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Numer1 cal Anal ys is of Infi riite ~1arkov PI Llcesses 

Abstract 

The estimation of the steady state probability distribution of 

discrete state Markov processes with an infi~ite state space is the 

subject of this thesis. The measurement and analysis of complex queueing 

systems is the motive for this investigation, since a classical approach 

to analysins queueing systems is to imbed the model in a r"larkov process. 

The literature pertaining to the numerkc:l solution of j'lark,ov processes 

is surveyed: with the object of finding a method which \'Iill be 

appl icable tCI a It/ide class of processes with a r,linimunl of prior 

analysis. 

A general method of numbering discrete states in an infinite dC~R1n 

is developed' and used to map the discrete state spaces of ~arkov 

processes into the positive integers, for the purpose of applj:n~ 

standard numerical techniques. A theOl~etical result \vhich has not been 

previously empl oyl~d, is impl emented and compared !'Iith t:V:C1 other 

algorithms which were developed for use It!ith f'inite slate space ['1arkov 

processes. Some problems with no closed "i:orm analytic solutivil a~"e 

studied numericCll'iy and steady state ana marginG" d-j::,tributions ere 

found. 
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o Introduction 

Modern day computer installations are increasinglY complex systems, 

whose performance is difficult to evaluate. The prediction of the 

effects of changes to the system on its performanc,e is likewise a 

difficult and time consuming operation. There are four well understood 

and useful means of i nvesti gati ng such computer systems; (1) benchmarks: 

(2) monitors; (3) simulation; a~rl (4) analytical modelli~q. Bencnmarks 

And mOI.jtors are means of studying existing systems. Simulation and 

analytical modell ing are :ppl ied to probabal istic model s of systems 

which mayor may not exist. 

Bencrmarks usually take the form UT a I tYP'j cal' worki oad for the 

system being investigated. The performance of the system is measured as 

it executes this bencrmark, and r.an be compared vlith the perfolll1ance of 

'lther systems executing the same benchmark. Benchmarks can only be used 

on existing systems; they have no predictive pO\'Jer and if the effect of 

proposed changes to a system is to be investigated, then the changes 

must fi rst be made before running the benchnark. 

Monitors are means of observing the activity of existing systems. 

Li ke benchmarks, they h~'/e no power of prediction and any cilanges in th~ 

syr;t.em must be made bei'c(c they can be eval uated. f·lonitors cail be 

hardvJare dev'ices, VJhicil record or ':OlJnt state dl~nges in the electronics 

of U'e computei', or soft~'iare rOutines vihich Zlre cal-led at stra ... egic 



2 

points in the system to record pertinent data. Hardware monitors have 

the advantage that they do not interfere with the system and the 

disadvantage that it is difficult to correlate their results with the 

software c~ the system. Software monitors do interfere with the system, 

aHhough typically by only a small amount, but their data is easily 

associated with particular pieces of software in the system. 

Simulation and mathematical analysis are both means nf studying 

probaballstic models of systems. In order to construct such a 

probabal istic model, we decide on the most important components in the 

system and describe their behaviour by probability distributions. 

Simulation consists of exercising this model repeatedly to 9;'!e 

different realisations of the system being ~lodel1ed an<.i hence a sample 

of the model's performance. The simulation itself can be driven by 

random numbers drawn from the distributions which are thought to 

represent the activities of the system. This is sometimes called 

r~onte-Carlo simulation. The alternative approach ;s to use a record of 

the actual activities of the system over a period of time as inp~t to 

the model. Thi sis trace driven simul ation. In either case, extensi V2 

vQlidation of the model must be carried out to prove that the model 

faithfully reflects the real system. Pred-iction of the ef~l?ct of changes 

to the system ~an be done by making the changes in the mod~ and 

re-running the simulation. 

When using mathematical analysis to study probaba:lstic mo~e1s, it 

is usually necessary to simpl ify the system in ordH to make tii'~ 

mathematics tractable. Gener211y, the :;tu::!y of su(;h models involv:::: tile 
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solution of a large set of simultaneous equations. If closed form 

solutions can be found then it is a very cheap and accurate approach. 

Numerical methods of solving these equations take the middle ground 

betv"een simulation and closed form 50lui: i ons. 

-we models \'/hich have closed form solutions \'Jhic!~ are suitable for 

calculation tend to be rather simple. Other systems such as G/G/l, 

whilst they have general solutions, are ~ot suitable for calculation 

purposes without e~tensive analysis. A~though the ~lass of systems for 

which solutions are known is now quite large, there remain simple 

systems whose general solution is either unknown or is only k~·w\\'" in a 

computationally impractical form. For exampl e, in systems ~,Jith priority 

queues, either pre-emptive> or non pre-emptive, al though the mean nUGibt.:i' 

in each priority class can be easily found, and has a simply ca1culated 

formula, the distribution of the nLIDlber of customers in each pr-;ority 

class is known only in terms of various relations that the generating 

function must satisfy. It is not possible to find a simple closed form 

for this generating function and ~o calculate the state prnbabilities 

-from ~hese relations. Numerical solutions cun be found to a larger class 

of systems. Fewer simpl ifying assumptions need to be m~(je -in order to 

solve the equations. Simulation models can be arbitrcrily co~plex, at 

the expense of their computer run time. 

Closed form solutions give a functional form to th_ solution. -i-he 

effect of changes in parameters can be predicted and (alc~ated easily. 

NUl1€'rical methods give only the solution for a single se",:. of parameters, 

but they are cheap and accurate. ~imulation models also give solutions 
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for only a single set of parameters, but their accuracy is proportional 

to their running time. Calculating a numerical solution ;s always 

cheaper than performing simul at;on experiments to the Sd.me accuracy. The 

situation is rather akin to the problem of calculating definite 

integrals. The function can be inteqrated in the classical manner and a 

general form found for the integral. This form can then be used to 

calculate the value for many sets of parameters. Alternatively, Gaussian 

quadrature can be used to evaluate the integral for a single set of 

parameters. If the integrand is particularly complex, then Monte··Carlo 

meth0,is can he used to eval uate the resul t for a si ng1 e set of 

parameters. A large sample must be u~2d to ensure accuracy. 

A numerical solutio;~ may be possible for mo:'-= cornj:;~ex systems than 

those which are soluble b,;' purely analytic rnt:!chods. Clearly the systems 

which can be sol ved numerically are restricted, in that they must 

engender a set. of equations whose solution can be calculated more or 

less easily. For example, the G/G/l system, although it h<:,s a generul 

solution [8J, is not readily SOlved numerically, since the 'sc1ution l 

involves taking the n-fold cl.,:wolution of infinite series for all n. 

Ponstein [38J and I~euts and his colleagues [36,31,32,24J have attacked 

the probiem of the single server system with arbitr(..Y') distributions of 

both service times and inter-arrival intervals. Both authors t~ke the 

approach of making the problem one of discr2te time. That is, Changes of 

::;tate occur only at tii:les t=O,1,2, •••• Ponstein anal~":;es an infinite 

set of equations which model thE:' c;ystem and demonstrates a numerical 

method, based on polynomial root finding in the cQ~rlex field~ which 

fir.Js the solution of the e(]~!ation~·. Neuts t c;S \-/eil as consider-jng 
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discrete time steps, restricts the state space of the problem to be 

finite too, arguing that continuous time and unbounded state spaces are 

analytic conveniences which are not needed in the age of the electronic 

computer. ~nile this argument is not without validity, the simplicity of 

analysis which made continuous time and unbounded state spaces 

attractive in the pre-computer era, also applies to numerical analysis 

of solving such systems. 

A simpler approdch to solving complex~ generally distributed 

queueing systems is to extend the descript~2n of the states of the 

system so that the enlarged system is a f-larkov process and to find the 

steady ~tate distribution of that ~1arkov process. This was tilt basis of 

Erlangls classical method of stages and is t;le approach that we shall 

follow. We investigate various proposed algorithms, with a view to 

finding a method, or small number of methods, which is applicable to a 

large class of· systems ' . ."ith a minimum of methods for the systems, being 

~eeded to ensure the convergence and accuracy of the sol~tion. 

Chapter 1 of this thesis contains a definition of Markov pro~2sses 

and of the terms that we use to cl assify a.nd describe thcr1. The 

notational conventions that are used are also introduced. 

The second chapter is a survey 01: the 1 iterature concerni ng the 

numerical solution of Markov processes. Both thG f-inite _t:ate s;'?ce and 

the infinite state space problem are examined. 

The folloHing chapter describes, in some detail. the algorithms 

whi;h are to be investigated, witr emphasis on the'ir COI~iput.er 
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implementaticn. Some costs of the algorithms are estimated and compared, 

o.nd their performance on a simple system is analysed. 

Chapter 4 considers some further practical problems involved in tile 

computer application of theoretical ~ethods for solving Markov 

processes. 

Chapter 5 compares the performance ~f the algorithms 

experimentaily. A system w"i+i1 known solution is rolved using all th" 

algorithms. t-'Iarginal probabilities for a system with no closed fonn 

probalJility c.istributior. are found. A distributed computing system is 

modell ed to confi rm heuri sti c argumE:nts about its perfonnance. 
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1 Markov processes 

In this chapter, we define Markov processes and chains and tne 

terms that we use to classify them. The notational conventions used 

througout the thesis are given. 

1.1 Defi nition 

Let the set of possible states of the system being studied be X, 

and let X(t) be the state of the system at -I.:.ime t. (X(t),tlOJ is a 

t"arkov process if the probabil ity of the system being ir: a particul ar 

state at tinl\:! t+Llt, X(t+bt), depends only on the state of the system at 

time t, XC:"), and not on any previous history of the system. ~Je shall 

')n 1 y be concerned with sys tems \'ihere tX J is a disc rete, denumerab 1 e set 

of states. For the time be1n9, without loss of generality, we consider 

lXJ = N, the set of natural numbers (positive integers). If ~tate 

changes only occur at times t=0,1,2, ••• or if th~ passage of time 1S of 

no interest., then ';.Ie can denote the states of the system "1S X. at 
1 

'time ' i. In this case, the process is called a Markov chain. 

~'Iarkov chains are ch,~:~acterised by their transitio.l pro~abil ity 

matrices, P, If/here p .. is the probab'ility that the SYSe';8 \I/i11 be in 
lJ 

state j at instant k+l, given that it is in state i at instant ~. Markov 

pr0~csses can be described mathematically in two, Essentially 
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equivalent, ways. We define Sij(t) as the probability that a process in 

state i at time 0, is in state j at time t. We shall denote the matrix 

(sij(t)) by S(t). The matrix of instantaneous transition rates, Q, is 

given by the derivative of S with respect to t, at t=O. We shall onl~ be 

interested in processes where the transition rates, Oi~ the transition 

probabilities in the case of Markov chains, are constant. These are 

c~lled temporarily homogeneous processes. 

In thi$ case, it is well known that 

S ( t ) = ex p ( Qt } (loll 

whei~ eXPt. J is the (matrix) exponential pov;er series. (See for example 

[8J P 46.) 

The states of the system can also be c~2ss:?ied. !f there exists a 

sequence of states k=iO,i., ••• ,i =j such that q.. 10 for 
! n 't't+l 

t=O,1,2, ••• ,n-l, then we write k-7j and say that there is a path fron, k 

to j. It isi~portant to realise that this is not a reflexive 

relationship. The existence of a path from k to j has no implications 

about the existence of a path from j to k. If k -7 j a~d j -7 k then j and 

k are said to comr:i:micate. The states of the system can be arranged into 

subsets or cl asses \,li thi n which all the states comml..;:,icate. Cl asses 

\-Jhich have no paths leading to states outside the class are cal1ed 

essE:nt-ia-!. C1 asses which do have paths to states outside the c1 ass are 

illf:'-~;'.JII:i(;I. The states i~pich belong to inessential classes are 

transi i.:nt. States '(,hieh tlre members of essential clc:c:.c;es are either all 

recurrent or all transient. Dif~nrent classes may be recurrent or 

transient. Once the system has entered an essential class, it can only 
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occupy states in that class, and in no other classes, subsequently. If 

returns to a state of a chain can only be made at times d,2d,3d, ••• etc. 

for some d)l, then the state is periodi~ with period d. Other states are 

aperiodic. All states in the same class have the same period. If all the 

states of a chain are members of the same essential class, then the 

chain is said to be irreducible. 

As an exa8ple, consider the 5 state Markov chain defined by P 

P 0.5 0.4 o 

0.3 0.7 0 

0.1 0 0.7 

000 

000 

o 

o 

0.2 

o 

1 

o 

o 

o 

1 

o 

There are three classes of states. The stiltes P,2} form an essential} 

aperiodic class; [4,51 form an essential class with period 2; [3J is an 

inessential class. 

We can also define 

TIi{t)=Pt·ob system in state i at time t 

and the (row) vector ..!!:..(t), \vhich represents the probabil ity distribut-;on 

of the states at time ~. 

If we assume that a chain is in state i at time t=O, then the 

probability distribution of bei~g in a particular state at time 

t:::l,~',3 ••• etc. is givE.. by e.p,e.p2 etc. , where ~1. is the unit row 
-1 -1 

v(_~or with 1 in the ith component and 0 in all others. If the chain is 

irredL;c:~ble. or -jf there is only '1 single essential class of states, 
k 

then +'1(; po\:~r:.; of t.he matrix P, p.', tend to a matrix dlich has 
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identical rows. Thus ~ipk will tend to a vector which is independent of 

the starting state, i, and is called the steady state distribution. We 

denote the steady state distribution by~. A vector ~ which satisfies 

~=g, is a stationary distribution. Clearly,.:!!. is a stationary 

distribution. If the process is honest, it is the unique sta~ionary 

distribution. Under similar conditions, as t ~ ~ the matrix of 

t:'ansition functions, S(t), tends to a matnx with identical rm/S, each 

rOl--/ equal to.:!!.. 

We shall consider that we knol" only the transition rates bet,,/een 

the ~tates of the system and that they are independent of time. This 

impl ies that we know the rate matri;: Q, and use this to define the 

pl~ocess • 

Define Q=(qij) as the matrix of transition rates from state 

state j, without clef; ni n9 qi i for the moment, then Vi2 have 

1r • ( t+ L\ t ) ;: 
1 ",' (t) (l-Eq" k oL\t) 

kfi ' 

+ Eqk:nk(t)L\t + O(L\t2) 
kfi I 

Define q,. = - Eq , (as it mLlst if Q is conservative) then l' . L' I t. 
Kfl 

'IT.(t+L\t) = 1T,(t) + L-.k(t).qk,L\t + O(L\t2) 
11k 1 

Let ~(i;) ::: rOVJ ·:~c:tor of [Tfi(t)} then 

.E,(t·;-Llt) = 21.rt)-:- 2.'.f."~Llt + o(t.t
2

) 

Hence> rC(1rrangi jIg and '>ki ng the 1 imit oS L\t -~ 0 
. 
]~ (t) :c: .:!!.(i.) Q 

to 

(1.2) 

(1. 3) 



11 

. 
but in steady state ~(t) = Q and ~(t) = 'IT, hence 

~Q = Q (1.4 ) 

where 'IT is the steady state probability vector. Equations (1.4) are 

called the balance equations of the Markov process. Equations (1.3) are 

the forvJard Chapman-Kolmogorov equations. 

An alternative approach comes directly from equation (1.2). Sincp 

when steady state is reached 

.!!.(t+lit) = ~(t) = 'IT 

~ = ~ + ~Q li t + 0 (li t 2 ) 

'IT = TIP 1').5} 

where P = I+Qlit and ~:e negl ect terms of order II t 2• He a,'e frt:c to choose 

lit subject to the limitation that it ought to be small enough to make 

the probability of more than one state change in any ti~G 

interval (t,t+lit) = 0(lit2). P is the so called jump chain matrix of the 

process, and can be interpreted as the probability transition matrix of 

an equivalent Markov chain, with the restriction on lit being that 

Ep .. = 1 for all i, or P -is stochastic • 
. lJ 

J 

In this case, it can be shown that P will have at least one 

eigenvalue of unit modulus~ and in fact one eigenvaiue equal to 1. 

( Consider ~ the column vector with all components equal to 1, clearly 

it is a right eigenvector.) 2!.. is thus the left eigenvec+:Jr vJrresponding 

to the unit eigenvalue. It can be shown also using Gel~chgorinls Theorem 

that all eigenvalues of P are less than or e~ual to 1 in modul~s. This 

has important consequences for the convergence of some algorithms 
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Nothing so far stated has excluded processes with an infinite state 

space. A little care is needed to define infinite matrices and the 

various operations on them, but the same results hold in general. We 

shall 'i-)e mainly interested in sllch systems and in the effects of 

truncating the state space. 

1. 2 Notation 

Except for a few sections, we have attempted to be consisten~ in 

our not.ation throughout this the."is. ','here it is possibh. we have used 

the most popular convention from the literature of Markov processes, but 

on occasion we have had to deviate in order to preserve our own 

consi stency. For exampl e, the matrix of t"'?nsi ti on functions, S, is most 

often denoted by P in th.: literature, but we use that for the 

transistion probab'l:ity matri--: of a ~1arkov chain. 

rapital Roman letters are uS2d to denote matrices, wi~h individual 

elements denoted by the same letter in lower case, subscripted. Vectors 

are 10\'ier case 1 etters, Greek or Roman, underl ined, and thei r components 

are the same 1 etter ,,/i'i.:, an appropriate subscript. All vectors are 

cO;isi dered as rO\'I vectors. Col urnn vectors and transposed matrices are 

desiglwted by a prime I. e. reDresents the unit vector, with all 
-1 ' 

components equal to 0 el\ ... ept the ith. ~ is the vector ':Jith all 

CO'IIF'Jnents equal to 1. I represents the identity matrix. ~J2 denote 

the n >< n truncation of the inflrite matrix A by (n)A. Conventionally 

this :... a "north i'lest corner" truncation, that is 
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= a otherwi se • 
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Summations are taken over all possible values of the index, unless 

otherwise indicated. 

More specialised conventions are described below. Q is the 

(possibly infinite) matrix of instantaneous transition rates. It is 

conservative. P is a probability transitlon matrix and as such is 

non-negativE and stochastic. w is the steady sta~e probability vectul-. A 

is a general non-symmetric matrix and Z is its inverse. L is a lm'ler 

tria,lgular matrix, U is an upper triangular matrix, and D is a diagonal 

matrix. 
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2 Literature Survey 

In this chapter we survey the 1 iterature concerning numerical 

methods for firding the steady state distributions of Markov chains and 

processes. for a process with a finite state space, this involves either 

of two classical problems of linear algebra, the calculation of 

eigenvectors or the solution of simultaneous linear equations. Various 

optimisations and computational ~:'1provements can be found because we 

h~ve additional knowledge about the structure of the matrices involved. 

2.1 Infinite State Spaces 

Various author C" have considered the probl em of approximating 

infinite matrices by their finite truncations. These develoiJTlents have 

i.early alv/ays been motiva~ed by our problem, name-Iy solution of Markov 

processes, but very little numerical evidence has been presented. 

Kemeny [28J consic;=,'s the problem of approximating the transition 

matrix for an infinite Markov chain. His approach is to find 

representations for P in terms of matrices C, D, end E~ SLCI, that 



and hence 
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C = C 1 

P = CDE 

t~any such representations are knovm ~'or finite dimensional P, but when 

infinite state spaces are involved more care is needed. For special 

structures of P, slowly spreading Markov chains, Kemeny shows that such 

a representation is possibl n and Dn is easily calculated. 

Jensen ~nd Kendall [26J consi der those systems 'v'Jith bounded 

gen€rator~, that is q .. > M for some constant M < 0 and for al~ i. This 
11 

includes many interesting sytei";,, but not all. For example, the M/M.'c:> 

system has qi, = -(1..+(;-1)\.1) when the states are Ilumbered 1,2, •• , and 

hence does not have a bounded generator. They recommend using a matrix 

squaring procedure on the matrix l+Qt \A,r!1er; the process is known to be 

aperiodic. They state that if the state space is ~nfi~~te then the 

matrix wi 11 have to be truncated, but they do not produce 2.:IY numerical 

evidence that they act~ally attemptpd to solve any processes. ~j a 

simple arguf!1ent, they shov: upper and lm'ler bounds for elements of (n)S, 

but do not discuss how thpse bounds relate to S (the infinite matrix). 

Using the Perron-Frobenius theorem for non-negative matr'ices Seneta 

[41,42,43J showed that by considering P, the transition probability 

r~il.tr;x for an infhite Markov -::hain (which is non-negative). the 

steady state probabiliti(~. wi' could be approximated ~sing the 

n X n truncation of I-P. Tweedie [49J extended this result by proving 

that th~ Sdme approximation was vali~ when Q was used in place of I-P. 
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He also showed that less restrictive conditions on Q were needed for his 

resul t. He al so developed another approximation formul a that converges 

to give el ements of the matrix S(<O), which correspond to states in 

different communicating classes of the ~:ate space. 

Seneta is the only author to have considered algorithmic and 

numerical aspects of the infinite case in any detail. Golub and Seneta 

[18J considl~l~ the special case of a system in which all the elements of 

one column of the matrix are greater than some co~:tant, which is itself 

strictly greater than zero. That implies that there is always one state 

of the system which is reachable in a single transition from all other 

states ;n the system. This is rather unreal-istic for many real 1 ife 

situat ions. 

Defining the row vector ~ by 

y _ = d (j) wh e re in f p _ - > d (j) > 0 
J i lJ 

= 0 otherwi se, 

they show that 

in the infinite case, and that the solution of the truncated set of 

equations 

(n)~((n)I-(n)P+ ~1'(n)~J = (n).Y 

( )
n- ~ TI- from below as n ~~. 

n 1 1 

By constructing certain <:pecial cases of P, they CUI' produce (lrt.Hrariiy 

slo" convergence to the true solution. Subsequently, in D<J] stochastic 

Iilatl'ices of a different form are investigated. It is shovm that if the 

trunc'ltions of P CRn be made stoclIClstir: in such a 'iJay that n-1 A the 
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equations 

(2.1 ) 

\'lhere (n)P* is the stochasticised version of (nl' are -identical to n-1 

of the first n of equations (1.5), then the solutions to (2.1), (n)'!" 

tend to 1f from above as n tends to ,~. As before, special cases of P can 

be constructed with arbitrarily slow converg~~ce. 

In a 1 ater report [l] ;>rbitrary stCi~hastic matrices are numerical iy 

investigated, comparing the approach of solving the eigenvector problffll 

implied by e~~ations (1.4) and the limits given by Seneta. Several 

algorith;,,:; are tested for each approach. To usc: the 1 imits gi':.::n by 

Seneta's \;ork they calculate u·pr1 using Gaussian elinrination, Jc,::obi. 

Gauss-Seidel, and SOR iteration methods and an lJnd5Ua1 lIon-stat-jonary 

iterative method due to Fr~ser et ale [16J. Of these methods they show 

that Gauss-Seidel is at least as good as Jacobi or SOR iteration. The 

non-stationary method, hOvlever, outperforms Gause -Seirlr:l (by s£vEral 

orders of magnitude i!1 some cases). Ne'Jerthe 1 css, tr.ey rccr_:rnend 

Gaussian elimination to find the limits given by Scneta. Takir~ the 

eigenvector approach of equations (1.4) they con5id~r hoth general 

eigenvector 0.1 gorithms, such as the pO\'Jer rneth,,:; > and (11 ~;o more 

specialised algorithms deve~oped expressly for non-n,~ative matrices, 

such as Yama:noto's [51] and that of Hal; and ?orsching [23J. Oesp~te 

their special i sed nature -:~f,ese al gorithms at''': ~;2siiy o~;L~::.:;'f:)j1i1Cci by 

lnverse iteration. The power method was not actually ~Jst(d since it is 

known to ha.ve poor convergence i., many c.y,c:s, Cumpa d flC) the-:,. tv;o 

recommended methods they fiild that inverse itel',:-::icn is, -i;i gerr!~'ul, 

fascer than Gaussi em el-imi nation, r>'iever thE: file-thod based on Seneta IS 
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results does give bounds on the accuracy of the estimates so they 

recommend a judicious use of both methods. Inverse iterat~on to discover 

the approximate order of truncation necessary, follo~~ed by Gaussian 

elimination to give upper and lower bo",:~,ds to the estimates. This work 

is a1so reported, perhaps more accessibly, in [2J. 

Their test matrices are all full and the truncations tested are of 

various orders ~35. In practice, when modelling real world syst2ms the 

transition rate matrices are very sPdrse, since tl'ansitions tend to on"iv 

be made to neighbouring states of which there are few, but the state 

spaces will be much larger. 

2.2 Finite State Spaces 

Turning now to finite state spacE: problffils, many authors have dealt 

with the calculation of the stationary distribution. Paige et. a1 [37J 

review eight al gorithms that have been used in the past. They recomm2~ld 

solvlng 

~(I + P +~I .~) - u 

vihere u is a rOvJ 'lector such that ~.~'fO. 

On the basis of nU"1erical1y testing 60 different stock:istic 

m;'"rices of orders 8,10, and 40, they suggest that the best choice for u 

is a row of P. Another good choice for ~ is a unit vector although this 

docs fl')t give such good computational results in practicc;, 
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Equation (1.1) has been used by several authors to find estimates 

for S(t). It is convenient to rearrange this formula for computation. If 

we define ~=-lfsup(qii) then 

S ( t) = ex p ( - tf e J ex p t (I +Q e) tf e } 

This rearrangement has t:le advantage that all th'e partial sums are of 

constant sign. Grassmann [20J has used this approach to find transient 

probabilities for queueing netltJorks. He only considers finite state 

space problems and r:pproximates steady state by allowing t~"", stopping 

when successive estimates ay'e close enough. Kerridge [29J has also 

worked with a slightly different rearrangement of (1.1), and gives some 

examples of applying his approach to problems with a small, ~inite state 

space. 

Hallace [50J was the first to use nurnerical techni~l..:e for solving 

• real' qC<=L.eing systems. The method used was ess~ntiall'y the povier 

met.hod, although Jacobi iteration \Alas also available, and as such 

convergence was proportional to the sub dominant eigenval ue. A very 

efficient sparse matrix code enabled them to perfonn multi::-:ications in 

o(non-zeroes) multiplications. The Recursive QueL.~ Analyser (RQA) as the 

system was called, has been successfully used on many problems up to 

5000 states in size. This is almost 100 times the number of states that 

any other author has reported solving, \-:ith any method. A late!' 

paper [25J describes the j~e of the RQA in an integrate~ package for 

designing computer systems. 

Stell/art, in his thesis [44J ciemonstrc;tes the d'iff~cuities of 

app;ying the power method to decc~dPosable or ncarly-decomposvbh 
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systems. In these cases the sUb-dominant eigenvalue is close to 1 and 

convergence will be very slow. He develops a simultaneous iteration 

technique which converges on the m dominant eigenvalues and the 

corresponding eigenvectors simultaneousij. Its rate of convergence is 

governpd by the ratio of the first and the m+lst eigenvalue. In J later 

survey [46J, he compares various iterative methods with his simul tan20US 

iteration JT'ethod. When one has no estimate for ]!., the favoured <:'PPl"oach 

is to sol ve 

nP = X 

"'-0r arbitrary lS.. Now P is singular, so Gaussian elimination \-Iill fan 

\'men a zero pi II ot "I s encowlltered. However if thi s zero pivot is repl aced 

by machine epsilon and the calculation continued, the solut"ion '.Iecter, 

while being a very inaccL'rate solution to the equations.is ~uch that the 

errors in each elen'''nt are of the same order and it is ~ vel'y good 

approximation to.!.. If solutions ~re required to a close1y re~at~d 

~ystem. then this solutiu;, can be used as a first approxi;i1-:-,tion, ;;;nci 

simul tlineOllS iteration used to find the sol ution of the ;-]ei; system. In 

another paper, Stewart ~47] presents a spec ia 1 purpose "lethod very 

similar to ro~-Gaussian elimination on the matrix Q', sclv~~g the 

homogenous equations Q'~I=Q:, with the last equation re0aced by th2 

PJnnal"ising condition. 

Gaver and Humfel d [17] have used lI1odH"jed forms of Gduss··Seidel 

iteration to solve the baiancc eo'~ati(H1S (1.4). lhey SU99cst perforrnirlfj 

an it~ration of the Gauss-Seidel methcd, and ~hcn replacing ITl 0y l-~~i 
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or 0, whichever is larger. The idea is to preserve the sum of the 

probabilities as 1. They also claim to have a proof that ordinary 

Gauss-Seidel iteration will converge, although the balance equations are 

singular. The 'solution ' arrive~ at by tnis means will not, other than 

by ch&:--.ce, satisfy the normal isation condition on probabil ity 

distributions, :!hich has to be imposed by normal isation. 

Brand~.,ajn [6J has developed two -jterative methods for soht-jng 

t~arkov processes tP(lt arise from multi-dimensional state space problems. 

The first method is based on the equivalence and decompostion method for 

solving queueing networks. A prc~abalisticall.Y equivalent network is 

o~fined and solved analytically. The ~esulting solution is used in an 

iterative procedur~ to f"ind the solution to the original problem. 

Unfortunately, the convergence of this rnetl,od is not guaranteed. 

However, if it does converge the method works better the more nearly 

completely the syste.ll is decomposable. This is in ccntrast to rnost 

methods which have great dif-I-~cul ty in solv-ing nearly compl etely 

decOfTl~osab 1 e systems. The rate 0'; convergence depends heav; 1 y on 

achieving the correct decomposition into the equivalent system. If the 

system is decomposed \'.Jith respect to the I\Jrongli varia.bl e, then 

convergence can be exttdTlely slow, if attained. His second meth:;d is a 

much more local attack on the bao! ance equations (1.4). By careful dlOice 

of the relaxation factor, the invariance of i:1Ti is preserved betvieen 

iterations of an under-itlaxed Gauss-Seidel method. The convergence of 

thl~ method can also be proved. 

:...::at. and Raju [4J have stud;"j the effects of trullcat~or: C) finite 
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state space Markov processes. ~vorking from propert~es of the first 

passage time they develop a procedure for estimating a suitable size of 

truncation, in advance, which will give good estimates of the first 

passage tlme for a state. Unfortunately their procedure will not 

gc~eralise to infinite state spaces for several reasons. The key r2sult 

that is used to calculate first passage times only holds for finite 

state Markov processes. Even allowing for this the method depends on a 

particul ar restrict-ion on the st.ructure of P, \'/hich whil e it hol ds for 

si ngl e q"~ue system~;. \'/oul d impose a very ::.trange state numberi ng on 

other systems. 

Mi-,,;'ani and Hine [35J ;,ave used a nove"' generating function 

approach to provide approximations for a general two dirr;ensional 

birth-death process. They assume that the transition rates out of state 

i ,j are -i nd.:~endent of j, for j>J. The; r method proceeds as foll O\'/s. 

Assume th~+ wij=O for all ;>1. This gives us a set of 1+1 equations 

which relate the Ul generating func~:ions Gi(z). These can be sOlved 

syr,lLol ically, and th2 T; _ eval uated. The process is then repeated for 
lJ 

larger values of I, until the probabilities stop changing. The pr~cess 

normally cOii'/erg€::; 'ictJ fJ.st. 
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3 Algorithms 

After careful consideration of the 1 iterature, it was decided that 

3 methods for calculat-ing the steady state probability distribution were 

both general enough in the class of problems to which the.! applied, ana 

offered p~ough advantages over similar methods to warrant further 

invest igo.ti on. 

T\'/c2die's results [49J dre the only theoretical approaches wh;rh 

are directly related to the infinite state space case. lhey give bounds 

on the ratios of el ements of the steady state probabil ity vector lIsing 

cofactors of ~l ements of the finite truncations of Q, the instantaneous 

transitior rate matrix. 

Iterative methods start I>/ith an estimate for.!. and successively 

impiove on the estimate. We shall consider Stewart's simultaneous 

iteration method for cal cul ating eigenvectors aprl i 2.] to the equation 

'ITP = 'IT. Since \1':: are only interested in the dominant eigenvector of P, 

von-Mi ses pOI>!er method caul d be used, but it is known to have poor 

convergence properties in many cases. 

The other iterat-ive !ll.:tho~ that we shall examine is Bralldlvajn's 

method. It is an attempt to solve the global balance equatiorls (1.4), 

\,'hich are homogenous, by (; novel relaxation method, ThE ~'e1axation 

f~~+~r is different for each equa~ion and ensures that the invar~alce of 
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En; is preserved between iterations. 

We shall now discuss the algorithms 1n more detail, with particular 

attent i on to the problems of thei r impl ementat; on on n computer. The 

cCi,iputational requirements of each al gorithm in tenns of both space and 

time are compared. The f:,lal section attempts to analyse the p2rfonllance 

of two of the al gorithms when appl ied to the M/M/1 system. 

3.1 Tweedie's Method 

R.L. Tweedie has extended Seneta's work [41,42,43J on finite 

truncatiuns of an infinite matrix in [48J. Many of the :estr::tions on 

the structure of the matrix, that Seneta found nt;cessary, are 1 i fted. J\ 

later extensi0n [49J, applies specifically to Markov pr0r~sses and is 

the theore~:cal basis for our direct method of estim:ting 2' Given Q, he 

sholtiS that 

cof( i ,j ) Tf, cof( i ,1) 
--t-' .1.--
cof(j,j) TI

j 
cof(j,i) 

(3.1 ) 

as n -7 CD, where cof(i ,j) is the cofactor of the'; ,j entr'j' iii the l1><n 

north west corner truncation of Q. These approximations form bou~ds D~ 

the poss'ible val ues of 2!" and are val in villen i .:md ,~ ~21oil~1 to th2 '.;2,;;:2 

essential class af states. The obvious way to ut~lise these results is 

to calculo.tc: Uie cO'fc.ctors )f the elemen"i:s of a sir.gle rf)'J ard co1U::1:1 of 

Q, say the first, and of the diagonal elQi!~(,i(c~;. From UP:;',2 v;:;lues, the 

ratios of the pl~obabi1 Hies cf various states tn the probabn H," of 

sta"...t:: 1 car, be foc:nrl wi th both upper arid 1 CJ",';c~r buunds. Seneta prev"d U<~ 
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same results for the cofactors of the truncations of I-P, which is a 

first approximation to -Q. Tweedie also presents an approximation which 

converges to the ratio between elements of 5(00). Hhen cast in terms of 

~, this approximation is 

cof(i,j)cof(j,i) 

cof(jj)2 

1[ • 
, 1 

"7 -

11" • 
J 

(3.2) 

This estim2.~e converges under less severe restrictions than the bounds, 

but since we will have only one essential class, this freedom \,/i11 be of 

no account. All states that we are interested in vflll belong to the only 

essential class. 

Although the theory develops the~~ approximations in teYi11s of 

cofactors of (n)Q, ~~is is not a practical way to calculate them. 

Cofactors of el ements of rKn matrices are 1-he determinants of n-1Xn-l 

matrices, and calculation of a deten11-inapt is as costly as solving 

simultaneous 1 inear ~quations of t.he same order. However, COfClcto,--s ar2 

intimately related to inverse ~.latrices. In fact, Zi/cOf(j,i)/D, 'l'lhere D 

is the detenninant of the matrix :..nd z .. ;s the i ,j e1El"nen'. of the 
lJ 

-invet'se. Thus the ratio of cofactors of a matrix is (~q~!al to the ratio 

of corresponding elements of the t.ranspose of the matrix's inverse. 

Instead of calcul ating :01 cofactors of an ri><n matrix, VIe need to find 3n 

elements of the invel'se matrix (3n-2 actually. since the d-iagonal 

element ;,i is in ro\'J i o_nd column i too). 

Although the result: hold for any ~larkov process, for the r,,'oc~sses 

tha~ we are interested in, the matrix, Q, wi~l be sparse; that is most 

of its '~ntries are zero. Typical: v from any st.Cite the system ~'l;; 1 '::n1 y 
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be able to make transitions into a small number of other states. For 

example, in the MIMII system, the Q matrix is tridiagonal. Transitions 

are made from state i to state i+l, representing an arrival, and to 

state i-I, representing a departure from the system. The diagonal of the 

m~crix is also non-zero ~ince the system is conservative. 

We shall only consider direct methods for finding the inverse of Q. 

Al though iterative methods such as the Gauss-Seidel method are common 

for spar 52 matt'ices, we do not use them here. The convergence of such 

methods is guaranteed for the matrices in which we are interested by the 

diagonal dominance of Q, but the inversion of a matrix in this manner is 

equivalent to solving n sets of linear equations. Solution o~ one ~et of 

such equations by an iterative method is of no assista~ce as far as 

solving the same equations with a different right hand ,:';de. Also the 

convergence \'/oul d probably be very slow for reasons discussed in the 

section ali Ste.\'/art I s method. The conjugate gradient method of sol ving 

linear equations has been gaining in popularity recently, but it is also 

itrrative in nature, and has the added disadvantage of dealing with 

symmetric matrices only. It can be modified to deal with ut,syrnmetric 

matrices, at the expense of doubling the number of operations per 

iteration and the condition number of the matrix, but the equivalence of 

inversion to solving n set.s of linear equations remains. Theory predicts 

that vtith exact arithmetic the conjugat.e gradient method \llil, convel'ge 

in exactly n iterations, and its utility for sparse matrices depends on 

its convergence to an acceptable approximation in considerably less than 

n iter'ations. In practice, \,:hen applied to this problem approxima.tely 2n 

ite~ ations were used for each equ:tion. 
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Sparse matrix codes attempt to take advantage of the zero and 

non-zero elements in the matrix such that operations on such matrices 

involve the non-zero entries only. Although a special purpose sparse 

matrix codp could have been written, which could have taken account of 

th~ known structure of Q, a general purpose set of sparse matrix 

handling routines was used for this work [10J. Special purpose routines 

have been used by Stewart [47] tc sollfc the global balance 

equations (1.4), with the last equation replaced by the normalising 

conditior.. The routin,::!s ahtays used the diagonal element as pivot. 

Al though the d i agona-I dOill; nance of Q ensures accuracy, thi s wi 11 give 

rise to excessive fill-in, that is zero elements becoming non-zeY'o. ~rom 

our poine of vie\ll, the main drawback to writing specia 1 purpc.>e code to 

mani pula te sparse vers; ons of Q is that we have very 1 ittl e knOl':'t edge of 

its structure, other than that it is sparse. Different sy~tems give rise 

to Q matrLL's wi th radically different patterns and si zes of nOli-;:ero 

element. The choice of representation for the system will also affect 

~he positioning of the non-zero elements in Q. 

The routines used in this work are widely available ane perfonn the 

operation of solving the equations 

Ax' = b ' (3 '" • ,J I 

This they do by fonning the L/G factorisation of ft., and providing 

routines which will operate on vectors using this factorisatior 1f A. L 

is a lov/er triangula\~ matrix \,Iith un-it elements on the diagonal c U is 
-J 

Uppt:. triangui or. The j-outines eeL (;pf~ratf on vectoi'~o using ,II.) A-
o

-,- ° a!1oJ 
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their transposes. As is common with sparse matrix codes, the routines 

choose pivots for their factorisation based not only on the size of the 

e"lelilents which remain to be eliminated, but also on the number of zero 

elements which \,lil1 become non-zero if a particular element ;s chosen. 

The e1prnent \'Ihich causes the minimum fill-in \'dl1 be cnosen as p"ivot, 

subject to the ~dditional constraint that it must not be less than some 

user suppl ied sparsity factor times the 1 argest remaining el ernent in 

that particular row or column. Altering the value of this parameter does 

not affect the accuracy or sparsity of the result 1119 form of the inverse 

much. If no aCCouflt is taken of size when pivots are chosen, but llnly of 

the arncu.1t of fill-in they will :::lUse. an inaccurate solt:+";on may 

l~sult. The accuracy of the decomposition can be monitored using a 

standard techn-iqde LIDJ. Odce again only if no account ;s taken of size 

when choosing pivots does this perturbation factor become large. 

To calculate the various bounds ana approximations given by T\'Ieedic 

\,,:e need, assuming that the rat ios with the fi rst state vii 11 be l!sed, the 

first row, the first column and "tr.e diagonal of the invcrsr:.. The first 

,ow and column are easily computed, but to find the diagonal by 

conventional means requires calculating the complete inverse matrix 

(albeit row by row). Th~s can be an expensive business. However, Erisman 

and Ti nnC!y have presGnted an al gorithm [14J v:hich ~.'i 11 cal eu1 at2 a 

sub set of ths 21 ements of Lh2 "i nverse of asp.:; r se mat ri;;. T:l~ ss ~ h:d~ilts 

thi't cOI'i'2s;JJi;(1 to ncn-Z2:-0 e 1 Gloents in the transpose of the L /U 

far~-irisation of the original matrix, \t{h~ch t!":2 diagonal e"\qnents of J\ 

non-v>'"'.) 21 ements \'lhic!1 become zero ,;;s a resul t of '(he fac.tor"isc1tiol1 
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remain stored as if they were non-zero; that i~, their values become 

zero but they remain as elements in the representation of the matrix. 

All sparse matrix routines known to us operate in this way. Anyelanent 

of the inverse which corresponds to a non-zero element in the transpu~e 

of the L/U factorisation can be cal-ulated. Again considerin0 the matrix 

A, and denoting its inverse by Z, \'I'e factori se A into LOU, where Lis 

unit lower triangular, U is unit upper tria~gular, and 0 is a diagonal 

matrix. This factorisation is easily co~structed from the previous one, 

by dividing 2lements of U by the diagonal elements. It is easily see" 

that 

Z = 0-lL-1 + (I - U)Z 

z = U-10-1 + Z(I .. L) 

(3.4) 

(3.5) 

Note that (I - U) and (1 - L) are strictly uopel' and lower triangular, 

respectively, and have a ~ero diagonal. 0-1 is easily calculated and i~ 

also diagonal. U-1 and L- I are upper and lov/er triangular, respectivply. 

and have unit diagonals. Thus we use (3.4) to c?lcu12~e clements of l 

above the diagonal 

n 
z." = - L u"kzk" 
lJ k=i+ll J 

and (3.5) for elements b~lo\t! the diagonal. 

1 
, -l. 
L 

n 
z·· :": - 2: z'k\" 
lJ k=j+l' 'J 

are not requ·;--c::i. Elements on the diagonal 

cal cul ated from either 

n 
z·· = lid .. - ~ U' I ~k' 

11 11 1._. 'U'l! t( ,1 
r,'- I t 

(3.6) 

(3.7) 

of Z Cj~ be 

(3.2) 
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or 

n 
zi; = l/d i ,' - L z'klk' 

k=i+l' , (3.9) 

Normally \':e choose whichever formul a i nvol ves fewer non-zero el ements. 

Although the formulae involve Z, it ran be shown that any element of Z, 

Zij (say), which corresponds to a non-zero in (LOU)', CClt! be calculated 

frrm the formulae, since the calculation involves only other elements of 

Z, Zst (say), in the same subset and such that s~i and t~j. Knowing that 

\'/e need the ciiagonal of Z, l'Je can find from (3.8) or (3.9) which 

off··diagonal elements of Z are needed. Only those that \'1111 be 

multiplied by non-zero elements of U :;\~ L need be calculated. T:lesE 

ele!ilents of Z may in thei~ turr. require other elements. Eventually, we 

can find the complete set of elements that arc:: net:ded al,-l calculate 

them, starting with znn and working backwards. 

It is interesting to note that this algorithm givpc: us 3 methods 

for calculating an element of the inverse's diagonal. (1) a: an element 

of a ro\'/; (2) as an element of a column; and (3) using the 

Erisman/Tinney algorithm. Both (1) and (2) are provided by the sparse 

matrix routines. Te~~s of the Erisman/linney algorithm indicate that, 

although a rigorous error anrlysis is difficult, the v:lue that it 

calcul ates for a diagonal element seldom differs from the val ues 

generated by (1) or (2) by any more than methods (1) and (2) already 

d: ffer from each other. Comparison of the speeds of the tHO methods for 

calculati!1 3 the dir.gonal of the in"p.rse indicate that for the vast 

majority of cases the Erisman/Tinney algorithm is much faster. The naive 

methc(1 of calculating each rovJ or COturm individually is only better in 
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those cases where the sparse factor; sation of Q has a 1 arge number of 

non-zeroes in each row or col umn. Duff and Reid [13J have observed thi s 

phenomenon and attribute it to the method used to store the sparse 

representat~on of the matrix. Other representations of the matrix might 

well avoid this problem. For example, Duff [12J has ~ffitten a set of 

sparse matrix routines whi ch outperform those used in thi s \'Iork by a 

factor of 3 for typical test data, but they were not dvaiJable at the 

time that this work was carried out. AnotheV' direct method, the AQ 

algorithm, has recently been developed by Borland [5J for solving linear 

equations. This method factors the [T1;~trix A into A=LQ, where L is a 

lower triangular matrix as b2~ore, and Q is an orthogonal matrix. 

Solutions to Axl=b l are then found using 

1.. 1 = L-1b l 

Xl = Qlyl 

(3.10 ) 

(3.11) 

(ReC<lll that Q-1=QI for an orthogonal matrix.) Borland cla.ims that ther2 

are great savings to be made using this algorithm, s'ince advantage can 

be taken of sparsity in b as \\Ie'll as in A. Q is Vl rj sparse Vlhen iJ2 ure 

finding the inverse, since it \vili be the unit vecto!'. Another advantage 

is that the LQ factorisation often has fewer non-zc:ro elements than the 

LU factorisation of the same matrix. (Note that the L matrices are not 

the same in these factorisa-':'.ons.) Unfortunately, ~h€ methud has only 

recently been published and in the absence of tried and tested 

subrout '; nes to perform it. there: :':as not tini2 to;; r.o any tests \\fith the 

a 1 goY'ithm. 
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Theory predicts that all elements of Q-1 \'Ii11 be of the same sign, 

since their ratios approximate the ratios of probabilities, which are 

all non-negative. In numerical practice this is not alwcYs the casco For 

example, the Q matrix corresponding to the M/M/l system with arrival 

rate 0.1 and service rate 1 is tridiagonal. Its inverse is e~~ily 

calculated, and is positive. The sparse matrix routines, however, give a 

nejative estimate \'1hen the truncatio,n is 1 arger than 20 states. If the 

truncated matrix is inverted by a standard subroutine; taking no account 

of its sparsity. it is reported to be singular. 

To allow for these difficulties. a fairly generous policy is 

followed to give an estimate for 1T i • If either, or both. of the 

estimates given by the less severe approximations (3.2' falls within the 

interval defined by the upper and lov/er bound;; (3.1), then it, or their 

mean, is used for 1T i . If the less severe approximations lie outside the 

interval given by the bounds, then the mid-point of the interval is 

used. If the upper bound, or the lower, is negatlve~ the r~3itive one is 

used. If all the approximations are negative, then zer~ ~s us~a 2S ~n 

estimate. 

3.2 Stevlart l s M~thod 

StewaTt has developeJ a simultaneous Herat ion :Tlfthod for Ti nd j roC; 

partial eigensolutions c~ matrices. The method ca1c~lates the subset of 

the eigenvEctors corresponding lO the dominant subset of eigC:llval ues. 

Both right-hand and 1 eft-hand eigenvector's are found: but in [,u,' coS(? > 
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He shall only need the dominant left eigenvector of P, the jump chain 

matrix of the process. A variant of the algorithm, lopsided simultaneous 

iteration, converges to either the left-hand or the right-hand 

eigenvectors. 

When using this methcj, or the power method, we need to construct 

P, the jump chain matrix, from Q. Clearly, P = l+QlIt gives the 

probability that a transition will be made between states i and j in the 

time interval (t,t+lIt), given that vIe are ir. state i at tin,~ t. Since 

the system is I''iarkovian, and thus memoryless, the only restriction that 

he need to place on lit being that P ::.ust be stochastic. If P is 

stocnasti~, then e', the colwnn vector with each entry 1, is a right 

ei genvector and 11 is a 1 eft ei genvector. Recall i n9 that _~~ = Q., the 

factor lit will not affect the eigenvector provided that P remains 

stochastic. 

Let R denote the absolute value of the maximum modulus diagonal 

el ement of Q. S1 nce Q is constructed to have zero row sums and all 

off-uiagonals are non-negative, the diagonal must be negativ p • If 

. , 
1:.,12 

a ( lit (= I/R then the row sums of P will be 1, ar~ the elements of P 

\'Iill be non-negative, \~h'ich is the definition of a stochastic matrix. By 

Gerschgorin's theorem, no eigenvalue of P can be greater than 1, which 

is trivially an eigenvalue. If lit < I/R then all the eigenvalu~s of unit 

mOdulus must be equal to 1, since the eigenvalues are cor~linr1 in the 

union of th2 circles, centre Pii' radius I-Pii' in the (\.mplex plane. 

The circumferences of these circles all meet at the point 1 on th!~ real 

axis. If !..t = l/R then the unit circie cent.red c;t the.: urig'in cljj11;oins 
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all the eigenvalues, but there can no\'I' be complex eigenvalues of unit 

modulus. In the presence of m~tiple eigenvalues of the same mod~us the 

powey· method converges to a vector which is a 1 inear cOl:1bination of the 

corresponding eigenvectors. Stewart's method [27J v'I'i11 converge 

correctly even in the presence of several equal modulus eigenvalues, 

although we must use more eigenvector estimates than the matrix has 

eq~al modulus eigenvalues. It is also important to choose n as the 

eigenvector corresponding to 1, and not to some complex eigenvalue. If 

the matrix P is irreducible, then the unit modulus eigenvalue will oe 

unic;:.:e. Normally our processes will give rise to an irreducible P, but 

not always. Seneta [43J proves that ~atrices corresponding to ~rocesses 

with a single essential ~lass sf states, have a unique unit eigenvalue 

and corresponding (left) eigenvector 'IT. We ~,:,ln alway~ construct Q for 

our processes, such that there is only a single essential class of 

states. Thus convergence of the power method must be to the €iyenval Lle 

1, and the eig~nvector ~, at a rate which depend~ on the ratio of the 

domi nant ei genval ue (1) to the subdomi nant ei genval ue. Ste\,iart! s method 

will also converge and its r~te of convergence depend~ on the ratio of 

the dominant eigerr:al ue to the maximum modul us eigenval ue \'Jhose 

corresponding eigenvector ;s not being found. 

The choice of 6t should be made so that the rate of convergence to 

the dominant eigenvalue is as fast as possible. H2nace [50J recomrnends 

th~t bt should be chosen as large as possible, and si~cr he was using 

the power method, used ilt = O.99/R. l.Jhen using Stevlart j s method, 'v'le can 

choose t.t - l/R, and still converge on the correct ei genvector. 

Nur.12r~cai exper-iments iIi th an W~1/1 ~ystem ind-;cate that a Sillc 11 lit ',Ii 1 i 
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tend to cluster the eigenvalues close to 1. For example, when the 

arrival rate was 0.8, the service rate 1, and At = 0.1/1.8, then the 

eigenvalues all fell in the range (0.8,1.0). When At increased, so did 

the interval containing the eigenvalues. In this case the eigenvalues 

were Iclatively evenly distributed along the interval, but M/M/1 is very 

well behaved anyway. 

Stewartls method consists of choosin] a set of estimates, U, for 

the rn domi nant ei gClivectors of the mat;'ix, A (say): for which we wi sh tc 

find the eigensolution. We shall consider right eigenvectors here, but 

there is no loss of generality, since to find left eigenvectors we apply 

the sarrl!' algorithm to AI. The first culumn of U is our estimate for the 

dominant eigenvector, the second column for the sub-dominant 

eigenvector, arl'~ so on. He then perform the follo\'ling operations until 

the estimates of the eigenvectors converge. 

V AU 

G = U"U 

H = Uly 

GB = H 

E = Eigenvectors of B. 

w = VE 

Norma-! "j se Wand test for convergence. 

U =. W 

(1) 

(2 ) 

(3 ) 

(4 ) 

( r::. ) 
\ .... 

(6 ) 

(7) 

(8) 
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B is a matrix VJhich abstracts the relationship between the 

eigenvectors, and it is called the interaction matrix. If this 

interaction analysis is not performed, then the columns of U would all 

converge on the dominant eigenvector! Stev/art has identified various 

problems which can occur with this simultaneous iteration method. He has 

also developed several optimisations of the qeneral algorithm stated 

above. First, the initial estimate of n might be orthogonal to~. in 

th-j s case, convergence wou-, a not be to 2£., but to some other ei genvector. 

This is extremely unlikely, and has never been observed, but can be 

overcome by replacing the trial eigenvector corresponding to the least 

significant cigenval ue by a random v.:.-::tcr at each iteration. r, is 

symmetric and positive-rcfinh::., by construction, so that the equation 

solution implied by step (4) can be accuratf.iy perfom::J I'/ithout 

pivoting, using Choleskils algorithm. Occasionally, the interaction 

matrix, B, is defective. This can happen because A hac; a defective set 

of dom-inant eigenvectors, or by chance in the CC11tse of the iterations. 

If B is defective, then the eigenvector estimates in E will be almost 

parallel, and in the followir.s iteration the equation :;olution at 

step (4) rn(1Y faiL In this c:ase, one can either omit the interaction 

analysis for that iteration, or follow Stewart1s sug;~sted solution, 

which is to modify G by adding machine epsilon to the diagonal and 

re-sol'.Je step (4). Another improvement is to perform severdl I power I 

type iterations for each ilterJction analysis. This involves replacing 

step (1) v/Hh V=A"U , wf'f're n is the number of • pOi-Jeri type iterations 

to perform. The optimum number <"~,l be ca-Iculated frcm the rate at \'Ihich 

the trial eigenvectors are changin9. The calculation of the complete set 
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of eigenvectors of the interaction matrix, B, can be carried out by any 

method. We use the QR algorithm. It is important that the eigenvectors 

of B are stored in E ordered according to the magnitude of the 

corresponding eigenvalues of B. That is, the first column of E should 

cc~tain the dominant eig 0 nvector of B, and so on. Precautions mus~ also 

be taken to ensure consistent ordering of these eigenvalues from one 

iteration to the next. For examp'e, if the eigenvalues of B contain 5 

and the conjugate pair 3±4i , they must always be sorted such that 5>3±4i 

or' 3±4i<S consistently. In fact, for our purposes, we must ensu're that 

we sort 1 as the 1 argest eigenval UP, and any unit modul us compl ex 

eigenval ues as subdominant. The eigenvalues of B are the best 

approxil~,cition available to the eigenvalues of A. 

3.3 Branr";:aj n I s Method 

This method is an iterative procedure for solving the global 

ba1dnce equations (1.4). It is specifically designed for solving Markov 

processes, since it features an unusual relaxation step de3i~ned La 

maintain the invariance of In~ from on~ iteratio~ to the next. The , 
method is generalised from one presented in [6J. The paper presents 

another method also, based on the equivalence and decomposition approactl 

to solving queueing networks, which uses the concepts of conditional 

probabil it,)' < J\lthough the 1I1eth.·d \"e use ccmpares unfnvourabl y \,/ith the 

other developed in that paper, this method is always cnnvergent. and 

does not depend on the ordering of states. 
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As with Stevlart's method we choose a fi rst approximation to .!. and 

denote it by 2!..(O). 2!..(t) denotes the estimate of 2!.. after t iterations. 

For eac hi, from 1 to n, ill that order, we perform the fo 11 ovl; ng 

calculation. 

1T . ( t+ 1 ) 
1 

i-I 
= Ln. (t) (l-m: q .. ) 

1 j=1 1J 
i-I n 

+ Q (E n. ( t+ 1 ) q .. 
j=1 J 1J 

+ E n.{t)q .. ) ] 
j=i+l J 1J 

n 
~ [ 1 + QE q., ] 

j="i+ 1 1
" 

(3 .12) 

Q is an arbitrary constant. If Q is positive and ~~ < l/mux Eq.. ',hen ~.'f: 
lJ 

can easily see that no n .(t+l) w;~l be negative, asswning ~hat all n:(t) 
1 J 

h~re nOll-negative. 

To show the invariance of En., rearrange the equations (3.12) to 
1 

give 

n . (t+ 1 ) 
1 

n 
n . (t+ 1 ) L q ~ . ) 

1 ·-·+I'J J-·l 
n (3.13) 

+ L: ;r.(t)q;.) 
·_·+1J ,J J-l J. 

When vie sum all these equations together the terms \'leighted by ~2 2dd tc 

give zero, thus 

n n 
E 'iT. ( t+ 1) = E Ti". ( t) 

i=1 1 i=1 1 
(3.14) 

O"fining di(t) = n i (t)-1T i (t-IL we clearly have Edi(t) = J, f,JI' all t. 

By l~eart'an9ing (3.13) sul':racting to give di(t+l) in terms of di(t), vie 

can -,no\': that 
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n n 
L Id.(t+l)1 < L Id,.(t)1 

. l' . 1 1= 1= 
(3.15) 

",'hich proves that the method converges. 

Attempting to analyse the rate of convergence of the method is 

difficult. Although superficially it is akin to successive over 

relaxation, the relaxation factor is different for each of the 

equations. 

3.4 Analysis of Algorithms 

AttCf,lpt.i n9 to analyse the performance of the al gorithms ::. priori, 

rather than experimentally, is difficult. The efficiency of the direct 

method based :n the ratios of cofactors of the trUllcatioii will depend 

heavily on the size and pattern of the non-zero [!lements. The iterative 

algorithms of Stewart and Brandwajn \'Jill not be affected by the sparsity 

or otherwise of Q, but the proximity of the first estimate for ~ to the 

finai solution will criticall~ affect the number of iterations taken. 

For the purpose of analysing the algorithms, we shall assume that 

the system being modelled has been truncated at state n, giving rise to 

a Q matrix containing x non-zero elements. Note that the diagonal 

elements ",il1 Zlli:ays be non··zero. Also note that x \,li11 be of order n, 

ratheY' thi:!:": of order n2 • ~j~,r;n 'Asing Ste\\fart l s al gorithm, we CSSllme that 

m eigenval ues and corresponding eigenvectors are being ':ound. For the 

iterative methods, we only give a measure of the number of opel~tions 

per -;teratio:l. 
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In terms of space utilisation, all the algorithms require some 

representation of Q. The representation we use is that expected by our 

sparse matrix handling subroutines. The non-zero elements are stored in 

an array in column order, and in row order within each column. A 

corresponding array holds the row illliex of the elements, and 0: smaller 

array holds the 'iiid~x of the first element in each column, This requires 

x ~ocations to store real numbers and x+n+l locations to store integers. 

Although designed to be US(~ by th~ Gaussian eliminJtion routines, this 

representation is as good as any other for Stewa,t's or Brandwajn's 

meth0~s, both of which basically require the ability to post-multiply a 

vector by the sparse matrix. We shall compare the different alqorithms 

vis-a-vis their extra sp?ce refl'jirement and the number of floating point 

operations, both additions and muHiplicatior''', H1at they involve. ~!e 

shall also assume the use of 2n locations to store the latest estimate 

for.!!.. and the previous estimate. 

The direct method of inversion of Q uses an unpredicL~~le amount of 

extra space and of time. The pattern of the non-zero e~ements a~d; to a 

lesser extent, their size affpr;ts L;le performance dramatically. Although 

our Q Illatrices are ,car from random, either in size or position of the 

non-zeroes, the only practisal approach to analysing the algorithm must 

assume that they are random matrices, in ',,,hich all off-diagonal el eInents 

have equal probabil ity of c,eir,g non-zero. This .probabil ity is 

~ndependent of the presence o~ Rbsenc~ of other non-zero elements in the 

same rov" or column, As vias pointf'd out prev~ousl.Y, we do not know enough 

about the general c~se to m~ke any ether assumptions. Also, although the 

sub~outines choo5e the pivots to ~c)orise Q depending not onl} on their 
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size but also to minimise the number of zeroes that become non-zero, the 

only practical analysis assumes that the diagonal elements are chosen as 

pivots. Thus the analysis should give an upper bound on the space used 

by the method. 

lnis analysis of sparse Gaussian elimination was developed by 

Duff [IIJ and is extended here to encompass the Erisman/Tinney 

algorithm. We assume that all the diagont,l elements are non-zero and 

that all the off-diagona1 elements ha~c equal prohability, p, of being 

non-zero. In our case p = (x-n)/n(n-l) • As the elimination proceeds, we 

are working on smaller and smaller matrices, in which the probaL;lity of 

the elc:nents being non-zero becomes larger. After i variaDles have been 

eliminated vie are considering a matrix of size (n-i)X(n-i)~ and we 

denote the prooJbility that an off-diagor.al element of such a matrix is 

non-zero by PHI" Thus Pl=p=(x-n)in(n-l) • The obvious first approach to 

the problem of, fhiding p; for i=2, ••• ,fl,l , argues as follol-IS. An 

element vlill be non-zero at :,~age i if it was non-zero at ~tage i-I, 

(probability Pi-I)' or i~ it was zero at that stage (probability l-Pi_l) 

and tile el ements at the head of its row and col i.Iii1n were both non·-zero 

(probability p~ 1 ). Hence we have 
1-

2 
p. = p. 1 + (1- p" 1) p, " 

1 1- 1-1 1- ... 
(3.16) 

Duff shows that ttl; sis an upper bound, even for the ca:::.c or cti (,gonal 

pi voti n9, and proves that t.he correct forrnul ae are given by 

(3.17) 
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where 

k-l (k-l) -(k -) 
hk = 1 - L (j-l)h

J
-(I- P1),1 -J 

j=1 
(3.18) 

In either case, or if some better estimate of p_ could be 
1 

calculated using some knowledge of the structure of Q, or of the pivotal 

strategy involved, the values of p_ give the probabilities of a non-zero 
1 

element in ro\'! i of U or in column i of L, after factorisation. Thus tl'P 

expected number of nCi~-zeroes in row i of U or column i of L is(n-i)p-
1 

and the total number of non-zero eOI ernents i J1 the factori sed fom of Q is 

n-l 
n + 2 L (n- i ) P -

i=1 1 
(~.19) 

The number of operations performed on each el ement will givp a 

measure of the time that the al gorithm wi 11 take. The e1 PrJ1ents of the 

ot'iginal matrix can be divided into two classes as far as the rlUrnbH of 

operations on them are concerned. The elements on the diagonal v,'i11 be 

opented on each time the elements at the ends of its row and column are 

non-zero, which occurs at staye i with probability pf • Thus the 

expected number of operations on the element in t:,-= i ,i position is 

LP~ • For off-di agonal el ements Duff 5ho\'-I5 that the expected number of 

operations on an element in the i,j position is given by 

minti,j -l} 

k!2(Pk- Pk-l)/(1-Pk-l) 

This counts the number of operations, in fact they are "1ddit°lons, 

(3.20) 

performed .2.!!. these elements. Each operation or. an element conS-I~:S of 

multiplying two other (non-zero) ele;n2nts together, and adding thp 
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result to the element being operated on. }~nce, the expected total 

number of additions to factorise the matrix is 

n-l i-I i 
E f L p~ + 2(n-i

k
)=L

2
(Pk- Pk-l)/(J- Pk-l)} 

i=2 k=1 
(3.21) 

and a ::.imilar number of multipl ications are perfonned. Note that th~s 

takes no account of the housekeeping operations needed to keep track of 

which element 1S which in the sparse matrix, but just the operations on 

the non-zero elements themselves. Also, since the number of operations 

perfonned is highl) dependent on the f~llin of ze;--r, elements, we can 

expect that these formul ae will in fact overestimate the operati:lls to 

be perfnrmed. 

The Erisman/Tinney algorithm that we use to calculate the d~2gon21 

elernents of the inverse can also be analysed using Duff's result. In 

row i of U, or column i of L, there are (i.-i)Pi non-zero element:;. 

Calcu1ation of an arbitrary diagonal el.::.~.ient of the lnver52, zii' 

requires the calculation of t,l.e (n-i)Pi elements in the appropriate rO\1 

or column of Z which corr~spond tc the non-zero elements in column i of 

1_ or 1 "0\'1 -j of U. Having calculated them, we require (n-i)Pi JpEration;; 

to calclilate the diagonal element. Again each operation ";:lvoives Ci 

multip"lication c:r.d an addition. Each element of the appropriate ro\,! or 

column itself requires the c0lcLIiation of (n-i-l)p; other eip,lE:nt:: of Z. 
I 

Thus to calculate the diagonal e1f'ment end al1 the e-Ie!i:ents in t.he -<h 

row and column of Z which can be found using this methuu, \.:~ need 

(n-i)pi(1~2(n-i-l)pi) operations. Hence the total 

required to calculate the complete subset of elements of the inverse js 
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n-1 
E (n-i)p.[1+2(n-i-1)p.] 

. 1 1 1 1= 
(3.22) 

This ;s a gross overestimate of the number of operations that \'Iill 

be performed to calculate only the diagonal elements of the inverse. As 

we have noted al ready, the estimate vIe have for Pi is ':11 overestimate, 

or even an upper' bound if we cal cul ate it crudely. Even if we know the 

Pi more eXdctly, thi s estimate assumes that \'Ie cal cul ate the compl ete 

subset of el ements '-If the inverse that the al gorith.m provides. Thi sis 

not the case. We calculate only the subset of elements that are needed 

to calculate the d.iagonal. Consider the eleme~lt Ill> "Ie can C:clcu-Iate 

this usi~g either 

(3.23 ) 

or 

( '> "')' ..... 1. L'T 

Normally, if there are fc.!,~r non-Z2roes in rO\ti 1 c-~ U than there C;fC: in 

("olumll 1 of L, we calculate using the first for~ula. In this cas~, the 

elements of the first row of the inverse will never be needed. The 

picture is not so clear for :ater clements on the diagonal, Ylherc the 

needed el ements will depend on the pattern of non-zeroes. In pract.-ice, 

about 75% of the possible elements of th~ inverse n~sl1 to (:'e ::alc:/iatect 

in order to find all the diagonal elements. 

The extra space required by the routines can be calculated using 

Duff's resul t. He den0t.e the r.iF,l'Jc;: (,1' iion·zeroesi n ttle L/U 
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factorisation by f(x), which we calculated above. The factorisation 

routines require f(x)-x extra locations to store real numbers, the new 

non-zeroes. The inversion routine also needs f(x) real storage locations 

for the el:::ments of the inverse. To store pivoting infonnation~ ro\vand 

column numbers, and simi"lar housekeeping data, an extra 14n+f(x)-v 

integers are needed. A further 3n real locations store the first row, 

first column, and leading diagonal of the inverse. The grand total is 

2f(x)-x+3n real locations, and 14n+f(x)-x integer locations. 

Other sparse matrix routines which corle the structure of the 

non-zeroes in a different WfW might have different space overheads. For 

example. Duffls routines [12] t'equire 2f(x)-x+4n extra real ~'Jcations 

and 15n+f(x)-x integer locations, to factor~se the mati ix. The 

Erismann/Tinney algorithm encoded in a suitabie form for these 

subroutines would need at least another f(x) re~l locations. 

As a worst, in some sense, case example of the errors that can 

ar; "e by treat i ng our mat ri ces as random cons i del' the M/~1/1 sys~err:. h 

gives rise to a tri-diagonal Q matrix. The truncation of S~L2 n contains 

3n-2 non-zero el ements and no zero el ements are lill ed in during the 

elimination so the L/U factorisation contains 3n-2 non-zeroes. 

Considel~ation of the Erisman/Tinney algorithm applied to this system 

shows that the e 1 ernents of the inverse IS d i agonal can be cal eul ated by 

the following recurrence 
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Z .. ::: lid .. - u .. lZ. 1. 
11 11 11+ 1+ 1 

Zi+li = -Zi+li+1 1i+li 

(3.25) 

(3.26) 

(\4e could have used the alternative formula for the dia~ona.l elements, 

but the same number of elements of I is needed.) Only 2n-l elements of 

the inverse are calculated. 

As remarked above, the estimates of p. are expected to be too large 
1 

for several reasons. To give a more real ;stic example of the extent of 

the oven:!sti::'ate we give irl Table 3.1 the actual mnnber of non-7.ero~s in 

the L/U factorisation of the Q matrix for several different systems, 

each ~runcated at several different states. For comparison, the number 

of non-zeroes predicted by (3.19), b~th using the naive estimates (3.16) 

and Duff's exact result~ (3.17),(3.18). Although superficially simple, 

Duff's resu1ts are very difficult to calculat.~ I'/ith in practice. The 

sumroation in (3.18) is very close to 1, and the cancellation error ',~hic.:, 

occurs \'Jh~n it ;s subtracted from 1 dominates the calculation for any 

reasonable size of n. Even the use of quadruple precision ;:"'al numbers 

(about 32 decima·j places) only delays the onset of the prob~a.l. [jiost of 

the nL!lTlbers in Table 3.1 were calcu~ated using exact rational 

arithmetic. For ir. ... .::rest, we also tabulate the number of elements of the 

inverse that were needed to calculate the inverse's diagonal using the 

Erisfllan/Tinney algorithm, and p; the probab"ility that an off diagonal 

element is non-zero. 

Modell is an MIMII system. As noted above, the Q matrix is 

tr;-ciiaqonal, and no fill-in of nr·r1-zero el~lents occurs in practice. 

1·10ckl 2 is a t\,O closs nGI!-pre~';iptive priority system. There (\I~ about ~. 
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non-zeroes in each row. Two examples at each truncation size are given, 

to illustrate the effect of different sizes of element on the 

factorisation. In each case, the pattern of non-zeroes is the same. 

Model 3. represents a 2 processor network in which each processor can 

ei ther be \,'orki ng 0, broken. In ei ther state, the processors transfer 

customers to thA other node, although at different rates. There are 

approximately 9 non-zero elements in each row. The fourth model ;s of 

bJO parallel WWl flueues. Arriving customers join a qlleue at random and 

remain in that queue until served. There are 5 non-zeroes in each row of 

Q. 
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Table 3.1 

number of non zeroes 

1'1ode 1 n nnz p Experiment Duff Naive Inverse 

1 15 43 0.1333 43 67 78 29 

20 58 0.1 1:;8 99 125 39 

100 298 0.02 298 1024 2479 199 

2 42 125 0.0482 163 285 477 107 

42 125 0.0482 172 285 477 117 

110 365 0.0212 629 1714 3895 472 

110 365 0.0212 579 1714 3895 375 

3 84 532 0.0642 15Ct; 3506 4631 1267 

112 732 0.01.';9 2450 6209 8338 *12544 

220 1524 0.0271 7228 23975 ~~055 ":<3400 

4 120 540 0.0294 1318 4320 7252 1025 

The entries marked ;; represent the full inverse matri)/', In these cases. 

the Erisman/Tinney algorithm \'Jas s~gnificantly sl-:wer than the na"ive 

method of finding the inverse. 
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The table shows the dravlback of Stewart's special purpose routines [47] 

which use the diagonal elements as pivots. They give rise to excessive 

fillin, limiting the size of system that can be solved. 

Jt is worth noting that the conjugate gradient method takes 5n+2x 

multiplications and additions per iteration. To solve a s"ingle set of 

equations need:-: (5n+2x).i+3x additions and multiplications, whet'e i is 

the mnnber of iterations taken. Si nce we have to sol ve n sets of 

equations, and seldrm take fe\'Jei than 2n iteratio/l~~ for each set, the 

conjugate gradien~ method uses of the order of n3 additions and 

multiplications. Its extra space requirements are quite ~2all. only 2 

c.;~tra vectors both containing n real locations. 

Stewart's nettled cal, be simply analysed as far as a single 

iteration is concerned. The number of iter(~tions needed to reach an 

acceptable solution is h~ghly problem <ierende!lt. Each iteration ccnsists 

of mul ti pl ication 0~ the rXm rnatrix of the eigenvector estimates by the 

sparse matrix, followed by an ei,:;'?nvector interaction analysis z:nd 

nOnTIal isatio!l of the estlmates. A vector can be mul tipl ied by the sparse 

matrix with x floating point multiplications and x floating point 

additions. Thus the mu'i ~ipl ication takes m times this number of 

operations. The interaction analysis involves 3 multi~ications of an 

nXn matrix by (In iMn mat.rix) taking 3nm2 multipl ications and a.dditions; 

the solution of m linear equations in m variables VJlth .,.. rir;h.t-hand 
'I ? 

sides, using Cholesk.i:~, :-:-i(~thod "nl;ch tal~es 7/6m..)-I"/2m~+1/3m 

'< " 
mu;\.iplic&"~ions and 7/6~nv+li/"-13/6m additions; a complete set of 

h 1 " \ • k' 013 \ e"iger·.">ct0rs for an rrXm matrix r"v t c; QR a.gont/1fT!, .:a Hg \'" 1 
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multiplications and additions. If ,,~e assume that each eigenvalue of the 

interaction matrix takes 10 iterations to be found, then the QR 

algorithm uses 25m3+57m2-123m multiplications and 25m3+52m2-160m 

additions. The normalisation consists or dividing the elements of each 

eigen"2ctor in order to make the largest element 1, and uses mn 

multiplication:. 

No e)~·.,;ra storage is needed for integers, but 3m2 real locations are 

used by the interaction analysis phase, and an exua (m-2)n real 

locations are needed to store the sub-dom-inant eigenvectors. 

Brc:nd\'Iaj n I s method is the r,,~st tl-]rifty of the three J 1 gori thms 

dnalysed. As \\lith Stewart's method we can only find the number of 

operations per 'teration. Each iteration takes x+2n multiplications 5n~ 

x+n additions to form the new estimate of ~ni. Before the it2rations 

start, there is a once Jnd for all overhead of x additions and 2n 

multiplications invJlved in calculating n and the row SWTIS. The only 

extra st.orage is 2n real locatior:s used to hold the sums of the 

3ub-d i agonal and super-d1agonal elements in each row of Q. 

We can use these operation counts to estimate when the iterat-ive 

methods of Stewart and Brand'tlajn are preferable to the direct method. He 

calculate k(x,n), the maximum number of iterations each method is 

allcw2~ to take 2nd still be more effective than the direct method. 

Clearly, k is a:l1nctic" of the rlLUllber of non-zeroes, x, and the size of 

trc truncation, rI. In order to evaluate k for various values of x and ii, 

\:0 !;Iake the fo 1 -! o,/i ng t;;Q as sump<- ions. Fi rst, we consider that x -j s a 

line,,~- -function of n. This is a reasonable ass'Jmption, often bon~e Ijut 
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in practice. Since, as we remarked earlier, Duff's exact results are 

very hard to eval uate accurately, the naive estimates (3.16) were used 

to calculate k(x,n). This means that the function k is biased against 

the direct method of solution. We also ~~sume that m, the number of 

eigenvector estimates in Stewan's method, is calculated accor-d-ing to 

the following formula. If n<30 then m=3; if n>=100 then m=10 else 

m=n/10. Floating point additions are assumed to take 1 unit of time, and 

multiplications take f units. All calculations are made with f=1.2. 

k(x,n) is graphed fur a selection of values of X 2nd n in Figure 3.1. 

3,5 Theoretical Application 

In this s~~tion, we apply Tweedie's method to the general nne 

dimensional birth-death process and show that the upper bound that he 

derives is attained. When applied to tht. M/rVl system. the errors 

involved in using the lower b0und or the less stringent approximation 

can be found. An attempt is also made to analyse the perfor~ance of 

Stewart l s method on the ~1/M/l system. 

The one dimension?' birth-death process is a conservative Markov 

process, \'/ith its states indexed by the positive: i:ltegers. (Sor~,,: c::1l.f.c;'s 

use the non-negative integers, but there is no loss in genoralitj 

~!wolved in ignoring 0). Transitions occur from st3.te i 1:0 5tate hi at 

rate Ai and to state i-I at rate Pi" Its behaviour h2S been extensiv21y 

in'estigated, but the result that we shall need is 
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(3.27) 

\'Jhere 1T1 can bE' found from the nonnalising condition. (See, for example, 

[40,Pp 83-87].) Since TWf'edie's method only gives us the ratio bet .. 'een 

probabilities anyway, th·is normalising factor is of no account. The Q 

matrix of the birth-death proces~ is particularly simples being 
\. 

tri-di agonal. 

->'1 ""! a a 

112 -(A2+J.!2) A2 0 

0 113 -(A3+\l3) A3 

To use Tweedie's method \'Je need the ratios uf cofactor:; of (n)Q, or 

equivalently. the ratios of elements of its inverse matnx. If \'!e let 

g=(n)Q-l t'~~n we can c.alculate 9 in the follo\>ling manner. Take tvJO 

matrices, A and B, and initialise them A:=(n)Q and B:=1. l~e then perform 

cxact1y the same elementary row operations on A and B, 'tlith the object 

of leduci~g A to I. This is ~qivalent to multiplying (n)Q bv G, so that 

B will contain the value of G. The easiest way tr. reduce A to I is as 

foll O',o'S, Fi rst we reduce A to a unit upper triangul Cir matrix. Assume 

that CO! umns 1 to ;-2 are al ready }'educed; that is they contain only 

zeroes below the diagonal. We add -~. times row i-I to row 1, and thus 
1 

make the element a .. 1 zero. Next, \Ie di'!ide rm'i .j by (';1· to make the 
1 ,1-

diagonal clement unity. When this has been done for i=!,2,3, ••• ,n) A is 

reduced to a matrix IrJith unit diagonal, -1 in all elements oii.:' and 

zcr ~ cvcr:"ihen: ,;1 se. Hli s i:; easily reduced to the iClentity iliatrix by 

adding row 1 to row i-I for i=n,n-1, ••• ,3.2. Performing the same 
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operations on I, in parallel, gives the values of G. They are easny 

shovJll to be 

1 n k 
Goo ::: -- ~ n Iltl At 
lJ Aj k:::j t=j+l 

Go 0 

lJ 

(i~j) 

(j~i) 

Tweedie's l.heorems give the upper bound on the ratio of TI Inl as 
iT! 

Gmm/Gml. On substi ~ut i ng the val ues f01' 9 found arove, ,;~e get 

m Ao 1 
n t-
1-

t:::2 JJt 

(3.28) 

(3.29) 

which is the correct anSVler. If the val ues for g are substituted in tf::: 

other formul ae) th"'n the 1 Oi-/er bound is not exact. Rather than persue 

the general one-dimensional birth-death pr0cess, we turn to a specific 

case which is \-vell known, the M/~l/l queLl0. 

The M/M/l queue is a splcial case of the one dimensiona1 

birth-death process, \lith A('A, the arrival rate, and JJ(].Io the service 

yoate, for all i. It is very well understood and both steady state 0nci 

transi Lilt probabil ity eli stribut ions are knOl.,rn. The steady state 

distributic:'1 of the M/M/1 queue is given by TI; = pi-l(l_p) vlhere the 

states aro numbered so that state i represents the state of tne system 

in vlhic!--, t.h~re Cire ;-2 waiting customers and 1 customer being s(~rved, 

and where p=A/~ is the traffic intensity. w] rerresents the idle system. 

For the holt;/! queue i'llith 5rri 1fal rate A and servoice rate fl. the 

transition rate matrix Q is given by 
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Q = -A A a o ••• 
II -(A+ll) A o 
a ~ -(A+~) 

If we substitute the con~tants A and )1 in the equations (3.28) and 

(3.29) above we find that, after a little algebra, replacing A/~ by p 

and casting out common factors (s'ince \'Ie are only interested in ratio~' 

between t::1ements), t:'e elements of 9 are 

Qij = pj-l(l_pn-j+l) 

pj-l (I_pn-HI) 

(isj) 

Let us nO~'1 apply these formulae to the problem of 2stimatipg 1Tv. In 
" 

this case, w, is known from other considerations. ( Little's theorem 

gives the probability of the idle state for.9.i!Y single server queueing 

system as I-p.") AnY\'Iay we need to choose an arbitrary state to r:Ol",r:,,'! ise 

the probabilities with and state 1 is as good as any. Having chosen one 

state we can no/use the f0l11ll1iae to estimat2 ll
k

!1r
1

" The bOl':-.1S in 

equation (3.1) give us an upper and lovler bound ~:' taking j=l and ;=k. 

Equation (3.2) gives us two approximations; one taking j=l and i=k, and 

one taking j=k and i~l. Only one set of bounds are found because taking 

j=k and 1=1 in (3.1) gives the same bounds. 

Subst'itution of the TOrry,/. I a for Gij in the appropriate formul ae 

gives the follovling est'imd.es for 11k" 
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lower k-l n-k+l =1\=G1k=P (l-p 
------

GIl ( 1 _ pn 

k-l 
~ p as n ~ 00. 

upp~r ub
k 

= G
kk 

= pk-l ( 1 _ pn-k+l 

n -1' -n-k+r-
~kl - p 

= pk-l for all n. 

approx = ap1k = Gk1G 1k = k-l 1 n-k+l) p - p 

g2 ( 1 n 2 
11 - p ) 

7P k-l 
as n -7 "". 

ap2k 
2 k-l ( 1 n-k+l ))2 appr0;{ = Gkk = p - r) 

GUG 1k 
k-l ( 1 n-k+l )2 p - p 

= p 
;,-1 

for all n. 

In this case lIb
k 

and ap2k can be r:; -: sregarded 5i nee they give the 

correct answer re~,ardl E:::·S of any truncation. Note that even if h",2 do not 

knoH 'If 1 the error \"; 11 be of the same magnitude for all k. if "I is 

founu from the normalising condnion, its value \'Ii11 be tr2 same as if 

the l'i/tVl/n queueing sy:;tern Vias solved. Exact formulae can be calcui"ltc,j 

for the relative errore in lbk and ap1k , but they are not given herc' 

since no partic~larly elegant form results. They have the property, 

however, that the error in any Ddrticul~r probability, TI k, depends not 

only on n, th~ size of the truncation, but also on k, t~e state being 

approximated. It is also interest~ng to note that \'Ie have ap1k < lb~ . 

Tid.> is expla"ined by the fact thJt 'che opproximations cOllver'ge under 

less strict pre-conditions on ·tt,..; st,~tc:s. li.G mere slxirlgent conditions 
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under which the bounds converge are of no practical hinderance to us. In 

processes wi til a more i rregul ar structure than ~i/rVl the t\-JO 

approximations often both lie outside the interval given by the lower 

and upper bounds, generally one on either side of the interval. These 

h/o pI'oper+,i es, the exact ansvler bei ng gi ven by one of the hlo bounds 

and one of the approximu~ions lyi ng outside the lower bound to upp~r 

bound interval, seem to partly be functions of the state chosen to 

normalise against. If the ratios ~k/TI are calculated, then the lower . n 

bound and the other approximation give the correct anS\'ier and the upper 

bound i~ less than ~he first approximation. This property is not 

governed by the sizes of the prob2~ilities. which might be conjectured, 

since in this case TIl is the largest, and TIn the smallest probabil;~y< 

The Q matrix corresponding to the M/M/2 queueing systp~ is t~id~agonal, 

and the system is a one-dimensional birth-death process. Thus, hyour 

first invesLigation, equations (3.Z8) and (3.29) will a~nly, and the 

upper bouil~ \'/i 11 give the correct anS\·ier. By choi C2 of the val ues of A 

and ~, it is ~ossible to have TI2 as the largest probability though. 

He now turn to Stewart's rnethGd of simultaneous iteration to find 

the dominant left eigenvector of P. He shall attE:mpt to anL~yse its 

perfomance on the M/M/l system. In von-Mises po~~r method for finding 

the domi nant ei genvector, the rate of conv2:'gc;;C'2 is proFortl ona 1 to 

IH1
/ n2

1 where tniJ are the eigen values of P, in orde~' of ;nagnitudc. 

(n is chosen rather than the liiorc ccn'Jel')ti(,:~21 A '~(I (tvoi:j confusion \~ith 

the arrival rate 1!1 the queue.) In Stcv,I2rt's simu1t2ilC'cus iteration 

method l27], the rate of convergence can b2 shown to be p(opor'10nal to 

I I ,. ... l'a' +O'~' re L,'sed The n 'Y'"ai v('ctors CGnv(?Y'(~(> to ~tJ.g-il,vJl,enml.r ,vec"r::-ci·",·. ",,' __ 1. -
m 
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the e~genvectors corresponding to D1 to Om' Thus the eigenvalues of P 

\-Jill give us an idea of ho\'J v-Iell the methods \'/ill converge. As 

previous'ly, we defi ne Pin terms of 1 and m, \A/here 1 = Va and m=ll/a 

with a > A+ll. Hence, P is 

P = 1-1 o o 
m 1-(1+m) 1 0 

o m l-(l+m) 1 

o 0 m 1-(1+m) 

where all row sums are = 1 except thp last. This is close, in some 

sense, to two matrices \ml)se eigensolution is known. The first is a 

standard tridiagonal matrix T defined by 

T = 1-(l+m) -
u o 

m 1-(1+m) 1 0 

o m 1-(1+m) 1 

o 0 m 1- (l+m) 

in \'Ihich ail rovi ~II~S are 1, except the first and the l&st. The o':hcr 

matrix is the stochastic matrix, S, the probability transition matrix of 

an r'i/~1/1/n queueing system, that is one in '.;hich any customers an'lving 

\-/hen there are n customers a1 ready in the system are lost. S eq'Jal s P 

2verywhere except snn' \'/h i ch e~ual s 1-m, i n ol~der to pres~ne tile 

stochasticity of the n1&tr';X. The following analysis o!· the eigenvalues 

of Sand T can be found 1n Courtuis [9J. 
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Let us deal with T, first. The eigenvalues of T are) by definition, 

the roots of the equation 

Dn(n(T)) = det ( T-n(T).I ) = a 
Expandingl..nis determinant along its last row to give the Sturm 

sequence, we find the following difference equation. 

Di(n(T)) = (1-l-m)D i _1(n(T)) - lmDi _2(n(T)) 

\,/i th the foll owi ng boundary conditions 

1 - I - m - n(T) 

Solving the difference equation, \'1E have the; resu1t 

n(T) = 1 - (l+m) - J4~~ cos kn/(n+1) 

for k=1,2, ••• ,n. 

(3.30) 

(3.31) 

Turning to S, we first remark that it has a unit eigenvalue, since 

e l is a right eigenvector. The eigenvalues are t~e roots of 

D~(nlS))· = det ( S-n(S).I ) = 0 (3.32) 

IJs i n9 el ementary properti es of determi nants i'i2 can eval uate D~ in the 

fon:rwing manner. Add each cO~l1mn to the last column. Since th'2 ('''I sur.ls 

of S are 1, the last column will now have each element equal to l-n(S). 

We extract this as a common factor. No\': subtract row i+1 from rOYI i for 

i=1,2, ••• ,n-1. We add column i+1 to colwnn 1 for ;=2.3, •••• n-2 and 

fi na 11 y expa nd by the 1 ast CO'IIJI~ln to fi nd that 

So thdt tile eigenvalues of S are 

1 and 1 - (1 + m ) - J41m cos kTI/n 

for k=1~2, •• e,iI-l. 
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Attempting to find the eigensolution of P in a similar manner, we 

unfortunately generate a difference equation which does not have a 

simple analytic solution. Since they are so similar one might hope that 

the eigenvalues of T and S would enable us to make deduction~ about the 

eigenvalues of P. Except for the dG~inant eigenvalue this appears not to 

be so. Simple numerical examples will demoli:h any reasonable hypotheses 

about orderings such as 

Ini(s)1 > Ini(p)1 

Ini(p)I > IQ;(T)I 

Both these conjectures seem reasonable, but can be shown ~y direct 

numerical cal cul ation of some t:xampl es to be fal se for all itl. 

The only invariant relation appears to be 

1 = J 1(S) > 01(P) > 01(T) > 0 

1 > 01 > 1 - (1+m) -J4.1.m cos(if/(n+:)) 

This relation can be deduced from the Perron-Fro~2nius the0rem for 

non-negative matrices. If A is a non-negative matrix with domLilnt 

eigenvalue >..~ which necessar"ilJ has multiplicity 1, and B is a 

non-negatoive matrix such that B~A, elementv>,ise, then any eigenvalue of 

B, /3, (say) $ \'iill satisfy 13~A. Further, S=>.. impl ies l:llat 8=A. NovJ, 

S > p > or elementHise, so the relationship given abov2 holds bet\'1een 

their dominant eigenvalues. 

Having failed to fird the rate of convergence of 3tewart ' s method, 

even \'lhen applied to the M/M/l 5J_tern \'/e now investigate if there are 

any simp1e bounds on the eigenvalues. For simplicity, we shall 0nly 

con::.ider the sub-dominant (~igcnvalu-=, since it seems unlikely that ,:e 
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will be able to bound other eigenvalues with any more ease. Various 

authors have calculated bounds on the values of eigenvalues of matrices. 

Bauer's [3J are the "best" for our purposes and v/hen appl ied to the 

sub-domina~t eigenvalue ~2 give 

~4_ aij _ aik 1~21 ~ 0.5 mintmax £.1_ 
1sj,k~n i=1' 1'j 1'k 

n a_ - ak-I 
, max L~ _ -1.l - _-1\ } 
1~j,k~n i=1 1 ~j ~k 

(3.33) 

where a_ - is the mat.~~x and! is the dominant right eigenvector and 1 is 
lJ 

the dominant left eigenvector. Apart from the impracticality of 

calcillating both the right and left eigenvectors corresponding to th~ 

dominant eigenvalue in order to find a bound on the rate of (C'nvergence 

of algorithms to calculate the dominant left eigenvector, the formula 

has another urawbacL If there are more than 2 zero elements in each row 

and columr (as th2fC normally will be in our sys~erns) this bound reduces 

to the dominant eigenvalue! 

Lynn and Timlake [33J have developed a bound for the sub-dominant 

eigenvalue of non-negative matrices. 

r 1 - aB- 1 (1_an) , ~ 

In2 i ~. ) - al-' 13.-1 
1 - a (I-a) 

(3.3l~) 

\'lhere o. :::: mill ;". - I a- - > 0 J and 
L 1 J 1 J 

S is the index of primitivity of the matrix, that is 

s==rn-iil [tIAt>O} 

S ~ n-1 

Although this bound is much easier td compute ~~an Bauer's it is in some 

ser:~..: less effective, On all our L~st problC:lrs, wh-ich I'Jere matric~s S, T 
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and P, as above with different values for A,U, and a, the bound returned 

the val ue 1 even for matrices whose dominant eigenval ue vias 1 ess than J.. 

Thus we are forced to conclude that there is essentially no means of 

estimating the convergence rate of StewclI't l s method a priori. 
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4 Practical Considerations 

The theoretical methods presented in the previous chaptel~ for 

finding the steady state probability distribution of of a Markov process 

seem to fulfill our criteria of general applicability and do not need 

more than minimal prior anal'ysis of the system. However, before they can 

be used in a general purpose computer program there are several 

practical problems to overC0me. 

First among these problems is that theoretical re.jults in Markov 

processes and chains are developed in terms of matrices which have as 

their index sets the set of states of the system. Computers and,most 

human beiilg~ prefer to use the positive integers as an index set when 

numerical calculation -is i~equired. 

Secondly, there are, in leneral, an infinite number of state,,; to be 

considered. Related to that problem is the fact that a1tholJ~(\ they 

purport to calculate steady state probabilities, all the methods only 

calculate the ratios between' such probabilities. In the finite case this 

presents little problan because of the additional condition ~~~ = 1, but 
I 

when Lhe state space is inf-jnite this property is more (Hfficult to 

apply. 

Thirdly. although the steady stat2 distribution is of int~l'est, it 

is more ofH~n the case that mC:Tien;'s or marginal distributions are 
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required. With this in mind we may be able to find different convergence 

criteria for these cases. 

4.1 State Numberi ng 

Theoreti cal developments i n r~ar'kov processes and chains are often 

presented in terms of matrict!s of transition rates or transition 

probabilities. Entries in these matrices are indexed by pairs of 

el enll::1ts from the state space of the Markov process. These el emc:nts of 

the state space can be quite al~bitraY~', C!ven though "ie h~ve rcc:tric:ted 

ourselves to solving disc:"ete :-~Jate space problems. In ordel' to easily 

sol ve arbitrary processes, we need to be abL to -.:onstt".::t matrices 

indexed by some standard index set, from ~pecificati0ns which are given 

in terms of the state space of the .)ri gina 1 ~iark0v process. iviany 

processes give °rise to some natural index set, ow' other processes often 

map easily into such a set, but these mappings are obviously adapted to 

the problem in question) and ~-~quire too much prior an.:.lysis to be of 

general util ity. 

We seek a mapping from arbitrary state spaces i~+J some standard 

index set. The natural choice for our st?l!!do:;nl index S2t is N, the set 

of ni!.tvral nwnbers (positive integers). This set is be18ved of FORTRAN 

1 
. , 

frograrns and hence of genera purpos2 nU!i1~nca.; soft\pY'e. In order t) be 

able to map efficient.ly from the "rig;II:.>°1 :;'c2tc spacE: into N, it is 

necEssary to ::d ace some restdct; OilS on th(> representat i OilS of stat(~s in 

the oroigina-I state space. We Shii1i a~st.:iT:~' that Lhe state:; can be 
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represented as fixed, finite dimensional vectors of integers. The actual 

components may be either bounded or unbounded, but they will: in 

general, be non-negative. For example, the possible states of an n class 

pre-empti ve priority queuei ng system can be represented by a vector of 

non-nqative integers, 1=(i1'i 2, •••• i n) where i1 reprec:ents the number 

of customers f~om class 1 present, i2 the number from class 2, and so 

on. A non ~re-emptive system of n classes could be represented by 

1=(iO,i 1,i 2,···,1 n) here iO is an inte~er in the range 1 to n, 

representing the class of customer currently receiving service, with 

some arbitrary va~ue when the system is empty. We know of no disr,ete 

Markov processes of practical si~nif~c3nce whose states Lunnot be 

represented in this manner. 

We now seek a mapping between S, as r2stricted above, and N, the 

natural numbers that should possess the -followir.g properties. Fir'st, it 

must be easy to cal:ulat:, since each non-zero transition rate or 

probabil ity that we add to U::. matrix wi 11 invol ve the cal cul ation of 

h/o i"dices. Secondly, it must hCi/e an easily cal cul abl e inverse 

mapping. There is no point in being able to calculate the steady state 

probabi 1 iti es in tenns of N if we cannot interpret thi s steady state ~ n 

terms of S. More graph1cally, finding that state 5 has probability 0.999 

is of no use unless we can show that state 5 corresponds to (1,3,2) 

(say) in our index set S. 

Thirdly, the mappiii:l should. be surjective (onto). It should map ou; 

index set into N without leaving any gaps. States with no trarsitiors 

might cause difficulties to genet-=': purpose nume;"ical subroutir,'s, 
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Finally. and of lesser' importance, it should map "close", in some sense, 

states into I!close" integers. This property is desirablE: for heuristic 

reasons, since it might tend to keep the matrix in a banded form. 

Tf the state space is finite then the problem essentially 

di sappears. There are several mappi ngs developed by computel" scient; sts 

in conj unct-j on ',lith array subscri pt i ng which ful fill our purpose 

admirably. At worst, a table could be maintained giving every state in 

both representationc:, although maintenance and sedrching of this table 

could become a major problem if the state space was large. This tabular 

method of state transformation y;uS used by Ste\~art in the t'lARCA 

:-,~'ckage [45J. 

If the stdte space i~ infinite other approaches are needed. 

Clearly, the list or table method could ba used, perhaps with some sort 

of hashing function, bu~ a more general method is call2d for. Let us, 

for th2 time being, restrict t:he problem to that of finding a mapping in 

the case where S=Z+n, thRt is, a~l of the components of 

i=(;' ••• i ) E S are non-negative integers, \,/ith ~o upper bound. The 
l' , n 

case in wh'! ch some of the components ere bounded r!i 11 be dealt. 'ttith 

1 ater. 

Let us fu,,·thCi' restrict ourselves and take as a,l example the 

-:-') + t' , ,-j t' mappi ng fro;11 Z '- -) Z • -[hi s haS th\-~ advantage' nat \'ie can ura\'/ ne 

states ind~,xcd by Z+2 i,l il. conventional mi'innel' and pp.rhaps gain some 

in~lght fro:n the diagrcr;;. 
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0,3 1,3 2,3 3,3 

0,2 1,2 2,2 3,2 

0,1 1,1 2~1 3,1 

0,0 1,0 2,0 2,0 

The problem is essentially to label the points in the above figure. 

There are tvlO obvious number schemes. 

The first"is to number the states as below 

8 7 6 11 

3 2 5 10 

o 1 4 9 

That ;s stc.rting at (0,0) as st.ate 0 and trc.',::;l"linSj rOIK:d thE" perimeters 

of success"jve"ly la(~Jer squaros. Hns i!!c'PiJlng c"n be ea.sily cGlcuLJ~ed by 



68 

(i ,j) -7 if i >= j then -j**2+j 

else j**2+2j-i fi 

and with slightly more trouble inverted by 

t -) (i ,j ) 

where s::= lit 
k:=t-s**2 

if k <= i theJl i:=s; j:~k 

else i:=2s-k; j:=s fi 

The obvious dlternative method is to number the states along the 

"diagonal S". 

5 8 12 

2 4 7 11 

o 1 3 6 

This is calculated as 

(- -) , I· - ) (- - ". \ '2 \ 1,J -" \, j -: J H J+ i ) I 

The inverse -js given by 



t ~ (i ,j) 

using the following algorithm. 

k:= max {p I p(p+l)/2 ~ t} 
j::: t-k(k+l)/2 
i:= k-j 
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Turning to the more general n-tuple case we can attempt to 

generalise the algorithms. The first "box" mapping could be extended 

analogous 1 Y J~o number state:::, over the boundar; es of success i vel y nested 

hypercubes, but it becomes increasingly hard to visualise and calculate. 

The second mapping~ along the "diagonal S", can hm'iever be fair'ly simply 

general ised to operate on n-tupl es. T:le key observation is that the tem 

(i+j)(i+j+l)/2 counts tt~p number of lattice points inside and on the 

boundary of the triangular area defined by x>;O, y>=O, and x+y<i+j. lh2 

second term represents the number of integer lattice points on the 1 inE.: 

x+y=i+j such that y<j. Note that this second term is totally indepenL:..lt 

of one component of the original state description. 

Extending this numberin(1 scheiilt: to 3-dimensional space is 

relatively easily visualised. First, we count the number of integer 

lattice points contained within the tetrahedron x)=O. y>=O, z>=O, and 

x+y+z<i+j+k) and then add tile tltlD dimensional val ue giverl by "('rIO of the 

components. Thet is, 

(i.j ,k) -> o:{i+j+k)-:-(ji- I ',)(j+k+l)/2+k 

\Jhcre o.(t) is thc! number of lattice points in the tetrahedron x+y+z<L 

To fil1d a(t) \'Ie note that the number of lattice points is just the 

SUI:'. cf the nU'~lbcr of lattice !,:oinL lying on each of the pL"ne", x+j+z=i 
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for i=0,1,2, ••• ,t. The number of points on the pl c:ne x+y+zo=i is just 

i(i+1)/2 since the plane is triangular in shape. 

t 
Thus a(t)=Li(i+l)/2 t(t+1)(t+2)/6 

i=l 

Hence the mapping is 

(i,j,k) ~ (i+j+k) (i+j+k+1)(i+j+k+2)/6 

+(j+k)(j+k+1)/~ + k 

Let us proceed at once to the case of k-dimensional spaces. We again 

count the integer lattice points contained in the simplex deTlned by the 

or-igin , and the points _~. ~= (cons.~ I ~ is the unit vector and 

cons=Ei ",here I=(i 1,i 2, ••• ,i k) is the state \lje ::1~'e tryi:1g to mapc} 

The full mapping is 

n! 

Each term of the TOnTI 

n 
Ei +i r v 

r=1 

represents the nLffilber of int2';'c. 1 attice points inside or on the 

boundary of the simpl ex .lef; ned by the poi nis .!S. in R" Thi s ~ s b«>",I:':;:' 

the number of lattice points in the body EX r < p is just the sum of the 

number of lattice points lying on the planes 



n 
~x = t for t=1,2, .•. ,p. 

r=1 r 

We must pr~ve that 

p n-1 n 
L n (t+j) = n (p+j) 

t=1j=O - j:.:O ---
n! ( n+ 1) ! 
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This is clearly so for n~1 since the equation reduces to 

P 
L 1. = p(p+1)1c. a \'/ell knovm resulti 

t=1 

For arbitrary n the result ;s certaillly tY-ue for [r'1 since 
ri-1 

and 

n CiT 1) = n! / n! = 1 
j=O --

n! 

n 
n (j-r 1) 

j=O -
(n+1)! 

(n+ 1) ! 

(n+1)1 
= 1 

ASSllme the formul a is true for some particul ar p=s \ say), th3t is 

5 n-1 n 
L n (t+j) n (s+j) 

t=1j=O-- = j=OI-
n! (n+1) ! 

then 

5+1 n-1 n n 
E n (t+j) = n (s+j) + n (s+j) 

t=l j=O--- j=-O--- j=l--
n! ( n+ 1) r n! 

n 
:= n (5+ j) x (sl (n+ 1 )+ 1 ) 
j=l----

n! 

\ 



n 
;:: n (s+ j ) (s+ n+ 1 ) 
j=1---" 

(n+ 1) ! 

n 
= n (s+ j+ 1) 

j=O ---
(n+ 1) ! 
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Hence the fonnlll a hol ds for p=s+1, but it hol ds for p=1 and hence for 

a 11 fi n i te p. 

The inverse mappi ng from some integer z to t;lt' k-tupl e 

I=(i 1,i 2 , ••• ,i k) ~an be stated algorithmically as 

x : -.: Z ; 

for n:=k ~~ -1 until 2 do 
begin 
q : = max t i : n (i -l j ) / n ~ ~ x} 
w(n):=q; 
x: = x - T i~ q+ j) / n! 

end; 
i (l ) : =w (1 ) ; 
fOI~ n:=2 until k do i(n):=w(n)-w(n-l); 

This algorithm can easily be 'rnplemented. The only difficult,Y is that of 

calculating q efficiently. The n~Jve approach, searching ~~~ integers 

~,1,2 •• etc. leads to a search of length q, where each step involves 1 

multi~ication and 1 division (of integers). The calculdtion of the 

initial value of the pI-educt term n(q+j) comes essentiany fre~, Slnce 

"if q=O it is also zero, and if q=1 it equa"!s n~ It'hich vr~ll be have been 

calculated anyway. 
\. 
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A little thought will lead us to a much shorter search, since 

However 

n-1 
n (q+ j+ 1 ) 
j=Oi----) x 

n! 

=) (q+n) n ) x.n! 

=) q+n ) n;x:n I x.n. 

=) q ) n.rx:n t x.n. - n 

=) q ~l~x.n: - n+1 

qll 
--~ X 
n~ 

Hence ,.;t an:i ng our search at q::P1( x.n!- n+ 1 Hi 11 result in d search of 

length (at most) n, again taking 1 multiplication and division for each 

iteration. HO~J"ver, in this case, we also have to calculate an i'liUa-: 

value for the product term n(q+j+l) which ~nvolves a further n 

multipl ications, al.d we .i2ed to calculc.t~ an n-th root. In pr&cUce, 

these additional c~~culation~ appear to balance out the theoretically 

longer search involved in the na;,'e algorithm. 

This mapping performs a transformation, and its -inverse, betv!2en 

z+n and the non-negative integers. It is simple to define the mapping 

from the non-negative,"tegers to the positive integers as the action rjl 

adding 1. This is easily inverted tool 

Returning to the more general problem, in \'I'hich OUI stc:;;e space S 

can be represented by k-~uples of integers, some af which are bounded, 

ana the !'cmai nder are unbounded non-nc9ative integers. H-j tllOut loss of 
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unbounded. That is , 

S = [(;1' ... ,i k) I i j E: Z+ and i1sL 1 and i2iL2 and , •• 0 and imSLm} 

Let us lump together all states in the above representation which 

have the same values for im+1 to ik" To this lumped representatior, VJe 

can apply the transformation developed above. But each state in the 

lumped representation corresponds to 

e=TI(L.+l) 
J 

states in the original model. We can easily develop a transformation 

A (say) \'·:hich will uniquely map (i} .... ,i m) -7 a where 0 ~ a < e. An 

arr.:y mapping function Vlill '=0. If the transformation developed above -;5 

denoted hy b., then the full transformation from S -7 Z+n is g~ven by 

( i l' ... , i k) -7 A( iI' ••• , i m) + e. b. ( ~ m+ 1 ' ... , i k ) 

This transformation can be inverted by d'ividing the state's 

representa~ion bye. The integer part of the quotient can then be used 

to find the unbounded part of the stat~ representation, and the 

!~mainder to find the bounded part. 

This numbering scheme also has a heuristic advantage. Wn2n \'!O 

calculate marginal distributions and conditiona"i probabilities, we are 

more 1 ikely to be interested in the boundary conditions than in 

arbitrary states. For example, in an n class pl'iority system, \J€ are 

much more likely to want to calculate the marginal distribution of class 

i customers given that c15~5 j is empty than the mar~ina' dis~ribution 

given that C~t1SS j has 6 customers. The nUll1beri llg schf~ri;'"~ that ',,'e have 

developed concentrates on states with low indices and thus p2y~ more 

attontion to the boundaries. 
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This representation of S, and its mapping into N, produces a 

problem of its own. As vIe increase the number of states being considered 

from n1 to n2 (say), we have to consider all the states which correspond 

to th~se integers. It is possible that not all states so generated will 
, 

corre:~ond to states which the system can possibly enter. For example, 

in a 2 class nS'1-preemptive priority system, the states can be 

represente~ by triples of integers, (;0'~1,i2)' where iO represents the 

cl ass of the customer in service and i" represents the number of 
h 

customers in class k. Thus (2,4,3) represents the system with 4 class 1 

customers, and 3 :lass 2 customers, one of whom is being served. In thi~ 

repres~r,tation, (1,0,2) correspolids t':' 7 in N, and as sUl..h will be 

generated although the system being modelled could never be in that 

states since trw ciass 2 customers would be served. Similarly the state 

(2,5,0) will be generated, but \~ou-Id neve'" be entered by the system. We 

shall cl assify stutes as val jd or invai ;~, according to v'/hether or not 

the system being nlL~elled car ever enter them. We must have a procedure 

for dealing with invalid states ~~ they arise. The obvious solution 

\~uld be never to generate them, or to give such states no transistions 

at dll. In order not to generate inval id states, '/~e \>:ould need a 

numbering ~cheme which was specific to a particular problem. Allowing 

invalid states to be generated but giving them no transitions is also 

impracti cal, si nee zero rows in the Q m3.trix woul d cause prob 1 ems for 

~cneral purpose numerical softi'Jare. We have considel'2bl ~ rrc:dcf'l in 

constructing Q and prov;~ed that we do not interfere with the 

relationship of the valid states to each other, we can do almost 

anyth':,lg \,/ith the transitions a.fn"""~ invalid states. The so;ut-jr'i that we 
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have adopted is to give the invalid states transitions which ensure that 

they are transient states in the Markov process defined by Q. The valid 

states correspond to the recurrent states in the process; these are ~~e 

only states with non-zero stationary probabil ities. 

This is easily done by ensuring that no val id state makes a 

transition to an inval id state. The inval id states can make transitions 

to each other or to any val1d states. Since we construct Q by rows in 

the natural order of N. the first invalid state must make a transitlon 

to l valid state. This is because we do not, in general, know the index 

of the next invalid state. In fact, ~~ ensure the convergencE 0f the 

algorithms, Vie must havE at lc:.st one transition from an inval id state 

to a val id one, so this is no hadship. Inc 1 ujil,~ such d transition 

ensures that the invalid states are transient, since with probability 1 

the system \rlll enter a valid state, and thereafter it CBn never enter 

an invalid state. 

There are three e5sentially different ways of derining th: 

trans"itions out of an inval hJ state. Since we \'~ish to keep the number cf 

non-zeroes in Q to a minimum, it seems sensible to restrict an invalid 

state to a single transiticn, and as pointed out abv',: it should be to 

an earlier stdte in tL Tili~ ensures tha-:: 211 rO\tiS of Q correspcnding to 

inva-' id states have only tHO non-zc:roes. If transitions \!2re a.llo ... .'ed to 

:ligher numbered states, ther,~ I'Ioli1d be riG ;;uarantee t~~3.t the state to 

i'ihich a transition \'/aS made frcy:' '1 pal'ticulcH' inval-id state vJould be 

part of a truncation of Q whi~h contaired that invalid state. This could 

gi\~ problaTIs to Brandwajn's metho0-
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The first possible construction of Q is to give each invalid state 

a transition to the previous invalid state, and the first invalid state 

a transit i on to some arbitrary state. say 1. In thi s scheme, all the 

invalid stdtes form a s'ingle inessential class of states and are 

transient. A second option is to give each invalid state a single 

transition to a single arbitrary, but valid, state, say 1. This choice 

makes each invalid state an inessent-ial class with a single member. A 

third choice for the transitions out of inval id states i~ "CO give each 

state a single transition to the previous valid state. Once again each 

invalid state fo'rms its own, indivlduai ii!::ssential class . .rl.S vie11 as 

ch~0sin~ the states to whic~ an invalid state may make transitions. we 

may also choose the rate at which transitions are mad( Crom lnvalid 

states. 

The bounds given by T\'/eedie's result hold !';o long as the ti'iC states 

\'Jhose ratio of probabil ities is to be estimated belong to the same 

essential class of states, and there is at most a single finite 

ess2ntial class. The only cf;ect that a different choice ~f cans1ruction 

for Q \'/111 have is to possibly alter the sparsity structurE of Q and 

hence, the amount of fill-in generated by calculation of Q-l. The rate 

at which transitions are made out of invalid states will have a much 

smaller effccL than the actual position of the non-zeroes. 

Heuristically, it seems likely that the third option, & ~ransition to 

the previous val'jd state, win be best since it ~iill kpep the non-zeroes 

close to the: diagonal of Q, C1:ld m'inimise the fill-in. The opt-i v;' of 

1 inking all the inval id states into 3. ::;'ingle il~CS:,ci1ti01 c1ass is only 

marginally worse as far as Tweed-j2 l s method is cOllcei':I~d) b2c.alJSl it 
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seems likely that the previous invalid state could be an arbitrary 

di stance from the diagonal. The previous val id state is an arbitr'ary 

distance from the diagonal too, but it seems reasonable that there will 

be many mCi,'e val id than inval id states. The choke of a single state as 
~ 

the target for all the transitions from invalid states will tend !0 make 

the corresponding column of Q have a rather high proportion of 

non-zeroes and consequently create excessive fill-in. The values of Q-1 

corresponding to valid states are not affected by these c~Jices, and 

experiment confirms the heuristic reasoning ~bove which prefers the 

t h i rd 0 pt ion. 

If <;teware s method is to be used, either of the choices which give 

rise to many small inessential classes will be equivalent as far as 

convergence of the probabilities of the invalid states tu zero is 

concerned. Consider an invalid state, s, say. It makes a single 

transition to a val id state, and thet'e are no transitions v,'h~ch 1 ead 

into s. if the current estimate of TIc is B then the effect ~f 
oJ 

po~":-mu1tiplication by P is ~;,) make the new estimate Pi\s. Thus t!1e 

estimate converges to zero geometrically. This suggests that we should 

choose the rate of transition out of s, and any other inval id states, to 

be as large as possible. This will make Pss small and giv( fast 

convcrg2nce to zero for the p)~obabil Hies of inval id states. If the 

transi tiorls out of i nval id states are all into a particl;~ ar val id state. 

then the ert'or by not having the probabil ities of inva1 'id states 

identically zero will be concentrated in that state. Although ~h2 effect 

of the~e transi ent states d ic:s dWc.:~' very quickly, it seems sensibl e to 

share the error among tiS many states as poss~ble. If tile iiwalid states 
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form a single inessential class, then the rate at which TIs tends to zero 

will be modified. Assume that t is the index of the next invalid state 

and hence Pts is non-zero. Clearly, TI s (n+l)=1Ts(n)pss+1Tt (n)pts • There 

will be a Ilast l invalid state, at least when we consider a finite 

truncation, which will ccnverge to 7sro geometrically. Thus all the 

invalid states will tend to zero, but possibly more slowly than if many 

inessential classes are used. 

The ult,mate convergence of Brand\'1ajn 1 s method is also not affected 

by the choicp of any of these options. We shall only consider the case 

where. invi3.l id states ICorm individual inessential classes of a "~ngle 

state. That is, either of the ~econd or third options described above is 

used. In this case, an Lval id state, s (say), rr..:kes a :ingle transition 

to a state t; t < s. The ~~erations of Brandwajnls method which affect 

state s have the form 

TIS(i+l} ~ 1T s(n)( 1 - gqst ) 

Recall tha! there is only a single transition out of s, arrl no 

transit"ions with s as dp.stination. That impl ies that cOlumn Q is 

zero, except for q"c-" Hhatevv' the value of ,T_(O), it Hill converge to 
,..J :, 

zero, geometrically fast, if n < l/q '. The condition for the 
St 

convergence of the method under normal conditions is ~ < l/maX[Eq;jJ and 

since maxlLqijJ ~ qst' the inclusion of invalid states imposes n~ extra 

constraints on Q. The fir~t option, of linking all the invalid states 

Into a sin;(Ir. ii12c;sential class, can also be sho\vn to not affect the 

ult-imate convergence of the iilC'U'_fi. As vtith Stewart1s method, the choice 

between these options ~ust be m~de on the grounds of their affect on the 

sp(~d of convergence. 
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Since we can test the validity of a state, we could force the first 

estimate of ~ to have ~s=O for all invalid states. s. This is not done 

for two reasons. The testing of the val idity of states might be an 

arbitrarily compl ex operation and hence we should only perform such 

checking \'Ihen it is unavoidable. Even if such checking \'Iere cheap, there 

is no ,gua rantee that Stewart's rlltthod will not introduce non-zero 

el emencs into 'iT at the i nval id states. The anal ys is abvve sho\>/s that the 

ordinary post-nlultipl ication by P will not, but the interaction analysis 

phase incl Lilies sub-dominant eigenvectors for v/hich the el ements 

corresponding to i~~alid states need ~0t be identirally zero. 

4.2 De~~erable State Spaces 

Theoretically. any method for calculating the steady state 

probability vector of a denumerably infini~2 state space Markov process 

must involve an infinite number of prob,:,l;ilities (or th2ir ratios), in 

practice this is no~ sue;, a great problem. Since L~' = 1 , and 1f lO -ror 
1 i 

all i, even the ratios of proGabilities must have a finite sum. This 

rTleans that all but a finP"2 number of these probabilities \1111 be less 

than some arbitrary, but positive, x. For example, all but the first n 

states of an M/M/l systpm have probabilities which are less than 

pn(l_p), where p is the traffic intensity. Whilst not all systems have 

this conveniently regular behaviour, it is none the less true that 

h0wevcr \;C~ choose to number the states, ;if70 as ;-7.:>, Her..:-e trivially, 

there exi~ts an integer k(x) such that n, ( X , for a11 i>k(x). 
1 

COITOI:ters represent their nLimbers f"initely, so there is a smallest 
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non-zero representable number. On the IBM 360/370 series computers, this 

number is equal to 5 1 -79. The existence of a smallest representable 

number impl ies that all but a finite number of states will have zero 

probability as far as the computer is co~cerned. If p, the traffic 

intenslty, is 0.99 for an M/M/1 system, then only 18,000 (i) states have 

non lel'O mach; ne representations. Although ideally we woul d 1 ike to 

consider all states with non-zero machine probability, the foregoing 

argu:llent demonstrates the impractical ity of such a course. 

A more important parameter of computers as fo.r as numerical methods 

are concerned, is E:, machine epsilon. E: is the smallest. pnsitiv.= nUli1bei' 

SlJch tLut 1+01. On IBr~ 360/370 computers its value is about 2 1 -16 (for 

double precision r 0 '1l nurr.:-ers). When we are calculating marginal 

distributions. l"Ie win have to sum the probabilities \\lhich belong to ti1(> 

subset of the state space whose marginal probabil ity we are trying to 

calculat.e. If.we find probabilities tha~ are less than E:.p, \'ihere r is 

the 1 argest probabi1 ity -i n t!lc subset, then \tie can ignore the;l.,;ithough 

-in i;i general r~arkov process, 'IT;7{) as i-)o" we have no means of knowing 

·_hat -che smc:llness of 7Tk in any "lay implies the! smallness of TI k+l , This 

problem has no general solution, but it is reasonable to assume that 

those .:;Lates l;/l") ieh hay? the highest probabil-it-ies \..;i11 correspond to 

relatively small indices, whatever our state numbering. 

The probl em that all methods suffer frol1l, namely t;,:tt th2) 

cal cUI ate not probabil ities as such, but tile ratios betweell 

p'r"'~abi1ities, can be approached in two vlays, Since we knoH that L.Tfi '" 1 

(by df'fi nit ion) 3 and vie assume tila~. we have included ci 1 the import2nt 
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states (ones with large probability) in our state space, we can merely 

sum the 'probabilities' that \'1e calculated, and divide through to 

normalise them. An alternative approach is possible for a fairly large 

cl ass of :>jstems. In many cases, \lie can deduce the true probabil ity of 

some state from other considerations. For eXillnple. the probability of an 

empty system for any single server queueing system, is equal tc I-p, 

where p is the traffic intensity. This is easily proved using Little'~ 

Theorem. Knowi ng the true probab il ity of some state, and f-.,a.v i n9 

calculated its ratiu to all the other probabilities in the system, we 

can easily calculate all the true p~obabilities. 

The problem remains, ho\,!ever, at what state should vJe tl'uncate the 

system in order to get iigood", in some measura.b'! e sense, approximations. 

If we are interested in the probabil ity of a particul ar state and are 

using TVieedie's method then \1e will get upper a"ld lower bounds on our 

approximation. Seneta et al. [lJ provE' that inversion of Q by Gaussiar. 

21 imination is a "":ell-conditioned problem. Reid [39J has shown that, 

ev~~ when pivots are chosen ~0 maintain sparsity, W11kinson's error 

analysis can be used, and the perturbations in the origina~ matrix 

sz:tisfy 

lei j i ~ (3.01.)E": r'1rr1 i j (4.1 ) 

~f!'Lre FI is the maximum val ue of any el ement at any stage of the 

e1 ir.linatiori a:ld mij 'is th2 number of mul tipl icatiot~s pc!~17onned on the ij 

element. Thus "'Ie r;Q{1 co'lculate thE: bounds for a flcrt-icillar s'ize of 

tni::c:ation, i::nd ret)(~at t.he ci:l~cl)lat;on for 1ar~er and 'larger t..mcations 

untnd12Y (it:.' :1Cc~ptable. ~ic can estimate mij in (4.1) using Duff':; 

resul ts. f.\S I'C"'0~+~ci bEfore> thi s v:i 11 pr'esumab ly be an oV2rcstir,,-i:e, 
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since we choose pivots to minimise fill in, and hence the number of 

operations to be performed, whereas Duff assumes that the diagonal 

elements are used as pivots. Even so, the bound on the errors given 

above is very generous. The sparse matr ix routines record the grohth of 

errore in the course of the elimination as a maximum possible relative 

perturbation of the elements of A. That is, they estimate 

maxrle. ·j?··I}. From the above, we would expect this to be of order 
1. 1J I J 

(3.01)E:.maxtmij}. 1n practice it is usually about 2 or 3 times machine 

epsilon. 

When using the other methods, the position is less :lear because sf 

their iterative nature. The method u~ed to ensure that a large enoug~ 

truncation is bei~~ used ~s rather ad hoc. A size for truncation is 

chosen, and the stationary probabil ity found for thi s S1 ze •. A.. 1 arger 

truncation size is then generated, and the stationary distribution fouii,; 

again. This pr:ocedllre lc repeated until the stationary d'istribution 

calculated at successive tr~n:ation sizes is the same, to within our 

error limits. An alternative tCI~ination criterion was suq~ested by 

Seneta ~ namely '.'ihen the dominant eigenval ue of P was close enough to 1. 

By -!- L f' 
1-11:. Perron-Frobeni us thl"?orem, it lt~i 11 never equal 1 exactly. b:Jt in 

practice it bcco!lIes a:~"Jst equal to 1 for very small si zes of 

truncation. 
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4.3 Moments and Marginal Distributions 

If moments or marginal distributions are being sought~ then 

Tweedie1s method does not directly help us. We could, obviously, demc'1d 

that all probabilities making up the distribution were approximated to 

the appropriate accuracy. This however seems unnecessarily hc,rsll, and is 

probably unobtainable in practice. (If \'i'e truncate at state n, \'le will 

never have the probability of state n very accurately.) Sir:ce V,2 are 

~'1orki n9 on a computer we oilly have fi nite accurdcy, and \ve can trea~ as 

zero all probabilities which are less than E.p ,'vihere p is the "largest 

prolctbility in our margir.al d'istr'ibution. This ~s not strictly true, 

since if Vie add numbers in order of ~ncreasing magnitude we mir;;mise 

this truncation errOi~. Tr find a marginal distril)utior we find thE! 

probabilities of the constituent states unti~ a sufficient number of 

them are less than x.p where p is the largest constituent probabil1ty, 

and xis an accuracy factor 'vIe choose. E can be chosen, but in pract; ce 

reasonable estimates can be obtained v;ith much "larger val'Jts of x. 

Hhen finding moments tho' same considet'ations app~y, except one. We 

cou'ld stop on fiiIC'ing one state with a smal"l enough probability, but 

that lays us open to errors of the following kind. r~nsider, for 

exuil:p"le, the system consisting of hiO totally "independent r.J/t'ij]. c:ueues. 

Let the state (i,j) represent i customers in the first queue and j in 

the secont], If ti·e ty"b.ff-c 'in~'2nsities are say 0.2 and 0.9 respectively, 

. b' - . (" 1 i (. '\ ' 0 n 8 (" ("\ 2) **' (0 (J) *-,\, ' ~"h l' s 1'';' theYI the prODJ lilty OT ,<,21:e 'I,J, 15 .J,. U. '1. ..' "J. II. " 

is po:;sit12 fot· the state (m,O) tJ have a very small probability \"i:li1(; 

the ~;tatf: (O?m) stnl has 0" sit.eable Drle, If v,e merely \/iGited uiltii some 
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arbitrary state had reached the requi red small ness we might choose a 

state such as (m,O) while there is still a substantial contribution to 

be made by states of the form (O,m). The heuristic solution adopted is 

to consider all states on the diagonal (i,j) such that i+j=m and only to 

cease expansion when all the states on such a diagonal satisfy our 

convergence criterion. The convergence crit~~ion is satisfied by 

state (i,j) \lJhen its probability is p, if 

-j*p<a*P an<!. j*p<a*P 

where a is the requested accuracy and P is the probability of the state 

in -,:he marg;t1al distribution whose probability is largest. S-imilar 

heuristics can be applied in higher ~imensional state spaces. 

We coulc also go on adding states to th~ marginal distribution so 

long as this adding proc~uure is having some effect on the marginal 

distribution or the moments. This is essentially a heuristic version .f 

the above. We could adopt the same approach to (:tim~~ing single state 

probabilities as \liel1, continuing to expand the truncatioll so long as 

the sum of the "probabn ities" vias changing. In practice, -the::oc 

heuristic _variants appear not to be as rel iable as th:: criteria propos::.;.-: 

in the previ0us paragraph. 

4.4 Program structure 

This section gives dn outline of the structure or the program used 

to compare and evaluate the difterent methods. If individual programs 

ha(i been \vl'itteil to perform each a:;orithm. there v,;ould have V':f": a 
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large amount of common coding. For example, the part of the coding which 

mani pul ates Q and sets up truncati ons \'/oul d be cornmon to all the 

programs. Rather than have the problems of dealing with several versions 

of the same piece of prbgram, a single program was written which called 

subprograms to perform the different al gorithms. An outl ine of the 

structure is shown in Figure 4.1. This approach has both advantages and 

disadvant,'lses. The main disadvantage is that the program is more complex 

than would be necessary for a single algorithm. P.,I advantage, apart fro'll 

the simpler maintenance mentioned above, is that one can change 

algodthms easily. For example, if one is us"ing the dirert method, and 

the SL..2 of truncation becomes too 1 arge for the Gaussian el imination 

subroutines, the p,ogram ';lill use Stewar·t's method ~'.[hich needs less 

work; ng storagt!. The estimate for 'IT t;fflich has a"1 ready been found by 

Tweedie's D.ethod can be used as the first approximation to start off the 

iterat ions. 

Since the three methods use different amounts of core storage in 

1ifferent manners, a language which supports dynamic a110cation of 

storag2 is almost essential. The main part of the program, is vJritter. in 

Simula 67, although al~Jst any language of the Algo160 f~mily could have 

been used. For most of the numerical methods subrout i nes, for exampl e 

the QR al ge;rHhm v/hich is needed by Stewart I s method ~ the N.A.G. 1 ibrary 

,'as used. JI re"i similat' routines, for example, the Eri~rlailfTinney 

algorithm v!ere coded by t.he author in Fortran. In ol'dey· IO f:lake use of 

tt~ program the representation of states as vectors of integers must be 

decio"'d upon. Al so one must decide on "'hich states .:Ire val id and ~vhich 

invalid. A short piece of initialising code and two s~broutines are then 



do forever 
read request; 
work out truncation size; 
while request not satisfied do 
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expand Q by rows, until all rows 
in the truncation are present 

set up truncation of Q 
if Stewarts then conVf>:~t Q to P (truncated fom); 
if Stev/arts or Brandwajns then 

read 01 d est"imate for ~ (if any) ; 
case method of 

I Tweedie's; 
Stev·la rt ' s; 
Brandw,1i n IS; 

test ~ for satisfaction of request; 
if not sati sfactory then i ncreasp truncation si ze; 

write out results; 
." 

Figure 4.1. 

wr'ltten. The "initial isation program must set up various parameters for 

the main solution program, such as the number of integers in a state 

representation, the numbei' of any bounded components i 11 the state 

representation, and their bounds. The two subrou~ines are used to 

construct Q. As it expands its representation of Q, the main program, 

for each state to be added c~~ls one of the subroutines to check wether 

or not th~ state i~ valid. lhc invalid states are automatically l~nked 

to the previous v~lid slat2, as described above. For lalid states, the 

other :;ubrcutine is co11ed to return all the states to which transitions 

C2.!1 tJc made from tll"is state and the rates at vihich these transitions 

fKcur. Th(~ s'}brout i nes i'IO""~ on the external numberi ng of states as 

vectors of integers, an~ need have no knowledge uf th~ internal state 

numbedng :::.cheme. This is eq!jiva~2;1t t.o constructing a row of Q. It is 

concentual1y slightly simpler to construct Q in this.fashion. 
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Constructing it by columns would require the subroutine to return the 

states that could have made transitions into this state. Although 

theoretically equivalent, it would be much harder to deal with invalid 

st~tes using such a construction. Another alternative would be for the 

user to provide a subroutine l'lhich \'!as given hlo states as paramet.;fs, 

and returned the transi t i on rate between them. Whit e tlri sis perhaps 

conceptually more elegant than the method adopted, it \'Iould be in 

practice very inefficient. As the truncatio'1 ~12S increasec in size fro::: 

state n to state n+1 (say), the subroutine would need to be called 2n+1 

times and most of the calls would l''''turn the transition rate as O. 

Sinre the Gaussian el imination routines destroy the repl'esentation 

of the matrix that they factorise, the representation of Q is held on an 

indexed sequP'1tial file. Each record of the file contains the nOll-zero 

elements Of a column of Q. Although this 'invo1ves a large number of 

indexed operations on the file as Q is expanded~ when a truncation is 

set up only the first n records need to be read, sequentially. If the 

rec";j'ds of the fi 1 e contai ned rO\IS, then the program wuul d need t:: check 

that only those elements \'!ithin the current t!'lmcation were included. 

Another advantage of using a file to save Q is that if the ~odel is to 

be exam; ned aga·j n, the representati or. can be re--used, \:i t.hout havi ng :.0 

be re-generated. A similar advantage is achieved by saving ~ on a file. 

If a closely re16ted system is to be investigated, then ~~e sGl~tion to 

the original system can be used as a first estimdte \(J( the iterativ;: 

methods of solution. 
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calculation. We shall illustrate them using a two class preemptive 

priority M/~V1 system. Requests can then be in 

1) (;,j) is a request to calculate the probability of i customers in 

the first queue and j in the second. Depending on the method 

being used, the progra~ will continue expanding the 

truncation size in use until eit~er the bounds given by 

Tweedie's results are close!~ than the error 1 imit being 

used, or until ~he values of the probability at successive 

truncation sizes differs by less than the error limit. In 

soth cases) the error is tr-eated G: a relative error-, That 

is, the difference bet\tlf~t:n the upper and lower bc,:.;nd d~vi~;E:d 

by the lowe' boun~ must be less than the error limit. 

2) (* ,*) causes the program t') cal cul ate the mean ilumber of 

customers in ~ach queue. Optionally. higher moments of the 

queue lengths can be calculated. 

3) (*,j)- will calculate the marginal probab~~ity that there are j 

customers in the second queue. The mean length of ~he first 

queue, conditio~ai on there being j class 2 customers is 

also ~(lculated. 

The initial truncatiop size is calculated by al!~ing 2 to each 

componentJ~ the Slc:te description. Thus, if the probability of state 

(2,3) is "!2civ~sted, the :-tate space is truncated at (4,5) initiaily, and 

til'': system sc 1 V2C .. If the 'answer' is not sat.-j sfacto: J', the 5i ze of the 

truncation is increased by 25%, u~d the system resolved. Note that the 

method used to test the iterative methods for conve~gence implies that 

\;,~ '_rill alvl(JYs have tfJ incY'eas0 th2 truncation size at least once. ')~hE:n 
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moments Ol~ marginal probabil ities are requested, the initiol truncation 

is chosen by setting any variable subscripts in the state description 

equal to 2. The initial truncation when the request is (*,6) is thus at 

stJte (2,6). 
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5 Exampl es 

In order to evaluate the various methods, and compare their 

effp.ctiveness, several systems with known stp.ady state distributions 

where solved using all the algorithms. 

The obvious problem to try and solve is the Jv1jM/1 system. It is 

wel1 understood and has a particul arly simp·' e structure. Othel~ rel ated 

systems which fall into the class o~ simple birth-death procrcses are 

the t'I/M/k system, a sinsle qU2Je with Poisson arrivals and exponential 

service requests, but with k servers; the M/IVw syste~) in which each 

arrival receives service immediately; and the discouraged arrival M/M/l 

syste:n, in which tirriving customers enter the :;ystem vvith 0. probabilny 

that depends 6n the length of the queue. Since rteS2 are all simple 

birth-death processes~ from our analysis in Chapter 3, theil' solutions 

will be given exactly by the IIpper bound in Tweedie's method. To test 

the program and t~.~ al gorithms on systems wi th more compl ex state spaces 

but Nhich also have kno·,'In solutions. artificial exar .;:les can be 

constructed from simpl~' birth-death processes ·in p:::'~:llel. For exar.Jple, 

h:o parallel n/iv'\/l queues can be described by a pa-if of ;r:tegc:rs (i ,j), 

representing the state o' ; c~stomers in the first queue and j in the 

sscond. If the queues a , .. ~ totally .j ndependent, th~n (;lJstomers wi 11 

2rrive i n qlle~!1} k at re.te Ak an-l the S2rver wi 11 sati sfy thei r requests 

at rate j..: •• In thi s case, the pl~objlbi'i ity of a p:jY'ticul al' state (i ,j) ;s 
K 
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Turning to more compl icated systems, which mayor may not have 

closed form solutions the program was tested against many published 

numerical results. The M/Ek/J. c;~eue, the system with Poi sson c.rrival s 

and E(lang k service requests to a single server, has a known 

mean [40,P 16GJ. Grassman has investigated it numerically [21J. The 

system co:",:;isting of tv.JO parallel queues, in \A:hich arrivals join the 

shorter queue, has an analytic soluti,::'l if the servers at the head of 

each queue serve at the same rate. If they serve at different rates, 

then the only re~ults available are due to Grassman [22J. He ha: used a 

numerirJ.l method to find the transient solutions to a fillite state space 

version of this problem. A system which models a net"/ork of unreliable 

computers was a'; so model ed. Theoret'leal results are known fo\' a spec ial 

case of this model [34J. All these syste~: have been solved using the 

algorithms above, and till:~ results agre~ closely. 

In thi s chapter, we sha11 present co:npari sor.s bet\\'een the three 

algorithm's perfOt1l1anCe on some :>ystems with known soluti'''ls, and also 

find numerical solutions for tVIO systems \\'hich ha'ie no knovm analyt'ical 

solution. All comparisons were run on an IBM 370/168 and 'cim'ings <:re 

given in seconds of CP~ time. For all tests the programs error limit was 

set to 5'-3. Tne non-preemptive priority r~!~1/1 system t1as hl0\:n me2rs, 

but the distribution of the numbers of customers in ear~ priority closs 

is unknown. The other unsolved system that we shall study is supposed to 

m(',a\~l a system of multipie micro-processors. f\(i":villg jobs be-long to 

various clt_sses and the procf:'SSC', '; are ind;vidu011y dedic.Jt::ci to jobs of 
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a pa rt i c u 1 arc i ass. 

5.1 W~1/: Systems 

We fi rst compare ttle performance of the methods on sol ving the 

M/~1/1 system. Thi sis \'Ie11 understood and has a very simp-: e structure. 

We are ever] able to apply the truncation methods of Tweedie 

symbo 1 i c a 11 y. We we; ~ unable to est i mate tile rate of convergence of 

Ste\l}art's algorithm vel~Y accurately. Table 5.1 sho\,/s the results of 

finding the probability th~t 10 customers are present in an MIMI] system 

with traffic intensity, p=0.3. The true probability is 4.13~143'-6 

Table 5.1. 

r'1ethod Truncation Val ue Ti~e 

Tweedie 15 4.1234'-6 1.0 

Ste\'/a r i.. 20 4.1334'-6 1.8 

Brand\'/aj n 20 4.1323 ' -6 1.1 

Stewart( r) 27 4.1390 ' -6 3.5 

Branclwajn( r') 20 4.1360 '-6 1.3 

The al1o-,,2::1 (';';~Gr v:dS 5:··3. It will be seen that all the meth:Jds gave 

the .:orn-'ct ,H:<;',:2:" t.o \i~~.i.lr. 0.5%. The direct r:1cthod of TvH:edie usc.:; . .J. 

truncution of ollly J.5 :,t(l:':'s, vJherc:as both Stcv;art's and r:i'andi'lajr.' S 

methJds necdc-:J 20 stJtr~:;" The Herativ2 methods labe11ed (r) \,ler~ 

initialL-,;J \,ith <5 l'andO!T: vector, instead of the un"it veclof. This did 

q::t ~i:"!J:'c;v" t.ilt; 2,cciJracy, or' even the rate of convergence, 
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The program can also be used to find moments and conditional 

probabil ities. The resul ts of finding the mean numbel~ of customers 

present by a 11 three methods are given in table 5.2. 

Table 5.2. 

~1ethod Truncation \Ii'll ue Time 

Tweedie 20 0.42857 2.4 

Ste\'/art 20 0.42857 2.5 

Brandwaj n 20 0.42857 1.7 

Stewart( r) 27 0.42857 4.3 

r,f'andwajn( r) 20 0.42857 1.8 

Since the true result is 0.428:)7 all methods reached the correct answer. 

No further expClnsion of the truncation was ~It:::e~~ary fer any of the 

methods, except Tv-/eediels. 

If the system is arbitrarily truncated at 100 states all the 

methods find the correct probability of there being 10 customers in the 

system. The times taken are given in Table 5.3. The different :imes 

taken by the iterative methods are reflections of the time that they 

take to find a stationary distribution, starting with the Icorrect l 

ans~!er found previously. In the rows marked (r), the extra el Cloents in 

the f~rst estimate were given random values. The other rm~s represent 

the time taken when these extra elements were initialised to O. 



Table 5.3. 

~1ethod 

T\'Jeed i e 

Ste"''Jart 

Brandwajn 

Stewart( r) 

Bro.nd\~ajn(r) 

Time 

2.8 

4.6 

3.9 

14.8 

1.5 
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The fOllo\'J;ng tables ( 5.4 and 5.5) give tile same results for dn 

MjWl system with traffic intensity, p=O.9 • The probabil Hy that there 

are 10 customers is given by 3.4867 1 -2, and the mean nLmber of customers 

is 9. 

Table 5.4. 

~lethod Truncation Val ue Time 

Tweedie 74 3.48544 1 -2 5.4 

Stevlart 74 3.48544 1 -2 U.8 

Brandv/aj n 94, 3.47951 1 -2 11.4 

Stewart( r) 14 3.48547 1 -2 1~.4 

Brand ... ,ajn(r) 150 3.75539 1 -2 34.1 

A,ll thr: ;::~thods, except Brand\,lajn(r), give al1S\tlers \-Ihich are v:ell inside 

the error bound ask(,:i of the program. T~Jeed;els method is significantly 

faster th':in Stel:art l s me',r)d. and gives resul ts which are equally 

aCCl!ra~~" The only poor 1e!'fonnance comes from Brandwajn l s method v:hen a 

random vccto(' is used to initialise the estimate. The lanswer l returned 

has an error or about 7X.. Tr!e time taken to find this lanswer' is also 

extremely -long. 
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Table 5.5. 

Method Trunc at ion Val ue Time 

Tweedie 119 8.998 11.6 

Ste\\fait 94 8.889 16.9 

Brandwaj n 119 8.937 16.2 

Stewart( r) 150 9.000 83.3 

Br-andwa.in(r) >700 ,,<**** >200 

Once again, Tweedie's method wins. It not only aCtlieves an accurate 

result, but it also does it faster than the other methods. This Despite 

taking;: larger truncation than Stel!artls method. Brand\,"2~r:IS method, 

..;.;in9 a l~andom first estimate, had not returned an answer after 200 

seconds of CPU ~im~ had leen used, and had expanded the truncation to 

over 700 states. It can be seen that using a random vector, instead of 

the unit vector, as first approximation ~',c)s no particul ar advanta~:e in 

terms of the accur.1ry achieved and a definite disadvantage ir. terms of 

the time taken to reach the solution. 

On the basis of these results, ~e might conclude that lweedie's 

method was the only one which reasonably approximates the correct 

solution in a reilsonab1~ time. HO',<lever, ~Ie have already :'2marked on th(~ 

simple structure of the tVM/l S'ysl~:m, especiall)1 fa','ourable to spal~se 

G:lUssian elimination. \Jc shall also compare the methods on the 

non-pree;-npt';ve priority _y::.tern in the fol"lowing section. 
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5.2 Non-preemptive Priority System 

In a non-preemptive priority M/M/l system, the customers belong to 

various priority classes. They arrive in a Poisson stream and join the 

r~ar of a queue corresponding to their priority class. When the single 

server finishes the service of a customer, the first customer in the 

highest priority non-empty queue is chosen for service. 

Any state of the system can be described by a vecto,' of n+l 

integer: if there arf'. n priority cl asses. rhe fi rst component takes on 

values between land n, representing the class to which the customer in 

service belongs. (Di fferent :::1 asses' may have di fferent service 

requirelllents.) The other n integers represent the numb0r of rustomHS in 

the various priority classes, including the customer being serveJ. Let 

us, for the ~urposes of illustration, consider a 2 class system in which 

customers :f class 1 take priority over class 2 customers. The state 

(1,2,4) represents the system when there is 1 class 1 customer being 

served, one class 1 customer waiting, and 4 class 2 customers. From any 

state in this system, there ~·.ill be three transitions. T\'10 "If tht: 

transitions correspond to the event of a customEr arriving, one 

transition for each class of arrival. These transitions occur at the 

respective arrival rates and ~,hen the system is in stu-cc 0,2,4) have as 

their destinations the states (1,3,4) and (1,2,5). The other ('orrcsponcis 

to the customer coming to the end c:f hi s service, and (.~\ urs iit the 

appropriate rate, The destinatioll state of thlS transil-ion is the state 

\tJith the number of customers in the correspor.ding fY'iority c1 0 C:', reduced 

. (" 1 4) Tf ! rio cuc:to"le-I'S left in the by' in this case It;:, .1." •. ~ t.1f..'re are - 'I -
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priority class, or there are customers of a higher priority waiting, 

then the integer representing the class of customer being served will be 

different too. For example, the end of service of the customer in state 

(1,1,4) is represented by a transition 1.0 state (2,0,4). As noted in the 

previ~~s chapter, states such as (1,0,4) and (2,1,0) will be generated, 

although the system being modelled could never enter them. These states 

are marked as invalid. The other problem is the idle system, when there 

are no customers of either priority class present. Clearly, we could use 

either (1,0,0) or (2,0,0) to represent this state. Arbitrarily, we 

choose to use (1,O,0) and mark (2,0,0) as inval-id. [In fact, we could 

allow ~cth (1,0,0) and (2,0,0) tG be valid, representing :he idle state 

tntered by a class 1 customer leaving or a class 2 customer leaving, 

respectively. The only ptoblem that this would cause is that the 

probability of the idle system, easily found using Little's theorem, 

would correspond to the :um of the pro/1abil it.-ies of states (1,0,0) and 

(2,0,0).] 

We shall study the 2 class :In-preemptive priority sy=tem. Class 1 

jobs have priority over class 2 jobs. Class 1 jobs have exponentially 

distributed processing times with mean 0.5 seconds, while class 2 job~ 

have exponentially dis~ributed times with mean 1 second. Table 5.6 shows 

tho value of the mean number of customers in each class, both as 

precticted by theory and as calculated using our threE: algorithms. Vie 

assume that the arrival (ate of class! jobs is 0.5 per second, and that 

th( 3rriva~ rate of class 2 jobs is 0.1,0.2,0.3,0.4, and 0.5 per second. 

T~ble 5.7 gives the rquiyalQn~ results fo~ a Systf~ in whish 

I 
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class 2 jobs arrive at rate 0.1 per secord, and class 1 jobs arrive at 

rates 0.25,0.5,0.75,1.0, and 1.25 per second. 



Rate 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

0.2 

0.3 

0.3 

0.3 

0.3 

0.4 

0.4 

0.4 

0.4 

0.5 

0.5 

0 r 
J 

0.5 

Method 

Theory 

TVJeed i e 

Ste\tJart 

Brandwaj n 

Theory 

Tweedie 

SteVJart 

Brand\t/aj n 

Theory 

Tweedie 

Stewart 

Brandwaj n 

Theory 

Tweedie 

Stewart 

Brand~Jaj n 

Theory 

T\t:eedi e 

Ste;vart 

BraildvJaj n 

Table 5.6. 

Truncation 

",. 

72 

72 

72 

110 

72 

110 

156 

110 

110 

(X) 

272 

:56 

210 

co 

600 

342 

600 

100 

C1 ass 1 

0.40000 

O.40C~9 

0.39596 

0.39858 

0.46667 

0.4/997 

0.45332 

0.46555 

0.53333 

0.55851 

0.52232 

0.52938 

0.60000 

0.63392 

0.58830 

0.59835 

0.66667 

0.70845 

0.66184 

0.66762 

Class 2 

0.14615 

0.15598 

0.14373 

0.14532 

0.37117 

0.~7117 

0.33703 

0.35565 

0.67778 

0.69784 

0.63704 

0.66291 

1.20000 

1. 21990 

1.09757 

1.18394 

2.16667 

2.18370 

2.02322 

2.20701 

Time 

(X) 

5.6 

6.4 

7.3 

co 

8.2 

6.4 

11.9 

12.3 

11.8 

11.8 

25.6 

19.0 

26.1 

'" 

78 

72 

102 



Rate Method 

0.25 Theory 

0.25 T;:cedi e 

U.25 Stewart 

0.25 Brandwaj n 

0.5 Theory 

0.5 (weedi e 

0.5 Stewart 

O~5 Brandwajn 

0.75 Theory 

0.75 Tweedie 

0.75 Stewart 

0.75 Brandwajn 

1.0 Theol~y 

1.0 Tweedie 

1.0 Stewart 

1.0 Brandwajn 

1.25 Theory 

1. 25 TVieedie 

1.25 Ste~'Jart 

1.L5 Brandwajn 

Table 5.7. 

Truncation 

"" 

42 

42 

42 

72 

72 

72 

156 

110 

156 

"" 

272 

210 

210 

eo 

600 

462 

462 

101 

Cl ass 1 

0.17143 

0.17370 

0.16988 

0.17089 

0.40000 

0.40689 

C.39596 

0.39858 

0.72000 

0.72940 

0.70890 

0.71902 

1.20000 

1.22140 

1.19065 

1.19521 

2.00000 

2,03999 

1.98028 

1. 99415 

C1 ass 2 

0.12396 

0.12692 

0.12244 

0.12396 

0.14615 

0.15598 

0.14373 

0.14532 

0.18762 

0.20015 

0.18195 

0.18713 

0.27500 

0.30433 

0.26945 

0.27257 

0.50000 

'J. ~,548S 

0.48436 

0.49666 

Time 

'" 

1.9 

1.8 

2.2 

5.6 

6.4 

7.3 

12.8 

12.0 

18.0 

26.2 

31.3 

26.0 

'~ 

80.2 

149.2 

80.4 
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It can be seen that TV-Ieedie's method is at least as efficient as 

the other two. In most cases, it takes less time to reach a solution and 

in those cases for which Stewart's method was faster, nleedie's metho~ 

has considered a larger truncation. It will be noticed that Tweedie's 

method consistently overestimiltes the va~ue of the mQ11ents. The reason 

for this can be found by examining the behaviour of the upper and lower 

bounds on the probability of ' a particular state as the truncation size 

increases. 1:1 thi sease, un": i ke M/~1/1, the 10\'ier Dound is a much betl.er 

estimate than the upper bound. It both starts closer to the correct 

value and converges faster than the upper bound. Since the estimate used 

by the program is the mean of the up~~r and lower bounds, the estimate 

will be an overestimate. 5ince it is possible to incre~:~ the speed of 

the factorisation by a factor of 2, by using ~etter sparse matrix 

subroutines, we recommend Tweedie's method for all problems in which the 

size of truncation needed can be succesfully dealt withe It has the 

added advantage that it provides upper and lO\J::~r bounds on the accuracy 

of its estimates, wheress the other methods have no way of do1n~ this. 

The program \'J<1S used to calculai:e the marginal distribut'ions for 

both classes of customer, with their arrival rates 0,3 and 0.5 jobs per 

second. The 4 di fferent systerl's thus mode11 cd have the; r margi nal 

distributions tabulated in tables 5.8-5.11, and displayed graphically i~ 

figure 5.1. 
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Table 5.8. 

Class 1 arrival rate=0.3 service rate=2.0 

Class 2 arrival rate=O.3 service rate~I.0 

Probability of n customers in class. 

Cl ass 1 Class 2 

0.7808 0.6251 

0.1704 0.2252 

0.37841-1 0.7858 1-1 

0.85121-2 0.2798 1-1 

0.1931 1-2 0.1016 1-1 

0.4407 1-3 0.3750 1-2 

O.10091-~ 0.1403 1-2 

Table 5.9. 

Class 1 arrival rate=0.5 service rate~2.0 

Class 2 ~rrival ratc=0.3 service rate=l.O 

Probab"il ity of n customers in c1 ass. 

Cl ass 1 Class 2 

0.6500 0.6047 

0.2292 0.2342 

0.75141-J. 0.9316 1-1 

0.2728 1-1 0.38521-1 

0.9291 '-2 0.1646 1-1 

O.3145 1-c 0.7208'-2 

0.1061 ' -2 0.3206'-2 
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Table 5.10. 

Class 1 arrival rate~0.3 service rate~2.0 

Clus~ 2 arrival rate~0.5 service rate~l.O 

Probability of n customers in class. 

Class 1 Class 2 

0.7346 0.4138 

0.1989 0.2386 

0.50'32'-1 O.l~~l 

0.1228'-1 0.8232'-1 

0.2932 1 
•• 2 0.4937=-1 

0.6916'-3 0.2988 1 -1 

0.1618 1 -3 0.1819' -1 

Table 5.11. 

Clas~ 1 ~rrival rate~0.5 service rate=2.0 

Class 2 arrival rate=O.5 service rate~1.0 

Probability of n customers in class. 

Cl ass 1 Class 2 

0.5833 0.3333 

0.2569 0.2141 

0.1012 0.1405 

0.3767'-1 0.9460'-1 

0.1354'-1 0.6497 1 -1 

0.4756 1 -2 0.4517 1 .1 

0.1047 1 -2 0.3164'-1 
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Examination of the graphical output suggests that the marginal 

distribution of the numbers in each priority queue is geometric. If the 

marginal probabilities are plotted on a logarithmic scale as in figure 

5.2 this hy~othesis is supported. The correlation between the logarithms 

of the mal~ginal probabilities and the number in the queue ;s very hgh, 

greater than 0.99 in magnitude in all cases. From this result, it seems 

that a geometr'ic distribution is a very good approximation to the 

marginal distribution of the number of customers in each V'iority class. 

5. 3 t~ul ti pl e-~licroprocessor System 

The model of a distributed microprocess~r syster.l wtlich \'Je shall 

investigate is as follo\'/s. There are n identical microprc:"~2ssors, each 

capable of orocessing c instructions per second. Jobs arrive from 

outside the system in two classes. Those in class i arrive in a Poisson 

~:ream at rate n.A
i

, with exponentially distributed length, mean l/~i 

instpuctions. Thus the expectc1 execution time of a class job is lieu" 
1 

seconds. The processors are also d"ivided into two sets. k prucessol's arc 

dedicated to class 1 jobs and the remaining n-k to class 2 jobs. A 

processor will process jobs from the other class, rather t0An be 

unnecessarily idle, but an arriving job of the class to which the 

processor is dedicated will pre~lptively seize the procc~~or. Since t~e 

jobs have exponentially distributed length there is no need to 

distinguish between the cases 0f a job having to restart when i~ has 

been oreempt!:d and a job cO:ltinui!lS; Cl.t the point of pre2iiqJtior.. Thi s 

1 d d " t ~ np"oxim:r<' i /,'1 ~"h~~ mode-: ",,;:i5 postu ate as a . '! scre e means 01" <3.,) Ij !. l, '01 \" t: 
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performance of Kleinrock's discriminatory processor sharing scheme [30J. 

Class 1 jobs receive proportion kin of the available processor power and 

class 2 jobs the remainder. Kleinrock's original analysis of such 

systems ha~ been shown to be erroneous, and the expected response time 

of jobs in the various classes of such a system have been given by 

Fayolle, Iasnogorodski, and Mitrani [15J. For a two class system such as 

ours, the expected response times are 

where 

w, = [1+~lP2(g2-g1)/DJ/~1(1-p) 

W2 = [1+~2Pl(gl-g2)/DJ/~2(1-p) 

D = ~lgl(l-Pl) + ~2g2(1-P2) 

(5.1) 

(5.2) 

gi is the proportion of the processor allocated to cla~s i, Pi the 

service rate for class i jobs, Pi the traffic intensity for class i, and 

P is the total traffic intensity. 

The states of the system can be represented by a pair of integers, 

~ach integer representing the number of jobs in the appropriate priority 

c1a:5, including those being ~erved. Because of the preemptive n~ture of 

the dedication of processors and the me.'1loryl ess property of the 

exponential distribution~ there is no need to represent the classes of 

the jobs being served as there was in the non-preemptive p~ior;ty 

SYSt<'Ji, There can be up to 4 transitions from each state. Two 

corresponding to arrivals in each priority class, and the others 

corresponding to departu~es. The rate of departure tran~itions will 

depend not only on the class of job departing, but on the state of the 

1 ~ .... ' . system and on the number of processors.~c rates or lne VarlQUS 

transitions out of the state (n1,n2) are given below, depending O~ the 
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values of n, the number of processors, and k~ the number of processors 

dedicated to class 1 jobs. 

Destination Rate 

All (np n
2

) -7 (n1+1,n2) nA l 
(np n

2
+1 ) . , 

11/'2 

if n >=k and -) 1 (n1-1,112) k.c· ll l 
n,.,>=n-k (n1'n2-1) (n--I') c " , • • ..,.t"l 

£. t:. 

if t11<k -) (n1-1,n2 ) n1-co ll1 
(np n

2
-1) min[n2,1l-n1 j.C.1l2 

-i f 112 <n-k -) (n1-1,n2) minfn1,n-n2 J.c ·1l1 

(n1,n:-1) n2oc. lJ2 

~~ithout loss of generality. we shall as::'"me that c=1. This system 

was solved numerically in order to find the expected response times for 

the t~'iO classes of customer. A fairly saturated system with ;>=0.875 '(Ii:.., 

used. The system was investigated under the following cond~~ions; n, the 

nu:::ber of processors, taking the values J,2,3,4,5, and 10; k, tte number 

dedicated to class 1 jobs, tfking a~l possible values, k=O,1,2, ..• ,n. 

Wher. there -j s only a s-i ligl e processor n equal s 1, and we have a two 

class preemptive priority system in 'f!hich class 1 has priority -jf k is 1 

and c13ss 2 hC1S priority \'1hen k is O. As we incY-ease the number of 

pr·:.cessors, stayin~: -fo:' U.C r~:Oine ... :t "lith the pre2!r.ptive priority system, 

the situatio~l beCUII.2S mo'-,"' complex. IntLritively, one might conclude that 

the response time i'lould not choiile. sincp. Lf]C' traffic intensity r2mains 

constant. This is \ihat Fayonc c:t a1.'s ,~~suh. predicts. HO\rJev(;, 



110 

examination of the response times which are tabulated in Table 5.12, 

shows that the mean response time drops as the number of processors 

increases. This is true even for the lower priority class. It appears 

from Table 5.12, which is graphically di:played in figure 5.3, that the 

responsp. time tends to the service time. For comparison, the response 

times predicted by Fayolle et al. (5.1) and (5.2) are displayed on the 

same graph. This intuitively surprising result can be explained as 

follows. A random arrival will expect to find a proportion p of the 

servers busy, where pis the traff; c i ntens ity. Thus the expected number 

of idle servers is n.(l-p). For large enough n, the random arriv~~ has a 

very hi';:1 expectation that there I!:ill be at 1 east orle freo. server and 

th~t he will not have to wait. This argument can be applied to the more 

mixed system, w~,('n vI1ly SOr:1e of the processors are dedicated to a 

particular class. The same phenomenon is observed, and the same 

heuristic explanation is offered~ although the be:,aviour of the syste;n 

is modifi ed by the iv)ssibil ity of IIborror:; ngll ail idl e processor Hhich 

has been dedicated to the other class. Of course, in the strictly 

p:--eemptive case, the probl.ibil Hy that a higher pr"iority job ;''I'il1 have to 

queue can be calculated using Erlang's C fonnula. This is a decreasing 

function of n, and cert~inly has a lower bound since the differences 

between its value for successive values of n tend to zero, a~d of 

course, prohabil Hies are non-negative. Hm'l'ever, attempts to pt'ove that 

t ~i slower bound is zero have ~ a."il ed. 
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Table 5.12. 

Ci as s 1 Arrival rate= 0.5000000 Service rate= 2.0000000 

Class 2 Arrival rate= 0.6250000 Service rate= 1.0000000 

Number of processors Response time 

Tota~ Class 1 Class 2 Class 1 Class 2 

1 1 a 0.6666337 9.2005407 

1 0 1 14.2364923 2.6279103 

2 2 0 0.5333082 4.8490108 

2 1 1 0.9291195 4.6728568 

2 0 2 7.0494053 1.6204611 

3 3 0 O.50~n64 3.4337964 

3 2 1 0.5770905 3.4023259 

3 1 2 1.4033058 3.5576889 

3 0 3 4.6700526 1.3294645 

4 4 0 0.5033677 2.7412747 

4 3 J. 0.5220412 2.7323192 

4 2 2 0.6425932 2.6753015 

4 1 3 1. 9765216 2.0284232 

4 0 4 3.4893669 1.2009225 

5 5 0 0.5012523 2.3339086 

5 4 1 0.5075151 2.3308560 

5 3 2 0.5409111' 2.3145667 

5 2 3 O."l374313 2.2207717 

5 1 4 2.068(i257 1.5434506 

S 0 :) 2.9463677 1.1360835 

}C' l~J 0 O. ~·998901 1. 5S20~,OJ 
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10 9 1 0.4999628 1.5520109 

10 8 2 0.5002776 1.5518409 

10 7 3 0.5015418 1. 5511630 

10 6 4 0.5062088 1.5486715 

10 5 5 0.5222930 1.5401531 

10 4 6 0.5768641 1.5115197 

10 3 7 0.77L9!56 1.4069984· 

10 2 8 1.1522268 1.1907322 

10 1 ,., 1.4233566 1.0778378 ~ 

10 0 10 1.5629823 1.0310214 
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6 Conclusions 

We have investigated 3 methods for estimating the steady state 

probability distribution of an infinite stat0 Markov process. It has 

been shown that numerical mpthods can bE successfully used to calculate 

the steady st~te distributions of infinite state space processes as well 

as finite str+:e processes. He recommend the met~od based on Tweedie's 

results whenever enough core storage is available to make use ~f it. It 

is not only as efficient as the others, but also gives bounds on the 

possible valur·s of the d'l::itribution. The iterati'll' methods are both 

capable of solving much 12(ger systems than Tweedie's method, but they 

provide very little information about their accuracy. Of the tv/O, 

Brandwajn's method seems to be no less accurate than St:ewartls, and in 

the majority of cases it is faster. It has the advantage 0-1' being 

simpler, both in terms of its theoretical basis ard vis-a-vis ;~s 

,programming complexity. 

A method was developed to map arbitrary state SjJaces into the 

natural numbers and to allo\,1 for the effect of any extraneous st3.tes 

introduced by the lilapping. Although developed for t~arko\' precesses, 

there is no reasol1 '.':hy thee ~rar:.)formation should net be used in other 

cases \;ilere it is require to number an infinHe mesh u;-,iquely. 

t:'jmerical investigation of n~r'-preemrti'ie priority systems l-evealcci 

the ~1ightly surprising result that - geometric distribution is an 
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e~cellent approximation to the marginal distribution of the number of 

customers in each priority class. The multiple micro-processor system 

study also prod~ced an unexpected result. Although the traffic intensity 

remai ned constant, the mean response tim'" decreased as the number of 

proces~0rs increased. 

Further research is needed into the behaviour of the bounds with 

different ~,ystems. Simple birth-death processes have the upper bound 

g"iving the exact a.n~,ier. In the case o"~ priority ql'~ueing systems, the 

lower bound was a much better estimate than the upper. Some work is 

needed to find the characteristics of systens which govern these 

properti::s. Stewart suggests that his method may be better for nearly 

completely decomposC'lble s.",tems. Both Tweedie's and Brandwajn's methods 

need more in\'est~gation into their response to such systems. 
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