
NEWCASTLE UNIVERSITY LIBRARY

084 09866 0

PIl.OGRAlUfiRG DECENTIlALISED C<MPlJTEIlS

Isabel Gouveia Lima

Computing Laboratory, University of Newcastle upon Tyne

Ph.D. Thesis 1984

- i -

ABSTRACT

Programming, for the past thirty years, has been based on the
sequential von Neumann computer model. However, there is a growing need
to program decentralised computer systems ranging from mainframe comput­
ers that are geographically distributed, to miniature microcomputers on
a single VLS I chip. Various pairings of programming languages and
decentralised computers are being investigated: procedural languages
with control flow, single-assignment languages with data flow, applica­
tive languages with reduction, object-oriented languages with actor, and
finally predicate logic languages with logic architectures.

This thesis investigates the programming of decentralised computers
and consists of five major parts. Part 1 looks at four images of
"future" computer systems: Fifth Generation Computers, Supercomputers,
VLSI Processor Architectures and Integrated Communications & Computers.
The former two images are "parallel machines", supporting logic and data
flow programming, respectively. The latter two images are "decentral­
ised computers" supporting control flow programming. Part 1 concludes
that a "decentralised computer" image is most appropriate for future
computers. Part 2 classifies and analyses the major categories of pro­
gramming styles (i.e. procedural, object-oriented, functional, and
logic). The analysis uses a Quicksort algorithm to contrast representa­
tive languages (i.e. PASCAL, MODULA-2, OCCAM, SMALLTALK, ID, FP, SASL,
PROLOG and VISICALC) and relate their strength and weaknesses to their
underlying computational mechanisms. It concludes that control flow
(and procedural programming) is the most primitive and fundamental pro­
gramming model.

Part 3 proposes the decentralised control flow programming model
for future decentralised computers, which embodies the concepts underly­
ing modern operating systems such as UNIX, and is a generalisation of
the traditional sequential von Neumann control flow model. Part 4
presen ts two programming languages based on this model, called BAS IX_l
and BASIX 2, which have been designed and implemented. The language
BASIX 2 is-analysed and assessed using two example applications, namely
a banking system and an expert system. Part 5 presents the BASAL pro­
gramming language, supporting a primitive form of decentralised control
flow. For the assessment of the BASAL language two parallel sorts were
chosen, using shared memory and message passing respectively. BASIX and
BASAL are vehicles for exploring the decentralised control flow program­
ming style, rather than new languages being proposed.

- ii -

ACKNOWLEDGEMENTS

The author wishes to acknowledge:

Dr. J. Eve, for supervising and encouraging the work carried out
for this thesis.

Drs. T. Anderson and P.C. Treleaven for providing support and use­
ful advice.

Mr. D. Mundy, for collaboration on the design of the BASIX program­
ming languages, for writing the BASIX_2 interpreter, and for help­
ing with the testing of the application programs.

Dr. C. Gerrard, Mr. R. P. Mahon, and Mr. M. Wardley, f or making
available equipment and their expertise.

The SERC of Great Britain, for funding the Research Associate post
held by the author, and for the use of computer facilities.

- iii -

CONTENTS

1. INTRODOCTION ••• 1

2. DECENTRALISED COMPUTER SYSTEMS ••••••••••••••••••••••••••••• 6
2.1 Motivations ••••••••••••••••••••••••.••••••••••••••••••• 6
2.2 Fifth Generation Computers •••••••••••••••.••.••••.•..•. 9
2.3 Supercomputers •.••••••••••.••••..••••••••••••••••••••• 12
2.4 Parallel Machines ••••••••••••••••••••.•••••••.•••••.•• 15
2.5 VLSI Processor Architectures ••••••••••.••••••••••••••• 17
2.6 Integrated Communications and Computers ••••••••••••••• 21
2.7 Decentralised Computers .•••••••••••••••••••••••••••••• 24

3. CLASSIFICATION OF PROGIlAMKING LANGUAGES ••••••••••••••••••• 28
3.1 Very High Level Language Programming •••••••••••••••••• 28
3.2 Computational Mechanisms ••••••••••••••••.•••.••••••.•• 36
3.3 Quicksort ••••••••••••••••••.•••••••••••••••••••••••••• 39

4. ANALYSIS OF PROCEDURAL AND OBJECT-oRIENTED PROGKAMKING •••• 43
4.1 Procedural Prog ramming ••.•••••..•••••...•••••••••••.•• 43

4.1.1 Conventional Languages •••••••••••••••••••••••••• 43
4. 1. 2 Concurrent Languages ••••••••••••••••.••••.•••••• 48

4.2 Object-Oriented Programming ••••••••••••••••••••••••••• 58

5. ANALYSIS OF FUNCTIONAL AND LOGIC PROGRAMMING •••••••••••••• 64
5.1 Functional Programming •••••••••••••••.•••••••••••••••• 64

5.1.1 Data Flow Languages •••••••.••••..•••••••••••••.• 65
5.1.2 Applicative Languages ••••••••••••••••••••••••••• 70

5.2 Logic Programming ••••••••••••••••••••••••••••••••••.•• 78
5.2.1 Horn Clauses Languages •••••••••••••••••••••••••• 78

5.3 Application Programming ••••••••••••••••••••••••••••... 81
5.3.1 Electronic Sheet Languages •••••••.••••.••••••••• 82

6. DECENTRALISED CONTROL FLOW MODEL •••••••••••••••••••••••••• 86
6.1 Choosing a Programming Model •••••••.•••••••••••••••••• 86
6.2 Principles ••••••••••••...••••.•..••••••••••••••••••••• 89
6.3 Computer Sys tem •••••••••••••••••••••••.•••••••••••••.. 93
6.4 Information Structuring •••.••.••••.•••.•••.•••••••.••• 94
6.5 Addressing Scheme ••••••••••••••••••••..••••••••••••.•• 95
6.6 Program Representation •..•••••.••••••••••••••••••••••• 96
6.7 Program Execution ••••••••••••••••••••••••••••••••••.•• 97
6.8 Other Programming Models ••••••.•••••••••••••••••••••.• 98

7. BASIX PROGRAMMING LANGUAGES ••••••••••••••••••••••••••••••• 101
7.1 Design Philosophy ••••...••••••.•••••...••••.••••••.•• 101
7.2 BASIX 1 Language •••••••••••••••••••••••••••••.•••.••. 102
7.3 BASIX_2 Language ••••••.•.••••••.••••••••••••••••••••• 108

8. ANALYSIS OF BASIX •• 119
8.1 Banking System •.••••••••••.•.•••••••.••••••.••••••••• 119

8.1.1 description of application 119
8.1.2 description of program ••••••••••••••••.••.••... 121
8.1.3 assessment •••••••••••••••.•••••••.••.••.••••••. 128

8.2 Expert System ••..•.•••.••••••.••••••••.••••.••••••.•. 129
8.2.1 description of application •••••••••••••••.••••. 129

- iv -

8.2.2 description of program ••••••••••.••••..•••••••• 131
8.2.3 assessment .•••••••.•••••••••••.•••••••••••.•.•. 135

8.3 Analysis and Assessment .•••••••••••.••.••••.••••••••. 136

9. BASAL PROGRAMMING LANGUAGE ••••••••••••••••••••••••••••••• 140
9.1 Design Philosophy •••••••••••••.•••••••••••••••••••••• 140
9.2 RlMMS Multi-Microcomputer System .•••••••••••.••••..•• 142

9.2.1 multi-microcomputer •••••••••••••••••••••••••••• 142
9.2.2 microcomputer •••••••••••.•••••...•••••••••••••• 145

9.3 BASAL Programming Language •••••••••••••.•••.••••••••• 148
9.3.1 description •••••.•••••••••••.••.•••••••••.••••• 149
9.3.2 implementation ••••••••••••••••••••••••••••••••• 158

10. ANALYSIS OF BASAL ••••••••••••••••••••••••••••••••••••.•• 164
10.1 Parallel (Shared Memory) Sort ••••••••••••.•••••••••• 165

10.1.1 description of application ••.•.••••••••••••••• 165
10.1.2 description of program •.•••••.•••••.•••••••••• 166
10.1.3 assessment ••••••••••••••••••••.••••••••••••••. 169

10.2 Parallel (Message Passing) Sort •••.••••••••••••••••• 169
10.2.1 description of application ••..••••••.•••••.••• 169
10.2.2 description of program •••••••••••••••••••••.•. 170
10.2.3 assessment •.•••••••••••••••••••••••••••••••••• 173

10.3 Analysis and Assessment •••••••••••••••••...••••••••• 174

11. CONCLUSIONS ••• 177
11.1 Summary•.................•..........•......... 177

11.1.1 Classification of Programming Styles ••••••••• 179
11.1.2 Decentralised Control Flow Model •••••••••••••• 181
11.1.3 BASIX Language •••••...••••••••••••••••••••••• 182
11. 1.4 BASAL Language •••••••••••••••••••.••••••••••• 183

11.2 Future Work •••••••••••••••..•.•••••••••••••••••••••• 184
11.2.1 Classification of Programming Styles ••••••••• 184
11.2.2 Decentralised Control Flow Model •.••••••••••• 185
11.2.3 BASIX Language •••••••••••••••••••••.••••••••• 185
11.2.4 BASAL Language ••••.•••••••••••••••••••.•••••• 186

11.3 Final Conclusions ••••••••••••••••••••••••••••••••••• 187

REFERENCES •• 189

APPENDICES •• 194
A.1 BASIX 1 Programming Language •••••••.••••.•••••••.•••• 194
A.2 BASIX-2 Programming Language ••••••••••••••••••••••••• 199
A.3 BASIX-3 Programming Languages •••••••••••••••••••••••• 203
A.4 Banking System Application ••••••••••••••••••••••••••• 207
A.5 Expert System Application •••••••••••••••..••••••••••• 215
A.6 BASAL 1 Programming Language ••••••.•••••••.•••••••••• 223
A.7 BASAL 2 Programming Language •••.•.••••••••••••••••••• 225
A.8 Sorting Applications ••••••.••.••••••••••.•••••••••••• 228

CHAPTER I - INTRODUCTION

Since the introduction of the sequential (von Neumann) control flow

computer thirty years ago, the traditional control flow programming

model has changed little. But, by the end of the past decade, a trend

towards distributed information processing started to take shape and

nowadays more and more emphasis is being given to systems that communi­

cate and co-operatively process information - i.e. decentralised comput­

ers. This spectrum of decentralised computers ranges from mainframe

computers that are geographically distributed, to miniature microcomput­

ers on a single VLSI chip. To allow all these computer systems to be

programmed, to co-operate in the communication of information and in the

execution of a program, it is necessary for them to conform to a common

decentralised programming model.

The various categories of programming models and associated

languages that are being put forward as successors to the von Neumann

control flow model are shown in Figure 1.1. They include control flow

models and procedural languages, data flow models and single-assignment

languages, reduction models and applicative languages, actor models and

object-oriented languages, and logic models and predicate logic

languages. Firstly, in a control flow model explicit flow(s) of control

cause the execution of commands. In a procedural language (e.g. BASIC,

FORTRAN) the basic concepts are: a global memory of cells, assignment as

the basic action, and (sequential) control structures for the execution

of statements.

- 2 -

Secondly, in a data flow model the availability of input operands

triggers the execution of the command which consumes the inputs. In a

single-assignment language (e.g. ID [5,6), LUCID (8), VAL (2), VALID

[3)) the basic concepts are: data "flows" from one statement to another,

execution of statements is data driven, and identifiers obey the so-

called single-assignment rule.

Programming 1 1 single- 1 lobject- Ipredicate
languages 1 procedural 1 assignment 1 applicativel oriented 1 logic
-------------1----------1----------1-----------1--------1------
Programming 1 control 1 data 1 1 1
models 1 flow 1 flow 1 reduction 1 actor 1 logic

Figure 1.1: Categories of Programming Languages and Models

Thirdly, there are reduction models and applicative languages. In a

reduction model [11) the requirement for a result triggers the execution

of the command that will generate the value. In an applicative language

(e.g. Pure LISP, SASL [55), FP [9)) the basic concepts are: application

of functions to structures, and all structures are expressions in the

mathematical sense.

Fourthly, there are the actor models and object-oriented languages.

In an actor model the arrival of a message for a command causes the com-

mand to execute. In an object-oriented language (e.g. SMALLTALK [33))

the basic concepts are: objects are viewed as active, they may contain

state, and objects communicate by sending messages.

Lastly, there are logic models and predicate logic languages. In a

logic model a command is executed when it matches a target pattern and

parallelism or backtracking is used to execute alternatives to the com-

mand. In a predicate logic language (e.g. PROLOG [23,36)) the basic

concepts are: statements are relations of a restricted form, and execu-

tion is a suitably controlled logical deduction from the statements.

- 3 -

With the exception of control flow, the above categories of pro­

gra=ing models and languages each propose a "revolutionary" approach to

the succession of the traditional progra=ing model. The actual choice

of a successor to the von Neumann control flow model is made difficult

by obstacles in measuring the benefits and drawbacks of any of these

novel progra=ing models (and their corresponding languages). Compared

to control flow, each has a "higher-level" model of computation possibly

constraining the range of algorithms the model can efficiently support.

There exists, though, an alternative, "evolutionary" approach, in

the form of a decentralised control flow progra=ing model. It involves

the extension of control flow for parallel and distributed progra=ing

allowing the interconnection of heterogeneous processors in a decentral­

ised system. An advantage of this approach is that it does not imply

discarding the massive investment in traditional control flow computing.

This thesis investigates the progra=ing of decentralised comput­

ers. It consists of five main parts: (i) an overview of decentralised

computer sys tems, (ii) the classification and analysis of the various

major progra=ing styles, (iii) the description of the decentralised

control flow model, (iv) the presentation of the BASIX language embody­

ing this model, and (v) the presentation of the BASAL language, which

embodies a primitive form of decentralised control flow.

Chapter 2 is an overview of decentralised computer systems, looking

at four images of "future" computers: Fifth Generation Computers, Super­

computers, VLSI Processor Architecture and Integrated Co=unications &

Computers. The former two images are "parallel machines", supporting

logic and data flow progra=ing, respectively. The latter two images

are "decentralised computers" supporting control flow progra=ing. It

- 4 -

concludes that a decentralised computer image, capable of spanning

heterogeneous processors, is most appropriate for future decentralised

computers.

Chapter 3 presents the major styles of programming (i.e. pro­

cedural, object-oriented, functional, logic and application) that may be

important in the future. This Chapter also classifies and analyses these

programming styles, based on the computational mechanisms that underlie

the corresponding programming models.

presented to be used as a common example.

The Quicksort algorithm is

Chapter 4 classifies and analyses Procedural and Object-Oriented

programming styles, and Chapter 5 classifies and analyses Functional and

Logic Programming styles, as well as Application Programming. The

analysis is illustrated by programming languages that represent the

individual characteristics of these programming styles. The semantics

and syntaxes of these languages are described and their similarities and

differences highlighted. The Quicksort algorithm is used as a common

example, coded in the languages being described. The conclusion reached

is that control flow, and procedural programming, is the most primitive

and fundamental programming model.

Chapter 6 presents the decentralised control flow model of program­

ming, which embodies the concepts underlying modern operating systems

such as UNIX, and is a generalisation of the traditional sequential von

Neumann control flow model. It is believed that this programming model

should form the basis of future decentralised computer systems and their

corresponding programming languages. The following chapters examine two

languages BASIX and BASAL, which are meant to illustrate the style of

decentralised control flow programming languages, not to propose new

- 5 -

languages. Both these languages are primitive and are "low-level" sys­

tem programming languages (cf. C) rather than high-level languages like

PROLOG.

Chapter 7 describes the BASIX programming language, which embodies

the decentralised control flow model. The BASIX language is based on

the fundamental concepts of UNIX and LISP, and on the simplicity of

BASIC's syntax. It is intended as a "total system", providing a com-

plete, interactive, programming environment (cL SMALLTALK, VISICALC,

OCCAM, etc.). BASIX has implicit and explicit parallelism, in the sense

that a new user command is executed as a parallel process, and that the

user can specify the parallel execution of commands. Two versions of

the BASIX language - BASIX_l and BASIX_2 - are described. Chapter 8 is

an analysis and assessment of the BASIX languages, and describes two

application examples written in BASIX 2: a banking system and an expert

system. These examples show the relationship of the language with the

decentralised control flow model.

Chapter 9 describes the BASAL language, which was designed for pro­

gramming a specific Multi-Microcomputer systems, based on a primitive

form of decentralised control flow model. It extends the BASIC language

in the sense that it allows parallelism and decentralised addressing.

Chapter 10 is an analysis of BASAL, and describes two application exam­

ples: two parallel sorts, using shared memory and ~essage passing

respectively.

Las tly, Chapter 11, besides presenting the conclusions drawn from

this work, describes the future work to be done in terms of the classif­

ication of programming styles, the decentralised control flow model,

plus the BASIX and the BASAL programming languages.

- 6 -

CHAPTER 2 - DECENTRALISED COMPUTER SYSTEKS

This chapter examines the various possible organisations for

"future" computer systems [54].

2.1. MOTIVATIONS

Many factors support the adoption of a radically new generation of

general-purpose computers. Firstly, computing is moving from a sequen­

tial, centralised world to a parallel, decentralised world in which

large numbers of computers are to be programmed to work together in com­

puting systems. Secondly, the handling of non-numerical data such as

sentences, symbols, speech, graphics and images is becoming increasingly

important. Thirdly, the processing tasks performed by computers are

becoming more "intelligent", moving from scientific calculations and

data processi~g, to artificial intelligence applications. Lastly,

today's computers are still based on the thirty-year-old von Neumann

architecture; essentially all that has happened is that the software

systems have been repeatedly extended to cope with increaSingly sophis­

ticated applications.

Important technological and social factors must also be considered.

In technology, various separate areas of computing research are on the

threshold of major advances [57]:

- 7 -

artificial intelligence - methodologies to express "knowledge" and

to infer from this knowledge, as seen in expert systems; and

human-oriented input-output in natural languages, speech and pic-

tures.

software engineering - new higher level programming languages and

computational models; and programming environments building upon

systems such as the UNIX system.

computer architectures - distributed architectures supporting com­

puter networks; parallel architectures giving high-speed computers

for numerical calculations; and VLSI architectures to make full use

of the potential of VLSI technology.

VLSI technology - VLSI computer aided design systems including new

methods for semi-automatic design of logic circuits; and new dev­

ices such as those using Gallium Arsenide and Josephson Junctions.

For social fac tors notice: the evolution of computing from scientific

applications in the 1950's, to include commercial and industrial appli­

cations in the 60's and 70's, and into consumer usage in the 80's and

90's. At the opposite ends of this application spectrum are the so-

called Supercomputers and Fifth Generation Computers. Supercomputers

handle the high-performance numerical applications. Fifth Generation

Computers form the cornerstone of so-called intelligent consumer elec­

tronics - sophisticated televisions, video recorders, learning aids etc.

- the next generation of wealth-creating consumer products [46]. The

implication of all these factors taken together is that von Neumann

(control flow) computers, originally designed in the 1950's for sequen­

tial computing, are no longer adequate for computation and that for the

future a radical change in the computational concepts underlying

- 8 -

computers is required.

There are at least four major areas of research involved in

attempting to identify a future generation of computers, namely the

investigation of:

1. Fifth Generation Computers which embody "knowledge" bases and sup­

port problem-solving and inference functions;

2. Supercomputers that utilise parallelism and support novel (very

high level) forms of programming;

3. VLSI Processor Architectures, system architectures specifically

aimed at exploiting very large scale integration through new VLSI

components, encompassing both general-purpose and special-purpose

processors.

4. Integrated Communications & Computers representing the fusion of

wide-area networks, local area networks, and parallel computer

architectures;

Anyone of these four research areas could provide the new generation of

computers. But each area's view of these computers seems very dif-

ferent, thus significantly affecting the style of future systems. The

examination of these areas, and their likely impact, starts by present­

ing images of Fifth Generation Computers and of Supercomputers.

- 9 -

2.2. FIFTH GENERATION COMPUTERS

Fifth Generation Computers are knowledge processing systems

designed to support knowledge-based expert systems [22,60]. Expert sys-

tems embody modules of organised knowledge concerning specific areas of

human expertise. They also support sophisticated problem-solving and

inference functions, for the purpose of rendering to users intelligent

advice on one or other specialised topics. Future expert systems will

also provide human-oriented input-output in the form of natural

languages, speech and picture images. For example, an expert system for

medical diagnosis could operate in a way analogous to the way a physi-

cian, a surgeon and a patient interact and use their knowledge to make a

diagnosis.

In expert systems "knowledge" is often represented in terms of IF-

THEN rules of the form [20]:

IF condition 1 and
condition-2 and

condition n

THEN implication (with significance)

where if all the conditions are true then the implication is true, with

an associated local significance factor. During the search of a set of

rules an overall significance factor is maintained and when this signi-

ficance becomes unacceptably low, then this search is abandoned and a

new set of rules is searched.

As observed by Japanese researchers [39,53], this struc ture of

expert systems is most closely matched by the structure of logic pro-

gramming (its computational model). In a logic programming language,

such as PROLOG, statements are relations of a restricted form called

- 10 -

"clauses", and the execution of such a program is a suitably controlled

logical deduction from the clauses forming the program. The following

program (23) consists of four clauses:

father(bill, john).
father(john, tom).

grandfather(X, Z)
grandfather(X, Z)

father(X, Y), mother(Y, Z).
father(X, Y), father(Y, Z).

Figure 2.1: Logic Program for "family tree"

The first two clauses define that bill is the father of john, and john

is the father of tom. The second two clauses use the variables X,Y,Z to

express the rule that X is the grandfather of Z, if X is the father of Y

and Y is either the mother or father of Z. Such a program can be asked

a range of questions, from is john the father of tom: "father(john,

tom)?" to is there any A who is the grandfather of any C:

"grandfather(A, C)?".

The possible operation of a computer based on logic is illustrated

below, using the program in Figure 2.1. Execution of, for example,

"grandfather(bill, R)?" will match with each "grandfather()" clause:

grandfather(X=bill, Z=R) .- father(bill, Y), mother(Y, R).

grandfather(X=bill, Z=R) 0- father(bill, Y), father(Y, R).

both of which will attempt in parallel to satisfy their goals (called

OR-parallelism). The first clause will fail, being unable to satisfy

the "mother()" goal from the program. The second clause has two goals

"father(), father()" which it attempts to solve in parallel (called

AND-parallelism). This involves pattern matching and substitution, to

satisfy both the individual goals:

- 11 -

grandfather(X=bill, Z=R) .- father(bill, Y), father(Y, R) •

. - father(bill, Y=john), father(Y=bill, R=john).

and the overall consistency:

.- father(bill, Y=john), father(Y=john, R=tom).

Having illustrated the symbol manipulation operation of a computer

based on logic, the possible organisation of such computers will be

examined next. One possibility is a highly microprogrammed (control

flow based) PROLOG machine [58,59], analogous to current LISP machines.

Although a number of such designs can be expected in the near future,

PROLOG machines are not true logic machines, just as LISP machines are

not considered reduction machines. A logic organisation for Fifth Gen-

eration Computers is proposed in the Japanese FGCS Project plans [39].

Here Fifth Generation Computers are viewed as comprising three component

machines, as shown in Figure 2.2. These machines though serving speci-

alised roles will be linked by a common logic machine language and

architecture.

Logic Machine Language

I knowledge base I ! problem-solving I !"intelligent"!
I machine I land inference I !interface !
! I Imachine I Imachine !

cf. filestore
plus databases

cf. central
processing unit

cf. input-output
devices

Figure 2.2: Fifth Generation Computer

In summary, a Fifth Generation Computer is viewed as a parallel logic

architecture supporting knowledge-based systems applications.

- 12 -

2.3. SUPERCOMPUTERS

Supercomputers are aimed at large-scale numerical calculations and

attempt to achieve a high performance by exploiting parallelism. They

may be envisaged as parallel "mainframe" (cf. CRAY 1) computers buil t

from identical, powerful processors whose instruction execution is based

on a concurrent alternative to the traditional sequential control flow

architecture. For Supercomputers, the most prominent category of paral­

lel architecture is data flow. In a data flow computer instruction exe­

cution is data driven; the availability of input operands triggers the

execution of the instruction which consumes the inputs. The most impor­

tant properties of data flow are that instructions pass their results

directly to all the consuming instructions and that an instruction is

executed when it has received all its inputs - properties that influence

the general-purpose nature of data flow.

Data flow computers are most naturally programmed in a very high­

level form of programming called single-assignment languages [1].

Single-assignment languages are based on a rule stating: a variable may

appear on the left-hand side of only one statement in a program frag­

ment. This allows the data dependencies in a program to be easily

detectable and so statements may be specified in any order. As an

illustration of single-assignment programming a procedure in ID [6] for

inner-product (ai * bi) will be examined:

procedure inner-product (a, b, n)

initial s (- 0

for i from 1 to n do

new s (- s + (a[i]*b[i])

return s)

- 13 -

Figure 2.3: Single-Assignment Program for "inner-product"

This procedure takes as input two arrays "a" and "b", both of length

"n", and returns their inner-product "s". These statements have the

following interpretation:

sO (- 0

sl (- sO + (a[l) * b[l))

s2 (- sl + (a[2) * b[2))

sn (- sn-1 + (a[n) * b[n))

return sn

and hence obey the single-assignment rule. Since execution is driven by

the availability of data, all the multiplications can execute in paral­

lel, after which the tree of partial results will be summed to produce

the result "sn".

The possible operation of a computer based on data flow is illus­

trated by Figure 2.4, which represents the machine instructions

corresponding to the inner-product example. In Figure 2.4 each data

flow instruction consists of an operator, two input operands which are

either literals or required data tokens, and a reference such as "il/2"

defining a consumer instruction "i1" and argument position "2" for the

result data token. Data tokens are used to pass data from one instruc­

tion to another and they are also used to cause the execution of

instructions. An instruc tion is enabled for execution when all its

input arguments are available, i.e. when all its data tokens have

arrived. The operator then consumes the data tokens, performs the

- 14 -

required operation, and using the embedded reference stores a copy of

the result data token into the consumer instruction(s).

-:~~t----~~~---j 1 : I * Iv I v I i1 / 2 I

a[2] b[2]

----J-----~-----j2:1 * IV I vli2/21
---------~--

---------f.-~:~--
11: I + I 0 I ~ I i2/11

-------------:~~
i2:1 + I~ I'" li3/11

-------------::-~
.
• l"'sn- 1

•

~--- ------
in: I + I" I" I I

--------------f.-
v

sn

Figure 2.4: Data Flow Program for "inner-product"

Data flow computers are usually based on a packet communication

machine organisation [18,50]. This organisation consists of a circular

instruction execution pipeline of resources in which processors, commun-

ications and memories are interspersed with "pools of work", as shown in

Figure 2.5.

- 15 -

I-~~~~~~~:~~~~~--I-->~-->I---:~~~~;~----I

t
I

I
V o

Figure 2.5: Packet Communication Computer

The organisation views an executing program as a number of independent

information packets all of which are conceptually active, which split

and merge. For a parallel computer, packet communication is a very sim-

ple strategy for allocating packets of work to resources. Each packet

to be processed is placed with similar packets in one of the "pools of

work". When a resource becomes idle it takes a packet from its input

pool, processes it and places a modified packe t in an output pool,

returning then to the idle state. A number of data flow machines, based

on packet communication, are already operational [50].

In summary, a future Supercomputer is viewed as a parallel (data

flow) machine, supporting large-scale numerical calculations.

2.4. PARALLEL MACHINES

The above two areas of research, namely Fifth Generation Computers

and Supercomputers, each view future computers as parallel machines,

supporting a single form of very high level programming. In the former

case, based on logic computation and in the latter, data flow computa-

tion.

- 16 -

There are, however, five main basic categories of computer archi­

tec ture on which future computers could be based, as discussed in the

Introduction (see Figure 1.1). They range from "low level" architec-

tures, such as control flow, that specify how a computation is to be

executed, to "high level" architectures, such as logic, that merely

specify what is required. Associated with each category of computer

architecture, is a corresponding category of programming languages.

Recall, these are: control flow computers and procedural languages,

data flow computers and single-assignment languages; reduction computers

and applicative languages; actor computers and object-oriented

languages, and finally, logic computers and predicate logic languages.

For future computers, since each model (i.e. control flow, data

flow, reduction, actor, logic) efficiently supports only a single

corresponding programming style (i.e. procedural, single-assignment,

applicative, object-oriented, predicate logic), a number of questions

are raised:

1. which programming model has the most general-purpose computational

concepts (e.g. is best able to support the other models)?

2. what programming style will be dominant in the 1990's (or will a

number of styles be in use)?

3. can Fifth Generation Computers, Supercomputers, and von Neumann

computers be based on different computational concepts (since it

would seem essential for them to work together in the future)?

- 17 -

4. is it realistic to expect that the massive investment in tradi-

tional control flow computing will be discarded?

Since it seems naive to imagine that control flow computers will simply

disappear (one only has to look at the longevity of FORTRAN), future

computers may either continue to be dominated by control flow or will

encompass various architectures.

Thus the most urgent challenge for future computers seems not to be

the identification of the "parallel machine" but to identify the pro­

gramming model for a "decentralised computer" that will allow dissimilar

computers to work together. This is illustrated by Figure 2.6.

DECENTRALISED COMPUTER ARCHITECTURE

I Supercomputer I
I I

I von Neumann I
I Computer I

I Fifth Generation I
I Computer I

Figure 2.6: Future Decentralised Computer Architecture

Identification of such a "decentralised computer" programming model

is assisted by examining the latter two areas of research listed in Sec-

tion 2.1, namely VLS I Processor Archi tec ture and Integrated Communica-

tions & Computers.

2.5. VLSI PR.OCESSOR. ARCHITECTURES

Processor architectures to exploit very large scale integration

(VLSI) are aimed at defining a new VLSI generation of components to

succeed the conventional LSI microprocessor. Microprocessors containing

- 18 -

over 100,000 transistors are starting to become commonplace. However,

attempting to make larger-scale single processors in VLSI scaled to sub­

micron dimensions becomes self-defeating, due to communication problems

and the escalating costs of designing and testing such complex proces­

sors. One obvious solution (stimulated by the VLSI design philosophy of

Mead and Conway [38]) is miniature microcomputers which can be repli­

cated like memory cells and operate as a multiprocessor architecture.

These novel general-purpose and special-purpose microcomputers are often

implemented by only a few different types of simple cells, and use

extensive pipelining and multiprocessing to achieve a high performance.

Examples [52] range from special-purpose multiprocessors such as Kung's

Systolic Arrays to general-purpose multiprocessors such as Caltech's

Tree Machine built from 1024 identical chips.

For a semiconductor manufacturer to specify a new VLSI generation

of components it is necessary to specify a system architecture defining

communication and cooperation between both general-purpose and special­

purpose microcomputers. The fundamental problem to be solved is how to

orchestrate a single computation so that it can be distributed across

the ensemble of processors [45]. Two elegant VLSI system architectures

(the former special-purpose and the latter general-purpose) are: Kung's

Programmable Systolic Chip [24,37], and INMOS' Transputer [10] and OCCAM

programming language [49] based on communicating processes.

A more conventional approach is illustrated by the reduced instruc­

tion set multi-microcomputer system (RIMMS) [25,26] which is a network

of primitive microcomputers. Figure 2.7 shows the organisation of

RIMMS.

System

1: 1
1 simple 1
Iprocessorl
1---------1
1256 word 1
1 memory 1

Addressing

- 19 -

2: 1

1 simple 1
1 processor 1
1---------1
1256 word 1
1 memory 1

8 bit

3: 1
1 simple 1
Iprocessorl
1---------1
1256 word 1
1 memory 1

8 bit

1 microcomputer 1 word in memory 1

Registers

C Code pointer (program counter)
D Data pointer (base register)

4: 1

1 simple 1
Iprocessorl
1---------1
1256 word I
1 memory I

Figure 2.7: Reduced Instruction Set Multi-Microcomputer System

The central idea in RIMMS, as illustrated by Figure 2.7, is that

each microcomputer has its own 256 word local memory, but forms part of

a global (two-level) address space. A microcomputer has a 16-bit word

size, with each register, data element and address being 16 bits.

Instructions, however, are 2 x 16 bits and use a 3-address format:

M1 M2 M3
5 bits 1 1 1

01
8 bits

02
8 bits

03
8 bits

--
loperatorlmode bits 1 literal/address 1 literal/address 1 literal/address 1
--

o literal
1 address (memory [D+ signed literal])

There are less than 20 operators. Each microcomputer in the multi-

microcomputer system is addressable, and behaves as a combined memory

- 20 -

and processor that is able to service load, store and execute opera­

tions. The design of the multi-microcomputer system centres around the

16-bit global address space. An address consists of two parts: the high

8 bits define a specific microcomputer, while the low 8 bits define a

word in that microcomputer's memory. Although a microcomputer can

access any word in the global address space, an attempt to execute alien

code causes execution to transfer to the specified microcomputer. The

processor implementation has a simple von Neumann data path, with the

addition of the two-level address space and the FORK instruction for

parallelism.

This design contains a number of key concepts. Firstly, although a

microcomputer can make a data access to any word in the global address

space, code is always executed by the local microcomputer. Secondly, a

microcomputer has the ability, using a FORK instruction, to create a

parallel flow of control in another (idle) microcomputer. Thirdly, a

microcomputer executes a process to completion. (This atomic execution

of local code removes many of the synchronisation problems typically

found in control flow multi-processors.) Finally, to enable simple pro­

cess migration, the amount of state information held in the processor's

register s is minimised. This is achieved by a microcomputer using a

three-address instruction format and having only two visible registers:

the code pointer (i.e. program counter) "e" and the data pointer (Le.

base register) "D".

In summary, the aim of VLSI processors such as INMOS' Transputer,

the Programmable Systolic Chip, and RIMMS is to define a system archi­

tecture for a new VLSI generation of general-purpose and special-purpose

components.

- 21 -

2.6. INTEGRATED COMMUNICATIONS & COMPUTERS

Integrated data Communications & Computers represent the fusion of

wide area computer networks, local area computer networks, and parallel

computer architectures to form a fully integrated computer-

communications network. Data communications and computers, specifically

computer networks and parallel computers, have in the past developed

independently from each other, with advances in both technologies being

sustained by the rapid development of semiconductor devices. However,

the importance of fully integrating the spectrum of decentralised sys-

terns shown in Figure 2.8 has long been advocated [35]. To achieve this,

it is clearly necessary for all component computers to conform to a com-

mon decentralised system architecture (some harmonious interface)

allowing them to be programmed to cooperate in the communication of

information and in the execution of a program.

Inter-computer
distance

Computers
located in

1 1000 km 1 Continent
1-------------1---------------
\ 100 km 1 Country
\-------------1---------------
1 10 km \ City
\-------------1---------------
1 1 km 1 Site
\-------------1---------------
\ 100 m \ Building
1-------------\---------------
\ 10 m \ Room
\-------------1---------------
\ 1 m 1 Cabinet
1-------------1---------------
\ 100 rom 1 Circuit board
1-------------\---------------
\ 1 rom \ Chip

wide

area

network Decentralised

local

area System

network

parallel Architecture

computer

arch.

Figure 2.8: Spectrum of Decentralised Systems

- 22 -

In these decentralised systems the most important related issues

are communications and addressing of information, rather than parallel­

ism and instruc tion execution. Thus the systems are usually based on

control flow programming models enhanced with operating system concepts,

as illustrated by the Newcastle Connection distributed UNIX system. The

Newcastle Connection [16,47] is the name given to a novel software sub­

system added to a set of standard UNIX systems [44] in order to connect

them together as a distributed system, initially using just a single

Cambridge Ring [61] • The resulting distributed system (which could

employ a variety of wide and local area networks) is functionally indis­

tinguishable at both the "Shell" command language level and at the sys­

tem call level, from a conventional centralised UNIX system.

The secret of success of the Newcastle Connection is the hierarchi­

cal information and naming struc ture (for directories, files, devices,

and commands) of UNIX. In the distributed system the structures of each

component UNIX system are joined together as a single structure, in

which each UNIX system behaves as a directory. This is illustrated by

Figure 2.9.

- 23 -

Centralised Systems

unixl

us0<:s~
file ••• file •••

unix2

use~"
file ••• file •.•

Decentralised System

Newcastle

unixl ~2
use;;Z:~

file ••• file •••

use/,

file ••• file

Figure 2.9: The Newcastle Connection of UNIXes

The result is that each user, on each UNIX system, can inspect any

directory, read or write any file, use any device, or execute any com-

mand, regardless of on which physical system it belongs. For example if

a user "userl" wishes to copy "cp" a file "filel" to another file

"file2" on the same machine they type the command:

cp filel file2

and if file2 belongs to "user2" they type:

cp filel luser2/file2

whereas on the decentralised system to copy the file "filel" to file

"file2" of "user2" on machine "unix2" they type:

cp filel 1 •• /unix2/user2/file2

For those unfamiliar with UNIX, the initial "I" symbol indicates that a

path name starts at the root directory, and the" •• " symbol is used to

indicate the parent directory. Perhaps the best analogy of the Newcas-

tIe Connection is with the naming structure of the international tele-

phone network.

- 24 -

In summary, Integrated Communications & Computers is viewed as a

decentralised computer representing the fusion of wide area network,

local area networks and parallel computers.

2.7. DECENTRALISED COMPUTERS

Decentralised computers integrate distributed, parallel and sequen-

tial computers. Their system architecture defines a minimum set of

principles that hardware and software components must obey so that they

can be configured to work together in a system. It is also important

for programming such systems, that these principles are mirrored in both

the hardware and software just as FORTRAN and the von Neumann model

embody the same principles.

A decentralised programming model provides a composite framework or

image for future computers. This framework is even capable of spanning

the four seemingly different views of: Fifth Generation Computers,

Supercomputers, VLSI Processor Architectures, and Integrated Communica­

tions & Computers. For instance, future decentralised computers will be

capable of specialisation, supporting a range of applications from the

numerical calculations of Supercomputers to the symbol manipulation of

Fifth Generation Computers. Programming languages will range from trad­

itional procedural ones, to very high level languages such as PROLOG.

Machine organisations will support concurrency, possibly utilising data

driven and demand driven techniques. Implementations will employ the

latest general-purpose and special-purpose VLSI technology. Systems

will be highly decentralised at all levels with computers linked

together in an integrated computer-communications network. An attempt

to illustrate this is shown in Figure 2.10.

- 25 -

Wide Area Computer Networks
---1---

Local Area Computer Networks
--1---

Parallel Computers

application:

languages

machine

1 numerical 1
1 calculations I
1------------1
1 single- I
1 assignment
1------------1
1 data I
1 flow?
1------------1

implementation: 1 V LSI 1

1 1

Supercomputer

Idata 1
Iprocessing I
1-----------1
Iprocedural 1

1 I
1-----------1
1 control I
1 flow
1-----------1
1 V LSI 1
1 1

von Neumann
Computer

I knowledge-based I
1 systems
1---------------1
1 predicate 1
I logic 1

1---------------1
I logic? I
1 I
1---------------1
1 V LSI 1
I I

Fifth Generation
Computer

Figure 2.10: Future Decentralised Computer Systems Architecture

Given the technological and social factors (discussed in Section 2.1 -

Motivations) this "decentralised computer architecture" view of future

computers would seem quite reasonable.

In conclusion, the three organisations for computers are: sequen-

tial computers, parallel computers, and decentralised computers (see

Figure 2. 11) •

Sequential

Iprocl
1----1
Imem I

Parallel

I ---- ---- I
I Iprocl<=>···<=>lprocl I
I 1----1 1----11
I I mem I I mem I I
I ---- ---- I

Decentralised

- 26 -

von Neumann
computer

Parallel
Computer

Future
Computer

I --------------------- --------------------- I
I I ---- ---- 1<=>··· <=> I ---- ---- I I
I I Iprocl<=> ••• <=>lproc\ I I Iprocl<=>···<=>lprocl I I
I I ----I 1---- I I 1----1 ---II I
I I I mem I I mem I I I I mem I I mem II I
I I ---- ---- I I ---- ---- I I
I --------------------- --------------------- I

Figure 2.11: Contrasting von Neumann, Parallel and Future Computers

The von Neumann computer is sequential consisting of a single processor

and memory. The parallel computer is, clearly, parallel being composed

of sequential computers. Lastly, the future computer will be decentral-

ised (distributed + parallel), and will consist of parallel and sequen-

tial computers. Therefore, as illustrated by Figure 2.11, a decentral-

ised program model is capable of spanning distributed, parallel and

sequential computers.

Thus for future computers a decentralised computer architecture is

sought, analogous to that of the international telephone network, sup-

porting the communication and cooperation of dissimilar

hardware/software components. The essential properties are:

- 27 -

1. communication and cooperation of components

2. addressing of distributed information

3. extensible system of heterogeneous processors

4. many programming styles are supported

Properties 1-3 relate to system structuring and addressing issues, but

property 4 relates to the choice of programming model (i.e. control

flow, data flow, reduction, actor, logic)

Recall, in the discussion on Parallel Machines (Section 2.4), it

was argued that future decentralised computers will either continue to

be dominated by control flow or will encompass various programming

models. In the next three chapters, this choice is discussed, classify­

ing and presenting the major programming styles and analysing their

advantages and disadvantages for computation.

- 28 -

CHAPTER. 3 - CLASSD'ICATIOII OP PJtOGIWIKDIG LAIIGUAGES

This chapter attempts to classify some major styles of programming

that might become important in the future.

3.1. VEB.Y HIGH LEVEL LAllGUAGE PIl.OGJWDIlBG

Computing is currently experiencing a veritable explosion of

research into very high level programming notations. These include:

procedural languages that aim to provide more effective programming

environments such as ADA [43]; new languages based on novel models of

computation such as PROLOG [36]; and application-oriented languages such

as VISICALC [14] used for financial-modelling. In fact, in this latter

area it is difficult to draw the boundary between application languages

and packages, since today's packages may well be the programming

languages of tomorrow.

How can styles of high level programming be classified so as to

make useful observations about their advantages and disadvantages for

computation? One approach is to group them by application area - thus

having string processing languages, numerical languages, artificial

intelligence languages and so forth. For the present purposes, however,

this is not the best approach; firstly because there are so many poten­

tial application areas, and secondly because some of the most striking

differences between programming styles and languages have absolutely

nothing to do with the advertised differences in their application

areas. For example, FORTRAN and APL are both "numerical" languages yet

- 29 -

the differences between them are significant. These differences are

closely bound up with different approaches to certain very basic ques­

tions such as how data is communicated in a program and the control

structures supported.

Since new programming languages often try to present a model of

computation that closely represents the underlying machine architec­

ture, this discussion of programming will be strongly influenced by pro­

gramming models (as shown in Figure 1.1). Figure 3.1 illustrates the

various categories of programming and example languages, some of which

will be examined. In the future any of these categories of programming

may become "mainstream" programming styles, especially when novel decen­

tralised computers (as discussed in the previous chapter) sympathetic to

their support become available for use. Although most of these languages

are termed general-purpose they rarely prove to be equally applicable to

all classes of problems. It is therefore important to understand the

strengths and weaknesses (and hence the potential for applications) of

each category of programming.

Category

Procedural Programming

conventional
concurrent

- 30 -

shared memory
message passing

Object-Oriented Programming

Functional Programming

data flow
applicative

function-level
pattern-matching

Logic Programming

Horn clauses
predicate logic

Application Programming

"Electronic-sheet"

Figure 3.1: Categories of Programming

Examples

BASIC, FORTRAN, PASCAL

Concurrent PASCAL, MODULA
CSP, OCCAM

SMALLTALK, ACTl

10, LUCID, VAL, VALID

FP
PURE LISP, SASL, HOPE

PROLOG
SETL

VIS ICALC

There are at least five major categories of programming: Pro-

cedural, Object-Oriented, Functional, Logic and Application programming.

This examination of the various categories of programming is started by

discussing the most dominant, procedural programming.

In procedural programming there are concepts which are almost taken

for granted: a global memory of cells, assignment as the basic action,

and implicitly sequential control structures for the execution of state-

ments. In procedural programming there are two sub-classes of

languages, namely the conventional sequential languages, and what is

called concurrent languages (ex. Concurrent PASCAL) that have parallel

control structures [48]. Most users of computers know of only one class

of programming languages, what has therefore been called conventional

languages. This class has developed for programming the traditional von

- 31 -

Neumann stored program computer. Hence the semantics of conventional

languages reflec t the von Neumann programming model: global memory,

fixed-size memory cells, assignment and sequential execution.

Concurrent languages [15,48] extend this control flow programming

model with parallel control structures based on processes, plus communi­

cation and synchronisation mechanisms. A process is an independent pro­

gram consisting of a private data structure and sequential code that can

operate on the data. Concurrently executing processes cannot operate on

the private data of one another; they can only interact usin~ the com­

munication mechanism. The communication mechanism is the way processes

communica te data among themselves. The most commonly employed mechan­

isms are: unprotected shared (global) memory, shared memory protected by

modules or monitors, message passing and the rendezvous [48]. The syn­

chronisation mechanism is the way processes enforce sequencing restric­

tions among themselves. The commonly employed mechanisms include: sig­

nals, synchronised sending, buffers, path expressions, events, condi­

tions, queues and guarded regions etc. [48]. Other important distin­

guishing features of concurrent programming languages include: process

creation, whether processes are created "statically" during compilation

or "dynamically" at runtime from the execution of the calls; process

topology, where the interconnection links either remain static during

execution or may dynamically change; process scheduling, defining how

processes are assigned to the processors; and process termination, the

condition when a process has finished execution and can be deleted.

Concurrent languages can be broadly classified, by the nature of their

communication mechanism into: shared memory and message passing.

- 32 -

In object-oriented programming, computation is based upon active

objects, sometimes called actors, which communicate by passing messages.

Every object belongs to a class and is created as an instance of that

class. The class defines the detailed representation of its instances,

the messages to which they can respond, and the methods for computing

the appropriate responses. Stored in an instance are the particular set

of values that define its state. Ingalls [33] uses the following exam­

ple to distinguish between object-oriented programming and procedural

programming.

to evaluate <some object> + 4 means to present + 4 as a mes­

sage to the object. The fundamental difference is that the

object is in control, not the +. If <some object> is the

integer 3 then the resul t will be the integer 7. However, if

<some object> were the string META the result might be META4.

In this way the conventional distinction between data and procedures is

reduced, since the meaning rests with the objects of the system, and the

code remains an abstract form, merely directing the flow of communica­

tion.

In functional programming, languages operate by the application of

functions to values. Functional programming lives in the "clean"

mathematical world of equations: expressions, function applications and

structured data; a world excluding sequentiality, assignment statements,

and side-effects. Firstly, non-sequentiality. A functional program

usually consists of a series of equations which are viewed as unordered

apart from their data dependencies. Each equation specifies a calcula­

tion but the programmer specifies no additional sequencing information

over and above that implied by the data dependencies. Thus statements

- 33 -

can appear in any order in a program. Secondly. absence of assignment.

Functional programming does not contain the concept of assigning a value

to a global memory as seen in the basis of procedural programming.

Obviously. one still has to be able to associate a name with a value (as

when one writes an equation "name=expression"); this is an essential

feature of any usable language. The important difference is that a con­

ventional assignment statement is used to "overwrite" a previously

existing value. whereas here the destructive assignment concept is not

allowed. This implies the absence of side-effects. These features of

functional programming mean that in anyone program. no two equations

can have the same left-hand side for a statement of the form

"name=expression". It also implies that all operations on data struc­

tures have to have a copying semantics. since a data structure cannot be

overwritten or altered.

Two important classes of functional pr08ramming languages wUl be

identified: data flow languages (i.e. single-assignment) and applicative

languages. Data flow languages are designed to facilitate programming

of data flow computers (which were discussed in the previous chapter).

and are concerned with the easy expression and exploitation of parallel­

ism. By data flow language one means any functional language based

entirely upon the notion of data "flowing" from one function entity to

another. or any language that directly supports such flOwing semantics.

This flow concept gives data flow languages the advantage of easily

expressing programs either textually or by equivalent directed graphs

[17]. There are a number of interesting data flow languages including

ID [6]. LUCID [8], VAL [2] and VALID [3]. Applicative languages are

so-called because of the dominant role played by the applications of

func tions to structures. Quoting Henderson [301 "Intuitively, a func-

- 34 -

tion is a rule of correspondence whereby to each member of a certain

class there corresponds a unique member of another class. That is to

say, given two classes of individuals, respectively called the domain of

the function and the range of the function, each member of the domain is

made to correspond by the .function to exactly one member of the range."

Thus the important notion associated with app1icative structure is that

the value of an expression (its meaning) is determined solely by the

values of its constituent parts. Thus, should the same expression occur

twice in the same context, it denotes the same value at both

occurrences. A language having this property for all its expressions is

referred to as an app1icative language.

In logic programming [19,36] a program consists of facts about a

certain subject, stated as a collection of sentences which express

information that can be used to solve problems or to answer questions.

A sentence (i.e. clause) defines a relationship, and is either an asser-

tion:

or an implication:

bill is the father of john

john is the father of tom

X is the grandfather of Z if X is the father of Y

and Y is the father of Z

where john, tom, etc. are atoms and X,Y etc. are variables. Basically,

logic i to solve goals, which succeed or fail, when programm ng attempts

answering a question. For a given goal (initially the question), the

fi d statements that can be made to match the system attempts to n any

goal. If the matching statement is an assertion then the system is suc-

- 35 -

cessful but, otherwise, it proceeds to solve the subgoals. This execu­

tion can be viewed as pattern matching: selection of the statements, and

substitution: solving of the goals.

Symbolic logic was first used as a formalisation of natural

language and human reasoning. As a result it has long been appreciated

in computing science that logic programming could yield very powerful

languages, blurring not only the distinction between programs and data­

bases but also the distinction between programs and specifications [36].

Information can be expressed and problems can be formulated without con-

cern for specifying explicitly the details of execution or for effi-

ciency. However, logic programs can be given an operational, machine

intelligible interpretation.

Finally, in application programming, languages are being developed

for specific application areas. One of the more interesting aspects of

recent computing history is the explosive growth in the programming

languages for specific application areas. Example areas include:

financial-modelling [14], expert systems [60], and robotics [13]. How-

ever, in these application areas, the boundary between languages and

certain software packages or utilities is cloudy. A prime example is

VIS ICALC , and its derivatives, marketed as financial-modelling systems,

but used in the additional fields of engineering, science, education and

statistics. In fact, in any field where tabular reports of rows and

columns of calculated numbers are required, the VISICALC language pro-

vides a very powerful tool. Cynics might say that there is currently

more programming done in VISICALC-1ike languages than in all object­

oriented, functional and logic programming languages together.

- 36 -

Next, the major programming styles are classified in terms of their

underlying computational mechanisms, so as to analyse their advantages

and disadvantages in terms of these mechanisms. The computational

mechanisms presented here generalise the set of mechanisms originally

proposed for a novel computer architecture [50].

3.2. COKPUTATIORAL HECBANISHS

Treleaven et aI, in their survey paper [50], proposed a classifica­

tion for data and demand driven computer architecture. This consisted

of three ways in which an instruction could use an argument: "by

literal ll
, IIby value ll

, "by reference", and three control patterns:

"sequential", "parallel", and "recursive". Although adequate for the

purpose, this classification has a number of weaknesses, the most impor­

tant of which is that it does not cover actor and logic architectures.

Below, a more general classification is presented, oriented to program­

ming models and languages. It will be used in classifying and analysing

the styles of programming presented above.

"Programming model" is the term used in this Thesis to cover the

way programs are represented and executed in a computer. For a program­

ming model there are two basic computational mechanisms, which are

referred to here as the data mechanism and the control mechanism. The

data mecbaniSlll defines the way a particular argument is communicated

(and shared) by a number of commands. There are two basic types of com­

munication in computing:

1. shared .eBOry - where a single copy of the argument is communicated

via a shared memory, accessible to all commands.

- 37 -

2. .essage passing - where a unique copy of the argument is communi­

cated, via a message, from the source to the destination command.

The control .ecbanisa defines how one command causes the execution of

one or more other commands. There are four basic types of execution in

computing:

1. control driven - where a command is executed when it is selected by

flow(s) of control.

2. data driven - where a command is executed when some combination of

its arguments is available.

3. demand driven - where a command is executed when the result it pro­

duces is needed by another, already active command.

4. pattern driven - where a command is executed when some enabling

pattern (or condition) is matched.

The relationship that is believed to exist between these data and

control mechanisms and the major styles of programming is summarised in

Figure 3.2.

Control

Mechanism

control
driven

data
driven

demand
driven

pattern
driven

- 38 -

shared
memory

Data Mechanisms

message
passing

Procedural I
.conventionall
• concurrent

(shared
memory)

I
I
I

Procedural
• concurrent

(message
passing)

Functional
• data flow

I
I
I
I

I
I
I
I

Functional
• applicative

(pattern­
matching)

Functional
• applicative

(function­
level)

I
I
I
I

I
I Logic
I
I

Object-Oriented

Figure 3.2: Classification of Programming Styles

It is believed that the properties of the programming styles and

their associated languages relate directly to their choice of data

mechanism and control mechanism.

Firstly, the properties related to the data mechanisms will be sum-

marised. "Shared memory" has advantages for: the sharing of data struc-

tures, the taking of an unspecified number of copies of the data, and

the ability, in certain models, to update the data. The disadvantages

of "shared memory" relate to synchronising the reading and writing of

data, not only in parallel systems, but also where a flow of control

must be specified. "Message passing" has the advantages of synchronis-

ing communication of data, which is particularly useful between parallel

processes, and the ability to be tied to the control mechanism as in

- 39 -

data flow. Disadvantages of "message passing" include the need often to

know all the consumers of the messages and, possibly, the need to expli­

citly delete unused messages.

Secondly, the properties related to the control mechanisms will be

summarised. "Control driven" mechanisms have advantages such as the

fact that they are very primitive and flexible, and provide maximum con­

trol over the execution of commands. This results in a separation of

flows of control and flows of data in a program. Disadvantages also

relate to this flexibility; as the sequence of execution of commands

must be specified, this places an additional burden on the programmer,

and it is easier to make mistakes. "Data driven" mechanisms have the

advantage of specifying maximally parallel execution, but also the

disadvantage of sometimes causing unnecessary computations. "Demand

driven" mechanisms have the advantages of performing minimum work (since

demands are only made when necessary), and of generating a hierarchical

control pattern. A direct disadvantage is that the control pattern is

restricted to such a tree structure. Lastly, "pattern driven" mechan­

isms have the advantage of being the highest level control mechanism

requiring least control information to be specified by a programmer.

Again, this leads to the disadvantage of the programmer sometimes having

inadequate control over the execution of a program.

3.3. QUICKSORT

To facilitate comparison of Procedural, Object-oriented, Func­

tional, Logic and Application programming, simple programs for the

Quicksort algorithm are used. Quicksort, invented by Hoare [31], is one

of the best sorting algorithms known. Although in the worst case its

execution time can be proportional to n**2, its average time is nlogn.

- 40 -

The essential idea of Quicksort is to partition the original set to be

sorted by rearranging it into two subsets: the first subset, all of

whose elements are less than some arbitrary "pivot" value chosen from

the set, and the second subset, all of whose elements are greater than

or equal to the pivot. Then the partitioning process is applied to the

two subsets, until each subset contains only one element. When all sub-

sets have been partitioned, the original set has been sorted.

To illustrate the Quicksort algorithm, Figure 3.3 shows the series

of comparisons and exchanges for an array of 16 elements. The elements ,

being compared at each stage are indicated and square bracket symbols

are used to delimit the subset. The sorting of a subset of the array

"v" involves the "pivot" - the first element of the set - plus two

pointers "i" and "j"; with "i = 1" and "j = 16" initially. Quicksort

compares "v[i] (= pivot" and "v[j])= pivot", exchanging "v[i}" and

"v [j]" when it finds an out of order pair. This comparison is repeated

until "i = j" at which point "v[i]" and the pivot are exchanged, insert-

ing the pivot element into its correct pOSition in the array. This is

clearly indicated by the elements shown in Figure 3.3. Having parti-

tioned the elements to be sorted, Quicksort can be reapplied to the two

subsets.

- 41 -

Stage Array

1 512 087 503 061 908 170 897 426 765 275 154 509 612 677 653 703
2 [512 087 703]
3 [512 087
4 [512 087

653]
677]

5 [512 087 612]
6 [512 087 509]
7 [512 503 509]
8 [512 061 509]
9 [512 908 509]

10 [512 509 908]
11 [512 509 154]
12 [512 170 154]
13 [512 897 154]
14 [512 154 897]
15 [512 154 275]
16 [512 426 275]
17 [512 765 275]
18 [512 275 765]
19 [275 512 765]
20 [275 087 503 061 509 170 154 426] [765 897 908 612 677 653 703]
21 [275 087 426] [765 897 703]
22 [275 087 154] [765 703 897]
23 [275 503 154] [765 703 653]
24 [275 154 503] [765 908 653]
25 [275 154 170] [765 653 908]
26 [275 061 170] [765 653 677]
27 [275 509 170] [765 612 677]
28 [275 170 509] [765 677]
29 [170 275 509] [677 765]
30 [170 087 154 061] [509 503 426] [677 703 653 612] [908 897]
31 [170 087 061] [509 503 426] [677 703 612] [908 897]
32 [170 154 061] [509 426] [677 612 703] [897 908]
33 [170 061] [426 509] [677 612 653]
34 [061 170] [426 503] [677 653] [897 908]
35 [061 087 154] [653 677] [897 908]
36 [653 612]
37 [612 653]
38 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Figure 3.3: Quicksort partition exchange sorting

In the example programs that follow in Chapters 4 and 5, Quicksort has

been programmed in a relatively simplistic way attempting only to match

the example languages to the structure of the algorithm. The array ini-

tialisation and input/output statements are usually omitted.

- 42 -

Using the above classification as a basis, the following two

chapters present an examination of the advantages and disadvantages for

program representation and execution of the major programming styles.

- 43 -

CHAPTER. 4 - ANALYSIS OF P1lOCED01lAL AND OlUECT-oJllEB'I'ED

PllOGRAMHIBG

This chapter analyses Procedural and Object-Oriented styles of pro­

gramming, identifying advantages and disadvantages.

4.1. PllOCEDURAL PROGRAMHIBG

Procedural programming is based on a "shared memory" data mechanism

and a "control driven" control mechanism. For the data mechanism, data

is communicated via shared memory cells and the basic action in pro­

cedural programming is assignment to memory. In addition, a cell is

accessible to a group of commands, any of which may take as many copies

as it requires or update the contents of a cell. For the control

mechanism, execution is "control driven" and implicitly sequential.

Explicit control structures are also provided for: unconditional (e.g.

GOTO) , conditional (e.g. IF, CASE), and repetitive (e.g. FOR, REPEAT,

WHILE) execution.

4.1.1. Conventional Languages

In conventional languages (e.g. PASCAL), besides the sequential

"control driven" control mechanism, there are procedure and function

CALLs, plus exception conditions such as ON in PL/I. These control

structures could also be assumed to be "control driven", but seem more

accurately to be "demand driven" and "pattern driven". respectively.

- 44 -

Although BASIC is perhaps the archetypal conventional language, PASCAL

will be briefly examined. Since PASCAL contains both iterative and pro­

cedure call control structures, it also serves to introduce the program­

ming of the Quicksort examples.

Figure 4.1 illustrates a conventional program in PASCAL based on a

recursive algorithm, probably the simplest description of Quicksort.

The heart of the program is the "sort" procedure, which partitions the

elements of the array "v" to be sorted. To do this it is passed the

indices "10" and "hi", indicating the range of elements to be parti­

tioned at this particular step. It chooses as the "pivot", " v [lo]".

The inner loop of the algorithm (i.e. the iterative "repeat-until"

statement), compares the elements and exchanges any pair that is out of

order. When this loop exits, the elements have been partitioned,

"pivot" is swapped with "v[i]", and the procedure recursively calls

"sort" twice to partition the two subsets.

- 45 -

program Quicksort

var
v: array[1 •• 16] of integer;

procedure sort(lo,hi: integer);

var
i,j:

pivot:
temp

begin

integer;
integer;
integer;

if (10 < hi)
begin

then

i:= 10;
j:= hi;
pivot:=
repeat

v[lo] ;

while (j > i) and (v[j] >= pivot) do j:= j - 1;
while (i < j) and (v[i] <= pivot) do i:= i + 1;
if (i < j) then (* exchange out of order pair *)

end;
end;

begin

until (i >= j);

begin

end;

temp:= v[i);
v[i):= v[j];
v[j):= temp;

(* move pivot to v[i] *)
v [10] : = v [i) ;
v[i) := pivot;
(* sort subsets *)
sort(lo, i-I);
sort(i + 1, hi);

sort(l, 16);

end.

Figure 4.1: Conventional (recursive) Program in PASCAL

Recursive algorithms are sometimes less efficient than the

equivalent iterative ones, often because of "demand driven" procedure

call overheads, but for Quicksort this is not a significant effect,

since the recursion is not in the innermost loop. As a contrast, Figure

4.2 shows a PASCAL program based on an iterative algorithm but kept pur-

posely close in structure to the previous example. The inner loop is

- 46 -

identical. In Figure 4.2, a stack is used to store the pairs of indices

"10" and "hi" of the subsets to be partitioned. Thus instead of calling

a procedure "sort" to partition a subset, the pair of indices are placed

on the stack. The outer loop repeatedly removes a pair of indices from

the stack and partitions the set. When the stack is empty the array "v"

has been sorted.

- 47 -

program Quicksort

var

v:
stack:

stackptr:
pivot:
10 ,hi:
i,j :
temp:

array [1 •• 16] of integer;
array [1 •• 20, 1 •• 2] of integer;
0 •• 20;
integer;
integer;
integer;
integer;

begin

end.

stackptr:= 1;
stack[stackptr,I]:= 1;
stack[stackptr,2]:= 16;
repeat

10:= stack[stackptr,I];
hi:= stack[stackptr,2];
stackptr:= stackptr - 1;
if (10 < hi) then
begin

end;

i:= 10;
j:= hi;
pivot:= v[lo];
repeat

while (j) i) and (v[j])= pivot) do j:= j - 1;
while (i < j) and (v[i) <= pivot) do i:= i + 1;
if (i < j) then (* exchange out of order pairs *)
begin

end;

temp:= v[i);
v[i):= v[j);
v [j) : = temp;

until (i)= j);
(* move pivot to v[i) *)
v [10) : = v [i) ;
v[i) := pivot;
(* sort subsets *)
stackptr:= stackptr + 1;
stack[stackptr,I):= 10;
stack[stackptr,2):= i-I;
stackptr:= stackptr + 1;
stack[stackptr,I):= i + 1;
stack[stackptr,2):= hi;

until stackptr < 1;

Figure 4.2: Conventional (iterative) Program in PASCAL

- 48 -

Two of the principal concepts of the I f contro low model, namely

"shared memory" communication of data and sequential "control driven"

execution, are reflected in both programming examples examined. In both

examples, the partitioning of the numbers is performed by rewriting the

array. (An alternative strategy used in many of the programming

languages, to be discussed, is to create two new arrays.) In addition,

in the example in Figure 4.1, the two calls to "sort" clearly could be

performed concurrently if parallel control driven structures were sup-

ported. Although almost no parallel control structures are found in

conventional languages such extensions are found in the follOwing pro-

cedural classes of languages examined.

4.1.2. Concurrent Languages

In concurrent languages (e.g. MODULA-2 and OCCAM), as well as the

sequential "control driven" structures, there are parallel processes and

structures to handle problems of process communication and synchronisa-

tion. In concurrent (shared memory) languages, communication is via the

"shared memory" data mechanism, concurrent access to which is synchron-

ised by "control driven" monitors (in MODULA-2) that guarantee mutual

exclusion to accessing processes. In addition, MODULA-2 also provides a

primitive "pattern driven" control mechanism, for synchronisation, in

the form of a signal.

In contrast, in concurrent (message passing) languages, a "message

passing" data mechanism is used to handle synchronised communication

between parallel processes with the "shared memory" mechanism being used

for communication wi thin a process. In OCCAM, as well as the tradi-

tional control structures (e.g. IF, WHILE, FOR) there are also three

- 49 -

"control driven" structures, for sequential "SEQ", parallel "PAR" and ,
alternative "ALT" process execution.

Shared Memory

In shared memory communication, the synchronisation mechanism pro­

vides mutual exclusion on single bytes, words, or larger data struc-

tures. Examples of concurrent languages with shared memory communica-

tion include: MODULA-2, Concurrent PASCAL, and Path PASCAL. MODULA-2

will be examined.

MODULA-2 [63], one of the many languages designed by Wirth, extends

Pascal with facilities for program structuring and concurrency. In

MODULA-2, each program is declared as a module:

MODULE name;
<declarations>
BEGIN
<statements>
END name.

which encapsulates all of the data structures and procedures used by the

program, and controls their usage by other programs.

Concurrency is based on: processes, shared variables, signals and

monitors. Execution of a concurrent process is started by using the

system call "StartProcess (P,n)" where "P" is the procedure to be exe-

cuted and "n" is the size in words of the work space the process is to

be allocated. Communication amongst processes occurs in two distinct

ways, namely via common variables and so-called signals.

Using shared memory (i.e. common variables) to transfer data among

processes raises the problem of asynchronous access to this data. The

MODULA-2 solution is a "monitor"; a module which guarantees mutual

exclusion of accessing processes and thereby ensures integrity of its

- 50 -

local data. A module is designated to be a monitor by specifying a

"[priority]" in its heading. Signals (pattern driven) serve to syn-

chronise processes, but do not carry data. Only two operations are

applicable to signals: a process may "SEND" a signal and it may "WAIT"

for a signal from some other process. Execution of a WAIT suspends the

process. Execution of a SEND reactivates at most one process. These

concurrency mechanisms are illustrated by Figure 4.3.

Quicksort in MODULA-2 is perhaps best coded as a sequential recur­

si ve algorithm as in the PASCAL example in Figure 4.1. However, to

illustrate the concurrency features of MODULA-2, an attempt has been

made to code it using processes, signals and monitors. The example uses

two modules called "Quicksort" and "monitor". "Quicksort" uses the pro­

cess "sort" to recursively partition the array "v", and it uses the mon­

itor "monitor[1]" to control the passing of the indices of the subsets

(via a stack) to the sort processes. The algorithm thus combines the

features of the recursive and iterative PASCAL examples.

Execution is started by Quicksort placing the indices "(1,16)" on

the stack, and calling StartProcess to initiate "sort". The process

sort partitions the array, places the limit of the two subse ts on the

stack, and then calls StartProcess twice. These concurrent "sort"

processes may access the stack in any order, but only one may do so at a

time, since the stack is within a monitor. Termination of Quicksort is

controlled by the SIGNAL "finished" and the "count" of the processes

executing. For each process started, "count" is incremented and when a

"sort" finishes "count" is decremented, and if "count" equals zero, the

signal "finished" is sent to the main program, so it may terminate. In

addition, notice at the end of "sort" the signal "forever" - this is

used to keep the process from being deleted.

- 51 -

MODULE Quicksort;
FROM ProcessSchedu1er IMPORT INITSIGNAL,SIGNAL,WAIT,SEND,STARTPROCESS,

SENDDOWN;
FROM SYSTEM IMPORT ADDRESS;
FROM Storage IMPORT ALLOCATE, DEALLOCATE;
FROM Input IMPORT ReadInt;
VAR

v
finished:
count
wsp

ARRAY [1 •• 16] OF INTEGER;
SIGNAL;
INTEGER;

(* signals a process has finished *)
(* count of processes executed *)

ADDRESS;
i INTEGER;
num INTEGER;

PROCEDURE sort;
VAR

10,hi
i,j
pivot
temp
wspl
wsp2
forever

BEGIN

INTEGER;
INTEGER;
INTEGER;
INTEGER;
ADDRESS;
ADDRESS;
SIGNAL;

pop(10, hi); (* get limits of next subset *)

IF (10 < hi)
THEN

i:= 10;
j:= hi;
pivot:= v[lo];
REPEAT

WHILE (j) i) AND
WHILE (i < j) AND
IF (i < j) THEN

END;
UNTIL (i)= j);

(v[j])= pivot) DO j:= j -
(v[i] <= pivot) DO i:= i +

(* exchange out of order
temp:= v[i];
v[i]:= v[j);
v [j] : = temp;

(* move pivot to v[i] *)
v[lo]:= v[i1;

END;

v[i] := pivot;
(* store limits of subsets to be sorted *)
push(10, i-I);
push(i+l, hi);
count:= count + 2;
ALLOCATE (wsp 1, 200);
STARTPROCESS(sort,wspl,200);
ALLOCATE (wsp 2, 200);
STARTPROCESS(sort,wsp2,200);

count :- count - 1;
IF count - 0 THEN SEND(finished) ELSE

INITSIGNAL(forever);
WAIT(forever);

1 END;
1 END;
pair *)

END;
END sort;

MODULE monitor[l];

- 52 -

IMPORT SIGNAL,SEND,SENDDOWN,INITSIGNAL,WAIT;
EXPORT push, pop;
CONST N 16;
VAR

stack ARRAY [l •• N] OF ARRAY [1 •• 2] OF INTEGER;
stackptr: [O •• N];
NotEmpty, NotFull : SIGNAL;

PROCEDURE push (10, hi: INTEGER);
BEGIN

IF stackptr = N THEN WAIT(NotFull) END;
stackptr := stackptr + 1;
stack [stackptr, 1] := 10;
stack [stackptr, 2] .- hi;
SENDDOWN(NotEmpty);

END push;

PROCEDURE pop (VAR 10, hi: INTEGER);
BEGIN

10 := stack [stackptr,
hi := stack [stackptr,
stackptr := stackptr -
SEND(NotFull) ;

END pop;
BEGIN

stackptr:= 0;
INITSIGNAL(NotFull);
INITSIGNAL(NotEmpty);

END monitor;

BEGIN
(* initialisation *)
INITSIGNAL(finished);
FOR i:= 1 TO 16 DO

ReadInt(num) ;
v[i]:= num;

END;
push(1, 16);

1] ;
2];
l' ,

count:= 1;
ALLOCATE(wsp,200);
STARTPROCESS(sort,wsp,200);
WAIT(finished) ;

END Quicksort.

Figure 4.3: Concurrent (shared memory) Program in MODULA-2

It could be claimed that this form of concurrency (using "shared memory"

data mechanism) is the most natural extension to conventional languages.

In conventional languages data is communicated via variables; concurrent

- 53 -

languages (such as MODULA-2) use the same mechanism, namely shared

memory. In contrast, the next class of languages uses a "message pass­

ing" data mechanism for communicating data amongst concurrent state­

ments.

Message Passing

In message passing communication, data is passed directly, using a

channel or queue from the transmitting process to the receiving process,

which stores the data locally in its private store. Examples of these

types of programming languages include CSP [32) and OCCAM [49), as well

as GYPSY, PARLANCE and PLITS [48). The OCCAM programming language will

be examined.

OCCAM [49), originating from Hoare's CSP, is based on processes

which may be executed concurrently and may communicate using channels.

The most direct implementation of an OCCAM program is a network of

microcomputers each executing a process concurrently. However, the same

program could also be implemented by a single time-shared processor.

A process - the fundamental working element in OCCAM - is a single

statement, group of statements, or group of processes. Programs are

constructed from three primitive processes: assignment, output and

input. Assignment "x:=y" sets the value of a variable to an expression.

Output "c!y" is used to output a value of an expression "y" to a channel

"c". Input "c?x" sets the value of a variable "x" to a value input from

a channel "c".

A channel is an unbuffered structure and allows information to pass

in one direction only, synchronising the transfer of information. Thus

a channel behaves as a read-only element to a receiving process and a

- 54 -

write-only element to the transmitting processing. The transmitter can

only write when the channel is empty, While the receiver can only read

when the channel is full.

To control the order of execution of such processes OCCAM provides

three "control driven" mechanisms: sequential (SEQ), parallel (PAR), and

alternate (ALT) , as well as the traditional IF and WHILE constructs.

SEQ and PAR precede a list of processes, defining sequential and paral-

leI execution, respectively. ALT causes exactly one of a list of

processes to be executed, and will wait until at least one of the

"guarding" conditions is true.

These control mechanisms are illustrated by the Quicksort example

in Figure 4.4. This program consists of two processes: "sort", which

partitions the array of numbers to be sorted and merges the sorted sub-

sets; and "quicksort", which builds a tree of sort processes to perform

the sorting:

in out
I i'
V I

I
I SORT
I I

I l' I l'

------ I
I
I I

11 V I 01

I
I SORT I
I process11
I I

I tit
V I V I

3 4

I ------
I

I I
i2 V· I 02

I
I SORT I
Iprocess21
I I

I tit
V I V I

5 6

- 55 -

The highest level sort process inputs the array of numbers to be sorted

on "CHAN in". It partitions the array, sending numbers less than the

pivot to sort process "1", and numbers greater than the pivot to sort

process "2". Having partitioned the array, the highest level sort pro­

cess merges the sorted subsets that it receives from processes "1" and

"2", and outputs the result on "CHAN out". Subsidiary sort processes

operate in a similar way, (sort processes "1" and "2" then become the

highest level sort processes, and so forth). Each array of numbers to

be sorted is terminated by "-1".

A sort process consists of six channels: "vin" - the numbers to be

sorted; "lout" - the numbers to be sorted less than the pivot; "hout" -

the numbers to be sorted higher than the pivot; "lin" - the sorted

numbers less than the pivot; "hin" - the sorted numbers higher than the

pivot, and "vout" - the sorted numbers resulting from the merge of

"lin", "pivot", and "hin".

Since OCCAM's input/output only reads individual characters, to

simplify the example, letters were included in the set to provide for 15

entities to be sorted. The set to be sorted here can be, for example:

7 3 1 0 2 5 4 6 B 9 8 A D C E

so as to guarantee a well balanced tree.

only work for such arrays, because

(compile-time generated) in OCCAM.

In fact, this Quicksort will

processes must be statically

- 56 -

DEF n ... 15:
DEF term = -1:

PROC sort(CHAN vin,vout,lin,lout,hin,hout)
VAR pivot, x:
SEQ

vin?pivot
IF
pivot (> term

SEQ
vin?x
WHILE x (> term

SEQ

PAR

IF
x (pivot

lout!x
x >= pivot

hout!x
vin?x

lout! term
hout! term

lin?x
WHILE x (> term

SEQ
vout!x
lin?x

vout! pivot
hin?x
WHILE x <> term

SEQ
vout!x
hin?x

vout! term:

PROC quicksort(CHAN in,out)
CHAN i[(4 * n) + 5], 0[(4 * n) + 5]:
SEQ

str.to.screen("QUICKSORT*C")
PAR

sort(in,out,0[1],i[I],0[2],i[2])
PAR c = [1 FOR (2*n) + 1]

sor t (i [c] ,0 [c] ,0 [(2 *c)+l] , i [{2*c)+l] ,0 [{2*c)+2] , i [(2*c)+2)):

VAR input en] :
CHAN in .out :
SEQ

SEQ i = [0 FOR n]
SEQ

keyboard? input[i]
screen! input[i]

- 57 -

str .to .screen("*CDone Input*C")
PAR

SEQ
SEQ i = [0 FOR n]

in! input [i]
in! -1

quicksort(in,screen)

Figure 4.4: Concurrent (message passing) Program in OCCAM

OCCAM has two important, and interesting, features that should be

noted. Firstly, it is a concurrent language specifically designed to

facilitate the programming of a new generation of (networks of) micro-

computers [10]; an essential requirement for exploiting VLSI. Secondly,

unlike most 0 ther procedural languages, it has a formal basis which

opens up the potential of formal reasoning and transformation as design

techniques.

In summary, the main features of procedural programming related to

the "shared memory" data mechanism are: shared memory cells, updatable

cells, and assignment as the basic action; and related to the "control

driven" control mechanism are: implicit sequential execution, plus

explicit sequential and parallel control structures. Advantages of the

"shared memory" data mechanisms include: its efficiency for supporting

the sharing of data structures, the ability to take an unspecified

number of copies of a cell's contents, and the updating of the contents.

In fac t, these features can be viewed as a simple scheme for memory

management. A major disadvantage with this data mechanism, as discussed

- 58 -

below, is synchronising access to a memory cell. An advantage of the

"control driven" control mechanism for execution is that flows of data

and control in a program are separate, and hence can be made identical

or distinct. The related disadvantage of this control mechanism is that

flows of control must be explicitly specified by the programmer.

Due to these data and control mechanisms, procedural programming is

very flexible and most algorithms can be expressed with reasonable effi­

ciency. But this flexibility also presents disadvantages: ensuring that

the flow of control correctly synchronises the use of memory cells, and

the difficul ty, for modular programming, of encapsulating information

due to the general accessibility of cells. Parallelism also presents

major problems for the unconstrained use of the "shared memory" data

mechanism, and is really only overcome by the introduction of "message

passing" •

Next, object-oriented programming is examined, which may be viewed

as attempting to generalise the concurrent languages concepts of moni­

tors and message passing.

4.2. OBJECT-oRIENTED PROGRAMMING

Object-oriented programming is based on a "message passing" data

mechanism and a "pattern driven" control mechanism. For the data

mechanism, data is communicated between the active objects (cf.

processes) by "message passing", and wi thin a process, by the use of

"shared memory". These variables represent the state of an object, and

in SMALLTALK, for example, there are six different kinds of variables.

For the control mechanism, execution of objects is viewed as "pattern

driven", but, in SMALLTALK, execution within an object is "control

- S9 -

driven" and implicitly sequential. Each method (cf. entry point) within

an object is identified by a message pattern consisting of a selector

and names for the arguments. It is this pattern that is matched with

that of the message. The remainder of the message is executed sequen­

tially. As well as the implicit "control driven" execution of a method,

there are explicit control structures that provide conditional "if True"

or "if False", and iterative "whileTrue" or "whileFalse" execution.

SMALLTALK [4,33] illustrates the current state of object-oriented

programming, and an examination of the format of classes, which is the

natural unit of modularity in the language, follows. A class consists

of three basic types of information: class name, variable declarations,

and the "methods" describing the actions when a message arrives. Six

kinds of variables may be used [33]: the instance variables, unique to

each instance of the class; the pseudo-variable "self"; the actual mes­

sage arguments; temporary variables, created when a message is received;

class variables , shared by all instances of the class; and global vari­

ables.

The methods of a class specify what happens when its instances

receive a particular message. These actions consist of sending other

messages, assigning values to variables and returning a value to the

original message. A method has three parts: a message pattern which is

similar to a label, some temporary variable names, and expressions to

process the received message (these three parts of a method are

separated by vertical bars "I ") . The message pattern consists of a

selector and names for the arguments. Expressions are separated by dots

".", and the last one may be preceded by a vertical arrow indicating the

value to be returned. These expressions contain conventional expres­

sions, assignment statements, as well as message-sending expressions

- 60 -

that serve a similar role to procedure calls.

A message-sending expression defines the receiver (cf. the pro­

cedure), the selector (cf. the entry point), and the arguments of the

message. There are basically three types of message: firstly "unary"

consisting of a single selector and no arguments, secondly "binary" con­

sisting of a single selector and a single argument, and lastly "keyword"

where an "identifier:" is prefixed to each argument. For example:

Message

unary

binary

keyword

Example

name INC

name + 1

name s 1: 1 s 2: "a"

Messages are evaluated left to right and, like with conventional expres­

sions, parenthesis can be used to change the order of evaluation.

The two control structures in SMALLTALK described so far are the

sequential "control driven" execution of expressions in a method and the

"pattern driven" sending of messages that invoke other methods, that

eventually return values. All other control structures are based on

objects called blocks, each containing a sequence of expressions. Exe­

cution of blocks may themselves be controlled by conditional selectors

"if True" or "if False" , and by conditional iteration "whi I eTrue " or

"whileFalse". Examples of the use of these can be seen in the Quicksort

program, which follows.

Figure 4.5 shows a (restricted form of) class template [33] for

sort. It contains a single instance variable called "result", and has a

single method with selector "array". Sort is activated by a "pattern

driven" keyword message containing two arguments: the array to be sorted

and its size. These arguments are referred to as "v" and "n". Next,

- 61 -

the declaration of the temporary variables "low", "high", "i", "j", "k",

and "pivot" is seen. The array "v" will be partitioned into "low" and

"h" hIt hil """ d "k" "d" d / 19 , W e J an provl e ln exes counters for these two arrays.

Sort starts by initialising these temporary variables, for instance set-

ting "pivot" to the first element "at:O" of "v".

Next, array "v" is partitioned using the conditional iteration

"[•••] whileTrue [•••]" which has the form of a WHILE-DO. Inside the

iteration, the conditional selector IF-THEN-ELSE extracts elements from

"v", inserting them in the array "low" if less than the "pivot", or into

"high" if greater than the pivot. Having partitioned the array "v",

sort is invoked (if necessary) for "low" and "high". Finally, the con-

tents of "low", "pivot" and "high" are stored into the array "result"

which is returned to the invoking message. Since "result" is declared

as an instance variable, ra ther than as temporary, its value will be

retained to the next call, which is illustrative but not particularly

sensible in this example.

class Da.e
sort

instance variable
result

.ethods

- 62 -

array: v size: n I low high i j k pivot
"initialise temporary variables"
j (- k (- O.
pivot (- vat: O.
i (- 1.
"partition array v"

[i (n] whileTrue: [[(vat: i) (pivot]
if True: [low at: j put:(vat: i).

j (- j +1]
if False: [high at: k put:(v at: i).

k (- k + 1]
i (- i + 1].

"sort both subsets if necessary"
[j > 1] if True: [low (- sort new array: low size: j].
[k > 1] if True: [high (- sort new array: high size: k].
"store sorted subsets into result"
result (- low.
result at: j put: pivot.
i (- 0
k timesRepeat : [result at: (i + j + 1) put: (high at: i) i (- i + 1].
"return result array"
~ result.

Figure 4.5: Object-Oriented Program in SMALLTALK

SIMULA [12] was the first language to explore object-oriented pro-

gramming for structuring information. It grafted the notion of objects

onto an ALGOL-like base language, and provided for sharing amongst

objects by organising them into classes. This work has been extended by

incorporating message-passing in a number of languages, most notably the

SMALLTALK series of languages. An important aspect of SMALLTALK is that

it provides a "total" programming system unifying features, normally

found in operating sys tems, wi th those of programming languages. In

addition, object-oriented languages may be seen as attempting to combine

concepts from procedural programming and functional programming.

- 63 -

In summary, the main features of object-oriented programming are:

the use of active objects that retain state, the sharing of data between

objects of a class using "shared memory", and the communication and exe­

cution of objects by "message passing". One of the major advantages of

object-oriented programming and its associated concepts of class and

instance is that it encourages modularity. Another advantage is that

objects can act as templates for different types of data, and a further

one, provided by the different types of "variables" as found in

SMALLTALK, is that data can be shared by objects (of the same class) or

can be only accessible wi thin a class. A possible disadvantage of

object-oriented programming is the "pattern driven" execution based on

the arrival of messages, which is, arguably, harder to understand for

the traditional programmer than either "control driven" execution, or

"demand driven" execution associated wi th procedure calls. A final

specific criticism of SMALLTALK is that the control mechanism is res­

tricted to sequential execution.

In object-oriented and procedural programming, a computation is

performed by executing a series of actions in a precisely specified

order. Each statement in these programming styles represents only one

step in an algorithm. This implies that correctness of an individual

statement cannot be determined by solely examining the statement.

Instead, the entire algorithm in which the statement occurs must be exe­

cuted to determine if the statement is correct. In functional and logic

programming, to be examined below, frequently it can be determined

whether a statement is true by examining that statement only. The rea­

son is that functional programming is based on expressions and logic

programming is based on relations.

- 64 -

CBAPrEB. 5 - AKALYSIS OF FDRCTIOIIAL AIm LOGIC PROGRAHHDiG

This chapter analyses Functional and Logic styles of programming.

identifying advantages and disadvantages.

5.1. FDRCTIONAL PllOGllAHKIBG

There has been a surge of interest in functional programming fol­

lowing the publication of John Backus' 1977 ACM Turing Award lecture

[9]. After all, to quote Turner [56]. "it is not every day that the

inventor of FORTRAN gets up and says that he now thinks that the inven­

tion of the assignment statement was a serious error!" The language most

people first think of when functional programming is mentioned is LISP.

However LISP is a functional language only if RPLACA. RPLACD. and all

other functions with side-effects are avoided; this subset of the

language is often called "Pure" LISP. Unfortunately. a number of people

find the syntax of LISP clumsy.

Functional programming is based on three different pairings of data

and control mechanisms, as shown in Figure 3.2. (These, in fac t,

correspond to the programming models: data flow. string reduction and

graph reduction [50].) The essential concepts shared by all categories

of functional languages are: expressions, function applications and

recursive data structures. as well as the absence of: sequentiality, the

assignment statement, and side-effects. The two important sub-classes

of functional languages. identified in Chapter 3, are data flow (i.e.

single-assignment) languages and applicative languages.

- 65 -

S.I.I. Data Flow Languages

Recall, in the data flow programming model, a statement outputting

(i.e. producing) a resul t, passes a separate copy by "message passing"

to each statement wishing to input (i.e. consume) the value. There is

no fundamental concept of variables - a "shared memory" data mechanism -

in a data flow program; data is passed directly from one statement to

another. Execution of a statement is "data driven", with a statement

being executed as soon as all its input values are available. State­

ments in data flow languages are similar to statements in conventional

languages, but follow a single assignment rule: a name may appear on the

left side of an assignment only once within the area of the program in

which it is active.

In the data flow languages, the data mechanism is "message pass­

ing", and the control mechanism is "data driven". For the data mechan­

ism, an important property is the copying semantics, which means that

any operation on a data structure always creates a new structure (it is

most unusual to find any "shared memory" data mechanism in data flow

languages) • For the control mechanism, although execution is "data

driven", statements in data flow language are superficially similar to

statements in conventional languages, as can be seen from Figure 5.l.

Explicit control struc tures are provided for conditional expressions

(e.g. if-then-else), for iterative expressions (while-do, for-do) and

for function calls.

The most important copying semantics of data flow languages means

that, for instance, an array is not modified by a subscripted assignment

statement Uarray[index] :=value", but is processed by an operator which

- 66 -

creates a new array. In the ID language this operator appears as:

new_array<- array + [index]value

while in the VAL language it is written:

new_array:= array[index:value]

These single assignment statements are adequate for simple assignment of

the form:

name:= expression

and even for conditional statements, as long as they are restricted to

conditional expressions:

name:= if expression then expression

else expression

Where the single assignment rule might appear to cause trouble is for

iterative statements which imply the updating of variables.

In data flow iteration, since there are no side-effects, the only

state information in an iteration is the binding of loop variables, and

the only activity that can occur is redefinition of these variables. An

iteration therefore consists of [1]:

1. the definition of the initial values of the loop variables,

2. a termination test for the iteration,

3. the definitions of the new values of the loop variables, and

- 67 -

4. the results to be returned when the loop terminates.

As an illustration, an iteration to compute the ubiquitous factorial of

"n" could be written in ID as:

answer (- (initial j (- n; k (- 1;
while j (> 0 do

return k);

new j (- j - 1;
new k (- k * j;

The last control structure is functions. To make functions as powerful

as procedures in conventional languages (which can, in addition, exploit

side-effects), data flow languages allow functions to return multiple

values, or arrays, or even both.

For the Quicksort example, an examination of ID [5) designed by

Arvind and Gostelow at the University of California at Irvine, was

chosen. Figure 5.1 shows the ID program for Quicksort, based on the

recursive procedure sort. This procedure consists of two main state-

ments, the first "(low,j ••• " which partitions the array "v" into the

subsets "low" and "high"; and the second "return ••• " that takes the two

sorted subsets and the pivot "v[l)", creates a single array "t", and

returns this sorted array. The first statement is iterative with the

loop variables "low" and "high" which are arrays, "j" and "k" which are

indexes/ counts for the two arrays, and "pivot". Initially, the arrays

are set undefined, the indexes are set to zero, and the pivot becomes

"v[l)".

The body of the iteration is the for-statement. It compares each

I " [)" i h' l' h element;n the array "low" e ement v i aga nst t e p~vot, p ac~ng t e ~

and incrementing" j", if less than the pivot, else placing it in "high"

and incrementing "k". When all elements of "v" have been partitioned,

the arrays "low" and "high" are themselves sorted if they contain more

- 68 -

than one element. The iteration then returns the sorted arrays "low"

and "high", and "J'" the number of I ."" e ements 1n low, which is used to

merge the two arrays.

Although not obvious from the iteration syntax, each loop variable

must be redefined on each iteration. Thus the conditional statement

would be more clearly expressed as:

(new low[j+l], new j, new high[k+l], new k, new pivot) (-

(if v[i] (pivot then v[i], j+l, high[k+l], k, pivot
else low[j+l], j, v[i], k+l, pivot)

reflecting the data driven nature of the execution.

The result of the iterative statement is two sorted arrays, but

before these can be returned by the procedure sort, they must be con-

catenated to form a single sorted array. This task is performed by the

return statement using an iterative expression. It initially sets the

array "t" to the contents of "low" with the pivot "v[l]", appended on

the end (i.e. the j+1 element). Nex t, each element of "high" is

appended to "t". Finally, notice in Figure 5.1 that two ID array opera-

tion formats are used. The normal assignment format is "new_array (-

array + [index] value"; however if the statement is a redefinition then

the format is abbreviated to "new array[index] (- value".

- 69 -

procedure sort (v,n)
(low, j ,high (­

(initial low (- ~ j (- OJ
high (- A k (- 0;
pivot (- v[l)

for i from 2 to n do
(if v[i) (pivot

then new low[j+l) (- v[i)j
new j (- j+l

else new high[k+l) (- v[i)j
new k (- k+l)

return (if j)l then sort(low,j) else
j,

low),

(if k)l then sort(high,k) else high)

return (initial t (- low+[j+l)v[l)
for i from 1 to n-j-l do

)

new t (- t+[i+j+l)high[i)
return t»

Figure 5.1: Data Flow Program in ID

Whereas ID, VAL and VALID were developed for programming data flow com-

puters, LUCID (and FP discussed below) was developed for its attractive

mathematical properties and its amenability to program verification, but

it is nevertheless a suitable language for data flow computation.

The advantages of data flow languages like ID and VAL are that

their single assignment syntax is similar to conventional languages,

that parallelism is implicitly expressed, and they are natural for pro-

gramming data flow computers. Programming languages for such computers

must satisfy two criteria: it must be possible to deduce the data depen-

dencies of the program operations; and the sequencing constraints must

always be exactly the same as the data dependencies, so that the activa-

tion of statements can be based simply on the availability of data.

- 70 -

5.1.2. Applicative Languages

Here a distinction is made between two subsidiary classes of appli­

cative languages, which have been termed "function-level" and "pattern­

matching". Next, the two classes of applicative languages are examined.

In the applicative (function-level) language, the data mechanism is

"message passing" and the control mechanism is "demand driven". For the

data mechanism, programs deal with structured data, and do not name

their arguments. For the control mechanism, the role of control struc-

tures is handled by "combining operators" that directly manipulate their

arguments. For example, FP is based on the use of so-called functional

forms, namely operators such as Composition II II

• • Insert "I", and

ApplytoAlI "@". In addition. there are operators providing conditional

expressions "(p -> f;g):x" and iterative expressions "(while p f):x".

In applicative (pattern-matching) languages the data mechanism is

"shared memory" and the control mechanism is "demand driven". For the

data mechanism there are four types of argument: number. string, list.

and function. For the control mechanism there are "demand driven"

operators. such as "CONS", "Concatenate", and "Subrange"; conditional

expressions. in which a boolean guard is written in front of an expres-

sion; and the basic concept of function application. Although the exe-

cution semantics is usually referred to as "pattern-matching", the con-

trol mechanism has been classified as "demand driven". so as to distin-

guish the underlying reduction semantics from the semantics of logic and

object-oriented programming.

- 71 -

Function-Level

Function-level languages denote a class of functional programming

where the role of control structures is handled by "combining operators"

that manipulate functions directly, without ever appearing to explicitly

manipulate data. These functional programs deal with structured data,

are often non-repetitive and non-recursive, are hierarchically struc-

tured and do not name their arguments.

The best known example of a function-level app1icative language is

Backus' FP [9) which has superficial similarities to APL. FP is founded

on the use of a fixed set of combining forms called functional forms.

The most important functional forms are Composition ".", Insert "/", and

App1ytoAl1 "@" that combine existing functions to form new ones. If

"f:x" is written for the result of applying "f" to the object "x", then

"f.g" is the function obtained by applying first "g" and then "f" to the

argument:

(f.g): <xl,x2, ••• ,xn> is f: (g: <xl,x2, ••• ,xn»

It/fIt is the function obtained by inserting "f" into the arguments;

/f: <xl,x2, ••• ,xn> is f:<xl,f:<x2, ••• ,f:<xn» ••• >

and "@f" is the function obtained by applying "f" to every member of the

argument:

@f ·<xlx2xn>1.·s<f:xl,f:x2, ••• ,f:xn) . " ... ,

Functional forms plus simple definitions are the only means of building

new functions from existing ones. (In addition, partial results cannot

be given a name.) All the functions of FP are of one type: they map

- 72 -

objects into objects, and always take a single arguments.

Figure 5.2 shows the FP version of Quicksort (produced by a col­

league, D. Mundy) consisting of five definitions. Briefly, "sort" par­

ti tions the array; "merge" takes three lists and combines them; "strip"

removes nulls from a list; "null" tests for null elements; and "It" is a

"less than" conditional operator.

Definition "sort" is a conditional expression with the following

meaning:

(p -) f;g):x is if (p:x)= true then f:x
if (p:x)- false then g:x

The initial part of sort "nu11-)id" tests for an empty list and returns

it. The latter part "merge ••• " performs the partition and divides into

five parts. Working from right to left. the construction: "[id.i)"

extracts the pivot element:

[id.l]:<xl.x2 •••• ,xn) is «xl,x2, ••• ,xn).xl)

Next. distribute right "distr" generates a new list where a copy of the

pivot is paired with each element:

distr: «xl,x2, ••• ,xn),xl) is «xl.xl).<x2,xl), ••• ,<nn,xl»

Then. the comparison operators ''It'', "eq", and "gt" are applied to the

three copies of the list in parallel:

[@(•••] <) is <It: <xl,xl), ••• ,lt: <xn,xl»,
<eq: <xl,xl), ••• ,eq: <xn,xl»,
<gt: <xl,xl), ••• ,gt: <xn,xl»

to produce three lists containing. respectively. all the values less

than, equal, and greater than the pivot.

- 73 -

Definition "strip" is then applied, which the uses definition
"null" to test for empty sequences, and removes them from the lists.
Next, the construction "[sort •••]" is used to sort the partitioned sub-

sets. And finally "merge" is applied to concatenate the sorted lists.

def sort null -) id;
merge.[sort.l, 2, sort.3].@strip.[@(lt -) 1; []),

@(eq -) 1; []),

def merge = \apndr .apndl. [1, \ apndr.apndl. [2,

def strip = I(null. 1 -) 2; apndl).apndr.[id,

def null = eq. [[] , id] ;

def It = ge -) '0; , 1;

sort (5 2 1 7 9 4 3 6 10 8 11 12 13 14 15 16)

Notation: @

\
I ,

apply-to-all
composition
insert left
insert right
constant

@(gt -) 1; [])].distr.[id,l];

3]];

[]] ;

Figure 5.2: Applicative (function-level) Program in FP

The APL-like programming style of function-level applicative

languages is clearly very concise and powerful. However, the fact that

functions do not name their arguments implies that function level pro-

grams are sometimes difficult to understand. In contrast, in the second

category of applicative languages, called "pattern-matching", naming of

arguments by functions is an essential ingredient.

Pattern-Hatching

This category of applicative programming languages denotes a class

of languages whose functions use "pattern-matching" in the binding of

formal parameters and actual parameters. (Recall. this control

- 74 -

mechanism has been classified as "demand driven" so as to distinguish

the underlying reduction semantics from the semantics of logic.) Typical

of the many interesting pattern-matching languages is Turner's SASL

[55]. The SASL system is interactive and includes built-in commands

for: editing programs, and saving them in (and retrieving them from)

files, etc. In addition the user can ask to have expressions evaluated

(in the environment established by the program) and the result output at

the te rminal.

A SASL program is a collection of equations by means of which the

user attaches names to various objects. There are four types of object:

numbers, strings enclosed in double quotes, lists, and functions.

Numbers and strings have the normal properties one could expect, with

the usual kinds of operations defined on them. Lists are written using

round brackets and commas:

number (1,2,3,4,5,6,7,8,9,10)

and elements of a list are accessed by indexing. For example the expres-

sion "number 3" would here give the result "3".

I . 1 d "." Important ist operators ~nc u e . (corresponding to the LISP

function "CONS") which adds a new element at the front:

0:(1,2,3,4,5,6,7,8,9,10) gives (0,1,2,3,4,5,6,7,8,9,10)

"++", which concatenates two lists:

(1,2,3,4,5) ++ (6,7,8,9,10) gives (1,2,3,4,5,6,7,8,9,10)

" __ ", which forms the difference of two lists:

(1 2 3 4 5 6 7 8 9 10) -- (1 3,5,7,9) gives (2,4,6,8,10)
ttl,t"" ,

- 75 -

and lastly" •• ", which denotes the list of numbers , such as:

(1 •• 10) gives (1,2,3,4,5,6,7,8,9,10)

In addition, SASL supports infinite struc tures. For example "(1 ••)" is

the list of all natural numbers starting at 1, and the equation "x=1 :x"

defines "x" to be the infinite list all of whose elements are "1".

Functions are denoted by writing down one or more equations with

the name of the function (followed by some formal parameters) on the

left and a value for the function on the right. For instance the obli­

gatory factorial is expressed as:

fac 0 1

fac n n > 0 -> n * fac{n - 1)

The order in which equations are written has no logical significance.

Where order is important a boolean "guard", such as "n > 0" above, is

placed in front of an expression. More sophisticated forms of pattern-

matching involve the use of list structures in formal parameter posi-

tions as illustrated in the Quicksort example.

The SASL program in Figure 5.3 consists of four equations, two per-

forming the sort and two handling the subsidiary partitioning operation.

Sort differentiates between two types of parameter, the empty list "0"

and non-empty lists "(a :x)". For an empty list, the first equation

returns the empty list. For a non-empty list, the second equation uses

the CONS operation in the formal parameter list "(a:x)" to give the name

"a" to the first element of the list and "x" to the remainder of the

list. The body of this equation consists of two parts, the subsidiary

" () ()" i' th list "x" us~ng definition m,n - split a x which part t~ons e ~

- 76 -

"a" as the pivot, then calls sort to partition the two subsidiary lists

"m" and "n", and lastly concatenates the sorted lists. The meaning of

"sort m ++ a : sort n" is

concatenate (sort(m), cons(a,sort(n»

Next, the two split functions will be examined. The split dif-

ferentiates between two types of "x" parameters, the empty list and

non-empty lists. The empty list occurs with a one element array, in

which case the list corresponding to "m" and "n" in the call are

returned. For non-empty lists, the second parameter CONS is used in

calling the head "b" and the remainder "x". Split then compares the

extracted element "b" against the pivot "a": if less than, then "b" is

inserted into the list "m" using the CONS operator 11.11 . , else fib" is

inserted into "n". Then in both cases split is recursively called to

extract the next element of the list "x". Notice firstly that the body

of the second split operates like an IF-THEN-ELSE, and secondly there

are no side-effects - the names "a", "b" etc. are formal parameters and

are thus distinct in the four equations.

DEF
sort ()
sort (a

split a ()
split a (b

?

()
x) sort m ++ (a : sort n)

WHERE m,n split a x () ()
m n = m,n

x) m n = b < a -) split a x (b
split a x m (b n)

m) n

Figure 5.3: Applicative (pattern-matching) Program in SASL

Applicative languages have an additional powerful abstraction

mechanism, called the higher order function [30], which is a function

that returns another function as result. It works as follows. If a

- 77 -

function is defined to have say "n" arguments, it can be applied to less

t han "n" (say "m") arguments. I th' h n 1S case t e result is a function of

(n-m) arguments in which the first "m" arguments are "frozen in". The

advantage of this abstraction mechanism is that a large number of analo­

gous functions can be built with little extra specification.

In summary, the main feature of functional programming is baSically

the "clean" mathematical world of equations. Advantages are the unifor-

mity of the structures manipulated, implicitly expressed parallelism

from the "data driven" and "demand driven" control mechanism, plus the

absence of: explicit sequential execution, assignment and side-effects.

Specific advantages for data flow languages are the similarity of their

syntax to conventional languages and their obvious qualities for pro-

gramming data flow computers. Specific advantages for applicative

(function-level) languages are that they are often non-repetitive and

non-recursi ve, hierarchically s truc tured, and do not name their argu­

ments. Specific advantages of applicative (pattern-matching) languages

are the operators for manipulating lists, and higher-order functions.

In functional programming the advantages and the disadvantages relate to

the same concepts. Disadvantages of functional programming are, argu-

ably, the absence of any "control driven" execution, assignment state-

ments and side-effects. A specific disadvantage of data flow languages

is the absence of a "shared memory" data mechanism, causing problems for

the manipulation of data structures. Lastly, a specific disadvantage

for applicative (function-level) languages is that they do not name

their arguments, making programs terse and often difficult to under­

stand.

- 78 -

5.2. LOGIC PIlOGRAMHIBG

Logic progrannning seems to be based on a "shared memory" data

mechanism and a "pattern driven" control mechanism. For the data

mechanism, data consists of sets of alternative values which can be

numbers or strings.

pattern-matching and

For the control mechanism, execution is based on

substitution. "Pattern driven" execution may

select a number of alternative commands, which are executed in parallel

(OR-parallelism). In turn a command may be executed by evaluating all

the goals in parallel (AND-parallelism) and basically only succeeds if

all goals succeed.

Next, an examination of a class of logic progrannning based on the

Horn clause subset of logic is made.

5.2.1. Born Clause Languages

For many applications of logic it is sufficient to restrict the

form of clauses to those containing at most one conclusion. Clauses

containing at most one conclusion are called Horn clauses, after the

logician Alfred Horn. Each clause is either an assertion or an implica-

tion. In general, every assertion is an atom "A.", whereas every impli­

cation has the form "A if BI and B2 ••• and Bn." and all conclusions "A"

and conditions "BI,B2,

ship amongst individuals.

Bn" are atoms, expressing a simple relation­

Individuals can be named by constants such as

. h "X" The "A" numbers "I" and strings as "tom", or by varl.ables suc as •

part of a clause is called the "head" and the "BI,B2, ••• ,Bn" is called

the body, and is expressed in a language such as PROLOG as:

head :- body.

- 79 -

whose form is illustrated by Figure 5.4.

Basically, PROLOG attempts to solve goals sequentially from left to

right. For a given goal, PROLOG attempts to find a clause whose head

can be made to match the goal. If the clause is an implication then it,

in turn, attempts to solve the subgoals. The possible results of a goal

will be failure or success, plus possible values associated with vari­

abIes. To achieve success for a goal, all the subgoals must succeed.

If one of the subgoals cannot be solved, PROLOG backtracks and tries to

find another clause whose head matches the goal. If no untried clauses

remain, then failure is returned for the goal.

More detail on how PROLOG works can be found by examining the

Quicksort example. It is interesting to note, in addition, the similar­

ities between this PROLOG program and the previous SASL example. In

Figure 5.4 sort differentiates between two types of parameters, the

empty list "[]" for which it returns an empty list "[]", and the non­

empty list "[XIL]" for which it returns the sorted list "R". For non­

empty lists, the second clause uses the CONS operator "I" in the formal

parameter list "[XIL]" to set the first element to "X" and the remainder

of the list to "L". The body of this clause consists of four subgoals:

split using "X" as the pivot partitions the list "L" into the two subsi­

diary lists "LI" and "L2", sort takes a list and sets its result to the

sorted list, and concat takes the two sorted lists plus the pivot and

concatenates them to produce the result "R" of the sort clause.

Next split's clauses will be examined. Split differentiates

between three types of parameters: the empty list, the list whose first

element is less than or equal to the pivot, and the list whose first

element is greater than the pivot. For an empty list, split returns two

- 80 -

subsidiary empty lists. For non-empty lists, split uses CONS to set the

first element of the list to "y" and the remainder of the list to "L".

This "y" value is then compared against the pivot "X". If "y =(X" then

the second split cause proceeds to partition the remainder of the list

"L" by the reinvoking split. When this list has been partitioned into

"LI" and "L2", "y" is CONS on the first list "[YILI)" and the two lists

are returned by the clause. If "y > X" the second split clause fails,

and execution proceeds to the third clause. It operates in a similar

way, reinvoking split to partition the list "L" and using CONS to append

"y" to the front of the second resul t list "[Y I L2)".

The final two clauses in Figure 5.4 show the specification of con-

catenate. In the SASL example their role was performed by the "++"

operator. In fact, the sort clauses can be specified so as to remove

the need for the concat clauses, but this employs a slightly less

straight forward program.

so r t ([) , [)) •
sort([XIL),R) :-split(X,L,LI,L2),sort(LI,Rl),sort(L2,R2),concat(Rl,[XIR2),R).

split(,[),[],[).
split(X,[YIL),[YILI),L2) :-Y =(X,split(X,L,Ll,L2).
split(X,[YIL],LI,[YIL2) :-Y > X,split(X,L,LI,L2).

concat([),L,L).
concat([XIT),L,[XITL) :-concat(T,L,TL).

Figure 5.4: Horn-Clause Program in PROLOG

A number of additional points concerning PROLOG, but not

highlighted by the Quicksort example, are worth noting. Firstly, a PRO­

LOG program may have more than one valid result, due to similar clauses.

Once the first result is obtained, each additional result is obtained by

typing "?" until failure is returned. Each causes PROLOG to search a

further set of possible clauses. Secondly, there is great flexibility

- 81 -

in specifying the question asked to a PROLOG program. Thus a program

can be given (what may be viewed as) the input and asked to ·deduce the

output. Alternatively, the output can be given to the program, and PRO­

LOG can deduce the input. Lastly, there is clearly considerable poten­

tial for exploiting parallelism in the execution of PROLOG programs.

This is pursued either by evaluating concurrently all of the heads that

match a goal (this is referred to as OR-parallelism since any result is

acceptable) or by evaluating all of the subgoals concurrently (this is

referred to as AND-parallelism since all must succeed for the goal to

succeed).

In summary, the main features of logic programming are pattern­

matching (unification) and substitution. Advantages of logic program­

ming include the fact that it is the most "high level" programming

model, in specifying "what" rather than "how" a computation is to be

executed, and is the closest programming style to knowledge-based sys­

tems. Disadvantages of logic programming are that the notation is very

concise and therefore terse, and hence difficult to understand when seen

in the form of a program. In addition, the "pattern driven" mechanism

can lead to a lack of control over evaluation of commands.

5.3. APPLICATION PROGRAMHING

Application programming styles contain languages covering many dif­

ferent pairings of data mechanisms and control mechanisms. For example,

expert systems building tools [60] seem to contain a "shared memory"

data mechanism and a "pattern driven" control mechanism. However, the

"electronic sheet" languages (discussed below) seem best classified as

having a "shared memory" data mechanism and a "data driven" control

- 82 -

mechanism. For the data mechanism, a memory location contains a value

and possibly also an expression defining the value in terms of other

memory cells. For the control mechanism, execution is "data driven" but

not data flow; when the value of a location is changed, all other loca­

tions that use the value are notified and recalculate their values using

this new information. Besides the "data driven" evaluation, a user may

specify whether recalculation is to proceed down the columns or along

the rows. (This is viewed as "control driven"). Note also the absence

of conditional operators, which limits the scope of programming in cer­

tain of these languages.

5.3.1. Electronic Sheet Languages

VIS ICALC [14] was born out of the observation that many problems

are commonly solved wi th a calculator, a pencil and a shee t of paper.

With VISICALC the computer's screen becomes a "window" which looks upon

a much larger "electronic sheet". The user can scroll this window in

all four directions to look at any part of the sheet.

VISICALC's sheet is organised as a grid of columns and rows. As

can be can seen below, rows are numbered 1, 2, 3, etc. and columns are

labelled A, B, C, and so on. At each intersection of a row and column

there is a variable with a coordinate (i.e. identifier) AI, B3, C17, and

so forth. Into each variable the user can enter one of three types of

da ta: a string, a number, or an ari thmetic expression. When the con­

tents of a variable is changed. the VISICALC system automatically recal­

culates all the other related variables on the sheet. changing their

values and displaying them on the screen if within the window.

- 83 -

Entry contents

Entry line
Prompt line
Edit line
column
and
row labels

cursor

B3
VALUE
+B2-Bl

A

1 COST

2 SALE

3 PROFIT

4

5

6

+B2 -Bl I
I
I B C I

600 I
I

650
I

I
50 I I

I
I
I
I
I
I
I ---

Figure 5.5: VISICALC Screen (abbreviated contents)

Figure 5.5 presents an abbreviated layout for the VISICALC screen.

The screen consists of two basic areas: the "control panel" consisting

of three lines at the top, and the "window" at the bottom. Making up

the control panel are the entry line, the prompt line, and the edit

line. Information displayed on the entry line gives a full explanation

concerning the variable highlighted by the cursor, including its name

(i.e. coordinates), its contents, and the type. On the prompt line is

displayed the type of entry VISICALC thinks you are making, and on the

edit line is the actual input typed by the user. VISICALC is "syntax-

directed"; each time the user presses a key, VISICALC displays on the

prompt line what can be typed next.

Operations in VISICALC are either editing commands that manipulate

the contents of the screen, or built-in functions and operators that may

be used in arithmetic expressions. Commands include operations for

- 84 -

clearing a specific variable, row or column or the whole screen; for

moving information between the screen and file; for'replicating the con­

tents of variables; and for printing. These commands are entered in the

edit line. Built-in functions, as might be expected, provide generally

useful operations such as minimum value "@MIN", sine "@SIN", and because

it is a financial-modelling system, the net present value

"@NPV(dr,range)" of the cash flows in "range", discounted at the rate

specified by expression "dr". These built-in functions are used with

the arithmetic operators (+,-,etc.) in the expressions stored in vari­

ables.

Execution, or recalculation as it is called in VISICALC, occurs

each time a variable is changed. VISICALC recalculates by starting at

the upper left-hand corner of the sheet and working its way downward and

to the right until it reaches the lower right-hand corner of the sheet.

However, the system allows the user to select either of two possible

orders: "down the columns" or "across the rows" first.

As with previous programming languages, an attempt was made to pro-

gram Quicksort in VIS ICALC but this seems impossible, which is not

surprising since VISICALC does not provide comparison operators or con-

ditional expressions. However, a reasonably respectable sort was coded,

using the built-in functions "@MIN" and "@MAX", operating on a list of

numbers, as shown in Figure 5.6. In this example, the numbers to be

sorted are inserted into successive locations in column "A", providing

the inputs for the expressions in column "B". Each expression compares

two adjacent numbers and exchanges them if necessary. This process is

i in columns "C", "D", "E" etc., repeated, using varying separat ons,

causing the results to move left to right on the sheet. By presetting

the numbers in column "A" to be largest number, and placing the

- 85 -

appropriate expressions in columns "B", "c" etc., a sort file can even

be obtained to handle variable size arrays.

A B C D E
1 nl @MIN(Al,A2) Bl @MIN(Cl,C2) Dl
2 n2 @MAX(Al,A2) @MIN(B2,B3) @MAX(Cl,C2) @MIN(D2,D3)
3 n3 @MIN(A3,A4) @MAX(B2,B3) @MIN(C3,C4) @MAX(D2,D3)
4 n4 @MAX(A3,A4) @MIN(B4,B5) @MAX(C3,C4) @MIN(D4,D5)
5 n5 @MIN(A5,A6) @MAX(B4,B5) @MIN(C5,C6) @MIN(D4,D5)
6 n6 @MAX(A5,A6) @MIN(B6,B7) @MAX(C5,C6) @MIN(D6,D7)
7 n7 @MIN(A7,A8) @MAX(B6,B7) @MIN(C7,C8) @MAX(D6,D7)
8 n8 @MAX(A7,A8) @MIN(B8,B9) @MAX(C7,C8) @MIN(D8,D9)

Figure 5.6: "Electronic Sheet" Program in VISICALC

Advantages of electronic sheet languages include the simple "data

driven" programming model, the "electronic sheet" user-friendly

input/output, and the ability to specify if evaluation is by columns or

rows. Disadvantages relate to the simplicity of the system, such as the

limited range of operators, which restricts the scope of the language.

Having classified and analysed the major programming styles, a

decentralised programming model will be chosen, in the next chapter, for

future computers.

- 86 -

CIIAPTEB. 6 - DECElmlALrsED COBTJU)L FLOW IIODEL

This chapter presents the decentralised control flow model, and

justifies this choice by summarising the conclusions taken from: Chapter

2 (Decentralised Computer Systems), Chapter 3 (Classification of Pro­

gramming Languages), Chapter 4 (AnalYSis of Procedural and Object­

Oriented Programming), and Chapter 5 (Analysis of Functional and Logic

Programming) •

6.1. CHOOSING A PR.OGR.AMHING HODEL

In Chapter 2, two possible "images" for future decentralised com­

puters were presented, namely a parallel machine - consisting of identi­

cal powerful sequential processors, and a decentralised computer - con­

sisting of the minimum principles that distributed, parallel and sequen­

tial computers must obey so that they can work together as a system.

The conclusion taken from Chapter 2 was that future computers will

require a decentralised computer image.

In Chapter 3, the fundamental computational (data and control)

mechanisms that are believed to underlie programming languages were

presented. In Chapters 4 and 5 these data and control mechanisms were

used as a basis for analysing the major programming styles (i.e. pro­

cedural, object-oriented, functional and logic) and their underlying

programming models (i.e. control flow, actor, data flow, reduction, and

logic) •

- 87 -

Significantly (as shown by Figure 3.2) each category of programming

model regards the data mechanisms and the control mechanisms as largely

incompatible sets of alternative concepts. (For example, control flow

models use "shared memory" and are "control driven", whereas data flow

models use "message passing" and are "data driven".) Hence each category

of programming, although Universal in the sense of a Turing machine, has

specific advantages and disadvantages for computation, related to its

choice of mechanisms. Two additional observations should be made con­

cerning the choice of mechanisms. Firstly, categories of programming

models supporting "message passing" data mechanisms seem inevitably to

also include a subsidiary mechanism for "shared memory". Secondly,

categories of programming models supporting "data", "demand" and "pat­

tern driven" control mechanisms frequently have a subsidiary "control

driven" mechanism, arguably to alleviate control problems [7].

Given the above considerations, then for computation "shared

memory" seems the fundamental data mechanism and "control driven" execu­

tion seems the most primitive control mechanism. Using these mechan­

isms, it is relatively easy to implement and support the other mechan­

isms; the reverse appears not to be true. Control flow (and procedural

programming) would seem therefore to embody the most fundamental compu­

tational concepts.

The actual choice of programming model (see Figure 1.1) for future

decentralised computers ranges from a low-level model, such as control

flow, that specifies exactly how an algorithm is to be executed, to a

higher-level model, such as logic, that merely specifies what algorithm

is to be performed. Thus, for general-purpose computation, the essen­

tial choices are:

- 88 -

1. low-level model

2.

• flexibility of mechanisms
• control over execution
e.g. control flow

high-level model

· powerful abstraction mechanisms

· safeness of programs
e.g. logic, reduction

This choice is analogous to that between the efficiency (but hazards) of

assembly languages, and the power (but constraints) of high-level

languages. High-level programming models are particularly attractive

for languages, since they help manage software complexity. High-level

(language) computers, on the other hand, have not been particularly suc-

cessful, due to the spectrum of applications to which general-purpose

computers are applied. The programming model for a computer, which is

implicitly required to support an open ended set of programming styles

has, as its main requirement, to be flexible and unobtrusive. This

Thesis is concerned with the programming of decentralised computers, and

therefore, is oriented to a low-level programming model for computers.

Thus, below, a control flow programming model is presented that

embodies a "decentralised computer". This is referred to as the decen-

tralised control flow model.

Next, a description of the principles of the decentralised control

flow programming model is given, which is based on an earlier, highly

recursive control flow model [51]. The recursive control flow model is

closest in concept to reduction machines, having a highly recursive view

of both computer and program structures. Operations are viewed as

"editing" the program structure, causing programs to dynamically migrate

between component machines. In contrast, the decentralised control flow

model attempts to extend and generalise the von Neumann model for pro-

- 89 -

gramming decentralised computers. These so-called principles should be

viewed (and are described) as the " "t I h"" V1r ua mac 1ne underlying dec en-

tralised control flow programming.

6.2. PRINCIPLES

A good way of starting is by contrasting the decentralised control

flow model wi th the von Neumann model. In the von Neumann model the

main principles are:

1. computer - a computer system comprising a processor and a memory;

2. memory - a linear organisation of fixed-sized memory cells;

3. addressing - a one-level address space of cells;

4. program - a low-level machine language;

5. communication - shared memory;

6. execution - sequential, centralised control of computation.

In the von Neumann model, a computer system comprises a vector of memory

cells and a single processor. Each memory cell may contain just one

elementary object (data or instruction) and has a unique address. The

processor uses this address to perform a LOAD, STORE or EXECUTE opera-

tion on the contents of a memory cell.

For a future generation of decentralised computers it is clearly

appropriate to transfer into the computer's architecture the fundamental

mechanisms of high-level languages (e.g. structured memory) and operat-

ing systems (e.g. filestore, contextual addressing, processes).

Transferring these mechanisms from software to hardware should lead to

- 90 -

more efficient representation and execution of programs.

In the decentralised control flow model, the main principles are:

1. computer - a computer system is a decentralised computer (a hierar­

chy of distributed, parallel and sequential computers);

2. memory - a nested organisation of variable-size memory cells (like

the file structure of an operating system);

3. addressing - contextual address space of cells (like telephone

numbers) ;

4. program - a high-level machine language (as in LISP, where instruc­

tions may be recursively defined);

5. communication - shared memory and message passing;

6. execution - parallel, decentralised control of computation (as with

UNIX commands).

An essential concept in the decentralised control flow model is the

direc t functional correspondence between the physical system and the

logical information structure of the computer system:

I - 91 -

Hardware

1 2 3

1 processor 1<==>1 processor 1<==>1 processor 1
1-----------1 1-----------1 1-----------1
1 memory 1 1 memory 1 1 memory 1

Software

1: 1 2: 1 3: 1

Figure 6.1: Functional Correspondence of Hardware and Software

In the system, the memory of each computer is viewed as a memory cell

whose address is the hardware address of the computer. Inside a memory.

further memory cells are represented. (Thus each computer has a unique

address and operates like a memory bank belonging to a global memory.)

The memory in such a computer allows each memory cell to contain a

vector of subsidiary memory cells. For instance. an array of the

numbers 0 to 9 can be represented by one memory cell containing the

array, and subsidiary cells containing the individual numbers:

1

I I-~_I 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 9 1

AddreSSing in the model is based on each memory cell being con­

sidered a context and each subsidiary cell having a unique "selector"

within this context:

3: 1:10 1 2:1113:12 1 10: 1 9 1 4:

--

- 92 -

Thus, wi thin the surrounding context, the address "3"
may be used to

access the whole array of numbers, while the address "3/2" allows access

to the cell containing the number "1".

Lastly, there is communication of data. I d n tra itional computers

two operations may be performed on the contents of a memory cell: STORE

and LOAD. STORE overwrites the content of the accessed cell, and LOAD

takes a copy of the cell's content •. These operations support the shared

memory semantics. To support message passing, and to integrate it with

shared memory, two additional operations may be performed on the con­

tents of a memory cell: PUT and TAKE.

shared memory message passing

STORE addr PUT addr
I I

addr: addr: I "empty" I

I I
LOAD addr TAKE addr

Figure 6.2: Memory Operations - LOAD, STORE, TAKE and PUT

PUT may only store into an "empty" memory cell and TAKE may only remove

a non-empty contents, replacing it with "empty". Both operations may be

viewed as polling a memory cell until the cell is in the correct state.

(Note STORE and LOAD operations are unaffected by a cell being "empty".)

Illustrations of the various possible levels of implementation of

the decentralised control flow model are provided by the Newcastle Con-

nection and the RIMMS multi-microcomputer, discussed in Chapter 2. For

a more "idealised" computer implementation, each of the principles will

be examined in turn. A good basis for such an implementation is pro-

vided by the Recursive Machine proposal of Barton and Wilner [62]. which

initially inspired the following "virtual" machine.

- 93 -

6.3. C(Ml'OTEIl SYSTEH

A decentralised control flow computer system, as illustrated in

Figure 6.3, has a hierarchical structure, with each computer system

being composed of a network of computers. Ea h c component computer sys-

tem operates like a memory cell servicing a primitive set of operations

(LOAD, STORE, •••). The contents of a memory cell are manipulated by the

associated processor. This associated processor may be accessed using

its address by any computer in the contextual address space.

Hardware

1 :

2:

PRO C E S
2:

S 0 R
3: 4:

Iprocessorl<=>lprocessorl<=>lprocessorl<=>lprocessorl
1---------1 1---------1 1---------1 1---------1
I memory 1 I memory 1 1 memory I 1 memory 1

M E M 0 R Y

Software

2: (1: () 2:() 3:() 4:() . . .)

Figure 6.3: Decentralised Control Flow Computer

As illustrated in Figure 6.3 there is a direct correspondence (at the

higher levels) between the physical system structure and the logical

information structure of the computer system. This is particularly

important for programming, since each computer system in the hierarchy

may be programmed as a single computer, and accessed by other computers

using its address as if it were a simple memory cell storing a single

object. In addition, a component computer is not constrained to provide

a general-purpose service; it might in fact be special-purpose even to

the extent of being a traditional memory cell.

- 94 -

6.4. ID'OBHAnOIf STlWCTUnlIIG

Memory in the model consists of a nested organisation of variab1e­

size memory cells. Such a memory could be implemented by traditional

LISP cells; however, delimited strings seem a more lidea1ised" implemen­

tation.

When information is represented as nested delimited strings, a del­

imited string is considered a recursively-defined, variable-size memory

cell. All information stored in a decentra1ised control flow computer

forms a single delimited string. Thus the computer's memory is logi­

cally like the hierarchical file structure of most multi-user operating

systems. A string consists of two alphabets of characters, namely (i)

characters that delimit strings, and (11) data characters that form

strings. For example, using brackets as delimiters, the array of the

numbers 0 to 9 can be represented as:

((0) (1) (2) (3) (4) (5) (6) (7) (8) (9))

In the computer, the explicit delimiting characters would be left

bracket "(" and right bracket ")", and the data characters are binary

"0" and "1". Thus an array of the numbers 0 to 9 would be represented

as:

((0) (1) (10) (11) (100) ••• (1001))

It is unnecessary, however, to make all delimiters explicit. For exam­

ple, if a particular machine implementation used conventional fixed word

size memory cells, then implicit brackets may be viewed as occurring on

word, byte and even bit boundaries. But the implementation would then

restrict the usage of these lower level strings. Thus the allocation of

memory cells is context dependent; depending on whether the cell

- 95 -

corresponds to a "physical" computer or to a "virtual" delimited string.

(A virtual cell is created by an access to an undefined structure, and

is initially empty.)

6.5. ADDIlESSDlG SCIIEHE

Addressing of information is based on the concept of context, which

is the model for references in operating system filestores and for tele-

phone numbers in the telephone network. As with telephone numbers in

the international telephone network, an address is variable-length

depending on the path between the point of reference and the target

memory cell.

In the contextual address space, each memory cell (i.e. delimited

string) in the information structure is considered a context relative to

which a related cell is identified by a selector, such as an integer in

the range 1 •• n. An address is a sequence of selectors specifying a

"path" from the point of reference in the structure to the target memory

cell. Each selector identifies a memory cell relative to the current

context, and moves the remainder of the address to the new context for

its further interpretation. Example classes of selectors provided by

the model could be: direct where "i" is the local address of a memory

cell; computed where the result of a command "fn" is "i" which is the

local address of the cell, and superior where" "defines the surround-

ing memory cell.

For instance, to access the whole of the array shown on Section 6.4

. "2" above, from elsewhere in the surrounding context 1tS selector, say ,

is used, whereas to access a subsidiary number "(100)" the address "2/5"

is used.

2

2/5

=

- 96 -

2:(1:(0) 2:(1) 3:(10) 4:(11) 5:(100)

((0) (1) (10) (11) (100)

(100)

)

)

Using a memory cell's address any of five system-wide operations may be

performed on its contents (Le. LOAD, STORE, PUT, TAKE, EXECUTE). Thus

both "shared memory" and "message passing" data mechanisms are supported

by the model.

6.6. PllOGllAH REPRESENTATION

Program representation in the decentralised control flow program­

ming model is based on a single format. Each program object (i.e. exe­

cutable delimited string) is stored in a memory cell and consists of a

list of commands separated by controls:

(command control command control command •••)

A control defines the order of execution of two adjacent commands which

may be sequential or parallel, etc. A command consists of a list of

arguments:

(argO arg1 arg2 arg3 arg4 arg5 •••)

The leftmost argument in each command defines the task or operation to

be performed, and also the interpretation of the remaining arguments

which are its parameters. A task or operation may be a simple operator

such as "+":

(operator argl arg2 arg3 arg4 •••)

or the address of a procedure to be called:

(address arg1 arg2 arg3 arg4 •••)

Parameters are accessed like the contents of a memory cell by a command.

- 97 -

An argument in a command is either the actual object or its correspond­

ing address:

(object) or address

Examples of how the interpretation of each instruction is defined sys­

tematically by the leftmost argument are shown in Figure 6.4 (where

lower level delimiters and, in some cases, mode information have been

omitted for clarity).

instruction:

(argO argl arg2 arg3 arg4 •••)

examples:

typed operand (literal 26)

expression (+ a b)
(returning its result)

expression (+ a b c)
(storing its result)

sub-program (sqrt c)

Figure 6.4: Program Representation

The information provided by "argO" includes the number of arguments,

their order of evaluation (which may be in parallel), and whether they

are used for input or output.

6.7. PROGRAM EXECUTION

Program execution in the decentralised control flow model is

clearly "control driven", but is parallel. Each list of commands and

each subsidiary command may be executed concurrently. The "process"

managing the list of commands controls the invoking of its commands, and

execution of a command is analogous to a function call.

- 98 -

"procedure call" (argO 1 2 3 arg arg arg arg4 •••)

"procedure body" argO:()

The "control driven" execution of commands is specified by the controls.

Once a command is invoked, its arguments are evaluated on demand under

the control of the leftmost argument. The operation is executed as the

results of the evaluated arguments become available.

6.8. OTIIEB. PR.OGRAHKING MODELS

One of the aims of the decentralised control flow model is to

introduce computational mechanisms from other programming models to make

control flow more general-purpose. For instance, because of the five

system-wide operations discussed in Section 6.5, the model is able to

support the "shared memory" and "message passing" data mechanisms

described in Chapter 3.

The actual data mechanisms supported by a particular programming

model are closely tied to the types of argument that may be specified in

its commands. Figure 6.5 illustrates an interpretation of the union of

argument types that are found, for example, in control flow, data flow

and reduction programming models. In Figure 6.5, commands are

represented by delimited strings and the argument type is underlined.

literal

unknown

address

procedure call

expression

- 99 -

Meaning

the literal type e.g. (+ 2 •••) is
found in every programming model

the unknown type e.g. (+ () •••)
is used, logically, by data-flow as
a "place-holder" for dynamically
generated values and delays evalua­
tion until the value is available
for the command

the address e.g. (+ l!. •••)
is a reference used by control flow
commands to load or store a value
value

the procedure call e.g. (p •••) is
a reference used by reduction and
causes the evaluation of the
addressed operand

the expression type e.g. (••• (+2 a) •••)
is used by reduction for the nesting of
commands

Figure 6.5: Spectrum of Argument Types

Similarly, the actual control mechanisms supported by a particular pro-

gramming model are closely tied to the implicit control structures found

in any model. Decentralised control flow has an implicit "control

driven" execution mechanism. However, "data" and "demand driven" con-

trol mechanisms are also supported. "Data driven" execution is sup-

ported by using the empty memory cell "()" to delay execution until the

argument is available. "Demand driven" execution is supported by the

built-in procedure call, discussed above.

Finally, various developments at the University of Newcastle upon

Tyne can be seen as based on a decentralised control flow programming

model: the Newcastle Connection distributed UNIX system [16] (briefly

described in Chapter 2); the LEGO recursive computer architecture [51],

and the RIMMS Multi-Microcomputer System [25] (introduced in Chapter 2,

- 100 -

and described in more detail in Chapter 9). In addition, the decentral­

fsed control flow programming model provides the foundation of the BASIX

and the BASAL programming languages described in the ensuing chapters.

BASIX and BASAL are vehicles for exploring the decentralised control

flow programming style, rather than proposed new languages.

- 101 -

CBAPTEIl 7 - BASIX PltOGJWDmlG LAIiGUAGES

This chapter presents the ~ASIX programming languages, which are

used to investigate languages embodying the full decentralised control

flow model.

7.1. DESIGN PHILOSOPHY

The BASIX languages were designed to embody the decentralised con­

trol flow model, showing thus that the concepts of traditional computing

could be effectively associated with more "revolutionary" concepts (such

as those found in LISP and in the Shell of the UNIX operating system).

This should be done by extending and general iSing the traditional con­

trol flow programming style, which is a subset of the decentralised con­

trol flow model. The aim of the two BASIX languages, BASIX 1 and

BASIX 2 described below, is to "mirror" the decentralised control flow

model. Recall, these languages are primitive and are low-level system

programming languages (cf. C) rather than high-level languages (cf. PRO­

LOG). Thus the languages may appear rudimentary; for instance, they do

not contain any data typing. In the syntax "0" defines zero or one

occurrence and "{} ••• " defines zero or more occurrences of the enclosed

string.

- 102 -

7.2. BASIX 1 LAlIGUAGE

BASIX_I represents the first attempt to design a language based on

decentralised control flow. Its design is based on the BAS language

supplied with UNIX.

BASIX_I's syntax (see Appendix A.I) may be viewed as a superset of

BASIC, but it attempts to incorporate features from LISP and from UNIX.

BASIX_I's commands can be simple statements as in BASIC, or can be del-

imited groups of statements or commands as in LISP. BASIX l's environ-

ment attempts to be similar to UNIX: when BASIX 1 is invoked, the user

program has access to any "files" - viewed as data structures by the

program - previously created. If any "name" argument is provided when

BASIX 1 is invoked, the structures associated with this "name" are used

for input before reading commands from the terminal.

The description of BASIX_l can be divided in four levels: i) com-

mands; ii) statements; iii) expressions; and iv) names.

Commands in BASIX 1 are of four types:

statement
integer statement
(command{command} •••)
integer(command{command} •••)

"Statements" in BASIX 1 are immediately executed. "Integer statements"

in BASIX 1 are known as internal commands stored for later execution, in

sorted ascending order. The "(command {command} •••)" commands are exe-

{ d}) ", cuted when the ")" is reached, and the "integer(command comman •••

similarly to the integer statements, are stored for later execution.

- 103 -

Statements in BASIX_1 are very similar to BASIC, being either an

expression or a command whose leftmost argument is a keyword:

comment
dim alphanumeric(integer
done
dump

{, integer} •••)

for name
for name

expression expression statement
expression expression

next
fork expression
join expression
goto expression
if expression statement
if expression

{ else . .. }
fi
let name = expression
list {expression} {expression}
print list
prompt list
return {expression}
run
save {expression} {expression}
expression

The statement "comment" is ignored, being used only to interject commen-

tary in a program.

The statement "dim alphanumeric (integer {, integer }...)"

creates either temporary or semi-permanent data structures. When used in

the form "dim alphanumeric (integer {, integer }...)" it creates a

semi-permanent data structure ("file") which will not be deleted at the

end of the program. When used in the form "integer dim alphanumeric (

integer {, integer }...)" it creates a temporary data structure which

will disappear at the end of the program.

The statement "done" returns control to system level, and in "dump"

the name and current value of every variable is printed.

- 104 -

I "f . n or name = expressl.on expression statement" and "for name =

expression expression ••• next", the "for" statement repetitively exe­

cutes a statement (first form) or a group of statements (second form)

under control of a named variable. The variable takes on the value of

the first expression, then is incremented by one on each loop, not to

exceed the value of the second expression.

The statements, "fork" and "join", represent a new addition to a

BASIC-like syntax. In the "fork expression", the expression is

evaluated, truncated to an integer and a secondary thread of execution

starts at the corresponding integer numbered command. The primary

thread of execution continues to execute the statement following the

"fork" • If executed from immediate mode, the internal statements are

compiled first. In the "join expression" statement the expression is

evaluated and truncated to an integer. This positive integer defines the

number of threads of control to be received by the "join" before sequen-

tial execution (of the following statement) is resumed.

In the "goto expression", the expression is evaluated, truncated to

an integer and execution goes to the corresponding integer numbered

statement. In "if expression statement" and "if expression ••• {else

} fi", the "if" statement (first form) or group of statements

(second form) is executed if the expression evaluates to non-zero. In

the second form, an optional else allows for a second group of state-

ments to be executed when the expression evaluates to zero.

The statement "let name = expression" is the assignment statement.

The left operand must be the name of a variable or an array element. The

result is the right operand. Assignment binds right to left.

- 105 -

The statement "list { expression} { expression }" is used to print

out the stored internal arguments. If no arguments are given, all inter-

nal statements are printed. If one argument is given, only that internal

statement is listed. If two arguments are given, all internal statements

inclusively between the arguments are printed. In "print list" the list

of expressions and strings are concatenated and printed. (A string is

delimited by " characters), and the "prompt list" s,tatement is the same

as print except that no newline character is printed.

In "return { expression }" the expression is evaluated and the

result is passed back as the value of a function call. If no expression

is given, zero is returned. In the "run" statement control is passed to

the lowest numbered internal statement.

The "save { expression} { expression }" statement is like "list",

except that the output is written on the file argument specified in the

call of BASIX_1 (Le. "BASIX 1 {name}"). And, finally, "expression" is

executed as described below.

Expressions in BASIX 1 can be of six different kinds:

number
name
(expression)
expression

expression operator expression
nameO

A "number" is used to represent a constant value, and is written in FOR­

TRAN style, containing digits, an optional decimal point, and possibly a

scale factor consisting of an "e" followed by a possibly signed

exponent. The expression "name" is used to specify a variable.

- 106 -

In an "(expression)", parentheses are used to alter normal order of

evaluation. I" ." h n _express1on , t e result is the negation of the expres-

sion. In "expression operator expression", common functions of two

arguments are abbreviated by separating the two arguments by an operator

denoting the function. A complete list of operators is given below. In

"name()" procedures or functions can be called by an expression followed

by parentheses. The name yields an integer which represents the line

number of the entry of the function in the internally stored statements.

Names, in BASIX_l, have the following format:

o (zero)
alphanumeric
expression
namelname{lname} •••

When using the "0" the current context becomes the selected variable.

An "alphanumeric" is used to specify a variable in the current context.

Alphanumerics are composed of a letter followed by letters or digits.

The "expression" is evaluated to an integer and used as a selector (i.e.

index) for the name. The last form of "name" is "namelname{lname} ••• ".

It indicates a sequence of names separated by bars, which show the

changes of context. This concept is based on the way the UNIX system

[16] handles its directories and files. (Note: Due to the problem of

distinguishing between a number such as "1" and selector such as "1",

"0" and "expression" cannot occur as the only selector of a name.)

Operators in BAS IX_l contain two logical operators ("&", which is

the logical AND, and "V", the logical OR); six relational operators «

<= > >- = <», and five arithmetical operators (+ - * / **). The opera-

tor "&" has result "one" if both its arguments are non-zero. "V" has

result "zero" if both of its arguments are zero. It has result "one" if

either of its arguments are non-zero. The relational operators (< less

- 107 -

than, <= less than or equal, > greater than, >= greater than or equal, =

equal to, <> not equal to) return "one" if their arguments are in the

specified relation. They return "zero" otherwise.

As an illustration of the BASIC-like syntax of BASIX_1, Figure 7.1

shows a program for Quicksort. This program uses an iterative algorithm

and a stack to store the pairs of indices "10" and "hi" of the subsets

to be partitioned. It is close in structure to the PASCAL program in

Figure 4.1. The main point of interest in Figure 7.1 is the address

selectors used to access the array "stack".

01 dim v(l6)
02 dim stack(4,2)
03 let stackptr = 1
04 let stackl(stackptr)ll = 1
05 let stackl(stackptr)12 = 16
06 let 10 = stackl(stackptr)ll
07 let hi = stackl(stackptr)12
08 let stackptr = stackptr - 1
09 if 10 < hi
10 let i = 10
11 let j = hi
12 let pivot vl(lo)
13 if «j <= i) V (vl(j) < pivot» goto 16
14 let j = j - 1
15 goto 13
16 if «i > j) V (i = j) V (VI(i) > pivot» goto 19
17 let i = i + 1
18 goto 16
19 if (i >= j) goto 23
20 let temp = vl(i)
21 let vl(i) = vl(j)
22 let vl(j) = temp
23 if i < j goto 13
24 let vl(lo) = vl(i)
25 let vl(i) = pivot
26 let stackptr = stackptr + 1
27 let stackl (stackptr) I 1 = 10
28 let stackl (stackptr) 12 = i - 1
29 let stackptr = stackptr + 1
30 let stackl (stackptr) I 1 = i + 1
31 let stackl(stackptr)12 = hi
32 fi
33 if (stackptr)= 1) go to 06
34 end

Figure 7.1: Quicksort Program in BASIX 1

- 108 -

Finally, BASIX_1 is implemented by a translator, programmed by the

author, and an interpreter (supporting the virtual machine), programmed

by David Mundy. The translator, written in PASCAL, is very "conven­

tional", and does not warrant further description.

This initial version of BASIX is close to conventional languages.

In addition, BASI~l contains a number of major problems, such as: it

does not support a "message passing" data mechanism, the FORK/JOIN

parallelism constructs proved difficult to use in practice, and "files"

may only contain data not code. Improving on this initial version of

BASIX, is BAS IX_2, which is described in detail below.

7.3. BASIX 2 LANGUAGE

BASIX_2 [27,28], like BAS IX_1 , has a decentralised control flow

programming model, and attempts to encompass more of the model. BASIX 2

attempts to be a more "sophisticated" language than BASIX 1. For

instance, BASIX_2 has a single notion of object which serves the roles

of variables, lists, messages, programs, files and directories. A

number of long-term goals were set off for BASIX 2. Firstly it should

be an interactive language providing a complete programming environment

as with an object-oriented language such as SMALLTALK [4]. Secondly its

semantics should aim to be as simple as BASIC. Thirdly BASIX_2 should

aim to be as modular and extensible as LISP. Lastly, it should have con­

trol structures for processes such as those mechanisms found in the UNIX

Shell. The complete syntax of BASIX 2 is given in Appendix A.2.

In the design of BASIX_2 it is envisaged that all users will share

the same information structure and interact with the structure via their

terminal screens. A user will have access to one or more current con-

- 109 -

texts, with the contents of each context being displayed as a "window"

on the user's terminal (currently only a single window is supported). A

window corresponds to a virtual computing system and displays the object

stored by its memory cell. A window as shown in Figure 7.2 is divided

into three areas defining the name of the current context, the context's

information structures, and the commands being executed.

I Context :

I Context :

Context

I
I
I
I
I
I
I
1

name
name
name

(
(
(

)
)
) I 1

1----
I I
1-----

Command I

Figure 7.2: Terminal "window" displaying a current context

Information in any of these three areas may be changed by pOSitioning

the cursor and typing the new information. A new context name changes

the current context of the window and thus the contents displayed. New

information changes the contents of the context, but does not cause exe-

cution. Lastly, a new user command is executed as a parallel process.

lnfor.atiou Structure

Information is represented as a single nested structure merging the

concepts of directory, file, array, variable, message, and program etc.

Each is a named object whose specific semantics is defined by which of

the five system-wide operators (LOAD, STORE, •••) is performed on the

object. A named object (Le. the contents of a memory cell) may be

accessed as "shared memory", as "message passing", or as "program".

- 110 -

These are distinguished in the language in the following ways:

Semantics Operation Usage of Name

shared LOAD name
memory STORE name := ...
message TAKE ... name [] . ..
passing PUT name[] .- ...
program EXECUTE name object

EXECUTE name()

Initially a named object is empty "()" and information is inserted

either by a STORE or PUT operation. However should an empty memory cell

have a TAKE or EXECUTE operation performed on it then the access is

delayed until the information is inserted.

Names

A name consists of one or more selectors "{/}selector{/selector}"

defining a path to the target object. Selectors are interpreted left to

right, each selec tor moving the remainder of the name to an adjacent

context. A selector may be: (i) an alphanumeric character string, (ii)

a numeric character string, (iii) a bracketed object whose execution

yields the selector, or (iv) a character defining one of the four acces-

sible contexts:

Context Character

local

parameters $

non-local

current /

Explanation

local objects of a program

parameters of a called program

non-local object of a program

current context i.e. the "directory"
of the program; this character may
optionally occur at the start of a name.

For example "$" is used to access standard input "$/1", standard output

- III -

"$/0", and the parameters "$/1", "$/2" ••• of a process:

$:(I:input argO l:argl 2:arg2 3:arg3 4:arg4 O:output)

A number of additional points should be noted. Firstly, a numeric

string or a bracketed object may not be currently specified as the first

or only selector of a name, due to the problem for example of parsing

"10" the number and "10" the name. Secondly, that for the object:

Ita:(••• i:(9) 9:(20) ...)"

the name "a/i" .gives the "i" component "9", whereas the name "a/{i)"

uses the contents of "i" as the selector to give "20". Lastly, as with

most languages and operating systems, BASIX_2 automatically searches its

four accessible contexts for a selec tor, in the order: local, parame­

ters, current and non-local contexts [28].

Program Representation

Any program consists of "command { control command } ••• ", a list of

commands separated by control symbols. The "control" symbols, based on

UNIX, define the order of execution of the two adjacent commands, which

may be sequential ";", pipelined "I" or parallel "&". They also define

how the standard inputs and standard outputs of the commands are con­

nected together. BASIX 2 accepts commands of the form:

name : object

object

The first command is a declaration used to create and label an object

relati ve to the current context. Only the "name" is evaluated before

the assignment. The second command is immediately executed and either

returns some value to the user's screen or makes some change to the

information structure.

- 112 -

The description of BASIX_2 programs can be divided in three levels:

i) objects; ii) expressions; and iii) statements.

Objects in BASIX 2 have the following syntax:

expression
statement
(object { object } •••)
(command { control command } •••)

An "expression" in BASIX 2 is a sequence of statements or objects

separated by operators. A "statement" is a list whose leftmost object

is a keyword. An "(object { object} •••)" is a list of one or more

objects, data or program, separated by spaces or commas. Lastly, a "(

command { control command }...)" is a series of commands separated by

controls, each control defining the order of execution of the two adja-

cent commands. Thus, an object may be any recognisable construct such

as:

Construct Example

expression a + b - c

name x/y/1

number 10

data structure (a 10 (11 12»

function call f(d, e) or f d e

program (merge a1 a2 a3 a4 a; sort a b)

and an executable object is a list of objects separated by blanks where

"bl kit b The leftmost obJ"ect of the list an may e spaces or a comma.

defines the task to be performed. There are basically three types of

executable objects:

- 113 -

BASIX 2 Format Example

procedure call object object { object } ••• sort infile outfile

statement keyword { object l ... ifa>b •••

expression object { operator object } ••• c + d

Expressions in BASIX 2 have the following syntax:

number
name
name []
()
quote object
object

object operator object
name{ { object } •••)
object object { object } •••

In the expression "number", the object is an integer number. In "name"

the object, synonymous with the name, is treated as a variable. In

"name[]", the object, synonymous with the name, is treated as a list or

a message. The undefined object is represented by "()", and an access

to it is delayed until its contents are available. In "quote object",

the result is the unevaluated object. In "_object", the result is the

negation of the expression. In "object operator object", the objects

are evaluated as operands for the operator, and the whole expression

returns a value. In II name { { object }...)11 a procedure or function

with zero or more parameters may be specified in the traditional way as

a name followed by the parameters in parentheses. The parameters may be

separated by spaces or commas. Lastly, in "object object object

} ••• ", a procedure or function with one or more arguments may be speci-

fied as an UNIX-like command.

Statements in BASIX 2 have the following syntax:

- 114 -

(* commentary *)
if { object -) object; } ••• { object} fi
do { object -) object; } ••• { object} do
for alphanumeric = object do object rof
goto name
cd name
rm name { name } •••

The statement "(* commentary *)" is ignored, being only used to inter-

ject commentary in a program.

Conditional and repetitive statements centre on the conditional

"object -) object" which specifies that the second object is only exe-

cuted if the result of the "object -)" is true. The command "if ••• fi"

consists of a list of commands which execute in turn until a conditional

is true. This command may be used in the following ways:

Traditional Construct BASIX 2 Format

IF THEN if object -) object fi

IF THEN if object -) object;
ELSE object fi

IF ... THEN if object -) object;
ELIF object -) object;
ELSE object fi

The command "do ••• od" consists of a list of commands which execute

repeatedly until no conditional is true. The statement may be used in

the following ways:

Traditional Construct BASIX 2 Format

WHILE ••• DO ••• do object -) object od

REPEAT ••• UNTIL object ;
do object -) object od

The command "for ••• rof" has the following format

for alphanumeric = object do object rof

and is intended to combine the traditional iterative command "for i 1

- 115 -

to n do ••• " with a command that replicates, such as the "SEQ i = [1 FOR

n] "of OCCAM. Thi "f " s or command evaluates the first "object" and

then replicates the second "object" replacing "alphanumeric" for each

component of the resulting object. By using a quoted 'object list',

which returns an unevaluated object, or "to" operator, that generates

sequences, the statement may be used in the following ways:

Traditional Construct BASlX 2 Format

FOR i := 1 TO n DO a[i]:=O; for i 1 to n do a/i:=O rof

FOR i IN abc d DO i:=O; for i 'a bcd' do i:=O rof

WITH a.b.c DO j:=O; for i = 'albic' do i/j:=O rof

The command "goto" has the format "goto name", and causes control to be

transferred to the object defined by the local name. In order to change

context to the object defined by name, the command "cd name" is used,

and fIrm name { name } ••• " removes objects created by the program.

Operators in BASIX 2 include an assignment (" :=") operator, which

updates a "name : object" pair relative to the local context, if neces-

sary creating a pair. Both "name" and "object" are evaluated before the

assignment. The arithmetical operators supported are those for addi­

tion, subtraction and multiplication (+ - *). Logical operators consist

of "and", "or", and "not", and the relational operators are: = 0 < <=)

)=, returning true if their arguments are in the specified relation,

otherwise returning false. Numeric sequences "I 2 3 4 ••• " and alpha­

betic sequences "a b cd ••• " are generated by the dyadic operator

"to", and returned as an object, containing the sequence (see SASL, Sec-

tion 5.1.2).

- 116 -

Prograa Ezecution

As a final illustration of the BASIX_2 language, a recursive Quick­

sort program "rquick" is shown in Figure 7.3. The Quicksort program in

Figure 7.3 is divided into three parts: at the top is the declaration of

the array "v" to be sorted, in the middle is the declaration of the pro­

gram object "rquick", and at the bottom is the call to rquick. The

array to be sorted is in fact the sixteen numbers, 512 ••• 703. The

corresponding implicit address selectors, from the left, are "1 2 3

••• "; alternatively the selectors could have been declared explicitly:

v:(1:(512) 2:(087) 3:(503) 4:(061) 5:(908) 6:(170) ••• 16:(703))

as is necessary when alphanumeric selectors are used.

- 117 -

(* the array to be sorted v[l] v[2] v[3] v[4] • • • v[n-l] v[n] *)

v:(

(*

512 087 503 061 908 170 897 426 765 275 154 509 612 677 653 703)

recursive Quicksort ----- rquick (10, hi : integer)

rquick:(
10 := $/1 & hi := $/2
if lo<hi -)

(i := 10&
j := hi;
pivot := v/(j) (* pivot line *)
do

(i<j) -) (

*)

do (i<j) and «v/(i) <= pivot» -) i :=
(j)i) and «v/(j))= pivot» -) j :=
out of order pair *)

do
(*
if

i + 1 od
j - 1 od

fi
)

)

)
(i<j) -) exchange(v/(i), v/(j» fi

od;
exchange v/(i) v/(hi) (* move pivot to v(i) *)
rquick 10 i-l&
rquick 1+1 hi

(* call Quicksort "rquick (1, n)" v[l] v[2] v[n]

rquick 1 16

Figure 7.3: Quicksort Program in BASIX 2

*)

In the program object "rquick" storage for the variables "10 hi i j

pivot" is created on demand. The first line of rquick initialises "10"

and "hi" from the first and second parameters in the call to rquick

10 := $/1 & hi := $/2

The control symbol "&" defines that the two commands are to be executed

in parallel. Next comes the body of the Quicksort. It contains calls

to two procedures: "exchange" which swaps two elements that are out of

order, and the two "rquick"s that sort the subsets in parallel. Two

formats for calls are illustrated, the traditional syntax

"exchange(•••)" and the list of objects "exchange ••• ", however the

meaning is identical. Notice also that the array elements are accessed

- 118 -

as "v/(i)" and not as "v/i". Finally the reader may find it interesting

to compare this BASIX_2 version with the recursive PASCAL version given

in Figure 4.1.

BASI~2 was designed jointly by David Mundy and the author, and a

translator, implementing the major parts [40] of the BASIX_2 language

(written at first in C, and then rewritten in LISP), was produced by

Mundy.

In the next chapter, two. application programs will be discussed,

written in BASIX_2, as the basis of an assessment of the language.

- 119 -

CBAPTEB. 8 - AllALYSlS OF usn

This chapter is an analysis of the BASIX programming languages,

specifically BASIX_2, which is subsequently referred to as BASIX. Two

applications are used for this analysis of BASIX: a simple Banking Sys­

tem and an Expert System. The current BASIX interpreter supports a sub­

set of the language; for illustration the Banking System is programmed

using "full" BASIX, and the Expert System is programmed using the "exe­

cutable subset" of the language. Appendices A.4 and A.5 contain the

listing of the Banking and Expert Systems.

8.1. BANIaHG SYSTEM

A simple banking system was chosen so as to demonstrate that BASIX

can be used, successfully, for commercial applications. In addition,

the banking application is meant to illustrate the uniform manipulation

of files and variables, contextual addressing, etc.

8.1.1. Description of Application

This banking application system is a quite small and simple one: a

current account system for a one-branch bank, which is called "Basbank".

The clients of "Basbank" have only one type of account (current). Data

maintained about the clients consist of name and address, as well as

their balance, and the date of the last transaction.

- 120 -

The "Basbank'" s current account only allows two kinds of opera­

tions: deposits and withdrawals. All significant transactions data

(e.g. client number, balance) are validated, and clients are then added

to "Bas bank" , s master file, ordered by "client number". Client's bal­

ances are altered according to deposit or withdrawals, but their per­

sonal data (name and address) can also be changed. Lastly, clients can

only be excluded from the master file when their current balance is

zero.

The "Basbank" system, as shown in Figure 8.1, consists of two main

files (one containing the transactions, and the other the so-called

"master" file or "old" file) and of one main program. The so-called

"master" file holds all the data for the bank's clients. Each client

has an individual record in the "master" file, composed of a client

number, date of last update, name and address, and the current balance.

The banking application system program is composed of three rou­

tines, namely: i) "validate", ii) "sort", and iii) "update", as can be

seen on Figure 8.1 below.

- 121 -

/ /

/ Transac tions /
/ (transfile) /

/
/ Master File

/ (old file)

][-~-------- ------~
I
I VALIDATE
I

I I
I I
I I

SORT
I I
I I
I I

I
UPDATE I

I ----------- ------------ ------------

BASBANl(
I
I
I

/
/

/

--~-----------------------------

------ --------- ---~-----------
/ /

/ Occurrences /
/ (errors,etc) /

/
/ New Master

/ (newfile)

Figure 8.1: "Basbank" Banking System

/
/

/

8.1.2. Description of Prograa

The files used by the "Basbank" system are the "transactions"

files, and the "master file". The "validate" routine (using the origi-

nal "transactions" file as input) generates a "transactions" file with

valid data, which is subsequently used as input by the "sort" routine to

generate the sorted "transactions" file. The "transactions" file holds

information of three basic kinds: inclusions, al terations, and exclu-

sions. Firstly, those of type "1", which are inclusions of new clients,

containing data such as the new client's number, the date of the inclu-

sion, the name and address of the new client, and the pertaining present

balance:

- 122 -

001 1 280852 mar tina w. fe1icitas 6 new happiness lane 606660 I I I I I I I I I I I I I I - balance I I I - address I I I - name
I I - date inclusion
I - transaction code
- client's number

Secondly, those of type "2", which are alterations of client's data,

where the value of deposits or withdrawals is conveyed, but also where

information on changes to be made to existing data is supplied (e.g.

correction of a client's name and/or address):

006 2 291283 5678 ruddersville w. 000120
I I I I I I I I no correction for name I - credit
I I I I I I I - change of address
I I - date transaction
I - transaction code
- client's number

Lastly, those of type "3", which are exclusions of clients, containing

client's number and date of exclusion.

011 3
I I
I I

060683
I
I

I I - exclusion date
I - transaction code
- client's number

An "inclusion" of a new client (transaction type "1") presupposes

that the client is not yet in the "master" file, and therefore creates a

client record containing information such as client number, date of

creation of the record, name and address of the client, and current ba1-

ance.

- 123 -

An "alteration" of a client record (transaction type "2") presup­

poses that the client exists in the "master" file. The data to be

al tered is optional, such as name and/or address. In the case of an

withdrawal, the value of the debit is preceded by a minus sign ("-"),

whereas for a deposit, only the value is specified.

Finally, an "exclusion" (transaction type "3") has the prerequisite

that the balance of the client to be excluded must be zero. The client

and all the respective data are removed from the "master" file.

The Banking program is divided in three main parts, namely: "val i-

date", "sort", and "update".

The "validate" routine (seen in Figure 8.2) validates the informa­

tion given in the transactions, such as client number, type and date of

transaction, client balance, value of the credit or debit (deposit or

withdrawal), etc. It discards those transactions where one or more

errors have been found, besides listing them. Those records which were

successfully validated, are kept and used in the routines "sort" and

"update". The "validate" routine in BASIX can be seen in Figure 8.2.

- 124 -

(***)
(* validate - validates daily transactions input *)
(***)
validate: (

(* procedure okdate verifies if date is valid *)
okdate: (

) ;

if
transrec/3/2 = 2 -)

if (transrec/3/1 < 1) or (transrec/3/1) 29) -)
errorflag:= 'true;

fi;
(transrec/3/2 4) or
(transrec/3/2 6) or
(transrec/3/2 9) or
(transrec/3/2 11)-)
if (transrec/3/1 (1) or (transrec/3/1) 30) -)

errorflag:= 'true;
fi;

(transrec/3/1 (1) or (transrec/3/1) 31) -)
errorflag:= 'true;

fi
if errorflag = 'true -) 'false; 'true; H;

(* procedure nameok verifies if name is alphabetic *)
nameok: (

for i = 1 to 20 do
(if not «transrec/4/(i))= 'a) and

(transrec/4/(i) (= 'z» or
(transrec/4/(i) "") or
(transrec/4/(i) = "."» -) errorflag:= 'true;

fi);
rof
if errorflag = 'true -) 'false; 'true; fi;

) ;
(* procedure addressok verifies if address is alphanumeric *)
addressok: (

for
(if

fi);
rof

i =
not

1 to 20 do
«(transrec/5/(i))=

(transrec/5/(i) (=
«transrec/5/(i))=

(transrec/5/(i) (=

(transrec/4/(i)
(transrec/4/(i)

'a) and
'z» or
'0) and
'9» or
II II) or
"."»_) errorflag:='true;

if errorflag 'true -) 'false; 'true; fi;
) ;

(* main body of validate *)
i:= 1;
errorflag:= 'false;
transindex:= 1;
e rrorindex: = 1;
temptrans .- ();
tempindex := 1;
do

(transrec:= transfile/(transindex)j

)

- 125 -

transindex:= transindex + 1;
transrec/1 <> 999) -)
(if

(transrec/1)= 1) and (transrec/l <= 100) and
(okdate() = 'true) -)
(if
transrec/2 3 -) (temptrans/(tempindex):= transrec;

transrec/2 1-)
tempindex:= tempindex + 1);

(if (transrec/4 <> (» and
(nameok() = 'true) and
(transrec/5 <> (» and

(addressok()='true)-)(temptrans/(transindex):=transrec;

fi);
tempindex;= tempindex + 1);

transrec/2 = 2 -)
(if «transrec/4 () or

fi) ;
fi) ;

nameok() = 'true) and
(transrec/5 = () or
addressok()='true)-)(temptrans/(transindex):=transrec;

tempindex:= tempindex + 1);

(if errorflag 'true -) (errorfile/(errorindex):= transrec;
errorindex:= errorindex + 1;

fi);
fi) ;

od
temptrans/(tempindex):= transrec; (* terminator 999 *)
transfile:= temptrans;

Figure 8.2: Validate - validates daily transactions

The "sort" routine reads the file which contains the validated

transactions for the banking system, sorting them is ascending order by

client number and transaction type. The code for the "sort" routines in

BASIX can be seen in Figure 8.3. This example uses a simple linear

selection with exchange sort algorithm to sort the records of the input

file, based on the fields "transfile/ () /1" and "transfile/ () /2", output-

ting the resulting sorted records.

- 126 -

(***)
(* sort - sorts daily transactions input *)
(***)
sort: (i: = 1;

)

do
transfile/(i)/1 <> 999 -)

(j := i + 1;
do
transfile/(j)/1 <> 999 -)
(if (transfile/(i)/1) transfile/(j)/l) or

«transfile/(i)/1 transfile/(j)/l) and
(transfile/(i)/2) transfile/(j)/2» -)

(
temp:= transfile/(i);
transfile/(i):= transfile/(j);
transfile/(j):= temp

);
fi;

j:=j+l);
od;

i:=i+l);
od;

Figure 8.3: Sort - sorts daily transactions input

Lastly, the "update" routine (shown in Figure 8.4) updates the

"master" file wi th the validated, sorted transactions. Updates in the

"master" file are of three basic types: i) inclusion of a new client;

11) alteration of an existing client's data, and iii) exclusion of an

existing client. The routine "update" in BASIX can be seen below.

- 127 -

(***)
(* update - updates Master Fi-Ie with validate, sorted daily transactions *)
(***)
update : (

procupdate : (if transrec/2 = 1 -) errorflag .- 'true;
transrec/2 = 2 -)

fi
) ;

(newrec/3 := transrec/3
if transrec/4 <> () -> newrec/4:= transrec/4 fi;
if transrec/5 <> () -> newrec/5:= transrec/5 fi;
newrec/6:= newrec/6 + transrec/6;

) ;
transrec/2 = 3 ->

(if exclflag 'false -> exclflag:= 'true;
errorflag:= 'true;
fi);

transindex
old index
newindex
transrec
oldrec
newfile

.- 1;
:= 1;
:= 1;
:= transfile/(transindex);
:= oldfile/(oldindex);
:= ();

do
(oldrec/l
if

<> 999) or (transrec/l <> 999) -)

oldrec/l < transrec/l -)
(newfile/(newindex):= oldrec;
newindex:= newindex + 1;
oldindex:= oldindex + 1;
oldrec:= oldfile/(oldindex»;

oldrec/l) transrec/l -)
(if transrec/2 = 1 -)

(errorflag:= 'false;
exclflag := 'false;
newrec := transrec;

do

fi

(transindex:= transindex + 1;
transrec:= transfile/(transindex);
newrec/l = transrec/l -) procupdate();

od;
if (errorflag = 'false) and (exclflag = 'false) -)

(newfile/(newindex):= newrec;
newindex:= newindex + 1)

fi;
errorflag:= 'true;

if errorflag = 'true -)
(errorfile/(errorindex):= newrec;
errorindex:= errorindex + 1;

fi;
)

) ;

oldrec/1 = transrec/l -)
(newrec:= oldrec;

oldindex:= oldindex + 1;

)

fi;
od

) ;

- 128 -

oldrec:= oldfile/(oldindex»;
errorflag:= 'false;
exclflag:= 'false;
do newrec/l = transrec/l -)

(procupdate();

od;

transindex:= transindex + 1;
transrec:= transfile/(transindex);

) ;

if (errorflag = 'false) and (exclflag
(newfile/(newindex):= newrec;
newindex:= newindex + 1

)
errorflag = 'true -)

(errorfile/(errorindex):= newrec;
errorindex:= errorindex + 1;
) ;

fi

newfile/(newindex):= oldrec; (* terminator 999 *)

Figure 8.4: Update - updates "Master File"

'false) -)

Appendix A.4 contains a complete listing of the Banking System, together

with a sample run.

8.1.3. Assessment

In general, BASIX proved to be quite a reasonable language for pro-

gramming the Banking System. This was helped by the fact that the von

Neumann model is a subset of the decentralised control flow model, and

the addressing scheme makes use of concepts similar to those of the UNIX

operating system. The Banking System showed the addressing scheme to be

a powerful tool in accessing the various contexts. Problems do arise

with addressing, one is the impossibility of specifying a numeric string

or expression as the only selector of a name such as differentiating

between "I" the number and "1" the name. In order to solve this prob-

lem, "./1" is used to indicate the "name", and "1" remains as the

"number". Another problem is that for the object:

- 129 -

a: (•.. i: (9) ••• 9: (20)

the name "a/1°" gO th" 0" "9" lves e 1 component , whereas the name "a/(i)"

uses the contents of "i" as the selector, giving "20". This might prove

confusing for "traditional" programmers.

8.2. EXPERT SYSTEM

Next, an Expert Systems application is examined.

Recall, this application is coded in a (major) subset of the

language which is supported by the current BASlX interpreter [401. The

restrictions of the current BASIX implementation include:

1. GOTOs are not supported, due to problems of implementing

"name:object" pairs.

2. code declarations must be quoted "name: QUOTE code" to stop the

3.

right hand-side object being evaluated by the interpreter.

commands must be separated by explicit controls II. If , and "&",

because "newline" must be interpreted differently in code and data.

8.2.1. Description of Application

This Expert System application is a simple rule-based expert system

for the identification of animals, taken from an article by Richard Duda

and John Gaschnig [20], and re-coded in BASIX. The expert system writ-

ten by Duda and Gaschnig implements a simple version of the backward-

chaining procedure used in another (medical) expert system called MYCIN.

It is based on a set of fifteen rules for the identification of animals

[20].

- 130 -

Each rule has the form:

Format

«name> «a> ••• <a» «c> ••• <c»)

Example

(R6 ("HAS POINTED TEETH" "HAS CLAWS" "HAS FORWARD EYES") ("IS CARNIVORE"»

The name of the rule is not fixed (it can be any appropriate string).

The antecedents <a> and the consequents <c> are delimited strings that

correspond to propositions about the animal that may be either true or

false. Should all antecedents be true, the program can use the rule to

assert the truth of all consequents. Besides the rules, a set of

hypotheses is also used (e.g. the animal is either a tiger, or a

penguin, etc.). The aim of the program is to decide if one of the

hypotheses is true, and a diagram of the way it works is shown below.

In Figure 8.5, assertions are represented by boxes; ways of making com­

binations with assertions are the circles; and the rules are identified

by Rl, R2, etc.

- 131 -

Icheetahl Igiraffel Izebral lostrichl I penguinl I albatrossl

ungulate

mammal carnivore

Figure 8.5: A diagram of the expert system for identifying "animals"
(reproduced from reference [20])

8.2.2. Description of Program

As in the Duda and Gaschnig [20] program, the BASIX version tries

each hypothesis separately. For each hypothesis, the program consul ts

the set of rules to see if the hypothesis can be deduced. If a deduc-

tion can be made, the antecedents for the relevant rules become new

sub-hypotheses to be established, and the program looks for rules for

ded ucing these antecedents. The descriptions of the variables used in

- 132 -

the program can be seen below in Figure 8.6, followed by the program's

main loop coded in the Executable Subset, which can be seen in Figure

8.7.

(* queries = array of asked questions *)
(* facts array for facts *)
(* hypo = array for top-level hypothesis *)
(* curhyp current top-level hypotheses *)
(* q array of rule numbers for deducing a goal hypothesis *)
(* rules array for rules *)
(* currule current rule index *)
(* curante current antecedent *)

Figure 8.6: Usage of Objects in Expert System

As it can be seen in Figure 8.6 in the Expert Systems program, the

object "queries" stores the asked questions while "facts" keeps the

facts. By using the built-in function of the BASIX interpreter called

LIMIT, it is possible to establish how many facts have been recorded,

and how many questions have been asked. The object "hypo" stores the

top-level hypothesis in the expert system, and "curhyp" stores the

current top-level hypotheses. The rule numbers for deducing a goal

hypothesis are kept in "q", and the rules themselves are stored in

"rules". The objects "currule" and "curante" store the current rule

index and the current antecedent.

- 133 -

SYSOUT:= QUOTE "Hello!";
IF (LIMIT rules) = 0 -> SYSOUT:= QUOTE "No rules.";

(LIMIT rules) > 0 ->
(IF (LIMIT hypo) = 0 -> SYSOUT:= QUOTE "No hypotheses.";

(LIMIT hypo) > 0 ->

FI);

(SYSOUT: = QUOTE "I wi 11 use my ";
SYSOUT:= LIMIT rules;
SYSOUT:= QUOTE" rules t t t bli h II. o ry 0 esta s one of the following ,
SYSOUT:= LIMIT hypo;
SYSOUT:= QUOTE" hypotheses.";
FOR i IN 1 TO LIMIT hypo DO
(SYSOUT:= name; SYSOUT:= hypo/(i»;
ROF;
DO (facts: 0;

queries: 0;
done: FALSE;
curhyp: 1;
DO (NOT done) AND (curhyp <= LIMIT hypo) ->

(r: verify hypo/(curhyp) 1 1;
IF NOT r -> curhyp:= curhyp + 1;

r -> (SYSOUT:= QUOTE "I conclude that ";
SYSOUT:= name;
SYSOUT:= hypo/(curhyp);
done:= TRUE);

FI) ;
OD;
IF NOT done ->

SYSOUT:= QUOTE "No hypothesis can be confirmed.";
FI;
SYSOUT:= QUOTE "r (restart) or q (quit) ?";
DO (response: SYSIN;

OD;

(response <> QUOTE "r") AND (response <> QUOTE "q"» -)
TRUE;

response = QUOTE "r") -) TRUE;
OD) ;

Figure 8.7: Main Loop of Expert System

A search, chaining backwards through the rules, is made, and if no

deductions can be achieved, the program asks the user if the sub-

hypothesis it is working on is true.

As it can be seen on Figure 8.7 above, the main loop of the expert

system se ts up the arguments, and calls "verify" to establish the truth

of "hypo/(curhyp)" and returns the answer, which is stored in "rtf. If

no answer is found, a message saying that no hypothesis can be confirmed

- 134 -

is printed. In case an answer is found, a conclusion is given, and the

user is asked to restart or quit.

The main routine in the program is called "verify", and it can be

seen in Figure 8.8.

verify: QUOTE (fact: ./1;
currule: ./2;
curante: ./3;
q: 0;
r: recall fac t;
IF NOT r -> (inthen fact;

FI;
r);

IF (LIMIT q) = 0 -> r:= ask fact currule curante;
(LIMIT q) <> 0 ->

(i: 1;
DO (done: tryrule q/(1);

IF NOT done -) 1:= 1 + 1; FI;
(NOT done) AND (1 <= LIMIT q» -> TRUE;

00;
r:= done);

FI);

Figure 8.8: Verify Facts in Expert System

Its function is to establish the truth of a hypothesis or sub-

hypothesis, represented by the argument "fact". If the truth of "fact"
')

has already been recorded, "verify" returns immediately. If there are

no rules for deducing "fact", and if "verify" has not asked the' user

about "fact", it then asks. Otherwise, "verify" applies "tryrule" to

each of the rules in turn, until it either finds a successful answer or

there are no more rules left.

Other important subroutines are "inthen", which finds all the rules

that have fact "fact" as a consequent, and subroutine "ask", which asks

the user about "fact" and explains why it is asking. The subroutine

"remember" records facts, and subroutine "testif" checks antecedents to

see if rule "rule/(currule)" is applicable. "Rule" is applied by sub-

routine "usethen", which also prints new deductions.

- l35 -

A complete listing of the Expert Systems program, in the executable

subset of BASIX, is given in Appendix A.5.

8.2.3. Assess.ent

Unlfke in the Banking application program, where specific fields of

a conventional record were being dealt with, in the Expert System pro-

gram no urgent need to explicitly name fields was felt. In fact, most

data was communicated using global variables as in BASIC. Access to

stacks and arrays in BASIX is very similar to that in BASIC (e.g. s$(s1)

= x$ in BASIC, and facts/(k) := fact in BASIX). The main difficulty was

fel t in "mimicking" the control struc ture of the original program [20],

such as the extensive use of "gosub" made in the BASIC version. As Full

BASIX does not have "gosub/return" statements, artificial labels would

have had to be created and placed at the beginning of certain state-

ments, to simulate control transfers and calls:

"artificial"
I
I

0790

0820

labels
I
I

goto 0820

$/O[]:= 'RESTART OR QUIT (R OR Q)' (* print *)

For this reason the Expert System was coded to take advantage of some of

the main features of BASIX (such as recursion) and to demonstrate the

executable subset. The Executable Subset version, as would be expected,

is considerably shorter and easier to understand than the original pro-

gram [20] in BASIC.

- 136 -

8.3. ANALYSIS AND ASSESSHENT

Before presenting this assessment of BAS IX, it should be again

noted that BASIX is a low-level system language (cL C - but without

facilities such as data types), rather than a high-level language (cf.

PROLOG), specifically designed to fully "mirror" the decentralised con­

trol flow programming model. In general, BASIX proved to be a reason­

able language in which to program, even in such two diversified fields

as Banking and Expert Systems. The fact that the von Neumann model is a

subset of the decentralised control flow model was made clear by the

example programs. Next, the main concepts of BASIX will be accessed in

turn, starting with information representation.

The single concept of an object representing files and variables,

etc. is powerful, combining attributes of the UNIX Shell with those of

LISP and BASIC.

In terms of addressing, the contextual addressing concepts prove

flexible in accessing the various contexts and are reasonably natural to

work with. However, this contextual addressing could prove tricky to

use, (at least at early stages) by traditional programmers (especially

those working in a commercial environment). An example is the differ­

ence between "tr/i" and "tr/(i)"; the former accesses a subsidiary

object with explicit selector "i:(•••)", while the latter uses the con­

tents of "i" as the selector. Other addressing problems relate to the

different types of selectors. One of them is the impossibility of

specifying a numeric string or an expression as the first or only selec­

tor of a name due to parsing problems. For example, it is difficult to

differentiate "9" the number from "9" the name, unless some additional

identification tag is applied. This is currently achieved in BASIX, by

- 137 -

using the special selector "." to define a name ". /9". Another area

requiring further study is the relationship between control of contex-

tua1 addressing in programming languages and in operating systems. In

BASIX, this involves the interaction between the special selectors (i.e.

"$" " " "" "/") th 1" " 1 , .., ., at exp 1C1t y specify a contextual address, as

opposed to some implicitly defined automatic search of surrounding con-

texts. This addressing problem is discussed in detail in [40].

Related to the addressing of objects is the support of both "shared

memory" and "message passing" data mechanisms. If an object is accessed

by "name", then it is treated as a variable, and if accessed by "name[]"

it is treated as a message. This syntax and semantics have proved rea-

sonab1e to work with in other examples, and is in practice quite power-

fu1 to use [27,28].

Next, the representation and execution of programs. Since BASIX

embodies procedural programming, its syntax and semantics are relatively

traditional. There are, however, two problem areas: the first is the

conditional and repetitive commands, and the second is the control

operators ";", "newline", "I" and "&". The conditional and repetitive

commands , although having the traditional function have ,in BASIX, been

designed to span more conventional commands (e.g. IF-THEN, IF-THEN-ELSE,

IF-THEN-ELSEIF-ELSE, WHILE-DO, REPEAT-UNTIL etc.) with the same basic

set of constructs (e.g. IF-FI, DO-QD). In practice these constructs, in

particular the "do-od", have proved difficult to use by those already

acquainted with conventional languages. For the control operators, the

problem relates to the "newline" which implicitly defines sequential

execution. One of the aims of the BASIX language, like LISP, is to

d d "h Y UnfortunatelY, in the represent programs an ata 1n t e same wa •

current BASIX system, "newline" is an operator in programs, but should

- 138 -

be invisible in data. For this reason, explicit terminators are used in

the executable subset of BAS IX.

The major (and justifiable) criticism of BASIX 2 is that the

designers have been over-ambitious, making the syntax too recursive,

which has resulted in a somewhat confusing semantics. In addition.

although "object" is a central concept in BASIX languages, this is not

reflected in the BASIX 2 syntax.

In BASIX languages there are essentially four types of object:

expression
statement
({objects} •••)
local_name:object

An expression consists of one or more simple objects. separated by

operators. A statement is a list of objects whose leftmost object is a

keyword or the name of a program object. A bracketed list of objects

may be code or data. Lastly, comes the declaration of a "name :objec t"

pair in the local context.

Control statements were identified as a problem area. For control

statements, one simple strategy is to adopt Dijkstra's Guarded Commands

[21] :

IF {expression -) command} ••• FI
DO {expression -) command} ••• OD

however a compromise is made with "GOTO", by restricting it to a

local context:

GOTO local name

- 139 -

Names and selectors were also a problem area, both for syntax and

semantics. A proposal is to define "names" as either:

local name{.selector} •.•
${.selector} •••

where "local name" is an alphanumeric character string, "$" identifies

parameters, and "selectors" consist of:

local name
numeric
(expression)

This division should simplify both the syntax and semantics.

Finally, as illustration of the effect of these changes, Appendix

A.3 contains the syntax of the improved BASIX.

- 140 -

CHAPTER. 9 - BASAL PllOGIWDlDlG LANGUAGE

This chapter presents the BASAL programming language, which is used

to investigate languages (at the opposite end of the spectrum from

BASIX) embodying a primitive form of decentralised control flow model.

9.1. DESIGN PHILOSOPHY

The programming model of the BASAL language [26], and of the RIMMS

multi-microcomputer system [25], implements a subset of decentralised

control flow. Its principles are:

1. computer - a network of microcomputers, each comprising a primitive

processor and memory;

2. memory - a linear organisation of fixed-size memory cells;

3. addressing - a two-level address space, defining a micro and its

local memory;

4. program - a low level machine language, where instructions consist

of primitive operators and operands;

s. communication - shared memory and message passing;

6. execution - sequential and parallel control of computation.

- 141 -

Thus, the programming model can be seen as falling between that of the

von Neumann model and the decentralised control flow model, described in

Chapter 6.

RIMMS (as introduced in Chapter 2) consists of identical component

microcomputers with a 16-bit word size: each register, data element and

address is 16 bits. Instructions, however, are 2 x 16 bits and use a

3-address format. There are less than 20 operators. Each microcomputer

in the multi-microcomputer system is addressable (has a unique address),

and behaves as a combined memory and processor that is able to service

load, store and execute operations. Design of the multi-microcomputer

system centres around the 16-bit global address space. An address con­

sists of two parts: the high 8 bits define a specific microcomputer,

while the low 8 bits define a word in that microcomputer's memory.

Although a microcomputer can access any word in the global address

space, an attempt to execute alien code causes execution to transfer to

the specified microcomputer.

BASAL is a parallel language (based on a subset of decentralised

control flow) that extends BASIC and can be used for programming the

RIMMS multi-microcomputer systems. It extends BASIC in four ways,

firstly global or local identifiers may be used for names and labels;

secondly both "shared memory" and "message passing" communication of

data is supported; thirdly a new command "MICRO micro_name" causes all

subsequent commands to be interpreted in microcomputer "micro_name"; and

lastly, a program consists of a series of commands separated by con­

troIs: ";" and "newline" define sequential execution (of the two adja­

cent commands) while "&" defines parallel execution.

- 142 -

Before presenting the design and implementation of the BASAL pro­

gramming language (produced by the author), the RIMMS design (of Foti et

a1 [25]) is described.

9.2. R.IDS HULTI-HICB..OC(BfiJ(JTER. SYSTEK

Traditionally, the trend in designing microprocessors and mainframe

computers has been towards increasingly complex instruction sets and

associated architectures [29]. In contrast, designs based on the so­

called reduced instruction set [41,42] philosophy have a simple set of

instructions, and a correspondingly simple machine organisation tailored

to the efficient execution of these instructions. The aim of the ongo­

ing RIMMS project is to design the simplest conventional microcomputer

with primitive communications mechanisms that is able to form a com­

ponent of a tightly-coupled multi-microcomputer system. The architec­

ture of RIMMS is described in terms of two levels of machine: the

multi-microcomputer level handles inter-process(or) communication sup­

porting non-local load, store and execute operations; and the microcom­

puter level services these operations and handles the atomic execution

of a single process.

9.2.1. Hul.ti~croca..puter

RIMMS consists of a linear array of up to 255 microcomputers that

communicate via a shared bus, as shown in Figure 9.1. Each microcom­

puter has a simple processor and 256 words of local memory.

- 143 -

--

8-bit global address

1: I 2: I

1 processor 1 I processor 1
1-------------1 1-------------1
I memory I 1 memory 1
1(8-bit local 1 1(8-bit local I

1 address) I 1 address) I

Figure 9.1: Multi-Microcomputer System

The system has a 16-bit address space:

address
global (8 bits) local (8 bits)

microcomputer 1 memory cell

Figure 9.2: RIMMS Address

255: I

I--~:~:=~:~:--I
I memory I
1 (8-bit local I
I address) I

The top 8 bits is a global address (in the range 1-255) defining a

microcomputer, while the bottom 8 bits is a local address (in the range

0-255) defining a word in its memory. (Global address 0 is the default

for specifying the current local address space and is therefore not

recognised at the Multi-Microcomputer level.)

When one microcomputer wishes to communicate with another, for

example to access its local memory, the microcomputer generates a

"packet". The format of a packet, as shown in Figure 9.3, consists of a

2-bit operation field, a 2x8-bit destination address, and a 16-bit

operand. The 4 operations are: load from memory (LOAD), store into

register (STORE_REG), store into memory (STORE_HEM), and execute

instruction (EXECUTE).

2 bits

- 144 -

global
8 bits

local
8 bits 16 bits

--
I operation I address operand
--

Figure 9.3: Multi-microcomputer packet format

The packet operations are defined as follows:

LOAD - copies the contents of MEMORY [address) to the microcomputer's

register defined by the 16-bit operand. This is implemented by the

destination microcomputer generating a STORE REG packet.

STORE_REG- places the operand in the microcomputer's register defined by

the address.

STORE MEM- places the operand into the MEMORY[address).

EXECUTE- starts a new process whose code is at MEMORY [address) and data

environment is at MEMORY[operand).

For all these packets the global address defines the destination micro-

computer.

Microcomputers take turns to send a packet on the bus. When a

packet is sent the destination microcomputer may accept or reject the

packet. In either case the source microcomputer relinquishes the bus.

If rejected, the source microcomputer will re-attempt to send the packet

at its next turn to use the bus. Whether a packet is accepted or

rejected depends on the status of the processor and memory of the desti-

nation microcomputer. In simple terms, load and store operations may be

serviced by the memory concurrently with the operation of the processor.

However an execute packet may only be accepted when the processor is

idle, having completed the execution of its previous process. Figure

- 145 -

9.4 lists the complete rules for processing packets.

Packet Received

LOAD STORE REG STORE HEM EXECUTE
Processor Status

BUSY
EXECUTING error reject

• WAITING accept reject

IDLE error accept

Memorl Status
BUSY reject reject reject reject

IDLE accept accept accept accept

Figure 9.4: Microcomputer Status versus Packet Received

In Figure 9.4, the term BUSY EXECUTING specifies that the processor is

executing instructions, and BUSY WAITING specifies that the processor is

executing but temporarily waiting for an operand to be loaded from a

memory.

Next, the architecture of a microcomputer is examined.

9.2.2. Microcomputer

A RIMMS microcomputer consists of three basic components: the local

memory of up to 256x16-bit words, the memory controller, and the 16-bit

processor for arithmetic, as illustrated by Figure 9.5.

bus

1 Processor 1 Memory 1
1 (ALU + registers) 1 Controller 1
1---1
1 local memory I
1 256 x 16-bit words 1

Figure 9.5: Microcomputer

- 146 -

The memory controller is connected to the global bus, and to the

local processor and memory. It supports communication, in the form of

Packets, between these three units. To hold k h a pac et, t e memory con-

troller has 3 registers: a 2-bit memory operation register, a 16-bit

memory address register, and a 16-bit memory data register (see Figure

9.6).

memory operation register
memory address register
memory data register

MOP
MAR
MDR

Figure 9.6: Memory Controller Registers

(2 bits)
(16 bits)

These registers correspond to the operation, address and operand fields,

respectively, of a packet.

When a memory controller is idle it can receive a packet either

from the local processor or from some other microcomputer. A packet

from the processor can be destined for the local memory or for another

microcomputer, whereas a packet from the bus can be destined for the

local processor or memory. A packet's destination is specified by the

top 8 bits of the address in MAR.

The processor, the last component of the microcomputer, consists of

an arithmetic logical unit (ALU) and seven registers supporting a I6-bit

word size. Each register, data element and address is 16 bits.

Instructions, however, are 32 bits and use a 3-address format. Figure

9.7 shows the 7 registers of which only the first two are addressable.

program counter
data register

instruction registers
ALU register 1
ALU register 2
ALU register 3

Figure 9.7: Processor Registers

C
D

11,12
Al
A2
A3

(16 bits)
(16 bits)

(2x16 bits)
(16 bits) ,

- 147 -

C the program counter points to the local code currently being executed.

D the data register points to the current data environment which may be

anywhere in the address space. 11,12 holds the current 32-bit instruc-

tion. Al,A2,A3 are the input registers to the ALU, holding the current

instruction's operands. Their contents have no meaning from one

instruction to the next.

An instruction's format, as illustrated by Figure 9.8, consists of:

a 5-bit operator field, 3xl-bit mode (Mi) fields, and 3x8-bit operand

(Oi) fields. Modes and arguments are interpreted as follows. If the

value of mode bit Mi=O then the corresponding 8-bit operand 01 is

treated as a literal. Oi is sign extended to 16 bits and the resulting

argument is placed in the corresponding ALU register Ai. If the mode

bit Mi=l then the 8-bit operand Oi is treated as a signed displacement

relative to the data register D. The resulting address D+<>i is de-

referenced (via the multi-microcomputer level if necessary) and the

memory contents is placed in the ALU register Ai. Notice that the modes

and operands are interpreted independently both of the operator and of

whether they are to be used for input and output by the ALU. However,

the operator does determine how many of the three arguments are used by

the ALU.

Ml M2 M3
5 bits 1 1 1

o literal

01
8 bits

02
8 bits

1 address (memory [D+ signed literal])

Figure 9.8: Microcomputer-Instruction Format (32 bits)

03
8 bits

- 148 -

The ALU supports only two information types: 16-bit integers (2's

complement) and booleans (TRUE=FFFF, FALSEOFFFF), and following the

reduced instruction set philosophy only a minimal set of operators are

provided. These operators are listed in Figure 9.9.

°Eeration Mnemonic

arithmetic ADD
SUB

logical AND
OR
NOT

shift LSHIFT
ASHIFT

compare EQ
GT

control IF
FORK
HALT

movement MOVE
STORE C
LOAD D
STORE D

Figure 9.9 Processor Instruction Set

Description

logical shift
arithmetic shift
equals
greater than
if TRUE jump
fork flow of control
halt processor
move argument to address
store program counter
load data register
store data register

Finally note that the reason for choosing a 3-address instruction

format and only two addressable registers is to minimise the state

information that needs to be moved from one microcomputer to another,

when control is transferred.

9.3. BASAL PROGRAMMING LANGUAGE

BASAL is a parallel language (based on a subset of decentralised

control flow) that extends BASIC, and can be used for programming

multi-microcomputer systems having the RIMMS philosophy. BASAL extends

BASIC in four ways:

- 149 -

1. multiple processes/processors

2. a two-level address space for names and labels

3. shared memory and message passing communication of data

4. parallel execution from the "&" statement terminator

9.3.1. Description

In BASAL, a program consists of a series of commands separated by

controls: ";" and newline define sequential execution (of the two adja-

cent commands), while "&" defines parallel execution. The description

of BASAL can be divided into four levels: i) commands; ii) statements;

iii) expressions; and iv) identifiers (i.e. labels and names). In the

following description "{ }" defines zero or one occurrences, and "{

} ••• " defines zero or more occurrences, of the enclosed information.

Commands in BASAL are of three types:

MICRO micro name
local label-statement
statement

For the "MICRO micro name" command, all instructions following that key-

word command are executed by the microcomputer "micro name". The

labelled statement "local label statement" is similar to the BASIC one,

being stored for later execution, with the "local_label" providing the

reference in the corresponding micro. The "statement" is also similar

to BASIC, in the sense that it is executed immediately.

Statements in BASAL have much in common with BASIC, being either an

expression or a command whose leftmost argument is a keyword:

- 150 -

expression
DIM local_name (integer {, integer} •••)
LET name = expression
IF expression THEN local label
FOR local_name = expression TO expression
NEXT local name
GOTO label-
GOSUB label
RETURN
STOP
END

"Expression" returns the result in place. "DIM local name

(integer { , integer} •••)" declares an array of the specified dimensions,

designated by a name local to the current micro where it is being

declared.

The statement "LET name = expression" is the assignment statement

in BASAL, and can assign a value to a variable in any micro. The condi-

tional statement "IF expression THEN local_label" provides the language

with decision making ability, transferring control to the "local-label"

if the the expression is true. In "FOR local name = expression TO

expression", repetitive execution of the enclosed expressions is pro-

vided. This statement is connected with the "NEXT local name" state-

ment, which indicates the end of the corresponding loop. Clearly, the

"local name" in "NEXT" must be exactly the one used after the "FOR" k.ey-

word.

The "GOTO label" statement causes unconditional control transfer to

the specified label, while the "GOSUB label" statement is the BASAL

equivalent of a procedure call. For "GOTO" and "GOSUB" a "label" may

identify a statement in the calling micro or any other micro. The

"GOSUB" statement is used in connection with the "RETURN" statement,

which returns control to the statement immediately after the calling

"GOSUB" statement. The two final statements are the "STOP" statement,

- 151 -

that causes a microcomputer program to terminate and the "END" state-

ment, which marks the end of a BASAL program.

Expressions in BASAL can be of seven different kinds:

number
name
"character"
expression

(expression)
expression operator expression
?

Here, a "number" can be any integer number; "name" is an identifier

(local or global) of a variable, message or array element; "charac ter"

can represent any ASCII character, but must be enclosed in double

quotes; "_expression" represents the negation of the result of an

expression (note that the sign is an underbar and not a minus, since

there would be no way of telling apart an unlabelled statement composed

of an arithmetic subtraction operation, from a labelled statement com-

mencing by a negative expression):

10 -2345 from 10 -2345

number
(not label)

arithmetic
subtraction

label negative expression

"(expression)" represents a bracketed expression; "expression operator

expression" allows the representation of arithmetical, logical and con­

ditional expressions; and finally, "?" identifies an empty data loca-

tion.

Labels in BASAL have the following format:

(micro name.}local label
<micro-name) ::: A:.Z
<local=label)::: 01 •• 79

where "{}" indicates an optional field. Thus. a global label consists

- 152 -

of "micro name.local label" (e.g. "A.Ol"), and a local label consists of

"local_label" (e.g. "01"). N ti (b f h o ce ecause 0 t e implementation) that

labelled statements may only be labelled with a local label in the range

"01" to "79", whereas "GOTO" and "GOSUB" may specify either a global or

local label.

Names in BASAL have the following format:

{micro name.}local name{(expression{,expression} •••)}{[]}
<micro-name) ::= ~.Z
<local=name) ::= alphanumeric

A variable can be local (used inside the current micro): "local_name",

or global (used in another micro): "micro name.local name". A

"{micro_name.}" is a letter in the range of "A" to "Z", equivalent to a

micro (i.e. first micro is "A", second is "B", etc.), and "local name"

is any alphanumeric identifier.

To indicate access to an array element, the

" { micro_name. } local name" is followed by one or more expressions

enclosed in brackets, and separated by commas:

{micro_name.}local_name(expression{,expression} •••)

To distinguish between "shared memory" and "message passing", to indi-

cate message passing, the "[]" symbol is used in the form:

{micro_name.}local_name{(expression{,expression} •••)}[]

On the left of the assignment, it indicates a "PUT", and on the right

side a "TAKE" operation. Recall, the empty memory cell used with "PUT"

and "TAKE" is defined by the "?" symbol. Notice that PUT and TAKE

operate on a single memory cell, polling a cell until it is in the

correct state.

- 153 -

Operators in BASAL contain the four arithmetical operators (+ _ *

I), three logical operators (AND, OR, NOT), and six relational operators

«, <=, >, =>, <» • Finally, a complete syntax for the BASAL

language is given in Appendix A.6.

As the reader may have noted from the above descriptions of the

RIMMS multi-microcomputer and the BASAL language, the initial RIMMS does

not fully support BASAL (i.e. "message passing" is not implemented in

the hardware). Thus here the use of BASAL for programming "RIMKS-like"

systems will be discussed.

In BASAL, microcomputers are allocated in a way analogous to the

allocation of memory cells in a conventional computer. Thus two views

are offered to a programmer or compiler. Due to the shared 16-bit

address space, a system can be programmed as a single, sequential com-

puter (e.g. with up to 255x256 words of memory) or, more interestingly,

as a parallel computer (e.g. with up to 255 processors each with 256

words of memory). For instance a large sequential program, if allocated

consecutive memory locations, will span a number of microcomputers. As

control reaches the boundary of a microcomputer its program counter will

contain a non-local address, causing control to migrate to the next pro-

cessor.

For parallel execution, each process should be allocated a separate

microcomputer. These processes are started in BASAL using either GOTO

or GOSUB statements in conjunction with parallel controls "&":

GOTO B.ll &
GOTO C.22 &

GOSUB B.ll &
GOSUB C.22 &

These statements are implemented in RIMMS by "FORK" instructions; a FORK

may be thought of as a GOTO that not only transfers control but also

- 154 -

continues execution.

Having initiated a number of parallel processes, synchronisation of

their execution centres on three mechanisms which loosely equate to the

semantics associated with a memory location: (i) command, (ii) variable,

and (iii) message.

Code in a microcomputer is executed atomically by a processor, thus

behaving as an uninterruptable critical region which may be used to syn­

chronise access to shared data. In contrast, "LOAD" and "STORE" opera­

tions (giving the "shared memory" semantics) are unsynchronised and com­

pete for memory access. Lastly, "TAKE" and "PUT" operations support

"message passing" semantics and may be used to pass a sequence of one or

more values from a producer to a consumer process.

Since BASAL provides both types of data communication that are

found in computing, then the two common forms of parallelism (namely

shared memory and message passing) are supported. This is illustrated

by examining BASAL programs for Sort/Merge, shown in Figures 9.10 and

9.11. Each program consists of 3 processes: "A" and "B" which sort

their local arrays "V" into ascending order, and "c" which merges these

two arrays and stores the results in its own array "V".

In Figure 9.10 communication between the 3 processes is by shared

memory. Execution of each process is started by the unlabelled "GOTO

01" statement, which causes "A" and "B" to sort the contents of their

arrays, and "c" to initialise "COUNT" and then "STOP" execution. When

"A" and "B" finish execution each transfers control "GOTO C.03" to label

"03" in process "C". This causes the decrementing of "COUNT". (The

decrementing of "COUNT" works as a critical region because "c" is exe­

cuted atomically.) When both sorts are finished, "c" merges the two

- 155 -

arrays. In doing this "c" initially stores two terminators "32677", in

parallel "&", into the arrays and then uses the "FOR" loop to merge the

200 values.

MICRO A
01 DIM V(101)
02 FOR I = 1 TO 99
03 FOR J = 1+1 TO 100
04 IF V(I) (= V(J) THEN 08
05 LET TEMP = V(I)
06 LET V(I) = V(J)
07 LET V(J) = TEMP
08 NEXT J
09 NEXT I
10 GOTO C.03
GOTO 01

MICRO B
01 DIM V(10l)
02 FOR I = 1 TO 99
03 FOR J = 1+1 TO 100
04 IF V(I) (= V(J) THEN 08
05 LET TEMP = V(I)
06 LET V(I) = V(J)
07 LET V(J) = TEMP
08 NEXT J
09 NEXT I
10 GOTO C.03
GOTO 01

MICRO C
01 DIM V(200)
02 LET COUNT = 2
03 LET COUNT = COUNT - 1
04 IF COUNT <> 0 THEN 17
05 LET A.V(101) 32677 &
06 LET B.V(101) = 32677 &
07 LET I = 1 &
08 LET J = 1
09 FOR K = 1 TO 200
10 IF A.V(I)) B.V(J) THEN 14
11 LET V(K) = A.V(I)
12 LET I = I + 1
13 GOTO 16
14 LET V(K) = B.V(J)
15 LET J = J + 1
16 NEXT K
17 STOP
GO TO 01
END

Figure 9.10: BASAL (shared memory) Sort-Merge

- 156 -

In the second Sort/Merge, in Figure 9.11, "A" and "B" are very

similar to the corresponding processes in the previous example. The

difference is statement "09" which passes each of the sorted values, as

it becomes available, to "c" using message passing. Process "C", exe­

cuting concurrently with "A" and "B", then merges these values. Notice

statement "03" in "C", that locations "A" and "B" are accessed as vari-

ables (rather than messages) and repeatedly tested until both are non­

empty. Then depending on which is the smallest, either "A[]" or "B[J"

is accessed as a message and se t to empty so as to receive the next

value from its process.

- 157 -

MICRO A
01 DIM VOOO)
02 FOR I = 1 TO 99
03 FOR J = 1+1 TO 100
04 IF V(I) <= V(J) THEN 08
05 LET TEMP = V(I)
06 LET V(I) = V(J)
07 LET V(J) = TEMP
08 NEXT J
09 LET C.A[] = V(I)
10 NEXT I
11 LET C.A[] = V(100)
12 LET C.A[] = 32677
13 STOP
GOTO 01

MICRO B
01 DIM V(100)
02 FOR I = 1 TO 99
03 FOR J = 1+1 TO 100
04 IF V(I) <= V(J) THEN 08
05 LET TEMP = V(I)
06 LET V(I) = V(J)
07 LET V(J) = TEMP
08 NEXT J
09 LET C.B[] = V(I)
10 NEXT I
11 LET C.B[] = V(100)
12 LET C.B[] = 32677
13 STOP
GOTO 01

MICRO C
01 DIM V(200)
02 FOR K = 1 TO 200
03 IF (A = ?) OR (B = ?) THEN 03
04 IF A > B THEN 07
05 LET V(K) = A[]
06 GOTO 08
07 LET V(K) = B[]
08 NEXT K
09 STOP
GOTO 01
END

Figure 9.11: BASAL (message passing) Sort-Merge

Next, the implementation of the BASAL programming language will be

examined.

- 158 -

9.3.2. I.pl~ntatiOD

BASAL is implemented by a translator that takes in a parallel BASAL

program and outputs a sequential BASIC program. This BASIC program,

when interpreted, simulates the execution of the BASAL program. The

BASAL translator is written in PASCAL.

The translation of BASAL to BASIC poses a number of problems:

1. simulating the network of micros

2. handling the two-level address space

3. supporting the labelled and unlabelled statements

4 handling the "shared memory" and "message passing" data mechanisms,

and finally

5 simulating parallel execution

To simulate the network of micros , "micro_name", from command

"MICRO micro_name", is prefixed to all local_names e.g. "XYZ" becomes

(inside MICRO A) "A.XYZ". In addition, local labels are transformed

into global labels:

MMLLS

I I
I

micro I system
local

by being prefixed with the equivalent MICRO number (e.g. MICRO A =) 01,

etc.), and suffixed with a "system" label. Thus the two levels of

address space of BASAL are supported by mapping all local names into

global names, and local labels into global labels.

- 159 -

Thus each micro occupies a range of labels. For example, 01000 to

01999 is for MICRO A. To simulate the execution of multi-micros, cer­

tain ranges of labels are allocated for housekeeping functions, as shown

in Figure 9.12.

01000 GOTO PC(Ol)
01010 } labelled statements
01790

01799 GOTO 01998

01800 REM
01810 } unlabelled statements
01990

01998 LET PC(Ol) = 01999
01999 REM

Figure 9.12: Allocation of Labels for MICRO A

The statement labelled with "MMOOO" is the "GOTO PC(MM)", where "PC(MM)"

has the role of the program counter for micro "MM". This so-called pro-

gram counter contains the address of the next statement to be executed

whenever it is necessary to suspend execution.

Labelled statements are allocated labels in the range "MMOI0" to

"MM790". At the end of the labelled statements, comes labelled state-

ment "MM799", which is a "GOTO" that transfers control to the end of the

statements for this micro. This will cause "PC(MM)" to be set to label

"MM999", which will subsequently cause control to jump over this block

of statements.

Unlabelled user statements are allocated labels in the range

"MM810" to "MM900". Before execution the "PC" of each micro is initial-

ised to "MM800", causing the execution of any unlabelled statements.

- 160 -

The handling of "shared memory" and "message passing" mechanisms

will now be discussed. "Shared memory" semantics is directly supported

by BASIC. For "message passing", however, it is necessary to test that

a memory location is in the correct state, before the statement can exe-

cute. A BASAL statement of the following form should be considered:

22 LET Xl] Y[]

Here, the "X" defines a "PUT", and therefore the memory location must be

•
empty, and "y" defines a "TAKE", and therefore the location must be

non-empty, before the statement can execute. This is achieved by gen-

erating the following code:

01810 LET A.X = -32768

01220 LET PC(Ol) = 01220
01221 IF A.X <> -32768 THEN 01999
01222 IF A.Y = -32768 THEN 01999
01226 LET A.X A.Y
01227 LET A.Y = -32768

Figure 9.13: Code Generated to Support "Messages" Semantics

In the code in Figure 9.13, the "empty" state is represented by "

32786". For the "LET X[] = Y []" to operate, memory location "X" must be

initially set to "empty". This is achieved by generating an unlabelled

"LET" •

01810 LET A.X = -32768

as in Figure 9.13. Support of the actual assignment statement makes use

of the "system" field in the label. The first statement at label 01220

sets "PC(01)" to the address of the block of code. The next two state-

" " d h "A.Y";s "non-empty". If ments test that A.X is empty, an t at ...

either of these tests fails, then execution branches to the end of this

- 161 -

micro's code (when the code of this micro is next executed, control will

be transferred to retest this block of code). If both tests succeed,

then the assignment is made, and "Y" is set to "empty".

Next, the problems of simulating parallel execution must be dis­

cussed. This involves two considerations: firstly, that control cannot

be transferred to an alien microcomputer if the microcomputer is already

executing; and secondly, there is the support of "&" control. The first

issue will be considered: when "GOTO", "GOSUB" or "RETURN" are to make a

non-local transfer, it is necessary to test if the target microcomputer

is already ac ti ve. To support this, additional "housekeeping" informa­

tion is generated. This makes use of the following: the array "PC" of

program counters, and an array "STACK", which contains a stack for each

microcomputer, and an array "STACKPOINTER", which points to the

corresponding top of stack.

The code generated for "GOTO", "GOSUB", and "RETURN" will now be

examined:

- 162 -

GOTO B.01

01810 LET PC(Ol) 01810
01811 IF PC(02) <> 02999 THEN 01999
01812 LET PC(Ol) = 01999
01813 GOTO 02010
01814 REM

GOSUB B.01

RETURN

01810 LET PC(Ol) 01810
01811 IF PC(02) <> 02999 THEN 01999
01812 LET PC(Ol) = 01999
01813 LET STACKPTR(02) = STACKPTR(02) + 1
01814 LET STACK(02,STACKPTR(02» = 01816
01815 GOSUB 02010
01816 REM

02810 LET PC(02) = 02810
02811 LET I = STACK(02,STACKPTR(02»
02812 IF I = 02 THEN 02814
02813 IF PC(I) <> «I * 1000) + 999) THEN 02999
02814 LET PC(02) = 02999
02815 LET STACKPTR(02) = STACKPTR(02) - 1
02816 GOTO STACK(02,STACKPTR(02) + 1)
02817 REM

Figure 9.14: Code Generated to Support "GOTO", "GOSUB", and "RETURN"

For a non-local "GOTO", as shown in Figure 9.14, the local program

counter is initially set to the address of the block of code. Next, the

alien micro is tested to see if it is inactive (i.e. PC(MM) MM999).

If not, then execution of the current micro is suspended. If control

can be transferred, then the current micro is made inactive by setting

its PC to "MM999". The "GOTO" is then performed.

"GOSUB" is supported in a similar way, as shown in Figure 9.14. So

that it is possible to "RETURN" control, and in order to check the

status of the micro, "GOSUB" places the "label" of the current micro on

the top of the destination micros stack. This is shown as statements

01813-4 in the example. The use of this information is shown by the

- 163 -

code for "RETURN" on Figure 9.14.

Lastly, the "&" will be examined. This is only important when it

is used to terminate control statements. For example: "LET A = B & LET

D = B" is implemented sequentially by the translator. However, if a

statement like a "GOTO" is terminated by a "&", its semantics becomes

similar to a "FORK". Therefore, when the code for "GOTO" is generated,

and the statement is terminated by "&", the "PC" is set to the label of

the statement following the "GOTO". For example, in Figure 9.14 if the

statement had been "GOTO B.01 &", then the third line would have been:

01812 LET PC(01) = 01814

Whereas, if the "GOTO" is terminated by ";" or "newline", indicating

sequential execution (which could transfer control out of the micro, and

hence suspend its execution), then the "PC" is set to "01999" as above.

In the next chapter, an analysis and assessment of the programming

language BASAL will be made.

- 164 -

CBAPTEIl. 10 - ANALYSIS OF BASAL

This chapter is an analysis of the BASAL programming language. As

a vehicle for this analysis, the Quicksort example is again used. How­

ever, because BASAL, like BASIC, does not support recursion, the exam­

ples are not very "flattering" to BASAL.

Four possible strategies in distributing code and data could be

followed in programming the Quicksort algorithm in BASAL. Firstly, the

sort code and the array of data could reside in the same microcomputer.

Secondly, the sort code could be distributed, one process per microcom­

puter, but the array of data would reside in a single microcomputer.

Thirdly, the sort code would reside in a single microcomputer, but the

array of data could be distributed. Lastly, both the sort code and the

array of data could be distributed across the microcomputers. In addi­

tion, since BASAL supports both a "shared memory" and a "message pass­

ing" data mechanism, then each of the algorithms may communicate data

either via variables or by messages.

In the following analysis, two Quicksort programs are presented.

In both programs the strategy is to distribute the code (for parallel­

ism) but have the data resident in a single microcomputer. The first

program is based on shared memory communication, and the second on mes­

sage passing communication.

- 165 -

10.1. pARAT,JEL (SBAllED HEHOB.Y) SOB.T

The example of a parallel Quicksort using shared memory was chosen

to demonstrate how BASAL deals with the communication and synchronisa­

tion associated with this form of parallelism.

10.1.1. Description of Application

The essential idea of Quicksort, as discussed in Chapter 3, is to

partition the original set to be sorted by rearrlnging it into two sub­

sets; the first contains those elements which are less than some arbi­

trary "pivot" value chosen from the set, and the second those elements

which are greater or equal to the value. Then the partitioning process

is applied, in turn, to the two subsets, until each subset contains only

one element. When all subsets have been partitioned, the original set

has been sorted. In this case of a parallel sort, various "micros" per­

form the sorting of a given array in parallel, making use of shared

memory.

The example of parallel Quicksort using shared memory, written in

BASAL, uses different "micros" for the comparisons, partitions and

exchanges for an array of sixteen elements. "MICRO A" contains the

array "V" and the main loop of the sort program. The remaining micros

"B", "C", "D", etc. form a "tree" of processes, each containing a copy

of a sort process. "MICRO A" invokes micros "B" and "C", in turn "MICRO

B" invokes "D" and "E" etc. When the array is sorted, control is

returned to "MICRO A". The sorting of a subset of the array "V"

involves the "PIVOT" - the first element of the set - plus two pointers

"I" and "J". "LO" and "HI" contain the lowest and highest numbers in

the subset, and are stored into a micro before the micro's sort process

- 166 -

is invoked.

Since BASAL does not have repetitive statements such as "REPEAT

UNTIL" and "DO WHILE", the commands to partition and exchange subsets in

the array "V" have to be simulated by a series of "IFs" and "GOTOs".

The program was written in BASAL, and run through the BASAL trans­

lator, producing BASIC code. This code, in turn, was then executed by a

BASIC system. The BASAL translator, when generating BASIC, creates

extra "housekeeping" code (as shown in Chapter 9) to drive the various

separate "micros", such as the indication of where the instructions for

each "micro" begin and finish, etc.

10.1.2. Description of Program

The first micro, "MICRO A", contains the main loop of the sort code

and the array "V". The code for it in BASAL is summarised in Figure

10.1. In this example the main statements of interest are statements 33

to 38. These statements store the lowest and highest numbers of the two

subsets to be sorted into micros "B" and "C", and then invoke the two

micros using "GOSUB".

MICRO A
01 DIM V(l6)
05 LET LO = 1&
06 LET HI = 16
10 IF LO)= HI THEN 39
12 LET I = LO&
13 LET J = HI
14 LET PIVOT = V(LO)
15 IF J <= I THEN 20

- 167 -

17 IF V(J) < PIVOT THEN 20
18 LET J = J - 1
19 GOTO 15
20 IF I =) J THEN 25
22 IF V(I)) PIVOT THEN 25
23 LET I = I + 1
24 GOTO 20
25 IF I =) J THEN 30
27 LET TEMP = V(I)
28 LET V(I) = V(J)
29 LET V(J) = TEMP
30 IF I < J THEN 15
31 LET V(LO) = V(I)
32 LET V(I) = PIVOT
33 LET B.LO = LO&
34 LET B.HI = I - 1
35 GOSUB B.10&
36 LET C.LO = I + 1&
37 LET C.HI = HI
38 GOSUB C.10
39 STOP

Figure 10.1: Quicksort (shared memory) Program in BASAL

The sort code for "MICRO B", "MICRO C", etc., is similar to the one seen

above until about line 33 where, for instance, in "MICRO B" it reads:

MICRO B
10 IF LO >= HI THEN 39
12 LET I = LO&
13 LET J = HI

32 LET A.V(I) = PIVOT
33 LET D.LO = LO&
34 LET D.HI = I - 1
35 GOSUB D. 10&
36 LET E.LO = I + 1&
37 LET E.HI = HI
38 GOSUB E. 10
39 RETURN

-'
- 168 -

The code for the other micros from line 33 onwards is almost identical,

only the appropriate variables for the specific "micros" being changed

(e.g. for "MICRO CIt: LET E.LO = LO, LET E.HI = I-I, etc.)

After being processed by the BASAL interpreter, the code generated

for the parallel Quicksort ("MICRO A") is illustrated in Figure 10.2.

Its approximate version is:

10 DIM PC(26)
20 DIM STACKPTR(26)
30 DIM STACK(26,20)

1000 GOTO PC(Ol)
1010 DIM A. V(16)
1100 IF A.LO >= A.HI THEN 1390
1120 LET A.I = A.LO
1130 LET A.J = A.HI
1140 LET A.PIVOT = A.V(A.LO)

1330 LET B.LO = A.LO
1340 LET B.HI = A.I - 1
1350 LET PC(Ol) = 1350
1351 IF PC(02) <> 02999 THEN 01999
1352 LET PC(Ol) = 01999
1353 LET STACKPTR(02) = STACKPTR(02) + 1
1354 LET STACK(02,STACKPTR(02» = 01356
1355 GOSUB 2100
1356 REM

Figure 10.2: BASIC code for Figure 10.1

The code generated by the BASAL translator for the other micros (B, C,

etc.), is qui te similar to the one above, the main difference being

(again) for lines corresponding to those ranging from 1330 and beyond,

where for "MICRO B" it becomes "LET D.LO = B.LO", "LET D.HI = B.I - 1",

etc.

- 169 -

10.1.3. Assessment

This parallel version of Quicksort, using shared memory was

slightly difficult to program, having in mind that BASAL does not have

statements such as "REPEAT-UNTIL" and "DO-WHILE", and profuse use of

"GOTOs" had to be made. The language proved simple to use for writing

the commands for a single sort process. However, the manual replication

of the code was very tedious. This is related to two problems, firstly

the absence of recursion or a PAR-command (as in OCCAM) that replicates

processes, and secondly that processes are allocated statically to

microcomputers rather than dynamically. In fact, these problems clearly

relate to the choice of BASIC as the basis of BASAL, rather than the

programming model.

10.2. PARALLEL (MESSAGE PASSING) SORT

Next, the example of a parallel Quicksort using message passing is

examined. It was chosen to demonstrate how BASAL deals with the commun­

ication and synchronisation associated with this form of parallelism.

10.2.1. Description of Application

This example of a parallel Quicksort exploits the "[I" capability

of BASAL, specially intended for use in message passing communication.

Like in the example above, an array of sixteen elements is to be sorted,

using a "tree" of micros, each containing a sort process. "MICRO A",

containing the main loop, partitions the array passing elements less

than or equal to the value of the pivot to "MICRO B", and elements

greater than the pivot to "MICRO C". In turn, "MICRO B" partitions its

subset passing elements to "0" and "E" etc. When the array is fully

- 170 -

partitioned, the elements are passed back up the "tree" of sort

processes, until "MICRO A" reads and merges the final two sorted sub-

sets.

10.2.2. Description of Program

The first micro to attempt to sort the set of numbers in this exam-

pIe is, again, "MICRO A". The BASAL code corresponding to the process

"MICRO A" is summarised in Figure 10.3. In Figure 10.3, a number of

points should be noted. When "MICRO A" starts executing, it initially

"forks" control to micros "B" and "c" to start them executing:

GOTO B.Ol&
GOTO C.Ol&

Note, "MICRO A" partitions the array "V" putting elements into either

"B.IN[]" or "C.IN[]". Lastly, a terminator "30999" is output to both

messages.

MICRO A
01 DIM V(l6)
05 GOTO B.Ol&
06 GOTO C.Ol&
10 LET PIVOT = V(I)
11 FOR I = 2 TO 16

- 171 -

12 IF V(I) > PIVOT THEN 15
13 LET B.IN[] = V(I)
14 GOTO 16
15 LET C.IN[] = V(I)
16 NEXT I
20 LET B.IN[] 30999&
21 LET C.IN[] = 30999
30 LET I = 1
31 LET V(I) = B.OUT[]
32 LET I = I + 1
33 IF V(I - 1) <> 30999 THEN 31
34 LET V(I - 1) = PIVOT
36 LET V(I) = C.OUT[]
37 LET I .. I + 1
38 IF V(I - 1) <> 30999 THEN 36
39 STOP

Figure 10.3: Quicksort (message passing) Program in BASAL

Having partitioned the array, "MICRO A" then attempts to take the two

sorted subsets from "B.OUT[]" and "C.OUT[]" and merge them, placing the

results back into the array "V".

The code for "MICRO B" etc. is different in this version of Quick-

sort using message passing, as can be seen in Figure 10.4. Its opera-

tion is fairly straightforward, and should not require further explana-

tion.

- 172 -

MICRO B
01 LET PIVOT = B.IN[]
02 IF PIVOT = 30999 THEN 39
03 GOTO D.Ol&
04 GOTO E.Ol&
10 LET X = B.IN[]
11 IF X = 30999 THEN 20
12 IF X) PIVOT THEN 15
13 LET D.IN[] X
14 GOTO 10
15 LET E.IN[] X
16 GOTO 10
20 LET D.IN[] 30999&
21 LET E.IN[] 30999
30 LET X = D.OUT[]
31 IF X = 30999 THEN 34
32 LET B.OUT[] = X
33 GOTO 30
34 LET B.OUT[] = PIVOT
35 LET X = E.OUT[]
36 IF X = 30999 THEN 39
37 LET B.OUT[] X
38 GOTO 35
39 LET B.OUT[] 30999
40 STOP

Figure 10.4: Quicksort code for "MICRO B" (etc.)

Finally, the BASIC code generated for the BASAL commands in "MICRO

A" is illustrated in Figure 10.5.

- 173 -

10 DIM PC(26)
20 DIM STACKPTR(26)
30 DIM STACK(26,20)
1000 GOTO PC(OI)
1010 DIM A.V(16)
1050 LET PC(Ol) = 01050
1051 IF PC(02) <> 02999 THEN 01999
1052 LET PC(Ol) = 01054
1053 GOTO 02010
1054 REM

1100 LET A.PIVOT = A.V(l)
1110 FOR A.I = 2 TO 16
1120 IF A.V(A.I) > A.PIVOT THEN 1150
1130 LET PC(OI) = 1130
1131 IF B.IN <> -32768 THEN 1999
1136 LET B.IN = A.V(A.I)
1140' GOTO 1160
1150 LET PC(Ol) = 1150
1151 IF C.IN <> -32768 THEN 01999
1156 LET C.IN = A.V(A.I)
1160 NEXT A. I

Figure 10.5: BASIC code for Figure 10.3

Listings of the BASAL Quicksort programs, both shared memory and

message passing, are given in Appendix A.8, together with the

corresponding outputs for the translator.

10.2.3. Assessment

This parallel version of Quicksort using message passing presented

similar difficulties in programming to the previous Quicksort examples.

These are: the absence of commands to replicate code (e.g. recursion or

PAR) and the fact that processes must be statically rather than dynami-

cally allocated. When comparing the two Quicksort algorithms, the mes-

sage passing version has the advantage over the shared memory that all

micros are not competing for access of the array "V" in "MICRO A's"

- 174 -

memory.

10.3. ANALYSIS AND ASSESSHEHT

In general, BASAL is a very simple language to program in (like

BASIC) and has the advantage of being very close to the underlying RIHMS

architecture. However, this flexibility is at the expense of "safeness"

in the parallel programs written. The three main "problem" statements

are:

LET name = expression
GOTO label
GOSUB label

The "LET" can assign values, non-deterministically, anywhere in the glo-

bal address space. The "GOTO" can transfer control to any microcomputer

(although, recall, control will only be transferred if the destination

micro is hal ted) • "GOSUB" can call any label in the global address

space, as if it were an "entry-point". In addition, parameters must all

be passed by global variables.

Besides this problem of encapsulating flows of data and control in

BASAL programs, there is the previously mentioned problem of replicating

processes and even of having dynamic process creation. This could be

approached in two ways: either using recursion or a "PAR-statement"

operating on "MICRO micro name".

To improve encapsulation of information in a parallel language like

BASAL, it is clearly necessary to restrict the flows of data and con­

trol. Flows of data can be restricted by introducing parameterised

processes, as in OCCAM, and IMPORT/EXPORT statements, as in MODULA 2.

For parameterised processes, the command "PROC

- 175 -

would replace "MICRO

micro name". For IMPORT/EXPORT, two new statements would be introduced

into BASAL: "IMPORT micro_name.local_name" defining non-local access to

a variable, and "EXPORT local_name", defining a variable that may be

accessed non-locally by another process.

Flows of control can be restricted by only allowing GOTOs to

transfer control locally, "GOTO local_label", and by replacing "GOSUB

label" by "CALL micro_name{(local_name{,local_name} •••)}. This res-

tricts a process to a single "entry-point" namely "micro_name", and

defines the local names that are to be common to the two processes.

(This assumes a "call-by-reference" form of parameter passing.) Thus,

the new syntax is:

PROC micro_name{(local_name{,local_name} •••)}

IMPORT micro name.local name
EXPORT local-name
GOTO local-label
CALL micro=name{(local_name{,local name} •••)}

Next, the problems of replicating code and having dynamic creation of

processes are examined.

To improve the replication of code (while keeping the static allo-

cation of processes) the OCCAM "PAR i [1 FOR n]" could be adopted.

This effect could be achieved in BASAL by introducing an optional

integer field in the process declaration:

PROC micro_name{(integer)}

It defining the number of the copies of the process to be generated.

would then be necessary to introduce an optional field into micro name

"alphabetic {(integer)}" defining which process is being accessed.

Although this change could be easily introduced into the BASAL syntax,

- 176 -

it seems to be inelegant when compared, say, to recursion which achieves

a similar effect.

Recursion seems the best approach to handle the dynamic creation of

processe s. When the processes are declared, each could be statically

allocated to a microcomputer. However, should any process be called

recursively, then the process' code would be dynamically copied into a

new (unallocated) microcomputer. The microcomputers could be envisaged

as being allocated as if forming a stack.

Finally, as an illustration of the effect of these changes, Appen­

dix A.7 contains the syntax of the improved BASAL. The main merit of

BASAL is in the fact that it allows the parallel programming of multi­

microcomputers, but on the other hand still manages to have a simple

syntax and semantics.

- 177 -

CHAPTER. 11 - COBCLUSIOBS

This chapter presents the conclusions drawn from this investigation

of programming decentralised computers.

11.1. SUMHAB.Y

A summary of the work presented in this Thesis is initially given.

In Chapter 2, images of various computer systems that could be in

operation in the future were described. These were: Fifth Generation

Computers, Supercomputers, VLSI Processor Architectures, and Integrated

Communications & Computers. The former two images are of "parallel

machines" supporting a "revolutionary" new programming model, namely

logic and data flow, respectively. The latter two images are of "decen­

tralised computers" supporting "evolutionary" control flow programming

models. It concludes that a decentralised computer architecture capable

of spanning distributed, parallel and sequential computers, is the most

appropriate image for future computers.

In Chapter 3, the major programming styles that could be used to

program these future decentralised computers were presented and classi­

fied. These styles cover procedural programming, including conventional

and concurrent languages; object-oriented programming; functional pro­

gramming, including data flow and applicative languages; and logic pro­

gramming; as well as new forms of application programming, including

electronic-sheet languages. The basis for this classification of pro-

- 178 -

gramming styles was the computational (data and control) mechanisms that

underlie their programming models.

In Chapters 4 and 5, each programming style was analysed, using a

common Quicksort algorithm plus the data mechanisms and control mechan-

isms presented in Chapter 3. Chapter 4 analysed procedural programming

including conventional and concurrent languages, and object-oriented

programming, identifying their advantages and disadvantages. Chapter 5

analysed functional programming including data flow and applicative

languages, and logic programming including Horn clause languages. These

Chapters concluded that control flow (and procedural programming) was

the most primitive and fundamental programming model.

In Chapter 6, based on the conclusions of Chapters 2 to 5, the so-

called decentralised control flow programming model was presented. This

programming model embodies a "decentralised computer" image of computers

and is based on control flow. It was shown how this model generalises

the traditional von Neumann model and, in fact, already provides the

basic concepts underlying modern operating systems. It was argued that

the decentralised control flow programming model should form the basis

of future decentralised computer systems and their corresponding pro-

gramming languages.

In Chapters 7-10, two programming languages called BASIX and BASAL

embodying the decentralised control flow model were presented. BAS IX

and BASAL were used to investigate the style of decentralised control

flow programming languages, and were not meant to propose new languages.

Both these languages are primitive and are "low-level" system program­

ming languages (cf. C) rather than "high-level" languages (cf. PROLOG).

b" the Chapter 7 presented the BASIX language which attempts to com lone

- 179 -

fundamental concepts of the UNIX Shell, LISP and BASIC. It is intended

as a "total system", providing a complete interactive programming

environment (cf. SMALLTALK). Chapter 9 presented the BASAL language,

based on a primitive form of decentralised control flow, and designed

for programming the RIMMS multi-microcomputer system. BASAL is a super­

set of BASIC. BASIX and BASAL can be viewed as representing the oppo­

site ends of the spectrum of languages based on the decentralised con­

trol flow model.

Below the four major areas and contributions of this Thesis are

summarised. They are: the classification of programming styles, the

decentralised control flow model, the BASIX languages, and the BASAL

languages.

11.1.1. Classification of Programming Styles

The classification and analysis of the major styles of programming

(presented in Chapters 3, 4 and 5) attempt to quantify the observable

advantages and disadvantages of programming languages. The belief is

that these advantages and disadvantages directly relate to the computa­

tional mechanisms underlying the particular programming model associated

with these languages.

For a programming model there are two basic computational mechan­

isms referred to, in this Thesis, as the data mechanism and the control

mechanism. The data mechanism defines the way a particular argument is

communicated by a number of commands. There are two basic types,

referred to as: "shared memory" and "message passing". The control

mechanism defines how one command causes the execution of one or more

other commands. There are four basic types referred to as: "control

- 180 -

driven", "data driven", "demand driven", and "pattern driven".

In terms of the data mechanism, firstly "shared memory" has advan­

tages for sharing data structures and for allOwing an unspecified number

of copies of data to be taken, but has the disadvantage of not support­

ing synchronised access to its contents, particularly by parallel com­

mands. Secondly, "message passing" has the advantage of synchronised

communication of data, but has the disadvantages of not supporting shar­

ing of data structures and of often needing to know all consumer com­

mands.

For the control mechanism: firstly "control driven" has the advan­

tage of being very primitive and flexible, but the disadvantage of being

relatively easy to misspecify in terms of the sequences of execution;

secondly, "data driven" has the advantage of being "naturally" parallel,

but the disadvantage of being unable to control unnecessary evaluation;

thirdly, "demand driven" has the advantage of performing minimum execu­

tion, but has the disadvantage of restricting the control pattern to a

tree structure; and lastly, "pattern driven" has the advantage of being

the highest level control mechanism, but, in consequence, the disadvan­

tage of sometimes not allowing sufficient control over the execution of

a program.

It was noted in Section 6.1 that, significantly, each category of

programming models regards the data mechanisms and the control mechan­

isms as largely incompatible sets of alternative concepts. Hence each

category, although Universal (cf. Turing machine) has specifiC advan­

tages and disadvantages for computation, related to its choice of data

and control mechanisms. More significantly, the classification of pro­

gramming styles seems to show that "shared memory" is the most important

- 181 -

data mechanism and "control driven" execution is the most primitive con­

trol mechanism. Thus Section 6.1 concludes that control flow is the

most fundamental programming model for computers.

11.1.2. Decentralised Control Flow

The decentralised control flow model, presented in Chapter 6, has

the following principles:

1. computer - a computer system is a decentralised computer (hierarchy

of distributed, parallel and sequential computers);

2. network - a nested organisation of variable-size memory cells (like

the file structure of an operating system);

3. addressing - a contextual address space of cells (like telephone

numbers) ;

4. program - a higher-level machine language (as in LISP, where

instructions may be recursively defined);

5. communication - shared memory and message passing communication of

data;

6. execution - parallel, decentralised control of computation (as with

UNIX commands).

An essential concept in this decentralised control flow model is the

direct functional correspondence between hardware and software. In

addition, memory is recursively structured allowing any level of object

to be accessed and this makes it a flexible and powerful memory model.

- 182 -

The use of contextual addreSSing, as in modern operating systems,

is another advantage. Memory cells close to the current context can be

addressed using short addresses, with the length of these addresses

increasing with the different levels to be reached. The concept of

memory cells in the decentralised control flow model supports both

"h d "d " ' "d ha s are memory an message pass1ng ata mec nisms, which gives it

more flexibility than other programming models. One point that could be

improved, though, is that more addreSSing modes (such as content

addressing) would be beneficial to the model.

Instructions in the decentralised control flow model have a Single

format, with a procedure call mechanism being intrinsically built-in.

The single format is quite simple. The fact that the way programs and

data are presented is not strictly identical (as in LISP) requires

improvemen t •

One of the great strengths of the decentralised control flow model

is to generalise sequential control flow. As a negative counterpart to

that, the current program execution is conceptually quite complex, and

the controls between commands are still a problem. Lastly, the support

for other programming models is still not very effective at the moment.

11.1.3. BASIX Languages

The BASIX languages, mainly the BASIX_2 language presented in sec­

tion 7.3 has, like the decentralised control flow model it was designed

to mirror, a recursive concept of "object". The "objects", very similar

to LISP, are specified via the use of delimited strings. But, as it was

1 2) 1 'k i LISP pro­pointed out above for the model (Section 11.. ,un 1 en,

grams and data are not represented in exactly the same way.

- 183 -

Addresses in BASIX_2 can be individual selectors or a sequence of

selectors, but the addressing notation has its problems. One of them is

the case where "a/1"" means th "h h e component W1t t e explicit selector

"i:(•••)", while name "a/(i)" is equivalent to the traditional "a[i}".

Beside that, locations can have numeric selectors, leading to the impos-

sibility of differentiating between numbers and selectors. This can be

overcome by prefixing a single numeric selector with "./".

One of the main positive points of the BASIX_2 language is that it

has a traditional syntax, even though it is based on a decentralised

programming model. The current problems in the language's syntax can be

found, though, in the statements "if-fi" and "do-od", as well as in

"for-rof". Ideally, the language would have both iterative statements

and statements that replicate other statements.

Finally, the fact that BASIX_2 attempts to generalise conventional

languages makes it a powerful and "comprehensive" language, but this is

perhaps offset by the fact that the current semantics tend to be some-

what complex.

1l.1.4. BASAL Language

The BASAL language, presented in Chapter 9, is a simple, easy to

understand language, but it suffers from the normal problems of its

parent BASIC, such as having a primitive notion of nested object, unlike

BASIX which allows access to variables and files alike.

The addressing scheme in BASAL is a two-level one, which is easy to

understand, and the program representation is quite simple. The major

problem of BASAL, as discussed in Section 10.3, is its inability to

dynamically create processes, or even, as OCCAM does, of specifying the

- 184 -

replication of a group of processes that are based on the same code.

Finally, BASAL is very close to traditional control flow (present-

ing no "traps" for s r f . u e s 0 conventl.onal languages), but it has the

important advantage of supporting both "shared memory" and "message

passing" data mechanisms.

11.2. FUTDBE won

Future work is clearly required in each of the four areas: the

classification of programming styles, the decentralised control flow

model, the BASIX languages, and the BASAL languages.

11.2.1. Classification of Programming Styles

The classification, and resulting analysis, of programming styles

presented in Chapters 3, 4 and 5, make two possible contributions:

firstly the data and control mechanisms may, in some sense, be fundamen-

tal to computation, contributing in the future to improvements in the

design of programming languages, and secondly (even if this is not the

case) the classification is believed to aid in understanding the various

programming styles and the strengths and weaknesses of their associated

programming languages.

Having said ~his, no classification is likely to be perfect. For

instance it is arguable whether the current classification clearly dif-

ferentiates between applicative (pattern-matching) languages, which are

based on a graph reduction programming model, and logic languages, based

on a logic model. So it will be necessary, in the future, to test the

classification by using it to study other programming styles such as

expert systems building languages [60].

- 185 -

11.2.2. Deceutralised Control Flow

Future work on the Decentralised Control Flow model can be identi-

fied in the areas of addressing, program representation, program execu-

tion, and supporting of other programming models. For addressing, one

point that could be improved is to increase the number of addressing

modes (such as content addressing). For program representation it would

be interesting to have a fully recursive format for commands as in LISP.

This would allow any argument of a command to be a complete program

fragment. However, this would probably prove very complex to implement

in a computer architecture, and may complicate the semantics of the

model. Concerning support of other models, the decentralised control

flow model currently supports "data driven" and "demand driven" execu-

tion. This leaves only the support of "pattern driven" execution of

commands to be investigated.

However the main problem to be tackled with the current decentral-

ised control flow model is to provide a good implementation (which

should include memory management) of the information structure and the

addressing scheme, both of which need to be made efficient. This should

also help refine the semantics of the programming model.

11.2.3. BASIX Language

In BASIX_2 perhaps the major improvement needed would be to make

d h S1." mple The concept of the language less recursive an t us more •

"object" seems to cover too many semantic fields, and the language

should benefit from the simplification.

- 186 -

Essentially four basic types of objects would be retained: "expres­

sion", "statement", "({object} •••)", and "local_name:object". An

expression consists of one or more simple objects, separated by opera­

tors. A statement is a list of objects whose leftmost object is a key­

word or the name of a program object. A bracketed list of objects may

be code or data, and lastly comes the declaration of a "name :object"

pair in the local context.

Control statements, which had proved difficult to use in the

current version of the BASIX, could be simplified by using Dijkstra' s

guarded commands: "IF {expression -) command} ••• FI" and "DO {expression

-) command} ••• OD". The "GOTO" would be restricted to a local context,

by using a "local name". Names and selectors (which have been one of

BASIX more serious problems) could, in the future, be defined as:

"local_ name{ • selec tor} ••• II and "$ {. selec tor} ••• ", " local_name" being an

alphanumeric character string, and "selector" being redefined as either

a "local_name", "numeric", or "(expression)", in the hope that this

would bring about the simplifications of both syntax and semantics.

11.2.4. BASAL Language

In BASAL, it would be perhaps worthwhile to make the most primitive

element not a word, but an object that may have structure. Also, in a

parallel language such as BASAL, there is a need to encapsulate informa­

tion. This could be done by restricting the flows of data and control.

The introduction of parameterised processes and of IMPORT/EXPORT state­

ments would deal wi th the restric tion of flows of data, while the flows

of control would be restricted by only allowing GOTOs to transfer con­

trol locally. It would, also, be very useful to have some ability to

reference files as in, say, delimited strings.

- 187 -

However. the most important current limitation in BASAL is the ina­

bility to replicate code or dynamically allocate processes to micros.

In order to improve this. an optional integer field could be introduced

in the process declaration. which would define the number of copies of

the process to be generated. So that these processes could be accessed.

an optional field would need to be included in "micro name" such as _ .
"alphabetic { (integer)}" defining which process is being accessed.

Another. more elegant solution, would be the introduction of recursion.

The processes, when declared, would be statically allocated to a micro-

computer. In case of a process being called recursively, the code of

that process would be copied (dynamically) into another (new, unallo-

cated) microcomputer. This idea would be analogous to a stack, formed

by allocated microcomputers.

11.3. FINAL CONCLUSIONS

In the computer science community there is a growing belief that

the traditional von Neumann computer may be superseded over the next

decade by a new decentralised computer programming model. Various

categories of programming models (Le. data flow, reduction, actor,

logic) are being promoted as the von Neumann successor. The most prom­

inent are logic for Fifth Generation Computers and data flow for Super­

computers. A problem with these novel parallel models is that they are

largely unproven and represent a "revolutionary" solution, which dis­

cards the massive investment in traditional control flow computing.

However, it is felt that the evolutionary approach of a control

flow model embodying a decentralised computer architecture - which is

called decentralised control flow - is a more promising way of achieving

h . i Japan's FGCS Project many of the very ambitious goals c aracter~s ng

- 188 -

[39,53]. This view, presented here, is partly conservative in recognis­

ing the greater practicality (in a world of existing systems and exper­

tise) of persuading individuals and organisations to tryout an evolu­

tionary development. However, there is also the belief that control

flow is a more fundamental model of computation (see Section 6.1) than

the four other categories of models. In addition, the decentralised

control flow principles (described in Chapter 6) already form the basis

of modern operating systems such as UNIX. In effect, the basic program­

ming model needed for future computers is already in use.

In choosing a low-level programming language, it is believed that

the next generation of decentralised control flow programming language

should fall somewhere between the current BASIX and BASAL languages,

attempting to capture the simplicity of BASAL, and the sophistication of

BAS IX.

In conclusion, highly parallel and decentralised programming models

will, and should, only supplant the traditional von Neumann model if

they can match the latter's generality and flexibility, as exemplified

by the large variety of both conventional and very novel programming

languages and styles that it supports with reasonable effec ti veness.

The important aspect of the von Neumann model which gives this flexibil­

ity is that it is a control flow model allowing the programmer (or

compiler/interpreter) direct control over the low level operation of the

target machine when this is necessary. Thus, the key to the future gen­

eration of programming models would be identified as being some extended

form of control flow which overcomes its deficiencies for decentralised

concurrent systems, but retains its flexibility and generality.

- 189 -

REFEIlDCES

[1] Ackerman W.B.: "Data Flow Languages", IEEE COMPUTER, vol.15, no.2
(February 1982), pp. 15-25.

[2] Ackerman W.B. a~d Dennis J.B.: "VAL - A Value Oriented Algorithmic
Language: Prell.minary Reference Manual", Tech. Report TR-218
Laboratory for Computer Science, MIT (June 1979). '

[3] Amamiya M.: "A Design Philosophy of High Level Language for Data
Flow Machine Valid", Proc. Annual Conf. of IECE Japan (1981).

[4] Anon: "Special Issue on the Programming Language Small talk" , Byte
(August 1981).

[5] Arvind et al: "An Asynchronous Language and Computing Machine",
Tech. Report 114a., Department of Information and Computer Science,
University of California, Irvine (December 1978).

[6] Arvind and Gostelow K.P.: "The U-Interpreter", IEEE COMPUTER,
vol.15, no.2 (February 1982), pp. 42-49.

[7] Arvind and Iannucci R.A.: "A Critique of Multiprocessing von Neu­
mann Style", Proc. Tenth Int. Symp. on Computer Architecture (June
1983), pp. 426-436.

[8] Ashcroft E.A. and Wadge W.W.: "LUCID, a nonprocedural language with
iteration", Comm. ACM, vol.20, no.7 (July 1977), pp. 519-526.

[9] Backus J: "Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs", Comm. ACM, vol.21,
no.8 (August 1978), pp. 613-641.

[10] Barron 1. et al: "Transputer does 5 or more MIPS even when not used
in parallel", Electronics, vol.56, no.23 (November 1983), pp. 109-
115.

[11] Berkling K.: "Reduction Languages for Reduction Machines". Proc.
Second Int. Symp. on Computer Architecture (January 1975), pp.
133-140.

[12] Birtwistle G.M. et al: "SlMULA BEGIN", 2nd. edition, van Nostrand
Reinhold (1979).

La " [13] Bonner S. and Shin K.G.: "A Comparative Study of Robot nguages,
IEEE COMPUTER, vol.15, no.12 (December 1982), pp. 82-96.

[14]
P " Bricklin D. and Frankston B.: "VisiCalc Computer Software r~gram.,

Reference Manual, Personal Software Inc., Sunnyvale, Ca11forn1a

(1979).

[15] Brinch Hansen P: "The Programming Language Concurrent Pascal", IEEE
Trans. on Software Eng., vol.SE-l, no.2 (June 1975), pp. 199-207.

d

- 190 -

[16] Brownbddge ~;, et al: "The Newcastle Connection or UNlXes of the
World Unite., Software - Practice and Experience, vol. 12,
(December 1982), pp. 1147-1162.

[17] Davis A. L. and Keller R.M.: "Data Flow Program Graphs", IEEE COH.­
PUTER, vol. IS, no.2 (February 1982), pp. 26-41.

[18] Dennis J. B.: "The Varieties of Data Flow Computers". Proc. First
Int. Conf. on Distributed Computing Systems, (October 1979) pp.
430-439. '

[19] Dewar R.K. et al: "Programming by Refinement, as Exemplified by the
SETL Representation Sublanguages", ACM Trans. on Programming
Languages and Systems, vol.l, no.l (July 1979), pp. 27-49.

[20] Duda R. o. and Gaschnig J. G.: "Knowledge-based Expert Systems Come
of Age", Byte (September 1981), pp. 238-281.

[21] Dijkstra E.W.: "Guarded Commands, Nondeterminacyand Formal Deriva­
tion of Programs", Comm. ACM, vo1.18, no.8 (August 1975), pp. 453-
457.

[22] Feigenbaum E. A.: "Knowledge Engineering: The Applied Side of
Artificial Intelligence", Memo HPP-80-21, Computer Science Dept.,
Stanford University, 1980.

[23] Ferguson R.: "PROLOG A Step Towards the Ultimate Computer
Language", Byte (November 1981), pp. 384-399.

[24] Fisher A.L. et al: "Architecture of the PSC: A Programmable Sys­
tolic Chip", Proc. Tenth Int. Symp. on Computer Architecture, (June
1983), pp. 48-53.

[25] Foti L. et al: "Reduced Instruction set Multi-microcomputer System
(RIMMS)", 1984 National Computer Conference (to be presented).

[26] Foti L. et al: "Programming the RIMMS Multi-Microcomputer", Univer­
si ty of Newcas tIe upon Tyne, Computing Laboratory, Internal Report
(September 1983).

[27] Gouveia Lima I. et al: "Decentralised Control Flow - BASed on
unIX", Proc. ACM SIGPLAN 83 Conference, San Francisco, California,
(June 1983), pp. 192-201.

[28] Gouveia Lima 1. et al: "Decentralised Control Flow Programming",
Proc. IFIP Congress, Paris (September 1983), pp. 487-492.

[29] Gupta A. and Toong H.D.: "An Architecture Comparison of 32-bit
Microprocessors", IEEE M.ICRO, vo1.3, no.l (February 1983), pp. 9-

22.

[30] Henderson P.: "Functional Programming - Application and Implementa­
tion", Prentice-Hall (1980).

...

- 191 -

[31] Hoare C.A.R.: "Quicksort", Computer Journal 1 5 , vo • , no.1,
1962), pp. 10-15. (April

[32] Hoare C.A.R.: "Communicating Sequential Processes", Comm. ACM,
vol.2I, no.8, (August 1978), pp. 666-677.

[33] Ingalls D.H.H.: "The Smalltalk-76 Programming System Design and
Implementation", Proc. Fifth ACM Symp. on Principles of Programming
Languages (January 1978), pp. 9-15.

[34] Kernighan B. W. and Plauger P. J. : "Software Tools in Pascal" •
Addison-Wesley Publishing Company (1981).

[35] Kobayashi K.: "Computer, Communications and Man: The Integration of
Computer and Communications with Man as an Axis", COMPUTER NETWORKS
- The Int. Journ. of Distributed Informatique, vol. 5, no. 4 (July
1981), pp. 237-250.

[36] Kowalski R.: "Logic for Problem Solving", Elsevier-North Holland
Publishing Company (1979).

[37] Kung H.T.: "Why Systolic Arrays", IEEE COMPUTER, vol. IS, no.1
(January 1982), pp. 37-46.

[38] Mead C.A. and Conway L.A.: "Introduction to VLSI Systems",
Addison-Wesley Publishing Company (1980).

[39] Moto-oka T. et al: "Challenge for Knowledge Information Processing
Systems (Preliminary Report on Fifth Generation Computer Systems)",
Proc. Int. Conf. on Fifth Generation Computer Systems, North­
Holland Publishing Company (1982).

[40] Mundy D. H.: "Decentralised Control Flow - A Computational Model for
Distributed Systems", PhD. Thesis, Computing Laboratory, University
of Newcastle upon Tyne (in preparation).

[41] Patterson D. and Sequin C.: "A VLSI RISC", IEEE COMPUTER, vol. 15,
no.9 (September 1982), pp. 8-21.

[42] Patterson D. and Ditzel D.: "The Case for the Reduced Instruction
Set Computer", Computer Architecture News, vol.8, no.6 (October
1980), pp. 25-32.

[43] Pyle I.C.: "The ADA Programming Language: a Guide for Programmers",
Prentice-Hall (1981).

[44] Richie D.M. and Thompson. K.: "The UNIX Time-Sharing System", Comm.

[45]

ACM, vol.I7, no.7 (1974), pp. 365-375.

Seitz C.: "Ensemble Architectures for VLSI - A Survey and Taxon­
omy", Proc. 1982 Conf. on Advanced Research in VLSI, P. Penfield
ed., MIT, (January 1982), pp. 33-45.

- 192 -

[46] Servan-Schreiber J.J.: "The World Challenge", Collins (1981).

[47] Shrivastava S.K. and Panzieri F.: "The Design of a Reliable Remote
Procedure Call Mechanism" IEEE Trans. on Computers vol. C-31, no. 7
(July 1982), pp. 692-697. '

[48] Stotts P.D.: "A Comparative Survey of Concurrent Programming
Languages", ACM SIGPLAN Notices, vo1.l7, no.9 (September 1982), pp.
76-87.

[49] Taylor R. and Wilson P.: "OCCAM Process-oriented language meets
demands of distributed processing", Electronics (November 1982),
pp. 89-95.

[50] Treleaven P.C. et al: "Data Driven and Demand Driven Computer
Archi tec ture", ACM Computing Surveys, vol. 14, no. 1 (March 1982),
pp. 93-143.

[51] Treleaven P.C. and Hopkins R.P.: "A Recursive Computer Architecture
for VLSI", Proc. Ninth Int. Symp. on Computer Architecture (April
1982), pp. 229-238.

[52] Treleaven P. C.: "VLS I Processor Architec tures" , IEEE COMPUTER,
vol. 15, no.6 (June 1982), pp. 33-45.

[53] Treleaven P. C. and Gouveia Lima I.: "Japan's Fifth Generation Com­
puter Systems", IEEE COMPUTER, vo1.15, no.8 (August 1982), pp. 79-
88.

[54] Treleaven P. C. and Gouveia Lima 1.: "Future Computers - Logic, Data
Flow, ••• ,Control Flow", IEEE COMPUTER, vo1.17, no.3 (March 1984),
pp. 45-55.

[55] Turner D.A.: "A New Implementation Technique for Applicative
Languages", Software - Practice and Experience, vo1.9 (1979), pp.
31-49.

[56] Turner D. A.: "Programming Languages - Current and Future Develop­
ments", Proc. Software Development Techniques, Infotech State of
the Art Conf. (1980), pp. 7/1-7/12.

[57]

[58]

[59]

Uchida S.: "Towards a New Generation Computer Architecture", Tech.
Report TR/ A-Q01, Institute for New Generation Computer Technology
(July 1982).

Uchida S. et al: "The Personal Sequential Inference Machine", Tech.
Report TM-Q02, Institute for New Generation Computer Technology
(November 1982).

Warren D. H.: "Logic Programming and Compiler Writing", Dept. o!
Artificial Intelligence, Uni v. of Edinburgh, Research Report no.4
(September 1977).

-

- 193 -

[60] Waterman D.A. and Hayes-Roth F.: "An Investigation of Tools for
Building Expert Systems", Memo R-2818-NSF, Rand Corp., Santa Mon­
ica, California (June 1982).

[61] Wilkes M. V. and Wheeler D.J.: "The Cambridge Communication Ring",
Proc. of Local Area Network Symposium, Boston, National Bureau of
Standards (May 1979).

[62] Wilner W.T.: "Recursive Machines", Xerox Palo Alto Research Center,
Internal Report (1980).

[63] Wirth N.: "Programming in MODULA _2" , Springer-Verlag, Berlin
(1980) •

c

- 194 -

APPEBDIX A.l - BASIX 1 Programug Language

NAME
BASIX 1

SYNOPSIS
BASIX 1 { name }

DESCRIPTION
BASIX 1 has a decentralised control flow operational model. Its
syntax is a superset of BASIC, but it incorporates features both
from LISP and from UNIX. BASIX 1 commands can be simple statements
as in BASIC, or can be delimited groups of statements or commands,
as in LISP. BASIX l's environment is similar to UNIX. When BASIX 1
is invoked the user program input has access to any , files'-­
viewed as data structures by the program - previously created. If
any 'name' argument is provided when BASIX 1 is invoked, the asso­
ciated structures are used for input before-reading the terminal.

Commands have the following syntax:

statement
The statement is immediately executed. The result of an
immediate command is printed.

integer statement
Integer numbered statements (known as internal commands) are
stored for later execution. They are stored in sorted ascend­
ing order.

(command { command } •••)
The (command { command }...) is executed when the ')' is
reached.

integer (command { command } •••)
Similarly to the 'integer numbered statements', these are
stored for later execution.

Statements have the following syntax:

C01lllllent
This statement is ignored. It is used to interject commentary
in a program.

dt. alphanumeric (integer {, integer } •••)
This statement is used to create either temporary
permanent data structures. When used in the form

or semi-

done

dmap

- 195 -

dim alphanumeric (integer {, integer } •••)

it creates a semi-permanent data structure ('file') which will
nfot be deleted at the end of the program. When used in the

orm

integer dim alphanumeric (integer {, integer } •••)

it creates a temporary data structure which will disappear at
the end of the program.

Return to system level.

The name and current value of every variable is printed.

for name expression expression statement

for name expression expression

next
The for statement repetitively executes a statement (first
form) or a group of statements (second form) under control of
a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not
to exceed the value of the second expression.

fork expression
The expression is evaluated, truncated to an integer and a
secondary thread of execution starts at the corresponding
integer numbered command. The primary thread of execution
continues to execute the statement following the 'fork'. Also
see 'join' statement.

join expression
The expression is evaluated and truncated to an integer. This
positive integer defines the number of threads of control to
be received by the 'join' before sequential execution (of the
following statement) is resumed.

goto expression
The expression is evaluated, truncated to an integer and exe­
cution goes to the corresponding integer numbered statement.
If executed from immediate mode, the internal statements are
compiled first.

if expression statement

d

- 196 -

if expression

else

fi

}

The 'if' statement (first form) or group of statements (second
form) is executed if the expression evaluates to non-zero. In
the second form, an optional else allows for a second group of
statements to be executed when the first group is not.

let name = expression
This is the assignment statement. The left operand must be a
name or an array element. The result is the right operand.
Assignment binds right to left.

list { expression } { expression }
Is used to print out the stored internal arguments. If no
arguments are given, all internal statements are printed. If
one argument is given, only that internal statement is listed.
If two arguments are given, all internal statements
inclusively between the arguments are printed.

print list
The list of expressions and strings are concatenated and
printed. (A string is delimited by " characters.)

prompt list
Prompt is the same as print except that no newline character
is printed.

return { expression }
The expression is evaluated and the result is passed back as
the value of a function call. If no expression is given, zero
is returned.

run
Control is passed to the lowest numbered internal statement.

save { expression } { expression }
Save is like list except that the output is written on the
file argument.

expression
The expression is executed for its side effects or for print-
ing as described above.

Ezpressions have the following syntax:

- 197 -

number
A number is used to represent a constant value. A number is
written in Fortran style, and contains digits, an optional
decimal point, and possibly a scale factor consisting of an
'e' followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

expression
- The result is the negation of the expression.

expression operator expression

name

Common functions of two arguments are abbreviated by the two
arguments separated by an operator denoting the function. A
complete list of operators is given below.

A name is used to specify a variable.

name()
Procedures and functions can be called by an name followed by
parentheses. The name evaluates to the line number of the
entry of the procedure or function in the internally stored
statements. This causes the internal statements to be com­
piled.

Names have the following syntax:

o (zero)
The current context becomes the selected variable.

alphanumeric
An alphanumeric is used to specify a variable in the current
context. Alphanumerics are composed of a letter followed by
letters or digits.

expression
The expression is truncated to an integer and used as a
specifier for the name.

namelname{lname} •••
A name can also be a sequence of selectors, used to access
structures such as arrays.

The following is the list of operators:

& V
& (logical and) has result zero if either of its arguments are
zero. It has result one if both its argume.nts are non-zero.
V (logical or) has result zero if both of its arguments are
zero. It has resul t one if either of its arguments are non-
zero.

c

- 198 -

< <= > >= = <>
The relational operators (< less than, <= less than or equal,
> greater than, >= greater than or equal, = equal to, 0 not
equal to) return one if their arguments are in the specified
relation. They return zero otherwise. Relational operators at
the same level extend as follows: a > b > c is the same as a >
b & b > c.

+ - * / **
The arithmetic operators add, subtract, multiply, divide and
exponentiation.

- 199 -

APPENDIX A.2 - BAS~2 Progr-mng Language

NAME
BASIX 2

SYNOPSIS
BASIX 2

DESCRIPTION
BAS~ has a decentralised control flow operational model. Its
syntax attempts to combine some of the most important characteris­
tics of BASIC, UNIX Shell, and LISP. For instance, BASIX 2 has a
single notion of object which serves the roles of variables~ lists,
messages, programs, files and directories. BASIX 2 has a nested
information structure and a contextual address space similar to the
UNIX Shell - a hierarchy of "name : object" pairs. BASIX 2 com­
mands can be simple expressions and statements as in BASIC.-or can
be delimited groups of commands as in LISP. Interaction is via
terminal screens which display the information structures of active
contexts as windows. (Shared contexts appear as identical win­
dows.) A window is divided into three areas:

I Context :

1 Context :

Context

name
name
name

Command

(
(
(

)
)
)

I
I
1
1

1

I
I I
1-----

1 1 1-----
defining the current context, the contents of the context, and the
commands typed by the user. Information in any of the three. areas
may be changed by positioning the cursor and typing the new ~nfor­
mation. A new context name changes the current context. New
information changes the contents of the context. Lastly, a new
command is executed.

eo..&nds have the following syntax:

name : object
Declares a "name : object" pair relative to the local context.
Only the "name" is evaluated before the assignment.

object some value to the
The object is executed and either returns

h t the information struc-user's screen or makes some c ange 0

ture.

- 200 -

Objects have the following syntax:

expression

An expression is a sequence of statements or objects separated
by operators.

statement
A list whose leftmost object is a keyword.

(object { object } •••)

A list of one or more objects, data or program, separated by
spaces or commas.

(command { control command } •••)
A series of commands separated by controls; each control
defines the order of execution of the two adjacent commands.

Expressions have the following syntax:

name

The object, synonymous with the name, is treated as a vari­
able.

name[]

The object, synonymous with the name, is treated as a list or
a message.

number

()

The object is an integer number.

This is the "undefined" object, and any access to it is
delayed until its contents are available.

quote object
The result is the unevaluated object.

_object
The result is the negation of the expression.

object operator object
The objects are evaluated as operands for the operator and the
whole expression returns a value.

name({ object } •••)
A procedure or function with zero or more parameters may be
specified in the traditional way as a name followed by the
parameters in parentheses. The parameters may be separated by
spaces or commas.

object object { object } •••
A procedure or function with one or more arguments may be
specified as an UNIX-like command.

- 201 -

Statements have the following syntax:

(* commentary *)
This statement is ignored. It ~s used to ~nterJ·ect commentary
in a program.

if { object -) object; } ••• { object} fi
The list of commands is executed until an "object -)" evalu­
ates to true.

do { object -) object; } ••• { object} od
The list of commands is repeatedly executed until no "object
-)" is true.

for alphanumeric = object do object rof
The "for" statement evaluates the left "object" and then
replicates the right "object" substituting "alphanumeric" for
each component of the resulting object.

go to name
Control is transferred to the object defined by the local
name.

cd name
Change context to the object defined by name.

rm name { name } •••
This statement is used to remove objects created by the pro-
gram.

Names consist of sequences of selectors
"{/}selector{/selector} ••• ", where selector has the following syn­
tax:

alphanumeric
An alphanumeric character string is used to specify an object
in the local context.

number
A numeric character string is used to specify an object in the
local context.

(object)
The object is evaluated and its result used to specify an

$

object in the local context.

The parameters of a procedure or function is selected. It may
be used to access the standard input "$/1", the standard out­
put "$/0", and the parameters "$/1 $/2 ••• ", any of which may
be accessed as a an object.

/

- 202 -

(superior)
The calling context is selected; used for moving up through
the "dynamic chain" of the information structure.

(self)
The local context is selected.

When the first symbol of a name, the current context is
selected. This is analogous to the concept of root in UNIX.

NOTE: "number" and "(object)" may not be used as the initial selec­
tor of a name.

Operators consist of the following:

:=
Assignment operator updates a "name : object" pair relative to
the local context, if necessary creating the pair. Both the
"name" and the "object" are evaluated before the assignment.

+ - *
Arithmetic operators add, subtract and multiply.

and or not

to

Logical operators.

<> < <= > >=
The relational operators return ~ if their arguments are in
the specified relation, otherwise they return false.

Numeric and alphabetic sequences are generated by the dyadic
"to" operator, and returned as an object.

Controls consist of the following:

&

Execution of "command I command 2" is sequential.

Execution of "command I I command 2" is pipe-lined, with the
output of "command_I"-being passed-as input to "command_2".

Execution of "command_I & command_2" is in parallel.

- 203 -

APPENDIX A.3 - BAS~3 Progra..ing Language

NAME
BASIX 3

SYNOPSIS
BASIX 3

DESCRIPTION
BASIX 3 is a decentralised control flow programming language and
attempts to combine some of the most important characteristics of
BASIC, UNIX Shell, and LISP. In the syntax below "{ }" defines
zero or one, and "{ } ••• " defines zero or more occurrences of the
enclosed constructs.

Objects have the following syntax:

expression
An expression consists of one or more simple objects separated
by operators.

statement
A statement is a list of objects whose leftmost object is a
keyword or the name of a program object.

({object} •••)
A list of zero or more objects, data or code.

local name:object
Declares a name:object pair in the local context. The object
is not evaluated.

Commands have the following syntax:

object
The object is evaluated and either returns some value to the
user's screen or makes some change to the information struc-
ture.

(object {control object} •••)
A series of commands separated by controls; each control
defines the order of execution of the two adjacent commands.

Expressions have the following syntax:

()
This is the empty object, and access to it using message pass­
ing semantics "narne[]" is delayed until its contents are

available.

TRUE I FALSE
The logical values true and false.

- 204 -

number
The object is an integer number.

"string"
The result is the unevaluated object.

name{[]}
When used in the form "name" the associated object is treated
as shared memory, whereas in the form "name []" the object has
message passing semantics. "name := ••• " is a STORE; " ••• :=
name" is a LOAD; "name [] : = ••• II is a PUT which may only
overwrite an emtpy object; and " ••• :=name[]" is a TAKE which
may only access a non-empty object, setting it to empty.

(expression)
An expression delimited by brackets, which control the order
of evaluation in the normal way.

expression
- The result is the negation of the expression.

expression operator expression
The expression is an arithmetic, logical, or conditional infix
expression.

name({expression {, expression} ••• })
The expression is a function or procedure call with zero or
more arguments, separated by commas.

Statements have the following syntax:

(* comment *)
This statement is ignored, being used to interject commentary
in a program.

IF {expression -) command} ••• PI
Each guard expression is evaluated in turn, until an expres­
sion is true. If all expressions are false then the statement
aborts.

DO {expression -) command} ••• OD
The guarded commands are repeatedly executed until none of the
guards is true.

POR local name := expression TO expression DO command ROP
The FOR-statement iteratively executes command for the series
of numeric or alphabetic value.

GOTO local name
Control is transferred to the object defined by the local
name.

d

- 205 -

CD name
Change context to the object defined by name.

name object {object} •••
A procedure with one or more parameters may be specified as a
Unix-like command.

Names have the following syntax:

local name{.selector} •••
A name consists of a sequence of selectors preceded by an
alphanumeric local name.

${.selector} •••
The parameters of a procedure or function are accessed as the
local name "$", which may be followed by a selector identify­
ing a specific parameter.

Selectors consist of the following:

local name
An alphanumeric character string is used to specify an object
in the local (or surrounding) context. The object can be any­
where in the context (also see numeric selector).

numeric
A numeric character string is used to specify an object in the
local context. The specific object is found by counting from
the left of the context "l:object 2:object 3: •••• ". It may be
helpful to view numeric selectors as implicit local names.

(expression)
The expression is evaluated and its result is used to specify
an object in the local context.

Local name has the following syntax:

alphanumeric
An alphanumeric character string.

Controls have the following syntax:

Execution of "command_I; command_2" is sequential.

&
Execution of "command_l & command_21t is in parallel.

Operators have the following syntax:

:=
Assignment operator updates a name:object pair relative. to)t~e
local context. An object (if it does not already eX1.st 1.S
created automatically by the access and set empty. The only
way to delete an object is by assignment.

- 206 -

+ - * /
Arithmetic operators add, subtract, multiply and divide.

AND OR NOT
Logical operators.

<> >)= < <=
The relational operators return TRUE if their arguments are in
the specific relation, otherwise they return FALSE.

- 207 -

APPENDIX A.4 - Banking Systea Application

A.4.1 Banking System Program (in Full BASIX)

(***)
(* validate - validates daily transactions input *)

(***)
validate: (

(* procedure okdate verifies if date is valid *)
okdate: (

if
transrec/3/2 = 2 -)

if (transrec/3/1 < 1) or (transrec/3/1) 29) -)
errorflag:= 'true;

£1;
(transrec/3/2 4) or
(transrec/3/2 6) or
(transrec/3/2 9) or
(transrec/3/2 11)-)
if (transrec/3/1 (1) or (transrec/3/1) 30) -)

errorflag:= 'true;
£1;

(transrec/3/1 (1) or (transrec/3/1) 31) -)
errorflag:= 'true;

£1
if errorflag = 'true -) 'false; 'true; fi;

) ;
(* procedure nameok verifies if name is alphabetic *)

nameok: (
for i = 1 to 20 do

(if not «transrec/4/(i))= 'a) and
(transrec/4/(i) (= 'z» or
(transrec/4/(1) = II II) or
(transrec/4/(i) = "."» -) errorflag:= 'true;

£1) ;
rof
if errorflag = 'true -) 'false; 'true; fi;

); . I h i *) (* procedure addressok verifies if address ~s a P anumer c
addressok: (

1 to 20 do for i =
(if not «(transrec/S/(i))= 'a) and

'z» (transrec/S/(i) (= or
«transrec/S/(i) >= '0) and
(transrec/S/(i) (= '9» or
(transrec/4/(i) II ") or
(transrec/4/(1) "."»_> errorflag:='true;

£1) ;
rof
if errorflag 'true -) 'false; 'true; fi;

) ;
(* main body of validate *)

i:= 1;
errorflag:= 'false;
transindex:= 1;
error index: = 1;
temptrans := ();

)

- 208 -

tempindex := 1;
do

(transrec:= trans£ile/(transindex);
transindex:= transindex + 1;
transrec/1 <> 999) ->
(if
(transrec/1 >= 1) and (transrec/1 <= 100) and
(okdate() = 'true) ->
(i£
transrec/2 3 -> (temptrans/(tempindex):= transrec;

tempindex:= tempindex + 1);
transrec/2 1->
(if (transrec/4 <> (» and

(nameok() = 'true) and
(transrec/5 <> (» and

(addressok()='true)->(temptrans/(transindex):Etransrec;
tempindex;= tempindex + 1);

fi);
transrec/2 = 2 ->
(i£ «transrec/4 () or

£i);
£i);

nameok() = 'true) and
(transrec/5 = () or
addressok()='true)-)(temptrans/(transindex):-transrec;

tempindex:= tempindex + 1);

(if erroflag 'true -) (errofile/(errorindex):= transrec;
errorindex:= error index + 1;

fi);
fi);

od
temptrans/(tempindex):= transrec; (* terminator 999 *)
transfile:= temptrans;

- 209 -

(***)
(* sort - sorts daily transactions input *)

(***)
sort: (i:= 1;

)

do
transfile/(i)/l <> 999 ->

(j := i + 1;
do
transfile/(j)/l <> 999 ->
(if (transfile/(i)/1 > transfile/(j)!l) or

«transfile!(i)!l = transfile!(j)!l) and
(transfile/(i)/2 > transfile!(j)!2» ->

(

£1;

temp:= transfile!(i);
transfile/(i):= transfile!(j);
transfile/(j):= temp

) ;

j:= j + 1);
od;

i:=i+1);
od;

d

- 210 -

(***)
(* update - updates Master File with validate, sorted daily transactions *)
(***)
update : (

procupdate : (if transrec/2 = 1 -) erroflag := 'true;
transrec/2 = 2 -)

fi

(newrec/3 := transrec/3
if transrec/4 <> () -) newrec/4:= transrec/4 fi;
if transrec/S <> () -) newrec/S:= transrec/S fi;
newrec/6:= newrec/6 + transrec/6;

) ;
transrec/2 = 3 -)

(if exclflag = 'false -) exclflag:= 'true;
erroflag:= 'true;
fi) ;

transindex
old index
newindex
transrec
oldrec
newfile

) ;
:= 1;
:= 1;
:= 1;
:= transfile/(transindex);
:= oldfile/(oldindex);
.- 0;

do
(oldrec/l
if

<) 999) or (transrec/l <> 999) -)

oldrec/l < transrec/l -)
(newfile/(newindex):= oldrec;
newindex:= newindex + 1;
oldindex:= oldindex + 1;
oldrec:= oldfile/(oldindex»;

oldrec/l) transrec/l -)
(if transrec/2 = 1 -)

(errorflag:= 'false;
exclflag := 'false;
newrec := transrec;

do
(transindex:= transindex + 1;
transrec:= transfile/(transindex);
newrec/l = transrec/l -) procupdate();

od;
if (errorflag = 'false) and (exclflag = 'false) -)

(newfile/(newindex):= newreCj
newindex:= newindex + 1)

fi;
errorflag:= 'true;

fi
if errorflag = 'true -)

(errofile/(errorindex):= newrec;
errorindex:= errorindex + 1;

);
fi;

)
oldrec/l = transrec/l -)

(newrec:= oldrec;
oldindex:= oldindex + 1;
oldrec:= oldfile/(oldindex»;

)

H;
od

) ;

- 211 -

errorflag:= 'false;
exclflag:= 'false;
do newrec/l = transrec/l -)

(procupdate();

od;

transindex:= transindex + 1;
transrec:= transfile/(transindex);

);

if (errorflag = 'false) and (exclflag 'false)-)
(newfile/(newindex):= newrec;
newindex:= newindex + 1

)
errorflag = 'true -)

(errorfile/(errorindex):= newrec;
errorindex:= errorindex + 1;
) ;

H

newfile/(newindex):= oldrec; (* terminator 999 *)

- 212 -

A.4.2 - Sample Run of Banking System

$comment - banking system - section 1 - validate the transactions

$comment list the transaction file.

$copy transfile
«005 3 (22 11 83»

(006 3 (22 11 83»
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666777)
(010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444)
(001 2 (22 11 83) (MURIEL ALBERTA NEWTH»
(002 2 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK»
(999 »

End of file

$comment - run the validate program.

$run *lisp
Execution begin 11:33:56
(RESTORE "BASIX.OBJ")
BASIX
(VALIDATE transfile)
(MTS)

11-24-83 RESTORED

$comment - list the validated transaction file

$copy transfile
«005 3 (22 11 83»

(006 3 (22 11 83»
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666777)
(010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444)
(001 2 (22 11 83) (MURIEL ALBERTA NEWTH»
(002 2 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK»
(999 »

End of file

$comment - banking system - section 2 - sort the transactions.

$comment - run the sort program.

$restart .
(SORT transfile)
(MTS)

- 213 -

$comment - list the sorted transaction file.

$copy transfile
«001 2 (22 11 83) (MURIEL ALBERTA NEWTH»

(002 2 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK»
(005 3 (22 11 83»
(006 3 (22 11 83»
(010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444)
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666777)
(999»

End of file

$comment - banking system - section 3 - apply the transactions.

$comment - list the old customer file.

$copy oldfile
«001 1 (22 06 83) (AAAAAAAAAAAAAAA) (BBBBBBBBBBBBBBBBBBBB) 111222)

(002 1 (22 06 83) (AAAAAAAAAAAAAAA) (BBBBBBBBBBBBBBBBBBBB) 333444)
(003 1 (22 06 83) (EEEEEEEEEEEEEEEEEEEE) (FFFFFFFFFFFFFFFFFFFF) 555666)
(004 1 (22 06 83) (GGGGGGGGGGGGGGGGGGGG) (HHHHHHHHHHHHHHHH) 777888)
(005 1 (22 06 83) (11111111111111111111) (JJJJJJJJJJJJJJJJJJJJ) 999111)
(006 1 (22 06 83) (~) (LLLLLLLLLLLLLLLLLLLL) 222333)
(007 1 (22 06 83) (MMMMMMMMMMMMMMM) (NNNNNNNNNNNNNNNNNNNN) 444555)
(008 1 (22 06 83) (00000000000000000000) (PPPPPPPPPPPPPPPPPPPP) 666777)
(009 1 (22 06 83) (QQQQQQQQQQQQQQQQQQQQ) (RRRRRRRRRRRRRRR) 888999)
(010 1 (22 06 83) (SSSSSSSSSSSSSSSSSSSS) (TTTTTTTTTTTTTTTTTTTT) 000111)
(011 1 (22 06 83) (UUUUUUUUUUUUUUUUUUUU) (VVVVVVVVVVVVVVVVVVVV) 222333)
(012 1 (22 06 83) (WWWWWWWWWWWWWWW) (XXXXXXXXXXXXXXX) 444555)
(013 1 (22 06 83) (YYYYYYYYYYYYYYYYYYYY) (ZZZZZZZZZZZZZZZZZZZZ) 666777)
(999»

End of file

$comment - run the update program.

$restart
(UPDATE oldfile transfile newfile)
(altered

(001 1 (22 11 83) (MURIEL ALBERTA NEWTH) (BBBBBBBBBBBBBBBBBBBB) 111222»

- 214 -

{altered
{001 1 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK) 333444»

{deleted
{005 3 (22 11 83»

{deleted
{006 3 (22 11 83»

{error - new client
{010 1 (22 11 83) (KATEANNIE JOSE SMITH) (2 NEW OAKLAND AVENUE) 333444»

{added
{014 1 (22 11 83) (MARYANNIE JOHN SMITH) (I OLD OAKLAND AVENUE) 666000»

(STOP)

Execution terminated 12:22:52 T=9.909 RC=O $1.24

$comment - list the new customer file.

$copy newfile
{{001 1 (22 11 83) (MURIEL ALBERTA NEWTH) (BBBBBBBBBBBBBBBBBBBB) 111222)

(002 1 (22 11 83) (ALBERT JOHN NEWMANNS) (66 OLD BARREL EMBANK) 333444)
(003 1 (22 06 83) (EEEEEEEEEEEEEEEEEEEE) (FFFFFFFFFFFFFFFFFFFF) 555666)
(004 1 (22 06 83) (GGGGGGGGGGGGGGGGGGGG) (HHHHHHHHHHHHHHHHHHHH) 777888)
(007 1 (22 06 83) (MMMMMMMMMMMMMMM) (NNNNNNNNNNNNNNNNNNNN) 444555)
(008 1 (22 06 83) (00000000000000000000) (PPPPPPPPPPPPPPPPPPPP) 666777)
(001 1 (22 06 83) (QQQQQQQQQQQQQQQQQQQQ) (RRRRRRRRRRRRRRR) 888999)
(011 1 (22 06 83) (UUUUUUUUUUUUUUUUUUUU) (VVVVVVVVVVVVVVVVVVVV) 222333)
(012 1 (22 06 83) (WWWWWWWWWWWWWWW) (XXXXXXXXXXXXXXX) 444555)
(013 1 (22 06 83) (YYYYYYYYYYYYYYYYYYYY) (ZZZZZZZZZZZZZZZZZZZZ) 666777)
(014 1 (22 11 83) (MARYANNIE JOHN SMITH) (1 OLD OAKLAND AVENUE) 666000)
(999 »

End of file

- 215 -

APPENDIX A.5 - Expert Systea Application

A.5.l Expert System Program (in executable subset of BASIX)

(rules: QUOTE «rl

(r2

(r3

(r4

(r5

(r6

(r7

(r8

(r9

(rIO

(rll

(r12

(rl3

(r14

(r15

("has hair")
("is mammal"})
("gives milk")
("is mammal"»
("has feathers")
("is bird"»
("can fly" "lays eggs")
("is bird"»
("eats meat")
("is carnivore")}
("has pointed teeth" "has claws" "has forward eyes")
("is carnivore"»
("is mammal" "has hoofs")
("is ungulate"»
("is mammal" "chews cud")
("is ungulate"»
("is mammal" "is carnivore" "is tawny colour"
"has dark spots")

("is cheetah"»
("is mammal" "is carnivore" "is tawny colour"
"has black stripes")

("is tiger"»
("is ungulate" "has long neck" "has long legs"
"has dark spots")

("is giraffe")}
("is ungulate" "has black stripes")
("is zebra"»
("is bird" "cannot fly" "has long legs"
"is black and white")

("is ostrich"»
("is bird" "cannot fly" "can swim"
"is black and white")

("is penguin"»
("is bird" "can fly well")
("is albatross"»);

- 216 -

hypo: QUOTE ("is albatross"
"is penguin"
"is ostrich"
"is zebra"
"is giraffe"
"is tiger"
"is cheetah");

name: QUOTE animal;

verify: QUOTE (fact: ./1;
currule: ./2;
curante: ./3;
q: 0;
r: recall fact;
IF NOT r -) (inthen fact;

FI;
r);

inthen: QUOTE (fact: ./1;
q:= 0;

IF (LIMIT q) = 0 -) r:= ask fact currule curante;
(LIMIT q) <) 0 -)

(i: 1;
DO (done: tryrule q/(i);

IF NOT done -) i:= i + 1; FI;
(NOT done) AND (i <= LIMIT q» -) TRUE;

OD;
r:= done);

FI);

FOR i IN 1 TO LIMIT rules DO
(rule: rules/(i);

FOR j IN 1 TO LIMIT rule/3 DO
(IF fact = rule/3/(j) -) (k: 1 + LIMIT q;

q/(k):= i);
FI);

ROF) ;
ROF) ;

recall: QUOTE (fact: ./1;
r: FALSE;
FOR i IN 1 TO LIMIT facts DO
(IF fact = facts/(i) -) r:= TRUE; FI);
ROF;
r);

remember: QUOTE (fact: ./1;
r: recall fact;
IF NOT r -) (r:= TRUE;

FI;
r);

tryrule: QUOTE (currule: ./1;

k: 1 + LIMIT facts;
facts/(k):= fact);

- 217 -

r: FALSE;
IF testif currule -) r:= usethen currule; FI;
r);

testif: QUOTE (currule: ./1;
r: TRUE;
done: FALSE;
rule: rules/{currule);
j: 1;
DO (NOT done) AND {j (= LIMIT rule/2) -)

(r:= verify rule/2/(j) currule j;
IF NOT r -) (r:= FALSE; done:= TRUE);

OD;
r);

r -)j:=j+1;
FI);

usethen: QUOTE (currule: ./1;
rule: rules/{currule);
r: FALSE;
FOR j IN 1 TO LIMIT rule/3 DO
(IF remember rule/3/(j) -)

(r:= TRUE;
SYSOUT:= QUOTE "Rule ";
SYSOUT:= rUle/I;
SYSOUT:= QUOTE" deduces ";
SYSOUT:= name;
SYSOUT:= rule/3/(j»;

FI) ;
ROF;
r);

ask: QUOTE (fact: ./1;
currule: • /2;
curante: ./3;
done: FALSE;
r: FALSE;
FOR i IN 1 TO LIMIT queries DO
(IF fact = queries/(i) -) done:= TRUE; FI);
ROF;
IF NOT done -)

(k: 1 + LIMIT queries;
queries/(k):= fact;
SYSOUT:= QUOTE "Is this true: ";
SYSOUT:= name;

FI;

SYSOUT:= fact;
SYSOUT:= QUOTE" '1 ";
DO (response: SYSIN;

IF response = QUOTE "y" -) (done:= remember fact;
r:= TRUE;

response
response

FI;

QUOTE
QUOTE

NOT done) -) TRUE;
OD);

It n"
"w"

done:= TRUE);
-) done: = TRUE;
-) why fact currule curante;

r);

why: QUOTE (fact: ./1;
currule: ./2;
curante: ./3;

- 218 -

IF fact = hypo/(curhyp) -)
(SYSOUT:= QUOTE "One of the possibilities is II.

SYSOUT:= name; J

SYSOUT:= fact;
SYSOUT:= QUOTE "I cannot deduce this except by asking you. ");
fact <) hypo/(curhyp) -)

(rule: rules/(currule);
SYSOUT:= QUOTE "I am trying to use rule ";
SYSOUT:= rule/I;
IF curante) 1 -)

(SYSOUT:= QUOTE "I already know that: ";
FOR j IN 1 TO curante - 1 DO
(SYSOUT:= name; SYSOUT:= rule/2/(j»;
ROF);

FI;
SYSOUT: = QUOTE "If: ";
FOR j IN curante TO LIMIT rule/2 DO
(SYSOUT:= name; SYSOUT:= rule/2/(j»;
ROF;
SYSOUT:= QUOTE "Then: ";
FOR j IN 1 TO LIMIT rule/3 DO
(SYSOUT:= name; SYSOUT:= rule/3/(j»;
ROF);

FI) ;

SYSOUT:= QUOTE "Hello!";
IF (LIMIT rules) = 0 -) SYSOUT:= QUOTE "No rules.";

(LIMIT rules)) 0 -)
(IF (LIMIT hypo) = 0 -) SYSOUT:= QUOTE "No hypotheses.";

(LIMIT hypo)) 0 -)
(SYSOUT:= QUOTE Itl will use my II;
SYSOUT:= LIMIT rules;
SYSOUT:= QUOTE" rules to try to establish one of the following n;
SYSOUT:= LIMIT hypo;
SYSOUT:= QUOTE" hypotheses.";
FOR i IN 1 TO LIMIT hypo DO
(SYSOUT:= name; SYSOUT:= hypo/(i»;
ROF;
DO (fac ts: 0;

queries: 0;
done: FALSE;
curhyp: 1;
DO (NOT done) AND (curhyp (= LIMIT hypo) -)

(r: verify hypo/(curhyp) 1 1;
IF NOT r -) curhyp:= curhyp + 1;

r -) (SYSOUT:= QUOTE "1 conclude that ";

FI);
00;
IF NOT done -)

SYSOUT:= name;
SYSOUT:= hypo/(curhyp);
done:= TRUE);

FI);
FI)

- 219 -

SYSOUT:= QUOTE "No hypothesis can be confirmed.";
FI;
SYSOUT:= QUOTE "r (restart) or q (quit) 1";
DO (response: SYSIN;

OD;

(response <> QUOTE "r") AND (response 0 QUOTE "q"» -)
TRUE;

response = QUOTE "r") -) TRUE;
OD);

- 220 -

A.5.2 - Sample Run of Expert System

$comment - run the animals program

$run *lisp

Execution begins 17: 21: 36

(RESTORE "BASIX.OBJ")

BASIX 12-09-83 RESTORED

(EXEC)

(animals 0)

Hello!

I will use my 15 rules to try to establish one of the following 7 hypotheses.

animal is albatross
animal is penguin
animal is ostrich
animal is zebra
animal is giraffe
animal is tiger
animal is cheetah

Is this true: animal has feathers?
w

I am trying to use rule 3.
If: animal has feathers
Then: animal is bird.
n

Is this true: animal can fly?
w

I am trying to use rule r4.
If: animal can fly

animal lays eggs
Then: animal is bird.
n

Is this true: animal has hair?
w

I am trying to use rule rl.
If: animal has hair
Then: animal is mammal.
y

Rule rl deduces animal is mammal.

Is this true: animal has hoofs?
w

- 221 -

I am trying to use rule r7.
I already know that: animal is mammal.
If: animal has hoofs
Then: animal is ungulate.
y

Rule r7 deduces animal is ungulate.

Is this true: animal has black stripes?
w

I am trying to use rule r12.
I already know that: animal is ungulate.
If: animal has black stripes
Then: animal is zebra.
n

Is this true: animal has long neck?
w

I am trying to use rule rll.

I already know that: animal is ungulate.
If: animal has long neck

animal has long legs
animal has dark spots

Then: animal is giraffe.
y

Is this true: animal has long legs?
w

I am trying to use rule rll.
I already know that: animal is ungulate

animal has long neck.
If: animal has long legs

animal has dark spots
Then: animal is giraffe.
y

Is this true: animal has dark spots?
w

I am trying to use rule rll.
I already know that: animal is ungulate

animal has long neck
animal has long legs.

If: animal has dark spots
Then: animal is giraffe.
y

Rule rll deduces animal is giraffe.

I conclude that animal is giraffe.

r (restar) or q (quit) ?
r

- 222 -

Is this true: animal has feathers?
w

I am trying to use rule r3.
If: animal has feathers
Then: animal is bird.
y

Rule r3 deduces animal is bird.

Is this true: animal can fly well?
w

I am trying to use rule r15.
I already know that: animal is bird.
If: animal can fly well
Then: animal is albatross
y

Rule r15 deduces animal is albatross.

I conclude that animal is albatross.

r (restart) or q (quit) ?
q

Execution terminated 17:27:427 RC=O $3.04

- 223 -

APPENDIX A.6 - BASAL_l Progr....tug Language

NAME
BASAL 1

SYNOPSYS
BASAL 1

DESCRIPTION
In BASAL_l a program consists of a series of commands separated by
controls: ";" and newline define sequential execution (of the two
adjacent commands) while "&" defines parallel execution.

Commands have the following syntax:

HICB.O micro name
All subsequent commands are interpreted in microcomputer
"micro name"

local label statement
Stored for later execution

statement
Executed immediately

Statements have the following syntax:

expression
Returns result in place

DIM local name (integer {, integer} •••)
Declares an array of the specified dimensions

LET name = expression
Assignment statement

IF expression THEN local_label
Conditional statement

FOR local name = expression TO expression
Repetitive execution of enclosed statements

NEXT local name
End of corresponding loop

GOTO label
Unconditional control transfer

GOSUB label
Procedure call

RETUltN
Return from procedure call

- 224 -

STOP
Stop execution

End of program

Expressions have the following syntax:

number

name

Integer number

Identifier (local or non-local) of variable, message, or array
element

"character"
ASCII character

expression
Negate result of expression

(expression)
Bracketed expression

expression operator expression
Arithmetical, logical and conditional expression

?
Empty

{micro_name.}local_name {(expression {,expression} •••)}{[]}

Label
{micro_name.}local_label

Operator

+ - * /
Arithmetic operators

AND OR NOT
Logical operators

< <= > >= = <>
Conditional operators

Notes

<micro name> ::= A •• Z

<local name> ::= alphanumeric

<local_label>::= 01 •• 79

- 225 -

APPEliIDIX A.7 - BAS~2 Progr....tng Language

NAME
BASAL 2

SYNOPSIS
BASAL 2

DESCRIPTION
In BASAL_2 a program consists of a series of commands separated by
controls: ";" and newline define sequential execution (of the two
adjacent commands) while "&" defines parallel execution.

Commands have the following syntax:

PROC micro name{(local name{,local name} •••)}
All subsequent commands belong to process micro_name, which is
allocated to a separate microcomputer.

local label statement
Stored for later execution

statement
Executed immediately

Statements have the following syntax:

expression
Returns result in place

IMPORT micro name.local name
Defines-non-Iocal access

EXPORT local name
Allows non-local access

DIK local name (integer {, integer} •••)
Declares an array of the specified dimensions

LET name = expression
Assignment statement

IF expression THEN local_label
Conditional statement

FOR local name = expression TO expression
Repetitive execution of enclosed statements

NEXT local name
End of corresponding loop

- 226 -

GOTO local label
Unconditional control transfer

CALL micro_name{(local_name{,local_name} •••)}
Procedure call

RETDIUl
Return from procedure call

STOP
Stop execution

End of program

Expressions have the following syntax:

Name

number

name

Integer number

Identifier '(local or non-local) of variable, message, or array
element

"character"
ASCII character

expression
Negate result of expression

(expression)
Bracketed expression

expression operator expression
Arithmetical, logical and conditional expression

?
Empty

{micro_name.}local_name {(expression {,expression} •••)}{[]}

Label
{micro_name.} local_label

Operator

+ - * /
Arithmetic operators

AND OR NOT
Logical operators

- 227 -

< <= > >= = <>
Conditional operators

Rotes

<micro name> ::= a •• z

<local name> ::= alphanumeric

<local label>::= 01 •• 79

- 228 -

APPENDIX A.8 - Sorting Applications

A.8.1 Quicksort (Shared Memory) in BASAL

MICRO A
01 DIM V(l6)
02 FOR I = 1 TO 16
03 READ V(I)
04 NEXT I
05 LET LO = 1&
06 LET HI = 16
10 IF LO > HI THEN 39
11 IF LO = HI THEN 39
12 LET I = LO
13 LET J = HI
14 LET PIVOT = V(LO)
15 IF J < I THEN 20
16 IF J = I THEN 20
17 IF V(J) < PIVOT THEN 20
18 LET J = J - 1
19 GOTO 15
20 IF I > J THEN 25
21 IF I = J THEN 25
22 IF V(I) > PIVOT THEN 25
23 LET I = I + 1
24 GOTO 20
25 IF I > J THEN 30
26 IF I = J THEN 30
27 LET TEMP = V(I)
28 LET V(I) = V(J)
29 LET V(J) = TEMP
30 IF I < J THEN 15
31 LET V(LO) = V(I)
32 LET V(I) = PIVOT
33 LET B.LO = LO
34 LET B.HI = I - 1
35 GOSUB B. 10&
36 LET C.LO = I + 1&
37 LET C.HI = HI
38 GOSUB C.lO
39 STOP
MICRO B

33 LET D.LO - LO&
34 LET D.HI = I - 1
35 GOSUB D.I0&
36 LET E.LO - I + 1&
37 LET E.HI = HI
38 GOSUB E.lO
39 RETURN
40 STOP

- 229 -

A.8.2 Quicksort (Shared Memory) translated into BASIC

10 DIM PC(26)
20 DIM STACKPTR(26)
30 DIM STACK(26,20)
40 FOR I = 1 TO 26
50 LET PC(I) = (I * 1000) + 800
60 NEXT I
70 FOR I = 1 TO 26
80 LET STACKPTR(I) = 0
90 NEXT I
100 REM
1000 GOTO PC(Ol)
1010 DIM A. V(l6)
1020 FOR A.I = 1 TO 16
1030 READ A.V(A.I)
1040 NEXT A. I
1050 LET A.LO = 1
1060 LET A.HI = 16
1100 IF A.LO > A.HI THEN 1390
1110 IF A.LO = A.HI THEN 1390
1120 IF A.I = A.LO
1130 LET A.J = A.HI
1140 LET A.PIVOT = A.V(A.LO)
1150 IF A.J < A.I THEN 1200
1160 IF A.J = A.I THEN 1200
1170 IF A.V(A.J) < A.PIVOT THEN 1200
1180 LET A.J = A.J - 1
1190 GOTO 1150
1200 IF A.I > A.J THEN 1250
1210 IF A.I = A.J THEN 1250
1220 IF A.V(A.J) > A.PIVOT THEN 1250
1230 LET A.I = A.I + 1
1240 GOTO 1200
1250 IF A.I > A.J THEN 1300
1260 IF A.I = A.J THEN 1300
1270 LET A.TEMP = A.V(A.I)
1280 LET A.V(A.I) = A.V(A.J)
1290 LET A.V(A.J) = A.TEMP
1300 IF A.I < A.J THEN 1150
1310 LET A.V(A.LO) = A.V(A.I)
1320 LET A.V(A.I) = A.PIVOT
1330 LET B.LO = A.LO
1340 LET B.HI = A.I - 1
1350 LET PC(Ol) = 1350
1351 IF PC(02) <> 02999 THEN 01999
1352 LET PC(Ol) = 01999
1353 LET STACKPTR(02) = STACKPTR(02) + 1
1354 LET STACK(02,STACKPTR(02» = 01356
1355 GOSUB 2100
1356 REM
1360 LET C.LO = A.I + 1
1370 LET C.RI = A.HI
1380 LET PC(Ol) = 1380
1381 IF PC(03) <> 03999 THEN 1999
1382 LET PC(Ol) = 01999
1383 LET STACKPTR(03) = STACKPTR(03) + 1

- 230 -

1384 LET STACK(03,STACKPTR,03» = 01386
1385 GOSUB 3100

- 231 -

A.8.3 Quicksort (Message Passing) in BASAL

MICRO A
01 DIM V(16)
02 FOR I = 1 TO 16
03 READ V(I)
04 NEXT I
05 GOTO B.Ol&
06 GOTO C.Ol&
10 LET PIVOT = V(I)
11 FOR I = 2 TO 16
12 IF V(I) > PIVOT THEN 15
13 LET B.IN[] = V(I)
14 GOTO 16
15 LET C.IN[] = V(I)
16 NEXT I
20 LET B.IN[] = 30999&
21 LET C.IN[] = 30999
30 LET I = 1
31 LET V(I) = B.OUT[]
32 LET I = I + 1
33 IF V(I - 1) <> 30999 THEN 31
34 LET V(I - 1) = PIVOT
36 LET V(I) = C.OUT[]
37 LET I = I + 1
38 IF V(I - 1) <> 30999 THEN 36
39 STOP

MICRO B
01 LET PIVOT = B.IN[]
02 IF PIVOT = 30999 THEN 39
03 GOT a 0.01&
04 GOTO E.Ol&
10 LET X = B. IN[]
11 IF X = 30999 THEN 20
12 IF X > PIVOT THEN 15
13 LET O.IN[] = X
14 GOTO 10
15 LET E.IN[] = X
16 GOTO 10
20 LET O.IN[] = 30999&
21 LET E.IN[] = 30999
30 LET X = O.OUT[]
31 IF X = 30999 THEN 34
32 LET B.OUT[] = X
33 GOTO 30
34 LET B.OUT[] = PIVOT
35 LET X = E.OUT[]
36 IF X = 30999 THEN 39
37 LET B.OUT[] = X
38 GOTO 35
39 LET B.OUT[] = 30999
40 STOP

- 232 -

A.8.4 Quicksort (Message Passing) translated into BASIC

10 DIM PC(26)
20 DIM STACKPTR(26)
30 DIM STACK(26,20)
40 FOR I = 1 TO 26
50 LET PC(I) = (I * 1000) + 800
60 NEXT I
70 FOR I = 1 TO 26
80 LET STACKPTR(I) = 0
90 NEXT I
100 REM
1000 GOTO PC(Ol)
1010 DIM A. V(l6)
1020 FOR I = 1 TO 16
1030 READ A.V(A.I)
1040 NEXT A. I
1050 LET PC(Ol) = 01050
1051 IF PC(02) <> 02999 THEN 01999
1052 LET PC(Ol) = 01054
1053 GOTO 02010
1054 REM
1060 LET PC(Ol) = 01060
1061 IF PC(03) <> 03999 THEN 01999
1062 LET PC(Ol) = 01064
1063 GOTO 03010
1064 REM
1100 LET A.PIVOT = A.V(l)
1110 FOR A.I = 2 TO 10
1120 IF A.V(A.I) > A.PIVOT THEN 1150
1130 LET PC(Ol) = 1130
1131 IF B.IN <> -32768 THEN 01999
1136 LET B.IN = A.V(A.I)
1140 GOTO 1160
1150 LET PC(Ol) = 01150
1151 IF C.IN <> -32768 THEN 01999
1156 LET C.IN = A.V(A.I)
1160 NEXT A. I
1200 LET PC(Ol) = 1200
1201 IF B.IN <> -32768 THEN 01999
1206 LET B.IN = 30999
1210 LET PC(Ol) = 01210
1211 IF C.IN <> -32768 THEN 01999
1216 LET C.IN = 30999
1300 LET A. I = 1
1310 LET PC(Ol) = 01310
1312 IF B.OUT = -32768 THEN 01999
1316 LET A.V(A.I) = B.OUT
1317 LET B.OUT = -32768
1320 LET A.I = A.I + 1
1330 IF A.V(A.I - 1) <> 30999 THEN 1310
1340 LET A.V(A.I - 1) = PIVOT
1360 LET PC(Ol) = 01360
1362 IF C.OUT = -32768 THEN 01999
1366 LET A.V(A.I) = C.OUT
1367 LET C.OUT = -32768
1370 LET A.I - A.I + 1

- 233 -

1380 IF A.V(A.I - 1) <> 30999 THEN 1360

2000 GOTO PC(02)
2010 LET PC(02) = 02010
2012 IF B.IN = -32768 THEN 02999
2016 LET B.PIVOT = B.IN
2017 LET B.IN = -32768
2020 IF B.PIVOT = 30999 THEN 02390
2030 LET PC(02) = 02030
2031 IF PC(04) <> 04999 THEN 02999
2032 LET PC(02) = 02034
2033 GOTO 4010
2034 REM
2040 LET pe(02) = 02040
2041 IF pe(05) <> 05999 THEN 02999
2042 LET pe(02) = 02044
2043 GO TO 05010
2044 REM
2100 LET pe(02) = 02100
2102 IF B.IN = -32768 THE 02999
2106 LET B.X = B.IN
2107 LET B.IN = -32768
2110 IF B.X = 30999 THEN 2200
2120 IF B.X > B.PIVOT THEN 2150
2130 LET pe(02) = 02130
2131 IF D.IN <> -32768 THEN 02999
2136 LET D.IN = B.X
2140 GOTO 02100
2150 LET PC(02) = 02150
2151 IF E.IN <> -32768 THEN 02999
2156 LET E.IN = B.X
2160 GOTO 2100
2200 LET pe(02) = 02200
2201 IF D.IN <> -32768 THEN 02999
2206 LET D.IN = 30999
2210 LET pe(02) = 02210
2211 IF E.IN <> -32768 THEN 02999
2216 LET E.IN = 30999
2300 LET pe(02) = 02300
2302 IF D.OUT = -32768 THEN 02999
2306 LET B.X = D.OUT
2307 LET D.OUT = -32768
2310 IF B.X = 30999 THEN 02340
2320 LET pe(02) = 02320
2321 IF B.OUT <> -32768 THEN 02999
2326 LET B.OUT = B.X
2330 GOTO 02300
2340 LET pe(02) = 02340
2341 IF B.OUT <> -32768 THEN 02999
2346 LET B.OUT = B.PIVOT
2350 LET pe(02) = 02350
2352 IF E.OUT = -32768 THEN 02999
2356 LET B.X = E.OUT
2367 LET E.OUT = -32768
2360 IF B.X = 30999 THEN 02390
2370 LET pe(02) = 02370

- 234 -

2371 IF B.OUT <> -32768 THEN 02999
2376 LET B.OUT = B.X
2380 GOTO 2350
2390 LET PC(02) = 02390
2391 IF B.OUT <> -32768 THEN 02999
2396 LET B.OUT = 30999
2400 GOTO 02998
2800 REM

	350492_0001
	350492_0002
	350492_0003
	350492_0004
	350492_0005
	350492_0006
	350492_0007
	350492_0008
	350492_0009
	350492_0010
	350492_0011
	350492_0012
	350492_0013
	350492_0014
	350492_0015
	350492_0016
	350492_0017
	350492_0018
	350492_0019
	350492_0020
	350492_0021
	350492_0022
	350492_0023
	350492_0024
	350492_0025
	350492_0026
	350492_0027
	350492_0028
	350492_0029
	350492_0030
	350492_0031
	350492_0032
	350492_0033
	350492_0034
	350492_0035
	350492_0036
	350492_0037
	350492_0038
	350492_0039
	350492_0040
	350492_0041
	350492_0042
	350492_0043
	350492_0044
	350492_0045
	350492_0046
	350492_0047
	350492_0048
	350492_0049
	350492_0050
	350492_0051
	350492_0052
	350492_0053
	350492_0054
	350492_0055
	350492_0056
	350492_0057
	350492_0058
	350492_0059
	350492_0060
	350492_0061
	350492_0062
	350492_0063
	350492_0064
	350492_0065
	350492_0066
	350492_0067
	350492_0068
	350492_0069
	350492_0070
	350492_0071
	350492_0072
	350492_0073
	350492_0074
	350492_0075
	350492_0076
	350492_0077
	350492_0078
	350492_0079
	350492_0080
	350492_0081
	350492_0082
	350492_0083
	350492_0084
	350492_0085
	350492_0086
	350492_0087
	350492_0088
	350492_0089
	350492_0090
	350492_0091
	350492_0092
	350492_0093
	350492_0094
	350492_0095
	350492_0096
	350492_0097
	350492_0098
	350492_0099
	350492_0100
	350492_0101
	350492_0102
	350492_0103
	350492_0104
	350492_0105
	350492_0106
	350492_0107
	350492_0108
	350492_0109
	350492_0110
	350492_0111
	350492_0112
	350492_0113
	350492_0114
	350492_0115
	350492_0116
	350492_0117
	350492_0118
	350492_0119
	350492_0120
	350492_0121
	350492_0122
	350492_0123
	350492_0124
	350492_0125
	350492_0126
	350492_0127
	350492_0128
	350492_0129
	350492_0130
	350492_0131
	350492_0132
	350492_0133
	350492_0134
	350492_0135
	350492_0136
	350492_0137
	350492_0138
	350492_0139
	350492_0140
	350492_0141
	350492_0142
	350492_0143
	350492_0144
	350492_0145
	350492_0146
	350492_0147
	350492_0148
	350492_0149
	350492_0150
	350492_0151
	350492_0152
	350492_0153
	350492_0154
	350492_0155
	350492_0156
	350492_0157
	350492_0158
	350492_0159
	350492_0160
	350492_0161
	350492_0162
	350492_0163
	350492_0164
	350492_0165
	350492_0166
	350492_0167
	350492_0168
	350492_0169
	350492_0170
	350492_0171
	350492_0172
	350492_0173
	350492_0174
	350492_0175
	350492_0176
	350492_0177
	350492_0178
	350492_0179
	350492_0180
	350492_0181
	350492_0182
	350492_0183
	350492_0184
	350492_0185
	350492_0186
	350492_0187
	350492_0188
	350492_0189
	350492_0190
	350492_0191
	350492_0192
	350492_0193
	350492_0194
	350492_0195
	350492_0196
	350492_0197
	350492_0198
	350492_0199
	350492_0200
	350492_0201
	350492_0202
	350492_0203
	350492_0204
	350492_0205
	350492_0206
	350492_0207
	350492_0208
	350492_0209
	350492_0210
	350492_0211
	350492_0212
	350492_0213
	350492_0214
	350492_0215
	350492_0216
	350492_0217
	350492_0218
	350492_0219
	350492_0220
	350492_0221
	350492_0222
	350492_0223
	350492_0224
	350492_0225
	350492_0226
	350492_0227
	350492_0228
	350492_0229
	350492_0230
	350492_0231
	350492_0232
	350492_0233
	350492_0234
	350492_0235
	350492_0236
	350492_0237
	350492_0238
	350492_0239

