
Vepeniabifity and the Management of
Large Vistributei Systems

f})arren ~ J-fotfge

.9Lugust 1995

Ph.'D. %esis
NEWCASTLE UNIVERSITV LIBRARV

096 f>0467 0

-rk~SlS L ?"13Lf-

'Department of Computing Science
%e University of ~wcast[e upon TJne

x.ingsWa[k.
~wcast[e upon TJne

51 tfiesis submittea in partia[jufjifment of tfie requirements for tfie degree of tIJoctor of
Pfiif.osopfiy in tfie :racufty of Science of tfie 'UniVersity of ~wcast[e upon rryne.

ABSTRACT
This thesis concerns the design, implementation and application of a

dependable management information system to aid in the controlling (moni

toring) of large, complex distributed computer systems. Special attention has

been given to using a person centred model of an organisation based on the

ANSA "Enterprise Projection" and using fault tolerance techniques to provide

continued service and recovery in the event of partial sub-system failure.

The information system is accessed using "management workbenches"

(implemented in Tclfrk) which access managed resources using "probes"

(implemented in C++). Existing "legacy systems" are incorporated in the pro

totype using "integration objects" which "wrap" system software, entry rou

tines, configuration files etc. and enact operation upon logical (physical)

resources. Application layer fault tolerance and recovery is implemented

using type inheritance whereas remote operations are performed using the

Arjuna tool kit.

The prototype information system was used to "manage" several resources

including: workstations (running SunOS, Solaris and HP-UX) , terminals,

printers, disk and tape devices as well as software distributions. A mecha

nism for re-configuring multiple resources (such as workstation clusters and

dedicated devices) based on "dependable change schedules" is presented and

applied to change and fault management.

Key Words: Change Schedules, Enterprise Modelling, Fault Tolerance,

Legacy Systems, System Management, UNIX®

11

ACKNOWLEDGEMENTS
I am very grateful for all the support and encouragement which I have

received during my research, especially during my recent bereavement and

while my (old) flat was repeatedly burgled. In particular, Dr. Lindsay Mar

shall and Prof. Santosh Shrivastava for their help and suggestions regarding

this project, Dr. Adrian Waterworth who has read many drafts of this thesis

and Rafhat Iqbal (my "office mate"). Special thanks to Jill Clifford, Annette

Krowschewski, Steph and Alan Richardson; my friends from Heaton Baptist

Church, particularly Ali Calvert, Dr. Andy Carlisle, Frank and Julia Cos

grove, Alex Grant, Bill Nicholson, Stephi and Rob Wallace, Margaret and Ken

Webster, Pat and Joe Wilkes; and my family Kenneth, Valerie and Lisa

Hodge.

Many thanks also to our librarian, Shirley Craig; Tim Smith, Steve Varty,

Chris Ritson and Trevor Kirby for their technical help; Computing Services

for use of their equipment; and members of the AIjuna group for "being

there". My research has been part funded by the United Kingdom Science

and Engineering Research Council. (Award reference: 8830487X)

'I1ie fear of the £Ora is the 6eginning of a[[wisaom,
Jtf[wfw fo[[ow J{im ["we gooa urulerstantfing,
'To J{im befongs etemai praise.

Psa[m 111 V 10 (:J-.&w Intemationa[Versum)

In Me11Wriam:

2(eg 0/. Orris {1907 -1984}

yfadys :r. Orris {1912 -1992}

(My yrarnfparents)

\ ,

iii

Contents iv

CONTENTS

Abstract

Acknowledgements... u

Dedication... U~

Table of Contents.. ~v

List of Figures vii

List Tables viii

List of Code Segments.. ix

1 Introduction .. 1

1.1 Managing an Organisation.. 3

1.2 Management Large Computer Systems ... 6

1.3 Operational Management.. 8

1.4 Dependability and System Management.. 9

1.5 Thesis Contribution, Aims and Objectives ... 12

1.6 Thesis Outline .. 14

2 Managing Large, Complex Systems ... 15

2.1 Standards and Systems Management .. 16

2.2 Managing Computational Resources .. 18

2.2.1 Project Athena (M.l. T.) ... 20

2.2.2 EMA .. 22

2.2.3 DSM 23

2.2.4 Netman ... 24

2.2.5 OSF ... 25

2.2.6 TOBIAS 25

2.3 Evaluation .. 27

2.4 Conclusions .. 30

3 Design of Information System ... 32

3.1 Management Model ... 32

3.1.1 Agents and Roles 33

3.1.2 Responsibilities 34

Contents

3.1.3
3.1.4
3.1.5
3.1.6

3.1.7
3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.3

3.3.1
3.3.2
3.3.3
3.4

4

4.1

4.2

4.3

4.3.1
4.3.2
4.4

4.4.1
4.4.2
4.5

4.5.1
4.5.1.1
4.5.1.2

Job Descriptions 35
'Views 35
Messages 36

Conditions of Work 37

Resources .. 37

Representing Organisational Policy ... 40

Job Allocation 42
Resource Allocation.. 43

Domains 43
Interactions Between Domains .. 47
Constructing a Management Information System 50

Management Workbench and Information Base 51

Managed Resources and Probes .. 53

Dependable Resource Integration .. 54
Conclusions .. 56

Prototype Implementation ... 58

Managing Campus Resources ... 60

Managing Information Base .. 61

Initial Configuration .. 62

Resources Integrated .. 63

Automatic Configuration... 65

Views ... 65

Computer Configuration 'View... 67

Computer Performance 'View... 68

Probes ... 70

Integration Layer ... 71
System Programmer's Interface ... 71

Integrating System Software ... 76

4.5.1.3 Obtaining Configuration Specifics .. 80

4.5.1.4 Server Integration .. 83

4.5.1.5 Manual Commands 85

4.5.1.6 Reporting .. 86

4.5.2 Unrecoverable Layer 87

4.5.3 Recoverable Layer .. 90

4.6 Discussion ... 96

Contents vi

5 Evaluation of Prototpye ..•.•..•...............................••.••••••................. 101

5.1 Performance Evaulation ... 101

5.1.1 Arjuna Overhead ... 102

5.1.2 Integration Overheads 104

5.1.3 Recoverable Layer 106

5.1.3.1 Computer 106

5.1.3.2 Terminal .. 108

5.1.3.2 Software ... 108

5.1.4 Evaluation ... 109

5.2 Testing the Management Information System ll0

5.2.1 Application Level Fault Injection .. 112

5.2.2 Communication Level Fault Injection ... 113

5.2.3 Faulty Terminal Experiment ... 114

5.2.4 Faulty Software Experiment .. 115

5.2.5 Discussion ... 115

5.3 Summary .. 117

6 Managing Change .. 118

6.1 Reconfiguration .. 119

6.1.1 Change Management View .. 119

6.1.2 Implementing Dependable Change Schedules 121

6.1.3 Software Update Example .. 125

6.1.4 Hardware Example ... 128

6.1.5 Discussion .. 133

6.2 Fault Management ... 136

6.2.1 Application Layer Faults .. 137

6.2.2 Fault Management Using Change Schedules 138

6.2.3 Change Schedule Recovery ... 140

6.2.4 Arjuna Fault Management and Crash Recovery 142

6.2.5 Discussion .. 143

6.3 Summary ... 145

7 Conclusions ... 146

7.1 Thesis Contribution .. 149

7.2 Evaluation of Research ... 150

7.2.1 Design .. 150

Contents VII

7.2.2 Prototype System .. 152

7.2.3 Application .. 153

7.2 Future Work .. 154

APPENDICES .. J57

A Integration Layer .. J58

B Unrecoverable Layer .. J81

C Recoverable Layer .. 202

D Sample Screen Dumps .. 219

Acronyms ... 236

Glossary ... 237

Trademarks ... 239

References .. 240

Table of Figures viii

TABLE OF FIGURES
Chapter 1

The Organisation Viewed as an Open System..... ... 4

Major Elements of Organisational Dynamics........... 5

Chapter 3

Single Inheritance Hierarchy ... 39

Multiple Inheritance Hierarchy ... 39

Some Factors which affect Organisational Policy ... 40

Contract of Employment ... 42

Contract of Use .. 43

Domains {Based on University Departments) ... 44

Newcastle University Domain Structure (Simplified) 45

Computing and Electrical Engineering Domains .. 46

Computing Domain's Resources ... 46

Indirect Management ... 47

Direct Management .. 48

Direct Trading Between Domains.. 48

Direct Trading using Contracts .. 49

Resource Trading using Contracts ... 50

Management Information Base Architecture .. 51

Distributed System Architecture ... 53

Example Interaction ... 55

Chapter 4

Management Information System Structure .. 59

Application Layer Architecture .. 64

Integrating System Software ... 77

Fault Report .. 87

Type Hierarchy .. 88

Chapter 6

Line Printer Subsystem ... 129

(Partitioned) Line Printer Subsystem ... 139

Tables ix

TABLES
Chapter 2

Terminology Table... 28

Comparison Table ... 30

Chapter 3

Design Evaluation ... 57

Chapter 4

Workstations Integrated ... 63

Implementation Evaluation .. 100

Chapter 5

Quoted Arjuna Performance .. 103

Observed Server Performance ... l 03

File Sizes ... l 03

Observed Arjuna Performance .. 104

Integration Layer Performance ... 107

RecComputer's Performance ... 108

RecTerminal's Performance ... 108

RecSoftware's Performance ... 109

Code Segments x

CODE SEGMENTS
Chapter 4

Using IOCTLS ... 72

Disk Controller Class .. 72

Getting Disk Controller Data ... 73

Kernel Class.. 74

Getting Memory Statistics .. 74

Getting Process Statistics ... 75

Pipe Class .. 77

LPC Class .. 78

Starting Printers using LPC .. 79

Getting Printer's Status ... 80

PrintCapEntry Class .. 81

Reading Printcap Entries ... 82

Rstat Class .. 84

Getting Statistics using Rstat .. 84

ManDiskUnit class .. 86

UnRecoverable DiskUnit class ... 89

DiskUnit's autoGetController member .. 90

RecComputer Class ... 93

RecComputer's getKernelMetrics member .. 94

Chapter 6

Device Connection using Traditional Actions ... 122

Device Connection using Long Running Actions .. 124

Software Update Change Schedule ... 128

Hardware Installation Change Schedule ... 130

Hardware Installation using Long Running Actions 132

Printer Replacement Change Schedule .. 140

Printer Replacement using Long Running Actions .. 140

Chapter 1

INTRODUCTION

It is a truth universally acknowledged that an organisation in pos
session of a good fortune must be in want of a large, complex com
puter system. However little is known of the feelings or views of their
systems administrators ... *

The increased availability of sophisticated computer equipment and the

corresponding decrease in cost has lead to the widespread use of very large,

complex distributed computer systems in many organisations. These dis

tributed computer systems not only comprise many and varied resources but

can be geographically dispersed and cross organisational boundaries. Effec

tively managing such computer systems is very difficult due to their size and

complexity. For instance eMU, one of the most computer intensive universi-

ties has over three thousand computers attached to its campus (backbone)

network via several local area networks. Distributed computer systems are

becoming so large that SUN micro systems advertising claims

"The Network IS the computer" ®

Many installations have become so computer dependent that their organi

sation "cannot cope" without a high level of information technology support.

They can also incur much disruption (and financial loss) in the event of sys

tem failures and major changes to the system configuration. Unfortunately

hardware manufacturer's and system software documentation often has little

(if anything) to say regarding day to day system administration; worse still,

the scale and complexity of such systems cannot simply be removed using

standardisation and homogeneity. Even though the effective management of

• Adapted from Pride and Prejudice (Chapter 1) by Jane Austen (1775 - 1817)

Introduction 2

the computing resources is so fundamental to the organisation's smooth run

ning, very little research has been performed in this area and even existing

research has overlooked several key areas fundamental to effective system

management.

When designing a management information system to aid human system

administrators in controlling and monitoring a very large distributed com

puter system, it is important to consider the role of the people within the

organisation. Some system designs have been criticised for failing properly to

consider people, as ANSA [ANSA90a] explain:-

• "some system design approaches suffer from a strong technological bias

which treat the user as a peripheral object."

• "the influence of special groups ... has tended to make the design process

concentrate on technical issues."

• "human concerns were simply ignored" partly because "of the lack of the

rigorous theory or accepted guidelines ... and the complexity of the prob

lems involved."

• "purchasers often respond to technological advances."

Therefore, the concerns of people within social groups (and the organisation)

must be incorporated into the system model. Whilst it is almost certainly

impossible to model every aspect of human needs, concerns, aspirations etc.,

ANSA have described a taxonomy of people and systems from a designer's

viewpoint. This taxonomy models several groups of individuals within the

organisation and comprises the following groups:-

• Users - these include "Service Users" such as managers, clerks and

sales assistants; "Service Providers" which include system architects

designers, and "System Engineers". System engineers are further

Introduction 3

subdivided into "Hardware Engineers", "Operating Systems Engineers",

"Programmers and Operators" etc.

• Non-Users - which include "owners", "purchaser and lessee", "vendor",

"organisation administrator" and "customer". These non-users do not

interact directly with the computer system but nevertheless maintain an

interest in its progress.

ANSA deliberately consider human concerns which include "people as indi

viduals", "individuals as members of a social group", "individuals as members

of an organisation" and "individuals as users of a system". These human

issues concern a mixture of psychological, physiological and ergonomic factors

which must be considered not only when designing the user interface but the

whole system.

1.1 MANAGING AN ORGANISATION

Before considering the role of dependability in managing very large com

puter systems, let us first address two fundamental issues: what do we mean

by management and where does management fit in to the organisation?

An organisation [Duncan81al is a "collection of interacting and interdepen

dent individuals who work together towards common goals and whose rela

tionships are determined according to a common structure." This definition

leads to several key points:-

• organisations are collections of people.

• people who work together within the organisation interact, and cooperate

towards goals. These goals or policies need not be explicit at all levels but

nevertheless members of the organisation are aware of the policies' exis

tence.

Introduction 4

• the organisation is structured. This structure can be both formal (organi

sational segmentation) and informal i.e. social groupings of employees.

These informal groups can play an important role in the organisation.

It is possible to describe organisations using "systems theory." Organisations

interact with their environment:- transforming inputs of goods and services,

producing outputs, and are therefore "open systems."* This transformation

process can be further subdivided in terms of a "formal system" (reporting

responsibilities), "technology"(production system) and a "social system" (infor-

mal groupings) as shown in the following diagram:

The Organisation viewed as an Open System.

Environment

(Inputs) ----(Outputs)

Transformation

...

Objectives and strategies are important in order to manage an organisa

tion. These policies shape the organisation's behaviour and give the organisa

tion its character. Individual managers require information in order to imple

ment policies; and this information can be processed, stored, retrieved and

communicated to other managers.

Organisations comprise a formal structure, technology, environment and

social system. Kotter[Kotter78a] has integrated these (and other aspects) into

an overall framework for examining organisations, as shown in the following

... The tenn "open systems" is used within "systems theory" to denote systems which interact
with their environment and should not therefore be confused with the ISO "Open Systems" defini
tion.

Introduction 5

diagram:-

Major Elements of Organisational Dynamics

• Key Organisational Processes - the major information gathering, com

munication, decision-making, matter/energy converting and transporta

tion actions of the employees and machines.

• External Environment - including suppliers (labour, raw materials etc.),

markets, competition and other factors related to the organisation.

• Employees and Other Tangible Assets - including employees, plan,

offices, equipment, tools etc.

• Formal Organisational Arrangements - such as formal systems, proce

dures and regulations.

• Social System - this includes the employees "culture" and social (i.e.

informal) relationships.

• Technology - the major techniques used by employees while engaging in

organisational processes. (AB contrasted with the actual equipment used

by the employees.)

Introduction 6

• The Dominant Coalition - concerns the organisation's "policy makers"

and their objectives, strategies etc.

Kotter therefore provides a systematic checklist of interactions within an

organisation. The model does not attempt to provide a complete picture of

every possible element within an organisation, nor does the model attempt to

understand or explain every possible interconnection and relationship. Nev

ertheless, this model identifies the wide variety of interactions within the

organisation which must be analysed to maximise adaptability[Schein80a].

1.2 MANAGING LARGE COMPUTER SYSTEMS

Having briefly considered organisations and several aspects of managing

an organisation, let us now turn our attention to using very large computer

systems within an organisation. Very large (distributed) computer systems

raise particular problems for system administrators, due to their size, com

plexity and the sheer volume (and variety) of interconnected resources. Worse

still, the traditional approach of allocating one system administrator per

machine is now impractical due to the availability of small but powerful

units. Their scale, breadth of support and controlling technological improve

ments has grown beyond day-to-day managers, single departments or sub

departmental groups.

Organisation wide computer systems are managed by organisation wide

management structures with access to senior executives. More than half of

the (university) organisations considered in Arms's survey of "Campus Net

working Strategies" created a responsible "executive" director in order to

harness and focus their information technology and organisation's policies.

This included budgetary and operational controls, effective use of resources

and co-ordination between organisation departments. Controlling computer

Introduction 7

and networking technology are therefore an institutional priority. [Arms88al

Information technology "investment strategies" must be carefully planned in

order to keep pace with rapid technological developments, standards and ven

dor reliability.

At CMU for example, their campus networking expertise IS distributed

between several departments. These include:-[Arms88bl

• Academic Services division - responsible for campus network, telephone

and data services on campus.

• Vice-Provost for Research Computing - who leads a very strong team

providing computing support for their major research groups.

• Associate-Provost for Scientific Computing - with particular expertise

in national computer networks.

• Individual Departments and College Centres.

Even though these groups may have their own sets of priority, they recog

nised the value of sharing their expertise and resources. Day-to-day network

management is performed by a central team of technicians and engineers

responsible for both the operational and evolutionary aspects of the campus

network. "Operational management" concerns "real time" issues, such as

fault management, monitoring and policing the network etc.; whereas "evolu

tion management", performed by their most experienced staff, concerns

adapting the network based on traffic load and profiles.

Hence, the organisation's "policy makers" determine the organisation's

aims, objectives and strategies. These policy's affect the organisation's man

agement structure, formal communication channels and technological

requirements. High level policies are refined and implemented by middle

management and performed by operational staff. Managing CMU's large,

Introduction 8

complex network relies less upon their formal organisational structure than

the good working relationships (i.e. social system) between key individuals

and groups working in harmony towards a common goal.

1.3 OPERATIONAL MANAGEMENT

Whether computers are actually managed by an organisation's "computer

departments" or by individual departments' staff, computer system manage

ment is a highly technical and specialised activity requiring in-depth knowl

edge of operating system interfaces, cabling requirements, software etc. Sys

tem management tasks include:-

• Accounting Management - providing information about users' resource

consumption (disk space, communication band width and processor time

used), which is later used for billing.

• Back Up and File Restoration - regular, systematic file system archival

is essential not only to guard against users accidentally deleting files but

to protect the organisation from catastrophic disk failures such as head

crashes. File archives need to be carefully labelled, catalogued and held

in a secure, fireproof environment "just in case."

• Communications System Management - providing reliable secure com

munications between resources in the distributed system. This includes

the actual wiring between components, physical interfaces to the net

work and controllers, as well as the logical system structure.

• Environment Management - ensuring that a noise/dust free, properly

air conditioned environment is available for both employees and

resources.

• Hardware Configuration and Maintenance - this includes upgrading

resources, adding (rewiring) hardware devices and processor units.

Introduction 9

Many organisations may sub-contract hardware maintenance to com

puter manufacturers and take out "on site" service agreements etc.

• Liaising with Other Management Departments - such as co-operative

working and managing shared resources.

• Liaising with Users - such as answering users' quenes and giving

advice.

• Safety Management - ensuring that the distributed computer system

does not endanger the organisation's employees. For example, that com

puters located in a "machine room" are properly configured on a 3 phase

power supply.

• Security Management and User Authorisation - including "policing" the

distributed system, granting users login and physical access to resources.

• Software Installation and Maintenance - ensuring that new releases

are properly configured and smoothly installed on all appropriate

machines. This can be particularly difficult as some software may

require vendorlhardware specific configurations and different documen

tation.

1.4 DEPENDABILITY AND SYSTEM MANAGEMENT

In previous sections we have briefly considered the role of management (in

general) and specifically managing large computer systems and the tasks per

formed by system administrators. We have noted that many organisations

are heavily computer reliant and "cannot cope" without a high level of infor

mation technology support. Effective system management techniques are

therefore required to compliment the organisation's goals, strategies and poli

cies etc.

Introduction 10

Organisations must be able to rely upon their distributed computer system

and the ability of their system managers. Very large distributed computer

systems raise particular problems for system administrators, due to their

size, complexity and the sheer number of interconnected resources. These

problems include:-

• Incompatabilities between software and hardware architectures. This

leads to administrators maintaining several different versions of soft

ware distributions and replicated documentation.

• Inconsistent configuration information regarding network topologies,

resources and distributed resources. This often occurs when configura

tion information is incorrectly propagated across the distributed system

and leads to disjoint services etc.

• Side effects of management operations causing unplanned system config

urations, i.e. system administrators corrupting resources while reconfig

uring other system components.

• Debris from failed management operations scattered across the dis

tributed computer system. This is particularly apparent when major

changes to a large number of resources. In the event of major operations

failing "en-route", system administrators must restore corrupted configu

ration files, network connections etc.

Some activities can be automated with the aid of management information

systems. These allow system administrators to perform operations across a

communications system and alter a physical (logical) resource's state and

sometimes provide a query language to prepare management reports etc. For

example, the Internet Working Group prepared two prototype systems, The

High Level Entity Management System (HEMS)[Partridge88a] and Protocol

(HEMP)[Partridge87a], and Simple Gateway Monitoring Protocol

Introduction 11

(SGMP)[Case88a] which are superseded by the Simple Network Monitoring

Protocol (SNMP) [Schoffstall89a].

Fault tolerance techniques must be incorporated when designing and

implementing a management information system in order to ensure the

dependability of management operations upon managed resources. In partic

ular:-

• Support for failure atomicity of management operations, i.e. manage

ment operations upon physical (logical) resources either complete (i.e.

commit) or "cleanly" abort. Any non-recoverable operations (such as

printed output) must be compensated (such as discarding print jobs) in

order to maintain the system's state.

• Management operations on resources should not interfere with other sys

tem activity (from system users or other managers). Management opera

tions are therefore serialized, allowing only one system manager to alter

a resource at any given time.

• When performing major changes to distributed resources or their topol

ogy, it may be desirable for system managers gracefully to shut down

operations in the event of failure rather than (fully) aborting work

already performed.

Ideally a system manager can log into the management information system

and select a managed resource. She can then alter the physical (logical)

resource's state / properties and perform management operations across the

communications system. Should the operation fail, the resource's state etc.

will be recovered and and appropriate action will be taken to clean up any

debris.

Information should also be maintained concerning the distributed system's

logical (physical) structure, such as network ports, sub-networks and ports

Introduction 12

etc. which can also be viewed (altered) using the management information

system. This information should be used to maintain consistency between

system components and used to generate (replace) system configuration files.

1.5 THESIS CONTRIBUTION, AIMS AND OBJECTIVES

This thesis concerns the design, implementation and application of a

dependable management information system to aid system administrators

control (monitor) a large, complex distributed computer system. We first con

sider the role of large, complex computer systems within an organisation

(Chapter 2), standards and current management initiatives. Even though

several research projects have considered system management and produced

prototype management information systems, there are several shortcoming

exist:-

• Some prototype systems use an unnatural model of management (if

any!).

• Cleaning up failed operations, where an operation has crashed enroute

leaving resources in an "intermittent" state.

• Management systems should incorporate (and abstract) operations upon

logical (physical) resources in a clean and portable manner.

• Supporting major changes (i.e. both planned and unplanned) to the dis

tributed computer system's logical (physical) structure and components.

Our management information system is based on a (deliberately) person

centred model of management. "Agents" in management "roles" are allowed

to inspect ("view") resources providing they hold a "contract". These contracts

encode reporting responsibilities, job descriptions and conditions imposed on

the management agent (e.g. major reconfigurations can only be performed at

the weekend). Furthermore, delegation of duty is considered which is

Introduction 13

particularly useful for encoding trading arrangements between organisa

tional departments ("domains").

A "system management information base" was constructed based on this

model of management and implemented in C++ using the Arjuna distributed

programming toolkit to access remote "probes" which enact management con

trol (monitoring) actions upon physical resources. Design diversity tech

niques have been used to implement a variety of methods of integrating man

agement operations, these include: the system programmer's interface, exist

ing system software and even contacting a human operator to perform man

ual operations. These are incorporated using "recovery blocks" [Rande1l75al

implemented using atomic actions. Existing system software, configuration

files and other "legacy applications" [Sventek94al are incorporated using

"integration objects" which provide an clean and portable interface to physi

cal (logical) resources.

The management information system was used to manage one of the Uni

versity's machine clusters made up of a large number of resources (Suns, HP

Workstations, disk devices etc) and used to illustrate the prototype system in

industrial use. The configuration was adapted to simulate machines crashing

and nodes becoming unreachable. A scheme for enacting major configuration

changes and disaster recovery based upon "dependable change schedules"

was implemented and demonstrated for a large number of resources.

1.6 THESIS OUTLINE

The thesis is structured as follows:- Chapter 2 considers the task of man

aging large systems and contains a literature survey. Chapters 3, 4, 5 and 6

discuss the design, implementation and application of our management infor

mation system. Conclusions, evaluation and future research are contained in

Introduction 14

Chapter 7.

Four appendices are provided and consider the physical integration of

resources (appendix A), constructing unrecoverable (Appendix B) and recover

able controllers (Appendix C). Several example user interface "views" are pro

vided in Appendix D. A glossary, list of acronyms, trademarks and references

are provided at the end of the thesis.

Managing Large, Complex Systems 15

Chapter 2

MANAGING LARGE, COMPLEX SYSTEMS

So many workstations, so little time ... [Harrison92al

The widespread use of distributed computing has been an invaluable asset

to many organisations. Old, large mainframe computers located in cen

tralised machine rooms with many terminal connections within the organisa

tion have been replaced by modern high performance mini and micro comput

ers, organisation wide communications topologies and resource sharing

between individual departments. This is particularly true in the academic

environment where

"The revolution in campus computing caused by the development of
micro computers has fostered a second revolution in computer net
working... the convergence of computing and communication repre
sents the most profound technical development since the development
of movable type and the modern printing press" [Arms88cl

Distributed systems have now become an indispensable part of universities

research and education programmes through a strong commitment to shared

resources and information. This lead to the potential for:-[Arms88d]

• Increased research output by improving access to information, super

computers and other specialised computational resources, experimental

devices and databases.

• Advancing the quality of academic research and instruction by expand

ing opportunities for collaboration and scholarly work.

• Reducing the transmission time for conveying basic research results

from the academic to private sector and thus enhancing the national

research and production capacity.

Managing Large, Complex Systems 16

• Allowing researchers to communicate with colleagues and other profes

sional staff from diverse and geographically separate departments using

electronic mail, information servers and online conferencing.

These goals are not limited to the academic (and campus) environment but

extend to other institutions and research organisations connected to national

(international) networks. Many commercial organisations are connected to

the internet allowing their employees to share information via the World

Wide Web and communicate with colleagues using electronic mail etc.

Even within individual organisations the widespread use of decentralised

computing can provide a highly individual service, local resource autonomy

and increase the potential for raised productivity [King83a] . However, these

very large distributed computer systems have caused a nightmare for com

puter systems administrators and operators faced with the unenviable task of

managing thousands of workstations distributed across a potentially wide

area and complex communication networks.

2.1 STANDARDS AND SYSTEMS MANAGEMENT

There have been important initiatives by the International Standards

Organisation (ISO) and other bodies to develop standards in networking and

application level components. These include ISO, the International Stan

dards Organisation, CCITT, International Telegraph and Telephone Consul

tative Committee, ECMA, European Computer Manufacturers Association;

IEEE, Institute of Electrical and Electronic Engineers, and MAPfTOP -

Manufacturing Automation Protocol!Technical Office Protocol (General

Motors). These group's work have converged within the ISO/OSI Manage

ment Model which has influenced some of the prototype systems discussed

later in this chapter.

Managing Large, Complex Systems 17

The ISO Open Systems Interconnection reference model[IS087 a) provides

a structure to enable uniform (vendor independent) communications between

systems and in particular, a management environment which specifies the

requirements to control and supervise "managed objects". This "information

model" provides guidelines for defining managed objects and their respective

interrelationships, classes and names. These managed objects are defined in

an abstract transfer syntax (Abstract Syntax Notation 1)[Steedman90a) and

are grouped into "object classes" within the OSI "directory" [IS088b) . Man

aged objects are controlled (monitored) by an information exchange protocol

(CMIP)[IS088c) whose services are provided by an information exchange sys

tem (CMIS)[IS088d).

Organisations are modelled using a domain based representation and man

agement activities are described using a functional model. This taxonomy

describes the following management activities:-

• Accounting Management - "the set of facilities which enables charges to

be established for the use of managed objects and costs to be identified

for the use of those managed objects". This includes setting resource quo

tas and billing.

• Configuration and Name Management - exercises control over and iden

tifies data about managed objects, to assist in achieving continuous oper

ation of interconnected services. This includes setting parameters, ini

tialising managed objects and associating names.

• Fault Management - "the set of facilities which enables the detection,

isolation and correction of abnormal operation of the OSI environment"

this includes maintaining error logs, accepting error reports and diagnos

ing faults.

Managing Large, Complex Systems 18

• Performance Management - is "needed to evaluate the behaviour of

managed objects and the effectiveness of communication activities". This

includes gathering statistics, planning and analysis.

• Security Management - protecting managed objects and includes

authentication, access control, key management and security audits.

OSI's goal is the long term provision for vendor independent homogeneous

distributed computing, although short term migration problems are

likely[Burnett87a). MAPtrop also described actions and functions which

should be used to prevent components (and the whole system) from catas

trophic failure. These include provision for both graceful and forced shut

down, status verification, physical recovery and restarting nodes. Unfortu

nately this provision was dropped when MAP 2.1. converged to ISO/OSI.

2.2 MANAGING COMPUTATIONAL RESOURCES

In chapter 1 we considered the role of management in general, the task of

managing very large (organisation wide) computer systems and day to day

operational management performed by system administrators. We noted that

effective system management is fundamental to the smooth running of com

puter intensive organisations and that the traditional "one manager per com

puter system" approach is not appropriate for very large distributed com

puter systems.

It is possible to automate some management tasks using a management

information system. Such a management information system would include

the following components:-

• The information system's model of the organisation and management

tasks should reflect the organisation's management structure, reporting

relationships and activities performed by their system

Managing Large, Complex Systems 19

managers [Ross77 a].

• The management information system should be resilient to partial sys

tem failure and include error recovery techniques. In the event of system

failure, automatic re-boot utilities should be provided to minimise man

ual intervention.

• The management information system should provide both a graphical

and command line user interface catering for both expert and novice

users. Many software utilities available in the UNIX operating system

are used within "shell scripts" and executed using system daemons and

therefore providing a command line interface would be very useful.

• The system should incorporate (and encode) physical and logical system

resources and integrate existing system software, network services, sys

tem entry routines etc. All management operations performed by the

information system must be reversible "just in case".

• Where possible, the system should provide on-line system manual pages

and other relevant documentation.

In this section we will provide an overview of selected research into com

puter systems management and prototype management information systems.

In particular, we will evaluate each project considering its:-

• Model of management (if any)

• Encoding of management resources - either via a database, abstract

transfer syntax etc.

• System architecture, implementation and application.

• Reliability mechanisms and fault reporting.

Since some of the prototype systems described use conflicting terminology a

common frame of reference will be described in our comparison. (A glossary,

Managing Large, Complex Systems 20

at the end of the thesis will define terminology used in our management

information system.)

2.2.1 PROJECT ATHENA (M.l. T.)

Project Athena commenced in 1983 with the aim of creating a new educa

tional computing environment using high performance graphical worksta

tions, high speed networking and centrally managed network services by

1988. Their network services comprise:-

• Authentication (Kerberos)[Miller87a] which uses trusted third party pri

vate keys and distribution services based on Needman & Schroeder's

protocol [Needham 7 8a].

• Service Management (Moira)[Rosenstein88a] which provides a replicated

central repository of configuration information which is accessed by a set

of library functions (and authenticated by Kerberos) across TCPIIP net

work connections - implemented using RTI Ingres[INGRES85a]

• Name Service (Hesiod) -[Dyer88a] providing a high speed "front end" to

the Service Management System (Moira), and uses the BIND to achieve

a hierarchical name space. Hesiod does not perform any processing or

data interpretation and only retrieves data and transforms "logical"

resource names into "physical" names used by the Berkley Internet

Name Daemon (BIND), which provides a hierarchical name space, sub

sidiary name services and local caching.

• Real Time Message Delivery (Zephyr) -[DellaFera88a] Zephyr is imple

mented using UDPIIP to deliver reasonably short (preferably under eight

hundred characters) to users actually logged into Athena. Typical appli

cations include: conferencing, broadcasting emergency messages, phone

services etc; and is therefore not intended to support electronic mail.

Managing Large, Complex Systems 21

• Print System (Palladium) -[Handspiker89a] specifically designed for a

distributed environment and conforms to ECMA printing stan

dards[ECMA88a] and allows centralized management of printers, users

and spool queues etc.

• File System - Athena workstations are "dataless nodes" supported by

an extensive file system implemented using the Network File Sys

tem[Sun87a] (NFS), the Andrew File System (AFS) [Maur089a] and

Remote Virtual Disk (RVD)[Greenweld86a]. RVD holds system software

libraries and application software replicated on each subnet. Whereas

NFS is used for shared access to private files.

• Electronic Mail - structured in terms of a cen'tral "mail hub", "post

offices" and individual "mail boxes".

• On-Line Consulting - where users request help from "experts" on "top-

ics".

• Conferencing (Discuss) -[Raeburn89a] modelled on "electronic meet

ings" on specific subjects and has evolved from an earlier system called

Forum supported on MULTICS.

Athena primarily addresses configuration and user management and little

attention is given to other management areas. In 1991, Moira managed

15,000 user accounts approximately 1,300 workstations and 100 network ser

vices held in a 15 M.byte database. Moira provides centralised data adminis

tration and update comprising a single master copy with specialised replica

tion of subset data. Should Moira fail, Athena can still operate but managed

resources cannot be reconfigured. The database is regularly archived and a

recovery plan is used in the event of a failure.

Managing Large, Complex Systems 22

2.2.2 EMA

Digital's Enterprise Management Architecture (EMA) defines a framework

for managing a heterogeneous multi-vendor distributed operating environ

ments and communications sub-systems [DIGITAL89a] and is designed to

enable systems administrators to both design and implement organisation

specific management environments. EMA is based on OSI Management stan

dards and uses "well defined" architectural models:-

• DirectorlEntity Framework - defining the structure of management

interfaces and interactions between directors (management systems) and

entities (managed objects).

• Entity Model - defining management information and operations on

managed objects.

• Director model defining an open modular platform for managing

resources.

Their management information system allows "users" to control (monitor)

managed objects based upon the organisation's "policies" and the user's

"view" of the system. An open modular environment ("director model") pro

vides a workbench for managers to convey operations on resources ("entity

model"). Managers can also access tools used by "remote directors" via dis

tributed director modules.

Managed objects are encoded using an object oriented model, whose objects

define "directives" (i.e. class interface operations), "attributes", "attribute

groups"(i.e. types) and "events" (e.g. exception messages). (Single type inheri

tance is achieved through "subordinate entity classes".) Object states are

held in a "management information repository" (i.e. an object store) which

can be interrogated by the "management module" components.

Managing Large, Complex Systems 23

Management modules are sub-divided into "presentation modules" which

support the director's user interface, "function modules" providing manage

ment operations (divided as per the ISO/OSI taxonomy) and "access modules"

provides transparent communication to remote objects.

2.2.3 DSM

The Distributed Systems Management (DSM) project [Wang89a, Wang88al

at the University of Lancaster developed a distributed management informa

tion system for controlling (monitoring) an organisation's resources. Their

model is based on a set of system managers, maintenance engineers and end

users accessing managed resources through a management centre. Informa

tion is collected from resources using "agent" probes (one per resource) which

control and monitor the physical resource in real time and enact management

tasks. Once collected, information is analysed and stored in a management

database implemented using Ingres.

Individual domain's management information systems are connected via

LAN "Manager Modules" which exchange information across domains, access

management data and forward fault reports. These fault reports are directed

to maintenance engineers as appropriate. (The names and addresses of main

tenance engineers stored in the database.) Information elements in the man

agement database and encoded using SySL[Sommerville89al and classified

into the ISO functional areas.

2.2.4 NETMAN

The Netman project [Dean92al at the University of Lancaster aims to pro

duce an "Integrated Enterprise Management Framework" (IEMF) which

investigates managing "enterprise wide" networked computer systems.

Managing Large, Complex Systems 24

System management is viewed as a group activity (i.e. systems managers

interacting) and modelled VIa "power" and "motivation" relation-

shi ps [Moffett92a] .

Their model of management embodies an explicit representation of system

management information. The "shared system model" (encoded in the Enter

prise Management and Query Language - EMANUEL, based on

SySL[Sommerville89a]) includes resources such as printers, workstations

and disk devices; relationships between resources, such as dependencies and

organisation issues such as "responsibility", "expertise" and "interest".

"Responsibility", "expertise" and "interest" are encoded using EMANUEL

mapping relations in a similar way to ANSA's "structural roles". Users (man

agers etc.) are responsible for resources, have expertise in certain areas and

are interested in various topics (used in mailing lists etc.)

The IEMF tool set architecture comprises:-

• Graphical Browser / Editor - which presents views of the model and

performs control (monitoring) operations on resources.

• Internal Objects - i.e. the actual resource controller.

• Semantic Analyser - checks system consistency.

• Parser - converts EMANUAL descriptions to internal representations.

• Installer - maintains software distributions and configurations.

No attempt is made to provide fault tolerance or recovery in the event of sys

tem failure.

2.2.5 OSF

The "Open Systems Foundation" (OSF) Distributed Management Environ

ment[OSF90a, OSF92a] integrates the management of systems, networks

Managing Large, Complex Systems 25

and user applications within a conceptual model comprising the following

components:-

•

•

Human Interface - providing both command line and graphical inter

face to managed resources.

Management Applications - such as systems software and other utility

programs such as print spooler management and file systems adminis

tration etc., which access managed objects across "clear and concise

interfaces" to "common management services".

• Common Management Services - such as the communications subsys

tem, resource naming and placement.

• Management Information Storage Services - providing the program

mers' interface to managed objects.

• Managed Objects - representing logical and physical managed

resources, such as devices, mail and print systems, users and application

software.

Unlike the other management information systems, OSF integrates resources

using a distributed environment. The "Open Software Environment" allows

the (vendor transparent) integration of networks, operating systems etc. via a

Application and System Programmer's Interfaces (API and SP!) and there

fore achieves software portability.

2.2.6 TOBIAS

The Esprit funded TOBIAS (Tools for Object Based Integrated Administra

tion of Systems) project had two main aims:-[TOBIAS89a]

• The development of an object based model of a typical computing instal

lation taking account of both system and human resources.

Managing Large, Complex Systems 26

-- Providing a coherent interface to system administration tools.

A prototype system was developed by the project's partners (Rigel S.A, Uni

versity of Newcastle upon Tyne, Intrasoft S.A., GIE Emeraude and Planet)

and comprised several layers which communicated via a consistent inter

face:-

• User Interface - providing an object based interface to the management

information system based on the idea of ''views'' of resources. This inter

face was implemented using the InterViews graphical tool kit (based on

X windows) [Schiefer86al.

• System Management Object Controller (SMOC) - which sends messages

between layers in the TOBIAS model and implements management oper

ations upon physical resources. Error codes and information messages

are returned to the caller via the integration and secure communications

layers.

• Integration Module - providing a similar function to stub objects used

in remote procedure call software, converting status (monitoring)

requests between managed resources and the SMOC.

• Secure Communications - providing reliable, sequenced communica-

tions between system components.

An extra module, an expert advisor, was proposed to provide a sophisticated

support tool for system managers for both system configuration and fault

management. System managers and other users were modelled as "agents"

taking on "roles" to perform a particular task as specified by way of a "con

tract". Agents and resources are located in "domains" which functionally sub

divide the organisation.

Managing Large, Complex Systems 27

2.3 EVALUATION

Whilst the prototype management information systems we have considered

may use conflicting terminology and apparently different management archi

tectures, they have much similarity in terms of their models of management

and system structuring:-

• Prototype systems were developed with the aim of assisting the human

system administrator to implement policies.

• Several management roles and functionality are common - based on

OSI etc.

• Some method of recording resource states and probing the physical

resource is always present.

Let us first consider the terminology used by research groups, how their man

agement information base is encoded and management functions supported.

These are shown in the table below:-

Managing Large, Complex Systems

Human Manager

User Interface

Corns Interface

Resource
Controller

Resource

Encoding

Storage

Management
Functions

Terminology Table

Athena

Operator

MoiralHesiod

TCP/IP

n.a.

n.a.

Database

Ingres

Config only

EMA

Director

Entity
Model
Interface

n.a.

Agent

Managed
Object

ASN.l

ISO DB

Director
Modules

28

Tobias DSM

Agent Users etc

View n.a.

TCP/IP UDP/IP

Surrogate Agent

Managed Resource
Resource

Objects SySL

Database Database

Via Agents 5 areas
(ISO)

Managing a vast number of managed resources has become a major prob

lem in many organisations and hence it is very important for management

information systems to scale. Although Athena was specifically designed for

these resource intensive environments, the fact that Athena does not use any

method of functionally subdividing their organisation (such as "domains")

and not having a distributed management information system is a major dis

advantage, leading to very large centralised databases. The distributed man

agement information system developed at the University of Lancaster (DSM),

with one LAN Manager module per organisational domain provides an ele-

gant approach to this problem.

The relationship between organisational policy and job allocation has been

addressed by TOBIAS and Netman. - using "contracts" and "power-

motivation policies" respectively. Contracts recording role adoption, responsi

bility for managing resources etc. provide a cleaner and superior approach to

job allocation. Netman's "power-motivation policies" are based upon Moffett's

Managing Large, Complex Systems 29

work as part of DOMINO. Moffett's later work has much in common with

"structural roles" developed by ANSA [ANSA90a] and ORDIT [ORDIT89a)

which record the relationship between agents, roles and resources. ORDIT

does not have explicit "contracts" like TOBIAS but includes a "contractual

schema" in its "information projection". [Blyth95a] TOBIAS's contracts can be

easily extended to information (as per ORDIT etc.) and include resource allo

cation and explicit service trading.

OSF, unlike the other prototype systems provides a "management environ

ment" rather than a "management information system" and therefore relies

on other prototype information systems to provide management functionality.

Management information systems such as Moira (Athena etc.) can be incor

porated in OSF's environment using application and systems interfaces etc.

OSF therefore has made a considerable contribution to portability in dis

tributed "open systems".

While Athena provides replication of system critical information, other

fault tolerance measures have not been addressed by any of the prototype

management information systems; even though fault reporting is imple

mented, explicit recovery from operation failure on external resources is not

documented in any of the prototypes considered. A summary is shown in the

following table:-

Managing Large, Complex Systems

Comparison Table

Criteria Athena Dec

Domains n Multi

Management Areas Config 5 (ISO)

View Based Interface n y

Secure Comms y n

Object Oriented n y
Model

Data Replication y n

Data Partition n n
By Domain

Job Allocation n n

Explicit Manual Ops. n n

Failed Op Clean up y n

Fault Reporting y (Fault Manager)

2.4 CONCLUSIONS

Tobias

single

Config
Backup,
User etc.

DS~l

y

5 (ISO)

y y

y n

y n

n n

y y

Contract n

n n

n n

y y

30

In previous sections we have considered the role of very large distributed

computer systems in (University) organisations and prototype management

information systems which have been developed. Advantages gained by

organisations in using these highly complex distributed systems have been

met by increasingly complex computer (and network) management strategies.

The traditional UNIX system management approach for "one computer sys

tem, one system manager" is not acceptable on the scale of 1,000 worksta

tions, 100 servers and 10,000 users [Champine91a] and therefore some

degree of automated systems administration is required in order to help sys

tems administrators keep track of their managed resources. Automated

Managing Large, Complex Systems
31

system management can be performed using:-

• embedded resource controllers,

• systems software, or better still

• using a Work bench (as developed by TOBIAS etc).

Within the remainder of this thesis, we will consider the design, implemen

tation and application of a prototype management information system based

on a "management workbench" (c.f. TOBIAS and EMA) and a set of "probes"

which integrate managed resources (such as printers, computers, disk units

etc.). We will "expand" TOBIAS's contract based model to include trading,

resource as well as job allocation and include ideas drawn from ANSA's (and

ORDIT's) "enterprise projection".

We will consider fault tolerance and dependability in the design and imple

mentation of the management information system - an area overlooked by

the prototype systems discussed earlier. Hence, we will consider "graceful

shutdown", "forced shutdown", "status verification", "physical recovery" and

"node restarting" and consider a mechanism for performing major reconfigu

ration / recovering from major failure. We will not attempt to design "stan

dard" interfaces etc. for integrating real resources but where possible will

adhere to existing standards such as POSIX.[Lewine91a, POSIX.90a] etc. Vari

ous methods of incorporating resources will be considered such as using pro

grammer's interfaces, systems software, network services and even contact

ing human operators.

Design of Information System

Chapter 3

DESIGN OF INFORMATION SYSTEM

Here is the answer which I will give President Roosevelt ... Give us
the tools and we will finish the job *

32

This chapter considers the design of a management information system

and in particular the interactions between members of the organisation and

resources. We will examine the explicit person oriented management model

used by the prototype system and discuss a way of representing the organisa

tion's policy and trading arrangements using contracts.

Our model of management has been developed from ideas used by several

research groups. These include: ANSA[ANSA90a], ORDIT[ORDIT89al Enter

prise Modelling; Role Based Management developed by HP Laboratories

[Bedford-Robers91al and Contracts used by the Esprit funded Tobias pro

ject[Marshall90al. Much of the underlying theory behind enterprise mod

elling is drawn from Checkland's work [Checkland86al on "Soft Systems

Methodology". Interested readers are referred to his book for further details

on "Conceptual Modelling" and "root definitions."

3.1 MANAGEMENT MODEL

The model is based on the idea of members of the organisation ("agents")

adopting "roles" in order to manage resources Each "agent" can adopt zero

(i.e. unemployed) or more roles within the organisation. These agent-role

bindings are described using "Contracts" [Dowson87 a, Stenning86al which

record reporting responsibilities to other agents, job descriptions, working

* Sir Winston Churchill (1874 - 1965); Radio broadcast in Feb. 1941

Design of Information System
33

practices, conditions of work and resource access - these will be discussed in

subsequent sections.

3.1.1 AGENTSANDROLES

This model of management is deliberately person centred and is based on

the interactions between agents, other agents and managed resources. Mem

bers of the organisation are modelled as a set of "agents" who adopt "roles" to

perform tasks. Hence the management role is abstracted and isolated from

the person performing the work[Schutz70al. Agents and role adoption can

therefore be likened to agents "wearing hats" [Marsha1l90a, Bedford

Robers91al and each agent adopting a role is assumed to be an "expert" in

that "field of interest" [Dean92al . Within a computer organisation, agents can

adopt many roles; these could include:-

• Asset Management - concerning the location of resources, serial num

bers, resource allocation etc. This is particularly complex due to the

increasingly diverse variety of resources, vendors and users' require

ments.

• Backup Management - managing the state of archived objects, file

libraries, object restoration.

• Change Management - managing system re-configuration.

• Configuration Management - concerning the logical and physical config

uration of the distributed system, cabling, and the physical interfacing of

equipment.

• Environment Management - concerning the non-computing aspects of

the installation, such as air conditioning, fire alarms and powering.

• Fault Management - managing fault diagnosis and rectification.

Design of Information System 34

• Name Management - as the name suggests, managing the names of

resources, network addresses and their resolution.

• Performance Management - detailed system monitoring is carried out in

order to obtain management information in order to provide data for

planning and detect intermittent faults. Besides "watching the system",

trend statistics can be obtained and used for simulation purposes.

• Safety Management - concerning the health and safety executive's role

in the installation.

• Security Management - concerns policing the distributed system, per

forming audits and preventing unauthorised access.

• User Management - concerning the management of end users, allocat

ing resources, quotas and capabilities.

3.1.2 RESPONSIBILITIES

Responsibilities define the expected behaviour, rights of and obligations

upon the agent playing the role ("role holder") and the relationships with

other roles and resources. For example, an agent in the role "System Man

ager" may have a team of operators (superior-subordinates) who are respon

sible for a printer cluster. The operators' jobs would be allocated by the Sys

tem Manager who would observe their behaviour and assess their perfor-

mance.

Responsibilities can be sub-divided into:-

• Peer relationships - where two or more agents share a common supervi

sor (i.e. colleagues).

• Power responsibilities - reporting responsibilities and formal chains of

communication between agents i.e. Supervisor - Subordinate etc.,

Design of Information System 35

where one agent makes and enforces commands on other agents.

• Resource relationships - where an agent owns or maintains logical or

physical resources.

• Service relationships - where goods and services are traded between

agents and organisations (producer - customer, supplier etc.).

We will further consider responsibilities towards the end of this chapter when

modelling organisational relationships using contracts.

3.1.3 JOB DESCRIPTIONS

In addition to agents adopting roles and relating to other agents, agents

are given job descriptions for describing the actions of "playing" a particular

role. For example, our team of printer operators ensure that the printers

have sufficient paper, toner etc; stack/deliver print-outs for users and keep

the print room tidy.

Whilst agents may have similar job descriptions, their role in the organisa

tion may be inherently different, for example, legal and lexicographical proof

reading. Both sets of proof readers may have the same rights and access priv

ileges on documents and closely scrutinise their contents but the effects of

their actions have widely differing consequences.

3.1.4 VIEWS

Checkland's "Soft Systems Methodology" pays particular attention to

describing an organisation in terms of a "rich picture" (i.e. conceptual model),

where user ''viewpoints'' and "conflicts· of interest" are explicitly recorded.

Views are also used within data base circles to present an external "schema"

to users. There are certain advantages to such an approach:-[Date86a]

Design of Information System
36

• they provide some logical independence in the form of data base restruc

turing.

• views allow the same data to be seen and used by different users.

• they simplify users' perception of resources and they provide automatic

security for hidden data.

Views can therefore be used as a mechanism for filtering management

operations and resource data from agents playing different roles. For exam

ple, while configuration and safety managers may manage a particular

resource, the configuration managers will require data in order to perform

hardware and software installation, connections and resource connectivity

but will not need to know in-depth information regarding safety policy. Simi

larly, the Safety Manager will delegate all configuration management opera

tions to the configuration manager and will not be expected directly to per

form configuration management.

Each resource will have an associated role dependent view, presenting the

external schema to management agents. Thus, a printer resource will have a

set of views for the performance, fault, configuration manager and other man

agers. The performance manager's view of the printer resource may be com

posed of graphical charts and graphs. Whereas, the fault manager will have

access to the diagnostic tests and fault logs.

3.1.5 MESSAGES

Management control and monitoring actions are performed using messages

which are conveyed between agents and resources. Agents can select and edit

fields on a resource's view and appropriate message is sent to the managed

object representing physical resources. Whilst it is possible to describe this

communications protocol using "speech acts" [Austin62a, Searle69a] and flow

Design of Information System 37

charts [Blyth95a] and fonnally specify interactions, a much simpler approach

has been adopted. Messages simply invoke interface functions exported by

managed resources in the same way as remote procedure call (or message

passing) primitives - operations are perfonned on resources, parameters set

(retrieved) and results returned to the user interface (resource view etc.).

3.1.6 CONDITIONS OF WORK

Besides responsibilities, job descriptions and role dependent views of the

organisation, agents may have limitations imposed on their behaviour. These

include:-

• Accounting fees - where charges are made for consuming resources and

credit arrangements imposed.

• Legislation such as health and safety requirements.

• Physical factors such as environmental conditions, for example, ensuring

the air conditioning in a machine room is between certain temperatures.

• Resource utilisation such as storage "quotas" and c.p.u. usage.

• Temporal constraints such as out of bounds times, particular days of

operation etc.

3.1.7 RESOURCES

An organisation's resources are represented by a set of managed objects

within the management model whose state corresponds to other particular

real word entities. For example, a printer entity corresponds to and is linked

with one of the organisation's printer resources. Managed objects are encoded

using an object oriented model and are mapped into a dependable object

store. Managed resources include:-

Design of Information System 38

• Cabling - used physically to connect devices with computational

resources, and computers to the communications subsystem. These

include fibre-optic, co-axial (co-ax) and twisted pair.

• (Communications) Devices - including fan-outs, bridges, routers and

gateways.

• Communication Connectors - such as taps.

• Computing Resources - the organisation's processing capability. These

comprise personal computers, lap-tops, workstations, and mainframes.

• (PeripheraD Devices - these include input devices such as terminals,

card and paper tape readers; and output devices such as visual displays,

printers and plotters. Some devices, such as tape and disk units, which

from part of memory sub-system are both input and output devices.

• Documentation - comprising printed and on-line manuals.

• Media - comprising the set of consumables used by the organisation.

These include magnetic tape, disks, CD-Rom, listing paper etc.

• Memory - comprising the actual persistent RAM, ROM etc. used by the

computer as part of its memory subsystem and paging mechanism.

• Services - print and terminal servers.

• Software - including system software, operating systems and applica

tions packages.

These components can be modelled using both single and multiple inheri

tance. In the single inheritance hierarchy, "devices," "computers," "media",

"documentation" and "software" are derived from a base class "managed

resource". The base class would include instance data such as asset identi

fiers, serial numbers and configuration information common to all managed

resources. This is shown in the following diagram:-

Design of Information System 39

Single Inheritance Hierarchy

(Mffinframj (D~k) (Tape)

It is possible to encode managed resources using multiple inheritance, using

base classes such as "managed", "electrical", and "networked". For example,

the managed base class would record asset names, location, maintenance

details etc; electrical -power points and phases etc; networked - network

address, internet ports etc. This is shown in the following diagram:-

Multiple Inheritance Hierarchy

~
(computer)

[§Jape [;JiSk B Unit . Terminal Umt

Whilst the multiple type hierarchy may have some advantages, the single

inheritance model is far simpler and cleaner. We will see in Chapter 4 that

due to restrictions in the Arjuna stub-generator software, the multiple hierar-

chy would be very difficult to implement.

Design of Information System -lO

3.2 REPRESENTING ORGANISATIONAL POLICY

An organisation gets its character from the policies which it adopts for

directing its activities even though these policies may not be precisely defined

and employees may not be aware of the existence of organisation policy at all

levels of management. Management policy is influenced by a series of inter

related issues[ANSA90a] which include:-

• Human issues - including the safety of employees, trade union's rela

tionship and productivity.

• Organisational aims and objectives - such as hopes , aspirations, goals

arid constraints.

• External factors - including social, political, economIC and business

issues, such as ethics, legal statutes and the availability of product sup

plies and transportation costs .

Social
Issues

Political
Factors

Economic Business
Issues Issues

Some Factors which affect Organisational Policy

Objectives are typically described in the form of "general" policy statements

which are implemented and interpreted by system managers . General policy

statements can be redefined into detailed action plans using 'policy

Design of Information System -ll

hierarchies" in which sub-policies describes the implementation of higher

level policies[Moffett92al. Thus, the high level policy "no more than one day's

work should be lost in the event of data loss" can be broken down into "the

computer department's back up managers will archive all disks at midnight".

Agent "Graham", in his role as "back up manager", can then be contracted to

perform the disk archival etc. Graham can delegate backup on a particular

machine to a (sub-ordinate) operator etc. which raises various issues regard

ing responsibility and accountability. Graham still remains responsible for

the disk archival even though the task has been delegated. Roles are respon

sible for the tasks that they are contracted and accountable to their clients.

These tasks can be observed by the clients; and the agents adopting role can

be liable in the event of failure.

"Job allocation", "resource utilisation" and even "trading" are encoded using

contracts (i.e. "Contracts of Employment", "Contracts of Use" and "Service

Contracts") in this model of management. Contracts [Dowson87a, Sten

ning86al define:-

• Responsibilities of both client and contractor.

• Activities conducted by contractors for a client.

• Precisely defined actions and an acceptance criteria.

Contracts can therefore be encoded using "Responsibilities", "Job Descrip

tions", "Conditions of Work" etc. which we have already considered. Contracts

of Employment, Contracts of Use and Service Contracts will be discussed in

the next three sub-sections.

3.2.1 JOB ALLOCATION

Job allocation is modelled using "contracts of employment" between the

agent and the organisation. These contracts record the agent's reporting

Design of Information System
.t2

responsibilities, role in the organisation, conditions of employment etc. An

example contract fonn is shown below:-

CONTRACT OF EMPLOYMENT

Agent Name:

Role in Organisation:

Responsibilities:

Job Description:

Conditions of Work:

Signed: Date:

Agents can hold zero (i.e. unemployed) or more contracts of employment

describing different roles and responsibilities in the organisation. For exam

ple, a fault manager can hold a contract for configuring resources (i.e. config

uration manager) or even be a "safety officer". With agents holding multiple

contracts there is a danger of "conflicts of interest" between different roles.

This is particularly apparent when agents reside in multiple domains, where

the agent may have conflicts of loyalty or even be expected to perform tasks

against the other domain's policy.

Recording the agent's responsibilities in the contract is particularly useful

as it explicitly shows which agent is responsible for a particular resource, and

therefore fault reports can be directed as appropriate. Similarly, in the case of

sub-contracting, the explicit responsibility relationship provides a structure

showing dissatisfied clients where to complain if things go wrong!

3.2.2 RESOURCE ALLOCATION

Resource allocation is modelled using "Contracts of Use" between the agent

and the organisation. Like "Contracts of Employment", "Contracts of Use"

Design of Information System .. 0

record the agent's name and role in the organisation as well as an inventory

of resources, billing conditions etc. An example contract form is shown

below:-

CONTRACT OF USE

Agent Name:

Role in Organisation:

Equipment:

Conditions of Use: Disk Quota:

CPU Usage

Billing Address:

Signed: Date:

It is common for organisations to issue some form of contract when leasing

equipment to users. These describe rules and regulations, legal requirements,

such as the "Computer Misuse Act (1990)" [HMS090a] and "Data Protection

Act (1984)"[HMS084a] etc. Information concerning lease of equipment and

billing etc. could then be forwarded to the asset and accounting managers

responsible for those resources.

3.2.3 l)()A1illlV~

A domain is a multiple set of components which share a common attribute

or are managed by the same management agents[Sloman87a]. Domains can

be used to represent physical hardware components such as a workstation's

CPU, disk units display etc.; communication topologies such as networks and

resource names; organisational departments, research groups and projects;

and network services, such as electronic mail. Domains therefore represent

an excellent method of coping with the physical reality of resources, their

interconnection and administration[MarshalI93a]. Examples of domains are

Design of Information System

shown in the following figure:-

Domains (Based on University Departments)

Atomic Domain

Shared
Resources

Overlapping Domains
Nested Domains

Domains can be "atomic" (in the case of the single "history" domain); "over-

lapping", where domains share resources etc.; and "nested" where domains

are grouped together to form a "superset".

For example, the University of Newcastle on Tyne's academic structure is

shown below. The University is structured in terms of Faculties - Medicine,

Art, Science etc; which are composed of schools, departments and research

projects. The campus (fibre optic) backbone is shared between all faculties

and is managed by the Computing Services.

Design of Information System 45

Newcastle University Domain Structure (Simplified)

Medicine Arts Science

gjT5 § § 00 O~ Schoo Schoo Sa:te.~
.....

, --------- --1------------ --------- -- --------- --- --

k Campus Networ

Computing Services

--------- --1------------ --------- -----------------

0 0 0 0 00
Social Education Agric &
Science Biol. Sciences

Examination of the Computing Science and Electrical Engineering domains

shows that whilst the two departments are located in different faculties they

share a joint research project (concerned with V.L.S.I. design) and teach a

common undergraduate course (Micro Electronics and Software Engineering).

Design of Information System 46

Computing and Electrical Engineering Domains

" " Faculty of Science 'y' Faculty of Engineering

Computing Domain I Elec. Eng. Domain
I

J'rOjects

~} o~ 8TR

CArjUn~ 1
I
I

EJ
I

leacltmg ~ g~ ~E course °c I

I
I
I

Maths Domain
L ____ --------

Surveying Dom in (Chemi ry Domain J
First Year Teaching

Computing Science's teaching resources are managed by a team of Comput

ing Officers and Technicians. Chris and Trev manage an Acorn Workstation

Cluster, Gerry - an Apple Macintosh Cluster etc. Furthermore, the Work

station Clusters share common file systems, name-spaces, and printers which

are not shown for the sake of simplicity.

Computing Domain's Resources

Computing Teaching

Design of Information System 47

3.2.4 INTERACTIONS BETWEEN DOMAINS

Interactions between independent domains are an essential requirement

for managing distributed, complex systems and allow organisational depart

ments to sub-contract (i.e. trade) services between organisational domains

and allow individual managers to "co-operate" when performing complex

tasks. For example, an organisation may choose to sub-contract hardware

maintenance to an external firm . Network managers may need to co-ordinate

management tasks to maintain connectivity across the organisation.

While domains aid visualization of, and reasoning about the relationships

between members of the organisation, they do not directly provide a method

for domains to trade services. There are implicit relationships between agent

and managed resources in "nested domains". For example, if "agent a" man

ages "agent b" and "agent b" manages "agent c" - "agent a" by implication,

manages "agent c" ("transitive relationship"). It is also possible for managers

to have "reflexive relationships" with resources and managers to control

(monitor) resources in non-local domains ("interacting domains").

There are two different ways to allow managers to co

operate:-[Sloman89a]

• "Indirect Management" - where management functions are "delegated"

to another manager and some interaction protocol exists between both

managers.

Indirect Management

Domain A Domain B

Cooperation ProtocoL

• "Direct Management" - where limited management functions are

Design of Information System

performed directly by a non-local manager on a subset of resources.
Direct Management

Domain A

o
\

\
\

\
\

\

.. ..
....................

Sub·Domain
\

\

DomainB

Limited Operations by Manager
in Domain B

Co-operative work, delegation and "trading" are modelled using "Contracts of

Service" which allow domains (or individual managers) to "import" ("export")

services. Thus, "Service Providers" can "negotiate" with "Service Consumers"

and agree a "contract". For example, the "history domain" could sub-contract

disk maintenance to the "computing domain", which is shown in the following

diagram-

Direct Trading Between Domains

Imported
Services

Contract of SerVlc /

Services
Costs ...
Conditions ... Exported Services

"Contracts of Service" like "Contracts of Employment" and "Contracts of Use"

are composed of responsibilities, job (service) descriptions and "conditions".

Service relationships between managers (or organisational domains) delegate

tasks to other managers (domains) and therefore differentiate between

"observer", "customer" and "executor" roles.

Design of Information System
49

The importing domain allows managers in the exporting domain to directly

perform tasks on their resources. The initial "Contract of Service" is broken

down into jobs ("Contracts of Employment") which are allocated to managers

in the exporting domain. Resources are still owned by the "importing

domain", managers in the "exporting domain" are still accountable to their

superiors etc. but there is also a direct trading relationship (contract)

between both domains. This is illustrated in the following diagram:-

Direct Trading

Imported Service

CONTRACT

Back up
Disks at
24.00 hra

Exported Service
r------,

r-.J----, I

r- J -----, I I
I I I
I Contract of I I

: Employment: :
~I II

I I I I
I I I--.J

: ~ .J
I I L. _______ .J

The contract to archive the history domain disks is broken down into three

contracts. "AgentA" and "AgentB" (from the computing domain) archive disk

drives "DiskA", "DiskB" and "DiskC" every night (at 24:00) The computing

agents are responsible to their manager (in the computing domain) but are

observed by agents in the history domain. Similarly, computing agents are

allocated capabilities in the history domain in order to archive the disk units.

Should the history domain be dissatisfied with their "imported service" they

have redress to the computing domain.

Design of Information System
50

It is also possible to use "Contracts of Service" when recording equipment

hire or "time sharing", where instead of allocating people (ie. agents) to per

fonn a task, equipment (or processing time) is hired to (or used by) the

importing domain. This is illustrated in the following diagram:-

Computing

Domain

80 ,
... , , ,

...

, , , , , , , ,
Workstations are

managed by Computing
Domain

...

'"..-----"""'"
Workstation

Cluster

History Domain

Workstation Cluster Leased
subject to Contract

In this example, the computing domain leases a workstation cluster to the

history domain. The computing domain still manage the workstation cluster,

arranging maintenance cover, disk back-up etc . and a group of users in the

history domain are allocated workstations in their office subject to conditions

of use. However, should the computing domain fail to deliver the agreed qual

ity of service, the history domain can seek redress for breach of contract.

3.3 CONSTRUCTING A MANAGEMENT INFORMATION

SYSTEM

Having discussed our model of management and encoding interactions

within the organisation using contracts, let us turn our attention to con

structing the management information system. Our model of management is

based on the idea of agents adopting roles to view resources, and regulating

resource access using contracts which is reflected in the design of the

Design of Information System
51

management information system. The management information system IS

composed of:-

• Management Information Base, which records organisational domains

and interactions, contractual information, agents and resource details .

• Managed Resources, which represent the state and properties of logical

(physical) resources.

• Management workbenchs, which allow agents in their respective roles to

view resources.

The management information system is similar in structure to the DEC

Enterprise Architecture, where the work bench forms the "Director Model"

and the managed resources form the "Entity Model". This is shown in the fol

lowing diagram:-

Management Information System Architecture

Management In fo rmation Base

Communications

~-
LogICal and PhysICal Resources

Workbench 1

Workbench N

3.3.1 MANAGEMENT WORKBENCH AND INFORMATION

BASE

Agents access the management information system via a management

workbench. The workbench which forms the management information sys

tem's user interface is used to view "domains" (such as organisational

Design of Information System 52

departments, communication networks and composite resources) and man

aged resources. In order to manage a very large distributed computer system,

the organisation's logical structure and resources are first modelled using

domains and mapped into the management information system's "organisa

tion base" The organisation's employees, allocated resources and interactions

are then mapped into the "contract base" using "contracts of employment",

"contracts of use" and "contracts of service". Agent and resource names are

then mapped into the "agent base" and "asset base" (respectively), which are

used to forward mail messages to agents, locate resources etc.

Once the agent logs into the management information system, her name

and password are checked against an "agent base" which contains a list of

agent names, contact addresses and login capabilities. Providing her capabili

ties are correct, she can view the organisation's logical (physical or communi

cations) structure, create a personal desk top and select resources. Should

she hold the contract for managing (i.e. "contract of employment") or using

(i.e. "contract of use") the resource, she is allowed to "view" the resource's

properties and apply management operations. The resource's logical and

physical names are retrieved from the "name base" and the view is displayed

using a property sheet and operations upon physical (logical) resources are

implemented using probes which we will consider later.

The agent base, name base, contract base and managed resources can be

accessed by multiple workbenches (and indeed, multiple agents). Appropri

ate concurrency control mechanisms and fault tolerance techniques must

therefore be incorporated in the management information system which we

will consider in later.

Design of Information System 53

3.3.2 MANAGED RESOURCES AND PROBES

Managed resources such as computers, terminals and printers are con

trolled (monitored) using "probes" which implement management operations

upon physical (logical) resources. Managed resources are encoded using an

object oriented model (which we described earlier) and mapped into probes

which act as servers to the workbench clients. Hence, when an agent sets

(gets) properties or alters a resource's state, request messages are conveyed

over the communications sub-system and enacted upon the resource.

Probes are "coupled" to their external resource. Resources can be "close cou-

pled", where the probe is physically located on the same node as the external

resource; "loosely coupled", where the external resource is remotely managed;

or "uncoupled", such as when the external resource is disconnected. For

example, computer workstations can be managed by close coupled probes,

whereas terminals and printers could be loose coupled and remotely con

trolled (monitored) using network administration software. [Encore87a,

Encore87b] This is shown in the following diagram:-

Computer-n

Close COUPle~
Probes ~6

PrinterDisk

Thrminals

Manageme
WorkBench

Communications
Subsystem

Key:

6. Device

c::::J Computer

• Probe

Comms. Link

Design of Information System 54

Resource coupling depends upon the method of integrating operations upon

the external resource. For example, operations implemented using system

entry routines and some system software may require close coupled probes,

where as those operations implemented using network services are inher

ently loose coupled.

3.3.3 DEPENDABLE RESOURCE INTEGRATION

Management operations upon physical (logical) resources will be performed

using a variety of techniques such as system entry routines, system software,

network services, configuration data files and contacting (human) system

managers / operators etc. Where possible we will adhere to existing standards

such as POSIX in order to maximise portability and confine machine specific

routines to lower layers in the management information system. This will be

discussed further in Chapter 4.

Properties can be set (retrieved) via the view based user interface on the

management workbench and conveyed to (from) the control probe via a

dependable communication channel. The controller then attempts a manage

ment operation via system entry calls, system utilities etc. Should the opera

tion fail, any debris will be cleaned up and a fault report sent to the fault

manager responsible for the resource. Otherwise an acknowledgement is sent

back to the workbench confirming that the operation has been performed cor

rectly.

Design of Information System

Example Interaction

~--. ---(
~
Management Dependable
Workbench Communications

Physical
Resource

Human
Operator

55

Probes (servers) will be implemented as server objects communicating with

a workbench using remote procedure call primitives[Nelson81a] and holding

their instance data on stable storage[Lampson79a]. Once a request is

received by the object manager to access (create) a probe, a server is acti

vated, obtains its state from stable storage and performs operations upon the

physical (logical) resource. Operations on managed resources will be per

formed using write (read) locked atomic transactions and these will be seri

alised, enjoying failure atomicity and permanence of effect. Failed operations

on external resources will be compensated and undone via operation based

backward error recovery. In the event of managed resources failing, a fault

report will be sent to the appropriate fault manager and the probe marked

"out of order," preventing other agents from accessing a failed resource. The

resource will remain out of order until replaced or repaired etc. Should the

server crash enroute, recovery operations will be performed to clean up any

partial computations and reconcile the probe's state to the external resource

i.e. the probe's state will be re-initialised to that of the resource. Hence any

performance data held by the probe will be kept "upto date".

Design of Information System
56

3.4 CONCLUSIONS

Having considered the requirements for a Systems Management Informa

tion base (chapter 2) and the design of our system, let us compare our design

with leading "competitors". Our Management Information base is designed

in terms of a graphical work bench in the same way as TOBIAS and DEC,

although the graphical user interface is not essential to the workbench's oper

ation. A command line interface (for expert users) could easily be incorpo

rated into the workbench via the view mechanism. Our view-based interface

is very similar to DEC's "Director Modules" in that views provide tools and

obtain properties etc. to assist agents in their particular roles to manage

resources. Managed resources are encoded in an object oriented model

(Appendix C) and have a more complex interface than TOBIAS. (Manage

ment functions as well as setting/getting properties). Unlike TOBIASIDEC

etc, explicit manual operations and fault reporting have been included in the

resource interfaces.

The management workbench is not intended to replace operating system

configuration files (like Moira) or provide rigorous interface definitions or

even incorporate existing Management Information Systems (like OSF)

although existing system software could easily be used to implement manage

ment operations (and even be modified to use the management workbench).

Unlike Netman, the model of management is based upon ANSA's "Enter

prise Projection" and TOBIAS' contracts. Hence, rather than an agent having

the power (authorisation) and the motivation to perform a task, an agent in a

role manages a resource. Although both models are similar in their objec

tives, the role/contract model is more "natural" to the workings of an organi

sation. Contracts explicitly record responsibilities, job descriptions and condi

tions and hence are more complex than TOBIAS' implementation. Similarly

Design of Information System 57

there is a distinction between contracts of employment, contracts of use and

trading arrangements. Contracts of use are not intended to replace existing

passwordllog-on files but can be used to generate these configuration files.

There is no attempt to model policy hierarchies explicitly in our model

management and therefore we assume that contracts etc. are consistent with

the organisation's policies. Ensuring contract consistency and "resolving"

conflicts of interest etc. are therefore outside the scope of our model. Inter

ested readers are therefore referred to Moffett's work. A summary of the

design features is shown below:-

Criteria

Domains

View Based Interface

Secure Comms

Object Oriented
Model

Data Replication

Data Partition
By Domain

Job Allocation

Explicit Manual Ops

Failed Op Clean up

Fault Reporting

Feature

Multiple domains, used to encode organisational
departments, resources etc.

Multiple, role specific "property sheets" of each resource.
Property sheets can be supplement using command
line interfaces where appropriate.

Prototype system will incorporate underlying
communications channels.

Single inheritance used to encode managed resources

Resilent management information servers used to
maintain resource names, contracts etc.

Distributed databases could be incorporated in
prototype.

Encoded and regulated by contracts.

yes

yes

fault reports are automatically sent to fault manager.

Prototype Implementation

Chapter 4

PROTOTYPE IMPLEMENTATION

Anyone who isn't confused here doesn't really understand what's
going on *

58

The prototype's application level architecture closely follows the model of

management and system design which we have already considered in Chap

ter 3: agents adopt roles to manage resources provided they hold a contract.

Agents navigate through a series of "organisational views" in order to select

resources whose properties can be inspected (or altered) using property

sheets etc.

The management information system is structured in terms of a "manage-

ment workbench", which forms the information system's user interface;

organisational information, such as agent and resource details; and a set of

probes which access logical (physical) resources. Management information

users (i.e. agents) click on an icon and "log in" via a property sheet. They then

"view" their organisation via a set of "domain views" and (eventually) selects

a resource. Resource views are then displayed showing the resource's proper

ties and state etc. This is shown in the following diagram:-

* Belfast Citizen. 1970

Prototype Implementation

Management Information System Structure

Organisation

Resource Views Probes

c:J-o
[:J-O

1t---.c::J -0
-0
-0

S9

Interactions between the workbench and managed resources are outlined m

the following program pseudo-code:-

["OR EVE R DO
BEGIN

Get Agent's Name Password;
IF Agent CAN Login

END

BEGIN

END
ELS E

Agent in Role Selects Resource ;
I F Agen t I N Role MANAGES Resource
BEGI N

Show Property Sheet;
Apply Operations to Resource;

END
ELS E

Report "No Cont r act to Access Resource";

Report "Agent Cannot Login";

The management information system was initially developed and tested on

a Sun workstation running the Sun's 4.1.3 release of the UNIX operating sys

tem. The workstation was connected to the campus network via the labora

tory Ethernet [Metcalf76a] and had a local hard disk physically attached to

the console. The workstation's disk unit , console, keyboard etc. were allocated

a "probe" and connected to a the workbench's graphical user interface.

Prototype Implementation
60

Although it would have been possible to implement remote communication

between the workbench (client) and probes (server) using basic process

message communication, remote processing is performed using the Arjuna

tool kit[Shrivastava91a]. developed at the University of Newcastle upon

Tyne. This allowed development to concentrate on application layer modules

rather than concurrency control and state management etc. After testing

was complete, the management information system was ported to several

(HP and Sun) workstation clusters and a further workstation running the

Solaris operating system.

This chapter considers the prototype management information system's

implementation in terms of the work bench's organisational views, initial con

figuration, resource views and probes. Further information regarding specific

modules and some sample screen dumps are provided in the appendix.

4.1 MANAGING CAMPUS RESOURCES

The University of Newcastle upon Tyne's academic structure was modelled

using "domains" and mapped into the management information workbench.

Obviously, any organisation structure could be mapped into the workbench

and the University was chosen purely for convenience. A geographically dis

persed organisation with branches across the country (or even the world)

could be modelled using domains etc. in the same way as the University

organisation although communicating with resources across a wide area

would pose particular problems such as propagation delays, packet loss (and

corruption) etc.

Newcastle University is structured in terms of several Faculties (Medicine,

Arts, Science, Engineering, Social and Environmental Sciences, Law, Educa

tion, Agricultural and Biological Science), Schools (Medical and Dental School

Prototype Implementation
61

etc.), Departments (Computing Science, Electrical Engineering etc.) and

Departmental groups such as research projects and administration etc. A

complete list of Faculties etc. is given in the University Academic Staff Hand

book.

Rather than implementing a (distributed) database containing the Univer

sity's organisational structure, where each domain could manage their own

structure; each faculty (school, department etc.) is encoded using a Tcllrk

procedure. In future releases of the workbench, a combination of hard coding

and a domain database could be used to combine the flexibility of a data base

with the quick response times of hard coding. (Assuming that the Univerity's

academic structure is fairly static!) Each faculty etc. is encoded as a labelled

icon which when clicked reveals the contents ofthe individual domain.

No attempt has been made to restrict access to non-local agents accessing

the contents of domains even though the individual resources can only be

viewed if the agent holds a contract. Domain based "view restriction" could

easily be added to "filter" view traversal. This view restriction would prevent

agents from one domain viewing the contents of another domain and could be

implemented using contracts etc. This could be easily implemented in a simi

lar way to Robinson's domain based access control mechanism [Robinson88a] .

Non-local agents who have been contracted to manage local resources would

only be allowed to view sub-domains as illustrated in Chapter 3.

4.2 MANAGEMENT INFORMATION BASE

In order to support the management information system, certain organisa

tional and resource data is maintained within the management information

base. This information is currently held in text files, even though in future

releases of the prototype system a distributed (resilent) data base would be

Prototype Implementation
62

more appropriate. The following information IS held In the management

information system:-

• Agent Base - recording a list of all agents in the organisation. Each

agent's name, password, office location, telephone number and electronic

mail address etc. is stored. This information is used to verify login capa

bilities and direct automatic reports via electronic mail etc.

• Asset Base - recording all assets held within the organisation, manufac

ture's and vendor references, maintenance details etc.

• Availability Table - which records any resources (probes) which are "out

of order".

• Contract Base - recording contracts held by agents in the organisation.

At present, only "contracts of employment" are recorded but this could be

easily extended to record "contracts of service" and "contracts of use".

• Name Base - this stores resource locations and application level names

for each managed resource. Ideally probes should be location transparent

but these physical locations are maintained due a bug in the Arjuna

name server which prevented (high level) Arjuna (location independent)

naming and node binding between HP and Sun workstation clusters.

4.3 INITIAL CONFIGURATION

Configuration management concerns the distributed system's topology and

. interconnections. Not only does this concern the placement of management

probes used by our prototype system, but also the configuration of manage

ment resources. Our definition of "Configuration Management" deliberately

restricts the ISO/OSI "Configuration and name management" [IS088a] to

purely "Configuration Management" as name, asset and environment man

agement etc. are considered as separate entities.

Prototype Implementation
63

Configuration management is therefore distinct from "Configuration pro

gramming" (or "programming in the large")[DeRemer75a] which concerns the

actual binding of processes to nodes and identifying communication paths

between processes. Configuration management is subtly different from

"change management" which concerns reconfiguration. Software upgrades for

example, are included in "Change Management". It is possible for the same

agent to perform both configuration and change management - providing

the agent holds the appropriate contract for managing the particular

resource.

4.3.1 WORKSTATIONS INTEGRATED

When configuring the management information system, the following

resources were required:-

• Computers - one probe per host,

• Disk - one per file system (the disk controller was simplified and

assumed that each disk unit had only one disk partition),

• Terminal - one per device,

• Printer - one per device (not one per spool queue).

The following resources were managed by our prototype:-

HP Clusters 9 (5 workstations per cluster)
Sun Workstations 6
Disk Units 6 (3 or more partitions per disk device)
Printers 1
Tape Units 1

The workstation clusters shared a common network file system and printing

services across the computer network. Rather than housing replicated disk

and printer probes on every machine, disk probes were placed on nodes

exporting file systems and nodes where printers were physically attached.

Prototype Implementation
64

(Printers were deliberately simplified to probes on "exporting" nodes even

though each "importing" node has its own spool queue etc.)

Application Level Architecture

(Old LibraryBuilding) (Daysh Building)

(CSSDRoom) (Bridge)

o Espley o
Catless

(SunOS4.1.3 (Solaris)

(Bridge) Physical Location

o Probe o Peripheral Deuice

CamplU Network

(Medical School)

The management workbench IS located on a Sun5 workstation ("Catless"),

located in the Department of Computer Science. When agents in their

respective roles select the "Computing Service domain" from the University's

faculty, structure managed resource clusters are displayed on the screen. This

includes the "pike", "lake" and "burn" H .P workstation clusters , located in the

Old Library Building, Medical School and Daysh Building. Selecting individ

ual HP workstations causes "Computer View" property sheets to be displayed

on the screen showing workstation configuration properties , load metrics,

process queue statistics etc. Selecting the "Computing Teaching" domain

(located in the "Faculty of Science" - "Department of Computing Science")

and clicking on the "CSSD" (M.Sc. course) domain reveals teaching resources

and student user groups. This includes the "Espley" Sun4 workstation

located in the CSSD project room.

Prototype Implementation 65

4.3.2 AUTOMATIC CONFIGURATION

It is possible to use the management information workbench to configure

resources, in practice, many workstations are supplied already configured

with disk interfaces etc. already installed. Computers are "simply" assem

bled by system managers, disk units "daisy chained", network cable and

tapes attached etc. and the host is (almost) "ready for use".

Configuring the management information system is performed automati

cally by inspecting system configuration files such as /etc/printcap (line

printer descriptions) and /etc/fstab (file system table). Hence, for each

physical (or logical) resource, a probe is created and instance data obtained:-

• Computer - Computer Name, architecture, operating system memory.

• DiskUnits - Disk Controller, interfaces, physical (and logical) geometry

etc.

• FloppyUnits - ditto.

• TapeUnits - Block size, tape controller, media etc.

• Printers - "Printcap" entry, spool queue state, synopses of jobs already

printed.

• Terminals - baud rates, protocols, parity etc. are obtained from the

"Terminal Controller".

4.4 VIEWS

Views present a "role based" user interface to managed (recoverable)

resources and are therefore part of the management workbench. By selecting

a resource icon (printer, terminal, computer etc.), the resource's name and

location are passed to the "view selection" procedure which then displays the

appropriate property sheet on the screen. (Although the AIjuna name-service

Prototype Implementation
66

provides location transparent access to remote probes, there are unfortu

nately incompatibilities between HP and SunOS releases. Hence the location

tables are maintained in the management workbench.) The view selection

procedure is outlined below:-

Display Computer

IF resource IS available THEN

ELSE

Get Name and location from table
IF resource is NOT being used by another agent

Show Property Sheet
ELSE

Report ·'Resource in Use"

Report "Resource Not Available"

Views are used to present a "role based" user interface to managed (recover

able) resources. Views therefore are part of the (application layer) manage

ment workbench and access resources across a dependable communications

channel. Four views of each resource are provided:-

• Asset View, which accesses asset identifiers, physical locations etc.

• Configuration / Change View, which set (get) properties such as printer

baud rates, configuration files etc.

• Environment View, setting (getting) power supply information etc.

• Performance View, which allow resources to be periodically probed and

properties "watched".

These views are implemented in TcllTk [Ousterhout94a] and access remote

resources using small Arjuna "client" programs. Client programs (written in

C++) simply access remote servers (via an "ArjunaName" or "UniqueIdenti

fier") and perform remote procedure calls to set (get) properties or apply state

operations. Output to (input from) these clients is "piped" to the Tcltrk pro

cedure which displays output to the screen.

Prototype Implementation 67

4.4.1 COMPUTER CONFIGURATION

The "Computer Configuration View" (shown in Appendix D) comprises a

title "Computer View", menu and property sheet; each are implemented as

frames within the window. Property names are encoded as labels and value

entries are "text variables" in a raised box. In order to provide a consistent

interface, a configuration file provides default fonts, point sizes, window

colours etc. Four menu options are provided on all resource views to present

a consistent, ergonomic user interface:-

• State - Operations on the resource state,

• Properties - set, get and clear property values,

• Help - view help (manual) page,

• Quit - exit view.

In the case of the configuration view, an extra menu operation "RestoreProp

erties" is provided which allows configuration managers to attempt different

resource configurations and "back track". Each time properties are "set" the

resources state is saved to a stack and therefore incorrect configurations can

be "rolled back".

When the user clicks on the "GetProperties" menu, the "doGetProperies"

procedure is evaluated, which in turn executes an AIjuna client. During each

session, remote procedure call timeout and re-try values are defined via

"ClientActionRPC" structures. Should the AIjuna remote procedure call

mechanism timeout and exceed the "retry limit", exceptions are raised. These

user defined handers include:-

• Constructor Failure - where the AIjuna server cannot be created, for

example, the probe has not been installed properly on the host machine.

• Destructor Failure - where the server has not terminated properly.

Prototype Implementation 68

• (Other) Remote Procedure Call timeout - where either, the server has

crashed or communications failure etc.

In the event of these exceptions being raised, the client will terminate with

and send an error message to the view procedure. Otherwise, several remote

procedure calls are made to the server obtaining properties (machine name,

operating system, loading etc.) which are then read by the view. "Setting

properties" is performed in the same way to "getting properties" except that

data is sent from the property sheet to the client (and in turn to the probe

etc.).

4.4.2 COMPUTER PERFORMANCE VIEW

Besides setting (getting) properties and altering a resource's state, it is pos

sible to watch resources via the performance manager view. For each

resource, a watcher client can be invoked over a specific time (for example, 8

a.m. through to 8 p.m.) which polls the resource at regular intervals and

checks if certain properties are within specified bounds.

Clicking on "watchComputer" executes the doWatchComputer function,

which in turn activates a computer watcher program "at" * the start time.

Once activated, the "compute:t:"Performance" program periodically obtains the

computer's properties and is outlined the the following pseudo-code:-

* The "at" program is used to activate processes at a specific time etc.

Prototype Implementation

EVERY time interval DO
BEGIN

END

Get Performance Metrics from Resource
IF Cannot obtain Metrics
BEGIN

END
ELSE
BEGIN

END

Report Error to manager
Log Error

Log Performance Metrics to file
IF (Metrics OUTSIDE Criteria) AND NOT Already Reported
BEGIN

END

Send Performance warning to manager
Log "warning flags" etc.

69

Every pre-detennined time interval, perfonnance metrics are obtained from

the resource. If the resource is "dead" or "unreachable", this is reported to the

fault manager and the fault logged. Similarly, if the current perfonnance

data is outside predetennined boundaries, error reports are raised. These

reports are only raised once to prevent the manager becoming "swamped"

with error reports.

The computer "watcher" program is implemented as an AIjuna client, in

the same way as the configuration client discussed in the previous section.

(Except that "watcher" obtains properties multiple times.) In order to reduce

the overhead of probes, servers are only active during each time interval and

their properties (loading, process queue etc.) are logged. These logs (written

as ASCII files) can then be inspected by the perfonnance manager - either

using a graph utility or simply printed as text. In the event of communica-

tions or server failure (i.e. RPC timeouts on server construction etc.), error

messages are logged and messages are sent to the fault manager responsible

for the computer (i.e. holding the contract).

Prototype Implementation
70

4.5 PROBES

Probes obtain (set) properties from and apply management operations to

physical (logical) resources. These are implemented in C++ and executed as

"servers" by the Aljuna state and lock manager daemons. Each resource

managed by the prototype system is therefore controlled (monitored) by an

instance of probe and "coupled" to the external resource. These at present

include computers, disk and tape units, printers and software distributions,

but extra probes could easily be incorporated to manage other hardware, soft

ware and network resources.

Resource probes are encoded using an object oriented model, closely resem

bling the single inheritance hierarchy (shown in Chapter 3) and further

structured into three layers.:-

• Recoverable Layer - which provides "recoverable" operations upon

external resource. Operations are applyed to the external resource and

recovery (and compensation) techniques used in the event of either the

resource or operations failing.

• Unrecoverable Layer - this provides a basic interface to external

resources and uses "n-versions" of each operation. Operations can be

applyed to external resources using system entry routines, system soft

ware, network services and even contacting people.

• Integration Layer - operations upon external resources are imple

mented using "integration objects" which "wrap" existing system soft

ware etc. No error recovery is provided by the integration layer as all

application level recovery is performed by the recoverable layer.

Each layer will be discussed in subsequent sections.

Prototype Implementation 71

4.5.1 INTEGRATION LAYER

The prototype's integration layer provides the first layer of abstraction

above the system programmer's interface to managed resources and is

designed to present a clean, abstract resource interface to the upper layers of

the management information system. This interface is presented in terms of

a set of C++ classes which interact with manufacturers' software and system

library calls etc., and provides for both manual and automatic integration of

management control (monitoring) requests.

In the following sections we will consider integrating managed resources

using the system programmer's interface, system software, obtaining configu

ration information, integrating servers and performing manual operations.

Each section is illustrated using code taken from the prototype Management

Information System. Readers are referred to Appendix 1 for further details

regarding individual integration modules.

4.5.1.1 SYSTEM PROGRAMMER'S INTERFACE

Physical hardware and software resources can be incorporated using the

programmer's interface to the particular resource. All of these system library

routines are implemented in the C programming language [Harbison91a] (or

assembly language with a C function prototype) which can be easilily

accessed from C++. [Lippman89a] Generally speaking, many ofthese integra

tion routines are well described using outline manual pages and other manu

facturer's documentation.

Terminal, tape and disk devices are often manipulated by variants of the

"ioctl" (Input Output ConTrL) function which can perform tasks such as set

ting (getting) baud rates, control settings, disk interfaces and even eject

ing/formatting floppy disks. Ioctl calls are of the form:-

Prototype Implementation
72

int fd = open (deviceName, MODE);

result = ioctl(fd, REQUEST [, PARAMETER]);

close(fd) ;

Once the device has been opened and an ioctl call is performed with set (get)

requests and additional arguments. An example from the disk controller

module is shown below:-

class DiskController
(

public:

DiskController(char *);
-DiskController();

Error getController();

//device name

Error getControllerAddress(int ~);
Error getDisklnterface(short ~);
Error getUnitAddress(short ~);
Error getUnitFlags(short ~);

protected:

);

char *theDeviceName;

int theControllerAddress;
short theDisklnterface;
short theUnitAddress;
short theUnitFlags;

The disk controller, is based on the SunOS disk interface ("dkio") and obtains

configuration information (controller address, disk interface code, unit

address etc. from the disk unit. Once the class has been constructed with the

raw device name (e.g./dev/rsdOa) the controller can be accessed (getCon

troller) which sets instance data in the class. The getController method

is shown below:-

Prototype Implementatian

Error DiskController::getController()

int fp;
struct dk_'nfo theInfo;

fp = open (theDeviceName, O_ROONLY);
if (fp < 0)
{

return BadOpen;

if (ioctl(fp, DKIOCINFO, &(theInfo)) != 0)
(

close (fp) ;
return BadIOCTL;

close(fp) ;

theControllerAddress
theDiskInterface
theUni tAddress
theUnitFlags

return OkOperation;

theInfo.dki_unit;
theInfo.dki_ctype:
theInfo.dki_ctlr;
theInfo.dki_flags;

In order to obtain the disk controller's configuration, the (raw) disk device is

first opened, "ioctl'ed" and thelnfo decomposed. Configuration information

retrieved from the disk controller include: the controller's address, interface

type (ego SCSI) and unit address. This operation must be executed using

"system administrator" (i.e. root) privileges otherwise error conditions

(BadOpen, cannot open file; BadIOCTL, cannot perform IOCTL) are returned.

A large amount of performance data can be obtained from the UNIX operat

ing system kernel. This includes: system loading metrics ("load averages"),

virtual (physical) memory consumption and the process table. The system

kernel is modelled as a C++ class, which is shown below:-

Prototype Implementation

class Kernel

public:

);

Kernel() ;
-Kernel() ;

Error initKernel();
Error closeKernel();
Error getlmage();
Error checklmage();

Error getLoadAverage(LoadAverage &);
Error getMernory(int &, int &, int &, int &, int &);
Error getVMstats(int &,int &, int &, int &);

74

In order to obtain metrics, an "nlist" structure is created which is used to

transport data to (from) the Kernel. This nlist is created by the Kernel's con-

structor and contains symbols describing load average, memory usage, disk

transfers etc. The operating system kernel is then opened (ini tKerne 1)

which obtains a Kvm_token. Kernel metrics are then transported from the

kernel (getlmage) and checked for completeness (checklmage) and can be

decomposed before closing the kernel. For example, in order to obtain mem

ory usage, the X_TOTAL component is then accessed from the nlst and

vrntotal is obtained, as shown in the following program segment:-

Error Kernel: :getMernory(int & realMern,
int & availRealMern,
int & virtMern,
int & availVirtMern,
int & freeMern)

struct vmtotal total;
Error theResult;

theResult = getKernelValue(kd, nlst[X_TOTAL] .n_value,
(char *) (&total) ,
sizeof(total» ;

if (theResult == OkOperation)
(

realMern = pagetok(total.t_rrn);
availRealMern = pagetok (total. t_arrn) ;
virtMern = pagetok(total.t_vm);
avail VirtMern = pagetok (total. t_avm) ;
freeMern = pagetok(total.t_free);

return theResult;

Prototype Implementation 75

The getKernelValue operation is implemented usmg the SunOS kernel

library and simply accesses the X_TOTAL element from the nlst structure.

(Accessing elements from the nlist is often performed using the C library rou

tines lseek and read in non-SunOS implementations of the UNIX operating

system. Alternatively, the process state vector can be examined and a synop

sis obtained, as shown in the next code segment:-

Error Kernel: :getProcessStats()

structproc *theProcess = new struct proc;

zeroProcs() ;
if (kvrn_setproc(kd) != 0)
(

I I ...
return UnKnownError;

while ((theProcess = kvrn_nextproc (kd)) ! = NULL)

II

switch (theProcess->p_stat)
(

case SSLEEP: ++procsSleeping; break;
case SWAIT: ++procsWaiting; break;
case SRUN: ++procsRunning; break;
case SIDL: ++procslntermed; break;
case SZOMB: ++procsZombied; break;
case SSTOP: ++procsStopped; break;

return OkOperation;

The running totals are cleared (zeroProcs and theProcess pointer is set to

the head of the process table (kvrn_setproc), the process table is then tra

versed and the process summaries are collected.

Unfortunately some of these system library functions do produce "corrupt"

data values even though they apparently "succeeded" and care must be taken

to determine if "dubious" data has been obtained. For example, the physical

memory metrics produced by getMernory allege that the Sun workstation has

approximately half a megabyte of physical memory instead of 16 megabytes!!

This could be due to a combination of poor (kernel) documentation and non-

Prototype Implementation

portable sample programs.

4.5.1.2 INTEGRATING SYSTEM SOFTWARE

Whilst many integration modules have been implemented using system

entry routines, some interfaces are subtly different between operating system

releases (and not backward compatible) and are therefore non-portable. For

example, the SunOS 4 disk interface "DKIO" is very similar to the SunOS 5

(Solaris) implementation, some data structures have slightly different names

and the floppy disk interface is located elsewhere. A more portable method of

integrating physical resources concerns "wrapping" existing software using

integration objects.

One method of integrating existing applications in the management infor

mation system is to modify the "legacy application's" [Sventek94al source

code and incorporate it into an integration object. (Which requires a good

understanding of the original code!) The integration object's exported inter

face would abstract the legacy application's interface to "mimic" the user's

commands etc. While this approach is at least possible, particularly with

small (and very simple) applications (for example, the tape controller mod

ule); in some cases, the source code is very complex or not available.

Rather than modifying application source code, "wrappers" were formed to

encapsulate the legacy application with an interface reflecting the original

application's functionality. These wrappers execute system software utilities

(such as the line printer controller) using UNIX inter-process communication

primitives (pipes etc.)[Leffier86a, Sechrest86al, which is illustrated in the fol

lowing diagram:-

Prototype I mple17U!ntation

Integrating System Software

System software has been integrated using pop en calls which allow pro

cesses executing system software to be spawned and results collected etc.

These popen calls have been abstracted within an integration module with

four members:- Open (Close) pipe, Write to (Read from) pipe. This is shown

in the following figure:-

class Pipe
(

public:

Pipe(char *);

-Pipet) ;

Error openPipe(PipeMode);
Error closePipe{);

Error writeTo(char *);
Error readFrom(char *);

Error readLine(char *);

protected:

FILE *
PipeMode
char *

};

thePipe;
thePipeMode;
theCommand;

II the conunand

Hence, once an instance of Pipe has been constructed with the program's

name and other command line arguments, a pipe is then opened and results

read from (data written to) the process. Therefore, providing we know the

expected inputs to particular system software (of the format of output data),

we can integrate system software. Unfortunately, the pop en routines can

only be used with batch style utilities and "pseudo-terminal" techniques must

be used with interactive software. The following system utilities have been

Prototype Implementation 78

integrated into the management infonnation system:-

• DFcomrnand - obtains file system, size, usage, availability and mount

point.

• LPCcomrnand - the line printer controller.

• PScomrnand - examines the process queue.

• VMSTATcomrnand - examines virtual memory statistics.

• MakeComrnand - maintains software distributions.

• MailComrnand - integrates electronic mail.

• LPRcomrnand - prints documents using line printer software.

LPCcommand as its name suggests integrates line printer controller soft

ware. In order to design this integration object, LPC's source code was exam-

ined and an syntax of all screen output was abstracted. Command line argu

ments were then incorporated into LPCcomrnand' s exported interace, which

is shown below:-

class LPCconunand

pUblic:

);

LPCconunand() ;
-LPCconunand() ;

Error abortPrinter(char *);
Error cleanPrinter(char *);

Error disablePrinter(char *);

Error enablePrinter(char *);

Error upPrinter(char *);

Error downPrinter(char *, char *);

Error startPrinter(char *);
Error stopPrinter(char *);
Error reStartPrinter(char *);

II printernarne, message

Error statusPrinter(char *, Boolean &, Boolean &,

Boolean &, unsigned&);

Error topQ(char *);

Hence, by creating an instance of LPCcommand, a line printer can be started

Prototype Implementation
79

(enabling the printer), stopped (disabling the printer), queue enabled (dis

abled). The startPrinter and status Printer members are shown

below:-

Error LPCcommand: : startPrinter (char * thePrinter)

char *lprIssue = new char[lOO];
BuffertheBuffer = new char[BufferSize];
Error theResult;

sprintf(lprIssue,"%s %3 %5",

LPcontroller, StartCommand, thePrinter);

theResult doPrinterCommand(lprIssue, theBuffer);

II

if (cannotAccessPrinter(theBuffer»
(

theResult = BadPrinter;

else if (isPrintingOn(theBuffer) &&
iSDaernonStarted(theBuffer))

theResult = OkOperation;

else

theResult UnKnownError;

II
return theResult;

In order to start the printer, command line arguments are constructed and

issued to the "lpc" process. Output from lpc is then captured in a buffer and

parsed to determine if printing is enabled and a daemon started. In the event

of a failure, UnKnownError is returned as insufficient diagnostics are pro-

vided by the underlying software.

Obtaining a printer's status (spool queue, queue size etc.) is similar to the

previous example. A command line is formed, issued to lpc and output is

parsed. This is shown in the code segment below:-

Prototype Implementation

Error LPCcomrnand::statusPrinter(char w thePrinter,

Boolean & iSQenabled,
Boolean & isPrintEnabled,
Boolean & canExamineSpoolArea,
unsigned& jobsToPrint)

char *lprIssue new char(lOO];
BuffertheBuffer new char(BufferSize];
Error theResult UnKnownError;

sprintf(lprIssue, "%8 %s %s·,

LPcontroller, GetStatusComrnand, thePrinter);

theResult dOPrinterComrnand(lprIssue, theBuffer);

II

if (! cannotAccessprinter(theBuffer»
(

i8PrintEnabled = getPrintEnabled(theBuffer);
isQenabled = getQenabled(theBuffer);
canExamineSpoolArea = getCanExamineSpool(theBuffer);

if (canExamineSpoolArea)
jobsToPrint = getSpoolEntries(theBuffer);

II

returnOkOperation;

80

Command line arguments are constructed (of the form: lpc status

PrinterName) and executed in a pipe. Provided the printer can be accessed

(i.e. the printer exists!), the output buffer is parsed using simple string com

parisons. If iSPrinterEnabled, isQenabled flags are set, and the number

of entries in the spool queue are extracted.

4.5.1.3 OBTAINING CONFIGURATION SPECIFICS

Configuration specific data is often held in text files and parsed by the oper

ating system when the computer is booted or when controller daemons are

started, and by parsing these text files it is possible to obtain a large volume

of configuration data. Each of the most "useful" configuration files has been

abstracted using a C++ class for ease of parsing. These include:-

• Password - the password/account file,

Prototype I mplerrumtation 81

• Printcap - printer description file,

• FSTAB - file system table.

The PrintCapEntry module, shown below, is based on configuration

entries in the /etc/printcap:-

class PrintCapEntry
(

public:

PrintCapEntry(char *);
-PrintCapEntry() ;

Error readEntry();
Error writeEntry(char *); II printcap file
Error getBaudRate(unsigned &);
Error getPageDims(unsigned &, unsigned &); II length, width
Error getMaxCopies(unsigned &);
Error getMaxSize(unsigned &);
Error getSpoolDir(char *);

Error getLogFile(char *);

protected:

II instance data ...

void setDefaults();
);

Rather than attempt to parse the file, the terrncap library function tge

tent is used to obtain the entry which is then decomposed by tgetstr. Two

extra functions setNumeric are setString were written to check null (i.e.

default) entries.

Prototype Implementation

Error PrintcapEntry:: readEntry ()

char *buffer= new char[1024];
char 'scratch new char(1024];

environ = newenVi

if (tgetent(buffer, printerName) <= 0)

I I ...
return UnKnownError;

setString(acFile,
setString(cFfilter,

II etc

setNumeric(maxCopies,
setNumeric(maxSize,
setNumeric(price,
setNumeric(pageLength,
setNumeric(pageWidth,

II etc ...

return OkOperation;

tgetstr("af", & scratch));
tgetstr("cf", & scratch));

tgetstr ("mc", & scratch));
tgetstr ("mx", & scratch));
tgetstr("pc", & scratch));
tgetstr("pl", & scratch));
tgetstr("pw", & scratch»);

82

Provided that the printcap entry exists, the printer's entry is obtained

using tgetent * and held in a buffer. String and numeric entries, such as

"log files", filters and page dimensions are then extracted and held as class

instance data. Should the printcap entry be incomplete default entries are

preserved. An example printcap entry (produced by the writeEntry method)

is shown below:-

* By altering an environment variable. it is possible to use the termcap library routings to ob
tain "printcaps".

Prototype Implementation

Print Cap Entry

bramley:\
:lp=:\
:af=:\
:bullO:\
:cf=:\
:df=:\
:du=O:\
:If=/var/spool/lpd/bramley/log:\
: lo=lock: \
: rndlO: \
:rnx#1000:\
:pc#200:\
:p1#66: \
:pw#132: \
:rrn=sernillon:\
: rp=bramley: \
:sd=/var/spool/lpd/bramley:

4.5.1.4 SERVER INTEGRATION

Variable NaTTU!

Printer NaTTU!
Line Printer
Account File
Baud Rate
Filter
Ditto
User ld of Daemon
Log File
Lock
Max Copies
Max8ize
Price per Copy
Page Length
Page Width
Remote Machine
Remote Printer
Spool Directory

It is further possible to integrate networked sel'Vlces I.e. accessing

resources across the network via message passing or remote procedure call

primitives, into the Management Information base. These include the line

printer sub-system which we have considered earlier (as the user interface is

actually a system utility programme) and Rstat, which obtains kernel metrics

using Sun Remote procedure call techniques.

The Rstat has been integrated in the same way as other integration mod

ules, in the form of a C++ class which is shown below:-

Prototype Implementation

class Rstat
(

public:

Rstat(char *);
-Rstat() ;

Error hasHardDisk(int &);

Error getStatistics();

II hostname

Error getLoadAverage(LoadAverage &);
Error getVMstats(int &, int &, int &, int &);
Error getBootTirne(struct tirneval &);
Error getCPUstates(int &, int &, int &, int &);

protected:

1/ instance data ...
);

84

Instances of Rs ta t are constructed using the remote host's name, statistics

obtained (getStatistics) which can be output. The getStatistics method is

shown below:-

Error Rstat: :getStatistics{)

structstatstirne *statp
int rstatResult;

new struct statstime;

rstatResult = rstat(theHostNarne, statp);

if (rstatResult < 0)
{

II ...
return UnKnownError;

thePagesln
thePagesOut
theSwapln
theSwapOut

II etc

statp->v-pgpgin;
statp->v-pgpgout;
statp->v-pswpin;
statp->v-pswpout;

delete statp;
return OkOperation;

Hence, the rstat operation is performed on theHostName and a statstime

structure returned. Providing that the remote procedure call has succeeded

(i.e. the return value is non-negative), instance data is obtained from statp.

Unfortunately, while testing this routine the rstat call "succeeded" even

though the network service was not enabled on the Workstation!!!

Prototype Implementation
85

4.5.1.5 MANUAL COMMANDS

While it is possible to integrate many systems management tasks usmg

systems calls and software, there is a residue of operations which can only be

performed manually. These include physically installing resources, loading

tape decks etc. Manual operations upon managed resources are implemented

explicitly in the management information base, and request the human oper

ator responsible for the resource (i.e. holding the contract) to perform opera

tions as requested. Communication to (from) the management information

system from (to) the operator is implemented using a "mailbox", which is

illustrated in the following algorithm:-

Management Information Base

START MANUAL OPERATION
Find Operator
Place Request in Mailbox
WAIT for reply WITHIN time out
IF reply == ok RETURN OkOperation
ELSE RETURN FailedOperation

END MANUAL OPERATION

Once the operator responsible for the resource has been identified (via a con

tract data-base), she is asked to perform an operation manually. The actual

mechanism for contacting operators (and getting responses) is implemented

using Arjuna clients (the ManualOperation integration module) and the

server (OperatorsMailBox). Timeouts and exception handling are also pro

vided by Arjuna tool kit - and are explained in more detail later in this

chapter. In the event of manual operations failing (for whatever reason), their

effects are cleaned up and undone by the information system's recoverable

layer.

Prototype Implerrzentation 86

Operator

FOR EVER DO
BEGIN

Get Request from Mailbox
Do Request
Place Reply in Mailbox

END

The ManDiskUni t (i.e. manual operations upon disk units) integration

module is shown below:-

class ManDiskUnit

public:

),

ManDiskUnit() ,
-ManDiskUnit() ,

Error doPowerUp(char *),

Error doPowerDown(char '),
Error doLoadDisk(char " char '), II Diskdrive, Diskmedia
Error doRemoveDisk(char '),

Error doScrapDisk(char .);

ManDiskUni t exports methods for powering up (down) the disk unit, loading

(removing) floppy disks etc. and an extra operation for scrapping bad disks is

included as a compensation action for failed (floppy) disk format operations.

Manual operations are also used by the unrecoverable layer to perform

operations upon unreachable (and unconnected) resources. Manual opera

tions are particularly important when considering powering up (down) com

putational resources - these resources can only be switched off if the probe

has been moved from the host.

4.5.1.6 REPORTING

In order to provide fault reporting, broadcast messages and mail sub

system integration four modules are provided:-

• Faul tReport (implemented using MailCornmand).

• MailCornmand - interfacing to the electronic mail sub-system.

Prototype Implementation 87

• Wall - which sends broadcast messages to users.

• News - interfacing to the electronic news groups etc.

FaultReport, implemented using MailCommand adds predefined "headers

and footers" to fault reports which are delivered using electronic mail. An

example fault report is shown below:-

Fault Report
Message Header

Bramley Printer: Out of Paper Message Body
Location: Bridge 365

Management Information Base Message Footer
Computing Science Domain D.R.Hodge@newcastle
Newcastle University ext. 8006

4.5.2 UNRECOVERABLE LAYER

Having considered the physical interface and integrating managed

resources, let us turn our attention to implementing resource controllers.

These resource controllers are split across two layers; the unrecoverable layer

and the recoverable layer which is discussed in the next section. This layer

provides a set of unrecoverable operations which are exported from the

resource controller classes. (No attempt is made to recover from or report

failures as these tasks are performed by the recoverable layer.) These

resource controllers are implemented in terms of a single class hierarchy

using a model which is shown in the diagram below:-

Prototype Implementation

Type Hierarchy (Principle Classes)

Arjuna Tool Kit (W"Mr ')
------------------------ --------------------

UnRecoverable Layer

-- -----~---~--~----------
(RecComputej (RecDiskUni~ (RecTapeUni9 (RecPrinter) Recoverable

Layer

This single level inheritance was chosen due to restrictions imposed by the

AIjuna's stub generator and the Cfront C++ compiler. * Extensive use has

been made of virtual class members which allows the redefinition of specific

member functions by lower levels in the tree. For example, the DiskUni t

device class is shown below:-

• The stub generator only supports single inheritance and the compiler only permits a certain
number of levels in the inheritance tree.

Prototype Implementation

class DiskUnit public Device

public:

DiskUnit(char " char " char " NodeCoupling, ObjectKindl;
DiskUnit(Uid &, Error &1;
DiskUnit(ArjunaName, Error &);

-DiskUnit() ;

virtual Error manualPowerUp() ;
virtual Error manualPowerDown() ;
virtual Error autoFormatMedia() ;
virtual Error autoGetController();
virtual Error getStatus() ;
virtual Error autoGetUsage();
virtual Error autoGetPartitions();
virtual Error autoGetGeometry() ;

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

protected:

II instance data ...
);

89

The disk unit, derived from device and managed resource has three construc

tors: creating a disk unit from scratch and accessing persistent DiskUnits

using an Arjuna name and unique identifier. Several methods are exported

which power the device, obtain configuration and disk usage. These methods

are prefixed "manual" - referring to manual operations, "auto" - automatic

operations which integrate system calls and software; "remote" (used in the

computer class) which integrates network services.

Most of the disk unit's instance data is set at configuration time (disk con

troller geometry and partition size) and therefore once initialised, periodic

calls to getUsage are required to keep the probe in step with the physical

disk device. autoGetController, autoGetPartitions and autoGetGe

ometry use DiskController, DiskPartitions and DiskGeometry inte

gration modules respectively in order to obtain configuration information.

Whereas au toGetUsage uses dfCommand in order to obtain disk usage.

(Although it is possible to use system library calls to obtain disk usage, it was

Prototype Implementation 90

far simpler to parse the output from "df"). autoGetController IS shown

below:-

Error DiskUnit::autoGetController()

)

if (theCoupling != CloseCoupled) return PreFailure;

DiskController
Error
short

theDiskController(theDeviceName) ;
theResult;
ternplnterface;

theResult theDiskController.getController();
if (theResult != OkOperation) return theResult;

theDiskController.getControllerAddress(theControllerAddress);
theDiskController.getUnitAddress(theUnitAddress) ;
theDiskController.getDisklnterface(ternplnterface) ;
theDisklnterface = short2Disklnterface(ternplnterface);

return OkOperation;

Hence, provided that the processing node is close coupled, an instance of the

DiskController integration class is constructed with the disk device's raw

pathname. The configuration is then obtained and instance data set. A con

version function short2Disklnterface is used to convert the disk interface

code used by dkio to an enumeration type.

4.5.3 RECOVERABLE LAYER

Recoverability can be incorporated in system components using type inheri-

tance [Dixon88al, reflection [Stroud95a, Stroud94al or delegation.

[Rubira94al In the case of type inheritance, a recoverable class is derived

from its unrecoverable counterpart and a set of "super objects" concerning

state (operation) based recovery, persistence and serialization. [McCue92a,

Shrivastava91al Whereas, reflection transparently provides recovery, serial

ization etc. using "meta-objects" which trap operations on application layer

objects.

This contrasts with the "delegation" approach developed by Rubira which

provides error recovery in a computer controlled train set. Rubira's

Prototype Implerrumtation 91

equivalent of "recoverable components" are "friends" of the components "nor

mal" and "abnormal" state. Her "Recoverable Components" "delegate" opera

tions upon the component (i.e. trains, points, train controller etc.) depending

upon the component's state (normal, abnormal etc.) - this can be compared

with Kramer et aI's work on Dynamic Reconfiguration. [Kramer88a]

There are two approaches to achieving recovery from failed operations.

One approach takes a copy of the component's state before the object is modi

fied and during recovery the current (i.e. modified) state is replaced by the old

state of its "snap shot". This is contrasted with operation based recovery

which records operations upon the system component (for example, in an

operation log) and uses inverse (or "anti") operations to recover the object's

state.

Recoverability has been incorporated in the management information sys

tem using type inheritance in the same way as the examples shown in

Dixon's thesis. The unrecoverable layer is used as the baseline interface to

manage resources and enacts control (and monitoring) operations through the

integration layer to the physical resource. Similarly the non-recoverable

layer exports multiple implementations (i.e."n versions") of control operations

(manual operations, automatic integration using system software, physical

interface via system calls etc.) which are used by the recoverable layer.

Each exported class member from the recoverable layer components IS

implemented using recovery blocks [Randell75a] incorporating Atomic

Actions: using the n-version interface and design diversity from the unrecov

erable layer; adding serialisation, persistence and failure atomicity of atomic

actions. [Lomet77a, Lampson81a, Spector83a, Marshall80a] Our recovery

block algorithm is outlined below:-

Prototype Imple1TU!ntation

ensure PRINTER IS ENABLED by
action automatically enable printer;

end "primary" else-by
action manually enable printer

end "secondary'l
else fail;

92

In the above example, the acceptance criteria (post condition) PRINTER IS

ENABLED is attempted using a list of alternative atomic operations. First the

primary action is attempted to enable the printer automatically, locks are

obtained and control signals sent to the printer. Providing the acceptance cri

teria are met, the operation is committed and no further operations are

attempted. However, should the control signals fail to enable the printer, the

operation's effects are compensated and the action is aborted; ready to

attempt the secondary implementation to enable the printer. In the event of

external operations upon the printer succeeding but the atomic action not

committing, the entire operation is undone by an "anti-operation". This pro-

cess of attempting operations is performed until the list is exhausted and the

recovery block signals failure.

Similarly, by incorporating appropriate pre-conditions within unrecover

able layer components, it is possible to perform management actions regard

less of the connectivity or reachability of the external resource i.e.:-

• all calls using the physical interface must be on reachable, close coupled

resources.

• loose coupled controllers require the resource to be connected only.

• manual operations do not depend upon the connectivity or reachability of

the resource.

For example, the RecComputer (i.e. recoverable computer) class is shown

below:-

Prototype Implementation

class RecComputer
(

public Computer

public:

I;

RecComputer(char' char', char " NodeCoupling, ObjectKind);
RecComputer(Uid &, Error &);
RecComputer(ArjunaName, Error &);

-RecComputer() ;

virtual Error onLine() ;
virtual Error offLine ();

virtual Error powerUp();
virtual Error powerDown () ;
virtual Error boot() ;
virtual Error shutDown() ;

virtual Error getStatus();
virtual Error getConfig () ;
virtual Error getPerform() ;

1/ " .

virtual Error compensate (Error) ;
virtual Error reportError(char *) ;

virtual Error reportError(Error) ;

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

93

The RecCornputer like the DiskUni t in the previous section, has three con

structors (creating a recoverable computer from scratch and accessing persis

tent object using a unique identifier or an Arj unaNarne), destructor, opera

tions to save (restore) state and provide a TypeNarne. Recoverable layer

classes unlike other layers, do not have their own instance data and therefore

inherit the "unrecoverable layer's" data. *

Methods such as powerUp, boot are provided, but unlike unrecoverable

layers, no variants are permitted. Each of these operations is encoded using

recovery blocks and implemented in terms of (write locked) atomic actions.

For example, the getKernelMetrics method is shown below:-

• "Public" type inheritance is used only due to restrictions in the Arjuna stub generator.

Prototype Implementation 94

Error RecComputer::getKernelMetrics()
(

#define ANTI_OPERATION noOperation{);
#define PRE_CONDITION TRUE
#define POST_CONDITION TRUE

BEGIN_RECBLOCK
BY(autoGetKernelMetrics())
ELSE_BY(remoteGetKernelMetrics{))
REPORT_FAIL{"cannot get kernel metrics")

END_RECBLOCK

Rather than encode the recovery block in terms of templates etc. [Rubira

Calsavara94a], macros are used to define an "anti-operation", pre and post

conditions etc. Thus, provided the PRE_CONDITION holds, autoGetKernel

Metrics is attempted within a (write locked) atomic action. The recovery

block macros are shown below:-

• BEGIN_RECBLOCK, declares an atomic action.

• BY (OPERATION), executes operation within a write locked atomic

•

•

•

action. If the operation fails its effects are compensated and the atomic

action is aborted. If operation succeeds but the atomic action fails to com-

mit, an anti-operation is performed. Otherwise, the operation returns

"succeeded."

ELSE_BY (OPERATION), c.fBY (OPERATION).

REPORT_FAIL(MESSAGE),reportError(MESSAGE).

END_RECBLOCK, Return operation failed.

Hence autoGetKernelMetrics is then attempted In the "unrecoverable

layer" (i.e. Computer class). Should that operation fail, the atomic action is

aborted and secondary operations (remoteGetKernelMetrics) "tried".

Other recoverable operations, such as powerUp have predefined anti

operations (i.e. powerDown) which are used to provide operation based recov

ery. Hence, should operations succeed on the "external resource" and the

atomic actions fail to commit (for example, because the object store is full) the

Prototype Implementation 95

anti-operation is applied. Similarly, if operations fail enroute, such as while

the RecPrinter is printing jobs, a compensation operation (for example,

scrapPrintJob) is performed.

The extent that partial system failure can be detected is largely determined

by external resource's interfaces and exceptions raised by the Arjuna remote

procedure call system. Some printers for example only indicate that the

printer has misfed when the controller "refuses" to write to a file descriptor

rather than provide any sophisticated error diagnostics. Let us consider the

following scenario: The agent in her role as configuration manager selects a

resource via a view and sets printer properties.

• Operations upon the probe are performed within a recovery block imple

mented using atomic transactions. Resource properties are locked and

operations are applied to the external resource.

• If an individual operation fails, its effects are compensated and the

transaction is aborted. Operations are applied within the recovery block

until a variant succeeds. Should all variant operations fail, a fault report

is issued and the resource marked ResourceFailed.

• If the server crashes during the operation, the resource and server's

state become inconsistent. The server's state remains on stable storage

and is reconciled with the resource as part of "crash recovery".

• If the client crashes during the operation, the server will (should!) detect

the failure as part of an orphan detection mechanism and Arjuna's "state

manager" will kill the server.

• If the communications system fails, the client's remote procedure calls

will timeout and raise appropriate exceptions.

Recovery is performed at four levels:-

Prototype Implementation 96

• Repairing (Replacing) External Resources, i.e. calling out an enginner,

disconnecting the resource and taking appropriate action.

• Repairing the Communications Subsystem, i.e. replacing severed net-

work cable; erecting a "fire wall", restarting routers/ bridges etc.

• Restarting Arjuna, cleaning up any shared memory, killing servers and

applying co-operating termination protocols to any inconsistent atomic

actions. Aljuna management daemons can then be restarted.

• Ensuring that the probe's state is consistent with the external resource.

This is simply performed by getting the resource's (latest) properties.

Resource failure and recovery will be discussed further when considering

fault injection (in Chapter 5).

4.6 DISCUSSION

This chapter has considered the application of our prototype management

information system to the task of managing a large distributed computer sys

tem. The University of Newcastle upon Tyne's academic structure was

mapped into the workbench's user interface which allows management

agents in their respective roles to access HP and Sun workstations, disk

units, printers etc. anywhere on campus.

Dependencies between resources were modelled using "resource domains"

and mapped into the management workbench in the same way as organisa

tional domains etc. Multiple views of resource (and organisational) domains

are displayed by the workbench, and therefore resource domains can record

both the logical and physical structure of managed resources. This proved

much simpler to implement than using a configuration language such as

PCL. [Sommerville95al Although PCL provides a "convenient" syntax: for

recording a distributed system's structure, PCL does not provide physical

Prototype Implementation 97

operations on managed resource states or invariants between dependent

resources. Our managed resources are encoded as c++ objects which control

and monitor physical resources and composite objects implemented using

domains. Therefore change managers can reconfigure the distributed system

and maintain both structural (and functional) integrity between resources.

Variations between hardware (software) platforms are also recorded using

the domain structure. For example, a software package developed for a Sun 4

architecture is located within a Sun4 domain etc. - This avoids adding value

expressions in resource relationships.

The probes were deliberately designed in the form of 4 layers, ranging from

an operating system specific integration layer through to the view based user

interface. Several probes were implemented: terminal, printer, disk device,

floppy device, mag tape unit, computer, software. Although this list is not an

exhaustive set of an organisation's resources. Extra controllers can be easily

incorporated, such as Bridges, routers, terminal concentrators and network

services, for example the Network File System and Network Information Ser

vice [Stern92a].

"Inherited recovery" cleanly (and simply) abstracted unrecoverable layer

multiple implementations from higher layers in the prototype. Recoverable

layer class components therefore consist largely of a set of recovery blocks

which hide lower levels in the prototype. Similarly, using the Arjuna tool kit

to construct server and clients proved valuable and considerably eased the

burden of distributed programming. Arjuna has now been ported to

ANSAWare, HP Workstations and even personal computers running the

Linux operating system and therefore provides a portable distributed pro

gramming environment.

Although using Arjuna had many advantages, one of its greatest

Prototype Implerrumtatian 98

drawbacks concerns its ability to manage a very large number of managed

objects. Each object's state is represented in "core dump" format which forms

a very large, highly fragmented file. Incorporating a query language in the

management information system would be useful for collating data and pro

ducing reports. For example, queries such as:-

SELECT
ComputerName, Load

FROM
AIIComputers

WHERE
Load Increased by 10%

AIjuna's object store has been mapped into a commercial data base and object

multiplexing attempted. This would be particularly useful in user (and soft-

ware) management where large numbers of objects are manipulated.

In the current release of Aljuna software (PR3.2), configuring seSSIOn

remote procedure call time outs (and re-try values), binding servers to hosts is

a fairly "low level" task - creating RPC structures, binding them to Clien

tAction and eventually to the server's stub interface. [Parrington95al The

actual server and RPC bindings could be performed using a configuration lan

guage similar to Conic[Magee89al which would make the programmer's life

much easier! For example:-

RecComputer A;
ComputerClient B;

CREATE A ON ncl.catless
CREATE B ON ncl.espley

LINK B TO A
WITH 16 Retries, 10 min. TIMEOUT

Or even, in the case of replicated servers,

ContractBase A;
Client B;

CREATE A ON ncl.catless, ncl.espley, ...
LINK B TO A

/I etc.

Prototype Implementation 99

Design diversity techniques are particularly useful in "tolerating" object

migration (i.e. moving probes between nodes in the distributed system). Thus

probes which are not closely coupled can access their managed resource using

network services or even a "remote integration layer". Manual operations do

cause particular problems in the management information base, particularly

concerning longer time outs and scheduling (human) operators. However, per

forming operations "by hand" is implemented in the same way as contacting a

network service. Integrating "automatic" operations using existing system

software may be less efficient than using system entry routings but can pro

duce more portable program code.

Although "system entry" standardization has been addressed by POSIX

etc., much more work is required in producing consistent interfaces between

operating system releases (and implementations). OSF for example have pro

duced both application (and system level) interface standards as part of their

distributed environment but unfortunately very little has been published in

this area.

Tclfrk proved a great asset in constructing the prototype's user interface.

Not only was Tk very easy to use but allowed development of a forms based

interface. Although Tclfrk is an interpreted language, this has no significant

effect on performance, particularly as clients/servers are executed as binaries.

A summary is shown below:-

Prototype Implementation 100

Views Multiple views of resources

Servers Terminal, printer, mag tape and disk units
Computer, software

Server Size .5 meg *

Client Size .5 meg *

Recovery Backward error recovery and compensation actions

Fault reporting Fault reports are send to the "Fault Manager"
responsible for the resource.

Manual operations Performed by resource operator

Unreachable! via manual operations
unconnected

• Compiled on SunOS 4.1.3 using Cfront 3.0.1 C++ Compiler. (Stripped Executable Code)

Evaluation of Prototype

Chapter 5

EVALUATION OF PROTOTYPE

Because this (eMU) is a research university, much of the equipment
and software is experimental The number of ways that a computer
loaded with "questionable" software can fail is virtually unlimited .. ,
this produces wonderful opportunities for groups to blame each other
for undiagnosed problems[Arms88el

101

In the previous chapter we detailed the implementation of our prototype

management information system. Our prototype system allowed manage

ment agents to control (monitor) resources connected to the University of

Newcastle campus network and demonstrated using type inheritance to

incorporate error recovery. The prototype system was used to manage

resources such as terminals, printers, disk and tape units, work stations and

software distributions and we noted the importance of adhering to standards

when porting probes to variants of the UNIX operating system.

Using a management information system to control (monitor) campus

resources carries a price. Our prototype system used the Arjuna tool kit to

provide concurrency control, state management, remote procedure call etc.

and we added application layer recovery techniques (recovery blocks, compen

sation etc.) to resource probes. In this chapter we will consider the perfor

mance overhead of incorporating error recovery and demonstrate the proto

type's behaviour in the presence of faults.

5.1 PERFORMANCE EVALUATION

In order to evaluate the prototype's performance, a series of tests were per

formed on normally * loaded workstations. When assessing the prototype's

• Each workstation was running standard daemons and two or three users each running several

Evaluation of Prototype 102

performance, four factors must be considered:-

• Measuring time is of course hardware dependent, and whilst system

calls such as get timeofday and clock (ANSI C library function) claim

to measure microseconds, this depends upon the machine's physical clock

rate.

• "AIjuna overhead" - the quoted performance of the AIjuna tool kit com

pared to the times observed in experiments.

• "Integration Overhead" - i.e. the load imposed by performing operations

on managed objects, such as building software or probing device drivers

independently of Arjuna.

• "Combined evaluation" - times observed by executing recoverable layer

components (i.e. AIjuna and the integration layer).

Performance data was obtained from the integration and recoverable layers

of the management information system by adding standard system calls to

test harnesses. Each operation was performed 1,000 times and the average

performance measured, and some experiments were performed several times

to ensure the data were consistent.

5.1.1 ARJUNA OVERHEAD

Analysing an AIjuna application's performance is particularly complex

because of the impact of factors such as kernel file buffer and object store file

descriptor caches. A recent paper [Parrington95b] cites a performance evalua

tion of the AIjuna tool kit - "standard operations" were applied to objects

containing 1024 bytes of instance data. (Times were measured using stan

dard system calls etc.)

window applications.

Evaluation of Prototype

The following performance times are quoted:-

Operation
Top Level Action (commit)
Top Level Action (abort)
Nested Action (commit)*
Nested Action (abort)
Distributed Top Level (commit)

Read Only
9.5ms
9.5ms
5.0 ms
5.0ms
19.0 ms

Write
101.0 ms
10.5 ms
5.5ms
5.5 ms
130.0 ms

103

Write locked atomic actions are dominated by writing the object's state to

disk and "intention list handling" which represent 70% of execution time.

Server Objects are initiated when a child process (the actual server) IS

detached from the Arjuna object manager. Remote procedure calls between

the client and server are performed using UNIX interprocess communication

primitives (sockets etc.) and servers are terminated by "killing them". The

following statistics are quoted by the Arjuna group:-

Operation

Server Initiation
Server Termination
Null RPC Round Trip

Time

233.0 ms
4.0ms
3.0ms

A client program (test harness) was adapted to time calls to a RecCom

puter server. The server was constructed from scratch, properties obtained

and terminated - we will consider the performance of other operations later.

File

Client
Server
State SnapShot

Sizes

1102112 bytes **
4374032 bytes **
404 bytes (fragmented)

The following results were observed:-

* Nested commits exploit caching

.. Both file sizes represent stripped executables (dynamically linked), compiled and built using
G++ version 2.6.2.

Evaluation of Prototype 104

Operation Time

Server Creation lOOms
Server Termination 20ms

Save State 1.64 ms
Restore State 0.3 ms

Read (Commit) 16 ms
Write (Commit) 118 ms
Write (Abort) 17 ms

When activating a RecCompu ter, the client constructs a (local) server which

in turn activates a (remote) server via remote procedure calls and stub-code.

RecComputer's construction not only initialises fault injection routines

(which are part discussed later in this chapter) but each derived class (i.e.

computer, managed resource) and other Arjuna modules (such as lock and

state manager etc.) The state is then written to the object store under the

defined typename. Although our performance times appear considerably

faster than the quoted times, this could be simply due to environmental con

ditions. "Null" operations within read (write) locked atomic actions were sig

nificantly higher than quoted figures (16 ms and 118 ms for read-commit and

write-commit compared with 9.5 ms and 101 ms respectively).

5.1.2 INTEGRATION OVERHEADS

Managed resources are integrated into the management information base

using a variety of system calls, utility software, network services and even

contacting a human operator. In order to obtain performance data from the

integration layer, system calls to time operations were added to several mod

ules' test harnesses. These include:-

• "System Call Integration" - getting device properties using the UTMP,

PrintCapEntry and TerminalController classes.

Evaluation of Prototype \05

• "Utility Program Integration" - summising a computer's process queue

(PScornrnand) and virtual memory (VMStatCornrnand).

These tests were performed on Sun 4c (running SunOS 4.1.1), Sun 4m

Sparc Station (running Solaris) and a HP workstation running HP-UX.

The following results were obtained:-

Module Command SunOS4 Solaris HP-UX

TenninalController getController 16.5 ms 100 ms n.a.
PrintCapEntry readEntry 16.7 ms 10 ms n.a.
Utmp getUsers 1.6 ms 0.52 ms n.a.

PScommand getProcessQ 30 ms 177.92 ms lOOms
VMStatCommand getVMstat 16 ms 12.409 ms 60 ms
MakeCommand makeAll n.a. 16000 ms n.a.

Obtaining properties from a device involves opening a device (open), per

forming several control functions (ioctl) and closing the device. In the case

of the TerminalController a structure (termios) is decomposed to reveal

many properties "or'ed" together whereas the printcap entry is obtained

using the curses library.

The PScornrnand and VMStatCcornrnand classes were developed simply

because insufficient documentation was available to incorporate Solaris and

HP-UX kernels directly. Both classes execute systems software using popen

and parse any output. MakeCornrnand compiled and linked a 15k C++ pro

gram written by a M.Sc. student. His program comprised 21 modules and

used standard libraries. Most of the time shown was spent compiling the pro-

gram with 160 ms taken to link.

AB expected, integration via system entry routines was approximately ten

times faster than via systems (and other utility) software. Obtaining the

number of users logged into Sun workstations was particularly fast even

though the 0.52 ms time represents reading a binary file. Producing process

Evaluation of Prototype 106

queue and virtual memory statistics from the three operating systems pro

duced greatly different performance times: SunOS 4.1.1 values were approxi

mately six times faster than Solaris. * Even though implementations of the

psCorrunand module produced a synopsis of the workstation's process queue

by parsing a large buffer, Solaris and HP-UX's module implementations are

based on UNIX System 5 version of the "ps" software. Solaris's PSCorrunand

performance time is by far the slowest.

5.1.3 RECOVERABLE LAYER

Three recoverable layer modules were timed as part of this performance

evaluation. RecTerminal, RecComputer and RecSoftware. Operations

were executed on a Sun 4m (running Solaris) with both client and server

located on the same workstation. These experiments were performed on a

single workstation as Arjuna's performance data is only available for this

machine architecture. A test harness was adapted to time calls to a "recover

able" server. The client created a server from scratch, obtained properties and

terminated the server. Properties were obtained within "write locked" atomic

actions and later transferred to the client within "read locked" actions.

5.1.3.1 COMPUTER

The RecCompu ter's test harness, used earlier as a comparison against the

Arjuna group's performance data, was adapted to provide times taken when

getting properties from physical resources and returning values to the client.

Two experiments were performed, the first, getting (showing) properties

using the first operation in the recovery block, and secondly, performing an

• The Solaris experiments were later repeated with only one user "logged on" to ensure accu
racy of performance times.

Evaluation of Prototype 107

operation after the first "alternative" had failed. (i.e. aborted atomic action

followed by a successful operation.) The following times were observed:-

Operation Lock Time

getProcStates Write (Commit) 340 ms
getUsers Write (Commit) 200 rns
getMemory Write (Abort) 680ms

showPS Read (Commit) 24rns
showUsers Read (Commit) 26 rns

Getting the process queue, users and memory requires evaluating a recov

ery block (using the "UnRecoverable" layer) executing write-locked Atomic

Actions, packing (unpacking) the object's state, writing to (read from) disk,

and calling the integration layer. In the case of getProcStates the

observed time is almost double the integration layer time and getUsers -

almost all of the observed time is take up by Arjuna!

Obtaining the machine's physical memory represents a write-locked trans

action aborting and sending a fault report using electronic mail. Composing

the fault report requires concatenating signature files (mail header and

footer) and a small fault report. This disk access and string handling proba

bly accounts for the large performance time observed in this experiment.

"Showing" the process state and number of users simply involves acquiring a

read-lock and copying instance data across the communications subsystem.

Both times observed in this experiment are double quoted figures (20 ms vs

10 ms quoted).

In a second experiment, the "recoverable computer" was altered to demon

strate the effect of operation failure. getProcStates first attempted to

obtain values from the kernel (which returned FailedOperation) followed

by using PsCorrunand. The following time was observed:-

Evaluation of Prototype \08

Operation Time

getProcStates 337.6 ms

The 337.6 rns represents: getting kernel metrics (within an aborted write

locked action) followed by using the PsCornmand (committed write locked

action) and is slightly lower than the expected time of 357 ms.

5.1.3.2 TERMINAL

A single experiment was performed on a RecTerminal client which timed

operations to get (show) properties. Constructing the terminal's server was

slightly slower than the RecComputer in the previous set of experiments.

Obtaining the terminal's controller required calling autoGetController in

the unrecoverable layer within a write-locked atomic action. This was slightly

slower than the expected time of 110 ms, whereas showing the terminal's

speed was the same as Arjuna's benchmark. The following times were

observed:-

Operation Lock Time

Construction n.a. 193 ms
Termination n.a. 18 ms

getController Write (commit) 114ms
showSpeeds Read (commit) 10ms

5.1.3.3 SOFTWARE

To provide a contrast with recoverable computers and terminals, a Rec

Software client was adapted and performance data obtained. This server

was the slowest in the three sets of experiments this and could be due to local

"environmental" conditions.

Evaluation of Prototype

Operation

Construction
Termination

makeAll

5.1.4 EVALUATION

Lock

n.a.
n.a.

Write (commit)

Time

400 ms
52 ms

18 s

109

Producing "bench marks" for the prototype's performance is very difficult.

The time taken to perform operations depends upon the computer's architec

ture and physical configuration, loading and even user's behaviour. On our

Sun 4m running Solaris, the machine was used by two or three people, run

ning window applications and a World Wide Web server. Performance times

could have been affected by memory limitations and other external factors.

When evaluating the prototype's performance, we first compared the

quoted Arjuna figures with one of our servers (which had been adapted to

perform null operations) which provides the basis for subsequent bench

marks. Our hypothesis was simply that recoverable layer operations should

take "integration layer time plus Arjuna": these layers were timed separately,

compared and contrasted.

Generally speaking, integration layer operations performed using system

calls took approximately 10 ms; and using system software took 150 ms.

However, once these same operations were performed within an Arjuna

server, the observed times were dominated by write locked atomic actions

committing. The Arjuna group's performance evaluation highlights this prob

lem and concludes that a bottleneck exists in their object store.

Although our performance times are much slower than expected, opera

tions are still performed in "real time" and should not adversely affect the

management agent using her workbench. Obtaining a set of properties from

Evaluation of Prototype 110

a managed resource (even across a network) should take a matter of seconds.

Providing operations on servers are performed at appropriate intervals (for

example, when opening and closing views) she should not notice the effects of

bottlenecks in AIjuna.

5.2 TESTING THE MANAGEMENT INFORMATION SyS

TEM

The management information system was initially tested (and debugged)

using a test harness which created probes (servers) on both Sun and HP

workstations, modified and periodically obtained properties using perfor

mance views of managed resources. At each layer of the prototype system

(integration, unrecoverable, recoverable etc.) components were tested and

produced correct results. Several bugs were discovered which concerned

Arjuna's configuration on the Sun workstation (resulting in the workstation

running out of swap space) and inappropriate remote procedure call timeouts

/ retry values when connecting to HP workstations.

In order to test the prototype's fault tolerance provision, fault injection was

incorporated into the management information system. Fault injection tech

niques have been recognised as a useful way of testing error detection

schemes, studying the behaviour under faulty conditions and examining the

adequacy of fault tolerance mechanisms. Faults can be injected into the com

munications sub-system, protocols, algorithms or even the actual "target sys

tem" and can be implemented using both hardware and software techniques.

For example, using test pins on hardware chips, special proms or using spe

cific software test harnesses. Rather than using special hardware (or even

unplugging boards and devices!) software was developed based on Ingham's

"delayline" wide area network simulation tooHlngham92aJ.

Evaluation of Prototype III

Fault injection techniques used in the management information base are

based on a fault injection library containing statistical formulae (used to gen

erate probability distributions) and routines used to emulate faulty system

behaviour such as resource (operation) failure and nodes crashing. Each

resource is allocated a set of probabilities for each failure class and a mean

operation time (and distribution) which are used within the fault injection

algorithm, which is outlined below:-

For each fault class Load
Fault Rate, Mean Operation Time and Distribution

Sample Injection Probability FROM Uniform Probability Distribution
IF Injection Probability> Fault Class's Fault Probability

INJECT Fault Into Management Information Base
ELSE

Perform Operation as Normal

Within the management information system, five classes of failure exist:-

• Long Operations, where operations upon the particular resource take

much longer than usual.

• Operation Failure, where control (monitoring) operations are not suc-

cessful.

• Physical Resource Failure, such as peripheral (disk, printer etc.) and

computer failure.

• Node failure, where the processor node fails causing all of the servers

located on that node to fail.

• Communications failures, such as network delays, message corruption

and loss.

We will consider application and communication level fault injection in the

following sections.

Evaluation of Prototype 112

5.2.1 APPLICATION LEVEL FAULT INJECTION

Application level fault injection was incorporated in the management infor

mation base by compiling recoverable layer probes with a FAULT_INJECT flag

which redefined recovery block macros and incorporated injection operations,

probability calculations etc. This avoided manually altering a lot of program

code and allowed selected servers to be "injected". For each server, the follow-

ing information is required:-

• Fault Rates: long operations, operation failure, server crash.

• Delay Time and distribution. Delay distributions can be: fixed, uniform,

exponential, poisson and gaussian (i.e. normal distribution).

These probability distributions, fault rates and delay times are held as global

variables in the server. Default values can be redefined in the probe's con

structor although ideally these could be loaded from a configuration file.

When "faulty" operations are selected, the following actions are performed:-

Fault Class

Normal Operation
Long Operation
Server Crash
Resource Crash
Operation Failure

Action

Perform Operation as usual
Perform Operation as usual after delay time
Terminate Server
Set error code
Set error code

Random number calculations used throughout the fault injection routines

and probabilities are based on POSIX (48 bit) random number functions and

use the time as a "seed." Random numbers are initiated at the start of each

recovery block as part of an ini tFaul tInj ection routine.

"Uniform" and Poisson distributions are already provided by the Delayline

software. (Uniform distribution are simply constructed using a random num

ber generator.) Extra distributions such as Gaussian (i.e. normal distribu

tions) and exponential are incorporated into the application level fault

Evaluation of Prototype 113

injection suite using functions from "Numerical Recipes". [Press86a] Readers

are referred to Numerical Recipes for further details regarding particular

algorithms.

Delay Distribution

Poisson
Exponential
Gaussian
Uniform
Fixed

Delay Time Calculation

Get delay using mean value
Multiply delay by Exponential Ordinate
Gaussian Ordinate + mean *
Multiply delay by mean
Mean time value

5.2.2 COMMUNICATION LEVEL FAULT INJECTION

Communication between clients and servers in object based systems can be

disrupted in several ways. These include physically severing the communica

tions media (or isolating network segments), intercepting messages between

processes [Ta095a] and redefining inter-process communications rou-

tines [Ingham92a].

Arjuna could be recompiled using Ingham's software which would transpar

ently intercept (delay, "garble" and lose) messages between processing nodes.

This is performed by redefining UNIX inter-process communication primitives

(sockets etc.) and replacing a system header file. Delayline could also be used

to simulate "network partitions" between host groups, ARP storms and other

undesirable characteristics (such as "black holes", "poison packets

etc.)[Bosak88a] Unfortunately, this software is no longer available and the

Arjuna group are currently redeveloping their crash simulation software!

Rather than using Delayline, communication level faults are incorporated

in the management information system by modifying remote procedure call

timeouts and retry values. By allowing "long operations" and server crashes,

* Assuming that the distribution has a standard deviation of 1

Evaluation of Prototype Il-t

(hopefully) the Atjuna remote procedure call mechanism would be fooled into

"believing" that communications between clients and servers had been dis

rupted and take appropriate action. In the event of timeouts etc. exceptions

are raised by remote procedure call mechanism and caught by the client.

Orphan detection and "killing" is also performed automatically by the Arjuna

system.

5.2.3 FAULTY TERMINAL EXPERIMENT

A RecTerminal server was recompiled with application layer fault injec

tion macros in order to simulate a slow, faulty and generally unreliable

device. (Communication level faults were not included in this experiment in

order to concentrate on the application layer.) The usual recovery block,

macros were replaced and fault injection/operation logging included. Whilst

it is possible to include Atjuna debugging information (object locking, remote

procedure calls, atomic actions etc.), this level of detail was not recorded to

avoid "debug information" overload.

Two experiments were performed using the (faulty) RecTerminal server

using the probability values and delay distributions shown in the table

below:-

Exp. Probability Values
Long Resource Server Operation Mean Distribution
Op Failure Failure Failure Delay

i) 0.75 0.75 0.00 0.50 50 s Uniform
ii) 0.50 0.50 0.05 0.50 70 s Gaussian

As expected, long operations taking less than the remote procedure call time

out behaved as "normal". Operations taking longer than the remote proce

dure call timeout value caused remote procedure call retries and eventually

"time out" exceptions in the client. When operations "failed", fault reports

were issued and their effects "compensated" by the recovery block algorithm.

Evaluation of Prototype 115

Failed operations were then aborted and the terminal server's state was

restored from stable storage. When the (physical) terminal resource "failed"

the probe was marked "external resource out of order", the server's state was

then committed to the object store and further processing by the client aban

doned.

5.2.4 FAULTY SOFTWARE EXPERIMENT

When testing the RecSoftware server, recompiling and installing software

distributions located on (remote) HP workstations proved notoriously slow

and often caused the client's remote procedure call timeouts (and retries). To

further demonstrate the server's behaviour in the presence of faults, the

server was recompiled with application layer fault injection macros.

Two experiments were performed using the (faulty) RecSoftware server

using the probability values and delay distributions shown in the table

below:-

Exp. Probability Values
Long Resource Server Operation Mean Distribution
Op Failure Failure Failure Delay

i) 0.75 0.05 0.00 0.90 300 s Uniform
ii) 0.90 0.05 0.05 0.50 500 s Gaussian

In both experiments, performing makeAll operations on software distribu

tions failed and were compensated by makeClean. Delayed operations raised

remote procedure call time out exceptions even though the server was still

active. The server was terminated normally by the client's destructor.

5.2.5 DISCUSSION

Although the application layer fault injection library demonstrated the

management information system's behaviour in the presence of faults and

highlighted remote procedure call time out problems in the RecSoftware's

Evaluation of Prototype 116

client programs, these experiments were limited by the lack of AIjuna crash

simulation software. In order to fully demonstrate the prototype's behaviour

in the presence of faults, communication and distributed processing environ

ment fault injection is also required.

Due to the lack of appropriate software, we could not illustrate the effects

of communication failure (in particular, network partition and congestion) or

probes crashing during two phase commit protocols. Furthermore, AIjuna's

fault management software only provides host level crash management.

When servers crashed, their shared memory etc. was still retained by the

AIjuna system and local state management daemons had to be restarted

manually.

However the fault injection software illustrates the management informa

tion system's behaviour in the presence of application layer faults and demon

strated issuing fault reports and operation compensation (clean up). While

performing fault injection experiments a bug was discovered in the recovery

block macros concerning the reuse of atomic actions. AIjuna uses a "state

machine" model of atomic actions (i.e. begin, commit, abort etc.) and we

(incorrectly) assumed that previously committed (aborted) actions could be

restarted. This "misunderstanding" was easily corrected by a minor alter

ation to the macros and may not have "surfaced" except through the fault

injection experiments. Our fault injection system was later used to illustrate

the crash (and restart) semantics of dependable change schedules and is fur

ther discussed within the section on fault management.

5.3 SUMMARY

The management information system's performance was evaluated on a

Sun workstation running the 80laris operating system. Integration and

Evaluation of Prototype II?

recoverable layers of the information system's architecture were timed, and

compared (contrasted) with quoted Arjuna performance data. Our tests illus

trated bottlenecks in the Arjuna object store which severely affected the pro

totype's performance. Unfortunately recoverable objects in the Arjuna system

are implemented as heavy weight server processes and are dedicated to man

aging one resource's state. Probes within the management information sys

tem are therefore only active for a minimum time interval (i.e. while proper

ties are transferred between the workbench and servers) and this therefore

avoids the host computer being "hogged" by the management information sys-

tern.

Faults were injected into the mangement information system in order to

illustrate the prototype's behaviour in the presence of errors. Faults were

incorporated into the recoverable layer of the prototype's architecture to "sim

ulate" delayed and faulty operations, servers crashing etc. However, in order

fully to test the prototype, a more sophisticated system is required which

injects communication and distributed environment faults. Unfortunately,

the current Arjuna implementation does not fully support crash simulation

(as their software is still being developed) and only host level crash recovery
I

is provided. Hence, when servers crash as part of our fault injection, the

Arjuna system must be manually cleaned up. This is of course far from ade

quate.

Managing Change 118

Chapter 6

MANAGING CHANGE

Now here's another fine mess you've gotten us into *

In the previous chapter we have considered the management information

system's application level architecture, initial configuration and testing.

Unfortunately, distributed computer systems are rarely static. Computer sys

tems evolve over time as resources are superseded by new technology and the

organisation's computing requirements expand. Furthermore, many organi

sations become so dependent upon their computing resources that changes to

distributed components must be performed while their computer system is

active. These "dynamic changes" can cause major disruption (and even finan

cial loss) to the organisation and therefore must be carefully planned. Fur

thermore, major changes to very large, complex distributed computer systems

can affect many resources and interconnections, and (potentially) take a long

time to complete.

This chapter concerns the management of changes to a distributed com

puter system. These include both "planned changes" (i.e. Change Manage

ment) and "unplanned changes" (i.e. Fault Management). Changes to the dis

tributed systems are implemented using "views" and enacted using "change

schedules". Schedules are used to implement planned changes to managed

resources and isolate (reconnect) failed components. We will consider imple

menting schedules using systems of long running actions and a method of

gracefully shutting down (and restarting) schedules.

• Oliver Hardy (1892 - 1957)

Managing Change 119

6.1 RECONFIGURATION

Permitting dynamic changes to distributed applications is becoming

increasingly desirable. This allows continual services for those system com

ponents not affected by change and provides the minimum disruption to sys

tem users. Distributed computer systems have become so essential to organi

sations that "down-time" due to reconfiguration could cause financial loss as

well as annoying system users. Reconfiguring system resources should there

fore be carefully planned (for example, only performing major changes at

week-ends) and synchronised, preventing inconsistencies between compo

nents during the change process. This could involve migrating objects

between nodes, replacing hardware to improve system response times or even

"sub-netting" the communication's sub-system.

The AIjuna system, for example, allows clustering of composite objects and

type specific locking to increase system concurrency. An example cited in

their programmer's guide concerns a distributed newspaper. Articles are

edited by journalists on their personal workstations before being sent

(migrated) to the newspaper editor. Local editing by journalists and the

newspaper editor avoids the overheads of paging across the network and

increases response times etc.

6.1.1 CHANGE MANAGEMENT AND SCHEDULES

Within the management information system, (major) changes to dependent

resources are performed using the change manager's view of "resource

domains". This view comprises icons representing the composite resource,

displayed in the same way as other domains within the management infor

mation system, with an extra menu bar which allows change managers to

alter a resource's structure (state). For example, adding a printer to a

Managing Change 120

workstation or upgrading a software package across a workstation cluster.

This approach is similar to the "Architect's Assistant" developed at Imperial

College [Kramer93a] as part of the Darwin project[Magee94a] and the PCL

editodBowers94a] .

One method of performing major system changes requires the use of

"change schedules" where (dynamic) reconfiguration is encoded using a con-

figuration language and implemented via a "Change Algorithm" [Kramer88a]

and protocol [Young91a] as demonstrated in the Conic system[Magee89a].

Objects are created (deleted), activated (deactivated), linked to (unlinked

from) other objects using change actions described in a schedule. These

change actions are applied to the system's structure and assume a fault free

environment. Change actions can, of course, be permitted in a concurrent

system with appropriate locking but little attention is given to application

level reconfiguration or reliability considerations. For example, while config-

uration files can encode a nurse/patient monitoring system, "safety critical"

features are not described.

For example, in order to connect a printer device to a workstation, the fol

lowing steps are required:- In order to connect a printer device to a com

puter, the following steps are required:-

Step Operation
BOTH printer and resource must be shut down and unpowered

ii Physically connect device to computer
iii Power up computer and device
iv Boot computer
v Configure printer
vi enable spool queue and printer

And, in order to prevent other system administrators from performing config

uration changes while the device is being installed, the entire change opera

tion must be locked. This is outlined in the change schedule below:-

Managing Change

BEGIN CHANGE SCHEDULE
LOCK printer, Computer
SHUTDOWN Printer, Computer
CONNECT Printer TO Computer
BOOT Computer
INSTALL Printer AND CONFIGURE
UNLOCK Printer, Computer

END CHANGE SCHEDULE

121

Hence, the entire change schedule is serialised and each of the enclosed oper

ations is performed using the managed resource's probes. The change sched

ule maintains invariants and prevents inconsistences between between

dependent resources. Change schedules can be used to reconfigure applica

tion level resources, the management information system's structure, isolate

failed components and recover from failure.

6.1.2 IMPLEMENTING DEPENDABLE SCHEDULES

Change schedules could be implemented using nested transactions, where

each operation is encoded as a single atomic action within a top level action.

Should individual operations fail (either the external resource or the atomic

action is aborted etc.) appropriate error recovery is performed. However,

should the top level action fail to commit, the entire change schedule must be

aborted and constituent components undone. For example, the device connec

tion change schedule is shown below:-

Managing Change 122

RecPrinter
RecCornputer

thePrinter(...);
theCornputer(...);

AtomicAction SA, GAl, GA2, GA3;

SA.BeginO;

GAl.BeginO;

II stage 1: power off I shut down

GAl.Iock(write);

theCornputer.shutDown() ;
theCornputer.powerOff() ;
thePrinter.powerOff() ;

GAl.EndO;
GA2.BeginO;

GA2.1ock(write);
II stage 2: connect and device
theCornputer. connectDevice (theDevice) ;
theCornputer. insta11Device (theDevice) ;

GA2.EndO;
GA3.BeginO;

GA2.1ock(wrlte);

II stage 3: power up resources

theCornputer.powerOn() ;
theCornputer.boot() ;
thePrinter.powerOn() ;

GA3.EndO;
SA.EndO;

In this change schedule, encoded using "traditional" (nested) atomic actions,

individual steps are implemented using actions nested within an top level

action. The computer and printer's locks are maintained throughout the

entire change schedule, and should the outermost transaction fail, the entire

schedule is aborted. This is not a major problem in this small (and very sim

ple) change schedule but could abort a lot of work in the case of large, com

plex schedules. For example, where the change schedule are executed over a

long period of time and performs operations on many managed resources.

One method of rectifying these problems is by using "long lived transac-

tions". These "enhanced" actions include:-[Wheater89a]

• Serialising Actions - which allow a system of actions to share objects

while denying other actions access. These are particularly useful if the

Managing Change 123

whole system of actions need not have failure atomicity (e.g. if it has

been running for a long time and performed a lot of work).

• Top level Independent Actions - unrecoverable actions invoked outside

other actions which are particularly useful for logging operations,

garbage collection and caching.

• Common Actions - which allow systems of actions to share common

atomic actions.

• Glued actions - which allow the transfer and release of locks between

(and by) individual actions. Glued actions are particularly useful when a

large number of objects are being manipulated by a system of actions:

once computation has finished on an included object its lock can be

released allowing other actions access.

(The interested reader is referred to Wheater's thesis for a fuller explanation

ofthese actions and associated semantics,)

To encode the "device-connection" change schedule using long lived actions,

the entire schedule is enclosed within a "Serialising Action" and constituent

operations, within "Glued Actions". Change actions can therefore "partly com

mit" at each major stage in the schedule and share (release) locks on objects.

Should these enhanced actions be included in later releases of the Arjuna

software, the change schedule could be implemented as follows:-

Managing Change

RecPrinter
RecComputer

SerialisingAction
GluedAction

SABeginO;

GAl.BeginO;

thePrinter(...);
theComputer(...);

SA;
GAl, GA2, GA3;

II stage 1: power off I shut down

GAl. lock (thePrinter, write);
GAl. lock (theComputer, write);

theComputer.shutDOwn() ;
theComputer.powerOff();
thePrinter.powerOff();

II transfer locks to next glued action

GAl.transferLock(theComputer, thePrinter):
GAl.EndO:
GA2.BeginO;

II stage 2: connect and device
theComputer.connectDevice(theDevice) ;
theComputer.installDevice(theDevice) ;
GAS.transferLock(theComputer, thePrinter):

II transfer locks ...
GA2.EndO:
GAS.BeginO;

II stage 3: power up resources
theComputer.powerOn() ;
theComputer.boot() ;
thePrinter.powerOn() ;

II release locks ...

GAS.unlock(theComputer);
GAS.unlock(thePrinter);

GAS.EndO:
SAEndO:

124

Device connection is performed using three stages: powering off ~esources,

connection and finally powering the computer and printer. Each stage is per

formed inside a glued action (nested within a serialising action). Operation

logging could be added to the schedule, using top level independent actions

(which would not be undone in the event of failure) and complex schedules

could share operations (using common actions). Glued actions are particu

larly suited to systems which manipulate a large number of managed

resources, for example, when compiling and building software components.

Managing Change 125

Software distributions comprising many individual packages could be locked

during compilation and building, and released when installed.

In the event of operations failing (causing glued actions to abort), interme

diate computation is compensated to the end of the previously committed

(glued) action. The change schedule can then be gracefully aborted by abort

ing the serialising action. As the serialing action carries no recovery informa

tion, operations already committed are preserved and all resources unlocked.

Extra application layer recovery information can be maintained during the

change schedule to record steps successfully performed and the state of

locked objects. This information can be used to later restart or abort the

schedule.

6.1.3 SOFTWARE UPDATE EXAMPLE

For the vast majority of software systems, software installation is an ad

hoc process with limited automated support[Dean95a]. Software distribu

tions may require a specific file system structure, certain system files and

particular versions of other installed software. Although configuration (and

installation) constraints may be expressed informally in software documenta

tion, the first sign of installation problems are often when the newly installed

software fails to execute.

The proposed standard for software installation has identified four stages

in software installation:-[POSIX93a]

•

•

•

•

Selection - file identification,

Analysis - Verifying pre-requisites,

Load - Copying files onto the host system,

Configuration - Changing the software's environment.

Managing Change 126

It is possible to describe software environments using a configuration lan

guage (such as PCL) which records: hardware platforms, software structures,

installation constraints and instructions. Configuration descriptions can cre

ate "makefiles" and generate "distfiles" which are executed by UNIX "make"

and "rdist" utilities.

Within our prototype management information system, software distribu

tions, like other (logical and physical) external resources are encoded as

instances of (recoverable) managed resources. The RecSoftware class

records information concerning the distribution's host directory, file size and

hardware (software) platforms etc. Software configurations and dependen

cies are encoded using "domains" and are graphically displayed as part of the

management workbench. Software updates etc. are then performed using

dependable change schedules.

We have not attempted formally to verify software compatibility with the

underlying hardware architecture, co-processors, file systems or environ

ments (which could be performed using an "expert advisor" etc.) but have

concentrated on the reliability considerations concerning installing software

distributions on a large number of resources. We assume that each software

distribution is held in a single directory, compilation and installation rules

encoded in a makefile (or imakefile) with configuration flags catering for spe

cific hardware / software environments.

One "traditional" way of performing software up-date is using the "rdist"

utility program which copies files between hosts, builds and installs programs

etc. Software distributions and configurations are described using "distfiles"

which encode a set of variables (such as host and file names), production

rules and commands (such as installation and notification). Just as the

"make" program can be distributed and constructed from long running

Managing Change 127

actions [Wheater89a] it is possible to implement rdist using dependable

change schedules. When installing a new software release, the following

steps are required:-

Iii Load distribution media into disk/tape/CD rom device
(ii) Transfer distribution from media to memory
(iii) downgrade existing software
(iv) unpack/uncompress distribution: apply' 'diffs" etc.
(v) build distribution with appropriate configuration
(vi) install software

When encoding "rdist" using dependable change schedules, the entire soft

ware update must be serialised and individual operations - loading soft

ware, building, installing etc. must be self contained. Should an individual

operation within the schedule fail, it should be undone to the end of the previ

ous step. Errors are then reported to the fault manager who can then decide

either to undo the entire change schedule, or fix the bug and restart.

Our software installation change schedule is implemented using instances

of RecTapeUni t and RecSoftware probes. RecTapeUni t is used to load

the software distribution on to the host machine, and RecSoftware is then

used to build (and install) software components across the distributed com

puter system. The change schedule is outlined below:-

Managing Change

BEGIN_SERIALISING-ACTION
BEGIN_ACTION

read from media
unpack

END~CTION

ON EACH MACHINE DO
BEGIN

END

Obtain Locks
Obtain Distribution
Transfer Locks to next Glued Action

END_GLUED_ACTION
BEGIN_GLUED~CTION

Downgrade Old Software Release
Transfer Locks to next glued action

END_GLUED_ACTION

Compile and Link New release
Transfer Locks to Next Glued Action

END_GLUED~CTION

BEGIN_GLUED_ACTION
Install new release

END_GLUED_ACTION

128

Software installation is potentially a time consuming process and therefore

remote procedure calls to software probes (located on HP workstations) were

set to maximum timeout and retry values. When installing new versions of

software (upgrading as well as downgrading releases), all affected software

components (on all hosts) are locked preventing inconsistencies during the

update. On each machine, old software is downgraded, new software is com

piled, built and then installed. Once software objects are installed on the host

machine, the locks are released.

6.1.4 HARDWARE EXAMPLE

Composite hardware components, like software distributions are encoded

using resource domains and are displayed using views on the management

workbench. Examples include: workstations, comprising processors, disk and

tape units, printers etc.; network concentrators, comprising "fan-outs" and

multiple (terminal) connections; and line printing systems, comprising multi

ple printers attached to a server. Altering dependencies on the (hardware)

Managing Change 129

resource domain's view causes reconfiguration of physical resources imple

mented using dependable change schedules.

In this example, we will consider a line-printing subsystem comprising the

following components:-

Line Printer Subsystem

-<~~> ;--____ J

Schedukr

Distributed line printing subsystems can be compared to (passive) replicated

objects, where print jobs are sent by (remote) printer spoolers to a (primary)

spool queue dedicated to a physical printing device. With our print system,

multiple (remote) printers "feed" the central spool queue from local sched

ulers. We can note the following dependencies:-

• Remote printers - each remote printer has one spool queue forwarding

jobs to a scheduler.

• Scheduler - one local resilient scheduler with a spool queue sending

jobs to a central printer.

• Local (Physical) Printer - has one spool queue .

In order to reconfigure the print system, the entire line printing subsystem

must be quiescent. If the printer scheduler and local printer were migrated to

another machine, all remote printers must obviously stop sending jobs to the

initial machine and the local printer has to physically be moved to a second

machine. Should the local printer fail, remote printing should be stopped to

Managing Change
130

prevent a large back log of print jobs in the scheduler.

For example, replacing the local computer's printer requires shutting down

the line printing subsystem while physical reconfiguration is performed.

Hence, all jobs in the print queue must be completed (on the old printer),

local and remote (printing) queuing is stopped and the host computer is pow

ered off. The old printer's configuration also replaced on the local machine

before restarting the print system. This is shown in the change schedule

below:-

BEGIN_CHANGE_SCHEDULE
STOP queuing ON remote machines
STOP queuing ON local machine
STOP printing ON local machine

REMOVE Old Printer's Configuration FROM local machine

SHUTDOWN computer
POWER DOWN computer
POWER DOWN Printer

DISCONNECT Printer FROM HostMachine
POWER UP computer
BOOT computer
CONNECT NewPrinter TO HostMachine
CREATE Printcap FOR NewMachine

POWER UP NewPrinter
START queuing ON local machine
START printing ON local machine
START printing ON remote machines

END_CHANGE_SCHEDULE

This change schedule could be implemented using either long lived or tradi

tional atomic transactions. The schedule comprises four stages:-

Stage
i)
ii)
iii)
iv)

Operation
Locking resources and (draining) stopping the queue
Removing the old device
Adding (and configuring) the new device
Resuming service

Each of these stages is implemented using a glued transaction within a seri

alising action. This schedule could also be implemented using traditional

atomic actions, where the glued and serialising actions are replaced by nested

transactions. However, should the nested action fail, the entire change

Managing Change 131

schedule must be undone to ensure failure atomicity. Obviously when per

forming operations on the computer (printers) while the machines are pow

ered off, all probes are migrated from the host and management operations

are performed manually. The remote printers are encoded as a (passively)

replicated group to simplifY the code segment shown below:-

Managing Change

RecComputer
RecPrinter
RecPrinter
RecPrinter

SerialisingAction
GluedAction

theComputer(...);
theRemotePrinters(...); II replica group
theLoc~lPrinter('");
theNewPrinter(...);

SA;
GAl, GA2, GA3, GA4;

SA.BeginAction();
GA1.BeginAction();

II stage 1

II lock remote and remote printers

GA1.lock(theRemotePrinters, write);
GAl. lock (theLocalPrinter, write);

II stop queuing on all printers

theRemotePrinters.stopQueuing() ;
theLocalPrinter.stopQueuing() ;
theLocalPrinter.stopPrinting();

GA1.transferLock(theRemotePrinters, theLocalPrinter);
GA1.EndAction() ;
GA2.BeginAction() ;

II stage 2: remove old device

GA2.1ock(theComputer, write);

theComputer.removePrintCapEntry(theLocalPrinter);
theComputer.shutDown() ;
theComputer.powerDown() ;
theLocalPrinter.powerDown() ;
theComputer.removeDevice(theLocalPrinter);

GA2.unLock(theLocalPrinter) ;
GA2.transferLock(theRemotePrinters);

GA2.EndAction() ;
GA3.BeginAction() ;

II stage 3: add new device
GA3.1ock(theNewPrinter, write);

theComputer.addDevice(theNewPrinter);
theComputer.powerUp() ;
theComputer.boot() ;
theComputer. addPrintCapEntry (theNewPrinter) ;
GA3.unLock(theComputer) ;
GA3.transferLock(theNewPrinter, theRemotePrinters);

GA3.EndAction();
GA4.BeginAction() ;

1/ stage 4: start printing

theNewPrinter.powerUp() ;
theNewPrinter.startPrinting();
theNewPrinter.startQueuing() ;
theRemotePrinters.startQueuing() ;

GA4.unlock(theNewPrinter. theRemotePrinters);
GA4.EndAction() ;

SA.EndAction() ;

132

Managing Change 133

6.1.5 DISCUSSION

Over the last fifteen years we have seen a major evolution in the size and

complexity of organisation's computing requirements with the increased

availability of cheap, sophisticated resources. Distributed computer systems

have evolved with new information technology which has led to large, com

plex computer systems with multiple dependencies between system compo

nents. Organisations are now "computer dependent" and therefore require

continual computing service even when their distributed systems are being

reconfigured.

In our management information system, we have applied ideas from config

uration languages (PCL and Darwin), change schedules (CONIC) and long

running actions (Wheater) to perform dynamic reconfiguration of managed

resources. We have concentrated upon application layer components (comput

ers, peripherals and software) and considered the reliability aspects of

change management. Although the configuration language PCL (Univerisity

of Lancaster et al) encodes dependencies between "families of resources" and

provides "relationship definitions", their model does not provide operations on

physical hardware resources. The language purely records system configura

tions and is particularly suited to software configuration management.

Changes to multiple (dependent) resources are provided using the change

management view of the management information system in a similar way to

the Architect's Assistant (Darwin) and PCL editor, and reconfiguration is per

formed using "dependable change schedules". Unlike change schedules used

within CONIC, our schedules consider reconfiguring application layer entities

rather than the distributed system probes. Maintaining structural integrity

during reconfiguration is very important and ensures, for example, that only

quiescent resources are manipulated. When considering application level

Managing Change 134

resources, maintaining invariants between resources is also required. For

example, powering off a computer before connecting peripheral devices.

Dependencies between managed resources are encoded using "Change Man

agement Views" of resource domains. These views are at present hard coded

but ideally should be expressed in a configuration language. Changes to

resource dependences would still be performed using a graphical interface

but using a configuration language would provide greater flexibility. For

example, a computer comprising a processor, disk units, screen and keyboard

could be expressed using the following notation:-

TYPE Computer
Disks
TTY
Keyboard
Mouse

(Processor x Disks x TTY x Keyboard x Mouse);
LIST OF DiskUnit;
(Terminal x ScreenCard x Connections);

KeyPad x Cable x Connections);
MousePad x Cable x Connections);

Composite components are encoded using cartesian products ({}) and lists,

and represented using "domains" in the user interface. It is also possible to

describe software architectures using this notation. For example, a computer

comprising processor, local and remote software could be encoded thus:-

TYPE Platform
LocalSoftware

/ / ...
GNUsoftware

Computer x LocalSoftware x RemoteSoftware);
= LIST OF Software

SUBTYPE OF Software

END;

InstallDirectory = "/usr / local/GNU/bin' ;
ManDirectory = "/usr/local/GNU/man";

1/ etc.

G++ = SUBTYPE OF GNUsoftware
UNION { G++unix. G++pc. GNUmac };

END;

Reconfiguring multiple components could cause inconsistencies between

dependent components. For example, "re-daisychaining" a disk unit's "SCSI"

cable while a workstation is still powered could cause short circuiting etc.

Operation invariants are therefore required between multiple resources.

Managing Change

INVARIANT
Cornputer.powerDown()
Terminal.powerDown()

DiskUnit.powerDown()

II etc.

EMERGENCY-ACTION

DiskUnit.powerDown()

=> isCornputerShutDown();
=> TRUE;

=> isComputerPoweredOown();

=> TRUE

135

Thus, computers must be "shutDown" before "powerDown" and disk units can

only be powered offwhen the computer is powered off (except in emergencies,

for example, if the disk unit is on fire).

In the current Azjuna implementation, each managed resource is probed by

a (single) server process. This is not a major problem when reconfiguring a

small number of resources (for example, installing a device on a computer).

When reconfiguring a large number of resources, Azjuna activates one (heavy

weight) server per resource and care must be take to avoid "hogging" the sys

tem! Should Azjuna provide a way for servers to "multiplex" their object state

(i.e. one server could probe multiple resources) this problem would be solved.

Dependable change schedules are primarily designed for performing large,

complex reconfiguration of managed resources. These change schedules pro

vide "graceful shutdown" and failed operation clean up which is particularly

suited to software reconfiguration. Although these schedules are at present

encoded as C++ programs and implemented using nested atomic actions,

these should ideally be performed using long lived actions. Similarly, it

should be possible to encode schedules using a (high level) configuration lan

guage which would be exported from the change mangement views. We will

consider the application of change schedules to fault isolation and recovery

from failure in the next section which concerns Fault Management.

Managing Change 136

6.2 FAULT MANAGEMENT

With the many benefits associated with modern distributed computer sys

tems, organisations have replaced old mainframe computers supporting

many terminal connections with local (and wide area) networks, high perfor

mance workstations and shared equipment. These large distributed computer

systems provide automation of once labour intensive information processing,

communications and data banks, causing modern organisations to become

highly dependent on their information technology. Equipment and software

failure is not only annoying to system users but could cause financial loss,

loss of credibility and catastrophic failures could grind an organisation to a

halt.

Faults can affect both software, computer equipment and communication

sub-systems. They can be intermittent or permanent and may require sophis

ticated diagnosis equipment, consultants and hardware engineers. Very

large distributed computer systems can suffer from communications storms,

viruses and electrical failure which are compounded by the complex relation

ships (and dependencies) between resources and administrative domains.

According to the ISOIOSI[IS088a],

Fault management is the set of facilities to:
a) maintain and examine error logs
b) accept and act upon error detection notifications
c) trace faults;
d) carry out sequences of diagnostic tests
e) correct faults.

Although the ISOIOSI provides a working definition of "fault management" in

their taxonomy, this does not address the actual task of managing failed

resources. Fault management comprises the following phases [Lee90a] :-

• Error detection - where the fault is detected and reported by the under-

lying management information system.

Managing Change 137

• Damage confinement and assessment - where the fault is isolated pre

venting a knock-on effect of error propagation,

• Error recovery - reconfiguration after the initial failure.

• Fault treatment and continued service.

Within the management information system, faults can occur at three lay

ers:-

• Application Layer - this includes external equipment and management

operations failing.

• Distribution Layer - including probes and even the Arjuna tool kit fail

ing.

• Communications Layer - i.e. servers become unreachable due to net

work congestion, partition etc.

We will consider each of these application layer failures and apply change

schedules to fault isolation (recovery) in subsequent sections.

6.2.1 APPLICATION LAYER FAULTS

Agents adopting the role "fault manager" in the management information

system can examine error logs and perform fault diagnosis etc. using the

fault manager's view of managed resources and resource dependencies. Users

can also adopt the role "fault reporter" and send reports via the workbench to

fault managers responsible for particular resources. The "fault report view" is

based upon Athena's ''hotline'' report and comprises check (and radio) buttons

to recode specific faults and text for users to write notes. Intermittent faults

may be detected by performance managers ''watching" managed resources.

For example, if the distributed computer system was being attacked by a

virus, some of the symptoms might include very high system loading, high

Managing Change 138

levels of network connections and a general degradation in response times.

Once unusual behaviour has been detected, the performance manager can

forward details to the fault manager responsible for affected resources.

When physical equipment has been reported as faultly, the resource IS

marked out of order and users (and other agents) are denied access until the

fault manager has investigated the problem. This is implemented simply by

entering the resource in an "expected exception" table in the management

workbench. (Resources listed in this table can only be accessed by change and

fault managers.) Arrangements can then be made to callout an engineer,

order replacement parts etc. Single resources such as "flickering" terminals

and "smoking" laser printers can then be repaired and normal service

resumed. Failures which involve multiple connected resource dependencies

or where major reconfiguration is required are confined (isolated and recon

nected) using dependable change schedules (which we have discussed earlier

in this chapter.) For example, if the communications sub-system had been

severed, change schedules could be used to isolate resources on each parti

tioned segment by reconfiguring network file systems and distributed print

ing servers.

6.2.2 FAULT MANAGEMENT USING CHANGE SCHEDULES

Dependable change schedules can be used to provide application layer fault

isolation and repair in the same way as they are used to implement change

management actions. Change schedules can create (delete) servers on pro

cessing nodes, link resources to communication ports in addition to applying

control operations on application layer resources. For example, isolating

remote printers from a faulty print spooler; erecting a network fire wall and

"de-virusing" host computers and cleanly separating upstream and

Managing Change 139

downstream partitioned network segments. Let us suppose that a network

partition occurred between the remote printers and the print service which

we considered earlier as a hardware change management example.

Remote printers would be unable to forward jobs to the (unreachable)

spooler and any attempt (remotely) to access the spooler would result in com

munication timeouts etc. Furthermore, any (orphaned) remote computation

performed during the partition would be destroyed by the remote procedure

call mechanism. Therefore "partitioned" remote printers are isolated from the

spooler and print jobs diverted to an alternative spooler. This is shown in the

diagram below:-

(Partitioned) Line Printer Subsystem Partitioned Resources

;-----' - < -~)

When cleanly isolating the downstream printers, any jobs active on the

remote printers are suspended and queuing disabled. All affected remote

printers are then reconfigured to send jobs to an alternative service. Unaf

fected printers upstream of the partition do not require further action. This is

shown in the change schedule below:-

Managing Change

FOR ALL Remote Printers DO
BEGIN

END

Lock Computer, remote printer

STOP queuing ON remote printer
ABORT printing ON remote printer
STOP printing ON remote printer

REPLACE printcap ON computer

START queuing ON remote printer
START printing ON remote printer
Unlock Computer, remote printer

6.2.3 CHANGE SCHEDULE RECOVERY

140

We have already illustrated using change schedules to implement major

reconfiguration within the management information system. We noted that

when performing major changes (for example, software reconfiguration),

"graceful shutdown" is preferable to the "full abort" semantics of traditional

atomic transactions and therefore avoids loosing a large amount of computa-

tion. When change schedules gracefully abort, partially completed stages In

the change schedule are compensated up to the last committed (glued) action,

locks are released and the schedule exits. By recording the last completed

stage, it is possible to correct the failed section and restart the schedule. -

Locks etc. are re-established and execution commences from the last com-

pleted stage. (Providing invariants for the particular stage are still main

tained!)

In order to illustrate the failure and restart semantics of dependable

change schedules, the software installation schedule (discussed earlier,

within change management) was rebuilt with ("faulty") recoverable software

servers. The software distribution used to performance test the makeCom

mand and RecSoftware classes was installed on ten HP workstations using

Managing Change 141

the dependable change schedule (implemented usmg traditional atomic

actions) is outlined below:-

II BeginChangeSchedule

RecSoftware theOldSoftware () ;
RecSoftware theNewSoftware () ;
RecTapeUnit theTapeUnit(...);

AtomicActionAO, Al, A2, A3, A4;

II point 1

BEGIN_ACTION (AO)

theTapeUnit.loadTape() ;
theTapeUnit.restoreFromTape() ;
theTapeUnit.ejectTape() ;

END_ACTION (AD)

II point 2

for i in HostNames

BEGIN_ACTION (AI)
II point 3
BEGIN_ACTION (A2)

theOldSoftware.downGrade() ;
COMMIT_ACTION(A2)
II point 4
BEGIN_ACTION (A3)

WRITE_LOCK (A3)
theNewSoftware.makeAll() ;
theNewSoftware.makeInstall() ;
theNewSoftware.upGrade() ;

COMMIT_ACTION(A3)
COMMIT~CTION(AI)

)

1/ point 5
II EndChangeSchedule

The macros BEGIN_ACTION, COMMIT_ACTION and ABORT_ACTION have been

used to hide Arjuna specifics and provide graceful shutdown points.

•

•

Let us consider the following scenarios:-

If the software distribution cannot be loaded from the tape, the change

schedule has (for obvious reasons) to abort.

If the old software distribution cannot be downgraded on a particular

host, actions A2 and Al abort. Software installation therefore cannot

proceed on the host and "Software Installation failure", host's identifier

Managing Change 142

etc. are recorded on the operation log. Software installation on the next

host is attempted.

• If the new software distribution cannot be built (installed or upgraded),

action A3 is aborted (and compensated) and A2 is undone using an Anti

operation (i.e. the old software is upgraded). Action Al can be committed

to preserve the old software's state.

Should the schedule be gracefully shutdown and any faults corrected (for

example, replacing the tape), execution can be resumed. Either the schedule

can be restarted (in the case of bad tapes) or installation re-attempted on

previously failed hosts.

If the change schedule terminated abruptly (i.e. forced shutdown rather

than graceful shutdown) application and environmental crash recovery would

be performed on the change schedule. This requires restoring the object's

state from stable storage, resolving blocked actions as well as ensuring the

schedule's integrity. For example, compensating failed stages in the change

schedule, performing anti-operations etc. Once crash management / recovery

has been performed, the change schedule can be restarted. (Arjuna crash

management is discussed in the next section.)

6.2.4 ARJUNA FAULT MANAGEMENT AND CRASH RECOV

ERY

Arjuna models distributed applications as a set of clients and servers con

nected by a communications sub-system. Servers and clients are located on

("fail silent") nodes in the distributed system. I.e. nodes fail silently and die

without producing arbitrary results (Byzantine failures)[Lamport82a]. The

current Arjuna implementation only considers processing node failure and

does not provide recovery tools for failed server processes. Communications

Managing Change I·B

connectivity is monitored using a "ping daemon" and orphan detection (and

killing) is provided in the remote procedure call protocol. (Passive) Replica

object groups are maintained using a "GroupView" database[Little91al which

records process-node bindings, object usage etc.

Arjuna's crash recovery manager (CrashMan) is initiated at boot time and

periodically records recovery information regarding the state of servers

located on a particular node. 'IWo crash recovery phases are provided:-

• Phase 1 Recovery - while the host is quiescent (i.e. clients are prevented

from accessing servers), CrashMan's "work list" is collated. Any partially

committed atomic actions and uncommitted server states are resolved

and the replication database told about the host's failure.

• Phase 2 Recovery - concerns detecting the local effects of remote host

crashes such as resolving orphaned atomic actions.

Once AIjuna's crash management system has declared the host safe, each

management information system probe (i.e. server) is then reconfigured and

obtains its state from its physical (external) resource. For example, the Rec

Coverable computer's probe obtains the computer's virtual memory usage

and process load statistics. This is simply implemented using a shell script

which executes faul tManagement client processes.

6.2.5 DISCUSSION

Fault management is closely related to configuration and change manage

ment and addresses unscheduled reconfiguration of resources, the distributed

processing environment and communication subsystems. Fault management

is particularly complex due to dependencies between resources and diagnosis

(repairing) physical equipment. Although our management information sys

tem may be able to detect some intermittent faults and isolate (reconnect)

Managing Change 1-4

resources, many hardware faults can only be repaired manually by an experi

enced maintenance engineer.

Fault management "clean up" actions have been formally specified (in

Z)[Spivey89a] by Young and used to reconfigure the CONIC system. Young's

requirements for a fault management system state that:-[Young91a]

• Clean up should not require external intervention.

• Repair strategies should be declarative and flexible.

• Application contribution should be independent of the failure (and

repair).

• Disruption to the rest of the distributed system should be minimised,

and the whole system should eventually recover!

• The system should cope with single (multiple) failures.

• There should be minimal overhead imposed by the fault management

system.

Application layer recovery (i.e. managed resources and change schedules)

in our management information system is abstracted away from the dis

tributed processing environment. Resolving partially committed atomic

actions (using a co-operative termination protocol etc.) and removing shadow

state data from object stores is performed by the AIjuna toolkit. Unfortu

nately AIjuna only provides host-level crash management and therefore, in

the event of servers crashing etc. shared memory, semaphores etc. must be

cleaned up manually. Young's "abort-in" and "abort-out" sets provide a formal

basis for resolving blocked atomic actions, which is performed during the first

phase of the AIjuna crash manager.

While it is possible formally to specify the structure of distributed compo

nents and describe repair strategies, providing "functional integrity" of

Managing Change 145

(application level) fault management is very complex. Physical equipment

faults can be manifested by many symptoms and may require manual inter

vention. An expert system ("expert advisor") could be used to identify multi

ple faults in the distributed computer system and integrated in the work

bench.

Isolating (and reconnecting) failed components can be implemented using

dependable change schedules. These could be generated from the fault man

ager's view of resource domains. For example, the fault manager could iden

tify resources by clicking on particular icons, a change schedule created and

enacted on physical resources. Multiple dependencies are recorded using

resource domains and invariants maintained.

6.3 SUMMARY

Dependable change schedules were applied to both change and fault man

agement and integrated into the workstation's view based interface. Change

schedules which are implemented using long running actions are particularly

suited to major reconfiguration where "graceful" shutdown (rather than com

plete abort) is required in the event of failure. Glued actions are particularly

useful in providing recovery points in the change schedule and allow the

transfer (and release of) object's locks between subsequent actions. Software

updates and device installation were used to illustrate change schedules. The

Software update schedule was implemented using traditional atomic actions

using fault injection and demonstrate the schedule's behaviour in the pres

ence of faults.

Conclusions

Chapter 7

CONCLUSIONS

I believe everything, I believe nothing
I suspect everyone, I suspect no one
I gather the facts, examine the clues
and before I know it, the case is solved *

146

This thesis concerns the role of dependability and enterprise modelling in

managing a very large distributed computer system. We developed a person

centred model of management which was used in the design of a prototype

management information system and used fault tolerance techniques to pro-

vide error recovery and compensation when performing operations upon man-

aged resources. Operations upon physical (logical) were performed using

existing "legacy systems" such as system entry routines, system software,

network services etc. which were incorporated using "integration objects".

Once our prototype system was performance evaluated and tested, we pre

sented a method of performing major reconfiguration using "dependable

change schedules" which we applied to both change and fault management.

In Chapter 1, we considered management (in general), with the aid of "sys-

tern's theory" and Kotter's framework, managing a computer intensive organ

isation and the practical aspects of "day to day" system administration. We

noted that fault tolerance techniques must be incorporated in the design and

implementation of management information systems to ensure the depend

ability of control (monitoring) actions upon logical (physical) resources. This

includes failure atomicity and serialisation of management operations, error

recovery etc.

• Jacques Clouseau on the Science of Criminology. (From the Peter Seller's film "A Shot in the
Dark".)

Conclusions 147

In Chapter 2, we considered managing large, complex computer systems.

This included the role of international standards within system management,

in particular, their management taxonomy and OSI "directory". Although the

ISO/OSI model describes and information exchange protocol and object store,

their taxonomy fails to address the actual task of managing a large computer

system. We then considered several research initiatives and prototype man

agement information systems such as Project Athena, Digital's EMA, OSF,

TOBIAS and The University of Lancaster's "Netman" and "DSM" projects.

Even though these research projects have contributed to (automated) com

puter system management, we noted that several key areas were over

looked:-

• Providing a "natural" model of management,

• Providing fault tolerant management operations upon resources and

automatic "clean up" in the event of failure,

• Providing a scheme for performing major reconfiguration and correcting

major faults.

Chapter 3 concentrated on the design of our management information sys

tem. Our model of management was based on the idea of "agents" adopting

"roles" in order to ''view'' managed resources and regulating interacts using

"contracts". This model was based upon ANSA's Enterprise Projection and

included ideas from the ESPRIT funded ORDIT and TOBIAS projects. Con

tracts "bind" agents to roles, record responsibilities, job descriptions, condi

tions of work etc. and are used to record job allocation, resource allocation

and trading arrangements between organisational "domains". We agree with

Moffett that high level organisational policies can be broken down into "policy

hierarchies" and (eventually) to allocating jobs etc. (or indeed, deciding to

sub-contract). Rather than allocating jobs, resources or sub-contracting

Conclusions 148

arrangements using a notation similar to ANSA's "structural roles", we have

used contracts.

Our prototype management information system was initially implemented

(Chapter 4) on a single Sun work station and comprised a system manage

ment workbench (written in TclJTk) and managed resources (represented

using C++ objects). Management operations are performed using "probes"

which were decomposed into "recoverable", "unrecoverable" and "integration"

layers. Recoverability was incorporated using inheritance, which cleanly (and

simply) abstracted unrecoverable multiple operation implementations from

higher layers of the prototype and "automatic" error recovery, using recovery

blocks (encoded using atomic-actions). Incorporating "legacy systems" using

"integration objects" proved very simple to implement and encapsulated oper

ating system (and software) specific features. Our prototype system could be

easily extended to include extra managed resources and even other operating

system platforms.

The prototype's performance was evaluated and testing in Chapter 5. We

noted that although using AIjuna considerably slowed the prototype system

down (due to bottlenecks in their object store), management operations are

still performed in "real time" and indeed, the user should not notice any

severe delays. Faults were injected into the management information system

in order to demonstrate the prototype's behaviour in the presence of "errors".

Unfortunately, the current release of AIjuna does not fully support crash sim

ulation and only host level crash recovery is supported.

Large (distributed) computer systems are rarely static and due to the

organisation's dependence upon information technology, changes to their sys

tem's behaviour (structure) must be performed while the remainder of their

resources are active. We therefore considered (in chapter 6) a mechanism for

Conclusions 149

managing change. Changes to the distributed system were implemented

using "views" and encoded using "schedules". Change schedules were based

upon ideas from Imperial College and comprise "systems of atomic actions".

We noted that although it is possible to encode change schedules using tradi

tional (nested) atomic actions, long running actions provide were particularly

suited to major reconfiguration where graceful shutdown (rather than com

plete abort) is required in the event of failure. We illustrated the behaviour of

change schedules in the "presence" of faults using fault injection and

described a method of restarting failed schedules.

7.1 THESIS CONTRIBUTION

Very large distributed computer systems have revolutionised organisation's

information systems. These systems are here to stay and have only been

made possible by the advent of cheap, very powerful equipment and reliable

(high-bandwidth) data communications. It is therefore very important that

such systems are effectively managed to avoid organisation's grinding to a

halt. Organisation wide computer systems must be considered in the context

of the organisation's policies, aims and objectives as well as the organisation's

social system, formal procedures, environment etc.

The major contribution of this thesis concerns the application of depend

ability and enterprise modelling techniques to managing very large dis

tributed computer systems. The main points can be summarised below:-

• Person-Centred Model of Management - based upon "agents", "roles",

"views", "resources" and "contracts". This model uses "natural" concepts

and is based upon (and extends) previous work. Our model forms the

basis for our prototype management information system, where "views"

form the user interface, contracts regulate agent's activity, and the

Conclusions 150

organisation is represented in terms of "domains".

• Fault-Tolerant Management Operations upon External Resources -

Management operations are encoded using recovery blocks and imple

mented using atomic actions. In the event of operations failing, any

effects upon the physical resource are compensated and operation based

recovery performed. Using "inherited recovery" techniques proved clean,

simple and extendible.

• Encoding Major Changes using "Schedules" - atomic actions were

incorporated into Imperial College's "change schedules" and linked to

the prototype's ''view'' based interface. We demonstrated a method of

"gracefully shutting down" and restarting change schedules used with

application level crash recovery techniques.

• Incorporating "legacy systems" - Wrapping system software, network

services, configuration files etc. using "integration objects" provides a

clean, simple and easily maintainable method of enacting operations

upon physical (logical) resources.

The prototype has demonstrated that it is possible to combine enterprise

modelling and fault tolerance techniques when constructing a management

information system. We further extrapolate that it possible to use systems of

long running actions within configuration programming techniques, thus

extending CONIC's work within change schedules.

7.2 EVALUATION OF RESEARCH

7.2.1 DESIGN

When designing and implementing a management information system, it is

very important to consider the role of people within the organisation and

Conclusions 151

their interactions with managed resources. Even though systems such as

HEMS and SNMP have made a significant contribution to network manage

ment, their model or prototype does not consider the actual system users or

network managers. Their prototype system does not regulate resource access

or provide fault tolerant operations in real time. Within system manage

ment, Athena only considers centralised configuration management with

"medium diversity" of computing resources. [Champine91a] Some fault toler

ance and replication is provided but other management areas are not consid

ered in their model.

Our management model uses natural concepts such as agents, roles, con

tracts and resources. We have not attempted formally to define or analyse

conflicts of policy (or interest) but encode policy etc. using contracts. Con

tracts used in Chapter 3 are based on ANSAlORDIT's structural and func

tional roles and are therefore more complex than TOBIAS's implementation.

Using contracts to regulate interactions between agents and resources invites

authentication: Contracts are issued by the contract manager on behalf of

the organisation and accepted by the human agent. Incorporating an authen

tication system such as Kerberos etc. would therefore be a great benefit.

Domains [Sloman87a] have been incorporated into the model, but as we

discovered when considering a large complex organisation (such as a Univer

sity) domain relationships can get very complicated. Domains are, of course,

scalable, but complex domain relationships (like multiply overlapping sets)

become difficult to display. We have not attempted formally to define if con

tracts have been fulfilled by contractors (or accepted by clients) or if a set of

sub-contracts meets (fulfills) a trading arrangement. (This is proposed as an

area of future research.)

We designed a management information system using our management

Conclusions 152

model. The management information system comprises: workbenches, which

forms a view based user interface; managed resources which represent logical

(physical) entities; and organisational information such as contracts etc.

Although the prototype's structure is very similar to TOBIAS and Dec's DME,

explicit application layer fault tolerance and recovery were incorporated in

the prototype's design.

7.2.2 PROTOTYPE SYSTEM

Whilst the management information system has a simple, layered struc

ture, one of its greatest drawbacks concerns using Arjuna's object store to

hold persistent object states. Not only does this bottleneck severely affect the

prototype's performance, but object multiplexing is not supported. Thus a 1

M.byte server is dedicated to a 400 byte object state!

Objects in Arjuna are instances of servers and are ''heavy weight" pro

cesses. This is not a major problem when only considering host computers

with a few peripherals but incorporating user management with a large num

ber of user contracts requires a database. These problems can be solved, as

demonstrated by Buzato's database system which was implemented using

Arjuna (and uses object multiplexing)[Buzato92al.

Management operations are applied to physical resources using the inte

gration layer and implemented in a similar way to Sventek's legacy objects.

This provides a clean, simple and extensible mechanism for incorporating

system utilities, network services, system entry functions etc. This integra

tion layer in our prototype is therefore different to TOBIAS' integration layer.

TOBIAS's integration layer is similar to "stub objects" in remote procedure

calls) and operations on physical resources are performed by object con

trollers (the SMOC) TOBIAS also uses wrappers around utility programs and

Conclusions 153

shell scripts but does not represent them explicitly as individual objects.

This can create portability problems.

Armed with a large collection of integration objects, both the unrecoverable

and recoverable layers proved very simple to implement. The recoverable

layer, in particular, comprised largely recovery blocks and atomic transac

tions. This therefore separates the reliability mechanisms from the task of

performing management operations. Although Arjuna requires extra meth

ods in recoverable objects to save (restore) object states and provide a type

name, this is not a major overhead. Atomic action code was masked using

macros and recovery blocks which simplified implementation.

7.2.3 APPLICATION

Once initially tested on a single workstation, our prototype was used to

manage a very large organisation wide computer system (Newcastle Univer

sity). A view based interface was constructed using Tcvrk which communi

cates with probes on managed resources. The workbench could be extended

to provide more functionality - for example, moving resources between

domains, adding extra icons etc. but nevertheless the workbench demon

strated the suitability of this approach.

Porting the management information system between operating system

releases proved relatively painless due to the integration layer's structure

and adhering to POSIX. standards. When applying the workstation to physi

cal resources, portability is very important (and avoids major changes to inte

gration models). Should POSIX. and OSF etc. produce system entry routines

for disk and other peripherals, these can easily be incorporated in the inte

gration layer.

Conclusions IS~

While our fault injection scheme demonstrated random faults in the man

agement information systems, we could only show application level faults. In

order to test the management information system properly, both communica

tions and AIjuna layer faults should be injected. With the appropriate crash

simulation software, we could demonstrate network partition, black holes,

object store problems etc.

We have suggested that major reconfiguration can be implemented using

systems comprising long running actions. This is particularly suited to soft

ware building and installation on a large number of machines etc. which not

only could take a long time to implement but require graceful shutdown and

restart semantics should the operations fail. Change schedules can be imple

mented using traditional atomic actions but carry the overheads of aborting

entire schedules in the event of failure and retaining locks on large numbers

of objects. Should long running actions be implemented in future AIjuna

releases, it will be possible to fully demonstrate our techniques.

Performance testing "long running dependable change schedules" is depen

dent upon the actual underlying distributed processing environment. When

implementing change schedules it is therefore very important that managed

objects be active for a minimum time to avoid "swamping" the host computer

with large number of servers. This could be solved by allowing multiplexing

managed objects and should be incorporated in the AIjuna tool kit.

7.3 FUTURE WORK

•

Several areas of future research have been proposed:-

Model of Management - Contracts can be applied to user management,

allowing users to access resources; accounting and security management.

Similarly, policy statements can be implemented using contract objects

Conclusions 155

and therefore it should be possible to incorporate Moffett's work on Con

flicts of Policy (Interest) in the model of management.

• Prototype System - Extra managed resources could be incorporated in

the prototype - such as bridges, routers and cd-rom devices; and inte

grated in the same way as other hardware components. Similarly inte

grating workstations running operating systems other than UNIX could

be investigated. Replication of managed resource probes could be investi

gated particularly considering the many to one relationship between

probes and resources - active [Bernstein87al and passive [Alsberg76a]

replication techniques could be compared/contrasted. Similarly, the use

of forward error recovery could be examined as a contrast to backward

error recovery used in the prototype. Heuristic algorithms [Kar88a]

could be used to display complex network structures and organisational

domain relationships.

• Configuration Languages - Directly implementing change schedules

using C++ programs is too low level for system managers. A better

approach concerns using high level configuration languages (and even

expert systems etc.) to describe reconfiguration actions which could be

translated into our schedules. A similar approach has been adopted in

the "System Architect's Assistant" where "Darwin" descriptions can be

output as C++ programs; and within PCL, configuration details can be

exported as makefiles.

• Expert Advisors - Using dependable change schedules could be compli

mented by "expert advisers" as originally proposed in the TOBIAS pro

ject. [TOBIAS89a] These "expert advisers" could assist in change sched

ule construction and configuration management[McDermott84a]. In par

ticular checking consistency between components and aiding fault

Conclusions 156

diagnosis. Similarly, research on disaster prevention [Danish94al could

be incorporated within "Safety" and "Environment" management roles.

157

APPENDICES

Integration Layer

Appendix A
INTEGRATION LAYER

158

This appendix presents a selection of the management information system's (40 or so) inte
gration modules in the form of UNIX style manual pages. While this is not by any means a
complete list of integration modules, sufficient information is provided to appreciate higher
levels of the prototype system. We will first consider devices, computers and manual opera
tions.

A.I DEVICE INTEGRATION

Integration Layer 159

A.1.1 DiskController

DESCRIPTION

DiskController obtains configuration data from the disk unit's controller. These
include: the disk's interface, unit and controller address and configuration flags. The disk
controller is initialised with the particular raw device name (e.g. Idev/rstOa), configuration
obtained (using ioctl's) which is accessed by other methods.

CLASS DEFINITION
class DiskController
(

public:

DiskController(char *);
-DiskController();

Iidevice name

Error
Error
Error
Error
Error

getController () ;
getControllerAddress(int &);
getDiskInterface(short &);
getUnitAddress(short &);
getUnitFlags(short &);

protected:

II instance data ...
} ;

INTERFACE

DiskController(char * itsDeviceName) Constructs the Disk Controller using the (RAW)
devices path name

"'DiskControIlerO destructs the class

getControllerO opens the device, retrieves dk_info using an ioctl and sets appropriate
instance data which is later retrieved by other methods

getControllerAddress(int & itsAddress) getDisklnterface(short & itsInterface)
getUnitAddress(short & itsAddress) getUnitFlags(short & itsFlags) obtains
instance data.

BUGS

None known

NOTES

i) Opening disk devices requires "super-user" access.

ii) Two implementations of getController exist catering for differences between SunOS
and Solaris "dkio".

SEE ALSO

DiskPartititions, DiskGeometry, SCSIfloppy, TapeController

Integration Layer 160

A.1.2 DiskParititions

DESCRIPTION

DiskPartitions obtains the disk partition map for a particular (raw) device identifier.
These include the partition's start address and the number of disk clocks in the partition.

CLASS DEFINITION

class DiskPartitions
(
public:

DiskPartitions(char *);
-DiskPartitions();

II device name

Error
Error
Error

getDiskPartitions();
getStartingCylinder(long &);
getNurnberOfBlocks(long &);

protected:

II instance data ...

} ;

INTERFACE

DiskPartitions(char ... itsdeviceName) Constructs the disk partitions class with the raw
devices name.

"DiskPartitionsO Destructs the Disk Partition Class

getDiskPartitionsO opens the device, retrieves the dk_rnap using an ioctl call and sets
class instance data

getStartingCylinder(long & itsStart) sets its Start to the disk's start address

getNumberOmlocks(long & itsNumberOmlocks) sets itsNumberOfBlocks to the total
number of disk blocks in the partition.

BUGS
none known

NOTES

il Opening disk devices requires "super-user" access.

ii) Two implementations of getDiskPartitions exist catering for differences between
SunOS and Solaris dkio.

SEE ALSO

DiskController, DiskGeometry, SCSIfloppy, TapeController

Integration Layer 161

A.1.3 DiskGeometry

DESCRIPTION

DiskGeometry obtains the disk device's physical geometry. These include: the number of
cylinders, sectors per track and interleave factor.

CLASS DEFINITION

class DiskGeometry
(
pUblic:

DiskGeometry(char *);
-DiskGeometry () :

// device name

Error
Error
Error
Error
Error
Error
Error

protected:

getDiskGeometry():
getCylinders(unsigned short &);
getAltCylinders(unsigned short &):
getHeads(unsigned short &):
getHeadOffset(unsigned short &):
getSectorsPerTrack(unsigned short &):
getlnterleave(unsigned short &);

1/ instance data ...

) ;

INTERFACE

DiskGeometry(char • itsDeviceName) constructs the class with the raw device identifier

'DiskGeometryO destructs the class

getDiskGeometryO opens the device, retrieves dk_geom using an ioctl and sets class
instance data.

getCylinders(unsigned short & itsCyIinders) getAltCylinders(unsigned short &
itsAltCyIinders) getHeads(unsigned short & itsHeads) getHeadOff
set(unsigned short & itsHeadOffset) getInterleave(unsigned short & itsInterleave)
obtain appropriate instance data.

BUGS
none known

NOTES
i) Opening disk devices requires "super-user" access.

ii) Two implementations of getDiskGeometry exist catering for differences between
SunOS and Solaris dkio.

SEE ALSO

DiskController, TapeController, DiskPartitions, SCSIftoppy

Integration Layer 162

A.1.4 SCSlfloppy

DESCRIPTION

SCSIfloppy obtains the floppy disk unit's configuration corresponding to the device name.

CLASS DEFINITION
class SCSI floppy
(
public:

SCSIfloppy{char *); Iidevice name
-SCSIfloppy() ;

Error
Error
Error
Error
Error
Error
Error

Error

protected:

getSCSIfloppy();
getTransferRate(int &);
getNumberOfCylinders(int &);
getNumberOfHeads(int &);
getSectorSize(int &);
getSectorsPerTrack(int &);
getStepsPerTrack(int &);

ejectDisk();

II instance data ...
} ;

INTERFACE

SCSIfloppy(char ... itsDeviceName) constructs the class with the floppy unit's device name

-SCSIfloppyO class destructor

getSCSlfloppyO opens the device name, performs an ioctl to obtain fdsk_char and sets
instance data.

getTransferRate(int & itsTR) getNumberOfCylinders(int & itsNC) getNumberOf
Heads(int & itsNH) getSectorSize(int & itsSS) getSectorsPerTrack(int &
itsSPT) getStepsPerTrack(int & itsSPT)

ejectDiskO ejects the floppy disk using FDKEJECT

BUGS
none known

NOTES

j) Opening disk devices requires "super-user" access.

ii) 'I\vo implementations of getSCSIfloppy exist catering for differences between SunOS
and Solaris dkio.

SEE ALSO

DiskController, DiskPartitions, DiskGeometry

Integration Layer 163

A.I.S TapeController

DESCRIPTION

TapeController obtains configuration information and performs control operations on a
tape device. This class is based on (and reimplements) the mtio system utility program
available on the UNIX operating system.

CLASS DEFINITION
class TapeController
(
public:

TapeController(char *);
-TapeController();

II device name

Error

Error
Error
Error
Error

getTapeController();

eraseTape();
rewindTape();
ejectTape() ;
retensionTape();

Error
Error
Error

II theUnitKind
II theFlags

showUnitKind(int &);
showFlags(u_short &);
shoWOptBlockFactor(int &); II theOptBlockFactor

protected:

II instance data ...
} ;

INTERFACE

TapeController(char ... itsDeviceName) constructs the tape controller's class and sets
theDeviceN arne.

"TapeControllerO destructs the class

getTapeControllerO opens the tape device, retrieves mt_get using an ioctl call and sets
class instance data.

eraseTapeO erases the tape using MTERASE

rewindTapeO rewinds, using MTREWIND

ejectTapeO ejects, using MTEJECT

retensionTapeO retensions, using MRETEN

showUnitKind(int & itsUnit) showFlags(u_short & itsFlags) showOptBlockFac
tor(int & itsOptBf) retrieves instance data

BUGS
None known

NOTES

i) Operations on the magnetic tape require super-user access to the raw device name.

ii) All operations on the magnetic tape require a tape loaded into the tape-unit (i.e. pre
condition).

Integration Layer 164

SEE ALSO

SCSlfloppy, DiskController etc.

Integration Layer 165

A.1.6 TerminalController

DESCRIPTION

The TerrninalController class is based upon and incorporates the POSIX terrnios sys
tem entry functions. Termios is very different from traditional terminal handling functions
and in order to set (get) terminal characteristics a large data structure is manipulated.

CLASS DEFINITION
class TerrninalController
(
public:

TerminalController(char *);
-TerminalController();

virtual Error getTerrninalController();
virtual Error getWindowSize();
virtual Error getLineDiscipline();

virtual Error showWindowSize(int &, int
virtual Error showSpeeds(int &, int &) ;
virtual Error showLineDiscipline(int &) ;
virtual Error showParity(int &) ;

protected:

II instance data ...
} ;

INTERFACE

&) ;

TerminalController(char • itsDeviceName) constructs the class with the terminal
device's pathname.

"erminalControllerO destructs the class getTerminalControUerO obtains the termi
nal's terrnios data using an ioctl. The structure is then decomposed the reveal line
speed, partity setting, protocols etc.

getLineDisciplineO obtains the terminal's line discipline using TIOCGETD

getWindowSizeO obtains the terminal's window size using TIOCGWINSZ

showWindowSize(int & itsRows, int & itsCols) showSpeeds(int & itsIn, int &
itsOut) showLineDiscipline(int & itsLine) showParity(int & itsParity) retrieves
instance data

BUGS
This class did not work on some releases of SunOS (possibly due to an operating system

bug). TerminalController worked correctly on both SunOS 4.1.1 and 4.1.3.

NOTES
i) Opening terminal devices requires super-user access.

SEE ALSO

DiskController, SCSlfloppy etc.

Integration Layer 166

A.I.7 PrinterStats

DESCRIPTION

PrinterSta ts reimplements a simplified version of the UNIX printer accounting program
and obtains the total volume and number of jobs printed.

CLASS DEFINITION

class PrinterS tats
(

public:

PrinterStats(char *);
-PrinterStats () ;

Error getStatistics() ;

II printer name

Error
Error
Error

showNumberOfJobs(int &);
showVolurnePrinted(float &); II feet or pages
shoWCost(float &);

protected:

II instance data ...
} ;

INTERFACE

PrinterStats(char 01< itsPrinter) constructs the class with the printer's name

'"PrinterStatsO destructs the class

getStatisticsO reads each entry in the printer's accounting file and totals the number and
volume of print jobs.

showNumberOfJobs(int & itsJobs) showVolumePrinted(Ooat & itsVol) show
Cost(Ooat & itsCost) retrieves instance data

BUGS
none known

NOTES

In order to read entries from the accounting file, the printer must have accounting
enabled!

SEE ALSO

PrintCapEntry

Integration Layer 167

A.1.8 PrintCapEntry

DESCRIPTION

PrintCapEntry obtains configuration information concerning a particular printer device
form the printcap file. These include the printer's baud rate, filters, page setting, account
file and spool directory. These values are acquired using the termcap library functions tge
tent, which gets a termcap entry; and tgetstr which gets string parameters.

CLASS DEFINITION

class PrintCapEntry
(

public:

PrintCapEntry{char *);
-PrintCapEntry{);

Error
Error
Error
Error
Error
Error
Error
Error

Error
Error
Error
Error
Error
Error

protected:

readEntry{) ;
wri teEntry (char *); I I printcap file
getBaudRate(unsigned &);
getPageDims(unsigned &, unsigned &); II length, width
getMaxCopies(unsigned &);
getMaxSize(unsigned &);
getSpoolDir(char *);
getLogFile(char *);

setBaudRate{unsigned)
setPageDims(unsigned, unsigned);
setMaxCopies{unsigned);
setMaxSize{unsigned) ;
setSpoolDir(char *);
setLogFile(char *);

II instance data ...
} ;

INTERFACE

PrintCapEntry(char ... itsPrinterName) constructs the class and sets default instance
data. These defaults are listed in the UNIX manual page for /etc/printcap

"PrintCapEntryO destructs the class

readEntryO reads and decomposes the printer's printcap entry preserving default values
for incomplete printcap fields.

writeEntry(char'" itsFileName) writes an entry to the file name specified

getBaudRate(unsigned & itsBaud) getPageDims(unsigned & itsLen, unsigned &
itsWid) getMaxCopies(unsigned & itsMax) getMaxSize(unsigned & itsMax) get
SpoolDir(char ... itsSD) getLogFile(char ... itsLF) retrieves instance data

setBaudRate(unsigned itsBaud) setPageDims(unsigned itsLength, unsigned
itsWidth) setMaxCopies(unsigned itsMaxCopies) setMaxSize(unsigned itsMax
Size) setSpoolDir(char ... itsSpooIDir) setLogFile(char ... itsLogFile) sets instance
data

Integration Layer 168

BUGS
i) writeEntry causes a core-dump when compiled using G++2.6.3 (due to a compiler bug!)

NOTES
In order ease printer reconfiguration, individual printcap entries are stored in separate

files which are then "cat'ed" together forming the printcap file.

SEE ALSO

LPCcommand, PrinterStats

Integration Layer 169

A.1.9 LPCcommand

DESCRIPTION

LPCcommand integrates the line printer controller program which controls (monitors) line
printer devices. These include: starting (stopping) printing; enabling (disabling) the spool
queue and obtaining the printer's state.

CLASS DEFINITION
class LPCcommand
(

public:

} ;

LPCcommand() ;
-LPCcommand () ;

Error
Error

Error
Error

Error
Error

Error
Error
Error

Error

Error

abortPrinter(char *};
cleanPrinter(char *);

disablePrinter(char *);
enablePrinter(char *);

upPrinter(char *);
downPrinter(char *, char *); II printername, message

startPrinter(char *);
stopPrinter(char *);
restartPrinter(char *);

statusPrinter(char *, Boolean &, Boolean &,
Boolean &, unsigned&);

topQ (char *);

INTERFACE

LPCcommandO "'LPCcommandO constructs (destructs) the lpc controller

abortPrinter(char ... thePrinter) cleanPrinter(char ... thePrinter) dis-
ablePrinter(char'" thePrinter) downPrinter(char ... thePrinter, char'" theMes
sage) enablePrinter(char ... thePrinter) startPrinter(char ... thePrinter)
reStartPrinter(char ... the Printer) creates a pipe to the line printer controller with
appropriate command line argument. The output is then parsed to determine if the
request is successful.

statusPrinter(char'" thePrinter, Boolean & isQenabled, Boolean & isPrintEnabled,
Boolean & canExamineSpoolArea unsigned&, jobsToPrint) parses the output
from lpc to obtain the printer's status.

BUGS

none known

NOTES

Printer operations require super-user access.

Integration Layer

SEE ALSO

PrintCapEntry

170

Integration Layer 171

A.2 COMPUTER INTEGRATION

Integration Layer 172

A.2.1 Kernel

DESCRIPTION

Kernel obtains metrics from the operating system's kernel. These include system loading
(load average), physical and virtual memory usage, disk transfers and the process queue. The
kernel is initialed (ini tKernel), image obtained (getIrnage) which is then decomposed by
interface methods before closing the kernel.

CLASS DEFINITION
class Kernel
(
public:

Kernel () ;
-Kernel();

Error
Error
Error
Error

Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error

Error

initKernel();
closeKernel() ;
getlrnage() ;
checklrnage() ;

getLoadAverage(LoadAverage &);
getMernory(int &, int &, int &, int &, int &);
getVMstats(int &, int &, int &, int &);
getDiskTransfers(DiskTransfers &);
getCPUstates(int &, int &, int &, int &);
getCPU(long & ccpu);
getClock(long &);
getMPID() ;
getNPROC (int &);

getBootTirne(struct tirneval &);
getNumberOfDisks(int &);
getProcessStats();

showProcessStats(int &, int &, int &,
int &, int &, int &);

protected:

II instance data ...
) ;

INTERFACE

KemelO constructs the kernel class by creating a nlist structure which is used to trans-
port the image to (from) the kernel. The process queue metrics are also zeroised.

1{emelO destructs the class

initKemelO opens the operating system kernel (using kwnLopen)

getImageO retrieves the nlist image from the kernel.

checklmageO checks for missing nlist parameters.

closeKernelO closes the kernel

getLoadAverage(LoadAverage & theLoad) obtains the _avenrun metrics from the nlist.

getVMstats(int & thePagesIn, int & thePagesOut, int & theSwapsIn, int & the Swap-
sOut) gets the virtual memory metrics (vrnmeter) from the nlist and returns the appro
priate fields.

Integration Layer 173

getMemory(int & realMem, int & availRealMem, int & virtRealMem, int &
freeMem) gets physical memory metrics (vmtotal)

getDiskTransfers(DiskTransfers & theTransfers) gets disks transfers for each disk
device

getCPUstates(int & theUser, int & theNice, int & theSys, int & theIdle) check!!!

getNumberOIDisks(int & theDisks) gets the number of disk devices in use.

getProcessStatesO counts the number of processes in each process state in the queue.

showProcessStats(int & itsSleeps, int & itsWaits, int & itsRunns, int & itsIntermed,
int & itsZoms, int & itsStopps) obtains the number of processes in each state.

BUGS

Due to a lack of complete documentation regarding the kernel's datum, only a subset of
nlist values are retrieved by the kernel class. Physical memory metrics are highly dubious
even though they are consistent with values yielded by other system utility programs.

NOTES

i) The kernel module is only implemented on SunOS 4.1.3

ii) In order to access the operating system kernel super-user permission is required.

SEE ALSO

rstat

Integration Layer 17-t

A.2.2 Rstat

DESCRIPTION

Rstat uses Sun remote procedure call functions to obtain metrics from remote system ker
nels.

CLASS DEFINITION

class Rstat
{
public:

Rstat (char *);
-Rstat() ;

II hostnarne

Error
Error

Error
Error
Error
Error

protected:

hasHardDisk(int &);

getStatistics();

getLoadAverage(LoadAverage &);
getVMstats(int &, int &, int &, int &);
getBootTirne(struct tirneval &);
getCPUstates(int &, int &, int &, int &);

II instance data ...
} ;

INTERFACE

Rstat(char * itsHostName) constructs the class and set the host name.

""RstatO destructs the class

hasHardDisk(int & itsDisks) performs havedi sk remote procedure call and sets its
Disks to 1 if the remote system has a hard disk.

getStatisticsO performs statstirne remote procedure call and sets instance data.

getLoadAverage(LoadAverage & itsLoad) getVMstats(int & itsPagesIn, int &
itsPagesOut, int & itsSwapIo, int & itsSwapOut) getBootTime(struct timeval
& itsBoot) getCPUstates(int & itsCPUuser, int & itsCPUnice, int & itsCPUsys,
int & itsCPUidle) retrieves instance data

BUGS

While testing this module, the remote procedure call succeeded even though rstat was
not enabled on the workstation!

NOTES

SEE ALSO
kernel

Integration Layer 175

A.2.3 UtsName

DESCRIPTION

UtsName retrieves data concerning the system architecture, operating system and machine
name using POSIX unarne functions.

CLASS DEFINITION

class UtsName
{

public:

UtsNarne () ;
-UtsNarne(} ;

Error
Error
Error
Error
Error
Error
Error

protected:

getUnarne(};
getSystemName(char *};
getNodeNarne(char *};
getNodeExt(char *};
getOpSystemRelease(char *};
getOpSystemVersion(char *};
getMachineNarne(char *};

II instance data ...
) ;

INTERFACE

UnameO constructs the class

"UnameO class destructor

getUnameO retrieves and decomposes a uname structure

getSystemName(char >II itsSystemName) getNodeName(char >II itsNodeName) getN
odeExt(char >II itsNodeExt) getOpSystemRelease(char >II itsOpSystemRelease)
getOpSystemVersion(char'" itsOpSystemVersion) getMachineName<char >II its
MachineName) retrieves instance data

BUGS

(see notes)

NOTES

Some variations exist in the content of un arne between operating systems. Node extensions
are provided for backward compatibility and are not implemented on SunOS.

SEE ALSO

UnameCommand

Integration Layer 176

A.2.4 DFcommand

DESCRIPTION

DFcommand captures the output generated by executing a df process, which is later used
by the DiskUnit

CLASS DEFINITION
class DFcommand
(
public:

DFcommand() ;
-DFcommand () ;

Error issueCommand(char *); II file system

Error
Error

getMetrics(Kbytes &, Kbytes &, Kbytes &, Percent &);
getMount(char * &)i

protected:

II instance data
) ;

INTERFACE

DFcommandO class constructor

"DFcommandO class destructor

issueCommand(char>ll itsFileSystem) creates a pipe to a process running df and obtains
the file system's metrics: size, usage, availability and mount path.

getMetrics getMount retrieves instance data

BUGS
none known

NOTES

In order to access file system statistics, there is a precondition that the file system must
already exist!

SEE ALSO

Integration Layer 177

A.3 Manual Operations

Integration Layer 178

A.3.1 ManDiskUnit

DESCRIPTION

ManDiskUni t integrates manual operations on a disk device: powering up (down), loading
(removing, and scrapping) disks etc. The scrap disk method provides a compensation action
for failed formats etc.

CLASS DEFINITION
class ManDiskUnit
(
public:

ManDiskUnit();
-ManDiskUnit () ;

} ;

Error
Error
Error
Error

Error

INTERFACE

doPowerUp(char *);
dOPowerDown(char *);
doLoadDisk(char *, char *); II Diskdrive, Diskrnedia
doRemoveDisk(char *);

doScrapDisk(char *);

ManDiskUnitO ""ManDiskUnitO class constructor (destructor)

doPowerUp(char '" theDiskUnit> doPowerDown(char '" theDiskUnit) doLoad
Disk(char'" theDiskUnit, char'" theDisk) doRemoveDisk(char '" theDiskUnit)
doScrapDisk(char '" theDiskUnit) contacts the operator to perform manual tasks.

BUGS

none known

NOTES

SEE ALSO
ManPrinter

Integration Layer 179

A.3.2 ManPrinter

DESCRIPTION

ManPrinter integrates manual operations on a printing device: powering up (down), boot
ing (shutting down), enabling (disabling) the printer, loading (removing) paper and ink sup
plies, collecting (scrapping) print jobs.

CLASS DEFINITION

class ManPrinter
{
public:

ManPrinter() ;
-ManPrinter() ;

) ;

Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error

INTERFACE

doPowerUp(char *);
doPowerDown(char *);
doBootPrinter(char *);
doShutDownPrinter(char *);
doOnLine(char *);
doOffLine(char *);
doInstall(char *);
doRemove(char *);
doLoadPaper(char *);
doRemovePaper(char *);
doLoadInk(char *);
doRemoveInk(char *);
doCollectJob(char *, char *);

doScrapJob(char *, char *);
II printer, job

II printer, job

ManPrinterO ""ManPrinterO class constructor (destructor)

doPowerUp(char ... thePrinter) doPowerDown(char ... thePrinter) doBoot-
Printer(char ... thePrinter) doShutDownPrinter(char ... thePrinter) doOn-
Line(char ... thePrinter) doOffLine(char ... thePrinter) dolnstall(char ... theP
rinter) doRemove(char ... thePrinter) doLoadPaper(char ... thePrinter) doRe
movePaper(char ... thePrinter) doLoadlnk(char ... thePrinter) doRe
moveInk(char ... thePrinter) doCollectJob(char ... thePrinter, char ... theJob)
doScrapJob(char ... thePrinter, char'" theJob) performs manual operations on the
printer.

BUGS

none known

NOTES

SEE ALSO

ManComputer etc.

Integration Layer 180

A.3.3 ManComputer

DESCRIPTION

ManComputer integrates manual operations on a computer. These include powering up
(down), booting (shutting down) and installing an operating system.

CLASS DEFINITION
class ManComputer
(
public:

ManComputer() ;
-ManComputer() ;

Error
Error
Error
Error
Error
Error

INTERFACE

doPowerUp(char *); II computer name
doPowerDown(char *); II computer name
doBoot(char *); II computer name
doShutDown(char *); II computer name
doConfigure(char *); II computer name
doInstallOpSystem(char *); II computer name

ManComputerO '"ManComputerO class constructor (destructor)

doPowerVp(char * itsCompName) doPowerDown(char * itsCompName)
doBoot(char * itsCompName) doShutDown(char * itsCompName) doConfig
ure(char * itsCompName) doInstallOpSystem(char * itsCompName)

BUGS

none known

NOTES

SEE ALSO

ManPrinter

Integration Layer

AppendixB
UnRecoverable Layer

181

UnRecouerable Layer 182

B.I ManagedResource

DESCRIPTION

Managed Resource forms the Management Information system's unrecoverable base
class and is derived from the Arjuna tookkit's LockManager class i.e. Managed Resources
are both serialised and persistent entities. The Managed resource base class has three con
structors: creating a Managed Resource from scratch and accessing persistent resources
using an Arjuna name and unique identifier. Although Arjuna supports higher level names
which are mapped to unique identifiers, Arjuna names are largely unused in the Prototype
Management Information System (simply because the Arjuna Name Server is not fully dis
tributed at this point in time).

CLASS DEFINITION

class ManagedResource
(

public:

public LockManager

ManagedResource(char * char *, NodeCoupling, ObjectKind);
ManagedResource(Uid &, Error &);
ManagedResource(ArjunaName, Error &);

-ManagedResource();

virtual Error
virtual Error

virtual Error
virtual Error

virtual Boolean
virtual Boolean
virtual const

onLine();
offLine () ;

getStatus() ;
autoGetConfig () ;

restore_state (ObjectState & , ObjectType);
save_state (ObjectState & , ObjectType);
TypeNarne type () const ;

protected:

II instance data ...
} ;

INTERFACE

ManagedResource(char· itsName, char· itsResourceLocation, NodeCoupling
itsCoupling, ObjectKind itsKind) Constructs a new Managed Resource

ManagedResource (Uid& UoId, Error &result) Accesses a persistent Managed Resource
with unique identifier Uold and returns result.

ManagedResource (ArjunaName Name, Error &result)

""ManagedResourceO destructs the ManagedResource Class

onLineO activates a Resource Controller

oftLineO de-activates an already active controller.

restore_state (ObjectState & Os, ObjectType ot) restores the object state from the per
sistent object store

save_state (ObjectState & Os, ObjectType ot) saves the object state.

UnRecoverable Layer

INSTANCE DATA

Type

char *
char *
ObjectKind
NodeCoupling
NodeStatus
int
PowerPhase
int
Boolean

BUGS
none known

NOTES

Variable Name

theObjectN arne
theResourceLocation
theObjectKind
theCoupling
theStatus
thePowerPointRef
the Power Phase
theAssetRef
isExternai 0 k

Description

Arjuna Object N arne
Physical Location
nature of object
close, loose or uncouple object
object status
power point
red, blue or green power phase
asset serial number
state of physical resource

Azjuna names are not registered in the Arjuna name server.

SEE ALSO

Azjuna documentation

183

UnRecouerable Layer 184

B.2 Device

DESCRIPTION

Device is derived from Managed Resource and provides virtual methods to power up
(down), reset and connect (remove) the device. These methods are prefixed auto referring to
automatic operations; manual - Manual operations and remote - accessing services via
remote procedure call (used in the Computer class).

Generally speaking, all automatic operations are performed on close coupled nodes, remote
operations - provided that the managed resource is reachable. This forms part of the opera
tions precondition.

CLASS DEFINITION

class Device : public ManagedResource
(

public:

Device{char * char *, char *, NodeCoupling, ObjectKind);
Device(Uid &, Error &);
Device (ArjunaName, Error &);

-Device() ;

virtual Error manualPowerUp();
virtual Error autoPowerUp() ;
virtual Error manualPowerDown();
virtual Error autoPowerDown() ;
virtual Error autoReset () ;
virtual Error manualReset() ;
virtual Error getStatus() ;
virtual Error manualConnectTo();
virtual Error manualRemoveFrom() ;

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

protected:

II instance data ...
} ;

INTERFACE

Device(char * AN, char * itsName, char * itsResourceLocn, NodeCoupling itsCou
piing, ObjectKind itsKind) creates an unrecoverable device

Device(Uid & UoId, Error & res) Device(ArjunaName RN, Error & res) accesses an
persistent device using a unique identifier and Arjuna name.

manuaIPowerUpO autoPowerUpO powers the device (manually and automatically)

manuaIPowerDownO autoPowerDownO unpowers the device

autoResetO manualResetO resets the device .

manuaIConnectTo(} manualRemoveFromO connects (removes) the device to (from) a
host computer

UnRecoverable Layer

INSTANCE DATA

Type

char *
DeviceState
char *
char ..
char ..

BUGS
none known

NOTES

Variable Na1Tle

theDeviceN arne
theDeviceState
theConnection
theCable
thePort

Description

the device's narne
the device's state: powered (unpowered), on (off) line etc.
host name
cable identifier
port reference

Most of the device's methods are redefined by derived device classes.

SEE ALSO

Terminal, Printer, TapeUnit, DiskUnit

185

UnRecoverable Layer 186

B.3 Printer

DESCRIPTION

Printer is derived from and redefines virtual functions exported from Device class. Gen
erally speaking, many of these functions are performed using the line printer controller (LPC
command), Man Printer and Printcap. Further methods concerning creating and deleting
configuration files and directories are implemented using the file (directory) integration
class. Providing accounting is enabled, printer statistics can be obtained and hence it is pos
sible to determine if the printer is out of paper.

CLASS DEFINITION
class Printer : public Device
{
public:

Printer(char * char *, char *, char * NodeCoupling, ObjectKind);
Printer(Uid &, Error &)i
Printer (ArjunaNarne, Error &)i

~Printer()i

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual

Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error

Error
Error
Error
Error
Error
Error
Error

Error
Error
Error
Error
Error
Error
Error
Error

Error
Error
Error
Boolean

rnanualPowerUp()i
rnanualPowerDown()i
rnanualStartPrinting()i
autoStartPrinting();
rnanualStopPrinting()i
autoStopPrinting()i
rnanualStartQueuing()i
autoStartQueuing();
rnanualStopQueuing();
autoStopQueuing();
autoAbort();
autoRestart()i

rnanualLoadPaper();
rnanualRernovePaper()i
autoPrintTest();
autoPrintJob(char *) i

autoRernoveJob(char *) ;
rnanualCollectJob(char *);
rnanualScrapJob(char *) ;

autoMakeSpoolDir();
autoRernoveSpoolDir();
autoMakeLogFile() ;
autoRernoveLogFile();
autoMakeAccountFile();
autoRernoveAccountFile();
autoMakePrintCapEntry();
autoRernovePrintCapEntry();

autoGetPrintStats()i
autoGetPrinterStatus()i
autoGetPrintCap();
isPaperExhausted();

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);

UnRecoverable Layer 187

virtual const TypeName type () const

protected:

II instance data ...
} ;

INTERFACE

Printer(char * AN, char * itsName, char * itsPRName, char * itsResourceLocn,
NodeCoupling itsCoupling, ObjectKind itsObjectKind) constructs the unrecov
erable printer and sets default instance data

Printer(Uid & Uold, Error & res) Printer(ArjunaName RN, Error & res) accesses a
persistent printers using unique identifier and Arjuna Name

""PrinterO destructs the class

autoStartPrintingO, autoStopPrintingO autoStartQueuingO, autoStopQueuingO
enables (disables) printing (queuing) the printer using an LPC command

autoMakeSpoolDirO, autoRemoveSpoolDirO creates (deletes) the printer's Spool Direc
tory

autoMakeLogFileO, autoRemoveLogFileO creates (deletes) the printer's Log File

autoMakeAccountFileO, autoRemoveAccountFileO creates (deletes) the printer's
Account File

manualLoadPaperO, manualRemovePaperO requests the printer operator to load
(remove) a pack of paper

autoPrintJob(char* itsFileName) sends the file to the printer

autoRemoveJob(char* itsUserName) removes the User's Print Job from the spool. If the
job has already been printed, it can be scrapped using the Manual scrap job method.

autoGetPrinterStatsO obtains the volume and number of jobs printed using the printer
stats in integration class.

autoGetPrinterStatusO obtains the printer's status (number of jobs in queue, if the printer
and queue is enabled etc,.) using LPC

autoGetPrinterCapO reads the printer's printcap entry.

INSTANCE DATA

'Pype Variable Name Description

char * thePrinterName printer's name
PrinterState thePrinterState printing, stopped, misfed etc.
PrintQuality thePrintQuality draft, nlq etc.
PageKind thePageKind a4, a5 etc.
SpoolerStatus theSpoolerStatus local, remote etc.
Boolean isQenabled queue enabled (disabled)
unsigned theNoOfPrintJobs number of jobs in queue
Boolean canExamineSpooler self explanatory
char * theLogFile log file name
char * theSpoolDir spool directory name
char • theAccoun tFile account file name
char * the Local Printer local printer name
char * theRemotePrinter remote printer name
char • theRemoteMachine remote host name

UnRecoverable Layer

unsigned
unsigned
unsigned
unsigned
int
float
float
int

BUGS
none known

NOTES

SEE ALSO

theMaxFileSize
theMaxCopies
thePageLength
thePageWidth
theJ obsPrinted
the VolumePrinted
the VolumeLoaded
theBaudRate

self explanatory
ditto
ditto
ditto
ditto
ditto
paper reservoir
self explanatory

PrintCapEntry, PrinterStats, LPCcommand, Device

188

UnRecoverable Layer 189

B.4 Terminal

DESCRIPTION

The Terminal class is derived from Device and ManagedResource models an unrecover
able terminal. The class is based upon an Encore Annex networked terminal and records the
terminal's (input and output) speed, parity, control and data bits, flow control protocols etc.
Many of these parameters are obtained from the TerminalController integration class,
which in turn is based upon the PO SIX "termios" ioctls. Instead of recording configuration
values in a large (packed) structure, data items are encoded in abstract data types. Several
methods are provided to power up (down) the terminal, device connection (removal) is inher
ited from the device class.

CLASS DEFINITION
class Terminal : public Device
(
public:

Terminal(char * char *, char *, NodeCoupling, ObjectKind);
Terminal(Uid &, Error &);
Terminal (ArjunaName, Error &);

-Terminal() ;

virtual Error
virtual Error

autoPowerUp() ;
autoPowerDown () ;

virtual Error autoGetController();

virtual Boolean restore_state(ObjectState &, ObjectType);
virtual Boolean save_state(ObjectState &, ObjectType);
virtual const TypeName type () const ;

protected:

II instance data
} ;

INTERFACE

Terminal(char * AN, char * itsName, char * itsResourceLocn, NodeCoupiing itsCou
piing, ObjectKind itsKind) creates a terminal from scratch

Terminal(Uid & UoId, Error & res) Terminal(ArjunaName RN, Error & res) accesses
a terminal using UID and ArjunaName.

"TerminalO destructs the Terminal.

autoPowerUpO autoPowerDownO powers up (down) the terminal

autoGetControllerO obtains configuration data from the controller.

INSTANCE DATA

Type

int
int
DataBits
StopBits

Variable Name

theInputSpeed
the OutputS peed
theDataBits
theStopBits

Description

(baud rate)
(ditto)
number of data bits (5 - 8)
number of stop bits (1,1.5,2)

UnRecoverable Layer

PartityKind
ControlLines
DeviceKind
DeviceMode
int
FlowControl
FlowControl
int
int
int
LineDiscipline

BUGS
none known

NOTES

thePartityKind
theControlLines
theDeviceKind
theDeviceMode
theTimeOut
theInputFlowControl
theOutputFlowControl
theInputBufferSize
theScreen Width
theScreenDepth
theLineDiscipline

odd, even or no parity
modem or flow control protocol
x25, dial in, hard-wired etc.
slave etc.
terminal's inactivity time out.
flow control protocol
(ditto)
blocks of 512 characters
characters
lines

A large ammount of configuration data is retrieved using autoGetController.

SEE ALSO

TerminalController

190

UnRecoverable Layer 191

B.5 TapeUnit

DESCRIPTION

The (unrecoverable) TapeUni t class like other peripherals is derived from the Device
class and is based on the "mtio" (Magnetic tape input--output) systems utility program.
Methods are provided to load, remove, eject and retention tapes, dumping (restoring) files
and obtaining configuration data.

CLASS DEFINITION
class TapeUnit : public Device
(
public:

TapeUnit(char * char *, char *, NodeCoupling, ObjectKind);
TapeUnit(Uid &, Error &);
TapeUnit(ArjunaName, Error &);

-TapeUnit() ;

virtual Error setBlockSize(int);
virtual Error manualPowerUp(};
virtual Error manualPowerDown() ;

virtual Error manualLoadTape() ;
virtual Error manualRemoveTape();

virtual Error autoRewindTape() ;
virtual Error autoEraseTape(};
virtual Error autoEjectTape();
virtual Error autoRetensionTape() ;

virtual Error autoDumpToTape();
virtual Error autoRestoreFromTape(};

virtual Error autoGetController() ;

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

protected:

II instance data ...
) ;

INTERFACE

TapeUnit(char * AN, char * itsName, char * itsResourceLocn, NodeCoupling
itsCoupling, ObjectKind itsKind) constructs the tape unit

TapeUnit(Uid & UoId, Error & res) TapeUnit(ArjunaName AN, Error & res) access
persistent tape units

'TapeUnitO destructs the class

manualPowerUpO, manualPowerDownO contacts the tape operator to manually power
up (down) the tape unit

manualLoadTapeO, manualRemoveTapeO contacts the taper operator to manually load
(remove) a tape.

UnRecoverable Layer 192

autoRewindTapeO, autoEraseTapeO, autoRetensionTapeO rewinds, erases and
adjusts the tape's tension using the tape controller class.

autoGetControllerO obtains configuration infonnation (tape kind, unit kind and unit
description) from the tape controller. Several functions are used to determine the kind
of tape (thickness and type of media. i.e. reel or cartridge)

INSTANCE DATA

Type

int
Tape U nitState
UnitKind
TapeKind
char *

BUGS
None known

NOTES

SEE ALSO

TapeController

Variable Name

theBlockSize
theTapeUnitState
theTapeUnitKind
theTapeMedia
the Unit Description

Description

block size
loaded, empty etc.
Vax, SCSI, SUN etc.
reel, cartridge etc.
description of tape unit

UnRecoverable Layer 193

B.6 DiskUnit

DESCRIPTION

DiskUni t is derived from the device class and presents a simplified disk device comprising
disk controller, hard disk, read (write) heads etc. Several methods are exported, these
include: getting the controller, partitions and disk geometry which are performed using inte
gration layer classes; and obtaining the disk's usage.

CLASS DEFINITION

class DiskUnit : public Device
(
public:

DiskUnit(char * char *, char *, NodeCoupling, ObjectKind);
DiskUnit(Uid &, Error &);
DiskUnit(ArjunaName, Error &);

-DiskUnit() ;

virtual Error manualPowerUp();
virtual Error manualPowerDown();
virtual Error autoFormatMedia();
virtual Error autoGetController() ;
virtual Error getStatus();
virtual Error autoGetUsage();

virtual Error autoGetPartitions();
virtual Error autoGetGeometry();

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

protected:

II instance data ...
);

INTERFACE

DiskUnit(char ... AN, char ... itsName, char'" itsResourceLocn, NodeCoupling itsCou
piing, ObjectKind itsKind) creates an unrecoverable disk unit

DiskUnit(Uid & UoId, Error & res) DiskUnit(ArjunaName AN, Error & res) accesses
persistent disk units.

l>iskUnitO destructs the class

autoGetControllerO retrieves controller configuration data using the DiskController in
integration class. The Disk interface is determined via a function which maps a "short"
integer to the disk interface enumeration type.

autoGetPartitionsO retrieves the partition map (starting cylinder and number of blocks
using the DiskParti tion integration class.

autoGetGeometryO retrieves the disk's geometry (number of cylinders, number of heads,
sectors per track etc.) using the disk geometry class

autoGetUsageO obtains disk usage (size, usage, availability) via the dfcommand.

UnRecoverable Layer 194

INSTANCE DATA

Type Variable Name Description

DiskInterface theDisklnterface WCC2880, XY450 etc.
short theUnitAddress self explanatory
int theControllerAddress ditto
long theStartCylinder ditto
long theN umber Blocks disk capacity
unsigned short theN umberCylinders self explanatory
unsigned short theN umberAltCylinders ditto
unsigned short theN umberHeads ditto
unsigned short the Head Offset ditto
unsigned short theSectorsPerTrack ditto
unsigned short the Interleave interleave factor
Kbytes theSize self explanatory
Kbytes theUsage ditto
Kbytes theAvail ditto
Percent theCapacity ditto

BUGS
none known

NOTES
Assumes that the disk device houses a single partition.

SEE ALSO

DiskController, DiskGilometry, DiskPartitions

UnRecoverable Layer 195

B.7 FloppyUnit

DESCRIPTION

FloppyUnit is a simplified disk unit which represents an external floppy disk device. Sev
eral methods are exported which concern loading, removing, ejecting and formatting the
disk. An extra method to scrap the disk is provided as a compensation operation for badly
formatted disks.

CLASS DEFINITION

class FloppyUni t public Device
(
public:

FloppyUnit(char * char *, char *, NodeCoupling, ObjectKind);
FloppyUnit(Uid &, Error &);

FloppyUnit(ArjunaName, Error &);

-FloppyUnit () ;

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

getStatus() ;
manualLoadMedia();
manualRemoveMedia();
autoEjectMedia();
autoFormatMedia();
manScrapMedia() ;
autoGetController();

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

protected:

II instance data ...
} ;

INTERFACE

FloppyUnit(char * AN, char * itsName, char * itsResourceLocn, NodeCoupling
itsCoupling, ObjectKind itsKind) creates an unrecoverable floppy unit from scratch

FloppyUnit(Uid & UoId, Error & res) FloppyUnit(ArjunaName AN, Error & res)
accesses a persistent floppy unit.

"FloppyUnitO destructs the floppy unit.

manualLoadMedia 0, manualRemoveMediaO contacts the disk operator to load
(remove) a disk to(from) the disk unit.

autoEjectMediaO, autoFormatMediaO ejects and formats the floppy disk via the floppy
unit controller.

autoGetControllerO obtains configuration characteristics from the floppy unit's controller
(data transfer rate, number of cylinders, heads, sector size etc.)

INSTANCE DATA

Type Variable Name Description

UnRecoverable Layer 196

FloppyUnitState theFloppyUnitState loaded etc.
int theTransferRate self explanatory
int theNoOfCyl number of cylinders
int theNoOfHeads self explanatory
int theSectorSize ditto
int theSectorsPerTrack ditto
int theSteps ditto

BUGS
none known

NOTES

SEE ALSO

SCSlfloppy, ManDiskUnit

UnRecoverable Layer 197

B.8 Computer

DESCRIPTION

Computer, derived from ManagedResource represents a simplified workstation resource.
Several methods are provided which power up (down), boot (shutdown) the physical resource
and obtain status information such as loading, memory consumption etc.

CLASS DEFINITION
class Computer : public ManagedResource
(

public:

Computer(char * char *, char *, NodeCoupling, ObjectKind);
Computer(Uid &, Error &);
Computer (ArjunaName, Error &);

-Computer();

virtual Error autoPowerUp();
virtual Error manualPowerUp();
virtual Error autoPowerDown() ;
virtual Error manualPowerDown();
virtual Error autoBoot() ;
virtual Error manualBoot();
virtual Error autoShutDown();
virtual Error manualShutDown();

virtual Error manualConnectToNetwork();
virtual Error manualRemoveFromNetwork();

virtual Error manualAddDevice() ;
virtual Error manualRemoveDevice();

virtual Error autoGetKernalMetrics();
virtual Error remoteGetKernalMetrics();
virtual Error autoGetMachine() ;
virtual Error autoGetMemory();
virtual Error autoGetProcStates() ;
virtual Error autoGetNumberOfUsers();

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

protected:

II instance data ...
} ;

INTERFACE
Computer(char ... AN, char'" itsName, char ... itsResourceLocn, NodeCoupling

itsCoupling, ObjectKind itsKind) creates an unrecoverable computer

Computer(Uid & Uold, Error & res) Computer(ArjunaName RN, Error & res)
accesses persistent computers

-ComputerO destructs the computer

UnRecoverable Layer 198

autoPowerUpO, autoPowerDownO, autoBootO, autoShutDownO automatically pow
ers up (down), and boots (shuts down) the computer

manualPowerUpO, manualPowerDownO, manualBootO, manualShutDownO the
manual counterparts of autoPowerUpO etc.

manuaIConnectToNetwork(), manualRemoveFromNetworkO, manualAddDeviceO,
manualRemoveDeviceO manual operations to add (remove) devices and network con
nections

autoGetKernalMehicsO, remoteGetKernalMetricsO Obtains system loading and CPU
state from the operating system kernel.

autoGetMachineO Obtains the operating system name, release and version; machine narne
and architecture.

autoGetMemoryO Obtains virtual memory statistics from the kernel

autoGetProcStatesO Obtains a summary of the process state vector from the kernel

autoGetNumberOfUsersO Obtains the number of workstation users

INSTANCE DATA

Type Variable Name Description

char * theComputerName the computer's host narne
LoadAverage theAvenrun load metrics
int theRealMem physical memory size
int theAvailRealMem physical memory availability
int theVirtMem virtual memory size
int theAvailVirtMem virtual memory availability
int theFreeMem free memory
int theProcsSleeping self explanatory
int theProcsWaiting ditto
int theProcsRunning ditto
int theProcslntermed ditto
int theProcsZombied ditto
int theProcsStopped ditto
int thePagesln ditto
int thePagesOut ditto
int theSwapsln ditto
int theSwapsOut ditto
int theUserCPU ditto
int theNiceCPU ditto
int theSysCPU ditto
int theldleCPU ditto
int theN umberOfUsers ditto
char * theSystemN arne ditto
char * theNodeNarne ditto
char * theNodeExt ditto
char * theOpSystemRelease ditto
char * theOpSystem Version ditto
char * theMachineN arne ditto
ComputerState theComputerState powered, booted etc.
char * theEtherCard ethernet card reference
char * theN etAddress network address
char * theTapRef tape reference
char * theDropCable drop cable reference

UnRecoverable Layer 199

BUGS

NOTES

SEE ALSO

UTMP, Kernel, Rstat, Uname, ManComputer

UnRecoverable Layer 200

B.9 Software

DESCRIPTION

Software represent a software distribution held in its own directory. Software components
can be packed (unpacked), encoded (decoded) etc. Each distribution's configuration is encoded
using a "makefile" which provides rules concerning compilation, installation and "clean"ing
up directories.

CLASS DEFINITION
class Software : public ManagedResource
(
public:

Software(char *,
char *,
char *,
NodeCoupling,
ObjectKind

) i

Software(Uid &, Error &)i
Software (ArjunaName, Error &)i

-Software() i

virtual Error autoUpGrade()i
virtual Error manualUpGrade()i

virtual Error autoDownGrade()i
virtual Error manualDownGrade()i

virtual Error autoEncode()i
virtual Error manualEncode()i

virtual Error autoDecode()i
virtual Error manualDecode()i

virtual Error autoTarPack()i
virtual Error autoZooPack()i
virtual Error manualPack()i

virtual Error autoTarUnpack()i
virtual Error autoZooUnpack()i
virtual Error manualUnpack()i

virtual Error autoMakeAll () i
virtual Error autoMakeClean(li

virtual Error autoMakelnstall();

virtual Error autoGetConfig () i

virtual Boolean restore_state (ObjectState & , ObjectTypeli
virtual Boolean save_state (ObjectState & , ObjectType)i
virtual const TypeName type (l const i

protected:

II instance data

UnRecoverable Layer 201

) ;

INTERFACE

Software(char *, char *, char *, NodeCoupling, ObjectKind) Creates an unrecoverable
software server.

Software(Uid &, Error &) Software(ArjunaName, Error &) accesses persistent servers
using unique identifier and Arjuna names.

-SoftwareO destructs the server.

autoUpGradeO, autoDownGradeO manualUpGradeO, manualDownGradeO
upgrades (downgrades) the distribution automatically (manually)

autoEncodeO, autoDecodeO, manualEncodeO, manualDecodeO encodes (decodes) the
distribution using uuencode (uudecode)

autoTarPackO, autoTarUnpackO, autoZooPackO, autoTarUnpackO, autoZooUn
packO packs (unpacks) the distribution using "tar" and "zoo"

manualPackO manualUnpackO packs (unpacks) the software manually

autoMakeAlIO, autoMakeCleanO, autoMakeInstallO builds, installs and cleans up dis
tributions using the UNIX make program

autoGetConfigO obtains file status information

INSTANCE DATA

Type Variable Name Description

char * thePathN arne host directory
char * theSoftwareN ame software name
SoftwareState theSoftwareState installed, built etc.
char * theOwner self explanatory
char * theGroup ditto
mode_t theMode ditto
ofU the Size ditto
time_t theModifyTime ditto
Compiler theCompiler ditto
Platform the Platform ditto

BUGS

none known

NOTES

SEE ALSO

MakeCommand, ZooCommand, TarCommand, UUcommand, ManSoftware

Recoverable Layer

Appendix C
RECOVERABLE LAYER

202

Having discussed the constituents of both the integration and recoverable layers in the
Management Information System, let us turn our attention to the recoverable layer, Unlike
the unrecoverable layer, this layer provides both backward error recovery, serialisability and
fault reporting: each method exported from recoverable servers is implemented in terms of
recovery blocks constructed from atomic actions.

Many operations in the recoverable layer are self explanatory and therefore only minimal
descriptions are provided.

Recoverable Layer 203

C.I RecComputer

DESCRIPTION

RecComputer is derived from the (unrecoverable) computer class and provides single oper
ations implementations which set (show) state data etc. Each control operation is encoded
within a recovery block with preconditions and an acceptance test. In the event of operations
failing within the recovery block its effects are compensated and errors are reported as
appropriate.

CLASS DESCRIPTION
class RecComputer : public Computer
(
public:

RecComputer(char * char *, char *, NodeCoupling, ObjectKind);
RecComputer(Uid &, Error &):
RecComputer(ArjunaName, Error &):

-RecComputer() ;

virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error

virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error

virtual Error

virtual Error
virtual Error
virtual Error

onLine():
offLine () ;

powerUp():
powerDown():
boot () :
shutDown():

getStatus():
addDevice():
removeDevice();

connectToNetwork():
removeFromNetwork():

getKernalMetrics() ;
getMachine();
getMemory () :
getProcStates():
getNumberOfUsers() ;

showLoadAverage(LoadAverage &):
showMemory(int &, int &, int &, int &, int &):
showProcesses(int &, int &, int &,

int &, int &, int &):
showVMstats(int &, int &, int &, int &):
shoWCPUstate(int &, int &, int &, int &):
showNumUsers(int &):

shoWComputerName(char * &, char * &, char * &):
showOpSystem(char * &, char * &):
showMachineArch(char * &):

showComputerState(ComputerState &):

showLocation(char * &);
showManufacturer(char * &):
showPowerPoint(char * &):

Recoverable Layer

virtual Error showPowerPhase(PowerPhase &) ;
virtual Error showContactName(char * &) ;
virtual Error showMaintenenceRef(char * &) ;
virtual Error showAssetRef(char * &) ;

virtual Error showEtherCard(char * &) ;
virtual Error showNetAddress(char * &) ;
virtual Error showTapRef(char * &) ;
virtual Error showDropCable(char * &) ;

virtual Error setLocation(char *) ;
virtual Error setManufacturer(char *) ;
virtual Error setPowerPoint(char *) ;
virtual Error setPowerPhase(PowerPhase);
virtual Error setContactName(char *) ;

virtual Error setMaintenenceRef(char *) ;
virtual Error setAssetRef(char *) ;

virtual Error setEtherCard(char *) ;

virtual Error setNetAddress(char *) ;

virtual Error setTapRef(char *) ;

virtual Error setDropCable(char *) ;

virtual Error cornpensate(Error);
virtual Error report Error (char *) ;

virtual Error reportError(Error) ;

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeNarne type () const ;

CLASS INTERFACE

204

RecComputer(char *, char *, char *, NodeCoupling, ObjectKind), RecComputer(Uid
&, Error &), RecComputer(AIjunaName, Error &) Constructs the class from
scratch / accesses persistent object states using Uid and an ArjunaName

"RecComputerO terminates the RecComputer server.

onLineO, oftLineO turns the probe on (oft) line

powerUpO, bootO, shutDownO, powerDownO Powers (unpowers), boots (shuts down)
the computer manually. Each operation has an inverse anti-operation and must be per
formed in sequence. I.e. the computer must be shut down before powering off.

addDeviceO, removeDeviceO manually adds (removes) devices.

connectToNetworkO, removeFromNetworkO manually connects (disconnects) the com
puter to (from) the network

getKernalMetricsO obtains kernel data (virtual memory, loading etc.) from the kernel
using autoGetKernelMetrics and rernoteGetKernelMetrics. An extra operations
is available on workstations running Solaris and HP-UX which obtains this data using
software.

getMachineO gets the machine architecture and operating system name using autoGetMa
chine

getMemoryO obtains physical memory allocation using autoGetMernory

getProcStatesO obtains the number of running (stopped, waiting etc.) processes using
autoGetProcStates. On workstations running Solaris or HP-UX, an extra operation

Recoverable Layer 205

softwareGetProcStates is provided.

getNumberOfUsersO uses autoGetNurnberOfUsers to obtain the number of users logged
into the workstation.

showLoadAverage(LoadAverage & itsLoad) sets itsLoad to the workstations last known
load average

showMemory(int & itsRealMem, int & itsAvailRealMem, int & itsVirtMem, int &
itsAvaiIVirtMem, int & itsFreeMem) returns physical memory instance data.

showProcesses(int & itsProcsSleeping, int & itsProcsWaiting, int & itsProcsRun
ning, int & itsProcsIntermed, int & itsProcsZombied, int & itsProcsStopped)
return the number of processes in each state.

showVMstats(int & itsPagesIn, int & itsPagesOut, int & itsSwapsIn, int & itsSwap
sOut) obtains virtual memory statistics

showCPUstate(int & itsUserCPU, int & itsNiceCPU, int & itsSysCPU, int & itsI
dleCPU) returns CPU state values

showNumUsers(int & itsNumberOfUsers) returns the number of user logged into the
workstation.

showComputerName(char • & itsSystemName, char • & itsNodeName, char • &
itsNodeExt) obtains the computer's name, node name and extension.

showOpSystem(char· & itsOpSystemRelease, char· & itsOpSystemVersion) obtains
operating system name and version.

showMachineArch(char· & itsMachineName) obtains the machine's architecture.

showComputerState(ComputerState & itsComputerState) obtains the computer's
state.

showLocation(char· & itsLocation), showManufacturer(char· & itsManufacturer),
showPowerPoint(char • & itsPowerPoint), showPowerPhase(PowerPhase &
itsPowerPhase), showContactName(char • & itsContactName), showMainte
nenceRef(char • & itsMaintenanceRef), showAssetRef(char • & itsAssetRef)
obtains asset data.

showEtherCard(char • & itsEtherCard), showNetAddress(char • & itsNetAddress)
showTapRef(char • & itsTapeRef) showDropCable(char • & itsDropCable)
obtains network connection data.

setLocation(char .) setManufacturer(char .) setPowerPoint(char .) setPower
Phase(PowerPhase) setContactName(char •) setMaintenenceRef(char .)
setAssetRef(char .) setEtherCard(char .) setNetAddress(char .) set
TapRef(char .) setDropCable(char *) sets asset, powering and network connection
data.

compensate(Error) reportError(char .) reportError(Error) compensates and reports
errors.

BUGS

Due to a bug in the Arjuna stub generator, showLoadAverage returns loading individually
rather than in an array

NOTES

SELF TEST

Self testing the RecComputer requires initially powering the resource and getting kernel
metrics, process states, and the numbers of users.

Recoverable Layer

SEE ALSO

Computer

206

Recoverable Layer 207

C.2 RecTerminal

DESCRIPTION

The (recoverable) terminal class RecTerminal is derived from (unrecoverable) Terminal
and provides fault reporting, compensation and management control (monitoring) functions.
Each operation is implemented using (read I write locked) atomic transactions with control
functions implemented using recovery blocks.

CLASS DEFINITION
class RecTerminal
(
public:

public Terminal

RecTerminal(char * char *, char *, NodeCoupling, ObjectKind);
RecTerminal(Uid &, Error &);
RecTerminal(ArjunaName, Error &);

-RecTerminal();

virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error

virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error

onLine() ;
offLine () ;

powerUp();
powerDown () ;
getStatus() ;
getController();
setController();

showSpeeds(int &, int &);
showDataBits(DataBits &);
showStopBits(StopBits &);
showParity(PartityKind &) ;

shoWControlLines(ControlLines &);
showDevice(DeviceKind &, DeviceMode &);
showFloWControl(FloWControl &, FloWControl &);

showScreenDims(int &, int &);
showLineDiscipline(LineDiscipline &);

showLocation(char * &);
showManufacturer(char * &);
showPowerPoint(char * &);
showPowerPhase(PowerPhase &);
shoWContactName(char * &);
showMaintenenceRef(char * &);
showAssetRef(char * &);

setLocation(char *);
setManufacturer(char *);
setPowerPoint(char *);
setPowerPhase(PowerPhase);
setContactName(char *);
setMaintenenceRef(char *);
setAssetRef(char *);

setSpeeds(int, int);
setDataBits(DataBits) ;

Recoverable Layer

} ;

virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual

Error
Error
Error
Error
Error
Error

Error
Error
Error

setStopBits{StopBits);
setParity{PartityKind);
setControlLines{ControlLines);
setDevice{DeviceKind, DeviceMode);
setFloWControl{FloWControl, FloWControl);
setLineDiscipline{LineDiscipline);

compensate{Error);
reportError{char *);
reportError{Error);

virtual Boolean restore_state{ObjectState &, ObjectType);
virtual Boolean save_state{ObjectState &, ObjectType);
virtual const TypeName type{) const ;

CLASS INTERFACE

208

RecTenninal(char *, char *, char *, NodeCoupling, ObjectKind) RecTenninal(Uid &,
Error &) RecTerminal(ArjunaName, Error &) constructs recoverable terminals
from scratch or accesses terminal using Uid / ArjunaN arne

"'RecTerminalO terminates the server

onLineO,offLineO switches the probe on (oft) line

powerUpO powerDownO powers the terminal up (down)

getControIlerO gets the terminal's controller using autoGetController

setControIlerO sets the terminal controller data.

showSpeeds(int & itslnputSpeed, int & itsOutputSpeed) obtains the terminal's baud
rate.

showDataBits(DataBits & itsDataBits) showStopBits(StopBits & itsStopBits) show
Parity(PartityKind & itsPartity) showControlLines(ControlLines & itsCon
trolLines) showDevice(DeviceKind & itsDeviceKind, DeviceMode & itsDevice
Mode) showFlowControl(FlowControl & itsInputFlowControl, FlowControl &
itsOutputFlowControl) obtains configuration settings from the terminal's controller

showScreenDims(int & itsWidth, int & itsDepth) obtains screen width (characters) and
depth (lines)

showLineDiscipline(LineDiscipline & itsLineDiscipline) obtains LineDiscipline (pro
vided for backward compatibility)

setSpeeds(int itslnputSpeed, int itsOutputSpeed) setDataBits(DataBits its
DataBits) setStopBits(StopBits itsStopBits) setParity(PartityKind itsPartiy)
setControlLines(ControlLines itsControl) setDevice(DeviceKind itsDe
viceKind, DeviceMode itsDeviceMode) setFlowControl(FlowControl itsInput
Flow, FlowControl itsOutputFlow) setLineDiscipline(LineDiscipline
itsLineDiscipline) sets instance data

compensate(Error) reportError(char *) reportError(Error) compensates and reports
errors

BUGS

none known

Recoverable Layer

NOTES

SELF TEST

209

Once powered, the terminal's controller is obtained which sets instance data as appropriate

SEE ALSO

Terminal

Recoverable Layer 210

C.3 RecPrinter

DESCRIPTION

RecPrinter defines a recoverable printer device which is derived from (unrecoverable)
printer. Unlike its unrecoverable counterpart, only one of each method is exported from the
class - most methods having an inverse operation which is used to provide backward error
recovery, Monitoring operations are prefixed "show" and are used to return instance data;
whereas those prefixed "get" are used to obtain configuration and other instance data.

CLASS DEFINITION
class RecPrinter
(

pUblic;

public Printer

RecPrinter(char * char *, char *, char * NodeCoupling, ObjectKind);
RecPrinter(Uid &, Error &);
RecPrinter(ArjunaNarne, Error &);

-RecPrinter() ;

virtual Error onLine () ;
virtual Error offLine () ;

virtual Error powerUp{) ;
virtual Error powerDown () ;

virtual Error startPrinting{);
virtual Error stopPrinting{);

virtual Error startQueuing{) ;
virtual Error stopQueuing{);

virtual Error restart{) ;

virtual Error printTest{);
virtual Error printJob{char *) ; II file name
virtual Error rernoveJob{char *) ; II user name

virtual Error rnakeSpoolDir{);
virtual Error rnakeLogFile{);
virtual Error rnakeAccountFile{) ;
virtual Error rernoveSpoolDir() ;
virtual Error rernoveLogFile{);
virtual Error rernoveAccountFile{);

virtual Error getPrinterStatus{);
virtual Error getPrintStats{) ;
virtual Error getPrintCap{);

virtual Error rnakePrintCapEntry{) ;
virtual Error rernovePrintCapEntry{);

virtual Error showPrinterName(PrinterName &) ;

virtual Error showPageDirns(unsigned &, unsigned &) ;

virtual Error showSpooler{SpoolerStatus &) ;
virtual Error showPrinterState(PrinterState &) ;
virtual Error showQueue(Boolean &, unsigned &);

Recoverable Layer

} ;

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual

Error
Error
Error
Error
Error
Error
Error
Error
Error
Error
Error

Error
Error
Error
Error
Error
Error
Error

Error
Error
Error

showLogFile(char * &);
showSpoolDir(char * &);
showLimits(unsigned &, unsigned &);
showJobsPrinted(int &, float &);
showLocation(char * &);
showManufacturer(char * &);
showPowerPoint(char * &);
showPowerPhase(PowerPhase &);
shoWContactName(char * &);
showMaintenenceRef(char * &);
showAssetRef(char * &);

setLocation(char *);
setManufacturer(char *);
setPowerPoint(char *);
setPowerPhase(PowerPhase);
setContactName(char *);
setMaintenenceRef(char *);
setAssetRef(char *);

compensate (Error) ;
reportError(char *);
reportError(Error);

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

CLASS INTERFACE

211

RecPrinter(char ... AN, char'" itsName, char'" itsPrinterName, char • itsResource
Locn, NodeCoupling itsCoupling, ObjectKind itsKind) creates and activates a
recoverable printer

RecPrinter(Uid & Uold, Error & res) RecPrinter(ArjunaName RN, Error & res) cre
ates and activates a recoverable printer

"RecPrinterO destructs the class and de-activates the RecPrinter server onLineO,
offLineO activates (deactivates) the probe

powerUpO, powerdown 0 powers (turns oft) the printer by first attempting manual then
automatic operation

startPrintingO, stopPrintingO starts (stops) the printer by attempting automatic then
manual operations.

startQueuing 0, stopQueuing 0 starts (stops) queuing by attempting automatic then
manual operations

makeSpoolDirO, removeSpoolDirO makeLogfileO, removeLogfile ° makeAccount
fileO,removeAccountfileO creates (deletes) files and directories used by the line
printer subsystem.

getPrinterStatus(} gets printer status (spooler, queue and number of print jobs) automati
cally

getPrinterStatsO gets the volume and number of jobs printed automatically

showPrinterName(PrinterName & itsPrinterName} showPageDims(unsigned &
itsLength, unsigned & itsWidth) showSpooler(SpoolerStatus & itsSpooler)
showPrinterState(PrinterState & itsPrinterState) showQueue<Boolean &
itsEnabled, unsigned & itsJobs} showLogFile(char ... & itsLog)

Recouerable Layer 212

showSpoolDir(char • & itsSpoolDir) showLimits(unsigned & itsMaxSize,
unsigned & itsMaxCopies) showJobsPrinted(int & itsJobs, float & itsVolume)
retrieves instance data in a read locked atomic action.

compensate(Error theError) reportError(Error theError) reportError(char *
theMessage) sends error reports the the fault manager responsible for the printer.

NOTES

(i) Using the line printer controller in the unrecoverable printer enables remote printer
management

(ii) Getting printer statistics must be on a local node

BUGS

None Known

SELF TEST

Provided the printer is powered, queue and printing enabled, the status and statistics can
be obtained. Similarly configuration parameters such as the spool directory and account files
can be checked.

SEE ALSO

Printer

Recoverable Layer

C.4 RecTapeUnit

DESCRIPTION

213

The (recoverable) tape unit provides a fault tolerant (distributed) implementation of mtio
and exports methods to set (get) configuration properties in addition to control (monitoring)
operations. Three constructors initialise the server, creating tape units from scratch and
accessing persistent object state using an arjuna name (unique identifier). One destructor is
provided which terminates the server.

CLASS DEFINITION
class RecTapeUnit
(
public:

public TapeUnit

RecTapeUnit(char *, char *, char *, NodeCoupling, ObjectKind);
RecTapeUnit(Uid &, Error &);
RecTapeUnit(ArjunaName, Error &);

-RecTapeUnit();

virtual Error onLine();
virtual Error offLine ();

virtual Error powerUp();
virtual Error powerDown () ;

virtual Error getStatus();
virtual Error getController();

virtual Error setBlockSize(int);

virtual Error rewindTape();
virtual Error eraseTape();
virtual Error ejectTape();
virtual Error retensionTape();
virtual Error loadTape();
virtual Error removeTape();

virtual Error dumpToTape();
virtual Error restoreFromTape() ;

virtual Error showBlockSize(int &) ;

virtual Error showTapeUnitState(TapeUnitState &) ;

virtual Error showTapeUnitKind(UnitKind &);

virtual Error showTapeMedia(TapeKind &) ;

virtual. Error showUnitDescription(char * &) ;

virtual Error showLocation(char * &) ;

virtual Error showManufacturer(char * &) ;
virtual Error showPowerPoint(char * &) ;

virtual Error showPowerPhase(PowerPhase &);
virtual Error showContactName(char * &) ;

virtual Error showMaintenenceRef(char * &) ;

virtual Error showAssetRef(char * &) ;

virtual Error setLocation(char *) ;

virtual Error setManufacturer(char *) ;
virtual Error setPowerPoint(char *) ;

Recoverable Layer

} ;

virtual Error setPowerPhase(PowerPhase);
virtual Error setContactName(char *) ;

virtual Error setMaintenenceRef(char *) ;
virtual Error setAssetRef(char *) ;

virtual Error compensate(Error);
virtual Error reportError(char *) ;

virtual Error reportError(Error);

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const Type Name type () const ;

CLASS INTERFACE

214

RecTapeUnit(char '" AN, char'" ItsDeviceName, char'" ResourceLocn, NodeCou
piing ItsCoupling, ObjectKind ItsKind) creates and activates a recoverable disk
server

RecTapeUnit(Uid & UoId, Error & res) RecTapeUnit(ArjunaName RN, Error & res)
accesses (and activates) an existing tape unit server

'"RecTapeUnitO terminates the tape unit

onLineO, offLineO activates (de-activates) the probe

powerUp 0, powerDownO powers (unpowers) the tape unit by first attempting man
uaVautomatic operations

loadTapeO, removeTapeO requests the human operator to load/remove the tape

rewindTapeO, eraseTapeO, retensionTapeO, ejectTapeO provided a tape is already
loaded, rewind/eraselretension the tape

getControllerO obtains (automatically) the tape unit's configuration

dumpToTapeO restoreFromTapeO provided a tape is loaded, dump (restore) data

setBIockSize(int)

showBlockSize(int & itsBIocks) showTapeUnitState(TapeUnitState & itsState)
showTapeUnitKind(UnitKind & itsKind) showTapeMedia(TapeKind & itsKind)
showUnitDescription(char '" & itsDecription) retrieves instance data within a
read locked atomic action

compensate(Error theError)

reportError(char '" theError) reportError(Error ErrorCode)

BUGS

none known

NOTES

SELF TEST

Provided the tape unit is already powered, any tape which is loaded is then ejected and the
tape unit's configuration is obtained.

SEE ALSO

TapeUnit

Recoverable Layer 215

C.5 RecDiskUnit

DESCRIPTION

RecDiskUnit defines a recoverable (external) disk unit and is derived from (unrecoverable)
disk unit. Several methods are exported which power up (down) the device and obtain config
uration information concerning the controller, physical geometry and partition map.

CLASS DEFINITION
class RecDiskUnit
(
public:

public DiskUnit

RecDiskUnit(char *, char *, char *, NodeCoupling, ObjectKind);
RecDiskUnit(Uid &, Error &);
RecDiskUnit(ArjunaName, Error &);

-RecDiskUnit();

virtual Error
virtual Error

virtual Error
virtual Error

virtual Error

virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error
virtual Error

virtual Error
virtual Error
virtual Error

onLine();
offLine();

powerUp() ;
powerDown();

getStatus();

getController();
getUsage() ;
getPartitions();
getGeometry();

showController(DiskInterface &, short &. int &);
showCylinders(unsigned short &. unsigned short &);
showHeads(unsigned short &. unsigned short &);
showSectors(unsigned short &. unsigned short &);
showDimensions(long &, long &);

showCapacity(Kbytes &. Kbytes &. Kbytes &);
showLocation(char * &);
showManufacturer(char * &);
showPowerPoint(char * &);
showPowerPhase(PowerPhase &);
showContactName(char * &);
showMaintenenceRef(char * &);
showAssetRef(char * &);

setLocation(char *);
setManufacturer(char *);
setPowerPoint(char *);
setPowerPhase(PowerPhase);
setContactName(char *);
setMaintenenceRef(char *);
setAssetRef(char *);

compensate(Error);
reportError(char *);
reportError(Error);

Recoverable Layer

} ;

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeName type () const ;

INTERFACE

216

RecDiskUnit(char * AN, char * itsDeviceName, char * itsResourceLocn, NodeCou
piing itsCoupling, ObjectKind itsKind) creates and activates a recoverable disk
server

RecDiskUnit(Uid & Uold, Error & res) RecDiskUnit(ArjunaName RN, Error & res)

"RecDiskUnitO destructs and terminates the recoverable disk server

powerUpO, powerDownO powers up (down) the device by attempting manual then auto
matic variance

getControllersO, getPartitionsO, getGeometryO obtains (automatically) configuration
parameters

getUsageO obtains (automatically) disk usage, availability and total size

showController(DiskInterface & itslnterface, short & itsUnit, int & itsController)
showDimensions(long & itsStart, long & itsBlocks) showCyIinders(unsigned
short & itsCylinders, unsigned short & itsAltCyIinders) showHeads(unsigned
short & itsHeads, unsigned short & itsOffset) showSectors(unsigned short &
itsSectPerTrack, unsigned short & itslnterleave) showCapacity(Kbytes & its
Size, Kbytes & itsUsage, Kbytes & itsAvail) retrieves instance data within a read
locked atomic action

reportError(char * theError) reportError(Error ErrorCode)

NOTES

BUGS

none known

SELF TEST

Once the disk device is powered, controller, usage etc. can be obtained automatically.

SEE ALSO

DiskUnit

Recoverable Layer 217

C.6 RecSoftware

DESCRIPTION
Recoverable software classes are derived from the unrecoverable software class and pro

vide fault tolerant control (monitoring) operations on the managed software distribution.
Unlike the other recoverable layer classes, operation on software distributions (in particular
building and installing new releases) is particularly slow and care must be taken in setting
(client) remote procedure call timeout (and retry) values. A compromise must be achieved,
having enough time to compile the distribution without waiting indefinitely for crashed
servers.

CLASS DEFINITION
class RecSoftware public Software
{

public:

} ;

RecSoftware(char * char *, char *, NodeCoupling, ObjectKind):
RecSoftware(Uid &, Error &):
RecSoftware(ArjunaNarne, Error &);

-RecSoftware() ;

virtual Error onLine();
virtual Error offLine () ;

virtual Error upGrade():
virtual Error downGrade();

virtual Error unpack() ;
virtual Error pack() ;

virtual Error rnakeAll() ;
virtual Error rnakeClean () ;

virtual Error rnakelnstall() ;

virtual Error getConfig();

virtual Error showOwner(char * &, char * &) :

virtual Error showMode(rnode_t &) ;

virtual Error showSize(off_t &) ;

virtual Error showModifyTirne(tirne_t &) :

virtual Error showSoftwareNarne(char * &) ;

virtual Error showPathNarne(char * &) ;

virtual Error showSoftwareState(SoftwareState &) ;

virtual Error cornpensate(Error);
virtual Error reportError(char *) ;

virtual Error reportError(Error) ;

virtual Boolean restore_state (ObjectState & , ObjectType);
virtual Boolean save_state (ObjectState & , ObjectType);
virtual const TypeNarne type () const :

Recoverable Layer 218

INTERFACE

RecSoftware(char *, char *, char *, NodeCoupling, ObjectKind) creates a software
server from scratch

RecSoftware(Uid &, Error &) RecSoftware(ArjunaName, Error &) accesses a persis-
tent software class using Uid and ArjunaNarnes

"RecSoftwareO terminates the software server.

onLineO oftLineO turns the probe on (off) line

upGradeO downGradeO upgrades (downgrades) software automatically

unpackO packO unpacks (packs) the software distribution by attempting Zoo and Tar utili
ties.

makeAllO makeCleanO makeInstallO builds, cleans and installs using "make" program.

showOwner(char * & itsOwner, char * & itsGroup) obtains the software's owner and
group.

showMode(mode_t & itsMode) obtains file permissions.

showSize(ofCt & itsSize) showModifyTime(time_t & itsTime) obtains the software
object's size and last modify time.

NOTES

SELF TEST

Once RecSoftware is created configuration data is obtained.

SEE ALSO

Software

Application Layer

AppendixD
APPLICATION LAYER

219

The following appendix contains several screen dumps of the management information

workbench. These include the logon sheet, views of the organisation (faculty, depanments

and research groups), resources and property sheets.

D.I LOGON SHEET

Management
Syste1n

User Name

Password

[darrenl

[Ok I lcancel] [EXit I

The workbench logon sheet simply contains a bitmap ''logo" and user name / password

fields . Three buttons are provided to enable the user (management agent) to proceed ("ok"),

cancel or exit.

Application Layer 220

D.2 UNIVERSITY STRUCTURE

University of Newcastle upon Tyne

.
dJ. dJ.. riM. . , .

~ ~ .. ~
.d-. dJ. n1:A n.

Scie:::.~ Engineering Agric&BS

nf:J.. I dA.~ I · r.F.h
td:J.. .=:n ,

di:. ni:J.. ~

Ars Medicine Service

,
n1::.di:. · :r£ M.:-. , ...,...,

.11 ru-~ ;..u •• · n::;':. ~ ~

t.~n

Lar. Education Social

nf:J..
.=~ nt:..

Ad~

IExit I

Newcastle University's "view" encodes th e academic faculty structure into a series of

"organisational domain~ icons . These include the Faculty of Science, Engineering and Com

puting Service, which are shown below.

Application Layer 221

D.3 FACULTY OF SCIENCE

Faculty of Science

dr.dr. ~~ ~~
~ ~ ~

Computing Ma ths/S t.a. ts Phychol

~~ ~~ dr.~
tdJ. ~ ~

Chemistry Physics Surveying

~~ ~~ ~dr.
dr. ~ ~

BioChem Fuel Hancock

Faculty of Science is decomposed into eight departments (Computing Science, Chemistry

etc.) and the Hancock Museum which are all encoded using "organisational domain" icons.

Application Layer 22

D.3.1 FACULTY OF ENGINEERING

Faculty of Enginering

dJ.~ tdJ.tdJ. I :~I dJ. 1 tdJ.
ChemEng Civil E&EE

dJ.niJ. tdJ.tdJ. dJ.~
dJ. tdJ. dJ.

EngMaths Marine MM&ME

Faculty of Engineering contains six departments, t hese include Electrical and Electronic

Engineering ("E&EE"), Marine Engineering ("Marine") and Mechanical Engineering

("MM&ME").

Application Layer

D.3.2 COMPUTING SERVICE

~
OGl

=. -~
=._111

Beck

Fell

Tarn

Tuda

Aiden

Dale

Computing Service Domain

. Burn

Dene

Foss

Glen

lake

Mere

Pass

Pike

Scar

Haggle

~
~

Eemmel

Happen

~
.. ",~-
~.

~
~:--

Flaor2

~-.. :. ~
~c
~.

To-Ner

~
Agents

~
D

Trading

ee
c=74 e==

~
~

Crag

223

Computing Services manage over one hundred resources located across the university cam

pus. These include P.C. clusters ("Beck", "Fell" and "Tarn"), a MAC cluster ("Dale"), H.P.

workstations ("Burn", "Dene" etc.) and sixteen SUN workstations ("cragg"). Three Encore

"annex" terminal clusters ("Haggle", "Hemmei" and "Hoppen") and two printer clusters

("fioor2" and "Tower") are also managed. Clicking on each of these "resource domain" icons

reveals the contents of the particular domain - which are shown later in this appendix.

Application Layer
22~

D.3.3 COMPUTING (TEACHING)

Computing Teaching

w~ LW~

~
y ",. '

~e:z:; ~~ e:z:; 1 "

W WJ ','
o 0

~. ~ I

Leve12 CSSD B.Sc.(Hons)

w~

~ i- ;,~ ;i
., ", '

~ e:z:; 1 ..

W
",

o 0

~ I

Mill Turing M.Sc.

W~

~ ~
y . ,. '

~e:z:; 1 " -1 " I .

W ',' ','
o 0 . .

~ I I

Rack cs staff Ph .D.

~ ~ ~
=. ... ,,::'

~ = ','==-

TapeServer cs agents Floor2

(EXit I
Clicking on the Computing (teaching) icon (in the "Department of Computing Science"

domain) reveals the "Computing Teaching" domain . This includes teaching equipment

(workstations clusters located in the "Mill" and "Rack" laboratories, a printer cluster in the

second floor etc.), user groups (staff, students etc.) and the M.Sc. "Computing Software and

Systems Design" group. The CSSD domain is shown below.

Application Layer 225

D.3.4 CSSD GROUP

CSSD Domain

~ ~ 11~1
y . , ••

1 "

~ eif::7l
,'" . ,.

Espley SVlnnhoe CSSD

~
~

Iwl
eif::7l ~

Embley sandhoe Hoppen24

.... ~\~ 1l - l~ / ._ ,- , cJ

fanout mac

The CSSD group are allocated several SUN workstations (Espley, Embley etc.), an Apple

Mac and a dumb terminal . A "fanout" unit is also located in their project room.

Application Layer 226

D.4 RESOURCE DOMAINS

D.4.1 DENE CLUSTER

Dene HP Workstation Cluster

denel dene3 dene4

dene2

The Dene workstation domain comprises two dozen (or so) HP workstations and a printer.

For the sake of simplicity, only four workstations are shown in the screen dump.

Application Layer

D.4.2 PRINTER CLUSTER

Floor2 Printer Cluster

Print Server Printer2

Printer!

I-l
EJ

Print.er3

227

The "fioor2" printer cluster (used by both Computing Service and Department of Comput

ing Science) comprises an Apple Mac. print server and several printers.

Application Layer 228

DA.3 SUN4 WORKSTATION

Catless DOlTIain

wt
~ ~
catless Idev/sdOc Idev/console

~ CCI . ••• .': :0

Idev/sdOa Idev/sdOd I d evl toby

G
Idev/sdOb Idev/sdOe SunOS

The above screen dump shows Catless's configuration (before being upgraded to Solaris).

This includes several disk partitions, console, printer and documentation.

Application Layer 229

D.5 PROPERTY SHEETS

Printer View

~tate flX>perties Help Quit I
N~1I110

Printer Name

Printer State

Queue State

Page Format

Log File

Spool Directory

Account File

Max Copies

Max Size

Baud Rate

Local Printer

R emote Printer

Remote Machine

I
I
!
I
[
[
[
I
[

I
I
I
I

P 1"0 ps
'------"

~
c:.n .
~

j
~
('j

o
~
~

~

~
~ o z
~
~

~
~
0'
Q c·
;:s
t-<
~

N
W
o

"' "1

COIllputer View

~tate Eroperties tlelp--------------------- -----Q~I

Name

Computer Name

Computer Architecture

Operating System

Release

Pages In

Pages Out

Swaps In

Swaps Out

Users

Load Average

State

I
I
I
I
I
[
!
I
I
!
I

Pl-opS

t='
01
~

Cl
o
~
~
=0
('1
o
~
~ o

~
~ o
Z

~
~

~
~
0"
~
0"
;::s

~
~ .,

N
W -

Com.puter View

I froperties Help Quit I
Name

Computer Name

Description

Location

Manufacturer

Date Purchased

Service Contract

Asset Ref

Props

1
I
I
I
I
I
I

~
01
~

(j

o
~
S
tr.j
~

~
rn
tr.j
1-3

~
~

~
~
<=;"
~
0"
;:s
t"-t
~

N ...,
N

(b .,

Terminal View

~tate froperties Help QUi~

Name

Terminal Name

Device StCtt~

Terminal type

Security

Input Speed

Output Speed

Data Bits

Stop Bits

Parity

C antral Lines

Timeout

1 nput Flow Control

Output Flow Control

1 nptlt Buffer

Screen Dims

Line Discipline

Props

I ~ C- - .. -----"-"-"'--'--'- - -I
I 1

I 1

[1

[I
I I
C I
I
I
I
I
I
I J
1 I

I I

~
?'
~

~
t:rj
~

~
(j
0

~
~

~

~
~

0 z
~
~

-6"
~
o·
Q -. 0
;:s
t-<
~
'"

I,,)
W
W

Disk View

~tate E,roperties Help

Name

DeuiceName

Disk 1 nterface

Unit Address

Controller Address

#Cylinders

#Alt, Cylinders

#Heads

Head Offset

Sectors I Track

Start Cylinder

#Blocks

Disk Size

Disk Usage

Disk Avail

Props
'--1 ---- ._--

I
I
I
I
I
I
I
I
I
I
I
I
I

Quit

t:I .
at .
at

t:I
~

00
~
(j

o
~
~

C':)

~
~ o
z
~
~

~
~
(;'
~
;:t,
o
;:;

t-<

~

IJ
W
~

'1

Tape View

§,tate E.roperties Help .. -'-~---~tl

Nmne

Disk Name

Device Name

Tape Unit

Tape Media

Blocking Factor

Tape Unit State

PI'OPS c-· .. -,------- .. '----1
I I
I I
I I
I I
[I

~
c:J1
(,)

~
tr.:I
C':)
o
~
~

~

~
~ o
Z

~
~

-G'
'l:!..
ff c·
;::s

t-<
~
'" .,

OJ
(.,J

Application Layer

ACRONYMS
ANSA - Advanced Networked Systems Architecture

ASN.l - Abstract Syntax Notation 1

CMIP - Common Management Information Protocol

CMIS - Common Management Information Service

FDDI - Fibre Distribution Data Interface

HEMS - High level Entity Management System

ISO - International Standards Organisation

SGMP - Simple Gateway Management Protocol

SIGDSM - Special Interest Group on Distributed Systems Management

SNMP - Simple Network Management Protocol

SSMP - Simple Screen Management Protocol

236

TOBIAS - Tools for Object Based Integration and Administration of Systems

Glossary 237

GLOSSARY
Agent - An abstract entity used in the structural view of the organisation

to perform management tasks.

Atomic Action - A recovery region possessing mechanisms for reliable
management of shared data: failure atomicity, serialization and perma
nence of effect.

Change Management - The controlled and regulated manner of altering
the configuration of a distributed system in order to minimise user dis
ruption.

Configuration Management - The management of the system topology,
its interconnections and resources.

Contract - A formal agreement between several parties, agents and the
organisation.

Dependability - The trustworthiness of a component such that reliance
can be justably be placed on the service it delivers.

Domain - A multiple set of components which share a common attribute or
are managed by the same management agents. Much controversy exists
surrounding the definition of "domain" and whether domains can over
lap. In the model of management, domains can overlap (both partially or
completely) and interact (trade) with other domains.

Delegation - The means by which one management agent allows or
instructs another agent to perform a particular activity. Delegation is
particularly used in the modelling of subcontracts.

Error - That part of a system state which is liable to lead to failure.

External Resource - A physical entity used by the organisation as part of
its day to day operation. External resources, such as computing compo
nents are modelled and controlled by managed resource controllers.

Failure - Any service provided by the system which no longer complies
with its specification.

Fault - The cause of an error

Fault Management - The management of isolating, diagnosing and recti-
fying erroneous system states.

Functional Role - The jobs performed by agents in a particular role.

Hat - A metaphor describing the adoption of roles by agents.

Managed Object - The management model entity representing a real
world item.

Glossary 238

Managed Resource - A resource which is controlled and monitored by
agents in the installation.

Management - To organise, regulate and be in charge of an enterprise.

Message - Communications medium between system components.

Policy - The business objectives of the organisation and the effects of the
system on the performance of the organisation.

Reliability - A measure of continuous correct delivery.

Service - The system behaviour as perceived by the user.

Structural Role - The responsibilities and obligations of agents.

System - A collection of components connected by a communications
medium which can co-operate to perform some computation.

Unconnected Resource - A managed resource which is not physically
attached to a communications medium.

Unreachable Resource - As contrasted with unconnected resources, an
unconnected resource is unreachable resource is connected to the com
munications topology but cannot be accessed due to communications fail
ure.

Trademarks

TRADEMARKS
AFS and Andrew File System are trademarks Transarc Inc.

ANSA Ware is a trademark of ANSA

239

Athena, Hesiod Name Service, Kerberos Authentication Service, Moira Ser
vice Management System, Palladium Print Service, Project Athena, X
Window System and Zephyr Notification System are trademarks of The
Massachusetts Institute of Technology.

Arjuna is a trademark of the University of Newcastle upon Tyne

EMA is a trademark of Digital Equipment Corporation

Macintosh is a trademark of Apple Computer

Motif and OSF/1 are trademarks of The Open Software Foundation

NFS and Network File System are trademarks of Sun Microsystems Inc.

SunOS is a trademark of Sun Microsystems inc.

TOBIAS is a trademark of the TOBIAS consortium

UNIX is a trademark of Unix System Laboratories, Inc, a wholly-owned sub
sidiary of Novell, Inc.

References 240

References
Alsberg76a.

P.A. Alsberg and John D. Day, "A Principle for Resilient Sharing of Distributed
Resources," Proc 2nd Symp on Software Engineering, 1976.

ANSA90a.

ANSA, ANSA Reference Manual, A, ANSA, 1990.

Arms88a.

Caroline Anus, Campus Networking Strategies, p. 4, Dec Press, USA, 1988.

Arms88b.

Caroline Anus, Campus Networking Strategies, pp. 67 - 89, Dec Press, USA, 1988.

Arms88c.

Caroline Anus, Campus Networking Strategies, p. 1, Dec Press, USA, 1988.

Arms88d.

Caroline Arms, Campus Networking Strategies, p. 2, Dec Press, USA, 1988.

Arms88e.
Caroline Anus, Campus Networking Strategies, p. 87, Dec Press, USA, 1988.

Austin62a.

J.L. Austin, How to do things with words, Clarendon Press, 1962.

Bedford-Robers91 a.

James Bedford-Robers, Concepts from Pythagoras, HP Laboratories, Bristol, Febru

ary 1991. Presented at Policy Workshop, Imperial College (1991)

Bernstein87 a.
Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman, Concurrency Control

and Recovery in Database Systems, Addison Wesley, 1987.

Blyth95a.
Andy Blyth, Enterprise Modelling and its Application to Organisational Require

ments, Capture and Definition, University of Newcastle upon Tyne, 1995. (Ph.D.

Thesis)

Bosak88a.
L. Bosak and C. Hedrick, "Problems in Large LANs," IEEE Network, vol. 2, no. 1,

pp. 49 - 56, IEEE, January 1988.

Bowers94a.
John Bowers, James Pycock, Tom Rodden, and Graham Dean, "Running the Net

work: Supporting Co-operative Systems," Information Technology and People, vol.
7, no. 2, pp. 7 - 28, 1994.

Burnett87a.
Christopher Burnett, "Strategic aspects of migration to OS I." International Open

Systems 1987, vol. 1. pp. 1 - 16. Online Publications. London. 1987. ISBN

References 241

0-86353-083-4

Buzato92a.

L.E. Buzato and A. Calsavara, "Stabilis: A Case Study in Writing Fault-Tolerant

Distributed Applications using Persistent Objects," in Proc. 5th International Work

shop in Persistent Objects, 1992. Held at San Miniato, Italy. September 1-4 1992

Case88a.

Jeffrey D. Case, James R. Davin, Mark S. Fedor, and Martin L. Schoffstall, "Intro
duction to the Simple Gateway Monitoring Protocol," IEEE Network, pp. 43 - 49.
IEEE, March 1988.

Champine91 a.

George A. Champine, M.l. T Project Athena: A Model for Distributed Campus Com
puting, Digital Press, USA, 1991.

Checkland86a.

Peter Checkland, Systems Thinking, Systems Practice, Wiley, 1986.

Danish94a.

Tawfig Danish, A Knowledge-Based System for Disaster Prevention in Computer

Systems, University of Newcastle upon Tyne, 1994. (Ph.D thesis)

Date86a.

C.J. Date, An Introduction to Database Systems, 1, Addison Wesley, 1986.

Dean92a.

Graham Dean, David Hutchinson, and Ian Sommerville, "Distributed System Man

agement as a Group Activity," Netman Report, University of Lancaster, December

1992.

Dean95a.

Graham Dean, "Configuration Language Support for Software Installation," PCL

Report, University of Lancaster, 1995.

DellaFera88a.
DellaFera, "The Zephyr Notification System," in Usenix Conference Proceedings,
USENIX, Winter 1988.

DeRemer75a.
F. DeRemer and H. Kron, "Programming in the Large versus Programming in the

Small," in Proceeding Conference on Reliable Systems, pp. 124 - 121, 1975.

DIGITAL89a.
DIGITAL, Enterprise Management Architecture (General Description), Digital,

1989.

Dixon88a.
G.N. Dixon, Object Management for Persistence and Recoverability, University of

Newcastle upon Tyne, Newcastle, UK, December 1988. (Ph.D. Thesis)

References 242

Dowson87a.

M. Dowson, "An Integrated Project Support Environment," SIGPlAN Notices, vol.
22, no. 1, pp. 27 - 33, January 1987. Palo Alto, CA, 9 - 11 December 1986

Duncan81a.

VJ. Duncan, Organisational Behaviour, Houghton, 1981.

Dyer88a.

S.P. Dyer, "Hesiod," in Usenix Conference Proceedings, Winter 1988.

ECMA88a.

ECMA, "Standard ECMA - Document Print Service Description and Print Access
Protocol Specification," Group TC3S-TGS, European Computer Manufactures
Assocation, September 1988.

Encore87a.

Encore, "Annex ii Hardware Installation Guide," Encore Manual, Encore, 1987.

Encore87b.

Encore, "Annex Network Administrators Guide," Encore Manual, Encore, 1987.

Greenweld86a.

M. Greenweld and J. Sciver, Remote Virtual Disk Protocol Specification, MIT, 1986.

Handspiker89a.

B. Handspiker, R. Hart, and M. Roman, The Athena Palladium Print System, MIT,

Febuary 1989.

Harbison91 a.
Samuel P. Harbison and Guy L. Steel Jr, A C Reference Manual, Prentice Hall Soft

ware Series, 1991.

Harrison92a.
Helen E. Harrison, "So Many Workstations, So Little Time," in Proc. USA VI, pp.

79 - 86, USENIX, October 1992.

HMS084a.

HMSO, Data Protection Act 1984, HMSO, 1984.

HMS090a.

HMSO, Computer Misuse Act 1990, HMSO, 1990.

Ingham92a.
Dave Ingham, Delayline: A Wide Area Network Simulation Tool, University of New

castle upon Tyne, 1992. (M.Sc. Dissertation)

INGRES85a.
INGRES, The INGRES Papers: The Anatomy of a RelationaL Database Management

System. Addison Wesley, 1985.

IS087a.
ISO, "Systems Management: Overview," ISOIlEC ITClISC21 , ISO, 1987.

References

(working draft DP9595/2)

IS088a.

243

ISO, "OSI-Basic Reference Model: Part 4 Management Framework," ISOIlECIDIS
7498-4, March 1988.

IS088b.

ISO, "Draft British Standard for OSI: The Directory, Part 1: Overview of Compo

nents, models and service," ISOIlECIDIS 9594-1, July 1988.

IS088c.

ISO, "Revised Text of 2nd DP 9596-2, Information Processing Systems - OSI -

Management Information Processing Specification: Part 2 CMIP," ISOIlEC lTC
lISC 21 N 3070, October 1988.

IS088d.

ISO, "Revised Text of 2nd DP 9596-2, Information Processing Systems - OSI -

Management Information Processing Specification: Part 1 CMIS," ISOIlEC lTC
lISC 21 N 3069, October 1988.

Kar88a.

Gautam Kar, Brendan Madden, and Robert S. Gilbert, "Heuristic layout Algorithms

for Network Management Presentation Services," IEEE Network, pp. 29 - 36, IEEE,

November 1988.

King83a.

John Leslie King, "Centralized versus Decentralized Computing: Organisational

Considerations and Management Options," Computing Surveys, vol. 15, no. 4, pp.

321 - 349, ACM, December 1983.

Kotter78a.

J.P. Kotter, Organisational Dynamics: Diagnosis and Intervention, Addision Wes

ley, 1978.

Kramer88a.

Jeff Kramer and Jeff Magee, "A Model for Change Management," IEEE Dist Comp

Sys in the 1990's, IEEE, Hong Kong, September 1988.

Kramer93a.

Jeff Kramer, Jeff Magee, Keng Ng, and Morris Sloman, "The System Architect's

Assistant for Design and Construction of Distributed Systems," in Proceeding 4th

IEEE Workshop on Future Trends of Distributed Computer Systems, pp. 282 - 290,

IEEE, September 1993.

Lamport82a.

L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Problem," ACM

TOPLAS. vol. 4. no. 3, ACM. July 1982.

References

Lampson79a.

B.W. Lampson and H.E. Sturgis, Crash Recovery in a Distributed Data Storage Sys
tem, Xerox Pare, April 1979.

Lampson81 a.

B.W. Lampson, "Atomic Transactions," in Distributed Systems - Architecture and

Implementation, ed. B.W. Lampson, pp. 246-264, Springer-Verlag, 1981.

Lee90a.

P.A. Lee and T. Anderson, Fault Tolerance: Principles and Practice, Springer
Verlag, New York, 1990.

Leffler86a.

Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve Miller, and

Chris Torek, "An Advanced 4.3 BSD IPC Tutorial," PS 1: 8, UNIX, February 1986.

Lewine91a.

Donald Lewine, POSIX Programmer's Guide: Writing Portable UNIX Programs,
O'Reilly and Associates, Inc., 1991.

Lippman89a.

Stanley B. Lippman, C++ Primer, Addison Wesley, 1989.

Little91 a.

Mark Little, Object Replication in Distributed Systems, University of Newcastle
upon Tyne, September 1991. (Ph.D thesis)

Lomet77a.

D.B. Lomet, "Process Structuring, Synchronisation and Recovery using Atomic
Actions," ACM SIGPlAN Notices, vol. 13, no. 3, March 1977.

Magee89a.

Jeff Magee, Jeff Kramer, Morris Sloman, and Naranker Dualy, "Constructing Dis
tributed Systems in CONIC," IEEE Transactions on Software Engineering, vol.

SE-15, no. 6, pp. 663-675, IEEE, June 1989.

Magee94a.
Jeff Magee, Naranker Dulay, and Jeff Kramer, "A Constructive Development Envi

roment for Parallel and Distributed Programs," in Proceedings of the IEEE 2nd

International Workshop on Conjigurable Distributed Systems, IEEE, March 1994.

Marshall80a.
Lindsay Marshall, An Error Scheme for Concurrent Processes, University of New
castle upon Tyne, August 1980. (Ph.D. Thesis)

Marshall90a.
Lindsay Marshall, "Managing Management: The TOBIAS Approach," in Esprit

1990 Conference, 1990.

References
2~5

Marsha1l93a.

Lindsay Marshall, "Representing Management Policy using Contract Objects," in
Proc. IEEE 1st Int. Workshop on Systems Mananagement, IEEE, Los Angeles, USA,
1993.

Mauro89a.

T. Mauro, An Overview o/the Andrew File System, Transarc Corportation, 1989.

McCue92a.

Dan. L. McCue, Selective Transparency in Distributed Transacrtion Processing,
University of Newcastle upon Tyne, April 1992. (Ph.D. Thesis)

McDermott84a.

1. McDermott, "Rl Revisited: Four Years in the Trenches," Al Magazine, pp. 21 -
32, Fall 1984.

Metcalt76a.

Robert A. Metcalf and David R. Boggs, "Ethernet: Distributed Packet Switching for
Local Computer Networks," CACM, vol. 19, no. 7, pp. 395 - 404, ACM, July 1976.

Miller87a.

S.P. Miller, B.C. Neuman, J.1. Schiller, and J.H. Saltzer, "Kerberos Authentication

and Authorisation System," Project Athena Technical Plan, M.I.T., Massachusetts,
December 1987.

Moffett92a.
Jonathan D. Moffett and Morris S. Sloman, "Policy Hierarchies for Distributed Sys

tems Management," Domino Report, no. ArchlIC/6, Imperial College, London, 24

June 1992.

Needham78a.
R.M. Needham and M.D. Schroeder, "Using Encryption for Authentication in Large
Networks of Computers," CACM, vol. 21, pp. 993 - 999, December 1978.

Nelson81a.
BJ. Nelson, "Remote Procedure Call," Xerox CLS-81-9, Xerox, California, 1981.

ORDIT89a.

ORDIT, Draft Technical annex, ESPRIT, 1989.

OSF90a.
OSF, Distributed Management Environment RFT, Open Software Foundation, 1990.

OSF92a.
OSF, EIDIS Workshop on Distributed Systems Management, EIDIS, July 1992.

Ousterhout94a.
John K. Ousterhout, Tel and the TK Toolkit, Addison Wesley, 1994.

Parrington95a.
G.D. Parrington. "A Stub Generation System for C++," Computing Systems -

References 246

journal for the USENIX Association, no. 8, pp. 135 - 170, University of Newcastle
upon Tyne, May 1995.

Parrington95b.

Graham Parrington, Santosh Shrivastava. Stuart Wheater, and Mark Little, "The
Design and Implementation of AIjuna," USENlX Computer Systems. 1995.

Partridge87 a.

C. Partridge and G. Trewitt, "The High-Level Entity Management Protocol
(HEMP)." RFC, no. 1022. October 1987.

Partridge88a.

Craig Partridge and Glenn Trewitt. "The High Level Entity Management System

(HEMS)." IEEE Network. vol. 2. no. 2, pp. 37 - 42. IEEE, March 1988.

POSIX90a.

POSIX. "Draft Guide to POSIX Open Systems Environments," P1003.01D9. IEEE
Computer Soc .• September 1990.

POSIX93a.

POSIX, "System Administration Interface," POSlX lO03.7.2IDB.I. 1993. IEEE.
February 1993. (IEEE Draft Standard)

Press86a.

Willian H. Press. Brian P. Flannery, Saul A. Teukolsky. and Willian T. Vetterling.
Numerical Recipes - The Art of Scientific Computing. Cambridge University Press,

1986.

Raeburn89a.
K. Raeburn, "DISCUSS: An Electronic Conferencing System for a Distributed

Computing Environment." in USENlX Conference Proceedings. Winter 1989.

Rande1l75a.
Brian Randell. "System Structure for Software Fault Tolerence," IEEE Transactions

on Software Engineering. vol. SE-l. no. 2. pp. 220 - 232. IEEE. June 1975.

Robinson88a.
D.C. Robinson and M.S. Sloman, "Domain Based Access Control for Distributed

Computer Systemsc." Software Engineering Journal. vol. September 1988. pp. 161

- 170. lEE, 1988.

Rosenstein88a.
Mark A. Rosenstein. Daniel E. Geer jr. and Peter J. Levine. "The Athena Manage
ment System," in USENlX Conference Proceedings. pp. 203 - 212, USENIX Asso

ciation. Dallas. Texas. February 9 - 12 1988.

Ross77a.
D. T. Ross, "Guest Editorial - Reflections on Requirement," Transactions on Soft

ware Engineering. vol. SE 3, no. 1. pp. 2 - 5, IEEE, 1977.

References 247

Rubira94a.

Cecilia M.F. Rubira, Classification and Structuring of States and Behaviour in
Object-Oriented Systems, University of Newcastle upon Tyne, September 1994.
(Ph.D. Thesis)

Rubira-Calsavara94a.

C.M.F. Rubira-Calsavara and R.J. Stroud., "Forward and Backward Error Recovery

in C++.," Object Oriented Systems, no. 1, pp. 61-85, Chapman Hall, 1994.

Schein80a.

E.H. Schein, Organisational Psychology, Prentice Hall, 1980.

Schiefer86a.

R.M. Schiefer and J. Gettys, "The X Windows System," ACM Trans on Graphics,
vol. 5, no. 2, pp. 79 - 109, ACM, April 1986.

Schoffstall89a.

M. Schoffstall, C. Davin, M. Fedor, and J. Case, "SNMP Over Ethernet," RFC, no.

1089, February 1989.

Schutz70a.

A. Schutz, "The Problem of Rationality in the Social World," in Socological Theory

and Philosphical Analysis, ed. D. Emmet and A. MacIntyre, Macmillian. 1970.

Searle69a.

lR. Searle, Speech Acts - An Essay in the Philosophy of Language, Cambridge Uni

versity Press, 1969.

Sechrest86a.

Stuart Sechrest, "An Introductory 4.3 BSD IPC Turorial," PS J.' 7, UNIX, October

1986.

Shrivastava91 a.

S.K. Shrivastava, G.N. Dixon, and G.D. Parrington, "An Overview of Arjuna - A

Programming System for Reliable Distributed Computing," IEEE Software, IEEE,

1991.

Sloman87a.

Morris Sloman, "Distributed Systems Management," Issues in LAN Management,

pp. 15 - 46, North Holland, July 1987.

Sloman89a.

Morris Sloman and Jonathan Moffett, "Managing Distributed Systems," Domino

AIIICII, Imperial College, London, 25 September 1989.

Sommerville89a.
Ian Sommerville and R. Thomson, "An Approach to the Support of Software Rev

olution," Computer Journal, vol. 32, no. 5, BCS, 1989.

References 248

Sommerville95a.

Ian Sommerville and Graham Dean, "PCL: A Configuration Language for ~10d
elling Evolving System Architectures," PCL Report, University of Lancaster, 1995.

Spector83a.

A.Z. Spector and P.M. Schwartz, "Transactions: A Construct for Reliable Dis
tributed Computing," ACM Operating Systems Review, vol. 17, no. 2, April 1983.

Spivey89a.

J.M. Spivey, The Z notation: A Reference Manual, Prentice Hall, 1989.

Steedman90a.

Douglas Steedman, in Abstract Syntax Notation I, Technology Appraisal Ltd, Octo
ber 1990.

Stenning86a.

V. Stenning, "An Introduction to IS TAR," in Software Engineering Environments,
ed. 1. Sommerville, pp. 1 - 22, 1986.

Stem92a.

H. Stern, Managing NFS and NIS, O'Rieley, 1992.

Stroud94a.

R.J. Stroud and Z. Wu, "Using Meta-Objects to Adapt to Persistent Object System
to Meet Application Needs," in Proc. SIGOPS European Workshop, 1994.

Stroud95a.

R.J. Stroud and Z. Wu, "Using Meta-Objects Protocols to Implement Atomic Data

Types," in Proc. ECOOP 95, vol. 952, pp. 168 - 189, Springer-Verlag, 1995.
3-540-60160-0

Sun87a.

Sun, NFS Protocol Specification and Service Manual Revision A, Sun, 1987.

Sventek94a.

Joseph S. Sventek, "Distributed Objects as a Legacy Integration Mechanism," ill

Proc. Systems Integration and Structuring, ed. Brian Randell, University of Newcas

tle upon Tyne, September 1994.

Tao95a.
S. Tao, P.D. Ezhilchelvan, and S.K. Shrivastava, "Focused Fault Injection Testing of

Software Implemented Fault Tolerance Mechanisms of Voltan TMR Nodes," Jour

nal of Distributed System Engineering, vol. 1, no. 2, BCS and lEE, 1995.

TOBIAS89a.
TOBIAS, Technical Annex, TOBIAS, June 1989.

Wang88a.
B. Wang, D. Coffield, and D. Hutchinson, Towards an Implementation of Domain
Based Distributed System Management. Department of Computing, University of

References 249

Lancaster, 1988.

Wang89a.

Baoyu Wang, David Coffield, and David Hutchinson, "Database I Domain
Approach to Distributed System Management," Computer Communications, Butter
worth, 1989.

Wheater89a.

Stuart M. Wheater, Constructing Reliable Distributed Applications using Actions
and Objects, Newcastle University, September 1989. (Ph.D. Thesis)

Young91a.

Andrew Young, A Structural Approach to Fault and Change Management in a Dis
tributed System, Imperial College, May 1991. (Ph.D. Thesis)

	320601_0001
	320601_0002
	320601_0003
	320601_0004
	320601_0005
	320601_0006
	320601_0007
	320601_0008
	320601_0009
	320601_0010
	320601_0011
	320601_0012
	320601_0013
	320601_0014
	320601_0015
	320601_0016
	320601_0017
	320601_0018
	320601_0019
	320601_0020
	320601_0021
	320601_0022
	320601_0023
	320601_0024
	320601_0025
	320601_0026
	320601_0027
	320601_0028
	320601_0029
	320601_0030
	320601_0031
	320601_0032
	320601_0033
	320601_0034
	320601_0035
	320601_0036
	320601_0037
	320601_0038
	320601_0039
	320601_0040
	320601_0041
	320601_0042
	320601_0043
	320601_0044
	320601_0045
	320601_0046
	320601_0047
	320601_0048
	320601_0049
	320601_0050
	320601_0051
	320601_0052
	320601_0053
	320601_0054
	320601_0055
	320601_0056
	320601_0057
	320601_0058
	320601_0059
	320601_0060
	320601_0061
	320601_0062
	320601_0063
	320601_0064
	320601_0065
	320601_0066
	320601_0067
	320601_0068
	320601_0069
	320601_0070
	320601_0071
	320601_0072
	320601_0073
	320601_0074
	320601_0075
	320601_0076
	320601_0077
	320601_0078
	320601_0079
	320601_0080
	320601_0081
	320601_0082
	320601_0083
	320601_0084
	320601_0085
	320601_0086
	320601_0087
	320601_0088
	320601_0089
	320601_0090
	320601_0091
	320601_0092
	320601_0093
	320601_0094
	320601_0095
	320601_0096
	320601_0097
	320601_0098
	320601_0099
	320601_0100
	320601_0101
	320601_0102
	320601_0103
	320601_0104
	320601_0105
	320601_0106
	320601_0107
	320601_0108
	320601_0109
	320601_0110
	320601_0111
	320601_0112
	320601_0113
	320601_0114
	320601_0115
	320601_0116
	320601_0117
	320601_0118
	320601_0119
	320601_0120
	320601_0121
	320601_0122
	320601_0123
	320601_0124
	320601_0125
	320601_0126
	320601_0127
	320601_0128
	320601_0129
	320601_0130
	320601_0131
	320601_0132
	320601_0133
	320601_0134
	320601_0135
	320601_0136
	320601_0137
	320601_0138
	320601_0139
	320601_0140
	320601_0141
	320601_0142
	320601_0143
	320601_0144
	320601_0145
	320601_0146
	320601_0147
	320601_0148
	320601_0149
	320601_0150
	320601_0151
	320601_0152
	320601_0153
	320601_0154
	320601_0155
	320601_0156
	320601_0157
	320601_0158
	320601_0159
	320601_0160
	320601_0161
	320601_0162
	320601_0163
	320601_0164
	320601_0165
	320601_0166
	320601_0167
	320601_0168
	320601_0169
	320601_0170
	320601_0171
	320601_0172
	320601_0173
	320601_0174
	320601_0175
	320601_0176
	320601_0177
	320601_0178
	320601_0179
	320601_0180
	320601_0181
	320601_0182
	320601_0183
	320601_0184
	320601_0185
	320601_0186
	320601_0187
	320601_0188
	320601_0189
	320601_0190
	320601_0191
	320601_0192
	320601_0193
	320601_0194
	320601_0195
	320601_0196
	320601_0197
	320601_0198
	320601_0199
	320601_0200
	320601_0201
	320601_0202
	320601_0203
	320601_0204
	320601_0205
	320601_0206
	320601_0207
	320601_0208
	320601_0209
	320601_0210
	320601_0211
	320601_0212
	320601_0213
	320601_0214
	320601_0215
	320601_0216
	320601_0217
	320601_0218
	320601_0219
	320601_0220
	320601_0221
	320601_0222
	320601_0223
	320601_0224
	320601_0225
	320601_0226
	320601_0227
	320601_0228
	320601_0229
	320601_0230
	320601_0231
	320601_0232
	320601_0233
	320601_0234
	320601_0235
	320601_0236
	320601_0237
	320601_0238
	320601_0239
	320601_0240
	320601_0241
	320601_0242
	320601_0243
	320601_0244
	320601_0245
	320601_0246
	320601_0247
	320601_0248
	320601_0249
	320601_0250
	320601_0251
	320601_0252
	320601_0253
	320601_0254
	320601_0255
	320601_0256
	320601_0257
	320601_0258
	320601_0259
	320601_0260

