro_name, which is 
allocated to a separate microcomputer. 

local label statement 
Stored for later execution 

statement 
Executed immediately 

Statements have the following syntax: 

expression 
Returns result in place 

IMPORT micro name.local name 
Defines-non-Iocal access 

EXPORT local name 
Allows non-local access 

DIK local name (integer {, integer} ••• ) 
Declares an array of the specified dimensions 

LET name = expression 
Assignment statement 

IF expression THEN local_label 
Conditional statement 

FOR local name = expression TO expression 
Repetitive execution of enclosed statements 

NEXT local name 
End of corresponding loop 
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GOTO local label 
Unconditional control transfer 

CALL micro_name{(local_name{,local_name} ••• )} 
Procedure call 

RETDIUl 
Return from procedure call 

STOP 
Stop execution 

End of program 

Expressions have the following syntax: 

Name 

number 

name 

Integer number 

Identifier '(local or non-local) of variable, message, or array 
element 

"character" 
ASCII character 

expression 
Negate result of expression 

(expression) 
Bracketed expression 

expression operator expression 
Arithmetical, logical and conditional expression 

? 
Empty 

{micro_name.}local_name {(expression {,expression} ••• )}{[]} 

Label 
{micro_name.} local_label 

Operator 

+ - * / 
Arithmetic operators 

AND OR NOT 
Logical operators 



- 227 -

< <= > >= = <> 
Conditional operators 

Rotes 

<micro name> ::= a •• z 

<local name> ::= alphanumeric 

<local label>::= 01 •• 79 
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APPENDIX A.8 - Sorting Applications 

A.8.1 Quicksort (Shared Memory) in BASAL 

MICRO A 
01 DIM V(l6) 
02 FOR I = 1 TO 16 
03 READ V(I) 
04 NEXT I 
05 LET LO = 1& 
06 LET HI = 16 
10 IF LO > HI THEN 39 
11 IF LO = HI THEN 39 
12 LET I = LO 
13 LET J = HI 
14 LET PIVOT = V(LO) 
15 IF J < I THEN 20 
16 IF J = I THEN 20 
17 IF V(J) < PIVOT THEN 20 
18 LET J = J - 1 
19 GOTO 15 
20 IF I > J THEN 25 
21 IF I = J THEN 25 
22 IF V(I) > PIVOT THEN 25 
23 LET I = I + 1 
24 GOTO 20 
25 IF I > J THEN 30 
26 IF I = J THEN 30 
27 LET TEMP = V(I) 
28 LET V(I) = V(J) 
29 LET V(J) = TEMP 
30 IF I < J THEN 15 
31 LET V(LO) = V(I) 
32 LET V(I) = PIVOT 
33 LET B.LO = LO 
34 LET B.HI = I - 1 
35 GOSUB B. 10& 
36 LET C.LO = I + 1& 
37 LET C.HI = HI 
38 GOSUB C.lO 
39 STOP 
MICRO B 

33 LET D.LO - LO& 
34 LET D.HI = I - 1 
35 GOSUB D.I0& 
36 LET E.LO - I + 1& 
37 LET E.HI = HI 
38 GOSUB E.lO 
39 RETURN 
40 STOP 
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A.8.2 Quicksort (Shared Memory) translated into BASIC 

10 DIM PC(26) 
20 DIM STACKPTR(26) 
30 DIM STACK(26,20) 
40 FOR I = 1 TO 26 
50 LET PC(I) = (I * 1000) + 800 
60 NEXT I 
70 FOR I = 1 TO 26 
80 LET STACKPTR(I) = 0 
90 NEXT I 
100 REM 
1000 GOTO PC(Ol) 
1010 DIM A. V(l6) 
1020 FOR A.I = 1 TO 16 
1030 READ A.V(A.I) 
1040 NEXT A. I 
1050 LET A.LO = 1 
1060 LET A.HI = 16 
1100 IF A.LO > A.HI THEN 1390 
1110 IF A.LO = A.HI THEN 1390 
1120 IF A.I = A.LO 
1130 LET A.J = A.HI 
1140 LET A.PIVOT = A.V(A.LO) 
1150 IF A.J < A.I THEN 1200 
1160 IF A.J = A.I THEN 1200 
1170 IF A.V(A.J) < A.PIVOT THEN 1200 
1180 LET A.J = A.J - 1 
1190 GOTO 1150 
1200 IF A.I > A.J THEN 1250 
1210 IF A.I = A.J THEN 1250 
1220 IF A.V(A.J) > A.PIVOT THEN 1250 
1230 LET A.I = A.I + 1 
1240 GOTO 1200 
1250 IF A.I > A.J THEN 1300 
1260 IF A.I = A.J THEN 1300 
1270 LET A.TEMP = A.V(A.I) 
1280 LET A.V(A.I) = A.V(A.J) 
1290 LET A.V(A.J) = A.TEMP 
1300 IF A.I < A.J THEN 1150 
1310 LET A.V(A.LO) = A.V(A.I) 
1320 LET A.V(A.I) = A.PIVOT 
1330 LET B.LO = A.LO 
1340 LET B.HI = A.I - 1 
1350 LET PC(Ol) = 1350 
1351 IF PC(02) <> 02999 THEN 01999 
1352 LET PC(Ol) = 01999 
1353 LET STACKPTR(02) = STACKPTR(02) + 1 
1354 LET STACK(02,STACKPTR(02» = 01356 
1355 GOSUB 2100 
1356 REM 
1360 LET C.LO = A.I + 1 
1370 LET C.RI = A.HI 
1380 LET PC(Ol) = 1380 
1381 IF PC(03) <> 03999 THEN 1999 
1382 LET PC(Ol) = 01999 
1383 LET STACKPTR(03) = STACKPTR(03) + 1 
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1384 LET STACK(03,STACKPTR,03» = 01386 
1385 GOSUB 3100 
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A.8.3 Quicksort (Message Passing) in BASAL 

MICRO A 
01 DIM V(16) 
02 FOR I = 1 TO 16 
03 READ V(I) 
04 NEXT I 
05 GOTO B.Ol& 
06 GOTO C.Ol& 
10 LET PIVOT = V(I) 
11 FOR I = 2 TO 16 
12 IF V(I) > PIVOT THEN 15 
13 LET B.IN[] = V(I) 
14 GOTO 16 
15 LET C.IN[] = V(I) 
16 NEXT I 
20 LET B.IN[] = 30999& 
21 LET C.IN[] = 30999 
30 LET I = 1 
31 LET V(I) = B.OUT[] 
32 LET I = I + 1 
33 IF V(I - 1) <> 30999 THEN 31 
34 LET V(I - 1) = PIVOT 
36 LET V(I) = C.OUT[] 
37 LET I = I + 1 
38 IF V(I - 1) <> 30999 THEN 36 
39 STOP 

MICRO B 
01 LET PIVOT = B.IN[] 
02 IF PIVOT = 30999 THEN 39 
03 GOT a 0.01& 
04 GOTO E.Ol& 
10 LET X = B. IN[] 
11 IF X = 30999 THEN 20 
12 IF X > PIVOT THEN 15 
13 LET O.IN[] = X 
14 GOTO 10 
15 LET E.IN[] = X 
16 GOTO 10 
20 LET O.IN[] = 30999& 
21 LET E.IN[] = 30999 
30 LET X = O.OUT[] 
31 IF X = 30999 THEN 34 
32 LET B.OUT[] = X 
33 GOTO 30 
34 LET B.OUT[] = PIVOT 
35 LET X = E.OUT[] 
36 IF X = 30999 THEN 39 
37 LET B.OUT[] = X 
38 GOTO 35 
39 LET B.OUT[] = 30999 
40 STOP 
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A.8.4 Quicksort (Message Passing) translated into BASIC 

10 DIM PC(26) 
20 DIM STACKPTR(26) 
30 DIM STACK(26,20) 
40 FOR I = 1 TO 26 
50 LET PC(I) = (I * 1000) + 800 
60 NEXT I 
70 FOR I = 1 TO 26 
80 LET STACKPTR(I) = 0 
90 NEXT I 
100 REM 
1000 GOTO PC(Ol) 
1010 DIM A. V(l6) 
1020 FOR I = 1 TO 16 
1030 READ A.V(A.I) 
1040 NEXT A. I 
1050 LET PC(Ol) = 01050 
1051 IF PC(02) <> 02999 THEN 01999 
1052 LET PC(Ol) = 01054 
1053 GOTO 02010 
1054 REM 
1060 LET PC(Ol) = 01060 
1061 IF PC(03) <> 03999 THEN 01999 
1062 LET PC(Ol) = 01064 
1063 GOTO 03010 
1064 REM 
1100 LET A.PIVOT = A.V(l) 
1110 FOR A.I = 2 TO 10 
1120 IF A.V(A.I) > A.PIVOT THEN 1150 
1130 LET PC(Ol) = 1130 
1131 IF B.IN <> -32768 THEN 01999 
1136 LET B.IN = A.V(A.I) 
1140 GOTO 1160 
1150 LET PC(Ol) = 01150 
1151 IF C.IN <> -32768 THEN 01999 
1156 LET C.IN = A.V(A.I) 
1160 NEXT A. I 
1200 LET PC(Ol) = 1200 
1201 IF B.IN <> -32768 THEN 01999 
1206 LET B.IN = 30999 
1210 LET PC(Ol) = 01210 
1211 IF C.IN <> -32768 THEN 01999 
1216 LET C.IN = 30999 
1300 LET A. I = 1 
1310 LET PC(Ol) = 01310 
1312 IF B.OUT = -32768 THEN 01999 
1316 LET A.V(A.I) = B.OUT 
1317 LET B.OUT = -32768 
1320 LET A.I = A.I + 1 
1330 IF A.V(A.I - 1) <> 30999 THEN 1310 
1340 LET A.V(A.I - 1) = PIVOT 
1360 LET PC(Ol) = 01360 
1362 IF C.OUT = -32768 THEN 01999 
1366 LET A.V(A.I) = C.OUT 
1367 LET C.OUT = -32768 
1370 LET A.I - A.I + 1 



- 233 -

1380 IF A.V(A.I - 1) <> 30999 THEN 1360 

2000 GOTO PC(02) 
2010 LET PC(02) = 02010 
2012 IF B.IN = -32768 THEN 02999 
2016 LET B.PIVOT = B.IN 
2017 LET B.IN = -32768 
2020 IF B.PIVOT = 30999 THEN 02390 
2030 LET PC(02) = 02030 
2031 IF PC(04) <> 04999 THEN 02999 
2032 LET PC(02) = 02034 
2033 GOTO 4010 
2034 REM 
2040 LET pe(02) = 02040 
2041 IF pe(05) <> 05999 THEN 02999 
2042 LET pe(02) = 02044 
2043 GO TO 05010 
2044 REM 
2100 LET pe(02) = 02100 
2102 IF B.IN = -32768 THE 02999 
2106 LET B.X = B.IN 
2107 LET B.IN = -32768 
2110 IF B.X = 30999 THEN 2200 
2120 IF B.X > B.PIVOT THEN 2150 
2130 LET pe(02) = 02130 
2131 IF D.IN <> -32768 THEN 02999 
2136 LET D.IN = B.X 
2140 GOTO 02100 
2150 LET PC(02) = 02150 
2151 IF E.IN <> -32768 THEN 02999 
2156 LET E.IN = B.X 
2160 GOTO 2100 
2200 LET pe(02) = 02200 
2201 IF D.IN <> -32768 THEN 02999 
2206 LET D.IN = 30999 
2210 LET pe(02) = 02210 
2211 IF E.IN <> -32768 THEN 02999 
2216 LET E.IN = 30999 
2300 LET pe(02) = 02300 
2302 IF D.OUT = -32768 THEN 02999 
2306 LET B.X = D.OUT 
2307 LET D.OUT = -32768 
2310 IF B.X = 30999 THEN 02340 
2320 LET pe(02) = 02320 
2321 IF B.OUT <> -32768 THEN 02999 
2326 LET B.OUT = B.X 
2330 GOTO 02300 
2340 LET pe(02) = 02340 
2341 IF B.OUT <> -32768 THEN 02999 
2346 LET B.OUT = B.PIVOT 
2350 LET pe(02) = 02350 
2352 IF E.OUT = -32768 THEN 02999 
2356 LET B.X = E.OUT 
2367 LET E.OUT = -32768 
2360 IF B.X = 30999 THEN 02390 
2370 LET pe(02) = 02370 
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2371 IF B.OUT <> -32768 THEN 02999 
2376 LET B.OUT = B.X 
2380 GOTO 2350 
2390 LET PC(02) = 02390 
2391 IF B.OUT <> -32768 THEN 02999 
2396 LET B.OUT = 30999 
2400 GOTO 02998 
2800 REM 
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