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Numerical Analysis of Infinite Mérkov Processes

D)

Abstract

The estimation of the steady state probability distribution of
discrete state Markev processes with an infinite state space is the
subject of this thesis. The measurement and analysis of complex queueing
systems is the motive for this investigation, since a classical approach
to analysinc queueing systems is to imbed the model in a Markov process.
The literature pertaining to the numerical solution of HMarkov processes
is surveyed, with the cbject of finding a method which will be
applicable te a wide class of processes with a minimum of pricr

analysis.

A general method of numbering discrete states in an infinite dc¢main
is deve]oped'ahd used to map the discrete state spaces of Markov
processes into the positive integers, for the purpose of appl;.ng
standard numerical techniques. A theoretical result which has net been
previously employad, is implemented and compared with two other
algorithms which were developed for use with finite scate space MHarkov
processes. Some problems with no closed Yorm anaiytic soluticu are
studied numericaliy and steady state and marginal distributions are

found.
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0 Introduction

Modern day computer installations are increasingiy complex systems,
whose performance is difficult to evaluate. The prediction of the
effects of changes to the system on its performance is 1ikewise a
difficult and time consuming operation. There are four well understood
and useful means of investigating such computer systems; (1) benchmarks-
(2) monitors; (3) simulation; and (4) analytical modelling. Benchmarks
and moi.itors are means of studying existing systems. Simulation and
analytical modelling are -pplied to probabalistic models of systems

which may or may not exist.

Benchmarks usually take the form ot a 'typical' workload for the
system being investigated. The performance of the system is meastired as
it executes this benchmark, and can be compared with the performance of
nther systems executing the same benchmark. Benctmarks can only pe used
on existing systems; they have no predictive power and if the effect of
proposed changes to a system is to be investigéted, then the changes

must first be made before running the benchmark.

Monitors are means of observing the activity of existing systems.
Like benchmarks, they h-ve no power of prediction and any ci:anges in tne
system must be maae befcre they can be evaluated. Monitors can be
hardware devices, which record or <ount state changes in the electronics

of the computer, or software routines which are called at stracegic
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points in the system to record pertinent data. Hardware monitors have
the advantage that they do not interfere with the system and the
disadvantage that it is difficult to correlate their results with the
software ¢ the system. Software monitors do interfere with the system,
atthough typically by cnty a small amount, but their data is easily

associated with particular pieces of software in the system.

Simulation and mathematical analysis are both means nf studying
probabalistic models of systems. In order to construct such a
probabalistic model, we decide on the most important components in the
system and describe their behaviour by probability distributions.
Simulation consists of exercising this model repeatedly to ¢.ive
different realisations of the system being modelied anu hence a sample
of the model's performance. The simulation itself can be driven by
random numbers drawn from the distributions which are thought to
represent the activities of the system. This is scmetimes cailed
Monte-Carlo simulation. The alternative approach is to use a record of
the actual activities of the system over a pericd of time as input to
the model. This is trace driven simulation. In either case, extensive
velidation of the model must be carried out to prove that the medel
faithfully reflects the real system. Prediction of the efrect of changes
to the system can be done by making the changes in the model and

re-running the simulation.

When using mathematical analysis to study probabaiistic modeis, it
is usually recessary to simplify the system in order to make tiw

mathematics tractable. Generally, the study of such medels involves the
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solution of a 1§rge set of simultaneous equations. If closed form
solutions can be found then it is a very cheap and eccurate approach.
Numerical methods of solving these equations take the middle ground

between simulation and closed form solutions.

ne models which have closed form solutions whick are suitable for
calculation tend to be rather simple. Other systems such as G/G/1,
whilst they have general solutions, are rot suitable for calculation
purposes without exitensive analysis. Aithough the ~lass of systems for
which solutions are known is now quite large, there remain simple
systems whose general solution is either unknown or is only kaow. in a
computationally impractical form. For example, in systems with priority
queues, either pre-emptive or non pre-emptive, although the mean number
in each priority class can be easily found, and has a simpiy calculated
formula, the distribution of the number o customers in each pricrity
class is known only in terms of various relations that the generating
function must satisfy. It is not possible to find a simple closed form

for this generating function and so calculate the state prababiiities

(@]

from these relations. Mumerical solutions can be found to a larger class
of systems. Fewer simplifying assumptions need to be mzade in order to
solve the equations. Simulation models can be arbitrarily complex, at

the expense of their computer run time.

Closed form solutions give a functional form to th. solution. The
effect of changes in parameters can be predicted and calculated casily.
Nurerical methods give only the solution for a single setl of parameters,

but they are cheap and accurate. >imulation models alsc give scluticns
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for only a single set of parameters, but their‘accuracy is proportional
to their running time. Calculating a numerical solution is always
cheaper than performing simulation experiments to the seame accuracy. The
situation is rather akin to the problem of calculating definite
integrals. The function can be intearated in the classical manner and a
general form found for the integral. This form can then be used to
caiculate the vaiue for many sets of parameters. Alternatively, Gaussian
quadrature can be used to evaluate the integral for a single set of
parameters. If the integrand is particularly compiex, then Monte-Cario
methods can be used to evaluate the result for a single set of

parameters. A large sample must be used to ensure accuracy.

A numerical solution may be possibie for mo:e complex systems than
those which are soluble by purely analytic mechods. Clearly the systems
which can be solved numerically are restricted, in that they must
engender a set of equations whose solution can be calculated mcre or
less easi]y..For example, the G/G/1 system, although it hes a general

solution [8], is not readily soived numerically, since the 'sclution'
involves taking the n-fold cunvolution of infinite series for ail n.
Ponstein [38] and Weuts and his colleagues [36,31,32,24] heve attacked
the probiem of the single server system with arbitrury distributions ¢f

both service times and inter-arrival intervals. Both authors tzke the

~4

approach of making the problem one of discrete time. That is, changes o
state occur only at times t=0,1,2,... . Ponstein anal ses an infinite
set of equations which model the system and demonstrates a numerical
method, based on polynomial roct finding in the compiex field, which

firds the solution of the equation:s. Neuts, &s well as considering
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discrete time steps, restricts the state space of the problem to be
finite too, arguing that continuous time and unbounded state spaces are
analytic conveniences which are not needed in the age of the electronic
computer. wnile this argument is not without validity, the simplicity of
analysis which made continuous time and unbounded state spaces
attractive in the pre-computer era, also applies to numerical analysis

of solving such systems.

A simpler apprcach to solving complex, generally distributed
queueing systems is to extend the descripticn of the states of the
system so that the enlarged cystem is a Markov process and to find the
steady state distribution of that Markov process. This was the basis of
Erlang's classical method of stages and is tne approach that we shall
follow. We investigate various proposed algorithms, with a view to
finding a method, or smail number of methods, which is applicable to a
large class of-systems with a minimum of methods for the systems, being

reeded to ensure the convergence and accuracy of the soiution.

Chapter 1 of this thesis contains a definition of Markov processes
and of the terms that we use to classify and describe them. The

nctational conventions that are used are aisc introduced.

The second chapter is & survey of the literature concerning the
numerical solution of Markov processes. Both the finite _tate space and

the infinite state space problem are examined.

The following chapter describes, in some detaii, the aigor.thms

which are to be investigated, with emphasis on their computer
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implementaticn. Some costs of the algorithms are estimated and compared,

and their performance on a simple system is analysed.

Chapter 4 considers some further practical problems involved in the
computer application of theoretical methods for solving Markov

processes.

Chapter 5 compares the performance of the algorithms
experimentaily. A system witnh known solution is <olved using all the
algorithms. Marginal probabilities for a system with no closed form
probanility distribution are found. A distributed computing system is

modelied to confirm heuristic arguments about its performance.



1 Markov processes

In this chapter, we define Markov processes and chains and tne
terms that we use to classify them. The notational conventions used

througout the thesis are given.

1.1 Definition

Let the set of possible states of the system being studied be X ,
and let X(t) be the state of the system at time t. {X(*),t20} is a
Markov process if the probability of the system being ir a particular
state at time t+at, X(t+at), depends only on the state of the system at
time t, X(l), and not on any previous history of the system. ile shall
only be concerned with systems where {X} is a discrete, denumerabie set
of states. For the time beina, without Toss of generaiity, we consider
{X$ = N, the set of natural numbers (positive integers). IT state
changes only occur at times t=0,1,2,... or if the passage ot time 1s of
no interest, then we can denote the states of the system is X, at

j
'time' i. In this case, the process is called a Markov chain.

Markov chains are chiracterised by tneir transition protability
matrices, P, where pij is the probability that the sysc» will be in
state j at instant k+1, given that it is in state i at instant “. Markov

processes can be described mathematicaily in two, essentially
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J.(t) as the probability that a process in
state i at time 0, is in state j at time t. We shall denote the matrix
(sij

given by the derivative of S with respect to t, at t=0. We shall only be

equivalent, ways. We define S
(t)) by S(t). The matrix of instantaneous transiticn rates, Q, is

interested in processes where the transition rates, or the transition
probabilities in the case of Markov chains, are constant. These are

celled temporarily homogenecus processes.

In this case, it is well known that
S(t) = exp {Qt} (1.1)
wheio exp{. }is the (matrix) exponential power series. (See for example

L8] P 45.)

The states of the system can also be clcssiiied. If there exists a
sequence of states k=10,11,...,1n=j such that q1t1t+1#0 for
t=0,1,2,...,n-1, then we write k > j and say that there is a path fron &
to j. It is-important to realise that this is not a reflexive
relationship. The existence of a path from k to j has no implications
about the existence of a path from j to k. If k> j arnd j - k then j and
k are said to commuunicate. The states of the system can be arranged inte
subsets or ciasses within which all the states commuricate. Classes
which have no paths leading to states outside the class are calied
essential . Classes which do have paths to states outside the class are

inesscrkial. The states which belong to inessential classes are
. . . . &« . .

transient. States which are members of essential classes are either all

recurrent or aii transient. Difforent classes may be recurrent or

transient. Once the system has entered an essential class, it can only
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occupy states in that class, and in no other classes, subsequently. If
returns to a state of a chain can only be made at times d,2d,3d,...etc.
for some d>1, then the state is periodi. with period d. Other states are
aperiodic. All states in the same class have the same period. If all the
states of a chain are members of the same essential class, then the
chain is said to be irreducible.

As an example, consider the 5 state Markov chain defined by P

P = 0.5 0.4 0 0 0
0.3 0.7 0 0 0

0.1 0 0.7 0.2 0

0 0 0 0 1

0 0 " 1 0

There are three classes of states. The states {1,2} form an essential,
aperiodic class; {4,5} form an essential cliass with period 2; {3f is an

inessential class.

We can also define
ni(t)=Prob system in state i at time t
and the (row) vector m(t}, which represents the probability distribution

of the states at time ¢.

If we assumec that a chain is in state i at time t=0, then the
probability distribution of being in a particular state at time
t=1,2,3... etc. 15 give. by_giPagiPZ etc. , where_gi is the unit row
ve.*or with 1 in the ith component and 0 in all others. If the chain is
irveducible, or if there is only a single essential class of states,

I . . .
then *hie powers of the matrix P, P°, tend to a matrix uhich has
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identical rows. Thus gﬁPk will tend to a vector which is independent of
the starting state, i, and is called the steady state distribution. We
denote the steady state distribution by x. A vector x which satisfies
x=xP, is a stationary distribution. Clearly, = is a stationary
distribution. If the process is henest, it is the unique stacionary
distribution. Under similar conditicns, as t > « the matrix of

transition functions, S(t), tends to a matrix with identical rows, each

row equal to m.

We shall consider that we know only the transition rates between
the states of the system and that they are independent of time. This
implies that we know the rate matrii Q, and use this to define the

process.

Define Q=(q,.) as the matrix of transition rates from state i to

qij
state j, without defining 9 for the moment, then we have

1ri(t+At) = 5,

1(t)(1'291k°At)

k# i
. 2
+ qu;nk(t)At + o(at®)
k#i!
Define q;; = - Ig,, (as it must if Q is conservative) then

K#i

wi(t+At) = ﬂi(t) + g (t).q . At + O(Atz)

Let ={t) = row vector of [« (L)} then

i

FARERY PPN , 2 ] 3\

s(tvat) = aft)r w(7,%t + oat™) (1.2)
Hence, recarranging and “oking the 1imit as at >0

x(t) = x{1)Q , (1.3}
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but in steady stateli(t) = 0 and n(t) = =, hence

Q=0 (1.4)
where = i5 the steady state probability vector. Equations (1.4) are
called the balance equations of the Markov process. Equations (1.3) are

the forward Chapman-Kolmogorov equations.

An alternative approach comes directly from equation (1.2). Since.
when steady state is reached

n(t+at) = u(t) = =

=7+ QAL + O(Atz)
@ = aP 11.5)
where P = I+Qat and we neglect terms of order Atz. We ace free to choose

At subject to the Vimitation that it ought to be small enough tc make
the probability of more than one state change in any time
interval (t,t+at) = o(AtZ). P is the so called jump chain matrix of the
process, and éan be interpreted as the probability transition matrix of
an aquivalent Markov chain, with the restriction on At being that

;pij = 1 for all i, or P is stochastic.

J

In this case, it can be shown that P will have at least one
eigenvalue of unit modulus, and in fact one eigenvaiue equal to 1.

( Consider e the column vector with all components equal to 1, cieariy

it is a right eigenvector.) n is thus the left eigenvectur corresponding

to the unit eigenvalue. It can be shown also using Gerzchgorin's Theorem
that all ceigenvalues of P are less than or equal to 1 in modulus. This

has important consequences for the convergence of some algorithme
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Nothing so.far stated has excluded processes with an infinite state
space. A little care is needed to define infinite matrices and the
various operations on them, but the same results hold in general. We
shall he mainly interested in such systems and in the effects of

truncating the state space.

1.2 Notation

Except for a few sections, we have attempted to be consisten: in
our notation throughout this the.is. "here it is possibic we have used
tne most popular convention from the literature of Markov processes, but
on occasion we have had tu deviate in order to pressrve our own
consistency. For example, the matrix of transition functions, S, is most
often denoted by P in th: literature, but we use that for the

transistion probabiiity matriv of a Markov chain.

Cfapital Roman letters are usad to denote matrices, wich individual
elements denoted by the same letter in lower case, subscripted. Vectors
are lower case letters, Greek or Roman, underlined, end their compcnents
are the same letter wiii. an appropriate subscript. All vectors are
considered as row vectors. Column vectors and transposed matrices are
designated by & prime ‘._gi represents the unit vector, with all
components equal to 0 cacept the ith. & is the vector with all
couponents equal to 1. I represents the identity matrix. He dencte
the n > n truncation of the infirite matrix A by (n)A‘ Conventionally

this "5 a "north west corner" truncation, that is
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aij.1f i¢n and j¢n

0 otherwise.

(n) %

Summations are taken over all possible values of the index, unless

otherwise indicated.

More specialised conventions are described below. Q is the
(possibly infinite) matrix of instantaneous transition rates. It is
conservative. P is a probability transizion matrix and as such is
non-negative and stochastic. = is the steady staie probability vectur. A
is a general non-symmetric matrix and Z is its inverse. L is a lower
triangular matrix, U is an upper triangular matrix, and D is a diagonal

matrix.
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2 Literature Survey

In this chapter we survey the literature concerning numerical
methods for finding the steady state distributions of Markov chains and
processes. For a process with a finite state space, this involves either
of two classical problems of linear algebra, the calculation of
eigenvectors or the solution of simultaneous linear equations. Various
optimisations and computational improvements can be found hecause we

have additional knowledge about the structure of the matrices involved.

2.1 Infinite State Spaces

Various author< have considered the problem of approximating
infinite matrices by their finite truncations. These developments have
nearly always been motivaied by our problem, nameiy solution of Markov

processes, but very 1ittle numerical evidence has been presented.

[

Kemeny [28] consid:.s the probliem of approximating the transition
matrix for an infinite Markov chain. His approach is o find

(N

representations for P in terms of matrices C, D, and &, such thet



c =gt

P = CDE
and hence

P" = cD"E

Many such representations are known 7or finite dimensional P, but when
infinite state spaces are involved more care is needed. For special
structures of P, slowly spreading Markov chains, Kemeny shows that such

a representation is possible and D" s easily calculated.

Jensen and Kendali [26] consider those systems with bounded
generators, that is a5 i > M for some constant M < 0 and for all i. This
inc]ude; many interesting syteus, but not all. For example, the M/M/=
system has s, = - (A (i-1)u) when the states are numbered 1,2,.., and
hence dces not have a bounded generator. They recommend using a matrix
squaring procedure on the matrix I[+Qt when the process is known to be
aperiodic. They state that if the state space is infirite then the
matrix will have to be truncated, but they dc not produce cny numerical
evidence that they actually attempted to solve any processes. Ty a
simple argument, they show upper and lower bounds for elements of (n)S,
but do not discuss how these bounds relate to $ (the infinite matrix).

Using the Perron-Frobenius theorem for non-negative matrices Seneta
[41,42,43] showed that by considering P, the transition probabiiity
matrix for an infinite Markov chain (which is non-negative), the
steady state probabilitics, T could be approximated using the
n>X n truncation of I-P. Tweedie [ 497 extended this result by proving

that the samne approximaticn was valil when Q was used in placc of I-P.
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He also showed that less restrictive conditions on Q were needed for his
result. He also developed another approximation formula that converges
to give elements of the matrix S(«), which correspond to states in

different communicating classes of the :siate space.

Seneta is the only author to have considered algorithmic and
numerical aspects of the infinite case in any detail. Golub and Seneta
[18] consider the special case of a system in which all the elements of
one column of the matrix are greater ihan some cor:tant, which is itself
strictly greater than zero. That implies that there is always cne state
of the system which is reachable in a single transition from all other
states in the system. This is rather unrealistic for many real life
situations.

Defining the row vector y by

y. = d(j) where inf p.. > d(j) > 0
J i 1]

0 otherwise,

they show that
w(I-P+e'y) =y
in the infinite case, and that the solution of the truncated set of
equations
(= (1= (Pt & () = ()X

7. > 1w, from below as n -> .
(n)"i i

o]

reitrarily

~
o

By constructing certain <pecial cases of P, they cian produce
sle convergence to the true solution. Subsequently, in [19] stochastic
matrices of a different form are investigated. It is shown that if the

truncatiens of P can be made stocrastic in such a way that n-1 of the
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equations
()" = (myt (2-1)
where (n)P* is the stochasticised version of (n)P’ are identical to n-1
of the first n of equations (1.5), then the solutjons to (2.1), (n)Ts
tend to = from above as n tends to -. As before, special cases of P can

be constructed with arbitrarily slow convergence.

In a later report [1] arbitrary stochastic matrices are numerically
investigated , comparing the approach of solving the eigenvector problem
implied by ecuations (1.4} and the limits given by Seneta. Several
algorithms are tested for each approach. To use the limits given by
Seneta's vork they calculate (I-~P)'l using Gaussian elimination, Jezobi,
Gauss-Seidel, and SOR iteration methods and an vausual non-staticnary
iterative method due to Fruser et al. [16]. Of these methods they show
that Gauss-Seidel is at least as good as Jacabi or SOR iteration. The
non-stationary-method, hovever, outperforms Gausc-Seid~l (by several
orders of magnitude in some cases). Nevertheless, they rccoumend

‘Gaussian elimination to find the 1imits given by Sencta. Takirj the
eigenvector approach of equations (1.4) they consider both general
eigenvector aigorithms, such as the power metnod, and aiso more
specialised algorithms deve'oped expressly for non-n.yative matrices,
such as Yamamoto's [51] and that of Hall and Porsching [23]. Despite
tﬁeir specialised nature *hese algorithms ars vasily cutenriormed DY
1nverse iteration. The power method was.not actually costed since it is
known tc have poor convergence ia many cases. Comparing theilr {we
recommenced methods they find that inverse iteration is, in ger=vail,

fascer than Gaussian elimination. i~iever the method based on Seneta’s
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results does give bounds on the accuracy of the estimates so they
recommend a judicious use of both methods. Inverse iteration to discover
the approximate order of truncation necessary, followed by Gaussian
elimination to give upper and lower bounds to the estimates. This work

is also reported, perhaps more accessibiy, in [2].

Their test matrices are all full and the truncations tested are of
various orders <35. In practice, when modelling rea! world systems the
transition rate matrices are very spdrse, since Lransitions tend to oniv
be made to neighbouring states of which there are few, but the state

spaces will be much Targer.

2.2 Frinite State Spaces

Turning now to finite state space problems, many authors nave deait
with the calculation of the stationary distributicn. Paige et. ai [37]
review eight algorithms that have been used in the past. They reccmmend

solving
a(l +P +e'u) =u

vhere u is a row vector such that u.e'#

On the basis of numerically testing 60 different stochastic
mi“rices of orders 8,10, and 40, they suggest that the best choice or U
is a row of P. Another good choice for u is a unit vector aitnouch this

-
]
i

does not give such good computational results in practicc.



19

Equation (1.1) has been used by several authors to find estimates
for S(t). It is convenient to rearrange this formula for computation. If
we define 9=—1/sup(q11) then

S(t) = exp{-t/8} exp {(I+Qp)t/8}

This rearrangement has ilie advantage that all the partial sums are of
constant sign. Grassmann [20] has used this approach to find fransient
probabilities for queuesing networks. He only considers finite state
space problems and zpproximates steady state by allowing t > =, stopping
when successive estimates are close enough. Kerridge [29] has also
worked with a slightly different rearrangement of (1.1), and gives some
exanples of applying his approach to problems with a small, finite state

space.

Wallace [50] was the first to use numerical technjnue for solving
‘real' queusing systems. The method used was essentially the power
method, althcugh Jacobi iteration was also available, and as such
convergence was proportional to the sub dominant eigenvalue. A very
efficient sparse matrix code enabled them to perform muiticiications in
o(non-zeroes) multiplicaticons. The Recursive Queu> Aralyser (RQA) as the
system was called, has been successfully used on many problems up to
5000 states in size. This is almost 100 times the number of states that
any other author has reported soiving, with any method. A later
paper [25] describes the use of the RQA in an integrated package for

designing computer systems.

Stewart, in iis thesis [447 demonstrates the difficulties of

appiying the power method to deccuposable or nearly-decomposable
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systems. In these cases the sub-dominant eigenvalue is close to 1 and
convergence will be very slow. He develops a simul taneous iteration
technique which converges on the m dominant eigenvalues and the
corresponding eigenvectors simultaneousiy. Its rate of convergence is
governed by the ratio of the first and the m+1St eigenvalue. In a Tater
survey L46]}, he compares various iterative methods with his simultancous
iteration method. When one has no estimate for =, the favoured approach

is to solve

or arbitrary x. Now P is singular, so Gaussian elimination will fail
when a zero pivot 1s encountered. However if this zerc pivet is replaced

by machine epsilon and the calculation continued, the solution vector,

errors in each elem~nt are of the same order and it is = very guod
approximation to m. If solutions =re required tc a closely retatec
system, then this solutiovin can be used as a first approximation, sna
simul taneous itevation used to find the solution of the neii system. In
another paper, Stewart (471 presents a special purpose method very
similar to row-Gaussian elimination on the matrix ', cscliving the
homogenous equations Q'='=0", with the last equation repiaced by tha

pommal ising condition.

Gaver and Humfeld [17] have used modified forms of Gauss-Seidel
jteration to solve the baiance eouations (1.4). They suggest performing

an itoration of the Gauss-Seidel methed, and then icplacing T oy 1-ov,
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or 0, whichever is larger. The idea is to preserve the sum of the
probabilities as 1. They also claim to have a proof that crdinary
Gauss-Seidel iteration will converge, although the balance equations are
singular. The "solution' arrived at by tnis means will not, other than
by chance, satisfy the normalisation condition on probability

distributions, ihich has to be imposed by normalisation.

Brandwajn [6] has developed two iterative methods for solving
Markov processes that arise from multi-dimensicnai state space problems.
The first method is based on the equivalence and decompostion method for
solving queueing networks. A prouabalistically eguivalent networx is
acfined and solved analytically. The resulting solution is used in an
jterative procedure to find the solution to the original problem.
Unfortunately, the convergence of this method is not guaranteed.
However, if it does converge the method works better the more nearly
completely the system ic decomposable. This is in ccntrast to most
methods which have great difiiculty in solving rearly completely
decomnosable systems. The rate o convergence depends heavily on
achieving the correct decomposition into the equivalent system. If the
system is decomposed with respect to the “wrong" variable, then
convergence can be extrumely slow, if attained. His second method 1S a
much more local attack on the balance equations {(1.4). By careful choice
of the relaxation factor, the invariance of 211 is preserved betveen
iterations of an under-iclaxed Gauss-Seidel method. The convergence of

this method can also be proved.

sat and Raju [4] have studiod the effects of truncation cn finite
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state space Markov processes. Working from properties of the first
passage time they develop a procedure for estimating a suitable size of
truncation, in advance, which will give good estimates of the first
passage tima for a state. Unfortunately their procedure wili not
generalise to infinite state spaces for several reasons. The key rosult
that is used to calculate first passage times only holds for finite
state Markov processes. Even allowing for this the method depends on a
particular restriction on the structure of P, which while it holds for
single g''oue systems. would impose a very strange state numbering on

other systems.

Mi.irani and Hine [35] iave used a novel generating function
approach to provide approximations for a general two dimensional
birth~death process. They assume that the transifion rates out of state
i,j are indczendent of j, for j>J. Their method proceeds as follows.
Assume thot "ij=0 for all i>1. This gives us a set of I+l equations
which relate the I+l generating funcuticns Gi(z). These can be soived
synibolically, and the T evaluated. The process is then repeated for
larger values of I, until the prchabilities stop changing. The process

normally converges very fast.



23

3 Algorithms

After careful consideration of the literature, it was decided that
3 methods for calculating the steady state probability distribution were
both general enough in the class of problems to which the, applied, ana
offered enough advantages over similar methods to warrant further

investigation.

Tweadie's results [49] are the only theoretical apprcaches which
are directly related to the infinite state space case. Yhey give bounds
on the ratios of elements of the steady state probability vector using
cofactors of zlements of the finite truncations of (), the instantaneous

transition rate matrix.

Iterative methods start with an estimate for = and successively
iinpi-ove on the estimate. We shall consider Stewart's simul taneous
iteration method for calculating eigenvectors applicd to the equation
aP = w. Since wz are only interested in the dominant eigenvector of P,
von-Mises power method could be used, but it is known to have poor

convergence properties in many cases.

The other jterative mothos that we shall examine is Brandwajn's
method. It is an attempt tc solve the global balance equations (1.4),
which are homogenous, by & novel relaxaticn method. The relaxation

fac*or is different for each equation and ensures that the invaria.ce of
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In is preserved between iterations.

We shail now discuss the algorithms in more detail, with particular
attention to the problems of their implementation on & computer. The
computational requirements of each algorithm in terms of both space and
time are compared. The final section attempts to analyse the performance

of two of the algorithms when applied to the M/M/1 system,

3.1 Tweedie's Method

R.L. Tweedie has extended Seneta's work [41,42,437 on finite
truncations of an infinite matrix in [48]. Many of the restrizticns on
the structure of the matrix, that Seneta found neccessary, are Tifted. A
later extension [49], applies specifically te Markov processes and is
the theore.ical basis for our direct metrnod of estimzting =. Given Q, he
shows that

cof(i,3) m. cof(i,i)

gl (3.1)
cof{i,i) ™ cof(J,i)

as n > «, where cof(i,j) is the cofactor of the *,j entry in tihe
north west corner truncation of Q. These approximations form bouads on
the possible values of =, and are valid vhen i and [ belong to the same
essential class of states. The obvious way to utilise these resulis is
to calculate the cofactors 77 the elemenis of & singie vou ard cotumn o
Q, say the first, and of the diagonal elaments. From trese values, Lhe
ratios of the probabiiities ¢f various states to the prebability of

state 1 can be found with both upper and lower bounds. Senmeta proved the
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same results for the cofactors of the truncations of I-P, which is a
first approximation to -Q. Tweedie also presents an approximation which
converges to the ratio between elements of S(«). When cast in terms of
x, this approximation is
cof(i,j)cof(j,1) L
5 > — (3.2)

cof(j.i) .
(3.i) "

This estimate converges under Tess severe restrictions than the bounds,

but since we will have only one essential class, this freedom will be of
no account. Ail states that we are interested in will belong to the only

essential class.

Although the theory develops thes<e approximations in terms of
cofactors of (n)Q’ (1is is not a practical way to calculate them.
Cofactors of elements of nXn matrices are *he determinants of n-IXn-I
matrices, and calculation of a determinant is as costly as solving
simul taneous 1inear equations of the same order. However, cofactors are

intimately related to inverse niatrices. In fact, zij=cof{j,ﬁ)/D, where D

is the determinant of the matrix ond z,. is the 1,] elamen’ of the

1]
inverse. Thus the ratio of cofactors of a matrix is egual te the ratio
of corresponding elements of the transpose of the matrix's inverse.
Instead of calculating i cofactors of an n<n matrix, we need to find 3n

elements of the inverse matrix (3n-2 actually, since the diagonal

element i,i is in row i and column i too).

Although the resuliz hold for any Merkov process, for the nrocesses
thai we are interested in, the matrix, Q, wiil be sparse; that is most

of its ontries are zero. Typicalliv from any state the system will only
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be able to make transitions into a small number of other states. For
example, in the M/M/1 system, the Q matrix is tridiagonal. Transitions
are made from state i to state i+l, representing an arrival, and to
state 1-1, representing a departure from the system. The diagonal of the

mactrix is alsc non-zero >ince the system is conservative.

We shall only consider direct methods for finding the inverge of Q.
Although iterative methods such as the Gauss-Seidel method are common
for sparse matrices, we do not use them here. The convergence of such
methods is guaranteed for the matrices in which we are interested by the
diagonal dominance of Q, but the inversion of a matrix in this manner is
equivalent to solving n sets of linear equations. Solution of one set of
such equations by an iterative method is of no assistance as far as
solving the same equations with a different right hand <ide. Also the
convergence would probably be very slow for reasons discussed in the
section on Stewart's niethod. The conjugate gradient method of solving
linear equations has been gaining in popularity recently, but it is also
iterative in nature, and has the added disadvantage of dealing with
symmetric matrices only. It can be modified to deal with unsymmetric
matrices, at the expense of doubling the number of operations per
iteration and the condition number of the matrix, but the equivalence of
inversion to solving n sets of linear equations remains. Theory predicts
that with exact arithmetic the conjugate gradient method will converge
in exactly n iterations, and its utility for sparse matrices depends on
its convergence to an acceptabie appiroximation in considerably 'ess than
n iterations. In practice, when applied tc this problem approximately 2n

itei ations were used for each eauztion.
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Sparse matrix codes attempt to take advantage of the zero and
non-zero elements in the matrix such that operations on such matrices
1nv51ve the non-zero entries only. Although a special purpose sparse
matrix code could have been written, which could have taken account of
the known structure of Q, a general! purpose set of sparse matrix
hand1ing routines was used for this work [10]. Special purpose routines
have been used by Stewart [47] tc solve the global balance
equations (1.4), with the last equation replaced by the normalising
condition. The routirzs always used the diagonal element &s pivot.
Although the diagonal dominance of Q ensures accuracy, this will give
rise to excessive fill-in, that is zero elements becoming non-zero, From
our poinc of view, the main drawback to wrifing specia’ purpcse code to
manipulate sparse versions of Q is that we have very little knowiedge of
its structure, other than that it is sparse. Different systems give rise
to Q matrices with radically different patterns and sizes of non-zero
element. The choice of representation for the system wiil also affect

the positioning of the non-zero elements in Q.

The routines used in this work are widely avaiiable and perform the

operation of solving the equations

Tnis they do by forming the L/L factorisation of A, and providing
routines which will operate on vectors using this factorisatior W A L
is a lower triangular matrix with unit elements on the dizgonai. U is

uppe. trianguiar. The vroutines cai operate on vectors using A, A" end
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their transposes. As is common with sparse matrix codes, the routines
choose pivots for their factorisation based not only on the size of the
elements which remain to be eliminated, but also on the number of zero
elements which will become non-zero if a particular eiement is chosen.
The elément which causes the minimum fill-in will be cnosen as pivot,
subject to the additional constraint that it must not be less than some
user supplied sparsity factor times the largest remaining element in
that particular row or column. Altering the value of this paramater does
not affect the accuracy or sparsity of the resulting form of the inverse
much. If no account is taken of size when pivots are chosen, but only of
the amcuat of fill-in they will cause. an inaccurate solution may
result. The accuracy of the decomposition can be monitored using a
standard technique {10]. Cice again only if no account is taken of size

when choosing pivots does this perturbation factor become targe.

To calculate the various bounds ana approximations civen by Tweedie
we need, assuming that the ratios with the first state will be vsed, the
first row, the first column and tke diagonal of the invers.. The first
.ow and column are easily computed, but to find the diagonal by
conventional means requires calculating the complete inverse matrix
(albeit row by row). This can be an expensive business. However, Erisman
and Tinney have presented an algorithm [141 which uill calculate a

subset of the alements of Lhe inverse of a sparse matirix.

aose elanents
thet corvespond to non-zzro elarents in the transpose of the L/U

clearly co, are manbers of this subscet. The slgorithe assumes trat any

s ~

S

[72]

{

non-zor) elements which become zerc 2s a result of the factorisetion
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remain stored as it they were non—zéro; that is, their values become
zero but they rémain as elements in the representation of the matrix.
Ali1 sparse matrix routines known to us operate in this way. Any element
of the inverse which corresponds to a ncon-zero element in the transpose
of the L/U factorisation can be cal-ulated. Again considerina the matrix
A, and denoting its inVerse by Z, we factorise A into LDU, where L is
unit lower triangular, U is unit upper triangular, and D is a diagonal
matrix. This factorisation is easily constructed from the previous one,
by dividing 2lements of U by the diagonal elements. It is easily seen
that

Ll s (1 -z

z=vt+z(1 -0 (3.5)

FA 3.

1]
—~

3
~

14

Note that (I - U) and (1 - L) are strictly uppe: and lower triangular,
respectively, and havé a zero diagonal. D'l is easily calculated and i<
also diagonal. U'1 and L'1 are upper and lower triangular, respectively,
and have unit diagonals. Thus we use (3.4) to celculecte elements of £
above the diagonal

n

o= - (3.6)
i3 k= 1+11k kj Y

and (3.5) for elements below the diagonal.

1 | (2.7)

Z.. = LJ

ij ;

C—JI.V]:

Z
41k
.L

-

-1 - . .. . - .
U™ and L™% are not requived. Elements on the diagonal of Z can be

calculated from cither

. | 3.8)
zii = Mdig 7k Sk (3.2

-1 ™~ 3

Y.
[



or
n

Z,. =1/d.. - % z
ii LR

ik ki (3.9)
Normally we choose whichever formula involves fewer non-zero elements.
Although the formulae involve Z, it can be shown that any element of Z,
Zij (say), which corresponds to a non-zero in (LDU)', can be calculated
frem the formulae, since the calculation involves only other elements of
Z, Zey (say), in the same subset and such that sdi and t2Jj. Knowing that
we need the aiagonal of Z, we can find from (3.8) or (3.9) which
off-diagonal elements of Z are needed. Only those that will be
multiplied by non-zero elements of U ¢+ L need be calculated. These
elements of Z may in their turi require other elements. Eventually, we

can find the complete set of elements that are needed and calculate

them, starting with znn and working backwards.

It is 1nteresting to note that this algorithm gives us 3 methods
for ca]cu]atihg an element of the inverse's diagonal. (1) a: an element
of a row; (2) as an element of a columny and (3) using the
Erisman/Tinney algorithm. Both (1) and (2) are provided by the sparse
matrix routines. Te.is of the Erisman/linney algorithm indicate that,
although a rigorous error anclysis is difficult, the vziue that it
caicu]ates for a diagonal element seldom differs from the values
generated by (1) or (2) by any more than methods (1) &and {Z) already
d” ffer from each other. Comparison of the speeds of thec two metheds for
calculating the dizgonal ¢f the inverse indicate that for the vast
majority of cases the Erisman/Tinney algorithm is much faster. The naive

methed of calculating each row or coiurin individually is oniy better in
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those cases where the sparse factorisation of Q has a large number of
non-zeroes in each row or column. Duff and Reid [13] have observed this
phenomenon and attribute it to the method used to store the sparse
representation of the matrix. Other representations of the matrix might
well avoid this problem. For example, Duff [12] has written a set of
sparse matrix routines which outperform those used in this work by a
factor of 3 for typical test data, but they were not available at the
time that this work was carried out. Another direct method, the AQ
algorithm, has recentiy been developed by Borland [5] for solving Tlinear
equations. This method factors the mztrix A into A=LQ, where L is a
Tower triangular matrix as bofore, and Q is an orthogonal matrix.

Solutions to Ax'=b' are then found using

g = Ll (3.10)
x'=Q'y (3.11)

>
|

(Recall that Q'1=Q' for an orthogonal matrix.) Berland claims that there
are great savings to be made using this algorithm, since advantage can
be taken of sparsity in b as well as in A. b is very sparse when we are
finding the inverse, since it wili be the unit vector. Another advantage
is that the L{ factorisavion often has fewer non-zero elements than the
LU factorisation of the same matrix. (Hote that the L matrices are not
the same in these factorisav-.ons.) Unfortunately, che metiwd has only
recently been publiched and in the absernce of tried and iested
subroutines to perform it, there was not time to do any tests with the

algorithm.
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Theory predicts that all elements of Q'l Will be of the same sign,
since their ratios approximate the ratios of probabilities, which are
all non-negative. In numerical practice this is not always the case. For
example, the Q matrix corresponding to the M/M/1 system with arrival
rate 0.1 and service rate 1 is tridiagonal. Its inverse is eusily
calculated, and is positive. The sparse matrix routines, however, give a
nejative estimate when the truncation is larger than 20 states. If the
truncated matrix is inverted by a standard subroutine, taking no account

of its sparsity, it is reported to be singular.

To allow for these difficulties, a Tairly generous policy is
followed to give an estimate for LD if either, or both, of the
estimates given by the less severe approximations (3.2) falls within the
interval defined by the upper and Tower bounds (3.1}, then it, or their

.. If the less severe approximations 1ie outside the

mean, is used for T

interval given by the bounds, then the mid-point of the interval is
used. If the'upper bound, or the lower, is negative, the positive one is
used. If all the approximations are negative, then zer2 is usea as an

estimate.

3.2 Stewart's Method

~

Stewart has developeu a simultaneous iteraticn method for finding
partial eigensolutions ¢i matrices. The method caiculates the subset of
the eigenvectors corresponding vo the domirant subset of eigenvalues.

Both right-hand and jeft-hand eigenvectors are found, but i Cu’ Case,
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we shall only need the dominant left eigenvector of P, the jump chain
matrix of the process. A variant of the algorithm, lopsided simultaneous
iteration, converges to either the left-hand or the right-hand

eigenvectors.,

When using this methcd, or the power method, we need to construct
P, the jump chain matrix, from Q. Clearly, P = I+QAt gives the
probability that a transition will be made between states i and J in the
time interval (t,t+at), given that we are irn state i at time t. Since
the system is Markovian, and thus memoryless, the only restriction that
ve need to place on At being that P :ust be stochastic. If P is
stochastic, then e', the column vector with each entry 1, is a right
eigenvector and = is a Teft eigenvector. Recalling that =) = 0, the
factor At will not affect the eigenvector provided that P remains

stochastic.

Let R denote the absolute vaiue of the maximum modulus diagonai
element of Q. Since Q is constructed to have zero row sums and all the
off-uiagonals are non-negative, the diagonal must be negative. IT
0 < At <= 1/R then the row sums of P will be 1, ar1 the elements of P
will be non-negative, which is the definition of a stechastic matrix. By
Gerschgorin's theorem, no eigenvalue of P can he greater than 1, which
is trivially an eigenvalue. If At < 1/R then a1l the cigenvalues of unit
modulus must be equal to 1, since the eigenvalues are corciinet in the
uniorn of the circles, centre Pyje radius 1'p11’ in the cumplex plane.
The circumferances of these circles a}1 meet at the point 1 on the real

axis. If At = 1/R then the unit circie cenired at the origin coitains
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all the eigenvalues, but there can now be compiex eigenvalues of unit
modulus. In the presence of multiple eigenvalues of the same modulus the
power method converges to a vector which is a linear combination of the
corresponding eigenvecfors. Stewart's method [27] will converge
correctly even in the presence of several equal modulus eigenvalues,
although we must use more eigenvector estimates than the matrix has
equal modulus eigenvalues. It is also important to choose m as the
eigenveptor corresponding to 1, and not to some complex eigenvalue. If
the matrix P is irreducible, then the unit modulus eigenvalue will ue
unicue. Normally our processes will give rise to an irreducible P, but
not always. Seneta [43] proves that matrices corresponding to nrocesses
with a single essential ~lass =f states, have a unique unit eigenvalue
and corresponding (left) eigenvector z. We siali always construct Q for
our processes, such that there is only a single essential class of
states. Thus convergence of the power method must be to the eigenvalue
1, and the eigénvector 7, at a rate which depencs on the ratic of the
dominant eigenvalue (1) to the subdominant eigenvalue. Stewart's methed
will also converge and its rate of convergence deperds on the ratio of
the dominant eigenvalue to the maximum modulus eigenvalue whose

corresponding eigenvector is not being found.

The choice of At should be made so that the rate of convergence to
the dominant eigenvalue is as fast as possible. Weiiace £5071 recommends
that at should be chosen as large as possible, and since he was using
the power method, used At = 0.99/R. When using Stewart's method, we can
choose At = 1/R, and still converge on the correct eigenvecter.

Nunerical experiments with an M/M/+ system indicate that a smeirl At will
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tend to cluster the eigenvalues close to 1. For example, when the
arrival rate was 0.8, the service rate 1, and At = 0.1/1.8, then the
eigenvalues all fell in the range (0.8,1.0). When At increased, so did
the interval containing the eigenvalues. In this case the eigenvalues

were 1é1at1ve1y evenly distributed along the interval, but M/M/1 is very

well behaved anyway.

Stewari's method consists of choosing a set of estimates, U, for
the m dominant eigeivectors of the matiix, A (say). for which we wish tc
find the eigensolution. We shall consider right eigenvectors here, but
there is no loss of generality, since to find left eigenvectors we apply
the same algorithm to A'. The first coiumn of U is our estimate for the
dominant eigenvector, the second column for the sub-dominant
eigenvector, an< so on. We then perform the following operations until

the estimates of the eigenvectors converge.

V=AU (1,

G =4V (2}

H=uU'v (3)

GB = H (4)

E = Eigenvectors of B. 5)

W =VE (6)

Normalise W and test for convergernce. (7}

Us=H (8)
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B is a matrix which abstracts the relatioﬁship between the
eigenvecters, and it is called the interaction matrix. If this
interaction analysis is not performed, then the columns of U would all
converge on the dominant eigenvector! Stewart has identified various
problems which can occur with this simultaneous iteration method. He has
also developed several optimisations of the general algorithm stated
above. First, the initial estimate of = might be orthogonal to =. in
this case, convergence wouia not be to », but to some other eigenvector.
This is extremely unlikely, and has never been observed, but can be
overcome by replacing the trial eigenvector corresponding to the least
significant eigenvalue by a random v.ster at each iteration. © is
symmetric and positive-definiic, by construction, so that the equation
solution implied by step (4) can he accurateiy perforncd without
pivoting, using Choleski's algorithm. Occasionally, the interaction
matrix, B, is defective. This can happen because A ha< a defective set
of dominant eigenvectors, or by chance in the ccurse of the iterations.
If B is defective, then the eigenvector estimates in E wili be almost
parallel, and in the following iteration the equation solution at
step (4) may fail. In this case, one can either omit the interaction
analysis for that iteration, or {ollow Stewart's sugs2sted solution,
which is to modify G by addingvmaéhine epsilon to the diagonal and
re-solve step (4). Another improvement is to perform several ' power'
type iterations for each iateraction analysis. This involves replacing
step {1) with v=A""U , where n is the number of 'power' type iterations
to perform. The optimum number ¢~a be calculated from the rate at which

the trisl eigenvectors are changina. The calculation of the compl ete set
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of eigenvectors of the interaction matrix, B, can be carried out by any
method. We use the QR algorithm. It is important that the eigenvectors
of B are stored in E ordered according to the magnitude of the
corresponding eigenvalues of B. That is, the first column of E should
centain the dominant eigenvector of B, and so on. Precautions MUSL aiso
be taken to ensure consistent ordering of these eigenvalues from one
iteration to the next. For examp’e, if the eigenvalues of B contain %
and the conjugate pair 3#41, they must always be sorted such that 5>3+4i
or 3#4i<5 consistently. In fact, for our purposes, we must ensure that
we sort 1 as the Targest eigenvalue, and any unit modulus compl ex
eigenvalues as subdominant. The eigenvalues of B are the best

approxination available to the eigenvalues of A.

3.3 Brandiajn's Method

This method is an iterative procedure for solving the global
balance equations {1.4). It is specifically designed for sclving Markov
processes, since it features an unusual relaxation step dexigned (¢
maintain the invariance of LE from one iteration to the next. The
method is generalised from one presented in [6]. The paper presents
arnother method also, hased on the equivalence and decomposition approach
to selving gueueing networks, which uses the concepts of conditional
probability. Although the ethed we vse ccmpares unfavourably with the
other developed in that paper, this method is always convergent. and

does not depend on the ordering of states.
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As with Stewart's method we choose a first approximation to 1 and
denote it by n(0). n(t) denotes the estimate of m after t iterations.
For each i, from 1 to n, in that order, we perform the following

calculation.

£ is an arbitrary constant. If @ is positive and £ < 1/max zqij then ve
can easi'y see that no “1(t+1) w.11 be negative, assuming that all "j(t)

wire non-negative.

To show the invariance of Lm., rearrange the equations (3.12) to

give

give zero, thus

T.-].(1;) (3.14)

nm>s
™M

ﬂi(t+1) =
i=1 i=1
Defining di(t) = ni(t)-wi(t~1), we clearly have Zdi(t) =9, for all t.

By rearranging (3.13) subtracting to give di(t+1) in terms of di(t), e

can ~now that



: ld ()] (3.15)

™Mo

ld;(t+1)} <
i=

=

i=1

which proves that the method converges.

Attempting to analyse the rate of convergence of the method is
difficult. Although superficially it is akin to successive over
relaxation, the relaxation factor is different for each of the

equations.

3.4 Analysis of Algorithms

Atteiipting to analyse the performance of the algorithms x priori,
rather than experimentally, is difficult. The efficiency of the direct
method based zn the ratios of cofactors of the truncation will depend
heavily on the size and pattern of the non-zero clements. The jterative
algorithms of Stewart and Brandwajn will not be affected by the sparsity
or otherwise of Q, but the proximity of the first estimate for x to the

finai solution will critically affect the number of iterations taken.

For the purpose of analysing the algorithms. we shall assume that
the system being modelled has been truncated at state n, giving rise to
a Q matrix containing x non-zero elements. Note that the diagona!
elements i1l always be non-zerc. Also note that x will be of order n,
rather than of order n2. When wsing Stewart's algorithm, we cssume that
m eigenvalues and corresponding eigenvectors are being Jound. For the
iterative methods, we only give a measure of the number of opeiutions

per iteration.
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In terms of space utilisation, all the a]éorithms require some
representation cf Q. The representation we use is that expected by our
sparse matrix handling subroutines. The non-zero elements are stored in
an array in column order, and in row order within each column. A
corresponding array holds the row iadex of the elements, and « smaller
array holds the index of the first element in each column. This requires
x locations to store real numbers and x+n+l locations to store integers.
Although designed to be useu by the Gaussian elimination routines, this
representation is as good as any other for Stewa:t's or Brandwajn's
metheds, botn of which basiceily require the ability to post-multiply a
vector by the sparse matrix. We shall compare the different aigorithms
vis-e-vis their extra space renuirement and the number of floating point
operations, both additions and multiplicatiors, that they involve. We
shall also assumc the use of 2n locations to stbre the latest estimate

for w and the previous estimate.

The direct method of inversion of Q uses an unpredictinle amount of
extra space and of time. The pattern of the non-zero elements and, to a
lesser extent, their size affecis Lue performance dramatically. Although
our Q matrices are /ar from randoii, eitheir in size or position of the
non-zeroes, the only practizal approach to analysing the algorithm must
assume that they are random matrices, in which &ll off-diagonal elements
have equal probability of being non-zero. This prcbabiltity is
independent of the presence or absence of other non-zero elements in the
same row or column. As was pointed out previously, we do not know erougn
about the genercl case to meke any cther assumptions. Alsc, although the

subroutines choose the pivots to ficvorise Q depending not only on their

\
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size but a]so_tq minimise the number of zeroes that become non-zero, the
only practical analysis assumes that the diagonal elements are chosen as

pivots. Thus the analysis should give an upper bound on the space used

by the method.

This analysis of sparse Gaussian elimiration was deveioped by
Duff [11] and 1is extended here to encompass the Erisman/Tinney
algorithm. We assume that all the diagonil elements are non-zero and
that all the off-diagonal elements have equal probability, p, of being
non-zero. In our case p = (x-n)/n(n-1) . As the elimination proceeds, we
are working on smaller and smaller matrices, in which the probability of
the elcments being non-zero becomes iarger. After 1 variaples have been
eliminated we are considering a matrix of size (n-i)X(n-1), and we
denote the probubility that an cff-diagoral element of such a matrix is
non-zero by Pis1e Thus p1=p=(x-n)/n(n-1) . The obvious first approach to
the problem of finding P for i=2,...,0i-1 , argues as follows. An
element will be non-zero &t >tage i if it was non-zerc at stage 1-1,
(probability pi—l)’ or i7 it was zero at that stage (probability 1~p1“1)

and the elements at the head of its row and column were both non-zero

(probability p%_l ). Hence we have
p. = ¥ (1-p. P2, (3.16)
i~ Py i-1/P4-1 -

Duff shows that this is an upper bound, even for the case or dizgonal

pivoting, and proves that the correct formulae are given by

(i-1) RTINS o
(k-1)h, (1-p,) <0 T+ (3.17)

I ™M =

p.i-_-l..

k=1
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where
b (1p.yi(k-d)
3{1-pp) (3.18)
In either case, or if some better estimate of P; could be
calculated using some knowledge of the structure of G, or of the pivetal
strategy involved, the values of P; give the probabilities of a non-zero
element in row i of U or in column i of L, after factorisation. Thus tie
expected number of ngii-zeroes in row i of U or column i of L is(n-i)pi
and the total number of non-zero elements in the factorised form of Q is
n-1 .
n+2z (n-i)pi (.19)
i=1
The number of operations performed on each eiement will give a
measure of the time that the algorithm will take. The elements of the
original matrix can be divided into two ciasses as far as the number of
operations on them are concerned. The elements on the diagonal will be
cperated on each time the elements at the ends of its row and column are
non-zero, thch occurs at staye i with probability pf « Thus the
expected number of operations on the element in t.2 i,i position is
pr . For off-diagonal elements Duff shows that the expected number of
operations on an element in the i,j position is given by
min{i,j -1} )
kfz(pk"pk—l)/(l'pk-l) (3.20)
This counts the number of operations, in fact they are 2dditions,
performed on these elemeats. Lach operation on an element consi~:s of

multiolying two other (non-zero) elenents together, and adding the
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result to the element being operated on. Hence, the expected total
number of additions to factorise the matrix is

n-1 1i-1 2 i
t{zp, +2(n-i)z(p -p,_1)/(3-p, 1)} 3.21
i=2 k=1 © k=2 & K1 k-1 (3-21)

and a similar number of multipl ications are performed. Note that this
takes no account of the housekeeping operations needed to keep track of
which element 1s which in the sparse matrix, but just the operations on
the non-zero elements themselves. Also, since the number of cperations
performed is highly dependent on the ¥illin of zern elements, we can
expect that these formulae will in fact overestimate the operatizns to

be performed.

The Erisman/Tinney algorithm that we use to calculate the dizgoncl
elements of the inverse can also be analysed using Duff's result. In
row i of U, or column i of L, there are (n-i)pi non-zero elements.
Calculation of an arbitrary diagonal elciient of the inverss, Ziis
requires the calculation of tfie (n-i)pi elements in the appropriste row
or column of Z which corraspond tc the non-zero elements in column i of
I. or row i of U. Having calculated them, we require (n—i)pj operations
to calculate the diagonal element. Again each operation invoives a

multiplication and an addition. Each element of the appropriate row or

—H

7
[Ay3

column itself requires the calculation of (n-i-1)p, other elenents o
]

[N

Thus to calculate the diagonal element and all the eiements in the ih

row and column of Z which can be found using this methou, wo nead

£

(n~i)p1(1+2(n—1—1)p1) operations. Hence the totzi number of operations

<

required to calculate the complete subset of elements of the inverse is
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n-1
b (n—i)p1[1+2(n-1-1)p1] (3.22)

i=1

This is a gross overestimate of the number of operations that will
be performed to calculate only itha diagonal elements of the inverse. As
we have noted already, the estimate we have for Py is an overestimate,
or even an upper bound if we calculate it crudely. Even if we know the
p; more exactly, this estimate assumes that we calculate the compiete
subset of elements of the inverse that the algorithm provides. This is
not the case. We calculate only the subset of elements that are needed
to calculate the diagonal. Consider the element Z{y+ We can celcuiate

this usiag either

n
= = 3‘
I 7 Vg B (2.23)
or
n .
P b} f)l.n‘;i
Zin = Yy - Bt (3.24)
L

Normally, if there are fz.er non-zaroes in row 1 cf U than there are in

column 1 of L, we calculate using the first formula. In this case, the

—

elements of the first row of the inverse will never be needed. The
picture is not so clear for later clements on the dizgonal, wherc the
needed elements will depend on the pattern of non-zerces. in practice,

about 75% of the possible elemenis of the inverse neced to e celoiatea

in order to find ai1 the diagonal elements.

The extra space required by the routines can be calculated using

Duff's result. We denote the nuwbes of ion-zerces in the /U
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factorisation by f(x), which we calculated above. The factorisation
routines require f(x)-x extra locations to store real numbers, the new
non-zeroes. The inversion routine also needs f(x) real storage Tocations
for the eicments of the inverse. To store pivoting information, row and
cotumn numbers, and simiiar housekeeping data, an extra 14n+f(x)-v
integers are needed. A further 3n real locations store the first rowv,
first column, and leading diagonal of the inverse. The grand total is

2f(x)-x+3n real locations, and 14n+f(x)-x integer locations.

Other sparse matrix routines which code the structure of the
non-zeroes in a different way might have different space overheads. For
example. Duff's routines [12] require 2f(x)-x+4n extra real locations
and 15n+f(x)-x integer Tocations, to factorise the mat:ix. The
Erismann/Tinney algorithm encoded in a suitabie form for these

subroutines would reed at least another f(x) real jocations.

As a worsf, in some sense, case example of the errors that can
arise by treating our matrices as random consider the M/M/1 system. it
gives rise to a tri-diagonal Q matrix. The truncation of si.c n contgzins
3n-2 non-zero elements and no zero elements are villed in during the
elimination so the L/U factorisation contains 3n-2 non-zerces.
Consideration of the Erisman/Tinney algorithm appiied to this system
shows that the elements of the inverse's diagonal cen be calculated by

the following recurrence
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233 = Mdyg - w0020 (3.25)
Zieli T "Zielitl Vel (3.26)
(We could have used the alternative formula for the diagonal elements,
but the same number of elements of 7 is needed.) Only 2n-1 elements of

the inverse are calculated.

As remarked above, the estimates of p; are expected to be too large
for several reasons. To give a more reai;stic example of the extent of
the overcstinate we give in Table 3.1 the actual number of non-zerccs in
the L/U factorisation of the Q matrix for several different systems,
each truncated at several different states. For comparison, the number
of non-zerces predicted by (3.19), both using the naive estimates (3.15)
and Duff's exact results (3.17),(3.18). Although superficially simple,
Duff's results are very difficult to calculatz with in practice. The
summation in (3.18) is very close to 1, and the cancellation error whici
occurrs wiren it is subtracted from 1 dominates the calculation for any
reasonable size of n. Even the use of quaaruple precision :zal numbers
(about 32 decimal places) only delays the onset of the probleni. Most of
the numbers in Table 3.1 were calcuiated using exact rational
arithmetic. For ir*arest, we alsc tabulate the number of elements of the
inverse that were needed to calculate the inverse's diagenal using the
Erisman/Tinney algorithm, and p, the probability that an off diagonal

element is non-zero.

Model 1 is an M/M/1 system. As noted above, the Q matrix is
tri-diagonal, and no 7ill-in of nrn-zero elements cccurs in practice.

Model 2 is a tvwo closs noon-presmptive priority system. There a.c about 4
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non-zeroes in each row. Two examples at each truncation size are given,
to illustrate the effect of different sizes of element on the
factorisation. In each case, the pattern of non-zeroes is the same.
Model 3.represents a 2 processor network in which each processor can
eithef be working or broken. In either state, the processors transfer
custemers to the other node, although at different rates. There are
approximately 9 non-zero elements in each row. The fourth model is of
two parallel M/M/1 aueues. Arriving customers join a queue at random and

remain in that queue until served. There are 5 non-zeroes in each row of

Q.



Model n

1 15
20
100
42

)

42
110
110

4 120

nnz

532
132
1524
540

P
0.1333

0.1
0.02
0.0482
0.0482
0.0212
0.0212
0.0642
0.042
0.0271
0.0294
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Table 3.1

number of non zeroes

Experiment Duff

43
k8
298
163
172
629
579
1560
2450
1228
1318

67
99
1024
285
285
1714
1714
3506
6209
23975
4320

Naive

78

8338
33055
7252

Inverse
29
39
199
107
117
472
375
1267
*12544
*..8400
1025

The entries marked * represent the full inverse matrix. In these cases.

the Erisman/Tinney algorithm was significantly si<wer than the naive

method of

finding the inverse.
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The table shows the drawback of Stewart's special purpose reutines [47]
which use the diagonal elements as pivots. They give rise to excessive

Tillin, Timiting the size of system that can be solved.

It is worth noting that the conjugate gradient method takes 5n+2x
multiplications and additions per iteration. To solve a single set of
equations needs (5n+2x).i+3x additions and multiplications, where i is
the number o7 iterations taken. Since we have to solve n sets of
equations, and seldom take fewer thar 2n iterations for each set, the

3 additions and

conjugate gradient method uses of the order of n
multiplications. Its extra space requirements are quite wrall, only 2

<tra vectors both ceontaining n reai locations.

Stewart's nethod can be simply analysed as far as a single
iteration is concerned. The number of iterations needed to rcach an
acceptable solution is highly problem derendent. Each iteration censists
of mu1tip1icat€on ¢? the mXm matrix of the eigenvector estimates by the
sparse matrix, followed by an eigzanvector interaction analysis and
normalisaticon of the estimates. A vector can be multiplied by the sparse
matrix with x floating point multiplications and x fioating point
additions. Thus the muicviplication takes m times this number of
opefations. The interaction analysis involves 3 multiplications of an
<Xn matrix by an i™n matrix, taking 3nm2 multiplications and additions;
the solution of m linear equations in m variables with = right-hand
sides, using Choleski’s methed which takes 7/6m3—1/2m2+1/3m
mu: ipltications and 7/6m3+m2—13/6m additions; a compiete set of

AY
]
’

. Y . 3
eiger.actors for an m<m matrix by the QR algorithm, takirg O{w
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multiplications and additions. If we assume that each eigenvalue of the
interaction matrix takes 10 iterations to be found, then the QR

3+57m2-123m multiplications and 25m3+52m2~160m

algorithm uses 25m
additions. The normalisation consists of dividing the elements of each
eigenvector in order to make the largest element 1, and uses mn

multiplicaticnc.

No extra storage is needed for integers, but 3m2 real locations are

used by the interaction analysis phase, and an extra (m=-2)n real

locations are needed to store the sub-dominant eigenvectors.

Brendwajn's method is the rost thrifty of the three algorithms
onalysed. As with Stewart's method we can only find the number of
operations per “teration. Each iteration takes x+2n multiplications ard
xtn additions to form the new estimate of DUFp Before the iterations
start, there is a once and for all overhead of x additicns and 2n
mu]tipl}cationé involved in calculating & and the row sums. The only

extra storage is 2n real locations used to hold the sums of the

sub-diagonal and super-diagonal elemerits in each row of Q.

We can use these operation counts to estimate when the iterative
methods of Stewart and Brandwajn are preferable to the direct ﬁethod. We
calculate k(x,n), the maximum number of iterations 2ach method is
ailowea to take znd still be more effective than the direct method.
Clearly, k is a functicn of the number of non-zeroes, x, and the size o
tke truncation, n. In order to evaluate k& for various valucs of x and n,
we make the following tio assumptions. First, we consider that x is a

Tinea Tunction of n. This is a reasonahble &ssumption, often borre out
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in practice. Since, as we remarked earlier, Duff's exact results are
very hard to evaluate accurately, the naive estimates (3.16) were used
to calculate k(x,n). This means that the function k is biased against
the direct method of solution. We also assume that m, the number of
eigenvéctor estimates in Stewart's method, is calculated according to
the following formula. If n<30 then m=3; if n>=100 then m=10 else
m=n/10. Floating point additions are assumed to take 1 unit of time, and
multiplications take f units. A1l calculations are made with f=1.2.

k(x,n) is graphed for a selection of values of x and n in Figure 3.1.

2.5 Theoretical Application

In this section, we apply Tweedie's method to the general cne
dimensional birth-death process and show uinat the upper bound that he
derives is attained. When applied to the M/M/1 system, the errors
involved in using the iower bound or the ltess stringent approximation
can be found. An attempt is also made to analyse tne performance of

Stewart's method on the M/M/1 system.

The one dimension?? birth-death process is a conservative Markov
process, with its states indexed by the positive integers. {Some authors
use the non-negative integers, but there is no loss in generality
“nvolved in ignoring O). Transitions occur from state i fo state i+l at

rate A and to state i-1 at rate Wy e 1ts behaviour has been extensively

in‘estigated, but the result that we shall need is
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A
L T _t=)

3.27
t=2 Yt (3.27)

where ™ can be found from the normalising condition. (See, for example,
L4C,Pp 83-87].) Since Tweadie's method only gives us the ratio between
probabilities anyway, this normalising factor is of no account. The Q

matrix of the birth-death process is particularly simple, being

tri-diagonal. h
..Al Al 0 0 LI 2R N ]
uz _(A2+L‘2) >\2 O cee o
9 Ll3 "()\3+l13) )\3 sces

To use Tweedie's method we need the ratics of cofactors of (n)Q’ or
equivalently, the ratios of elements of its inverse matrix. If we let
9=(n)Q'1 then we can calculate 6 ir the foilowing manner. Take two
matrices, A and B, and initialise them A:=(n)Q and B:=I. We ihen perform
exactly the same elementary row operations on A and B, with the object
of reducing A to I. This is eqivalent to multiplying (n)Q bv 6, so that
B will contain the value of 8. The easiest way ¢ rcduce A to ! is as
follows. First we reduce A to a unit upper triangular matrix. Assume
that columns 1 to i-2 are already reduced; that is they contain only
zerces helow the diagomnal. We add -l timas row 1-1 to row i, and thus
make the elenent ai,i—l zero. Next, we divide row 1 by Gy tO make the
diagena?! clement unity. When this has been done for i=1.2,3,...,0, A is
reduced to a matrix with unit diagonal, -1 in all elements a;;.., and
zer. evervahere =1se. This is easily reduced to the identity malrix by

~

adding row i to row i-1 for i=n,n-1,...,3,2. Performing the same
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operations on I, in parallel, gives the values of 9. They are easily

shown to be

1 " k
Q.. == Ty, /a (i<3) 3.28
1370 =g tegeit t (3.28)
1 n k
B.. = — I T u,/a (3<i) (3.29

Tweedie's theorems give the upper bound on the ratio of “T/"l as
1
gmm/gml' On substivuting the values fur 6 found ahove, we get

n el

t=2 ¥t .
which is the correct answer. If the values for 6 are substituted in the
other formulae, then the Tower bound is not exact. Rather than persue
the general one-dimensional birth-death prucess, we turh to a specific

case which is weli known, the M/M/1 queuc.

The M/M/1 queue is a special case of the one dimensional
birth-death process, with A1=R, the arrival rate, and MiEU the service
rate, for all j. It is very well understood and botn steady state and
transicnt probabiiily aistributions are known. The steady state
distributicn of the M/M/1 gqueue is given by Mo = pi"l(l—p) vihere the
staites are numbered so that state i represents the state of tnhe system
in which there are i-2 waiting customers and 1 customer being cerved,
and where p=Aa/u is the traffic intensity. W rerresents the idle system.
For the M/1i/1 queuwe with arrival rate a» and service rate u, the

transition rate matrix Q is given by
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Q= - A 0 0 ...
H "(}\+u) )\ 0 L Y
0 H "(>\+1J) X es o

If we substitute the constants A and yu in the equations (3.28) and
(3.29) above we find that, after a little algebra, replacing x/u by p
and casting out common factors (since we are only interested in ratioc

between c¢lements), the elements of 9 are

6., = o371 (1ot (1€3)
o3 (1-p™ ¥y <)
Let us now apply these formulae to the problem of estimatirg Ty In
this case, w, is known from other considerations. ( Little's theorem
gives the probability of the idle state for any single server queueing
system as 1-p.) Anyway we need to choose an arbitrary state to normalise
the probabilities with and state 1 is as good as any. Having chosen one

“use the formuiae to estimate ﬂk/w1. The bounds in
i

state we can no
equation (3.1) give us an upper and lower bound -» taking j=1 and i=k.
Equation (3.2) gives us two approximations; one taking j=1 and i=k, and

one taking j=k and i=l1. Only cne set of bounds are found because taking

[¥5)

j=k and i=1 in (3.1) gives the same bounds.

Substitution of the tormula for @ij in the appropriate formulae

gives the following estimates for Ty -
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lower = ]bk = Qlk = pk‘l( 1 - pn-k+1 )
n (1-o")
- pk_l as n » o,
upper = ub, = @, = okl (L ek
le (1 - pﬂ-‘k+l )
= oKL for a11 .
approx = aplk = gklglk - pk-l (1 - pn-k+1)
12 T
1 (1-,7)¢
3ok as n e,
~ _ .y ;
appreoi = ap2k = gik = ( pk 1 (1 -0 k+1 ))2
6 k-1 K+l 2
Q}\lQlK o ( 1 - pn )

= p“-l for all n.

In this case ubk and ap2k can be disregarded since they give the
correct answer recardlezs of any truncation. Note that even i¥ w2 do not
know T the error will be of the same magnitude for all k. If Ty is
found from the normalising condition, its value will be tr2 same as if
the F/M/1/n queueing system was solved. Exact formulae can be calcuiated
for the relative errorc in ]bk and aplk, but they are not given here
since no particularly elegant form results. They have the property,
hoviever, that the error in any particuler probability, LI depends not
only on n, the size of the truncation, but also on k, the state being
approximated. It is also interesting to note that we have aplk < lbk .
This is explained by the fact that the approximations converge under

less strict pre-conditions on the states. lhe more stringent conditions
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under which the bounds converge are of no practical hinderance to us. In
processes with a more irregular structure than M/M/1 the two
approximations often both 1ie outside the interval given by the lower
and upper bounds, generally one on either side of the interval. These
two properﬁies, the exact answer being given by one of the two bounds
and one of the approximacions lying outside the lower bound to upper
bound interval, seem to partiy be functions of the state chosen to
normalise against. If the ratios = /v are calculated, then the lower
bound and the other approximation give the correct answer and the upper
bound is less than ‘the first approximation. This property is not
governed by the sizes of the probeLilities. which might be conjectured,
since in this case L) is the largest, and T the smaliest probability.
The @ matrix corresponding to the M/M/2 queueing syster is tridiagonal,
and the system is a one-dimensional birth-death process. Thus, by our
first invesiigation, equations (3.28) and (3.29) will amply, and the
upper bouad will give the correct answer. By choice of the values of A

and u, it is possible to have T, as the largest probability though.

We now turn to Stewart's method of simultanecous iteration to find
the dominant left eigenvector of P. We shall attempt to anclyse its
perfomance on the M/M/1 system. In von-Mises power method for finding
the dominant eigenvector, the rate of convergence is proportional to
iul/nzl where {Qij are the eigen values of P, in order of magnitude.

(@ is chosen rather than the more conventionel A tu avoid confusion with
the arrival rate in the gueue.; In Stovart's simultanccus iteration
method (277, the ratc of convergence can ba shown 1o be orogoriional to

i“]/9m+1! when m trial vectors are used. The m trial vectors converge to



58
the eigenvectors corresponding to ﬂl to Q- Thus the c¢igenvalues of P
will give us an idea of how well the methods will converge. As
previously, we define P in terms of 1 and m, where 1 = X/a and m=p/a

with a > Atu. Hence, P is

P= 1-1 1 0 0 .
m 1-(1+m) 1 0 .
0 m  1-(T+m) 1 .
0 0 m o 1-(1+m) .

where all row sums are = 1 except the last. This is close, in some
sense, to two matrices whose eigensolution is known. The first is a

standard tridiagonal matrix T defined by

T= 1-(1+m) 1 U 0 .
m 1-{1+m) 1 0 .
0 | m  1-(1+m) 1 .
0 0 m  1-(1+m) .

ne

in which ail row <vns are 1, except the first and the last. The cth
matrix is the stochastic matrix, S, the probability transition matrix of
an M/M/1/n queueing system, that is cne in which any customers arriving
when there are n customers already in the system are lost. S equals P
averywhere except Son? which equais 1-m, in order to preserve the
stochasticity of the mateix. The foilowing ana1ysis c: the eigenvalues

of Sand T can be found in Courteis [9].
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Let us deal with T, first. The eigenvalues of T are, by definition,

the roots of the equation

Dn(Q(T)) = det ( T-(T).1 ) =0 (3.30)
Expanding inis determinant along its last row to give the Sturm
sequence, we find the following difference equation.

Di(Q(T)) = (1-1-m)D1_1(Q(T)) - ]mDi-Z(Q(T)) (3.31)
with the following boundary conditions

1

Dg(a(T))
Dl(sz(T)) =1-1=-m-Q(T)
Solving the difference equation, we have the result
Q(T) = 1 - (1+m) - J4m cos kﬁ/(n+1)
for k=1,2,...,N.

Turning to S, we first remark that it has a unit eigenvalue, since

e' is a right eigenvector. The eigenvalues are the roois of

Dg(Q(S))~ = det ( S-a(S)}.1 ) =0 (3.32)
Using elementary properties of determinants we can evaluate D; in the
folluwing manner. Add each column to the last column. Since the rov suus
of S are 1, the Tast column will now have each element equai to 1-0(S).
We extract this as a common factor. Now subtract row i+l from row i for
i=1,2,¢..,n-1. We add column i+i to column i for i=2.,3,...,n-2 and
finally expand by the Tast column to find that

D¥(a(s)) = [ 1 -a(s) 3.0 _;((S))
So that the eigenvalues of S are

Land 1 - {1 +m ) - J4im cos ka/n

for k=1,2,...,i1-1,
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Attempting to find the eigensolution ¢f P in a similar manner, we

unfortunately generate a difference equation which does not have a
simple analytic solution. Since they are so similar one might hope that
the eigenvalues of T and S would enable us to make deductions about thne
eigenvalues of P. Except for the dominant eigenvalue this appears not to
be so. Simple numerical examples will demolizh any reasonable hypotheses
about orderings such as

las()] > fa,(P)]

las(P)] > oy (T)]

Both these conjectures seem reasonable, but can be shown Ly direct

numerical calculation of some cxamples to be false for all i#l.

The only invariant relation appears to be

1= 21(5) >a.(P)> e, (T) >0

1 1

1>9 >1 - (1+m) -/4.1.m cos{x/(nt+l))

1
This relation éan be deduced from the Perron-Froienius theorem for
non-negative matrices. If A is a non-negative matrix with domiiant
eigenvalue X, which necessarii/ has multiplicity 1, and B is &
non-negative matrix such that B<A, elementwise, then any eigenvalue of
B, B, (say), will satisfy g<i. Further, g=x implies that B=A. Now,

S>P > 7T elementwise, so the relationship given above holds between

their dominant eigenvalues.

faving failed to fird the rate of convergence of Stewart's method,
even when applied to the M/M/1 sy.tem we now investigate if there are
any simpie beunds on the eigenvalues. For simplicity, we shall ~nly

consider the sub-dominant eigenvaluc, since it seems unlikely that we
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will be able to bound other eigenvalues with any more ease. Various
authors have calculated bounds on the values of eigenvalues of matrices.
Bauer's [3] are the "best" for our purposes and when applied to the
sub-dominant eigenvalue QZ give

n a. . a.
[92[ < 0.5 min { max _z?g SR H R £ S
1< ,k¢n i=1 13 t, ‘
(3.33)
i %d
d)J'

b

where a5 is the mat~ix and § is the dominant right eigenvector and ¥ is

fl
, max  1d.
1¢3,k¢n i=1"

the dominant left eigenvector. Apart from the impracticality of
calculating both the right and left eigenvectors corresponding to the
dominant eigenvalue in order to find a bound on the rate of cenvergence
of algorithms to calculate the dominant left eigenvector, the formula
has anocther urawback. If there are more than 2 zero elements in each row
and column (as there normally will be in our systems) this bound reduces

to the dominant eigenvalue!l

Lynn and Timlake [33] have developed a bound for the sub-dominant

eigenvalue of non-negative matrices.

L= a1 (1-a")
o, <1 - a” ] (3.34)
1 - 2P (1-a)
where a = min { 243 | 353 >0} and

B is the index of primitivity of the matrix, that is
c=min [t ] A > 0]
B < n-1
Although this bound is much easier to compute than Bauer's it is in some

sense less effective, On all our fost problans, which were matricas S, T
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and P, as above with different values for A,u, and a, the bound returned
the value 1 even for matrices whose dominant eigenvalue was less than 1.
Thus we are forced to conclude that there is essentially no means of

estimating the convergence rate of Stewart's method a pricri.



4 Practical Considerations

The theoretical methods presented in the previous chapter for
finding the steady state probability distribution of of a Markov process
seem to fulTill our criteria of general applicability and‘do not need
more than minimal prior analysis of the system. However, before they can
be used in a general purpose computer program there are several

practical probiems to overcome.

First among these problems is that theoretical results in Markov
processes and chains are developed in terms of matrices which have as
their index sets the set of states of the system. Computzrs and most
human beings prefer to use the positive integers as an index set when

nunerical caiculation is required.

- Secondly, there are, in 7eneral, an infinite number of states to be
considerad. Related to that problem is the fact that althouga they
purport to calculate steady state probabiiities, all the methods only
calculate the retios between such probabilities. In the finite case this
presents 1ittle problen because of the additional condition Eﬂi =1, but

vhen the state space is infinite this property is more difficult to

Thirdly, although the steady state distribuiion is of inteiest, it

is more often the case that wmoments or marginal distributicns ave
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required. With this in mind we may be able to find different convergence

criteria for these cases.

4.1 State Numbering

Theoretical developments in Markov processes and chains are often
presented in terms of matrices of transition rates or transition
probabilities. Entries in these matrices are indexed by pairs of
elemcnts from the state space of the Markov process. These elements of
the state space can be quite arbitravy, aven though we have restricted
ourselves to solving discrete -’ate space problems. In order to eesily
solve arbitrary processes, we need to be abl. tc constirct matrices
indexed by some standard index set, from specifications which are given
in terms of the state space of the original Markov process. Many
processes give rise to some natural index set, anc other processes often
map easily into such a set, but these mappings are cbviousiy adapted tc
the problem in question, and r2quire teco much prior anllysis to be of

general utility.

We seek a mapping from arbitrary state spaces i~tu some standard
index set. The natural choice for our standard index cat is N, the set
of natural numbers (positive integers). This set is beloved of FORTRAN
crograms and hence of genaral purpese numerical softucre. In order t7 be
able to map efficicntly from the ~riginal statc space into N, it is

necessary to place some restrictions on the representations of states in

the original state space. We shali assume that ine states can be
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represented as fixed, finite dimensional vectors of integers. The actual
components may be either bounded or unbounded, but they will, in
general, be non-negative. For example, the possible states of an n class
pre-emptive priority queueing system can be represented by a vector of
non-ncgative integers, I=(11,12,...,in) where 11 reprecents the number
of customers from class 1 present, 12 the number from class 2, and so
on. A non pre-emptive system of n classes could be represented by
I=(10,11,12,...,in) here 10 is an inteaer in the range 1 to n,
representing the class of customer currently receiving service, with
some arbitrary vaiue when the system is empty. We know of no dic-rete
Markov processes of practical siynificance whose states connot be

represented in this manner.

We now seek a mapping between S, as rastricted above, and N, the
natural numbers that should possess the followirg properties. First, it
must be easy to calculatz, since each non-zero transition rate or
probability that we add to thi matrix will involve the calculation of
two indices. Secondly, it must have an easily calculable inverse
mappirg. There is no peint in being able to calculate the steady state
probabilities in terms of N if we cannot interpret this stesdy state in
terms of S. More graphically, finding that state 5 has probability 0.959
is of no use unless we can show that state 5 corresponds to {1,3,2)

(say) in our index set S.

Thirdly, the mappiny should be surjective (Qnto)§ It should map our
index set into N without leaving any gaps. States with no trarnsitions

might cause ditficulties tc gener>? purpose numerical subroutiros,
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Finally, and of lesser importance, it should map "close", in some sense,
states into “close" integers. This property is desirable for heuristic

reasons, since it might tend to keep the matrix in a banded form.

I¥ the state space is finite then the problem essentially
disappears. There are several mappings developed by computer scientists
in conjunction with array subscripting which fulfill our purpose
admirably. At worst, a table could be maintained giving every state in
both representations, although maintenance and searching of this table
could become a major problem if the state space was large. This tabular
method of state transformation wus used by Stewart in the MARCA

vockage [45].

If the state space is infinite other approaches are neceded.
Clearly, the list or table method could be used, perhaps with some sort
of hashing functicn, but a more general method is callad for. Let us,
for the time béing, restrict the problem to that of finding a mapping 1in
the case where S=Z+n, that is, a'l of the components of
I=(il,...,1n) € S are non-negative integers, with no upper bound. The
case in which some of the components zre bounded will be dealt with

later.

Let us further restrict ourselves and take as an example the

L0 + » . .
Te 577, This ha

.~
}

ct

he advantage that we can draw the

[

mapping from Z
. A2 . . i .
states indexed by 1 2 in a conventional manner and perhaps gain some

insight from the diagrem.



67

0,3 1,3 2,3 3,3

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0

o

The problem is essentially to label the pcints in the above figure.

There are two obvious number schemes.

The first - is to number the states as below

That is sterting at {0,0) as state 0 and travelling round the perimeters

of successively larger squares. Tiis mepping can be easily celcululed by
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(i,3) > 1f 1 >= J then i**2+]
else j**2+2j-1 fi
and with sTightly more trouble inverted by
t > (i,3)
where s:= L/E'
k:={-s**2
if k <= 1 then i:=s; j:=k

else i:=2s~k; j:=s fi

The obvious alternative method is to number the state

“diagonals”.

. % . .

0 1 3 6
This is calculated as

(1,3) » (13) (+3+1)/2

The inverse is diven by

~ a2l

o G

ong the



t > (i,3)
using the following algorithm. .
k:=max {p | p(p+l)/2 < t}

:= t-k(k+1)/2
k-J

. .
Hn un

Turning to the more general n-tuple case we can attempt to
generatise the algoritims. The first "box" mapping could be extended
analogously to number states over the boundaries of successively nested
hypercubes, but it becomes increasingly hard to visualise and calculate.
The second mapping, along the "diagonals", can however be fairly simply
generalised to operate on n-tuples. The key observation is that the ter:
(i+3) (i+j*+1)/2 counts the number of lattice points inside and on the
boundary of the triangular area defined by x>=0, y>=0, and x+y<i+j. lhc
second term represents the number of integer lattice points on the line
X+y=i+j such that y<j. Note that this second term is totally indepenciat

of one component of the original state description.

Extending this numberino scheiwe to 3-dimensional space is
relatively easily visualised. First, we count the number of integer
lattice points contained within the tetrahedron x>=0, y>=C, z>=0, and
x+y+z<i+j+k, and then add tne two dimensional value given by vwo of the
comnonents., That is,

(1,3,K) = a{ i34k} (3r) (G+k+1)/2+K

where oft) is the number of Tattice points in the tetrahedron xty+z<ti.

To find «(t) we note that the number of lattice points is just the

sun of the number of lattice point, 'ying on each of the plane. x+y+z=i
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for i=0,1,2,...,t. The number of points on thé plane x+y+z=1 is just

i(i+1)/2 since the plane is triangular in shape.

t .
Thus a(t)=zi(i+1)/2 = t(t+1)(t+2)/6

j
i=1

Hence the mapping is
(1,3,k) > (i+j+k) (i+j+k+1) (i+j+k+2)/6

+(3+k) (k1) 2 + K

Let us proceed at once to the case of k-dimensional spaces. We again
count the integer lattice points contained in the simplex derined by the
origin , and the points x. x= {cons.e | e is the unit vector and

cons=zi where I=(11,12,...,1k) is the state we are trving to map.}
The full mapping is

_ k n-1 n
(i1,inseeesi) > T (2(3)*3)
172 K =130 =1 7

ni

Each term of the form

n

L1 44

rtd

r=1
represents the number of intecer Tattice points inside or on the
boundary of the simplex .efined by the points x in R" This is because

the number of lattice points in the bedy EX. < nis just the sum of the

number of lattice points lying on the planes
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n
LX,. = t for t=1,2,...,p.
r=1

We must prove that

p n-1 n

T (t+]) = T (p+J)

t=1j=0 R J:O ——
ni (n+1)d

This is clearly so for n=1 since the equation reduces to
p i
L= p(ptl)/e a well known result!
t=1
For arbitrary n the result is certainly true for p=1 since

r-1
T (i+l) = n¥/nt =1

j=0 ——
ni
and
n
M (1) (o)
j=0 = =1

(n+1)! (n+1)t
Assume the formula is true for some particular p=s {(say), that is

o

s n-1 n
r T (t+j) T (s+])
t=1j=0—— = j=0
nt (n+1)t
then \
s+l n-1 n n
5 TT(t+3) = T (s+d) + T {s+j)
t=1 j=0 j=0 j=l—
nt (n+1)! nt
n
=TT (s+3) x {s/{n+1)+1)
ol C— .

nt
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= I1 (stj) (stn+l)

(n+1)

(sti+l)

u
T =
& -

(n+1)}
Hence the formula holds for p=s+l, but it holds for p=1 and hence for

all finite p.

The inverse mapping from some integer z to tne k-tuple

I=(11,12,...,1k) can be stated algorithmically as

X = Z
for n:=k step -1 until 2 do

begin

q :=max {i | T (i45)/nf ¢ x} 3

w(n):=q;

X:= X - Tuq+3)/n. :

end
1(1) (1)

for n:=2 until k do ifn):=w(n)-w(n-1):

This algorithm can easily be 'mplemented. The only difficuliy is that of
calculating g efficieni]y. The niive approach, searching *i¢c integers
J,1,2.. etc. leads tc a search of length q, where each step invoives 1
multiplication and 1 division (of integers). The calculation of the
initial value of the product term Ti(gtj) comes essentiaily free, since
if g=0 it is also zero, and if g=1 it equals n? which will be have becen

calculated enyway.
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A 1ittle thought will lead us to a much shorter search, since

n-1
T (qtj+1)
Jj=0——— > x

n!
=> (g+n)" > x.n!
=> gtn > "/Xon!
= q> VXt - n
=> q Vi - w1

However q

< X
n!

=> q <"Vt
Hence starting our search at q=er.n§—n+1 will result in a search of
tength (at most) n, again taking 1 muitiplication and division for each
iteration. Howaver, in this case, we alsc have to calculate an initia’

value for the product term TI(g+j+i) which involves a further n

«

multiplications, and we a2ed to calcuicte an n-th root. In practice,

these additional ceiculations appear to batance out the theoretically

1ongef search involved in the na.ve algorithm.

This mapping performs a transformation, and its inverse, betwzen

+

7" and the non-negative integers. It is simple tc define the mapping
from the non-negative i.tegers to the positive integers as the acticn of

adding 1. This is easily inverted tcot

Returning to the more general problem, in wnich ow steie space S
can be represented by k-iupies of integers, some of which are bourced,
ana the remainder are unbounded nen-necative integers. Witnout 'ess of

generziity, we can assume that 1] Lo 1 are bounded and i_,, tc i, are
5 i L “
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unbounded. That is ,

e . . + . . :
S= {(igseeesiy) | i; €2 and 36k and 15¢l, and .. .. and i <L)

Let us Tump together all states in the above representation which
have the same values for im+l to 1k‘ To this lumped representatior, we
can apply the transformation developed above. But each state in the
lumped representation corresponds to

efﬂ(Lj+1)
states in the originai model. We can easily develop a transformation

) > awhere 0 ¢ a<e. An

A (say) which will uniquely map (i},...,im,

array mapping function will Jo. If the transformation developed above is

denoted by A, then the fuli transformation from S > Akl is given by
(11,...,1k)-9 A(il,...,im) + e.A(im+1,...,ik)

This transformation can be inverted by dividing the state's

representation by e. The integer part of the quotient can then be used

td find the unbounded part of the state representation, and the

remainder to find the bounded part.

This numbering scheme also has a heuristic advantage. Whan we
calculate marginal distributions and conditionai probabiiities, we are
more likely to be interested in the boundary conditions than in
arbitrary states. For example, in an n class priority system, we ave
much more likely to want to calculate the marginal distribution of class
i customers given that ciacs j is empty than the maryina’ diccributien
given that ciass j has 6 customers. The numbering schew: that we have
developed concentrates on states with Tow indices and thus pays more

attenticon to the boundaries.
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This representation of S, and its mapping into N, produces a
problem of its own. As we increase the number of states being considered
from N to N, (say), we have to consider all the states which correspond
to thqse integers. It is possible that not all states so generated will
correcpond to states which the system can possibfy enter. For example,
in a 2 class ncn-preemptive priority system, the states can be
represented by triples of integers, (10,51,12), where 10 represents the
class of the customer in service and ik represents the number of
customers in class k. Thus (2,4,3) represents the system with 4 class 1
customers, and 3 zlass 2 customers, one of whom is being served. In this
represzartation, (1,0,2) corresponds £t~ 7 in N, and as such will be
generated although the system being modelled could never be in that
state, since tne ciass 2 customers would be served. Similarly the state

(2,5,0) will be generated, but would never be entered by the system. We

shall classify states as valid or invaiicd, according to whether or not
the system beiﬁg mvaelled car ever enter them. We must have a procedure
for dealing with invalid states a3 they arise. The obvious soiution
vould be never to generate them, or to give such states no transistions
at all. In order not to generate invalid states, we would need 2
numbering scheme which was specific to a particular problem. Ailowing
invalid states to be generated but giving them no transitions is also
impractical, since zero rows in the Q matrix would cause problems for
ceneral purpose numerical software. We have consideradlc frezden in
constructing ¢ and prov.ied that we de not interfere with the
reiationship of the vaiid states to each other, we can do zimost

anythiag with the transitions amory invaiid states. The soiuticn that we
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have adopted 1is to give the invalid states transitions which ensure that
they are transient states in the Markov process defined by (. The valid
states correspond to the recurrent states in the process; these are Lhe

only states with non-zero stationary probabilities.

This is easily done by ensuring that no valid state makes a
transition to an invalid state. The invalid states can make transitions
to each other or to any vaird states. Since we construct Q by rows in
the natural order of N, the first invalid state must make a transition
to 2 valid state. This is because we do not, in general, know the index
of the next invalid state. In fact, .5 ensure the convergence of the
algorithms, we must have at lcust one transition from an invalid state
to a valid one, so this is no hardship. Incluiling such a transition
ensures that the invalid states are transient, since with probability 1
the system will enter a valid state, and thereafter it can never enter

an invalid state.

There are three essentially different ways of derining th2
transitions out of an invalid state. Since we wish to keep the number of
non-zeroes in ¢ to a minimum, it seems sensible to restrict an invalid
state to a singie transiticn, and as pointed out abu: it should be to
an earlier state in N. Tnis ensures that 211 rows of Q correspending to
invalid states have only two non-zeroes. If transitions were aliowed to
digher numbered states, there would be nc guarantee that the state to
which a transition was made fror a particular invalid state would be
part of a truncation of Q which contsired ikat invalid stete. Tnis could

give problems to Brandwain's methc:!-
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The first possible construction of Q is to give each invalid state
a transition to the previous invalid state, and the Tirst invalid state
a transition to some arbitrary state, say 1. In this scheme, all the
invalid states form a single inessential class cf states and are
transient. A second option is to give each invalid state a single
transition to a single arbitrary, but valid, state, say 1. This choice
makes each invalid state an inessential ciass with a single member. A
third choice for the transitions out of invalid states ic to give each
state a single transition to the previous valid state. Once again each
invalid state forms its own, indivuiuatl inzssential class. fs weil as
chcosine the states to which an invalid state may make transitions, we
may also choose the rate at which transitions are made “rom nvalid

states.

The bounds given by Tweedie's result hold so long as the twe states
whose ratic of. probabilities is to be estimated belong to the same
essential class of states, and there is at most a single finite
esszntial class. The only cfiect that a different choice of construction
for Q will have is to possibly alter the sparsity structure of Q and
hence, the amount of fill-in generated by calculation of Q"i, The rate
at which transitions are made out of invalid states will have a much
smaller effcct than the actual position of the non-zeroes.
Heuristicaliy, it seems iikely that the third option, ¢ *transition io
the previous valid state, wili be best since it will keep the non-zeroes
close to the diagonal of G, and minimise the fill-in. The optiun of

Tinking 211 the invalid states intc 3 singie ircssential class is only

Tweedic's method i¢ concernad, because it

[

marginally worse as far as
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seems 1ikely that the previous invalid state could be an arbitrary
distance from the diagenal. The previous valid state is an arbitrary
distance from the diagonal too, but it seems reasonable that there will
be many moure valid than invalid states. The choice of a single state as
the target for all the transitions from invalid states will tend to make
the corresponding column of Q have & rather high proportion of
non-zeroes and consequently create excessive fili-in. The values of Q‘“1
corresponding to valid states are not affected by these c-sices, and
experiment confirms the heuristic reasoning above which prefers the

third option.

If Stewart's method is to be used, either of the choices which give
rise to many small inessential classes will be equivalent as far as
convergence of the probabilities of the invalid states tu zero is
concerned. Consider an invaiid state, s, say. It mekes a single
transition to a valid state, and there are no transitions which lead
into s. if the current estimate of e is B then the effect of
pott-multipiication by P is %> make the new estimate BPg » Thus the
estimate cenverges to zero geometrically. This suggests that we should
choose the rate of transition out of s, and any other invalid states, to
be as Targe as possible. This will make Pes small and give fast
convergence to zero for the probabilities of invalid states. I the
transitions out of invalid states are all into a particular valid state,
then the error by not having the probabilities of invalid states
identically zerco will be concentrated in that state. Although the effect
of these transient states dics away Qery quick?y; it seems sensibie to

share the error among as many states as possible. If the invalid states
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form a single incessential class, then the rate at which L tends to zero
will be modified. Assume that t is the index of the next invalid state
and hence Prg is non-zero. Clearly, ns(n+1)=ns(n)pss+nt(n)pts . There
will be a 'last' invalid state, at least when we consider a finite
truncation, which will cenverge to 7zro geometrically. Thus all the
invalid states will tend to zero, but possibly more slowly than if many

inessential classes are used.

The ult mate convergence of Brandwajn's method is also not affected
by the choice of any of these options. We shall only consider the case
where invalid states ‘orm individual inessential classes of a singie
state. That is, either of the cecond or third cptions described above is
used. In this case, an i.valid state, s (say), makes a :zingle transition
to a state t; £ < s. The **erations of Brandwajn's method which affect
state s have the form

m(i+1) = mg(n) (1 - 2qg )
Recall that there is only a single transition out of s, ard nc
transitions with s as destination. That implies that coiumn s <f Q is
zero, except for Qeg e Whatever the value of ns(o), it will converge to
zero, geometrically fast, if @ < l/qst‘ The cendition for the
convergence of the method under normal conditions is 2 < l/max{Zqij} and
since max{iqij} 2 Qgqs the inclusion of invalid states imposes no extra
constraints on Q. The fir<t option, cf Tinking all the invaiid states
into a single inessential class, can also be shown to not affect the
ultimate convergence of the method. As with Stewart’s methed, the choice
between these options must be made on the greunds of their affect con the

speod of convergence.
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Since vie can test the validity of a state, we could force the first
estimate of = to have ns=0 for all invalid states. s. This is not done
for two reasons. The testing of the validity of states might be an
arbitrarily complex operation and hence we should only perform such
checking when it is unavoidable. Even if such checking were cheap, there
is no guarantee that Stewart's method will not introduce non-zero
elemencs into « at the invalid states. The analysis abuve shows that the
ordinary post-nwuitiplication by P will not, but the interaction analysis
phase includes sub~-dominant eigenvectors for which the elements

corresponding to irvalid states need nut be identirally zero.

4.2 Denumerable State Spaces

Theoretically, any method for calculating the steady state
probability vector of a denumerably infiniic state space Markov proceSs
must involve an infinite number of probibilities (or their ratics), in
practice this is noit sucn a great problem. Since i, = 1, and n120 ior
all i, even the ratios of probabilities must have a Tinite sum. This
means chat all but a finitz number of these probabiiities w11 be less
than some arbitrary, but positive, x. For example, ail but the first n
states of an M/M/1 system have probabiiities which are less than
pn(l—p), where o is the traffic intensity. Whilst not all systems have
this convenientiy regular behaviour, it is none the less true that
however vwo choose to number the states, nieﬂ as i>». Herce trivially,
there exists an integer k(x) such that iy < x o, for all idk(x).

£

Compiters represent their numbers finitely, so there is a smallest
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non-zerc representable number. On the IBM 360/370 series computers, this
number is equal to 5'-79. The existence of a smallest representable
number implies that all but a finite number of states will have zero
probability as far as the computer is concerned. If p, the traffic
1nten§1ty, is 0.99 for an M/M/1 system, then only 18,630 (i} states have
non zero machine representations. Although ideally we would like to
consider all states with non-zero machine probability, the foregoing

argument demonstrates the impracticality of such a course.

A more important parameter of computers as far as numerical metheds
are concerned, is €, machine epsilon. € is the smallest pnsitive number
such thuat 1+€>1. On IBM 360/370 computers its value is about 2'-16 (for
double precision re3l nurmhers). When we are calculating marginai
distributions, we will have tc sum the probabilities which beleng to the
subset of the state space whose marginal probability we are trying to
calculate. If we find probabilities that are less than €.p, where b is
the iargest probability in the subset, then we can igrore themn. Although
in & general Markov process, wiéﬂ as i, we nave no means of knowing
This

“hat the smallness of T, in any way implies the smallness of LR

probiem has no general solution, but it is reasonable to assume that
those slates which have tha highest prebabilities will correspend to

relatively small indices, whatever cur state numbering.

The probiem that all methods suffer from, namely tuxt thay
calculate not probabilities as such, but the ratios between
protabilities, can be approached in two ways. Since we know that imy = 1

(by definition), and we assume that we have included &l the importent
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states (ones with large probability) in our state space, we can merely

sum the 'probabiiities' that we calculated, and divide through teo
normaiise them. An alternative approach is possible for a fairly large
class of systems. In many cases, we can deduce the true probability of
some state from other considerations. Foir exanple, the prohability of an
empty system for any single server queueing system, is equal tc l-p,
where p is the traffic intensity. This is easily proved using Little's
Theorem. Knowing the true probability of some state, and raving

calculated its ratiuv to all the other probabilities in the system, we

can easily calculate all the true probabilities.

The problem remains, however, at what state should we truncate the
system in order to get “good", in some measurable sense, approximations.
If we are interested in the probability of a particuiar state and are
using Tweedie's method then we will get upper and lower bounds on our
approximation.. Seneta et al. [1] prove that inversion of Q by Gaussian
elimination is a well-conditioned problem. Reid [39] has shown that,
evon when pivots are chosen *o maintain sparsity, Wilkinson's error

analysis can be used, and the perturbations in the originai matrix

satisfy
. _ -
|e1-j; $ (3.01)etm, (4.1)
vhere M ie the maximum value of any element at any stage of the

eliminatior and my. is the number of multiplications pe-vormed on the ij
N

clement. Thus we can calculate the bounds for a particuiar size of

truncation, and repeat the caiculation for larger and larger trouancations

unt3l chey arn acceptabie. Ye can estimate m, in (4.1) using Duff's

[N

results. As ramerked before, this will presumably be an overcstin-ie,
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since we choose pivots to minimise fillin, and hence the number of
operations to be performed, whereas Duff assumes that the diagonal
elements are used as pivots. Even so, the bound on the errors given
above is very generous. The sparse matrix routines record the growth of
errors in the course of the elimination as a maximum possible relative
perturbation of the elements of A. That is, they estimate
max{leij/a;jl}° From the above, we would expect this to be of order
(3.01)&.max{mij}. In practice it is usually about 2 or 3 times machine

epsilon.

~

When using the other methods, the position is less ~lear becausc cf
their iterative nature. The method used to ensure that a large enough
truncation is beirny used is rather ad hoc. A size for truncation is
chosen, and the stationary probability found for this size. A larger
truncation size is then generated, and the stationary distribution fouid
again. This procedure i< repsated until the stationary distribution
calculated at successive truncation sizes is the same, to within our
error limits. An elternative terwination criterion was suggested by
Seneta, namely when the dominant eigenvalue of P was close encugh to 1.
By the Perron-Frobenius theorem, it will never equal 1 exactly, but in
practice it becomes airost equal to 1 for very small sizes of

truncation.
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4.3 Moments and Marginal Distributions

If moments or marginal distributions are being sought, then
Tweedie's method does not directly help us. We could, obviously, demand
that all probabilities making up the distribution were approximated to
the appropriate accuracy. This however seems unnecessarily harsh, and is
probably unobtainable in practice. (If we truncate at state n, we will
never have the probability of state n very accurately.) Sirce we are
working on a computer we only have finite accuracy, and we can treat as
zero all probabilities which are less than €.,p , whare p is the largest
proLbability in cur margiral distribution. This is not strictlv true,
since if we add numbers in order of increasing magnitude we minimise
this truncaticn error. ™ find 2 marginal distributior we find the
prebabilities of the constituent states until a sufficient number of
them are less than x.p where p is the largest constituent probability,
and x is an accuracy factor we choose. € cen be chosen, but in practice

reaschable estimates can be obtained with much larger values of x.

When finding moments th~ same considerations apply, except one. ke
could stop or finding one state with a small enough probability, but
that lays us open to errors of the following kind. C~nsider, for
exonipie, the system consisting of two totaily indepesndent il/M/1 gqueues.
Let the state (1.3) represent i customeré in the first queue and j in

trefi'c intensities are say 0.2 and 0.9 respectively,

[}

the second. IT th
thern the probability of .tate(i,j) is 0.08.(G.2)**i.(0.9)**j . Thus it
is possicle for the state {m.0) *o have a very small probability whilc

the ctate (0,m) still has a sizeable one. If we merely waitsd until some
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arbitrary state had reached the required smallness we might choose a
state such as (m,0) while there is still a substantial contribution to
be made by states of the form (0,m). The heuristic solution adopted is
to consider all states on the diagonal (i,j) such that i+j=m and only to
cease expansion when all the states on such a diagonal satisfy our
convergence criterion. The cenvergence criterion is satisfied by
state (i,j) when its probability is p, if

i*p<a*P and j*p<a*p
where a is the requested accuracy arnd P is the probability of the state
in <ke marginal distribution whose probability is largest. Similar

heuristics can be applied in higher cimensional state spaces.

We coulc also go on adding states to the marginal distribution so
long as this adding proceuure is having some effect on the marginal
distribution or the moments. This is essentially a heuristic version ~f
the above. We-could adopt the same approach to ectimcling single state
probabilities as well, continuing to expand the truncation so long as

the sum of the "probabilities" was changing. In practice, the:e
heuristic .variants appear not to be as reliable as the criteria proposed

in the previous paragraph.

4.4 Program structure

r
This section gives an outline of the structure ¢ the program used
to compare and evaiuate the difterent methods. If individual programs

had been written to perform each algorithm, there would have L~:n @
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large amount of common coding. For example, the part of the coding which
manipulates Q and sets up truncations would be common to all the
programs. Rather than have the problems of dealing with several versions
of the same piece of program, a single program was written which called
subprograms to perform the different algorithms. An outline of the
structure is shown in Figure 4.1. This approach has both advantages and
disadvantaces. The main disadvantage is that the program is more complex
than would be necéssary for a single aigorithm. A. advaﬁtage, apart from
the simpler maintenance mentioned above, is that one can changé
algerithms easily. For exémp]e, if one is using the dirert method, and
the si.e of truncation becomes too large for the Gaussian elimination
subroutines, the program will use Stewart's method which needs less
working storage. The estimate for m which has already been found by
Tweedie's method can be used as the first approximation te start off the

iterations.

Since the three methods use different amounts of core storage in
4ifferent manners, a ianguage which supports dynamic allocation of
storage is almost essential. The main part of the program, is written in
Simula 67, although almost any language of the Algoi60 family could have
been used. For most of the numerical methods subroutines, for example
the QR algorithm which is needed by Stewart's method, the N.A.G. library
vas used. A tew similar roUtines, for exampie, the Ericnan/Tinney
aigorithm were coded by the author in Fortran. In order ic make use of
th~ program the representation of states as vectors of integers must be
decidrd upon. Also one must decide on which states are valid and which

invalid. A short piece oF initiaiising code and two subroutines are then
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do forever
read request;
work out truncation size;
while request not satisfied do
expand Q by rows, until all rows
in the truncation are present ;
set up truncation of 0
if Stewarts then convert Q to P (truncated form);
if Stewarts or Brandwajns then
read old estimate for = (if any) ;

case method of

Tweedie's;

Stewart's;

Brandwain's;
test = for satisfaction of request;
if not satisfactory then increase truncation size;

write out resulits ;

Figure 4.1.
written. The initialisation program must set up various parameters for
the main solution program. such as the number of integers in a state
representation, the number of any bounded components in the state
representatioﬁ, and their bounds. The two subrou*ines are used to
construct Q. As it expands its representation of Q, the main program,
for each state to be added ¢ii1s one of the subroutines to check wether
or not the state > valid. The invalid states are automatically 1inked
to the previous vziid state, as described above. For valid states, the
other subroutine is celied to return all'the states to which transitions
can be made from this state and the rates at which these transitions
nccur. The subroutines wow: or the external numbering of states as
vectors of integers, anc need have no knowledge of the internal state
numbering scheme. This is eguivalent to construcfing a row of Q. It is

conceptually slightly simpler to construct Q in this fashion.
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Constructing it by columns would require the subroutine to return the
states that could have made transitions intc this state. Although
theoretically equivalent, it would be much harder to deal with invalid
states using such a construction. Another alternative would be for the
user to provide a subroutine which was given two states as parameters,
and returned the transition rate between them. Whije this is perhaps
conceptually more elegant than the method adopted, it would be in
practice very inefficient. As the truncation was increase! in size from
state n to state n+l (say), the subroutine would need to be called 2n+l

times and most of the calls would i1eturn the transition rate as 0.

Sinrce the Gaussian elimination routines destroy the representation
of the matrix that they factorise, the representation of Q is heid on an
indexed sequential file. Each record of the file contains the non-zero
elements of a column of Q. Although this invoives a large number of
indexed operations on the file as Q is expanded, when a truncaticn is
set up only the first n records need to be read, sequentially. If the
recuids of the file contained rows, then the program would need tc check
that only those elements within the current truncation were included.
Another advantage of using a file to save Q is that if the model is to
be examined again, the representatior can be re-used, without having o
be re-generated. A similar advantege is achieved by saving = on a file.
If a closely related system is to be investigated, then Lhe sclulion to
the original system can be used as a first estimate fur the iterative

methods of solution.

The procram will desl witn vequests for tnrec different types Hf
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calculation. We shall illustrate them using a two class preemptive
priority M/M/1 system. Requests can then be in

1) (i,j) is a request to calculate the probability of i customers in
the first queue and j in the second. Depending on the meincd
being used, the program will continue expanding the
truncation size in use until either the bounds given by
Tweedie's results are closer than the error limit being
used, or until the values of the probability at successive
truncation sizes differs by iess than the error limit. In
hoth cases, the error is treated ac a relative errcr. That
is, the difference betwzen the upper and lower bound divided
by the Towe: bounu must be Tess than the error limit.

2) (*,*) causes the program to calculate the mean .umber of
customers in ~ach queue. Optionally, higher moments of the
queue Tengths can be calculated.

3) (*Ej)'Will calculate the marginal probability that there are jJ
customers in the second queue. The mean lengtn of *the first
queue, conditiorail on there being j class 2 customers is

alsoe .clculated.

The initial truncetion size is calcuiated by adiing 2 to each
component 27 the state description. Thus, if the probabiiity of state
(2,3} is requested, the state space is truncated at (4,8) initislly, and
the cystem sclved . If the 'answer' is not satisfactoiy, the size of the
truncetion is increased by 25%, und the system resolved. Note that the

method used to test the iterative methods for convergence implies that

we will always have to increase th2 truncation size at Teast once. When
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moments or marginal probabilities are requested, the initial truncation
is chosen by setting any variable subscripts in the state description
equal to 2. The initial truncation when the request is (*,8) is thus at

state (2,6).
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5 Examples

In order to evaluate the various methods, and compare their
effectiveness, several systems with known steady state distributicns

where solved using all the algorithms.

The obvious problem to try and solve is the M/M/1 system. It is
well understood and has a particu]ér1y simple structure. Cther related
systems which fall into the class o7 simple birth-death processes are
the M/M/k system, 2 single qucue with Poisson arrivals and exponential
service requests, but with k servers; the M/i{'/» syster, in which each
arrival receives service immediately; and the discouraged arrival M/M/1
system, in which arriving customers enter the system with & prababilivy
that deperds on the length of the queus. Since rrese are all simple
birth~death processes, from our analysis in Chapter 3, their solutions
will be given exactly by the upper bound in Tweedie's method. To test
the program and t*= algorithms on systems with more complex state spaces
but which also have known solutions, artificial exae.:les can be
constructed from simplc birth-death processes in pzrzllel. For example,
two parallel M/M/1 queues can be described by a pair of integers (i,3)-
represeniing the state o- i customers in the first queue and j in the
sccond. I the queues a~: totally independent, then customers witl
errive jn qusuz k at rate Ak an? the server wiii'satisfy their requests

at rate . In this case, the probability of & particular stote (,3) s
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given by p; (1-py)xps (1-p,).
1 1 2 2

Turning to more complicated systems, which may or may not have
closed form solutions the program was tested against many published
numerical results. The M/Ek/l gueue, the system with Poisson arrivals
and Eilang k service requests to a single server, has a known
mean [40,P 166€]. Grassman has investigated it numerically [21]. The
system conzisting of two parallel queues, in which arrivals join the
shorter qucue, has an analytic soluticn if the servers at the head of
each queue serve at the same rate. If they serve at different rates,
then the only results available are due to Grassman [22]. He ha: used a
numerical method to find the transient solutions to a finite state snace
version of this problem. A system which models a network of unreliable
computers was a.so modeled. Theoretical results are known fov 3 special
case of this model [34]. A1l these systems have been soived using the

algerithms above, and tie results agreo closely.

In this chapter, we shall present compariscns between the three
algorithm's perf0ﬁnénce on some systems with known solutioas, and also
find numerical solutions for two systems which have no known analytical
solution. All comparisons were run on an IBM 370/168 and timings are
given in seconds of CPu time. For all tests the programs error Timit was
set to 5'-3. Tne non-preemptive priority M/M/1 system has knoun meéns,
but the distribution of the numbers of customers in each priority class
js unknown. The other unsolved system that we shail study is supposed 1o
meae]l a system of multiple micro-processors. Arviving jobs belong to

various cizsses and the processc.s are individuaily dedicated to jobs of
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a particular ciass.

5.1 M/M/1 Systems

We first compare the performance of the methods on solving the
M/M/1 cystem. This is well understood and has a very simpie structure.
We are even able to apply the truncation methods of Tweedie
symbo]ica]iy.'we wei 2 unabte to estimate the rate of convergence of
Stewart's algorithm very accurately. Table 5.1 shows the results of
finding the probability that 10 customers are present in an M/M/1 system

with traffic intensity, p=0.3. The true probability is 4.132343'-6

Table 5.1.
Method Truncation Value Tire
Tweedie 15 4,1234'-6 1.0 L
Stewarcv 20 4.1334'-6 1.8
Brandwajn 20 4,1323'-6 1.1
Stewart(r) 27 4,1390'-6 3.5
Brandwain(r) 20 4.1360'-6 1.3
The allowod crror was 5'-3. It will be seen that all the metnods gave

the correct apswor o vwithin 0.5%. Tho direct method of Tweedie used 3
truncation of only 15 states, whereas both Stewart's and Srandwajn's
methods necded 20 stotes. The iterative methods Tabelled (r) were
initialisod with & random vector, instead of the unit veclor. This did

not Gmurcve the accuracy, or even the rate of convergence.
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The program can also be used to find moments and conditional
probabilities. The results of finding the mean number of customers

present by all three methods are given in table 5.2.

Table 5.2.
Method Truncaticn Yalue Time
Tweedie 20 0.42857 2.4
Stewart 20 0.42857 2.5
Brandwajn 20 0.42857 1.7
Stewart(r) 27 0.42857 4.3
Erandwajn!r) 20 0.42857 1.8

Since the true result i< 0.42257 all methods reached the correct answer.
No further expansion of the truncation was ‘iezessary for any of the

methods, except Tweedie's.,

If the system is arbitrarily truncated at 100 states all the
methods find the correct probability of there being 10 customers in the
system. The times taken are given in Table 5.3. The different ‘imes
taken by the iterative methods are refiections of the time that they
take to find a staeticnary distribution, starting with the 'correct’
answer found previously. In the rows marked (r), the extra elaments in
the Tirst estimate were given random vaiues. The other rows represent

the time takern when these extra elements were iritialised to 0.



Table 5.3.
Method
Tweedie
Stewart
Brandwajn
Stewart(r)

Brandwajn(r)

Tim
2.8
4.6
3.9
14.8
7.5
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The foilowing tabies ( 5.4 and 5.5) give tie same results for an

M/M/1 system with traffic

are 10 customers is given

is 9.
Method Truncation
Tweedie 74
Stewart . 74
Brandwajn 94
Stewart(r) 74
Brandwajn(r) 150

intensity, »=0.9 . The probability that there

by 3.4867'-2, and the mean number of customers

Tab

le 5.4.
Value
3.48544'-2
3.48544'-2
3.47951'-2

3.48547°-2
3.75539'-2

Time

5.4
13.8
11.4
1.4

AT tne methods, except Brandwajn(r), give answers which are vell inside

the error bound asked of the program. Tweedie's method is significantiy

faster than Stewart's me.1od, and gives results which are equally

accurata. The only poor serformance comes from Brandwajn's method when a

. . . . . i \ ] . A
random vector s used to initialise the estimate. The ‘answer' returned

has an error of about

extrenely 1ong.,

7“
r
Aoe

Tre time taken to find this 'answer’ is a&lso
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Table 5.5.
Method Truncation Value Time
Tweedie 119 8.998 11.6
Stewart 94 8.889 16.9
Bréndwajn 119 8.937 16.2
Stewart(r) 150 9.000 83.3
Brandwain(r) >700 Fkkkk >200

Once again, Tweedie's method wins. It not only acnieves an accurate
result, but it alsc does it faster than the other methods. This oespite
taking ¢ Targer truncation than Stewart's method. Brandwoin's method,
¢sing a random first estimate, had not returned an answer after 200
seccnds of CPU vime had Lezen used, and had expanded the truncation o
over 700 states. It can be seen that using a random vector, instead of
the unit vector, as first approximation ras no particular advantace in

terms of the accurary achieved and a definite disadvantage in terms of

the time taken to reach the solution.

On the basis of these results, we might conclude that Tweedie's
method was the only one which reasonably approximates the correct
solution in a reasonab!~ time. However, we have already remarked on the
simple structure of the M/M/1 sysuem, especially favourabie to sparse
Gaussian elimination. He shall also compare the methods on the

non-preemptive priority -ystem in the following section.



97

5.2 Non-preemptive Priority System

In a non-preemptive priority M/M/1 system, the customers belong to
various priority classes. They arrive in a Poisson stream and jcin the
rcar of a queue corresponding to their priority class. When the single
server finishes the service of a customer, the first customer in the

highest priority non-empty queue is chosen for service.

Any state of the system can be described by a vecto., of n+l
integerc if there are n priority classes. The first component takes on
values between 1 and n, representing the ¢iass to which the customer in
service belongs. (Differeni c]asses'may have different service
requireients.) The other n integers represent the number of customers in
the various priority classes, including the customer being served. Let
us, for the purposes of illustration, consider a 2 class system in which
customers of class 1 take priority over class 2 customers. The state
{1,2,4) represents the system when there is 1 class 1 customer being
served, one class 1 customer waiting, and 4 class 2 customers. From any
state in this system, there »i11 be three transitions. Two ~f the
transitions correspond to the event of a customer arriving, one
transition for each class of arrival. These transitions occur at the

respective arrival rates and when the system is in state (1,2,4) have as
their destinations the states (1,3,4) and (1,2,5). The other corresponds
to the customer coming to the end of his service, and covurs &t the

appropriate rate. The destinaticn state of this transi.ion is the state
with the number of customers in the ;orresponding priority cless reduced

- - o A - 'h
by i, in this case it is (i,1,4). If there are no customers left in the
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priority class, or there are customers of a higher priority waiting,
then the integer representing the class of customer being served will te
different too. For example, the end of service of the customer in state
(1,1,4) is represented by a transition .o state (2,0,4). As noted in the
previous chapter, states such as (1,0,4) and (2,1,0) will be generated,
although the system being modelled could never enter them. These states
are marked as invalid. The other problem is the idle system, when there
are no customers of either priority class present. Clearly, we could use
either (1,0,0) or (2,0,0) to represent this state. Arbitrarily, we
choose to use (1,7,0) and mark (2,0,0) as invalid. [In fact, we could
altow Leth (1,0,0) and (2,0,0) ic be vaiid, representing he idle state
entered by a class 1 customer leaving or a class 2 customer leaving,
respectively. The only problem that this would cause is that the
probability of the idle system, easily found using Littie's theorem,
would correspond to the -um of the probabilities of states (1,0,0) and

(2,0,0).1

We shall study the 2 class ~on-preemptive priority sy-tem. Class 1
jobs have priority over class 2 jobs. Class 1 jobs have exponentially
distributed processing times with mean 0.5 seconds, wnile class 2 jobs
have exponentially disiributed times with mean 1 second. Table 5.6 shows
the value of the mean number of customers fin each class, both as
predicted by theory and as calculated using cur thrce algorithms. Ve
assume that the arrival rate of class ! jobs is 8.5 per second, and that

: P e e I/Bs N K 3 .
the arrival rate of ciass 2 jobs is 0.1,0.7,0.3,0.4, and 0.5 per second

£ o et INIoh |
Tahle 5.7 gives the oguivalent results Tor a sysien which



99
class 2 jobs arrive at rate 0.1 per secord, and class 1 jobs arrive at

rates 0.25,0.5,0.75,1.0, and 1.25 per second.
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It can be seen that Tweedie's method is at least as efficient as
the other two. In most cases, it takes less time to reach a solution and
in those cases for which Stewart's method was faster, Tweedie's method
has considered a larger truncation. It will be noticed that Tweedie's
method consistently overestimates the vaiue of the moments. The reason
for this can be found by examining the behaviour of the upper and lower
bounds on the probability of a particular state as the truncatibn size
increases. Iu this case, untike M/M/1, the lower pound is a much bei.er
estimate than the upper bound. It both starts closer to the correct
value and converges faster than the upper bound. Since the astimate used
by the program is the mean of the upp.r and Tower bounds, the estimate
will be an overestimate. Since it is possible to increace the speed of
the factorisation by a factor of 2, by using better sparse matrix
subroutines, we recommend Tweedie's method for ali problems in which the
size of truncation needed can be succesfully deait with. It has the
added advantége that it provides upper and lower bounds on the accuracy

of its estimates, whereas the other methods have no way of doing this.

The program was used to calculate the marginal distributions for
both classes of customer, with their arrival rates 0.2 and 0.5 jobs per
second. The 4 different systems thus modelled have their marginal

dictributions tabulated in tablies 5.8-5.11, and displayed graphically in

f—3

(8]

a e

figure
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Table
Class 1 arrival rate=0.3
Class 2 arrival rate=0.3

Probability of

Class 1
0.7808
0.1704
0.3784'-1
0.8512%-2
0.1931'-2
0.4407'-3
0.1009'-?

Table
Class 1 arrival rate=0.5
Class 2 arrival rate=0.3

Probability of

Class 1
0.5500
0.2292
0.7514'-1
0.2728'-1
0.9291'-2
0.3145'-¢
G.1061'-2
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service rate=2.0
service rate=1.0

n customers in class.

Class 2
0.6251
0.2252
0.7858'~1
0.2798'-1
0.1016'-1
0.3750'-2
0.1403'-2

5.9.

service rate=2.0

service rate=1.0

n customers in class.
Class 2
0.6047
0.2342
0.9316'-1
0;3852'-1
0.1646'-1
0.7208'-2
0.3206'-2




Table

Class 1 arrival rate=0.3

Class 2 arrival rate=0.5

Probability of

Class 1
0.7346
0.1989
0.5032'-1
0.1228'-1
0.2932'-2
0.6916'~3
0.1618'-3

Table

Class 1 arrival rate=0.5

Class 2 arrival rate=0.5

Probabiiity of

C]assll
0.5833
0.2569
0.1012
0.3767'-1
0.1354'-1
0.4756'-2
0.1647'-2
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5.10.
service rate=2.0
service rate=1.0

n customers in class.

Class 2
0.4138
0.2386
0.15v1
0.8232'-1
0.4937'-1
0.2988'-1
0.1819'-1

5.11.
service rate=2.0
service rate=1.0

n customers in class.

Class 2
0.3333
0.2141
0.1405
£.9460'-1
0.6497'-1
0.4517'-1
0.3164'-1
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Examination of the graphical output suggests that the marginal

distribution of the numbers in each priority queue is gecmetric. If the
marginal probabilities are plotted on a logarithmic scale as in figure
5.2 this hypothesis is supported. The correlation between the iogarithms
of the marginal probabilities and the number in thé queue is very Pigh,
greater than 0.99 in magnitude in all cases. From this result, it seems
that a geometric distribution is a very good approximation to the

marginal distribution of the number of customers in each priority class.

5.3 Multiple-Microprocessor System

The model of a distributed micreprocessur system which we shall
investigate is as follows. There are n identical microprocassors, each
capable of processing ¢ instructions per second. Jobs arrive from
outside the system in two classes. Those in class i arrive in a Poisscon
siream at rate n.Ai, with exponentially distributed length, mean 1/pi
instructions. Thus the expectcd execution time of a class i job is 1/Cu1
seconds. The processors are also divided into two sets. k prucessors aro
dedicated to class 1 jobs and the remaining n-k to class 2 jobs. A
processor will process jobs from the other class, rather than be
unnecessarily idle, but an arriving job of the class to which the
processor is dedicated will preemptively seize the procesnor. Since tre
jobs have exponentially distributed Tength there is no need to
distinguish between the cases of a job having to restart when iv has
been vreemptod and & jeb continuing at the point of proemption. This

. - s annrvoximating the
mode! was postulated as & discrete means ov approXimavihy the
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performance of Kleinrock's discriminatory processor sharing scheme [30].
Class 1 jobs receive proportion k/n of the available processor power and
class 2 jobs the remainder. Kleinrock's original analysis of such
systems has been shown to be erroneous, and the expected response time
of jobs in the various classes of such a system have been given by
Fayolle, lasnogorodski, and Mitrani [15]. For a two class system such as
ours, the expected response times are

W. = [1+u192(92-91)/D]/ul(l-p) (5.1)

Wy = [1%uy01197-9,)/D1/uy(1-p) (5.2)
where

D = g {I-py) + uy5,(1-p,)
9. is the proportion of the processor allocated to class 1, My the
service rate for ciass 1 jobs, 05 the traffic intensity for class i, and

p is the total traffic intensity.

The states of the system can be represented by a pair of integers,
2ach integer representing the number of jobs in the appropriate priority
clazs, including those being .erved. Because of the preemptive nature of
the dedication of processors and the memoryless property of the
exponential distribution, there is no need to represent the classes of
the jobs being served as there was in the non-preemptive priority
system. There can be up to 4 transitions from eacn state. Two
corresponding to arrivals in each priority class, and tht others
corresponding to departures. The rate of departuire transitions will
depend not eonly on the class of job departing, but on the state of the
system and on the number of processors. 1ne rates of the various

transitions out of the state (nl,nz) are given below, depending on the
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values of n, the number of processors, and K, the number of processors

dedicated to class 1 jobs.

Destination Rate
Al1l (nl,nz) > +1 n ) nA;
(n n +1) W
if nl>=k and > ( -1 SNy ) k.c.u1
So=n-k (nl.r2 1) (n--k).c.u2
. R - y
if n1<k > (n] 1,n2, o onyeCay
(nl,nzml) m1n{n2,n—n15.c.u2
if n2<n—k > (nl-l,nz) min(nl,n-nz}.c.u1
(nl,n:—l) Ny.C.by

Without Toss of generality, we shall as:cume that c=1. This system
was solved numerically in order to find the expected response times for
the two classes of customer. A fairly saturated system with p=0.875 wis
used. The system was investigated under the following conditions; n, the
nutber of processors, taking the values 1,2,3,4,5, and 10; k, tre number

dedicated to class 1 jobs, tcking ail possible values, k=0,1,2,...,n.

When there is only a single processor n equals 1, and we have a two
class preemptive priority system in which ciass 1 has pricerity if k is 1
and class 2 nes priority when k is 0. As we increase the number of
pracessors, staying Tor tre morent with the preanptive priority system,
the situation becunes mo > complex. Intuitively, cne might conclude that
the response time would not chante, since the traffic intensity remains

constant. This is what Fayollc et al.’'s vesuli pradicts. However |
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examination of the response times which are tabulated in Table 5.12,
shows that the mean respense time drops as the number of processors
increases. This is true even for the lower priority class. It appears
from Table 5.12, which is graphically dizplayed in figure 5.3, that the
responée time tends to the service time. For compafison, the response
times predicted by Fayolle et al. (5.1) and (5.2) are displayed on the
same graph. This intuitively surprising resuit can be explained as
follows. A random arrival will expect to find a proportion p of the
servers busy, where p is the traffic intensity. Thus the expected number
of idle servers is n.(l-p). For large encugh n, the random arriva: has a
very hisgh expectation that there vill be at least one free server and
that he will not have to wait. This argument can be applied to the more
mixed system, when ualy some of the processors are dedicated to a
particular class. The same phencmenon is observed, and the same
heuristic explanation is offered, although the behaviour of the system
is modified by.the anssibility of “borrowing" an idie processor which
has been dedicated to the other class. Of course, in the strictly
preemptive case, the probadility that & higher priority job will have to
queue can be calculated using Erlang's C formula. This is a decreasing
function of n, and certzinly has a lower bound since the ditferences
between its value for successive values of n tend to zero, and of
course, probabilities are non-negative. However, attempts to prove that

t'"is lower bound is zero have Tailed.
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.6250000

Response time

Class 1
6666337
2364923
.5333082

0.9291195

o P = O O

o

.0494053
.5027764
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.4032058
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5012523

540911/
7374313
0686257
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5000000 Service rate=

Service rate=

Ciass 2

.2005407
.6279103
.8490108
.6728568
.6204611
.4337964
.4023259
.5576885
. 3294645
.7412747
7323192
.6753015
.0284232
.2006225
.3339086
. 3308560
3145667
.2207717
.5434506
.1360835

. 5520505

2.0000000C
1.0000000
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10
10
10
10
10
10
10
10
10

10
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.4999628
.5002776
.5015418
5062088
.5222930
.5768641
. 7729156
.1522268
.4233566
.5629623

—

.5520109
.5518409
.5511630
.5486715
.5401531
.5115197
.4069984
.1907322
.0778378
.0310214
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6 Conclusions

We have investigated 3 methods for estimating the steady state
probability distribution of an infinite state Markov process. It has
been shown that numerical methods can be successfully used to calculate
the steady state distributions of infinite state space processes as well
as finite state processes. We recommend the method based on Tweedie's
results whenever enough core storage is available to make use of it. It
is not only as efficient as the others, but also gives bounds on the
possfb]e values of the distribution. The iterative methods are both
capable of solving much larger systems than Tweedie's methiod, but they
provide very little information about their accuracy. Of the two,'
Brandwajn's methed seems to be no less accurate than Stewart's, and in
the majority of cases it is faster. It has the advantage ov being
simpler, both 1n‘terms of its theoretical basis ard vis-a-vis .is

- programming complexity.

A method was developed to map arbitrary state spaces into the
natural numbers and to allow for the effect of any extraneous states
introduced by the mapping. Aithough developed for Markov precesses,

there is no reason wiy the cransformation should not be used in other

cases where it is require to number an infinite mesh usiquely.

tumerical investigaticn of nor-preemptive priority systems reveal ed

2.

the stichtly surprising result that - geometric distribution is an
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excellent approximation to the marginal distribution of the number of
customers in each priority class. The multipie micro-processor system
study also produced an unexpected result. Aithough the traffic intensity
remained constant, the mean response time decreased as the.number of

processors increased.

Further research is needed into the behaviour of the bounds with
different systems. Simple birth-death processes have the upper bound
giving the exact ansver. In the case o7 priority gieueing systems, the
Tower bound was a much better estimate than the upper. Some work is
needed to find the characteristics of systems which govern these
propertics. Stewart suggests that his method may be better for nearly
completely decomposable svetems. Both Tweedie's and Brandwajn's methods

need more investigation into their respense to such systems.
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