
A Domain Specific Language for Dynamic Interest
Management within Virtual Environments

Thesis by

Sam Aaron

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

NEWCASTLE UNIVERSITY LIBRARY

206 53475 1

UNIVERSITY OF
NEWCASTLE UPON TYNE

University of Newcastle upon Tyne

Newcastle upon Tyne, UK

2008

(Submitted August 2007)

ii

© 2008

Sam Aaron

All Rights Reserved

iii

I met myself and me,

where I had been waiting so patiently.

We sat by the pool,

where the water was cool,

and jumped in,

for a swim,

"I'm Free!"

iv

To the Ruby Community.

v

Abstract

Interest management is a widely used term within the area of virtual environments. It is so widely used

that there even exist many synonyms for the concept. Thus both the terminology, and meaning of the

concept are currently not well defined. The typical aim of interest management techniques within virtual

environments has been to increase scalability. However, this thesis argues that the concept of interest

management should not be so tightly coupled with the goal of scalable virtual environments, but be a

concept in its own right, i.e. the management of interests.

The main focus of this thesis is the representation of expressions of interest. The various techniques

for expressing interest are surveyed and evaluated, providing the basis for the research into a suitable

representation. This representation is achieved in two stages.

The first part of this thesis introduces a novel dynamic interest management technique based upon

set theory. It describes how it is expressive enough to implement most of the static interest management

techniques currently available such as categorisation, locales, and interacting locales. By de-coupling the

logic that implements these interests from the virtual environment, it can also describe how interests can

be changed during the virtual environment's execution, thus making the technique dynamic. Enforcing

and denying interests is also considered, allowing for the enforcement of interests integral to the require­

ments of the virtual environment. An example of this is denying the user the ability to be interested in

artefacts that aren't visible. The new approach presented is implemented with SQL, and evaluated.

The second part of this thesis focusses on the limitations of using SQL as an implementation language,

focussing on issues of readability and succinctness and a lack of any abstraction mechanisms. Overcoming

these limitations is treated as the primary design goal for a new domain specific language for representing

interests. The thesis introduces this language, Wish, and evaluates it within the domain, demonstrating

that it is as expressive as SQL yet is more readable, conceptually succinct and allows for arbitrary

abstraction of complexity.

vi

Acknowledgements

An undertaking such as a Ph.D. is something that's probably only really possible with massive support

from friends and family, and this was definitely the case for me. Without the wonderful support I have

received over these years there is little doubt that I would have struggled to muster the strength to

complete this research.

Firstly, I'd like to express my deepest respect and gratitude to Susanna who hasn't left my side

throughout all of this - despite the way I dealt (or on occasion failed to deal) with the many challenges

of the Ph.D. process. Susanna is truly amazing, and I'm so happy and proud to share my life with her.

It's a struggle to find suitable words to express my appreciation for her support. This deep, powerful,

wordless feeling of gratitude is also the case for my parents: Mum and David. Together, they have taught

me such a lot about living, happiness and the importance of the small things in life. It's also a pleasure

for me to thank my fellow inmate Chris Fowler for his companionship, friendship, and endless time for

me. When I needed someone he was always there, and again it's hard to explain how important that

was. "We did it!"

The people I have mentioned are really only the first few of a long list of important and special people

in my life that have helped me in their own way with this undertaking. There is my sister Charlotte who

exhibits a care and passion for life I can only look up to. There is my wonderful Nan who was always

so proud of me, and of course the memories of my Granddad which have, and continue to be by my

side. Thanks also to my supervisor Professor Paul Watson for always having an open door for me. I also

need to thank my good friends Peter & Stephi, Paul Robinson, John Broderick, Will Stephenson, Kim

Beerden, Massimo Strano, Adam Barker, Martin Ellis, Jake Wu, Jenna & Ben, John Colquhoun, Amy

and Mitch, Simon Gamester, Hendrik Volkmer, Lee Irving, Dave Cooper, lain Wood, Simon Woodman,

Alex Cavanagh, Nat & Laura and many others. Thank you, all of you.

vii

Nomenclature

N The total number of users in a virtual environment. 8

e The average number of events a user creates per unit of time. 8

J-£ The average size of a message generated by a virtual environment. 8

E The total number of events generated per unit of time within a virtual environment. 8

M The total number of messages generated per unit of time by a virtual environment server. 8

b The bandwidth needed per unit of time by a virtual environment to transmit messages.. . . 8

(j Ratio of artefacts that are interesting. 10

U The set of all artefacts within a virtual environment. 50

I The set of all interesting artefacts within a virtual environment. 50

X A given artefact. 51

A A relative artefact. ... 60

A' A relative virtual artefact , 55

ll(x) The condition which denotes whether or not x is an interesting artefact................... 51

Il))(X) The condition which denotes whether or not x is a member of a given derived set. 53

o The set of all essential artefacts. 62

viii

Abbreviations

eRG Communications Research Group (Nottingham University)

eVE Collaborative Virtual Environment, or CRG Virtual Environment

DARPA Defence Advanced Research Projects Agency

DIS Distributed Interactive Simulation

DSL Domain Specific Language

DIVE Distributed Interactive virtual environment

HLA-DDM High Level Architecture Data Distribution Management

1M Interest Management

MASSIVE Model, Architecture and System for Spatial Interaction In Virtual Environments

MMOG Massive Multiplayer Online Game

MUD Multi User Dungeon

NPSNET Navel Postgraduate School Network.

ORM Object Relational Mapper

SIMNET Simulation Network

VE Virtual Environment

VITA Visual Interaction Tool for Archaeology

Contents

Abstract

1 Introduction

1.1 Limitations in Virtual Environments

1.1.1 Scalability..

1.1.2 Adaptability

ix

1.2 A Mathematical Model of the Relationship between Number of Messages and Users within

a Virtual Environment . .

1.3 Approaches to Scalability

1.3.1 Improving System Resources and Efficiency

1.3.2 Increasing Application Efficiency

1.4 Approaches to Adaptability

1.5 Dynamic Interest Management for Adaptable Virtual Environments

1.6 A Scenario.

1.6.1 Scenario analysis

1. 7 Contributions..

1.8 Thesis structure.

2 Literature Survey

2.1 Virtual Environments

2.1.1 Definition...

2.1.1.1 Range of Definitions .

2.1.1.2 Use of Modifiers

2.1.1.3 New Definition .

2.1.2 Origins

2.1.3 Range of Usage.

2.1.3.1 MUDS

2.1.3.2 War Simulations

2.1.3.3 Gaming

v

5

5

6

7

7

9

9

10

11

11

12

14

15

15

16

16

16

17

18

19

21

22

22

22

22

x

2.1.3.4 Television and Entertainment . 22

2.1.3.5 Collaboration . 23

2.1.3.6 Training ... 23

2.1.3.7 Industrial Design . 24

2.1.3.8 Archaeology 24

2.2 Interest Management 24

2.2.1 Scalability of Virtual Environments. 25

2.2.2 Definition 26

2.2.2.1 Interest Management for Scalability 26

2.2.2.2 Interest Management for Managing Interests 27

2.2.2.3 New Definition 28

2.2.3 Techniques for Managing Interests 28

2.2.3.1 Class and Value Based Filtering 28

2.2.3.2 Domains 29

2.2.3.3 Interaction Analysis 29

2.2.3.4 Virtual Parallel Worlds 30

2.2.3.5 Awareness 30

2.2.3.6 Cells .. 31

2.2.3.7 Locales 31

2.2.3.8 Visibility Based Filtering 31

2.2.4 Interest Management Techniques Categorised 32

2.2.4.1 Categorisation 32

2.2.4.2 Locales 32

2.2.4.3 Interacting Locales . 33

2.2.4.4 Hybrid Approaches 33

2.2.4.5 Technique Mapping 33

2.3 Domain Specific Languages 35

2.3.1 Readability 35

2.3.2 Succinctness 36

2.4 Ruby 37

2.4.1 ERB. 38

2.5 Ruby on Rails. 38

2.5.1 YAML. 38

2.5.2 RSpec . 38

2.6 Limitations of current practice 38

xi

2.6.1 Assumptions Made 39

2.6.1.1 Assumptions of Interest 39

2.6.1.2 Assumptions of Capabilities 39

2.6.1.3 Implicit Assumptions 40

2.6.2 Problems with Assumptions . . 41

2.6.2.1 Assumptions and Interests 41

2.6.2.2 Changes in Interest 42

2.6.3 Proposed Solution to Interest Management 43

3 A Framework for Dynamic Interest Management 44

3.1 A Conceptual Model for Virtual Environments 44

3.1.1 Motivations 45

3.1.1.1 To Reason About Interest. 45

3.1.1.2 To be a Model of other Virtual Environments. 46

3.1.1.3 To be Verifiable 46

3.1.2 Axioms 46

3.1.2.1 Attributes 46

3.1.2.2 Artefacts 47

3.1.2.3 Events 47

3.1.2.4 Time 47

3.1.2.5 Processes 48

3.1.3 Users 48

3.1.4 Interaction 49

3.2 Defining Interest Statements . 49

3.2.1 An Intensional Definition of Interest 50

3.2.2 Interest Conditions 51

3.2.3 Combining Interest Conditions 52

3.2.4 Auxiliary Sets for Interest Conditions 52

3.2.4.1 Derived Sets 53

3.2.4.2 Supplementary Sets 53

3.2.4.3 An Example: Spatial Sets . 54

3.2.5 Relative Interests . . . 57

3.3 Example Interest Statements 58

3.3.1 Locales 58

3.3.2 Relative Locales 59

3.3.3 Interacting Locales . 59

3.3.4 Categories...

3.3.5 Combinations.

3.4 Constraints and Conflicts

xii

3.4.1 Interests for Specific Virtual Environments

3.4.1.1 Relative Visibility

3.4.1.2 Constraints.

3.4.1.3 Conflicts ..

3.4.2 Separation of Concerns

3.4.2.1 User Interests: Positive Enforcement .

3.4.2.2 User Interests: Negative Enforcement

3.4.2.3 Simulation Interests: Positive Enforcement

3.4.2.4 Simulation Interests; Negative Enforcement .

3.4.3 Combining Interests

3.5 Summary

4 Virtual Environment Axioms: A Proof of Concept

4.1 The Axioms Revisited

4.1.1 Artefacts ...

4.1.1.1 Artefacts as Objects.

4.1.1.2 Artefacts as Table Rows.

4.1.1.3 Combining Objects and Tables: Object Relational Mapping.

4.1.2 Time.

4.1.3 Events.

4.1.4 Processes

4.2 Data Design. . .

4.3 Implementation Decisions

4.3.1 Data Storage Technology

4.3.1.1 Persistence ...

4.3.1.2 Support for Set Structures

4.3.1.3 Support for Querying ...

4.3.1.4 Support for Spatial Queries .

4.3.1.5 Implementation Choice

4.3.2 Development Methodology ...

4.3.2.1 Test Driven Development

4.3.2.2 Behaviour Driven Development.

4.3.3 Implementation Language

59

60

60

60

60

61

63

64

64

64

65

65

65

65

67

67

67

68

69

69

70

70

71

71

72

72

72

73

73

73

74

74

74

75

75

xiii

4.3.3.1 Supporting Libraries . 75

4.4 Implementation 75

4.4.1 Creating the Database Schema 76

4.4.2 Defining the Artefact Class .. 76

4.4.3 A Sample Virtual Environment 77

4.4.4 The First Interest Statement 78

4.4.5 Viewing the Virtual Environment. 79

4.4.6 A Client Server Architecture 81

4.4.7 An Update Format . 82

5 Interest Statements 85

5.1 Interesting Concepts 85

5.1.1 Attributes .. 86

5.1.2 Virtual Attributes 86

5.1.3 Relative Artefacts 86

5.1.4 Relative Virtual Artefacts 87

5.2 Example Statements 87

5.2.1 Categories . 87

5.2.2 Locales .. 87

5.2.3 Relative Locales 88

5.2.4 Interacting Locales . 88

5.2.5 Combinations 88

5.3 Representing Interest Statements with SQL 89

5.3.1 Categories . 89

5.3.2 Locales .. 90

5.3.3 Interacting Locales . 93

5.3.4 Combinations 94

5.4 Combining Separate Concerns . 96

5.5 Limitations 97

5.5.1 Expressiveness 97

5.5.2 Abstraction 97

5.5.3 Readability 98

5.5.4 Succinctness 98

6 Wish: a DSL for Interest Statements 99

6.1 The Structure of a DSL for Interest Statements .. 99

xiv

6.1.1 Domain Objectives . . 99

6.1.1.1 Abstraction. 100

6.1.1.2 Succinctness 100

6.1.1.3 Readability . 101

6.1.1.4 Expressiveness 101

6.1.2 Structural Concepts .. 102

6.1.2.1 Interest Conditions 102

6.1.2.2 Relative Interest Conditions 103

6.1.2.3 Logical Operators 103

6.1.2.4 Grouping .. 104

6.1.2.5 Abstraction. 104

6.1.2.6 Scoping .. 105

6.2 Wish Structure and Syntax 105

6.2.1 Interest Conditions . 106

6.2.1.1 Automagical Value Quoting. 106

6.2.1.2 Comments 107

6.2.2 Relative Interest Conditions . 108

6.2.3 Logical Operators 109

6.2.3.1 not 109

6.2.3.2 or 109

6.2.3.3 and 110

6.2.3.4 and not, or not . 110

6.2.4 Grouping 111

6.2.4.1 Implicit Grouping 111

6.2.4.2 Explicit Grouping 112

6.2.5 Abstraction 113

6.2.5.1 Subwishes. 113

6.2.5.2 Implicit Parameters 114

6.2.5.3 Nested subwishes 116

6.2.6 Scoping 116

6.2.7 Subwishes: A Myth. 117

6.3 Design and Implementation 117

6.3.1 Agile Development . 117

6.3.1.1 Specifications . 117

6.3.1.2 Modularity . . 117

7

6.3.2

6.3.3

6.3.4

xv

6.3.1.3 Iterative Development

6.3.1.4 An Example Iteration

Iterations

6.3.2.1 Interest Conditions

6.3.2.2 Explicit Logical Operators: not .

6.3.2.3 Implicit Logical Operators: or. and .

6.3.2.4 Converting a YAML nested list to SQL

6.3.2.5 Expressions . . .

6.3.2.6 Auto-quoting ..

6.3.2.7 Grouping ..

6.3.2.8 Abstraction.

6.3.2.9 Scoping ...

Architectural Components.

6.3.3.1 SQL ..

6.3.3.2 YAML

6.3.3.3 Ruby

6.3.3.4 Wish

Implementation Overview

6.3.4.1 YAML to SQL Parser

6.3.4.2 Ruby erb Evaluation.

6.3.4.3 Wish Auto-quoting

6.3.4.4 Wish Grouping. .

6.3.4.5 Wish Abstraction

6.3.4.6 Wish Scoping .

6.3.4.7 Overview

Case Study and Evaluation

7.1 Case Study ...

7.1.1 Artefacts

7.1.2 Football Pitch

7.1.3 Players

7.1.4 Referee

7.1.5 Football

7.1.6 Locales

7.1.7 Auras

7.1.8 All Artefacts

118

118

118

119

........ 119

....... 119

119

119

119

119

120

120

120

120

121

121

122

123

123

124

...... 126

......

126

128

128

. 129

131

131

131

132

134

136

137

137

139

139

xvi

7.2 Example Statements 139

7.2.1 Categories . 143

7.2.2 Locales .. 143

7.2.3 Relative Locales 145

7.2.4 Interacting Locales . 146

7.2.5 Combinations 147

7.2.6 Combining Concerns . 149

7.3 Dynamic Interests 149

7.4 Evaluating The Domain Objectives. 153

7.4.1 Abstraction 154

7.4.2 Readability 154

7.4.2.1 Subwish Names 154

7.4.2.2 Visual Structure 155

7.4.2.3 Abstracting Complexity . 155

7.4.2.4 Removing Ambiguity 156

7.4.3 Succinctness 157

7.4.4 Expressiveness 157

8 Conclusions and Further Work 158

8.1 Summaries 158

8.1.1 Contribution Summary 158

8.1.2 Chapter Summary 159

8.2 Final Thoughts 160

8.2.1 Technology Choices 160

8.2.2 Treating Wish as an Essay 161

8.2.3 Component Objectives . 162

8.3 Further Work 163

8.3.1 Wish as a DSL for Information Scoping 164

8.3.2 Separating Relationships from the Data 164

8.3.3 Resource Costs 165

8.3.4 Rich Interest Conditions . 165

8.3.5 Compiling Wish to Other Representations . 165

8.3.6 Interesting Events 166

8.3.7 Prioritised Events 166

xvii

A Example Iteration

B

C

A.l Wish Auto-quoting Implementation

A.2 Auto-quoting Specification Output .

A.3 Example RSpec Specification: Auto-quoting .

Case Study Data

B.l Football Pitch.

B.2 Players

B.2.1 Red Team.

B.2.2 Blue Team

B.2.3 Goalkeepers .

B.2.4 Referee

B.3 Football

B.4 Locales

B.5 Auras

B.6 All Artefacts

Case Study Example Statements

C.1 Relative Artefacts

C.2 Categories

C.2.1 English Prose .

C.2.2 Wish.

C.2.3 SQL

C.2.4 Matching Artefacts .

C.3 Locales

C.3.1 English Prose .

C.3.2 Wish.

C.3.3 SQL

C.3.4 Matching Artefacts .

C.4 Relative Locales

C.4.1 English Prose . .

C.4.2 Wish.

C.4.3 SQL

C.4.4 Matching Artefacts .

C.5 Interacting Locales . . .

C.5.1 English Prose

167

........... 167

168

169

176

176

177

. 177

177

177

.. 178

178

178

178

.... 178

182

182

182

...... 182

. 182

182

182

182

182

184

184

184

185

. . 185

........ 185

185

185

..... 185

..... 185

C.5.2 Wish.

C.5.3 SQL.

C.5.4 Matching Artefacts .

C.6 Combinations

C.6.1 English Prose .

C.6.2 Wish.

C.6.3 SQL

C.6.4 Matching Artefacts .

D Sub Wishes

D.1 In Awareness Range Of

D.2 Auras In awareness Range Of .

D.3 Overlaps.

D.4 Coloured.

D.5 Named.

D.6 Is

D.7 Within Circle

D.8 Within Box

D.9 Within Cube

D.lO Near To

D.ll Virtual.

D.12 Categorised As

Bibliography

xviii

185

186

186

186

. 186

. 186

186

187

188

188

188

188

188

188

189

189

189

189

189

190

190

191

1

List of Tables

2.1 Categorisation of Interest Management Techniques. .. 34

3.1 Example Interest Conditions . . 51

3.2 The Standard Logical Operators 52

3.3 Combining Interest Statements with Logical Operators 52

3.4 Derived Sets 53

3.5 The Standard Set Operators 54

3.6 The Mapping between Condition Combinations and Derived Sets . 54

3.7 Spatial Operators . 56

3.8 Useful Spatial Sets . 58

3.9 Dealing with Constraints 62

3.10 Combining Concerns of Interest. 65

4.1 Mapping between Conceptual Model Term, Database Term, and Object-Oriented Term 72

4.2

5.1

5.2

6.1

6.2

6.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Attributes for the Initial Design

Deconstructing and Evaluating a Category Based Set Builder .

SQL Conditional Operators

Logical Combinational Operators .

Value Quoting Examples

Evaluating Interest Condition Expressions .

Artefact Attributes. . . .

Football Pitch Artefacts.

All Red Players .

All Blue Players

Goalkeepers .

The Referee .

The Football

Locales ...

73

90

90

103

107

109

132

133

134

135

136

136

137

137

7.9

7.10

7.11

7.12

7.13

7.14

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.lO

Auras

All Artefacts .

All Artefacts (Continued from Table B.9)

Thrquoise Artefacts

Blue Artefacts .. .

Artefacts within the Home Penalty Circle

Football Pitch Artefacts .

All Red Players .

All Blue Players

Goalkeepers .

The Referee .

The Football

Locales

Auras .

All Artefacts

All Artefacts (Continued from Table B.9)

C.1 Red Artefacts.

2

C.2 Artefacts on the Near Side of the Football Pitch

C.3 Football Pitch Artefacts

C.4 Artefacts Matching the Interacting Locales Example.

C.5 Artefacts Matching the Combinations Example

........... 139

· ... 141

. 142

150

152

. 154

176

177

177

177

178

178

178

... 179

180

181

· ... 183

· ... 184

185

186

187

3

List of Figures

1.1 Number of Active Subscriptions for MMOGs from Jan 1997 to July 2006[121].

1.2 Scenario Overview

1.3 Low Resolution Image of the Patient .

1.4 High Resolution Image of a Heart

3.1 An External Entity or User

3.2 Interesting Artefacts.

3.3 Interesting Artefacts .

3.4 More Interesting Artefacts

3.5 Spatial Sets within a Virtual Environment

3.6 spatial Sets can be of any shape or orientation

3.7 Relative Visibility ...

3.8 Constraints Introduced

3.9 Updated Interests for Users A and B

3.10 Blocked Visibility

4.1

4.2

4.3

The Architecture of the Viewing System .

A Simple World Consisting of a Cuboid, Cylinder, Sphere, and Floor

A Client Server Architecture

6

13

13

14

48

50

51

51

55

57

61

61

62

63

80

81

81

5.1 A Simple Representation of a Football Pitch 91

5.2 Determining whether a Given Artefact's x and y Coordinates Fall Within the Area of a

Football Pitch 92

5.3 Determining whether Two Circles Overlap 93

5.4 Determining whether a Given Point is Within a Circle . 95

6.1 The Wish Components 120

6.2 Converting a Wish Statement to SQL 121

6.3 Parsing a YAML Statement and Converting it to SQL . 121

6.4 Parsing a YAML + erb Statement and Converting it to SQL 122

4

6.5

6.6

6.7

6.8

6.9

Parsing a Wish Statement and Converting it to SQL .

Converting a YAML String Element to SQL '"

Combining YAML Elements

Converting YAML to SQL .

The Wish Auto-Quoting Algorithm

6.10 The Wish Compiler

7.1 Aerial View of the Football Pitch.

7.2 Stadium View of the Football Pitch

7.3 Football Pitch Areas .

7.4 The Red Team .

7.5 The Blue Team .

7.6 The Goalkeepers

7.7 The Referee .

7.8 The Football

7.9 The Locale Representing the Near Half of the Pitch

7.10 All the Auras

7.11 A Stadium View of All Artefacts

7.12 An Aerial View of All Artefacts

7.13 All Red Artefacts

7.14 All Artefacts Within the Near Half of the Pitch.

7.15 Artefacts Within the Referee's Aura

7.16 All Artefacts

7.17 All Artefacts that are in Awareness Range of the Referee

7.18 Results of a Combination Statement

8.1 Spatial Map Indicating the Objectives of Wish Components

122

123

............ 124

· 125

· 127

........ 130

· 132

· 133

· . 134

· . 135

· . 135

136

137

138

138

140

140

142

143

144

146

· 147

· 148

148

163

5

Chapter 1

Introduction

The concepts involved in designing, implementing and using virtual environments are both widely un­

derstood and practised. However, there are still some limitations of these environments which hinder

their potential for scalability and, in particular, adaptability. This thesis focusses on the representation

of interests within virtual environments. The techniques introduced are based upon the concept of dy­

namic interest management. They de-couple the logic that implements the interest management from

the virtual environment's implementation. This allows users to influence what he or she is interested in,

and subsequently change their interests.

As a general introduction to this work, this chapter aims to describe in detail detail the motivations of

this thesis, in order to place the focus and goals in a wider perspective and context. Section 1.1 introduces

scalability and adaptability as two of the remaining challenges of virtual environments. It explains the

motivations behind this thesis with respect to these challenges. Section 1.2 introduces a mathematical

model that illustrates the relationship between messages and interest management. Sections 1.3 and 1.4

discuss various approaches to tackling the issues of scalability and adaptability respectively. Section 1.5

then argues the case for dynamic interest management, and explains how it can be used to improve both

scalability and adaptability. This is further illustrated by a scenario presented in Section 1.6, which is

discussed in Section 1.6.1. Finally, Sections 1.7 and 1.8 describe the contributions and structure of this

thesis respectively.

1.1 Limitations in Virtual Environments

Virtual environmentsl are computer generated environments that can be used for a broad set of activities

including simulation, visualisation and collaboration2 . Although there has been over 20 years of research

into the area, particularly within academia and the gaming industry[95]' there are still some serious

computing science challenges remaining. These include scalability and adaptability. Sections 1.1.1 and

1.1.2 discuss these issues in greater detail.

1 Virtual environments are defined in greater detail in Section 2.1.1
2The range of uses of virtual environments is discussed further in Section 2.1.3

6

1.1.1 Scalability

Scalabi lity has long been seen as a major chall enge for virtual environments. The development of war

s imul a tion a nd la rger and la rge r mass ive multiplayer on line games, MMOG , has required an increase

in th s ize a nd complexity of these e nvironments. T his t rend is clear when we consid er commercial online

mu lt i-player games such as Quake[.54]' Second Life[58) and World of Warcra ft[57] . Some of the first

games in th is genre had seve re limitat ions in terms o f the potential number of s imultaneou user . For

example, in 1996 t he game Quake c reated by ID Software[54] on ly supported 16 simu ltaneou player .

However , if we cons ider modern produ ts in t his genre , s uch as Blizzard 's World of Warcraft[57j , we ee

offerings a ble to s upport over 6 ,500,000 c urrent s ub c ribers (see Figure 1.1), and hundreds of thousands

of conc urren t pl ayers[24] . Unfort un a t ely, as the nu mber of participant grows , the contention on hared

resources becomes more severe. H owever, various a lgorithms a nd techniques have been reated to achieve

th is increase in scala bi lity, as discussed in C ha pter 2.

1000 IlOO

• "''''00
. 600600

,sao 000

5.000 000

! ' '''.000
'8. i .. 000000

~ J 5000()()

~ .1000 uoo

l 1500 000

7,000 000

I ,sao OQe

1,000 000

... ,.. • I: -- • .,......
,"" .., .~ ~,

MMOG Activo Subscriptions 21 .0
120,000+

•
,

,
,

J
~

1 ,.

=".- -......
J • '.

R I • __ "'~:" ':::;':~ .. ::_"-' -.:;r---- . - - - . - ~ -,.. - ~ - ~ - ,.

• 1I'mJ 0nhI
...... QO
E'4fOullit

. - DOI1l AQe of cametcl
_"""s.-
FNIF.t'lWsy)Q
e .. <>nIIno

.-SlarvwnGala.-.,
lne.,

____ ory Of ~ I \ilia ...

I~~'
• World 01 \\Wcnn

Pigur l.l : Num ber of Active ubscription for MMOGs from J a n 1997 to July 20061121) .

8veryt hing that can ha ppen in a virt.ual environment requi res either proces ing powe r or ommu­

ni co.lion with e ntities wit hin or outs ide the ystem. Thi t he-is i not. concerned with reducing the

proccs ing power nee ary for the virt.ual e nvironment. to c--x ist . T here are curren tly many s uccess ful

o.pproa hcs whi ch oJlow a vi r t.ual environment im p lement. at.ion 1.0 be clustered over many ervers working

toget.h r . 1I0wevcr , net.work resour es st.ill rem a in very exp n ive , part.icularly ompared with computa­

tional resoll!" cs[481. This t hesis i concerned with t.ech niques capa ble o f helping to m a nage these network

re our es , port.icu leH I t.hrough the a bility to t igh t. ly control the communicat ion between the virtual en­

vironm ent. a n I it users . ne of the motivat ions for t hi might be the con t raint introduced by a limited

ban h idt h . Il aving a fine grained level of cont.rol of the data communicated i a very important i ue for

7

clients using connections with a very low bandwidth, or who have to pay-per-byte. It also affects servers

with a growing number of connected users, as the number of messages the server needs to send increases

quadratically in relation to the number of users3.

1.1.2 Adaptability

The adaptability of a virtual environment is another way of describing its flexibility or its ability to cope

with changing circumstances. For example, the capabilities of the system may change over time, the

number of people using and interacting with the system may change, and the tasks that may be performed

in the system may also change. In response to this, the system may adapt in various ways such as

prioritising certain activities, optimising any computation, or reducing the frequency of communication.

Assumptions generally have to be made in order to optimise systems. Unfortunately the more as­

sumptions made, the less flexible the system becomes. One of the goals of adaptability is to not make

any unnecessary assumptions, and allow the system to be as adaptable as possible whilst maintaining

both the system's usefulness and performance. These assumptions will be explored in greater detail in

Section 2.6.1. This thesis evaluates techniques which allow two of the most restrictive assumptions in

virtual environments to be removed:

• Interests are defined by the simulation: most of the virtual environments that implement

some sort of interest management technique make the assumption that the user is only interested

in a certain set of things (usually things near to the user). The ability to represent changes in

individual tactics is one motivation for allowing interests to be influenced by users .

• Interests never change: most virtual environments also the assume that the user never changes

his or her interests. This can be restrictive as individual user's interests may not always be the

same as those defined by the system. For example, the user may want to arbitrarily change his or

her tactics.

1.2 A Mathematical Model of the Relationship between Num­

ber of Messages and Users within a Virtual Environment

Section 1.1.1 introduced the issue of scalability. It described the trend in virtual environments for in­

creasing the potential number of simultaneous users. This section introduces a mathematical model of

the number of messages needed in a simple virtual environment, and explains that as the number of users

increases, the number of messages that the system needs to generate and transmit can qUickly exceed

any bandwidth limitations.

3See Section 1.2 for a further discussion of this relationship.

8

As described in detail in Section 3.1, a virtual environment can be seen to be composed of artefacts

that are affected by events. For the users of a virtual environment to be made aware of an event, they

must be sent a message describing it. In this simple model, the only artefacts in the virtual environment

are those representing a user".

Consider the following assumptions:

i) The total number of users in a system is N.

ii) Each user creates e events per unit of time.

iii) J.I is the average size of a message.

iv) Each user needs to be made aware of all events.

The total number of events (E) that are generated per unit of time can be calculated as:

E=Ne (1.1)

Following assumption iv, the number of messages (M), per unit of time, that needs to be sent is:

(1.2)

The bandwidth (b) needed to communicate this information, for a unit of time, can be calculated as:

(1.3)

or:

(1.4)

or:

(1.5)

(where k is a constant).

Therefore, as we increase the number of users in the system, the number of messages that the sys­

tem needs to send, and the bandwidth required, increases quadratically, and the contention on shared

resources becomes more severe[83]. Extra messages sent represent a cost in terms of network bandwidth,

routers buffer occupation and end host resources, augmenting latency[67][5]. This is, of course, assuming

that each user is made aware of all events.

4 Artefacts representing users are typically called avatars. See Section 3.1.3 for a further discussion.

9

1.3 Approaches to Scalability

A virtual environment can be seen as consisting of two parts: application logic, and the execution environ­

ment. The application logic is software which defines the processes that the environment is constructed

from. The execution environment is the system(s)5 that executes those processes, stores the application

state, and provides communication with other systems (e.g. clients). In attempting to increase the scala­

bility of a virtual environment, we can approach these two parts separately. We can improve the system

resources and efficiency, and also the efficiency of the application itself. The follOwing sections, 1.3.1 and

1.3.2, explore both approaches.

1.3.1 Improving System Resources and Efficiency

This approach attempts to increase efficiency through improving the hardware capability, protocol ef­

ficiency, and overall design of the system itself. In this context, design refers to the structures within

which different hardware components are linked together.

Of course, faster and better hardware can always be purchased. Unfortunately, as we tend toward

the limitations of current technology we find that the speed-up achieved by combining resources in a

parallel fashion is rarely linear. Communication overheads between computational nodes, and the varying

efficiencies of parallel algorithms for certain types of problems, reduce the potential for linear speed-up.

Regardless of this, a linear speed-up is not a general solution to a quadratic problem.

Noticing that many of the messages sent throughout the system are identical, networking protocols

and smart routers may be employed to solve the problem of unnecessary duplication. In fact protocols for

this problem such as multicast already exist[35], and there are even approaches to optimise the explicit

use of multicast groups[5]. Unfortunately support for protocols like multicast is not pervasive in today's

Internet infrastructure, and therefore it is not currently safe to rely upon them to build scalable virtual

environments for the average consumer. Also, reducing the number of messages that the server has to

send does not reduce the volume of messages that the clients have to receive.

Considering the example given in Section 1.2, we can see that this approach to scalability attempts

to reduce the size of messages (Po), and also potentially reduce the bandwidth required (b) on the server

by using techniques such as multicast in order to not actually have to send M (defined in Equation 1.2)

messages, for M messages to be received across all the clients. However if we consider that our clients

have bandwidth constraints, then the scalability of our system is restrained by the number of messages

received across all clients. Rather than attempt to optimise the network usage, it may be more feasible

to reduce the amount of information that is received by each individual client. This, of course, maps on

to a reduction of messages that have to be sent by the server.

5The execution environment is typically a combination of both hardware and software.

10

Regardless of the system resources available, there will always be a limitation on the number of

messages that can be generated and sent per unit of time. There will also be a limit on the funds

available to purchase the resources. Network resources also still remain very expensive compared with

computational resources[48]. There is therefore a motivation to increase the efficiency of any system.

Improving the system resources and efficiency can only get us part of the way to a solution to the issue

of scalability. This is clearly evident when we consider that there may be a range of clients interacting

with the server, and upgrading them all simultaneously would be a non-trivial task.

1.3.2 Increasing Application Efficiency

A top-down approach to the issues of scalability would challenge the overall design of the application. It

would free us to challenge the following assumption from Section 1.2:

iv) Let us also assume that each user needs to be made aware of all events.

For it is challenging this assumption that allows the following inference to also be challenged:

"as we increase the number of users in the system, the number of messages that the system

needs to generate and send, and the bandwidth required, increases quadratically. n

If it is assumed that all users do not need to be made aware of all events, it is therefore necessary to

create rules for each user, dividing the set of all events into two sub-sets: events to send, and events to

discard. This technique is called interest management.

Again, referring to the example in Section 1.2, we see that the removal of assumption iv changes

the number of messages, M. Instead of simply being the number of events generated multiplied by the

number of users as in equation 1.2, each user now only receives a subset of all the events:

u E [0,1] (1.6)

uEN (1.7)

where u is the ratio of artefacts that are interesting and is inversely proportional to the size of the subset

of events each user receives6 . This has the property of changing our equation for calculating bandwidth

(b) to this:

(1.8)

Note that b still remains quadratic in N

f(x) = kx2 (1.9)

6 Assuming that the proportion of events that are interesting for each user is constant.

11

However, by having the ability to modify the value of u we gain an element of control over the gradient

of the curve; reducing both the number of messages and total amount of bandwidth needed. This would

therefore allow us to cater for potentially many more people for the same value of bandwidth, b.

1.4 Approaches to Adaptability

Typically, an increase in scalability comes at a price: that of adaptability. In order to achieve a high level

of scalability, many assumptions have to be engineered into the systems. This often results in a massive

reduction in their flexibility. No matter how many rules are inserted into systems we cannot ever predict

the behaviour of its users. This is especially true over a long period of time, and when the user base is

very large and diverse. If the longevity of a virtual environment is a requirement, then it is desirable to

increase the flexibility of these systems, and therefore increase the ability to adapt to change. Examples

of assumptions, and systems that contain assumptions are introduced in Section 2.6.1-

Interest management is a key technique to address the scalability problem of virtual environments.

As discussed in Section 2.2.2.1, it has been used almost exclusively to tackle issues of scalability, network

bandwidth and computer processing power. However, as discussed in Section 2.2.2.2, it can also be

used as a valid technique for increasing a system's adaptability. Although the goals of scalability and

adaptability are often orthogonal, they share the ability to be able to benefit from the introduction of

interest management techniques.

1.5 Dynamic Interest Management for Adaptable Virtual En-

vironments

As stated in Section 1.3.2, interest management is a key part of tackling the issue of scalability in virtual

environments. One of the major problems of interest management techniques is their inherently static

nature. Interest management is a set of assumptions of interest used to reduce a virtual environment's

workload. Interest management can be a very effective mechanism for reducing resource usage like network

bandwidth and computer processing power[33] by limiting the amount of information that must be

processed by each user. As discussed in Section 1.4, assumptions made can reduce adaptability. It can

also be difficult to predict interests. This is especially true if we consider that the context within which

the original assumptions were made is likely to change. By de-coupling the logic that implements the

interest management from the main virtual environment logic, this thesis proposes a technique that

allows interests to be changed before and during the execution of the environment.

In addition to it being potentially unsafe to assume that interests within a virtual environment may

never change, it is also potentially unsafe to assume that the characteristics of the virtual environment

12

itself may never change. The following are examples of characteristics which may change during the

life-time of a virtual environment:

• the underlying hardware of the virtual environment,

• the hardware capabilities of clients,

• the available bandwidth,

• the rules within the virtual environment (e.g. game/tactic/simulation type changes).

Adaptability provides a powerful way of approaching some of the problems virtual environments face.

For example, adaptability makes it possible to react to an overloaded system by reducing the scope of

interest (hence redUcing the number of messages needed to be computed and sent).

Essentially this removes the initial assumption that the value of u is the same for each client, or in

other words: "the proportion of events that are interesting for each user is constant". By allowing each

client to influence their value of u, their ability to adapt increases. It also allows users to customise

systems to their interests8 .

1.6 A Scenario

The following scenario illustrates some of the advantages of having an adaptable virtual environment.

A surgeon is about to perform a heart operation on a patient using a new advanced procedure which

involves the surgeon and the patient being located in different places. This is achieved using a virtual

representation of the patient's body generated by sensors in the operating theatre9 . The actual physical

operation is performed by a machine. This is controlled by the surgeon who interacts with a local client,

that provides a haptic feedback device for input, and a visualisation of the virtual representation of the

operation as the output.

Figure 1.2 shows an overview of this situation. As the bandwidth between the virtual representation

and the client is limited, it is important to optimise its usage for the particular situation that it is

representing. For example, before the operation starts the surgeon may want to examine many of the

sensor's readings to get an overall view of the patient's status.

The surgeon chooses to wait for all of the sensor readings to become visible on his client, including

a low resolution graphical representation of the patient (see Figure 1.3). Satisfied that all is ready to go

7The load is potentially proportional to the size and complexity of the world.
sFor examples of methods with which to express interests see Section 2.2.3.
9 A similar approach has already been used to teach operational procedures[103J.

Patient

Sensors

Virtual
Representation

Operation
equipment

13

--8---

Figure 1.2: Scenario Overview

Haptic
feedback
device

Client

Visualisation

Fi ure 1.3 : Low Resolu tion Image or the P atient

Surgeon

14

ahead , he indicates to the system that he wishes to have a high resolution graphical representation of

on ly t he patient 's heart (see F igure 1.4) to analyse what he has to do, the operation then tart .

Figure 1.4 : High Resolution Im age of a Heart

In order for the information t hat t he su rgeon's client retrieves from the virtual repr entation to be as

useful as it can be only information important to the operation is sent i.e. even that r fer to the heart .

This is achi eved by reducing the surgeon 's area of interest from the whole body to th immediat a rea

around the heart (see area A in Figure 1.3). The surgeon t hen tells the lient the types of art factl hat h

is int rested in i.e. the heart , veins and a rteries. The virtu al representation then on ly end information

r garding these artefac ts - t hus artefacts that previously ob cured the heart (u h as th patient 's kin

and rib-cage) a re no longer visible - a llowi ng the surgeon to concentrate hi work n the vital art fa t

of the operation .

During th e operation the pat ient starts to display signs of in creased sensitivity. These sign arc vi ibl

on t he patient's face. As these events a re outsid of the surgeon' chosen interest th yare not vi ible to

him . However, the system providing th virtu al representation de id that this information i rucial

for the surgeon to be aware of and sends it to him. T he surgeon e this new information and i able to

re olve the s itua tion by apply ing more anaesthet. i .

1.6.1 Scenario analysis

In th scenario t he virt ual repr entat ion is, in fact, a virtual environment.. T he urgeon interac within

this virtual environment by creat.ing events. T hese events alter the tate of the virt.ual environment. which

may result. in a chang in t.h output of the client 's out.put dev i e(s). The enario also introduces the

cone pt of interest man agement. as the surgeon controls which artefac and events within the world h

receivc , (in e- en e cu lling t.he s t of all world artefacts and event to a new set which only contain

interest ing , ntiti). In t.his c e, thi is a hieved using the following two techniques:

• Locale: t. h ur con pecified a particular ar a of interest (in thi case area A of Figure 1.3) .

• Categorisation: the surgeon pecified a et. of classifications of artefact that he was interes ted

in .

15

Notice that in the scenario, both the surgeon and the simulation itself specified their interests while the

virtual environment was executing.

1. 7 Contributions

This thesis makes the following contributions to research into interest management within virtual envi­

ronments:

Taxonomy of currently used interest management techniques. The various techniques used for

interest management are surveyed and discussed. Categorisation, locales and interacting locales are

introduced as three general techniques, and it is shown how the various surveyed techniques can

be mapped on to them.

A concept ual model of interests based on set-theory. The taxonomy of interest management tech­

niques is formalised using set-theory, and then implemented using SQL as a proof of concept.

Wish, a domain specific language for representing interests. The implementation of the formal­

isation of the interest management techniques is critiqued, and shown to have limitations in its

usefulness such as a lack of readability, succinctness and no ability to allow for abstractions. These

limitations are overcome through the design of a new domain specific language. This new language,

Wish, is then evaluated using a case study.

1.8 Thesis structure

Chapter 2 presents background information, introducing the concept of a virtual environment in its most

abstract sense. Different conceptual models are introduced, described and analysed. The motivations

for Interest Management techniques are introduced followed by a survey of the available techniques

used in current virtual environment implementations. Chapter 3 introduces the novel categorisation

conceptual model for virtual environments and describes how it can be used to implement dynamic

interest management, and to represent various interest management techniques as introduced in Chapter

2. Chapter 4 describes an implementation of the virtual environment axioms. Chapter 5 uses SQL to

build an implementation of the categorisation conceptual model introduced in Chapter 3. Chapter 6

focusses on the limitations of using SQL as the implementation language, and introduces Wish, a novel

domain specific language which, compared to the SQL equivalent, is more readable, succinct and has

support for abstraction. Chapter 7 evaluates Wish using a case study, and finally Chapter 8 concludes

this thesis.

16

Chapter 2

Literature Survey

Virtual environments have been investigated for many years, with contributions ranging from simple

simulations to massive commercial multi player games. There has been an enormous research focus on

the scalability of these environments, with various techniques proposed in order to meet this challenge

such as data distribution management, and interest management.

This chapter aims to provide the reader with a brief introduction to virtual environments, leading

on to a discussion of some of the major challenges faced by the field. The chapter will introduce the

various techniques used to meet the issue of scalability, and will finally focus on the technique of interest

management. The various concepts within, and implementations of, interest management will be sur-

veyed. The chapter then introduces the key technologies used in this thesis such as Ruby, YAML, and

domain specific languages. Finally the chapter will conclude with a discussion of some of the limitations

of current virtual environment interest management techniques.

2.1 Virtual Environments

This section will introduce the concept of a virtual environment. Starting with a study of alternative

definitions, the section will then explore the origins of virtual environments, and finally illustrate the

range of usage of virtual environment systems.

2.1.1 Definition

This section will introduce the broad range of definitions for the term virtual environment that are

available in the literature. It will then introduce its own definition which will be used throughout the

rest of this thesis 1 •

1 It is important to note that these definitions are purely for the purpose of providing an agreed notion of the concepts
discussed for the rest of the thesis to build upon.

17

2.1.1.1 Range of Definitions

Unfortunately for the task of determining the origins of virtual environments, there is no real consensus

on what actually constitutes a virtual environment. Stuart (107) agrees, and says: "There are a great

many definitions offered by different researchers". However, he turns this point on its head suggesting

that "nearly everyone agrees that certain current systems provide virtual environments". The range of

these certain systems is introduced in Section 2.1.3.

So, what is the range of definitions that Stuart describes? Well we can start with one of his own:

"A VE is an interactive, immersive, multisensory, 3D synthetic environment"

He breaks this definition down as follows:

• By immersive, I mean that rather than looking at and listening to a display cOming from a typical

small computer monitor, the display creates the impression that you're inside the environment

produced by the computer.

• By multi-sensory, I mean that more than one sensory modality is used to display the environment

visual, auditory, haptic, etc.

• By 3D, I mean that not only does the environment appear to the user to surround him, but cues

are also given to convey that it has depth and the user can move through it.

• By synthetic, I mean that the environment is generated by a computer system (it is not, for example,

pre-recorded) [107].

Through this definition, Stuart actually describes the kind of systems introduced in Section 2.1.3.

However, it can be argued that a virtual environment does not necessarily have to be immersive, multi­

sensory or 30(38). For example, the MASSIVE-l system featured a text only interface(44). These are

properties that a virtual environment could offer, but are not necessary for its existence and usefulness.

Consider the case of immersion. It may be possible to experience a virtual environment externally,

rather than from an immersed perspective. It may also be argued that the synthetic nature of a virtual

environment is driven by users immersed in a multi-sensory 3D environment. However, it is possible, and

often interesting, to gather results from the real world (Le. placement of people in a city) and use this

data to drive the environment. This highlights the point that a virtual environment does not necessarily

have to even contain users. I therefore only agree with the final sentence - that a virtual environment

must be synthetic. I feel that the other parts of his definition (immersive, multi-sensory, and 3D) are

interesting and useful properties of many virtual environments, but not general properties that define a

virtual environment.

Consider another definition:

18

"A 8y8tem thro'Ugh which wer8 may interact with each other and collaborate through a virtual

synthetic world"(Oliveira[31))

In this definition we see the previously used words interact and synthetic. We are also introduced to the

concept of collaboration between users of this virtual synthetic world. Collaboration and in particular the

term Collaborative Virtual Environment (CVE) is introduced as a particular type of virtual environment

in Section 2.1.1.2. There are two problems here which are unique to this definition. The first is the usage

of the term collaborate. There are many virtual environments that do not facilitate collaboration. For

example, 3D renderings of architectural plans or any standard VRML world(117). The second problem is

the use of the word virtual. A definition should not contain the words or terms it is itself defining. The

same is true of the following definition:

"virtual environment. An environment which is partially or totally based on computer gener­

ated sensory inputs. "(Federation of American Scientists[90))

Looking further, both wikipedia and answers. com redirect you to their definition of virtual reality.

"Virtual reality (VR) is a technology which allows a user to interact with a computer-simulated

environment. "(Wikipedia[120))

Unfortunately this definition only goes half-way to helping us define a virtual environment, as it uses

the word environment, which is half of the term we're trying to define.

2.1.1.2 Use of Modifiers

If we look at some of the terms that were rejected in the process of attempting to define the term virtual

environment in Section 2.1.1, we are given an insight to the range of usage of virtual environments. These

terms include the following modifiers: interaction, multi-sensory, collaboration, 3D and synthetic. There

are other terms too e.g. multi-user, networked, large-scale, distributed. These terms describe the various

flavours of virtual environments in use, and of course they come in acronym form. Consider the following

example variants:

• VE - virtual environments[16),

• CVE - collaborative virtual environments[25),

• NVE - networked virtual environments[75),

• DVE - distributed virtual environments[80J,

• LCVE - large-scale collaborative virtual environments[68),

• MUDVE - multi-user distributed virtual environment [83) ,

19

• LSVE - large scale virtual environments[66]

• LOVE -large scale distributed virtual environments(17),

• VW - virtual worlds[98].

Matijasevic[78] also discusses this issue suggesting that there are many flavours of VR terms citing

augmented reality, artificial reality, and synthetic environment as some of them. There is also some

conflation with the discipline computer supported cooperative work (CSCW)[47]. Bartlett[8] also agrees:

"One of the largest problems facing current DVE development is a lack of order: even the

topic area Distributed Virtual Environments possesses numerous synonyms; e.g. Networked

Virtual Environment (NVE), Collaborative Virtual Environment (CVE) and to a lesser ex­

tent, Computer Supported Collaborative Work (CSCW)."

What we are seeing here is a combination of two things: an overloading of terms, and the creation

of new descriptive terms to represent specific focuses or properties of particular virtual environments.

Unfortunately, the net effect of this is the pollution of the virtual environment namespace, resulting in

very many terms all describing potentially very small differences. For example, consider the difference

between the terms networked virtual environment and distributed virtual environment. A far worse

result of this situation is where terms start to become implicit. We therefore have some people being

explicit with their terms (MUDVE being a good example) yet others using the term VE, and assuming

people understand that they are implicitly referring to a collaborative, multi-user, distributed virtual

environment. The problem is that the term virtual environment can be as broad as a term such as

programming language.

2.1.1.3 New Definition

In an absence of a clear agreed consensus on a definition, let us attempt to create our own for the

purposes of this thesis. Let us use a literal definition of the component words as a starting point:

vir·tu·al I,vs:tjusll

adjective

almost or nearly as described, but not completely or according to strict definition [82]

This definition describes the notion of a concept being very similar to, but not exactly the same as,

another concept. This could refer to both imitation or emulation. Let us also considers the following

definition:

virtual, a. (and n.)

1. a. Possessed of certain physical virtues or capacities; effective in respect of inherent natural

qualities or powers; capable of exerting influence by means of such qualities. [61]

20

This definition, taken from the Oxford English Dictionary, refers to entities that have virtues, or

attributes that are capable of exerting influence or interacting with our world through such attributes.

This loosely ties in with the previous definition by referring to imitations or emulations of real world

entities that are able to influence the real world. The concept of software fulfils this criteria, being

constructed with language, yet capable of printing results, drawing pictures, producing sounds, moving

arms, etc.2 This brings us back to the Oxford English Dictionary and a definition within the scope of

computing:

virtual, a. (and n.)

g. Computers. Not physically existing as such but made by software to appear to do so from

the point of view of the program or the user; spec. applied to memory that appears to be

internal although most of it is external, transfer between the two being made automatically

as required. [61]

Looking at this computing related definition, we can infer that a virtual environment is a software

entity which intends to emulate or imitate something. The spec part of the definition refers to a specific

example of this. It describes the concept of virtual memory whereby the operating system emulates

physical RAM using the capacity of an attached hard-drive.

The environment component of the term virtual environment alludes to the concept that is to be

emulated or imitated. Let us also look at some definitions of that term:

environment

2. concr. a. That which environs; the objects or the region surrounding anything.[61)

environment, n.

Add: [2.] e. Computing. The overall physical, systematic, or logical structure within which (a

part of) a computer or program can operate; the particular combination of operating system,

software tools, interface, etc., through which a user operates or programs a system.[61)

Again, we have two definitions: a generic one, and one specific to computing. The generic one intro­

duces three important concepts: object, region and the notion of enclosing or containing. The environment

is therefore a container, region or set of objects which surround other items. Herein lies an interesting

philosophical question: what are those items that are surrounded by an environment? For this I will offer

a recursive answer and suggest that those items can be an environment, region or object.

The computing definition acts as a red herring in our quest to define the term virtual environment,

and really defines the term computing environment rather than the more general term, environment.

2 "The progmmmer, like the poet, works only slightly remoued from pure thought-stuff. He builds castles in the air, from
air, creating by exertion 0/ the imagination. Few media 0/ creation are so flexible, so easy to polish and rework, so readily
capable 0/ realizing gmnd conceptual structures. Yet the progmm construct, unlike the poet's words, is real in the sense that
it moues and works, producing wible outputs sepamte from the construct itself. It prints results, dmws pictures, produces
sounds, moues arms. "[19J

21

It describes the whole computing system which is presented to a user. An implementation of a virtual

environment (software and hardware) would itself be an environment in this sense, but it's a confusing

overloading of the term.

Pulling the relevant parts of all these definitions together, I define the term virtual environment as

the following3:

A region, constructed by software, containing artefacts which themselves possess attributes

2.1.2 ()rigins

The origins of virtual environments differ depending on how broadly the term is interpreted. The range

of potential interpretations depends on many things, including a subjective interpretation of the required

realism of the simulation. For example, it might be assumed that the simulation has to be realistic, which

is not part of the definition in Section 2.1.1.3. It also depends on the particular definitions of the terms

8oftware, region and artefact.

It can be argued that Multi User Dungeon systems (MUDs)[29] were in fact basic virtual environments[38].

They enable a group of people to collaborate and communicate in a text based environment, whilst at­

tempting to achieve goals and objectives4• These systems reached the height of their popularity in the

early 80s, and contained many of the components found in modern virtual environments such as rooms

and users5.

Currently, there exists a strong association between virtual environments and the concept of virtual

reality (VR). VR represents technologies related to the input/output capabilities of a system. With

simple MUD based systems, input and output was in the form of text. Input usually took the form

of a domain specific language6 , DSL, which closely related to natural language. This DSL would allow

the user to describe his or her actions within the environment. Output was usually in the form of text

descriptions of the rooms and objects and events that took place. VR attempts to bring the input and

output mechanisms of the system closer to reality. Instead of text based inputs we might want to use

our body movements and voice, and instead of text based outputs we might want to see, hear and feel

the world. These are clearly very bold goals, and above and beyond the scope of this thesis, yet great

strides have been taken since the early text based days. Some of the first virtual environments to include

elements of virtual reality were war simulations such as the SIMNET system[22] which was designed and

developed by Defence Advanced Research Projects Agency, DARPA.

3The word artefact is chosen instead of object to reduce the chance of confusion between a virtual environment object
and a software object such as those found in object-oriented programming.

4Typically in fantasy setting populated with warriors, elves, dragons and pots of gold.
5The users can be controlled both by people and the system. A distinction discussed further in Section 3.1.3.
uFor more information on DSLs see Section2.3.

22

2.1.3 Range of Usage

2.1.3.1 MUDS

Over the past 30 years, since the inception of the first MUD7, the usage of virtual environments has

varied widely. MUDs were typically used for role-playing. The types of role-playing varied from Dungeons

& Dragons[28] style fantasy worlds, to science-fiction visions. Players would communicate inside these

worlds, interacting with each other and objects of various kinds. Often there would be objectives to

achieve, but these were not necessarily essential to the experience. They are still in use, however, for

collaborative work, communication[26] and even studies into the formation of online cultures[I00].

2.1.3.2 War Simulations

Simulating military scenarios was one of the first uses of virtual environments. During the 1980s the

Defence Advanced Research Projects Agency, DARPA, developed SIMNET[22] which was designed to

support up to several hundred simultaneous users. The users interacted with mocks of vehicles such as

tanks and aircraft in order to simulate actual conditions. It was used for tactical rehearsals for military

operations such as U.S. actions in Desert Storm in 1992.

2.1.3.3 Gaming

An increasingly popular use of virtual environment systems is for entertainment. Gaming virtual environ­

ments tend to target consumer hardware such as PCs or consoles. Doom[53J, released by id software in

1993, is considered to have pioneered the use of immersive 3D graphics and networked multiplayer gaming

on the PC platform. Doom supported four simultaneous users allowing them to play either co-operatively

or against each other. Since then there has been a consistent development of similar games offering in­

creasingly realistic 3D graphics, and increasingly complex forms of collaboration with increasing numbers

of participants (see Figure 1.1 in Section 1.1.1).

Today, all current games consoles and computers offer network support. There are a number of popular

virtual environment systems offering a wide range of game experience, from World of Warcraft[57] to

war simulations such as Return to Castle Wolfenstein[55] and to much more general community-driven

simulations such as Second Life[58].

2.1.3.4 Television and Entertainment

Television and entertainment is a promising direction for virtual environments. However, there hasn't

yet been a media packaging of such technologies that has been a success in the same sense as popular

7The first known MUD was created in 1978 by Roy Thubshaw and Richard Bartle at Essex University in the UK on a
DEC PDP-10.

23

television soaps or films. The following are examples of virtual environments used within television and

entertainment:

• The MASSNE-2 system[45] was used to research network patterns and user activity inside inhab­

ited TV events for an experimental TV show called "Out of This World".

• Counter Strike [116] is a game where teams of counter-terrorists battle against a team of terrorists

in a series of rounds. Each round is won by either completing the mission objective or eliminating

the opposing force. It is not only possible to play the game, it is also possible to be a spectator,

watching the game from any viewing angle - including from the perspective of any of the actual

game players. This is a popular option - particularly with high-profile battles .

• In 1993 Craig Charles hosted a television programme called Cyberzone which featured on BBC2.

This game featured a number of contestants who battled each other in a virtual environment.

However, it was not particularly popular, and only lasted for one series .

• The lTV television programme 'The Krypton Factor' put contestants through ''the ultimate mental

and physical tests". From the 1988 series onwards, one of the tests, the response test, consisted

purely of flight simulator tests. In these tests, the contestant interacted with a virtual environment

simulating the landing, launching or flying of a variety of aircraft including helicopters, aeroplanes

and even space rockets.

2.1.3.5 Collaboration

Virtual environments can be used for cooperative or collaborative work between groups of people. A

term often used for this is Computer Supported Cooperative Work (CSCW)[47]. For example, virtual

environments have been used for team training exercises[77]. Modern commercial virtual environments

such as World of Warcraft and Second Life have been used as research contexts for analysing collaborative

play[88], and even economic studies[92].

There are a number of concurrency challenges to this field associated with object access issues such

as locking, transaction mechanisms, turn-taking protocols, centralised controllers, dependency-detection,

reversible execution,and master entities. [18]. It is issues like these which promote the thinking that virtual

environments mimic many aspects of operating systems[74].

2.1.3.6 Training

Virtual environments can be used for a variety of training purposes. The following are some examples of

these:

24

• Virtual environment technology was used to construct a model of the Hubble Space Telescope.

It was used to train a team for a repair and maintenance mission conducted by the National

Aeronautics and Space Administration (NASA)[70).

• Virtual environments can be used to train new remote operation vehicle (ROV) pilots.[97) ROVs

can be used for a variety of tasks that aren't necessarily accessible or safe for humans such as

underwater search and salvage, inspection, surveying, scientific exploration, and disarming mines.

• Virtual environments can be used in the initial training of pilots in potentially dangerous or haz­

ardous vehicles such as planes, tanks, and other military vehicles[Bl)8.

2.1.3.7 Industrial Design

Virtual environments are used in various fields of industrial design such as car manufacturing. For

example, they can be used during the process of conceptualising and prototyping products[llB). In these

cases the realism of the virtual environment interface can often be crucial[3). Also, they may facilitate

the collaborative design of new products[65).

2.1.3.8 Archaeology

VITA (Visual Interaction Tool for Archaeology), is an experimental collaborative mixed reality system

for offsite visualisation of an archaeological dig[14). VITA augments existing archaeological analysis

methods with new ways to organise, visualise, and combine the standard 2D information available from

an excavation (drawings, pictures, and notes) with textured, laser range-scanned 3D models of artefacts

and the site itself. Virtual environments can also be used to recreate historical buildings or areas in order

to help people visualise, and learn about past structures and contexts[40).

2.2 Interest Management

This section describes the concept of interest management in detail following its introduction in Section

1.3.2. Sections 2.2.1 and 2.2.2 introduce some of the key motivations and definitions of interest man­

agement found within the literature. Section 2.2.3 follows by describing a range of interest management

methods used within virtual environment implementations. Finally, Section 2.2.4 shows how the tech­

niques introduced in Section 2.2.3 can be distilled into a small number of core techniques. These core

techniques will be the focus of the rest of this thesis.

8Flight simulators have even been used as a therapy technique for people suffering from a fear of flying[51J.

25

2.2.1 Scalability of Virtual Environments

Section 1.2 described how in naive virtual environments, the number of messages needed to be sent by

the server increases quadratically as the number of users increases. Scalability can be an issue for large

scale virtual environments. Brunton et aJ.[20] argue that very large scale distributed simulations suffer

from two scalability issues with respect to network traffic:

1. sheer volume of data,

2. the ability to receive and process information.

The following are some of the methods used to tackle these issues:

Load Sharing Chen et a1.[24], and Iimura et a1.[56] split the computational load of the virtual envi­

ronment system over a set of separate servers. Duong and Zhou[34] have developed load sharing

algorithms that aim to optimise the spreading of computation load across a set of such separate

servers.

Caching and Pre-fetching These techniques allow users to cache items locally (thus removing the

need to request the same item again), and also to predict which items may be requested, and

download them when it's optimal to do so (Le. when the network is not busy)[94). For example, the

Cyberwalk system[89] supports caching and offers different levels of detail of geometry information

through its multi-resolution caching system.

Aggregation In the PARADISE system[106] everything is an aggregate. An aggregation is a simulation

entity that represents a group of other entities. By treating a number of entities as one artefact,

the number of messages that needs to be sent reduces in proportion to the granularity of the

aggregation.

Peer to Peer Architecture It is also possible to use peer-to-peer techniques, essentially breaking out

of the traditional client-server architecture. This can have the effect of distributing and sharing the

system's computation and messaging across multiple nodes, instead of relying on one single node.

For example, Rhalibi et a1.[101] propose a combination of a peer-to-peer architecture and caching

and pre-fetching techniques.

Multicast Communication Many virtual environment implementations make use of the multicast

protocol [35] as a way of reducing the number of messages that have to be sent. For example,

Araujo et a1.[5] propose a number of approaches to optimise the use of multicast groups within

virtual environments by minimising the number of active multicast groups.

However, in terms of cost, network resources still remain very expensive compared with computational

resources[48]. There is therefore an argument for the use of top-down approaches (see Section 1.3.2) to

26

efficiently manage network resources. One such top-down approach is interest management. Two of the

main goals of interest management are to minimise network traffic and reduce the burden on clients[76) _

the two main issues raised by Brunton et al. Interest Management is therefore a key technique to address

the scalability issues of large scale virtual environments[69). The following section will introduce and

discuss the various definitions of this technique.

2.2.2 Definition

There are a number of terms that are often used interchangeably with the term interest management,

such as data distribution management[109], data subscription[21) and relevance jiltering[9). The terms

data distribution management and data subscription tend to represent interest management techniques

focussed on the class of problems described in Section 2.2.1: namely scalability concerns. There is,

however, another focus for interest management: namely the management of interests, i.e. the ability

to represent and manipulate a variety of interests. The following sections will explore these different

definitions.

2.2.2.1 Interest Management for Scalability

Ding and Zhu[33) describe interest management as "the problem of avoiding broadcast communication".

Brunton et al. [20) also provide a similar definition: "where data is transmitted only if there is a defined

need for it". These definitions clearly have a focus of reducing the number of data transmitted by the

system - essentially a reduction in the number of messages sent. The correlation between the term data

distribution management and the goal of scalability is made explicit when considering the goals of the

HLA-DDM9[85]. This particular data distribution management system limits the messages received by

users in order to reduce the message traffic over the network, and the data set required to be processed

by the receiving user.

Brunton et al. [20] describe two primary purposes for the technique of interest management:

• Technological: to reduce the amount of network traffic

• Operational: to support the need for the user to define what information for the simulation will

be displayed

The technological purpose matches the scalability motivations that were discussed above and also in

Section 2.2.1. However, the operational purpose matches up with a new concept: that of user requirements.

The following section will explore this particular concept in greater detail.

GHLA-DDM - High Level Architecture Data Distribution Management, introduced in Section 2.2.3.1

27

2.2.2.2 Interest Management for Managing Interests

Consider the following definitions of interest management:

• "limiting the amount of information passed across a communications interface to the information

of interest for a certain user perspective at that moment in time"(Singhal and Zyda[105]),

• "identifying which objects and information in a system are of relevance to a particular observer"(Purbrick

and Greenhalgh[99]),

• "the process by which one exploits the interest of each user to minimise the number of update

messages that must be propagated"(Minson and Theodoropoulos[84]),

• "the process of filtering irrelevant messages"(Masa and :lara(76),

• "reducing messages to a smaller relevant set"(Morse[85]).

These definitions introduce a new concept - that of relevance or interest. This notion is succinctly

represented with either Morse's or Masa and :lara's definition. This smaller, relevant set is often called

an area of interest and usually correlates with the sensing capabilities of the system being modelled,

such as visibility[20j. Meehan [83) describes the notion of an area of interest as "the distributed parts

of the virtual environment to which a user has access." These distributed parts may include artefact

update data, artefact geometry and communication. This indicates that the definition of the concept

interesting may not just be the representation of the interests of one particular user, but potentially the

combination of many interests such as that of the user, and that of a system controlling access. This

concept is described further in Section 3.4.

Antunes et al. [4) argue that the goal of interest management is to allow each user to only process the

information that is relevant for them, and is used to:

• reduce network bandwidth,

• increase the system's scalability,

• promote collaboration by using it to scope user interaction.

Therefore, by focussing on the management of interests, it is possible to tackle the issues of scalability

described in Section 2.2.1, and also open up interesting areas of research such as techniques for describing

interests, and the study of interaction scopinglO.

I°Techniques for seoping interaction are further diseussed in Sections 2.2.3.3 and 2.2.3.5

28

2.2.2.3 New Definition

Consider Morse's definition of interest management:

"reducing messages to a smaller relevant set"Morse[85]

This statement, like most of the definitions discussed in Section 2.2.2 uses the message as the focus

of interest. This may be due to the fact that interest management techniques were initially created to

reduce the number of messages sent. However, consider the following definition:

"identifying which objects and information in a system are of relevance to a particular

observer"(Purbrick and Greenhalgh[99])

Purbrick and Greenhalgh mention objects, or artefacts, as the focus of interest. As Section 3.1.2.2

introduces, events are changes in artefacts, and messages contain event information. If we use artefacts

as a focus of interest, it is therefore possible to scope all the messages to those that affect the artefacts

that we're interested in.

Section 2.2.2.1 described the relationship between terms such as data distribution management and

the motivation of increasing scalability. Section 2.2.2.2 described the relationship between terms such as

interest management and the motivation of managing interests. Perhaps another, potentially oversim­

plifiedll method of distinguishing these two concepts is that data distribution management is primarily

concerned with messages, and that interest management is primarily concerned with artefacts.

Therefore, in order to disambiguate from terms such as data distribution management, my definition

of interest management is as follows:

"Interest management is the scoping of all world artefacts to a smaller relevant set"

2.2.3 Techniques for Managing Interests

This section will introduce the range of techniques used for managing interests within virtual environ­

ments. These techniques are categorised in Section 2.2.4.

2.2.3.1 Class and Value Based Filtering

Class and value based filtering techniques define interesting objects based on logical predicates that reason

about artefact attribute values, and artefact classes. For example, all red artefacts, and all vehicles are

examples of predicates that reason about values and classes respectively.

The High Level Architecture - Data Distribution Management, HLA-DDM, uses this technique[108].

The HLA is a IEEE standard of computer simulation in 2000, developed by Defence Modelling and

llClearly, there are exceptions to these rules. For example, it is perceivable that a user might wish to express an interest
In a particular type of event. This Is discussed further in Section 8.3.6.

29

Simulation Office (DMSO) of the U.S. Department of Defence. It was an initiative targeted at unifying

almost all existing military simulations[85).

MASSIVE 2[43) supports the representation of a hierarchy of groups or classes. For example, a crowd

may be composed of artefacts and other crowds recursively. This is similar to the concept of aggregations

introduced in Section 2.2.1, however in this case the layers of abstraction, or aggregation, can be used

when describing interests.

2.2.3.2 Domains

e-Agora[76) organises the shared state of a virtual environment into domains and sub domains. The

domains represent categories of areas of interest (logical groups, regions, etc.), and the sub-domains

represent concrete areas. Any state variable belongs to any number of domains specified upon creation

(a static relationship). When a state variable is updated, a sub-domain set is associated with the update

(a dynamic relationship). Users are then able to express an interest in a set of domains and sub-domains.

2.2.3.3 Interaction Analysis

Han et a1.[48) introduce a filtering scheme that reduces the number of messages by dynamically grouping

users based on their interests and relative distances. This approach attempts to make the following

assumptions based on real world observations:

1. people can perceive artefacts near to them more frequently than those far from them

2. people focus more on objects of high interest

3. people tend to interact more frequently with people with similar interests

Ding and Zhu[33] analyse so-called "crowd effects": how users interact in a crowded space. Their

work is concerned with dynamic interaction in crowds, from which they derive the semantics of user

behaviours, or more specifically, the alteration of interest focus of users. From examining the interaction,

they are able to determine the following types of artefact:

• Hotspot: an artefact with many other artefacts interested in it,

• Activist: an artefact interested in many other artefacts.

They argue that these artefact types influence the psychology (and therefore interest) of the crowd

through three main effects:

• Propagation: if A is interested in B, and B is interested in C, then A may become interested in

C,

• Feedback: A's interest in B is affected by B's interest in A,

30

• Conformity: A's interest in B is enhanced if B is a hotspot.

2.2.3.4 Virtual Parallel Worlds

VELVET [32] introduces an adaptive mechanism which allows each participant to receive as much as

possible (or requested) from the virtual environment. This is achieved by managing an area of interest

through the concept of the parallel virtual world. Each user in VELVET has their own parallel virtual

world, which is essentially a subset of the full world scoped by their interests. These interests are sets

of targets for given metrics such as the number of users, the distance, the network bandwidth, or even

a mixture of targets. Given that some of these metrics are constantly changing, such as the number

of nearby users, the area of interest will also change accordingly. Oliveira[32] describes this as area of

interest shrinking.

2.2.3.5 Awareness

The following are examples of awareness used for representing interests:

• In the MASSIVE system[46] each virtual environment artefact has an associated aura which defines

a spatial area within which interaction with other artefacts is possible. Interaction between two

artefacts can therefore only occur if their auras collide or overlap.

• The HLA DDM system[85] employs a similar, but not necessarily spatial, concept through the

notion of regions. Each artefact has both an update region and a subscribe region. An artefact is

discovered by a user when the artefact's update region overlaps the user's subscription region.

• Benford and Fahlen's[12] introduced the concept of the spatial model of interaction. This model

uses the following aura like entities:

- Focus: an area representing an artefacts ability to perceive.

- Nimbus: an area representing an artefacts ability to be perceived.

Each artefact in a virtual environment using this model has both a focus and a nimbus associated

with it. These entities are used to determine awareness. Given two artefacts, A and B, A's awareness

of B is proportional to how much A's focus overlaps B's nimbus.

• The e-Agora system[76] partially adopts the aura-nimbus model, but provides an abstraction which

depends on relationships between properties that are not necessarily spatial properties. Auras and

nimbuses refer to sets of domains and sub-domains (see Section 2.2.3.2).

31

2.2.3.6 Cells

A virtual environment may be divided up into tessellating regions often called cells. An example of

this technique is found within the NPSNET system[73j,[72j. NPSNET partitions the spatial area of the

virtual environment is into hexagonal cells. Each user has a circular area of interest, and if this area

overlaps a cell, then the cell is deemed to be interesting. A user is therefore only interested in the cells

within close proximity. Second-Life also splits the world into a set of tessellating squared regions[102].

2.2.3.1 Locales

Locales are spatial areas within a virtual environment, and can be used to define interest. For example

a user may be interested in all artefacts within the same locale as itself. The following are examples of

locales within virtual environments:

• In the Spline system[1l9j, the world is divided into locales. Unlike the hexagonal cells in NPSNET,

locales can have any shape, and they each have their own coordinate systeml2 .

• The Score system[67j divides the world into cells. Similar to NPSNET, each user has an area of

interestl3 , and if this area overlaps a cell, then the cell is interesting. Score differs from NPSNET

in that it facilitates the dynamic re-partitioning the worldl4 . Score allows for two policies which

determine cell size: pre calculation of a fixed cell size, dynamic re-estimation of cell size during run

time.

• Chen et al. [24] also dynamically re-partition the world into locales. The repartitioning is triggered

by quality of services drops below an accepted level

• The MASSIVE-3 system[99J extends Spline's locales with support for abstractions. These abstrac­

tions may be sets of locales, or alternative representations of locales.

2.2.3.8 Visibility Based Filtering

The RING system[39J filters interest based on the visibility of a given artefact. This visibility is essen­

tially a viewing frustum IS with a given orientation. If another artefact is within the frustum, then that

artefact is interesting. RING also pre-calculates line of sight visibility within the world based Teller and

Sequin's[110J visibility pre-processing work. This allows occluding artefacts such as walls to interfere with

the visibility of artefacts. Hosseini et al.[52] argue that it is possible to get the client's renderer to do

12Links between locales includes a 3D transformation for the coordinate systems. These transformations allow tardis like
structures which may larger on the inside than the outside.

131n the case of Score, the area of interest is a square.
14Re-partitioning in this case is to tackle crowding issues (see Section 2.2.4.2 for more information on crowding).
IS A viewing frustum is a representation of the visibility of an artefact. This representation is typically a cone or pyramid

with a particular size and orientation.

32

this work in order to remove load from the server. However, this has no reduction affect on the number

of messages sent within the system.

2.2.4 Interest Management Techniques Categorised

This section describes a mapping between the interest management techniques introduced in Section

2.2.3 and the following generic categories:

• Categorisation (see Section 2.2.4.1),

• Locales (see Section 2.2.4.2),

• Interacting Locales (see Section 2.2.4.3),

• Hybrid Approaches (see Section 2.2.4.4)

Finally, section 2.2.4.5 describes the mapping itself.

2.2.4.1 Categorisation

The category based approach is a more general form of the class and value techniques described in Section

2.2.3.1. Category based filtering techniques determine interesting artefacts based on logical predicates

that reason about information associated with each artefact. The following are the different types of

information that may be associated with an artefact:

Artefact Attribute Values This information is essentially the data that the virtual environment needs

to represent and use the artefact. For example, it might be geometry information, location and

orientation information etc.

Explicit Metadata This information is extra information about a given artefact that is defined like

attribute values, yet it is only used for defining interest statements. This information could be class

associations, hierarchy information etc.

Implicit Metadata This information is similar to explicit metadata. However it is not defined like

attribute values, it is generated using algorithms based on other information. This information

could be levels of interaction, or a description of the artefacts within line of sight.

2.2.4.2 Locales

As Section 2.2.3.7 describes, locales are spatial areas within a virtual environment. Locales can therefore

be used to describe regions such as areas, regions and cells. Purbrick and Greenhalgh(99) also argue that

region-like notations such as cells and viewing frustums can be subsumed by a mapping on to locales.

33

For example, it could be possible to use a spatial area such as a frustum to model the area of visibility

of an entity within the virtual environment. This frustum can be seen to be a particular type of locale.l6

2.2.4.3 Interacting Locales

Given that locales can represent spatial areas, it is therefore possible to use them to represent auras,

focuses and nimbuses. We are therefore interested in the spatial relationships or interactions of these

particular types of locales. For example, if the locale that represents artefact A's focus overlaps the

locale that represents artefact B's nimbus, then artefact A can be said to be aware of artefact B.

2.2.4.4 Hybrid Approaches

Each of the three techniques introduced above has its own limitations. For example, consider the following

issues:

Categorisation It can be hard to classify users by predefined types or classes. Han et al.(48) argue that

this kind of filtering does not work well with systems where users' interests change dynamically.

Locales Ding and Zhu[33) argue that region based techniques do not handle crowded situations. For

example, they tend to assume an even distribution of artefacts, yet in certain contexts the artefacts

might all crowd in a particular locale17 .

Interacting Locales May suffer from similar issues to locales such as crowding.

We may therefore wish to combat some of the limitations that are faced by individual techniques by

combining the techniques together. For example, it might be possible to combat the effects of crowding

by combining locale based interest with a category based interest.

2.2.4.5 Technique Mapping

Table 2.1 describes how the various techniques introduced in Section 2.2.3 may be mapped on to the

categories introduced in Section 2.2.4. This thesis is based on these three types of interest management

technique: categorisation, locales, interacting locales, and a mixture of all three techniques.

These general techniques will be the subject of the rest of this thesis. Any formalisation or implemen­

tation of these general techniques can therefore be used to represent any of the more specific techniques

described in this chapter. The formalisation of these general techniques, lends itself to the specification

of a new domain specific language which can focus entirely on representing interests. Domain specific

languages are discussed further in Section 2.3.

16lt is important to note that locales in this sense differ from those presented in Spline and MASSIVE 3 in that they
have a global co-ordinate system, and that presence within a locale is a fundamental property.

17For more information on crowding within virtual environments see [87J, [86J and [13J.

34

Table 2.1: Categorisation of Interest Management Techniques

Technique Category Method
Class Based Filtering Categorisation Filter by explicit artefact metadata representing its

class
Value Based Filtering Categorisation Filter by artefact attribute values

Group Hierarchies Categorisation Filter by explicit artefact metadata representing its
relationship to other artefacts

Domains Categorisation Filter by explicit artefact metadata representing its
membership of the user's domains and sub-domains

Interaction Analysis Categorisation Filter by implicit artefact metadata based on statis-
tics gathered from previous interactions

Virtual Parallel Worlds Hybrid Approach Filter by a logical combination of implicit artefact
metadata, explicit artefact metadata, artefact at-
tribute values and relationship with locales associ-
ated with the user (e.g. a viewing frustum).

Spatial Model of Interaction Interacting Locales Use locales to represent artefact auras. When the
two locales representing auras collide, then the cor-
responding artefacts are interested in each other.

HLA DDM Regions Hybrid Approach Create two sets representing artefact update and
subscribe regions by a logical combination of implicit
artefact metadata, explicit artefact metadata, arte-
fact attribute values and relationship with locales
associated with the user (e.g. a viewing frustum).
Check for artefacts that are members of both sets.

Cells Locales Create a set of tessellating locales representing the
cells.

Locales Locales A direct mapping.
Visibility Based Filtering Locales Use locales to represent artefact viewing frustums.

Line of Sight Categorisation Determine which artefacts are visible using algo-
rithms based on artefact attributes (geometry infor-
mation).

35

2.3 Domain Specific Languages

Domain specific languages (D8Ls)18 are computer languages targeted to a particular kind of problem,

rather than a general purpose language aimed at any kind of software problem.[37]. For example, DSLs

are not necessarily 'lUring complete, i.e. possessing the computational power equivalent to the universal

TIlring machine[1l5]. The expressiveness or computational power of a D8L need not be any greater than

the demands of context or domain within which it will be used. Some well-known examples of DSLs are

HTML and SQL and XML.

Internal D8L8 use the constructs and syntax of a general purpose programming language itself to

define a DSLI9. Constructing DSLs like this is similar to bottom-up programming[42] in which the

language is changed to suit the problem. The Lisp, Smalltalk and Ruby communities have a strong

tradition of USing internal DSLs.

External D8L8 have their own syntax. A compiler is then written to parse the DSL and possibly

generate code for standard general purpose language, or interpret it directly. This approach is

traditional in the Unix community which has many tools that make this easier such as yacc and

lex[62]. XML is an example of an external DSL.

The expressiveness of a language refers essentially to the power and ability of representing different

concepts within its domain or context. As explained above, the expressiveness or computational power

of a DSL need not be any greater than the demands of context or domain within which it will be used.

The focus of DSLs tends to be on creating a language that fits the domain for which it was created. The

judgement of how well the language fits is clearly subjective. However, it usually has a correlation to

the readability and succinctness of the language from the perspective of the domain within which it is

executing. Sections 2.3.1 and 2.3.2 explore the concepts of readability and succinctness respectively.

2.3.1 Readability

In a given language, complex, expressive statements can very easily become difficult to read. A good

example of this is the syntax of regular expressions. For example, consider the following regular expression

which matches valid e-mail addresses:

/\A([\w\.\-\+)+)@((?:[-a-ze-9)+\.)+[a-z){2.})\z/i

Not only are more readable statements easier to read20 , they are also easier to write and verify.

Having a readable language can also help in exposing obvious bugs. For an example of a language that

180SLs are also called little languages or mini languages(64J.
IQlnternal OSLe are a1eo referred to as embedded OSLs.
aOPleaae excuse the illustrative tautology.

36

attempts to be more readable, consider COBOL. COBOL attempts to bring programming languages

closer to natural languages using keywords such as MULTIPLY, GIVING and BY. Consider the solution

-b + ..)62 - 4ac
x = ---':2=-a---

of the quadratic equation ax2 + bx + c = 0 written in COBOL21 looks as follows:

MULTIPLY B BY B GIVING B-SQUARED.

MULTIPLY 4 BY A GIVING FDUR-A.

MULTIPLY FDUR-A BY C GIVING FDUR-A-C.

SUBTRACT FOUR-A-C FROM B-SQUARED GIVING RESULT-l.

COMPUTE RESULT-2 = RESULT-l ** .5.

SUBTRACT B FROM RESULT-2 GIVING NUMERATOR.

MULTIPLY 2 BY A GIVING DENOMINATOR.

DIVIDE NUMERATOR BY DENOMINATOR GIVING X.

(2.1)

The COBOL approacl1 is probably more readable to someone without a background in mathematics.

However, the mathematic equation is more succinct. Clearly, there is a balance to be struck between

readability and succinctness which many believe COBOL never managed to successfully achieve. This

is evident in the presence of humorous attempts to explain the expansion of the acronym COBOL to

phrases such as "Compiles Only Because Of Luck".22 The concept and importance of succinctness is

explored in the next section.

2.3.2 Succinctness

In addition to being readable, the language should also be succinct. One of the disadvantages of overly

readable languages is that they tend towards natural language which can often be vague and open to

interpretation. Consider the language AppleScript, which, in a similar fashion to COBOL, attempts to

be readable by emulating natural language. For example, here is an AppleScript snippet which fetches

the first paragraph of a document called 'Read Me' currently open in a text editing application called

TextEdit23

teU application "TextEdit"

get paragraph 1 of document "Read Me"

end teU

21lgnorlng (for didactic purposes) the existence of the 'compute' verb which allows: COMPUTE x = (-B + (B •• 2 • (4 • A • Cll
",5) I (2 • A)

22 "Each language has its purpose, howe tier humble. Each language expresses the yin and yang of software. Each language
has its place within the Tao. But do not progmm in Cobol if you can atloid it. " [60J

23if in fact such a document exists and TextEdit is currently running with it open

37

There are three metaphors represented here: 'talking' to an application, 'describing' a set of informa­

tion and 'getting' that information. However, in this particular context we only really need to scope and

get the information. The following example written in rb-appscript, a Ruby replacement of AppleScript

does exactly that:

app('TextEd1t') . documents ['Read Me').paragraphs[l).get

If read in reverse, it is clear that we're getting the first paragraph from the document called 'Read

Me' from the application called 'TextEdit'.

A succinct language tends to be conceptually simpler, and typically easier to understand. However, to

be understood at all it needs to also be readable. If the language is too conceptually simple, then it may

not be expressive enough. Finally, if the language has no ability to abstract complexity, then complex

statements will tend to be proportionally as complex as the concept they're trying to represent - limiting

the language to the complexity that the programmer is capable of manipulating in his or her mind at

anyone time, or being generated by a tool (which essentially manages the complexity).

2.4 Ruby

Ruby [27] is an open source object-oriented programming language. It was created by Yukihiro Mat­

sumoto, *"?>bcl9>~O;S, who designed it to not only make programming easy, but also fun24 [1l2). It is

a fully object-oriented language, i.e. everything referenced by a variable is an object. This includes nu­

merical values, boolean values, and even true, false and nil. This is unlike languages such as Java which

offer a hybrid approach consisting of both objects and primitive types2S .

Ruby inherits features from other languages such as: Lisp, Smalltalk, Perl and CLU. Such features in­

clude blocks (otherwise known as closures), singleton classes, excellent meta-programming(96) support26,

and strict but dynamic typing27. Ruby supports a programming style commonly referred to as 'Duck

Typing'28. This is because the interpreter is generally only concerned whether an object responds to a

particular method, rather than what type it is29 . This can greatly simplify the handling of similar data

structures, or types of information.

34Ruby also has fun documentation too [111).
35Consider the differences between the Java primitive int and the class Integer
3GIn concept, a program implemented with meta-programming methods is similar to a metacircular evaluator, such as

the one found in Scheme[2). With a metacircular evaluator the language is implemented with the same language, and with
meta-programming the program is implemented (in part, or whole) by the same program.

n All Ruby objects have a type, but the language does not require you to specify types in method signatures or variable
declarations

38If it walks like a duck, and quacks like a duck, then it's a duck.
30This is similar to Gibson's Affordance Theory[4l), where affordance theory states that the world is perceived not only

In terms of object shapes and spatial relationships but also in terms of object possibilities for action (affordances).

38

2.4.1 ERB

ERB is a lightweight tempiating system, allowing you to intermix Ruby code and plain text.[I04). It

breaks its input text into checks of regular text and program fragments. Then it builds a Ruby program

that, when run, outputs the result text and executes the program fragments. Program fragments are

enclosed between <'II and '0> markers.

2.5 Ruby on Rails

Ruby on Rails[91)[1l3) is a full-stack open source web framework initially written by David Heinemeier

Hansson , and now maintained by a core team of developers. It provides scripts that set up a skeleton

framework that provide a working foundation for a project. Two core parts of the Rails framework were

used extensively for the implementation of the ideas presented within this thesis. These were the database

object relational mapper Active Record[49) and the Ruby extension library Active Support[50).

2.5.1 YAML

YAML30 is a straightforward machine parsable data serialisation format designed for human readability

and interaction with scripting languages such as Perl and Python and Ruby[59). It allows the represen­

tation of the basic data types common to most high-level scripting language such as lists, hashes and

scalars. It uses significant whitespace to denote hierarchy and structure31 .

2.5.2 RSpec

RSpec[7) is a behaviour driven development framewor~2 for the Ruby programming language. It provides

programmers with a DSL to describe the behaviour of Ruby code with readable, executable examples

that guide you in the design process and serve well as both documentation and tests. For an illustration

of how RSpec can be used to describe the behaviour of a system see Appendix A.

2.6 Limitations of current practice

This section aims to introduce and describe the limitations in the current virtual environments. This

will be achieved by arguing that the main focusses and goals of current virtual environments make

assumptions that do not hold for all simulation types, and that there are in fact other goals that users

and systems may need to focus on, such as adaptability.

30YAML is a recursive acronym for YAML Ain't Markup Language, and when spoken rhymes with camel.
31 Ken Arnold argues the importance of significant whitespace. He believes that fixing the usage style of a language in

syntax is a good thing[6].
32Behaviour driven development is discussed further in Section 4.3.2.2.

39

2.6.1 Assumptions Made

As introduced in Section 1.1.1, one of the primary challenges for virtual environments is scalability.

Virtual environment designers have aimed to optimise their designs in order to increase the possible

number of participants and interactivity between those participants. Their visions have taken a wide

variety of forms as summarised in Section 2.1.3. These are laudable goals, and indeed there is much

commercial benefit from massively scaleable virtual environments, particularly in the Massive Multiplayer

Online Gaming (MMOG) sector. In achieving these goals however, the designers have had to make many

assumptions about how the system is used and works (as introduced in Section 1.1.2). These assumptions

are a fundamental part of the optimisation process, and by making their systems more optimised the

designers aimed to produce an increase in scalability. The major types of assumption can be represented

with three categories: assumptions of interest, assumptions of capabilities and implicit assumptions.

2.6.1.1 Assumptions of Interest

The various interest management techniques introduced and categorised in Section 2.2 are all examples

of assumptions of interest made in the design stage of a virtual environment. As the intended usage of

the virtual environment is decided in the design stage, many assumptions on the interests of the user

and system can be fairly made. For example, in a war simulation it would be fair to say that the users

are going to be interested in things that can kill them. It may also be fair to say that as war simulations

attempt to simulate reality the interests should be limited to what it would be realistic to be interested

in. This would mean that a soldier on the ground would not be allowed to be interested in anything that

it couldn't see or hear.

2.6.1.2 Assumptions of Capabilities

When most virtual environments are designed they are targeted at a particular system or set of systems.

For example an online multiplayer computer game will ship with a description of the minimum system

requirements necessary to be able to use the product, other virtual environment implementations such

as certain bespoke war simulations may be even more restrictive. These restrictions or assumptions of

capabilities allow the virtual environment designer to make yet more optimisations when implementing

the system. Examples of the kinds of assumptions a designer may make are the following:

• a minimum network bandwidth

• processor speed

• available RAM

• input capabilities

40

• output capabilities

• the availability of audio, graphic or physics accelerator cards

For example, the Macintosh version of World of Warcraft has the following minimum set of specifi­

cations:

• OS X 10.3.5

• 933 MHz or higher G4 or G5 processor

• 512 MB RAM or higher

• DDR RAM recommended

• ATI or NVIDIA video hardware with 32 MB VRAM or more

• 4 GB or more of available hard drive space

• 56k or higher modem with an Internet connection

2.6.1.3 Implicit Assumptions

As introduced in Sections 2.6.1.1 and 2.6.1.2, assumptions are made both over the user's interest and the

system capabilities. These are clear and obvious design decisions, and the fact that there are a variety of

interest types (see Section 2.2.4) and target systems indicates the possibility that there may not be one

general solution. This issue is further backed when we consider that all of the design assumptions made

are all in terms of some implicit assumptions. These implicit assumptions are hidden in the simulation

definitions and generally fit under the banner that the user wants optimal performance and increased

realism. Examples of implicit assumptions are as follows:

More Frequent World Updates If the world is extremely dynamic with many events per unit of

time, then as many of the updates as possible should be sent to the client. The aim being that the

client's view be as dynamic as the representation of the world in the server.

More Detailed Worlds Where the world offers a choice in detail or Level of Detail (LOD) the client

wants the highest available detail for each artefact.

More Artefacts Visible at any one Moment The maximum number of artefacts capable of being

displayed should be as high as possible. With a greater number of artefacts visible, the granularity

of the system can be reduced and therefore provide a potential increase of realism (given the

assumption that the simulation is attempting to simulate a world with a large number of small

particles such as ours, rather than a world with a small number of large particles).

41

Greater Responsiveness The amount of time taken for users to be aware of events needs to be as

small as possible.

No Network Bandwidth Wasted The system should make full use of the network bandwidth, on

the assumption that idle or underused bandwidth means that the client's view is not as frequently

updated, detailed, rich or responsive as it could be. These are again implicit assumptions of what

the client wants.

2.6.2 Problems with Assumptions

Assumptions are only a good thing as long as they continue to hold true. If an assumption is no longer

valid then it can actually reduced the effectiveness of the system if no assumptions had been made. To

help understand this concept it is useful to take a quick look the association between assumptions and

interests, and then a discussion of why interests may change.

2.6.2.1 Assumptions and Interests

So far, the distinction between assumptions and interests hasn't been very clear. The concept of Interest

Management was defined in Section 2.2.2, and then in Section 2.2.1 the motivations were discussed.

Interest Management as defined then has many similarities with assumptions of interest (as introduced

in Section 2.6.1.1). So what of the other assumptions:

• assumptions of capabilities (Section 2.6.1.2)

• implicit assumptions (Section 2.6.1.3)

How do these assumptions relate to our definition and motivations of Interest Management? The

answer to this question is rather subtle and requires a closer and more detailed look at the earlier

definitions of Interest Management and assumptions. When Interest Management was introduced in

Section 2.2.2, it was defined as an algorithm or set of algorithms that reduce the set of all world artefacts

and events to a smaller more interesting set, the motivation being that if all objects and events were visible

to the client then there would be a serious impact on the scalability of the system. Assumptions were

introduced in Section 2.6.1 as design decisions made in the early stages of a virtual environment. An initial

interpretation of these definitions may indicate that interests are driven by the user, and assumptions are

driven by the system. For example, MASSIVE 1 's interest options are actively and explicitly manipulated

by the user of the system. However, when these two concepts are looked at in tenns of scalability

their definitions seem to be reversed, for the assumptions are mostly the goals of the user (the implicit

assumptions) limited by the capabilities of the user (assumptions of capabilities), and the interests are

the optimisation techniques used to deliver those goals. In terms of implementation, assumptions and

42

interests are identical in all of the current virtual environments. They are either implemented as hard­

coded rules, or hardware. Essentially they are both static. If, however, we view the concept of interest

as user-driven it might therefore be dangerous to assume that a user's interest would never change.

Similarly, it may be very restrictive to assume that the system capabilities never change.

2.6.2.2 Changes in Interest

As suggested at the end of Section 2.6.2.1, when we consider that interests could be created by the user

it would be dangerous to assume that those interests will not change. In addition, we might want to

consider the possibilities that present themselves if interests were allowed to change, and what situations

may require a change in interests. Examples of situations that may require a change in interests are:

Rules Change It might be strange to consider virtual environments as having rules, but whether ex­

plicit or implicit, they do exist. Explicit rules are be found in the form of game rules, such as

those found in online multiplayer virtual environments. Implicit rules are those that are required

for the virtual environment to simulate reality. Examples of implicit rules are: artefacts in a view­

ing frustum must be visible (simulating sight), items behind opaque artefacts must not be visible

(simulating line of sight), artefacts not resting on another artefact must fall until it reaches an

artefact below it (simulating gravity). Not all virtual environments have a set of rules that are

static for their entire duration. Some virtual environments have a number of phases that may have

an entirely different set of rules. It may therefore be impossible to create a generic set of interests

that cover all of the rules of all of the phases at once. There may also be virtual environments where

the rules are generated dynamically as the virtual environment progresses, and therefore there is

no way that all of the rules of the game can be determined and defined at the start.

Tactics Change There are many reasons why the tactics used in a virtual environment may change,

this may be due to a change of rules, due to a new understanding of the opponent, etc.

Players Change The number of players of a particular virtual environment may be dynamic; people

may enter and leave a game. The number of players, or the existence of a particular player or set

of players may have an effect on interest.

Resources Change The interests may want to be coupled with the capabilities or resources of a system.

If the resource capabilities aren't very high, then the tactics that might be employed to deal with

this may vary. For example, if a user has a poor graphics card and small network bandwidth, then

they may either be sent low resolution models, have fewer models visible at once, or a mixture of

both these options.

Heterogeneous Interests Not all users of the system may have the same interests. Maybe not all

users are subjected to the same set of rules, and maybe they do not all want to employ the same

43

tactics. Not all users may have the same resource capabilities, therefore causing these interests to

be different.

2.6.3 Proposed Solution to Interest Management

Static interests or assumptions (however they may be defined) are not always a good thing. Minson and

Theodoropoulos[84] also argue that it is also possible that interests could be defined automatically at

run-time. Macedonia and Zyda[74] define views of the virtual environment as either synchronous (where

everyone sees the same) or asynchronous (where users have individual control over when and what they

can see). Antunes et al.[4] argue that there are situations where different interest management policies

could be more useful than one static policy. They also argue that an interest management solution must

support the following abilities:

• the ability to define interests,

• the ability to support different interest management policies.

Section 2.6.2.2 has shown us that interests may change, and assumptions made early on may no longer

be valid. In order to tackle these issues we need a system that can cope with changing interests and goals,

and one where fewer assumptions have to be made. This would therefore create a more adaptable system.

The solution is a dynamic interest management technique, which is not only able to cater for user's

interests, but also those of the system. This technique needs to be able to represent static interest

management techniques as introduced in Section 2.2.3, and allow the interests to change during the

lifetime of the system: at runtime if possible. This technique needs to also be capable of reasoning about

resources and to cater for interests of adaptability.

However, before we can achieve this, we need to establish these goals and possible solutions in the

context of the term virtual environment. Section 2.1.1.3 introduced the following definition:

'A region, constructed by software, containing artefacts, which themselves possess attributes'

This definition, although sound, is extremely generic. It would be very difficult to reason about

interest management within the scope of this definition: doing so would require the definition of a lot of

concepts that would commonly be associated with virtual environments such as events, and time. Section

3.1 develops this definition of virtual environments further, and Section 3.2 shows us how we can define

interest statements to support the management of dynamic interests.

44

Chapter 3

A Framework for Dynamic Interest
Management

As discussed in Chapter 2, interest management is used in different ways within virtual environments.

The main purpose, however, has been to improve scalability. Section 2.6 discussed the limitations of static

interest management techniques, and Section 2.6.3 proposed dynamic interest management as a solution

to some of those limitations. This chapter will expand on the concept of dynamic interest management.

Section 3.1 will expand upon the definition of interest management proposed in Section 2.1.1.3, and

introduce a conceptual model for virtual environments. This conceptual model will serve as the foundation

for further discussion of interest, interest management, and, of course, dynamic interest management.

Section 3.2 discusses the definition of statements which represent interest, Section 3.3 introduces some

example interest statements, and finally 3.4 introduces issues raised when interests need to be constrained,

and when they conflict with other interests.

3.1 A Conceptual Model for Virtual Environments

Virtual environments themselves can be seen as models in their own right. They contain a set of variables,

or artefacts, and describe the set of quantitative and logical relationships between them. For example,

consider a model of warfare such as NPSNET[73]. Such a model would describe a number of typical

artefacts involved in warfare: buildings, tanks, planes, artillery, armaments, etc. It would also describe a

number of possible interactions between these artefacts: a tank may destroy a building, a plane may bomb

a tanks, etc. Through this model, the users would be able to reason about general concepts pertaining

to warfare such as skills, tactics, and teamwork. This Section, however, is not concerned with the notion

of virtual environments being models, but is concerned with defining a more general model of virtual

environments.

Although a number of taxonomies of virtual environments already exist[74][23], it is hard to find a

pure definition, or conceptual model of a virtual environment. This section aims to create an abstract

definition, or model of a virtual environment for the purpose of reasoning about interest and dynamic

45

interests. Using this model, it will be possible to conceptualise interest within the context of a virtual

environment, and then evaluate the feasibility of representing different types of interest within the model.

Section 3.1.1 will explore the motivations of creating a conceptual model of a virtual environment,

and Section 3.1.2 will introduce the axioms, or underlying propositions, on top of which the conceptual

model can be built.

3.1.1 Motivations

A model is a theoretical construct that represents a particular viewpoint or perspective of a concept. It

is created with the purpose of reasoning about a particular set of qualities and relationships pertaining

to that concept. When designing a model it is important to know the motivations of the model, and

therefore which qualities or relationships you wish to reason about.

The model presented in this chapter has three main motivations: to reason about interest, to be a

model of other virtual environments, and to be implementable. These motivations will be explored in

the following Sections (3.1.1.1, 3.1.1.2, and 3.1.1.3).

3.1.1.1 To Reason About Interest

The primary purpose of this model is to be able to reason about interests. It is therefore necessary for

the model to represent what we want to be interested in, and how we define whether we're interested.

3.1.1.1.1 What: Artefacts It is important that the model defines the units that can be reasoned

about in terms of interest. These units shall be described as the artefacts within the virtual environment.

In this context, the term artefact has the following definition:

artefact, n. and a.

A. n. Anything made by human art and workmanship; an artificial product. [61)

In using the term artefact, we will also draw a distinction from the term object found in object­

oriented programming. Artefacts are described in greater detail in Section 3.1.2.2.

3.1.1.1.2 How: Interest Statements Given the definition of artefacts within our virtual environ­

ment, we need to have the ability to create statements which describe which of the available artefacts we

are interested in. In order to achieve this we need to have a method or set of methods with which we can

distinguish artefacts from other artefacts. Section 3.1.2.2 describes how artefacts consist of one or more

attributes which have values which can be compared with the values of other artefact attributes. Using

the presence, absence or value of artefact attributes we can describe the difference between artefacts.

This affords us with the ability to describe the difference between the artefacts we are interested in,

46

a.nd the artefacts we're not interested in. These descriptions are interest statements and are described in

greater detail in Section 3.2.

3.1.1.2 To be a Model of other Virtual Environments

The model does not just need to reason about interest in general (as described in Section 3.1.1.1), it

needs to reason about interest in the context of virtual environments (as defined by the range introduced

in Section 2.1.3). The model therefore needs to be a model of virtual environments in addition to being

a model of interest.

Virtual environments are more than a collection of artefacts with attributes. For example, virtual

environments may change over time: artefacts may enter or leave, the values of artefact attributes may

change. Also, information needs to flow between users and the system: users may interact with or directly

influence artefacts, and may want to experience various aspects of the environment. The model therefore

also requires the ability to reflect upon characteristics such as these.

3.1.1.3 To be Verifiable

In order to evaluate the claims this thesis makes with respect to dynamic interest management, the

model needs to be verifiable. Verification in this case will be achieved by two methods. Firstly the model

will be reasoned about, using the introduced set notation. Secondly, the model will be implemented (as

discussed in Chapter 4). Using this implementation, data will be generated and evaluated by applying

the implementation to a series of case studies.

3.1.2 Axioms

This section aims to describe the underlying propositions on top of which the conceptual model of a virtual

environment can be built. Section 2.1.1.3 introduces the following definition for virtual environments:

'A region, constructed by software, containing artefacts, which themselves possess attributes'

From this definition we can determine that a virtual environment contains attributes and artefacts.

Given that one of the motivations of interest management is to communication, we can also infer that

virtual environments also contain events (the messages to communicate), processes (chains of events)

a.nd time (a temporal separator for the events). Therefore, at its most basic level an implementation of

a typical virtual environment consists of attributes, artefacts, time, events and processes.

3.1.2.1 Attributes

An attribute is a named value. Each attribute belongs to a particular data type, and each data type has

a set of possible values. For example, an attribute may be called a, the type may be called integer, and

47

the set of all possible values is the set of all integers (2:).

There should be a set of relationships between values of the same type such that two values can be

compared. For example, with integers, the relationships are <, > and =.

3.1.2.2 Artefacts

Also commonly called objects, artefacts are the individual units of the virtual environment; a virtual

environment consists of one or more artefacts, and each artefact consists of one or more attributes[1l4].

For example a simple artefact may have the following attributes:

• A unique identifier,

• colour,

• x co-ordinate,

• y co-ordinate,

• z co-ordinate,

• geometric description.

The state of an artefact is the value of its attributes at a particular point in time in the system.

3.1.2.3 Events

An event is a change in the state of the system. This is essentially an alteration of one or more attributes

of one or more artefacts at a particular time (discussed in Section 3.1.2.4). These alterations must appear

to occur simultaneously, i.e. occur in the same logical time unit. Some examples of events are:

A button is pressed this may alter the colour attribute of the artefact.

An artefact moves this event may alter the artefact's x, y and z co-ordinate attributes.

Events may also describe the addition or removal of information within a virtual environment. This

includes adding or removing attributes from artefacts, and adding or removing artefacts from the virtual

environment. In a similar approach to that proposed by Hosseini et al.[52]' it is assumed that these events

are transmitted via a different channel to any other kind of message (i.e. visual data, voice communication

etc.)

3.1.2.4 Time

In this model, time can be seen as a relationship between two events which orders them chronologically.

On a simplistic level, this can be represented as a global number, and each event being associated

48

wi th a number. The ordering is then reduced to a numerical ordering relationship between the numbers

associated with each event , or that of t he global number.

3.1.2.5 Processes

Processes trigger events. The life of a process may span mul t iple ti me units unlike an event which i

only active between time units, i.e. they happen instantaneously or in zero time. A proce may be een

as a logical grouping of events tha t are inte r-linked through a part icular relationship. Some exampl of

processes a re:

A lift is called and moves between floors this process may have been triggered by an event uch

as the lift button being pressed . It might create subseq uent events t hat cause the lift to move to

the appropriate Roor, as well as the appropriate lights turning on at the appropriate tim .

A person stands up this process may cause the artefacts t hat construct t he per on (the feet, leg ,

torso, a rms etc) to initia te a movement , composed of mul t iple event, t hat pan a number of time

units resulting in an animation that imitates a real person tandi ng up.

3.1.3 Users

So far, our conceptua l model has consi ted of abstract concept which are internal to th virtual environ-

ment. In order for the virtua l environment to have any relevance or use to our own external environment,

then there must exist the ability for entities from an externa l environment to interact with t he model.

S ction 3.1.4 wi ll discuss the notion of interaction, and this sect ion will focus on t hese external entiti .

o

Virtual Environment

o an artefact

Figure 3. 1: An Externa l Entity or User

49

Entities external to the environment are called users. Typically a user is associated with an artefact,

and such an artefact which has a direct association with a user is commonly called an avatar. For

example, Oliveira[31) and Fuhrer et aJ.[38) define an avatar as a representation of a user in a virtual

world. However, users are not always associated with artefacts, especially if the user is an anonymous

observer or spectator in the virtual environment. There is typically a distinction made between dynamic

entities (avatars) and static entities (artefacts)[5).

Figure 3.1 shows the relationship between the virtual environment and a user. As can be seen, the user

(Ul) exists externally from the virtual environment. One of the artefacts within the virtual environment

may be associated with the user. For example, the user (U1) may be controlling the artefact D, in which

case we can say that D is Ul'S avatar.

3.1.4 Interaction

In Section 3.1.3, we suggested that a user may be associated with an artefact. It is interesting to consider

how that association occurs.

In the context of this conceptual model, when considering interaction, we only need to consider events.

This is because time is not interactive (Le. you cannot change its course), artefacts are just pure state,

and therefore provide no means for interaction, and processes themselves are simply generated sets of

events which can only be created by events.

Events in the real world may be directly mapped onto events in the virtual environment. Examples of

these real world events acting as triggers are keyboard strokes, joystick movements, or motion detector

sensors attached to real people. The ratio of these mapped events to processes describes how simulated

the virtual environment is. For example, if each event in the virtual environment was mapped to a real

world event, and there were no processes in the virtual environment, then this can be said to be very

realistic. On the other hand, if we have only one event - a start event, and the rest of the events in the

system were created by processes, then this can be said to be entirely simulated. The level of simulation

of a virtual environment should be decided in the design phase, and is tightly coupled to its usage.

3.2 Defining Interest Statements

As introduced in Section 3.1.2.2, artefacts are the things that virtually exist within a virtual environment.

Artefacts are the things we can be interested in: the cars, the people, the lifts, the buildings, the items

that populate virtual worlds. Interest statements should reason about artefacts: we want to be able to

describe the set of all artefacts that are interesting to us.

Our goal is to create a mechanism that allows us to reduce the set of all world artefacts to some

definable subset (as shown in Figure 3.2). The statement which defines this subset is called an interest

50

statement . In order to create such a stateme, it is necessary to have the language to describe it. et theory

is t he perfect candidate for such a language. Set theory is one of the true foundations of mathematics,

and can be used to formalise a ll mathematical concepts. It is sufficiently universal to formalise the notion

of interest for our conceptual model. Section 3.2.1 introduces such a formalisation.

All World Artefacts ('U)

Figure 3.2: Interest ing Artefacts

3.2.1 An Intensional Definition of Interest

One of the requirements of an interest management system is the abi li ty to de cribe ub et of th

set of a ll world artefac ts. In order to understand this concept in great r detail, consider the following

assumptions:

There exists a set of all world artefacts: U . (3.1)

There exists a set of interest ing artefacts: T. (3.2)

The et of interesting artefacts is a subset of the set of all world artefact :

(3.3)

The et of interesting artefact, I, can be intensionally defined as:

T= {x EU: ll{x)} (3.4)

\Vh I'e th condition ll, denotes interest. Section 3.2.2 wi ll expand on the concept of interest conditions.

51

3.2.2 Interest Conditions

H(x) is an inte rest condition, which is analogous to an interest statement as introd uced in Section 3.1.1.1.2.

H(x) is essentia lly a test which will indicate whether or not an artefact (x) is interesting to us. For examples

of such tests, consider the definitions of IT(x) in Table 3. 1, and t heir correspondi ng illustrations in Figure

3.3:

Table 3.1: Example Interest Condi t ions

IT (x) D escription of Set {x E U : H(x)} Grey Items in Figure 3 .3

,.,
I": '''I .. 't.r

x is a square the set of artefacts that are squares (a)

x is dotted the set of artefacts that are dot ted (b)

D
o 0 ""

O 1' , D
I ! o , 1 0
(a)

D o / '.
O\ .. <"" .. ~ D I , o L ' 0

(b)

Figure 3.3: Interes ting Artefacts

D
..... '" o (.. ··'·· 0

0 ·· .. ··· · .. , D

D r.",
o 0 "'" I o

o
o o l._ ! 0

o !"· 1 D o l.. 1 0

\,-,,,:

(a) (b) (c)

Figure 3.4: More Interest ing Artefacts

52

3.2.3 Combining Interest Conditions

The construction of I does not have to consist of just one interest statement as Section 3.2.1 might

suggest. Multiple conditions may be used connected with the standard logic operators as presented in

Table 3.2.

Table 3.2: The Standard Logical Operators

Operator Symbol

And A

Or V

Not

If we define the following conditions:

A(x) = x is a square

lB(x) = x is dotted

It is then possible to combine them using logical operators as presented in Table 3.3.

Table 3.3: Combining Interest Statements with Logical Operators

Condition Description of Set Grey Items in
Figure 3.4

the set of all dotted arte- (a)
facts and all artefacts that
are squares

lB(x) V A(x) the set of all dotted squares (b)

18(x) A ...,A(x) the set of all dotted artefacts (c)
that are not squares

3.2.4 Auxiliary Sets for Interest Conditions

(3.5)

(3.6)

Section 3.2.3 introduced the notion of creating complex interest conditions by combining simpler con­

ditions with the standard logic operators. The examples shown were simple for pedagogic purposes,

however, it is possible that these conditions can become extremely complex in certain circumstances.

For example, if we briefly return to the example of a military simulation, a seemingly simple interest

statement such as "I'm interested in enemy soldiers" could turn out to be extremely complicated. We

might have to start considering combining conditions such as "in line 0/ sight", and "in range of", etc.

53

And, of course, a statement such as "in line of sight" is itself not trivial, especially when we are reasoning

at the level of artefact attributes.

Complicated conditions are difficult to write, and it would be easy to unknowingly inject errors. We

need to have the ability to abstract away from the level of artefact attributes, thus giving us the ability to

reason in terms of high-level concepts such as "in line of sight", and "in range o/". This would allow us to

create conditions such as "1 am interested in artefacts that are both in line of sight and within range" This

section explores the possibility of creating useful sets of artefacts specifically for this purpose. Section

3.2.4.1 will introduce the concept of creating sets of artefacts using the information within the virtual

environment, and Section 3.2.4.2 will talk about creating supplementary sets of artefacts which add new

information into the environment. Section 3.2.4.3 will introduce spatial sets as a specific example of

auxiliary sets.

3.2.4.1 Derived Sets

In Section 3.2.1 we introduced two example interest conditions: the set of artefacts that are squares, and

the set of artefacts that are dotted. We showed how these conditions could be used to construct values

of I, the set of interesting artefacts. However, we could use also these conditions to define a particular

type of auxiliary set which is generated using the the condition Jl)(x), a derived set. A derived set is a

defined subset of U, the set of all world artefacts. Consider the derived sets presented in Table 3.4.

Table 3.4: Derived Sets

Derived Set Jl)(x)
SQUARES X is a square

DOTTED x is dotted

In Section 3.2.3 we described combinational conditions such as (x is dotted) V (x is a square). Using

the derived sets introduced above, we could rewrite our condition as follows: (x E DOTTED) U (x E SQUARES).

Derived sets can be combined with the following standard set operators:

The following illustrates the mapping between conditions using combinations, and conditions using

derived sets as presented in Table 3.6.

Derived sets provide a mechanism for abstracting away from the level of artefact attributes. They

can be seen as re-usable building blocks for constructing interest conditions.

3.2.4.2 Supplementary Sets

Section 3.2.4.1 described the two sets SQUARES and DOTTED which were derived from information obtained

from current artefact attributes. In addition to deriving sets as described in Section 3.2.4.1, it is also

54

Table 3.5: The Standard Set Operators

Operator Symbol
InterSection n

Union U

Superset 2
Subset ~

Proper Superset :::>

Proper Subset C

Member of E

Not a Member of ¢.

Table 3.6: The Mapping between Condition Combinations and Derived Sets

ll(x) using combined conditions

(x is dotted V (x is a square)

(x is dotted) 1\ (x is a square)

(x is dotted) 1\ (x is not a square)

ll(x) using derived sets

(x E OOTIEO) U (x E SQUARES)

(x E OOTIEO) n (x E SQUARES)

(x E OOTIEO) n (x ¢. SQUARES)

useful to inject information through the inclusion of supplementary sets.

Supplementary sets are sets of virtual artefacts which can be used within the construction of interest

conditions. In order to further understand virtual artefacts, consider the concept of locales as introduced

in Section 2.2.4.2. Locales can be seen to be artefacts that represent a region within the virtual environ­

ment. As this artefact does not actually 'exist' it is defined as a virtual artefact. If we assume we have a

supplementary set of locales, LOCALES, we could create interest conditions such as the following:

ll(x) = x is within any of the locales within the set LOCALES (3.7)

Where the relationship "within" is further defined in Section 3.2.4.3. Supplementary sets provide a

mechanism for inserting artefacts into the virtual environment specifically for the purpose of reasoning

about interest. The virtual artefacts within supplementary sets contain state which is preserved, rather

than state which is derived. These artefacts wouldn't be explicitly visible, or available for interaction

within the virtual environment, however their presence may be detectable through implicit means. The

concept of virtual artefacts is similar to NPSNET's concept of ghost artefacts[72J.

3.2.4.3 An Example: Spatial Sets

Derived and supplementary sets provide useful building blocks for constructing interest conditions. Sec­

tion 3.2.4.2 introduced locales as one use of supplementary sets. Locales can also be described using

derived sets. This section will expand upon the concept of locales and spatial sets in order to further

55

ill ustrate t he usefulness of derived and supplementary sets. We will also see that derived and upplemen­

tary sets a re not entirely orthogonal concepts , and discuss any si milarities found .

Figure 3.5 shows a simple virtual environment separated into nine spatial areas (A' . .!') which are

represented as virtual artefac ts. Each of these areas can be used to define a set of artefact - the set of

artefacts within each area. The derived set of artefacts representing the set of all artefacts within A' can

be intensionally written as follows:

WITHIN -A = {x E U : x is within A'} (3.)

Clearl y, the set WITHIN -A contains artefact 1, however, whether it a lso contains artefact 4 not 0

clear. For the answer to this problem it is necessary to clarify the defini t ion of the term "within". T here

are a number of ways of clarifying this. For example, we cou ld say an artefac t is only wi thin an area if it

is entirely contained within the boundaries of the area, e.g. a rtefact 1 is ent irely wi th in t he boundari

of area Ai Another opt ion would be to define the midpoint for an a rtefa t , and t h n calculate t he co-

ordinates of that midpoint . As long as we assume that we can a lways determine whether a co-ordi nate

lies within an area or not, then there are no issues of uncertainty. Neither of t he two option are correct.,

and indeed there are more methods available. An appropria te definition for the ci rcumstances mu t be

defined by the designers, within the context of the virtual environment .

Examples of spatial operators are presented in Table 3.7.

8 ' C'

: 1 :

~--~~ 8 ~4-~~~----r---------~
G' H' /'

10

Figure 3.5: Spatial Sets wi t hin a Virtual Environment

It is important to consid r t hat the spatia l sets do not necessarily have to be uniform, or tessellate,

r even cover the entire vi rtual nvironment as Figure 3.5 suggests. , in t hi case, they are repre ented

56

Table 3.7: Spatial Operators

Operator Description
DISJOINT the boundaries and interiors do not intersect

TOUCH the boundaries intersect but the interiors do not intersect

OVERLAPBDYDISJOINT the interior of one object intersects the boundary and interior of
the other object, but the two boundaries do not intersect. This
relationship occurs, for example, when a line originates outside a
polygon and ends inside that polygon

OVERLAPBDYINTERSECT the boundaries and interiors of the two objects intersect

EQUAL the two objects have the same boundary and interior

CONTAINS the interior and boundary of one object is completely contained in
the interior of the other object

COVERS the interior of one object is completely contained in the interior of
the other object and their boundaries intersect

INSIDE the opposite of CONTAINS. A INSIDE B implies B CONTAINS
A

COVEREDBY the opposite of COVERS. A COVERED BY B implies B COVERS
A

ON the interior and boundary of one object is on the boundary of the
other object (and the second object covers the first object). This
relationship occurs, for example, when a line is on the boundary of
a polygon

ANYINTERACT the objects are non-disjoint

57

using vi rt ual a rtefacts, they can be of any shape and in any position. Figure 3.6 illustrates this.

Cl~D
5

: 10

Figure 3.6: spatial Sets can be of any shape or orientation

spat ia l sets are usefu l for a variety of purposes. T hey can be u ed to repr ent areas or locales wit hin

a virtual environment . They can also be used to define viewing frust ums, artefact auras, and focii. The e

are all areas which may be associated with particular artefacts. For example, in Figure 3.6, patial et

8 ' may represent the viewing frustum for artefact 6. Virtua l a rtefacts a re si milar to t he concept of the

parallel virtual world introduced by Oliveira for the VELVET system[32].

As we have seen, spat ial sets can be created using a combination of derived sets and upplem ntary

sets. However it is possible to recreate certain aspects of supplementary sets u ing derived et . For

example, it would be possible to describe the spatial sets within Figure 3.5 t hrough the defi nition of the

derived set , i.e. t he definition of set A' would be included within the intensional definition of WITH IN-A

rath I' than relying on the existence of a supplementary artefact representing A'. \"' here there is the

choice of using derived or supplementary sets to define the condition, care should be taken to choo e the

most appropriate type in terms of the context of the decision.

3.2.5 Relative Interests

So fM, we have only really considered interest from a global perspective. As introduced in Section 3.1.3,

ext.ernal u rs a re often associated with an artefact within the virtual environment. If this is the case,

then the user may wi h to have an interest which is relat ive to an associated ar tefa t_

on id r that there exists an artefact or avatar a which may be associated with a particular u er.

Our ond ition may t h n take in two parameters: x bei ng t he artefact the user wishes to determine the

int r st of, and a the artefa 1; our int re t is relative to . Our interest condition can therefore be written

58

88 I(x, a), and the set builder for interest relative to artefacts is:

I(a) = {x E U : I(x, a)} (3.9)

Given the presence of a in our interest condition, we can use it to define some useful spatial sets

relative to artefacts such as those presented in Table 3.8.

Table 3.8: Useful Spatial Sets

Set Condition: lP(x, a) Description of set
AURA x is in the area which is defined An area which bounds the pres-

by a circle of radius 10 which is ence of an artefact
centred around a

NIMBUS x is the area which is defined by An area which represents how vis-
a circle of radius 30 which is cen- ible a given artefact is to other
tred around a artefacts

FOCUS x is a cone which is defined by An area which represents the
a radius of 10 and a height of 30, range of visibility of a given arte-
the tip of which is centred around fact in order to see other artefacts
a

3.3 Example Interest Statements

This section aims to provide some general interest statements using the model introduced in this chapter.

The aim is to illustrate that the interest management model can represent the range of interest man­

agement techniques categorised in Section 2.2.4. Implementations of these will be discussed in Chapter

4.

3.3.1 Locales

As introduced in Section 2.2.4.2, locales are spatial regions within spatial virtual environments. Given

that the virtual environment is spatial, each artefact will have associated co-ordinate attributes. Using

these co-ordinates it is possible to determine whether a particular artefact is within a particular locale.

As we saw in Section 3.2.4.3, it is possible to use these locales to reason about the interest of a particular

artefact using set builders such as the one described in Equation 3.8, and repeated here:

I = {x E U: x is within A'} (3.10)

59

3.3.2 Relative Locales

As introduced in Section 2.2.3.7, and further described in Section 3.2.5, locales (and interests in general)

may be relative to a particular artefact. An example of this is a viewing frustum: a locale (typically

represented by a sphere, or cone) which represents the area that an associated artefact can see. Again,

this viewing frustum could be represented using a virtual artefact, and the set builder for an interest

represented with relative locales is :

Z = {x E U : x is within A' /\ A' is associated with a} (3.11)

3.3.3 Interacting Locales

As introduced in Section 2.2.4.3, the interaction of locales can be used to reason about interest. For

example, when an artefact A's aura collides with artefact B's aura, artefact A can be said to be aware

of artefact B.

Z(a) = {x E U : the aura associated with a overlaps the aura associated with x} (3.12)

Equation 3.12 can be more generally stated as the following:

Z(a) = {x E U : the locale associated with a interacts with the locale associated with x} (3.13)

where the interaction relationships are the standard spatial set relationshipsi: within, contains, over-

laps, and touches[93].

3.3.4 Categories

As introduced in Section 2.2.4.1, using a class-based system to categorise the virtual environment is an

easy way to reason about interest. Section 3.2.4.1 introduced the concept of derived auxiliary sets, which

is essentially a mechanism for creating classes of artefacts. For example, we could create an auxiliary set

which is derived by looking at the colour attribute of all artefacts, and selecting the ones that are red

(all red artefacts), and use that set within our set builder:

Z = {x E U : x E CATEGORY} (3.14)

where CATEGORY represents any derived auxiliary set.

1 Note that the spatial model introduced in the MASSIVE systems doesn't typically use standard spatial set relationships
such as overlap e.g. sample field.

60

3.3.5 Combinations

A benefit of this approach is that the techniques described above can be combined in arbitrary ways to

create more complex expressions. For example,if we want to be interested in all red artefacts that are

within our viewing frustum:

I{a) = {x E U : (x E RED) A (x is within A') A (A' is the viewing frustum of an (3.15)

Describing interests using the conceptual model in this way gives us a more flexible mechanism for

representing interest within virtual environments than previously possible.

3.4 Constraints and Conflicts

So far, this chapter has introduced and described interest statements. The motivation for these interest

statements being the ability to have a flexible way of representing interest. However, this flexibility has

a potential to interfere with the purpose of the environment. In Section 2.1.3 we introduced the range

of current virtual environment applications. Each of these applications has a purpose, and each of those

purposes may impose one or more constraints on the choice of interest. This section will explore this in

greater detail.

Section 3.4.1 will introduce the concept of constraints on interests for specific virtual environments.

These constraints will be introduced with relevant examples, and solutions will be given.

3.4.1 Interests for Specific Virtual Environments

When virtual environments are designed and implemented, it is usually for a specific purpose, for example:

collaboration, simulation, or research. This section looks at the potential constraints that a virtual

environment may place on interest, and conflicts that may occur between the users interest and that of

the environment.

3.4.1.1 Relative Visibility

If we assume that each user has control of their interests, then the visibility of the artefacts is relative

to each user. This means that each user may have a different view of the same set of artefacts or scene,

which could lead to potential problems. For example, an interest in cups, and not tables may lead to a

view of cups seemingly floating in the air. This is further illustrated in Figure 3.7. Figure 3.7{a) shows

a simple virtual environment with 6 users. We are only concerned with the users A and B. User A is

interested in all users that aren't dotted, user B is interested in all users within the virtual artefact V'.

Figure 3.7(b) shows the artefacts that are within user A's interest set, Figure 3.7{c) shows the artefacts

61

which are within user B 's interest set . As we can see from the ill ustrat ions, user B can see user A, but

user A cannot see user B . In t his case, visibility is not a commutative relationship. IT the goal of the

virtual environment is to facilita te communication between nearby users, t hen this situation clearly poses

a problem: user A cannot see user B to know that there's someone to communicate with. The concept of

relative visibility is similar to the degree of blindness concept introduced by Oliveira and Georganas[32J .

(a)

3.4.1.2 Constraints

A

(b)

f
f

Figure 3.7: Relative Visibili ty

(cJ

The specific purpose of the virtual environment will introduce constraints on what should and should

not be interesting. As we saw in Section 3.4.1.1 , the interest of user A in Figure 3.7 conAicted with

the purpose of the environment. Also, consider the situation of the virtual environment bei ng a war

simulation. If the user is a soldier on the ground , then the user needs to be interested with everything

within line of sight. Alternatively, if the virtual environment is a virtual lecture, and the user is a member

of the audience, then the user needs to be interes ted with the speaker.

Figure 3.8 illustra tes two virtual artefacts , A' and B' which repre ent t he viewi ng fru t um of u er

A and B respectively.

th
)

-~r
8 A'

A

(a)

<tJ
(~~--

8 ' A

(b)

Figure 3.8: Constraints Int roduced

U ing Lhe Lwo virtual artefact A' and B ' int roduced in Figure 3.8, it is possible to rewri te the inter

62

statements of users A and B as presented in Table 3.9.

Table 3.9: Deali ng with Constraints

User Previous Interest H(x) Updated Interest H(x)

A -, x is dotted -, x is dotted V x is within AI

B -, x is within VI -, x is wi t hin VI V x is within BI

Figure 3.9 illustra tes the effects of interest using t he new updated interests. F igure 3.9(a) show all

the artefacts, Figure 3.9(b) shows the interests of user A which now include user B , and fi nally, Figure

3.9(c) shows the interests of user B which are unchanged .

I") I') f (")

f 0 t- f '-~.--
f

-'t
B

f o f A fA oCt A

V'

(a) (b) (e)

Figure 3.9: Updated Interests for Users A and B

For a virtual env ironment to meet its objectives, there must be minimum requirement , 0, of what a

u er must be aware of. This minimum requirement is essent ially a subset of a ll world artefacts:

o r:;. u (3 .16)

Each user wi ll have a set 0 associated with t hem, and t he condi t ion, O(x,a) , t hat d cribe thi et

can be written as:

O(x, a) = x is essent ia l for artefact a (3 .17)

As Section 2.3.4 described , these constraints are hard-coded into t he implementation of the virtual

environment. However, if we allow u ers to have complete control of t heir interest , t hen we need to take

the e constraints into consideration in t.he process of describing I , our interest set. For example, if we

have a collaborative virt ual environment which a llows users to communicate with each other, then we

n d to r pre en!, that requirement as a constraint, and enfo rce it. As seen in t he example above, thi

enforcement can be a hieved by combining the user 's interests (I), and the objectives of the virtual

nvironment (0) as follows:

63

lE (x, a) = n(x, a) A O(x , a) (3.1)

3.4.1.3 Conflicts

In Section 3.4.1.2, we described how the environment may int roduce a set of constraints , and howed how

to alter our interests to cater for them. This process turned out to be simply combining the interests of

the user, and the constraints of the virtual environment, as descri bed in Equation 3. 18. T his section will

describe how these constra ints and interests may actually conflict, and present mechanisms fo r conflict

resolution .

Consider Figure 3.1O{a) which has four artefacts: three people, and a wall. Using either an associated

viewing frustum virtual artefact as in Figure 3.1O{b) , or a simple categorisation based inte rest condition

(I'm interes ted in all people), user A would be able to see both users B and C . This however, may not

be appropria te in a ll situations. For example, user C may be at tempt ing to hide from u er A b hi nd t he

wall . It may be a n objective that visibility be calcula ted more appropriately t han u ing th e potentially

na'ive spatia l based techniques.

A c A c

(a)
(b)

Figure 3.10: Blocked Visibili ty

There ar many techniques for calculat ing the visibility of a rtefacts in vi rt ual environments, and all

are e sent ia lly a lgorithms based on the current values of artefact attributes. Let us con.sider t hat we have

implem nt d such a technique2 : V(x, a) which defines the condi t ion "is a vi ible to x 7". We can define

a relative set ('R) of all a rtefacts visible to x as follows:

'R = {x E U : V(x,a)} (3.19)

Using this n w notion of visibility, we can avoid any conflicts between the goals of the virtual envi-

2 U h l\S t he approach by Teller and Sequin[llOj.
3N te that t he ca l ulation of (x,o) i depend nt on the algorithm used , and has the potential to be extremely complex

64

n = {x E U: I(x, a) 1\ V(x, a)} (3.20)

Here we are saying that we are only interested in things which are interesting, combined with the

things that are visible. Therefore, if something is not visible, we can not be interested in it - even if we

want to be.

3.4.2 Separation of Concerns

Section 3.4 introduced the notion of constraints and conflicts of interest within a virtual environment.

This section will generalise these constraints into two types: positive and negative enforcement, and two

subjects: the user, and the simulation. Through this generalisation we see how we can start to harness

the power of dynamic, expressive interest statements.

In the following Sections, the user is defined as the external entity interacting with the virtual envi­

ronment. As explained in Section 3.1.3, a user is typically associated with an artefact (usually called an

avatar). What we are concerned with here is that the user may have interests within the virtual envi­

ronment. Also, any associations with artefacts would allow us to express relative interests (as introduced

in Section 3.2.5). There may be more than one user in the virtual environment. However we are only

concerned with the notion of one particular user; the identity of the user, or the existence of others is

not important.

In addition to a user, there is also the simulation. The simulation can be conceptually regarded as a

user representing the virtual environment. However, there is not typically such an entity, but it is useful

to conceptualise one when considering the requirements or interests of the virtual environment. These

issues are similar to the role based access control mechanisms described by Brunton et al. [20J

3.4.2.1 User Interests: Positive Enforcement

The main subject of this chapter has been the definition of interests for a particular user. The implicit

assumption being that we have been defining the things that the user is interested in. A user's positive

interests are the explicit definition of this implicit assumption. It is an interest statement describing the

set of artefacts that the user is positively interested in, i.e. the things the user wants to see.

3.4.2.2 User Interests: Negative Enforcement

As discussed in Section 3.4, we also need to describe a set of artefacts that are not interesting. A user's

set of negative interests is an interest statement describing the set of artefacts the user is not interested

in, i.e. the things the user does not want to see. Negative interests may be useful to express in addition

and depend on all the artefacts within the virtual environment.

65

to positive interests where there may be a set of optional interests that the user might want to see. By

expressing a set of negative interests, this optional set can be appropriately pruned. However, there may

also be interests that might not be optional, but enforced by the simulation, which are discussed in the

following sections.

3.4.2.3 Simulation Interests: Positive Enforcement

The simulation may have a set of goals or objectives. These would be represented by an interest statement

defining the set of artefacts that a particular user must be interested in.

3.4.2.4 Simulation Interests: Negative Enforcement

In opposition to positive enforcement, the simulation may have an interest statement defining the set of

artefacts that a particular user is not allowed to be interested in.

3.4.3 Combining Interests

In order to make use of the various concerns, we need a method of combining them. For this to occur,

we must assume a priority: that the simulation's concerns are more important than the users. Using this

assumption we can combine these statements as follows:

Interesting Artefacts = ((UPOS - UNEG) U SPOs) - SNEG

Where upos, UNEG, SPOS and SNEG are defined in Table 3.10.

Table 3.10: Combining Concerns of Interest

Abbreviation Full Name of Set
UPOS The user's positive enforcements

UNEG The user's negative enforcements

SPos The simulations's positive enforcements

SNEG The simulations's negative enforcements

3.5 Summary

(3.21)

This chapter has defined the axioms of a virtual environment necessary to reason about interest man­

agement. Building upon these axioms, a categorisation system was defined which was then used in the

construction of interest statements. These interest statements were defined using simple set theory, and

were mapped onto the categories of interest statement introduced in Section 2.2.4. Following this, the

66

issues of constraints and concerns were looked at, with a solution for dealing with conflicts of interests

offered. The next chapter will introduce an implementation of these ideas to reify the concepts introduced.

67

Chapter 4

Virtual Environment Axioms: A
Proof of Concept

Chapter 3 introduced a framework capable of representing dynamic interest management. It defined a set

of axioms for a conceptual model of a virtual environment (Section 3.1), and then introduced set theory'

as a mechanism for representing statements of interest (Section 3.2) which built on top of these axioms.

This chapter will explore design and implementation decisions of thp axioms presented in Section 3.1.2,

and present a referclH:e implementation. This implementation will be a foundation to present the work

on interest management in the following chapters.

Section 4.1 will revisit the virtual environment axioms presented in Section 3.1.2 and describe various

implementation methods. Section 4.2 will discuss the process of designing the data structure required to

support the implementation of a simple virtual environment. Section ·1.3 will describe the implementat ion

decisions made. Finally, Section 4.4 describes the process of implementing the virtual environment itself.

4.1 The Axioms Revisited

Section 3.1.2 introduced artefacts, time, events and processes as core components of a \'irtual environ­

lllent. This ~('ction will look at these components in turn and introduce designs which will be implemented

in order to provide the foundation for a dynamic interest management framework.

·1.1.1 Artefacts

S('ction 3.1.2.2 int.roduced artefacts as "individual II II its of the virtual environment" where "each artefact

consists of one or more attributes". A simple list of the attributes that could be used to compose such

an artefact was as follows:

• unique identifier,

• colour,

68

• x co-ordinate,

• y co-ordinate,

• z co-ordinate,

• geometric description.

Two possible ways of implementing such artefacts are using a language structure such as an object

and using a relational database structure such as a table.

The following two sections will explore both these possibilities and show that they are not necessarily

mutually exclusive designs, but are able to work together well to yield good benefits.

4.1.1.1 Artefacts as Objects

If we are to consider that each artefact has each of these attributes, then one way of realising an

implementation is to map each artefact onto an object in an object-oriented language. Representing

an artefact within a programmatic entity such as an object allows us to use the programming language

to represent both the data that the object consists of, and perform operations on that information. For

example, each object could store an object's set of attributes as instance data, and provide methods

(both class and instance) to manipulate that data. A very simple example of such an object could be

described as follows:

class Artefact

attr_accessor :id. :colour. :x_coord. :y_zoord. :z_coord. :shape

end

This example is in Rubyl, and shows the attributes that each new instance of class Artefact is born

with. Given this class, we can create new instances and edit their attributes as follows:

cube • Artefact. new

cube. id = 1

cube. colour • "red"

cube.z_coord = 12

cube. shape. "cube"

IThe method attr-llCcessor is one of many examples of metaprogramming techniques found within Ruby, and when
interpreted will generate instance variables and accessor methods (getter and setter methods in Java lingo) for all the
parameters that it is passed.

69

The benefit of this approach is the ease by which behaviour can be added to the artefacts where

necessary. In addition to storing attributes, 0-0 objects are also capable of storing associated behaviour.

In Ruby this is at both the class level, and also at the individual instance level. This gives the potential

of representing behaviour unique to each artefact.

4.1.1.2 Artefacts as Table Rows

Another way of realising an implementation of artefacts is USing database tables. Storing data within

a database provides the ability to persist the data, and allows for powerful querying over large sets of

information using already defined languages such as SQL. Each table within a database consists of rows

and columns. In the context of our artefact, we can consider the attributes of an artefact to be represented

by the columns of the database table. Each row of the table would refer to a different artefact. The id

attribute of the artefact would make a very reasonable primary key.

An ActiveRecord database migration for creating such a table could look as follows:

create_table : artefacts do I t I

t. column :id. :integer

t. column :shape. :string

t. column :x_coord. :ftoat

t. column :y_coord. : float

t. column : z_coord. : float

t. column : colour. : string

end

The benefits of this approach are automatic persistence and power of SQL as a querying tool. Amongst

other abilities, SQL is capable of searching, manipulating, and merging information within a database.

One of the goals of this thesis is to create a language for interest statements. With the virtual environment

information stored in a relational database, SQL proves to be an excellent candidate for implementing

such a language.

4.1.1.3 Combining Objects and Tables: Object Relational Mapping

The two methods of implementing an artefact as presented above are by no means exclusive. In fact, the

two methods compliment each other remarkably well. Combining programmatic objects with database

structures is a common pattern found in application development - particularly applications found on

the web. Object relational mappers (ORMs) are tools or libraries that are concerned with exactly this

task.

The combination of two approaches to implementing the artefact described in Sections 4.1.1.1 and

4.1.1.2 is in fact the active record pattern proposed by Martin Fowler[36]. Active record is a simple

70

and intuitive design pattern that can be found in many enterprise applications. It is an approach to

object relational mapping, whereby objects in object oriented programming are directly mapped to

rows in particular tables in the database. This idea is taken a little further by ActiveRecord (a Ruby

implementation of the active record pattern) which maps the object class name to the database table

name. This naming mapping defaults to the object being the singular form of the concept being modelled

(Artefact), and the database table being the pluralform of the concept (artefacts). This therefore reduces

the amount of configuration that is usually required with most ORM tools to describe exactly how the

objects map to the database structure.

Using a combination of database structure (artefacts as table rows), and an 0-0 class structure

(mapping objects to table rows), we have a powerful combination with which to define, store, and use

artefacts. The artefacts can be stored in the database, and used as objects. The objects can allow us to

define artefact behaviour where necessary and the database can provide persistence and the ability to

use SQL to generate interesting sets of artefacts.

4.1.2 Time

In the context of implementing a virtual environment to support an interest management framework,

having a numeric representation of time is only useful if we wish to use that concept whilst describing

interests (Le. I'm interested in food in the morning, and beds at night). For the purposes of maintaining

simplicity, we shall assume that a numeric representation of time is not a requirement. Instead, we shall

let the concept of time refer to the existence of a current state, and the ability to change that state

into a new state. If we are to store our data within a database, this is easily achieved by issuing UPDATE

commands to the database in order to change the state, and SELECT commands to refer to the current

state.

4.1.3 Events

In Section 4.1.2 we described the need for successive versions of state within our virtual environment.

A change in this state is caused by an event. In Section 3.1.2.3 we introduced events as "an alteration

of one or more attributes of one or more artefacts at a particular time". Given that in our case, time

refers to the current state, we are therefore interested in the ability to alter one or more attributes, of

one or more artefacts. Section 4.1.2 also referred to database UPDATE commands as being able to alter

state. Provided that our state is stored within a database, the UPDATE command allows us to update one

or more attributes of one or more artefacts.

Here is an example in SQL of an update to the artefact that has an id of 2:

UPDATE artefacts SET

71

'x_coord" • 32.8,

"y-coord" • 4.8,

"z_coord" = 9.8,

"shape" -'cube',

I'cotour" -I red',

"transparency" = 9.5

WHERE id • 2

In addition, this SQL example can be mapped to object-oriented style syntax by ActiveR.ecord, to

the following:

Artefact. find (2). update_attributes (

=> 32.9,

=> 4.0,

=> a.e,

: shape => 'cube',

:colour => 'red',

:transparency => a.5

ActiveR.ecord will convert the update_attributes call to the equivalent of the SQL given above.

4.1.4 Processes

Section 3.1.2.5 introduces processes as tla logical grouping of events that are inter-linked through a partic­

ular relationship". These could be represented by standard Ruby blocks by ActiveR.ecord. However, as is

evident by their absence in the rest of this Chapter, processes are not an essential part of the supporting

infrastructure for the interest management framework, and will be left for further discussion in Chapter

8.

4.2 Data Design

As described in Section 4.1, Each of the axioms (time, events, artefacts, and attributes) introduced in the

conceptual virtual environment in Section 3.1 easily map onto a database and object-oriented equivalent

as described in Table 4.1

In order to keep the design simple, one table named artefacts, was used to represent the information

for all artefacts. Each individual artefact maps to a particular row of the table, and the attributes of an

72

artefact map to the columns of the table. This is according to the ActiveRecord pattern. In the initial

design, the attributes as presented in Table 4.2 were used to collectively represent an artefact.

Most of these attributes should seem relatively straight forward, except perhaps for transparency.

Transparency is a floating point value between 0 and 1 where 0 is opaque, and 1 is transparent (invisible).

A transparency value of 0.5 would indicate that the artefact is half transparent. Transparency will allow

us to view artefacts that might be contained within artefacts.

4.3 Implementation Decisions

The section will describe the various factors considered before and during the design and implementation

of the virtual environment conceptual model.

4.3.1 Data Storage Technology

The virtual environment needs some kind of storage mechanism for storing the system's data. On the

simplest level, these data are the artefacts and attributes that the artefacts consist of. Section 4.1.1.3

introduced a relational database as a storage mechanism that supported the factors necessary to represent

a virtual environment's data. This section will explore these factors in more detail, and present databases

as an obvious choice given a full consideration of all the factors.

The data store needs to at least have the following factors which will be explored in the following

Sections: persistence, support for set structures, support for querying, and support for spatial queries.

Section 4.3.1.5 will describe the final implementation choices.

4.3.1.1 Persistence

The storage mechanism needs some way of surviving system crashes, or simple system reboots. One way

of achieving this is to represent the information in such a way that it can be stored on some kind of

persistent storage technology. There are many options which facilitate this requirement. For example,

the data could be represented as files on a file system such as ZFS, HFS+, or NTFS which in turn is

stored on a persistent storage technology such as NAND-type flash memory data storage devices, or hard

Table 4.1: Mapping between Conceptual Model Term, Database Term, and Object-Oriented Term

Conceptual Model Term
Time
Event
Artefact
Attribute

Database Term
the ability to alter data
an UPDATE on a database table
a database table row.
a database table column

0-0 Term
the ability to edit object attributes
an update_attributes method
an instance of class Artefact
instance data for Artefact instances

73

Table 4.2: Attributes for the Initial Design

Attribute Data type Example Box Example Sphere
id integer 1 1
shape string box sphere
width float 5.0 nil
height float 10.0 nil
length float 15.0 nil
radius float nil 10.0
x_coord float 1.0 2.0
y_coord float 2.0 4.0
z_coord float 3.0 6.0
colour string red blue
transparency float 0.5 0.0

disks.

4.3.1.2 Support for Set Structures

In order to support the ideas on interest presented in Chapter 3, the data storage mechanism needs to

have support for representing sets of data. We need to be able to store sets of artefacts which are in turn

sets of attributes. This is possible using purpose made data structure, or using a more generic relational

database.

4.3.1.3 Support for Querying

The motivation for storing the information in a set structure, is that (as was illustrated in Chapter 3)

it is possible to use set theory to pull out subsets of that information - potentially interesting subsets.

Therefore a language that allows you to represent and execute snippets of set theory over a set structure

is necessary. Such a language is SQL which is the primary querying language in the relational database

world.

4.3.1.4 Support for Spatial Queries

If the virtual environment consists of spatial information, it is potentially very useful to make queries

that can reason about spatial matters. This matter was discussed in Section 3.2.4.3. There already exist

a number of libraries which support spatial queries, one of which is Oracle Spatial[93]. Oracle Spatial

provides the ability to represent queries with keywords such as touch, contains, covers, inside and covered

by. These keywords enable the query to reason about spatial relationships between artefacts, which would

allow for interests with respect to locales and representational zones such as viewing frustums and auras.

74

4.3.1.5 Implementation Choice

Clearly the relational database is an obvious implementation choice. Most available databases provide

persistence, support for set structures, and support for querying out of the box. Some, such as Oracle,

provide support for spatial queries too.

The original prototypes of the virtual environment implementation were built using Oracle 9i as

the database. One of the main motivations for using this database was the built in support for spatial

queries[93]. However, Oracle 9i is a very heavyweight database implementation, and needs to be deployed

on its own server due to its demanding resource requirements. The current university network restrictions

meant that all development had to occur on the same network, which constrained the locality of any

development. It was important to be able to develop the implementation in the absence of network

connectivity, and therefore a database which could run alongside the rest of the implementation on the

primary development machine was required. Therefore, for the final implementation, MySQL[1] was used.

MySQL does not support spatial queries, however the logic to deal with spatial relationships was moved

up into the language layer (as will be discussed in Chapter (5». This allowed the entire framework to run

on one machine which helped the development, deployment and ongoing testing of the software system.

Oracle Spatial is a very interesting extension to the Oracle database, and if further work takes place

looking at potential optimisations (particularly for spatial calculations) this would be an excellent place

to start (for further discussion see Chapter 6).

4.3.2 Development Methodology

Initial prototypes of the system suffered from a constant evolution and change of the specifications and

requirements. This resulted in messy, poorly structured, and error-prone code. In order to manage this

situation, the final implementation was built in a test-first manner using a set of executable specifications

written in RSpec (see Section 2.5.2). RSpec follows a concept known as Behaviour Driven Development

(BDD[ll]) which is an evolution of the more practised Test Driven Development (TDD[30]) methods.

TDD and BDD are discussed in the following sections (4.3.2.1 and 4.3.2.2).

4.3.2.1 Test Driven Development

Test Driven Development follows a very simple development cycle:

• write a test (which should fail)

• write the code to make the test pass

• refactor the code

75

Following this cycle means that all the way through the development of the software, there is an

evolving set of tests that you can constantly run to check that the system behaves as expected. Imple­

mentations of TOO frameworks are typically based upon the XUnit framework[10j. There exist many

implementations in many different languages.

4.3.2.2 Behaviour Driven Development

Behaviour Driven Development is essentially an evolution of TOO, particularly in terms of vocabulary.

It is a term coined by Dan North, and attempts to move away from the concept of testing, and towards

the practice of writing executable specifications of system behaviour. Specifications written in a BDD

framework are typically far more readable than tests written using a TDD framework. This facilitates

the process of verifying that the tests/specifications are correct in terms of describing the behaviour of

the system.

There are currently not many BDD frameworks available, however RSpec, a BDD framework written

for Ruby is remarkably robust and versatile. Using RSpec to develop the virtual environment resulted

in much more stable, reliable, and trusted code-base. RSpec is discussed further in Section 2.5.2.

4.3.3 Implementation Language

The original prototypes of the implementation were originally written entirely with Java. However, as

the designs changed, the code-base gradually grew more unwieldy, and refactoring started to become

more error prone. The final version of the prototype has been mostly written in Ruby, with one part of

the original prototype remaining in Java. Various concepts found within Ruby, such as blocks (closures),

meta-programming and dynamic typing have facilitated the reduction of the code-base by a factor of 2-3

times, resulting with far leaner and more elegant code.

4.3.3.1 Supporting Libraries

The code was developed using a BDD (Behaviour Driven Development) approach using RSpec (see

Section 2.5.2). This allowed the code to be tested at every iteration to ensure that it conformed to the

specifications.

Ruby also has the ActiveRecord library which simplifies the process of communicating with the

database, and managing schema changes.

4.4 Implementation

This section will describe the process of implementing the virtual environment system. Section 4.4.1 will

describe the process of creating the database schema, Section 4.4.2 will describe the definition of the

76

Artefact class, and Section 4.4.3 will describe a sample virtual environment. Section 4.4.4 will introduce

interest within this context, and then Sections 4.4.5, 4.4.6 and 4.4.7 will expand on the implementation,

introducing a 3D viewing mechanism, a client and server architecture, and an incremental update message

format.

4.4.1 Creating the Database Schema

The Ruby ActiveRecord library makes the process of turning this design into a real database table

remarkably simple. ActiveRecord provides a light abstraction above SQL, allowing you to define your

database schema using a slightly more readable syntax. Migrations are part of a set of functionality

internal to ActiveRecord and provide the ability to store changes in separate, ordered, files allowing for

rolling forward and back along the schema history. However, at this stage we are only concerned with

creating the artefacts table. The part of the migration of interest is as follows:

create_tabte : artefacts do I t I

t. cotumn :shape, : string

t. cotumn :width, : float

t.cotumn : height, : float

t. cotumn :tength, : float

t.cotumn : x_coord, :ftoat

t.cotumn :Lcoord, :ftoat

t.cotumn :z_coord, : float

t.cotumn : radius, : float

t.cotumn : cotour, :string

t. cotumn : transparency, :ftoat

end

As can be seen, this migration is similar to the design presented in Table 4.2. One thing to notice is

that there is no id column. This is due to the fact that by default ActiveRecord creates and manages

this column for us. Executing this migration will result in the creation of a matching table within our

database.

4.4.2 Defining the Artefact Class

Using ActiveRecord as the object relational mapper makes defining the Artefact class easy:

class Artefact < ActiveRecord: :Base

end

77

Simply inheriting from ActiveRecord: :Base gives the Artefact class everything it needs. ActiveRecord

is able to inspect the appropriate database table (artefacts being the plural of Artefact), and generate

the necessary instance methods on the fly at run time. The artefact class, once defined, is able to create,

read, update and delete artefact objects in an object oriented fashion.

4.4.3 A Sample Virtual Environment

In order to test this implementation, it is necessary to create a very simple example virtual environment.

Using the yaml2 markup language, we can define the following fixture3 containing some sample artefacts

with which to populate our database:

floor:

sphere:
shape: floor

shape: sphere
width: 188

radius: 2
length: 58

x_coord: 10
transparency: e

Lcoord: 15
box:

shape: box

colour: green
height: 5

transparency: 0.5
width: 2

cyUnder:
length: 18

shape: cyUnde r
x_coord: 58

radius: 1
Lcoord: 28

height: la
z_coord: 8

colour: red

t ranspa rency: e. 5

colour: turquoise

transparency: 8.5

This fixture defines four artefacts: a floor, a box, a sphere and a cylinder. Using ActiveRecord, we

can import the data within this fixture straight into our database.

3see Section 2.5.1 'calI ed
3Fixtures are simply a set of predefined sample data which can be used to populate the database, and are typl Y us

for testing.

78

4.4.4 The First Interest Statement

Now that we have a database populated with some artefacts, we can now use our object relational mapper

to pull information out. Our first interest statement will be the simplest4 :

I am interested in everything

In SQL syntax, this statement is equivalent to:

select • from artefacts

However, using ActiveRecord, we can also express this interest statement with Ruby code:

Artefact. find (: all)

We can even verify that the right results are being pulled out from the database with a simple consol~

session:

»Artefact.f1nd(:all).map {Iartefactl artefact.shape}

.,. [lIbox", "cylinder ll
, "floorll, "sphere"]

As can be seen, a simple query pulling out all the artefact shapes returns the shapes of the four

artefacts that we loaded into the database with our yaml file. Inspecting one of the artefacts more

closely, we can see that all the attributes are intact too:

» print Artefact. find_by_shape("cylinder") . to_yaml

'" I ruby/object :Artefact

att ributes:

radius: "1.9"

Lcoord: "S.B"

id: "2"

shape: cylinde r

colour: turquoise

length:

transparency: "8.5"

height: "18.8"

width:

4lgnoring the option of being interested in nothing at all. . .
5The Ralls console is a standard Ruby interactive shell with all the necessary classes and objects pre-loaded mto It (such

as OUf Artefact class).

79

One thing that might look odd is that all the numerical data looks to be represented as strings.

This is because ActiveRecord talks to the database USing plain strings. However, in practice, this is not

actually an issue. When the attributes are accessed using the standard accessors, ActiveRecord is able

to translate the string to the correct class:

» Artefact.find_by_shape('cylinder').x_coord.class

-> Float

Also, the virtual environment viewer, introduced in the following Section, deals entirely with strings.

4.4.5 Viewing the Virtual Environment

With a working implementation of the core parts of a virtual environment necessary to build the interest

management framework upon, it was necessary to build a tool allowing the visualisation of the artefacts

within the world. This was achieved using a VRML browser (FreeWRL). VRML browsers typically only

render static files which contain all the necessary information for the particular world/environment they

are representing. In order to facilitate arbitrary addition and removal of VRML nodes, some VRML

browsers offer an Extended Application Interface (EAI). The EAI allows the VRML browser to act like

a server listening on a a specific port. Communicating over this port a client that can control the VRML

browser, i.e. sending commands to add and remove VRML nodes.

An abstraction layer was created which hid the unnecessary VRML syntax and the complexity of

communicating through the EAI interface. This abstraction layer took the form of a standard UNIX

command line interface, and provides the following options:

Welcome to the EAIShell. For help, just type help ...

$>help

The following commands are available:

add shape options

help shape (for a list of available shapes)

help colours (for a list of available colours)

help transparency (for information about transparency)

hide object_id

show object_id

delete object_id

increment coordinate object_id vatue

(where coordinate - x_coord. y_coord or ,_coord)

help

80

A Ruby wrapping li brary was built using this command line interface, which presented the VRML

browser with a Viewer class which supports the same options as the EAIShel1. The architecture of the

viewing system is presented in Figure 4.1.

VRML
browser

EAI interface

Figure 4.1: The Archi tect ure of t he View ing System

Viewer\#add6 , t he add method t hat t he Viewer class provides , takes a tandard Ruby h h as it

parameter. This hash represents a ll of the attributes of the particular a rtefact t hat you wi h to add to

the VRML browser. An example of this is is as follows:

» viewer = Viewer. new

» viewe r . add ((:s hape => :cube, :id => 1, :hei ght => 10, :x_coord => 2 , :y_coord => 4 ,

:z_coo rd => 6 , :colour => "red", : tran sparen cy => 0.5 })

T hi hash i identical to t he attributes has h t hat is included within each ActiveRecord rtefact

object. T hi a llows us to run the foll owing simple Ruby code, to generate t he world shown in Figure 4.2

» viewe r :: Viewer . new

» Artefact . fi nd(: all) .each (Iartefactl viewer . add(artefact . attr i butes)}

Gin s~nndnl'd Ruby do um entation the # symbol is used to separate a class or module name from the method name

81

Figure 4.2: A Simple World Consisting of a Cuboid , Cylinder, Sphere, and Floor

4.4.6 A Client Server Architecture

With th visualisation system in pl ace, the next stage was to introduce a impl e client rver a rchitecture

into the implementa tion , as illustrated Ln Figu re 4.3. Thjs wou ld represent t he following logi aI eparation

of concerns:

4.4.6.0.1 Client Th client interacts with a viewer and a server. It r eiv updat for th e viewer

from the server, and also registers its in ter sts with th e serv r (urrently an int r t in ev ry thing, as

discu ed in Section 4.4 .4 , but expanded upon in hapt r 5.)

4.4.6.0.2 Server T he server interacts with a client and a database. It f t hes th rei vant a rt f cts

from the database based on the client 's interest , and sends th m to the Ii nt . It al 0 provides the abi li ty

for the client to register upd ates in interest.

Database

Figure 4.3: Lient Server rchitecture

82

4.4.7 An Update Format

As Section 4.4.6 introduced, one of the major concerns of the server is to send updates to the client.

Updates consist of the following:

• The addition of an artefact into the client's view,

• The removal of an artefact from the client's view,

• The update of one or more attributes belonging to one or more artefacts within the client's view.

In order to be able to calculate which updates to send, the server needs to have a copy of what the

client is currently aware of. When the server is sent the refresh method, it pulls out the latest set of

artefacts from the database based on the interests. This new set can be compared against the stored set,

and the differences sent as updates to the client. The algorithm is as follows:

for each interesting artefact

if the client is not aware of the artefact:

generate add command for the artefact

end

if the client is aware of the artefact, but the attributes are different:

generate update commands for the artefact

end

end

for each artefact in the copy of the artefacts the client is aware of

if the artefact is not 1n the set of interesting artefacts:

generate delete command for the artefact

end

end

rephce copy of artefacts that the client is aware of with the interesting artefacts

83

For example, let us look at the log of a simple session. On the first server refresh the following updates

are sent to the client:

update. :

:cDIMlInct->".dd-, :parlmeterslO{

I,

: command->".dd", :parameters->{

:command->"add" I :parameters->{

I,

: command-,."add", : parameters->{

:width->2.8, :transparency=>8.5, :length=>18.8,

: z_coord-=>8. 8, :height=o5.8, :1d->1. :x_coord=>58.8

:y_coord->5.'. :shape->"cylinder·, :colou,..,"turquoise",

:radius->l,e, :transparency->8.5, :z_coord->8.8.

:height->18.e, :ld->2, :x_coord->15.e

: shape->"lloor", :width->1ee .8, :transparency->8.a,

: length->S8. e, : id->3

:y_coord->15.8, : shape-,."sphere" I :colour->"green".

: radius->2 .8, : trlnsparency->8.5. : z_coord->8,a,

As the client currently has nothing visible, all the artefacts are added to the view. However if the

server is refreshed again, the updates are as follows:

updates:

II

Nothing has changed within the database since the last refresh, therefore there are no differences to

send. If the x_coord of the sphere artefact is updated from 10.0 to 15.0, and the server refreshed, the

updates are as follows:

84

updates:

[{:command=>"move", :parameters=>{:by=>S.9, :axls=>"x", : ld=>4}} 1

Only the differences are sent to the client. If cylinder artefact is removed from the database entirely,

and the server refreshed again, the updates are as follows:

updates

({: command-'delete", : parameters=>{ : id_2)} 1

The server is therefore correctly detecting any changes between the current set of interesting artefacts,

and the set of artefacts the client has, and sending those changes across using the minimal amount of

information.

We now have a fully working model of a the visual elements of a virtual environment7 . The server is

capable of sending updates to the client based on an interest in everything. The client starts the simulation

with a knowledge of nothing, and everything is sent using the network which logs all throughput. This

approach is similar to that taken by the Cyberwalk system[89J. We now have the potential to deal with

a wide variety of heterogeneous clients by having close control of what is sent along the wire. This close

control will be provided by the concept of interest which is the subject of the next chapter.

TIt is Important to note that this model ignores interactive elements such as navigation, and sending any information
other than interests from the client to the server.

85

Chapter 5

Interest Statenaents

Chapters 3 and 4 considered the concept of dynamic interest management, and implementation of a

basic virtual environment respectively. Given the implementation of a conceptual model representing

a virtual environment (Section 3.1), it is necessary to consider how we might map on the concept of

interests as defined in Section 3.2. Section 3.3 illustrated how this model is capable of representing many

of the interest management techniques currently found in the literature (categorised in Section 2.2.3).

This chapter will build upon this work by introducing an implementation of a language for interest

statements.

Section 5.1 will describe the concepts that a language for interest statements will need to be able to

express. Section 5.2 will revisit the examples introduced in Section 3.3, and Section 5.3 will illustrate

how SQL is expressive enough to represent these examples. Section 5.4 will describe how to use SQL

to combine the concerns described in Section 3.4.2, and finally Section 5.5 will discuss some of SQL's

limitations as a language to represent interest statements. These limitations will be the main focus of

Chapter 6.

5.1 Interesting Concepts

In order to express interest, it is necessary to consider the potential subjects of that interest: the concepts

we wish to reason about. In essence we are looking to generate subsets of artefacts from the set of all

artefacts where that subset is interesting. Therefore, implicitly, the interesting concepts are artefacts.

However, in order to express which artefacts we are interested in, it is necessary to have some factors with

which we can distinguish and reason with. Section 3.2.2 introduced the concept of interest conditions

and defined them as "a test which will indicate whether or not an artefact (x) is interesting to us". The

factors we need in order to define these tests are attributes, virtual attributes, relative artefacts and

relative virtual artefacts. These will be discussed in the following sections.

86

5.1.1 Attributes

Attributes are the items of data which constitute an artefact. We can use the presence, absence or value

of these to reason about different sets of artefacts. For example, we might make the following statement

of interest:

I am interested in all artefacts that are red

This statement would be a comparison to a colour attribute, checking that the colour was red. All

artefacts that have a colour attribute with the value red would be a member of the interesting set.

5.1.2 Virtual Attributes

Virtual attributes are attributes associated with an artefact, which are not necessary data for that artefact

to exist. Essentially, virtual attributes are artefact metadata. For example, our virtual environment may

contain artefacts representing people. Given the presence of a virtual attribute mood, we can make the

following statement of interest:

I am interested in all happy people

This statement would add all people that have a mood attribute with the value happy to the inter­

esting set.

5.1.3 Relative Artefacts

Attributes are strongly coupled to artefacts. Each attribute belongs to only one artefact and it represents

information that is essential for the representation and existence of that artefact in the virtual environ­

ment. Although using artefact attributes to create interest statements provides us with a powerful and

fine grained language to reason about interest, it is not enough to reasonablyl represent many types of

interest statement.

In the previous two examples of interest statements we injected values into the statement. In the first

example we injected the value red, and in the second we injected the value happy. These were values

we had to know before we could make the statement. Sometimes, however, we might not know these

attribute values beforehand. For example, we might want to make the following statement:

I am interested in all artefacts that are the same colour as artefact A

Clearly, for this statement to make sense, we need to know which artefact A is referring to. This

artefact is a relative artefact; it is the artefact which our statement requires in order to be complete. If

we are to change the artefact, we potentially change the resulting interesting set.

I It would be possible to overload the Interest statement to such an extent that all types of interest statement could be
represented. However, this would require that any additional information other than artefact attributes be included within
the interest statement itself.

87

5.1.4 Relative Virtual Artefacts

Relative virtual artefacts are a particular example of relative artefacts as defined in Section 5.1.3 in that

they are also virtual artefacts. A virtual artefact is a non-essential artefact. Similar to the concept of a

virtual attribute being artefact metadata, virtual artefacts are virtual environment metadata. A virtual

artefact could be used to describe many different virtual concepts. For example they could be used to

represent an aura such as one defined in Greenhalgh's spatial model of interaction[44J. In this model an

aura is a virtual artefact defining an area, that moves with the associated artefact. An aura does not

'exist', but it does 'virtually exist' within the virtual environment, and is therefore particularly suited to

be represented with a virtual artefact. Similarly, virtual artefacts could also be used to define locales.

Examples of this additional information are the spatial and zonal geometrical representation used for

locales and the focus and nimbus areas. A solution to this is to move this information from the interest

statement into the virtual environment. The information can be represented with virtual artefacts. A

virtual artefact is an artefact that cannot be directly interacted with. It is essentially invisible information.

Although the distinction between the terms virtual artefact and artefact are nonsensical in the context of

a virtual environment (where everything is essentially virtual), it is useful to conceptually separate them.

The separation is only conceptual because in terms of implementation, a virtual artefact is essentially

just an artefact, but it is in their usage that they differ. Virtual artefacts are, in essence, information

about information, and therefore the phrase virtual artefact is just another term for metadata.

5.2 Example Statements

This section will explore some examples of the sort of statements that the language needs to be able to

represent. The motivation of this section is to revisit the examples introduced in Section 3.3 within the

context of the interest concepts as defined in Section 5.1.

5.2.1 Categories

As an example of categories, Section 3.3.4 described the interesting set consisting of all red artefacts.

This type of statement is represented in terms of the relationship between the statement's given values

and the artefact's current attribute values:

I am interested in all artefacts that are red

5.2.2 Locales

Locales can be seen to be either relative artefacts or relative virtual artefacts. An example of a relative

artefact representing a locale is a building, and an example of a relative virtual artefact is an area or zone

88

represented by a virtual artefact. Such zones appear in many different explicit guises in the real world.

Examples include countries, building plots, and even different sections of a sports area such as a football

pitch. If an artefact (virtual or not) is to be used as a locale, it needs to have attributes that describe

its spatial relationship between other artefacts (such as co-ordinates, and bounding boxes). Artefacts

representing locales should also support the standard spatial set relationships such as:within, contains,

overlaps, and touches.

An example of an interest statement using locales (using a relative artefact) is:

I am interested in all artefacts within the football pitch

Similarly, an example of an interest statement using locales (using a virtual relative artefact) is:

I am interested in all artefacts within my viewing frustum

5.2.3 Relative Locales

In terms of the interest concepts as defined in Section 5.1, relative locales can be seen to be the same as

standard locales. This is because locales are represented by artefacts or virtual artefacts, and any artefact

(virtual or not) represented in an interest statement is a relative artefact. Where there is a relationship

between two or more artefacts, such as the relationship described in Section 3.3.2, this relationship should

be part of the declaration of the relative artefact. Therefore, if we can refer to the relative artefact a, we

can also refer to an artefact (b) related to a. The interest statement does not contain any information

about relationships between artefacts.

5.2.4 Interacting Locales

Section 3.3.3 described an example of interacting locales as follows

"When an artefact A's aura collides with artefact B's aura, artefact A can be said to be

aware of artefact B. "

In terms of the interest concepts as defined in Section 5.1, concepts such as the one above can be

represented by introducing two relative artefacts into the interest statement:

I am interested in all artefacts whose aura overlaps my aura

5.2.5 Combinations

We might wish to be able to create statements that arbitrarily combine the examples above. For example,

consider the following interest statement:

I am interested in all artefacts that are red and also within my viewing frustum

89

All of these example statements will be revisited Sections 5.3 where they will be discussed within the

context of an implementation.

5.3 Representing Interest Statements with SQL

In order to realise the examples highlighted in Section 5.2 it is necessary to consider mechanisms with

which to represent interest statements. Given that the virtual environment's data is stored using a

database (see Section 4.3.1.5), and that the model of interest management introduced in Chapter 3 was

in terms of set theory, SQL seems a very obvious tool with which to represent our interests. This section

will explore the use of SQL in detail, concluding that SQL is expressive enough to represent the examples

in Section 5.2.

This section will explore SQL's ability to represent the examples presented in Section 3.3 in order to

demonstrate the expressiveness of SQL for representing interest statements.

5.3.1 Categories

Section 5.2.1 introduced the following as an example of a category based interest statement:

I am interested in all artefacts that are red

Section 3.3.4 introduced the following general case for representing category based interest statements:

I = {x E U : x E CATEGORY}

The following scopes the general case to our specific example of red artefacts:

where RED_ARTEFACTS(X): x is red

Which can be simplified to:

I = {x E U : x E RED_ARTEFACTS}

I = {x E U : x is red}

(5.1)

(5.2)

(5.3)

This is the statement that we need to express using SQL. In order to achieve this, it is necessary to

evaluate each concept in the set builder in terms of SQL. Table 5.1 explores these individual concepts in

turn.

Therefore, the corresponding SQL statement for the category based example interest statement is as

follows:

90

Table 5.1: Deconstructing and Evaluating a Category Based Set Builder

x E Any artefact within
Set Builder Concept Description Equivalent SQL Concept

U the universal set, the set of all artefacts
such that the following is true:

x is red the artefact is red

select • from Artefacts where colour = 'red'

select' froll
Artefacts

where
colour = 'red'

Notice that we can use the standard SQL conditional operators to compare attributes (COlour) against

given values ('red'):

Table 5.2: SQL Conditional Operators

Conditional Operator Description
equal to

!- not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

5,3,2 Locales

Section 5.2.2 introduced the following as an example of a locale based interest statement:

I am interested in all artefacts within the football pitch

Section 3.3.1 introduced the following general case for locale based interest statement:

I = {x E U : x is within A'} (5.4)

The following scopes the general case to our specific example of red artefacts:

I = {x E U : x is within the football pitch} (5.5)

In order to convert this set builder to an interest statement, it is necessary to define the relationship

within, particularly in terms of football pitches. One way of representing the area of a football pitch is

with a two dimensional rectangle. Consider the football pitch represented in Figure 5.1. This football

pitch has the following properties which are interesting in this context: a width, a length and a pair of

coordinates which define the centre of the pitch.

91

1
x and y coordinate width

L.... __________ -' ___ O_f_fOO_tb_a1_1 P_It_ch ____ ...l ~r
~. __ ------------------- leng~ ___________________ ~

(x axis) ~

Figure 5.1: A Simple Representation of a Football Pitch

A simple algorithm for determining whether a given artefact's x and y coordinates fall within the

area of the football pitch is illustrated in Figure 5.2. Essentially it is determining whether the artefact's

coordinates are on the pitch side of each of the four pitch boundaries. If this is the case for all the

boundaries, then the artefact is considered to be within the football pitch. The use of range predicates

over multiple artefact attributes for representing spatial regions of interest is an approach also used by

Bharambe et al.[15].

The following is a partial SQL statement which represents the within algorithm:

x_coord >= football_p1tch.x_coord . (football_pitch. length I 2) and

v_coord >= football_p1tch.y_coord . (football_pitch. width I 2) and

However, in order to convert this to a full SQL statement it is necessary to introduce the concept

of relative artefacts. In the snippet above, footbaHJlitch represents a relative artefact - an artefact that

the interest statement is relative to. One way of introducing relative artefacts into the SQL statement is

through a self join.

select a.* from Artefacts a, Artefacts football_pitch where

a.x_coord <= football_pitch. x_coord + (football_pitch. length I 2) and

a.y_coord >= football_pitch.y_coord . (football_pitch.width I 2) and

footbaH_pitch.name = 'footbaH pitch' and

category. 'pitch'

Here we are defining the relative artefact footbaH_pitch by specifying its name and category (which

in this case should be attribute columns which have the properties of a composite primary key).

92

r
x and y coordinate width

~ __________________ ~ ______ O_fl_oo_~_a_II _Pi t_~ ________ Jwrs)
..... 1--------- (I:~:~) ----------i.~

Find all artefacts where

y coordinate < (
of artefact

pitch's y
coordinate)

1/2 Pit:h width

x coordinate
of artefact

Y coordinate
of artefact

x coordinate
of artefact

AND

AND

(
pitch's Y

) coordinate
>

1/2 pitch width

AND

pitch's x

> (coordinate)

1/2 pitch length

Figure 5.2: Det,ermin ing whether a Given Artefact 's x and y Coordinates Fall Within t he Area of a
8 t,ball Pitch

93

5.3.3 Interacting Locales

Section 5.2.4 introduced the following as an example of an interest statement in terms of interacting

locales:

I am interested in all artefacts whose aura overlaps my aura

Section 3.3.3 introduced the corresponding set builder:

I = {x E U : the aura associated with a overlaps the aura associated with x} (5.6)

As with the requirement to define the within relationship in Section 5.3.2, in order to convert this set

builder to SQL we need to define the overlaps relationship. In order to simplify the example, consider

the relative artefacts representing each aura to be circular2. We need to define an algorithm to determine

whether any two given circles overlap.

r+r' > d (5.7)

Where r, r' and d are the radius of the first circle, the radius of the second circle, and the distance

between the midpoints of the circles respectively (as illustrated in Figure 5.3).

Figure 5.3: Determining whether Two Circles Overlap

Notice that distance d is the hypotenuse of the dotted triangle, the lengths of which other sides are

lx' - xl and Iy' - YI. We can therefore use pythagorus' theorem to calculate d as follows:

d = v'lx' - xl2 + Iy' - Yl2 (5.8)

~~------------------~---~Thi8 approach is also taken by the Cyberwa1k system[89]

94

Therefore, to determine whether two circles overlap, the following condition should be true:

r + r' > vlx' - xl2 + Iy' _ Yl2 (5.9)

In order to create the SQL statement which represents this example, we need to consider the additional

constraints on the artefacts. We are looking for all artefacts that have the same name as a aura that

overlaps the aura corresponding to 'my artefact'. The following SQL statement represents this example"i:

select c., from Artefacts a, Artefacts b, Artefacts c where

a.name = 'my artefact' and

a. catego ry = 'focus' and

b. catego ry .. 'nimbus' and

C.name = b.name and

c.virtual = false and

a.radius + b.radius > sqrt(pow«b.x_coord - a.x_coord), 2) + pow«b.y_coord - a.y_coord), 2»

5.3.4 Combinations

Section 5.2.5 introduced the following as an example of a combinational interest statement:

I am interested in all artefacts that are red and also within my viewing frustum

Let us treat each part of this statement individually before combining them together. The two parts

are:

I am interested in all artefacts that are red

and

I am interested in all artefacts that are within my viewing frustum

The first part is simply a category based interest statement as discussed in Section 5.3.1. The SQL

representation of which was:

select • from Artefacts where colour = 'red'

The second part is a locale based interest statement as discussed in Section 5.3.2. However, Section

5.3.2 described a rectangle as the shape of the locale. In the context of viewing frustums, this might

not be an appropriate shape. Instead, let us consider that a viewing area is circular, centred around

the associated artefact. We need to define the relationship within with respect to a circle. For a given

3The attributes n , c.t.gory and virtuo\ are simply example attributes, and are used and introduced further in Section
7.1.1.

95

artefact to be within a given circle, its coordinates must be within the area of the circle. This means that

the distance between the centre of the artefact and the centre of the circle must be less than the circle's

radius (as illustrated in Figure 5.4):

r>d

x~y'
I
I
I
I
I­
I':"
I­
I.!:>
I
I
I

_.0

Figure 5.4: Determining whether a Given Point is Within a Circle

The calculation of d is the same as described in Equation 5.8 in Section 5.3.3:

d = v'lx' - xl2 + Iy' - Yl2

(5.10)

(5.11)

Therefore, to determine whether a coordinate is within a given circle, the following condition should

be true:

r > v'lx' - xl2 + Iy' - Yl2 (5.12)

The SQL for this part is therefore:

setect b.* from Artefacts a, Artefacts b where

a.name ~ 'my artefact' and

a.category • 'frustum' and

a.radius> sqrt(pow«b.x_coord a.x_coord), 2) + pow«b.y-coord - a.y-coord), 2)) and

b.virtuat • fatse

Again, we are assuming that the frustum has the same name as the artefact it is associated with.

96

In order to combine these two parts we just need to utilise the SQL and and or keywords to join the

interest statements. A combined version of the SQL interest conditions above is as follows:

setect b.* from Artefacts a, Artefacts b where

a.name • 'my artefact' and

a.category. 'frustum' and

a.radius> sqrt(pow«b.x_coord - a.x_coord). 2) + pow«b.Lcoord - a.y_coord). 2» and

b.virtuat • fatse and

b.cotour = 'red'

5.4 Combining Separate Concerns

Section 3.4.2 introduced the notion of the separation of concerns of the user and the simulation. It

proposed the following concerns:

• User Positive Interests (see Section 3.4.2.1),

• User Negative Interests (see Section 3.4.2.2),

• Simulation Positive Interests (see Section 3.4.2.3),

• Simulation Negative Interests (see Section 3.4.2.4).

It then proposed the following method of combining these concerns:

Interesting Artefacts = ((UPOS - UNEG) U spos) - SNEG (5.13)

Where:

Abbreviation Full Name of Set

UPOS The user's positive enforcements

UNEG The user's negative enforcements

SPos The simulations's positive enforcements

SNEG The simulations's negative enforcements

Within the context of SQL, each of these concerns can be represented with an SQL statement, and

combined using the SQL operators as follows:

setect * from Artefacts where « (id in (setect id from Artefacts where UPOS) and

not id in (setect id from Artefacts where UNEG» or

id in (setect id from Artefacts where SPOS» and

not id in (setect id from Artefacts where SNEG»

97

For example, the following set of combined interest statements will result with an interest in white

or green artefacts only:

select • from Artefacts where «(id in (select id from Artefacts where (colour = 'white' or

colour = I red I or

colour = 'blue'» and

not id in (select id from Artefacts where (colour = 'blue'») or

id in (select id from Artefacts where (colour = 'green'») and

not id in (select id from Artefacts where (colour = 'red'»)

5.5 Limitations

Although, as shown in Section 5.3, SQL is expressive enough for our needs, it also has some limita­

tions which might hinder its usage in this domain. This section will explore some of these limitations,

particularly the issues of abstraction, readability, and succinctness.

5,5.1 Expressiveness

Section 3.2.2 introduced the concept of interest conditions. This chapter has only discussed simple con­

ditions such as equality and mathematical inequalities such as greater than and less than. However, we

may want to utilise much richer conditions such as visible, friend or threatening. Unfortunately, standard

SQL is not capable of expressing this logic directly. This limitation has given rise to embedded procedu­

rallanguages within SQL statements such as Oracle's Procedural Language/Structured Query Language

(PL/SQL). This limitation is discussed further in Section 8.3.4.

5.5.2 Abstraction

Consider the following simple interest statement in SQL:

select • from Artefacts where colour = 'red'

This statement is fairly simple, and digestible. However, as we saw in Section 5.3.4, the statement

gets more complex in proportion to the complexity of the the interest:

select b.· from Artefacts a, Artefacts b where

a.name = 'my artefact' and

a.category • 'frustum' and

a.radius > sqrt(pow«b.x_coord - a.x_coord), 2) + pow«b.Lcoord - a.y_coord), 2» and

b.virtual • false and

b. colour. 'red'

98

Ideally we would like to keep the complexity of the statement we are currently writing to a minimum,

yet still handle increasingly complex statements. SQL does not provide any such abstraction technique.

5.5.3 Readability

Consider the following SQL statement which determines which artefacts are within a given artefact's

viewing frustum:

select b.* from Artefacts a, Artefacts b where

a.name = 'my artefact' and

a.category = 'frustum' and

a.radius> sqrt(pow«b.x_coord - a.x_coord), 2) + pow«b.Lcoord - a.Lcoord). 2» and

b.virtual = false

Quickly scanning the above statement does not immediately reveal its intentions, particularly the

line dealing with the geometry calculation of the distance between two coordinates.

5.5.4 Succinctness

Consider the following simple interest statement in SQL:

select * from Artefacts where colour = 'red'

As Section 5.5.2 described, this statement is fairly readable despite having a lot of words which are

specific to the implementation (SQL) rather than the domain (interests). For example, in this statement

the important concept is purely colour = 'red'. The lack of modularity, as described in Section 5.5.2,

also means that in terms of the intention, the statement is not very succinct. Consider the differences

between this valid SQL statement, and the following invalid statement which uses abstraction to define

the within relationship:

select b.* from Artefacts a, Artefacts b where

a. radius> sqrt(pow((b.x_coord a.x_coord). 2) + pow((b.Lcoord - a.Lcoord), 2»

all artefacts where

By increasing the succinctness in terms of the intention through modularity, the above invalid state­

ment also becomes a lot more readable without losing the expressiveness. Chapter 6 will introduce Wish,

a new language built upon SQL which aims to tackle the readability, succinctness and abstraction issues

raised in this section.

99

Chapter 6

Wish: a DSL for Interest Statements

Chapter 4 introduced an implementation of a virtual environment that allowed interest to be represented

using SQL, and Section 5.3 demonstrated that SQL is expressive enough to represent the interest types

categorised in Section 2.2.41. However, Section 5.5 described several limitations of using SQL to represent

interest statements. SQL's limitations include a lack of support for abstraction/modularity mechanisms,

and not being very readable or succinct. There is therefore the need for a language that is as expressive

as SQL, provides abstraction mechanisms, and is also more suited to the domain of interests in terms of

readability and succinctness. Wish aims to be such a language.

Section 6.2 describes the structure of Wish, and Section 6.3 describes how it was implemented. Wish

is evaluated in Chapter 7.

6.1 The Structure of a DSL for Interest Statements

On inspection of the SQL interest statements described in Section 5.3 we can see that they consist of the

following fundamental concepts: interest conditions or relative interest conditions connected with logical

operators with optional grouping. Sections 6.1.2.1,6.1.2.2 and 6.1.2.4 will explore these concepts in more

detail. Two further concepts, not explicitly incorporated into the previous SQL interest statements,

are needed to improve the readability and abstraction capabilities of a language representing interest

statements. These two concepts are scoping and abstraction and will be discussed in Sections 6.1.2.6 and

6.1.2.5 respectively.

6.1.1 Domain Objectives

The domain objectives are driven by the successes and failings of the SQL implementation introduced

in Chapter 5. A domain specific language needs to be expressive enough to represent all the examples

described in Section 5.1.4, yet not suffer from the limitations discussed in Section 5.5. This section will

discuss these objectives in greater detail.

I However, some of the predicates may best be calculated with auxiUary logic, such as visibility-based filtering.

100

6.1.1.1 Abstraction

A statement of interest can be formed with arbitrary amounts of complexity. However, complex state­

ments can get very difficult to manage, thus increasing the chance of errors, both semantic and syntactic.

The main problem with this situation is that the complexity of any linguistic statement is limited to the

complexity that the author of the statement can handle.

One of the key techniques of dealing with complexity is through abstraction. By building many layers

of abstractions, we are able to construct arbitrarily complex statements that only expose the complexity

that is necessary in a particular context. One way of providing layers of abstraction is allowing the

language to be built up from smaller modules, which in turn may be built up of smaller modules ad

infinitum. These modules can be seen to be analogous to functions or classes.

6.1.1.2 Succinctness

When attempting to make a language more readable, it is possible to end up with something that is

verbose. It is therefore important to find the correct balance between succinctness and readability. One

method of doing this is to just remove semantic and syntactic elements that are not necessary in the

current context. Consider the following SQL example describing an interest in all red artefacts:

select • from artefacts where (colour = 'red')

This is a complete SQL statement, and contains all the semantic and syntactic elements to be a correct

SQL statement. However, in this context we are only considering interests. There are a few assumptions

we can make. For example, consider the following assumptions:

• The universal set is always the set of all artefacts. Therefore, from artefacts is not necessary:

select· where (colour = 'red')

• We are always interested in all interesting things. Therefore, select • is not necessary:

where (colour = 'red')

• We are always describing interests. Therefore, where is not necessary:

(colour = 'red')

Through the process of making assumptions from the context of the domain, it is possible to remove

elements of the language, and make the statement more readable.

101

6.1.1.3 Readability

One of the main aims for the readability for a new language is for it to be readable by the domain

expert. The domain expert may not be a programmer, but someone designing the methods or techniques.

Therefore, ideally, the language uses the vocabulary of the domain, and not necessarily the vocabulary

of a general programming language.

For example, consider the following SQL snippet:

(colour = 'red')

This snippet, although fairly succinct2 is perhaps not as readable as it could be. It still looks more

like an SQL snippet, than a statement of interest. Consider the following possible methods of tackling

this issue:

• The parenthesis aren't necessary in this statement. There are no operators to which their precedence

can be altered.

colour = I red'

• The quotations aren't necessary in this statement. The fact that the colour is represented by letters,

means that it's possible to deduce that it is a string3:

colour = red

• It would be much more readable if it could be written within the language of the domain. In this

case we are concerned with red artefacts, or all artefacts coloured red. Therefore the following

would be more readable:

coloured red

Through the process of purging the statement from syntactic clutter, and using domain specific

vocabulary, it is possible to make the statement more readable.

6.1.1.4 Expressiveness

In order to represent complex statements at all, the language needs to be sufficiently expressive. The

requirement for expressiveness was captured in Chapter 3, and a test of which is the ability to represent

the examples presented in Section 3.3.

2 At least it is succinct when compared to the full SQL version
3More on this type of inference in Section 6.2.1.1.

102

6.1.2 Structural Concepts

This section evaluates the interest statements formalised in Chapter 3, and implemented in Chapter 5 in

order to highlight the various structural concepts required of such a language. The follOwing structural

concepts are considered:

• Interest Conditions (Section 6.1.2.1),

• Relative Interest Conditions (Section 6.1.2.2),

• Logical Operators (Section 6.1.2.3),

• Grouping (Section 6.1.2.4),

• Abstraction (Section 6.1.2.5),

• Scoping (Section 6.1.2.6).

6.1.2.1 Interest Conditions

The fundamental component of the SQL interest statements introduced in Chapter 5 is a boolean ex­

pression. This is essentially a condition over a given attribute4 :

[attribute 1 [condition 1 [value 1

The SQL conditional operators were described in Table 5.2 and are reproduced here for convenience:

Conditional Operator

!=

<

>

<=

>=

Example boolean conditions are as follows:

colour ~ • red'

age> 27

virtual I- true

Description

equal to

not equal to

less than

greater than

less than or equal to

greater than or equal to

4The square brackets in these descriptions do not denote optional tokens, they just emphasise token boundaries.

103

6.1.2.2 Relative Interest Conditions

Relative boolean conditions allow for the representation of statements such as

I am interested in all artefacts that are the same colour as this artefact

where this is a given artefact (as described in Section 5.1.3). These conditions appear as follows:

[attribute) [condition) [a given artefact's attribute)

Example relative boolean conditions are as follows (relative to artefact x):

colour = x.colour

age> x.age

virtual I- x.virtual

6,1.2.3 Logical Operators

An interest statement can consist of one or more boolean conditions (or relative boolean conditions) joined

together with logical combinational operators. Table 6.1 describes the four major logical combinational

operators used for joining interest conditions.

Table 6.1: Logical Combinational Operators

Logic Symbol(s) SQL Equivalent
V or
1\ and

1\..., and not
V..., or not

An example of joining two interest conditions is:

[interest condition) [logical operator) [interest condition)

Examples of joining interest conditions are as follows:

colour = 'red' or age> 27

colour. 'red' and age> 27 and not virtual = true

Another logical operator that can be used is the not operator. This operator is not used to combine

interest statements, but is used to switch the boolean value of a single interest statement.

[not) [interest condition)

104

An example of using the not operator on an interest statement is as follows:

not colour = 'red'

It is essentially equivalent to this statement:

colour I- 'red'

However, the not operator becomes particularly useful with a language that provides grouping and

abstraction as will be discussed in Sections 6.1.2.4 and 6.1.2.5 respectively.

6,1.2,4 Grouping

Grouping allows a number of interest statements to be treated as a single interest statement by the

logical operators. In SQL grouping is possible through the use of parenthesis. For example, the following

interest conditions have been grouped together:

(colour· 'red' or age> 27)

The above statement is syntactically identical to the following statement:

colour = 'red' or age> 27

However, the presence of grouping allows logical operators to apply to a number of combined interest

conditions simultaneously. The following are examples of logical operators being applied to groups of

interest conditions:

not (colour. 'red' or age> 27)

(colour. 'red' or age> 27) or virtual 1= false

6.1.2.5 Abstraction

Section 5.5.4 introduced an example of abstraction in order to provide an example of succinctness. It

described how the following statement:

select b.* from Artefacts a, Artefacts b where

a.radius> sqrt(pow((b.x_coord . a.x_coord), 2) + pow((b.y_coord . a.y-coord). 2»

The above statement might be abstracted to the following statement which looks similar to a standard

programming language function call:

att artefacts where

105

The important concept to note is that the implementation details are hidden away beneath a layer

of abstraction. Notice that the above abstraction condition used a relative artefact as the parameter.

The circle a needs to be defined somewhere for this condition to be meaningful. The usage of relative

artefacts also removes the need for any self joins in the SQL select clause.

As described in Section 5.5.2, abstraction through modularity provides a way for the statement to

express increasingly complex concepts whilst keeping the relative complexity and succinctness constant.

If appropriate names are used for the abstractions, readability can also be improved.

6.1.2.6 Scoping

Scoping allows attributes to be matched against an entire set of values, rather than just one given value.

It is represented by the SQL keyword in as seen in Section 5.4. An example of such an SQL statement

is:

id in (select id from Artefacts where colour = 'red')

The above expression returns true if the id matches the id of a red artefact. If the attribute that we

are scoping happens to be, or has the property of a primary key, the statement will behave the same as

the following:

colour = 'red'

However, if the attribute does not have the property of a primary key, scoping becomes useful.

Consider the following statement:

name in (select name from Artefacts where colour = 'red')

The above statement will match any artefact that has the same name as an artefact that is red. The

semantics of this statement are not possible using standard interest conditions and logical operators as

described above.s Scoping is particularly useful when used in conjunction with an abstraction mechanism

as described in the next section.

6.2 Wish Structure and Syntax

Wish supports the following structural concepts: interest conditions, relative interest conditions, logi­

cal operators, grouping, scoping and abstraction. This concepts will be introduced in Section 6.1, and

discussed in Sections 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.2.6, and 6.2.5 respectively.

5Thls Is assuming the statement does not include any explicit joins in the select clause.

106

6.2.1 Interest Conditions

As introduced in Section 6.1.2.1, interest conditions are a fundamental component of an interest state­

ment. In Wish an interest condition is bound to one line, and must conform to the following syntax

(where the condition is one of the SQL logical operators presented in Table 6.1):

[attribute J [condition J [value J

Example Wish interest conditions are as follows:

name = sam

age> 27

virtual !- true

6.2.1.1 Automagical Value Quoting

Consider the following interest conditions:

name = sam

id z 3

Notice the absence of any quotes, despite the value being a string and an integer consecutively. Wish

will automatically quote most non-numerical and non-boolean values. The auto-quoting rules are as

follows:

• Do not quote the value if any of the following are true:

- it is numerical (e.g. 4, -4, 4.8, .s),

- it contains a pair of expression tags6 (e.g. <'1= x.value to»,

- it is the word true or false,

- it is surrounded by back-ticks (e.g. '4 + 2'. 'sqrt(Bl)') ,

- it is already quoted .

• Surround the value with expression tags if all of the following are true:

- it contains one or more periods within the value (e.g. x.value),

- it does not start with a period (e.g. not . rb),

- it does not end with a period (e.g. not bye.),

GThe _ '10> tags will be covered in Section 6.2.2

107

- it does not contain any spaces (e.g. not hi. bye)

- it does not already contain any expression tags .

• Quote all other values

Therefore, to ensure that a value is quoted: quote it, and to ensure a value is not quoted: surround

it with back-ticks. Examples of values before and after the automatic quoting mechanism are presented

in Table 6.2.

Table 6.2: Value Quoting Examples

Before auto-quoting After auto-quoting
4 4

'4' '4'

four 'four'

4.8 4.9

cock-ver19 'cock-ver19 •

1st '1st'

true true

false false

truth ·truth·

x.value <'1= x.value 'II>

x. value. sub_value x.value.sub_value 'II>

·x.value.sub_value· ·x.value.sub_value·

.... = x.value 'II> <'1= x.value 'II>

.... = x. value'll> + 1 = x. value'll> + 1

end. ·end. .
.5 .5

. rb . . rbl

2 + 4 12 + 4'

the end is in sight • the end is in sight'
.nearing.the.end •. nea ring. the. end'

nearly.at.the.end. ·nearly.at.the.end.
Getting. Very. Close ·Getting. Very. Close'
. one.more.thing ·.one.more.thing

'2 + 4' 2 + 4
'sqrt(B1) • sqrt(B1)
The End. 'The End.

6.2.1.2 Comments

Wish also supports comments. Any line that starts with a II is ignored. Consider the following Wish

statement:

108

fthis is a comment

Wish also ignores blank lines, i.e. lines containing only white-space characters (spaces and tabs).

6.2.2 Relative Interest Conditions

Section 6.1.2.2 introduced relative interest conditions as a fundamental interest statement structure. This

essentially provides the ability to reference artefacts within an interest statement. For example, we might

have a relative artefact x that we want to make our interest relative to. We might want to be able to

state the following:

I am interested in all objects that are the same shape as x

Wish requires that x is defined in a file called relative_artefacts. rb. This file is essentially a series

of variable declarations, where each variable declared needs to be assigned an ActiveRecord object

representing an artefact 7. Consider the following example relative_artefacts. rb file:

x • Artefact.find(l)

This file declares a variable (x) to which the artefacts with an id of 1 is assigned. It is important that

the variable is assigned just a single artefact rather than a collection of artefacts. For example if there

are multiple artefacts with the name 'sam' I then x in the following statement is assigned a set of objects:

x • Artefact.find(:conditions => {:name => 'sam'})

Therefore, in the cases where the conditions do not exhibit the properties of a composite primary

key, yielding only a single result, it is necessary to force ActiveRecord to only return one object. One

way of achieving this is to select the first artefact only:

x = Artefact.find(:first, :conditions => {:name => 'sam'})

Using the defined relative artefact x, Wish can represent the relative interest condition as follows:

shape· x.shape

In the case where artefact x is a sphere, Wish will evaluate the above statement using Ruby to the

following:

shape = sphere

It is also possible to evaluate more complicated expressions. For explicit evaluation, the expression

tags ~. and 'II> are necessary. The tags surround the Ruby code which is to be evaluated. The tag and

109

Table 6.3: Evaluating Interest Condition Expressions

Before Evaluation After Evaluation
shape = <"6= x. shape 'II> shape = sphere

age> <'1= 28 + (5 * 2) - 3'11> age> 27

height < <"6= x. height I 2'11> height < 5

its contents will be replaced by the appropriate value before the interest statement is executed. Consider

the interest conditions and their corresponding evaluations presented in Table 6.3.

It is important to note that there are limitations for using these expressions to define relationships

between artefacts. For example, although it would be easily possible to design an algorithm using this no­

tation which defines a particular type of relationship, that particular algorithm could easily be extremely

costly to execute, particularly if all users are attempting to execute the same algorithm simultaneously.

6.2.3 Logical Operators

Sections 6.2.1 and 6.2.2 described the syntax of individual interest conditions. We might also wish to

use logical operators (such as those presented in Table 6.1) to create interest statements that contain

mUltiple interest conditions. This section describes how this is achieved with Wish.

6.2.3.1 not

Wish only supports the explicit logical operator not which must appear at the beginning of an interest

condition line. For example consider the following interest statement:

not colour •• red'

Therefore the complete syntax for an interest statement is:8 :

(not) [attribute 1 [condition 1 [value 1

6.2.3.2 or

Wish does not explicitly support the or keyword. Given that each interest condition is represented by a

separate line, Wish assumes that each new line with the same indentation as the previous line represents

a combination of the two statements (current line and previous line) with an or operator.

For example, consider the following SQL snippet represents a combination of interest conditions:

colour = . red' or age> 27

7This file is evaluated, and the relative artefacts fetched from the database, as part of the Wish compilation and the
l'e8ulting values are used to generate the final SQL output.

8where the parentheses represent an optional token

110

This snippet can be expressed using Wish as follows:

colour· red

age> 27

6.2.3.3 and

In addition to the or keyword, Wish does not explicitly support the and keyword. Wish assumes that

a new line with an increased indentation (two spaces9) represents a combination of the two statements

with an and operator.

For example, consider the following SQL snippet which represents a combination of interest conditions:

colour = 'red' and age> 27

This snippet can be expressed using Wish as follows:

colour· red

age> 27

6.2.3.4 and not, or not

It is possible to combine implicit or, implicit and and explicit not to create or not and and not representations

for single interest statements.

For example, consider the following SQL snippet which uses or not:

colour ~ 'red' or not age> 27

This snippet can be expressed using Wish as follows:

colour· red

not age> 27

Also, consider the following SQL snippet which uses and not:

colour. 'red' and not age> 27

This snippet can be expressed using Wish as follows:

colour. red

not age> 27

In order to apply the not keyword to more than one statement it is necessary to use the Wish grouping

structures as described in Section 6.2.4.
DWlsh does not support tabbing as an indentation token. All tabs are replaced with two spaces before the statement is

parsed.

111

6.2.4 Grouping

Section 6.1.2.4 described how grouping allows a number of statements to be treated as one from the

perspective of logical operators. Wish uses implicit and explicit grouping as described in Sections 6.2.4.1

and 6.2.4.2 respectively.

6.2.4.1 Implicit Grouping

Wish implicitly groups the following structures:

• individual conditions

• a block of conditions that are further indented from the current line

6.2.4.1.1 Individual Conditions For an example of implicit grouping involving individual state­

ments, consider the following Wish statement:

not colour = red

Wish treats this line as one entire statement. The operators not and. only apply to this condition,

and no others in the interest statement.

To see this behaviour explicitly, consider the following Wish statement:

not colour. red

age > 27

The above is equivalent to the following SQL snippet:

(not colour = red) or (age> 27)

6.2.4.1.2 Indented Conditions Wish implicitly groups all indented conditions. For an example of

this, consider the following Wish statement:

colour. red

age> 27

name = sam

The above is equivalent to the following SQL snippet:

colour. red and (age> 27 or name = 'sam')

The grouping stops when the indentation returns to match the line where the grouping started.

Consider the following statement:

112

colour - red

age> 27

name • sam

virtual. true

The above is equivalent to the following SQL snippet:

colour. red and (age> 27 or name = 'sam') or virtual = true

6.2.4.2 Explicit Grouping

Wish supports explicit grouping through the use of grouping tokens. As with interest conditions, a

grouping token must reside on its own line. The grouping tokens are as follows: aU to start a group,

and not to start a negated group. The grouping ends when a subsequent interest condition has the same

indentation as the start token. For example, consider the following Wish statements:

att

age> 27

name = sam

virtual = false

The above is equivalent to the following SQL snippet:

(age> 27 or name = 'sam') or virtual = false

The structure of a negated group is identical:

not

age> 27

name'" sam

virtual'" false

The above is equivalent to the following SQL snippet:

(not (age> 27 or name = 'sam')) or virtual = false

Explicit groupings can contain explicit or implicit groupings. Consider the following statement which

contains an implicit grouping within an explicit grouping:

not

colour'" red

age> 27

name'" sam

virtual a false

113

The above is equivalent to the following SQL snippet:

(not (colour. red or age> 27 and (name = 'sam'))) or virtual = false

Wish also supports an optional group ending token: ---. When using both opening and closing group­

ing tokens, it is important to note that they both must appear at the same indentation. An example of

an explicit grouping with an end token is as follows:

an

colour = red

age> 27

name • sam

virtual = false

The above is equivalent to the following SQL snippet:

(colour. red or age> 27 or name = 'sam') and virtual = false

6,2,5 Abstraction

Section 6.1.2.5 described abstraction as a useful tool for hiding complexity, and as a way of storing and

re-using useful snippets of combined conditions, with an associated name. Storing such a combination is

similar to defining a function or method in a programming language.

Wish offers an abstraction method through the creation and use of subwishes. Subwishes support the

notion of implicit parameters, and can be nested within each other. They are discussed further in the

following sections. Subwishes are essentially an implementation of derived sets as introduced in Section

(3.2.4.1)

6,2,5,1 Subwishes

Wish supports abstraction through the concept of subwishes. Subwishes reside in their own fileglo, and

the filename acts as the name of the subwish itself.

Any given Wish statement may contain one or more subwishes. Consider the following Wish state­

ment:

'red_sphere.wish

'this subwish matches red spheres

colour. red

shape. sphere

IOThls Is only a current implementation decision. The main concept is that subwishes are part of a hierarchy of Wish
statements, and the subwlshee can be used to provide a library of useful and frequently used partial Wish statement to use.

114

By storing it in a separate file with an appropriate name such as red_sphere.wish, it is possible to refer

to it in the main interest using its name as follows:

Wish automatically replaces the abstraction with the content of the matching subwish's file, and

wraps it up in an explicit grouping structure as follows:

an

COLour = red

shape • sphere

This means that it is possible to use an abstraction in exactly the same fashion as a standard interest

condition. For example, this Wish statement matches red spheres named sam:

name = sam

Wish will automatically convert the above statement to the following:

an

COLour = red

shape = sphere

name = sam

6.2.5.2 Implicit Parameters

Section 5.3.2 introduced the following SQL snippet as a means of calculating whether a given artefact is

within a football pitch:

x_coord >- footbaLL_pitch. x_coord (footba"_pitch.'ength / 2) and

x_coord <= footba'L_pitch.x_coord + (footba"_pitch.'ength / 2) and

y_coord >- footba"_pitch.y_coord - (footba"_pitch.width / 2) and

Lcoord <= footbaH_pitch.Lcoord + (footbaH_pitch.width / 2)

Assuming that we have an appropriately defined variable called footbaH_pitch amongst the relative

artefacts declarations, the Wish version is as follows:

x_coord >= <'P footbaH_pitch.x_coord - (footbaH_pitch. Length / 2) \>

x_coord _ ~ footbaH_pitch.x_coord + (footbaH_pitch. Length / 2) \>

115

y_coord >- ~ football_pitch.y_coord . (football-pitch.width / 2) %>

Lcoord <= ~ footbaH_pitch.Lcoord + (footbaH_pitch.width / 2) %>

Wish allows subwishes to contain parameters. Consider the following statement:

within football_pitch

Here we are passing the relative artefact footbatt-pitch as a parameter to the subwish within. This

subwish is stored in the file within.wish and would look as follows:

#Within.wish

#this subwish determines whether a given artefact

'is within the boundaries of a rectangle

x_coord >= <lip IAI.x_coord - (IAI. length / 2) %>

x_coord <= <lip IAI .x_coord + (IAI. length / 2) %>

Lcoord >= <lip IAI.Lcoord - (IAI.width / 2) %>

y_coord <- <lip IAI.y_coord + (IAI.width / 2) %>

Notice how the above subwish refers to the relative artefact as I A I. When the Wish is parsed, all

occurrences of IAI will be replaced with the first parameter of the subwish condition. This would result

in the following:

att

x_coord >a <lip football_pitch. x_coord - (footbalt_pitch.length / 2) %>

x_coord <= <lip football_pitch. x_coord + (football_pitch. length / 2) %>

y_coord >= <%- football_pitch.y_coord - (football_pitch.width / 2) %>

y_coord <- <lip football_pitch.y_coord + (football_pitch. width / 2) %>

If the subwish requires more than one parameter, they can be referred to as IBI, ICI, 101, etc., in

alphabetical order. For example, the following subwish takes two relative artefacts, and matches artefacts

that are the same colour as the first, or the same shape as the second:

'colour_or _shape.wish

'this subwish takes two parameters

colour·IAI·colour

shape • I B I . shape

If it is stored in the file colour _or_shape.wish, then assuming the declaration of two relative artefacts

retl and rel2 it could be called as follows:

116

6.2.5.3 Nested subwishes

8ubwishes can be arbitrarily nested. It is possible to define a subwish which contains other subwishes

which in turn may contain other subwished etc.

For example consider the following subwish stored in a file called red_artefact.wish:

'red_artefact.w1sh

colour. red

This could be used by another subwish stored in a file called red_sphere.wish as follows:

'red_sphere. wish

red_artefact

shape • sphe re

,

Which in turn could be used by the main Wish statement which would match all red spheres named

sam:

name = sam

When using nested subwishes it is important to avoid creating closed cycles. For example, subwish

A might refer to subwish B which in turn might refer back to subwish A. This would cause the Wish

parser to enter an infinite loop, and is clearly undesirable.

6.2.6 Seoping

As described in Section 6.1.2.6, scoping allows attributes to be matched against arbitrary sets of values

rather than just individual values. The Wish scoping mechanism uses subwishes to define a set of values.

Consider the following subwish:

'blue_artefacts .wish

colour· blue

This subwish can be used to match blue artefacts as seen in Section 6.2.5.1. However, it can also

represent the derived set of all blue artefacts (see Section 3.2.4.1). This set can be used in a scoping

structure as follows:

name in blue_artefacts

This will match all artefacts that share a name with an artefact which happens to be blue (including

the blue artefacts themselves). Scoping statements can also use parameters in an identical fashion to

standard subwish calls. Consider the following scoping statement:

117

name in within football_pitch

The above statement will match all artefacts that share a name with an artefact which is within the

relative artefact footbaH.JIitch.

6.2.7 Subwishes: A Myth

So far, this chapter has suggested an implicit difference between a standard Wish statement, and a

subwish statement. However the difference was introduced purely for pedagogic purposes. Although

there may be a conceptual difference in the context of a particular statement, there is no actual difference

between Wishes and subwishes. Subwishes are just Wish statements that happen to be referred to by a

different Wish statement.

Wish statements consist of a root Wish, which may (or may not) refer to other nested Wish state­

ments, and a file describing any relative artefacts. Clearly, for a Wish statement to be used as a root

Wish, it must not refer to any implicit parameters.

6.3 Design and Implementation

This section describes the implementation and design of the Wish language.

6.3.1 Agile Development

Wish was developed in an agile fashion with a focus on specifications, testing and modularity. Section

6.3.1.3 describes how Wish was built with a series of iterations, and Section 6.3.1.4 describes the process

of one such iteration.

6.3.1.1 Specifications

Wish was built using a behaviour driven development approach (see Section 4.3.2.2). This means that

specifications of expected behaviour had to be written before the implementation of those behaviours

could start. Developing Wish in this manner turned out to be invaluable, as the many constant changes

to the implementation could instantly be verified.

6.3.1.2 Modularity

Wish is a very modular system. This is due to two reasons: to allow the reuse of already available

technologies such as YAML and Ruby erb, and also to facilitate the testing of the individual components.

A modular architecture also lends itself particularly well to an iterative development process as a module

can easily be the goal of a particular iteration.

118

6.3.1.3 Iterative Development

Wish was developed in an iterative fashion. An iteration is a small development cycle, with a small set

of associated behaviours. The behaviours can be formalised using an executable specification language

such as RSpec (discussed in Section 2.5.2). A typical iteration was as follows:

1. Decide on the objectives for the iteration

2. Define the behaviours of the objectives within the context of the system

3. Formalise the behaviours as a set of executable specifications

4. Append to the system implementation until the executable specifications pass

A fundamental principle of iterative development is that only the current iteration is defined and

implemented. This allows the definition of the next iteration's objectives to be made based on the result

of the previous iteration. This means that the overall development plan is agile and flexible, and able to

deal with unanticipated situations. It also allows the development to focus on exactly what's necessary,

and reduce the amount of unused implementation that was built on incorrect or outdated assumptions.

6.3.1.4 An Example Iteration

This section describes the process of a typical iteration. The objectives for this iteration are to implement

the auto-quoting mechanism described in Section 6.2.1.1. The behaviours that the mechanism needed to

exhibit were planned, and documented. They were essentially the behaviour documented in Table 6.2.

These behaviours were converted to executable RSpec specifications, and are presented in Appendix A.3.

Once the specifications had been written, the implementation could commence. Appendix Imple­

mentation: A.I presents the implementation which was the result of this particular iteration. When

the implementation was completed the specifications were executed to validate that the implementation

conformed to the specified behaviour. Appendix A.2, presents the output of the RSpec specification

evaluation tool. Once the specifications all passed, it was important to run the whole suite of tests

for the entire implementation so as to verify that the new implementation didn't affect any previous

implementation. The next iteration was not allowed to start until all of the specifications passed.

6.3.2 Iterations

This section describes the various iterations that comprised the development of Wish. For each iteration.

the goals and objectives are discussed.

119

6.3.2.1 Interest Conditions

The first iteration of Wish developed the notion of a single interest condition. The implementation of such

an interest condition was to be a simple SQL condition represented by a one element YAML list. This

iteration also focussed on the infrastructure that allowed a single interest condition in it's own separate

file to be used as an interest statement, and incorporated with the virtual environment implementation

described in Chapter 4.

6.3.2.2 Explicit Logical Operators: not

This iteration added specifications defining the behaviour of USing the keyword not at the beginning of

an interest condition to negate the result of that particular condition.

6.3.2.3 Implicit Logical Operators: or, and

This iteration focussed on the ability to create interest statements that comprised of multiple interest

conditions. It focussed on defining the behaviour of nested lists representing the and operator, and elements

of the same list representing the or combinational operator as described in Sections 6.2.3.3 and 6.2.3.2

respectively.

6.3.2.4 Converting a YAML nested list to SQL

This iteration focussed on the ability to convert the YAML nested lists that were the result of the

previous iteration into a valid SQL where clause.

6.3.2.5 Expressions

This iteration added specifications defining the behaviour of erb expressions and the relative artefacts

file with respect to the Wish syntax.

6.3.2.6 Auto-quoting

This iteration defined the auto-quoting behaviours described in Section 6.2.1.1. This particular iteration

is described in greater detail in Section 6.3.1.4, and is the subject of Appendices A.3, A.I and A.2.

6.3.2.7 Grouping

This iteration focussed on specifying the behaviour of implicit and explicit grouping as discussed in

Section 6.2.4.

120

6.3.2.8 Abstraction

This iteration focussed on the behaviour of an abstraction system building upon the grouping behaviour

of the previous iterat ion . It specified t hat individual interest statements could be used as conditions

within other statements by referring to the fi le name. A simple implicit parameter mechani m was also

specified.

6.3 .2.9 Scoping

This iteration defined specifications to support a si mple scopi ng mechanism built upon the ab traction

system. Scoping is discussed further in Section 6.2 .6.

6.3.3 Architectural Components

Wish includes of a number of exist ing technologies such as SQL, YAML and Ruby. Section 6.3.3.1,

6.3.3. 1,6.3.3.3 describe t he purpose of each of t hese exist ing technologies. Section 6.3.3.4 introduc the

Wish layer, and finally Section 6.3 .4. 7 gives an overview of the various component th at compri Wi h.

Figure 6. 1 illustrates these components, grouping t hem wit h the language that they are implem nl din :

YAML/SQL, Ruby and Wish respect ively.

~ ~ ~ /"" /' /' /' /'

Explicit not
Explicit Implicit

Use 01
Expressions Relative

and 1n Absuactlon Auto--quotJng Abstraction lor Artefacts Operators Grouping Grouping Scoping vp
~ Ruby Wish

Relative Interest Conditions Seoplng Interest Condilions Grouping CondhlonalOperators LI' YAMl with embedded Sal

Figure 6.1: T he Wish Components

6.3.3 .1 SQL

QL i th foundat ion language for Wish, and the final output language. Section 5.3 showed that SQL is

suitably expre sive as a language for representing interests. However, Section 5.5 described a number of

limitation which motivated t he creat ion of Wish. Figure 6.2 illustrate the overall proces of compiling

a Wish statem nt into an equi valent SQL statement .

6.3.3.2 YAML

121

._._. __ .[]
I f---------.
-- . _ Irwnat

(-'-'i repesentaJk)n

I

~·--· - ·-o
Figure 6.2: Converting a Wish Statement to SQL

Using YAML to define the structure of Wish a llows t he use of the YAM L parser to create a data

structure. Wish is essentia lly an arbitrarily nested list of interest condit ions. and as di cus ed in ction

2.5. 1, YAML allows this hierarchical data structure to be represented and parsed. Figure 6.3 iIJusLrat

the role of YAML as a format for representing an interest statement t ruct ure which can be easi ly par ed ,

and converted to SQL.

----·G
I , - ----- --- '
... . _ . -, Intemlll

(- . - " r.p'eMOt.tkln

I

- ·----0
Figure 6.3: Parsing a YAML Statement and Convert ing it to SQL

6.3.3.3 Ruby

Wish use Ruby to define rela tive artefacts and to evaluate expressions. Due to it interpretative nature,

Ruby can evaluate arbitrary blocks of code embedded within text fi les. T his is facilitated by the erb

library which i d iscu ed in Section 2.4. 1. Ruby also allows a set of statements to be stored in a Binding

obj ct , and passed as a context to blo k, st ring eval or erb evaluations. This al lows the definition of

r lativ art facts to be stored in a epara te file, and used as a context when evaluating the embedded

rb stat; m nt . Figure 6.4 illustra tes t he role of Ruby erb expressions in t he ,-\ i h parsing algorithm.

122

·_·_·_·-8 [§J
._. - ,- . - ._.- ._. _. _. _._ ._._.1

I f---------.

- . - . ;"~.~l;J
- · -L -~3 (---'1 ftlPf 1Jorl

__ . _ .1

'--"' _·_·--·0
Figure 6.4: ParSing a YAML + erb Statement and Converting it to SQL

6.3.3.4 Wish

Wish leverages the power of SQL, YAML and Ruby, and foc usses on addi ng ab tract ion , grouping and

simple scoping mechanisms whilst attempting to be both readable and succinct . The imple Wi h par er

essentially replaces Wish syntax with SQL cond itions and stores the result in YAML format . Figur 6.5

illustrates t he role of the Wish syntax in the Wish parsing algorithm .

. - . - . - . - .~

I G----------1._ . -
YAMl

f- ·_ ·

I

Ovlp!Jl Sal statement . - . - . - . - .~

Figure 6.5: Parsing a Wish Statement and Converting it to SQL

123

6.3.4 Implementation Overview

This section describes the a lgorithms and methods used to implement Wish. Finally, Section 6.3.4.7 gives

an overview of the components that W ish is com prised of.

6.3.4.1 YAML to SQL P a r ser

The YAML to SQL parser has two main phases of operation. First, the YAML file is parsed by the

Ruby YAML library into a Ruby data structure . Secondly, the Ruby data structure is manipulated and

compiled into a valid SQL statement.

The compilat ion a lgor it hm operates on a nested list , and is recursive in order to deal with the De ted

properties of the data structure. The base case for the algorithm is when the st ructure is a si ngle element.

Figure 6.6 descri bes t his base case which is essentia lly a standard case statement .

Read element

YES
return
") "

NO

YES
return

"(not "

NO

YES -..
return

II ("

NO

return
"#{ node} "

F igure 6.6: Converting a YAML String Element to SQL

If the a lgorithm is passed a list to compile, it iterates through each element and join the result of a

r ursive call to t h a lgorithm passing t he current algori thm together with either an or or and keyword .

Th keyword to use depends on whet her t he current element i a single element, or a nested list. Figure

124

6.7 details t he process of combining a list of elements, and F igure 6.8 de cribes the entire proces of

compiling a Wish statement to SQL.

YES

YES

_nd
and ('{fragment})"

to combination

NO

NO

YES

appe""
"#{f r agment} "

10 combination

YES

NO

NO

YES

YES

-"" " ('{fragment})"
10 c:omblneUon

~
nd

NO • or •
10""",,", __

YES

NO

YES

-" ' (fragment)"
to c:orOOinabon

Figure 6.7: Combining YAML Elements

6.3.4.2 Ruby erb Evaluation

As des ribed in S ction 2.4 .1, erb i a imple templating system, which a llows Ruby code to be embedded

within pla in (.ext . As de crib d in ection 6.3.3 .3 , and illustrated in Figure 6.5 , as part of the Wi h

ompil ti n pro s , Rub xpr ssion mbedded within erb tag are interpreted , executed and replaced

NO

Sal

ARRAY

Determine corr&cl
combinational logic

operator and parenthesis
and combine current

element with previous
element

YES

125

>---- NO

NO

YAML
representation

SOL stalement

- - Sal . -- - - - - - - - - -- - - -- --- - ---- - -- ----

Figure 6.8: Converti ng YAML t.o SQL

126

with the output of the expression.

Wish also supports the notion of a file defining relative artefacts which can be referred to from within

the erb expressions. This is achieved by interpreting the relative artefacts file, storing it as a Binding

object, and then using the Binding object as the context for the erb evaluation. The ability to represent

and manipulate contexts and methodsll in this way is a truly powerful mechanism.

6.3.4.3 Wish Auto-quoting

The development, behaviour and implementation of the Wish auto-quoting mechanism (described in

Section 6.2.1.1) were used to describe an example iteration in Section 6.3.1.4, and is the subject of

Appendices A.3, A.l and A.2.

The implementation of the Wish auto-quoting mechanism only operates on the values of interest

condition that contains an SQL conditional operator such as the following:

attribute = value

It matches these values against a series of regular expressions. Depending on which particular regular

expression matches, or if none match, the statement is tagged appropriately. Figure 6.9 illustrates this

process.

Each time an interest condition is parsed, the auto-quoting mechanism is used to auto-quote the

condition's value where appropriate. With the exception ofthe backtick removal, the auto-quoting mech­

anism is idempotent12 . The backtick removal is based on a conditional with an idempotent default (the

backticks are not removed). The backticks are only removed in the parser's final pass.

6.3.4.4 Wish Grouping

Wish employs two grouping mechanisms: implicit grouping, and explicit grouping as described in Sections

6.2.4.1 and 6.2.4.2 respectively. Implicit grouping is handled by the YAML to SQL compilation process

as detailed in Section 6.3.4.1; note the parenthesis in the SQL output detailed in Figure 6.7. Explicit

grouping is also handled by the YAML to SQL compilation process; note the parenthesis in the SQL

output detailed in Figure 6.6. However, the explicit grouping syntax supports optional grouping endings

through inspection of the indentation. In the Wish compilation phase, all implicit group endings are

converted to explicit group endings, which can then be handled by the YAML to SQL compilation

process.

In order to convert the implicit group endings into explicit group endings, the Wish parser needs to

consider the relative indentation of each Wish condition. If the indentation of a line subsequent to an

lias 0PP06ed to the ability to manipulate just pointers to objects and primitives in languages such as Java (ignoring the
syntactic monstr06ity that is a Java anonymous inner class).

12The concept of idempotence originates from mathematics. It refers to an operation that yields tbe same result whether
applied once, or more than once. For example, multiplying any given integer by 0 is idempotent: 8 X 0 X 0 X o ... = 8 x O.

Rltum Interetl CondibOn

127

NO

NO

NO

YES

YES --------____ ~

YES--------------------------~

YES --------------~

YES--------------~

YES SUl'TCM.ll'ld~WlltltAQI
. "'-- · ty· l ue)\>·

Figur 6.9: T h Wish Auto-Quoting Algorithm

128

explicit group starting tag is at the same or smaller indentation, and there is no explicit group ending,

an explicit group ending is inserted into the Wish statement. This is implemented by maintaining a list

of the indentations of all unclosed explicit groups encountered so far. Each time the parser encounters a

line with a smaller indentation, the unclosed groups list is checked, and if any groups need to be closed

they are, and are subsequently removed from the unclosed groups list.

6.3.4.5 Wish Abstraction

When the Wish parser encounters a condition that does not contain one of the standard SQL conditional

operators listed in Table 5.2, and is not an explicit grouping marker, it assumes that it is an abstract

statement referring to an external file. Wish looks for a file matching the name of the abstract statement

with the extension .wish. The contents of this file are wrapped with explicit grouping markers (an by

default, or not if the abstract statement started with the not keyword).

Wish implements this behaviour by reading through the Wish file, and building an internal array of

strings representing each line. When the parser reaches an abstract statement, it locates the appropriate

file, reads in all the lines, surrounds them with the appropriate explicit grouping markers, and inserts

them in place of the abstract statement ensuring that the initial space is preserved. Once the parser has

reached the end of the original file, it checks to see if it found and replaced any abstract statements. If

so, it starts the whole process again in order to replace any new abstract statements. If it did not replace

any abstract statements then the process is concluded.

If the abstract condition contains additional tokens separated by white-space these are assumed

to be parameters to the abstraction. For each parameter, the abstract file is searched for matching

parameter tokens, and all occurrences of these tokens are replaced by the parameter. This takes place

before the lines are inserted into the Wish statement. The matching parameters are simply uppercase

letters surrounded with pipe characters (such as IAI). The first parameter replaces all occurrences of IAI,

the second parameter replaces all occurrences of I B I, etc.

6.3.4.6 Wish Scoping

The Wish scoping mechanism uses the abstraction mechanism described in Section 6.1.2.5. However it

generates a different condition to insert into the Wish statement. When the Wish parser finds an interest

condition that uses the SQL in operator it expects that the value of that condition to be the name of an

abstraction. The file is located (as described in Section 6.3.4.5) and parsed as a separate Wish file. The

resulting SQL where clause is then used to construct a nested SQL statement similar to the following:

attribute in (select attribute from artefacts where #{convert_wish_to_sql})

129

6.3.4.7 Overview

Figure 6.10 gives an overview of the various stages of the Wish compiler.

130

Wish Statement

-----0

YAML
representation

I - - - - - - - - - -_.

SOL statement

Figure 6_10: The "Vish Compiler

•••

131

Chapter 7

Case Study and Evaluation

Wish is a DSL for representing interests which aims to be modular, succinct, readable and expressive as

described in Section 6.1.1

The overall design of Wish was driven by the aims and language objectives described in Section 6.1.1,

and the interest statement structure described in Section 6.1. Wish therefore needed to support these

structures whist maintaining its expressiveness, and improving upon the readability and succinctness of

SQL.

7.1 Case Study

This section introduces an example virtual environment and this is then used to illustrate the capabilities

of Wish. The environment used is a snapshot of a football pitch, with players a ball and a referee. As

discussed in Section 4.1.2, our interest statements do not reason about time, and therefore a snapshot of

a virtual environment is sufficient to use as a case study for Wish. The following sections introduce the

numerous artefacts contained within the virtual environment case study.

7.1.1 Artefacts

The artefacts in this case study contain a number of additional attributes to those described in Section

4.4.1. These extra attributes are as follows:

virtual This is a Boolean value to indicate whether the artefact is virtual.

category This is a string representing the category of the artefact.

name This is the name of the concept that the artefact is associated with (i.e. the name of a person).

Table 7.11ists the artefact attributes and their associated types.

132

Table 7.1: Artefact Attributes

Name Type
s ha pe st ring
width float
height float
length float

x..coord float
y _coord fl oat
z_coord float
radius float
colour st ring

t ransparency float
id in teger

virtual boolean
category st ring

name st ring

7.1.2 Football Pitch

The football pitch is comprised of a number of artefacts. T hese a rt fact ar · d tailed in Table 7.2. F'igur

7.1 and 7.2 present two different views of the pitch.

Figure 7.1: Aerial View of the FootbaU Pi tch

Figu re 7.3 ill u t rates the 10 at ion and shape of t he following main a reas or locales within the foo t baU

pitch I :

• centre circle,

I Notice iho.l due to th implem nLa.tion o f the virtual en ironment, the x and y &xis are different from those presented
In Pigur 5. I.

133

Table 7.2: Foot ball Pitch Artefac

Id . ho.pe width h c l ll:ht I cn~h x y • rod.lus colo ur v cate cory l name
~ box 50 0.05 50 25 25 0 NULL green 0 pilch 0 home b.H
6 box SO O.OS ~O 25 75 0 NULL green 0 pitch 0 away half

7 box 50 O.OS O.S 2S 50 0.1 NULL whit.e 0 pitch 0 centre hne

8 cy linde r N ULL 0.05 NULL 25 50 O.OS 7 whlt.a 0 pll.ch 0 centre cucle ou er
9 cy lind er N ULL 0.05 N ULL 25 50 0. 1 6.5 green 0 pi cb 0 centre circle

10 box 30 0. 05 15 25 7.5 0. 15 NULL whIte 0 pi ch 0 home goal ouler

I I box 29 0. 05 14 25 7 0.2 NULL green 0 PI ch 0 homo goal
12 box 30 0.05 15 25 92.5 0. 15 NULL white 0 pitch 0 awa)' goaJ ou er

13 box 29 0.05 14 25 93 0.2 NULL green 0 p ilch 0 away goa.l

14 cy lin der N ULL 0.05 NUL L 25 10 0.05 10 w h ite 0 pitch 0 home penal y Circle ou er

16 cylinder NU LL 0.05 NU LL 25 10 0. 1 9.5 grccn 0 pilch 0 home penalty etrel""

16 cy li nd or N UL L 0.05 NU LL 25 10 0.25 0.5 w hite 0 pilch 0 homo penal y spot

17 cy lind er NULL 0.05 NULL 25 90 0.05 10 w hite 0 pilch 0 .w. penalty clrclo outer

18 cy lindor NU '-'. 0.05 NULL 25 90 0.1 9.5 green 0 pluh 0 ewe penal Y cIrcle

19 cy linder N ULL 0.05 NUL L 25 90 0.25 0.5 w hile 0 pilch 0 away penal)" f'pot

20 box 0.5 0.05 100 -0.25 50 0 .1 NULL whl t.e 0 pi ch 0 "ea.r louch hno

21 box 0.5 0.05 100 50.25 50 0 .1 NULL wh ite 0 pilCh 0 rar louch hne

22 box 5 1 0.05 0.5 25 ·0.25 0 .1 NULL while 0 pitch 0 homo touch 110ft

23 box 5 1 0.05 0.5 25 100.25 0 .1 NULL w h ite 0 pitch 0 awaY louch hne

24 box 5 0.05 100 -2 .5 50 0 NULL groon 0 pilch 0 nOar touch &rf'a

25 box 5 0.05 100 52.5 50 0 NULL groon 0 pitch 0 far touch area

26 box 60 0.05 5 25 -2.5 0 NULL green 0 pilch 0 home lauch fU"f"&

27 box 60 0.05 5 25 102.5 0 NULL groon 0 pilch 0 ft,Way louch ar t\

28 box 0 .5 5 0 .5 20 0 0 NULL Whllft 0 pitch 0 home neM gOI\) po8\

29 box 0 .5 5 0 .5 30 0 0 NULL while 0 pilch 0 homo rar .1 p l

:10 box 10 .5 0.5 0 .5 25 0 5 NULL w h ile 0 pitch 0 home goa.l cro88bar

3 1 box 10 .5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal ero.bar

32 box 0 .5 5 0 .5 20 100 0 NULL whIle 0 pitch 0 away near goa.l pofll

33 box 0 .5 5 0 .5 30 100 0 NULL w h lt.o 0 pItch 0 away far goal p08l

(7" = ::z; cool'd , y = y coo rd , % = z coord, tJ = Vt rLua l , t _ h'a nspar~ncy)

,.f:r'"- .s.~. ' '~~~'~ .. :J
• '. • ~ l'

Figur 7.2: tadiu m View of the F otball Pit ch

134

• home and away halves,

• home and away goal areas,

• home and away penalty circles.

hom. goal are8 home penalty circle home hall CBnIJ8 c:in:le

xandy
coordinate

ollootball pitch

4_._------------------- 18~~ __________________ ~ ...
(yaxle)

Figure 7.3: Football Pitch Areas

7.1.3 Players

f
width

T

In addition to the pitch, as described in Section 7.1.2, the case study also includes a number of players

split into two teams: the red team and the blue team. Table 7.3 in Appendix B describes the artefacts

that represent the red team and they are illustrated in Figure 7.4.

Table 7.3: All Red Players

Id ahape width helcht I.neth x y • radlua colour v cat_COry t name

34 cone NULL 3 NULL 30 4S 0 1 red 0 player 0 aam

36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob

38 cone NULL 3 NULL 10 8 0 1 red 0 player 0 john

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim

42 cone NULL 3 NULL 40 70 0 1 red 0 player 0 geoffrey

44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 barnard

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy

48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert

52 cone NULL 3 NULL 15 20 0 1 red 0 player 0 oven

(:II = :II coord, II = II coord. % = • coord, " = ",rrual, t = tra pa ... nCl/)

Thble 7.4 describes the artefacts that represent the blue team. They are illustrated in Figure 7.5.

135

Figu re 7.4: The Red Team

Table 7.4 : All Blue P layers

Id s h o.p o width h ol &:ht lo n Kth x y • radius colour v catol:ory t namo
56 co ne NULL 3 NULL 30 60 0 I blue 0 player 0 korl
68 co no NULl, 3 NULL 35 45 0 I bll.tB 0 p layer 0 hendnk
60 co ne NULL 3 NULl, 15 13 0 I b lue 0 player 0 daVid
62 co no NULl, 3 NULL 45 85 0 1 bluo 0 playor 0 han

64 co n NULL 3 NULL 35 14 0 I b lue 0 p layor 0 Joan

66 co no NULL 3 NULL 45 55 0 I blue 0 player 0 bOriS

68 co ne NULL 3 N ULL 35 95 0 I blue 0 player 0 bllbo

70 co ne N ULL 3 NULL 45 65 0 I blue 0 player 0 .0"""
72 co no NULL 3 NULL 25 15 0 1 bluo 0 playor 0 C'hn8

(x = :r; coord, '!I = Y coord, Z = z coord , 'U = virtual, t = transparency)

Pigure 7.5: The Blue Team

136

Each t am also has a goalkeeper. Table 7.5 describes the artefacts that represent the goalkeep r .

These are illustrated in Figure 7.6.

Table 7.5: Goalkeepers

Id s hope width helttht lonttth x y z radius COIOUT v catec:ory t name

54 cone NUl-I- 3 NUl-I- 26 0 0 1 yellow 0 goalie 0 tim

74 co ne NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos

(% = x coord, 11 = 11 coord, % = z coord, 1J .: virtual . t = Lran&parency)

Figure 7.6: T he Goalk eper

7.1.4 Referee

ontroll ing th game is a referee2 Table 7.6 describe the artefact t hat r pr ents the referee whi h

then ill u trated in Figure 7.7.

Table 7.6: T he Referee

(x = :r cool-d, $I = 11 coord, % = z coord, tt = l.ttrtua l, t = trafl,.$porency)

137

Figure 7.7: The Referee

7.1.5 Football

The football pitch also contains a football. Table 7.7 de rib thi artefact whi h is also illu trated in

Figure 7 . .

Tabl 7.7: The Footbal l

(x = x coord, y = y coord, z = % coord, v = virhl,al, t = tran.!parency)

7.1.6 Locales

The virtual environment also conta ins a virtu al artefact represent ing a locale. The area of the locale i

the near side of the football pitch . Table 7.8 de cribes t his a rtefact and i illu trated in Figure 7.9.

Table 7.8: Locales

(x = 'r coord, y = y coord , % = % coord, t1 = mrtuo. l, t = tron.sporency)

138

Figure 7.8: The Football

F igur 7.9: T he Locale Representing the ear HaIr of the Pitch

139

1.1.1 Auras

Each of the players has an associated aura. The aura shares the same x, y and z coordinates and also

the name of the artefact it is associated with. Table 7.9 describes these artefacts and they are illustrated

in Figure 7.10.

Table 7.9: Auras

Id .hapa width helpt laneth x y • radlua colour v catecory t name
3~ cylinder NULL 0.5 NULL 30 48 0 5 red I aura 0.5 earn

37 cylinder NULL 0.11 NULL 50 38 0 5 red I aura 0.5 bob
39 cylinder NULL 0.11 NULL 10 8 0 5 red 1 aura 0.5 john

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aur. 0.5 jim

43 cylinder NULL 0.5 NULL 40 70 0 5 red 1 aura 0.5 geoffrey

411 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aur. 0.5 charlie

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert

53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 oven

55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim

57 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aUf. 0.5 karl

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 bendrik

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aura 0.5 david

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 blUl

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aur. 0.5 jean

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boris

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo

71 cylinder NULL O.~ NULL 45 65 0 5 red 1 aura 0.5 .. """
73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chria

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlo.

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aur. 0.5 rer

(z = z coord, " = 11 coord, z = z coord, II = vartual, t = transparency)

7.1.8 All Artefacts

Tables 7.10 and 7.11 present a.JJ of the virtual environment artefacts. These artefacts are also illustrated

in Figures 7.11 and 7.12.

7.2 Example Statements

This section will revisit the examples introduced in Section 3.3 within the context of the Wish syntax

as defined in Section 6.2. In the following examples, any subwishes or relative artefact declarations are

presented inline. However, a complete version ofthe relative_artefacts. rb file is presented in Section C.1,

140

Figure 7.10: All th e Auras

Figure 7.11 : A Sta.dium View of All Artefa.d

141

Table 7.10: All Artefacts

Id Rape width helcht leneth x y " radi ... colour v catecory t name
a box 50 0.05 150 25 25 0 NULL green 0 pitch 0 home half
8 box 150 0.015 50 25 75 0 NULL green 0 pitch 0 a_y half
1 box 50 0.015 0.5 25 110 0.1 NULL white 0 pitch 0 centre line

8 cylinder NULL 0.05 NULL 25 50 0.05 1 white 0 pitch 0 centre circle outer

9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green 0 pitch 0 centre circle

10 box 30 0.05 15 25 1.5 0.15 NULL white 0 pitch 0 hOlm! goal outer

11 box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home coal
12 box 30 0.05 15 25 92.5 0.15 NULL white 0 pitch 0 away goal out«

13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 "_lIOai
14 cylinder NULL 0.05 NULL 25 10 0.05 10 wbite 0 pitch 0 hon. penah.y circle out.

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitch 0 bome penalty epot

11 cylinder NULL 0.05 NULL 25 90 0.05 10 white 0 pitch 0 away penalty circle outer

18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green 0 pitch 0 away penatty circle

19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty .pot

20 box 0.5 0.05 100 -0.25 50 0.1 NULL white 0 pitch 0 near touch line

21 box 0.5 0.05 100 50.25 50 0.1 NULL white 0 pitch 0 far touch line

22 box 51 0.05 0.5 25 -0.25 0.1 NULL white 0 pitch 0 home touch line

23 box 51 0.05 0.5 25 100.25 0.1 NULL whit. 0 pitch 0 a.ay touch line

24 box 5 0.05 100 -2.5 50 0 NULL green 0 pitch 0 near touch area

25 box 5 0.05 100 52.5 50 0 NULL green 0 pitch 0 far touch .,. ..

26 box 60 0.05 5 215 -2.5 0 NULL green 0 pitch 0 home touch area

21 box 60 0.05 5 25 102.5 0 NULL green 0 pitch 0 away touch area

28 box 0.5 15 0.5 20 0 0 NULL white 0 pitch 0 home near lIOai poet

29 box 0.5 5 0.5 30 0 0 NULL white 0 pitch 0 home far &0 .. 1 p_

30 box 10.5 0.15 0.5 25 0 5 NULL white 0 pitch 0 ho ... lIOai c......bor

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away lIOai cro.obar

32 box 0.5 5 0.5 20 100 0 NULL white 0 pitch 0 away n eoal po.t

33 box 0.5 5 0.5 30 100 0 NULL white 0 pitch 0 away far aual po.t

34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 m

35 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 aam

36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob

31 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 bob

38 cone NULL 3 NULL 10 8 0 1 red 0 player 0 john

39 cylindar NULL 0.15 NULL 10 8 0 5 red I aura 0.5 john

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim

41 cylinder NULL 0.15 NULL 30 12 0 5 red I aura 0.5 jim

42 cone NULL 3 NULL 40 70 0 I red 0 player 0 geoffrey

43 cylinder NULL 0.15 NULL 40 70 0 5 red I aura 0.5 geoffrey

44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 bernard

45 cylindar NULL 0.15 NULL 40 90 0 5 red 1 aura 0.5 bernard

46 cona NULL 3 NULL 20 30 0 1 red 0 player 0 toddy

47 cylinder NULL 0.15 NULL 20 30 0 5 red 1 aura 0.5 toddy

48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert

Conhntud on Tol'. B.IO

142

Table 7.11 : All Artefacts (Continued from Table B.9)

Id . hope width hol&ht ICD&th x y z radius colour v cate c:ory t name
61 cy linde r NU LL 0.5 NULL 20 60 0 5 red I aura 0.5 rupert

62 cone N ULL 3 NULL 5 20 0 1 red 0 player 0 oven

53 cy linder N ULL 0.5 N ULL 5 20 0 5 red I aura 0.5 oven

54 con9 NULl, 3 NULL 26 0 0 I yellow 0 goalie 0 lim

65 cy linder NU LL 0.5 N UL L 26 0 0 5 red 1 aura. 0.5 1m

66 co ne NULL 3 N ULL 30 60 0 1 blue 0 player 0 karl
57 cy linder N ULL 0.5 NULL 30 60 0 5 red I aura 0.5 karl
58 co ne NULL 3 N ULL 35 45 0 1 b lue 0 playar 0 bendnk
59 cy linder NULL 0.5 N ULL 35 45 0 5 red I aura 0.5 hendnk
60 co ne N ULL 3 N ULL 15 13 0 1 blue 0 player 0 david

61 cy lindor N ULL 0.5 NULL 15 13 0 5 red I aura 0.5 david

62 co ne N ULL 3 NULL 45 85 0 I bluB 0 player 0 han

63 cy li ndor N ULL 0.5 NU L L 45 85 0 5 red I aura 05 han
64 co ne N ULL 3 N ULL 35 14 0 I blue 0 player 0 jean

65 cy linder NULL 0.5 N ULL 35 14 0 5 red I aura 0.5 Jean

66 co ne N ULl, 3 N ULL 45 55 0 I blue 0 player 0 borll.l

67 cy linder NULL 0.5 N Ur, L 45 55 0 5 red I aura 0.5 bon.

68 co ne NULl, 3 NULL 35 95 0 1 bluB 0 player 0 bllbo

69 y linder NULL 0 .5 N ULL 35 95 0 5 red I flura 0.5 bllbo

70 con6 NULl, 3 N ULL 45 65 0 I b luB 0 piaYM 0 ""v,,"
71 cy linde r NUI, L 0 .5 NULL 45 65 0 5 red I aura 0 .5 ""v..,
72 co no NULL 3 NULL 25 15 0 I blue 0 player 0 chrLl'l

73 cy lindor NULL 0 .5 NU I, L 25 15 0 5 red I au ra 0.5 chrul

74 cono NULL 3 NULL 25 100 0 I yollow 0 goallo 0 carlo.

75 cy lindor NULL 0 .5 NULL 25 100 0 5 red I aura 0.5 c&rlo.

76 co no NULL 3 N ULL 27 13 0 1 turquol80 0 player 0 ror

77 cy lindor NULL 0 .5 NULL 27 13 0 5 red I aura 0.5 ror

78 sphere NULL NULL NULL 15 7 2 0.5 wh ite 0 ball 0 ball

79 box 25 0 .05 100 12.5 SO 1 NULL brown 1 lo cale O.S "oar half

(x = ;J; coord, '1) = 1) cooT-d , % = % coord , 1J = tJ l.rLuoi , L = L'rO-n."p orenC1J)

Figure 7.12: n Aerial iewof II Ar tefact

143

and all of the subwish list ings a re presented in Appendix D.

7.2.1 Categories

/vJ an exam ple of categories, Section 3.3 .4 described t he in teresting set consisting of all red artefact

This type of statement is represented in terms of the rel ationship between the tatement 's given valu

and the artefact 's current att ribute values. An English version of this statement could be:

I am interes ted in all artefacts that are red

Wish autom atically ass umes that the statement IS about in te rest , and so focusses purely on the

ond ition :

coloured red

T he above Wish sta tement used a subwish call ed coloured .wish wh i h provid a mor r adab le v rsion

th an the SQL- like equ ivalent:

#coloured . wish

colour = IAI

Pigure 7.13 provides a vi w of th e virtual environm ent given the abov inter l . th

pitch is not red it does not appear in the set of interes ting artefact. T he red artefacts therefore app r to

be fl oati ng in pace. The following example tatements wi ll ass ume th at the u er is additionally interested

in the footbal l pitch for the purpose of providing a context and sett ing for th int r ling art fac .

Figure 7.13: All Red Artefacts

A summary of t he English prose, Wish , SQL and set of matching artefacts for this exampl talem nt

is presented in ee tion .2 in App nd ix C.

7.2.2 Locales

n xample of a st atement using I cales i as follows:

144

[am interested in alL artefacts within the near half of the pitch

Given the exis tence of a vi rtual artefact representing t he area of the near half of the pitch, we can

declare a variable within the relative_artefacts . r b fil e:

T his vari a ble can t hen be used wit hin a wish statement as foll owS!:

category = pit ch

T he subwish withi n_box uses t he a lgorit hm desc ribed in Sect ion 5.3.2, which in Wish looks as follow

x_coord >= <'a= IA I · x_c oord - (IAI.wi dt h / 2)""

x_coord <= <'a= IA I . x_c oord + (IAI . wi dt h / 2)%>

y_coord >= <%= IA I . y_ coord (I AI . l ength I 2)%>

Lcoord <= <%= I AI . y_ coord + (IA I . l eng th / 2)%>

i d != <%= I AI . id%>

Figure 7.14 provides a view of a ll t he artefacts within the near half.

F igure 7.14: All Artefacts Within the Near Half of the Pitch

A summnry of the E nglish prose, Wish, QL and set of matching artefacts for th.is example taternent

is presented in Sec t ion .3 in Appendix

IN Li ce l hf\t. I he condit io n category. pilch is added purely to provid e visua.l co ntex'i, for the imag such as that presented
In Plgur 7.1<1.

145

7.2.3 Relative Locales

As described in Section 5.2.3, in terms of interest statements, relative locales can be treated identically

to standard locales as they are both represented by relative artefacts. The section also discussed that

any relationship between artefacts should be resolved in the declaration of the relative artefacts. AB an

example of this consider the following interest statement:

I am interested in all artefacts within the referee '8 aum

Here the interest is relative to the referee's aura. We have a relationship between an aura and the

referee. This relationship should be resolved in the declaration of the relative artefacts. Consider the

following snippet from relative_artefacts. rb:

The declaration of this relative artefact uses the method find_aura which is defined 88 follows:

def find_aura(name)

Artefact.find(:first. :conditions ..,. {:name -> name, :virtual ..,. true, :category..,. 'aura'})

end

This method relies on the fact that the aura shares the same name 88 the concept it is reprESenting.

For example, Bob's aura is named Bob. However, to distinguish the two, the aura h88 the category of

aura, The find_Iura method filters on this category, implicitly creating the relationship.

Given the newly declared relative artefact, we can use it in a Wish statement 88 follows:

category. pitch

The within_circle subwish is implemented with the algorithm introduced in Section 5.3.4 which can

be defined with Wish 88 follows:

•• dthin_circle .wish

cftoolAl, radius'll> > • sqrt(pow((x_coord _ cftoo IAI.x_coord'o). 2) + pow ((y_coord - _ IAI.y_coord'll>). 2»'

Figure 7.15 providES a view of all the artefacts within the referee's aura.

A summary of the English prose, Wish, SQL and set of matching artefacts for this example statement

is prESented in Section C.4 in Appendix C.

146

Figure 7.15: Artefacts Within the Referee's Aura

7.2.4 Interacting Locales

Section 3.3.3 described an exam ple of in teracting locales as follows

"When an artefact A 's aura collides with artefact B 's al,ra, artefact A can be atd to be

aware of artefact B ."

In terms of t he interest concepts, as defined in Section 5.1, concepts uch as the one above can be

reprcs nted by in troducing two relative artefacts into t he interest statement. For exampl

I am interested in all artefacts whose aura overlaps the referee I aum

Sec t ion 7.2 .3 described how to defin e t he rela tive artefac t ref_aura . With such a variable declared it 's

poss ible to defin e the following Wish tatement :

category = pit ch

T he definition of t he subwish in_awa reness_ rang e_of .wish is as follow

4'in_awareness_ range_of .wish

virtual = f a lse

!Iere we are d scribing an interes t in non- virtu al artefact tha t have the ame name as the et of

auras in awa.reness range of the referee 's aura. T his is achieved by copi ng the name wi th th ubwish

auras_in_awa renessJange_of which i defin ed as follows:

147

overlaps I A I

category = au r a

This s ta tement describes auras that overl ap the referee's aura. The definition of overlaps . wish is based

on th algorithm descr ibed in Section 5.3.3 and is represented in Wish as foUows:

lIoverlaps. wis h

<%= IAI · radi us,<> + r adius> ' s qrt(pow((x_c oo rd - <%= IAI . x_coord..,). 2) + pow((y_coord - <%= IAI . y_coordlp) , 2)) '

Figure 7.16 gives a view of al l the artefacts , and Figure 7.17 gives the same view but with the inter

applied .

Figure 7.16 : All Artefacts

A umm ary of t he English pro e, Wish, SQL and set of matching artefacts for t hi example tatement

is presented in Section C.5 in Appendix C .

7.2.5 Combinations

We might wi h to b able to create Wish statements that arbitrarily combine the examples above. For

exam ple, consider t he following illterest st atement:

I am int re ted in all non-virtual artefacts that are red players. who e aura overlap the

ref re 's aura and that are within the home penalty circle

As cetion 6.2. in troduced, Wish upports the logical operators or, and t.o combine tatement , not

to n gate a tatement and t.he grouping keyword all , not , and .. -. The above Engli h tatement i

148

Figure 7.17: All Artefacts t hat are in Awareness Range of the Ref ree

represented in Wish as follows4 :

catego ry ~ pit ch

virtual = false

coloured red

catego ry ~ playe r

F igure 7.18: R ults of a Combin ation Statement

4ThQ d "' finitions of th e subwishes coloured , in..awarencss_ranglWJ(, a.nd within..circle are found in ections 7.2.1, i.2A, and
7.2.3 respect ivel . A lso, Appendix 0 co ntains contains co mplete lis ings of all subwishes u d in his hesis.

149

A summary of the English prose, Wish, SQL and set of matching artefacts for this example statement

is presented in Section C.6 in Appendix C.

7.2.6 Combining Concerns

Section 3.4.2 introduced the following as a method of combining the concerns of a user and the system:

Interesting Artefacts = «uPos - UNEG) U sPOs) - SNEG (7.1)

Section 5.4 introduced the following SQL representation of that combination:

select • from Artefacts where (((id in (select id from Artefacts where UPOS) and

not id in (select id from Artefacts where UNEG» or

id in (select id from Artefacts where SPOS» and

not id in (select id from Artefacts where SNEG»

Wish facilitates the representation of derived sets (as described in Section 3.2.4.1) through the concept

of subwishes. If we assume that the derived sets UPOS, UNEG, SPOS and SNEG have the following corresponding

subwishes: upos. wish, uneg. wish, spos. wish, and sneg. wish, then we can combine these statements with W'ish

as follows:

att

id in upos

not id in uneg

id in spos

not id in sneg

Or the following semantically identical, yet more succinct Wish statement:

not id in sneg

id in upos

not id in uneg

id in spos

7.3 Dynamic Interests

Section 2.6.2.2 described a number of motivations that require the ability to change interests which was

one of the main factors behind the design of the dynamic interest management framework and virtual

150

environment axioms presented in Chapter 3 and implemented in Chapter 4. This section will illustrate

how changing the interests within the virtual environment is possible if the implementation of the virtual

environment follows the design presented in Chapter 4.

Consider the following Wish statement:

coloured turquoise

This statement matches the set of artefacts Oust the referee) described in Table 7.12. In terms of the

messages sent from the server to the client (given the architecture illustrated in Figure 4.3), the server

sends the following message:

[{:command=>"add". :parameters=>

{:y_coord=>13.e. : shape=>" cone". : colour=>" turquoise". : transparency=>S.e. :he1ght=>3.e,

:z_coord=>0.0. :id=>76. :radius=>1.9. :x_coord=>27.9}})

This message indicates that the referee should be added to the client's view (as it is in the set of

interesting artefacts), and sends the appropriate attributes for the view5 .

Table 7.12: Turquoise Artefacts

(a: = x coord, 11 = 11 coord, z = z coord, 'II = virtual, t = trat18parenclIJ

Now, consider that we wish to change our interest from turquoise artefacts to blue artefacts. We

change our Wish statement to the following, and refresh the server:

coloured blue

The set of matching artefacts for the above statement is presented in Table 7.13. The server calculates

the differences between the client's current view, and the new set of interesting artefacts and sends the

following set of messages:

[{: command=>"delete". : parameters=>{: id=>76}}.

{ : command=>" add". : pa ramete rs=>

{:y_coord=>69.9. :shape=>"cone". :colour->"blue". :transparency-->9.9. :height=>3.9,

: z_coord=>e. 9. :id=>S6. :radius=>1.9. :x_coord=>39.B}}.

{:command=>"add". :parameters=>

5Notice that the following attributes are not sent to the client: virtual, category and name.

151

{:y_coordc>45.8, :shapec>"cone", :colour=>"blue", :transparency=>8.8, :height=>3.8,

: z_coord=>8. 8, : 1d=>58 , :radius=>1.8, :x_coord=>35.8}},

{ : commandc>' add', : pa ramete rs=>

{:y_coord=>13.8, : shape=>"cone', :colour=>"blue", :transparency=>8. a, : height=>3. a,

:z_coord=>9.8, :1d=>6a, :rad1us=>1.a, :x_coord=>15.en,

{:command=>"add", :parameters=>

{:y-coord=>85.e, :shape=>"cone", : colour=>" blue" , :transparency=>a.e, :height=>3.e,

: z_coord=>e. 9, : id=>62 , :radius=>l.e, :x_coord=>45.e}},

{ : command=>" add", : pa ramete rs=>

{:y_coord=>14.e, : shape=>"cone" , : colour=>"blue" , :transparency=>a.a, :he1ght_3.e,

:z_coord=>e.e, : id=>64 , :rad1us=>1.S, :x_coord=>35.S}},

{:command=>"add", :parameters=>

{:y-coord=>55.e, : shape=>"cone", :colour=>"blue", : transparency=>s.a, :height=>3. a,

: z_coord=>e.e, : id=>66 , :radius=>l.e, : x_coord=>45.e}},

{: command=>"add", : parameters=>

{:y-coord=>95.e, :shape=>"cone", :colour=>"blue", :transparency=>a.e, :height=>3.a,

:z_coord=>9.B, : id=>68 , :radius=>l.e, :x_coord=>35.e}},

{:command-"add", :parameters=>

{:y_coord=>65.e, : shape_"cone", : colour=>"blue", : transparency=>a. e, : height=>3. e,

: z_coord=>6.e, :id=>7e, :radius=>1.6, :x_coord=>45.9}},

{:command"""add", : parameters=>

{:y_coord=>15.e, : shape=>"cone", : colour=>"blue", :transparency=>e.e, : height=>3.e,

: z_coord..,.a.e, : id=>72 , :radius=>l.e, :x_coord=>25.e}}]

Notice how the server is requesting that the referee is to be deleted (it is not blue), and the details

of the blue artefacts are sent to be added to the view.

Finally consider the following statement that represents another change of interests:

152

Table 7.13: Blue Artefacts

Id .hape width height length x y z radius colour v category t name

&6 cone NULL 3 NULL 30 60 0 1 blue 0 player 0 karl

58 cone NULL 3 NULL 35 45 0 1 blue 0 player 0 bendrik

60 cone NULL 3 NULL 15 13 0 1 blue 0 player 0 david

62 cone NULL 3 NULL 45 85 0 1 blue 0 player 0 ban

64 cone NULL 3 NULL 35 14 0 1 blue 0 player 0 jean

66 cone NULL 3 NULL 45 55 0 1 blue 0 player 0 boris

68 cone NULL 3 NULL 35 95 0 1 blue 0 player 0 bilbo

70 cone NULL 3 NULL 45 65 0 1 blue 0 player 0 aevall

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris

(II: = II: coord, 1/ = 1/ coord, z = z coord, " = virtual, t = transl'arenclIJ

The matching set of artefacts for the above statement is presented in Table 7.14. Again, the server

calculates and sends just the differences. Most of the blue artefacts are requested to be deleted, except

for one which matches the interest criteria. Details of the rest of the artefacts that match the interest

criteria are sent to the client for them to be added to the view.

[{ :command=>"detete", : parameters=>{: ld=>69}},

{: command=>"detete", : parameters=>{: id=>66}},

{:command=>"detete", : parameters=>{: ld=>S6}},

{:command=>"detete", :parameters=>{:id=>62}},

{:command=>"detete", : parameters=>{ :id=>68}},

{:command=>"detete", :parameters=>{ :id=>S8}},

{: command=>"detete", : parameters=>{ :id=>64}},

{: command=>"detete", : parameters=>{: id=>70}},

{:command=>"add", :parameters=>

{:y_coord=>7.S, : shape=>"box", : cotour=>"white", :width=>3a.a, : transparency=>a. a,

:height=>B.9S, :tength=>lS.9, :z_coord=>B.1S, :id=>lS, :x_coord=>2S.a}},

{: command=>"add", : parameters=>

{:Lcoord=>7. e, : shape=>"box", : cotour->"green", :width=>29.S, : transparency-->9.9,

:height=>G.9S, :tength=>14.9, : z_coord=>9. 2, : id=>ll , :x_coord=>2S.B}},

{: command->"add", : parameters=>

{:y_coord=>19.9, : shape=>"cyUnder", : cotour=>"white", : transparency-->9.e,

:height=>9.9S, :z_coord=>9.9S, : id=>14 , :radius=>19.9, :x_coord=>2S.9}},

153

{:command->'add', :parameters=>

{:y_coord=>le.e, : shape-'?'cyUnder", :cotour=>"green", :transparency=>9.e.

:heightc >9.e5. :z_coord=>e.l, :id=>15, :radius=>9.S. : x_coord=>25.e}}.

{:command=>"add", :parameters=>

{:y_coord=>19.9, : shape=>" cylinder" , :cotour=>"white", :transparency=>9.e,

:he1ght=>9.95, :z_coord=>9.25, :id=>16, :radius=>9.5, :x_coord=>25.9}},

{:command=>"add", :parameters=>

{:y_coord=>12. e, : shape=>"cone", : cotour=>" red", :t ransparency=>9.9,

:height=>3.9, :z_coord=>e.e, : id=>49 , :radius=>l.a, :x_coord=>39.9}},

{ : command=> " add", : pa ramete rs=>

{: y-coord=>12 .e, : shape=>"cylinder", : cotour=>" red", :transparency=>9.5,

:height->9.5, :z_coord->e.a, :id=>41, :radius=>5.9, : x_coord->39.9}},

{:command=>"add", : parameters=>

{:y-coord->15.e, : shape=>"cyUnder", : cotour=>" red", : transparency=>8.5.

:heighta >e.5, :z_coord=>e.e, : id=>73 , :radius=>5.9, :x_coord=>25.9}}.

{: command=>"add". : parameters=>

{:y_coord=>13.9, : shape=>"cone", : cotour=>"turquoise", : transparency=>8.8.

:height=>3.B, :z_coord=>9.9, :id=>76. :radius=>1.9, :x_coord=>27.8}}.

{: command=>"add", : parameters=>

{:y_coord=>13.a, :shape=>"cytinder", : cotour=>" red" , :transparency=>8.5,

:height=>9.5, :z_coord=>9.9, : id=>77 , :rad1u5=>5.8, :x_coord=>27.8}}]

7.4 Evaluating The Domain Objectives

Section 6.1.1 introduced the objectives of a domain specific language to represent interests. This section

will evaluate Wish in terms of these objectives. Section 7.4.1 will consider abstraction, Section 7.4.2

readability, Section 7.4.3 succinctness, and finally Section 7.4.4 will consider the expressiveness of Wish.

154

Table 7.14: Artefacts within the Home Penalty Circle

Id .hape width height length x)' z radius colour v category t name
10 box 30 0.05 15 25 7.5 0.15 NULL wbite 0 pitch 0 bome goal outer
11 box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home goal
14 cylinder NULL 0.05 NULL 25 10 0.05 10 wbite 0 pitch a bome penalty circle outer
16 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle
16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 wbite a pitch 0 bome penalty spot
40 cone NULL 3 NULL 30 12 0 I red a pleyer 0 jim
41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim
72 cone NULL 3 NULL 25 15 0 1 blue 0 pleyer 0 chris
73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 pleyer 0 ref

77 cylinder NULL 0.5 NULL 27 13 0 5 red I aura 0.5 ref

(z - z coord, 11 - 11 coord, z - z coord, " - tnrtual, t - transparencll)

7.4.1 Abstraction

As explained in Section 6.2.5, Wish provides the concept of subwishes as an abstraction mechanism.

Wish statements therefore allow the inclusion of other Wish statements to an arbitrary level of nesting

as seen in Section 7.2.4. This facilitates the layering of abstractions, allowing complex statements to be

broken into smaller, more manageable, components. These components can also aid the readability of

Wish statements as discussed later in Sections 7.4.2.1 and 7.4.2.3. Subwishes can also be used within the

scoping mechanism as described in Section 6.2.6. The same abstraction technique can therefore be used

in two different ways depending on the context:

1. As a more readable shortcut for a nested set of Wish snippets (subwishes).

2. As a shortcut for a set of artefacts (scoping).

7.4.2 Readability

7.4.2.1 Subwish Names

As described in Section 7.4.1 Wish's abstraction mechanism allows complex statements to be broken

into smaller, more manageable components. The implementation of the subwish abstraction mechanism

requires those smaller components to have unique names. If appropriate names are chosen, then the

readability of the Wish statement can be improved. As an example of this, consider the following Wish

condition:

name • sam

It is possible wrap this concept into a subwish as follows:

Inamed • wish

name· IAI

155

Now, if we use this subwish we can write the following, which is more natural and readable than the

original condition:

named sam

7.4.2.2 Visual Structure

Consider the following English interest statement:

I am interested in the football pitch and all non-virtual artefacts that are red players,

whose aura overlaps the referee's aura and that are within the home penalty circle

The actual intention of the above statement may not be immediately visible from first reading. This

is also the case with the equivalent SQL:

select • from artefacts where (category = 'pitch' or (not (virtual = true)) and ((colour = 'red') and

(category = 'player' and ((virtual = false and (category = 'player' and (name in

(select name from artefacts where (((5.9 + radius> sqrt(pow((x_coord - 27.8). 2) +

pow((y_coord 13.9), 2))) and (category = 'aura'))))))) and ((9.5> sqrt(pow((x_coord - 25.8), 2) +

Pow((Lcoord 19.0)' 2))))))))

However, consider the following Wish equivalent:

categorised_as pitch

not virtual

coloured red

categorised_as player

The Wish statement is clearly shorter and more succinct than the SQL version. It is also more visually

organised than the English version. Once a reader has become accustomed to the Wish structure, the

white-space forced by the syntax helps the parsing of the statement.

7.4.2.3 Abstracting Complexity

As explained in Section 7.4.1, the Wish subwish mechanism allows for arbitrarily large, and arbitrarily

nested Wish snippets to be abstracted. Not only can the choice of subwish name increase readability

(as described in Section 7.4.2.1) the fact that the complexity is hidden means that there is less to read,

therefore making the statement more readable. For an example of this concept consider the following

subwish:

156

lwith1n_box.wish

x_coord,... IAI.x_coord - (IAI.width I 2)'0>

x_coord <= IAI.x_coord + (IAI.width I 2)'0>

y_coord >= <'11= IAI.y_coord - (IAI.length I 2)'0>

Lcoord <= <'11= IAI.Lcoord + (IAI·length I 2)'0>

1d ! = <'11= I A I . id'o>

7.4.2.4 Removing Ambiguity

Consider the following English statement:

I am interested in artefacts named sam and artefacts coloured red

Note that the above statement is not the same as the following statement:

I am interested in artefacts named sam and coloured red

Both sentences use the word and to combine the conditions, yet they have very different meanings.

In SQL you would represent the first statement as follows:

name III I sam I or colour = I red I

And the second statement as follows:

name = 'sam' and colour = 'red'

Clearly there is an ambiguity between the English use of and, and SQL's use of the term. Wish

removes this ambiguity by removing the and and or keywords entirely. Wish assumes that the statement

is a simple list of the kind of artefacts that are interesting. In this case we're interested in artefacts

named sam, and artefacts coloured red:

named sam

coloured red

If, however, we are interested in red artefacts named sam, Wish uses indentation to indicate that the

second condition also applies to the first as follows:

named sam

coloured red

157

1.4.3 Succinctness

Wish is syntactically and conceptually more succinct than SQL for representing interest statements.

Wish supports abstraction for converting potentially complex snippets into single conditions. The scoping

mechanism allows the representation of derived sets for use in interest conditions, and the removal of the

and and or SQL keywords also makes the resulting statement more succinct.

1.4.4 Expressiveness

As Section 5.3 illustrated, SQL is sufficiently expressive for representing interest statements. 6

Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 give examples of the expressiveness of SQL, showing that it

is capable of handling all of the interest statements types expressed by the examples in Section 3.3.

Therefore the design decision to base Wish on top of SQL does not limit the potential expressiveness of

Wish.

Section 6.1.1.4 described the requirement for expressiveness to be the ability to represent the exam­

ples presented in Section 3.3. As Section 7.2 illustrated, Wish is able to represent all these examples.

This demonstrates that Wish is sufficiently expressive for the domain it is intended for: namely the

representation of interest statements for virtual environments.

8However it must be noted that this does not necessarily demonstrate that the use SQL is practical for efficiefntly
, I' r f' ht uires the use 0 an Implementing the processes that will enact these interests. For example, calcu atmg me 0 slg req . f f ts

aUxiliary predicate function, which, under certain circumstances might be required t? be exec.u~ for all pairs ~ :'d
to fully determine the visibility status of the system. For very large environments, thiS operation IS clearly very y,
could very easily exceed the processing capacity of the system.

158

Chapter 8

Conclusions and Further Work

Chapter 5 described the objectives and goals of this thesis. This chapter aims to summarise if, and how,

these goals were met. It will then follow with an inspection of the potential new directions that could

be taken by future work in this area. Section 8.1 provides summaries of the research contributions, and

the chapters in this thesis. Section 8.2 discusses some final thoughts about this research in general, and

finally Chapter 8.3 introduces a few potential directions that new work based on this research may take.

8.1 Summaries

8.1.1 Contribution Summary

Section 1.7 listed a number of the contributions made to the research within the field of interest man­

agement for virtual environments. This section will revisit these contributions, and describe where this

thesis also introduced them.

Taxonomy of currently used interest management techniques. The various techniques used for

interest management were surveyed and discussed in Section 2.2.3. Section 2.2.4 introduced cate­

gorisation, locales and interacting locales as three general techniques, and Section 2.2.4.5 described

various surveyed techniques that could be mapped on to them.

A definition and conceptual model of virtual environments. The term virtual environment was

evaluated and discussed in Section 2.1.1. Section 2.1.1.1 illustrated that there is no general consen­

sus on a definition, and a new definition was introduced in Section 2.1.1.3. Section 3.1.2 translated

this definition into a number of axioms which were implemented in Chapter 4 as a proof of concept.

A conceptual model of interests based on set-theory. The taxonomy of interest management tech­

niques presented in Section 2.2 was formalised using set-theory in Section 3.2, and then implemented

using SQL as a proof of concept in Chapter 5.

Wish, a domain specific language for representing interests. Section 5.5 illustrated a number of

159

limitations in the implementation of the formalisation of the interest management techniques pro­

vided in Chapter 5. These limitations were shown to be a lack of readability, succinctness and no

ability to allow for abstractions. These limitations are overcome through the inception of a new do­

main specific language. This new language, Wish, was introduced in Chapter 6 and then evaluated

using a case study in Chapter 7.

8.1.2 Chapter Summary

This section provides a summary of each of the chapters found within this thesis.

1. Introduction This chapter introduced the general context of this thesis: namely issues of managing

interests within virtual environments. It described scalability and adaptability as two limitations

of current virtual environment implementations, and introduced dynamic interest management as

a technique that could reduce the impact of these limitations.

2. Literature Survey This chapter surveyed the research literature on interest management within

virtual environments. Based on this survey, it introduced definitions of the terms interest manage­

ment and virtual environment. The chapter also described the various techniques used to manage

interests, and showed how they can be mapped on to the following three general techniques: cate-

gorisation, locales, interacting locales.

3. A Framework for Interest Management This chapter introduced a set of axioms describing the

fundamentals of virtual environments. Based on the constraints of these axioms, it then developed

a formalisation of the three general interest management techniques introduced in the literature

survey.

4. Virtual Environment Axioms: A Proof of Concept This chapter introduced a proof of

concept of the virtual environment axioms by implementing them. The various design decisions for

the implementation were discussed, and a simple environment illustrated.

5. Interest Statements This chapter introduced a proof of concept of the formal framework of

interest management by presenting an implementation using SQL. The chapter then described how

this implementation could represent the three general interest management techniques introduced

in the literature survey. Finally some of the limitations of this implementation were described:

namely a lack of readability, succinctness and no ability to allow for abstractions.

6. Wish: a DSL for Interest Statements This chapter introduced an alternative implementation

of the formal framework of interest management using a new bespoke language called Wish. The

design motivations of this new language were shown to be the ability to represent the three general

interest management techniques, whilst being readable, succinct, and able to represent abstractions.

160

7. Case Study and Evaluation This chapter evaluated Wish through the use of a case study.

The case study showed the various abilities of Wish whilst illustrating that this new language

is sufficiently expressive, more readable, and succinct than the SQL implementation, whilst also

providing the ability to represent abstractions.

8. Conclusions and Further Work This chapter provided a summary of the thesis, and discussed

new directions that future work could take l .

8.2 Final Thoughts

8.2.1 Technology Choices

The implementation of the ideas presented in this thesis was achieved through the use of mainly non­

standard technologies2 • However, on reflection, it turns out that the technology choices were remarkably

appropriate to the work, having great impact on the productivity and the flexibility of the research.

As mentioned in Section 4.3.3, Java was initially chosen as the main implementation language simply

because it was the main language taught by the school, and the language used by the majority of the

researchers. It was the obvious choice. However, I believe that it was not the best choice. Research is often

a very agile practice, where new ideas are constantly conjured up. It makes a lot of sense to work with

material that allows you to convert ideas to prototypes as quickly as possible, to not pay a large price for

trying out new directions. For example, the design of the Wish syntax was such a practice. The syntax

constantly changed, and evolved from the SQL it produces to the syntax presented in Chapter 6. That

evolution took a great many iterations, yet each iteration was a lot less work and effort using Ruby as the

implementation language than it would have taken using Java. This is not to say that Ruby is a better

language than Java, just one that is more suited to the task of rapid prototyping, and agile development.

Ruby also provides a lot of features that would be almost impossibly hard to emulate with Java - for

example it allowed the separation of the declaration of the relative artefacts and the Wish statements

over separate files. The use of the Ruby on Rails framework was also an interesting choice - given that its

intended use is for developing web applications. However, the Rails framework offered a sensible skeleton

structure for the implementation, and an integrated console for interactive development. It also included,

by default, all of the libraries that I intended to use, such as Active Record. This all meant that I could

start developing my implementation much sooner than had I had to design and create my development

context myself. I believe that making mistakes is an important part of the research process. I therefore

believe that it is sensible to use technologies that are forgiving for such mistakes, and allow you to move

on and try something different until you get it right.

1 Well, actually this discussion is yet to come, yet it was already written whilst writing this chapter summary. Oh, the
confusion of tenses!

2Where by non-standard I mean non-Java and non-Microsoft technologies.

161

8.2.2 Treating Wish as an Essay

Yukihiro Matsumoto, the creator of Ruby, wrote an article entitled Treating Gode as an Essay(79). The

main thesis of this article was that he believed that like an essay, code should not just have a message,

but that the message should also be easily understandable to humans. Therefore, structure, style and

syntax play an important part of making the message of the code more readily digestible. He introduced

the following example of how reducing syntactic clutter can make code more readable. Consider the

following Rake3 snippet:

task :defautt => [:test)

task : test do

ruby "test/unittest. rb"

end

This code enjoys a lack of syntax often enforced by other languages such as missing method param­

eters, unbraced hash key/value pairs, and the ability to attach code block to the end of method calls.

The same code written with this syntax included is as follows:

task({:default => [:test)})

task(:test, &lambda(){

ruby "test/unittest. rb"

})

This philosophy is clearly inline with that which motivated the design of Wish. Wish removes syntax

from SQL statements such as string quotations, parenthesis, and and or operators and explicit subqueries.

As an example of this consider the following two equivalent statements taken from the case study in

Chapter 7:

Wish:

not virtual

coloured red

categorised_as player

SQL:

select • from artefacts where (virtual = false and «colour = 'red') and

(category = 'player' and «virtual = false and (category = 'player' and

3Rake Is a build tool similar to UNIX make, and Java ant.

162

(name in (select name from artefacts where

(((5.8 + radius> sqrt(pow((x_coord . 27.8), 2) + pow((y_coord - 13.8), 2»)
and (category = 'aura'»»») and

((9.5 > sqrt(pow((x_coord - 25.9), 2) + pow((y_coord - 18.8), 2»»»»

Like an essay, Wish is intended to be readable by humans, therefore allOWing it to be maintained by

humans. I believe that Wish achieves this.

8.2,3 Component Objectives

Section 6.3.3 described that Wish consists of the following main components (illustrated in Figure 6.1):

• Ruby

- Expressions

- Relative Artefacts

• Wish

- Explicit not and in operators

- Explicit Groupings

- Implicit Groupings

- Abstraction

- Autoquoting

- Use of Abstraction for Scoping

• YAML with embedded SQL

- Relative Interest Conditions

- Scoping

- Interest Conditions

- Grouping

- Conditional Operators

Each of the above components was introduced into the design of Wish for one of three reasons:

Expressiveness, succinctness or readability. Figure 8.1 provides a spatial illustration of the motivations

for the components in terms of these three reasons. From this diagram we can infer that the Wish and

Ruby components provided much of the expressiveness of the language. This makes sense as the pure

163

SQL implementation provided in Chapter 5 was demonstrated to be expressive enough for the needs of

Lhe domain . We can also see the Wish components t hat were explicitly introduced for the motivations

of readability and succinctness, and some components that were introduced for expressivenes in order

LO deal with the constraints of t he Wish syntax.

-- , , ,

Expressiveness Succinctness Readability

~se 01 Abstraction lor Sco . ping

Explicit not
I Explidt Ii I Abstraction 1 Grouping ,

and i n I
Auto-

Operators I Implicit a nd and 0 r II Implicit l : quoting

Operators Grouping : ,

Wish

-- -- - -------- - - --- --- - ----- - -- - - - - --~-------------------,

Relative
:

Expressions : Artelacts : Ruby

:
,

---- ----- , --------- ---- ----- ,------- ----- -- ------ ----------- -- -

Relative
Interest

Conditions

Sal Conditional
Operators

Scoping
Inlerest

Conditions

r

Figure 8. 1: Spatial Map Indi cating t he Objective of Wish Component

sal

8.3 Further Work

Section 2.2.3 d scribed the range of in terest management techniques fo und within the lit rature. Each of

th e techniques is a method for expressing interests. It is probably fair to ay that expre ing inLerest

has been a research topic from very early on in t he history of vir tual environment . However, a lthough thi

thesi has b en concerned with t he expres ion of interests, its main focu has been on the repr entation

f inL rests. Chapter 3 int roduced a repre entation with set t heory, Chapter 5 introduced a repre entation

using SQL, and Chapter 6 int roduced a representa tion using a new language called \\ i h - a language

sp ei Rc to the domain of expressing interests. Although I believe t hat t here i still a lot of interesting

r search in t he tudy of expressing interests, I believe t hat t he study of representing inter t has only

tarted, and i a fe rt ile re earch topic, even out of the context of virtual en ironments. Thi ection will

introduc ome di r ction t ha t such new research could take.

164

8.3.1 Wish as a DSL for Information Scoping

I believe that although the work presented in this thesis was conceived and evaluated within the context

of interest management within virtual environments, it has the potential to be useful in a variety of other

contexts. The Wish language is essentially a DSL for scoping information from a large set to a smaller set

based on combinations of statements that can reason about the following information where provided:

• explicit artefact metadata values,

• implicit artefact metadata values,

• membership of values (metadata or other) in given subsets.

It would therefore be interesting to research into the applications of Wish in other domains such as

emails, blog entries, music libraries, online photo sites, etc. Essentially any context where you might

wish to generate a subset of data from a larger, potentially overwhelming set. I mention the term

overwhelming purely because this an increasingly realistic proposition, particularly with increasingly

large sets of information available on the internet4 .

8.3.2 Separating Relationships from the Data

The Wish syntax has no way to reason about relationships between data. The method by which this is

achieved is through representing the relationships as either explicit or implicit metadata, which Wish

can treat as standard attribute values. It is therefore possible to represent the relationships between

artefacts in an external file - such as the relative artefacts files. This is true in the case study, where the

relationship between the referee and his/her aura is explicitly defined. It would be equally possible to

represent these relationships as methods in the objects that represent the artefacts. So, instead of having

two variables: ref and ref.aura, it would be possible to call the relationship from the referee object as

follows: ref. aura.

It would therefore be interesting to see how this separation deals with a variety of potentially com­

plex case studies, and how the structure of those relationships might be represented. It would also be

interesting to study the ability to have a variety of different relationship declarations for the same set of

artefacts, and consider contexts where altering relationship types could be useful.

It would also be interesting to determine the performance characteristics of different types of rela­

tionships, such as visibility, defined with a number of different algorithms. Section 6.2.2 identified that

certain algorithms could potentially represent a performance hit, particularly within hugely crowded

environments. A study could be made into the type of algorithms that induce such a performance hit,

and possible methods for increasing the efficiency of determining such relationships.

4For example, from soclal web applications such as f1ickr[123], last.fm[71] and del.icio.us[122]. . '
8Thia would be similar to how style is separated from content on the web today. This separation happens typIcally WIth

different files a htm\ file for the content, and a e55 file for the style.

165

8.3.3 Resource Costs

This Thesis has attempted to ignore the practicality of any potential resource costs caused by the

techniques introduced. This has been necessary in order to focus on the representations of interest

rather than the processes necessary to enact those representations. Clearly the process of enacting the

representations is important if the representations are to be used in real-world applications.

One of the main motivations for for designing Wish was the relative complexity of the SQL necessary

to represent simple interest statements. For more complex statements, whilst Wish has the ability to

abstract away from the complexity, it is still important to note that the relative complexity of the

corresponding SQL may lead to excessive SQL queries needing to be executed in order to interpret the

interest statement and generate the set of interesting artefacts.

It would therefore be very important to study the resource costs of employing these techniques to

determine the performance characteristics and effect on the scalability of complex systems, and their

ability to implement a variety of interest statements (such as those described in the case study) with

really large and crowded environments.

8.3.4 Rich Interest Conditions

Section 5.5.1 introduced the limitations of SQL in representing rich interest conditions such as visibility.

It be very interesting to attempt to implement some of these conditions and incorporate them into the

design of Wish. It also be interesting to examine the performance implications of such conditions on the

system as a whole.

8.3.5 Compiling Wish to Other Representations

Currently the Wish compiler converts Wish statements to SQL. It would be interesting to see what other

output formats would be useful for the Wish compiler. Consider the following cases:

Object Persistence Libraries Many object-oriented languages have object persistence libraries - es­

sentially storing sets of objects, or artefacts. Wish could be used to scope sets of such artefacts.

XPath Queries Increasingly large amounts of data are now stored in XML documents, or even XML

databases. It would be interesting to evaluate the usefulness of Wish to scope sets of XML artefacts.

Web APIs Given the increasing number of interfaces to web services offering huge sets of data, it would

be interesting to evaluate the ability for Wish to interact with such services. For example, a Wish

statement could be sent inside a simple HTTP packet to a REST web service, or nested within an

XML document within a SOAP envelope within an HTTP packet for a WS-* service
6

.

8Surely a web service should mimic the web, rather than abstract it away.

166

CouchDB CouchDb[63) is a document-oriented, non-relational database management server. It stores

sets of name-value pairs and associated metadata as documents. This design is clearly similar to the

approach taken by the implementation of this thesis. It would therefore be interesting to investigate

an implementation of Wish using this platform.

8.3.6 Interesting Events

This thesis has focussed on representations of expressions regarding sets of artefacts. In particular, the

set of interesting artefacts. However, given that one of the main motivations for interest management

is scalability, and that this motivation is tightly coupled with the number of messages that the system

needs to send, it would be interesting to look at interest statements that reason about events instead of

artefacts. It might also be possible to look at interest statements that are able to express an interest in

both events and artefacts. Consider the following hypothetical event-oriented wish statement:

#I'm interested in events that match the following

category = important

affects interesting_artefacts

In the above statement, both category and size are both message attributes. affects is a new keyword

which is similar to in, where it refers to messages that affect any of the artefacts in the set represented

by the standard subwish interesting_artefacts.

8.3.7 Prioritised Events

This thesis has focussed on representing sets - sets of interesting artefacts, sets of enforced artefacts,

sets of all world artefacts, etc. Sets themselves have no ordering, they are just bags of information. It

might be useful to not only extract a set of interesting artefacts, but add priorities and other metadata.

It might therefore be possible to create statements such as the following:

"I'm more interested in artefacts closer to me than artefacts further away"

167

Appendix A

Example Iteration

A.I Wish Auto-quoting Implementation

def auto_quote(term)

#define some useful regexp matchers:

backticks = fA' (.+)' $/

quotes = /". +' $/

numeric = fA[-+]7[0-9]*\.7 [0-9]+$/

true_or_false = fA(truelfalse)$/

tagged_expression = /<%=.*%>/

untagged_expression = fA[A.]\S*\.\S*[A.]$/

#add appropriate quotation tags if necessary:

case term

when backticks

#check to see if backticks need to be removed

return @remove backticks 7 (term.match backticks) [1] term

when quotes, numeric, true_or_false, tagged_expression

retu rn te rm

when untagged_ exp res sion

return "<'1= #{term}%>"

else

return" '#{term}'"

end

end

A.2
168

Auto-quoting Specification Output

wish pre·parser auto·quoting

should ignore a single digit

should ignore many digits

should ignore a negative digit

should ignore a decimal

should ignore a negative decimal

should ignore a quoted integer

should quote the word four

should quote a word ending in digits

should quote a word starting in digits

should ignore the boolean value true

should ignore the boolean value false

should quote the word truth

should put expression tags around a word containing a .

shoUld put expression tags around a word containing multiple.' s

should ignore something that looks like expression but is surrounded by quotes

should ignore explicit expression tags

should quote a word that ends with a period (but does not contain any)

shoUld quote a word that ends with a period (and even contains one)

shoUld quote a word that starts with a period (and even contains one)

should quote a word that starts and ends with a period (and even contains one)

should quote a word that starts and ends with a period (and does not contain any)

should put quote a word starting with a period

shoUld ignore a word that ends with a period, contains a space and is already quoted

should quote a line even with spaces

should ignore anything that is surrounded with backticks

should quote anything that includes one or more spaces

should not quote anything surrounded with backticks

should quote anything that ends with multiple periods

should quote anything that contains spaces, even if it contains a single period

should quote anything that contains spaces, even if it contains multiple periods too

should be able to ignore back·ticks, even when generated with an expression

should not quote an expression and other terms, however should auto-quote the result

169

- should not quote an expression and other terms, however should auto-quote the result

Finished in 1. 32495 seconds

34 examples, 9 failures

A.3 Example RSpec Specification: Auto-quoting

describe "wish auto-quoting" do

before(:each) do

@interest = Interests.new(false, false, false)

end

it "should ignore a single digit" do

wish = "attribute. 4"

post_parse = "(attribute = 4)"

@interest.parse_interests(wish, ""). should == post_parse

end

it "should ignore many digits" do

wish = "attribute = 12345678991234567899"

post_parse = "(attribute = 12345678991234567899)"

@interest.parse_interests(wish, ""). should == post_parse

end

it "should ignore a negative digit" do

wish. "attribute = -4"

post_parse. "(attribute = -4)"

@interest.parse_interests(wish, ""). should == post_parse

end

it "should ignore a decimal" do

wish. "attribute = 4.8"

post_parse. "(attribute = 4.9)"

170

.interest.parse_interests(wish, ·').should == post-parse

end

it 'should ignore a negative decimal" do

wiSh. 'attribute = -4.8"

post_parse", "(attribute = -4.8)"

.interest. parse_interests(wish, ""). should

end

it "should ignore a quoted integer" do

wish", "attribute = '4'"

post_parse = "(attribute = '4')"

@interest.parse_interests(wish, ""). should

end

it "should quote the word four" do

wish = "attribute. four"

post_parse '" "(att ribute • 'four')"

@interest. pa rse_inte rests (wish, ""). should

end

it "should quote a word ending in digits" do

wish = "attribute = cock-verla"

post_parse = "(attribute = 'cock-verla')"

@interest.parse_interests(wish, ""). should

end

it "should quote a word starting in digits" do

wish. "attribute = 1st"

post_parse· "(attribute = '1st')"

@interest.parse_interests(wish, ""). should

end

it 'should ignore the boolean value true" do

wish· "attribute. true"

post-parse

171

post-parse '" • (attribute = true)'

,interest.parse_interests(wish, ··).should == post-parse

end

it 'should ignore the boolean value false' do

wish • "attribute. false"

post-parse '" "(attribute = false)"

'interest. parse_interests(wish, ""). should == post_parse

end

it "should quote the word truth" do

wish. "attribute = truth"

post_parse. "(attribute = 'truth')"

,interest. pa rse_interests (wish,). should

end

it "should put expression tags around a word containing a ... do

wiSh. "attribute'" le.next"

post_parse = .. (attribute = 11)"

,interest. parse_interests (wish,). should == post_parse

end

it "should put expression tags around a word containing multiple. 's .. do

wish. "attribute = lEl.next.next"

post_parse ... (attribute = 12)"

,interest. parse_interests (wish,). should

end

it "should ignore something that looks like expression but is surrounded by quotes' do

wish· "attribute = 'x.value.sub_value'"

post_parse'" "(attribute = 'x.value.sub_value')"

@interest.parse_interests(wish, ''''). should == post_parse

end

it "should ignore expUcit expression tags" do

172

wish .. "attribute" <'\po 1e.next ..,."

post_parse" "(attribute ~ 11)"

linterest.parse_interests(wish, ··).should =~ post-parse

end

1t ·should quote a word that ends with a period (but does not contain any)· do

wish .. "att ribute = end.·

post_parse .. "(attribute = 'end. ')"

@interest.parse_interests(wish, "").should == post-parse

end

it "should quote a word that ends with a period (and even contains one)· do

wish. "attribute = why.end."

post_parse = "(attribute" 'why.end. ')"

@interest.parse_interests(wish, ""). should

end

it "should quote a word that starts with a period (and even contains one)" do

wish = "attribute ... why.end"

post_parse. "(attribute = '.why.end')"

@interest.parse_interests(wish, ""). should

end

it "should quote a word that starts and ends with a period (and even contains one)· do

wish .. "attribute = .why.end."

post_parse .. "(attribute .. '.why.end.')"

@interest.parse_interests(wish, UU). should

end

it "should quote a word that starts and ends with a period (and does not contain any)· do

wish. "attribute •. why."

post_parse .. "(attribute = '.why.')"

'interest. parse_interests(wish, U.). should

end

173

it "should put ignore a decimal with no preceding digit" do

wish • "attribute = .5"

postJ)arse" "(attribute" .5)"

@interest.parse_interests(wish, ""). should == postJ)arse

end

it "should put quote a word starting with a period" do

wish. "attribute = • rb"

post_parse = "(attribute = '.rb')"

@interest.parse_interests(wish, "").shou\d = post_parse

end

it "should ignore a word that ends with a period, contains a space and is already quoted" do

wish. "attribute = 'The End.'"

post_parse = "(attribute" 'The End.')"

@interest.parse_interests(wish, ""). should

end

it "shou\d quote a Une even with spaces" do

wish. "attribute .. The End."

post_parse .. "(att ribute = 'The End.')"

@interest.parse_interests(wish, ""). should

end

it 'should ignore anything that is surrounded with backticks' do

wish. "attribute = 'sqrt(81)'"

post_parse" "(attribute = sqrt(81))"

@interest.parse_interests(wish, ""). should

end

it 'should quote anything that includes one or more spaces' do

wish. "attribute. 2 + 4"

post_parse = "(attribute .. '2 + 4')"

@interest.parse_interests(wish, "'). should

end

174

it 'should not quote anything surrounded with backticks' do

wish = "attribute = '2 + 4"

postJlarse - • (attribute = 2 + 4)'

@interest.parse_interests(wish, "'). should == postJlarse

end

it 'should quote anything that ends with multiple periods' do

wish = "attribute = .one.more.thing

post_parse a "(attribute = '.one.more.thing ') ..

@interest.parse_interests(wish,). should == post_parse

end

it 'should quote anything that contains spaces, even if it contains a singte period' do

wish. "attribute = Getting. Tired"

post_parse = .. (attribute = 'Getting. Tired')"

@interest.parse_interests(wish,). should aa post_parse

end

it 'should quote anything that contains spaces, even if it contains multiple periods too' do

wish. "attribute a Getting. Very. Tired"

post_parse = "(attribute = 'Getting. Very. Tired')"

@interest.parse_interests(wish, ""). should == post_parse

end

it 'should be able to ignore back-ticks, even when generated with an expression' do

wish· "attribute = <,.. "2 + 4' ''\5>''

post_parse = "(attribute. 2 + 4)"

@interest,parse_interests(wish, ''''). should

end

it 'should not quote an expression and other terms, however should auto-quote the result' do

wish. "attribute - <Ip '2 + 4''\5> + 5"

post_parse. "(attribute = '2 + 4 + 5')"

@interest.parse_interests(wish, "'). should

175

end

it 'should not quote an expression and other terms, however should auto-quote the result' do

wish. "attribute = <fop '2''11>5·

postjlarse • "(attribute = 251"

@interest.parse_interests(wish, ·"l.should

end

end

postjlarse

176

Appendix B

Case Study Data

B.1 Foot ball Pitch

Table B.l: Football Pitch Artefacts

Id .hape width height length x y z radlu. colour v category t name

5 box 50 0.05 50 25 25 a NULL green a pitch a home half
6 box 50 0.05 50 25 75 a NULL green a pitch 0 away half

7 box 50 0.05 0.5 25 50 0.1 NULL white 0 pitch 0 centre line

8 cylinder NULL 0.05 NULL 25 50 0.05 7 white a pitch 0 centre circle oULar

9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green a pitch 0 centre circle

10 box 30 0.05 15 25 7.5 0.15 NULL white a pitch 0 home goal outer

n box 29 0.05 14 25 7 0.2 NULL green a pitch a home goal

12 box 30 0.05 15 25 92.5 0.15 NULL white a pitch a away goal outer

13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 away goal

14 cylinder NULL 0.05 NULL 25 10 0.05 10 white 0 pitch 0 borne penalty circle outer

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch a borne penalty circle

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white a pitch 0 borne penalty opot

17 cylinder NULL 0.05 NULL 25 90 0.05 10 white a pitch a away penalty circle outer

18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green a pitch 0 away penalty circle

19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty opot

20 box 0.5 0.05 100 -0.25 50 0.1 NULL white 0 pitch 0 near touch line

21 box 0.5 0.05 100 50.25 50 0.1 NULL white 0 pitch 0 far toucb line

22 box 51 0.05 0.5 25 -0.25 0.1 NULL white 0 pitch 0 home touch line

23 box 51 0.05 0.5 25 100.25 0.1 NULL white 0 pitch 0 away touch line

24 box 5 0.05 100 -2.5 50 0 NULL green 0 pitch 0 near touch area

25 box 5 0.05 100 52.5 50 0 NULL green a pitch a far touch area

26 box 60 0.05 5 25 -2.5 a NULL green a pitch a bome touch arca

27 box 60 0.05 5 25 102.5 a NULL green 0 pitch 0 away touch area

28 box 0.5 5 0.5 20 a a NULL white 0 pitch 0 bome near goal poet

29 box 0.5 5 0.5 30 0 0 NULL white 0 pitch 0 borne far goal poIt

30 box 10.5 0.5 0.5 25 0 5 NULL white 0 pitch 0 borne goal croesbar

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal croesbar

32 box 0.5 5 0.5 20 100 a NULL white 0 pitch 0 away near goal poIt

33 box O.S 5 0.5 30 100 0 NULL white 0 pitch 0 away far goal poet

(z = z coord, 1/ = 1/ coord, ~ = • coord, " = virtual, t = trIlnsparenCl/)

177

B.2 Players

B.2.1 Red Team

Table B.2: All Red Players

Id shape width height length x y z radius colour v category t name
34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 sam
36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob
38 cone NULL 3 NULL 10 8 0 1 red 0 player 0 john
40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim
42 cone NULL 3 NULL 40 70 0 1 red 0 player 0 geoffrey
44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 bernard
46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy
48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie
50 CODe NULL 3 NULL 20 60 0 1 red 0 player 0 rupert
52 cone NULL 3 NULL 5 20 0 1 red 0 player 0 oven

(a; = a; coord, 11 = 11 coord, z = z coord, v = v.rtual, t = tramparenclI)

B.2.2 Blue Team

Table B.3: All Blue Players

Id .hape width height length x y II radluo colour v category t name

56 cone NULL 3 NULL 30 60 0 1 blue 0 player 0 klu-I

58 cone NULL 3 NULL 35 45 0 1 blue 0 player 0 bendrlk

60 cone NULL 3 NULL 15 13 0 1 blue 0 player 0 david

62 cone NULL 3 NULL 45 85 0 1 blue 0 player 0 ban

64 cone NULL 3 NULL 35 14 0 1 blue 0 player 0 jean

66 cone NULL 3 NULL 45 55 0 1 blue 0 player 0 bom

68 cone NULL 3 NULL 35 95 0 1 blue 0 player 0 bilbo

70 cone NULL 3 NULL 45 65 0 1 blue 0 player 0 oavao

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris

(z = x coom, 11 = Y coord, z = % coord, v = vlrtuaZ, t = transparency)

B.2.3 Goalkeepers

Table B.4: Goalkeepers

Id .hape width height length x y .. radius colour v category t name

54 cone NULL 3 NULL 26 0 0 1 yellow 0 goalie 0 tim

74 cone NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos

(a; = ., coord, 1/ = 11 coord, Z = • coord, v = tJlrtual, t = tra parency)

178

B.2.4 Referee

Table B.5: The Referee

B.3 Football

Table B.6: The Football

B.4 Locales

Table B.7: Locales

B.5 Auras

B.6 All Artefacts

179

Table B.B: Auras

Id .hape width height length x y z radiua colour v category t name

35 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 sam
37 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 bob
39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john
41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim

43 cylinder NULL 0.5 NULL 40 70 0 5 red 1 aura 0.5 geoffrey

45 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert

53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 .ven

55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim

57 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aura 0.5 karl

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 hendrik

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aura 0.5 david

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 han

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aura 0.5 jean

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boris

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo

71 cylinder NULL 0.5 NULL 45 65 0 5 red 1 aura 0.5 &3V8B

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carloa

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref

(x = :c coord, y = y coord, Z = z coord, v = virtual, t = transparency)

180

Table B.9: All Artefacts

Id .hape width height length x y z radius colour v category t name
5 box 50 0.05 50 25 25 0 NULL green 0 pitch 0 home halC
6 box 50 0.05 50 25 75 0 NULL green 0 pitch 0 away halC
7 box 50 0.05 0.5 25 50 0.1 NULL white 0 pitch 0 centre line
8 cylinder NULL 0.05 NULL 25 50 0.05 7 white 0 pitch 0 centre circle outer
9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green 0 pitch 0 centre circle
JO box 30 0.05 15 25 7.5 0.15 NULL white 0 pitch 0 home goal outer
II box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home goal
12 box 30 0.05 15 25 92.5 0.15 NULL white 0 pitch 0 away goal outer
13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 away goal
14 cylinder NULL 0.05 NULL 25 JO 0.05 10 white 0 pitch 0 home penalty circle outer
15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle
16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitch 0 home penalty epot
17 cylinder NULL 0.05 NULL 25 90 0.05 JO white 0 pitch 0 away penalty circle outer
18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green 0 pitch 0 away penalty circle
19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty epot

20 box 0.5 0.05 100 -0.25 50 0.1 NULL white 0 pitch 0 Dear touch IiDe

21 box 0.5 0.05 100 50.25 50 0.1 NULL white 0 pitch 0 Car touch IiDe

22 box 51 0.05 0.5 25 -0.25 0.1 NULL white 0 pitch 0 home touch line

23 box 51 0.05 0.5 25 100.25 0.1 NULL white 0 pitch 0 away touch line

24 box 5 0.05 100 -2.5 50 0 NULL green 0 pitch 0 near touch area

25 box 5 0.05 100 52.5 50 0 NULL grccn 0 pitch 0 Car touch area

26 box 60 0.05 5 25 -2.5 0 NULL green 0 pitch 0 home touch area

27 box 60 0.05 5 25 102.5 0 NULL groon 0 pitch 0 away touch area

28 box 0.5 5 0.5 20 0 0 NULL white 0 pitch 0 home near goal poet

29 box 0.5 5 0.5 30 0 0 NULL white 0 pitch 0 home Car goal poet

30 box 10.5 0.5 0.5 25 0 5 NULL white 0 pitch 0 home goal crOllbar

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal croubar

32 box 0.5 5 0.5 20 100 0 NULL white 0 pitch 0 away near goal poet

33 box 0.5 5 0.5 30 100 0 NULL white 0 pitch 0 away Car goal poet

34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 sam

35 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 sam

36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob

37 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 boh

38 CODe NULL 3 NULL 10 8 0 1 red 0 player 0 john

39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim

42 CODe NULL 3 NULL 40 70 0 1 red 0 player 0 geoffrey

43 cylinder NULL 0.5 NULL 40 70 0 5 red 1 aura 0.5 geoffrey

44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 bernard

45 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy

48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert

Continued in Tabl. B.I0

181

Table B.1O: All Artefacts (Continued from Table B.9)

Id .hape width height length x y z radius colour v category t name
51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert
52 cone NULL 3 NULL 5 20 0 1 red 0 player 0 &Ven
53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 even
54 cone NULL 3 NULL 26 0 0 1 yellow 0 goalie 0 tim
55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim
56 cone NULL 3 NULL 30 60 0 1 blue 0 player 0 karl

57 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aura 0.5 karl

58 cone NULL 3 NULL 35 45 0 1 blue 0 player 0 hendrik

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 hendrik

60 cone NULL 3 NULL 15 13 0 I blue 0 player 0 david

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aUfa 0.5 david

62 cone NULL 3 NULL 45 85 0 1 blue 0 player 0 ban

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 han

64 cone NULL 3 NULL 35 14 0 1 blue 0 player 0 jean

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aura 0.5 jean

66 cone NULL 3 NULL 45 55 0 1 blue 0 player 0 boria

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boria

68 cone NULL 3 NULL 35 95 0 1 blue 0 player 0 bilbo

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo

70 cone NULL 3 NULL 45 65 0 1 blue 0 player 0 savas

71 cylinder NULL 0.5 NULL 45 65 0 5 red 1 aura 0.5 aavaa

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chria

74 cone NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlos

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 player 0 ref

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref

78 sphere NULL NULL NULL 15 7 2 0.5 white 0 ball 0 ball

79 box 25 0.05 100 12.5 50 1 NULL brown 1 locale 0.5 near half

(:£ = :t coord, JI = II coord, .z: = z coord, tI = virtual, t = transparency)

182

Appendix C

Case Study Example Statements

C.l Relative Artefacts

All the example statements in this chapter use have access to the subwishes defined in Appendix D, and

use the following relative_artefacts. rb file:

C.2 Categories

C.2.1 English Prose

I am interested in all artefacts that are red

C.2.2 Wish

co lou red red

C.2.3 SQL

select· from artefacts where ((colour = 'red'))

C.2.4 Matching Artefacts

See Table c.l.

C.3 Locales

C.3.1 English Prose

I am interested in all artefacts within the near half of the pitch

183

Table C.l: Red Artefacts

Id shape width height length x y z radius colour v category t Dame
34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 sam
36 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 sam
36 cone NULL 3 NULL 50 38 0 1 red a player 0 bob
31 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 bob

38 cone NULL 3 NULL 10 8 0 I red 0 player 0 jobn

39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim

42 cone NULL 3 NULL 40 10 0 1 red 0 player a geoffrey

43 cylinder NULL 0.5 NULL 40 10 0 5 red 1 aura 0.5 geoffrey

44 cone NULL 3 NULL 40 90 0 1 red a player 0 bernard

45 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy

41 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy

48 cone NULL 3 NULL 40 43 0 1 red 0 player a charlie

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert

52 cone NULL 3 NULL 5 20 a 1 red a player a sven

53 cylinder NULL 0.5 NULL 5 20 a 5 red 1 aura 0.5 oven

55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim

51 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aura 0.5 karl

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 bendrik

61 cylinder NULL 0.5 NULL 15 13 a 5 red 1 aura 0.5 david

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 ban

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aura 0.5 jean

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boris

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo

11 cylinder NULL 0.5 NULL 45 65 0 5 red 1 aura 0.5 savas

13 cylinder NULL 0.5 NULL 25 15 a 5 red 1 aura 0.5 cbria

15 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlos

17 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref

(:z: = :z; coord, II = 11 coord, z = % coord, tI = vIrtual, t = transparency)

184

C.3.2 Wish

C.3.3 SQL

select • from artefacts where «x_coord >= 9.9 and (x_coord <= 25.9 and (y_coord >= 8.9

and (y-coord <= 199.9 and (td != 79))))))

C.3.4 Matching Artefacts

See Table C.2.

Table C.2: Artefacts on the Near Side of the Football Pitch

Id .hape width height length x y z radius colour v category t name
5 box 50 0.05 50 25 25 a NULL green 0 pitch a home balf
6 box 50 0.05 50 25 75 a NULL green 0 pitch 0 away half
7 box 50 0.05 0.5 25 50 0.1 NULL white 0 pitch 0 centre line
8 cylinder NULL 0.05 NULL 25 50 0.05 7 white 0 pitch 0 centre circle outer
9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green 0 pitch 0 centre circle

10 box 30 0.05 15 25 7.5 0.15 NULL white 0 pitch 0 home goal outer

11 box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home goal

12 box 30 0.05 15 25 92.5 0.15 NULL white 0 pitch 0 away goal outer

13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 away goal

14 cylinder NULL 0.05 NULL 25 10 0.05 10 white 0 pitch 0 home penalty circle outer

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitch 0 home penalty opot

17 cylinder NULL 0.05 NULL 25 90 0.05 10 white 0 pitch 0 away penalty circle outer

18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green 0 pitch 0 away penalty circle

19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty opot

28 box 0.5 5 0.5 20 0 0 NULL white 0 pitch 0 home near goal poot

30 box 10.5 0.5 0.5 25 0 5 NULL white 0 pitch 0 home goal crooahar

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal crooobar

32 box 0.5 5 0.5 20 100 0 NULL white 0 pitch 0 away near goal poet

38 CODe NULL 3 NULL 10 8 0 1 red 0 player 0 john

39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert

5~ cone NULL 3 NULL 5 20 0 1 red 0 player 0 oven

53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 oven

60 CODe NULL 3 NULL 15 13 0 1 blue 0 player 0 david

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aura 0.5 david

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris

74 cone NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlos

78 ophere NULL NULL NULL 15 7 2 0.5 white 0 ball 0 ball

(z = % coord, V = 11 coord, % = .I coord, 'II = Virtual, t = transparency)

185

C.4 Relative Locales

C.4.1 English Prose

I am interested in all artefacts within the referee's aura

C.4.2 Wish

C.4.3 SQL

select • from artefacts where ((5.8> sqrt(pow((x_coord - 27.91. 2) +

pow((y_coord - 13.8), 2»»

C.4.4 Matching Artefacts

See Table C.3.

Table C.3: Football Pitch Artefacts

Id .hape width height length x y z radius colour v category t name

14 cylinder NULL 0.05 NULL 25 10 0.05 10 white 0 pitch 0 home penalty circle outer

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 borne penally circle

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitcb 0 home penalty spot

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 player 0 ref

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref

(x = oX coord, II = 71 coord, z = z coom, v = virtual, t = transparency)

C.5 Interacting Locales

C.S.1 English Prose

I am interested in all artefacts whose aura overlaps the referee'S aura

C.S.2 Wish

186

C.5.3 SQL

select· from artefacts where «virtual = false and (category = 'player' and (na~ in

(select name from artefacts where «(5.9 + radius> sqrt(pow«x_coord - 27.91. 2) +

pow«y_coord - 13.9), 2))) and (category = 'aura'))))))))

C.5.4 Matching Artefacts

See Table C.4.

Table C.4: Artefacts Matching the Interacting Locales Example

Id .hape width height length x y z radius colour v category t name

40 cone NULL 3 NULL 30 12 0 1 red 0 plll)'er 0 jim

64 cone NULL 3 NULL 35 14 0 1 blue 0 p1ll)'er 0 jean

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chri.

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 p1ll)'er 0 ref

(x = x coord, 11 = 11 coord, .z = z coord, 11 = virtual, t = tra.mparencll)

C.6 Combinations

C.6.1 English Prose

I am interested in all non-virtual artefacts that are red players, whose aura overlaps the

referee's aura and that are within the home penalty circle

C.6.2 Wish

not virtual

co lou red red

categorised_as player

C.6.3 SQL

select. from artefacts where (virtual = false and «colour = 'red') and (category = 'player' and

«virtual z false and (category = 'player' and (name in (select name from artefacts where

«(5.9 + radius> sqrt(pow«x_coord - 27.9), 2) + pow«Lcoord - 13.91. 211) and (category = 'aura'IIIIII)

and «9.5> sqrt(pow«x_coord - 25.9), 2) + pow«y_coord - 19.91. 211111111

C.6.4 Matching Artefacts

See Table C.5.

187

Table C.5: Artefacts Matching the Combinations Example

(z = X coord, 11 = 11 coord, z = z coord, tJ = virtual, t = tra716parencll)

Appendix D

Sub Wishes

D.l In Awareness Range Of

#in_awareness_range_of.wish

virtual = false

name in auras_in_awareness_range_of IAI

188

D.2 Auras In awareness Range Of

D.3

D.4

D.5

overlaps IAI

category = aura

Overlaps

#overlaps.wish

<'Is=IAI.radius'P + radius> 'sqrt(pow((x_coord . <'Is= IAI.x_coord'Pl. 2) + POW((Lcoord· <'1= IAI.Lcoord'Pl. 2))'

Coloured

#coloured.wish

colour = IAI

Named

#named.wish

name = IAI

189

D.6 Is

D.7

D.8

D.9

#is. wish

id = <'0= IAI.id '0>

Within Circle

#Within_circle.wish

<'o=IAI·radius'o> > 'sqrt(pow((x_coord - <'0= IAI.x_coord'o>l. 2) + pow((y_coord - <'0= IAI.Lcoord'o». 2»'

Within Box

#Within_box. wish

x_coord >= <'0= IAI.x_coord - (IAI.width / 2)'0>

x_coord <= <'0= IAI .x_coord + (IAI .width / 2)'0>

Lcoord >= <'0= IAI.y_coord - (IAI.length / 2)'0>

Lcoord <= <'0= IAI.y_coord + (IAI.length / 2)'0>

id != <'0= IAI.id'o>

Within Cube

#Within_cube .wish

x_coord >= <'0= IAI.x_coord . (IAI.height / 2)'0>

x_coord <= <'0= IAI ,x_coord + (IAI.height / 2)'0>

y_coord >= <'0= IAI.y_coord - (IAI.height / 2)'0>

y_coord <= <'0= IAI.y_coord + (IAI.height / 2)'0>

id != <%= IAI.id'o>

D.lO Near To

#near_to.wish

x_coord >= <'0= IAI,x_coord - 20 '0>

x_coord <= <'0= IAI . x_coord + 20 '0>

y_coord >= <'0= IAI.y_coord - 20 '0>

y_coord <= <'0= IAI ,y_coord + 29 '0>

id != <'0= IAI·id'o>

D.II Virtual

#Virtual.wish

virtual = true

D.12 Categorised As

#categorised_as.wish

category = IAI

190

191

Bibliography

[1] MySQL AB. Mysql. http://www.mysql.com/. August 2007.

[2] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs - 2nd

Edition (MIT Electrical Engineering and Computer Science). The MIT Press, September 1996.

[3] Raffaele De Amicis, Giuseppe Conti, and Michele Fiorentino. Tangible interfaces in virtual envi­

ronments for industrial design. In AVI '04: Proceedings of the working conference on Advanced

visual interfaces, pages 261-264, New York, NY, USA, 2004. ACM Press.

[4] Miguel Antunes, Antonio Rito Silva, and Jorge Martins. An abstraction for awareness management

in collaborative virtual environments. In VRST '01: Proceedings of the A CM symposium on Virtual

reality software and technology, pages 33-39, New York, NY, USA, 2001. ACM Press.

[5] R.B. Araujo, A. Boukerche, and N.J. McGraw. A grid-filtered region-based approach to support

synchronization in large-scale distributed interactive virtual environments. Parallel Processing,

2005. ICPP 2005 Workshops. International Conference Workshops on, 2005.

[6] Ken Arnold. Style is substance. In Joel Spolsky, editor, The Best Software Writing, volume I.

Apress, 2005.

[7] Dave Astels, Steven Baker, David Chelimsky, Aslak Helles0Y, and Brian Takita. Rspec.

http://rspec.rubyforge.org/, August 2007.

[8] Robert Bartlett. A categorisation model for distributed virtual environments. IPDPS'04: Parallel

and Distributed Processing Symposium, 2004. Proceedings. 18th International, pages 231-, April

2004.

[9] Mostafa A. Bassiouni, Ming-Hsing Chiu, Margaret Loper, Michael Garnsey, and Jim Williams.

Performance and reliability analysis of relevance filtering for scalable distributed interactive simu­

lation. ACM 1hlns. Model. Comput. Simul., 7(3):293-331, 1997.

[10] Kent Beck. Simple smalltalk testing: With patterns. Technical report, First Class Software, Inc.,

1994.

192

[11) Kent Beck. Test-Driven Development By Example. The Addison-Wesley Signature Series. Addison­

Wesley, 2003.

[12) Steve Benford and Lennart Fahlen. A spatial model of interaction in large virtual environments. In

ECSCW'99: Proceedings of the third conference on European Conference on Computer-Supported

Cooperative Work, pages 109-124, Norwell, MA, USA, 1993. Kluwer Academic Publishers.

[13) Steve Benford, Chris Greenhalgh, and David Lloyd. Crowded collaborative virtual environments.

In CHI '97: Proceedings of the SIGCHI conference on Human factors in computing systems, pages

59-66, New York, NY, USA, 1997. ACM Press.

[14) Hrvoje Benko, Edward W. Ishak, and Steven Feiner. Collaborative mixed reality visualization of

an archaeological excavation. ismar, 00:132-140, 2004.

[15) Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: a distributed architecture for

online multiplayer games. In NSDI'06: Proceedings of the 9rd conference on 9rd Symposium on

Networked Systems Design & Implementation, pages 12-12, Berkeley, CA, USA, 2006. USENIX

Association.

[16) Gary Bishop and Henry Fuchs. Research directions in virtual environments - report of an NSF

invitational workshop, March 23-24, 1992. Computer Graphics, 26(3):153-177, 1992.

[17J A. Boukerche, N. J. McGraw, and R. B. Araujo. A novel data distribution management scheme to

support synchronization in large-scale distributed virtual environments. In Virtual Environments,

Human-Computer Interfaces and Measurement Systems, 2005. VECIMS 2005. Proceedings of the

2005 IEEE International Conference on, pages 6 pp.-, 2005.

[18J W. Broil. Interacting in distributed collaborative virtual environments. In VRAIS'95 - Virtual

Reality Annual International Symposium, pages 148-155, 1995.

[19J Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary

Edition. Addison-Wesley Professional, 1995.

[20] R. Brunton, P. McAndrews, K.L. Morse, J. Muguira, J.M. Pullen, and A. Tolk. An architec­

ture for web-services based interest management in real ... Distributed Simulation and Real- Time

Applications, 2004. DS-RT 2004- Eighth IEEE International Symposium on, 2004.

[21J J. Calvin, D. Cebula, C. Chiang, S. Rak, and D. Van Hook. Data subscription in support of

multicast group allocation. In 19th Workshop on Standards for the Interoperability of Distributed

Simulations, pages 367-369, September 1995.

193

[22] J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, and D. Owen. The SlMNET virtual world

architecture. Virtual Reality Annual International Symposium, 1993., 1993 IEEE, pages 450-455,

1993.

[23] Toga K. Capin and Daniel Thalmann. A taxonomy of networked virtual environments. In

IWSNHC3DI'99: International Workshop on Synthetic - Natural Hybrid Codino and Three Di­

mensional Imaging, 1999.

[24] Jin Chen, Baohua Wu, Margaret Delap, Bjorn Knutsson, Honghui Lu, and Cristiana Amza. Locality

aware dynamic load management for massively multiplayer games. In PPoPP '05: Proceedings 0/

the tenth ACM SIGPLAN symposium on Principles and pmctice 0/ parallel programming, pages

289-300, New York, NY, USA, 2005. ACM Press.

[25] E.F. Churchill and D. Snowdon. Collaborative virtual environments: An introductory review of

issues and systems. Virtual Reality, 3(1):3-15, 1998.

[26] Elizabeth F. Churchill and Sara Bly. Virtual environments at work: ongoing use of muds in the

workplace. SIGSOFT Softw. Eng. Notes, 24(2):99-108, 1999.

[27] The Ruby Community. The ruby programming language. http://ruby-lang.org, August 2007.

[28] Monte Cook. D&D Special Edition Dungeon Master's Guide (Dungeon & Drogons Roleplaying

Game: Adventures). Wizards of the Coast, 2005.

[29] Pavel Curtis. Mudding: Social phenomena in text-based virtual realities. In Proceedings 0/ the

1992 Conference on the Directions and Implications 0/ Advanced Computing, Berkeley, CA, 1992.

[30] Dan North Dave Astels. Behaviour-driven development. http://behaviour-driven.org/ , August

2007.

[31] Jauvane Cavalcante de Oliveira. Issues in Large Scale Collabomtive Virtual Environments. PhD

thesis, Ottowa-Carleton Institute of Electrical and Computer Engineering, 2001.

[32] N.D. de Oliveira, J.C. Georganas. Velvet: an adaptive hybrid architecture for very large virtual

environments. Communications, 2002. ICC 2002. IEEE International Conference on, 4:2491- 2495,

2002.

[33] Dawei Ding and Miaoling Zhu. A model of dynamic interest management: interaction analysis in

collaborative virtual environment. In VRST '09: Proceedings 0/ the ACM symposium on Virtual

reality software and technology, pages 223-230, New York, NY, USA, 2003. ACM Press.

194

[34] Ta Nguyen Binh Duong and Suiping Zhou. A dynamic load sharing algorithm for massively

multiplayer online games. In Networks, 2003. ICON2003. The 11th IEEE International Conference

on, pages 131-136, 2003.

[35] Hugh Fisher. Multicast issues for collaborative virtual environments. IEEE Computer Graphics

and Applications, 22(5):68-75, 2002.

[36] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Professional,

2002.

[37] Martin Fowler. Domain specific languages. http://www.martinfowler.com/bliki/DomainSpecificLanguage.html.

August 2007.

[38] Patrik Fuhrer, Ghita Kouadri Moste£aoui, and Jacques Pasquier-Rocha. Madviworld: a software

framework for massively distributed virtual worlds. Software Practice and Experience, 32(7):645-

668, May 2002.

[39] T.A. Funkhouser. RING: a client-server system for multi-user virtual environments. Proceedings

oj the 1995 symposium on Interactive 3D graphics, 1995.

[40] Athanasios Gaitatzes, Dimitrios Christopoulos, and Maria Roussou. Reviving the past: cultural

heritage meets virtual reality. In VAST '01: Proceedings oj the 2001 conference on Virtual reality,

archeology, and cultural heritage, pages 103-110, New York, NY, USA, 2001. ACM Press.

[41] J. J. Gibson. The theory of affordances. In R. Shaw & J. Bransford, editor, Perceiving, acting and

knowing. Erlbaum, 1977.

[42] Paul Graham. Programming bottom-up. http://www.paulgraham.com/progbot.html. August

2007.

[43] C. Greenhalgh and S. Benford. Boundaries, Awareness and Interaction in Collaborative Virtual

Environments. Proceedings of the Sixth IEEE Workshop on Enabling Technologies: Infrastructure

for Collaborative Enterprises (WETICE). IEEE Computer Society Cambridge, MA, pages 193-198,

1997.

[44] Chris Greenhalgh. Large Scale Collaborative Virtual Environments. PhD thesis, University of

Nottingham, 1997.

[45] Chris Greenhalgh, Steve Benford, and Mike Craven. Patterns of network and user activity in an

inhabited television event. In VRST '99: Proceedings of the ACM symposium on Virtual reality

software and technology, pages 34-41, New York, NY, USA, 1999. ACM Press.

195

(46) Chris Greenhalgh and Steven Benford. Massive: a collaborative virtual environment for telecon­

ferencing. ACM 7rans. Comput.-Hum. Interact., 2(3):239-261, 1995.

(47) Irene Greif, editor. Computer-supported cooperative work: a book of readings. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1988.

(48) Seunghyun Han, Mingyu Lim, and Dongman Lee. Scalable interest management using interest

group based filtering for large networked virtual environments. In VRST '00: Proceedings of the

ACM symposium on Virtual reality software and technology, pages 103-108, New York, NY, USA,

2000. ACM Press.

(49) David Heinemeier Hansson. Active record. http://wiki.rubyonraiIs.org/raiIs/pages/ ActiveRecord,

August 2007.

[50) David Heinemeier Hansson. Active support. http://rubyforge.org/projects/activesupport/, August

2007.

[51) Larry F. Hodges, Benjamin Watson, G. Drew Kessler, Dan Opdyke, and Barbara O. Rothbaum.

A virtual airplane for fear of flying therapy. vrais, 00:86, 1996.

[52) Mojtaba Hosseini, Steve Pettifer, and Nicolas D. Georganas. Visibility-based interest management

in collaborative virtual environments. In CVE '02: Proceedings of the 4th international conference

on Collaborative virtual environments, pages 143-144, New York, NY, USA, 2002. ACM Press.

[53] id Software. Doorn. http://www.idsoftware.com/games/doom/doom-ultimate/. August 2007.

[54] id Software. Quake. http://www.idsoftware.com/games/quake/quake/. August 2007.

[55] id Software. Return to castle wolfenstein. http://www.idsoftware.com/games/wolfenstein/rtcw/.

August 2007.

[56] Takuji limura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned federation of game servers: a

peer-to-peer approach to scalable multi-player online games. In NetGames '04: Proceedings of 3Td

ACM SIGCOMM workshop on Network and system support for games, pages 116-120, New York,

NY, USA, 2004. ACM Press.

[57] Blizzard Entertainment Inc. World of warcraft. http://www.worldofwarcraft.com/. August 2007.

[58] Linden Research Inc. Second life. http://secondlife.com/, August 2007.

[59] Brian Ingerson, Clark Evans, and Oren Ben-Kiki. Yaml. http://www.yarnl.org/, August 2007.

[60] Geoffrey James. The Tao of Programming. Infobooks, 1986.

196

(61) Edmund Weiner John Simpson, editor. Oxford English Dictionary, volume twenty volumes. Claren­

don Press, second edition edition, 1989.

(62) Levine J.R., Tony Mason, and Doug Brown. Lex and Yacc. O'Reilly, 1992.

(63) Damien Katz. Couchdb. http://couchdb.org/, Augues 2007.

(64) Brian W. Kernighan and Rob Pike. The UNIX Programming Environment.. Prentice Hall Profes­

sional Technical Reference, 1983.

(65) Valerie D. Lehner and Thomas A. DeFanti. Distributed virtual reality: Supporting remote colla~

oration in vehicle design. IEEE Computer Graphics and Applications, 17(2):13-17, 1997.

[66J Emmanuel Lety and Thierry Turletti. Issues in designing a communication architecture for large­

scale virtual environments. In Networked Group Communication, pages 54-71, 1999.

[67J Emmanuel Lety, Thierry Turletti, and Franc;ois Baccelli. Score: a scalable communication protocol

for large-scale virtual environments. In Networking, IEEE/ACM 7ransactions on, volume 12, pages

247-260, 2004.

(68) Qingping Lin, Hoon Kang Neo, Liang Zhang, Guangbin Huang, and Robert Gay. Grid-based

large-scale web3d collaborative virtual environment. In Web3D '07: Proceedings of the twelfth

international conference on 3D web technology, pages 123-132, New York, NY, USA, 2007. ACM

Press.

[69J Elvis S. Liu, Milo K. Yip, and Gino Yu. Scalable interest management for multidimensional routing

space. In VRST '05: Proceedings of the A CM symposium on Virtual reality software and technology,

pages 82-85, New York, NY, USA, 2005. ACM Press.

[70] R. Bowen Loftin and Patrick J. Kenney. Training the hubble space telescope flight team. IEEE

Comput. Graph. Appl., 15(5):31-37, 1995.

[71J Last.fm Ltd. Last.fm. http://last.fm, August 2007.

[72] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz. NPSNET: A network

software architecture for large-scale virtual environment. Presence, 3(4):265-287, 1994.

[73] Michael R. Macedonia, Donald P. Brutzman, Michael J. Zyda, David R. Pratt, Paul T. Barham,

John Falby, and John Locke. Npsnet: a multi-player 3d virtual environment over the internet. In

SI3D '95: Proceedings of the 1995 symposium on Interactive 3D graphics, pages 93-ff., New York,

NY, USA, 1995. ACM Press.

[74] Michael R. Macedonia and Michael J. Zyda. A taxonomy for networked virtual environments.

Multimedia, IEEE, 4:48-56, 1997.

197

[75] Tony Manninen. Rich interaction in networked virtual environments. In A CM Multimedia, pages

517-518,2000.

[76] Michal Masa and Jii'l Zara. Generalized interest management in virtual environments. Collabomtive

virtual environments, 2002.

[77] Thomas W. Mastaglio and Robert Callahan. A large-scale complex virtual environment for team

training. Computer, 28(7):49-56, 1995.

[7S] Maja Matijasevic. A review of networked multi-user virtual environments. Technical Report

TR97-8-1, Center for Advanced Computer Studies, Virtual Reality and Multimedia Laboratory,

University of Southwestern Lousiana, USA., 1997.

[79] Yukihiro Matsumoto. Treating code as an essay. In Andy Oram and Greg Wilson, editors, Beautiful

Code: Leading Programmers Explain How They Think, chapter 29, pages 477-481. O'Reilly, 2007.

[SO) J. Maxfield, T. Fernando, and P. Dew. A distributed virtual environment for concurrent engi­

neering. IEEE Annual Virtual Reality International Symposium, 7Hangle Park, NC, USA, 00:162,

1995.

[Sl) W. Dean McCarty, Steven Sheasby, Philip Amburn, Martin R. Stytz, and Chip Switzer. A virtual

cockpit for a distributed interactive simulation. IEEE Comput. Graph. Appl., 14(1):49-54, 1994.

[S2] Erin McKean, editor. New Oxford American Dictionary. Oxford University Press, second edition

edition, May 2005.

[S3) M. Meehan. Survey of multi-user distributed virtual environments. course notes:"Developing

Shared Virtual Environments". SIGGRAPH, 99, 1999.

[S4) Rob Minson and Georgios Theodoropoulos. An adaptive interest management scheme for dis­

tributed virtual environments. In PADS'05: Principles of Advanced and Distributed Simulation,

2005, pages 273-281, June 2005.

[S5) Katherine L. Morse. Interest management in large-scale distributed simulations. Technical Report

ICS-TR-96-27, Department of Information & Computer Science, University of California, Irvine,

1996.

[S6) S. R. Musse and D. Thalmann. A model of human crowd behavior: Group inter-relationship and

... In Computer Animation and Simulations '97, Proc Computer Animation and Simulations '97,

Proc, pages 39-51,2002.

198

(87] Soraia R. Musse, Christian Babski, Tolga Capin, and Daniel Thalmann. Crowd modelling in

collaborative virtual environments. In VRST '98: Proceedings of the ACM symposium on Virtual

reality software and technology, pages 115-123, New York, NY, USA, 1998. ACM Press.

(88] Bonnie Nardi and Justin Harris. Strangers and friends: collaborative play in world of warcraft. In

CSCW '06: Proceedings of the 200620th anniversary conference on Computer supported cooperative

work, pages 149-158, New York, NY, USA, 2006. ACM Press.

(89] Beatrice Ng, Rynson W. H. Lau, Antonio Si, and Frederick W. B. Li. Multiserver support for

large-scale distributed virtual environments. IEEE Transactions on Multimedia, 7(6):1054-1065,

2005.

(90] Fedaration of American Scientists. Spacecast 2020 glossary of terms.

http://www.fas.org/spp/military/docops/usaf/2020/app-v.htm. August 2007.

(91] The Ruby on Rails Community. Ruby on rails. http://rubyonrails.com/, August 2007.

(92] Cory R. Ondrejka. Aviators, Moguls, Fashionistas and Barons: Economics and Ownership in Second

Life. SSRN eLibrary, 2004.

[93] Oracle. Oracle spatial. http://www.orafaq.com/faq/spatial.

[94] Sungju Park, Dongman Lee, Mingyu Lim, and Chansu Yu. Scalable data management using user­

based caching and prefetching in distributed virtual environments. In VRST '01: Proceedings of

the ACM symposium on Virtual reality software and technology, pages 121-126, New York, NY,

USA, 2001. ACM Press.

[95] Carolina Cruz-Neira Patrik Hartling, Chris Just. Distributed virtual reality using octopus. In

Virtual Reality, 2001. Proceedings. IEEE, pages 53-60, 2001.

[96] Jon Pearce. Programming and Meta-programming in Scheme. Springer-Verlag New York Inc.,

1997.

[97] Nicholas J. Pioch, Bruce Roberts, and David Zeltzer. A virtual environment for learning to pilot

remotely operated vehicles. In VSMM '97: Proceedings of the 1997 International Conference on

Virtual Systems and MultiMedia, page 218, Washington, DC, USA, 1997. IEEE Computer Society.

[98] David R. Pratt. A Software Architecture for the Construction and Management of Real Time

Virtual Worlds. PhD thesis, Naval Postgraduate School, 1993.

[99] J. Purbrick and C. Greenhalgh. Extending locales: Awareness management in massive-3. In

VR2000, pages 287-287, 2000.

199

(100) E. Reid. Cultural formations in text-based virtual realities. Technical report, Department of

History, University of Melbourne, 1994.

(101) Abdennour El Rhalibi, Madjid Merabti, and Yuanyuan Shen. Aoim in peer-to-peer multipiayer

online games. In ACE '06: Proceedings of the 2006 ACM SIGCHI international conference on

Advances in computer entertainment technology, page 71, New York, NY, USA, 2006. ACM Press.

[102) P. Rosendale and Cory. Ondrejka. Enabling player-created online worlds with grid computing and

streaming. Technical report, Gamasutra, 2003.

(103) Mark A. Sagar, David Bullivant, Gordon D. Mallinson, and Peter J. Hunter. A virtual environment

and model of the eye for surgical simulation. In SIGGRAPH '94: Proceedings of the 21st annual

conference on Computer graphics and interactive techniques, pages 205-212, New York, NY, USA,

1994. ACM Press.

[104J Masatoshi SEKI. Erb - ruby templating. http://ruby-doc.org/stdlib/libdoc/erb/rdoc/, August

2007.

[105J Sandeep Singhal and Michael Zyda. Networked virtual environments: design and implementation

ACM Press/ Addison-Wesley Publishing Co., New York, NY, USA, 1999.

[106J S.K. Singhal and D.R. Cheriton. Using projection aggregations to support scalability in distributed

simulation. In ICDCS '96: Proceedings of the 16th International Conference on Distributed Com­

puting Systems (ICDCS '96), page 196, Washington, DC, USA, 1996. IEEE Computer Society.

[107J Rory John Stuart. The Design of Virtual Environments. Barricade Books Inc., 2001.

[108J Gary Tan and Xu Liang. An Agent-based Data Filtering Mechanism for High Level Architecture.

SIMULATION, 76(6):329-344, 2001.

[109J Gary Tan, YuSong Zhang, and Rassul Ayani. A hybrid approach to data distribution management.

In DS-RT '00: Proceedings of the Fourth IEEE International Workshop on Distributed Simulation

and Real- Time Applications, page 55, Washington, DC, USA, 2000. IEEE Computer Society.

[110) Seth J. Teller and Carlo H. Sequin. Visibility preprocessing for interactive walkthroughs. In

SIGGRAPH '91: Proceedings of the 18th annual conference on Computer graphics and interoctive

techniques, pages 61-70, New York, NY, USA, 1991. ACM Press.

[111] Why the Lucky Stiff. Why's poignant guide to ruby. http://poignantguide.net/ruby/, August

2007.

[112] Dave Thomas, Chad Fowler, and Andy Hunt. Progromming Ruby, The Progmatic Programmers'

Guide. The Pragmatic Programmers, second edition edition, 2005.

200

(113) Dave Thomas and David Heinemeier Hansson. Agile Web Development with Rails. The Pragmatic

Programmers, second edition, 2006.

(114) H. Tramberend. Avocado - a distributed virtual environment framework. In IEEE Virtual Reality,

pages 14-21, 1999.

(115) Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 2(42}:230-265, 1936.

(116) Valve. Counter strike. www.counter-strike.net/. August 2007.

(117) W3C. Vrml virtual reality modeling language. http://www.w3.org/MarkUp/VRML/, August

2007.

[118] G. Gary Wang. Definition and review of virtual prototyping. Journal of Computing and Information

Science in Engineering, 2(3}:232-236, 2002.

(119) R.C. Waters, D.B. Anderson, J.W. Barrus, D.C. Brogan, M.A. Casey, S.G. McKeown, T. Nitta, I.B.

Sterns, and W.S. Yerazunis. Diamond Park and Spline: A Social Virtual Reality System with 3D

Animation, Spoken Interaction, and Runtime Modifiability. Presence: TeleoperatorB and Virtual

Environments, 6(4}:461-480, 1997.

[120J Wikipedia. Definition of virtual reality (redirected from virtual environment).

http://en.wikipedia.org/wiki/VirtuaLenvironment, August 2007.

[121] Bruce Sterling Woodcock. An analysis of mmog subscription growth. http://www.mmogchart.com.

August 2007.

[122J Yahoo! deLicio.us. http://deLicio.us/, August 2007.

[123J Yahoo! flickr. http://flickr.com, August 2007.

201

Colophon

This document was produced on an .Mac running OS X. X8IEX was used for typesetting, TextMate

for editing, BibDesk for managing the BibJEX references, Skim for previewing, Omnigraffie for creating

diagrams, and Subversion for versioning. X8IEX is based on the JEX typesetting system by Donald

Knuth. The standard font used throughout is Computer Modern Roman, and the monospace font used

for code samples and algorithms is Deja Vu Sans Mono.

	445611_0001
	445611_0002
	445611_0003
	445611_0004
	445611_0005
	445611_0006
	445611_0007
	445611_0008
	445611_0009
	445611_0010
	445611_0011
	445611_0012
	445611_0013
	445611_0014
	445611_0015
	445611_0016
	445611_0017
	445611_0018
	445611_0019
	445611_0020
	445611_0021
	445611_0022
	445611_0023
	445611_0024
	445611_0025
	445611_0026
	445611_0027
	445611_0028
	445611_0029
	445611_0030
	445611_0031
	445611_0032
	445611_0033
	445611_0034
	445611_0035
	445611_0036
	445611_0037
	445611_0038
	445611_0039
	445611_0040
	445611_0041
	445611_0042
	445611_0043
	445611_0044
	445611_0045
	445611_0046
	445611_0047
	445611_0048
	445611_0049
	445611_0050
	445611_0051
	445611_0052
	445611_0053
	445611_0054
	445611_0055
	445611_0056
	445611_0057
	445611_0058
	445611_0059
	445611_0060
	445611_0061
	445611_0062
	445611_0063
	445611_0064
	445611_0065
	445611_0066
	445611_0067
	445611_0068
	445611_0069
	445611_0070
	445611_0071
	445611_0072
	445611_0073
	445611_0074
	445611_0075
	445611_0076
	445611_0077
	445611_0078
	445611_0079
	445611_0080
	445611_0081
	445611_0082
	445611_0083
	445611_0084
	445611_0085
	445611_0086
	445611_0087
	445611_0088
	445611_0089
	445611_0090
	445611_0091
	445611_0092
	445611_0093
	445611_0094
	445611_0095
	445611_0096
	445611_0097
	445611_0098
	445611_0099
	445611_0100
	445611_0101
	445611_0102
	445611_0103
	445611_0104
	445611_0105
	445611_0106
	445611_0107
	445611_0108
	445611_0109
	445611_0110
	445611_0111
	445611_0112
	445611_0113
	445611_0114
	445611_0115
	445611_0116
	445611_0117
	445611_0118
	445611_0119
	445611_0120
	445611_0121
	445611_0122
	445611_0123
	445611_0124
	445611_0125
	445611_0126
	445611_0127
	445611_0128
	445611_0129
	445611_0130
	445611_0131
	445611_0132
	445611_0133
	445611_0134
	445611_0135
	445611_0136
	445611_0137
	445611_0138
	445611_0139
	445611_0140
	445611_0141
	445611_0142
	445611_0143
	445611_0144
	445611_0145
	445611_0146
	445611_0147
	445611_0148
	445611_0149
	445611_0150
	445611_0151
	445611_0152
	445611_0153
	445611_0154
	445611_0155
	445611_0156
	445611_0157
	445611_0158
	445611_0159
	445611_0160
	445611_0161
	445611_0162
	445611_0163
	445611_0164
	445611_0165
	445611_0166
	445611_0167
	445611_0168
	445611_0169
	445611_0170
	445611_0171
	445611_0172
	445611_0173
	445611_0174
	445611_0175
	445611_0176
	445611_0177
	445611_0178
	445611_0179
	445611_0180
	445611_0181
	445611_0182
	445611_0183
	445611_0184
	445611_0185
	445611_0186
	445611_0187
	445611_0188
	445611_0189
	445611_0190
	445611_0191
	445611_0192
	445611_0193
	445611_0194
	445611_0195
	445611_0196
	445611_0197
	445611_0198
	445611_0199
	445611_0200
	445611_0201
	445611_0202
	445611_0203
	445611_0204
	445611_0205
	445611_0206
	445611_0207
	445611_0208
	445611_0209
	445611_0210
	445611_0211
	445611_0212
	445611_0213
	445611_0214
	445611_0215
	445611_0216
	445611_0217
	445611_0218
	445611_0219

