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Abstract 

Interest management is a widely used term within the area of virtual environments. It is so widely used 

that there even exist many synonyms for the concept. Thus both the terminology, and meaning of the 

concept are currently not well defined. The typical aim of interest management techniques within virtual 

environments has been to increase scalability. However, this thesis argues that the concept of interest 

management should not be so tightly coupled with the goal of scalable virtual environments, but be a 

concept in its own right, i.e. the management of interests. 

The main focus of this thesis is the representation of expressions of interest. The various techniques 

for expressing interest are surveyed and evaluated, providing the basis for the research into a suitable 

representation. This representation is achieved in two stages. 

The first part of this thesis introduces a novel dynamic interest management technique based upon 

set theory. It describes how it is expressive enough to implement most of the static interest management 

techniques currently available such as categorisation, locales, and interacting locales. By de-coupling the 

logic that implements these interests from the virtual environment, it can also describe how interests can 

be changed during the virtual environment's execution, thus making the technique dynamic. Enforcing 

and denying interests is also considered, allowing for the enforcement of interests integral to the require­

ments of the virtual environment. An example of this is denying the user the ability to be interested in 

artefacts that aren't visible. The new approach presented is implemented with SQL, and evaluated. 

The second part of this thesis focusses on the limitations of using SQL as an implementation language, 

focussing on issues of readability and succinctness and a lack of any abstraction mechanisms. Overcoming 

these limitations is treated as the primary design goal for a new domain specific language for representing 

interests. The thesis introduces this language, Wish, and evaluates it within the domain, demonstrating 

that it is as expressive as SQL yet is more readable, conceptually succinct and allows for arbitrary 

abstraction of complexity. 
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Chapter 1 

Introduction 

The concepts involved in designing, implementing and using virtual environments are both widely un­

derstood and practised. However, there are still some limitations of these environments which hinder 

their potential for scalability and, in particular, adaptability. This thesis focusses on the representation 

of interests within virtual environments. The techniques introduced are based upon the concept of dy­

namic interest management. They de-couple the logic that implements the interest management from 

the virtual environment's implementation. This allows users to influence what he or she is interested in, 

and subsequently change their interests. 

As a general introduction to this work, this chapter aims to describe in detail detail the motivations of 

this thesis, in order to place the focus and goals in a wider perspective and context. Section 1.1 introduces 

scalability and adaptability as two of the remaining challenges of virtual environments. It explains the 

motivations behind this thesis with respect to these challenges. Section 1.2 introduces a mathematical 

model that illustrates the relationship between messages and interest management. Sections 1.3 and 1.4 

discuss various approaches to tackling the issues of scalability and adaptability respectively. Section 1.5 

then argues the case for dynamic interest management, and explains how it can be used to improve both 

scalability and adaptability. This is further illustrated by a scenario presented in Section 1.6, which is 

discussed in Section 1.6.1. Finally, Sections 1.7 and 1.8 describe the contributions and structure of this 

thesis respectively. 

1.1 Limitations in Virtual Environments 

Virtual environmentsl are computer generated environments that can be used for a broad set of activities 

including simulation, visualisation and collaboration2 . Although there has been over 20 years of research 

into the area, particularly within academia and the gaming industry[95]' there are still some serious 

computing science challenges remaining. These include scalability and adaptability. Sections 1.1.1 and 

1.1.2 discuss these issues in greater detail. 

1 Virtual environments are defined in greater detail in Section 2.1.1 
2The range of uses of virtual environments is discussed further in Section 2.1.3 
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1.1.1 Scalability 

Scalabi lity has long been seen as a major chall enge for virtual environments. The development of war 

s imul a tion a nd la rger and la rge r mass ive multiplayer on line games, MMOG , has required an increase 

in th s ize a nd complexity of these e nvironments. T his t rend is clear when we consid er commercial online 

mu lt i-player games such as Quake[.54]' Second Life[58) and World of Warcra ft[57] . Some of the first 

games in th is genre had seve re limitat ions in terms o f the potential number of s imultaneou user . For 

example, in 1996 t he game Quake c reated by ID Software[54] on ly supported 16 simu ltaneou player . 

However , if we cons ider modern produ ts in t his genre , s uch as Blizzard 's World of Warcraft[57j , we ee 

offerings a ble to s upport over 6 ,500,000 c urrent s ub c ribers (see Figure 1.1), and hundreds of thousands 

of conc urren t pl ayers[24] . Unfort un a t ely, as the nu mber of participant grows , the contention on hared 

resources becomes more severe. H owever, various a lgorithms a nd techniques have been reated to achieve 

th is increase in scala bi lity, as discussed in C ha pter 2. 
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8veryt hing that can ha ppen in a virt.ual environment requi res either proces ing powe r or ommu­

ni co.lion with e ntities wit hin or outs ide the ystem. Thi t he-is i not. concerned with reducing the 

proccs ing power nee ary for the virt.ual e nvironment. to c--x ist . T here are curren tly many s uccess ful 

o.pproa hcs whi ch oJlow a vi r t.ual environment im p lement. at.ion 1.0 be clustered over many ervers working 

toget.h r . 1I0wevcr , net.work resour es st.ill rem a in very exp n ive , part.icularly ompared with computa­

tional resoll!" cs[481. This t hesis i concerned with t.ech niques capa ble o f helping to m a nage these network 

re our es , port.icu leH I t.hrough the a bility to t igh t. ly control the communicat ion between the virtual en­

vironm ent. a n I it users . ne of the motivat ions for t hi might be the con t raint introduced by a limited 

ban h idt h . Il aving a fine grained level of cont.rol of the data communicated i a very important i ue for 
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clients using connections with a very low bandwidth, or who have to pay-per-byte. It also affects servers 

with a growing number of connected users, as the number of messages the server needs to send increases 

quadratically in relation to the number of users3. 

1.1.2 Adaptability 

The adaptability of a virtual environment is another way of describing its flexibility or its ability to cope 

with changing circumstances. For example, the capabilities of the system may change over time, the 

number of people using and interacting with the system may change, and the tasks that may be performed 

in the system may also change. In response to this, the system may adapt in various ways such as 

prioritising certain activities, optimising any computation, or reducing the frequency of communication. 

Assumptions generally have to be made in order to optimise systems. Unfortunately the more as­

sumptions made, the less flexible the system becomes. One of the goals of adaptability is to not make 

any unnecessary assumptions, and allow the system to be as adaptable as possible whilst maintaining 

both the system's usefulness and performance. These assumptions will be explored in greater detail in 

Section 2.6.1. This thesis evaluates techniques which allow two of the most restrictive assumptions in 

virtual environments to be removed: 

• Interests are defined by the simulation: most of the virtual environments that implement 

some sort of interest management technique make the assumption that the user is only interested 

in a certain set of things (usually things near to the user). The ability to represent changes in 

individual tactics is one motivation for allowing interests to be influenced by users . 

• Interests never change: most virtual environments also the assume that the user never changes 

his or her interests. This can be restrictive as individual user's interests may not always be the 

same as those defined by the system. For example, the user may want to arbitrarily change his or 

her tactics. 

1.2 A Mathematical Model of the Relationship between Num­

ber of Messages and Users within a Virtual Environment 

Section 1.1.1 introduced the issue of scalability. It described the trend in virtual environments for in­

creasing the potential number of simultaneous users. This section introduces a mathematical model of 

the number of messages needed in a simple virtual environment, and explains that as the number of users 

increases, the number of messages that the system needs to generate and transmit can qUickly exceed 

any bandwidth limitations. 

3See Section 1.2 for a further discussion of this relationship. 
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As described in detail in Section 3.1, a virtual environment can be seen to be composed of artefacts 

that are affected by events. For the users of a virtual environment to be made aware of an event, they 

must be sent a message describing it. In this simple model, the only artefacts in the virtual environment 

are those representing a user". 

Consider the following assumptions: 

i) The total number of users in a system is N. 

ii) Each user creates e events per unit of time. 

iii) J.I is the average size of a message. 

iv) Each user needs to be made aware of all events. 

The total number of events (E) that are generated per unit of time can be calculated as: 

E=Ne (1.1) 

Following assumption iv, the number of messages (M), per unit of time, that needs to be sent is: 

(1.2) 

The bandwidth (b) needed to communicate this information, for a unit of time, can be calculated as: 

(1.3) 

or: 

(1.4) 

or: 

(1.5) 

(where k is a constant). 

Therefore, as we increase the number of users in the system, the number of messages that the sys­

tem needs to send, and the bandwidth required, increases quadratically, and the contention on shared 

resources becomes more severe[83]. Extra messages sent represent a cost in terms of network bandwidth, 

routers buffer occupation and end host resources, augmenting latency[67][5]. This is, of course, assuming 

that each user is made aware of all events. 

4 Artefacts representing users are typically called avatars. See Section 3.1.3 for a further discussion. 
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1.3 Approaches to Scalability 

A virtual environment can be seen as consisting of two parts: application logic, and the execution environ­

ment. The application logic is software which defines the processes that the environment is constructed 

from. The execution environment is the system(s)5 that executes those processes, stores the application 

state, and provides communication with other systems (e.g. clients). In attempting to increase the scala­

bility of a virtual environment, we can approach these two parts separately. We can improve the system 

resources and efficiency, and also the efficiency of the application itself. The follOwing sections, 1.3.1 and 

1.3.2, explore both approaches. 

1.3.1 Improving System Resources and Efficiency 

This approach attempts to increase efficiency through improving the hardware capability, protocol ef­

ficiency, and overall design of the system itself. In this context, design refers to the structures within 

which different hardware components are linked together. 

Of course, faster and better hardware can always be purchased. Unfortunately, as we tend toward 

the limitations of current technology we find that the speed-up achieved by combining resources in a 

parallel fashion is rarely linear. Communication overheads between computational nodes, and the varying 

efficiencies of parallel algorithms for certain types of problems, reduce the potential for linear speed-up. 

Regardless of this, a linear speed-up is not a general solution to a quadratic problem. 

Noticing that many of the messages sent throughout the system are identical, networking protocols 

and smart routers may be employed to solve the problem of unnecessary duplication. In fact protocols for 

this problem such as multicast already exist[35], and there are even approaches to optimise the explicit 

use of multicast groups[5]. Unfortunately support for protocols like multicast is not pervasive in today's 

Internet infrastructure, and therefore it is not currently safe to rely upon them to build scalable virtual 

environments for the average consumer. Also, reducing the number of messages that the server has to 

send does not reduce the volume of messages that the clients have to receive. 

Considering the example given in Section 1.2, we can see that this approach to scalability attempts 

to reduce the size of messages (Po), and also potentially reduce the bandwidth required (b) on the server 

by using techniques such as multicast in order to not actually have to send M (defined in Equation 1.2) 

messages, for M messages to be received across all the clients. However if we consider that our clients 

have bandwidth constraints, then the scalability of our system is restrained by the number of messages 

received across all clients. Rather than attempt to optimise the network usage, it may be more feasible 

to reduce the amount of information that is received by each individual client. This, of course, maps on 

to a reduction of messages that have to be sent by the server. 

5The execution environment is typically a combination of both hardware and software. 



10 

Regardless of the system resources available, there will always be a limitation on the number of 

messages that can be generated and sent per unit of time. There will also be a limit on the funds 

available to purchase the resources. Network resources also still remain very expensive compared with 

computational resources[48]. There is therefore a motivation to increase the efficiency of any system. 

Improving the system resources and efficiency can only get us part of the way to a solution to the issue 

of scalability. This is clearly evident when we consider that there may be a range of clients interacting 

with the server, and upgrading them all simultaneously would be a non-trivial task. 

1.3.2 Increasing Application Efficiency 

A top-down approach to the issues of scalability would challenge the overall design of the application. It 

would free us to challenge the following assumption from Section 1.2: 

iv) Let us also assume that each user needs to be made aware of all events. 

For it is challenging this assumption that allows the following inference to also be challenged: 

"as we increase the number of users in the system, the number of messages that the system 

needs to generate and send, and the bandwidth required, increases quadratically. n 

If it is assumed that all users do not need to be made aware of all events, it is therefore necessary to 

create rules for each user, dividing the set of all events into two sub-sets: events to send, and events to 

discard. This technique is called interest management. 

Again, referring to the example in Section 1.2, we see that the removal of assumption iv changes 

the number of messages, M. Instead of simply being the number of events generated multiplied by the 

number of users as in equation 1.2, each user now only receives a subset of all the events: 

u E [0,1] (1.6) 

uEN (1.7) 

where u is the ratio of artefacts that are interesting and is inversely proportional to the size of the subset 

of events each user receives6 . This has the property of changing our equation for calculating bandwidth 

(b) to this: 

(1.8) 

Note that b still remains quadratic in N 

f(x) = kx2 (1.9) 

6 Assuming that the proportion of events that are interesting for each user is constant. 
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However, by having the ability to modify the value of u we gain an element of control over the gradient 

of the curve; reducing both the number of messages and total amount of bandwidth needed. This would 

therefore allow us to cater for potentially many more people for the same value of bandwidth, b. 

1.4 Approaches to Adaptability 

Typically, an increase in scalability comes at a price: that of adaptability. In order to achieve a high level 

of scalability, many assumptions have to be engineered into the systems. This often results in a massive 

reduction in their flexibility. No matter how many rules are inserted into systems we cannot ever predict 

the behaviour of its users. This is especially true over a long period of time, and when the user base is 

very large and diverse. If the longevity of a virtual environment is a requirement, then it is desirable to 

increase the flexibility of these systems, and therefore increase the ability to adapt to change. Examples 

of assumptions, and systems that contain assumptions are introduced in Section 2.6.1-

Interest management is a key technique to address the scalability problem of virtual environments. 

As discussed in Section 2.2.2.1, it has been used almost exclusively to tackle issues of scalability, network 

bandwidth and computer processing power. However, as discussed in Section 2.2.2.2, it can also be 

used as a valid technique for increasing a system's adaptability. Although the goals of scalability and 

adaptability are often orthogonal, they share the ability to be able to benefit from the introduction of 

interest management techniques. 

1.5 Dynamic Interest Management for Adaptable Virtual En-

vironments 

As stated in Section 1.3.2, interest management is a key part of tackling the issue of scalability in virtual 

environments. One of the major problems of interest management techniques is their inherently static 

nature. Interest management is a set of assumptions of interest used to reduce a virtual environment's 

workload. Interest management can be a very effective mechanism for reducing resource usage like network 

bandwidth and computer processing power[33] by limiting the amount of information that must be 

processed by each user. As discussed in Section 1.4, assumptions made can reduce adaptability. It can 

also be difficult to predict interests. This is especially true if we consider that the context within which 

the original assumptions were made is likely to change. By de-coupling the logic that implements the 

interest management from the main virtual environment logic, this thesis proposes a technique that 

allows interests to be changed before and during the execution of the environment. 

In addition to it being potentially unsafe to assume that interests within a virtual environment may 

never change, it is also potentially unsafe to assume that the characteristics of the virtual environment 
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itself may never change. The following are examples of characteristics which may change during the 

life-time of a virtual environment: 

• the underlying hardware of the virtual environment, 

• the hardware capabilities of clients, 

• the available bandwidth, 

• the rules within the virtual environment (e.g. game/tactic/simulation type changes). 

Adaptability provides a powerful way of approaching some of the problems virtual environments face. 

For example, adaptability makes it possible to react to an overloaded system by reducing the scope of 

interest (hence redUcing the number of messages needed to be computed and sent). 

Essentially this removes the initial assumption that the value of u is the same for each client, or in 

other words: "the proportion of events that are interesting for each user is constant". By allowing each 

client to influence their value of u, their ability to adapt increases. It also allows users to customise 

systems to their interests8 . 

1.6 A Scenario 

The following scenario illustrates some of the advantages of having an adaptable virtual environment. 

A surgeon is about to perform a heart operation on a patient using a new advanced procedure which 

involves the surgeon and the patient being located in different places. This is achieved using a virtual 

representation of the patient's body generated by sensors in the operating theatre9 . The actual physical 

operation is performed by a machine. This is controlled by the surgeon who interacts with a local client, 

that provides a haptic feedback device for input, and a visualisation of the virtual representation of the 

operation as the output. 

Figure 1.2 shows an overview of this situation. As the bandwidth between the virtual representation 

and the client is limited, it is important to optimise its usage for the particular situation that it is 

representing. For example, before the operation starts the surgeon may want to examine many of the 

sensor's readings to get an overall view of the patient's status. 

The surgeon chooses to wait for all of the sensor readings to become visible on his client, including 

a low resolution graphical representation of the patient (see Figure 1.3). Satisfied that all is ready to go 

7The load is potentially proportional to the size and complexity of the world. 
sFor examples of methods with which to express interests see Section 2.2.3. 
9 A similar approach has already been used to teach operational procedures[103J. 
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ahead , he indicates to the system that he wishes to have a high resolution graphical representation of 

on ly t he patient 's heart (see F igure 1.4) to analyse what he has to do, the operation then tart . 

Figure 1.4 : High Resolution Im age of a Heart 

In order for the information t hat t he su rgeon's client retrieves from the virtual repr entation to be as 

useful as it can be only information important to the operation is sent i.e. even that r fer to the heart . 

This is achi eved by reducing the surgeon 's area of interest from the whole body to th immediat a rea 

around the heart (see area A in Figure 1.3). The surgeon t hen tells the lient the types of art factl hat h 

is int rested in i.e. the heart , veins and a rteries. The virtu al representation then on ly end information 

r garding these artefac ts - t hus artefacts that previously ob cured the heart ( u h as th patient 's kin 

and rib-cage) a re no longer visible - a llowi ng the surgeon to concentrate hi work n the vital art fa t 

of the operation . 

During th e operation the pat ient starts to display signs of in creased sensitivity. These sign arc vi ibl 

on t he patient's face. As these events a re outsid of the surgeon' chosen interest th yare not vi ible to 

him . However, the system providing th virtu al representation de id that this information i rucial 

for the surgeon to be aware of and sends it to him. T he surgeon e this new information and i able to 

re olve the s itua tion by apply ing more anaesthet. i . 

1.6.1 Scenario analysis 

In th scenario t he virt ual repr entat ion is, in fact, a virtual environment.. T he urgeon interac within 

this virtual environment by creat.ing events. T hese events alter the tate of the virt.ual environment. which 

may result. in a chang in t.h output of the client 's out.put dev i e(s). The enario also introduces the 

cone pt of interest man agement. as the surgeon controls which artefac and events within the world h 

receivc , (in e- en e cu lling t.he s t of all world artefacts and event to a new set which only contain 

interest ing , ntiti ). In t.his c e, thi is a hieved using the following two techniques: 

• Locale: t. h ur con pecified a particular ar a of interest (in thi case area A of Figure 1.3) . 

• Categorisation: the surgeon pecified a et. of classifications of artefact that he was interes ted 

in . 
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Notice that in the scenario, both the surgeon and the simulation itself specified their interests while the 

virtual environment was executing. 

1. 7 Contributions 

This thesis makes the following contributions to research into interest management within virtual envi­

ronments: 

Taxonomy of currently used interest management techniques. The various techniques used for 

interest management are surveyed and discussed. Categorisation, locales and interacting locales are 

introduced as three general techniques, and it is shown how the various surveyed techniques can 

be mapped on to them. 

A concept ual model of interests based on set-theory. The taxonomy of interest management tech­

niques is formalised using set-theory, and then implemented using SQL as a proof of concept. 

Wish, a domain specific language for representing interests. The implementation of the formal­

isation of the interest management techniques is critiqued, and shown to have limitations in its 

usefulness such as a lack of readability, succinctness and no ability to allow for abstractions. These 

limitations are overcome through the design of a new domain specific language. This new language, 

Wish, is then evaluated using a case study. 

1.8 Thesis structure 

Chapter 2 presents background information, introducing the concept of a virtual environment in its most 

abstract sense. Different conceptual models are introduced, described and analysed. The motivations 

for Interest Management techniques are introduced followed by a survey of the available techniques 

used in current virtual environment implementations. Chapter 3 introduces the novel categorisation 

conceptual model for virtual environments and describes how it can be used to implement dynamic 

interest management, and to represent various interest management techniques as introduced in Chapter 

2. Chapter 4 describes an implementation of the virtual environment axioms. Chapter 5 uses SQL to 

build an implementation of the categorisation conceptual model introduced in Chapter 3. Chapter 6 

focusses on the limitations of using SQL as the implementation language, and introduces Wish, a novel 

domain specific language which, compared to the SQL equivalent, is more readable, succinct and has 

support for abstraction. Chapter 7 evaluates Wish using a case study, and finally Chapter 8 concludes 

this thesis. 
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Chapter 2 

Literature Survey 

Virtual environments have been investigated for many years, with contributions ranging from simple 

simulations to massive commercial multi player games. There has been an enormous research focus on 

the scalability of these environments, with various techniques proposed in order to meet this challenge 

such as data distribution management, and interest management. 

This chapter aims to provide the reader with a brief introduction to virtual environments, leading 

on to a discussion of some of the major challenges faced by the field. The chapter will introduce the 

various techniques used to meet the issue of scalability, and will finally focus on the technique of interest 

management. The various concepts within, and implementations of, interest management will be sur-

veyed. The chapter then introduces the key technologies used in this thesis such as Ruby, YAML, and 

domain specific languages. Finally the chapter will conclude with a discussion of some of the limitations 

of current virtual environment interest management techniques. 

2.1 Virtual Environments 

This section will introduce the concept of a virtual environment. Starting with a study of alternative 

definitions, the section will then explore the origins of virtual environments, and finally illustrate the 

range of usage of virtual environment systems. 

2.1.1 Definition 

This section will introduce the broad range of definitions for the term virtual environment that are 

available in the literature. It will then introduce its own definition which will be used throughout the 

rest of this thesis 1 • 

1 It is important to note that these definitions are purely for the purpose of providing an agreed notion of the concepts 
discussed for the rest of the thesis to build upon. 
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2.1.1.1 Range of Definitions 

Unfortunately for the task of determining the origins of virtual environments, there is no real consensus 

on what actually constitutes a virtual environment. Stuart (107) agrees, and says: "There are a great 

many definitions offered by different researchers". However, he turns this point on its head suggesting 

that "nearly everyone agrees that certain current systems provide virtual environments". The range of 

these certain systems is introduced in Section 2.1.3. 

So, what is the range of definitions that Stuart describes? Well we can start with one of his own: 

"A VE is an interactive, immersive, multisensory, 3D synthetic environment" 

He breaks this definition down as follows: 

• By immersive, I mean that rather than looking at and listening to a display cOming from a typical 

small computer monitor, the display creates the impression that you're inside the environment 

produced by the computer. 

• By multi-sensory, I mean that more than one sensory modality is used to display the environment 

visual, auditory, haptic, etc. 

• By 3D, I mean that not only does the environment appear to the user to surround him, but cues 

are also given to convey that it has depth and the user can move through it. 

• By synthetic, I mean that the environment is generated by a computer system (it is not, for example, 

pre-recorded) [107]. 

Through this definition, Stuart actually describes the kind of systems introduced in Section 2.1.3. 

However, it can be argued that a virtual environment does not necessarily have to be immersive, multi­

sensory or 30(38). For example, the MASSIVE-l system featured a text only interface(44). These are 

properties that a virtual environment could offer, but are not necessary for its existence and usefulness. 

Consider the case of immersion. It may be possible to experience a virtual environment externally, 

rather than from an immersed perspective. It may also be argued that the synthetic nature of a virtual 

environment is driven by users immersed in a multi-sensory 3D environment. However, it is possible, and 

often interesting, to gather results from the real world (Le. placement of people in a city) and use this 

data to drive the environment. This highlights the point that a virtual environment does not necessarily 

have to even contain users. I therefore only agree with the final sentence - that a virtual environment 

must be synthetic. I feel that the other parts of his definition (immersive, multi-sensory, and 3D) are 

interesting and useful properties of many virtual environments, but not general properties that define a 

virtual environment. 

Consider another definition: 



18 

"A 8y8tem thro'Ugh which wer8 may interact with each other and collaborate through a virtual 

synthetic world"(Oliveira[31)) 

In this definition we see the previously used words interact and synthetic. We are also introduced to the 

concept of collaboration between users of this virtual synthetic world. Collaboration and in particular the 

term Collaborative Virtual Environment (CVE) is introduced as a particular type of virtual environment 

in Section 2.1.1.2. There are two problems here which are unique to this definition. The first is the usage 

of the term collaborate. There are many virtual environments that do not facilitate collaboration. For 

example, 3D renderings of architectural plans or any standard VRML world(117). The second problem is 

the use of the word virtual. A definition should not contain the words or terms it is itself defining. The 

same is true of the following definition: 

"virtual environment. An environment which is partially or totally based on computer gener­

ated sensory inputs. "(Federation of American Scientists[90)) 

Looking further, both wikipedia and answers. com redirect you to their definition of virtual reality. 

"Virtual reality (VR) is a technology which allows a user to interact with a computer-simulated 

environment. "(Wikipedia[120)) 

Unfortunately this definition only goes half-way to helping us define a virtual environment, as it uses 

the word environment, which is half of the term we're trying to define. 

2.1.1.2 Use of Modifiers 

If we look at some of the terms that were rejected in the process of attempting to define the term virtual 

environment in Section 2.1.1, we are given an insight to the range of usage of virtual environments. These 

terms include the following modifiers: interaction, multi-sensory, collaboration, 3D and synthetic. There 

are other terms too e.g. multi-user, networked, large-scale, distributed. These terms describe the various 

flavours of virtual environments in use, and of course they come in acronym form. Consider the following 

example variants: 

• VE - virtual environments[16), 

• CVE - collaborative virtual environments[25), 

• NVE - networked virtual environments[75), 

• DVE - distributed virtual environments[80J, 

• LCVE - large-scale collaborative virtual environments[68), 

• MUDVE - multi-user distributed virtual environment [83) , 
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• LSVE - large scale virtual environments[66] 

• LOVE -large scale distributed virtual environments(17), 

• VW - virtual worlds[98]. 

Matijasevic[78] also discusses this issue suggesting that there are many flavours of VR terms citing 

augmented reality, artificial reality, and synthetic environment as some of them. There is also some 

conflation with the discipline computer supported cooperative work (CSCW)[47]. Bartlett[8] also agrees: 

"One of the largest problems facing current DVE development is a lack of order: even the 

topic area Distributed Virtual Environments possesses numerous synonyms; e.g. Networked 

Virtual Environment (NVE), Collaborative Virtual Environment (CVE) and to a lesser ex­

tent, Computer Supported Collaborative Work (CSCW)." 

What we are seeing here is a combination of two things: an overloading of terms, and the creation 

of new descriptive terms to represent specific focuses or properties of particular virtual environments. 

Unfortunately, the net effect of this is the pollution of the virtual environment namespace, resulting in 

very many terms all describing potentially very small differences. For example, consider the difference 

between the terms networked virtual environment and distributed virtual environment. A far worse 

result of this situation is where terms start to become implicit. We therefore have some people being 

explicit with their terms (MUDVE being a good example) yet others using the term VE, and assuming 

people understand that they are implicitly referring to a collaborative, multi-user, distributed virtual 

environment. The problem is that the term virtual environment can be as broad as a term such as 

programming language. 

2.1.1.3 New Definition 

In an absence of a clear agreed consensus on a definition, let us attempt to create our own for the 

purposes of this thesis. Let us use a literal definition of the component words as a starting point: 

vir·tu·al I,vs:tjusll 

adjective 

almost or nearly as described, but not completely or according to strict definition [82] 

This definition describes the notion of a concept being very similar to, but not exactly the same as, 

another concept. This could refer to both imitation or emulation. Let us also considers the following 

definition: 

virtual, a. (and n.) 

1. a. Possessed of certain physical virtues or capacities; effective in respect of inherent natural 

qualities or powers; capable of exerting influence by means of such qualities. [61] 
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This definition, taken from the Oxford English Dictionary, refers to entities that have virtues, or 

attributes that are capable of exerting influence or interacting with our world through such attributes. 

This loosely ties in with the previous definition by referring to imitations or emulations of real world 

entities that are able to influence the real world. The concept of software fulfils this criteria, being 

constructed with language, yet capable of printing results, drawing pictures, producing sounds, moving 

arms, etc.2 This brings us back to the Oxford English Dictionary and a definition within the scope of 

computing: 

virtual, a. (and n.) 

g. Computers. Not physically existing as such but made by software to appear to do so from 

the point of view of the program or the user; spec. applied to memory that appears to be 

internal although most of it is external, transfer between the two being made automatically 

as required. [61] 

Looking at this computing related definition, we can infer that a virtual environment is a software 

entity which intends to emulate or imitate something. The spec part of the definition refers to a specific 

example of this. It describes the concept of virtual memory whereby the operating system emulates 

physical RAM using the capacity of an attached hard-drive. 

The environment component of the term virtual environment alludes to the concept that is to be 

emulated or imitated. Let us also look at some definitions of that term: 

environment 

2. concr. a. That which environs; the objects or the region surrounding anything.[61) 

environment, n. 

Add: [2.] e. Computing. The overall physical, systematic, or logical structure within which (a 

part of) a computer or program can operate; the particular combination of operating system, 

software tools, interface, etc., through which a user operates or programs a system.[61) 

Again, we have two definitions: a generic one, and one specific to computing. The generic one intro­

duces three important concepts: object, region and the notion of enclosing or containing. The environment 

is therefore a container, region or set of objects which surround other items. Herein lies an interesting 

philosophical question: what are those items that are surrounded by an environment? For this I will offer 

a recursive answer and suggest that those items can be an environment, region or object. 

The computing definition acts as a red herring in our quest to define the term virtual environment, 

and really defines the term computing environment rather than the more general term, environment. 

2 "The progmmmer, like the poet, works only slightly remoued from pure thought-stuff. He builds castles in the air, from 
air, creating by exertion 0/ the imagination. Few media 0/ creation are so flexible, so easy to polish and rework, so readily 
capable 0/ realizing gmnd conceptual structures. Yet the progmm construct, unlike the poet's words, is real in the sense that 
it moues and works, producing wible outputs sepamte from the construct itself. It prints results, dmws pictures, produces 
sounds, moues arms. "[19J 
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It describes the whole computing system which is presented to a user. An implementation of a virtual 

environment (software and hardware) would itself be an environment in this sense, but it's a confusing 

overloading of the term. 

Pulling the relevant parts of all these definitions together, I define the term virtual environment as 

the following3: 

A region, constructed by software, containing artefacts which themselves possess attributes 

2.1.2 ()rigins 

The origins of virtual environments differ depending on how broadly the term is interpreted. The range 

of potential interpretations depends on many things, including a subjective interpretation of the required 

realism of the simulation. For example, it might be assumed that the simulation has to be realistic, which 

is not part of the definition in Section 2.1.1.3. It also depends on the particular definitions of the terms 

8oftware, region and artefact. 

It can be argued that Multi User Dungeon systems (MUDs)[29] were in fact basic virtual environments[38]. 

They enable a group of people to collaborate and communicate in a text based environment, whilst at­

tempting to achieve goals and objectives4• These systems reached the height of their popularity in the 

early 80s, and contained many of the components found in modern virtual environments such as rooms 

and users5. 

Currently, there exists a strong association between virtual environments and the concept of virtual 

reality (VR). VR represents technologies related to the input/output capabilities of a system. With 

simple MUD based systems, input and output was in the form of text. Input usually took the form 

of a domain specific language6 , DSL, which closely related to natural language. This DSL would allow 

the user to describe his or her actions within the environment. Output was usually in the form of text 

descriptions of the rooms and objects and events that took place. VR attempts to bring the input and 

output mechanisms of the system closer to reality. Instead of text based inputs we might want to use 

our body movements and voice, and instead of text based outputs we might want to see, hear and feel 

the world. These are clearly very bold goals, and above and beyond the scope of this thesis, yet great 

strides have been taken since the early text based days. Some of the first virtual environments to include 

elements of virtual reality were war simulations such as the SIMNET system[22] which was designed and 

developed by Defence Advanced Research Projects Agency, DARPA. 

3The word artefact is chosen instead of object to reduce the chance of confusion between a virtual environment object 
and a software object such as those found in object-oriented programming. 

4Typically in fantasy setting populated with warriors, elves, dragons and pots of gold. 
5The users can be controlled both by people and the system. A distinction discussed further in Section 3.1.3. 
uFor more information on DSLs see Section2.3. 
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2.1.3 Range of Usage 

2.1.3.1 MUDS 

Over the past 30 years, since the inception of the first MUD7, the usage of virtual environments has 

varied widely. MUDs were typically used for role-playing. The types of role-playing varied from Dungeons 

& Dragons[28] style fantasy worlds, to science-fiction visions. Players would communicate inside these 

worlds, interacting with each other and objects of various kinds. Often there would be objectives to 

achieve, but these were not necessarily essential to the experience. They are still in use, however, for 

collaborative work, communication[26] and even studies into the formation of online cultures[I00]. 

2.1.3.2 War Simulations 

Simulating military scenarios was one of the first uses of virtual environments. During the 1980s the 

Defence Advanced Research Projects Agency, DARPA, developed SIMNET[22] which was designed to 

support up to several hundred simultaneous users. The users interacted with mocks of vehicles such as 

tanks and aircraft in order to simulate actual conditions. It was used for tactical rehearsals for military 

operations such as U.S. actions in Desert Storm in 1992. 

2.1.3.3 Gaming 

An increasingly popular use of virtual environment systems is for entertainment. Gaming virtual environ­

ments tend to target consumer hardware such as PCs or consoles. Doom[53J, released by id software in 

1993, is considered to have pioneered the use of immersive 3D graphics and networked multiplayer gaming 

on the PC platform. Doom supported four simultaneous users allowing them to play either co-operatively 

or against each other. Since then there has been a consistent development of similar games offering in­

creasingly realistic 3D graphics, and increasingly complex forms of collaboration with increasing numbers 

of participants (see Figure 1.1 in Section 1.1.1). 

Today, all current games consoles and computers offer network support. There are a number of popular 

virtual environment systems offering a wide range of game experience, from World of Warcraft[57] to 

war simulations such as Return to Castle Wolfenstein[55] and to much more general community-driven 

simulations such as Second Life[58]. 

2.1.3.4 Television and Entertainment 

Television and entertainment is a promising direction for virtual environments. However, there hasn't 

yet been a media packaging of such technologies that has been a success in the same sense as popular 

7The first known MUD was created in 1978 by Roy Thubshaw and Richard Bartle at Essex University in the UK on a 
DEC PDP-10. 
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television soaps or films. The following are examples of virtual environments used within television and 

entertainment: 

• The MASSNE-2 system[45] was used to research network patterns and user activity inside inhab­

ited TV events for an experimental TV show called "Out of This World". 

• Counter Strike [116] is a game where teams of counter-terrorists battle against a team of terrorists 

in a series of rounds. Each round is won by either completing the mission objective or eliminating 

the opposing force. It is not only possible to play the game, it is also possible to be a spectator, 

watching the game from any viewing angle - including from the perspective of any of the actual 

game players. This is a popular option - particularly with high-profile battles . 

• In 1993 Craig Charles hosted a television programme called Cyberzone which featured on BBC2. 

This game featured a number of contestants who battled each other in a virtual environment. 

However, it was not particularly popular, and only lasted for one series . 

• The lTV television programme 'The Krypton Factor' put contestants through ''the ultimate mental 

and physical tests". From the 1988 series onwards, one of the tests, the response test, consisted 

purely of flight simulator tests. In these tests, the contestant interacted with a virtual environment 

simulating the landing, launching or flying of a variety of aircraft including helicopters, aeroplanes 

and even space rockets. 

2.1.3.5 Collaboration 

Virtual environments can be used for cooperative or collaborative work between groups of people. A 

term often used for this is Computer Supported Cooperative Work (CSCW)[47]. For example, virtual 

environments have been used for team training exercises[77]. Modern commercial virtual environments 

such as World of Warcraft and Second Life have been used as research contexts for analysing collaborative 

play[88], and even economic studies[92]. 

There are a number of concurrency challenges to this field associated with object access issues such 

as locking, transaction mechanisms, turn-taking protocols, centralised controllers, dependency-detection, 

reversible execution,and master entities. [18]. It is issues like these which promote the thinking that virtual 

environments mimic many aspects of operating systems[74]. 

2.1.3.6 Training 

Virtual environments can be used for a variety of training purposes. The following are some examples of 

these: 
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• Virtual environment technology was used to construct a model of the Hubble Space Telescope. 

It was used to train a team for a repair and maintenance mission conducted by the National 

Aeronautics and Space Administration (NASA)[70). 

• Virtual environments can be used to train new remote operation vehicle (ROV) pilots.[97) ROVs 

can be used for a variety of tasks that aren't necessarily accessible or safe for humans such as 

underwater search and salvage, inspection, surveying, scientific exploration, and disarming mines. 

• Virtual environments can be used in the initial training of pilots in potentially dangerous or haz­

ardous vehicles such as planes, tanks, and other military vehicles[Bl)8. 

2.1.3.7 Industrial Design 

Virtual environments are used in various fields of industrial design such as car manufacturing. For 

example, they can be used during the process of conceptualising and prototyping products[llB). In these 

cases the realism of the virtual environment interface can often be crucial[3). Also, they may facilitate 

the collaborative design of new products[65). 

2.1.3.8 Archaeology 

VITA (Visual Interaction Tool for Archaeology), is an experimental collaborative mixed reality system 

for offsite visualisation of an archaeological dig[14). VITA augments existing archaeological analysis 

methods with new ways to organise, visualise, and combine the standard 2D information available from 

an excavation (drawings, pictures, and notes) with textured, laser range-scanned 3D models of artefacts 

and the site itself. Virtual environments can also be used to recreate historical buildings or areas in order 

to help people visualise, and learn about past structures and contexts[40). 

2.2 Interest Management 

This section describes the concept of interest management in detail following its introduction in Section 

1.3.2. Sections 2.2.1 and 2.2.2 introduce some of the key motivations and definitions of interest man­

agement found within the literature. Section 2.2.3 follows by describing a range of interest management 

methods used within virtual environment implementations. Finally, Section 2.2.4 shows how the tech­

niques introduced in Section 2.2.3 can be distilled into a small number of core techniques. These core 

techniques will be the focus of the rest of this thesis. 

8Flight simulators have even been used as a therapy technique for people suffering from a fear of flying[51J. 
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2.2.1 Scalability of Virtual Environments 

Section 1.2 described how in naive virtual environments, the number of messages needed to be sent by 

the server increases quadratically as the number of users increases. Scalability can be an issue for large 

scale virtual environments. Brunton et aJ.[20] argue that very large scale distributed simulations suffer 

from two scalability issues with respect to network traffic: 

1. sheer volume of data, 

2. the ability to receive and process information. 

The following are some of the methods used to tackle these issues: 

Load Sharing Chen et a1.[24], and Iimura et a1.[56] split the computational load of the virtual envi­

ronment system over a set of separate servers. Duong and Zhou[34] have developed load sharing 

algorithms that aim to optimise the spreading of computation load across a set of such separate 

servers. 

Caching and Pre-fetching These techniques allow users to cache items locally (thus removing the 

need to request the same item again), and also to predict which items may be requested, and 

download them when it's optimal to do so (Le. when the network is not busy)[94). For example, the 

Cyberwalk system[89] supports caching and offers different levels of detail of geometry information 

through its multi-resolution caching system. 

Aggregation In the PARADISE system[106] everything is an aggregate. An aggregation is a simulation 

entity that represents a group of other entities. By treating a number of entities as one artefact, 

the number of messages that needs to be sent reduces in proportion to the granularity of the 

aggregation. 

Peer to Peer Architecture It is also possible to use peer-to-peer techniques, essentially breaking out 

of the traditional client-server architecture. This can have the effect of distributing and sharing the 

system's computation and messaging across multiple nodes, instead of relying on one single node. 

For example, Rhalibi et a1.[101] propose a combination of a peer-to-peer architecture and caching 

and pre-fetching techniques. 

Multicast Communication Many virtual environment implementations make use of the multicast 

protocol [35] as a way of reducing the number of messages that have to be sent. For example, 

Araujo et a1.[5] propose a number of approaches to optimise the use of multicast groups within 

virtual environments by minimising the number of active multicast groups. 

However, in terms of cost, network resources still remain very expensive compared with computational 

resources[48]. There is therefore an argument for the use of top-down approaches (see Section 1.3.2) to 
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efficiently manage network resources. One such top-down approach is interest management. Two of the 

main goals of interest management are to minimise network traffic and reduce the burden on clients[76) _ 

the two main issues raised by Brunton et al. Interest Management is therefore a key technique to address 

the scalability issues of large scale virtual environments[69). The following section will introduce and 

discuss the various definitions of this technique. 

2.2.2 Definition 

There are a number of terms that are often used interchangeably with the term interest management, 

such as data distribution management[109], data subscription[21) and relevance jiltering[9). The terms 

data distribution management and data subscription tend to represent interest management techniques 

focussed on the class of problems described in Section 2.2.1: namely scalability concerns. There is, 

however, another focus for interest management: namely the management of interests, i.e. the ability 

to represent and manipulate a variety of interests. The following sections will explore these different 

definitions. 

2.2.2.1 Interest Management for Scalability 

Ding and Zhu[33) describe interest management as "the problem of avoiding broadcast communication". 

Brunton et al. [20) also provide a similar definition: "where data is transmitted only if there is a defined 

need for it". These definitions clearly have a focus of reducing the number of data transmitted by the 

system - essentially a reduction in the number of messages sent. The correlation between the term data 

distribution management and the goal of scalability is made explicit when considering the goals of the 

HLA-DDM9[85]. This particular data distribution management system limits the messages received by 

users in order to reduce the message traffic over the network, and the data set required to be processed 

by the receiving user. 

Brunton et al. [20] describe two primary purposes for the technique of interest management: 

• Technological: to reduce the amount of network traffic 

• Operational: to support the need for the user to define what information for the simulation will 

be displayed 

The technological purpose matches the scalability motivations that were discussed above and also in 

Section 2.2.1. However, the operational purpose matches up with a new concept: that of user requirements. 

The following section will explore this particular concept in greater detail. 

GHLA-DDM - High Level Architecture Data Distribution Management, introduced in Section 2.2.3.1 
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2.2.2.2 Interest Management for Managing Interests 

Consider the following definitions of interest management: 

• "limiting the amount of information passed across a communications interface to the information 

of interest for a certain user perspective at that moment in time"(Singhal and Zyda[105]), 

• "identifying which objects and information in a system are of relevance to a particular observer"(Purbrick 

and Greenhalgh[99]), 

• "the process by which one exploits the interest of each user to minimise the number of update 

messages that must be propagated"(Minson and Theodoropoulos[84]), 

• "the process of filtering irrelevant messages"(Masa and :lara(76), 

• "reducing messages to a smaller relevant set"(Morse[85]). 

These definitions introduce a new concept - that of relevance or interest. This notion is succinctly 

represented with either Morse's or Masa and :lara's definition. This smaller, relevant set is often called 

an area of interest and usually correlates with the sensing capabilities of the system being modelled, 

such as visibility[20j. Meehan [83) describes the notion of an area of interest as "the distributed parts 

of the virtual environment to which a user has access." These distributed parts may include artefact 

update data, artefact geometry and communication. This indicates that the definition of the concept 

interesting may not just be the representation of the interests of one particular user, but potentially the 

combination of many interests such as that of the user, and that of a system controlling access. This 

concept is described further in Section 3.4. 

Antunes et al. [4) argue that the goal of interest management is to allow each user to only process the 

information that is relevant for them, and is used to: 

• reduce network bandwidth, 

• increase the system's scalability, 

• promote collaboration by using it to scope user interaction. 

Therefore, by focussing on the management of interests, it is possible to tackle the issues of scalability 

described in Section 2.2.1, and also open up interesting areas of research such as techniques for describing 

interests, and the study of interaction scopinglO. 

I°Techniques for seoping interaction are further diseussed in Sections 2.2.3.3 and 2.2.3.5 
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2.2.2.3 New Definition 

Consider Morse's definition of interest management: 

"reducing messages to a smaller relevant set"Morse[85] 

This statement, like most of the definitions discussed in Section 2.2.2 uses the message as the focus 

of interest. This may be due to the fact that interest management techniques were initially created to 

reduce the number of messages sent. However, consider the following definition: 

"identifying which objects and information in a system are of relevance to a particular 

observer"(Purbrick and Greenhalgh[99]) 

Purbrick and Greenhalgh mention objects, or artefacts, as the focus of interest. As Section 3.1.2.2 

introduces, events are changes in artefacts, and messages contain event information. If we use artefacts 

as a focus of interest, it is therefore possible to scope all the messages to those that affect the artefacts 

that we're interested in. 

Section 2.2.2.1 described the relationship between terms such as data distribution management and 

the motivation of increasing scalability. Section 2.2.2.2 described the relationship between terms such as 

interest management and the motivation of managing interests. Perhaps another, potentially oversim­

plifiedll method of distinguishing these two concepts is that data distribution management is primarily 

concerned with messages, and that interest management is primarily concerned with artefacts. 

Therefore, in order to disambiguate from terms such as data distribution management, my definition 

of interest management is as follows: 

"Interest management is the scoping of all world artefacts to a smaller relevant set" 

2.2.3 Techniques for Managing Interests 

This section will introduce the range of techniques used for managing interests within virtual environ­

ments. These techniques are categorised in Section 2.2.4. 

2.2.3.1 Class and Value Based Filtering 

Class and value based filtering techniques define interesting objects based on logical predicates that reason 

about artefact attribute values, and artefact classes. For example, all red artefacts, and all vehicles are 

examples of predicates that reason about values and classes respectively. 

The High Level Architecture - Data Distribution Management, HLA-DDM, uses this technique[108]. 

The HLA is a IEEE standard of computer simulation in 2000, developed by Defence Modelling and 

llClearly, there are exceptions to these rules. For example, it is perceivable that a user might wish to express an interest 
In a particular type of event. This Is discussed further in Section 8.3.6. 
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Simulation Office (DMSO) of the U.S. Department of Defence. It was an initiative targeted at unifying 

almost all existing military simulations[85). 

MASSIVE 2[43) supports the representation of a hierarchy of groups or classes. For example, a crowd 

may be composed of artefacts and other crowds recursively. This is similar to the concept of aggregations 

introduced in Section 2.2.1, however in this case the layers of abstraction, or aggregation, can be used 

when describing interests. 

2.2.3.2 Domains 

e-Agora[76) organises the shared state of a virtual environment into domains and sub domains. The 

domains represent categories of areas of interest (logical groups, regions, etc.), and the sub-domains 

represent concrete areas. Any state variable belongs to any number of domains specified upon creation 

(a static relationship). When a state variable is updated, a sub-domain set is associated with the update 

(a dynamic relationship). Users are then able to express an interest in a set of domains and sub-domains. 

2.2.3.3 Interaction Analysis 

Han et a1.[48) introduce a filtering scheme that reduces the number of messages by dynamically grouping 

users based on their interests and relative distances. This approach attempts to make the following 

assumptions based on real world observations: 

1. people can perceive artefacts near to them more frequently than those far from them 

2. people focus more on objects of high interest 

3. people tend to interact more frequently with people with similar interests 

Ding and Zhu[33] analyse so-called "crowd effects": how users interact in a crowded space. Their 

work is concerned with dynamic interaction in crowds, from which they derive the semantics of user 

behaviours, or more specifically, the alteration of interest focus of users. From examining the interaction, 

they are able to determine the following types of artefact: 

• Hotspot: an artefact with many other artefacts interested in it, 

• Activist: an artefact interested in many other artefacts. 

They argue that these artefact types influence the psychology (and therefore interest) of the crowd 

through three main effects: 

• Propagation: if A is interested in B, and B is interested in C, then A may become interested in 

C, 

• Feedback: A's interest in B is affected by B's interest in A, 
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• Conformity: A's interest in B is enhanced if B is a hotspot. 

2.2.3.4 Virtual Parallel Worlds 

VELVET [32] introduces an adaptive mechanism which allows each participant to receive as much as 

possible (or requested) from the virtual environment. This is achieved by managing an area of interest 

through the concept of the parallel virtual world. Each user in VELVET has their own parallel virtual 

world, which is essentially a subset of the full world scoped by their interests. These interests are sets 

of targets for given metrics such as the number of users, the distance, the network bandwidth, or even 

a mixture of targets. Given that some of these metrics are constantly changing, such as the number 

of nearby users, the area of interest will also change accordingly. Oliveira[32] describes this as area of 

interest shrinking. 

2.2.3.5 Awareness 

The following are examples of awareness used for representing interests: 

• In the MASSIVE system[46] each virtual environment artefact has an associated aura which defines 

a spatial area within which interaction with other artefacts is possible. Interaction between two 

artefacts can therefore only occur if their auras collide or overlap. 

• The HLA DDM system[85] employs a similar, but not necessarily spatial, concept through the 

notion of regions. Each artefact has both an update region and a subscribe region. An artefact is 

discovered by a user when the artefact's update region overlaps the user's subscription region. 

• Benford and Fahlen's[12] introduced the concept of the spatial model of interaction. This model 

uses the following aura like entities: 

- Focus: an area representing an artefacts ability to perceive. 

- Nimbus: an area representing an artefacts ability to be perceived. 

Each artefact in a virtual environment using this model has both a focus and a nimbus associated 

with it. These entities are used to determine awareness. Given two artefacts, A and B, A's awareness 

of B is proportional to how much A's focus overlaps B's nimbus. 

• The e-Agora system[76] partially adopts the aura-nimbus model, but provides an abstraction which 

depends on relationships between properties that are not necessarily spatial properties. Auras and 

nimbuses refer to sets of domains and sub-domains (see Section 2.2.3.2). 
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2.2.3.6 Cells 

A virtual environment may be divided up into tessellating regions often called cells. An example of 

this technique is found within the NPSNET system[73j,[72j. NPSNET partitions the spatial area of the 

virtual environment is into hexagonal cells. Each user has a circular area of interest, and if this area 

overlaps a cell, then the cell is deemed to be interesting. A user is therefore only interested in the cells 

within close proximity. Second-Life also splits the world into a set of tessellating squared regions[102]. 

2.2.3.1 Locales 

Locales are spatial areas within a virtual environment, and can be used to define interest. For example 

a user may be interested in all artefacts within the same locale as itself. The following are examples of 

locales within virtual environments: 

• In the Spline system[1l9j, the world is divided into locales. Unlike the hexagonal cells in NPSNET, 

locales can have any shape, and they each have their own coordinate systeml2 . 

• The Score system[67j divides the world into cells. Similar to NPSNET, each user has an area of 

interestl3 , and if this area overlaps a cell, then the cell is interesting. Score differs from NPSNET 

in that it facilitates the dynamic re-partitioning the worldl4 . Score allows for two policies which 

determine cell size: pre calculation of a fixed cell size, dynamic re-estimation of cell size during run 

time. 

• Chen et al. [24] also dynamically re-partition the world into locales. The repartitioning is triggered 

by quality of services drops below an accepted level 

• The MASSIVE-3 system[99J extends Spline's locales with support for abstractions. These abstrac­

tions may be sets of locales, or alternative representations of locales. 

2.2.3.8 Visibility Based Filtering 

The RING system[39J filters interest based on the visibility of a given artefact. This visibility is essen­

tially a viewing frustum IS with a given orientation. If another artefact is within the frustum, then that 

artefact is interesting. RING also pre-calculates line of sight visibility within the world based Teller and 

Sequin's[110J visibility pre-processing work. This allows occluding artefacts such as walls to interfere with 

the visibility of artefacts. Hosseini et al.[52] argue that it is possible to get the client's renderer to do 

12Links between locales includes a 3D transformation for the coordinate systems. These transformations allow tardis like 
structures which may larger on the inside than the outside. 

131n the case of Score, the area of interest is a square. 
14Re-partitioning in this case is to tackle crowding issues (see Section 2.2.4.2 for more information on crowding). 
IS A viewing frustum is a representation of the visibility of an artefact. This representation is typically a cone or pyramid 

with a particular size and orientation. 
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this work in order to remove load from the server. However, this has no reduction affect on the number 

of messages sent within the system. 

2.2.4 Interest Management Techniques Categorised 

This section describes a mapping between the interest management techniques introduced in Section 

2.2.3 and the following generic categories: 

• Categorisation (see Section 2.2.4.1), 

• Locales (see Section 2.2.4.2), 

• Interacting Locales (see Section 2.2.4.3), 

• Hybrid Approaches (see Section 2.2.4.4) 

Finally, section 2.2.4.5 describes the mapping itself. 

2.2.4.1 Categorisation 

The category based approach is a more general form of the class and value techniques described in Section 

2.2.3.1. Category based filtering techniques determine interesting artefacts based on logical predicates 

that reason about information associated with each artefact. The following are the different types of 

information that may be associated with an artefact: 

Artefact Attribute Values This information is essentially the data that the virtual environment needs 

to represent and use the artefact. For example, it might be geometry information, location and 

orientation information etc. 

Explicit Metadata This information is extra information about a given artefact that is defined like 

attribute values, yet it is only used for defining interest statements. This information could be class 

associations, hierarchy information etc. 

Implicit Metadata This information is similar to explicit metadata. However it is not defined like 

attribute values, it is generated using algorithms based on other information. This information 

could be levels of interaction, or a description of the artefacts within line of sight. 

2.2.4.2 Locales 

As Section 2.2.3.7 describes, locales are spatial areas within a virtual environment. Locales can therefore 

be used to describe regions such as areas, regions and cells. Purbrick and Greenhalgh(99) also argue that 

region-like notations such as cells and viewing frustums can be subsumed by a mapping on to locales. 
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For example, it could be possible to use a spatial area such as a frustum to model the area of visibility 

of an entity within the virtual environment. This frustum can be seen to be a particular type of locale.l6 

2.2.4.3 Interacting Locales 

Given that locales can represent spatial areas, it is therefore possible to use them to represent auras, 

focuses and nimbuses. We are therefore interested in the spatial relationships or interactions of these 

particular types of locales. For example, if the locale that represents artefact A's focus overlaps the 

locale that represents artefact B's nimbus, then artefact A can be said to be aware of artefact B. 

2.2.4.4 Hybrid Approaches 

Each of the three techniques introduced above has its own limitations. For example, consider the following 

issues: 

Categorisation It can be hard to classify users by predefined types or classes. Han et al.(48) argue that 

this kind of filtering does not work well with systems where users' interests change dynamically. 

Locales Ding and Zhu[33) argue that region based techniques do not handle crowded situations. For 

example, they tend to assume an even distribution of artefacts, yet in certain contexts the artefacts 

might all crowd in a particular locale17 . 

Interacting Locales May suffer from similar issues to locales such as crowding. 

We may therefore wish to combat some of the limitations that are faced by individual techniques by 

combining the techniques together. For example, it might be possible to combat the effects of crowding 

by combining locale based interest with a category based interest. 

2.2.4.5 Technique Mapping 

Table 2.1 describes how the various techniques introduced in Section 2.2.3 may be mapped on to the 

categories introduced in Section 2.2.4. This thesis is based on these three types of interest management 

technique: categorisation, locales, interacting locales, and a mixture of all three techniques. 

These general techniques will be the subject of the rest of this thesis. Any formalisation or implemen­

tation of these general techniques can therefore be used to represent any of the more specific techniques 

described in this chapter. The formalisation of these general techniques, lends itself to the specification 

of a new domain specific language which can focus entirely on representing interests. Domain specific 

languages are discussed further in Section 2.3. 

16lt is important to note that locales in this sense differ from those presented in Spline and MASSIVE 3 in that they 
have a global co-ordinate system, and that presence within a locale is a fundamental property. 

17For more information on crowding within virtual environments see [87J, [86J and [13J. 
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Table 2.1: Categorisation of Interest Management Techniques 

Technique Category Method 
Class Based Filtering Categorisation Filter by explicit artefact metadata representing its 

class 
Value Based Filtering Categorisation Filter by artefact attribute values 

Group Hierarchies Categorisation Filter by explicit artefact metadata representing its 
relationship to other artefacts 

Domains Categorisation Filter by explicit artefact metadata representing its 
membership of the user's domains and sub-domains 

Interaction Analysis Categorisation Filter by implicit artefact metadata based on statis-
tics gathered from previous interactions 

Virtual Parallel Worlds Hybrid Approach Filter by a logical combination of implicit artefact 
metadata, explicit artefact metadata, artefact at-
tribute values and relationship with locales associ-
ated with the user (e.g. a viewing frustum). 

Spatial Model of Interaction Interacting Locales Use locales to represent artefact auras. When the 
two locales representing auras collide, then the cor-
responding artefacts are interested in each other. 

HLA DDM Regions Hybrid Approach Create two sets representing artefact update and 
subscribe regions by a logical combination of implicit 
artefact metadata, explicit artefact metadata, arte-
fact attribute values and relationship with locales 
associated with the user (e.g. a viewing frustum). 
Check for artefacts that are members of both sets. 

Cells Locales Create a set of tessellating locales representing the 
cells. 

Locales Locales A direct mapping. 
Visibility Based Filtering Locales Use locales to represent artefact viewing frustums. 

Line of Sight Categorisation Determine which artefacts are visible using algo-
rithms based on artefact attributes (geometry infor-
mation). 
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2.3 Domain Specific Languages 

Domain specific languages (D8Ls)18 are computer languages targeted to a particular kind of problem, 

rather than a general purpose language aimed at any kind of software problem.[37]. For example, DSLs 

are not necessarily 'lUring complete, i.e. possessing the computational power equivalent to the universal 

TIlring machine[1l5]. The expressiveness or computational power of a D8L need not be any greater than 

the demands of context or domain within which it will be used. Some well-known examples of DSLs are 

HTML and SQL and XML. 

Internal D8L8 use the constructs and syntax of a general purpose programming language itself to 

define a DSLI9. Constructing DSLs like this is similar to bottom-up programming[42] in which the 

language is changed to suit the problem. The Lisp, Smalltalk and Ruby communities have a strong 

tradition of USing internal DSLs. 

External D8L8 have their own syntax. A compiler is then written to parse the DSL and possibly 

generate code for standard general purpose language, or interpret it directly. This approach is 

traditional in the Unix community which has many tools that make this easier such as yacc and 

lex[62]. XML is an example of an external DSL. 

The expressiveness of a language refers essentially to the power and ability of representing different 

concepts within its domain or context. As explained above, the expressiveness or computational power 

of a DSL need not be any greater than the demands of context or domain within which it will be used. 

The focus of DSLs tends to be on creating a language that fits the domain for which it was created. The 

judgement of how well the language fits is clearly subjective. However, it usually has a correlation to 

the readability and succinctness of the language from the perspective of the domain within which it is 

executing. Sections 2.3.1 and 2.3.2 explore the concepts of readability and succinctness respectively. 

2.3.1 Readability 

In a given language, complex, expressive statements can very easily become difficult to read. A good 

example of this is the syntax of regular expressions. For example, consider the following regular expression 

which matches valid e-mail addresses: 

/\A([\w\.\-\+)+)@((?:[-a-ze-9)+\.)+[a-z){2.})\z/i 

Not only are more readable statements easier to read20 , they are also easier to write and verify. 

Having a readable language can also help in exposing obvious bugs. For an example of a language that 

180SLs are also called little languages or mini languages(64J. 
IQlnternal OSLe are a1eo referred to as embedded OSLs. 
aOPleaae excuse the illustrative tautology. 
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attempts to be more readable, consider COBOL. COBOL attempts to bring programming languages 

closer to natural languages using keywords such as MULTIPLY, GIVING and BY. Consider the solution 

-b + ..)62 - 4ac 
x = ---':2=-a---

of the quadratic equation ax2 + bx + c = 0 written in COBOL21 looks as follows: 

MULTIPLY B BY B GIVING B-SQUARED. 

MULTIPLY 4 BY A GIVING FDUR-A. 

MULTIPLY FDUR-A BY C GIVING FDUR-A-C. 

SUBTRACT FOUR-A-C FROM B-SQUARED GIVING RESULT-l. 

COMPUTE RESULT-2 = RESULT-l ** .5. 

SUBTRACT B FROM RESULT-2 GIVING NUMERATOR. 

MULTIPLY 2 BY A GIVING DENOMINATOR. 

DIVIDE NUMERATOR BY DENOMINATOR GIVING X. 

(2.1) 

The COBOL approacl1 is probably more readable to someone without a background in mathematics. 

However, the mathematic equation is more succinct. Clearly, there is a balance to be struck between 

readability and succinctness which many believe COBOL never managed to successfully achieve. This 

is evident in the presence of humorous attempts to explain the expansion of the acronym COBOL to 

phrases such as "Compiles Only Because Of Luck".22 The concept and importance of succinctness is 

explored in the next section. 

2.3.2 Succinctness 

In addition to being readable, the language should also be succinct. One of the disadvantages of overly 

readable languages is that they tend towards natural language which can often be vague and open to 

interpretation. Consider the language AppleScript, which, in a similar fashion to COBOL, attempts to 

be readable by emulating natural language. For example, here is an AppleScript snippet which fetches 

the first paragraph of a document called 'Read Me' currently open in a text editing application called 

TextEdit23 

teU application "TextEdit" 

get paragraph 1 of document "Read Me" 

end teU 

21lgnorlng (for didactic purposes) the existence of the 'compute' verb which allows: COMPUTE x = (-B + (B •• 2 • (4 • A • Cll 
",5) I (2 • A) 

22 "Each language has its purpose, howe tier humble. Each language expresses the yin and yang of software. Each language 
has its place within the Tao. But do not progmm in Cobol if you can atloid it. " [60J 

23if in fact such a document exists and TextEdit is currently running with it open 
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There are three metaphors represented here: 'talking' to an application, 'describing' a set of informa­

tion and 'getting' that information. However, in this particular context we only really need to scope and 

get the information. The following example written in rb-appscript, a Ruby replacement of AppleScript 

does exactly that: 

app( 'TextEd1t') . documents [ 'Read Me').paragraphs[l).get 

If read in reverse, it is clear that we're getting the first paragraph from the document called 'Read 

Me' from the application called 'TextEdit'. 

A succinct language tends to be conceptually simpler, and typically easier to understand. However, to 

be understood at all it needs to also be readable. If the language is too conceptually simple, then it may 

not be expressive enough. Finally, if the language has no ability to abstract complexity, then complex 

statements will tend to be proportionally as complex as the concept they're trying to represent - limiting 

the language to the complexity that the programmer is capable of manipulating in his or her mind at 

anyone time, or being generated by a tool (which essentially manages the complexity). 

2.4 Ruby 

Ruby [27] is an open source object-oriented programming language. It was created by Yukihiro Mat­

sumoto, *"?>bcl9>~O;S, who designed it to not only make programming easy, but also fun24 [1l2). It is 

a fully object-oriented language, i.e. everything referenced by a variable is an object. This includes nu­

merical values, boolean values, and even true, false and nil. This is unlike languages such as Java which 

offer a hybrid approach consisting of both objects and primitive types2S . 

Ruby inherits features from other languages such as: Lisp, Smalltalk, Perl and CLU. Such features in­

clude blocks (otherwise known as closures), singleton classes, excellent meta-programming(96) support26, 

and strict but dynamic typing27. Ruby supports a programming style commonly referred to as 'Duck 

Typing'28. This is because the interpreter is generally only concerned whether an object responds to a 

particular method, rather than what type it is29 . This can greatly simplify the handling of similar data 

structures, or types of information. 

34Ruby also has fun documentation too [111). 
35Consider the differences between the Java primitive int and the class Integer 
3GIn concept, a program implemented with meta-programming methods is similar to a metacircular evaluator, such as 

the one found in Scheme[2). With a metacircular evaluator the language is implemented with the same language, and with 
meta-programming the program is implemented (in part, or whole) by the same program. 

n All Ruby objects have a type, but the language does not require you to specify types in method signatures or variable 
declarations 

38If it walks like a duck, and quacks like a duck, then it's a duck. 
30This is similar to Gibson's Affordance Theory[4l), where affordance theory states that the world is perceived not only 

In terms of object shapes and spatial relationships but also in terms of object possibilities for action (affordances). 
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2.4.1 ERB 

ERB is a lightweight tempiating system, allowing you to intermix Ruby code and plain text.[I04). It 

breaks its input text into checks of regular text and program fragments. Then it builds a Ruby program 

that, when run, outputs the result text and executes the program fragments. Program fragments are 

enclosed between <'II and '0> markers. 

2.5 Ruby on Rails 

Ruby on Rails[91)[1l3) is a full-stack open source web framework initially written by David Heinemeier 

Hansson , and now maintained by a core team of developers. It provides scripts that set up a skeleton 

framework that provide a working foundation for a project. Two core parts of the Rails framework were 

used extensively for the implementation of the ideas presented within this thesis. These were the database 

object relational mapper Active Record[49) and the Ruby extension library Active Support[50). 

2.5.1 YAML 

YAML30 is a straightforward machine parsable data serialisation format designed for human readability 

and interaction with scripting languages such as Perl and Python and Ruby[59). It allows the represen­

tation of the basic data types common to most high-level scripting language such as lists, hashes and 

scalars. It uses significant whitespace to denote hierarchy and structure31 . 

2.5.2 RSpec 

RSpec[7) is a behaviour driven development framewor~2 for the Ruby programming language. It provides 

programmers with a DSL to describe the behaviour of Ruby code with readable, executable examples 

that guide you in the design process and serve well as both documentation and tests. For an illustration 

of how RSpec can be used to describe the behaviour of a system see Appendix A. 

2.6 Limitations of current practice 

This section aims to introduce and describe the limitations in the current virtual environments. This 

will be achieved by arguing that the main focusses and goals of current virtual environments make 

assumptions that do not hold for all simulation types, and that there are in fact other goals that users 

and systems may need to focus on, such as adaptability. 

30YAML is a recursive acronym for YAML Ain't Markup Language, and when spoken rhymes with camel. 
31 Ken Arnold argues the importance of significant whitespace. He believes that fixing the usage style of a language in 

syntax is a good thing[6]. 
32Behaviour driven development is discussed further in Section 4.3.2.2. 



39 

2.6.1 Assumptions Made 

As introduced in Section 1.1.1, one of the primary challenges for virtual environments is scalability. 

Virtual environment designers have aimed to optimise their designs in order to increase the possible 

number of participants and interactivity between those participants. Their visions have taken a wide 

variety of forms as summarised in Section 2.1.3. These are laudable goals, and indeed there is much 

commercial benefit from massively scaleable virtual environments, particularly in the Massive Multiplayer 

Online Gaming (MMOG) sector. In achieving these goals however, the designers have had to make many 

assumptions about how the system is used and works (as introduced in Section 1.1.2). These assumptions 

are a fundamental part of the optimisation process, and by making their systems more optimised the 

designers aimed to produce an increase in scalability. The major types of assumption can be represented 

with three categories: assumptions of interest, assumptions of capabilities and implicit assumptions. 

2.6.1.1 Assumptions of Interest 

The various interest management techniques introduced and categorised in Section 2.2 are all examples 

of assumptions of interest made in the design stage of a virtual environment. As the intended usage of 

the virtual environment is decided in the design stage, many assumptions on the interests of the user 

and system can be fairly made. For example, in a war simulation it would be fair to say that the users 

are going to be interested in things that can kill them. It may also be fair to say that as war simulations 

attempt to simulate reality the interests should be limited to what it would be realistic to be interested 

in. This would mean that a soldier on the ground would not be allowed to be interested in anything that 

it couldn't see or hear. 

2.6.1.2 Assumptions of Capabilities 

When most virtual environments are designed they are targeted at a particular system or set of systems. 

For example an online multiplayer computer game will ship with a description of the minimum system 

requirements necessary to be able to use the product, other virtual environment implementations such 

as certain bespoke war simulations may be even more restrictive. These restrictions or assumptions of 

capabilities allow the virtual environment designer to make yet more optimisations when implementing 

the system. Examples of the kinds of assumptions a designer may make are the following: 

• a minimum network bandwidth 

• processor speed 

• available RAM 

• input capabilities 
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• output capabilities 

• the availability of audio, graphic or physics accelerator cards 

For example, the Macintosh version of World of Warcraft has the following minimum set of specifi­

cations: 

• OS X 10.3.5 

• 933 MHz or higher G4 or G5 processor 

• 512 MB RAM or higher 

• DDR RAM recommended 

• ATI or NVIDIA video hardware with 32 MB VRAM or more 

• 4 GB or more of available hard drive space 

• 56k or higher modem with an Internet connection 

2.6.1.3 Implicit Assumptions 

As introduced in Sections 2.6.1.1 and 2.6.1.2, assumptions are made both over the user's interest and the 

system capabilities. These are clear and obvious design decisions, and the fact that there are a variety of 

interest types (see Section 2.2.4) and target systems indicates the possibility that there may not be one 

general solution. This issue is further backed when we consider that all of the design assumptions made 

are all in terms of some implicit assumptions. These implicit assumptions are hidden in the simulation 

definitions and generally fit under the banner that the user wants optimal performance and increased 

realism. Examples of implicit assumptions are as follows: 

More Frequent World Updates If the world is extremely dynamic with many events per unit of 

time, then as many of the updates as possible should be sent to the client. The aim being that the 

client's view be as dynamic as the representation of the world in the server. 

More Detailed Worlds Where the world offers a choice in detail or Level of Detail (LOD) the client 

wants the highest available detail for each artefact. 

More Artefacts Visible at any one Moment The maximum number of artefacts capable of being 

displayed should be as high as possible. With a greater number of artefacts visible, the granularity 

of the system can be reduced and therefore provide a potential increase of realism (given the 

assumption that the simulation is attempting to simulate a world with a large number of small 

particles such as ours, rather than a world with a small number of large particles). 
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Greater Responsiveness The amount of time taken for users to be aware of events needs to be as 

small as possible. 

No Network Bandwidth Wasted The system should make full use of the network bandwidth, on 

the assumption that idle or underused bandwidth means that the client's view is not as frequently 

updated, detailed, rich or responsive as it could be. These are again implicit assumptions of what 

the client wants. 

2.6.2 Problems with Assumptions 

Assumptions are only a good thing as long as they continue to hold true. If an assumption is no longer 

valid then it can actually reduced the effectiveness of the system if no assumptions had been made. To 

help understand this concept it is useful to take a quick look the association between assumptions and 

interests, and then a discussion of why interests may change. 

2.6.2.1 Assumptions and Interests 

So far, the distinction between assumptions and interests hasn't been very clear. The concept of Interest 

Management was defined in Section 2.2.2, and then in Section 2.2.1 the motivations were discussed. 

Interest Management as defined then has many similarities with assumptions of interest (as introduced 

in Section 2.6.1.1). So what of the other assumptions: 

• assumptions of capabilities (Section 2.6.1.2) 

• implicit assumptions (Section 2.6.1.3) 

How do these assumptions relate to our definition and motivations of Interest Management? The 

answer to this question is rather subtle and requires a closer and more detailed look at the earlier 

definitions of Interest Management and assumptions. When Interest Management was introduced in 

Section 2.2.2, it was defined as an algorithm or set of algorithms that reduce the set of all world artefacts 

and events to a smaller more interesting set, the motivation being that if all objects and events were visible 

to the client then there would be a serious impact on the scalability of the system. Assumptions were 

introduced in Section 2.6.1 as design decisions made in the early stages of a virtual environment. An initial 

interpretation of these definitions may indicate that interests are driven by the user, and assumptions are 

driven by the system. For example, MASSIVE 1 's interest options are actively and explicitly manipulated 

by the user of the system. However, when these two concepts are looked at in tenns of scalability 

their definitions seem to be reversed, for the assumptions are mostly the goals of the user (the implicit 

assumptions) limited by the capabilities of the user (assumptions of capabilities), and the interests are 

the optimisation techniques used to deliver those goals. In terms of implementation, assumptions and 
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interests are identical in all of the current virtual environments. They are either implemented as hard­

coded rules, or hardware. Essentially they are both static. If, however, we view the concept of interest 

as user-driven it might therefore be dangerous to assume that a user's interest would never change. 

Similarly, it may be very restrictive to assume that the system capabilities never change. 

2.6.2.2 Changes in Interest 

As suggested at the end of Section 2.6.2.1, when we consider that interests could be created by the user 

it would be dangerous to assume that those interests will not change. In addition, we might want to 

consider the possibilities that present themselves if interests were allowed to change, and what situations 

may require a change in interests. Examples of situations that may require a change in interests are: 

Rules Change It might be strange to consider virtual environments as having rules, but whether ex­

plicit or implicit, they do exist. Explicit rules are be found in the form of game rules, such as 

those found in online multiplayer virtual environments. Implicit rules are those that are required 

for the virtual environment to simulate reality. Examples of implicit rules are: artefacts in a view­

ing frustum must be visible (simulating sight), items behind opaque artefacts must not be visible 

(simulating line of sight), artefacts not resting on another artefact must fall until it reaches an 

artefact below it (simulating gravity). Not all virtual environments have a set of rules that are 

static for their entire duration. Some virtual environments have a number of phases that may have 

an entirely different set of rules. It may therefore be impossible to create a generic set of interests 

that cover all of the rules of all of the phases at once. There may also be virtual environments where 

the rules are generated dynamically as the virtual environment progresses, and therefore there is 

no way that all of the rules of the game can be determined and defined at the start. 

Tactics Change There are many reasons why the tactics used in a virtual environment may change, 

this may be due to a change of rules, due to a new understanding of the opponent, etc. 

Players Change The number of players of a particular virtual environment may be dynamic; people 

may enter and leave a game. The number of players, or the existence of a particular player or set 

of players may have an effect on interest. 

Resources Change The interests may want to be coupled with the capabilities or resources of a system. 

If the resource capabilities aren't very high, then the tactics that might be employed to deal with 

this may vary. For example, if a user has a poor graphics card and small network bandwidth, then 

they may either be sent low resolution models, have fewer models visible at once, or a mixture of 

both these options. 

Heterogeneous Interests Not all users of the system may have the same interests. Maybe not all 

users are subjected to the same set of rules, and maybe they do not all want to employ the same 
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tactics. Not all users may have the same resource capabilities, therefore causing these interests to 

be different. 

2.6.3 Proposed Solution to Interest Management 

Static interests or assumptions (however they may be defined) are not always a good thing. Minson and 

Theodoropoulos[84] also argue that it is also possible that interests could be defined automatically at 

run-time. Macedonia and Zyda[74] define views of the virtual environment as either synchronous (where 

everyone sees the same) or asynchronous (where users have individual control over when and what they 

can see). Antunes et al.[4] argue that there are situations where different interest management policies 

could be more useful than one static policy. They also argue that an interest management solution must 

support the following abilities: 

• the ability to define interests, 

• the ability to support different interest management policies. 

Section 2.6.2.2 has shown us that interests may change, and assumptions made early on may no longer 

be valid. In order to tackle these issues we need a system that can cope with changing interests and goals, 

and one where fewer assumptions have to be made. This would therefore create a more adaptable system. 

The solution is a dynamic interest management technique, which is not only able to cater for user's 

interests, but also those of the system. This technique needs to be able to represent static interest 

management techniques as introduced in Section 2.2.3, and allow the interests to change during the 

lifetime of the system: at runtime if possible. This technique needs to also be capable of reasoning about 

resources and to cater for interests of adaptability. 

However, before we can achieve this, we need to establish these goals and possible solutions in the 

context of the term virtual environment. Section 2.1.1.3 introduced the following definition: 

'A region, constructed by software, containing artefacts, which themselves possess attributes' 

This definition, although sound, is extremely generic. It would be very difficult to reason about 

interest management within the scope of this definition: doing so would require the definition of a lot of 

concepts that would commonly be associated with virtual environments such as events, and time. Section 

3.1 develops this definition of virtual environments further, and Section 3.2 shows us how we can define 

interest statements to support the management of dynamic interests. 
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Chapter 3 

A Framework for Dynamic Interest 
Management 

As discussed in Chapter 2, interest management is used in different ways within virtual environments. 

The main purpose, however, has been to improve scalability. Section 2.6 discussed the limitations of static 

interest management techniques, and Section 2.6.3 proposed dynamic interest management as a solution 

to some of those limitations. This chapter will expand on the concept of dynamic interest management. 

Section 3.1 will expand upon the definition of interest management proposed in Section 2.1.1.3, and 

introduce a conceptual model for virtual environments. This conceptual model will serve as the foundation 

for further discussion of interest, interest management, and, of course, dynamic interest management. 

Section 3.2 discusses the definition of statements which represent interest, Section 3.3 introduces some 

example interest statements, and finally 3.4 introduces issues raised when interests need to be constrained, 

and when they conflict with other interests. 

3.1 A Conceptual Model for Virtual Environments 

Virtual environments themselves can be seen as models in their own right. They contain a set of variables, 

or artefacts, and describe the set of quantitative and logical relationships between them. For example, 

consider a model of warfare such as NPSNET[73]. Such a model would describe a number of typical 

artefacts involved in warfare: buildings, tanks, planes, artillery, armaments, etc. It would also describe a 

number of possible interactions between these artefacts: a tank may destroy a building, a plane may bomb 

a tanks, etc. Through this model, the users would be able to reason about general concepts pertaining 

to warfare such as skills, tactics, and teamwork. This Section, however, is not concerned with the notion 

of virtual environments being models, but is concerned with defining a more general model of virtual 

environments. 

Although a number of taxonomies of virtual environments already exist[74][23], it is hard to find a 

pure definition, or conceptual model of a virtual environment. This section aims to create an abstract 

definition, or model of a virtual environment for the purpose of reasoning about interest and dynamic 
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interests. Using this model, it will be possible to conceptualise interest within the context of a virtual 

environment, and then evaluate the feasibility of representing different types of interest within the model. 

Section 3.1.1 will explore the motivations of creating a conceptual model of a virtual environment, 

and Section 3.1.2 will introduce the axioms, or underlying propositions, on top of which the conceptual 

model can be built. 

3.1.1 Motivations 

A model is a theoretical construct that represents a particular viewpoint or perspective of a concept. It 

is created with the purpose of reasoning about a particular set of qualities and relationships pertaining 

to that concept. When designing a model it is important to know the motivations of the model, and 

therefore which qualities or relationships you wish to reason about. 

The model presented in this chapter has three main motivations: to reason about interest, to be a 

model of other virtual environments, and to be implementable. These motivations will be explored in 

the following Sections (3.1.1.1, 3.1.1.2, and 3.1.1.3). 

3.1.1.1 To Reason About Interest 

The primary purpose of this model is to be able to reason about interests. It is therefore necessary for 

the model to represent what we want to be interested in, and how we define whether we're interested. 

3.1.1.1.1 What: Artefacts It is important that the model defines the units that can be reasoned 

about in terms of interest. These units shall be described as the artefacts within the virtual environment. 

In this context, the term artefact has the following definition: 

artefact, n. and a. 

A. n. Anything made by human art and workmanship; an artificial product. [61) 

In using the term artefact, we will also draw a distinction from the term object found in object­

oriented programming. Artefacts are described in greater detail in Section 3.1.2.2. 

3.1.1.1.2 How: Interest Statements Given the definition of artefacts within our virtual environ­

ment, we need to have the ability to create statements which describe which of the available artefacts we 

are interested in. In order to achieve this we need to have a method or set of methods with which we can 

distinguish artefacts from other artefacts. Section 3.1.2.2 describes how artefacts consist of one or more 

attributes which have values which can be compared with the values of other artefact attributes. Using 

the presence, absence or value of artefact attributes we can describe the difference between artefacts. 

This affords us with the ability to describe the difference between the artefacts we are interested in, 
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a.nd the artefacts we're not interested in. These descriptions are interest statements and are described in 

greater detail in Section 3.2. 

3.1.1.2 To be a Model of other Virtual Environments 

The model does not just need to reason about interest in general (as described in Section 3.1.1.1), it 

needs to reason about interest in the context of virtual environments (as defined by the range introduced 

in Section 2.1.3). The model therefore needs to be a model of virtual environments in addition to being 

a model of interest. 

Virtual environments are more than a collection of artefacts with attributes. For example, virtual 

environments may change over time: artefacts may enter or leave, the values of artefact attributes may 

change. Also, information needs to flow between users and the system: users may interact with or directly 

influence artefacts, and may want to experience various aspects of the environment. The model therefore 

also requires the ability to reflect upon characteristics such as these. 

3.1.1.3 To be Verifiable 

In order to evaluate the claims this thesis makes with respect to dynamic interest management, the 

model needs to be verifiable. Verification in this case will be achieved by two methods. Firstly the model 

will be reasoned about, using the introduced set notation. Secondly, the model will be implemented (as 

discussed in Chapter 4). Using this implementation, data will be generated and evaluated by applying 

the implementation to a series of case studies. 

3.1.2 Axioms 

This section aims to describe the underlying propositions on top of which the conceptual model of a virtual 

environment can be built. Section 2.1.1.3 introduces the following definition for virtual environments: 

'A region, constructed by software, containing artefacts, which themselves possess attributes' 

From this definition we can determine that a virtual environment contains attributes and artefacts. 

Given that one of the motivations of interest management is to communication, we can also infer that 

virtual environments also contain events (the messages to communicate), processes (chains of events) 

a.nd time (a temporal separator for the events). Therefore, at its most basic level an implementation of 

a typical virtual environment consists of attributes, artefacts, time, events and processes. 

3.1.2.1 Attributes 

An attribute is a named value. Each attribute belongs to a particular data type, and each data type has 

a set of possible values. For example, an attribute may be called a, the type may be called integer, and 
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the set of all possible values is the set of all integers (2:). 

There should be a set of relationships between values of the same type such that two values can be 

compared. For example, with integers, the relationships are <, > and =. 

3.1.2.2 Artefacts 

Also commonly called objects, artefacts are the individual units of the virtual environment; a virtual 

environment consists of one or more artefacts, and each artefact consists of one or more attributes[1l4]. 

For example a simple artefact may have the following attributes: 

• A unique identifier, 

• colour, 

• x co-ordinate, 

• y co-ordinate, 

• z co-ordinate, 

• geometric description. 

The state of an artefact is the value of its attributes at a particular point in time in the system. 

3.1.2.3 Events 

An event is a change in the state of the system. This is essentially an alteration of one or more attributes 

of one or more artefacts at a particular time (discussed in Section 3.1.2.4). These alterations must appear 

to occur simultaneously, i.e. occur in the same logical time unit. Some examples of events are: 

A button is pressed this may alter the colour attribute of the artefact. 

An artefact moves this event may alter the artefact's x, y and z co-ordinate attributes. 

Events may also describe the addition or removal of information within a virtual environment. This 

includes adding or removing attributes from artefacts, and adding or removing artefacts from the virtual 

environment. In a similar approach to that proposed by Hosseini et al.[52]' it is assumed that these events 

are transmitted via a different channel to any other kind of message (i.e. visual data, voice communication 

etc.) 

3.1.2.4 Time 

In this model, time can be seen as a relationship between two events which orders them chronologically. 

On a simplistic level, this can be represented as a global number, and each event being associated 
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wi th a number. The ordering is then reduced to a numerical ordering relationship between the numbers 

associated with each event , or that of t he global number. 

3.1.2.5 Processes 

Processes trigger events. The life of a process may span mul t iple ti me units unlike an event which i 

only active between time units, i.e. they happen instantaneously or in zero time. A proce may be een 

as a logical grouping of events tha t are inte r-linked through a part icular relationship. Some exampl of 

processes a re: 

A lift is called and moves between floors this process may have been triggered by an event uch 

as the lift button being pressed . It might create subseq uent events t hat cause the lift to move to 

the appropriate Roor, as well as the appropriate lights turning on at the appropriate tim . 

A person stands up this process may cause the artefacts t hat construct t he per on (the feet, leg , 

torso, a rms etc) to initia te a movement , composed of mul t iple event, t hat pan a number of time 

units resulting in an animation that imitates a real person tandi ng up. 

3.1.3 Users 

So far, our conceptua l model has consi ted of abstract concept which are internal to th virtual environ-

ment. In order for the virtua l environment to have any relevance or use to our own external environment, 

then there must exist the ability for entities from an externa l environment to interact with t he model. 

S ction 3.1.4 wi ll discuss the notion of interaction, and this sect ion will focus on t hese external entiti . 

o 

Virtual Environment 

o an artefact 

Figure 3. 1: An Externa l Entity or User 
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Entities external to the environment are called users. Typically a user is associated with an artefact, 

and such an artefact which has a direct association with a user is commonly called an avatar. For 

example, Oliveira[31) and Fuhrer et aJ.[38) define an avatar as a representation of a user in a virtual 

world. However, users are not always associated with artefacts, especially if the user is an anonymous 

observer or spectator in the virtual environment. There is typically a distinction made between dynamic 

entities (avatars) and static entities (artefacts)[5). 

Figure 3.1 shows the relationship between the virtual environment and a user. As can be seen, the user 

(Ul) exists externally from the virtual environment. One of the artefacts within the virtual environment 

may be associated with the user. For example, the user (U1 ) may be controlling the artefact D, in which 

case we can say that D is Ul'S avatar. 

3.1.4 Interaction 

In Section 3.1.3, we suggested that a user may be associated with an artefact. It is interesting to consider 

how that association occurs. 

In the context of this conceptual model, when considering interaction, we only need to consider events. 

This is because time is not interactive (Le. you cannot change its course), artefacts are just pure state, 

and therefore provide no means for interaction, and processes themselves are simply generated sets of 

events which can only be created by events. 

Events in the real world may be directly mapped onto events in the virtual environment. Examples of 

these real world events acting as triggers are keyboard strokes, joystick movements, or motion detector 

sensors attached to real people. The ratio of these mapped events to processes describes how simulated 

the virtual environment is. For example, if each event in the virtual environment was mapped to a real 

world event, and there were no processes in the virtual environment, then this can be said to be very 

realistic. On the other hand, if we have only one event - a start event, and the rest of the events in the 

system were created by processes, then this can be said to be entirely simulated. The level of simulation 

of a virtual environment should be decided in the design phase, and is tightly coupled to its usage. 

3.2 Defining Interest Statements 

As introduced in Section 3.1.2.2, artefacts are the things that virtually exist within a virtual environment. 

Artefacts are the things we can be interested in: the cars, the people, the lifts, the buildings, the items 

that populate virtual worlds. Interest statements should reason about artefacts: we want to be able to 

describe the set of all artefacts that are interesting to us. 

Our goal is to create a mechanism that allows us to reduce the set of all world artefacts to some 

definable subset (as shown in Figure 3.2). The statement which defines this subset is called an interest 
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statement . In order to create such a stateme, it is necessary to have the language to describe it. et theory 

is t he perfect candidate for such a language. Set theory is one of the true foundations of mathematics, 

and can be used to formalise a ll mathematical concepts. It is sufficiently universal to formalise the notion 

of interest for our conceptual model. Section 3.2.1 introduces such a formalisation. 

All World Artefacts ('U) 

Figure 3.2: Interest ing Artefacts 

3.2.1 An Intensional Definition of Interest 

One of the requirements of an interest management system is the abi li ty to de cribe ub et of th 

set of a ll world artefac ts. In order to understand this concept in great r detail, consider the following 

assumptions: 

There exists a set of all world artefacts: U . (3.1 ) 

There exists a set of interest ing artefacts: T. (3.2) 

The et of interesting artefacts is a subset of the set of all world artefact : 

(3.3) 

The et of interesting artefact, I, can be intensionally defined as: 

T= {x EU: ll{x)} (3.4) 

\Vh I'e th condition ll, denotes interest. Section 3.2.2 wi ll expand on the concept of interest conditions. 
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3.2.2 Interest Conditions 

H(x) is an inte rest condition, which is analogous to an interest statement as introd uced in Section 3.1.1.1.2. 

H(x) is essentia lly a test which will indicate whether or not an artefact (x) is interesting to us. For examples 

of such tests, consider the definitions of IT(x) in Table 3. 1, and t heir correspondi ng illustrations in Figure 

3.3: 

Table 3.1: Example Interest Condi t ions 

IT (x) D escription of Set {x E U : H(x)} Grey Items in Figure 3 .3 

,., 
I": '''I .. 't.r 

x is a square the set of artefacts that are squares (a) 

x is dotted the set of artefacts that are dot ted (b) 

D 
o 0 "" 

O 1' ..... .. , D 
I ! o , ....... 1 0 
(a) 

D o / .... '. 
O\ .. <"" .. ~ D I , o L .... ' 0 

(b) 

Figure 3.3: Interes ting Artefacts 

D 
..... '" o ( .. ··'·· 0 

0 ·· .. ··· .... · .. , D 

D r.", 
o 0 "'" I o 

o 
o o l._ ! 0 

o !"· .... 1 D o l.. ..... 1 0 

\,-,,,: 

(a) (b) (c) 

Figure 3.4: More Interest ing Artefacts 
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3.2.3 Combining Interest Conditions 

The construction of I does not have to consist of just one interest statement as Section 3.2.1 might 

suggest. Multiple conditions may be used connected with the standard logic operators as presented in 

Table 3.2. 

Table 3.2: The Standard Logical Operators 

Operator Symbol 

And A 

Or V 

Not 

If we define the following conditions: 

A(x) = x is a square 

lB(x) = x is dotted 

It is then possible to combine them using logical operators as presented in Table 3.3. 

Table 3.3: Combining Interest Statements with Logical Operators 

Condition Description of Set Grey Items in 
Figure 3.4 

the set of all dotted arte- (a) 
facts and all artefacts that 
are squares 

lB(x) V A(x) the set of all dotted squares (b) 

18(x) A ...,A(x) the set of all dotted artefacts (c) 
that are not squares 

3.2.4 Auxiliary Sets for Interest Conditions 

(3.5) 

(3.6) 

Section 3.2.3 introduced the notion of creating complex interest conditions by combining simpler con­

ditions with the standard logic operators. The examples shown were simple for pedagogic purposes, 

however, it is possible that these conditions can become extremely complex in certain circumstances. 

For example, if we briefly return to the example of a military simulation, a seemingly simple interest 

statement such as "I'm interested in enemy soldiers" could turn out to be extremely complicated. We 

might have to start considering combining conditions such as "in line 0/ sight", and "in range of", etc. 
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And, of course, a statement such as "in line of sight" is itself not trivial, especially when we are reasoning 

at the level of artefact attributes. 

Complicated conditions are difficult to write, and it would be easy to unknowingly inject errors. We 

need to have the ability to abstract away from the level of artefact attributes, thus giving us the ability to 

reason in terms of high-level concepts such as "in line of sight", and "in range o/". This would allow us to 

create conditions such as "1 am interested in artefacts that are both in line of sight and within range" This 

section explores the possibility of creating useful sets of artefacts specifically for this purpose. Section 

3.2.4.1 will introduce the concept of creating sets of artefacts using the information within the virtual 

environment, and Section 3.2.4.2 will talk about creating supplementary sets of artefacts which add new 

information into the environment. Section 3.2.4.3 will introduce spatial sets as a specific example of 

auxiliary sets. 

3.2.4.1 Derived Sets 

In Section 3.2.1 we introduced two example interest conditions: the set of artefacts that are squares, and 

the set of artefacts that are dotted. We showed how these conditions could be used to construct values 

of I, the set of interesting artefacts. However, we could use also these conditions to define a particular 

type of auxiliary set which is generated using the the condition Jl)(x), a derived set. A derived set is a 

defined subset of U, the set of all world artefacts. Consider the derived sets presented in Table 3.4. 

Table 3.4: Derived Sets 

Derived Set Jl)(x) 
SQUARES X is a square 

DOTTED x is dotted 

In Section 3.2.3 we described combinational conditions such as (x is dotted) V (x is a square). Using 

the derived sets introduced above, we could rewrite our condition as follows: (x E DOTTED) U (x E SQUARES). 

Derived sets can be combined with the following standard set operators: 

The following illustrates the mapping between conditions using combinations, and conditions using 

derived sets as presented in Table 3.6. 

Derived sets provide a mechanism for abstracting away from the level of artefact attributes. They 

can be seen as re-usable building blocks for constructing interest conditions. 

3.2.4.2 Supplementary Sets 

Section 3.2.4.1 described the two sets SQUARES and DOTTED which were derived from information obtained 

from current artefact attributes. In addition to deriving sets as described in Section 3.2.4.1, it is also 
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Table 3.5: The Standard Set Operators 

Operator Symbol 
InterSection n 

Union U 

Superset 2 
Subset ~ 

Proper Superset :::> 

Proper Subset C 

Member of E 

Not a Member of ¢. 

Table 3.6: The Mapping between Condition Combinations and Derived Sets 

ll(x) using combined conditions 

(x is dotted V (x is a square) 

(x is dotted) 1\ (x is a square) 

(x is dotted) 1\ (x is not a square) 

ll(x) using derived sets 

(x E OOTIEO) U (x E SQUARES) 

(x E OOTIEO) n (x E SQUARES) 

(x E OOTIEO) n (x ¢. SQUARES) 

useful to inject information through the inclusion of supplementary sets. 

Supplementary sets are sets of virtual artefacts which can be used within the construction of interest 

conditions. In order to further understand virtual artefacts, consider the concept of locales as introduced 

in Section 2.2.4.2. Locales can be seen to be artefacts that represent a region within the virtual environ­

ment. As this artefact does not actually 'exist' it is defined as a virtual artefact. If we assume we have a 

supplementary set of locales, LOCALES, we could create interest conditions such as the following: 

ll(x) = x is within any of the locales within the set LOCALES (3.7) 

Where the relationship "within" is further defined in Section 3.2.4.3. Supplementary sets provide a 

mechanism for inserting artefacts into the virtual environment specifically for the purpose of reasoning 

about interest. The virtual artefacts within supplementary sets contain state which is preserved, rather 

than state which is derived. These artefacts wouldn't be explicitly visible, or available for interaction 

within the virtual environment, however their presence may be detectable through implicit means. The 

concept of virtual artefacts is similar to NPSNET's concept of ghost artefacts[72J. 

3.2.4.3 An Example: Spatial Sets 

Derived and supplementary sets provide useful building blocks for constructing interest conditions. Sec­

tion 3.2.4.2 introduced locales as one use of supplementary sets. Locales can also be described using 

derived sets. This section will expand upon the concept of locales and spatial sets in order to further 
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ill ustrate t he usefulness of derived and supplementary sets. We will also see that derived and upplemen­

tary sets a re not entirely orthogonal concepts , and discuss any si milarities found . 

Figure 3.5 shows a simple virtual environment separated into nine spatial areas (A' . .!' ) which are 

represented as virtual artefac ts. Each of these areas can be used to define a set of artefact - the set of 

artefacts within each area. The derived set of artefacts representing the set of all artefacts within A' can 

be intensionally written as follows: 

WITHIN -A = {x E U : x is within A'} (3. ) 

Clearl y, the set WITHIN -A contains artefact 1, however, whether it a lso contains artefact 4 not 0 

clear. For the answer to this problem it is necessary to clarify the defini t ion of the term "within". T here 

are a number of ways of clarifying this. For example, we cou ld say an artefac t is only wi thin an area if it 

is entirely contained within the boundaries of the area, e.g. a rtefact 1 is ent irely wi th in t he boundari 

of area Ai Another opt ion would be to define the midpoint for an a rtefa t , and t h n calculate t he co-

ordinates of that midpoint . As long as we assume that we can a lways determine whether a co-ordi nate 

lies within an area or not, then there are no issues of uncertainty. Neither of t he two option are correct., 

and indeed there are more methods available. An appropria te definition for the ci rcumstances mu t be 

defined by the designers, within the context of the virtual environment . 

Examples of spatial operators are presented in Table 3.7. 

8 ' C' 

: 1 : 

~--~~ 8 ~4-~~~----r---------~ 
G' H' /' 

10 

Figure 3.5: Spatial Sets wi t hin a Virtual Environment 

It is important to consid r t hat the spatia l sets do not necessarily have to be uniform, or tessellate, 

r even cover the entire vi rtual nvironment as Figure 3.5 suggests. , in t hi case, they are repre ented 
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Table 3.7: Spatial Operators 

Operator Description 
DISJOINT the boundaries and interiors do not intersect 

TOUCH the boundaries intersect but the interiors do not intersect 

OVERLAPBDYDISJOINT the interior of one object intersects the boundary and interior of 
the other object, but the two boundaries do not intersect. This 
relationship occurs, for example, when a line originates outside a 
polygon and ends inside that polygon 

OVERLAPBDYINTERSECT the boundaries and interiors of the two objects intersect 

EQUAL the two objects have the same boundary and interior 

CONTAINS the interior and boundary of one object is completely contained in 
the interior of the other object 

COVERS the interior of one object is completely contained in the interior of 
the other object and their boundaries intersect 

INSIDE the opposite of CONTAINS. A INSIDE B implies B CONTAINS 
A 

COVEREDBY the opposite of COVERS. A COVERED BY B implies B COVERS 
A 

ON the interior and boundary of one object is on the boundary of the 
other object (and the second object covers the first object). This 
relationship occurs, for example, when a line is on the boundary of 
a polygon 

ANYINTERACT the objects are non-disjoint 
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using vi rt ual a rtefacts, they can be of any shape and in any position. Figure 3.6 illustrates this. 

Cl~D 
5 

: 10 

Figure 3.6: spatial Sets can be of any shape or orientation 

spat ia l sets are usefu l for a variety of purposes. T hey can be u ed to repr ent areas or locales wit hin 

a virtual environment . They can also be used to define viewing frust ums, artefact auras, and focii. The e 

are all areas which may be associated with particular artefacts. For example, in Figure 3.6, patial et 

8 ' may represent the viewing frustum for artefact 6. Virtua l a rtefacts a re si milar to t he concept of the 

parallel virtual world introduced by Oliveira for the VELVET system[32]. 

As we have seen, spat ial sets can be created using a combination of derived sets and upplem ntary 

sets. However it is possible to recreate certain aspects of supplementary sets u ing derived et . For 

example, it would be possible to describe the spatial sets within Figure 3.5 t hrough the defi nition of the 

derived set , i.e. t he definition of set A' would be included within the intensional definition of WITH IN-A 

rath I' than relying on the existence of a supplementary artefact representing A'. \"' here there is the 

choice of using derived or supplementary sets to define the condition, care should be taken to choo e the 

most appropriate type in terms of the context of the decision. 

3.2.5 Relative Interests 

So fM, we have only really considered interest from a global perspective. As introduced in Section 3.1.3, 

ext.ernal u rs a re often associated with an artefact within the virtual environment. If this is the case, 

then the user may wi h to have an interest which is relat ive to an associated ar tefa t_ 

on id r that there exists an artefact or avatar a which may be associated with a particular u er. 

Our ond ition may t h n take in two parameters: x bei ng t he artefact the user wishes to determine the 

int r st of, and a the artefa 1; our int re t is relative to . Our interest condition can therefore be written 
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88 I(x, a), and the set builder for interest relative to artefacts is: 

I(a) = {x E U : I(x, a)} (3.9) 

Given the presence of a in our interest condition, we can use it to define some useful spatial sets 

relative to artefacts such as those presented in Table 3.8. 

Table 3.8: Useful Spatial Sets 

Set Condition: lP(x, a) Description of set 
AURA x is in the area which is defined An area which bounds the pres-

by a circle of radius 10 which is ence of an artefact 
centred around a 

NIMBUS x is the area which is defined by An area which represents how vis-
a circle of radius 30 which is cen- ible a given artefact is to other 
tred around a artefacts 

FOCUS x is a cone which is defined by An area which represents the 
a radius of 10 and a height of 30, range of visibility of a given arte-
the tip of which is centred around fact in order to see other artefacts 
a 

3.3 Example Interest Statements 

This section aims to provide some general interest statements using the model introduced in this chapter. 

The aim is to illustrate that the interest management model can represent the range of interest man­

agement techniques categorised in Section 2.2.4. Implementations of these will be discussed in Chapter 

4. 

3.3.1 Locales 

As introduced in Section 2.2.4.2, locales are spatial regions within spatial virtual environments. Given 

that the virtual environment is spatial, each artefact will have associated co-ordinate attributes. Using 

these co-ordinates it is possible to determine whether a particular artefact is within a particular locale. 

As we saw in Section 3.2.4.3, it is possible to use these locales to reason about the interest of a particular 

artefact using set builders such as the one described in Equation 3.8, and repeated here: 

I = {x E U: x is within A'} (3.10) 
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3.3.2 Relative Locales 

As introduced in Section 2.2.3.7, and further described in Section 3.2.5, locales (and interests in general) 

may be relative to a particular artefact. An example of this is a viewing frustum: a locale (typically 

represented by a sphere, or cone) which represents the area that an associated artefact can see. Again, 

this viewing frustum could be represented using a virtual artefact, and the set builder for an interest 

represented with relative locales is : 

Z = {x E U : x is within A' /\ A' is associated with a} (3.11) 

3.3.3 Interacting Locales 

As introduced in Section 2.2.4.3, the interaction of locales can be used to reason about interest. For 

example, when an artefact A's aura collides with artefact B's aura, artefact A can be said to be aware 

of artefact B. 

Z(a) = {x E U : the aura associated with a overlaps the aura associated with x} (3.12) 

Equation 3.12 can be more generally stated as the following: 

Z(a) = {x E U : the locale associated with a interacts with the locale associated with x} (3.13) 

where the interaction relationships are the standard spatial set relationshipsi: within, contains, over-

laps, and touches[93]. 

3.3.4 Categories 

As introduced in Section 2.2.4.1, using a class-based system to categorise the virtual environment is an 

easy way to reason about interest. Section 3.2.4.1 introduced the concept of derived auxiliary sets, which 

is essentially a mechanism for creating classes of artefacts. For example, we could create an auxiliary set 

which is derived by looking at the colour attribute of all artefacts, and selecting the ones that are red 

(all red artefacts), and use that set within our set builder: 

Z = {x E U : x E CATEGORY} (3.14) 

where CATEGORY represents any derived auxiliary set. 

1 Note that the spatial model introduced in the MASSIVE systems doesn't typically use standard spatial set relationships 
such as overlap e.g. sample field. 
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3.3.5 Combinations 

A benefit of this approach is that the techniques described above can be combined in arbitrary ways to 

create more complex expressions. For example,if we want to be interested in all red artefacts that are 

within our viewing frustum: 

I{a) = {x E U : (x E RED) A (x is within A') A (A' is the viewing frustum of an (3.15) 

Describing interests using the conceptual model in this way gives us a more flexible mechanism for 

representing interest within virtual environments than previously possible. 

3.4 Constraints and Conflicts 

So far, this chapter has introduced and described interest statements. The motivation for these interest 

statements being the ability to have a flexible way of representing interest. However, this flexibility has 

a potential to interfere with the purpose of the environment. In Section 2.1.3 we introduced the range 

of current virtual environment applications. Each of these applications has a purpose, and each of those 

purposes may impose one or more constraints on the choice of interest. This section will explore this in 

greater detail. 

Section 3.4.1 will introduce the concept of constraints on interests for specific virtual environments. 

These constraints will be introduced with relevant examples, and solutions will be given. 

3.4.1 Interests for Specific Virtual Environments 

When virtual environments are designed and implemented, it is usually for a specific purpose, for example: 

collaboration, simulation, or research. This section looks at the potential constraints that a virtual 

environment may place on interest, and conflicts that may occur between the users interest and that of 

the environment. 

3.4.1.1 Relative Visibility 

If we assume that each user has control of their interests, then the visibility of the artefacts is relative 

to each user. This means that each user may have a different view of the same set of artefacts or scene, 

which could lead to potential problems. For example, an interest in cups, and not tables may lead to a 

view of cups seemingly floating in the air. This is further illustrated in Figure 3.7. Figure 3.7{a) shows 

a simple virtual environment with 6 users. We are only concerned with the users A and B. User A is 

interested in all users that aren't dotted, user B is interested in all users within the virtual artefact V'. 

Figure 3.7(b) shows the artefacts that are within user A's interest set, Figure 3.7{c) shows the artefacts 
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which are within user B 's interest set . As we can see from the ill ustrat ions, user B can see user A, but 

user A cannot see user B . In t his case, visibility is not a commutative relationship. IT the goal of the 

virtual environment is to facilita te communication between nearby users, t hen this situation clearly poses 

a problem: user A cannot see user B to know that there's someone to communicate with. The concept of 

relative visibility is similar to the degree of blindness concept introduced by Oliveira and Georganas[32J . 

(a) 

3.4.1.2 Constraints 

A 

(b) 

f 
f 

Figure 3.7: Relative Visibili ty 

(cJ 

The specific purpose of the virtual environment will introduce constraints on what should and should 

not be interesting. As we saw in Section 3.4.1.1 , the interest of user A in Figure 3.7 conAicted with 

the purpose of the environment. Also, consider the situation of the virtual environment bei ng a war 

simulation. If the user is a soldier on the ground , then the user needs to be interested with everything 

within line of sight. Alternatively, if the virtual environment is a virtual lecture, and the user is a member 

of the audience, then the user needs to be interes ted with the speaker. 

Figure 3.8 illustra tes two virtual artefacts , A' and B' which repre ent t he viewi ng fru t um of u er 

A and B respectively. 

th
) 

-~r 
8 A' 

A 

(a) 

<tJ
(~~--

8 ' A 

(b) 

Figure 3.8: Constraints Int roduced 

U ing Lhe Lwo virtual artefact A' and B ' int roduced in Figure 3.8, it is possible to rewri te the inter 
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statements of users A and B as presented in Table 3.9. 

Table 3.9: Deali ng with Constraints 

User Previous Interest H(x) Updated Interest H(x) 

A -, x is dotted -, x is dotted V x is within AI 

B -, x is within VI -, x is wi t hin VI V x is within BI 

Figure 3.9 illustra tes the effects of interest using t he new updated interests. F igure 3.9(a) show all 

the artefacts, Figure 3.9(b) shows the interests of user A which now include user B , and fi nally, Figure 

3.9(c) shows the interests of user B which are unchanged . 

I") I') f (") 

f 0 t- f '-~.--
f 

-'t 
B 

f o f A fA oCt A 

V' 

(a) (b) (e) 

Figure 3.9: Updated Interests for Users A and B 

For a virtual env ironment to meet its objectives, there must be minimum requirement , 0, of what a 

u er must be aware of. This minimum requirement is essent ially a subset of a ll world artefacts: 

o r:;. u (3 .16) 

Each user wi ll have a set 0 associated with t hem, and t he condi t ion, O(x,a) , t hat d cribe thi et 

can be written as: 

O(x, a) = x is essent ia l for artefact a (3 .17) 

As Section 2.3.4 described , these constraints are hard-coded into t he implementation of the virtual 

environment. However, if we allow u ers to have complete control of t heir interest , t hen we need to take 

the e constraints into consideration in t.he process of describing I , our interest set. For example, if we 

have a collaborative virt ual environment which a llows users to communicate with each other, then we 

n d to r pre en!, that requirement as a constraint, and enfo rce it. As seen in t he example above, thi 

enforcement can be a hieved by combining the user 's interests (I ), and the objectives of the virtual 

nvironment (0) as follows: 
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lE (x, a) = n(x, a) A O(x , a) (3.1 ) 

3.4.1.3 Conflicts 

In Section 3.4.1.2, we described how the environment may int roduce a set of constraints , and howed how 

to alter our interests to cater for them. This process turned out to be simply combining the interests of 

the user, and the constraints of the virtual environment, as descri bed in Equation 3. 18. T his section will 

describe how these constra ints and interests may actually conflict, and present mechanisms fo r conflict 

resolution . 

Consider Figure 3.1O{a) which has four artefacts: three people, and a wall. Using either an associated 

viewing frustum virtual artefact as in Figure 3.1O{b) , or a simple categorisation based inte rest condition 

(I'm interes ted in all people), user A would be able to see both users B and C . This however, may not 

be appropria te in a ll situations. For example, user C may be at tempt ing to hide from u er A b hi nd t he 

wall . It may be a n objective that visibility be calcula ted more appropriately t han u ing th e potentially 

na'ive spatia l based techniques. 

A c A c 

(a) 
(b) 

Figure 3.10: Blocked Visibili ty 

There ar many techniques for calculat ing the visibility of a rtefacts in vi rt ual environments, and all 

are e sent ia lly a lgorithms based on the current values of artefact attributes. Let us con.sider t hat we have 

implem nt d such a technique2 : V(x, a) which defines the condi t ion "is a vi ible to x 7". We can define 

a relative set ('R) of all a rtefacts visible to x as follows: 

'R = {x E U : V(x,a)} (3.19) 

Using this n w notion of visibility, we can avoid any conflicts between the goals of the virtual envi-

2 U h l\S t he approach by Teller and Sequin[llOj. 
3N te that t he ca l ulation of (x,o) i depend nt on the algorithm used , and has the potential to be extremely complex 
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n = {x E U: I(x, a) 1\ V(x, a)} (3.20) 

Here we are saying that we are only interested in things which are interesting, combined with the 

things that are visible. Therefore, if something is not visible, we can not be interested in it - even if we 

want to be. 

3.4.2 Separation of Concerns 

Section 3.4 introduced the notion of constraints and conflicts of interest within a virtual environment. 

This section will generalise these constraints into two types: positive and negative enforcement, and two 

subjects: the user, and the simulation. Through this generalisation we see how we can start to harness 

the power of dynamic, expressive interest statements. 

In the following Sections, the user is defined as the external entity interacting with the virtual envi­

ronment. As explained in Section 3.1.3, a user is typically associated with an artefact (usually called an 

avatar). What we are concerned with here is that the user may have interests within the virtual envi­

ronment. Also, any associations with artefacts would allow us to express relative interests (as introduced 

in Section 3.2.5). There may be more than one user in the virtual environment. However we are only 

concerned with the notion of one particular user; the identity of the user, or the existence of others is 

not important. 

In addition to a user, there is also the simulation. The simulation can be conceptually regarded as a 

user representing the virtual environment. However, there is not typically such an entity, but it is useful 

to conceptualise one when considering the requirements or interests of the virtual environment. These 

issues are similar to the role based access control mechanisms described by Brunton et al. [20J 

3.4.2.1 User Interests: Positive Enforcement 

The main subject of this chapter has been the definition of interests for a particular user. The implicit 

assumption being that we have been defining the things that the user is interested in. A user's positive 

interests are the explicit definition of this implicit assumption. It is an interest statement describing the 

set of artefacts that the user is positively interested in, i.e. the things the user wants to see. 

3.4.2.2 User Interests: Negative Enforcement 

As discussed in Section 3.4, we also need to describe a set of artefacts that are not interesting. A user's 

set of negative interests is an interest statement describing the set of artefacts the user is not interested 

in, i.e. the things the user does not want to see. Negative interests may be useful to express in addition 

and depend on all the artefacts within the virtual environment. 
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to positive interests where there may be a set of optional interests that the user might want to see. By 

expressing a set of negative interests, this optional set can be appropriately pruned. However, there may 

also be interests that might not be optional, but enforced by the simulation, which are discussed in the 

following sections. 

3.4.2.3 Simulation Interests: Positive Enforcement 

The simulation may have a set of goals or objectives. These would be represented by an interest statement 

defining the set of artefacts that a particular user must be interested in. 

3.4.2.4 Simulation Interests: Negative Enforcement 

In opposition to positive enforcement, the simulation may have an interest statement defining the set of 

artefacts that a particular user is not allowed to be interested in. 

3.4.3 Combining Interests 

In order to make use of the various concerns, we need a method of combining them. For this to occur, 

we must assume a priority: that the simulation's concerns are more important than the users. Using this 

assumption we can combine these statements as follows: 

Interesting Artefacts = ((UPOS - UNEG) U SPOs) - SNEG 

Where upos, UNEG, SPOS and SNEG are defined in Table 3.10. 

Table 3.10: Combining Concerns of Interest 

Abbreviation Full Name of Set 
UPOS The user's positive enforcements 

UNEG The user's negative enforcements 

SPos The simulations's positive enforcements 

SNEG The simulations's negative enforcements 

3.5 Summary 

(3.21) 

This chapter has defined the axioms of a virtual environment necessary to reason about interest man­

agement. Building upon these axioms, a categorisation system was defined which was then used in the 

construction of interest statements. These interest statements were defined using simple set theory, and 

were mapped onto the categories of interest statement introduced in Section 2.2.4. Following this, the 
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issues of constraints and concerns were looked at, with a solution for dealing with conflicts of interests 

offered. The next chapter will introduce an implementation of these ideas to reify the concepts introduced. 
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Chapter 4 

Virtual Environment Axioms: A 
Proof of Concept 

Chapter 3 introduced a framework capable of representing dynamic interest management. It defined a set 

of axioms for a conceptual model of a virtual environment (Section 3.1), and then introduced set theory' 

as a mechanism for representing statements of interest (Section 3.2) which built on top of these axioms. 

This chapter will explore design and implementation decisions of thp axioms presented in Section 3.1.2, 

and present a referclH:e implementation. This implementation will be a foundation to present the work 

on interest management in the following chapters. 

Section 4.1 will revisit the virtual environment axioms presented in Section 3.1.2 and describe various 

implementation methods. Section 4.2 will discuss the process of designing the data structure required to 

support the implementation of a simple virtual environment. Section ·1.3 will describe the implementat ion 

decisions made. Finally, Section 4.4 describes the process of implementing the virtual environment itself. 

4.1 The Axioms Revisited 

Section 3.1.2 introduced artefacts, time, events and processes as core components of a \'irtual environ­

lllent. This ~('ction will look at these components in turn and introduce designs which will be implemented 

in order to provide the foundation for a dynamic interest management framework. 

·1.1.1 Artefacts 

S('ction 3.1.2.2 int.roduced artefacts as "individual II II its of the virtual environment" where "each artefact 

consists of one or more attributes". A simple list of the attributes that could be used to compose such 

an artefact was as follows: 

• unique identifier, 

• colour, 
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• x co-ordinate, 

• y co-ordinate, 

• z co-ordinate, 

• geometric description. 

Two possible ways of implementing such artefacts are using a language structure such as an object 

and using a relational database structure such as a table. 

The following two sections will explore both these possibilities and show that they are not necessarily 

mutually exclusive designs, but are able to work together well to yield good benefits. 

4.1.1.1 Artefacts as Objects 

If we are to consider that each artefact has each of these attributes, then one way of realising an 

implementation is to map each artefact onto an object in an object-oriented language. Representing 

an artefact within a programmatic entity such as an object allows us to use the programming language 

to represent both the data that the object consists of, and perform operations on that information. For 

example, each object could store an object's set of attributes as instance data, and provide methods 

(both class and instance) to manipulate that data. A very simple example of such an object could be 

described as follows: 

class Artefact 

attr_accessor :id. :colour. :x_coord. :y_zoord. :z_coord. :shape 

end 

This example is in Rubyl, and shows the attributes that each new instance of class Artefact is born 

with. Given this class, we can create new instances and edit their attributes as follows: 

cube • Artefact. new 

cube. id = 1 

cube. colour • "red" 

cube.z_coord = 12 

cube. shape. "cube" 

IThe method attr-llCcessor is one of many examples of metaprogramming techniques found within Ruby, and when 
interpreted will generate instance variables and accessor methods (getter and setter methods in Java lingo) for all the 
parameters that it is passed. 
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The benefit of this approach is the ease by which behaviour can be added to the artefacts where 

necessary. In addition to storing attributes, 0-0 objects are also capable of storing associated behaviour. 

In Ruby this is at both the class level, and also at the individual instance level. This gives the potential 

of representing behaviour unique to each artefact. 

4.1.1.2 Artefacts as Table Rows 

Another way of realising an implementation of artefacts is USing database tables. Storing data within 

a database provides the ability to persist the data, and allows for powerful querying over large sets of 

information using already defined languages such as SQL. Each table within a database consists of rows 

and columns. In the context of our artefact, we can consider the attributes of an artefact to be represented 

by the columns of the database table. Each row of the table would refer to a different artefact. The id 

attribute of the artefact would make a very reasonable primary key. 

An ActiveRecord database migration for creating such a table could look as follows: 

create_table : artefacts do I t I 

t. column :id. :integer 

t. column :shape. :string 

t. column :x_coord. :ftoat 

t. column :y_coord. : float 

t. column : z_coord. : float 

t. column : colour. : string 

end 

The benefits of this approach are automatic persistence and power of SQL as a querying tool. Amongst 

other abilities, SQL is capable of searching, manipulating, and merging information within a database. 

One of the goals of this thesis is to create a language for interest statements. With the virtual environment 

information stored in a relational database, SQL proves to be an excellent candidate for implementing 

such a language. 

4.1.1.3 Combining Objects and Tables: Object Relational Mapping 

The two methods of implementing an artefact as presented above are by no means exclusive. In fact, the 

two methods compliment each other remarkably well. Combining programmatic objects with database 

structures is a common pattern found in application development - particularly applications found on 

the web. Object relational mappers (ORMs) are tools or libraries that are concerned with exactly this 

task. 

The combination of two approaches to implementing the artefact described in Sections 4.1.1.1 and 

4.1.1.2 is in fact the active record pattern proposed by Martin Fowler[36]. Active record is a simple 
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and intuitive design pattern that can be found in many enterprise applications. It is an approach to 

object relational mapping, whereby objects in object oriented programming are directly mapped to 

rows in particular tables in the database. This idea is taken a little further by ActiveRecord (a Ruby 

implementation of the active record pattern) which maps the object class name to the database table 

name. This naming mapping defaults to the object being the singular form of the concept being modelled 

(Artefact), and the database table being the pluralform of the concept (artefacts). This therefore reduces 

the amount of configuration that is usually required with most ORM tools to describe exactly how the 

objects map to the database structure. 

Using a combination of database structure (artefacts as table rows), and an 0-0 class structure 

(mapping objects to table rows), we have a powerful combination with which to define, store, and use 

artefacts. The artefacts can be stored in the database, and used as objects. The objects can allow us to 

define artefact behaviour where necessary and the database can provide persistence and the ability to 

use SQL to generate interesting sets of artefacts. 

4.1.2 Time 

In the context of implementing a virtual environment to support an interest management framework, 

having a numeric representation of time is only useful if we wish to use that concept whilst describing 

interests (Le. I'm interested in food in the morning, and beds at night). For the purposes of maintaining 

simplicity, we shall assume that a numeric representation of time is not a requirement. Instead, we shall 

let the concept of time refer to the existence of a current state, and the ability to change that state 

into a new state. If we are to store our data within a database, this is easily achieved by issuing UPDATE 

commands to the database in order to change the state, and SELECT commands to refer to the current 

state. 

4.1.3 Events 

In Section 4.1.2 we described the need for successive versions of state within our virtual environment. 

A change in this state is caused by an event. In Section 3.1.2.3 we introduced events as "an alteration 

of one or more attributes of one or more artefacts at a particular time". Given that in our case, time 

refers to the current state, we are therefore interested in the ability to alter one or more attributes, of 

one or more artefacts. Section 4.1.2 also referred to database UPDATE commands as being able to alter 

state. Provided that our state is stored within a database, the UPDATE command allows us to update one 

or more attributes of one or more artefacts. 

Here is an example in SQL of an update to the artefact that has an id of 2: 

UPDATE artefacts SET 
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'x_coord" • 32.8, 

"y-coord" • 4.8, 

"z_coord" = 9.8, 

"shape" -'cube', 

I'cotour" -I red', 

"transparency" = 9.5 

WHERE id • 2 

In addition, this SQL example can be mapped to object-oriented style syntax by ActiveR.ecord, to 

the following: 

Artefact. find (2). update_attributes ( 

=> 32.9, 

=> 4.0, 

=> a.e, 

: shape => 'cube', 

:colour => 'red', 

:transparency => a.5 

ActiveR.ecord will convert the update_attributes call to the equivalent of the SQL given above. 

4.1.4 Processes 

Section 3.1.2.5 introduces processes as tla logical grouping of events that are inter-linked through a partic­

ular relationship". These could be represented by standard Ruby blocks by ActiveR.ecord. However, as is 

evident by their absence in the rest of this Chapter, processes are not an essential part of the supporting 

infrastructure for the interest management framework, and will be left for further discussion in Chapter 

8. 

4.2 Data Design 

As described in Section 4.1, Each of the axioms (time, events, artefacts, and attributes) introduced in the 

conceptual virtual environment in Section 3.1 easily map onto a database and object-oriented equivalent 

as described in Table 4.1 

In order to keep the design simple, one table named artefacts, was used to represent the information 

for all artefacts. Each individual artefact maps to a particular row of the table, and the attributes of an 
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artefact map to the columns of the table. This is according to the ActiveRecord pattern. In the initial 

design, the attributes as presented in Table 4.2 were used to collectively represent an artefact. 

Most of these attributes should seem relatively straight forward, except perhaps for transparency. 

Transparency is a floating point value between 0 and 1 where 0 is opaque, and 1 is transparent (invisible). 

A transparency value of 0.5 would indicate that the artefact is half transparent. Transparency will allow 

us to view artefacts that might be contained within artefacts. 

4.3 Implementation Decisions 

The section will describe the various factors considered before and during the design and implementation 

of the virtual environment conceptual model. 

4.3.1 Data Storage Technology 

The virtual environment needs some kind of storage mechanism for storing the system's data. On the 

simplest level, these data are the artefacts and attributes that the artefacts consist of. Section 4.1.1.3 

introduced a relational database as a storage mechanism that supported the factors necessary to represent 

a virtual environment's data. This section will explore these factors in more detail, and present databases 

as an obvious choice given a full consideration of all the factors. 

The data store needs to at least have the following factors which will be explored in the following 

Sections: persistence, support for set structures, support for querying, and support for spatial queries. 

Section 4.3.1.5 will describe the final implementation choices. 

4.3.1.1 Persistence 

The storage mechanism needs some way of surviving system crashes, or simple system reboots. One way 

of achieving this is to represent the information in such a way that it can be stored on some kind of 

persistent storage technology. There are many options which facilitate this requirement. For example, 

the data could be represented as files on a file system such as ZFS, HFS+, or NTFS which in turn is 

stored on a persistent storage technology such as NAND-type flash memory data storage devices, or hard 

Table 4.1: Mapping between Conceptual Model Term, Database Term, and Object-Oriented Term 

Conceptual Model Term 
Time 
Event 
Artefact 
Attribute 

Database Term 
the ability to alter data 
an UPDATE on a database table 
a database table row. 
a database table column 

0-0 Term 
the ability to edit object attributes 
an update_attributes method 
an instance of class Artefact 
instance data for Artefact instances 
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Table 4.2: Attributes for the Initial Design 

Attribute Data type Example Box Example Sphere 
id integer 1 1 
shape string box sphere 
width float 5.0 nil 
height float 10.0 nil 
length float 15.0 nil 
radius float nil 10.0 
x_coord float 1.0 2.0 
y_coord float 2.0 4.0 
z_coord float 3.0 6.0 
colour string red blue 
transparency float 0.5 0.0 

disks. 

4.3.1.2 Support for Set Structures 

In order to support the ideas on interest presented in Chapter 3, the data storage mechanism needs to 

have support for representing sets of data. We need to be able to store sets of artefacts which are in turn 

sets of attributes. This is possible using purpose made data structure, or using a more generic relational 

database. 

4.3.1.3 Support for Querying 

The motivation for storing the information in a set structure, is that (as was illustrated in Chapter 3) 

it is possible to use set theory to pull out subsets of that information - potentially interesting subsets. 

Therefore a language that allows you to represent and execute snippets of set theory over a set structure 

is necessary. Such a language is SQL which is the primary querying language in the relational database 

world. 

4.3.1.4 Support for Spatial Queries 

If the virtual environment consists of spatial information, it is potentially very useful to make queries 

that can reason about spatial matters. This matter was discussed in Section 3.2.4.3. There already exist 

a number of libraries which support spatial queries, one of which is Oracle Spatial[93]. Oracle Spatial 

provides the ability to represent queries with keywords such as touch, contains, covers, inside and covered 

by. These keywords enable the query to reason about spatial relationships between artefacts, which would 

allow for interests with respect to locales and representational zones such as viewing frustums and auras. 
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4.3.1.5 Implementation Choice 

Clearly the relational database is an obvious implementation choice. Most available databases provide 

persistence, support for set structures, and support for querying out of the box. Some, such as Oracle, 

provide support for spatial queries too. 

The original prototypes of the virtual environment implementation were built using Oracle 9i as 

the database. One of the main motivations for using this database was the built in support for spatial 

queries[93]. However, Oracle 9i is a very heavyweight database implementation, and needs to be deployed 

on its own server due to its demanding resource requirements. The current university network restrictions 

meant that all development had to occur on the same network, which constrained the locality of any 

development. It was important to be able to develop the implementation in the absence of network 

connectivity, and therefore a database which could run alongside the rest of the implementation on the 

primary development machine was required. Therefore, for the final implementation, MySQL[1] was used. 

MySQL does not support spatial queries, however the logic to deal with spatial relationships was moved 

up into the language layer (as will be discussed in Chapter (5». This allowed the entire framework to run 

on one machine which helped the development, deployment and ongoing testing of the software system. 

Oracle Spatial is a very interesting extension to the Oracle database, and if further work takes place 

looking at potential optimisations (particularly for spatial calculations) this would be an excellent place 

to start (for further discussion see Chapter 6). 

4.3.2 Development Methodology 

Initial prototypes of the system suffered from a constant evolution and change of the specifications and 

requirements. This resulted in messy, poorly structured, and error-prone code. In order to manage this 

situation, the final implementation was built in a test-first manner using a set of executable specifications 

written in RSpec (see Section 2.5.2). RSpec follows a concept known as Behaviour Driven Development 

(BDD[ll]) which is an evolution of the more practised Test Driven Development (TDD[30]) methods. 

TDD and BDD are discussed in the following sections (4.3.2.1 and 4.3.2.2). 

4.3.2.1 Test Driven Development 

Test Driven Development follows a very simple development cycle: 

• write a test (which should fail) 

• write the code to make the test pass 

• refactor the code 
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Following this cycle means that all the way through the development of the software, there is an 

evolving set of tests that you can constantly run to check that the system behaves as expected. Imple­

mentations of TOO frameworks are typically based upon the XUnit framework[10j. There exist many 

implementations in many different languages. 

4.3.2.2 Behaviour Driven Development 

Behaviour Driven Development is essentially an evolution of TOO, particularly in terms of vocabulary. 

It is a term coined by Dan North, and attempts to move away from the concept of testing, and towards 

the practice of writing executable specifications of system behaviour. Specifications written in a BDD 

framework are typically far more readable than tests written using a TDD framework. This facilitates 

the process of verifying that the tests/specifications are correct in terms of describing the behaviour of 

the system. 

There are currently not many BDD frameworks available, however RSpec, a BDD framework written 

for Ruby is remarkably robust and versatile. Using RSpec to develop the virtual environment resulted 

in much more stable, reliable, and trusted code-base. RSpec is discussed further in Section 2.5.2. 

4.3.3 Implementation Language 

The original prototypes of the implementation were originally written entirely with Java. However, as 

the designs changed, the code-base gradually grew more unwieldy, and refactoring started to become 

more error prone. The final version of the prototype has been mostly written in Ruby, with one part of 

the original prototype remaining in Java. Various concepts found within Ruby, such as blocks (closures), 

meta-programming and dynamic typing have facilitated the reduction of the code-base by a factor of 2-3 

times, resulting with far leaner and more elegant code. 

4.3.3.1 Supporting Libraries 

The code was developed using a BDD (Behaviour Driven Development) approach using RSpec (see 

Section 2.5.2). This allowed the code to be tested at every iteration to ensure that it conformed to the 

specifications. 

Ruby also has the ActiveRecord library which simplifies the process of communicating with the 

database, and managing schema changes. 

4.4 Implementation 

This section will describe the process of implementing the virtual environment system. Section 4.4.1 will 

describe the process of creating the database schema, Section 4.4.2 will describe the definition of the 
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Artefact class, and Section 4.4.3 will describe a sample virtual environment. Section 4.4.4 will introduce 

interest within this context, and then Sections 4.4.5, 4.4.6 and 4.4.7 will expand on the implementation, 

introducing a 3D viewing mechanism, a client and server architecture, and an incremental update message 

format. 

4.4.1 Creating the Database Schema 

The Ruby ActiveRecord library makes the process of turning this design into a real database table 

remarkably simple. ActiveRecord provides a light abstraction above SQL, allowing you to define your 

database schema using a slightly more readable syntax. Migrations are part of a set of functionality 

internal to ActiveRecord and provide the ability to store changes in separate, ordered, files allowing for 

rolling forward and back along the schema history. However, at this stage we are only concerned with 

creating the artefacts table. The part of the migration of interest is as follows: 

create_tabte : artefacts do I t I 

t. cotumn :shape, : string 

t. cotumn :width, : float 

t.cotumn : height, : float 

t. cotumn :tength, : float 

t.cotumn : x_coord, :ftoat 

t.cotumn :Lcoord, :ftoat 

t.cotumn :z_coord, : float 

t.cotumn : radius, : float 

t.cotumn : cotour, :string 

t. cotumn : transparency, :ftoat 

end 

As can be seen, this migration is similar to the design presented in Table 4.2. One thing to notice is 

that there is no id column. This is due to the fact that by default ActiveRecord creates and manages 

this column for us. Executing this migration will result in the creation of a matching table within our 

database. 

4.4.2 Defining the Artefact Class 

Using ActiveRecord as the object relational mapper makes defining the Artefact class easy: 

class Artefact < ActiveRecord: :Base 

end 
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Simply inheriting from ActiveRecord: :Base gives the Artefact class everything it needs. ActiveRecord 

is able to inspect the appropriate database table (artefacts being the plural of Artefact), and generate 

the necessary instance methods on the fly at run time. The artefact class, once defined, is able to create, 

read, update and delete artefact objects in an object oriented fashion. 

4.4.3 A Sample Virtual Environment 

In order to test this implementation, it is necessary to create a very simple example virtual environment. 

Using the yaml2 markup language, we can define the following fixture3 containing some sample artefacts 

with which to populate our database: 

floor: 

sphere: 
shape: floor 

shape: sphere 
width: 188 

radius: 2 
length: 58 

x_coord: 10 
transparency: e 

Lcoord: 15 
box: 

shape: box 

colour: green 
height: 5 

transparency: 0.5 
width: 2 

cyUnder: 
length: 18 

shape: cyUnde r 
x_coord: 58 

radius: 1 
Lcoord: 28 

height: la 
z_coord: 8 

colour: red 

t ranspa rency: e. 5 

colour: turquoise 

transparency: 8.5 

This fixture defines four artefacts: a floor, a box, a sphere and a cylinder. Using ActiveRecord, we 

can import the data within this fixture straight into our database. 

3see Section 2.5.1 'calI ed 
3Fixtures are simply a set of predefined sample data which can be used to populate the database, and are typl Y us 

for testing. 
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4.4.4 The First Interest Statement 

Now that we have a database populated with some artefacts, we can now use our object relational mapper 

to pull information out. Our first interest statement will be the simplest4 : 

I am interested in everything 

In SQL syntax, this statement is equivalent to: 

select • from artefacts 

However, using ActiveRecord, we can also express this interest statement with Ruby code: 

Artefact. find ( : all) 

We can even verify that the right results are being pulled out from the database with a simple consol~ 

session: 

»Artefact.f1nd(:all).map {Iartefactl artefact.shape} 

.,. [lIbox", "cylinder ll
, "floorll, "sphere"] 

As can be seen, a simple query pulling out all the artefact shapes returns the shapes of the four 

artefacts that we loaded into the database with our yaml file. Inspecting one of the artefacts more 

closely, we can see that all the attributes are intact too: 

» print Artefact. find_by_shape( "cylinder") . to_yaml 

'" I ruby/object :Artefact 

att ributes: 

radius: "1.9" 

Lcoord: "S.B" 

id: "2" 

shape: cylinde r 

colour: turquoise 

length: 

transparency: "8.5" 

height: "18.8" 

width: 

4lgnoring the option of being interested in nothing at all. . . 
5The Ralls console is a standard Ruby interactive shell with all the necessary classes and objects pre-loaded mto It (such 

as OUf Artefact class). 
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One thing that might look odd is that all the numerical data looks to be represented as strings. 

This is because ActiveRecord talks to the database USing plain strings. However, in practice, this is not 

actually an issue. When the attributes are accessed using the standard accessors, ActiveRecord is able 

to translate the string to the correct class: 

» Artefact.find_by_shape('cylinder').x_coord.class 

-> Float 

Also, the virtual environment viewer, introduced in the following Section, deals entirely with strings. 

4.4.5 Viewing the Virtual Environment 

With a working implementation of the core parts of a virtual environment necessary to build the interest 

management framework upon, it was necessary to build a tool allowing the visualisation of the artefacts 

within the world. This was achieved using a VRML browser (FreeWRL). VRML browsers typically only 

render static files which contain all the necessary information for the particular world/environment they 

are representing. In order to facilitate arbitrary addition and removal of VRML nodes, some VRML 

browsers offer an Extended Application Interface (EAI). The EAI allows the VRML browser to act like 

a server listening on a a specific port. Communicating over this port a client that can control the VRML 

browser, i.e. sending commands to add and remove VRML nodes. 

An abstraction layer was created which hid the unnecessary VRML syntax and the complexity of 

communicating through the EAI interface. This abstraction layer took the form of a standard UNIX 

command line interface, and provides the following options: 

Welcome to the EAIShell. For help, just type help ... 

$>help 

The following commands are available: 

add shape options 

help shape (for a list of available shapes) 

help colours (for a list of available colours) 

help transparency (for information about transparency) 

hide object_id 

show object_id 

delete object_id 

increment coordinate object_id vatue 

(where coordinate - x_coord. y_coord or ,_coord) 

help 
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A Ruby wrapping li brary was built using this command line interface, which presented the VRML 

browser with a Viewer class which supports the same options as the EAIShel1. The architecture of the 

viewing system is presented in Figure 4.1. 

VRML 
browser 

EAI interface 

Figure 4.1: The Archi tect ure of t he View ing System 

Viewer\#add6 , t he add method t hat t he Viewer class provides , takes a tandard Ruby h h as it 

parameter. This hash represents a ll of the attributes of the particular a rtefact t hat you wi h to add to 

the VRML browser. An example of this is is as follows: 

» viewer = Viewer. new 

» viewe r . add ( ( :s hape => :cube, :id => 1, :hei ght => 10, :x_coord => 2 , :y_coord => 4 , 

:z_coo rd => 6 , :colour => "red", : tran sparen cy => 0.5 }) 

T hi hash i identical to t he attributes has h t hat is included within each ActiveRecord rtefact 

object. T hi a llows us to run the foll owing simple Ruby code, to generate t he world shown in Figure 4.2 

» viewe r :: Viewer . new 

» Artefact . fi nd( : all) .each (Iartefactl viewer . add(artefact . attr i butes )} 

Gin s~nndnl'd Ruby do um entation the # symbol is used to separate a class or module name from the method name 
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Figure 4.2: A Simple World Consisting of a Cuboid , Cylinder, Sphere, and Floor 

4.4.6 A Client Server Architecture 

With th visualisation system in pl ace, the next stage was to introduce a impl e client rver a rchitecture 

into the implementa tion , as illustrated Ln Figu re 4.3. Thjs wou ld represent t he following logi aI eparation 

of concerns: 

4.4.6.0.1 Client Th client interacts with a viewer and a server. It r eiv updat for th e viewer 

from the server, and also registers its in ter sts with th e serv r ( urrently an int r t in ev ry thing, as 

discu ed in Section 4.4 .4 , but expanded upon in hapt r 5.) 

4.4.6.0.2 Server T he server interacts with a client and a database. It f t hes th rei vant a rt f cts 

from the database based on the client 's interest , and sends th m to the Ii nt . It al 0 provides the abi li ty 

for the client to register upd ates in interest. 

Database 

Figure 4.3: Lient Server rchitecture 
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4.4.7 An Update Format 

As Section 4.4.6 introduced, one of the major concerns of the server is to send updates to the client. 

Updates consist of the following: 

• The addition of an artefact into the client's view, 

• The removal of an artefact from the client's view, 

• The update of one or more attributes belonging to one or more artefacts within the client's view. 

In order to be able to calculate which updates to send, the server needs to have a copy of what the 

client is currently aware of. When the server is sent the refresh method, it pulls out the latest set of 

artefacts from the database based on the interests. This new set can be compared against the stored set, 

and the differences sent as updates to the client. The algorithm is as follows: 

for each interesting artefact 

if the client is not aware of the artefact: 

generate add command for the artefact 

end 

if the client is aware of the artefact, but the attributes are different: 

generate update commands for the artefact 

end 

end 

for each artefact in the copy of the artefacts the client is aware of 

if the artefact is not 1n the set of interesting artefacts: 

generate delete command for the artefact 

end 

end 

rephce copy of artefacts that the client is aware of with the interesting artefacts 
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For example, let us look at the log of a simple session. On the first server refresh the following updates 

are sent to the client: 

update. : 

:cDIMlInct->".dd-, :parlmeterslO{ 

I, 

: command->".dd", :parameters->{ 

:command->"add" I :parameters->{ 

I, 

: command-,."add", : parameters->{ 

:width->2.8, :transparency=>8.5, :length=>18.8, 

: z_coord-=>8. 8, :height=o5.8, :1d->1. :x_coord=>58.8 

:y_coord->5.'. :shape->"cylinder·, :colou,..,"turquoise", 

:radius->l,e, :transparency->8.5, :z_coord->8.8. 

:height->18.e, :ld->2, :x_coord->15.e 

: shape->"lloor", :width->1ee .8, :transparency->8.a, 

: length->S8. e, : id->3 

:y_coord->15.8, : shape-,."sphere" I :colour->"green". 

: radius->2 .8, : trlnsparency->8.5. : z_coord->8,a, 

As the client currently has nothing visible, all the artefacts are added to the view. However if the 

server is refreshed again, the updates are as follows: 

updates: 

II 

Nothing has changed within the database since the last refresh, therefore there are no differences to 

send. If the x_coord of the sphere artefact is updated from 10.0 to 15.0, and the server refreshed, the 

updates are as follows: 
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updates: 

[{:command=>"move", :parameters=>{:by=>S.9, :axls=>"x", : ld=>4}} 1 

Only the differences are sent to the client. If cylinder artefact is removed from the database entirely, 

and the server refreshed again, the updates are as follows: 

updates 

({: command-'delete", : parameters=>{ : id_2)} 1 

The server is therefore correctly detecting any changes between the current set of interesting artefacts, 

and the set of artefacts the client has, and sending those changes across using the minimal amount of 

information. 

We now have a fully working model of a the visual elements of a virtual environment7 . The server is 

capable of sending updates to the client based on an interest in everything. The client starts the simulation 

with a knowledge of nothing, and everything is sent using the network which logs all throughput. This 

approach is similar to that taken by the Cyberwalk system[89J. We now have the potential to deal with 

a wide variety of heterogeneous clients by having close control of what is sent along the wire. This close 

control will be provided by the concept of interest which is the subject of the next chapter. 

TIt is Important to note that this model ignores interactive elements such as navigation, and sending any information 
other than interests from the client to the server. 
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Chapter 5 

Interest Statenaents 

Chapters 3 and 4 considered the concept of dynamic interest management, and implementation of a 

basic virtual environment respectively. Given the implementation of a conceptual model representing 

a virtual environment (Section 3.1), it is necessary to consider how we might map on the concept of 

interests as defined in Section 3.2. Section 3.3 illustrated how this model is capable of representing many 

of the interest management techniques currently found in the literature (categorised in Section 2.2.3). 

This chapter will build upon this work by introducing an implementation of a language for interest 

statements. 

Section 5.1 will describe the concepts that a language for interest statements will need to be able to 

express. Section 5.2 will revisit the examples introduced in Section 3.3, and Section 5.3 will illustrate 

how SQL is expressive enough to represent these examples. Section 5.4 will describe how to use SQL 

to combine the concerns described in Section 3.4.2, and finally Section 5.5 will discuss some of SQL's 

limitations as a language to represent interest statements. These limitations will be the main focus of 

Chapter 6. 

5.1 Interesting Concepts 

In order to express interest, it is necessary to consider the potential subjects of that interest: the concepts 

we wish to reason about. In essence we are looking to generate subsets of artefacts from the set of all 

artefacts where that subset is interesting. Therefore, implicitly, the interesting concepts are artefacts. 

However, in order to express which artefacts we are interested in, it is necessary to have some factors with 

which we can distinguish and reason with. Section 3.2.2 introduced the concept of interest conditions 

and defined them as "a test which will indicate whether or not an artefact (x) is interesting to us". The 

factors we need in order to define these tests are attributes, virtual attributes, relative artefacts and 

relative virtual artefacts. These will be discussed in the following sections. 
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5.1.1 Attributes 

Attributes are the items of data which constitute an artefact. We can use the presence, absence or value 

of these to reason about different sets of artefacts. For example, we might make the following statement 

of interest: 

I am interested in all artefacts that are red 

This statement would be a comparison to a colour attribute, checking that the colour was red. All 

artefacts that have a colour attribute with the value red would be a member of the interesting set. 

5.1.2 Virtual Attributes 

Virtual attributes are attributes associated with an artefact, which are not necessary data for that artefact 

to exist. Essentially, virtual attributes are artefact metadata. For example, our virtual environment may 

contain artefacts representing people. Given the presence of a virtual attribute mood, we can make the 

following statement of interest: 

I am interested in all happy people 

This statement would add all people that have a mood attribute with the value happy to the inter­

esting set. 

5.1.3 Relative Artefacts 

Attributes are strongly coupled to artefacts. Each attribute belongs to only one artefact and it represents 

information that is essential for the representation and existence of that artefact in the virtual environ­

ment. Although using artefact attributes to create interest statements provides us with a powerful and 

fine grained language to reason about interest, it is not enough to reasonablyl represent many types of 

interest statement. 

In the previous two examples of interest statements we injected values into the statement. In the first 

example we injected the value red, and in the second we injected the value happy. These were values 

we had to know before we could make the statement. Sometimes, however, we might not know these 

attribute values beforehand. For example, we might want to make the following statement: 

I am interested in all artefacts that are the same colour as artefact A 

Clearly, for this statement to make sense, we need to know which artefact A is referring to. This 

artefact is a relative artefact; it is the artefact which our statement requires in order to be complete. If 

we are to change the artefact, we potentially change the resulting interesting set. 

I It would be possible to overload the Interest statement to such an extent that all types of interest statement could be 
represented. However, this would require that any additional information other than artefact attributes be included within 
the interest statement itself. 
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5.1.4 Relative Virtual Artefacts 

Relative virtual artefacts are a particular example of relative artefacts as defined in Section 5.1.3 in that 

they are also virtual artefacts. A virtual artefact is a non-essential artefact. Similar to the concept of a 

virtual attribute being artefact metadata, virtual artefacts are virtual environment metadata. A virtual 

artefact could be used to describe many different virtual concepts. For example they could be used to 

represent an aura such as one defined in Greenhalgh's spatial model of interaction[44J. In this model an 

aura is a virtual artefact defining an area, that moves with the associated artefact. An aura does not 

'exist', but it does 'virtually exist' within the virtual environment, and is therefore particularly suited to 

be represented with a virtual artefact. Similarly, virtual artefacts could also be used to define locales. 

Examples of this additional information are the spatial and zonal geometrical representation used for 

locales and the focus and nimbus areas. A solution to this is to move this information from the interest 

statement into the virtual environment. The information can be represented with virtual artefacts. A 

virtual artefact is an artefact that cannot be directly interacted with. It is essentially invisible information. 

Although the distinction between the terms virtual artefact and artefact are nonsensical in the context of 

a virtual environment (where everything is essentially virtual), it is useful to conceptually separate them. 

The separation is only conceptual because in terms of implementation, a virtual artefact is essentially 

just an artefact, but it is in their usage that they differ. Virtual artefacts are, in essence, information 

about information, and therefore the phrase virtual artefact is just another term for metadata. 

5.2 Example Statements 

This section will explore some examples of the sort of statements that the language needs to be able to 

represent. The motivation of this section is to revisit the examples introduced in Section 3.3 within the 

context of the interest concepts as defined in Section 5.1. 

5.2.1 Categories 

As an example of categories, Section 3.3.4 described the interesting set consisting of all red artefacts. 

This type of statement is represented in terms of the relationship between the statement's given values 

and the artefact's current attribute values: 

I am interested in all artefacts that are red 

5.2.2 Locales 

Locales can be seen to be either relative artefacts or relative virtual artefacts. An example of a relative 

artefact representing a locale is a building, and an example of a relative virtual artefact is an area or zone 
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represented by a virtual artefact. Such zones appear in many different explicit guises in the real world. 

Examples include countries, building plots, and even different sections of a sports area such as a football 

pitch. If an artefact (virtual or not) is to be used as a locale, it needs to have attributes that describe 

its spatial relationship between other artefacts (such as co-ordinates, and bounding boxes). Artefacts 

representing locales should also support the standard spatial set relationships such as:within, contains, 

overlaps, and touches. 

An example of an interest statement using locales (using a relative artefact) is: 

I am interested in all artefacts within the football pitch 

Similarly, an example of an interest statement using locales (using a virtual relative artefact) is: 

I am interested in all artefacts within my viewing frustum 

5.2.3 Relative Locales 

In terms of the interest concepts as defined in Section 5.1, relative locales can be seen to be the same as 

standard locales. This is because locales are represented by artefacts or virtual artefacts, and any artefact 

(virtual or not) represented in an interest statement is a relative artefact. Where there is a relationship 

between two or more artefacts, such as the relationship described in Section 3.3.2, this relationship should 

be part of the declaration of the relative artefact. Therefore, if we can refer to the relative artefact a, we 

can also refer to an artefact (b) related to a. The interest statement does not contain any information 

about relationships between artefacts. 

5.2.4 Interacting Locales 

Section 3.3.3 described an example of interacting locales as follows 

"When an artefact A's aura collides with artefact B's aura, artefact A can be said to be 

aware of artefact B. " 

In terms of the interest concepts as defined in Section 5.1, concepts such as the one above can be 

represented by introducing two relative artefacts into the interest statement: 

I am interested in all artefacts whose aura overlaps my aura 

5.2.5 Combinations 

We might wish to be able to create statements that arbitrarily combine the examples above. For example, 

consider the following interest statement: 

I am interested in all artefacts that are red and also within my viewing frustum 
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All of these example statements will be revisited Sections 5.3 where they will be discussed within the 

context of an implementation. 

5.3 Representing Interest Statements with SQL 

In order to realise the examples highlighted in Section 5.2 it is necessary to consider mechanisms with 

which to represent interest statements. Given that the virtual environment's data is stored using a 

database (see Section 4.3.1.5), and that the model of interest management introduced in Chapter 3 was 

in terms of set theory, SQL seems a very obvious tool with which to represent our interests. This section 

will explore the use of SQL in detail, concluding that SQL is expressive enough to represent the examples 

in Section 5.2. 

This section will explore SQL's ability to represent the examples presented in Section 3.3 in order to 

demonstrate the expressiveness of SQL for representing interest statements. 

5.3.1 Categories 

Section 5.2.1 introduced the following as an example of a category based interest statement: 

I am interested in all artefacts that are red 

Section 3.3.4 introduced the following general case for representing category based interest statements: 

I = {x E U : x E CATEGORY} 

The following scopes the general case to our specific example of red artefacts: 

where RED_ARTEFACTS(X): x is red 

Which can be simplified to: 

I = {x E U : x E RED_ARTEFACTS} 

I = {x E U : x is red} 

(5.1) 

(5.2) 

(5.3) 

This is the statement that we need to express using SQL. In order to achieve this, it is necessary to 

evaluate each concept in the set builder in terms of SQL. Table 5.1 explores these individual concepts in 

turn. 

Therefore, the corresponding SQL statement for the category based example interest statement is as 

follows: 
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Table 5.1: Deconstructing and Evaluating a Category Based Set Builder 

x E Any artefact within 
Set Builder Concept Description Equivalent SQL Concept 

U the universal set, the set of all artefacts 
such that the following is true: 

x is red the artefact is red 

select • from Artefacts where colour = 'red' 

select' froll 
Artefacts 

where 
colour = 'red' 

Notice that we can use the standard SQL conditional operators to compare attributes (COlour) against 

given values ('red'): 

Table 5.2: SQL Conditional Operators 

Conditional Operator Description 
equal to 

!- not equal to 
< less than 
> greater than 
<= less than or equal to 
>= greater than or equal to 

5,3,2 Locales 

Section 5.2.2 introduced the following as an example of a locale based interest statement: 

I am interested in all artefacts within the football pitch 

Section 3.3.1 introduced the following general case for locale based interest statement: 

I = {x E U : x is within A'} (5.4) 

The following scopes the general case to our specific example of red artefacts: 

I = {x E U : x is within the football pitch} (5.5) 

In order to convert this set builder to an interest statement, it is necessary to define the relationship 

within, particularly in terms of football pitches. One way of representing the area of a football pitch is 

with a two dimensional rectangle. Consider the football pitch represented in Figure 5.1. This football 

pitch has the following properties which are interesting in this context: a width, a length and a pair of 

coordinates which define the centre of the pitch. 
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1 
x and y coordinate width 

L.... __________ -' ___ O_f_fOO_tb_a1_1 P_It_ch ____ ...l ~r 
~. __ ------------------- leng~ ___________________ ~ 

(x axis) ~ 

Figure 5.1: A Simple Representation of a Football Pitch 

A simple algorithm for determining whether a given artefact's x and y coordinates fall within the 

area of the football pitch is illustrated in Figure 5.2. Essentially it is determining whether the artefact's 

coordinates are on the pitch side of each of the four pitch boundaries. If this is the case for all the 

boundaries, then the artefact is considered to be within the football pitch. The use of range predicates 

over multiple artefact attributes for representing spatial regions of interest is an approach also used by 

Bharambe et al.[15]. 

The following is a partial SQL statement which represents the within algorithm: 

x_coord >= football_p1tch.x_coord . (football_pitch. length I 2) and 

v_coord >= football_p1tch.y_coord . (football_pitch. width I 2) and 

However, in order to convert this to a full SQL statement it is necessary to introduce the concept 

of relative artefacts. In the snippet above, footbaHJlitch represents a relative artefact - an artefact that 

the interest statement is relative to. One way of introducing relative artefacts into the SQL statement is 

through a self join. 

select a.* from Artefacts a, Artefacts football_pitch where 

a.x_coord <= football_pitch. x_coord + (football_pitch. length I 2) and 

a.y_coord >= football_pitch.y_coord . (football_pitch.width I 2) and 

footbaH_pitch.name = 'footbaH pitch' and 

category. 'pitch' 

Here we are defining the relative artefact footbaH_pitch by specifying its name and category (which 

in this case should be attribute columns which have the properties of a composite primary key). 
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Find all artefacts where 

y coordinate < ( 
of artefact 

pitch's y 
coordinate ) 

1/2 Pit:h width 

x coordinate 
of artefact 
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AND 
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> 

1/2 pitch width 
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pitch's x 

> ( coordinate ) 
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Figure 5.2: Det,ermin ing whether a Given Artefact 's x and y Coordinates Fall Within t he Area of a 
8 t,ball Pitch 



93 

5.3.3 Interacting Locales 

Section 5.2.4 introduced the following as an example of an interest statement in terms of interacting 

locales: 

I am interested in all artefacts whose aura overlaps my aura 

Section 3.3.3 introduced the corresponding set builder: 

I = {x E U : the aura associated with a overlaps the aura associated with x} (5.6) 

As with the requirement to define the within relationship in Section 5.3.2, in order to convert this set 

builder to SQL we need to define the overlaps relationship. In order to simplify the example, consider 

the relative artefacts representing each aura to be circular2. We need to define an algorithm to determine 

whether any two given circles overlap. 

r+r' > d (5.7) 

Where r, r' and d are the radius of the first circle, the radius of the second circle, and the distance 

between the midpoints of the circles respectively (as illustrated in Figure 5.3). 

Figure 5.3: Determining whether Two Circles Overlap 

Notice that distance d is the hypotenuse of the dotted triangle, the lengths of which other sides are 

lx' - xl and Iy' - YI. We can therefore use pythagorus' theorem to calculate d as follows: 

d = v'lx' - xl2 + Iy' - Yl2 (5.8) 

~~------------------~---~Thi8 approach is also taken by the Cyberwa1k system[89] 
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Therefore, to determine whether two circles overlap, the following condition should be true: 

r + r' > vlx' - xl2 + Iy' _ Yl2 (5.9) 

In order to create the SQL statement which represents this example, we need to consider the additional 

constraints on the artefacts. We are looking for all artefacts that have the same name as a aura that 

overlaps the aura corresponding to 'my artefact'. The following SQL statement represents this example"i: 

select c., from Artefacts a, Artefacts b, Artefacts c where 

a.name = 'my artefact' and 

a. catego ry = 'focus' and 

b. catego ry .. 'nimbus' and 

C.name = b.name and 

c.virtual = false and 

a.radius + b.radius > sqrt(pow«b.x_coord - a.x_coord), 2) + pow«b.y_coord - a.y_coord), 2» 

5.3.4 Combinations 

Section 5.2.5 introduced the following as an example of a combinational interest statement: 

I am interested in all artefacts that are red and also within my viewing frustum 

Let us treat each part of this statement individually before combining them together. The two parts 

are: 

I am interested in all artefacts that are red 

and 

I am interested in all artefacts that are within my viewing frustum 

The first part is simply a category based interest statement as discussed in Section 5.3.1. The SQL 

representation of which was: 

select • from Artefacts where colour = 'red' 

The second part is a locale based interest statement as discussed in Section 5.3.2. However, Section 

5.3.2 described a rectangle as the shape of the locale. In the context of viewing frustums, this might 

not be an appropriate shape. Instead, let us consider that a viewing area is circular, centred around 

the associated artefact. We need to define the relationship within with respect to a circle. For a given 

3The attributes n .... , c.t.gory and virtuo\ are simply example attributes, and are used and introduced further in Section 
7.1.1. 
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artefact to be within a given circle, its coordinates must be within the area of the circle. This means that 

the distance between the centre of the artefact and the centre of the circle must be less than the circle's 

radius (as illustrated in Figure 5.4): 

r>d 

x~y' 
I 
I 
I 
I 
I­
I':" 
I­
I.!:> 
I 
I 
I 

_.0 

Figure 5.4: Determining whether a Given Point is Within a Circle 

The calculation of d is the same as described in Equation 5.8 in Section 5.3.3: 

d = v'lx' - xl2 + Iy' - Yl2 

(5.10) 

(5.11) 

Therefore, to determine whether a coordinate is within a given circle, the following condition should 

be true: 

r > v'lx' - xl2 + Iy' - Yl2 (5.12) 

The SQL for this part is therefore: 

setect b.* from Artefacts a, Artefacts b where 

a.name ~ 'my artefact' and 

a.category • 'frustum' and 

a.radius> sqrt(pow«b.x_coord a.x_coord), 2) + pow«b.y-coord - a.y-coord), 2)) and 

b.virtuat • fatse 

Again, we are assuming that the frustum has the same name as the artefact it is associated with. 
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In order to combine these two parts we just need to utilise the SQL and and or keywords to join the 

interest statements. A combined version of the SQL interest conditions above is as follows: 

setect b.* from Artefacts a, Artefacts b where 

a.name • 'my artefact' and 

a.category. 'frustum' and 

a.radius> sqrt(pow«b.x_coord - a.x_coord). 2) + pow«b.Lcoord - a.y_coord). 2» and 

b.virtuat • fatse and 

b.cotour = 'red' 

5.4 Combining Separate Concerns 

Section 3.4.2 introduced the notion of the separation of concerns of the user and the simulation. It 

proposed the following concerns: 

• User Positive Interests (see Section 3.4.2.1), 

• User Negative Interests (see Section 3.4.2.2), 

• Simulation Positive Interests (see Section 3.4.2.3), 

• Simulation Negative Interests (see Section 3.4.2.4). 

It then proposed the following method of combining these concerns: 

Interesting Artefacts = ((UPOS - UNEG) U spos) - SNEG (5.13) 

Where: 

Abbreviation Full Name of Set 

UPOS The user's positive enforcements 

UNEG The user's negative enforcements 

SPos The simulations's positive enforcements 

SNEG The simulations's negative enforcements 

Within the context of SQL, each of these concerns can be represented with an SQL statement, and 

combined using the SQL operators as follows: 

setect * from Artefacts where « (id in (setect id from Artefacts where UPOS) and 

not id in (setect id from Artefacts where UNEG» or 

id in (setect id from Artefacts where SPOS» and 

not id in (setect id from Artefacts where SNEG» 
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For example, the following set of combined interest statements will result with an interest in white 

or green artefacts only: 

select • from Artefacts where «(id in (select id from Artefacts where (colour = 'white' or 

colour = I red I or 

colour = 'blue'» and 

not id in (select id from Artefacts where (colour = 'blue'») or 

id in (select id from Artefacts where (colour = 'green'») and 

not id in (select id from Artefacts where (colour = 'red'») 

5.5 Limitations 

Although, as shown in Section 5.3, SQL is expressive enough for our needs, it also has some limita­

tions which might hinder its usage in this domain. This section will explore some of these limitations, 

particularly the issues of abstraction, readability, and succinctness. 

5,5.1 Expressiveness 

Section 3.2.2 introduced the concept of interest conditions. This chapter has only discussed simple con­

ditions such as equality and mathematical inequalities such as greater than and less than. However, we 

may want to utilise much richer conditions such as visible, friend or threatening. Unfortunately, standard 

SQL is not capable of expressing this logic directly. This limitation has given rise to embedded procedu­

rallanguages within SQL statements such as Oracle's Procedural Language/Structured Query Language 

(PL/SQL). This limitation is discussed further in Section 8.3.4. 

5.5.2 Abstraction 

Consider the following simple interest statement in SQL: 

select • from Artefacts where colour = 'red' 

This statement is fairly simple, and digestible. However, as we saw in Section 5.3.4, the statement 

gets more complex in proportion to the complexity of the the interest: 

select b.· from Artefacts a, Artefacts b where 

a.name = 'my artefact' and 

a.category • 'frustum' and 

a.radius > sqrt(pow«b.x_coord - a.x_coord), 2) + pow«b.Lcoord - a.y_coord), 2» and 

b.virtual • false and 

b. colour. 'red' 
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Ideally we would like to keep the complexity of the statement we are currently writing to a minimum, 

yet still handle increasingly complex statements. SQL does not provide any such abstraction technique. 

5.5.3 Readability 

Consider the following SQL statement which determines which artefacts are within a given artefact's 

viewing frustum: 

select b.* from Artefacts a, Artefacts b where 

a.name = 'my artefact' and 

a.category = 'frustum' and 

a.radius> sqrt(pow«b.x_coord - a.x_coord), 2) + pow«b.Lcoord - a.Lcoord). 2» and 

b.virtual = false 

Quickly scanning the above statement does not immediately reveal its intentions, particularly the 

line dealing with the geometry calculation of the distance between two coordinates. 

5.5.4 Succinctness 

Consider the following simple interest statement in SQL: 

select * from Artefacts where colour = 'red' 

As Section 5.5.2 described, this statement is fairly readable despite having a lot of words which are 

specific to the implementation (SQL) rather than the domain (interests). For example, in this statement 

the important concept is purely colour = 'red'. The lack of modularity, as described in Section 5.5.2, 

also means that in terms of the intention, the statement is not very succinct. Consider the differences 

between this valid SQL statement, and the following invalid statement which uses abstraction to define 

the within relationship: 

select b.* from Artefacts a, Artefacts b where 

a. radius> sqrt(pow( (b.x_coord a.x_coord). 2) + pow( (b.Lcoord - a.Lcoord), 2» 

all artefacts where 

By increasing the succinctness in terms of the intention through modularity, the above invalid state­

ment also becomes a lot more readable without losing the expressiveness. Chapter 6 will introduce Wish, 

a new language built upon SQL which aims to tackle the readability, succinctness and abstraction issues 

raised in this section. 
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Chapter 6 

Wish: a DSL for Interest Statements 

Chapter 4 introduced an implementation of a virtual environment that allowed interest to be represented 

using SQL, and Section 5.3 demonstrated that SQL is expressive enough to represent the interest types 

categorised in Section 2.2.41. However, Section 5.5 described several limitations of using SQL to represent 

interest statements. SQL's limitations include a lack of support for abstraction/modularity mechanisms, 

and not being very readable or succinct. There is therefore the need for a language that is as expressive 

as SQL, provides abstraction mechanisms, and is also more suited to the domain of interests in terms of 

readability and succinctness. Wish aims to be such a language. 

Section 6.2 describes the structure of Wish, and Section 6.3 describes how it was implemented. Wish 

is evaluated in Chapter 7. 

6.1 The Structure of a DSL for Interest Statements 

On inspection of the SQL interest statements described in Section 5.3 we can see that they consist of the 

following fundamental concepts: interest conditions or relative interest conditions connected with logical 

operators with optional grouping. Sections 6.1.2.1,6.1.2.2 and 6.1.2.4 will explore these concepts in more 

detail. Two further concepts, not explicitly incorporated into the previous SQL interest statements, 

are needed to improve the readability and abstraction capabilities of a language representing interest 

statements. These two concepts are scoping and abstraction and will be discussed in Sections 6.1.2.6 and 

6.1.2.5 respectively. 

6.1.1 Domain Objectives 

The domain objectives are driven by the successes and failings of the SQL implementation introduced 

in Chapter 5. A domain specific language needs to be expressive enough to represent all the examples 

described in Section 5.1.4, yet not suffer from the limitations discussed in Section 5.5. This section will 

discuss these objectives in greater detail. 

I However, some of the predicates may best be calculated with auxiUary logic, such as visibility-based filtering. 



100 

6.1.1.1 Abstraction 

A statement of interest can be formed with arbitrary amounts of complexity. However, complex state­

ments can get very difficult to manage, thus increasing the chance of errors, both semantic and syntactic. 

The main problem with this situation is that the complexity of any linguistic statement is limited to the 

complexity that the author of the statement can handle. 

One of the key techniques of dealing with complexity is through abstraction. By building many layers 

of abstractions, we are able to construct arbitrarily complex statements that only expose the complexity 

that is necessary in a particular context. One way of providing layers of abstraction is allowing the 

language to be built up from smaller modules, which in turn may be built up of smaller modules ad 

infinitum. These modules can be seen to be analogous to functions or classes. 

6.1.1.2 Succinctness 

When attempting to make a language more readable, it is possible to end up with something that is 

verbose. It is therefore important to find the correct balance between succinctness and readability. One 

method of doing this is to just remove semantic and syntactic elements that are not necessary in the 

current context. Consider the following SQL example describing an interest in all red artefacts: 

select • from artefacts where (colour = 'red') 

This is a complete SQL statement, and contains all the semantic and syntactic elements to be a correct 

SQL statement. However, in this context we are only considering interests. There are a few assumptions 

we can make. For example, consider the following assumptions: 

• The universal set is always the set of all artefacts. Therefore, from artefacts is not necessary: 

select· where (colour = 'red') 

• We are always interested in all interesting things. Therefore, select • is not necessary: 

where (colour = 'red') 

• We are always describing interests. Therefore, where is not necessary: 

(colour = 'red') 

Through the process of making assumptions from the context of the domain, it is possible to remove 

elements of the language, and make the statement more readable. 
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6.1.1.3 Readability 

One of the main aims for the readability for a new language is for it to be readable by the domain 

expert. The domain expert may not be a programmer, but someone designing the methods or techniques. 

Therefore, ideally, the language uses the vocabulary of the domain, and not necessarily the vocabulary 

of a general programming language. 

For example, consider the following SQL snippet: 

(colour = 'red') 

This snippet, although fairly succinct2 is perhaps not as readable as it could be. It still looks more 

like an SQL snippet, than a statement of interest. Consider the following possible methods of tackling 

this issue: 

• The parenthesis aren't necessary in this statement. There are no operators to which their precedence 

can be altered. 

colour = I red' 

• The quotations aren't necessary in this statement. The fact that the colour is represented by letters, 

means that it's possible to deduce that it is a string3: 

colour = red 

• It would be much more readable if it could be written within the language of the domain. In this 

case we are concerned with red artefacts, or all artefacts coloured red. Therefore the following 

would be more readable: 

coloured red 

Through the process of purging the statement from syntactic clutter, and using domain specific 

vocabulary, it is possible to make the statement more readable. 

6.1.1.4 Expressiveness 

In order to represent complex statements at all, the language needs to be sufficiently expressive. The 

requirement for expressiveness was captured in Chapter 3, and a test of which is the ability to represent 

the examples presented in Section 3.3. 

2 At least it is succinct when compared to the full SQL version 
3More on this type of inference in Section 6.2.1.1. 
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6.1.2 Structural Concepts 

This section evaluates the interest statements formalised in Chapter 3, and implemented in Chapter 5 in 

order to highlight the various structural concepts required of such a language. The follOwing structural 

concepts are considered: 

• Interest Conditions (Section 6.1.2.1), 

• Relative Interest Conditions (Section 6.1.2.2), 

• Logical Operators (Section 6.1.2.3), 

• Grouping (Section 6.1.2.4), 

• Abstraction (Section 6.1.2.5), 

• Scoping (Section 6.1.2.6). 

6.1.2.1 Interest Conditions 

The fundamental component of the SQL interest statements introduced in Chapter 5 is a boolean ex­

pression. This is essentially a condition over a given attribute4 : 

[attribute 1 [condition 1 [value 1 

The SQL conditional operators were described in Table 5.2 and are reproduced here for convenience: 

Conditional Operator 

!= 

< 

> 

<= 

>= 

Example boolean conditions are as follows: 

colour ~ • red' 

age> 27 

virtual I- true 

Description 

equal to 

not equal to 

less than 

greater than 

less than or equal to 

greater than or equal to 

4The square brackets in these descriptions do not denote optional tokens, they just emphasise token boundaries. 
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6.1.2.2 Relative Interest Conditions 

Relative boolean conditions allow for the representation of statements such as 

I am interested in all artefacts that are the same colour as this artefact 

where this is a given artefact (as described in Section 5.1.3). These conditions appear as follows: 

[attribute) [condition) [a given artefact's attribute) 

Example relative boolean conditions are as follows (relative to artefact x): 

colour = x.colour 

age> x.age 

virtual I- x.virtual 

6,1.2.3 Logical Operators 

An interest statement can consist of one or more boolean conditions (or relative boolean conditions) joined 

together with logical combinational operators. Table 6.1 describes the four major logical combinational 

operators used for joining interest conditions. 

Table 6.1: Logical Combinational Operators 

Logic Symbol(s) SQL Equivalent 
V or 
1\ and 

1\..., and not 
V..., or not 

An example of joining two interest conditions is: 

[interest condition) [logical operator) [interest condition) 

Examples of joining interest conditions are as follows: 

colour = 'red' or age> 27 

colour. 'red' and age> 27 and not virtual = true 

Another logical operator that can be used is the not operator. This operator is not used to combine 

interest statements, but is used to switch the boolean value of a single interest statement. 

[not) [interest condition) 
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An example of using the not operator on an interest statement is as follows: 

not colour = 'red' 

It is essentially equivalent to this statement: 

colour I- 'red' 

However, the not operator becomes particularly useful with a language that provides grouping and 

abstraction as will be discussed in Sections 6.1.2.4 and 6.1.2.5 respectively. 

6,1.2,4 Grouping 

Grouping allows a number of interest statements to be treated as a single interest statement by the 

logical operators. In SQL grouping is possible through the use of parenthesis. For example, the following 

interest conditions have been grouped together: 

(colour· 'red' or age> 27) 

The above statement is syntactically identical to the following statement: 

colour = 'red' or age> 27 

However, the presence of grouping allows logical operators to apply to a number of combined interest 

conditions simultaneously. The following are examples of logical operators being applied to groups of 

interest conditions: 

not (colour. 'red' or age> 27) 

(colour. 'red' or age> 27) or virtual 1= false 

6.1.2.5 Abstraction 

Section 5.5.4 introduced an example of abstraction in order to provide an example of succinctness. It 

described how the following statement: 

select b.* from Artefacts a, Artefacts b where 

a.radius> sqrt(pow((b.x_coord . a.x_coord), 2) + pow((b.y_coord . a.y-coord). 2» 

The above statement might be abstracted to the following statement which looks similar to a standard 

programming language function call: 

att artefacts where 
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The important concept to note is that the implementation details are hidden away beneath a layer 

of abstraction. Notice that the above abstraction condition used a relative artefact as the parameter. 

The circle a needs to be defined somewhere for this condition to be meaningful. The usage of relative 

artefacts also removes the need for any self joins in the SQL select clause. 

As described in Section 5.5.2, abstraction through modularity provides a way for the statement to 

express increasingly complex concepts whilst keeping the relative complexity and succinctness constant. 

If appropriate names are used for the abstractions, readability can also be improved. 

6.1.2.6 Scoping 

Scoping allows attributes to be matched against an entire set of values, rather than just one given value. 

It is represented by the SQL keyword in as seen in Section 5.4. An example of such an SQL statement 

is: 

id in (select id from Artefacts where colour = 'red') 

The above expression returns true if the id matches the id of a red artefact. If the attribute that we 

are scoping happens to be, or has the property of a primary key, the statement will behave the same as 

the following: 

colour = 'red' 

However, if the attribute does not have the property of a primary key, scoping becomes useful. 

Consider the following statement: 

name in (select name from Artefacts where colour = 'red') 

The above statement will match any artefact that has the same name as an artefact that is red. The 

semantics of this statement are not possible using standard interest conditions and logical operators as 

described above.s Scoping is particularly useful when used in conjunction with an abstraction mechanism 

as described in the next section. 

6.2 Wish Structure and Syntax 

Wish supports the following structural concepts: interest conditions, relative interest conditions, logi­

cal operators, grouping, scoping and abstraction. This concepts will be introduced in Section 6.1, and 

discussed in Sections 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.2.6, and 6.2.5 respectively. 

5Thls Is assuming the statement does not include any explicit joins in the select clause. 
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6.2.1 Interest Conditions 

As introduced in Section 6.1.2.1, interest conditions are a fundamental component of an interest state­

ment. In Wish an interest condition is bound to one line, and must conform to the following syntax 

(where the condition is one of the SQL logical operators presented in Table 6.1): 

[attribute J [condition J [value J 

Example Wish interest conditions are as follows: 

name = sam 

age> 27 

virtual !- true 

6.2.1.1 Automagical Value Quoting 

Consider the following interest conditions: 

name = sam 

id z 3 

Notice the absence of any quotes, despite the value being a string and an integer consecutively. Wish 

will automatically quote most non-numerical and non-boolean values. The auto-quoting rules are as 

follows: 

• Do not quote the value if any of the following are true: 

- it is numerical (e.g. 4, -4, 4.8, .s), 

- it contains a pair of expression tags6 (e.g. <'1= x.value to», 

- it is the word true or false, 

- it is surrounded by back-ticks (e.g. '4 + 2'. 'sqrt(Bl)') , 

- it is already quoted . 

• Surround the value with expression tags if all of the following are true: 

- it contains one or more periods within the value (e.g. x.value), 

- it does not start with a period (e.g. not . rb), 

- it does not end with a period (e.g. not bye.), 

GThe _ '10> tags will be covered in Section 6.2.2 
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- it does not contain any spaces (e.g. not hi. bye) 

- it does not already contain any expression tags . 

• Quote all other values 

Therefore, to ensure that a value is quoted: quote it, and to ensure a value is not quoted: surround 

it with back-ticks. Examples of values before and after the automatic quoting mechanism are presented 

in Table 6.2. 

Table 6.2: Value Quoting Examples 

Before auto-quoting After auto-quoting 
4 4 

'4' '4' 

four 'four' 

4.8 4.9 

cock-ver19 'cock-ver19 • 

1st '1st' 

true true 

false false 

truth ·truth· 

x.value <'1= x.value 'II> 

x. value. sub_value ..... x.value.sub_value 'II> 

·x.value.sub_value· ·x.value.sub_value· 

.... = x.value 'II> <'1= x.value 'II> 

.... = x. value'll> + 1 .... = x. value'll> + 1 

end. ·end. . 
.5 .5 

. rb . . rbl 

2 + 4 12 + 4' 

the end is in sight • the end is in sight' 
.nearing.the.end •. nea ring. the. end' 

nearly.at.the.end. ·nearly.at.the.end. 
Getting. Very. Close ·Getting. Very. Close' 
. one.more.thing .... ·.one.more.thing .... 

'2 + 4' 2 + 4 
'sqrt(B1) • sqrt(B1) 
The End. 'The End. 

6.2.1.2 Comments 

Wish also supports comments. Any line that starts with a II is ignored. Consider the following Wish 

statement: 
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fthis is a comment 

Wish also ignores blank lines, i.e. lines containing only white-space characters (spaces and tabs). 

6.2.2 Relative Interest Conditions 

Section 6.1.2.2 introduced relative interest conditions as a fundamental interest statement structure. This 

essentially provides the ability to reference artefacts within an interest statement. For example, we might 

have a relative artefact x that we want to make our interest relative to. We might want to be able to 

state the following: 

I am interested in all objects that are the same shape as x 

Wish requires that x is defined in a file called relative_artefacts. rb. This file is essentially a series 

of variable declarations, where each variable declared needs to be assigned an ActiveRecord object 

representing an artefact 7. Consider the following example relative_artefacts. rb file: 

x • Artefact.find(l) 

This file declares a variable (x) to which the artefacts with an id of 1 is assigned. It is important that 

the variable is assigned just a single artefact rather than a collection of artefacts. For example if there 

are multiple artefacts with the name 'sam' I then x in the following statement is assigned a set of objects: 

x • Artefact.find(:conditions => {:name => 'sam'}) 

Therefore, in the cases where the conditions do not exhibit the properties of a composite primary 

key, yielding only a single result, it is necessary to force ActiveRecord to only return one object. One 

way of achieving this is to select the first artefact only: 

x = Artefact.find(:first, :conditions => {:name => 'sam'}) 

Using the defined relative artefact x, Wish can represent the relative interest condition as follows: 

shape· x.shape 

In the case where artefact x is a sphere, Wish will evaluate the above statement using Ruby to the 

following: 

shape = sphere 

It is also possible to evaluate more complicated expressions. For explicit evaluation, the expression 

tags ~. and 'II> are necessary. The tags surround the Ruby code which is to be evaluated. The tag and 
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Table 6.3: Evaluating Interest Condition Expressions 

Before Evaluation After Evaluation 
shape = <"6= x. shape 'II> shape = sphere 

age> <'1= 28 + (5 * 2) - 3'11> age> 27 

height < <"6= x. height I 2'11> height < 5 

its contents will be replaced by the appropriate value before the interest statement is executed. Consider 

the interest conditions and their corresponding evaluations presented in Table 6.3. 

It is important to note that there are limitations for using these expressions to define relationships 

between artefacts. For example, although it would be easily possible to design an algorithm using this no­

tation which defines a particular type of relationship, that particular algorithm could easily be extremely 

costly to execute, particularly if all users are attempting to execute the same algorithm simultaneously. 

6.2.3 Logical Operators 

Sections 6.2.1 and 6.2.2 described the syntax of individual interest conditions. We might also wish to 

use logical operators (such as those presented in Table 6.1) to create interest statements that contain 

mUltiple interest conditions. This section describes how this is achieved with Wish. 

6.2.3.1 not 

Wish only supports the explicit logical operator not which must appear at the beginning of an interest 

condition line. For example consider the following interest statement: 

not colour •• red' 

Therefore the complete syntax for an interest statement is:8 : 

(not) [attribute 1 [condition 1 [value 1 

6.2.3.2 or 

Wish does not explicitly support the or keyword. Given that each interest condition is represented by a 

separate line, Wish assumes that each new line with the same indentation as the previous line represents 

a combination of the two statements (current line and previous line) with an or operator. 

For example, consider the following SQL snippet represents a combination of interest conditions: 

colour = . red' or age> 27 

7This file is evaluated, and the relative artefacts fetched from the database, as part of the Wish compilation and the 
l'e8ulting values are used to generate the final SQL output. 

8where the parentheses represent an optional token 
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This snippet can be expressed using Wish as follows: 

colour· red 

age> 27 

6.2.3.3 and 

In addition to the or keyword, Wish does not explicitly support the and keyword. Wish assumes that 

a new line with an increased indentation (two spaces9) represents a combination of the two statements 

with an and operator. 

For example, consider the following SQL snippet which represents a combination of interest conditions: 

colour = 'red' and age> 27 

This snippet can be expressed using Wish as follows: 

colour· red 

age> 27 

6.2.3.4 and not, or not 

It is possible to combine implicit or, implicit and and explicit not to create or not and and not representations 

for single interest statements. 

For example, consider the following SQL snippet which uses or not: 

colour ~ 'red' or not age> 27 

This snippet can be expressed using Wish as follows: 

colour· red 

not age> 27 

Also, consider the following SQL snippet which uses and not: 

colour. 'red' and not age> 27 

This snippet can be expressed using Wish as follows: 

colour. red 

not age> 27 

In order to apply the not keyword to more than one statement it is necessary to use the Wish grouping 

structures as described in Section 6.2.4. 
DWlsh does not support tabbing as an indentation token. All tabs are replaced with two spaces before the statement is 

parsed. 
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6.2.4 Grouping 

Section 6.1.2.4 described how grouping allows a number of statements to be treated as one from the 

perspective of logical operators. Wish uses implicit and explicit grouping as described in Sections 6.2.4.1 

and 6.2.4.2 respectively. 

6.2.4.1 Implicit Grouping 

Wish implicitly groups the following structures: 

• individual conditions 

• a block of conditions that are further indented from the current line 

6.2.4.1.1 Individual Conditions For an example of implicit grouping involving individual state­

ments, consider the following Wish statement: 

not colour = red 

Wish treats this line as one entire statement. The operators not and. only apply to this condition, 

and no others in the interest statement. 

To see this behaviour explicitly, consider the following Wish statement: 

not colour. red 

age > 27 

The above is equivalent to the following SQL snippet: 

(not colour = red) or (age> 27) 

6.2.4.1.2 Indented Conditions Wish implicitly groups all indented conditions. For an example of 

this, consider the following Wish statement: 

colour. red 

age> 27 

name = sam 

The above is equivalent to the following SQL snippet: 

colour. red and (age> 27 or name = 'sam') 

The grouping stops when the indentation returns to match the line where the grouping started. 

Consider the following statement: 
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colour - red 

age> 27 

name • sam 

virtual. true 

The above is equivalent to the following SQL snippet: 

colour. red and (age> 27 or name = 'sam') or virtual = true 

6.2.4.2 Explicit Grouping 

Wish supports explicit grouping through the use of grouping tokens. As with interest conditions, a 

grouping token must reside on its own line. The grouping tokens are as follows: aU to start a group, 

and not to start a negated group. The grouping ends when a subsequent interest condition has the same 

indentation as the start token. For example, consider the following Wish statements: 

att 

age> 27 

name = sam 

virtual = false 

The above is equivalent to the following SQL snippet: 

(age> 27 or name = 'sam') or virtual = false 

The structure of a negated group is identical: 

not 

age> 27 

name'" sam 

virtual'" false 

The above is equivalent to the following SQL snippet: 

(not (age> 27 or name = 'sam')) or virtual = false 

Explicit groupings can contain explicit or implicit groupings. Consider the following statement which 

contains an implicit grouping within an explicit grouping: 

not 

colour'" red 

age> 27 

name'" sam 

virtual a false 
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The above is equivalent to the following SQL snippet: 

(not (colour. red or age> 27 and (name = 'sam'))) or virtual = false 

Wish also supports an optional group ending token: ---. When using both opening and closing group­

ing tokens, it is important to note that they both must appear at the same indentation. An example of 

an explicit grouping with an end token is as follows: 

an 

colour = red 

age> 27 

name • sam 

virtual = false 

The above is equivalent to the following SQL snippet: 

(colour. red or age> 27 or name = 'sam') and virtual = false 

6,2,5 Abstraction 

Section 6.1.2.5 described abstraction as a useful tool for hiding complexity, and as a way of storing and 

re-using useful snippets of combined conditions, with an associated name. Storing such a combination is 

similar to defining a function or method in a programming language. 

Wish offers an abstraction method through the creation and use of subwishes. Subwishes support the 

notion of implicit parameters, and can be nested within each other. They are discussed further in the 

following sections. Subwishes are essentially an implementation of derived sets as introduced in Section 

(3.2.4.1) 

6,2,5,1 Subwishes 

Wish supports abstraction through the concept of subwishes. Subwishes reside in their own fileglo, and 

the filename acts as the name of the subwish itself. 

Any given Wish statement may contain one or more subwishes. Consider the following Wish state­

ment: 

'red_sphere.wish 

'this subwish matches red spheres 

colour. red 

shape. sphere 

IOThls Is only a current implementation decision. The main concept is that subwishes are part of a hierarchy of Wish 
statements, and the subwlshee can be used to provide a library of useful and frequently used partial Wish statement to use. 
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By storing it in a separate file with an appropriate name such as red_sphere.wish, it is possible to refer 

to it in the main interest using its name as follows: 

Wish automatically replaces the abstraction with the content of the matching subwish's file, and 

wraps it up in an explicit grouping structure as follows: 

an 

COLour = red 

shape • sphere 

This means that it is possible to use an abstraction in exactly the same fashion as a standard interest 

condition. For example, this Wish statement matches red spheres named sam: 

name = sam 

Wish will automatically convert the above statement to the following: 

an 

COLour = red 

shape = sphere 

name = sam 

6.2.5.2 Implicit Parameters 

Section 5.3.2 introduced the following SQL snippet as a means of calculating whether a given artefact is 

within a football pitch: 

x_coord >- footbaLL_pitch. x_coord (footba"_pitch.'ength / 2) and 

x_coord <= footba'L_pitch.x_coord + (footba"_pitch.'ength / 2) and 

y_coord >- footba"_pitch.y_coord - (footba"_pitch.width / 2) and 

Lcoord <= footbaH_pitch.Lcoord + (footbaH_pitch.width / 2) 

Assuming that we have an appropriately defined variable called footbaH_pitch amongst the relative 

artefacts declarations, the Wish version is as follows: 

x_coord >= <'P footbaH_pitch.x_coord - (footbaH_pitch. Length / 2) \> 

x_coord _ ~ footbaH_pitch.x_coord + (footbaH_pitch. Length / 2) \> 
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y_coord >- ~ football_pitch.y_coord . (football-pitch.width / 2) %> 

Lcoord <= ~ footbaH_pitch.Lcoord + (footbaH_pitch.width / 2) %> 

Wish allows subwishes to contain parameters. Consider the following statement: 

within football_pitch 

Here we are passing the relative artefact footbatt-pitch as a parameter to the subwish within. This 

subwish is stored in the file within.wish and would look as follows: 

#Within.wish 

#this subwish determines whether a given artefact 

'is within the boundaries of a rectangle 

x_coord >= <lip IAI.x_coord - (IAI. length / 2) %> 

x_coord <= <lip IAI .x_coord + (IAI. length / 2) %> 

Lcoord >= <lip IAI.Lcoord - (IAI.width / 2) %> 

y_coord <- <lip IAI.y_coord + (IAI.width / 2) %> 

Notice how the above subwish refers to the relative artefact as I A I. When the Wish is parsed, all 

occurrences of IAI will be replaced with the first parameter of the subwish condition. This would result 

in the following: 

att 

x_coord >a <lip football_pitch. x_coord - (footbalt_pitch.length / 2) %> 

x_coord <= <lip football_pitch. x_coord + (football_pitch. length / 2) %> 

y_coord >= <%- football_pitch.y_coord - (football_pitch.width / 2) %> 

y_coord <- <lip football_pitch.y_coord + (football_pitch. width / 2) %> 

If the subwish requires more than one parameter, they can be referred to as IBI, ICI, 101, etc., in 

alphabetical order. For example, the following subwish takes two relative artefacts, and matches artefacts 

that are the same colour as the first, or the same shape as the second: 

'colour_or _shape.wish 

'this subwish takes two parameters 

colour·IAI·colour 

shape • I B I . shape 

If it is stored in the file colour _or_shape.wish, then assuming the declaration of two relative artefacts 

retl and rel2 it could be called as follows: 
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6.2.5.3 Nested subwishes 

8ubwishes can be arbitrarily nested. It is possible to define a subwish which contains other subwishes 

which in turn may contain other subwished etc. 

For example consider the following subwish stored in a file called red_artefact.wish: 

'red_artefact.w1sh 

colour. red 

This could be used by another subwish stored in a file called red_sphere.wish as follows: 

'red_sphere. wish 

red_artefact 

shape • sphe re 

, 

Which in turn could be used by the main Wish statement which would match all red spheres named 

sam: 

name = sam 

When using nested subwishes it is important to avoid creating closed cycles. For example, subwish 

A might refer to subwish B which in turn might refer back to subwish A. This would cause the Wish 

parser to enter an infinite loop, and is clearly undesirable. 

6.2.6 Seoping 

As described in Section 6.1.2.6, scoping allows attributes to be matched against arbitrary sets of values 

rather than just individual values. The Wish scoping mechanism uses subwishes to define a set of values. 

Consider the following subwish: 

'blue_artefacts .wish 

colour· blue 

This subwish can be used to match blue artefacts as seen in Section 6.2.5.1. However, it can also 

represent the derived set of all blue artefacts (see Section 3.2.4.1). This set can be used in a scoping 

structure as follows: 

name in blue_artefacts 

This will match all artefacts that share a name with an artefact which happens to be blue (including 

the blue artefacts themselves). Scoping statements can also use parameters in an identical fashion to 

standard subwish calls. Consider the following scoping statement: 
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name in within football_pitch 

The above statement will match all artefacts that share a name with an artefact which is within the 

relative artefact footbaH.JIitch. 

6.2.7 Subwishes: A Myth 

So far, this chapter has suggested an implicit difference between a standard Wish statement, and a 

subwish statement. However the difference was introduced purely for pedagogic purposes. Although 

there may be a conceptual difference in the context of a particular statement, there is no actual difference 

between Wishes and subwishes. Subwishes are just Wish statements that happen to be referred to by a 

different Wish statement. 

Wish statements consist of a root Wish, which may (or may not) refer to other nested Wish state­

ments, and a file describing any relative artefacts. Clearly, for a Wish statement to be used as a root 

Wish, it must not refer to any implicit parameters. 

6.3 Design and Implementation 

This section describes the implementation and design of the Wish language. 

6.3.1 Agile Development 

Wish was developed in an agile fashion with a focus on specifications, testing and modularity. Section 

6.3.1.3 describes how Wish was built with a series of iterations, and Section 6.3.1.4 describes the process 

of one such iteration. 

6.3.1.1 Specifications 

Wish was built using a behaviour driven development approach (see Section 4.3.2.2). This means that 

specifications of expected behaviour had to be written before the implementation of those behaviours 

could start. Developing Wish in this manner turned out to be invaluable, as the many constant changes 

to the implementation could instantly be verified. 

6.3.1.2 Modularity 

Wish is a very modular system. This is due to two reasons: to allow the reuse of already available 

technologies such as YAML and Ruby erb, and also to facilitate the testing of the individual components. 

A modular architecture also lends itself particularly well to an iterative development process as a module 

can easily be the goal of a particular iteration. 
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6.3.1.3 Iterative Development 

Wish was developed in an iterative fashion. An iteration is a small development cycle, with a small set 

of associated behaviours. The behaviours can be formalised using an executable specification language 

such as RSpec (discussed in Section 2.5.2). A typical iteration was as follows: 

1. Decide on the objectives for the iteration 

2. Define the behaviours of the objectives within the context of the system 

3. Formalise the behaviours as a set of executable specifications 

4. Append to the system implementation until the executable specifications pass 

A fundamental principle of iterative development is that only the current iteration is defined and 

implemented. This allows the definition of the next iteration's objectives to be made based on the result 

of the previous iteration. This means that the overall development plan is agile and flexible, and able to 

deal with unanticipated situations. It also allows the development to focus on exactly what's necessary, 

and reduce the amount of unused implementation that was built on incorrect or outdated assumptions. 

6.3.1.4 An Example Iteration 

This section describes the process of a typical iteration. The objectives for this iteration are to implement 

the auto-quoting mechanism described in Section 6.2.1.1. The behaviours that the mechanism needed to 

exhibit were planned, and documented. They were essentially the behaviour documented in Table 6.2. 

These behaviours were converted to executable RSpec specifications, and are presented in Appendix A.3. 

Once the specifications had been written, the implementation could commence. Appendix Imple­

mentation: A.I presents the implementation which was the result of this particular iteration. When 

the implementation was completed the specifications were executed to validate that the implementation 

conformed to the specified behaviour. Appendix A.2, presents the output of the RSpec specification 

evaluation tool. Once the specifications all passed, it was important to run the whole suite of tests 

for the entire implementation so as to verify that the new implementation didn't affect any previous 

implementation. The next iteration was not allowed to start until all of the specifications passed. 

6.3.2 Iterations 

This section describes the various iterations that comprised the development of Wish. For each iteration. 

the goals and objectives are discussed. 
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6.3.2.1 Interest Conditions 

The first iteration of Wish developed the notion of a single interest condition. The implementation of such 

an interest condition was to be a simple SQL condition represented by a one element YAML list. This 

iteration also focussed on the infrastructure that allowed a single interest condition in it's own separate 

file to be used as an interest statement, and incorporated with the virtual environment implementation 

described in Chapter 4. 

6.3.2.2 Explicit Logical Operators: not 

This iteration added specifications defining the behaviour of USing the keyword not at the beginning of 

an interest condition to negate the result of that particular condition. 

6.3.2.3 Implicit Logical Operators: or, and 

This iteration focussed on the ability to create interest statements that comprised of multiple interest 

conditions. It focussed on defining the behaviour of nested lists representing the and operator, and elements 

of the same list representing the or combinational operator as described in Sections 6.2.3.3 and 6.2.3.2 

respectively. 

6.3.2.4 Converting a YAML nested list to SQL 

This iteration focussed on the ability to convert the YAML nested lists that were the result of the 

previous iteration into a valid SQL where clause. 

6.3.2.5 Expressions 

This iteration added specifications defining the behaviour of erb expressions and the relative artefacts 

file with respect to the Wish syntax. 

6.3.2.6 Auto-quoting 

This iteration defined the auto-quoting behaviours described in Section 6.2.1.1. This particular iteration 

is described in greater detail in Section 6.3.1.4, and is the subject of Appendices A.3, A.I and A.2. 

6.3.2.7 Grouping 

This iteration focussed on specifying the behaviour of implicit and explicit grouping as discussed in 

Section 6.2.4. 
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6.3.2.8 Abstraction 

This iteration focussed on the behaviour of an abstraction system building upon the grouping behaviour 

of the previous iterat ion . It specified t hat individual interest statements could be used as conditions 

within other statements by referring to the fi le name. A simple implicit parameter mechani m was also 

specified. 

6.3 .2.9 Scoping 

This iteration defined specifications to support a si mple scopi ng mechanism built upon the ab traction 

system. Scoping is discussed further in Section 6.2 .6. 

6.3.3 Architectural Components 

Wish includes of a number of exist ing technologies such as SQL, YAML and Ruby. Section 6.3.3.1, 

6.3.3. 1,6.3.3.3 describe t he purpose of each of t hese exist ing technologies. Section 6.3.3.4 introduc the 

Wish layer, and finally Section 6.3 .4. 7 gives an overview of the various component th at compri Wi h. 

Figure 6. 1 illustrates these components, grouping t hem wit h the language that they are implem nl din : 

YAML/SQL, Ruby and Wish respect ively. 

~ ~ ~ ............ /"" /' /' /' /' 

Explicit not 
Explicit Implicit 

Use 01 
Expressions Relative 

and 1n Absuactlon Auto--quotJng Abstraction lor Artefacts Operators Grouping Grouping Scoping vp 
~ Ruby Wish 

Relative Interest Conditions Seoplng Interest Condilions Grouping CondhlonalOperators LI' YAMl with embedded Sal 

Figure 6.1: T he Wish Components 

6.3.3 .1 SQL 

QL i th foundat ion language for Wish, and the final output language. Section 5.3 showed that SQL is 

suitably expre sive as a language for representing interests. However, Section 5.5 described a number of 

limitation which motivated t he creat ion of Wish. Figure 6.2 illustrate the overall proces of compiling 

a Wish statem nt into an equi valent SQL statement . 
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._._. __ .[] 
I f---------. 
-- . _ . ..... Irwnat 

(-'-'i repesentaJk)n 

I 

~·--· - ·-o 
Figure 6.2: Converting a Wish Statement to SQL 

Using YAML to define the structure of Wish a llows t he use of the YAM L parser to create a data 

structure. Wish is essentia lly an arbitrarily nested list of interest condit ions. and as di cus ed in ction 

2.5. 1, YAML allows this hierarchical data structure to be represented and parsed. Figure 6.3 iIJusLrat 

the role of YAML as a format for representing an interest statement t ruct ure which can be easi ly par ed , 

and converted to SQL. 

----·G 
I , - ----- --- ' 
... . _ . -, Intemlll 

( - . - " r.p'eMOt.tkln 

I 

- ·----0 
Figure 6.3: Parsing a YAML Statement and Convert ing it to SQL 

6.3.3.3 Ruby 

Wish use Ruby to define rela tive artefacts and to evaluate expressions. Due to it interpretative nature, 

Ruby can evaluate arbitrary blocks of code embedded within text fi les. T his is facilitated by the erb 

library which i d iscu ed in Section 2.4. 1. Ruby also allows a set of statements to be stored in a Binding 

obj ct , and passed as a context to blo k, st ring eval or erb evaluations. This al lows the definition of 

r lativ art facts to be stored in a epara te file, and used as a context when evaluating the embedded 

rb stat; m nt . Figure 6.4 illustra tes t he role of Ruby erb expressions in t he ,-\ i h parsing algorithm. 
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·_·_·_·-8 [§J 
._. - ,- . - ._.- ._. _. _. _._ ._._.1 

I f---------. 

- . - . ;"~.~l;J 
- · -L -~3 (---'1 ftlPf ....... 1Jorl 

__ . _ .1 

'--"' _·_·--·0 
Figure 6.4: ParSing a YAML + erb Statement and Converting it to SQL 

6.3.3.4 Wish 

Wish leverages the power of SQL, YAML and Ruby, and foc usses on addi ng ab tract ion , grouping and 

simple scoping mechanisms whilst attempting to be both readable and succinct . The imple Wi h par er 

essentially replaces Wish syntax with SQL cond itions and stores the result in YAML format . Figur 6.5 

illustrates t he role of the Wish syntax in the Wish parsing algorithm . 

. - . - . - . - .~ 

I G----------1._ . -
YAMl 

f- ·_ · 

I 

Ovlp!Jl Sal statement . - . - . - . - .~ 

Figure 6.5: Parsing a Wish Statement and Converting it to SQL 
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6.3.4 Implementation Overview 

This section describes the a lgorithms and methods used to implement Wish. Finally, Section 6.3.4.7 gives 

an overview of the components that W ish is com prised of. 

6.3.4.1 YAML to SQL P a r ser 

The YAML to SQL parser has two main phases of operation. First, the YAML file is parsed by the 

Ruby YAML library into a Ruby data structure . Secondly, the Ruby data structure is manipulated and 

compiled into a valid SQL statement. 

The compilat ion a lgor it hm operates on a nested list , and is recursive in order to deal with the De ted 

properties of the data structure. The base case for the algorithm is when the st ructure is a si ngle element. 

Figure 6.6 descri bes t his base case which is essentia lly a standard case statement . 

Read element 

YES 
return 
") " 

NO 

YES 
return 

"(not " 

NO 

YES -.. 
return 

II (" 

NO 

return 
"#{ node} " 

F igure 6.6: Converting a YAML String Element to SQL 

If the a lgorithm is passed a list to compile, it iterates through each element and join the result of a 

r ursive call to t h a lgorithm passing t he current algori thm together with either an or or and keyword . 

Th keyword to use depends on whet her t he current element i a single element, or a nested list. Figure 
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6.7 details t he process of combining a list of elements, and F igure 6.8 de cribes the entire proces of 

compiling a Wish statement to SQL. 

YES 

YES 

_nd 
and ('{fragment})" 

to combination 

NO 

NO 

YES 

appe"" 
"#{f r agment} " 

10 combination 

YES 

NO 

NO 

YES 

YES 

-"" " ('{fragment} )" 
10 c:omblneUon 

~
nd 

NO • or • 
10""",,", __ 

YES 

NO 

YES 

-" ' (fragment)" 
to c:orOOinabon 

Figure 6.7: Combining YAML Elements 

6.3.4.2 Ruby erb Evaluation 

As des ribed in S ction 2.4 .1, erb i a imple templating system, which a llows Ruby code to be embedded 

within pla in (.ext . As de crib d in ection 6.3.3 .3 , and illustrated in Figure 6.5 , as part of the Wi h 

ompil ti n pro s , Rub xpr ssion mbedded within erb tag are interpreted , executed and replaced 

NO 
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>---- NO 

NO 

YAML 
representation 

SOL stalement 

- - Sal . -- - - - - - - - - -- - - -- --- - ---- - -- ----

Figure 6.8: Converti ng YAML t.o SQL 
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with the output of the expression. 

Wish also supports the notion of a file defining relative artefacts which can be referred to from within 

the erb expressions. This is achieved by interpreting the relative artefacts file, storing it as a Binding 

object, and then using the Binding object as the context for the erb evaluation. The ability to represent 

and manipulate contexts and methodsll in this way is a truly powerful mechanism. 

6.3.4.3 Wish Auto-quoting 

The development, behaviour and implementation of the Wish auto-quoting mechanism (described in 

Section 6.2.1.1) were used to describe an example iteration in Section 6.3.1.4, and is the subject of 

Appendices A.3, A.l and A.2. 

The implementation of the Wish auto-quoting mechanism only operates on the values of interest 

condition that contains an SQL conditional operator such as the following: 

attribute = value 

It matches these values against a series of regular expressions. Depending on which particular regular 

expression matches, or if none match, the statement is tagged appropriately. Figure 6.9 illustrates this 

process. 

Each time an interest condition is parsed, the auto-quoting mechanism is used to auto-quote the 

condition's value where appropriate. With the exception ofthe backtick removal, the auto-quoting mech­

anism is idempotent12 . The backtick removal is based on a conditional with an idempotent default (the 

backticks are not removed). The backticks are only removed in the parser's final pass. 

6.3.4.4 Wish Grouping 

Wish employs two grouping mechanisms: implicit grouping, and explicit grouping as described in Sections 

6.2.4.1 and 6.2.4.2 respectively. Implicit grouping is handled by the YAML to SQL compilation process 

as detailed in Section 6.3.4.1; note the parenthesis in the SQL output detailed in Figure 6.7. Explicit 

grouping is also handled by the YAML to SQL compilation process; note the parenthesis in the SQL 

output detailed in Figure 6.6. However, the explicit grouping syntax supports optional grouping endings 

through inspection of the indentation. In the Wish compilation phase, all implicit group endings are 

converted to explicit group endings, which can then be handled by the YAML to SQL compilation 

process. 

In order to convert the implicit group endings into explicit group endings, the Wish parser needs to 

consider the relative indentation of each Wish condition. If the indentation of a line subsequent to an 

lias 0PP06ed to the ability to manipulate just pointers to objects and primitives in languages such as Java (ignoring the 
syntactic monstr06ity that is a Java anonymous inner class). 

12The concept of idempotence originates from mathematics. It refers to an operation that yields tbe same result whether 
applied once, or more than once. For example, multiplying any given integer by 0 is idempotent: 8 X 0 X 0 X o ... = 8 x O. 



Rltum Interetl CondibOn 

127 

NO 

NO 

NO 

YES 

YES --------____ ~ 

YES--------------------------~ 

YES --------------~ 

YES--------------~ 

YES SUl'TCM.ll'ld~WlltltAQI 
. "'-- · ty· l ue)\>· 

Figur 6.9: T h Wish Auto-Quoting Algorithm 
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explicit group starting tag is at the same or smaller indentation, and there is no explicit group ending, 

an explicit group ending is inserted into the Wish statement. This is implemented by maintaining a list 

of the indentations of all unclosed explicit groups encountered so far. Each time the parser encounters a 

line with a smaller indentation, the unclosed groups list is checked, and if any groups need to be closed 

they are, and are subsequently removed from the unclosed groups list. 

6.3.4.5 Wish Abstraction 

When the Wish parser encounters a condition that does not contain one of the standard SQL conditional 

operators listed in Table 5.2, and is not an explicit grouping marker, it assumes that it is an abstract 

statement referring to an external file. Wish looks for a file matching the name of the abstract statement 

with the extension .wish. The contents of this file are wrapped with explicit grouping markers (an by 

default, or not if the abstract statement started with the not keyword). 

Wish implements this behaviour by reading through the Wish file, and building an internal array of 

strings representing each line. When the parser reaches an abstract statement, it locates the appropriate 

file, reads in all the lines, surrounds them with the appropriate explicit grouping markers, and inserts 

them in place of the abstract statement ensuring that the initial space is preserved. Once the parser has 

reached the end of the original file, it checks to see if it found and replaced any abstract statements. If 

so, it starts the whole process again in order to replace any new abstract statements. If it did not replace 

any abstract statements then the process is concluded. 

If the abstract condition contains additional tokens separated by white-space these are assumed 

to be parameters to the abstraction. For each parameter, the abstract file is searched for matching 

parameter tokens, and all occurrences of these tokens are replaced by the parameter. This takes place 

before the lines are inserted into the Wish statement. The matching parameters are simply uppercase 

letters surrounded with pipe characters (such as IAI). The first parameter replaces all occurrences of IAI, 

the second parameter replaces all occurrences of I B I, etc. 

6.3.4.6 Wish Scoping 

The Wish scoping mechanism uses the abstraction mechanism described in Section 6.1.2.5. However it 

generates a different condition to insert into the Wish statement. When the Wish parser finds an interest 

condition that uses the SQL in operator it expects that the value of that condition to be the name of an 

abstraction. The file is located (as described in Section 6.3.4.5) and parsed as a separate Wish file. The 

resulting SQL where clause is then used to construct a nested SQL statement similar to the following: 

attribute in (select attribute from artefacts where #{convert_wish_to_sql}) 



129 

6.3.4.7 Overview 

Figure 6.10 gives an overview of the various stages of the Wish compiler. 
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Figure 6_10: The "Vish Compiler 
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Chapter 7 

Case Study and Evaluation 

Wish is a DSL for representing interests which aims to be modular, succinct, readable and expressive as 

described in Section 6.1.1 

The overall design of Wish was driven by the aims and language objectives described in Section 6.1.1, 

and the interest statement structure described in Section 6.1. Wish therefore needed to support these 

structures whist maintaining its expressiveness, and improving upon the readability and succinctness of 

SQL. 

7.1 Case Study 

This section introduces an example virtual environment and this is then used to illustrate the capabilities 

of Wish. The environment used is a snapshot of a football pitch, with players a ball and a referee. As 

discussed in Section 4.1.2, our interest statements do not reason about time, and therefore a snapshot of 

a virtual environment is sufficient to use as a case study for Wish. The following sections introduce the 

numerous artefacts contained within the virtual environment case study. 

7.1.1 Artefacts 

The artefacts in this case study contain a number of additional attributes to those described in Section 

4.4.1. These extra attributes are as follows: 

virtual This is a Boolean value to indicate whether the artefact is virtual. 

category This is a string representing the category of the artefact. 

name This is the name of the concept that the artefact is associated with (i.e. the name of a person). 

Table 7.11ists the artefact attributes and their associated types. 



132 

Table 7.1: Artefact Attributes 

Name Type 
s ha pe st ring 
width float 
height float 
length float 

x..coord float 
y _coord fl oat 
z_coord float 
radius float 
colour st ring 

t ransparency float 
id in teger 

virtual boolean 
category st ring 

name st ring 

7.1.2 Football Pitch 

The football pitch is comprised of a number of artefacts. T hese a rt fact ar · d tailed in Table 7.2. F'igur 

7.1 and 7.2 present two different views of the pitch. 

Figure 7.1: Aerial View of the FootbaU Pi tch 

Figu re 7.3 ill u t rates the 10 at ion and shape of t he following main a reas or locales within the foo t baU 

pitch I : 

• centre circle, 

I Notice iho.l due to th implem nLa.tion o f the virtual en ironment, the x and y &xis are different from those presented 
In Pigur 5. I. 
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Table 7.2: Foot ball Pitch Artefac 

Id . ho.pe width h c l ll:ht I cn~h x y • rod.lus colo ur v cate cory l name 
~ box 50 0.05 50 25 25 0 NULL green 0 pilch 0 home b.H 
6 box SO O.OS ~O 25 75 0 NULL green 0 pitch 0 away half 

7 box 50 O.OS O.S 2S 50 0.1 NULL whit.e 0 pitch 0 centre hne 

8 cy linde r N ULL 0.05 NULL 25 50 O.OS 7 whlt.a 0 pll.ch 0 centre cucle ou er 
9 cy lind er N ULL 0.05 N ULL 25 50 0. 1 6.5 green 0 pi cb 0 centre circle 

10 box 30 0. 05 15 25 7.5 0. 15 NULL whIte 0 pi ch 0 home goal ouler 

I I box 29 0. 05 14 25 7 0.2 NULL green 0 PI ch 0 homo goal 
12 box 30 0.05 15 25 92.5 0. 15 NULL white 0 pitch 0 awa)' goaJ ou er 

13 box 29 0.05 14 25 93 0.2 NULL green 0 p ilch 0 away goa.l 

14 cy lin der N ULL 0.05 NUL L 25 10 0.05 10 w h ite 0 pitch 0 home penal y Circle ou er 

16 cylinder NU LL 0.05 NU LL 25 10 0. 1 9.5 grccn 0 pilch 0 home penalty etrel"" 

16 cy li nd or N UL L 0.05 NU LL 25 10 0.25 0.5 w hite 0 pilch 0 homo penal y spot 

17 cy lind er NULL 0.05 NULL 25 90 0.05 10 w hite 0 pilch 0 .w. penalty clrclo outer 

18 cy lindor NU '-'. 0.05 NULL 25 90 0.1 9.5 green 0 pluh 0 ewe penal Y cIrcle 

19 cy linder N ULL 0.05 NUL L 25 90 0.25 0.5 w hile 0 pilch 0 away penal )" f'pot 

20 box 0.5 0.05 100 -0.25 50 0 .1 NULL whl t.e 0 pi ch 0 "ea.r louch hno 

21 box 0.5 0.05 100 50.25 50 0 .1 NULL wh ite 0 pilCh 0 rar louch hne 

22 box 5 1 0.05 0.5 25 ·0.25 0 .1 NULL while 0 pitch 0 homo touch 110ft 

23 box 5 1 0.05 0.5 25 100.25 0 .1 NULL w h ite 0 pitch 0 awaY louch hne 

24 box 5 0.05 100 -2 .5 50 0 NULL groon 0 pilch 0 nOar touch &rf'a 

25 box 5 0.05 100 52.5 50 0 NULL groon 0 pitch 0 far touch area 

26 box 60 0.05 5 25 -2.5 0 NULL green 0 pilch 0 home lauch fU"f"& 

27 box 60 0.05 5 25 102.5 0 NULL groon 0 pilch 0 ft,Way louch ar t\ 

28 box 0 .5 5 0 .5 20 0 0 NULL Whllft 0 pitch 0 home neM gOI\) po8\ 

29 box 0 .5 5 0 .5 30 0 0 NULL while 0 pilch 0 homo rar .1 p l 

:10 box 10 .5 0.5 0 .5 25 0 5 NULL w h ile 0 pitch 0 home goa.l cro88bar 

3 1 box 10 .5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal ero.bar 

32 box 0 .5 5 0 .5 20 100 0 NULL whIle 0 pitch 0 away near goa.l pofll 

33 box 0 .5 5 0 .5 30 100 0 NULL w h lt.o 0 pItch 0 away far goal p08l 

(7" = ::z; cool'd , y = y coo rd , % = z coord, tJ = Vt rLua l , t _ h'a nspar~ncy) 

,.f:r'"- .s.~. ' '~~~'~ .. :J 
• '. • ~ l' 

Figur 7.2: tadiu m View of the F otball Pit ch 
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• home and away halves, 

• home and away goal areas, 

• home and away penalty circles. 

hom. goal are8 home penalty circle home hall CBnIJ8 c:in:le 

xandy 
coordinate 

ollootball pitch 

4_._------------------- 18~~ __________________ ~ ... 
(yaxle) 

Figure 7.3: Football Pitch Areas 

7.1.3 Players 

f 
width 

T 

In addition to the pitch, as described in Section 7.1.2, the case study also includes a number of players 

split into two teams: the red team and the blue team. Table 7.3 in Appendix B describes the artefacts 

that represent the red team and they are illustrated in Figure 7.4. 

Table 7.3: All Red Players 

Id ahape width helcht I.neth x y • radlua colour v cat_COry t name 

34 cone NULL 3 NULL 30 4S 0 1 red 0 player 0 aam 

36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob 

38 cone NULL 3 NULL 10 8 0 1 red 0 player 0 john 

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim 

42 cone NULL 3 NULL 40 70 0 1 red 0 player 0 geoffrey 

44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 barnard 

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy 

48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie 

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert 

52 cone NULL 3 NULL 15 20 0 1 red 0 player 0 oven 

(:II = :II coord, II = II coord. % = • coord, " = ",rrual, t = tra .... pa ... nCl/) 

Thble 7.4 describes the artefacts that represent the blue team. They are illustrated in Figure 7.5. 



135 

Figu re 7.4: The Red Team 

Table 7.4 : All Blue P layers 

Id s h o.p o width h ol &:ht lo n Kth x y • radius colour v catol:ory t namo 
56 co ne NULL 3 NULL 30 60 0 I blue 0 player 0 korl 
68 co no NULl, 3 NULL 35 45 0 I bll.tB 0 p layer 0 hendnk 
60 co ne NULL 3 NULl, 15 13 0 I b lue 0 player 0 daVid 
62 co no NULl, 3 NULL 45 85 0 1 bluo 0 playor 0 han 

64 co n NULL 3 NULL 35 14 0 I b lue 0 p layor 0 Joan 

66 co no NULL 3 NULL 45 55 0 I blue 0 player 0 bOriS 

68 co ne NULL 3 N ULL 35 95 0 I blue 0 player 0 bllbo 

70 co ne N ULL 3 NULL 45 65 0 I blue 0 player 0 .0""" 
72 co no NULL 3 NULL 25 15 0 1 bluo 0 playor 0 C'hn8 

(x = :r; coord, '!I = Y coord, Z = z coord , 'U = virtual, t = transparency) 

Pigure 7.5: The Blue Team 
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Each t am also has a goalkeeper. Table 7.5 describes the artefacts that represent the goalkeep r . 

These are illustrated in Figure 7.6. 

Table 7.5: Goalkeepers 

Id s hope width helttht lonttth x y z radius COIOUT v catec:ory t name 

54 cone NUl-I- 3 NUl-I- 26 0 0 1 yellow 0 goalie 0 tim 

74 co ne NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos 

(% = x coord, 11 = 11 coord, % = z coord, 1J .: virtual . t = Lran&parency) 

Figure 7.6: T he Goalk eper 

7.1.4 Referee 

ontroll ing th game is a referee2 Table 7.6 describe the artefact t hat r pr ents the referee whi h 

then ill u trated in Figure 7.7. 

Table 7.6: T he Referee 

(x = :r cool-d, $I = 11 coord, % = z coord, tt = l.ttrtua l, t = trafl,.$porency) 
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Figure 7.7: The Referee 

7.1.5 Football 

The football pitch also contains a football. Table 7.7 de rib thi artefact whi h is also illu trated in 

Figure 7 . . 

Tabl 7.7: The Footbal l 

(x = x coord, y = y coord, z = % coord, v = virhl,al, t = tran.!parency) 

7.1.6 Locales 

The virtual environment also conta ins a virtu al artefact represent ing a locale. The area of the locale i 

the near side of the football pitch . Table 7.8 de cribes t his a rtefact and i illu trated in Figure 7.9. 

Table 7.8: Locales 

(x = 'r coord, y = y coord , % = % coord, t1 = mrtuo. l, t = tron.sporency) 
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Figure 7.8: The Football 

F igur 7.9: T he Locale Representing the ear HaIr of the Pitch 
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1.1.1 Auras 

Each of the players has an associated aura. The aura shares the same x, y and z coordinates and also 

the name of the artefact it is associated with. Table 7.9 describes these artefacts and they are illustrated 

in Figure 7.10. 

Table 7.9: Auras 

Id .hapa width helpt laneth x y • radlua colour v catecory t name 
3~ cylinder NULL 0.5 NULL 30 48 0 5 red I aura 0.5 earn 

37 cylinder NULL 0.11 NULL 50 38 0 5 red I aura 0.5 bob 
39 cylinder NULL 0.11 NULL 10 8 0 5 red 1 aura 0.5 john 

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aur. 0.5 jim 

43 cylinder NULL 0.5 NULL 40 70 0 5 red 1 aura 0.5 geoffrey 

411 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard 

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy 

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aur. 0.5 charlie 

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert 

53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 oven 

55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim 

57 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aUf. 0.5 karl 

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 bendrik 

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aura 0.5 david 

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 blUl 

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aur. 0.5 jean 

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boris 

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo 

71 cylinder NULL O.~ NULL 45 65 0 5 red 1 aura 0.5 .. """ 
73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chria 

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlo. 

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aur. 0.5 rer 

(z = z coord, " = 11 coord, z = z coord, II = vartual, t = transparency) 

7.1.8 All Artefacts 

Tables 7.10 and 7.11 present a.JJ of the virtual environment artefacts. These artefacts are also illustrated 

in Figures 7.11 and 7.12. 

7.2 Example Statements 

This section will revisit the examples introduced in Section 3.3 within the context of the Wish syntax 

as defined in Section 6.2. In the following examples, any subwishes or relative artefact declarations are 

presented inline. However, a complete version ofthe relative_artefacts. rb file is presented in Section C.1, 
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Figure 7.10: All th e Auras 

Figure 7.11 : A Sta.dium View of All Artefa.d 



141 

Table 7.10: All Artefacts 

Id Rape width helcht leneth x y " radi ... colour v catecory t name 
a box 50 0.05 150 25 25 0 NULL green 0 pitch 0 home half 
8 box 150 0.015 50 25 75 0 NULL green 0 pitch 0 a_y half 
1 box 50 0.015 0.5 25 110 0.1 NULL white 0 pitch 0 centre line 

8 cylinder NULL 0.05 NULL 25 50 0.05 1 white 0 pitch 0 centre circle outer 

9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green 0 pitch 0 centre circle 

10 box 30 0.05 15 25 1.5 0.15 NULL white 0 pitch 0 hOlm! goal outer 

11 box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home coal 
12 box 30 0.05 15 25 92.5 0.15 NULL white 0 pitch 0 away goal out« 

13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 "_lIOai 
14 cylinder NULL 0.05 NULL 25 10 0.05 10 wbite 0 pitch 0 hon. penah.y circle out. 

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle 

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitch 0 bome penalty epot 

11 cylinder NULL 0.05 NULL 25 90 0.05 10 white 0 pitch 0 away penalty circle outer 

18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green 0 pitch 0 away penatty circle 

19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty .pot 

20 box 0.5 0.05 100 -0.25 50 0.1 NULL white 0 pitch 0 near touch line 

21 box 0.5 0.05 100 50.25 50 0.1 NULL white 0 pitch 0 far touch line 

22 box 51 0.05 0.5 25 -0.25 0.1 NULL white 0 pitch 0 home touch line 

23 box 51 0.05 0.5 25 100.25 0.1 NULL whit. 0 pitch 0 a.ay touch line 

24 box 5 0.05 100 -2.5 50 0 NULL green 0 pitch 0 near touch area 

25 box 5 0.05 100 52.5 50 0 NULL green 0 pitch 0 far touch .,. .. 

26 box 60 0.05 5 215 -2.5 0 NULL green 0 pitch 0 home touch area 

21 box 60 0.05 5 25 102.5 0 NULL green 0 pitch 0 away touch area 

28 box 0.5 15 0.5 20 0 0 NULL white 0 pitch 0 home near lIOai poet 

29 box 0.5 5 0.5 30 0 0 NULL white 0 pitch 0 home far &0 .. 1 p_ 

30 box 10.5 0.15 0.5 25 0 5 NULL white 0 pitch 0 ho ... lIOai c......bor 

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away lIOai cro.obar 

32 box 0.5 5 0.5 20 100 0 NULL white 0 pitch 0 away n .... eoal po.t 

33 box 0.5 5 0.5 30 100 0 NULL white 0 pitch 0 away far aual po.t 

34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 .... m 

35 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 aam 

36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob 

31 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 bob 

38 cone NULL 3 NULL 10 8 0 1 red 0 player 0 john 

39 cylindar NULL 0.15 NULL 10 8 0 5 red I aura 0.5 john 

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim 

41 cylinder NULL 0.15 NULL 30 12 0 5 red I aura 0.5 jim 

42 cone NULL 3 NULL 40 70 0 I red 0 player 0 geoffrey 

43 cylinder NULL 0.15 NULL 40 70 0 5 red I aura 0.5 geoffrey 

44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 bernard 

45 cylindar NULL 0.15 NULL 40 90 0 5 red 1 aura 0.5 bernard 

46 cona NULL 3 NULL 20 30 0 1 red 0 player 0 toddy 

47 cylinder NULL 0.15 NULL 20 30 0 5 red 1 aura 0.5 toddy 

48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie 

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie 

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert 

Conhntud on Tol'. B.IO 
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Table 7.11 : All Artefacts (Continued from Table B.9) 

Id . hope width hol&ht ICD&th x y z radius colour v cate c:ory t name 
61 cy linde r NU LL 0.5 NULL 20 60 0 5 red I aura 0.5 rupert 

62 cone N ULL 3 NULL 5 20 0 1 red 0 player 0 oven 

53 cy linder N ULL 0.5 N ULL 5 20 0 5 red I aura 0.5 oven 

54 con9 NULl, 3 NULL 26 0 0 I yellow 0 goalie 0 lim 

65 cy linder NU LL 0.5 N UL L 26 0 0 5 red 1 aura. 0.5 1m 

66 co ne NULL 3 N ULL 30 60 0 1 blue 0 player 0 karl 
57 cy linder N ULL 0.5 NULL 30 60 0 5 red I aura 0.5 karl 
58 co ne NULL 3 N ULL 35 45 0 1 b lue 0 playar 0 bendnk 
59 cy linder NULL 0.5 N ULL 35 45 0 5 red I aura 0.5 hendnk 
60 co ne N ULL 3 N ULL 15 13 0 1 blue 0 player 0 david 

61 cy lindor N ULL 0.5 NULL 15 13 0 5 red I aura 0.5 david 

62 co ne N ULL 3 NULL 45 85 0 I bluB 0 player 0 han 

63 cy li ndor N ULL 0.5 NU L L 45 85 0 5 red I aura 05 han 
64 co ne N ULL 3 N ULL 35 14 0 I blue 0 player 0 jean 

65 cy linder NULL 0.5 N ULL 35 14 0 5 red I aura 0.5 Jean 

66 co ne N ULl, 3 N ULL 45 55 0 I blue 0 player 0 borll.l 

67 cy linder NULL 0.5 N Ur, L 45 55 0 5 red I aura 0.5 bon. 

68 co ne NULl, 3 NULL 35 95 0 1 bluB 0 player 0 bllbo 

69 y linder NULL 0 .5 N ULL 35 95 0 5 red I flura 0.5 bllbo 

70 con6 NULl, 3 N ULL 45 65 0 I b luB 0 piaYM 0 ""v,," 
71 cy linde r NUI, L 0 .5 NULL 45 65 0 5 red I aura 0 .5 ""v.., 
72 co no NULL 3 NULL 25 15 0 I blue 0 player 0 chrLl'l 

73 cy lindor NULL 0 .5 NU I, L 25 15 0 5 red I au ra 0.5 chrul 

74 cono NULL 3 NULL 25 100 0 I yollow 0 goallo 0 carlo. 

75 cy lindor NULL 0 .5 NULL 25 100 0 5 red I aura 0.5 c&rlo. 

76 co no NULL 3 N ULL 27 13 0 1 turquol80 0 player 0 ror 

77 cy lindor NULL 0 .5 NULL 27 13 0 5 red I aura 0.5 ror 

78 sphere NULL NULL NULL 15 7 2 0.5 wh ite 0 ball 0 ball 

79 box 25 0 .05 100 12.5 SO 1 NULL brown 1 lo cale O.S "oar half 

(x = ;J; coord, '1) = 1) cooT-d , % = % coord , 1J = tJ l.rLuoi , L = L'rO-n."p orenC1J) 

Figure 7.12: n Aerial iewof II Ar tefact 
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and all of the subwish list ings a re presented in Appendix D. 

7.2.1 Categories 

/vJ an exam ple of categories, Section 3.3 .4 described t he in teresting set consisting of all red artefact 

This type of statement is represented in terms of the rel ationship between the tatement 's given valu 

and the artefact 's current att ribute values. An English version of this statement could be: 

I am interes ted in all artefacts that are red 

Wish autom atically ass umes that the statement IS about in te rest , and so focusses purely on the 

ond ition : 

coloured red 

T he above Wish sta tement used a subwish call ed coloured .wish wh i h provid a mor r adab le v rsion 

th an the SQL- like equ ivalent: 

#coloured . wish 

colour = IAI 

Pigure 7.13 provides a vi w of th e virtual environm ent given the abov inter l . th 

pitch is not red it does not appear in the set of interes ting artefact. T he red artefacts therefore app r to 

be fl oati ng in pace. The following example tatements wi ll ass ume th at the u er is additionally interested 

in the footbal l pitch for the purpose of providing a context and sett ing for th int r ling art fac . 

Figure 7.13: All Red Artefacts 

A summary of t he English prose, Wish , SQL and set of matching artefacts for this exampl talem nt 

is presented in ee tion .2 in App nd ix C. 

7.2.2 Locales 

n xample of a st atement using I cales i as follows: 
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[ am interested in alL artefacts within the near half of the pitch 

Given the exis tence of a vi rtual artefact representing t he area of the near half of the pitch, we can 

declare a variable within the relative_artefacts . r b fil e: 

T his vari a ble can t hen be used wit hin a wish statement as foll owS!: 

category = pit ch 

T he subwish withi n_box uses t he a lgorit hm desc ribed in Sect ion 5.3.2, which in Wish looks as follow 

x_coord >= <'a= IA I · x_c oord - (IAI.wi dt h / 2 )"" 

x_coord <= <'a= IA I . x_c oord + (IAI . wi dt h / 2 )%> 

y_coord >= <%= IA I . y_ coord ( I AI . l ength I 2 )%> 

Lcoord <= <%= I AI . y_ coord + (IA I . l eng th / 2 )%> 

i d != <%= I AI . id%> 

Figure 7.14 provides a view of a ll t he artefacts within the near half. 

F igure 7.14: All Artefacts Within the Near Half of the Pitch 

A summnry of the E nglish prose, Wish, QL and set of matching artefacts for th.is example taternent 

is presented in Sec t ion .3 in Appendix 

IN Li ce l hf\t. I he condit io n category. pilch is added purely to provid e visua.l co ntex'i, for the imag such as that presented 
In Plgur 7.1<1. 



145 

7.2.3 Relative Locales 

As described in Section 5.2.3, in terms of interest statements, relative locales can be treated identically 

to standard locales as they are both represented by relative artefacts. The section also discussed that 

any relationship between artefacts should be resolved in the declaration of the relative artefacts. AB an 

example of this consider the following interest statement: 

I am interested in all artefacts within the referee '8 aum 

Here the interest is relative to the referee's aura. We have a relationship between an aura and the 

referee. This relationship should be resolved in the declaration of the relative artefacts. Consider the 

following snippet from relative_artefacts. rb: 

The declaration of this relative artefact uses the method find_aura which is defined 88 follows: 

def find_aura(name) 

Artefact.find(:first. :conditions ..,. {:name -> name, :virtual ..,. true, :category..,. 'aura'}) 

end 

This method relies on the fact that the aura shares the same name 88 the concept it is reprESenting. 

For example, Bob's aura is named Bob. However, to distinguish the two, the aura h88 the category of 

aura, The find_Iura method filters on this category, implicitly creating the relationship. 

Given the newly declared relative artefact, we can use it in a Wish statement 88 follows: 

category. pitch 

The within_circle subwish is implemented with the algorithm introduced in Section 5.3.4 which can 

be defined with Wish 88 follows: 

•• dthin_circle .wish 

cftoolAl, radius'll> > • sqrt(pow( (x_coord _ cftoo IAI.x_coord'o). 2) + pow ( (y_coord - _ IAI.y_coord'll>). 2»' 

Figure 7.15 providES a view of all the artefacts within the referee's aura. 

A summary of the English prose, Wish, SQL and set of matching artefacts for this example statement 

is prESented in Section C.4 in Appendix C. 
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Figure 7.15: Artefacts Within the Referee's Aura 

7.2.4 Interacting Locales 

Section 3.3.3 described an exam ple of in teracting locales as follows 

"When an artefact A 's aura collides with artefact B 's al,ra, artefact A can be atd to be 

aware of artefact B ." 

In terms of t he interest concepts, as defined in Section 5.1, concepts uch as the one above can be 

reprcs nted by in troducing two relative artefacts into t he interest statement. For exampl 

I am interested in all artefacts whose aura overlaps the referee I aum 

Sec t ion 7.2 .3 described how to defin e t he rela tive artefac t ref_aura . With such a variable declared it 's 

poss ible to defin e the following Wish tatement : 

category = pit ch 

T he definition of t he subwish in_awa reness_ rang e_of .wish is as follow 

4'in_awareness_ range_of .wish 

virtual = f a lse 

!Iere we are d scribing an interes t in non- virtu al artefact tha t have the ame name as the et of 

auras in awa.reness range of the referee 's aura. T his is achieved by copi ng the name wi th th ubwish 

auras_in_awa renessJange_of which i defin ed as follows: 
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overlaps I A I 

category = au r a 

This s ta tement describes auras that overl ap the referee's aura. The definition of overlaps . wish is based 

on th algorithm descr ibed in Section 5.3.3 and is represented in Wish as foUows: 

lIoverlaps. wis h 

<%= IAI · radi us,<> + r adius> ' s qrt( pow((x_c oo rd - <%= IAI . x_coord..,). 2) + pow( (y_coord - <%= IAI . y_coordlp) , 2)) ' 

Figure 7.16 gives a view of al l the artefacts , and Figure 7.17 gives the same view but with the inter 

applied . 

Figure 7.16 : All Artefacts 

A umm ary of t he English pro e, Wish, SQL and set of matching artefacts for t hi example tatement 

is presented in Section C.5 in Appendix C . 

7.2.5 Combinations 

We might wi h to b able to create Wish statements that arbitrarily combine the examples above. For 

exam ple, consider t he following illterest st atement: 

I am int re ted in all non-virtual artefacts that are red players. who e aura overlap the 

ref re 's aura and that are within the home penalty circle 

As cetion 6.2. in troduced, Wish upports the logical operators or, and t.o combine tatement , not 

to n gate a tatement and t.he grouping keyword all , not , and .. -. The above Engli h tatement i 
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Figure 7.17: All Artefacts t hat are in Awareness Range of the Ref ree 

represented in Wish as follows4 : 

catego ry ~ pit ch 

virtual = false 

coloured red 

catego ry ~ playe r 

F igure 7.18: R ults of a Combin ation Statement 

4ThQ d "' finitions of th e subwishes coloured , in..awarencss_ranglWJ( , a.nd within..circle are found in ections 7.2.1, i.2A, and 
7.2.3 respect ivel . A lso, Appendix 0 co ntains contains co mplete lis ings of all subwishes u d in his hesis. 



149 

A summary of the English prose, Wish, SQL and set of matching artefacts for this example statement 

is presented in Section C.6 in Appendix C. 

7.2.6 Combining Concerns 

Section 3.4.2 introduced the following as a method of combining the concerns of a user and the system: 

Interesting Artefacts = «uPos - UNEG) U sPOs) - SNEG (7.1) 

Section 5.4 introduced the following SQL representation of that combination: 

select • from Artefacts where (( (id in (select id from Artefacts where UPOS) and 

not id in (select id from Artefacts where UNEG» or 

id in (select id from Artefacts where SPOS» and 

not id in (select id from Artefacts where SNEG» 

Wish facilitates the representation of derived sets (as described in Section 3.2.4.1) through the concept 

of subwishes. If we assume that the derived sets UPOS, UNEG, SPOS and SNEG have the following corresponding 

subwishes: upos. wish, uneg. wish, spos. wish, and sneg. wish, then we can combine these statements with W'ish 

as follows: 

att 

id in upos 

not id in uneg 

id in spos 

not id in sneg 

Or the following semantically identical, yet more succinct Wish statement: 

not id in sneg 

id in upos 

not id in uneg 

id in spos 

7.3 Dynamic Interests 

Section 2.6.2.2 described a number of motivations that require the ability to change interests which was 

one of the main factors behind the design of the dynamic interest management framework and virtual 
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environment axioms presented in Chapter 3 and implemented in Chapter 4. This section will illustrate 

how changing the interests within the virtual environment is possible if the implementation of the virtual 

environment follows the design presented in Chapter 4. 

Consider the following Wish statement: 

coloured turquoise 

This statement matches the set of artefacts Oust the referee) described in Table 7.12. In terms of the 

messages sent from the server to the client (given the architecture illustrated in Figure 4.3), the server 

sends the following message: 

[{:command=>"add". :parameters=> 

{:y_coord=>13.e. : shape=>" cone". : colour=>" turquoise". : transparency=>S.e. :he1ght=>3.e, 

:z_coord=>0.0. :id=>76. :radius=>1.9. :x_coord=>27.9}}) 

This message indicates that the referee should be added to the client's view (as it is in the set of 

interesting artefacts), and sends the appropriate attributes for the view5 . 

Table 7.12: Turquoise Artefacts 

(a: = x coord, 11 = 11 coord, z = z coord, 'II = virtual, t = trat18parenclIJ 

Now, consider that we wish to change our interest from turquoise artefacts to blue artefacts. We 

change our Wish statement to the following, and refresh the server: 

coloured blue 

The set of matching artefacts for the above statement is presented in Table 7.13. The server calculates 

the differences between the client's current view, and the new set of interesting artefacts and sends the 

following set of messages: 

[{: command=>"delete". : parameters=>{: id=>76}}. 

{ : command=>" add". : pa ramete rs=> 

{:y_coord=>69.9. :shape=>"cone". :colour->"blue". :transparency-->9.9. :height=>3.9, 

: z_coord=>e. 9. :id=>S6. :radius=>1.9. :x_coord=>39.B}}. 

{:command=>"add". :parameters=> 

5Notice that the following attributes are not sent to the client: virtual, category and name. 
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{:y_coordc>45.8, :shapec>"cone", :colour=>"blue", :transparency=>8.8, :height=>3.8, 

: z_coord=>8. 8, : 1d=>58 , :radius=>1.8, :x_coord=>35.8}}, 

{ : commandc>' add', : pa ramete rs=> 

{:y_coord=>13.8, : shape=>"cone', :colour=>"blue", :transparency=>8. a, : height=>3. a, 

:z_coord=>9.8, :1d=>6a, :rad1us=>1.a, :x_coord=>15.en, 

{:command=>"add", :parameters=> 

{:y-coord=>85.e, :shape=>"cone", : colour=>" blue" , :transparency=>a.e, :height=>3.e, 

: z_coord=>e. 9, : id=>62 , :radius=>l.e, :x_coord=>45.e}}, 

{ : command=>" add", : pa ramete rs=> 

{:y_coord=>14.e, : shape=>"cone" , : colour=>"blue" , :transparency=>a.a, :he1ght_3.e, 

:z_coord=>e.e, : id=>64 , :rad1us=>1.S, :x_coord=>35.S}}, 

{:command=>"add", :parameters=> 

{:y-coord=>55.e, : shape=>"cone", :colour=>"blue", : transparency=>s.a, :height=>3. a, 

: z_coord=>e.e, : id=>66 , :radius=>l.e, : x_coord=>45.e}}, 

{: command=>"add", : parameters=> 

{:y-coord=>95.e, :shape=>"cone", :colour=>"blue", :transparency=>a.e, :height=>3.a, 

:z_coord=>9.B, : id=>68 , :radius=>l.e, :x_coord=>35.e}}, 

{:command-"add", :parameters=> 

{:y_coord=>65.e, : shape_"cone", : colour=>"blue", : transparency=>a. e, : height=>3. e, 

: z_coord=>6.e, :id=>7e, :radius=>1.6, :x_coord=>45.9}}, 

{:command"""add", : parameters=> 

{:y_coord=>15.e, : shape=>"cone", : colour=>"blue", :transparency=>e.e, : height=>3.e, 

: z_coord..,.a.e, : id=>72 , :radius=>l.e, :x_coord=>25.e}}] 

Notice how the server is requesting that the referee is to be deleted (it is not blue), and the details 

of the blue artefacts are sent to be added to the view. 

Finally consider the following statement that represents another change of interests: 
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Table 7.13: Blue Artefacts 

Id .hape width height length x y z radius colour v category t name 

&6 cone NULL 3 NULL 30 60 0 1 blue 0 player 0 karl 

58 cone NULL 3 NULL 35 45 0 1 blue 0 player 0 bendrik 

60 cone NULL 3 NULL 15 13 0 1 blue 0 player 0 david 

62 cone NULL 3 NULL 45 85 0 1 blue 0 player 0 ban 

64 cone NULL 3 NULL 35 14 0 1 blue 0 player 0 jean 

66 cone NULL 3 NULL 45 55 0 1 blue 0 player 0 boris 

68 cone NULL 3 NULL 35 95 0 1 blue 0 player 0 bilbo 

70 cone NULL 3 NULL 45 65 0 1 blue 0 player 0 aevall 

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris 

(II: = II: coord, 1/ = 1/ coord, z = z coord, " = virtual, t = transl'arenclIJ 

The matching set of artefacts for the above statement is presented in Table 7.14. Again, the server 

calculates and sends just the differences. Most of the blue artefacts are requested to be deleted, except 

for one which matches the interest criteria. Details of the rest of the artefacts that match the interest 

criteria are sent to the client for them to be added to the view. 

[{ :command=>"detete", : parameters=>{: ld=>69}}, 

{: command=>"detete", : parameters=>{: id=>66}}, 

{:command=>"detete", : parameters=>{: ld=>S6}}, 

{:command=>"detete", :parameters=>{:id=>62}}, 

{:command=>"detete", : parameters=>{ :id=>68}}, 

{:command=>"detete", :parameters=>{ :id=>S8}}, 

{: command=>"detete", : parameters=>{ :id=>64}}, 

{: command=>"detete", : parameters=>{: id=>70}}, 

{:command=>"add", :parameters=> 

{:y_coord=>7.S, : shape=>"box", : cotour=>"white", :width=>3a.a, : transparency=>a. a, 

:height=>B.9S, :tength=>lS.9, :z_coord=>B.1S, :id=>lS, :x_coord=>2S.a}}, 

{: command=>"add", : parameters=> 

{:Lcoord=>7. e, : shape=>"box", : cotour->"green", :width=>29.S, : transparency-->9.9, 

:height=>G.9S, :tength=>14.9, : z_coord=>9. 2, : id=>ll , :x_coord=>2S.B}}, 

{: command->"add", : parameters=> 

{:y_coord=>19.9, : shape=>"cyUnder", : cotour=>"white", : transparency-->9.e, 

:height=>9.9S, :z_coord=>9.9S, : id=>14 , :radius=>19.9, :x_coord=>2S.9}}, 
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{:command->'add', :parameters=> 

{:y_coord=>le.e, : shape-'?'cyUnder", :cotour=>"green", :transparency=>9.e. 

:heightc >9.e5. :z_coord=>e.l, :id=>15, :radius=>9.S. : x_coord=>25.e}}. 

{:command=>"add", :parameters=> 

{:y_coord=>19.9, : shape=>" cylinder" , :cotour=>"white", :transparency=>9.e, 

:he1ght=>9.95, :z_coord=>9.25, :id=>16, :radius=>9.5, :x_coord=>25.9}}, 

{:command=>"add", :parameters=> 

{:y_coord=>12. e, : shape=>"cone", : cotour=>" red", :t ransparency=>9.9, 

:height=>3.9, :z_coord=>e.e, : id=>49 , :radius=>l.a, :x_coord=>39.9}}, 

{ : command=> " add", : pa ramete rs=> 

{: y-coord=>12 .e, : shape=>"cylinder", : cotour=>" red", :transparency=>9.5, 

:height->9.5, :z_coord->e.a, :id=>41, :radius=>5.9, : x_coord->39.9}}, 

{:command=>"add", : parameters=> 

{:y-coord->15.e, : shape=>"cyUnder", : cotour=>" red", : transparency=>8.5. 

:heighta >e.5, :z_coord=>e.e, : id=>73 , :radius=>5.9, :x_coord=>25.9}}. 

{: command=>"add". : parameters=> 

{:y_coord=>13.9, : shape=>"cone", : cotour=>"turquoise", : transparency=>8.8. 

:height=>3.B, :z_coord=>9.9, :id=>76. :radius=>1.9, :x_coord=>27.8}}. 

{: command=>"add", : parameters=> 

{:y_coord=>13.a, :shape=>"cytinder", : cotour=>" red" , :transparency=>8.5, 

:height=>9.5, :z_coord=>9.9, : id=>77 , :rad1u5=>5.8, :x_coord=>27.8}}] 

7.4 Evaluating The Domain Objectives 

Section 6.1.1 introduced the objectives of a domain specific language to represent interests. This section 

will evaluate Wish in terms of these objectives. Section 7.4.1 will consider abstraction, Section 7.4.2 

readability, Section 7.4.3 succinctness, and finally Section 7.4.4 will consider the expressiveness of Wish. 
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Table 7.14: Artefacts within the Home Penalty Circle 

Id .hape width height length x )' z radius colour v category t name 
10 box 30 0.05 15 25 7.5 0.15 NULL wbite 0 pitch 0 bome goal outer 
11 box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home goal 
14 cylinder NULL 0.05 NULL 25 10 0.05 10 wbite 0 pitch a bome penalty circle outer 
16 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle 
16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 wbite a pitch 0 bome penalty spot 
40 cone NULL 3 NULL 30 12 0 I red a pleyer 0 jim 
41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim 
72 cone NULL 3 NULL 25 15 0 1 blue 0 pleyer 0 chris 
73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris 

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 pleyer 0 ref 

77 cylinder NULL 0.5 NULL 27 13 0 5 red I aura 0.5 ref 

(z - z coord, 11 - 11 coord, z - z coord, " - tnrtual, t - transparencll) 

7.4.1 Abstraction 

As explained in Section 6.2.5, Wish provides the concept of subwishes as an abstraction mechanism. 

Wish statements therefore allow the inclusion of other Wish statements to an arbitrary level of nesting 

as seen in Section 7.2.4. This facilitates the layering of abstractions, allowing complex statements to be 

broken into smaller, more manageable, components. These components can also aid the readability of 

Wish statements as discussed later in Sections 7.4.2.1 and 7.4.2.3. Subwishes can also be used within the 

scoping mechanism as described in Section 6.2.6. The same abstraction technique can therefore be used 

in two different ways depending on the context: 

1. As a more readable shortcut for a nested set of Wish snippets (subwishes). 

2. As a shortcut for a set of artefacts (scoping). 

7.4.2 Readability 

7.4.2.1 Subwish Names 

As described in Section 7.4.1 Wish's abstraction mechanism allows complex statements to be broken 

into smaller, more manageable components. The implementation of the subwish abstraction mechanism 

requires those smaller components to have unique names. If appropriate names are chosen, then the 

readability of the Wish statement can be improved. As an example of this, consider the following Wish 

condition: 

name • sam 

It is possible wrap this concept into a subwish as follows: 

Inamed • wish 

name· IAI 



155 

Now, if we use this subwish we can write the following, which is more natural and readable than the 

original condition: 

named sam 

7.4.2.2 Visual Structure 

Consider the following English interest statement: 

I am interested in the football pitch and all non-virtual artefacts that are red players, 

whose aura overlaps the referee's aura and that are within the home penalty circle 

The actual intention of the above statement may not be immediately visible from first reading. This 

is also the case with the equivalent SQL: 

select • from artefacts where (category = 'pitch' or (not (virtual = true)) and ((colour = 'red') and 

(category = 'player' and ((virtual = false and (category = 'player' and (name in 

(select name from artefacts where (((5.9 + radius> sqrt(pow((x_coord - 27.8). 2) + 

pow((y_coord 13.9), 2))) and (category = 'aura'))))))) and ((9.5> sqrt(pow((x_coord - 25.8), 2) + 

Pow((Lcoord 19.0)' 2)))))))) 

However, consider the following Wish equivalent: 

categorised_as pitch 

not virtual 

coloured red 

categorised_as player 

The Wish statement is clearly shorter and more succinct than the SQL version. It is also more visually 

organised than the English version. Once a reader has become accustomed to the Wish structure, the 

white-space forced by the syntax helps the parsing of the statement. 

7.4.2.3 Abstracting Complexity 

As explained in Section 7.4.1, the Wish subwish mechanism allows for arbitrarily large, and arbitrarily 

nested Wish snippets to be abstracted. Not only can the choice of subwish name increase readability 

(as described in Section 7.4.2.1) the fact that the complexity is hidden means that there is less to read, 

therefore making the statement more readable. For an example of this concept consider the following 

subwish: 
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lwith1n_box.wish 

x_coord,... ...... IAI.x_coord - (IAI.width I 2)'0> 

x_coord <= ...... IAI.x_coord + (IAI.width I 2)'0> 

y_coord >= <'11= IAI.y_coord - (IAI.length I 2)'0> 

Lcoord <= <'11= IAI.Lcoord + (IAI·length I 2)'0> 

1d ! = <'11= I A I . id'o> 

7.4.2.4 Removing Ambiguity 

Consider the following English statement: 

I am interested in artefacts named sam and artefacts coloured red 

Note that the above statement is not the same as the following statement: 

I am interested in artefacts named sam and coloured red 

Both sentences use the word and to combine the conditions, yet they have very different meanings. 

In SQL you would represent the first statement as follows: 

name III I sam I or colour = I red I 

And the second statement as follows: 

name = 'sam' and colour = 'red' 

Clearly there is an ambiguity between the English use of and, and SQL's use of the term. Wish 

removes this ambiguity by removing the and and or keywords entirely. Wish assumes that the statement 

is a simple list of the kind of artefacts that are interesting. In this case we're interested in artefacts 

named sam, and artefacts coloured red: 

named sam 

coloured red 

If, however, we are interested in red artefacts named sam, Wish uses indentation to indicate that the 

second condition also applies to the first as follows: 

named sam 

coloured red 
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1.4.3 Succinctness 

Wish is syntactically and conceptually more succinct than SQL for representing interest statements. 

Wish supports abstraction for converting potentially complex snippets into single conditions. The scoping 

mechanism allows the representation of derived sets for use in interest conditions, and the removal of the 

and and or SQL keywords also makes the resulting statement more succinct. 

1.4.4 Expressiveness 

As Section 5.3 illustrated, SQL is sufficiently expressive for representing interest statements. 6 

Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 give examples of the expressiveness of SQL, showing that it 

is capable of handling all of the interest statements types expressed by the examples in Section 3.3. 

Therefore the design decision to base Wish on top of SQL does not limit the potential expressiveness of 

Wish. 

Section 6.1.1.4 described the requirement for expressiveness to be the ability to represent the exam­

ples presented in Section 3.3. As Section 7.2 illustrated, Wish is able to represent all these examples. 

This demonstrates that Wish is sufficiently expressive for the domain it is intended for: namely the 

representation of interest statements for virtual environments. 

8However it must be noted that this does not necessarily demonstrate that the use SQL is practical for efficiefntly 
, I' r f' ht uires the use 0 an Implementing the processes that will enact these interests. For example, calcu atmg me 0 slg req . f f ts 

aUxiliary predicate function, which, under certain circumstances might be required t? be exec.u~ for all pairs ~ :'d 
to fully determine the visibility status of the system. For very large environments, thiS operation IS clearly very y, 
could very easily exceed the processing capacity of the system. 
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Chapter 8 

Conclusions and Further Work 

Chapter 5 described the objectives and goals of this thesis. This chapter aims to summarise if, and how, 

these goals were met. It will then follow with an inspection of the potential new directions that could 

be taken by future work in this area. Section 8.1 provides summaries of the research contributions, and 

the chapters in this thesis. Section 8.2 discusses some final thoughts about this research in general, and 

finally Chapter 8.3 introduces a few potential directions that new work based on this research may take. 

8.1 Summaries 

8.1.1 Contribution Summary 

Section 1.7 listed a number of the contributions made to the research within the field of interest man­

agement for virtual environments. This section will revisit these contributions, and describe where this 

thesis also introduced them. 

Taxonomy of currently used interest management techniques. The various techniques used for 

interest management were surveyed and discussed in Section 2.2.3. Section 2.2.4 introduced cate­

gorisation, locales and interacting locales as three general techniques, and Section 2.2.4.5 described 

various surveyed techniques that could be mapped on to them. 

A definition and conceptual model of virtual environments. The term virtual environment was 

evaluated and discussed in Section 2.1.1. Section 2.1.1.1 illustrated that there is no general consen­

sus on a definition, and a new definition was introduced in Section 2.1.1.3. Section 3.1.2 translated 

this definition into a number of axioms which were implemented in Chapter 4 as a proof of concept. 

A conceptual model of interests based on set-theory. The taxonomy of interest management tech­

niques presented in Section 2.2 was formalised using set-theory in Section 3.2, and then implemented 

using SQL as a proof of concept in Chapter 5. 

Wish, a domain specific language for representing interests. Section 5.5 illustrated a number of 
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limitations in the implementation of the formalisation of the interest management techniques pro­

vided in Chapter 5. These limitations were shown to be a lack of readability, succinctness and no 

ability to allow for abstractions. These limitations are overcome through the inception of a new do­

main specific language. This new language, Wish, was introduced in Chapter 6 and then evaluated 

using a case study in Chapter 7. 

8.1.2 Chapter Summary 

This section provides a summary of each of the chapters found within this thesis. 

1. Introduction This chapter introduced the general context of this thesis: namely issues of managing 

interests within virtual environments. It described scalability and adaptability as two limitations 

of current virtual environment implementations, and introduced dynamic interest management as 

a technique that could reduce the impact of these limitations. 

2. Literature Survey This chapter surveyed the research literature on interest management within 

virtual environments. Based on this survey, it introduced definitions of the terms interest manage­

ment and virtual environment. The chapter also described the various techniques used to manage 

interests, and showed how they can be mapped on to the following three general techniques: cate-

gorisation, locales, interacting locales. 

3. A Framework for Interest Management This chapter introduced a set of axioms describing the 

fundamentals of virtual environments. Based on the constraints of these axioms, it then developed 

a formalisation of the three general interest management techniques introduced in the literature 

survey. 

4. Virtual Environment Axioms: A Proof of Concept This chapter introduced a proof of 

concept of the virtual environment axioms by implementing them. The various design decisions for 

the implementation were discussed, and a simple environment illustrated. 

5. Interest Statements This chapter introduced a proof of concept of the formal framework of 

interest management by presenting an implementation using SQL. The chapter then described how 

this implementation could represent the three general interest management techniques introduced 

in the literature survey. Finally some of the limitations of this implementation were described: 

namely a lack of readability, succinctness and no ability to allow for abstractions. 

6. Wish: a DSL for Interest Statements This chapter introduced an alternative implementation 

of the formal framework of interest management using a new bespoke language called Wish. The 

design motivations of this new language were shown to be the ability to represent the three general 

interest management techniques, whilst being readable, succinct, and able to represent abstractions. 
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7. Case Study and Evaluation This chapter evaluated Wish through the use of a case study. 

The case study showed the various abilities of Wish whilst illustrating that this new language 

is sufficiently expressive, more readable, and succinct than the SQL implementation, whilst also 

providing the ability to represent abstractions. 

8. Conclusions and Further Work This chapter provided a summary of the thesis, and discussed 

new directions that future work could take l . 

8.2 Final Thoughts 

8.2.1 Technology Choices 

The implementation of the ideas presented in this thesis was achieved through the use of mainly non­

standard technologies2 • However, on reflection, it turns out that the technology choices were remarkably 

appropriate to the work, having great impact on the productivity and the flexibility of the research. 

As mentioned in Section 4.3.3, Java was initially chosen as the main implementation language simply 

because it was the main language taught by the school, and the language used by the majority of the 

researchers. It was the obvious choice. However, I believe that it was not the best choice. Research is often 

a very agile practice, where new ideas are constantly conjured up. It makes a lot of sense to work with 

material that allows you to convert ideas to prototypes as quickly as possible, to not pay a large price for 

trying out new directions. For example, the design of the Wish syntax was such a practice. The syntax 

constantly changed, and evolved from the SQL it produces to the syntax presented in Chapter 6. That 

evolution took a great many iterations, yet each iteration was a lot less work and effort using Ruby as the 

implementation language than it would have taken using Java. This is not to say that Ruby is a better 

language than Java, just one that is more suited to the task of rapid prototyping, and agile development. 

Ruby also provides a lot of features that would be almost impossibly hard to emulate with Java - for 

example it allowed the separation of the declaration of the relative artefacts and the Wish statements 

over separate files. The use of the Ruby on Rails framework was also an interesting choice - given that its 

intended use is for developing web applications. However, the Rails framework offered a sensible skeleton 

structure for the implementation, and an integrated console for interactive development. It also included, 

by default, all of the libraries that I intended to use, such as Active Record. This all meant that I could 

start developing my implementation much sooner than had I had to design and create my development 

context myself. I believe that making mistakes is an important part of the research process. I therefore 

believe that it is sensible to use technologies that are forgiving for such mistakes, and allow you to move 

on and try something different until you get it right. 

1 Well, actually this discussion is yet to come, yet it was already written whilst writing this chapter summary. Oh, the 
confusion of tenses! 

2Where by non-standard I mean non-Java and non-Microsoft technologies. 
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8.2.2 Treating Wish as an Essay 

Yukihiro Matsumoto, the creator of Ruby, wrote an article entitled Treating Gode as an Essay(79). The 

main thesis of this article was that he believed that like an essay, code should not just have a message, 

but that the message should also be easily understandable to humans. Therefore, structure, style and 

syntax play an important part of making the message of the code more readily digestible. He introduced 

the following example of how reducing syntactic clutter can make code more readable. Consider the 

following Rake3 snippet: 

task :defautt => [:test) 

task : test do 

ruby "test/unittest. rb" 

end 

This code enjoys a lack of syntax often enforced by other languages such as missing method param­

eters, unbraced hash key/value pairs, and the ability to attach code block to the end of method calls. 

The same code written with this syntax included is as follows: 

task({:default => [:test)}) 

task(:test, &lambda(){ 

ruby "test/unittest. rb" 

} ) 

This philosophy is clearly inline with that which motivated the design of Wish. Wish removes syntax 

from SQL statements such as string quotations, parenthesis, and and or operators and explicit subqueries. 

As an example of this consider the following two equivalent statements taken from the case study in 

Chapter 7: 

Wish: 

not virtual 

coloured red 

categorised_as player 

SQL: 

select • from artefacts where (virtual = false and «colour = 'red') and 

(category = 'player' and «virtual = false and (category = 'player' and 

3Rake Is a build tool similar to UNIX make, and Java ant. 
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(name in (select name from artefacts where 

(( (5.8 + radius> sqrt(pow((x_coord . 27.8), 2) + pow((y_coord - 13.8), 2») 
and (category = 'aura'»»») and 

((9.5 > sqrt(pow((x_coord - 25.9), 2) + pow((y_coord - 18.8), 2»»»» 

Like an essay, Wish is intended to be readable by humans, therefore allOWing it to be maintained by 

humans. I believe that Wish achieves this. 

8.2,3 Component Objectives 

Section 6.3.3 described that Wish consists of the following main components (illustrated in Figure 6.1): 

• Ruby 

- Expressions 

- Relative Artefacts 

• Wish 

- Explicit not and in operators 

- Explicit Groupings 

- Implicit Groupings 

- Abstraction 

- Autoquoting 

- Use of Abstraction for Scoping 

• YAML with embedded SQL 

- Relative Interest Conditions 

- Scoping 

- Interest Conditions 

- Grouping 

- Conditional Operators 

Each of the above components was introduced into the design of Wish for one of three reasons: 

Expressiveness, succinctness or readability. Figure 8.1 provides a spatial illustration of the motivations 

for the components in terms of these three reasons. From this diagram we can infer that the Wish and 

Ruby components provided much of the expressiveness of the language. This makes sense as the pure 
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SQL implementation provided in Chapter 5 was demonstrated to be expressive enough for the needs of 

Lhe domain . We can also see the Wish components t hat were explicitly introduced for the motivations 

of readability and succinctness, and some components that were introduced for expressivenes in order 

LO deal with the constraints of t he Wish syntax. 

-- , , , 

Expressiveness Succinctness Readability 

~se 01 Abstraction lor Sco . ping 

Explicit not 
I Explidt Ii I Abstraction 1 Grouping , 

and i n I 
Auto-

Operators I Implicit a nd and 0 r II Implicit l : quoting 

Operators Grouping : , 

Wish 

-- -- - -------- - - --- --- - ----- - -- - - - - --~-------------------, 

Relative 
: 

Expressions : Artelacts : Ruby 

: 
, 

---- ----- , --------- ---- ----- ,------- ----- -- ------ ----------- -- -

Relative 
Interest 

Conditions 

Sal Conditional 
Operators 

Scoping 
Inlerest 

Conditions 

r 

Figure 8. 1: Spatial Map Indi cating t he Objective of Wish Component 

sal 

8.3 Further Work 

Section 2.2.3 d scribed the range of in terest management techniques fo und within the lit rature. Each of 

th e techniques is a method for expressing interests. It is probably fair to ay that expre ing inLerest 

has been a research topic from very early on in t he history of vir tual environment . However, a lthough thi 

thesi has b en concerned with t he expres ion of interests, its main focu has been on the repr entation 

f inL rests. Chapter 3 int roduced a repre entation with set t heory, Chapter 5 introduced a repre entation 

using SQL, and Chapter 6 int roduced a representa tion using a new language called \\ i h - a language 

sp ei Rc to the domain of expressing interests. Although I believe t hat t here i still a lot of interesting 

r search in t he tudy of expressing interests, I believe t hat t he study of representing inter t has only 

tarted, and i a fe rt ile re earch topic, even out of the context of virtual en ironments. Thi ection will 

introduc ome di r ction t ha t such new research could take. 
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8.3.1 Wish as a DSL for Information Scoping 

I believe that although the work presented in this thesis was conceived and evaluated within the context 

of interest management within virtual environments, it has the potential to be useful in a variety of other 

contexts. The Wish language is essentially a DSL for scoping information from a large set to a smaller set 

based on combinations of statements that can reason about the following information where provided: 

• explicit artefact metadata values, 

• implicit artefact metadata values, 

• membership of values (metadata or other) in given subsets. 

It would therefore be interesting to research into the applications of Wish in other domains such as 

emails, blog entries, music libraries, online photo sites, etc. Essentially any context where you might 

wish to generate a subset of data from a larger, potentially overwhelming set. I mention the term 

overwhelming purely because this an increasingly realistic proposition, particularly with increasingly 

large sets of information available on the internet4 . 

8.3.2 Separating Relationships from the Data 

The Wish syntax has no way to reason about relationships between data. The method by which this is 

achieved is through representing the relationships as either explicit or implicit metadata, which Wish 

can treat as standard attribute values. It is therefore possible to represent the relationships between 

artefacts in an external file - such as the relative artefacts files. This is true in the case study, where the 

relationship between the referee and his/her aura is explicitly defined. It would be equally possible to 

represent these relationships as methods in the objects that represent the artefacts. So, instead of having 

two variables: ref and ref.aura, it would be possible to call the relationship from the referee object as 

follows: ref. aura. 

It would therefore be interesting to see how this separation deals with a variety of potentially com­

plex case studies, and how the structure of those relationships might be represented. It would also be 

interesting to study the ability to have a variety of different relationship declarations for the same set of 

artefacts, and consider contexts where altering relationship types could be useful. 

It would also be interesting to determine the performance characteristics of different types of rela­

tionships, such as visibility, defined with a number of different algorithms. Section 6.2.2 identified that 

certain algorithms could potentially represent a performance hit, particularly within hugely crowded 

environments. A study could be made into the type of algorithms that induce such a performance hit, 

and possible methods for increasing the efficiency of determining such relationships. 

4For example, from soclal web applications such as f1ickr[123], last.fm[71] and del.icio.us[122]. . ' 
8Thia would be similar to how style is separated from content on the web today. This separation happens typIcally WIth 

different files a htm\ file for the content, and a e55 file for the style. 
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8.3.3 Resource Costs 

This Thesis has attempted to ignore the practicality of any potential resource costs caused by the 

techniques introduced. This has been necessary in order to focus on the representations of interest 

rather than the processes necessary to enact those representations. Clearly the process of enacting the 

representations is important if the representations are to be used in real-world applications. 

One of the main motivations for for designing Wish was the relative complexity of the SQL necessary 

to represent simple interest statements. For more complex statements, whilst Wish has the ability to 

abstract away from the complexity, it is still important to note that the relative complexity of the 

corresponding SQL may lead to excessive SQL queries needing to be executed in order to interpret the 

interest statement and generate the set of interesting artefacts. 

It would therefore be very important to study the resource costs of employing these techniques to 

determine the performance characteristics and effect on the scalability of complex systems, and their 

ability to implement a variety of interest statements (such as those described in the case study) with 

really large and crowded environments. 

8.3.4 Rich Interest Conditions 

Section 5.5.1 introduced the limitations of SQL in representing rich interest conditions such as visibility. 

It be very interesting to attempt to implement some of these conditions and incorporate them into the 

design of Wish. It also be interesting to examine the performance implications of such conditions on the 

system as a whole. 

8.3.5 Compiling Wish to Other Representations 

Currently the Wish compiler converts Wish statements to SQL. It would be interesting to see what other 

output formats would be useful for the Wish compiler. Consider the following cases: 

Object Persistence Libraries Many object-oriented languages have object persistence libraries - es­

sentially storing sets of objects, or artefacts. Wish could be used to scope sets of such artefacts. 

XPath Queries Increasingly large amounts of data are now stored in XML documents, or even XML 

databases. It would be interesting to evaluate the usefulness of Wish to scope sets of XML artefacts. 

Web APIs Given the increasing number of interfaces to web services offering huge sets of data, it would 

be interesting to evaluate the ability for Wish to interact with such services. For example, a Wish 

statement could be sent inside a simple HTTP packet to a REST web service, or nested within an 

XML document within a SOAP envelope within an HTTP packet for a WS-* service
6

. 

8Surely a web service should mimic the web, rather than abstract it away. 
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CouchDB CouchDb[63) is a document-oriented, non-relational database management server. It stores 

sets of name-value pairs and associated metadata as documents. This design is clearly similar to the 

approach taken by the implementation of this thesis. It would therefore be interesting to investigate 

an implementation of Wish using this platform. 

8.3.6 Interesting Events 

This thesis has focussed on representations of expressions regarding sets of artefacts. In particular, the 

set of interesting artefacts. However, given that one of the main motivations for interest management 

is scalability, and that this motivation is tightly coupled with the number of messages that the system 

needs to send, it would be interesting to look at interest statements that reason about events instead of 

artefacts. It might also be possible to look at interest statements that are able to express an interest in 

both events and artefacts. Consider the following hypothetical event-oriented wish statement: 

#I'm interested in events that match the following 

category = important 

affects interesting_artefacts 

In the above statement, both category and size are both message attributes. affects is a new keyword 

which is similar to in, where it refers to messages that affect any of the artefacts in the set represented 

by the standard subwish interesting_artefacts. 

8.3.7 Prioritised Events 

This thesis has focussed on representing sets - sets of interesting artefacts, sets of enforced artefacts, 

sets of all world artefacts, etc. Sets themselves have no ordering, they are just bags of information. It 

might be useful to not only extract a set of interesting artefacts, but add priorities and other metadata. 

It might therefore be possible to create statements such as the following: 

"I'm more interested in artefacts closer to me than artefacts further away" 
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Appendix A 

Example Iteration 

A.I Wish Auto-quoting Implementation 

def auto_quote(term) 

#define some useful regexp matchers: 

backticks = fA' (.+)' $/ 

quotes = /". +' $/ 

numeric = fA[ -+]7[0-9]*\.7 [0-9]+$/ 

true_or_false = fA(truelfalse)$/ 

tagged_expression = /<%=.*%>/ 

untagged_expression = fA[A.]\S*\.\S*[A.]$/ 

#add appropriate quotation tags if necessary: 

case term 

when backticks 

#check to see if backticks need to be removed 

return @remove backticks 7 (term.match backticks) [1] term 

when quotes, numeric, true_or_false, tagged_expression 

retu rn te rm 

when untagged_ exp res sion 

return "<'1= #{term}%>" 

else 

return" '#{term}'" 

end 

end 
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Auto-quoting Specification Output 

wish pre·parser auto·quoting 

should ignore a single digit 

should ignore many digits 

should ignore a negative digit 

should ignore a decimal 

should ignore a negative decimal 

should ignore a quoted integer 

should quote the word four 

should quote a word ending in digits 

should quote a word starting in digits 

should ignore the boolean value true 

should ignore the boolean value false 

should quote the word truth 

should put expression tags around a word containing a . 

shoUld put expression tags around a word containing multiple.' s 

should ignore something that looks like expression but is surrounded by quotes 

should ignore explicit expression tags 

should quote a word that ends with a period (but does not contain any) 

shoUld quote a word that ends with a period (and even contains one) 

shoUld quote a word that starts with a period (and even contains one) 

should quote a word that starts and ends with a period (and even contains one) 

should quote a word that starts and ends with a period (and does not contain any) 

should put quote a word starting with a period 

shoUld ignore a word that ends with a period, contains a space and is already quoted 

should quote a line even with spaces 

should ignore anything that is surrounded with backticks 

should quote anything that includes one or more spaces 

should not quote anything surrounded with backticks 

should quote anything that ends with multiple periods 

should quote anything that contains spaces, even if it contains a single period 

should quote anything that contains spaces, even if it contains multiple periods too 

should be able to ignore back·ticks, even when generated with an expression 

should not quote an expression and other terms, however should auto-quote the result 
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- should not quote an expression and other terms, however should auto-quote the result 

Finished in 1. 32495 seconds 

34 examples, 9 failures 

A.3 Example RSpec Specification: Auto-quoting 

describe "wish auto-quoting" do 

before( :each) do 

@interest = Interests.new(false, false, false) 

end 

it "should ignore a single digit" do 

wish = "attribute. 4" 

post_parse = "(attribute = 4)" 

@interest.parse_interests(wish, ""). should == post_parse 

end 

it "should ignore many digits" do 

wish = "attribute = 12345678991234567899" 

post_parse = "(attribute = 12345678991234567899)" 

@interest.parse_interests(wish, ""). should == post_parse 

end 

it "should ignore a negative digit" do 

wish. "attribute = -4" 

post_parse. "(attribute = -4)" 

@interest.parse_interests(wish, ""). should == post_parse 

end 

it "should ignore a decimal" do 

wish. "attribute = 4.8" 

post_parse. "(attribute = 4.9)" 
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.interest.parse_interests(wish, ·').should == post-parse 

end 

it 'should ignore a negative decimal" do 

wiSh. 'attribute = -4.8" 

post_parse", "(attribute = -4.8)" 

.interest. parse_interests(wish, ""). should 

end 

it "should ignore a quoted integer" do 

wish", "attribute = '4'" 

post_parse = "(attribute = '4')" 

@interest.parse_interests(wish, ""). should 

end 

it "should quote the word four" do 

wish = "attribute. four" 

post_parse '" "( att ribute • 'four')" 

@interest. pa rse_inte rests (wish, ""). should 

end 

it "should quote a word ending in digits" do 

wish = "attribute = cock-verla" 

post_parse = "(attribute = 'cock-verla')" 

@interest.parse_interests(wish, ""). should 

end 

it "should quote a word starting in digits" do 

wish. "attribute = 1st" 

post_parse· "(attribute = '1st')" 

@interest.parse_interests(wish, ""). should 

end 

it 'should ignore the boolean value true" do 

wish· "attribute. true" 

post-parse 
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post-parse '" • (attribute = true)' 

,interest.parse_interests(wish, ··).should == post-parse 

end 

it 'should ignore the boolean value false' do 

wish • "attribute. false" 

post-parse '" "(attribute = false)" 

'interest. parse_interests(wish, ""). should == post_parse 

end 

it "should quote the word truth" do 

wish. "attribute = truth" 

post_parse. "(attribute = 'truth')" 

,interest. pa rse_interests (wish, .... ). should 

end 

it "should put expression tags around a word containing a ... do 

wiSh. "attribute'" le.next" 

post_parse = .. (attribute = 11)" 

,interest. parse_interests (wish, .... ). should == post_parse 

end 

it "should put expression tags around a word containing multiple. 's .. do 

wish. "attribute = lEl.next.next" 

post_parse ... (attribute = 12)" 

,interest. parse_interests (wish, .... ). should 

end 

it "should ignore something that looks like expression but is surrounded by quotes' do 

wish· "attribute = 'x.value.sub_value'" 

post_parse'" "(attribute = 'x.value.sub_value')" 

@interest.parse_interests(wish, ''''). should == post_parse 

end 

it "should ignore expUcit expression tags" do 
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wish .. "attribute" <'\po 1e.next ..,." 

post_parse" "(attribute ~ 11)" 

linterest.parse_interests(wish, ··).should =~ post-parse 

end 

1t ·should quote a word that ends with a period (but does not contain any)· do 

wish .. "att ribute = end.· 

post_parse .. "(attribute = 'end. ')" 

@interest.parse_interests(wish, "").should == post-parse 

end 

it "should quote a word that ends with a period (and even contains one)· do 

wish. "attribute = why.end." 

post_parse = "(attribute" 'why.end. ')" 

@interest.parse_interests(wish, ""). should 

end 

it "should quote a word that starts with a period (and even contains one)" do 

wish = "attribute ... why.end" 

post_parse. "(attribute = '.why.end')" 

@interest.parse_interests(wish, ""). should 

end 

it "should quote a word that starts and ends with a period (and even contains one)· do 

wish .. "attribute = .why.end." 

post_parse .. "(attribute .. '.why.end.')" 

@interest.parse_interests(wish, UU). should 

end 

it "should quote a word that starts and ends with a period (and does not contain any)· do 

wish. "attribute •. why." 

post_parse .. "(attribute = '.why.')" 

'interest. parse_interests(wish, U.). should 

end 
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it "should put ignore a decimal with no preceding digit" do 

wish • "attribute = .5" 

postJ)arse" "(attribute" .5)" 

@interest.parse_interests(wish, ""). should == postJ)arse 

end 

it "should put quote a word starting with a period" do 

wish. "attribute = • rb" 

post_parse = "(attribute = '.rb')" 

@interest.parse_interests(wish, "").shou\d = post_parse 

end 

it "should ignore a word that ends with a period, contains a space and is already quoted" do 

wish. "attribute = 'The End.'" 

post_parse = "(attribute" 'The End.')" 

@interest.parse_interests(wish, ""). should 

end 

it "shou\d quote a Une even with spaces" do 

wish. "attribute .. The End." 

post_parse .. "( att ribute = 'The End.')" 

@interest.parse_interests(wish, ""). should 

end 

it 'should ignore anything that is surrounded with backticks' do 

wish. "attribute = 'sqrt(81)'" 

post_parse" "(attribute = sqrt(81))" 

@interest.parse_interests(wish, ""). should 

end 

it 'should quote anything that includes one or more spaces' do 

wish. "attribute. 2 + 4" 

post_parse = "(attribute .. '2 + 4')" 

@interest.parse_interests(wish, "'). should 

end 
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it 'should not quote anything surrounded with backticks' do 

wish = "attribute = '2 + 4" 

postJlarse - • (attribute = 2 + 4)' 

@interest.parse_interests(wish, "'). should == postJlarse 

end 

it 'should quote anything that ends with multiple periods' do 

wish = "attribute = .one.more.thing ....... 

post_parse a "(attribute = '.one.more.thing ..... ') .. 

@interest.parse_interests(wish, .... ). should == post_parse 

end 

it 'should quote anything that contains spaces, even if it contains a singte period' do 

wish. "attribute = Getting. Tired" 

post_parse = .. (attribute = 'Getting. Tired')" 

@interest.parse_interests(wish, .... ). should aa post_parse 

end 

it 'should quote anything that contains spaces, even if it contains multiple periods too' do 

wish. "attribute a Getting. Very. Tired" 

post_parse = "(attribute = 'Getting. Very. Tired')" 

@interest.parse_interests(wish, ""). should == post_parse 

end 

it 'should be able to ignore back-ticks, even when generated with an expression' do 

wish· "attribute = <,.. "2 + 4' ''\5>'' 

post_parse = "(attribute. 2 + 4)" 

@interest,parse_interests(wish, ''''). should 

end 

it 'should not quote an expression and other terms, however should auto-quote the result' do 

wish. "attribute - <Ip '2 + 4''\5> + 5" 

post_parse. "(attribute = '2 + 4 + 5')" 

@interest.parse_interests(wish, "'). should 
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end 

it 'should not quote an expression and other terms, however should auto-quote the result' do 

wish. "attribute = <fop '2''11>5· 

postjlarse • "(attribute = 251" 

@interest.parse_interests(wish, ·"l.should 

end 

end 

postjlarse 
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Appendix B 

Case Study Data 

B.1 Foot ball Pitch 

Table B.l: Football Pitch Artefacts 

Id .hape width height length x y z radlu. colour v category t name 

5 box 50 0.05 50 25 25 a NULL green a pitch a home half 
6 box 50 0.05 50 25 75 a NULL green a pitch 0 away half 

7 box 50 0.05 0.5 25 50 0.1 NULL white 0 pitch 0 centre line 

8 cylinder NULL 0.05 NULL 25 50 0.05 7 white a pitch 0 centre circle oULar 

9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green a pitch 0 centre circle 

10 box 30 0.05 15 25 7.5 0.15 NULL white a pitch 0 home goal outer 

n box 29 0.05 14 25 7 0.2 NULL green a pitch a home goal 

12 box 30 0.05 15 25 92.5 0.15 NULL white a pitch a away goal outer 

13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 away goal 

14 cylinder NULL 0.05 NULL 25 10 0.05 10 white 0 pitch 0 borne penalty circle outer 

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch a borne penalty circle 

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white a pitch 0 borne penalty opot 

17 cylinder NULL 0.05 NULL 25 90 0.05 10 white a pitch a away penalty circle outer 

18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green a pitch 0 away penalty circle 

19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty opot 

20 box 0.5 0.05 100 -0.25 50 0.1 NULL white 0 pitch 0 near touch line 

21 box 0.5 0.05 100 50.25 50 0.1 NULL white 0 pitch 0 far toucb line 

22 box 51 0.05 0.5 25 -0.25 0.1 NULL white 0 pitch 0 home touch line 

23 box 51 0.05 0.5 25 100.25 0.1 NULL white 0 pitch 0 away touch line 

24 box 5 0.05 100 -2.5 50 0 NULL green 0 pitch 0 near touch area 

25 box 5 0.05 100 52.5 50 0 NULL green a pitch a far touch area 

26 box 60 0.05 5 25 -2.5 a NULL green a pitch a bome touch arca 

27 box 60 0.05 5 25 102.5 a NULL green 0 pitch 0 away touch area 

28 box 0.5 5 0.5 20 a a NULL white 0 pitch 0 bome near goal poet 

29 box 0.5 5 0.5 30 0 0 NULL white 0 pitch 0 borne far goal poIt 

30 box 10.5 0.5 0.5 25 0 5 NULL white 0 pitch 0 borne goal croesbar 

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal croesbar 

32 box 0.5 5 0.5 20 100 a NULL white 0 pitch 0 away near goal poIt 

33 box O.S 5 0.5 30 100 0 NULL white 0 pitch 0 away far goal poet 

(z = z coord, 1/ = 1/ coord, ~ = • coord, " = virtual, t = trIlnsparenCl/) 
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B.2 Players 

B.2.1 Red Team 

Table B.2: All Red Players 

Id shape width height length x y z radius colour v category t name 
34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 sam 
36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob 
38 cone NULL 3 NULL 10 8 0 1 red 0 player 0 john 
40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim 
42 cone NULL 3 NULL 40 70 0 1 red 0 player 0 geoffrey 
44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 bernard 
46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy 
48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie 
50 CODe NULL 3 NULL 20 60 0 1 red 0 player 0 rupert 
52 cone NULL 3 NULL 5 20 0 1 red 0 player 0 oven 

(a; = a; coord, 11 = 11 coord, z = z coord, v = v.rtual, t = tramparenclI) 

B.2.2 Blue Team 

Table B.3: All Blue Players 

Id .hape width height length x y II radluo colour v category t name 

56 cone NULL 3 NULL 30 60 0 1 blue 0 player 0 klu-I 

58 cone NULL 3 NULL 35 45 0 1 blue 0 player 0 bendrlk 

60 cone NULL 3 NULL 15 13 0 1 blue 0 player 0 david 

62 cone NULL 3 NULL 45 85 0 1 blue 0 player 0 ban 

64 cone NULL 3 NULL 35 14 0 1 blue 0 player 0 jean 

66 cone NULL 3 NULL 45 55 0 1 blue 0 player 0 bom 

68 cone NULL 3 NULL 35 95 0 1 blue 0 player 0 bilbo 

70 cone NULL 3 NULL 45 65 0 1 blue 0 player 0 oavao 

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris 

(z = x coom, 11 = Y coord, z = % coord, v = vlrtuaZ, t = transparency) 

B.2.3 Goalkeepers 

Table B.4: Goalkeepers 

Id .hape width height length x y .. radius colour v category t name 

54 cone NULL 3 NULL 26 0 0 1 yellow 0 goalie 0 tim 

74 cone NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos 

(a; = ., coord, 1/ = 11 coord, Z = • coord, v = tJlrtual, t = tra .... parency) 
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B.2.4 Referee 

Table B.5: The Referee 

B.3 Football 

Table B.6: The Football 

B.4 Locales 

Table B.7: Locales 

B.5 Auras 

B.6 All Artefacts 
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Table B.B: Auras 

Id .hape width height length x y z radiua colour v category t name 

35 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 sam 
37 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 bob 
39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john 
41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim 

43 cylinder NULL 0.5 NULL 40 70 0 5 red 1 aura 0.5 geoffrey 

45 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard 

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy 

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie 

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert 

53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 .ven 

55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim 

57 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aura 0.5 karl 

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 hendrik 

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aura 0.5 david 

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 han 

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aura 0.5 jean 

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boris 

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo 

71 cylinder NULL 0.5 NULL 45 65 0 5 red 1 aura 0.5 &3V8B 

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris 

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carloa 

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref 

(x = :c coord, y = y coord, Z = z coord, v = virtual, t = transparency) 
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Table B.9: All Artefacts 

Id .hape width height length x y z radius colour v category t name 
5 box 50 0.05 50 25 25 0 NULL green 0 pitch 0 home halC 
6 box 50 0.05 50 25 75 0 NULL green 0 pitch 0 away halC 
7 box 50 0.05 0.5 25 50 0.1 NULL white 0 pitch 0 centre line 
8 cylinder NULL 0.05 NULL 25 50 0.05 7 white 0 pitch 0 centre circle outer 
9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green 0 pitch 0 centre circle 
JO box 30 0.05 15 25 7.5 0.15 NULL white 0 pitch 0 home goal outer 
II box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home goal 
12 box 30 0.05 15 25 92.5 0.15 NULL white 0 pitch 0 away goal outer 
13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 away goal 
14 cylinder NULL 0.05 NULL 25 JO 0.05 10 white 0 pitch 0 home penalty circle outer 
15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle 
16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitch 0 home penalty epot 
17 cylinder NULL 0.05 NULL 25 90 0.05 JO white 0 pitch 0 away penalty circle outer 
18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green 0 pitch 0 away penalty circle 
19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty epot 

20 box 0.5 0.05 100 -0.25 50 0.1 NULL white 0 pitch 0 Dear touch IiDe 

21 box 0.5 0.05 100 50.25 50 0.1 NULL white 0 pitch 0 Car touch IiDe 

22 box 51 0.05 0.5 25 -0.25 0.1 NULL white 0 pitch 0 home touch line 

23 box 51 0.05 0.5 25 100.25 0.1 NULL white 0 pitch 0 away touch line 

24 box 5 0.05 100 -2.5 50 0 NULL green 0 pitch 0 near touch area 

25 box 5 0.05 100 52.5 50 0 NULL grccn 0 pitch 0 Car touch area 

26 box 60 0.05 5 25 -2.5 0 NULL green 0 pitch 0 home touch area 

27 box 60 0.05 5 25 102.5 0 NULL groon 0 pitch 0 away touch area 

28 box 0.5 5 0.5 20 0 0 NULL white 0 pitch 0 home near goal poet 

29 box 0.5 5 0.5 30 0 0 NULL white 0 pitch 0 home Car goal poet 

30 box 10.5 0.5 0.5 25 0 5 NULL white 0 pitch 0 home goal crOllbar 

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal croubar 

32 box 0.5 5 0.5 20 100 0 NULL white 0 pitch 0 away near goal poet 

33 box 0.5 5 0.5 30 100 0 NULL white 0 pitch 0 away Car goal poet 

34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 sam 

35 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 sam 

36 cone NULL 3 NULL 50 38 0 1 red 0 player 0 bob 

37 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 boh 

38 CODe NULL 3 NULL 10 8 0 1 red 0 player 0 john 

39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john 

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim 

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim 

42 CODe NULL 3 NULL 40 70 0 1 red 0 player 0 geoffrey 

43 cylinder NULL 0.5 NULL 40 70 0 5 red 1 aura 0.5 geoffrey 

44 cone NULL 3 NULL 40 90 0 1 red 0 player 0 bernard 

45 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard 

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy 

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy 

48 cone NULL 3 NULL 40 43 0 1 red 0 player 0 charlie 

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie 

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert 

Continued in Tabl. B.I0 
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Table B.1O: All Artefacts (Continued from Table B.9) 

Id .hape width height length x y z radius colour v category t name 
51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert 
52 cone NULL 3 NULL 5 20 0 1 red 0 player 0 &Ven 
53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 even 
54 cone NULL 3 NULL 26 0 0 1 yellow 0 goalie 0 tim 
55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim 
56 cone NULL 3 NULL 30 60 0 1 blue 0 player 0 karl 

57 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aura 0.5 karl 

58 cone NULL 3 NULL 35 45 0 1 blue 0 player 0 hendrik 

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 hendrik 

60 cone NULL 3 NULL 15 13 0 I blue 0 player 0 david 

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aUfa 0.5 david 

62 cone NULL 3 NULL 45 85 0 1 blue 0 player 0 ban 

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 han 

64 cone NULL 3 NULL 35 14 0 1 blue 0 player 0 jean 

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aura 0.5 jean 

66 cone NULL 3 NULL 45 55 0 1 blue 0 player 0 boria 

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boria 

68 cone NULL 3 NULL 35 95 0 1 blue 0 player 0 bilbo 

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo 

70 cone NULL 3 NULL 45 65 0 1 blue 0 player 0 savas 

71 cylinder NULL 0.5 NULL 45 65 0 5 red 1 aura 0.5 aavaa 

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris 

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chria 

74 cone NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos 

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlos 

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 player 0 ref 

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref 

78 sphere NULL NULL NULL 15 7 2 0.5 white 0 ball 0 ball 

79 box 25 0.05 100 12.5 50 1 NULL brown 1 locale 0.5 near half 

(:£ = :t coord, JI = II coord, .z: = z coord, tI = virtual, t = transparency) 



182 

Appendix C 

Case Study Example Statements 

C.l Relative Artefacts 

All the example statements in this chapter use have access to the subwishes defined in Appendix D, and 

use the following relative_artefacts. rb file: 

C.2 Categories 

C.2.1 English Prose 

I am interested in all artefacts that are red 

C.2.2 Wish 

co lou red red 

C.2.3 SQL 

select· from artefacts where ((colour = 'red')) 

C.2.4 Matching Artefacts 

See Table c.l. 

C.3 Locales 

C.3.1 English Prose 

I am interested in all artefacts within the near half of the pitch 
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Table C.l: Red Artefacts 

Id shape width height length x y z radius colour v category t Dame 
34 cone NULL 3 NULL 30 48 0 1 red 0 player 0 sam 
36 cylinder NULL 0.5 NULL 30 48 0 5 red 1 aura 0.5 sam 
36 cone NULL 3 NULL 50 38 0 1 red a player 0 bob 
31 cylinder NULL 0.5 NULL 50 38 0 5 red 1 aura 0.5 bob 

38 cone NULL 3 NULL 10 8 0 I red 0 player 0 jobn 

39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john 

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim 

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim 

42 cone NULL 3 NULL 40 10 0 1 red 0 player a geoffrey 

43 cylinder NULL 0.5 NULL 40 10 0 5 red 1 aura 0.5 geoffrey 

44 cone NULL 3 NULL 40 90 0 1 red a player 0 bernard 

45 cylinder NULL 0.5 NULL 40 90 0 5 red 1 aura 0.5 bernard 

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy 

41 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy 

48 cone NULL 3 NULL 40 43 0 1 red 0 player a charlie 

49 cylinder NULL 0.5 NULL 40 43 0 5 red 1 aura 0.5 charlie 

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert 

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert 

52 cone NULL 3 NULL 5 20 a 1 red a player a sven 

53 cylinder NULL 0.5 NULL 5 20 a 5 red 1 aura 0.5 oven 

55 cylinder NULL 0.5 NULL 26 0 0 5 red 1 aura 0.5 tim 

51 cylinder NULL 0.5 NULL 30 60 0 5 red 1 aura 0.5 karl 

59 cylinder NULL 0.5 NULL 35 45 0 5 red 1 aura 0.5 bendrik 

61 cylinder NULL 0.5 NULL 15 13 a 5 red 1 aura 0.5 david 

63 cylinder NULL 0.5 NULL 45 85 0 5 red 1 aura 0.5 ban 

65 cylinder NULL 0.5 NULL 35 14 0 5 red 1 aura 0.5 jean 

67 cylinder NULL 0.5 NULL 45 55 0 5 red 1 aura 0.5 boris 

69 cylinder NULL 0.5 NULL 35 95 0 5 red 1 aura 0.5 bilbo 

11 cylinder NULL 0.5 NULL 45 65 0 5 red 1 aura 0.5 savas 

13 cylinder NULL 0.5 NULL 25 15 a 5 red 1 aura 0.5 cbria 

15 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlos 

17 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref 

(:z: = :z; coord, II = 11 coord, z = % coord, tI = vIrtual, t = transparency) 
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C.3.2 Wish 

C.3.3 SQL 

select • from artefacts where «x_coord >= 9.9 and (x_coord <= 25.9 and (y_coord >= 8.9 

and (y-coord <= 199.9 and (td != 79)))))) 

C.3.4 Matching Artefacts 

See Table C.2. 

Table C.2: Artefacts on the Near Side of the Football Pitch 

Id .hape width height length x y z radius colour v category t name 
5 box 50 0.05 50 25 25 a NULL green 0 pitch a home balf 
6 box 50 0.05 50 25 75 a NULL green 0 pitch 0 away half 
7 box 50 0.05 0.5 25 50 0.1 NULL white 0 pitch 0 centre line 
8 cylinder NULL 0.05 NULL 25 50 0.05 7 white 0 pitch 0 centre circle outer 
9 cylinder NULL 0.05 NULL 25 50 0.1 6.5 green 0 pitch 0 centre circle 

10 box 30 0.05 15 25 7.5 0.15 NULL white 0 pitch 0 home goal outer 

11 box 29 0.05 14 25 7 0.2 NULL green 0 pitch 0 home goal 

12 box 30 0.05 15 25 92.5 0.15 NULL white 0 pitch 0 away goal outer 

13 box 29 0.05 14 25 93 0.2 NULL green 0 pitch 0 away goal 

14 cylinder NULL 0.05 NULL 25 10 0.05 10 white 0 pitch 0 home penalty circle outer 

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 home penalty circle 

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitch 0 home penalty opot 

17 cylinder NULL 0.05 NULL 25 90 0.05 10 white 0 pitch 0 away penalty circle outer 

18 cylinder NULL 0.05 NULL 25 90 0.1 9.5 green 0 pitch 0 away penalty circle 

19 cylinder NULL 0.05 NULL 25 90 0.25 0.5 white 0 pitch 0 away penalty opot 

28 box 0.5 5 0.5 20 0 0 NULL white 0 pitch 0 home near goal poot 

30 box 10.5 0.5 0.5 25 0 5 NULL white 0 pitch 0 home goal crooahar 

31 box 10.5 0.5 0.5 25 100 5 NULL white 0 pitch 0 away goal crooobar 

32 box 0.5 5 0.5 20 100 0 NULL white 0 pitch 0 away near goal poet 

38 CODe NULL 3 NULL 10 8 0 1 red 0 player 0 john 

39 cylinder NULL 0.5 NULL 10 8 0 5 red 1 aura 0.5 john 

46 cone NULL 3 NULL 20 30 0 1 red 0 player 0 toddy 

47 cylinder NULL 0.5 NULL 20 30 0 5 red 1 aura 0.5 toddy 

50 cone NULL 3 NULL 20 60 0 1 red 0 player 0 rupert 

51 cylinder NULL 0.5 NULL 20 60 0 5 red 1 aura 0.5 rupert 

5~ cone NULL 3 NULL 5 20 0 1 red 0 player 0 oven 

53 cylinder NULL 0.5 NULL 5 20 0 5 red 1 aura 0.5 oven 

60 CODe NULL 3 NULL 15 13 0 1 blue 0 player 0 david 

61 cylinder NULL 0.5 NULL 15 13 0 5 red 1 aura 0.5 david 

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris 

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris 

74 cone NULL 3 NULL 25 100 0 1 yellow 0 goalie 0 carlos 

75 cylinder NULL 0.5 NULL 25 100 0 5 red 1 aura 0.5 carlos 

78 ophere NULL NULL NULL 15 7 2 0.5 white 0 ball 0 ball 

(z = % coord, V = 11 coord, % = .I coord, 'II = Virtual, t = transparency) 
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C.4 Relative Locales 

C.4.1 English Prose 

I am interested in all artefacts within the referee's aura 

C.4.2 Wish 

C.4.3 SQL 

select • from artefacts where ((5.8> sqrt(pow((x_coord - 27.91. 2) + 

pow((y_coord - 13.8), 2»» 

C.4.4 Matching Artefacts 

See Table C.3. 

Table C.3: Football Pitch Artefacts 

Id .hape width height length x y z radius colour v category t name 

14 cylinder NULL 0.05 NULL 25 10 0.05 10 white 0 pitch 0 home penalty circle outer 

15 cylinder NULL 0.05 NULL 25 10 0.1 9.5 green 0 pitch 0 borne penally circle 

16 cylinder NULL 0.05 NULL 25 10 0.25 0.5 white 0 pitcb 0 home penalty spot 

40 cone NULL 3 NULL 30 12 0 1 red 0 player 0 jim 

41 cylinder NULL 0.5 NULL 30 12 0 5 red 1 aura 0.5 jim 

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chris 

73 cylinder NULL 0.5 NULL 25 15 0 5 red 1 aura 0.5 chris 

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 player 0 ref 

77 cylinder NULL 0.5 NULL 27 13 0 5 red 1 aura 0.5 ref 

(x = oX coord, II = 71 coord, z = z coom, v = virtual, t = transparency) 

C.5 Interacting Locales 

C.S.1 English Prose 

I am interested in all artefacts whose aura overlaps the referee'S aura 

C.S.2 Wish 



186 

C.5.3 SQL 

select· from artefacts where «virtual = false and (category = 'player' and (na~ in 

(select name from artefacts where «(5.9 + radius> sqrt(pow«x_coord - 27.91. 2) + 

pow«y_coord - 13.9), 2))) and (category = 'aura')))))))) 

C.5.4 Matching Artefacts 

See Table C.4. 

Table C.4: Artefacts Matching the Interacting Locales Example 

Id .hape width height length x y z radius colour v category t name 

40 cone NULL 3 NULL 30 12 0 1 red 0 plll)'er 0 jim 

64 cone NULL 3 NULL 35 14 0 1 blue 0 p1ll)'er 0 jean 

72 cone NULL 3 NULL 25 15 0 1 blue 0 player 0 chri. 

76 cone NULL 3 NULL 27 13 0 1 turquoise 0 p1ll)'er 0 ref 

(x = x coord, 11 = 11 coord, .z = z coord, 11 = virtual, t = tra.mparencll) 

C.6 Combinations 

C.6.1 English Prose 

I am interested in all non-virtual artefacts that are red players, whose aura overlaps the 

referee's aura and that are within the home penalty circle 

C.6.2 Wish 

not virtual 

co lou red red 

categorised_as player 

C.6.3 SQL 

select. from artefacts where (virtual = false and «colour = 'red') and (category = 'player' and 

«virtual z false and (category = 'player' and (name in (select name from artefacts where 

«(5.9 + radius> sqrt(pow«x_coord - 27.9), 2) + pow«Lcoord - 13.91. 211) and (category = 'aura'IIIIII) 

and «9.5> sqrt(pow«x_coord - 25.9), 2) + pow«y_coord - 19.91. 211111111 



C.6.4 Matching Artefacts 

See Table C.5. 
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Table C.5: Artefacts Matching the Combinations Example 

(z = X coord, 11 = 11 coord, z = z coord, tJ = virtual, t = tra716parencll) 



Appendix D 

Sub Wishes 

D.l In Awareness Range Of 

#in_awareness_range_of.wish 

virtual = false 

name in auras_in_awareness_range_of IAI 
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D.2 Auras In awareness Range Of 

D.3 

D.4 

D.5 

overlaps IAI 

category = aura 

Overlaps 

#overlaps.wish 

<'Is=IAI.radius'P + radius> 'sqrt(pow((x_coord . <'Is= IAI.x_coord'Pl. 2) + POW((Lcoord· <'1= IAI.Lcoord'Pl. 2))' 

Coloured 

#coloured.wish 

colour = IAI 

Named 

#named.wish 

name = IAI 
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D.6 Is 

D.7 

D.8 

D.9 

#is. wish 

id = <'0= IAI.id '0> 

Within Circle 

#Within_circle.wish 

<'o=IAI·radius'o> > 'sqrt(pow((x_coord - <'0= IAI.x_coord'o>l. 2) + pow((y_coord - <'0= IAI.Lcoord'o». 2»' 

Within Box 

#Within_box. wish 

x_coord >= <'0= IAI.x_coord - (IAI.width / 2)'0> 

x_coord <= <'0= IAI .x_coord + (IAI .width / 2)'0> 

Lcoord >= <'0= IAI.y_coord - (IAI.length / 2)'0> 

Lcoord <= <'0= IAI.y_coord + (IAI.length / 2)'0> 

id != <'0= IAI.id'o> 

Within Cube 

#Within_cube .wish 

x_coord >= <'0= IAI.x_coord . (IAI.height / 2)'0> 

x_coord <= <'0= IAI ,x_coord + (IAI.height / 2)'0> 

y_coord >= <'0= IAI.y_coord - (IAI.height / 2)'0> 

y_coord <= <'0= IAI.y_coord + (IAI.height / 2)'0> 

id != <%= IAI.id'o> 

D.lO Near To 

#near_to.wish 

x_coord >= <'0= IAI,x_coord - 20 '0> 

x_coord <= <'0= IAI . x_coord + 20 '0> 

y_coord >= <'0= IAI.y_coord - 20 '0> 

y_coord <= <'0= IAI ,y_coord + 29 '0> 

id != <'0= IAI·id'o> 



D.II Virtual 

#Virtual.wish 

virtual = true 

D.12 Categorised As 

#categorised_as.wish 

category = IAI 
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