Integrating distributed post-genomic data to infer
the molecular basis of bacterial phenotypes

Thesis by

Tracy Craddock

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

NEWCASTLE UNIVERSITY LIBRARY

206 53419 4

"Vhess Wglo%

@5 Newcastle
University

Newcastle upon Tyne, UK

2008
(Defended December 7, 2007)



i

To Mum, Dad and Steve.
And Peter.



iii

Abstract

The aim of the project described in this thesis is to understand and predict the
characteristics and behaviour of a family of bacteria through an analysis of genome
wide data from a variety of sources.

The focus of the research is a family of bacteria, Bacillus, whose members show
a diverse range of phenotypes, from the non-pathogenic B. subtilis to B. anthracis,
the causative agent of anthrax. Specifically, the focus was on the genomic scale
identification and characterisation of secreted proteins from Bacillus species.

Firstly, the application of Grid-based computational approaches to problems in
genomic analysis and annotation was investigated, applying ™Grid technology to
a biological problem not previously addressed using this approach. e-Science work-
flows and a service-oriented approach were developed and applied to predict and
characterise secreted proteins, and the results automatically integrated into a custom
relational database. An associated Web portal was also developed to facilitate expert
curation, results browsing and querying over the database. Workflow technology was
also used to classify the putative secreted proteins into families and to study the
relationships between and within these families. The design of the workflows, the
architecture and the reasoning behind the approach used to build this system, called
BaSPP, are discussed.

Analysis of the putative Bacillus secretomes revealed clear distinctions between
proteins present in the pathogens and those in the non-pathogens. The properties of
the protein families present in all Bacillus secretomes, as well as those specific either
to the pathogens or to the non-pathogens were investigated.

Many of the protein families contained members of unknown function. In the
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second part of the project, these families were investigated in more depth, using ad-
ditional data integration strategies not previously applied to these organisms. The
secretomes were modelled at the system level, in the broader context of interactomes.
A system called SubtilNet was therefore developed, using B. subtilis as the refer-
ence organism. As part of SubtilNet, a toolkit and architecture were developed and
implemented for building and analysing probabilistic functional integrated networks
(PFINs). The PFINs built for each Bacillus species using this system were subse-
quently used to delve further into the interactions specific to the secreted proteins by
extracting and exploring the cross-species PFINs of these proteins. The cross-species
PFINs for the protein families specific to the pathogens and non-pathogens were ex-
plored, with particular emphasis on the core PrsA-like protein family, which acted
as a use case to show how the PFINs can be used to shed light on protein function.
The addition of orthologous links between species was demonstrated to facilitate net-
work clustering and analysis, enabling putative annotations to be applied to proteins

previously of unknown function.
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Chapter 1

Introduction

One of the biggest challenges for biology is to understand the complexity of biological
systems in terms of the interaction of their components, the functions that these
interactions give rise to, and the consequent behaviour of the system [Nurse, 2003].
Within genomics, a great deal of information can be obtained about the biology of
an organism by analysing its genome, and subsequently interpreting this analytical
data in the context of existing genome sequence information [Gabaldén and Huynen,
2004). However, genomics cannot yet provide us with a complete understanding of
many aspects of biological function, as it is difficult to predict the behaviour of gene
products from gene sequences alone [Dove, 1999)].

New post-genomic approaches are therefore required to bridge the gap between
the genome and cellular behaviour [Dove, 1999]. Knowledge at a variety of different
levels is required that provide data on many types of cellular components, including
the transcriptome (complete set of transcripts), proteome (complete set of proteins),
interactome (complete set of interactions) and localisome (localisation of all tran-
scripts and proteins) [Ge et al., 2003]. Integrating the information extracted from
these additional omics approaches provides a bridge to a discipline of biology known
as systems biology. By understanding the complex interactions of genes, proteins,
and so forth, knowledge of a biological system (e.g. metabolic pathways) is obtained,
leading to more precise functional annotations for gene products and relationships
[Kitano, 2002). In this study, the application of this approach to integrative biology,

in combination with an e-science approach, is demonstrated through investigation of
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the secretome of a genus of Gram-positive bacteria, Bacillus.

1.1 Computational challenges in systems biology

With the abundance of information available on the inner workings of the cell, the
challenge is how to extract biological meaning about systems as a whole from these
multiple omic datasets. Systems biology addresses these biological questions by inte-
grating omic datasets to create computable mathematical models representing inter-
esting biological phenomena. These models define a set of assumptions and hypothe-
ses that need to be tested or confirmed experimentally. Systems biology is therefore
both a data- and hypothesis-driven science [Aderem, 2005, Joyce and Palsson, 2006).

Computational "dry” experiments (such as simulation) on the biological models
may agree with the embedded assumptions and hypotheses of the model, or other-
wise highlight inconsistencies with experimentally verified knowledge. Inconsistent
models may result in model rejection or modification. Consistent models may lead
to the formation of a number of predictions that can then be used to drive "wet”
experiments. Analysis of the results from the wet-lab experiments can subsequently
verify the models predictions {Aderem, 2005, Kitano, 2002].

Systems biology therefore combines omic approaches, data integration, modelling
and wet-lab biology [Ge et al., 2003]. Developments in this area herald a new era
in which the benefits of comparative analysis of the rapidly growing collection of
complete genomes will complement experimental approaches aimed at improving our
understanding of biological systems [Subramanian et al., 2001]. The development of
scalable computing systems that can rapidly analyse and compare sequenced genomes
in an efficient manner is required to assist in the knowledge gathering process. The
development of high-throughput technologies and the desire to understand organisms
as complex systems, rather than the more traditional approach of studying their com-
ponent parts, is placing new requirements on computing infrastructure. Managing
the conduct of high-throughput experiments, the data generated by them, and the

sharing and integration of these datasets enables better-informed or faster decisions.
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Computational methods can therefore guide and focus traditional wet-lab biological
research, as computational analysis provides interesting insights into genomic differ-
ences [Aderem, 2005, Subramanian et al., 2001]. The use of computational methods
for analysis falls into an area of science known as bioinformatics. In general, the
term bioinformatics means the application of information technology to the manage-
ment and analysis of biological data [Attwood and Parry-Smith, 1999]. It is therefore
a multidisciplinary research area at the interface between informatics and biology.

Bioinformatics therefore plays an important role in systems biology.

1.2 e-Science and Grid technology

Within bioinformatics, a considerable amount of time is spent dealing with three prob-
lems: heterogeneity, distribution and autonomy. Bioinformatics tools and datasets
tend to be highly heterogeneous in content and structure; the datasets are often widely
geographically dispersed, and are often autonomously controlled as they are main-
tained and deployed by individual scientists within their own laboratories [Stevens

et al., 2007]. e-Science technologies promise to help to address these issues.

"e-Science is about global collaboration in key areas of science and the next

generation of infrastructure that will enable it” [Taylor, http://www.nesc.ac.uk].

e-Science therefore refers to a science in which researchers from around the world
collaboratively share distributed resources. The use of an e-science approach en-
ables faster, better-informed research by providing access to resources located on
distributed computers as if they were on the user’s own machine. The resources can
include enormous computing power used for large calculations, as well as databases
and the necessary software to allow this information to be shared and integrated,
encouraging collaboration amongst researchers from different institutions. Through
e-science it becomes possible to conduct research that was previously impossible us-
ing a single computer. Bioinformatics is therefore a discipline for which e-science is

appropriate [Hey and Trefethen, 2005].
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The infrastructure supporting e-science is termed the Grid [Hey and Trefethen,
2003, 2005]. The Grid is based upon coordinated resource sharing and problem solv-
ing in virtual organisations. The Grid tackles many concerns and requirements not
addressed by current distributed technologies, such as the need for flexibility and
control over how a variety of resources (programs, data, computers, sensors and net-
works) are shared and used, as well as issues concerning quality of service, scheduling
and accounting [Foster et al., 2001]. The Grid provides a means for scientists working
on large distributed projects to perform experiments using an array of computational
resources in order to solve scientific problems [Greenwood et al., 2003).

It should be noted that the Grid itself is not e-science, because in order for the
Grid to support a scientist performing analysis and simulations upon a computer,
more layers of software are needed on top of the basic computer technology that
forms the Grid. This software, termed middleware, lies conceptually between the
operating system software and the applications software that is designed to solve a
particular problem for a user. The function of the middleware is to organise and
integrate distributed and heterogeneous Grid resources to provide a ”level-playing
field” for e-scientists to run applications on suitable distributed computers [CERN,
http://gridcafe.web.cern.ch].

Middleware development is the focus of many ongoing Grid projects worldwide, re-
sulting in a number of prototype systems for bioinformatics problems, such as ™Grid!.
™/Grid is an e-science service based middleware toolkit used to build Grid enabled
bioinformatics applications. ™ Grid aims to support biology and its sub-disciplines. It
essentially illustrates how Grid technology can be harnessed and enhanced to accom-
modate the needs of biologists and a wider range of e-scientists than was the original
target audience of the Grid [Stevens et al., 2003]). The ultimate goal of this project
was to develop open source high-level middleware to support the construction, man-
agement and sharing of personalised data-intensive in-silico experiments in biology
on a Grid [Greenwood et al., 2003, Stevens et al., 2003]. Using ™¥Grid, e-scientists

can use Web services, which provide a standard way of connecting different software

1myGrid Website: http://www.mygrid.org.uk/
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applications that are located on different platforms or frameworks, to construct their

in-silico experiments [W3C, http://www.w3.org].

1.3 High-throughput genomic characterisation

Many bioinformatics experiments can be represented as a series of workflows, integrat-
ing a number of programs and data sources to test a hypothesis in-silico. Workflows
are essential to allow e-scientists to capitalise on the increasing number of resources be-
ing exposed as Web services, enabling the coordinated use of a variety of distributed
and heterogeneous resources. These workflows, alternatively called pipelines, form
the bedrock of computational analysis within bioinformatics [Addis et al., 2003, Oinn
et al., 2006]. Pipelines are a subset of the more general term workflow, in which there
exists added layers of control in the workflow.

Workflows that integrate a number of bioinformatics software tools with multiple
databases allow the analysis and storage of genome sequences to be automatically
managed. One of their most common applications in bicinformatics is to support and
complement the manual annotation process; an example is Ensembl [Curwen et al.,
2004]. The primary goal in developing annotation workflows is to provide highly ac-
curate and reliable results using the widest possible range of evidence from available
databases. Current annotation workflows utilise the consensus based approach in
which a genome sequence passes through several successive levels of analysis, each
consisting of a number of different algorithms. By applying this approach, new com-
plex systems can be built from smaller component programs and data sources. The
component programs and data sources can in theory be located anywhere in the
world [Addis et al., 2003, Rust et al., 2002). However, there are practical problems
limiting the location of databases and resources, as conventional technology requires
these to be housed in a single location, due to problems relating to coordination and
distribution, but e-science technology and workflows can overcome these limitations.

A possible, and rather simple, structure of an annotation workflow is depicted

in figure 1.1. Within this possible architecture, the core database distributes data
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between the analysis workflow on the left, and the Website on the right. The Web-
site integrates the annotated data stored in the core database with multiple, external
databases. In any workflow, the general starting point is the processing of raw se-
quence data. Gene locations can subsequently be predicted by aligning homology
search matches and making computational predictions on the genomic sequence. Fol-
lowing the identification of predicted genes, the function of the genes needs to be
determined. The function of genes can be inferred by mapping predicted gene se-
quences to known genes and proteins in sequence databases using similarity search
algorithms (e.g. BLAST [Altschul et al., 1990]) or by using protein domains (e.g.
Interpro [Quevillon et al., 2005]). The final stage is to distribute the annotated infor-
mation to the users. The most common means of doing this is via a Website [Rust
et al., 2002], although other systems exist [BioDAS, http:/ /www.biodas.org].

When developing a workflow, a number of factors must be taken into account.
There is continuing improvement of the quality of sequences and assemblies, and
consequently the replacement of redundant sequences with new, superior sequences.
An automated workflow must therefore allow new sequences to be added and analysed
without disruption. In addition, a workflow must be extensible, so that new or
improved algorithms and methodologies can be inserted into the analysis process

without redesign of the system [Addis et al., 2003, Rust et al., 2002).

1.3.1 ™QGrid and e-science workflows

Traditionally, workflows have been implemented in one of two different ways. In
those laboratories with the necessary resources or specialist support, they have often
been automated using Perl, which is ideally suited to the manipulation of the textual
representations that biology has traditionally used to store its data. The majority of
biologists, however, have used cut-and-paste between the myriad of Websites offering
access to underlying computational resources. e-Science projects such as ™Grid aim
to provide an alternative to these two approaches for integrating programs and data,

making use of Web services. The use of Web services, a workflow enactment engine
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Figure 1.1: The basic structure of an automatic genome annotation workflow.
Adapted from Rust et al. [2002].

and a convenient, easy-to-use workflow editor, known as Taverna®, have enabled lab
biologists to access some of the power of automation previously only available to
programmers [Oinn et al., 2006].

™ Grid provides the capability to integrate a vast range of resources, in terms of
data and applications that may be available within an organisation or as external
services, into a workflow. "™YGrid has therefore built services such as resource discov-
ery, workflow enactment and distributed query processing. Additional services, such
as provenance management, change notification and personalisation have also been
developed. These services are often neglected at the workstation, but are required to
support the scientific method and best practice found at the bench [Stevens et al.,
2003]. ™¥Grid has previously been applied to biological questions, including problems
relating to Graves’ Disease [Li et al., 2004] and William-Beuren Syndrome [Stevens

et al., 2004b].

2Taverna Website: http://taverna.sourceforge. net/



8
1.4 Secretome analysis of bacteria

One of the main mechanisms that bacteria use to interact with their environment
is to synthesise proteins and export them from the cytoplasm (the site of synthesis)
to an extracytoplasmic location. Secreted proteins are often important in the sur-
vival of a bacterium in a particular environment. The entire complement of secreted
proteins is often referred to as the secretome. Characterising secreted proteins and
the mechanisms of their secretion can reveal a great deal about the capabilities of
an organism. Soil organisms secrete enzymes to recover nutrients from their immedi-
ate surroundings [Tjalsma et al., 2000]. During infection, many pathogenic bacteria
secrete virulence proteins (including enzymes and toxins) into their extracellular envi-
ronment can subvert the host defence systems, for example by inactivation of elements
of the innate immune system, and facilitate the entry, movement and dissemination
of bacteria within host tissues [Nomura and He, 2005). Bacteria may also use secreted
peptides to communicate with each other, allowing them to form complex communi-
ties and to adapt rapidly to changing conditions [Piazza et al., 1999]. The secretomes
of bacteria are therefore of great importance and interest.

Recently, our understanding of the secretome has greatly improved due to the
availability of increasing numbers of complete bacterial genome sequences, essen-
tially molecular blueprints containing the information that describes the entire pro-
tein repertoire of an organism. Armed with these sequences, it is possible to predict
which proteins are likely to be secreted, as well as the mechanisms of their secretion.

Biologists have already begun to apply conventional bioinformatics technology to
the prediction and classification of secreted proteins. The first, largely genome-based
survey of a secretome was carried out using bioinformatics tools on the genome of
Bacillus subtilis (strain 168) [Tjalsma et al., 2000], using legacy tools called from
custom scripts in combination with expert curation. A number of studies have conse-
quently been undertaken focusing on various other organisms, in which bioinformatics
programs and resources play a vital role [Binnewies et al., 2005, Boekhorst et al., 2006,

Lewenza et al., 2005]. Comparative secretomics can also be used to reveal information
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about the core and variant secretomes of bacteria [Sibbald et al., 2006].

These studies involve the repeated application of a number of different algorithms
to all of the gene and protein sequences encoded on the genome. Many of these
algorithms are computationally expensive and, given that an average bacterial genome
can encode around 4,000 or more proteins, the process can become computationally
bound. In addition, the results of the application of these algorithms needs to be
stored and integrated in order to make a prediction about the secretory status of
the entire set of proteins encoded by a particular genome. Often, the results of the
classification algorithms may be error prone and mechanisms to permit expert human
curation and results browsing also need to be established.

By applying e-science workflows and a service-oriented approach to the genomic
scale detection and characterisation of secreted proteins, the e-scientist can describe
and launch experimental processes in a structured, repeatable and verifiable way
[Addis et al., 2003].

1.5 Elucidating protein function using integrated
networks

The ability to elucidate protein function is a common problem in the post-genomic
era. High-throughput sequencing analysis is still revealing large numbers of new genes
of unknown function. A common approach to computationally assigning function is
based on querying databases to identify similar sequences with known function (e.g.
BLAST) or by identifying functional domains (e.g. Interpro).

However, alternative approaches are required when a protein shows no significant
similarities or identifiable domains. More recently, an additional strategy has been
employed, by identifying all functional protein-protein interactions. Originally, these
protein-protein interactomes were generated based on one data source. However, in-
teractomes have advanced in recent years towards combining multiple data sources,

providing functionally integrated networks [Joyce and Palsson, 2006]. Protein-protein
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interactomes can be used to infer the function of uncharacterised proteins in the con-
text of its neighbouring environment [Sun et al., 2006, Vazquez et al., 2003]. Alterna-
tively function can be inferred by making comparisons between multiple interactomes
to identify previously unknown orthologues [Chen et al., 2007) or missing functional
links.

Studies have been undertaken in which a variety of protein-protein interactomes
have been developed for a number of different organisms, incorporating information
from various omic data sources [Date and Stoeckert, 2006, Deng et al., 2004, Jansen
et al., 2003, Kiemer et al., 2007, Lee et al., 2004, Rhodes et al., 2005, von Mering
et al., 2007). However, solutions are required to better conceptualise and interpret
the vast amount of omic information used to construct interactomes. The aim is to
take the data from different types of studies and produce detailed models of complex
systems, particularly biological pathways. In order for this to occur, the datasets
have to go through some complicated analysis and visualisation, which can be CPU-
intensive. There is therefore a need for tools that take dissimilar datasets and provide

3D visualisations of complex systems with a high degree of definition and accuracy.

1.6 Aims and objectives

1.6.1 Aims

This project aimed to research aspects of Grid based computational systems designed
to integrate and analyse data arising from post-genomic technology. The application
of Grid based computational systems to problems in genomic analysis and annotation
were investigated.

Through this work, the application of ™Grid technology to an additional bio-
logical problem than has previously been described was investigated. The aim was
to understand and predict the characteristics and behaviour of a family of bacteria,
through an analysis of their complete genomic sequences. The focus of this study was

on a family of bacteria, Bacillus, whose members show a diverse range of properties.
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Proteins of unknown function were therefore of particular interest. A means of
annotating proteins with a putative function was consequently required. To provide

this capability, novel data integration strategies for identifying protein function at a

systems level were explored.

1.6.2 Objectives

Specifically, this thesis describes the development and application of e-science work-
flows and a service-oriented approach to the genomic scale detection and charac-
terisation of secreted proteins from Bacillus species. This problem places different
requirements on the workflow and the surrounding architecture than has previously
been described in the bioinformatics workflow domain.

Firstly, a novel data mining, integration and knowledge derivation annotation
workflow was developed to analyse bacterial proteomic data so as to predict and
characterise secreted proteins. This workflow harnesses provenance generated through
execution of the workflow. The data generated at key steps in the workflow was stored
in a database. A Web interface was then developed to provide a means of viewing
and curating the data within the database.

Following the classification of proteins, a novel analysis workflow was developed to
compare the predicted characteristics and behaviour of Bacillus species to make fur-
ther predictions about their pathogenesis and phenotypes. Both workflows were con-
structed using the ™Grid workbench Taverna. As with any workflow, these pipelines
were designed to be flexible and extensible to allow for future adjustments. The sys-
tem was utilised to make predictions about the secretomes of the only 12 Bacilius
isolates for which complete genomic sequences were publicly available from Genome
Reviews? at the time of download # ®; this includes: B. anthracis (Sterne), B. anthracis
(Ames ancestor), B. anthracis (Ames, isolate Porton), B. cereus (ZK/E33L), B.
cereus (ATCC 10987), B. cereus (ATCC 14579/DSM 31), B. clausii (KSM-K16), B.

3Genome Reviews Website: http://www.ebi.ac.uk/GenomeReviews/
4Downloaded: April 2006
5In August 2007, there were 14 Bacillus isolates with complete genomic sequences
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halodurans (C-125/JCM 9153), B. licheniformis (DSM 13/ATCC 14580, sub_strain
Novozymes), B. licheniformis (DSM 13/ATCC 14580, sub.strain Goettingen), B.
subtilis (strain 168) and B. thuringiensis konkukian (strain 97-27).

A set of probabilistic functional integrated networks (PFINs) were then developed
for these Bacillus species, providing a novel approach to characterise the putative
secreted proteins of unknown function, and to make further predictions about their
involvement in bacterial pathogenesis and phenotypes.

The remaining chapters of this thesis are therefore divided as follows:

e Chapter 2 provides background and a literature review relating to the important

concepts and previous research in the areas of work covered by this thesis.

o Chapter 3 describes the construction of the e-science workflows used to classify

and analyse the secreted proteins of Gram-positive bacteria.

o Chapter 4 presents an analysis of the predicted secretomes generated by the

application of the workflows to 12 Bacillus genomes.

e Chapter 5 describes the development and characterisation of functional inte-

grated networks for 12 Bacillus strains.

e Chapter 6 describes the application of functionally integrated network compar-

ison techniques to the study of selected secretory protein families.

e Chapter 7 discusses the findings and conclusions that can be drawn and discusses

possible future work.



13

Chapter 2

Background

2.1 Introduction

The biological questions addressed in this work focus on identifying and character-
ising the secretome of Gram-positive bacteria, specifically in terms of the Bacillus
species. The first section of this chapter therefore introduces the Bacillus species,
along with an insight into the mechanisms used by these bacteria to secrete proteins.
The next section discusses e-science and associated technologies most applicable to
the development of an e-science based system capable of classifying and analysing the
secretomes of Gram-positive bacteria. Finally, strategies for developing, analysing

and visualising integrated functional networks are presented.

2.2 Bacillus genomes and their secretome

In order to understand the mechanisms involved in protein secretion, an appreciation
of the structure of a bacterial cell is required. The distinction between the two

different groups of bacteria (Gram-positive and Gram-negative) should also be noted.

2.2.1 Typical bacteria

A typical bacterium is generally composed of a number of different structures and
compartments, as depicted in figure 2.1. The cytoplasm is the region within the bac-

terium where the majority of cellular functions take place; the nucleoid is the region
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within the cytoplasm where the chromosome (usually a single molecule of DNA) is
located; ribosomes are small particles in the cytoplasm involved in protein synthe-
sis. The cytoplasmic membrane is a layer of phospholipids and proteins that act
as a selective permeability barrier. The cell wall is a rigid structure giving the cell
shape, as well as protecting the inner components of the cell from damage. The
cell wall may also be surrounded by an outer membrane depending on the type of
bacterium. The capsule is an outer layer associated with some bacterial species, pro-
viding additional protection. The pili are hair-like structures on the surface of a
bacteria that aid in the attachment to other surfaces. The flagella are hair-like struc-
tures involved in locomotion [Hale et al., 1995, Sonenshein et al., 2002] [Davidison,
http://micro.magnet.fsu.edu].

Cyapan Cytoplasmic membrane

_ Cell wall

_ Capsule

o— Pl

"“Flagella

Figure 2.1: The cell structure of a typical bacterium. Adapted from Davidison,
http://micro.magnet.fsu.edu.

2.2.2 Gram-positive vs. Gram-negative bacteria

Bacteria can be differentiated into two distinct groups (Gram-positive and Gram-
negative) based on the chemical and physical properties of their cell walls (figure

2.2). The method employed for this purpose is called Gram's staining, named after



15
the 19th century Danish bacteriologist Hans Christian Gram. A Gram-positive bac-
terium has a single membrane inside a thick rigid structure cell wall, composed of
a number of layers of peptidoglycan, to which anionic polymers (e.g. teichoic acids)
are covalently attached. During the Gram stain procedure Gram-positive bacteria
resist decolorisation and retains the colour of the initial stain. a blue/violet colour. A
Gram-negative bacterium has a inner (cytoplasmic) membrane, a thin layer of pepti-
doglycan and an outer membrane. During the Gram stain procedure Gram-negative
bacteria are decolorised with alcohol and counter stained with fuchin to give a pink

colour [Hale et al., 1995, Sonenshein et al., 2002].

(a) (b)
Outer Membrane
Cellwall Pen’plesm[ Cell wall
e Membrane < | Ner Membrane

Figure 2.2: The cell envelope structures of (a) Gram-positive and (b) Gram-negative
bacteria.

2.2.3 Bacillus species

Bacillus is a genus of Gram-positive, rod-shaped, aerobic or facultative, endospore-
forming bacteria that can be found in almost any environment, but particularly in
the soil. Bacillus species are low % GC content bacteria i.e. these bacteria have a
low percentage of GC base pairs in their genome. Those that have a low GC content
have more AT base pairs, which are not as tightly coupled as GC base pairs, and
are therefore less stable. Survival is achieved in some low % GC bacteria through
the formation of endospores, often triggered by a depletion of nutrients in their en-
vironment. An endospore is a dormant, tough, non-reproductive structure produced
by a small number of bacteria from the Firmicute family. These spores can survive
for many years in the dormant state, but can be rapidly activated through a pro-
cess called germination. The ability to produce endospores allows Bacillus species

to survive under environmental stresses that would otherwise kill the bacteria. in-
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cluding high temperature, radiation, desiccation, and toxic damage or destruction
[Sonenshein et al., 2002] [Kenneth Todar University, 2005].
Bacillus species are important not only for their industrial uses in the production
of enzymes, pharmaceuticals, detergents and other chemicals, but also because of the

diversity of characteristics shown by the members of the genus Bacillus.
¢ Bacillus subtilis

B. subtilis is found in water, soil, air and decomposing plant residue. Strain
168 of this non-pathogenic organism has been the focus of intense studies,
and consequently is the best characterised Gram-positive bacterium. In com-
bination with the model Gram-negative bacterium Escherichia coli, the evo-
lutionary divergence of eubacteria into the Gram-positive and Gram-negative
groups can be studied. In addition, B. subtilis and its close relatives are able
to secrete enzymes into the culture medium at high concentrations. As a re-
sult, B. subtilis has been used for the study of protein secretion. In a com-
mercial context, B. subtilis provides an essential source of industrial enzymes
used in products such as household detergents, peptide antibiotics, as well as
antifungals that are useful in agriculture for crop protection [Kunst et al.,
1997] [Bornemann, http://www.micron.ac.uk, U.S. Environmental Protection
Agency, http://www.epa.gov].

e Bacillus licheniformis

B. licheniformis is a close relative of B. subtilis. It is commonly found in soil
and plant material. In humans, it is known to cause food poisoning [de Boer
et al., 1994]. Like B. subtilis, B. licheniformis secretes large quantities of pro-
teins and consequently has many uses in industry for the large scale production
of enzymes [Veith et al., 2004]. Unlike most other bacilli, B. licheniformis is a
facultative anaerobe and may therefore be possible for this bacterium to grow
in other ecological niches. These species are usually saprophytic, as they are
able to breakdown complex polysaccharides, and therefore contributing sub-

stantially to nutrient cycling. Certain strains are capable of denitrification,
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which may have a relatively small impact on environmental denitrification as

bacilli generally persist in the soil as endospores [Rey et al., 2004] [US EPA,
http://www.epa.gov].

Bacillus halodurans

It has been indicated that alkaliphilic B. halodurans is more closely related to B.
subtilis than any other Bacillus strain. Like B. subtilis and B. licheniformis, B.
halodurans has applications for the industrial production of enzymes [Takami
et al., 2001, 2000] [Jamstec, http://www.jamstec.go.jp).

Bacillus clausii

In addition to having applications in the production of enzymes for the detergent
industry, alkaliphilic B. clausii is an important human probiotic [Cenci et al.,
2006]. Probiotics are live microbial food supplements use to maintain or improve
intestinal microbial balance. Probiotic bacterial cultures stimulate the growth of
favoured microbes, excluding potential pathogens, and so reinforces the natural
defence mechanisms of the body [Saarela et al., 2000). Some B. clausii strains
have been found to release antimicrobial substances that have been shown to be
active against other Gram-positive bacteria, particularly Staphylococcus aureus

[Cenci et al., 2006].

Bacillus anthracis

The human pathogen B. anthracis, the causative agent of anthrax, is found in
the soil of many countries throughout the world, including Asia, Africa, parts
of Europe, as well as North and South America. Anthrax is mainly a disease of
herbivorous mammals, but may also be contracted by other animals and some
birds. Generally humans contract the disease through contact with infected
animals or contaminated animal products, generally leading to cutaneous (skin)
anthrax, or rarely ingestinal anthrax. Nowadays this organism is more widely

associated with the threat posed by bioterrorism, due to the fact B. anthracis
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can cause lethal inhalation anthrax [Andersen et al., 1996, Han et al., 2006,
Read et al., 2003] [Health Protection Agency, http:/ /www.hpa.org.uk].

The two plasmids, pXO1 and pXO2 encode the major virulence factors of B.
anthracis. The plasmid pXO1 encodes components of the secreted exotox-
ins: protective antigen, lethal factor, and edema factor. The edema factor
(a calmodulin-dependent adenylate cyclase) and the protective antigen (whose
function is to allow the toxin to enter the host cell) combine to form the edema
tozin, which inhibits neutrophil function. Neutrophils are a type of white blood
cell important in immune response. Lethal toxin is made up of lethal factor
(a zinc metalloprotease which stimulates the release of tumor necrosis factor
a and interleukin-18 from the macrophages) and protective antigen. In sys-
temic anthrax, these factors are both partially responsible for sudden death. In
essence, it is believed the exotoxins inhibit the immune response triggered by
infection. The plasmid pXO2 is involved in the synthesis of the immune evading
polyglutamyl capsule that inhibits the process of phagocytosis, an important
defence mechanism whereby the bacteria is engulfed by the host’s phagocytes
(e.g. white blood cells). Three genes on the plasmid, capA, capB and capC, are
responsible for the synthesis of the capsule. The most pronounced virulent ef-
fect is only expressed when both plasmids are present. For instance, the mildly
virulent Pasteur strain lacks pXO1, hence it is able to synthesise the capsule but
does not produce the anthrax toxins. The less virulent Sterne strain contains
pXO1 only, so is able to produce the toxins but does not have a capsule [Dixon
et al., 1999]. B. anthracis shows close phylogenetic relations to B. cereus and

B. thuringiensis [Rasko et al., 2004].

Bacillus cereus

As with many organisms, a number of strains have been identified, but only
three have had their genome completely sequenced: B. cereus (ATCC 14579),
B. cereus (ATCC 10987) and B. cereus (E33L). These strains are considered

soil-based opportunistic pathogens that mainly cause food poisoning. Differ-
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ent types of toxins result in two types of gastrointestinal iliness: diarrhoeal

poisoning and emetic poisoning.

Diarrhoeal poisoning is presently known to be caused by three different entero-

toxins:

— two protein complexes:

* haemolysin BL (HBL) - consists of three components, two lytic com-
ponents (encoded by hbIC and kbID) and a binding protein B (encoded
by hblA).

* non-haemolytic enterotoxin (NHE) - consists of three components, en-

coded by three genes nheA, nheB and nheC.

— a single protein cytotoxin (CytK).

Emetic poisoning is caused by a toxin called emetic toxin or cereulide, a heat
stable cyclic dodecadepsipeptide encoded in ces genes. It has been shown that
the genes responsible for this toxin are encoded on a plasmid similar to the

pXOl1 plasmid of B. anthracis.

B. cereus has also been implicated in local or systemic diseases including en-
dophthalmitis, endocarditis, meningitis, osteomyelitis, and periodontitisin. How-
ever, research is ongoing in unravelling the complex virulent pathways involved
[Ehling-Schulz et al., 2006, Ivanova et al., 2003, Rasko et al., 2007]. Of these
B. cereus pathogens, B. cereus (E33L) shows distinct similarity with the other

pathogenic organisms B. anthracis and B. thuringiensis [Han et al., 2006].

Not all strains of B. cereus are pathogenic or soil-based. Other strains have
been isolated from humans and dairy sources [Rasko et al., 2007]. Genome

sequencing is not complete for these strains [NCBI, http://www.ncbi.nih.gov].

Bacillus thuringiensis

B. thuringiensis is an insect pathogen that has been widely used as a biological

insecticide. Products based on this bacteria are produced on a commercial scale
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for use in the agricultural industry for pest control. The toxicity of this bacteria
is due to the production of a §-endotozin. An endotoxin is a natural toxin
produced in the mature cell during sporulation. This toxin is released when the
mature cell lyses to release the endospores. Different strains of B. thuringiensis
produce é-endotoxins with different host specificities and consequently can be
targeted to different insect pests. The cry genes responsible for the toxicity of B.
thuringiensis have also been introduced into plants through genetic engineering,

consequently leading to plant insect resistance [Hale et al., 1995, Rasko et al.,
2004).

2.2.4 Mechanisms of secretion

The study of protein secretion not only includes the secreted proteins themselves, but
also those proteins which form the secretory machinery (a.k.a. the translocase) used
to export the proteins across the cytoplasmic membrane and cell wall. For a protein
to be transported from its site of synthesis, the cytoplasm, into the culture medium,
it first needs to be transported to the cell membrane. Secretory proteins generally
incorporate a short amino-terminal sequence called a signal peptide, which acts as a
targeting signal to secretory machinery. Once they are targeted to the translocase,
the secretory proteins are either exported into the growth medium or retained at an
extracytoplasmic location (i.e. cell membrane or cell wall) [Tjalsma et al., 2004, 2000,
van Wely et al., 2001].

Within B. subtilis, at least four different protein transport pathways are known to
exist. These allow proteins to be steered to at least five different subcellular locations
depending on the presence or absence of an amino-terminal signal peptide and specific
retention signals [Boekhorst et al., 2005, Tjalsma et al., 2004, 2000]. These protein
transport pathways (highlighted in figure 2.3), as well as the mechanisms of protein

retention, are discussed.
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Figure 2.3: Proteins synthesised by the ribosomes with a signal peptide (+SP) are
transported to different extracytoplasmic locations surrounding the cell. Proteins
with transmembrane domains (+TMD) are inserted into the membrane via the gen-
eral secretory (Sec) pathway or possibly the twin-arginine (+RR) translocation (Tat)
pathway. Lipid-modified proteins (+lipobox) may attach themselves to the outer
membrane surface via the Sec or Tat pathway; prepilins exported by the Com path-
way may also function in this way. Proteins exported via the Sec or Tat pathway
may also be retained in the cell wall if the protein contains cell wall-binding repeats
(+CWB). Proteins destined for the extracellular medium can be secreted via the Sec
or Tat pathway, or by ABC transporters. Proteins without a signal peptide (-SP)
remain in the cytoplasm or associated with the membrane. Adapted from Tjalsma
et al. [2000].
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2.2.4.1 Amino-terminal signal peptides

Amino-terminal signal peptides (sometimes referred to as prepeptides) are essentially
export signals that are recognised by cytoplasmic chaperones. These chaperones
guide the proteins to the translocation machinery for secretion [Campo et al., 2004,
van Wely et al., 2001]. The structure of the amino-terminal signal peptides can be

split into three distinct domains:

e The amino-terminal N-domain contains at least one positively charged arginine
or lysine residue; although this feature does not appear to be needed for protein
export. It has been suggested that the positively charged N-domain plays a
role in translocation, interacting with the translocation machinery and negative

phospholipids in the lipid bilayer of the membrane during this process.

e The H-domain consists of hydrophobic residues that appear to form an alpha-
helical conformation in the membrane. In the middle of this domain, glycine or
proline residues are often found. These helix-breaking residues may allow the
signal peptide to adopt a hairpin-like structure that inserts into the membrane.
Additional helix-breaking residues at the end of the H-domain possibly aid the
cleavage of the signal peptide from the protein by a specific signal peptidase

(SPase) during or shortly after translocation.

e The cleavage site for the SPase is found in the C-domain. Cleavage at this
site results in the protein being released from the membrane and folding into
its native conformation. The signal peptide is then degraded by signal peptide

peptidases (SPPases) and removed from the membrane.

Despite the similarity in amino-terminal signal peptides, small differences in their
structure affects the pathway used in protein export and the final destination of the
protein. These differences result in cleavage by one of a number of different SPases.
In B. subtilis, four different types of signal peptides have been identified based on
SPase recognition [Tjalsma et al., 2004, 2000, van Wely et al., 2001].
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e Secretory (Sec-type) signal peptides

Sec-type signal peptides are regarded as the major class of signal peptides,
cleaved from the mature protein (during or after translocation) by a type I
SPase. The resulting processed proteins can potentially be secreted into the ex-
tracellular medium or alternatively retained at the membrane or cell wall ( figure
2.4a). A subtype of this group contains a twin arginine motif (RR motif), which
directs proteins to an alternative pathway, termed the Tat pathway [Tjalsma

et al., 2000, van Wely et al., 2001] (figure 2.4b).
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Figure 2.4: The structure of (a) Sec-type signal peptides and (b) twin-arginine signal
peptides. The numbers indicate the average length of the signal peptide in terms of
the number of amino acid residues. Adapted from Tjalsma et al. [2000].

e Lipoprotein signal peptides

The presence of a well-conserved lipobox in prelipoproteins distinguishes lipopro-
teins from Sec-type proteins (figure 2.5). The lipobox acts as a recognition signal
for lipid-modification. The lipobox contains an essential cysteine residue. It is
through the lipid-modification of this cysteine residue that the lipoprotein re-
mains attached to the membrane. The signal peptides of prelipoproteins are

cleaved by type II SPase [Tjalsma et al., 2004, 2000, van Wely et al.. 2001].

As with secretory proteins, an RR motif has been identified in some prelipopro-
teins, hence some lipoproteins are predicted to be transported via the Tat path-

way as opposed to the Sec pathway [McDonough et al., 2005]. In view of the
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small number of lipoproteins translocated via the Tat pathway, the significance

of this pathway with respect to lipoproteins is unclear [Rezwan et al 2007).

“lipobox

N(4) H(12) c

Figure 2.5: The structure of lipoprotein signal peptides. The numbers indicate the
average length of the signal peptide in terms of the number of amino acid residues.
Adapted from Tjalsma et al. [2000].

e Bacteriocins and pheromones signal peptides

The signal peptides of bacteriocins and pheromones are composed of N- and C-
domains only (figure 2.6); they lack a typical hydrophobic domain. Therefore
regular predictive algorithms cannot be applied. These proteins are exported
by ABC transporters. Removal of the signal peptide from the mature protein
is carried out either by a subunit of the ABC transporter that is specific to a
particular bacteriocin or pheromone, or by specific SPases [Biemans-Oldehinkel

et al., 2006, Tjalsma et al., 2004, 2000].

N(15) C

Figure 2.6: The structure of signal peptides of bacteriocins and pheromones. The
number indicates the average length of the signal peptide in terms of the number of
amino acid residues. Adapted from Tjalsma et al. [2000].

e Prepilin-like signal peptides

The C-domain of prepilin-like signal peptides is located between the N- and
H-domains (figure 2.7). Therefore after cleavage by ComC (at the cytoplasmic

side of the membrane), the hydrophobic H-domain remains attached to the
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mature protein, allowing transport though the membrane [Chen and Dubnau.,

2004, Tjalsma et al., 2004, 2000)].
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Figure 2.7: The structure of prepilin-like signal peptides. The numbers indicate the
average length of the signal peptide in terms of the number of amino acid residues.
Adapted from Tjalsma et al. [2000].

2.2.4.2 Translocation machinery

As illustrated in figure 2.3, proteins can be targeted to different translocation path-
ways depending on the structure of their amino-terminal signal peptide, i.e. the
general secretory (Sec) pathway, the twin-arginine translocation (Tat) pathway, a
prepilin-like pathway and via ABC transporters [Tjalsma et al., 2000]. Interestingly.
a potentially novel pathway may exist that has previously been uncharacterised.
ESAT-6 is a secreted protein of unknown function, important in the virulence of
Mycobacteria tuberculosis. However it lacks a signal peptide, and therefore it must
utilise an alternative secretion pathway. Advances have been made in recent years to
understand the mechanisms of the pathway involved. Homologues of ESAT-6 have
also been identified computationally in other bacteria, including B. subtilis and B.
anthracis [Brodin et al., 2004, Pallen, 2002].

These membrane transport systems generally consist of one or more protein com-
ponents, where at least one of these proteins contains multiple transmembrane alpha-
helical segments allowing it to span the membrane. The translocation of proteins
through the membrane channel is often driven by ATP hydrolysis [Sonenshein et al.,

2002].
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¢ General secretory (Sec) pathway

The main pathway through which proteins are transported from bacteria is
the Sec pathway. Extensive research has been conducted into the functional-
ity of this highly conserved pathway in E. coli and B. subtilis [Tjalsma et al.,
2000, van Wely et al., 2001]. Extracellular, membrane and cell wall proteins are
translocated via the Sec pathway through a channel formed by the membrane-
embedded protein complex SecYEG in an unfolded or partially folded confor-
mation. The translocation motor SecA, a peripherally bound ATPase, drives
the translocation process. SecA interacts with the preprotein and subsequently
undergoes repeated binding and hydrolysis of ATP, combined with conforma-
tional changes, eventually resulting in translocation [Campo et al., 2004]. The
signal peptide can be cleaved by SPase I, or SPase II in the case of lipoproteins,

before complete translocation of the mature protein [Berks et al., 2005].

e Twin-arginine translocation (Tat) pathway

The Tat pathway is important in a number of bacterial processes, including
energy metabolism, cell wall biosynthesis and pathogenesis. This pathway is
responsible for the export of folded preproteins. It consists of three integral
membrane proteins TatA, TatB and TatC. Studies on E. coli indicate that
TatA forms the channel through which proteins pass, and TatBC is respon-
sible for signal peptide recognition. The mechanism begins with the binding
of the preprotein to the TatBC complex, specifically binding to TatC. The
TatBC-preprotein complex then associates with TatA for transport across the
membrane. It is thought that the signal peptide is then cleaved by SPase I, or
SPase II in the case of lipoproteins, only after the complete translocation of the

mature protein [Berks et al., 2005, Tjalsma et al., 2004].

¢ ATP-binding cassette (ABC) transporters

ATP binding cassette (ABC) transporters are integral membrane proteins that

transport proteins across biological membranes. ABC transporters, like other
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secretion pathways, are important for uptake of nutrients and elimination of
waste products, energy generation, and cell signalling. In order to secrete pro-
teins, ABC transporters require a minimum of four domains: two transmem-
brane domains that form the protein binding sites and provide specificity, and
two ATP binding domains that provide a mechanism for driving the transloca-

tion of the protein via ATP catalysis [Biemans-Oldehinkel et al., 2006, Linton,
2007).

o Type IV prepilin-like pathway

Type IV prepilin-like proteins are involved in the development of genetic com-
petence. Competence is a state in which a bacteria is able to take up DNA from
another bacterium; this process is called transformation. These prepilin-like
proteins are exported via an alternative pathway to those previously discussed,
called the ComC pathway. ComC is an integral membrane protein that is there-
fore bifunctional. In terms of secretion of prepilin-like proteins, it is required for
the assembly and anchoring of the pilin-like structures to the membrane, requir-
ing cleavage of the signal peptide. The phenylalanine residue at position 1 in
the resulting mature protein is then methylated by ComC [Chen and Dubnau,
2004, Tjalsma et al., 2000].

2.2.4.3 Retention mechanisms

Despite the presence of an amino-terminal signal peptide-like sequences, not all of
these proteins are exported into the environment. Many proteins are retained at the

cell surface through additional retention mechanisms.

e Transmembrane domains

Some proteins contain additional hydrophobic regions that can integrate into
the membrane and span across the membrane. These membrane proteins are
only partially translocated; they embed themselves in the membrane once they

have been released from the translocation process. Transmembrane proteins are
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found in transporter complexes, channels and enzymes, all of which have a role

in protein secretion [Sonenshein et al., 2002, Tjalsma et al., 2004).
Lipid-modifications

Lipoproteins remain anchored to the membrane through the lipid-modified cys-
teine residue, most likely through hydrophobic interaction. Lipoproteins are
associated with many different functions important in cell survival, including
adhesion and invasion, cell wall synthesis, nutrient uptake, degradative pro-

cesses, and sensing and transmembrane signalling [Sutcliffe and Russell, 1995).

The mechanism through which prelipoproteins undergo lipid-modification is the
responsibility of two consecutive enzymatic reactions involving diacylglyceryl
transferase and SPase II. These enzymes are membrane-integral proteins (figure
2.8). Cleavage of the signal peptide from the mature protein is initiated by
diacylglyceryl transferase, which targets the cysteine residue in the preproteins,
adding a diacylglyceryl group to the thiol group of cysteine. The signal peptide
is subsequently cleaved by SPase II.

Research suggests that lipoproteins play an important role in pathogenicity. In-
activation of the genes involved in lipoprotein biosynthesis reduces the virulence

of Gram-positive pathogens [Rezwan et al., 2007].

Cell wall binding

In Gram-positive bacteria, the cell wall functions as a protective layer, guarding
the cell against osmotic damage, as well as defining the cell’s shape, but also
providing mechanisms through which the bacteria can interact with its environ-
ment. Pathogenic bacteria can alter their cell wall structure and function to

adapt to changes in their environment.

The main component of the cell wall is peptidoglycan, which contains addi-
tional molecules that are covalently and non-covalently attached, including te-
ichoic acids, polysaccharides and proteins. The result of all these interactions

provides the cell wall with properties specific to the species and strain, greatly
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Figure 2.8: The steps involved in processing lipoproteins prior to the attachment to
the outer surface of the membrane. The covalent attachment of a lipid residue to the
conserved cysteine is the result of three consecutive enzymatic reactions involving:
diacylglyceryl transferase, SPase Il and transacylase. Adapted from Rezwan et al.
[2007].

contributing to the virulence, host interactions, and disease symptom develop-

ment and outcome of pathogens [Marraffini et al., 2006].

Just as a protein (with the necessary domains) can bind to the membrane,
a protein may also possess the potential to be retained at the cell wall, via
covalent or non-covalent mechanisms. Of particular interest are those cell wall
proteins that are covalently anchored to the surface. These surface proteins are
distinguished by the presence of a cell wall sorting signal at the C-terminal end
of a protein. The cell wall sorting signal is composed of a short pentapeptide

motif (LPXTQG) followed by hydrophobic region and a positively charged tail.
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It is approximately 30 to 40 residues long (figure 2.9) [Cossart and Jonquiéres,

2000, Marraffini et al., 2006).

hydrophobic

| SP ] LPXTG ‘

sorting signal

Figure 2.9: The structure of surface protein precursors, containing a signal peptide
(SP) at the N-terminal and the sorting signal at C-terminal. The sorting signal
consists of an LPXTG motif, a hydrophobic domain and a positively charged tail

The mechanism of covalent attachment to the cell wall is catalysed by transpep-
tidation enzymes known as sortases. The steps involved are highlighted in figure
2.10. Following the translocation of a surface protein precursor across the mem-
brane and the cleavage of the signal peptide by SPases, the LPXTG cell wall
sorting signal retains the mature protein within the secretory pathway. The
sortase enzymes then catalyse a transpeptidation reaction; the LPXTG motif is
targeted by the sortase, promoting cleavage of the sorting signal from the pro-
tein and the subsequent anchoring of the protein to the cell wall by attacking a

bridge of peptidoglycan precursors [Navarre and Schneewind, 1999)].

2.3 Data integration, e-science and Grid technol-

ogy

With the advent of the omic revolution there is a real need for the development
of analytical tools that can process the vast quantity of data being generated, and
ensure the sharing and integration of this data to enable better-informed or faster
decisions, and minimise the rediscovery of already known facts [Hey and Trefethen,
2005]. However, within bioinformatics, integration is a well-known problem [Hull
et al., 2006, Stevens et al., 2007]. Data analysis is often based on data from different

sources, which may include gene and protein sequence data. measurement data from
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different types of instruments, and so forth. Along with the data itself, metadata
can be extremely informative. Metadata is data about data that describes, explains
and locates a data resource, facilitating in the retrieval, use, and management of
the resource [NISO, www.niso.org]. Of particular interest to biologists is a subtype
of metadata known as provenance. Provenance provides information regarding the
process of biological experiments, the purpose and results of experiments, along with
annotations and notes provided by the scientist about the experiment. This metadata
is essential for others to be able to validate and verify the integrity of the experiment
[Greenwood et al., 2003].

Data and metadata need to be stored and accessed efficiently from remote loca-
tions by different groups. Furthermore, tools are needed to compare, classify and
analyse this data to extract meaning and to generate further hypotheses that can be
tested in the lab [Gray et al., 2005, Srivastava and Velegrakis, 2007]. This process
is difficult since tools and data sources are distributed all over the world, in differ-
ent formats, and of variable quality. Currently many life scientists work round the
problem by simply cutting and pasting between many different Web pages. However
this temporary solution does not scale and is not easy to apply to large, omic-scale

datasets when data about thousands of proteins needs to be handled.
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There are therefore still many barriers to be overcome to improve the sharing and
integration of data. Dealing with the three problems - heterogeneity, distribution
and autonomy - often forms a significant part of the work load of a bioinformatician

[Hernandez and Kambhampati, 2004, Karasavvas et al., 2004, Stevens et al., 2007).

1. Heterogeneity
Bioinformatics tools and datasets tend to be highly heterogeneous in content
and structure. When biological and clinical data is represented electronically, a
multitude of formats are used presenting a barrier to open information exchange
within the scientific community. Standardised knowledge representations can
help to address this problem, but so far uniform standardisation has been im-

possible to achieve on a large scale.

2. Distribution
Datasets are often widely geographically dispersed, being distributed on mul-
tiple servers in multiple locations. However, using distributed resources has
associated problems: networks can fail, data transfer is slow and expensive, and

a crucial requirement is security.

3. Autonomy
Tools and datasets are often maintained and deployed by individual scientists
within their own laboratories. As a result, reliability and robustness of data are
often a concern [Hernandez and Kambhampati, 2004, Karasavvas et al., 2004,

Stevens et al., 2007].

2.3.1 e-Science and the Grid

e-Science refers to a science in which scientists from around the world collaboratively
share data and distributed computing resources [Hey and Trefethen, 2003, 2005]. In
order to provide a platform for e-science, technologies such as the Web, Web services
and the Grid are used. The Web is a service for sharing information over the Internet

[W3C, http://www.w3.org] and the Grid is a service for sharing computer power and
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data storage capacity over the Internet [Foster et al., 2001]. Web services are services
for sharing applications/algorithms over the Internet [W3C, http://www.w3.org] that
can be combined into more complex systems through building workflows.

The ultimate aim of the Grid is to create a large computational resource utilis-
ing the global network of computers, belonging to different people and institutions,
including desktop PCs and workstations, mainframes and supercomputers, but also
incorporating data vaults and instruments such as meteorological sensors and visu-
alisation devices. The advantage of this approach is that it removes the need to
install programs locally or download data, allowing remote execution of a program
or analytical tool, using a remote machine where the resource is located, or if this
machine is busy, the Grid is designed to copy the resource to another computer or
cluster of computers which are idle for execution. Furthermore, the Grid would allow
interactive collaborative analysis, by networking computers to give the feel of a local
network [Clery, 2006][CERN, http://gridcafe.web.cern.ch].

The Grid is based upon coordinated resource sharing and problem solving in dy-
namic, multi-organisational virtual organisations. A virtual organisation consists of
a set of individuals and/or institutions defined by sharing rules, in which resource
providers and consumers state clearly what is shared and the conditions under which
sharing occurs. Essentially, the Grid is the technology to provide transparent data
sharing between organisational and geographic borders. The Grid tackles many con-
cerns and requirements not addressed by current distributed technologies, such as
the need for flexibility and control over how a variety of resources (programs, files
and data or computers, sensors and networks) are shared and used, as well as issues
concerning quality of service, scheduling and accounting [Foster et al., 2001][CERN,
http://gridcafe.web.cern.ch].

In reality there is no single Grid. Many Grids exist including Grids that are
either private or public, regional, national or even global, all-purpose or specific to a
scientific problem [CERN, http://gridcafe.web.cern.ch].

To enable the construction of Grids, complex systems of software and services are

required [CERN, http://gridcafe.web.cern.ch]. Over recent years the Grid community



3
has succeeded in developing protocols, services and tools that provide an answer to
many of the challenges being faced in this area [Foster et al., 2001).

One of the areas where the interests of scientists and businessmen converge is
standards. Common open standards are required to ensure that development of the
Grid is constructive, and that applications that can run on one Grid can run on
another. This is an important issue with the Grid, as the Grid’s main purpose is the
sharing of resources. Like the Internet Engineering Task Force (IETF) for the Internet
and the World Wide Web Consortium (W3C) for the Web, the Open Grid Forum!
is responsible for developing standards specific to the Grid. Through this forum, a
standard known as Open Grid Services Architecture (OGSA) is being developed that
already provides a key reference for future Grid development projects. OGSA seeks
to harmonise the development of the Globus Toolkit, a software package for creating
grids. The toolkit provides a set of software tools to implement the basic services and
capabilities required to construct a computational Grid, such as security, resource
location, resource management, and communications. The Globus toolkit makes use
of Web services, an additional standard for services offered over the World Wide Web
[Clery, 2006, Foster, 2003][CERN, http://gridcafe.web.cern.ch].

2.3.1.1 Architecture

The architecture of the Grid is often described in terms of layers, each having a specific
function (figure 2.11.a) [Foster, 2003)[CERN, http://gridcafe.web.cern.ch]; the lower
layers are focused on computers and networks, whereas the higher layers are focused

on the user:
o The network layer connects the resources in the Grid.

o The resource layer is composed of the actual Grid resources (e.g. computers,

sensors) that can be directly connected to the network.

o The middleware layer provides the tools that enable the various Grid resources
to function on the Grid; this is the ’brain’ of the Grid.
10pen Grid Forum Website: http://www.ogf.org/




35
e The application and serviceware layer is the layer that users interact with.
incorporating the user applications, and often serviceware that is responsible

for measuring a user’s Grid usage, tracking resource providers and users of those

resources.

(a)
APPLICATION AND SERVICEWARE LAYER

_..,
vl
.

: Y 18 Todsmdm :
MIDDLEWARE LAYER Grid services and protocols

RESOURCE LAYER  Resources (e.g. computers, storage media, networks, $ensors)

(b) : MRS R ——
USER APPLICATIONS |/ == == Toolsand sppicatons
COLLECTIVE SERVICES Directory brokering, diagnostics and monitoring
RESOURCE AND CONNECTIVITY PROTOCOLS Secure access to resources and services

Figure 2.11: The Grid architecture in terms of (a) tools and resources (adapted from
CERN, http://gridcafe.web.cern.ch) and (b) the protocols and application program-
ming interfaces (adapted from Foster [2003]).

An application that was originally implemented to run on a standalone computer
needs to be modified to run across the Grid, in order to invoke all the correct services
and protocols, just as it would otherwise have to be adapted to run on the Web. A
redefined model that is shown in figure 2.11.b, illustrating the Grid architecture in

the context of protocols:

e The fabric defines the physical infrastructure of the Grid. including computers

and the communication network.

e Resource and connectivity protocols are responsible for the network transactions
between the different resources on the Grid (commonly obtained through using

the Globus Toolkit):

— Communication protocols to allow resources to exchange data over the

Internet.
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— Authentication protocols to verify the identity of users and the resources.

o Collective services are responsible for tracking available resources, brokering
resources (i.e. mediating between resource providers and users), monitoring and
diagnosing problems, ensuring multiple copies of data are available at different
locations, and tracking who is allowed to do what, when. In order to provide

this functionality additional protocols are used:

— Information protocols obtain information about the structure and state of

the resources on the Grid.

— Management protocols negotiate access to resources in a uniform way.
o User applications once again represent the users view on the Grid.

In this latter representation (figure 2.11.b), the middleware layer has been split
based on resource and connectivity protocols, and the collective services, whereas the
network layer and resource layer have been fused into the new fabric layer.

Each layer in the architecture is needed in order to be able to execute an applica-
tion over the Grid. For instance, a Grid application whose function is to analyse the

data stored in several files follows several steps:

e Obtain authentication in order to open the files (using resource and connectivity

protocols).

e Determine the current locations on the Grid of the appropriate files, as well
as the most convenient location of the computational resources (uses collective

services).

o Extract the data, analyse, and return the results (uses resource and connectivity

protocols).

e Monitor the progress of the data transfers and analysis, notifying the user when
the analysis is complete, and responding to any failure (uses collective services)

[Foster, 2003][CERN, http://gridcafe.web.cern.ch].
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2.3.2 Services on the Web

2.3.2.1 Soap-based Web services

Web services are the next generation of Web-based technology for exchanging infor-
mation. Web services allow Web-based applications to be built using any platform
and programming language. Due to their modularity and flexibility, Web services are
ideal for integrating applications, particularly in making heterogeneous resources in-
teroperable. Following the deployment of a Web service, other applications and Web
services can discover and invoke that service [Booth et al., 2004, Gottschalk et al.,
2002, Wang et al., 2004].

Exposing bioinformatics applications as Web services eliminate the problems asso-
ciated with using several different applications that need to be installed locally. The
execution of these applications can be coordinated by integrating Web services into
workflows [Altunay et al., 2004]. A number of tools are now available allowing biolo-
gists to easy compose and enact workflows, without the need for technical expertise in
computing. An example tool is Taverna, which provides a workflow markup language
(SCUFL) along with software to construct workflows using distributed technology
[Oinn et al., 2004].

SOAP-based Web services are a common type of Web service. The components
involved in finding, publishing and binding to a Web service can be described by
considering the service-oriented architecture of a Web service, as shown in figure
2.12. This architecture consists of a service provider, service requester and service

registry:

o A service provider creates a Web service, and the corresponding service descrip-
tion may be published within a service registry (or obtained by simply emailing

the service requester).

o The service registry then provides the service requester with the service de-
scription and a Uniform Resource Locater (URL) indicating the location of the

service.
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Figure 2.12: SOAP-based Web services architecture. Adapted from Gottschalk et al.
[2002].

e The service requester can then use this information to bind to the service and

execute it [Booth et al., 2004, Gottschalk et al., 2002].

Web services utilise a number of standardised protocols and application program-
ming interfaces (APIs) enabling users to locate and use the operations provided. This
is highlighted in the Web services programming stack (figure 2.13). The programming

stack is broken down into a number of levels:

e The network is the bottom level over which a Web service is made available,

and is often based on the HyperText Transport Protocol (HTTP) protocol.

o XML-based messaging is based on SOAP that defines a mechanism enabling
communication between Web services, providing a way of exchanging informa-

tion between service requesters, service registries and service providers.

e A service description describing the operation and location of the available Web
services is provided through the Web Service Description Language (WSDL),

a formal, computer-readable XML-based language to describe Web services. A
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Figure 2.13: SOAP-based Web services programming stack. Adapted from Gottschalk
et al. [2002].

services WSDL file is all that is required to create an application that commu-

nicates with a particular Web service.

e Service publication and hence service discovery can be done through a Universal
Description, Discovery, and Integration (UDDI) registry that stores descriptions
about services offered by an institution in a common XML format to allow

clients to find a WSDL for a particular Web service and invoke the service.

e The service flow layer enables Web services to be integrated into workflows.
BPEL4WS [Andrews et al., 2003] and SCUFL [Oinn et al., 2004] are potential
standards that could be used at this level [Gottschalk et al., 2002, Wang et al.,
2004].

The network, XML-based messaging and service description layers are required
in order to have interoperable Web services [Gottschalk et al., 2002]. Apache Axis®
and Codehaus XFire® are open source frameworks providing a foundation on which
to build Java Web services. They support the important Web service standards,
including SOAP over HTTP and WSDL. The remaining top-level layers are not nec-

essary, but provide improved means of finding, binding and integrating Web services

2Apache Axis Website: http://ws.apache.org/axis/
3Codehaus XFire Website: http://xfire.codehaus.org/
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[Gottschalk et al., 2002].
There are two ways in which SOAP messages are structured: Remote Procedure
Call (RPC) and Document style. In RPC style, the contents of the body of the SOAP
message must conform to a structure that indicates the method name and contains a

set of parameters. In Document style, the contents of the body of the SOAP message
is structured in any desired fashion [Curbera et al., 2002].

2.3.2.2 REST services

"Representational State Transfer is intended to evoke an image of how a
well-designed Web application behaves: a network of web pages (a vir-
tual state-machine), where the user progresses through an application by
selecting links (state transitions), resulting in the next page (represent-
ing the next state of the application) being transferred to the user and

rendered for their use” [Fielding, 2000).

Representational State Transfer (REST) is an architectural style used to describe
network systems, such as the Web. Therefore, it is not a standard on its own, unlike
SOAP which is a general protocol that can be used as part of different architectures
[zur Muehlen et al., 2005).

It is based on the concept of a resource, where a resource is defined as anything
that has a Universal Resource Identifier (URI). REST services interface with HTTP

via the following commands:
e HTTP GET to retrieve a resource representation from a URL
e HTTP DELETE to remove a resource representation.
e HTTP POST to update/create a resource representation.

e HTTP PUT to create a resource representation |[Fielding and Taylor, 2002, zur
Muehlen et al., 2005].

The differences between REST and SOAP is summarised nicely in Swenson [2005],
which states:
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"REST says that everything is a resource, and has a distinct Web address.
In its purist form, it only supports HTTP, and the only supported opera-
tions are GET, PUT, POST and DELETE. Getting a resource gives you
an XML structure. Web locations are objects, and you send the opera-
tion to the resource. SOAP, on the other hand, uses an address to fix the
location of an API call. Each operation has an address, and if you want

to talk about an object, you pass a reference (or a copy) of the object to

the operation”.

REST vs. SOAP is equivalent to object-oriented vs. procedure-oriented [Swenson,
2005). Compared to SOAP-based approaches, REST is a lighter-weight and less
feature-rich approach to Web services due to the limited number of operations and
the unified address schema, as well as the potential scalability of REST-based systems.
In contrast, SOAP has tight coupling of operations, allowing applications to be tested
and debugged before deployment [zur Muehlen et al., 2005).

There is now a growing interest in REST services due to benefits it offers in
terms of scalability, performance, security, reliability and extensibility [Fielding, 2000,
Fielding and Taylor, 2002]. A compromise is now on offer with the incorporation of
REST principles into the standards and guidelines of the new version of SOAP [Mitra
and Lafon, 2007].

2.3.3 Taverna and ™¥Grid

The ™ Grid project has developed tools that allow researchers to develop and execute
their own workflows. Its aim is to provide free software to support the development
of workflows. At the core of development is the Taverna workbench. Using Tav-
erna, distributed programs and data sources can be accessed. Workflows can be
graphically built using a huge number of services, edited, browsed and then executed
using the built in workflow enactment engine, Freefluo [Hull et al., 2006)(Taverna,
http://taverna.sourceforge.net)].

Freefluo coordinates the execution of parallel and sequential activities in the work-
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flow, and supports data iteration and nested workflows. It is integrated into the Tav-
erna workbench, but is also available as a desktop tool and Web service. Workflow
definitions can therefore be executed by direct submission to the workflow enactor
[Taverna, http://taverna.sourceforge.net]. Workflows are defined using the language
called Simple Conceptual Unified Flow Language (SCUFL) [Oinn et al., 2004].

Within Taverna, processes can be added to a workflow in many ways, depending
on the nature of the component. Local components, with existing Java APIs, can
be imported into a Taverna workflow using the annotations derived by the API Con-
sumer tool for the associated Java libraries [Taverna, http:/ /taverna.sourceforge.net).
Remote components, on the other-hand, can be incorporated into the workflow using

a multitude of methods.

e Assess to the operations of a standard SOAP Web service is provided through

the Web service client.

o Soaplab is a tool that provides a way to automatically generate and deploy
Web services to execute existing command-line analysis programs. Java imple-
mentation classes and deployment descriptors for the services are created using
Apache Axis. The advantage of Soaplab is that it provides a unified access route
to remote computational methods that may have limited or no user interface
defined. (As a sub-project to Soaplab, Gowlab can be used to generate Web ser-
vices on top of existing Web resources by providing data from a third-party Web
page as a Web service) [Senger et al., 2003][Soaplab, http://www.ebi.ac.uk].

o Styz Grid Service is a method to wrap command-line programs to enable exe-
cution of these programs over the Internet. A Styx service is not a Web service,
but like Web services, Styx Grid services can be composed into workflows using
either simple shell scripts or graphical tools. The main advantage of Styx lies in
its architecture; the Styx Grid service architecture provides a way of streaming
data peer to peer (i.e. from service to service). Styx is therefore useful when
using large datasets as it removes the need to transfer data through the client

[Blower et al., 2006].
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In addition, there are a number of local Java operations provided as default
within Taverna that can be used for common generic tasks (e.g. to flatten lists).
Also, during workflow construction it is often the case that the output of one pro-
cessor does not have the correct format for the input of the next service. For sim-
ple cases writing a simple script to plug into the workflow as a non-service compo-
nent may be appropriate. These Beanshell scripts are interpreted in Java [Taverna,
http://taverna.sourceforge.net].

Furthermore, Taverna also provides ways of managing the resulting data, such as
the ability to export to Microsoft Excel [Taverna, http://taverna.sourceforge.net]. It
also records provenance, of which there are two categories: derivation data and anno-
tations. Derivation data describes what initial data was used to obtain a result, and
how the initial data was transformed into the result. In terms of an in-silico experi-
ment, the derivation data is about which services were used and how they transformed
the initial inputs into the overall result. Annotation data provides background infor-
mation like who performed an experiment and when, were any comments supplied on
the specific methods and materials used [Greenwood et al., 2003].

Provenance has a variety of uses. Firstly, another e-scientist should be able to
repeat the experiment and verify the results with the information provided. Prove-
nance data can also provide management information about what has been done in a
virtual organisation: who last used a particular workflow, and in what context, what

have others done with similar data.

2.3.4 Microbase

The ability to extract information about an organism’s phenotype and metabolic
potential by analysis of its genome sequence requires genome databases to be searched,
and comparison and analysis to be performed. A number of tools have been developed
to perform sequence comparison. Probably the most popular of these is BLAST
[Altschul et al., 1990]. BLAST searches protein and nucleotide (DNA) databases to

identify pairwise sequence similarities by local alignment between a query sequence
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and each sequence in a database.

However, due to ever increasing volumes of genome data, genomic comparison and
analysis has become a data-intensive and compute-intensive task. One possible solu-
tion is to employ Grid computing to build integrated genome databases and powerful
computing environments for genomic data processing.

The Microbase project has developed a Grid-based system to provide a foundation
for large-scale genome comparison and analysis by utilising the data and computing
resources on the Grid [Sun et al., 2005} [Microbase, http://www.microbase.org.uk/].
The system stores pre-computed datasets of all-against-all microbial genome com-
parisons generated by a variety of genome comparison tools. It provides a scalable
computing environment in which computationally intensive genome comparison and
analysis can be performed. The system has been used to carry out a variety of appli-
cations including an all-against-all search for gene homologues (including orthologues
and paralogues).

The EMBL database is dynamically integrated with the pre-computed dataset;
through a Web service based notification system, newly published genomes in EMBL
can be automatically added and compared against all existing genomes, thereby up-
dating the pre-computed dataset. An additional Web service interface also provides

remote users with access to this resource [Sun et al., 2005].

2.4 Biological network analysis

One aim of systems biology is to understand biology in the global scale of protein
interaction networks. However, the interaction between proteins is not well defined
and is used in various contexts when describing interaction networks, to mean pro-
teins that physically interact, through to proteins that may be involved in some kind
of common functional or metabolic process or transient protein complex, but may
not necessarily physically interact. These global networks of proteins and their ’in-
teractions’ are called interactomes and can be defined using a variety of experimental

techniques.
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Interactomes not only provide a framework to analyse and experimentally ver-
ify theories concerning a pathway, but they can also reveal unknown properties and
unanticipated consequences of different pathway configurations. Furthermore, they
also provide a means of managing the complexity of a vast number of cellular com-
ponents and interactions. One of the major applications of interactomes is in the
prediction of protein function by the so called ’guilt-by-association’ procedure [Cu-
sick et al., 2005]. Guilt-by-association refers to the process of inferring the function
of an uncharacterised protein on the basis it interacts with one of known function

[Oliver, 2000].

2.4.1 Interactome modelling

A number of studies have been undertaken for analysing protein-protein interactions
by computationally modelling the interactomes of single species such as Plasmodium
falciparum [Date and Stoeckert, 2006], Saccharomyces cerevisiae [Deng et al., 2004,
Jansen et al., 2003, Kiemer et al., 2007, Lee et al., 2004], or multi-species such as the
STRING database and its accompanying Web interface [von Mering et al., 2007).
Often a large amount of data is available to describe many different ways that
proteins can functionally interact. These data often result from high-throughput
experimental programmes and can include information about which proteins are co-
expressed in a number of microarray studies, for example, through to which protein
names are cocited in the abstract of a paper. Therefore, the construction of these
networks is often carried out on information extracted from multiple data sources in-
cluding high-throughput experiments, smaller-scale experiments, curated databases
and computational prediction methods. Integrating different forms of evidence, each
with varying degrees of reliability and associated biases, effectively provides a more
reliable interactome. Furthermore, by combining data sources from studies focus-
ing on different biological properties essentially provides an interactome modelling a
broader range of characteristics. When combining data sources, it is important that

the relative quality of the data be assessed in order to determine the contribution
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of that source to the total edge weight describing the functional association between
two proteins [Cusick et al., 2005, Ge et al., 2003, Jansen et al., 2003, Lee et al., 2004].
Probabilistic functional interaction networks (PFINs) describe the functional associ-
ations between proteins as a weight on an edge between two genes or gene products
in a network. The weight on the edge denotes the probability that the two proteins
functionally interact according to some kind of evidence.

However, to be able to integrate data sources that employ their own weighting
schemes, or alternatively those that have no weight associated, a unified weight-
ing method needs to be implemented. Most often a guilt-by-association approach is
adopted, in which a gold standard dataset is used from which true positives (TP) and
false positives (FP) can be calculated. A commonly used benchmark is the KEGG
pathway database, either on its own, as in Lee et al. [2004], or in combination with
another benchmark such as Gene Ontology (GO), as in Date and Stoeckert [2006].

However, the use of a gold standard is not the best approach to uniformly weight
the data, as it is largely effected by the reliability and content bias of the data source
used as the benchmark. In addition, it removes the possibility of incorporating the
chosen gold standard dataset as input to the interactome. Methods are therefore
required in which integration of data sources do not rely on a gold standard, such as
Deng et al. [2004].

In any modelling process, mathematics plays an important role. In terms of
interactomes, mathematical methods are required to process the data to construct
the interactomes, but methods are also used in analysing the properties of networks;
Bayesian statistics are frequently used for this purpose. Bayesian statistics are often
applied to biological problems due to their ability to measure the degree of belief in
a hypothesis. The Bayesian approach to statistics revolves around the concept that
the probability that a hypothesis is true is based on known observations. In other
words, the probability of an event occurring is based on the degree of belief in that
event [Heckerman, 1996].
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2.4.2 Interactome comparison

The aim of developing protein interaction networks is to understand how proteins
interact and hence how they function, individually and as part of a system. This
knowledge can be gained through applying prediction methods within the individual
interactomes themselves. The GOM (Global Optimisation Method) [Vazquez et al.,
2003] and the improved MFGO (Modified and Faster Global Optimisation) [Sun et al.,
2006] methods predict the function of unclassified proteins in the context of the
surrounding interaction network. Some methods have been devised that generate
subgraphs based on topological statistics, such as TopNet [Yu et al., 2004] and the
algorithm termed ”local graph alignment” [Berg and Lassig, 2004].

More information can be extracted by making comparison across all the interac-
tomes i.e. across species. A standard approach to annotating a protein with specific
functions is to identify proteins with a similar sequence that are well characterised;
this involves identifying homologues, or more precisely, orthologues. Homologs are
proteins that share a common ancestry; this includes orthologues that evolve by speci-
ation, or paralogues that arise by gene duplication. Orthologs generally retain similar
domains and functions following speciation, whereas paralogues evolve new functions.
In- and out-paralogues denote genes duplicated subsequent or prior to speciation, re-
spectively. Co-orthologues define orthologues between in-paralogues and genes in the
other species [Alexeyenko et al., 2006, O’Brien et al., 2005]. Speciation is defined
as the formation of new species that live independently from the species from which
they evolved [Hale et al., 1995].

A number of automated methods have been developed for orthologue identifica-

tion, distinguishing between probable (co-)orthologues and paralogues, including:
e Phylogeny-based methods including:

— Resampled Inference of Orthology (RIO) [Zmasek and Eddy, 2002},

— Orthostrapper [Storm and Sonnhammer, 2002].

o Evolutionary distance-based methods including:
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— Reciprocal Smallest Distance (RSD) [Deluca et al., 2006, Wall et al., 2003].

e BLAST-based methods including:

— Reciprocal Best Hit (RBH),
~ COGs [Tatusov et al., 2003],
— OrthoMCL [Li et al., 2003],

— Inparanoid [Remm et al., 2001] and Multiparanoid [Alexeyenko et al.,
2006].

According to a study carried out in Chen et al. [2007], the best performing al-
gorithms are considered to be OrthoMCL and Inparanocid, which show similar per-
formance when comparing two species. Like Inparanoid, OrthoMCL uses RBH to
recognise co-orthologue relationships, then defines orthologue clusters using a Markov
Clustering (MCL) algorithm, in which the cluster granularity depends on the inflation
parameter. OrthoMCL generates clusters of proteins where each cluster consists of
orthologues or in-paralogues from at least two species [Li et al., 2003]. A limitation of
this method is that it does not provide confidence values for the predicted orthologues.
Additionally the orthologue groups do not necessarily have a unique common ances-
tor, leading to potential inclusion of out-paralogues in the same group. OrthoMCL
has the advantage that it is capable of clustering orthologues across multiple species.

The Inparanoid clustering algorithm is limited to pairwise proteome orthology de-
tection, unlike OrthoMCL. However, Inparanoid has the added benefit that it provides
confidence scores for the predicted orthologues [Remm et al., 2001]. Multiparanoid
extends the Inparanoid algorithm to allow clustering over multiple species, using the
output generated by Inparanoid to build multi-species clusters. The drawback of Mul-
tiparanoid is that it may only be used when comparing across closely-related species
[Alexeyenko et al., 2006).

The performance of Multiparanoid and OrthoMCL are comparable, although dif-
ferences have been highlighted between these two algorithms. Orthologues identified
by OrthoMCL include more out-paralogues compared to Multiparanoid. OrthoMCL



49
produces tighter clusters reducing tree conflicts, and Multiparanoid has a stricter
inclusion policy [Alexeyenko et al., 2006].

Both Inparanoid/Multiparanoid and OrthoMCL are directly applicable to the
task of comparing across all the Bacillus interactomes to identify Bacillus-specific
interologs i.e. conserved interactions across species [Matthews et al., 2001]. However,
since Multiparanoid is only applicable to species that are closely related, this program
does not offer the diversity required for future analysis.

The methods described so far focus on comparing interactions individually, from
which conserved network regions can be identified (as in Gandhi et al. [2006]), but
there are alternative methods that create a global alignment between networks that
can also identify conservation. Identifying conserved regions can be used to infer
conserved components of the cellular machinery and then use those components to
predict new protein functions and interactions. Conserved interactions across species
are also less likely to be false positives [Bandyopadhyay et al., 2006]. PathBLAST is a
program designed for this purpose, that compares the protein interaction networks of
two species to identify conserved network regions, just as BLAST performs pairwise
protein sequence alignment [Kelley et al., 2004]. PathBLAST has also been extended
to provide a computational framework for comparing multiple protein networks (Net-
workBlast) [Sharan et al., 2005). However, PathBLAST is not freely downloadable, so
it cannot be run over the integrated networks of the Bacillus species. NetworkBlast
bases its initial search on particular types of graphical form modelled on signalling
pathways (strings) and protein complexes (clusters). The Greemlin algorithm ex-
tended this approach by searching efficiently for similar subgraphs of arbitrary topol-
ogy across multiple networks [Flannick et al., 2006]. Other methods cluster nodes
based on their distance from one another in each network [Ogata et al., 2000], or a
combination of the distance of nodes and their edge similarity, as used for comparing
metabolic networks in MaWish [Koyutiirk et al., 2004]. More recently, a probabilistic
model described in Hirsh and Sharan [2007] has been developed to identify conserved
protein complexes that describe the evolution of conserved protein complexes from an

ancestral species through link dynamics and gene duplication events. This probabilis-
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tic model shows comparable performance to NetworkBlast, although NetworkBlast is
unable to distinguish conserved motifs to the same degree of detail as this new model.
An slternative approach called PHUNKEE (Pairing subgrapHs Using NetworK En-
vironment Equivalence) takes into account gaps in the network structure, allowing
for elements that have been inserted or deleted through the course of evolution. The
similarity of subgraphs is based on edge, as well as node, similarity. All edges adjoin-
ing nodes belonging to a subgraph are considered (the network context), rather than
simply the edges connecting nodes within the subgraph [Cootes et al., 2007].

Clustering interactomes to identify regions of highly connected nodes is also an
approach that can be employed in analysing a network. Many clustering algorithms
have been used to analyse interactomes, including Molecular Complex Detection
(MCODE) [Bader and Hogue, 2003], MCL [van Dongen, 2000a], Restricted Neigh-
bourhood Search Clustering (RNSC) [King et al., 2004], Super Paramagnetic Clustering
(SPC) [Blatt et al., 1996] and the more recent ensemble framework [Asur et al., 2007].
Clustering is not limited to single interactomes, but can be extended to cross-species
analysis, using orthology is infer vertical links between the individual interactomes.

Other approaches have been developed that reverse the idea in identifying con-
served interactions, by using conserved interactions to predict functional orthology.
It is built on the concept that a protein and its functional orthologue are likely to
interact with proteins in their respective networks, that are themselves functional

orthologues [Bandyopadhyay et al., 2006].

2.4.3 Interactome visualisation

A variety of software tools are available to visualise and analyse biological networks.
To display molecular interaction data as a two-dimensional network, there are general-
purpose graph viewers such as Pajek [Batagelj and Mrvar, 1998]. Other viewers link
the network to molecular interaction and functional databases such as biopixie for
yeast [Myers et al., 2005], IntNet for humans [Xia et al., 2006]. More general viewers
for biological networks include Osprey [Breitkreutz et al., 2003] and VisANT [Hu
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et al., 2007]. A program called Cytoscape has also been developed; this is a general-
purpose open-source modelling environment for integrating biomolecular interaction
networks and states [Shannon et al., 2003].

Cytoscape is a modelling environment in which molecules are represented as nodes
and intermolecular interactions are represented as edges between the nodes. A variety
of different model parameters describing molecular states and interactions can be
integrated into the network as attributes on the nodes and edges. Hierarchical data
such as ontologies can be incorporated into the network through annotations. Using
this GUI, selected node and edge attributes and annotations can be viewed.

Cytoscape graphically illustrates a network and its associated integrated data in
a variety of graph layouts. It also includes ways of altering the display depending
on attribute values. Tools are also provided in Cytoscape for selecting and filtering
interesting subsets of nodes and edges. In addition, the core functionality can be ex-
tended by using the interface to implement plugin modules to provide new algorithms,
additional network analysis, and/or biological semantics [Shannon et al., 2003]; an
example is the clustering algorithm MCODE, which is provided as a plugin. The

separate modules of which Cytoscape is composed are illustrated in figure 2.14.

GuUI == Plugins

Figure 2.14: The Cytoscape GUI displays the network graph and node/edge attribute
data. Graph editing, graph layout, attribute-to-visual mapping, and graph filtering
operate over the network and attribute information. Plugins are available that manip-
ulate the network structure in different ways. Annotations are also available through
a separate server. Adapted from Shannon et al. [2003].
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2.5 Conclusions

The secretome, a subset of the proteome, is a biologically important group of proteins
that exert their effect in the extracytoplasmic environment of a cell. For this reason,
secretory proteins are of great interest, providing insights into how bacteria interact
with their environment, to not only sustain themselves, but in the case of pathogens,
to understand how they subvert their hosts. Exposing the functions of secretory
proteins can therefore lead to a better understanding of the secretome, and more
broadly, the proteome. A number of previous studies have centred on the model
Gram-positive bacteria, B. subtilis (strain 168) [Antelmann et al., 2001, Tjalsma
et al., 2004, 2000]. In some cases these predictions have been experimentally verified.

The extension of this categorisation and analysis process to other Gram-positive
bacteria is the next logical step. Comparisons across the different secretomes can then
be carried out to reveal potentially interesting differences between species. In fact,
the study described in Binnewies et al. [2005] not only predicts secreted proteins, but
also performs cross-species comparison between the different secretion systems in a
selected number of Gram-positive and Gram-negative bacteria to identify conserved
sequences.

Furthermore, analysing proteins in the context of their interactions can aid in
the understanding of cellular function, and the possible function of uncharacterised
proteins. Proteins interact in myriad ways within cells, forming a complex network
of structural and functional processes. Several methods of constructing PFINs have
been developed, all of which integrate information from a variety of sources. The
proteomes of eukaryotic species have largely been the focus of attention; the most
intensely studied being the model organism S. cerevisiae [Deng et al., 2004, Jansen
et al., 2003, Kiemer et al., 2007, Lee et al., 2004].

To date there have been relatively few reports of the application of PFINs to
prokaryotes. Interactomes representing physical interactions in the entire bacterial
proteome of E. coli [Butland et al., 2005] and H. pylori [Rain et al., 2001], have been
developed [Noirot and Noirot-Gros, 2004]. In addition, models of networks represent-
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ing specific biological processes have also been constructed, including DNA replication
in B. subtilis [Noirot-Gros et al., 2002] and type IV secretion systems in Agrobacterium
tumefaciens [Ward et al., 2002] and Rickettsia sibirica [Malek et al., 2004]. The con-
struction and analysis of these networks has led to the annotation of a number of
previously uncharacterised proteins. In the case of Rain et al. [2001], H. pylori was
compared to E. coli, from which knowledge about proteins of unknown function in H.
pylori were identified through homologue detection and function assignment based
on the E. coli interaction network.

In addition, it is also valuable to compare interactomes across species. Cross-
species interactome comparisons enable similarities and dissimilarities to be observed,
which can then be used to generate hypotheses about issues such as evolutionary path-
ways or missing interactions. Many methods have been developed for this purpose,
facilitating the process of cross-species interactome comparison.

The application of such methods has previously been shown by comparing eu-
karyotes, for instance yeast, worm and fly [Sharan et al., 2005, and also with human
[Gandhi et al., 2006]. The majority of studies focus on these model organisms, with
comparisons between prokaryotes being few and far between. However, a study has
previously made comparisons between a eukaryote and prokaryote, S. cerevisiae and
Helicobacter pylori [Kelley et al., 2003], resulting in the prediction of a functionally
unknown protein in H. pylori as a DNA polymerase, and another as a membrane-
specific protein. The latter protein was found to belong to a pathway that shares
homology with the yeast nuclear pore complex. Another includes the prokaryotic-
specific comparisons between H. pylori and E. coli [Rain et al., 2001]. Through these
studies, cross-species specific information can be extracted. The value of interactome
comparison techniques has therefore been recognised, and is an area of active research.

There is however still much scope for improvement, particularly for prokaryotes.
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Chapter 3

An e-science approach to the
genomic scale characterisation of
bacterial secreted proteins

3.1 Introduction

The aim of this study was to identify proteins that are likely to be secreted from the
cytoplasm and to classify them according to the putative mechanism of their secretion.
Such proteins include those exported to the extracellular medium, as well as proteins
that attach themselves to the outer surface of the membrane (lipoproteins) and cell
wall binding proteins (sortase mediated proteins containing an LPXTG motif). Fol-
lowing the classification of the secreted proteins, the composition of the predicted
secretomes in the 12 species under study were then investigated.

The BaSPP (Bacterial Secretory Protein Prediction) package was designed and
implemented in order to meet this objective. The central components to this system
are two Web service-based SCUFL workflows: the classification workflow and the
analysis workflow. The classification workflow is concerned with making predictions
about the secretory characteristics of a particular protein from a given set of proteins.
The analysis workflow processes the data from the first workflow in order to analyse

the function of the secreted proteins that have been identified.’

Presented at UK e-Science All Hands Meeting 2006 [Craddock et al., 2006].
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3.1.1 Computational approaches to predicting and classify-

ing secreted proteins

Computational approaches are already available to aid in classifying proteins accord-
ing to their secretion potential. These tools generally look for a pattern consistent
with a specific type of protein, by often implementing a learning algorithm such as
Hidden Markov Model (HMM) and neural networks. The most relevant programs

used to characterise secreted proteins apply one or both of these learning algorithms,

including:

e SignalP

SignalP? predicts the presence of signal peptides and the SPase I cleavage site.
It uses both neural networks and HMMs [Nielsen and Krogh, 1998).

¢ LipoP

LipoP? predicts lipoproteins in Gram-negative bacteria [Juncker et al., 2003].
Despite the specificity of LipoP for Gram-negative lipoprotein signal peptides,
the HMM algorithm was shown to be able to identify a high proportion of Gram-
positive lipoproteins. The HMM algorithm differentiates between lipoproteins
(SPase II cleaved proteins), SPase I cleaved proteins, cytoplasmic proteins and

transmembrane proteins [Juncker et al., 2003].

¢ TMHMM, MEMSAT and TMAP

An evaluation of the tools available to predict the topology of transmembrane
proteins is detailed in Maller et al. [2001]. From this study, it was determined
that TMHMM 2.0 is the most reliable and accurate. The approach adopted in
TMHMM?* uses an HMM algorithm to determine the most probable topology
for the entire protein [Krogh et al., 2001, Méller et al., 2001].

2SignalP Website: http://www.cbs.dtu.dk/services/SignalP/
3LipoP Website: http://www.cbs.dtu.dk/services/LipoP/
{TMHMM Website: http://www.cbs.dtu.dk/services/TMHMM/
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The runners up to TMHMM included MEMSAT and TMAP. MEMSAT and
TMAP implement a combined approach in which global heuristics operate over
local level results [Moller et al., 2001). MEMSAT® uses well-characterised mem-
brane protein data (from bacteria, plants and animals) to calculate loglikeli-
hoods with the aim of identifying biases towards certain amino acids. A novel
dynamic programming algorithm is then used to predict the membrane struc-
ture by expectation maximisation [Jones et al., 1994]. TMAP® uses a prediction
algorithm based on multiple sequence alignments of related proteins [Persson
and Argos, 1994].

® ps_scan

The standalone version of ScanProsite’, known as ps_scan, is a Perl program
that provides a means to scan one or several PROSITE patterns, rules and
profiles against one or several protein sequences in SWISSPROT or FASTA
format [Gattiker et al., 2002].

3.2 Results

3.2.1 System architecture

The architectural view of the workflow components involved in the prediction and
analysis of the secretomes of the Bacillus species is shown in figure 3.1.

A general feature of the workflows is their linear construction. In the classification
workflow for example, at each step the set is reduced in size, removing those proteins
that do not require further classification. The results of the classification process
are stored in a remote relational database and the reduced set of proteins passed
to the next service in the workflow. In the analysis workflow, data derived from
the classification workflow is retrieved from the database and analysed sequentially

using a further series of service enabled tools. Compare these linear workflows to the

SMEMSAT Website: http://saier-144-37.ucsd.edu/memsat.html
STMAP Website: http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-page+LibInfo+-lib+ TMAP
"ScanProsite Website: http://expasy.org/tools/scanprosite/
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Figure 3.1: Architectural layout of the classification and analysis workflow compo-
nents, illustrating the client side workflow execution using Taverna, and the hosting
of Microbase, the custom database, Web services and the Website on the server side.

fanned /tree-like Graves’ Disease workflow [Li et al., 2004, which instead performs all
tasks in-parallel.

Web services were not implemented on the client machine that enacted the work-
flow, but were located as close to the database as possible to maximise performance.
This is particularly important for those services interacting with the database, to
maximise the efficiency of transfer of large genomic and proteomic datasets from the
service to the database. The services were orchestrated using SCUFL workflows and
constructed and enacted using the Taverna workbench [Oinn et al., 2004] .

Most of the services used within the workflows both use and return text-based
information in standard bioinformatics formats, such as FASTA format. At all steps
of the classification workflow, the intermediate results were extracted into a custom-
designed database. This was achieved using a set of bespoke data storage services
which parse the raw textual results and store them in a structured form. It is this
structured data that is used to feed later services in both the classification and analysis
workflows. The custom database was hosted on a machine in close network proximity
to the Web services. This has the significant advantage of reducing the network costs

involved in transferring data to and from the database.
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After completion of the classification workflow, the custom database contains the
data relating to each protein analysed, including the raw data as well as an integrated
summary of the analysis. Tracking the provenance of the data is important in this
context because there are a number of different routes for the classification workflow
to designate a protein as secretory. The basic operational provenance provided by
Taverna also aided in the identification of service failures [Zhao et al., 2004]. This was
particularly important while running the transmembrane domain prediction services,
as these run concurrently; a failure in one, therefore, does not impact on the execution
of the classification workflow. However, since the data returned may be incomplete a
failure needs to be recorded.

A Web portal was developed to provide a user-friendly and familiar mechanism
for accessing the secretomes data in the database®. From this site, users can select
the bacterial species in which they are most interested and view the corresponding
results. Data is initially displayed as a table, documenting the entire proteome for the
selected bacteria in terms of gene names, locus tags, gene location, Uniprot reference
and classification workflow prediction. The colour coding on the left hand side of
this table indicates the set of parameters used to generate the results. This allows
for multiple workflows to be run on the same bacterium using different parameter
sets. From the results page, the users can navigate further to view the details of
the classifications. The protein sequences may be viewed along with an overlay of
predicted signal peptides and their cleavage sites. Users may also edit and curate
the database by adding comments on the findings of the classification workflow as
appropriate. A screenshot of the database portal is shown in figure 3.2.

In both the classification and analysis workflows, all legacy programs were imple-

mented locally, but exposed using Web services.

8BaSPP Website: http://bioinf.ncl.ac.uk:8081/BaSPP
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Figure 3.2: Screenshot of the Web portal summarising the characteristics of predicted
secreted proteins from B. subtilis (strain 168).

3.2.2 Development of a secretory protein classification work-
flow

The first objective of the classification workflow was the prediction of lipoproteins
(figure 3.3). This was the responsibility of the first service in the workflow, employing
LipoP 1.0 [Juncker et al., 2003], which takes as input a set of all predicted proteins
derived from the EMBL record for the complete genome sequence. Proteins are
predicted to be lipoproteins if the LipoP results predict an SPase IT cleaved signal
peptide above the threshold cutoff score of 3.0. The putative type II signal peptides
(SplI) are then checked for transmembrane domains, whereas the non-lipoproteins

are checked for the presence of an SPase I signal peptide.
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Figure 3.3: Basic representation of the functionality of the classification workflow.
Shaded boxes indicate the set of secreted proteins.

The prediction of the presence of an SPase I signal peptide and the location of the
cleavage site is accomplished by using a SignalP 2.0 Web service [Nielsen and Krogh,
1998]. SPase I prediction was performed after the lipoprotein identification because
of possible limitations in the efficiency of SignalP at detecting lipoproteins. The use
of SignalP at this point also removes most of the proteins from subsequent analysis.
Reducing the size of the dataset has considerable advantages as the downstream
analyses are potentially computationally intensive.

SignalP implements two methods to provide separate prediction methods that
utilise neural networks and HMMs. A combination of both these methods are used
to predict whether a protein is a specific substrate for SPase 1. A positive result from

both neural networks and HMM is required in order to predict a protein to contain a
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type I signal peptide (Spl).

Proteins with Spl-like or Spll-like sequences, but which have additional transmem-
brane domains, are likely to be retained in the membrane. To identify these putative
membrane proteins from among the proteins in either the Spl or SplI datasets, a
combination of three transmembrane prediction Web services were used, based on
the tools TMHMM, MEMSAT and TMAP, respectively [Moller et al., 2001]. A sub-
sequent service in the workflow was responsible for integrating the results derived
from these three tools, to make a final prediction about the presence of a putative
transmembrane protein. The prediction of a transmembrane protein was determined
if any one of the tools made a positive prediction. Each protein, whether a Spl or Spll
protein, had their first 40 amino acid residues removed and the remaining sequence
was passed on for analysis by the various transmembrane tools. This cleavage step was
to ensure the removal of the hydrophobic domain within the signal peptide region,
which would ultimately be detected as a transmembrane domain. Cleavage of the
first 30 or 35 amino acids may not result in the complete removal of this hydrophobic
domain.

In theory, using a combination of programs to make predictions in this way should
provide more meaningful results. However, based on selected manual curation of
results provided by each of the three transmembrane prediction tools, it was decided
to rely solely on the prediction of TMHMM 2.0, as this tool provided the most accurate
prediction.

The subset of the lipoproteins without a predicted transmembrane domain were
categorised as being lipoproteins and were not subject to further analysis. However,
the subset of Spl proteins corresponding to proteins with no predicted transmembrane
domain were further analysed for the presence of the cell wall binding amino acid
motif, LPXTG using the tool, ps_scan that was wrapped as a Web service and called

from the workflow.
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3.2.2.1 Workflow design and implementation

Closer inspection of the classification workflow highlights the complexity involved
in the categorisation process. For simplicity, the construction of this workflow was

divided into a number of subworkflows (figure 3.4).

* Workflow Inputs

L embifie | A

Figure 3.4: Taverna representation of the classification workflow consisting of
three subworkflows (red) (embl data extracts information from the EMBL file,
store_bacteria stores information specific to the bacteria, protein_analysis analyses
the proteome) and one Web service (green) (storeProtein which stores information
specific to the proteome).

The workflow is initiated by providing an EMBL file as input. that annotates a
particular bacterial genome. EMBL files provide information in a specific file format in
order to be human as well as computationally readable. A number of specialised Web

services within the classification workflow are dedicated to processing the information
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contained within this file. These services use BioJava? to extract the information
about an organism’s genome and its associated annotated features (figure 3.5). Those
features that were extracted that relate to the identity of the organism itself include
accession number (AC) and organism species (OS). The annotated features of interest
within this study are the coding regions (CDS). The information relating to these CDS
features were extracted from the EMBL file, include translation, dbxref, gene, locus
tag, protein.id, product and note (table 3.1).

Overall, a total of «~ 57, 000 proteins were extracted from all 12 genomes supplied
as input. The data is stored in the database, but only if the organism supplied as
input to the workflow has not previously been analysed using the same parameter
settings for the different programs. If the EMBL data has already been stored in the
database after a previous workflow execution using the same parameters, the workflow
fails, preventing duplicate entries in the database (figure 3.6 and table 3.2).

A number of bioinformatics tools, previously highlighted in section 3.1.1, have
been wrapped as Web services in order to categorise secreted proteins. Additional
services are provided which store the data generated by each of these tools in a
custom database (figure 3.7 and table 3.3). Furthermore, filter services allow proteins
of interest to be provided as input to the services downstream. The filtering process is
tracked in the database. Essentially the filtering reduces the data being processed at
each phase in the workflow (shown in figure 4.1). Starting with «~ 57,000 proteins to
the first service, this number is reduced as the proteins proceed through the workflow
until all the proteins have been classified.

Error handling can be incorporated into the workflow using an additional feature
of Taverna which allows alternative services to be executed, allowing the database to
be cleared of all entries which may have been added during a failed workflow run.

As a number of studies have previously been carried out to identify components of
the B. subtilis secretome, comparing the classification workflow results for this organ-
ism to the documented findings, provides a means to validate the results generated

through the characterisation process described.

9BioJava Website: http://biojava.org/wiki/
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Service Input Output Description ]
get AccessionNumber | EMBL file | accession number Unique identifier
for each EMBL
entry.
getOrganismSpecies | EMBL file | organism species | Preferred scientific
name of the organ-
ism in EMBL en-
try.
getTranslations EMBL file translation Amino acid se-
quence  resulting
from the sequence
of nucleotides
getProteinld EMBL file list of protein
information:
dbxref Database  cross-
references.
gene Gene symbol.
locus tag Unique tag.
protein_id Protein identifier.
product Product name.
note Any additional in-

formation.

Table 3.1: The Web services used in the classification subworkflow. embl_data. All
take as input an EMBL file (in String format).

Figure 3.5: Taverna representation of the classification subworkflow, embl_data. It
consists of four Web services (green), each responsible for extracting different data
from an EMBL file.
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Service

Input

Output

Description

]

checkParameters

accession number

accession number

Fails if bacteria
has been analysed
with same pa-
rameters already.
(Parameters  are
set in database
before running the
workflow.)

storeBacteria

accession number

accession number

Stores bacterial in-
formation.

storeParameters

accession number,
type of bacteria
(gram+/gram-)

parameter reference id

Associates set par-
ameters with bact-
eria being anal-
ysed.

Table 3.2: The Web services used in the classification subworkflow. store_bacteria.

- Workflow Inputs

raccesslon_numbeﬂ rormnbm_smchs IA

Figure 3.6: Taverna representation of the classification subworkflow, store_bacteria.
consisting of three Web services (green). If the workflow has not previously analysed
this bacteria using the same program parameters i.e. there is no current entry in the

database (determined using checkParameters), then the data identifying the bacterial
species is stored in the database (using storeBacteria service), as are the program

parameters (using storeParameters service).
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store_tmap.results
store_psscan._results

. Service Input Output Description
[ PROGRAMS (TAVERNA ITERATION PROCEDURE EXECUTES LISTS)
lipop protein LipoP results Predicts lipopro-
teins.
signalp protein, parameters SignalP results Predicts signal
peptides.
tmhmm protein Program results Predicts
memsat (in case of MEMSAT, transmembrane
tmap parameters too) domains.
ps-scan protein, motif id ps-_scan results Identifies motifs.
PROGRAM PARAMETERS (FROM DATABASE)
getMethodParameter method (nn/hmm) | SignalP
getTruncateParameter truncation value parameters.
getMinimumI.oopLength min. loop length MEMSAT
getHelixScoreCutoff helix score cutoff parameters.
getMaxLengthHelix max length helix
getMinSegLength min. sequence length
getMinLengthHelix min. length helix
getMaxHelices max. helices
STORE TO DATABASE
store_lipop.results list of respective Stores results in
store_signalp_results program results database.
store_tmhmm results
store_memsat._results

FILTER RESULTS
filterLipopResults accession number, protein lists Gets appropriate
filterSignalpResults parameter set id results from
filter TMHMMResults database for
filterMemsatResults further analysis.
filterTmapResults
getLipoproteins accession number, protein lists Gets lipoproteins/
getNonLipoproteins parameter set id non-lipoproteins.
BEANSHELLS
get_input_as_list protein list protein list Reformats input.
merge_lists lipoproteins list, combined list Merges lists.
signal peptides list
append.tags4tmhmm | lipoproteins list and tagged lipoproteins | Appends tags to
append-_tags_4_memsat signal peptides list, list and signal distinguish be-
tween
append._tags_4_tmap in & list (list of lists) peptides list, in a | lipoproteins and
list (list of lists) signal peptides.

Table 3.3: The Web services used in the classification subworkflow, protein_analysis.




Figure 3.7: Taverna representation of the classification subworkflow, protein_analysis, responsible for analysing a bacteria’s
proteome to predict its secretome. It takes four parameters as input:accesszon_number of the bacteria, bacteria_type (Gram-
positive or -negative, although this workflow is currently specific to Gram-positive bacteria, with potential for expansion to
Gram-negative too), translations is a list of protein sequences, and ref refers to the id of the parameter set being used to run
the workflow (as different parametric values can be used to run programs used in this subworkflow). Web services (green)
provide the functionality, using beanshells (orange) to reformat data between services where necessary.

L9
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3.2.2.2 Comparison of BaSPP-based predictions for B. subtilis secreted

protein to experimentally verified protein annotations

The classification workflow predictions for B. subtilis were compared to a set of 47

proteins of B. subtilis whose secretory status has been experimentally verified and
documented in the literature. Of these 47 proteins:

o 18 out of 19 were correctly identified as Spl (table 3.4);
e 11 of 11 were correctly identified as SplI (table 3.5);

e all 11 transmembrane proteins and 7 cytoplasmic proteins were correctly pre-

dicted not to be secreted (tables 3.6 and 3.7).

One Spl specific protein, PhoD, was not detected. The unusually long signal
peptide sequence of PhoD, 51 amino acid residues according to Tjalsma et al. [2000],
may explain why SignalP does not predict this protein to be targeted by SPase I.
Despite the specificity for SPase I, PhoD is actually transported by the Tat pathway,
not Sec. As detailed in Bendtsen et al. [2005], PhoD is not predicted to be secreted
by SignalP, but it is positively identified using TatP!° and TATFIND!!.

Four transmembrane proteins (encoded by fruA, pyrP, rbsC and tagH) were also
not identified by the classification workflow. This omission was because these proteins
had been removed from the classification process, due to the lack of a positive Spl
or Spll prediction, before TMHMM analysis. The important point is none of these
known transmembrane proteins were predicted as being secreted. The intention of
the classification workflow was only to classify secreted proteins, not cytoplasmic and
transmembrane proteins. If this were the intention, the workflow would have been
designed differently, in which every protein in the proteome would be analysed using
TMHMM. TMHMM analysis of every protein would have resulted in the positive

identification of these four proteins as transmembrane.

10TptP Website: http://www.cbs.dtu.dk/services/TatP/
UTATFIND Website: http://signalfind.org/tatfind.html
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Gene | Description Locus tag | Prediction | Reference
abnd | arabinan-endo 1,5-alpha- | BSU28810 Spl [Leal and de Sa-
L-arabinase Nogueira, 2004]
amyE | alpha-amylase BSU03040 Spl [Hirose et al., 2000]
bglS | endo-beta-1,3-14  glu- | BSU39070 Spl Murphy et al.,
canase 1984]
bpr | bacillopeptidase F BSU15300 Spl [Sloma et al., 1990,
Wu et al., 1990
cotN | translocation-dependent | BSU24620 Spl [Hirose et al., 2000]
antimicrobial spore
component
csn | chitosanase BSU26890 Spl Hirose et al., 2000
epr | extracellular serine pro- | BSU38400 Spl Sloma et al., 1988
tease
ggt | gamma- BSU18410 Spl [Xu and Strauch,
glutamyltranspeptidase 1996]
glp@ | glycerophosphoryl  di- | BSU02130 Spl [Antelmann et al.,
ester phosphodiesterase 2000]
mpr | extracellular metallopro- | BSU02240 Spl (Rufo et al., 1990
tease
pel | pectate lyase BSU07560 Spl Hirose et al., 2000
penP | beta-lactamase precursor | BSU18800 Spl Hirose et al., 2000
phoA | alkaline phosphatase A | BSU09410 Spl [Hulett et al., 1991
phoB | alkaline phosphatase III | BSU05740 Spl Antelmann et al.,
2000, Hulett et al.,
1991]
phoD | phosphodiesterase/alkaling BSU02620 - |[Eder et al., 1996]
phosphatase D
vpr | extracellular serine pro- | BSU38090 Spl [Hirose et al., 2000]
tease
wapA | cell wall-associated pro- | BSU39230 Spl [Hirose et al., 2000]
tein precursor
wprA | cell wall-associated pro- | BSU10770 Spl [Hirose et al., 2000]
tein precursor
zynA | endo-1,4-beta-xylanase | BSU18840 Spl [Roncero, 1983]

Table 3.4: Comparison of BaSPP Spl protein predictions to a list of experimentally
verified Spl proteins. (phoD was not predicted to encode a secreted protein by BaSPP
as no lipoprotein or signal peptide was detected.)
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Gene | Description Locus tag | Prediction | Reference

appA | oligopeptide ABC trans- | BSU11380 Spll [Koide and Hoch,
porter (oligopeptide- 1994]
binding protein)

araN | arabinose ABC trans- | BSU28750 Spll [S4-Nogueira et al.,
porter (arabinose- 1997]
binding protein)

dppE | dipeptide ABC trans- | BSU12960 Spil [Mathiopoulos
porter (dipeptide- et al., 1991]
binding protein)

ginH | glutamine ABC trans- | BSU27440 Spll [Wu and Welker,
porter (glutamine- 1991]
binding protein)

mntA | manganese ABC trans- | BSU30770 Spll [Bartsevich  and
porter (membrane pro- Pakrasi, 1995]
tein)

oppA | oligopeptide ABC trans- | BSU11430 SpIl [Perego et al.,
porter (oligopeptide- 1991]
binding protein)

opuBC | choline ABC transporter | BSU33710 Spll [Kappes et al.,
(choline-binding protein) 1999

opuCC | glycine be- | BSU33810 Spll [Kappes et al,
taine/carnitine/ choline 1999]
ABC transporter
(osmoprotectant-binding
protein)

prsA | molecular chaperone BSU09950 Spll [Kontinen et al.,

1991)

pstS | phosphate ABC trans- | BSU24990 Spll [Allenby et al.,
porter (phosphate- 2004]
binding protein)

rbsB | ribose ABC transporter | BSU35960 Spll [Woodson and
(ribose-binding protein) Devine, 1994]

Table 3.5: Comparison of BaSPP Spll protein predictions to a list of experimentally

verified SplI proteins.
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Gene | Description Locus tag | Prediction | Reference

cydD | ABC membrane trans- | BSU38730 ™ [Winstedt et al.,
porter (ATP-binding 1998]
protein)

ditB | D-alanine esterification | BSU38510 ™ [Perego et al.,
of lipoteichoic  acid 1995]

and wall teichoic acid
(D-alany] transfer from
Dcp to undecaprenol-
phosphate)

fruA | phosphotransferase BSU14400 - [Reizer et al., 1999]
system (PTS) fructose-
specific enzyme IIABC

component
ftsH | cell-division protein and | BSU00690 ™ [Deuerling et al.,
general stress protein 1997]
(class III heat-shock)
ftsX | cell-division protein BSU35250 T™ [de Leeuw et al.,
1999]
fepB | methyl-accepting chemo- | BSU31260 ™ [Hanlon and
taxis protein Ordal, 1994]
pyrP | uracil permease BSU15480 - [Turner et al,
1994]
rbsC | ribose ABC transporter | BSU35950 - [Park and Park,
(permease) 1999
secDF | protein-export mem- | BSU27650 ™ [Bolhuis et al.,
brane protein 1998]
secY | preprotein translocase | BSU01360 ™ [Suh et al., 1990
subunit
tagH | ATP-binding protein BSU35700 - |Lazarevic and

Karamata, 1995]

Table 3.6: Comparison of BaSPP transmembrane predictions to a list of experimen-
tally verified transmembrane proteins. (Those not precisely identified by TMHMM
as transmembrane were not predicted by LipoP or SignalP to be secreted, hence they
were not analysed by TMHMM for transmembrane domains.)
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Gene | Description Locus tag | Prediction | Reference
eno | enolase BSU33900 - [Leyva-Vazquez
and Setlow, 1994]
groEL | class I heat-shock protein | BSU06030 - [Schumann et al.,
(chaperonin) 1998]
katA | vegetative catalase 1 BSU08820 - [Hirose et al., 2000]
pdhD | dihydrolipoamide  de- | BSU14610 - [Borges et al.,
hydrogenase E3 sub- 1990]
unit of both pyruvate
dehydrogenase and

2-oxoglutarate dehydro-
genase complexes

rocA | pyrroline-5 carboxylate | BSU37780 - [Calogero et al.,
dehydrogenase 1994]

rocF | arginase BSU40320 - [Gardan et al.,
1995]

s0odA | superoxide dismutase BSU25020 - {Hirose et al., 2000]

Table 3.7: Comparison of BaSPP cytoplasmic protein predictions to a list of experi-
mentally verified cytoplasmic proteins.

3.2.2.3 Comparison of BaSPP-based predictions for B. subtilis secreted
protein to previously published, computationally generated, an-

notations

The putative B. subtilis secretome was also compared to a study in which the se-
cretome of B. subtilis has been computationally determined and, to some extent,
experimentally confirmed by proteomic studies [Tjalsma et al., 2004, 2000]. The ven-
drogram shown in figures 3.8 and 3.9 summarise how the predictions from this study
and that of Tjalsma and co-workers compare.

In order to compare the data shown in Tjalsma et al. [2000] with BaSPP more
easily, the BaSPP-predicted secretome of B. subtilis was formatted in the same way
as Tjalsma et al. [2000] (shown in appendix A). A detailed comparison of results are
highlighted over the formatted data shown in tables A.1 and A.2, representing the
putative Spl and Spll proteins respectively. The 22 Spl proteins and 15 Spll proteins
identified by Tjalsma et al. [2000], but not by the classification workflow, are shown
in tables A.3 and A.4 respectively.
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Spll,e

NID

Figure 3.8: Comparison of Spl predictions made by the workflow (Wf) and those
described by Tjalsma et al. [2000] (P). The majority of Spl proteins identified in the
literature are also identified by the workflow. The remaining Spl proteins described in
the literature are either categorised as transmembrane proteins (TM) or Spll proteins
by the workflow, or are not found in the dataset supplied as input to the workflow

(NID).

Figure 3.9: Comparison of Spll predictions made by the workflow (Wf) and those
described by Tjalsma et al. [2000] (P). The majority of Spll proteins identified in the
literature are also identified by the workflow. The remaining SplI proteins described in
the literature are either categorised as transmembrane proteins (TM) or Spl proteins
by the workflow, or are not found in the dataset supplied as input to the workflow

(NID).
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3.2.3 Protein analysis workflow

The analysis workflow was designed to process the data about the secretory proteins
derived from the classification workflow to provide information about the relationships
between the secretome composition of the 12 different organisms in the study. Puta-
tive secreted proteins were extracted from the database, clustered into families based
on sequence similarity, and the structure, functional composition and relationships
between these families were studied (figure 3.10). The set of secreted proteins includes
those predicted to be lipoproteins, cell wall binding or extracellular. Transmembrane

proteins and cytoplasmic proteins were disregarded.

[ X N N J »
Putative secreted proteins

L) °
* 5o
oo °%

Protein families

/ N\

[ - : |
Functional classification Relationships
Figure 3.10: Cartoon representation of the functionality of the analysis workflow. All
the putative secreted proteins (identified by the classification workflow), for all 12
Bacillus strains, are clustered into protein families, from which functional properties

of the secretome, and relationships between the secretomes of different organisms,
can be determined.

The analysis workflow therefore follows on from the classification workflow, im-
plementing the following procedure (figure 3.11). Analysis of the data was initiated

by clustering the putative secretory proteins into protein families. In order to per-
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form clustering, the close relatives of the predicted secreted proteins were identified
using BLASTp, as the BLASTp algorithm provides a score for the putative similarity
between proteins. The necessary BLASTp data was retrieved from the Microbase Sys-
tem, a Web service enabled resource for the comparative genomics of microorganisms
[Sun et al., 2005].

Using the BLASTp data, protein families were identified using the MCL algorithm.
MCL provides a computationally efficient means of clustering large datasets. A single
option, the inflation value, controls the granularity of the output clustering. It is
usually chosen somewhere in the range [1.2-5.0]. A value of 5.0 will tend to result
in fine-grained clusterings whereas a value of 1.2 will tend to result in very coarse
grained clustering. The value used depends on the characteristics of the data to be
clustered [van Dongen, 2000b].

This approach of combining BLASTp data with MCL follows that documented
in Enright et al. [2002]. For each predicted secreted protein, similar proteins with a

BLASTDp expect value of less than 1e=10

were used as input to MCL version 05-321 (in-
flation value 3.0), providing a cutoff score would remove many of the protein families

containing a single protein [Enright et al., 2002][van Dongen, http://micans.org/mcl/].

EMBL Classification Putative
Record Workflow Secreted
Proteins

Analysis Workflow

Microbase MCL R Package
Similar | Statistics
Proteins analysis and
Protein visualisation
Families

Figure 3.11: Data flow through the classification and analysis workflows.
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Hierarchical clustering was performed to identify phylogenetic relations between
the Bacillus species in the context of their contributions to the secreted protein
families. The R package!? was wrapped as a Web service for this purpose. R is
a package providing a statistical computing and graphics environment. A distance
matrix was constructed using the Euclidean distance, and clustering was carried out

using a complete linkage method.

3.2.3.1 Workflow design and implementation

Unlike the classification workflow, the Taverna representation of the analysis workflow
is far more simple (figure 3.12). The bioinformatics tools used were, again, wrapped
as Web services, using additional 'shim’ services to parse and store the input and

output data generated by each of these tools in a custom database.

Figure 3.12: Taverna representation of the analysis workflow including two subwork-
flow (red) (get_similar_proteins which extracts the classified secreted proteins from the
database and gets similar proteins from Microbase, MCL performs clustering on this
BLAST weighted protein dataset, and R performs statistical analysis on the clustered
families) and one Web service (green) (mergeCommonClusters which merges common
families that were initially separate after performing MCL).

2R Website: http://www.r-project.org/
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Due to the fact the time required for the services get_similar_proteins and MCL to
complete, exceeded the timeout in Taverna, a service failure was assumed by Taverna
for both of these services. Therefore, an additional frontend to these services was
implemented that utilises threads on the server side to run the service and update the
status on completion. On the client side, a feature of Taverna is used that implements
a specified time delay to re-run a service on failure. The subworkflow (figure 3.13)
initially runs the job, then simply checks the status of the job on the server side
at regular intervals. While the job is still running, the status service is designed to
fail, which after a certain time delay is then re-executed to again check the status
of the job. On completion of the server side program, the status is updated, and
consequently Taverna registers a completed service execution. The following service

in the subworkflow then retrieves the results.

Figure 3.13: Taverna representation of the standard design of the subworkflows
get_similar_proteins and MCL. It checks the status of a thread on the server to de-
termine when a job has finished executing.

For the R subworkflow, firstly a matrix is constructed (Bacillus species vs. protein
families). This matrix is used by R to produce the dendrogram and heatmap diagrams
used to represent the relations between the bacteria graphically, based on the proteins

identified in their secretome (figure 3.14).
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Workflopv Outputs

Figure 3.14: Taverna representation of the R subworkflow used to generate the den-
drogram and heatmaps.

3.2.3.2 Comparison of Bacillus secretory protein families to COGs

The MCL output was verified by manual inspection of the protein families and com-
paring this output with entries in the Clusters of Orthologous Groups of proteins
(COGs) database'®>. The manually curated COGs database is based on genome-
specific best hits [Tatusov et al., 2003]. Overall the output generated by MCL was
comparable to COGs (data not shown). The protein families of interest were then

analysed further, as described in chapter 4.

3.2.4 Functional mapping of GO terms to the SubtiList clas-

sification hierarchy

Following the classification of the functionally related secreted protein families, the
properties of these families were then investigated. Of particular importance was the
desire to summarise families in terms of the function of their member proteins. The
SubtiList!* classification codes (shown in appendix B) provided a commonly used
basis on which to define the function of B. subtilis proteins that is well understood
by the Bacillus community and devised by the creators of the SubtiList database.

SubtiList is a relational database for the genome sequence of B. subtilis (strain 168)

13COGs Website: http://www.ncbi.nlm.nih.gov/COG/
1SubtiList Website: http://genolist.pasteur.fr/SubtiList/
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[Moszer et al., 2002). The advantage of using SubtiList codes is that they are well
known to biologists, have been manually curated, and contains an appropriate number
of categories for the summation. However, as B. subtilis is the only organism whose
genes have associated SubtiList classification codes, a method of inferring these codes
for the genes of the other Bacillus species was required.

The key was the availability of Gene Ontology!® (GO) terms, assigned to individ-
ual genes, and available from the EMBL record. GO is one of the most important
ontologies within bioinformatics. The directed acyclic graph (DAG) structure means
that GO terms change from being very broad near the root of the DAG to more
specific as the DAG is descended. GO is split into three domains:

o Molecular function describes activities (e.g. catalytic activity, transporter ac-
tivity or binding) that occur at the molecular level performed by individual gene

products (or possibly by assembled complexes of gene products).

o Biological process is a series of events or molecular functions, not necessarily a

pathway.

o Cellular component describes the location of a gene product at different levels
of detail, from subcellular structures to macromolecular complexes [GO Con-

sortium, http://www.geneontology.org/GO.doc.shtml].

As SubtiList classification codes describe the processes involved in cellular func-
tion, the most appropriate of the GO categories for mapping to SubtiList was "bio-
logical process”. The number of GO terms defining the biological processes of gene
products in the 12 secretomes is large, therefore a method of summarising these GO
process annotations for the protein families was therefore required.

The GO terms of the genes encoding the proteins in each protein family were
examined and then summarised by classifying the terms according to the SubtiList
classification codes; the GO terms were effectively mapped to the SubtiList classifi-
cation codes. This was initially a manual process, but due to the growing size of the

dataset, an automated approach was required.

15The Gene Ontology: http://www.geneontology.org/
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The automated approach developed made use of a program developed by P. Lord,
called go-graph. This program uses probabilities to locate a common level in the GO
DAG. 1t is based on an information content measure of semantic similarity, in which
the less commonly used terms are more informative [Lord et al., 2003].

In order to adapt go-graph to summarise GO process terms using SubtiList clas-
sification codes, additional plugin code was written. Firstly, a script was written to
calculate the number occurrences of each of the GO process terms used to define the
12 Bacillus proteomes. A probability was subsequently inferred for each of these GO
terms based on the number of occurences. Using these probability scores, a smaller
set of GO process terms were calculated, so as to summarise the biological processes
of the Bacillus proteomes more effectively. Calculating a subset of GO process terms
using probabilities avoids the incorporation of those terms that are very common
(higher probability scores), and hence uninformative. To determine this reduced set
of GO terms, a cutoff was applied to the probability scores. The most appropri-
ate cutoff was determined based on the number of terms returned in the subset,
taking into account the proportion of proteins that were uncategorised as a result
i.e. those proteins annotated with GO terms having a probability greater than the
cutoff probability. The threshold chosen for this purpose was a probability of 0.01.
Further consideration of this subset revealed that some terms that fall outside the
cutoff probability (higher probability) do not have any associated children in anno-
tated Bacillus proteome. Therefore, for completeness these Bacillus leaf nodes were
also included. This increased the number of terms included in the subset from 26 to
135. Following the calculation of this subset of GO terms, additional plugin code was
written to calculate how many of members of the subset of GO terms were found in
a selected group of protein families (e.g. the entire group of secreted protein families
or perhaps the core families). A final script mapped these summarised GO terms,
along with their associated count, to the SubtiList classification codes. Each Sub-
tiList classification code subsequently had an associated count, defining how many
proteins were annotated as being involved in that process for the specific group of

families considered.
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The go-graph plugin is a standalone program, separate from the classification
and analysis workflows. This program was designed to simplify and automate the
process of analysing the resulting data from the analysis workflow. It therefore was

not incorporated into the BaSPP workflow system.

3.3 Discussion

Using a combination of ™¥Grid and Taverna, a novel e-science based package (set of
workflows) has been developed that performs all the tasks required to predict the final
location (i.e. cytoplasm, membrane, membrane-associated, wall-associated, secreted)
of each encoded protein. The workflows constructed enable secretory protein predic-
tion over bacterial genomes using multiple prediction tools, integrates the results into
a database, and then performs analysis on the families. This approach orchestrates
existing bioinformatics programs in order to make predictions, which would otherwise
take several days if performed manually. In particular the ease by which a workflow
may be re-run as and when new genomes are sequenced is a distinct advantage, es-
pecially as the rate of complete genome sequencing continues to increase. Whilst
building a workflow and the associated services is a time consuming task, the time
saved in the analysis of each genome compensates for this overhead. Completion of
the entire workflow took approximately 2-3 hours for each Bacillus proteome, which
range from 4202 to 5412 proteins in size.

Another advantage of the BaSPP system is that the generated data is stored in
a custom database, making the results available for subsequent analysis. The system
uses this database to provide a way of sharing data and promoting collaboration
through an accessible and user-friendly Web interface. This approach is different to
classical workflow methods where individual users need proactive involvement in how
and where results are stored.

The command line tools used in the classification phase of the workflow were
initially implemented using Java Runtime and wrapped as SOAP-based RPC Web

services. Due to problems encountered during the execution of the classification
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workflow, BioJava was used instead, using its own runtime method. An improvement
to the current implementation would be to expose the tools as Web services using
Soaplab which provides a common interface to the various underlying applications.

The analysis process is the most computationally intensive section, requiring a
large number of BLASTp searches. BLAST is the most commonly performed task
in bioinformatics [Stevens et al., 2001], and as such there are many available services
which could have been used. However, because of the computational intensive na-
ture of large BLAST searches, pre-computed BLAST results were retrieved from the
Microbase database.

Although the details of the workflow are specific to the problem of predicting
secretory proteins, the architectural solutions employed highlight some general issues
in e-science relating to three key issues of distribution, autonomy and heterogeneity.

Firstly, most of the services in the classification workflow are, in fact, provided
originally by external parties, autonomous from the workflow authors. As has been
mentioned previously [Stevens et al., 2004b], the reliability of the services deployed
by many providers is not high. The problem is particularly serious in our case as
the workflows are largely linear; the failure of a single service will cause the entire
workflow to fail. This problem was solved by the simple expediency of hosting the
services locally, although this is not ideal due to the time and effort required for
their local implementation. Having developed local services, it would be appropriate
to republish them for reuse as a service to the community. There is, however, the
secondary problem of licensing agreements. The programs SignalP, LipoP, TMHMM
are all subject to license agreements. In most cases, the services are not allowed to
be exposed for use by non-licensed individuals.

There were few problems introduced by distribution. Local installation of pro-
grams meant there were few network effects due to data transfer. The most signifi-
cant recurrent difficulty came from the relatively large datasets that were being dealt
with. This was one of the motivations for the linear shape of the classification work-
flow. Two more principled approaches to this problem can be seen. Firstly, improved

data transport facilities, enabling transfer without SOAP packaging, as well as direct



83
transfer between third parties, would reduce many difficulties. The new Taverna?2
architecture should enable these improved data transport functionalities [Oinn and
Pocock pers. comm.]. Secondly, the ability to migrate workflows and services closer
to the data would provide a significant advantage; as the data are large, and the
executables small, moving the program to the data would make sense.

Data heterogeneity provided fewer problems than expected for a bioinformatics
workflow. Relatively few data formats were employed in the workflows. Most often
simple FASTA formatted protein lists are passed between the services in the work-
flows. Data heterogeneity was dealt with through the use of a custom database to
warehouse data and parsing code to populate this database. In the second work-
flow, the use of the Microbase data warehouse avoided many heterogeneity related
problems, simplifying the process of data analysis. The comparison of the bacterial
proteins had already been done by Microbase, thereby reducing the computing time
required in protein family construction.

The architecture of the BaSPP system differs somewhat to most of the other
™QGrid workflow-based systems described previously. Whilst the original require-
ments appeared to favour a highly distributed approach, technological and licensing
constraints have led to a hybrid approach: a combination of services and workflows,
combined with databases for both results storage and pre-caching of analyses. The
combination of all of these technologies results in a fairly complex architecture but
provides a system that is fast and reliable enough for practical use. In addition, the
shape of the workflows constructed are linear, as opposed to fanned/tree-like. This
perhaps reflects the nature of the analysis being performed, in which the results of one
service effects the input to proceeding services. Compare this to Graves’ Disease in
which public databases such as EMBL, GO, HGVBASE and MEDLINE are queried
in tandem in order to extract information about gene structure and function, chromo-
some location, the presence of single nucleotide polymorphisms (SNPs), expression
control features and association with other genetic diseases. In addition, w

To facilitate the process of the functional annotation of protein families, an auto-

matic method of summarising the functional distribution using an appropriate number
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of categories was required. GO terms provided the basis for this, as GO terms were
annotated in the EMBL record for individual genes. However, as GO is a DAG, in
which GO terms change from being very broad near the root of the DAG to more
specific as the DAG is descended, the obvious way of doing this was to set a cutoff
at a specific level in the DAG. The problem with this approach is that gene prod-
ucts are annotated at different levels in the DAG. This problem can be illustrated by
considering a protein family in which all 36 proteins have a related biological process
GO term. 32 out of 36 proteins are annotated as transport, whereas the remaining 4
are annotated as amino acid transport. As highlighted in the screenshot taken from
AmiGO' (figure 3.15), both terms occur at different levels in the GO hierarchy; the
term GO:0006810 transport is less specific than the term GO:0006865 amino acid

transport.
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Figure 3.15: An example of the GO hierarchy, as displayed by AmiGO.

A possible solution to the annotation problem was to use a subset of GO terms
(known as GO slims) providing a broad overview, without the fine-grained detail (GO

Consortium, http://www.geneontology.org/GO.slims.shtml]. However. it became ap-

16 AmiGO Website: http://www.genedb.org/amigo/perl/go.cgi
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parent that the GO slim categories were too vague. While the construction of a new
set of categories specific to secretion would combat this issue, the SubtiList classifi-
cation codes turned out to provide an appropriate alternative.

The mapping of GO terms to the SubtiList classification codes was beneficial in
that these annotations are known by biologists. However, these terms do not entirely
capture the functional annotations of the secreted proteins. Ideally, a new set of
terms, specific to the Bacillus species, and more specifically to the secretome, could
be defined and used to provide a more definitive summary of the functions.

Despite the optimisation of BaSPP for the analysis of members of the genus Bacil-
lus, the package can easily be adapted for application to other Gram-positive bacteria
and even Gram-negative bacteria. Using the Web interface the resulting data can also
be viewed and curated. In fact all publicly available complete genomes for the Gram-
positive bacteria Staphylococcus aureus were categorised for use in further studies.

Finally, whilst BaSPP provides an interesting and new example of an e-science-
based application, the results generated are of course of great interest to microbiolo-
gists. The results of categorisation show a high degree of correlation to comparable
bioinformatics analysis and validated experimental data. This work therefore pro-
vides data to prime further biologically- and computationally-oriented investigations.
Analysis of the data therefore became the focus of this study, and one to which the

remaining chapters are dedicated.
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Chapter 4

Properties of the predicted
secretomes of members of the
genus Bacillus

4.1 Introduction

In this study, the BaSPP system was specifically applied to the Bacillus genus, in
which, as well as B. subtilis (strain 168), an additional 11 Bacillus strains, listed
in section 1.6.2, for which complete genomic sequences were publicly available from
Genome Reviews, were analysed. This builds on previous studies that have largely fo-
cussed on the model Gram-positive bacteria, B. subtilis (strain 168) [Antelmann et al.,
2001, Tjalsma et al., 2004, 2000]. Following the categorisation and analysis of the
secretomes by the BaSPP workflow system, the relationships between the secretome
components were investigated. The different bacterial secretomes were compared to
reveal potentially interesting differences between species. The numbers of proteins
categorised as being secreted by the classification workflow were initially assessed
in terms of their distribution across the various Bacillus species. The functionally
related families identified by clustering these secreted proteins were then used to fur-
ther investigate relationships between the different species based on their secretome
composition. Those protein families containing members from all 12 genomes, and
those specific to the non-pathogens and known-pathogens, were then investigated to

identify functional trends.
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4.2 Results

4.2.1 Overview of the predicted secretome composition of 12

Bacillus genomes

The initial findings from the classification workflow (described in section 3.2.2) are
highlighted in figure 4.1. It can be seen that the majority of the secreted proteins are
classified as Spl proteins, followed by Spll, and finally proteins covalently attached
to the cell wall. Of the organisms used in this study, B. anthracis (Sterne), B. an-
thracis (Ames ancestor), B. anthracis (Ames), B. cereus (E33L) and B. thuringiensis
konkukian (strain 97-27) are considered known pathogens. The remaining species B.
clausii (KSM-K16), B. halodurans (C-125), B. licheniformis (ATCC 14580, sub_strain
Novozymes), B. licheniformis (ATCC 14580, sub_strain Goettingen) and B. subtilis
(strain 168) form the non-pathogens. The pathogenicity of B. cereus (ATCC 10987)
and B. cereus (ATCC 14579) is unclear and were therefore not placed in either the
known pathogen group or the non-pathogen group. In regards to the secretomes of
these two sets of species, the proportion of proteins that are secreted is higher in
pathogens than in non-pathogens (table 4.1 and figure 4.2.a), but is proportional to
the genome size (figure 4.2.b). The predicted secretomes varied in size from 358 pro-
teins in B. clausii (KSM-K16) (9% of the total proteome) up to 508 proteins in B.
cereus (E33L) (10% of the total proteome).

Interestingly, of the seven proteins predicted to be covalently attached to the cell
wall, one is found in each of the five known pathogens: B. anthracis (Sterne), B. an-
thracis (Ames ancestor), B. anthracis (Ames), B. cereus (E33L) and B. thuringiensis
konkukian (strain 97-27), with the remaining two proteins belonging to B. cereus
(ATCC 10987). These cell wall proteins may therefore play a role in virulence, and

therefore further investigation is required.
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Figure 4.1: Basic representation of the functionality of the classification workflow.
Shaded boxes indicate the set of secreted proteins i.e. those extracellular proteins that
are secreted to the culture medium, as well as the membrane-attached lipoproteins
and the cell wall covalently attached proteins. The number in brackets represents
the total number of proteins to be classified at each level, across the 12 Bacillus

proteomes.




"OUWO0I09S 9} Ul PIYISSBIO

at109101d oea 9} Jo afeIua0Iad oY) (q) PUR SWI03RINGS YorS 03 FUNNQLIIU0D surjold
JO IaquINU [10 97} (B) UO PISB] SIWOIOINRS Y} JO 3218 3} Jo uostredwro)) :z f ondiyg

Secretome percentage
of proteome
0000 WO

OBV DBAANO

B cereus (ZK /E33L) |

B thuringiensis konkukian |
B halodurans |

B subtilis |

B anthracis (Ames ancestor) |
B anthracis (Ames) F

B cereus (ATCC 14579) |

B anthracis (Steme) |

B licheniformis (sub_strain

Goettingen)
B licheniformis (sub_strain
Novozymes)

B cereus (ATCC 10987)

Bclausu |

B cereus (ZK /E33L) |
B thuringiensis konkukian [

B anthracis (Ames ancestor) |

~
o

Size of secretome

g &

i

o 8

1L

B anthracis (Ames) 30

B cereus (ATCC 10987) R

B cereus (ATCC 14579) [0

B anthracis (Steme) |

B halodurans

B subtilis |

B licheniformis (sub_strain 7

Goettingen)
B licheniformis (sub_strain
Novozymes)

B clausu |

6%



90

| Genome size (Mb) | Proteome size | Secretome size

B. anthracis (Sterne) 5.229 5287 487(9.21%)
B. anthracis (Ames ancestor) 5.227 5309 494(9.30%)
B. anthracis (Ames) 5.227 5311 494(9.30%)
B, cereus (E33L) 5.301 5134 508 (9.89%)
B. cercus (ATCC 10987) 5.224 5603 489(8.73%)
B. cereus (ATCC 14579) 5.412 5234 487(9.30%)
B. clausii (KSM-K16) 4.304 4108 358(8.71%)
B. halodurans (C-125) 4.202 4066 393(9.67%)
B, Ticheniformis (ATCC 14580, 1222 4152 365(3.79%)
sub_strain Novozymes)

B. Ticheniformis (ATCC 14580, 1223 419% 370(3.82%)
sub_strain Goettingen)

B. subtilis (strain 168) 4215 4106 383(9.33%)
B. thuringiensis konkukian (strain 5.238 5117 501(9.79%)
97-27)

Table 4.1: Genome size (number of base pairs), proteome and secretome sizes (number
of proteins) of each of the bacterial strains in the study.

4.2.2 Taxonomic similarity between the Bacillus species based

on predicted secretome composition

To determine whether the secretomes of the pathogenic organisms were more closely
related to each other in terms of their activity than to those of the non-pathogens, the
phylogeny of the Bacillus strains was investigated in the context of the relationships
between their secretomes. The analysis workflow was used for this purpose (described
in section 3.2.3) in which the predicted secreted proteins of each strain were classified
into functionally related families based on their sequence similarity, as defined by
BLASTp. This resulted in the 5329 secreted proteins of the 12 secretomes being
arranged into 673 families of two or more members. 618 of these proteins showed no
significant similarity to other proteins and hence did not fall into any families.

As part of the output generated by this workflow, a dendrogram was produced
(illustrated in figure 4.3) in which the relation between the different Bacillus strains
is shown based on the contribution of the predicted secreted protein families. The

dendrogram essentially highlights the level of similarity between the secretomes of
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Bacillus halodurans C-125 Non-pathogens
I Sacillus clausii KXWM-K16
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: Bacillus cereus R33L
__[: Pacillus anthracis str. Ames
Bacillus anthracis str. Ames Ancestor
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Scale: ‘—T—‘

Figure 4.3: Dendrogram representing the relationship of the Bacillus species in terms
of their secretome.

the various strains.

Within the B. cereus group subcluster (B. anthracis, B. cereus and B. thuringien-
sis), two sub-clusters were formed by the well-established pathogens (B. cereus (E33L),
B. thuringiensis konkukian (strain 97-27), B. anthracis (Ames), B. anthracis (Ames
ancestor), B. anthracis (Sterne)), while the two members of questionable pathogen-
esis (B. cereus (ATCC 10987), B. cereus (ATCC 14580)) formed a separate protein
family. The environmental strains (B. subtilis (strain 168), B. licheniformis (ATCC
14580), B. clausii (strain KSM-K16), B. halodurans (C-125)) formed a separate pro-
tein family from that of the B. cereus group organisms.

The contribution of these organisms to the various protein families was then in-
vestigated. This is illustrated through the use of a heatmap (in a similar fashion to
the visualisation of microarray data) (figure 4.4). Heatmaps are useful for visualising
large and complex datasets in a way that makes it easy to compare and identify fea-
tures at a glance using colour. Like the dendrogram, the heatmap was also generated
using the analysis workflow. From the heatmap, trends in the distribution of the
different species among the protein families can be identified. For example it can be

seen that B. halodurans and B. clausii have a high proportion of paralogues specific
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Figure 4.4: Heatmap representing the relationship of the Bacillus species in terms of
their contribution to the protein families. The number of paralogues are taken into
account for each bacteria i.e. the number of proteins from a bacteria contributing to a
family. A colour gradient using three colours was used to show intensity: black shows
no change in paralogue count, increasingly intense green indicates a more pronounced
paralogue count in a protein family for a particular species in relation to the others,
increasingly intense red indicates less paralogues (or zero proteins) in a protein family
for a particular species, white indicates the core protein families containing a member
from all the species.
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only to each of these species (illustrated by the green segments in the columns of
these species). These species-specific families contribute to the fact that B. halodu-
rans and B. clausii are less closely related to the other non-pathogenic species. In
this study however, particular attention was paid to those families defined as ”core”
protein families, since they combined at least one homologue from each strain under
study, as well as families specific to the pathogens and non-pathogens. Analysis of

the functions of these families was subsequently undertaken.

4.2.3 Functional analysis of the predicted secretomes of the

Bacillus species

The secretory protein families defined by BaSPP provide an opportunity to gain an
overview of how the function of secreted proteins differ across the Bacillus species
studied. The ”core” families are of importance since their function is conserved and is
therefore required for survival in a variety of different ecological niches. 7% of protein
families were found to be core and the functions of these were investigated. Protein
families that are specific to known pathogens (2%) are also of interest since they may
indicate proteins whose function is related to virulence and pathogenicity. Another
interesting group was the 12% of secreted proteins not clustered into any family i.e.
these proteins show no relationship to any other secreted protein and hence are unique

to specific strains (table 4.2).

Number of proteins analysed 57623
Number of proteins characterised as secreted 5328
Number of secreted protein families after clustering 673
of which:
core secreted protein families 45
non-pathogen specific protein families 9
known-pathogen specific protein families 15
Number of secreted proteins not clustered into a family | 618

Table 4.2: Summary of the number of proteins and families categorised as secreted.

The functional distribution among the protein families was investigated using the

automated method described in section 3.2.4. This approach summarises the function
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of the families by mapping the GO process terms associated with individual genes
to the SubtiList classification codes. The subsequent functional distribution of the
12 secretomes is illustrated in figure 4.5. Inspection of the distribution across all
12 secretomes reveals a large proportion of secreted proteins have functions relating
to transport and nutrient uptake. However, the majority of protein families have
unknown function. This demonstrates that the secretomics of the Bacillus species is
still not fully understood. There is therefore a great need for further studies in this

area.

4.2.3.1 Core families

Figure 4.6 shows a summary of the different functional classifications of the core
secreted protein families (i.e. families containing one or more proteins from each
Bacillus species). Interestingly, a large number of core families had not been exper-
imentally characterised and remain of unknown function. More predictably, many
core proteins were grouped into families concerned with cell wall related functions,
transporter proteins and proteins responsible for membrane biogenesis.

In particular, a core family of great interest is identified as being PrsA-like. PrsA
is a major extracytoplasmic folding factor involved in the post-translocation folding
of proteins into their native conformation after signal peptide cleavage. It has been
shown to effect the function of some essential translocated proteins involved in cell
wall synthesis and functions relating to the cell membrane [Tjalsma et al., 2000,
Wahlstrom et al., 2003).

4.2.3.2 Families specific to the non-pathogen

Of the nine families unique to non-pathogens, four encoded proteins concerned with
the degradation and transport of plant polysaccharides, one was concerned with the
structure of flagellae, and the remaining four were functionally unclassified (table

43).
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Figure 4.5: Functional classification of all the secreted protein families. The graph
shows the number of protein families per SubtiList category. (Protein families
classified as miscellaneous (unknown) have been excluded; this corresponds to 297
families. The GO terms mapping to miscellaneous are: GO:0008150 biological
process, GO:0009058 biosynthesis, GO:0044249 cellular biosynthesis, GO:0007582
physiological process, GO:0050875 cellular physiological process, G0:0051244 reg-
ulation of cellular physiological process, GO:0050791 regulation of physiological
process, GO:0009987 cellular process, GO:0050794 regulation of cellular process,
G0:0050789 regulation of biological process, GO:0009605 response to external stim-
ulus, GO:0009628 response to abiotic stimulus, GO:0042221 response to chemical
stimulus.)
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Transport 3 - ABC3357 | BH2673 | BL00277 | BLi02120 | BSU04440
binding pro- ABC0439 | BH2750
teins and ABC4079 | BH3390
lipoproteins ABC0608 | BH0701
ABCO0301
ABC4046

araN | ABC3471 | BH0905 | BL00348 | BLi03024 | BSU28750
ABC3774 | BH1117
ABC0385
ABC3301
ABC3215
iplA | ABC0724 | BH1064 | BL03778 | BLi01384 | BSU07100
ABC3117 | BH1913
Metabolism of | 1 | sppA | ABC2747 | BH3198 | BL00425 | BLi03092 | BSU29530
amino acids
and related

molecules
Mobility and | 1 | AiL | ABC2259 | BH2447 | BL01263 | BLi01851 | BSU16300
chemotaxis
Unknown 4 | pelB | ABC0063 | BHO698 | BL00947 | BLi03053 | BSU07560

BH3819 | BL03760 | BLi01404 | BSU18650
BL00361 | BLi04129
ygfA | ABC1672 | BH1357 | BL01411 | BLi02729 | BSU25380
ypmS | ABC1528 | BH1181 | BL03306 [ BLi02310 [ BSU21730
yibC | ABC2386 | BH2604 | BL02986 | BLi01713 | BSU14960

Table 4.3: Functional breakdown of the clusters that only contain members from the
non-pathogens. The proteins within the families are identified by their locus tags.
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Function Count
Unknown 13
Membrane bioenergetics /!
Metabolism of amino acids and related molecules 1

Table 4.4: Functional breakdown of the protein families that only contain represen-
tatives from the known pathogens.

4.2.3.3 Families specific to the known pathogen

Perhaps of most significance are the functions of the 15 protein families that were
identified as being unique to the secretomes of the potentially pathogenic bacteria ( B.
cereus (E33L), B. thuringiensis konkukian (strain 97-27), B. anthracis (strain Sterne),
B. anthracis (Ames ancestor), B. anthracis (Ames)) via computational means, are
largely of unknown function and remain to be characterised (table 4.4).

The two families with a classified function include the membrane bioenergetics
family (consisting of BA3674, BAS3405, GBAA3674, BT9727.3367, BCE33L3317)
and the family classified as metabolising amino acids and related molecules (consisting
of BA5606, BAS5208, GBAA5606, BT9727_5040, BCE33L5056).

Manual inspection of the 15 pathogenic families found five families showing sig-
nificant similarity with proteins belonging to B. cereus (ATCC 14579) and B. cereus
(ATCC 10987). Removal of these five families reduced the dataset to 10 protein fam-
ilies that are specific to the pathogens. The protein components of these pathogenic
families are shown in table 4.5. The majority of these clusters contain members that
show very close similarity to each other and are therefore well conserved (table 4.6).

Investigation into the function of the pathogen-specific families (through the ap-
plication of ClustalW, BLASTp and Interproscan) indicated seven of these families
have no functional motifs as defined by Interpro, and in some cases are conserved
specifically within the known Bacillus pathogens, showing no significant similarity to
any other organisms, as indicated by BLASTp.

Protein family F is an example of a protein family about which very little is
known. Contained within the members of this family are three paralogues specific to

B. cereus (E33L). The Clustal W sequence alignments for the proteins and the degree
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B. anthracis

protein| B. anthracis | B. anthracis | B. cereus | B.
fam- | (Ames an- | (Ames) (Sterne) (E33L) thuringiensis
ily cestor) konkukian
(strain
97-27)
A GBAA2803 [ BA2803 BAS2613 BCE33L2530 | BT97272561 |
E GBAA1900 | BA1900 BAS1762 BCE33L1711 | BT9727.1739
F GBAA2029 | BA2029 BAS1885 BCE33L1837 | BT9727.3017
BCE33L2963
BCE33L4836
G GBAA2527 | BA2527 BAS2350 BCE33L0941 | BT9727.0952
BCE33L2267 | BT9727-2309
I GBAA1601 BA1601 BAS1485 BCE33L1457 | BT9727.1458
J GBAA4462 | BA4462 BAS4141 BCE33L3991 | BT9727.3981
K GBAA2986 | BA2986 BAS2775 BCE33L2705 | BT9727_2724
L GBAA2500 | BA2500 BAS2320 BCE33L2241 | BT9727.2285
M GBAA3523 | BA3523 BAS3267 BCE33L3182 | BT9727_3240
N GBAA3443 | BA3443 BAS3190 BCE33L3092 | BT9727_3171

Table 4.5: The proteins (identified by their locus tags) belonging to the clusters that

only contain members from the five known pathogens.

Table 4.6: Measure of the percentage similarity between proteins within the known

protein family | Percentage similarity

Range Mean
A 95 - 100 97.4
E 98 - 100 98.8
F 34 - 100 59.7
G 35 - 100 69.2
I 95 - 100 97.6
J 96 - 100 97.8
K 96 - 100 974
L 98 - 100 99.2
M 97 - 100 98.8
N 94 - 100 96.7

pathogen specific clusters.
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of similarity between the various sequences is illustrated in figure 4.7. The sequences
of the proteins in the B. anthracis strains were identical, with their homologues in
the other strains showing varying degrees of similarity.

The lipoproteins identified in protein family G contain two B. cereus (E33L)
paralogues and two B. thuringiensis konkukian (strain 97-27) paralogues. The se-
quence alignment and the degree of similarity between the various sequences is shown
in figure 4.8. The three proteins belonging to the three B. anthracis strains and
BT9727_2309, a paralogue of B. thuringiensis konkukian (strain 97-27), were iden-
tical. The paralogue of B. cereus (E33L) (BCE33L2267) differs only with respect
to a single conserved amino acid substitution. The additional paralogues in this
protein family, BCE33L0941 (B. cereus (E33L)) and BT9727.0952 (B. thuringiensis
konkukian (strain 97-27)) showed reduced levels of similarity.

Little can be determined about the extracellular proteins in protein family J.
A possibility is that these proteins function like Com since they show similarity to
RBTH_06021, ComG operon protein 5 of B. thuringiensis serovar israelensis (ATCC
35646), a Bacillus species not analysed in this study (figure 4.10). ComG is important
in transformation and DNA binding (defined in section 2.2.4.2). The B. thuringiensis
serovar israelensis (ATCC 35646) ComG protein has an additional N-terminal seg-
ment not annotated in the Bacillus pathogens analysed in this study. However, closer
inspection of these ORF's reveal that they may have been misidentified, in which case

they too would have an additional N-terminal segment showing similarity to ComG:
MKLYFSLEEGDLKIVKCQKGS[MAE]

depending on whether [MAE] is present at the N-terminal end already. With the
addition of this N-terminal segment, the Bacillus proteins would no longer be secreted
8s, like ComG of B. thuringiensis serovar israelensis (strain ATCC 35646), an N-
terminal signal peptide would not be predicted. However, the reverse may also be
true, in that the start of ComG may have been misidentified. It may therefore be the
case that there is a different transformation mechanism via which competence proteins

are secreted through the Sec pathway. This remains to be investigated experimentally.
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Figure 4.7: (a) ClustalW alignment for members of protein family F. As well as
ClustalW symbols below the alignment ('*' means the residues in that column are
identical in all sequences, ;" means that conserved substitutions have been observed.

" means that semi-conserved substitutions are observed), the colour coding also in-
dicates the degree of similarity (dark red refers to a match, light red means the amino
acids differ but are related, white means no match). The sequences of GBAA2029
(B. anthracis (Ames ancestor)) and BA2029 (B. anthracis (Ames)) are identical: for
simplicity only BA2029 is shown. Three paralogues exist for B. cereus (E33L). one of
which shows close similarity with BT9727_3017 (B. thuringiensis konkukian (strain
97-27)). (b) Phylogram from Clustal W alignment highlighting the similarity between
the protein sequences within protein family F. (¢) The percentage identity between
all sequences in protein family F.
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Figure 4.8: (a) ClustalW alignment for members of protein family G. Colour cod-
ing indicates the degree of similarity (dark red refers to a match, light red means the
amino acids differ but are related, white means no match). The sequences GBAA2527
(B. anthracis (Ames ancestor)), BA2527 (B. anthracis (Ames)), BAS2350 (B. an-
thracis (Sterne)) and BT9727_2309 (B. thuringiensis konkukian (strain 97-27)) are
identical; only BA2527 is shown for simplicity. (b) Phylogram from ClustalW align-
ment highlighting the similarity between the protein sequences within protein family

G. (¢) The percentage identity between all sequences in protein family G.
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Figure 4.9: ClustalW alignment for members of protein family J. The sequences of
GBAA4462 (B. anthracis (Ames ancestor)) and BA4462 (B. anthracis (Ames)) are
identical; only BA4462 is shown for simplicity. The other members of this protein
family have subtle difference. All members share sequence similarity with ComG
(from B. thuringiensis serovar israelensis (ATCC 35646)).
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Figure 4.10: ClustalW alignment for members of protein family I. The sequences
of GBAA1601 (B. anthracis (Ames ancestor)), BA1601 (B. anthracis (Ames)) and
BAS1485 (B. anthracis (Sterne)) are identical.

A detailed manual examination of the lipoprotein clusters I (figures 4.10) and K
(figure 4.11), and extracellular protein clusters L and M (figure 4.12) revealed no
clues about their possible function. However, members of protein family I did show
significant sequence similarity (93%) to BC1578 of B. cereus (ATCC 14579), but this
protein is of unknown function and is not predicted to be secreted.

The protein families discussed this far (F, G, I, J, K, L, M) show no significant
BLASTDp results and no Interpro domains. However, analysis of the remaining three
families (A, E, N) uncovered a number of interesting findings. Protein family A

appears to contain genes encoding surface layer (S-layer) proteins (figure 4.13). S-
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Figure 4.11: ClustalW alignment for members of protein family K. The sequences
of GBAA2986 (B. anthracis (Ames ancestor)) and BA2986 (B. anthracis (Ames))
are identical, as is BT9727.2724 (B. thuringiensis konkukian (strain 97-27)) and
BCE33L2705 (B. cereus (E33L)); BAS2775 ( B. anthracis (Sterne)) lies somewhere in
between.

BA3S523 60
BT9727_3240 60
BCE33L3182 60

BA3IS23 120
BT9727_3240 120
BCE33L3182 120

BA3S523 126
BT9727_3240 126
BCE33L3182 126

Figure 4.12: ClustalW alignment for members of protein family M. The protein se-
quences GBAA3523 (B. anthracis (Ames ancestor)), BA3523 (B. anthracs (Ames))
and BAS3267 (B. anthracis (Sterne)) are identical.
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layers are crystalline assemblies of proteins that coat the outer surface of unicellular
organisms ranging from the archaea, bacteria and eucarya. Their structures and
functions are diverse, including acting as targets for other proteins [Séra and Sleytr,
2000].

In Gram-positive bacteria, the region responsible for the inactivation of S-layer
proteins with the cell wall is termed the surface layer homology (SLH) domain. These
domains have been found at both the N and C regions of wall-bound mature proteins.
An SLH domain is usually composed of either a single or three repeating SLH motifs
of approximately 50 to 60 residues. Three SLH domains were identified in the respec-
tive protein family member proteins belonging to B. anthracis (Ames ancestor), B.
anthracis (Ames), B. anthracis (Sterne) and B. cereus (E33L). However, the mem-
ber protein of B. thuringiensis konkukian (strain 97-27) was found to contain only
two SLH domains, as shown in figure 4.13. It has been suggested that the SLH do-
mains interact directly with peptidoglycan or with other cell wall-associated polymers
[Navarre and Schneewind, 1999].

With the exception of B. thuringiensis konkukian (strain 97-27), a beta-lactamase-
like region was also identified in members of protein family A. Beta-lactamases are
enzymes implicated in the resistance of bacteria to beta-lactam antibiotics (e.g. peni-
cillins). As the name suggests, beta-lactam antibiotics contain a four-membered beta-
lactam ring. Beta-lactamase inactivates the antibacterial activity of beta-lactam an-
tibiotics by cleaving the beta-lactam ring [Navarre and Schneewind, 1999, Wilke et al.,
2005]. In Gram-positive bacteria, beta-lactamases are generally lipoproteins secreted
by the Sec pathway and processed by SPase II. However, it has also been observed
that beta-lactamases may also be processed by SPase I, but these proteins lack the
ability to protect the bacteria from beta-lactam antibiotics (as observed in staphylo-
cocci). The membrane anchoring is thought to be important for resistance [Navarre
and Schneewind, 1999]. These beta-lactamase-like proteins also show close similarity
with the non-pathogenic Bacillus species, as well as Listeria, Clostridium, Yersinia,
Staphylococcus, Thermoanaerobacter and Streptococcus, although these species appear

to lack proteins showing the S-layer homology regions. The lack of a beta-lactamase-
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Figure 4.13: Interproscan domains mapped onto ClustalW alignment for members of
protein family A. The sequences BAS2613 (B. anthracis (Sterne)). GBAA2803 (B.
anthracis (Ames ancestor)) and BA2803 (B. anthracis (Ames)) are identical. Three
SLH (IPR001119) domains are identified in the B. anthracis strains and BCE33L2530
(B. cereus (E33L)) at positions 28-70, 89-129 and 147-189 (blue). A beta-lactamase
domain (IPR001279) is also identified in the B. anthracis strains and BCE33L2530 (B.
cereus (E33L)) at position 220-415 (green). BT9727_2561 (B. thuringiensis konkukan
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like region in B. thuringiensis konkukian (strain 97-27) is due to a deletion of a
segment of protein sequence corresponding to a length of 272 amino acids (as shown
in figure 4.13).

Also of interest are the putative glycoside hydrolase proteins in protein family
E, containing multiple bacterial neuraminidase repeats (BNR) or Asp-boxes (figure
4.14). Asp-boxes are found in various non-homologous proteins, such as bacterial ri-
bonucleases, sulphite oxidases, reelin, netrins, sialidases, neuraminidases, lipoprotein
receptors and glycosyl hydrolases. However, little is known about this motif, apart
from the observation that they occur most frequently in secreted proteins, and are
often found in proteins that interact with polysaccharides (e.g. Asp box-containing
glycosyl hydrolases). O-Glycosyl hydrolases are enzymes that hydrolyse a glycosidic
bond i.e. a bond between a carbohydrate and an alcohol, where the alcohol may also
be a carbohydrate. These enzymes are known to regulate the activities of certain
extracellular signalling proteins. However, it is unlikely that all Asp box-containing
proteins will be associated with a polysaccharide-binding function. For example in
barnase-like ribonucleases, the Asp box motif lies with the active site [Copley et al.,
2001] suggesting a role in catalysis.

In conjunction with this finding, the proteins in protein family E also show
close similarity with glycosyl hydrolase, BNR repeat-containing proteins expressed in
the Gram-negative bacteria Polaromonas sp JS666 and Nitrosomonas eutropha C91.
However, unlike the proteins within protein family E, the algorithms applied in the
classification workflow suggest the proteins from these organisms are not lipoproteins
but rather appear to be secreted.

Of particular interest are proteins within protein family N. These proteins have
been identified as zinc metalloprotease enhancins. Enhancins, also known as viral
enhancing factor, are pathogenicity factor encoded by baculoviruses. Baculoviruses
are viruses that are pathogenic for invertebrates. Enhancins have been shown to
enhance baculovirus infections and decrease larval survival time i.e. decreasing the
survival of the pre-adult forms of an animal. It is thought that enhancins disrupt the

protective peritrophic membrane, enabling the virion to attack the epithelial cells of
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BA1900 EHIHGIGYVGNVPWVSIATESGIKVYQNGKULETATOLED YEGF QATRNGF F ASGHPEPG 116
BAS1762 EHIHGIGYVGNVPWVS IATESGIKVYQNGKVLETATOLED YEGF QATKNGFF ASGEPEPG 120
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LR ]

BA1900 AVTLSNEDVIYAPINTQIVTKKS IATNEETNIQIPLLDSKDAINYISQNPONAAEIVFAT 296
BAS1762 AVTLSNEDVIYAPINTQIVTKKS IATNEETNIQIPLLDSKDAINYISQNPQNAALIVFAT 300
BT9727_1739 AVTLSNEDVIYAPINTQIVTKKSIATNEETNIQIPLLDSKDAINYISQNPQNAAEIVFAT 300
BCE33L1711 AVTLSNEDVIYAPINTQIVTRKSIATNEETNIQIPLLDSKDAINYISQNPONSAELIVFAT 300

PR A R L]

BA1900 TRKEGTLQFN 323
BAS1762 TKEGTLQFN 327
BT9727_1739 TKEGTLQFN 327
BCE33L1711 TKEGTLQFN 327

R e ]

Figure 4.14: Interproscan domains mapped onto ClustalW alignment for members
of protein family E. The sequences GBAA1900 (B. anthracis (Ames ancestor)) and
BA1900 (B. anthracis (Ames)) are identical. Each protein within this family contains
four glycoside hydrolase, BNR repeat domains (IPR002860) (blue).

the insect gut [Galloway et al., 2005, Hajaij-Ellouze et al., 2006].

Enhancin-like genes are not only limited to insect viruses, but have also been
identified in bacteria, significantly in the B. cereus group, including Bacillus an-
thracis (Ames ancestor) (GBAA3443) [Read et al., 2003]. Interestingly, GBAA3443
is a member of protein family N. Closer inspection also reveals close similarity to
Enhancin proteins in strains of Gram-negative bacteria Yersinia pestis and Yersinia
pseudotuberculosis, which are also known pathogens. This is also confirmed in the
literature with the identification of bacterial enhancins in Yersinia pestis (YPO0339)
[Parkhill et al., 2001]. Like baculovirus and B. thuringiensis. the similar proteins of
Yersinia pestis and Yersinia pseudotuberculosis are insecticidal toxins. Surprisingly.
close similarity is also shown towards the BAE55343 protein of the fungus Aspergillus

oryzae, thought to be non-pathogenic (despite some reported cases). Unlike the Bacil-
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lus enhancins, application of SignalP and LipoP to the similar proteins of Aspergillus
oryzae indicates they are not secreted. Less surprisingly, similarity is also shown
towards BC_3384 of B. cereus (ATCC 14579), as also documented in [Ivanova et al

2003]. However this protein is not predicted to be secreted, and presumably is unable
to exert its toxic effect.

Enhancins have a distinct HEXXH metal binding motif. This motif is conserved
in the Bacillus Enhancins (figure 4.16), as well as in the Yersinia and baculovirus
Enhancins (HEIAH in bacterial Enhancins) (figure 4.17). Approximately 20 residues
downstream of the first histidine within the zinc binding sequence is a conserved glu-
tamic acid; this is seen in all Enhancins [Galloway et al., 2005]. Despite conservation
of the HEXXH motif, the overall sequence similarity among the Enhancins varies

between different genus (table 4.15).

BA3443 AOQ030005000254 YPTBO393  LdnVgp161
BA3443 100 31 29 17
AO0090005000254 31 100 46 20
YPTB0393 29 46 100 16
LdnVgp161 17 20 16 100

Figure 4.15: Measure of percentage similarity between BA3443 from B. anthracis
(Ames), AO090005000254 from Aspergillus oryzae, YPTB0393 from Yersinia pseu-
dotuberculosis 1P 32953 and LdnVgpl61 from the virus Lymantria dispar MNPV.
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Figure 4.16: Interproscan domains mapped onto ClustalW alignment for members of
protein family N. The sequences of BAS3190 (B. anthracis (Sterne)), GBAA3443 (B.
anthracis (Ames ancestor)) and BA3443 (B. anthracis (Ames)) are identical. Pepti-
dase M60, viral enhancin protein motif (IPR004954) is identified (blue). including the
HEIAH metal binding motif: the metal ligands (orange), the active site (red). and
the conserved glutamic acid (green). All sequences are identified except BCE33L3092
(B. cereus (E33L)).
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Figure 4.17: Interproscan domains mapped onto ClustalW alignment for members of
protein family N. The sequences BA3443 from B. anthracis (Ames), AO090005000254
from Aspergillus oryzae, YPTBO0393 from Yersinia pseudotuberculosis TP 32953 and
LdnVgpl61 from the virus Lymantria dispar MNPV. Peptidase M60, viral enhancin
protein motif (IPR004954) is shown (blue), including the HEXXH metal binding
motif: the metal ligands (orange), the active site (red), and the conserved glutamic
acid (green).

4.3 Discussion

This section presents an analysis of the predicted secretomes of 12 bacilli based on
their genome sequences, carried out with the BaSPP workflow based system.

Firstly, the overall composition of each individual secretome was determined. The
number of proteins targeted by Spl, Spll and sortase specific mechanisms were pre-
dicted for all of the 12 isolates. Whilst the number of secreted proteins was higher
in pathogenic organisms such as B. anthracis, the genomes of these isolates is larger,
and once corrected for genome size, the number of secreted proteins remained roughly
constant at around 9-10% of the total predicted proteome. These findings are in line
with previously reported findings for Gram-positive bacteria.

However, it may have been anticipated that the BaSPP classification workflow
would have identified more cell wall covalently attached proteins among these addi-
tional Bacillus species. Some may have been filtered as transmembrane proteins due

to the hydrophobic domain following the LPXTG motif. However, further analysis
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of the putative transmembrane proteins for LPXTG cell wall motifs did not result in
additional cell wall covalently attached proteins being detected. Therefore, it is likely
that the other sortase substrates were not found as their motif is slightly different to
the standard LPXTG motif, documented in Boekhorst et al. [2005]. For this reason,
additional sortase substrates in the Bacillus species have been identified in Boekhorst
et al. [2005], that have not been uncovered in this study, which searched solely for
the major motif LPXTG (table 4.7).

Genome No. of putative sortase substrates predicted
[Boekhorst et al., 2005] BaSPP

. anthracis (Ames) 3
. anthracis (Ames ancestor) -
. anthracis (Sterne)

. cereus (ATCC 14579)

. cereus (ATCC 10987)

. cereus (ZK/ E33L)

. halodurans (C-125)

. subtilis (strain 168)

. thuringiensis konkukian (strain 97-27)

It N) b b e i

Wb
O O -

Table 4.7: The number of putative sortase substrates in the Bacillus species as pre-
dicted by Boekhorst et al. [2005] and by the BaSPP system developed in this study.

Next, a method for the functional analysis of the secreted proteins was required to
progress with the individual and comparative secretome analysis. The classification
of proteins into families has been shown to be a valuable method of shedding light on
protein function [Enright et al., 2003, Tatusov et al., 2003]. Secreted proteins were ar-
ranged into functional clusters based on amino acid sequence similarity using an MCL
algorithm as part of the BaSPP analysis workflow. The clusters were subsequently
systematically and manually analysed to provide an overview of the variability in the
function of secreted protein families between the Bacillus species under study.

The phylogenetic relationships between the 12 bacilli isolates have been explored
in the context of the similarity between their predicted secretomes as determined
by the shared contribution of their proteins to the various families. This exercise

allowed the similarity between the secretomes to be studied at the level of their
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overall composition. The taxonomic relationships between the Bacillus species as
defined by their secretomes agrees well with previously reported taxonomic trees
generated by studies based on ribosomal RNA (rRNA) gene sequence analysis, usually
16S-TRNA genes. The genes coding RNA are frequently used in the area of molecular
phylogeny to understand organismal relationships as these genes are highly conserved,
performing central metabolic functions that are tightly intertwined in the fabric of
the cell [Hale et al., 1995, Olsen and Woese, 1993].

Using rRNA gene sequence analysis, a number of bacterial species have been iden-
tified and classified, summarised in Joung and Cété [2002]. Comparison with these
studies reveals that the findings presented here relate to, but do not match exactly,
those documented elsewhere. In fact the Ribosomal Database Project (RDP)[Cole
et al., 2005] and the study carried out in Xu and C6té [2003) show significant resem-
blance to the results described here. The phylogeny identified using RDP? is shown
in figure 4.18 for comparison. The only substantial difference is the relation of B.
cereus (ATCC 14579) to the known pathogen group containing B. anthracis and re-
lated organisms. RDP shows B. cereus (ATCC 14579) to be more closely related to
the known pathogens than found by analysing the secretomes.

Recently, Tettelin and co-workers introduced the concept that a species can be
described by the pan-genome that consists of a core set of proteins common to all
isolates (around 80% of the total gene complement in streptococci for example) and
a dispensable component that are shared across some species but not all (around
20%) [Tettelin et al., 2005). The dispensable proteins in the pan-genome are less
constrained by evolution and are therefore able to contribute to the fitness of an or-
ganism for growth in a particular environment. It is known that secreted proteins
play an important part in niche adaptation and that the secretory proteins occur in
young-intermediate aged functional modules overrepresented in the dispensable pro-
tein complement of an organism [Campillos et al., 2006]. The secretome of the genus
Bacillus is particularly interesting to study in this respect. Whilst all the Bacillus
spp. studied here share significant sequence similarity at a genomic level, the optimal

1RDP Website: http://rdp.cme.msu.edu/
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Figure 4.18: Dendrogram representing the relationship of the Bacillus species (a) in
terms of their secretome and (b) as identified using RDP.

growth environments for these species varies tremendously from non-pathogenic soil
organisms such as B. subtilis, through to those that are strictly pathogenic such as
B. anthracis. The results presented here for the functional classification of the se-
creted protein families, with proteins of unknown function and families responsible
for niche specific metabolite utilisation, support the hypothesis that secreted proteins
are overrepresented in the dispensable part of the pan-genome. A more detailed set
of in-silico experiments could be carried out to confirm these hypotheses. For in-

stance, the pan-genome for the Bacillus species could be identified by clustering the
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entire proteome into protein families (using the same clustering methodology). The
core and dispensable components for the Bacillus species could subsequently be dis-
tinguished. The distribution of the secreted protein families could then be assessed
by analysing the proportion of secreted protein families identified in the core and
dispensable families.

Overall, the similarity between the relationships identified by analysing the se-
cretome and rRNA shows the importance of secreted proteins, and the central role
these proteins play in adapting different species to growth under different conditions.
Specifically these proteins reflect the common ancestry and environmental niche in
which the bacteria exist. It can therefore be speculated that the secretome of an
organism would make useful biomarkers for the determination of its preferred envi-
ronmental niche and properties such as virulence.

Whilst annotating these protein families, an interesting problem arose with respect
to assigning functional categories to the protein families. Bacillus biologists are used
to the functional annotations ascribed by their genome analysis portal SubtiList. In
addition, when ascribing function to the families, many GO terms could be applied
to a family. Simply using a broadly defined term, near the root term (as in GO
slims), resulted in very vague GO annotations. Therefore the approach taken here
was to map the numerous GO terms generated from a family to the existing SubtiList
classification codes. This resulted in a classification system that was more human
readable but less computationally amenable. A Perl-based package called go-graph
was employed to extract a common set of GO terms that represented all the secreted
proteins based on the probability distribution of the GO process terms in the secreted
proteins dataset. This adapted version of go-graph effectively provided an automated
method to determine the functional distribution across the secretomes, categorised
using the SubtiList classification codes that are well-known to biologists. Automation
was important due to the large number of secreted proteins that had been isolated.
The application of go-graph to this task also demonstrates the advantages of using
such a measure to categorise function based on the information contained within the

dataset, as opposed to applying a simple cutoff level, or even using GO slims.
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An examination of the occurrence of the different protein families in the differ-
ent Bacillus species provides some interesting insights into the evolution of secreted
proteins. Clearly, some protein families are shared across all of the bacilli, around
7% of the 673 protein families defined. Since this study was confined to the genus
Bacillus, it would be interesting to determine the extent to which those families are
shared across other related bacteria and even other types of organisms. The majority
of the proteins classified as core are still of unknown function, suggesting there is still
much to be learned about the secretory process and the role of secreted proteins. In
addition, these families also generally contain predictably well conserved proteins in-
volved in well characterised processes such as those encoding the secretory processes
themselves and those involved in cell wall biogenesis and sporulation.

Of particular interest are those families that are unique to species that share phe-
notypic traits such as the ability to breakdown plant cell wall material and virulence.
Notably, the strains reported to be able to grow in natural environments, such as B.
subtilis, share members of families encoding enzymes responsible for the breakdown
and transport of plant polysaccharides that were absent from species such as B. an-
thracis which is generally accepted not to be able to grow outside of an animal host
[Jensen et al., 2003, Wipat and Harwood, 1999).

Those protein families that are associated with the pathogens have the potential
to encode virulence determinants that can help with understanding the process of
pathogenicity and ultimately act as the target for vaccines and antimicrobial agents.
These perhaps form the most interesting targets for further laboratory investigation.
Indeed, the results from this study have prompted further laboratory based exper-
imental studies to further characterise these proteins. The definition of pathogenic
strains is difficult in the absence of computational methods to describe microbial phe-
notypes from genotype. Many microorganisms are opportunist pathogens, not com-
pletely adapted to causing disease like a true pathogen, but able to take advantage
of non-typical conditions such as immunocompromised individuals, to cause disease.
This study imposed a rigid and stringent approach to the definition of pathogenicity.
The virulence of the B. cereus strains, ATCC 14579 and ATCC 10987 has not been
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proven, other than as opportunist pathogens. Both are normally soil living microor-
ganisms known for causing food poisoning and opportunist eye infections and hence
were not considered to be true pathogens.

Among the putative functional assignments for specific families were some des-
ignated as involved in cell surface activity. Perhaps of most significance was the
identification of proteins that were potential bacterial enhancins in Bacillus, previ-
ously found in insect viruses; this is in accordance with the findings described in Read
et al. [2003]. These Bacillus enhancins also show similarity to proteins of the known
pathogens Yersinia pestis and Yersinia pseudotuberculosis. However, surprisingly this
cluster of proteins was also found to be similar to a protein of the non-pathogenic
Aspergillus oryzae. These enhancins may therefore be the result of horizontal gene
transfer from insect viruses. Despite the cytotoxicity of bacterial Enhancins, the
mechanism of infection differs to viral Enhancins; this may be the result of a distinct
biochemical function [Galloway et al., 2005]. To confirm these findings, experiments
could be devised to test for protease activity in this protein family and attempt to
identify the mechanism of action. Furthermore, it would also be worth investigating
the putative Enhancin activity of Aspergillus oryzae, not thought to be pathogenic.
Investigations may uncover a pathogenic function not previously associated with As-
pergillus oryzae, or perhaps an evolutionary relationship not considered before. It
may salso be interesting to identify substrate preferences of the proteins, not only for
those from the Bacillus species, but also compared to other Enhancins.

Finally, many of the secreted proteins predicted did not cluster into families since
they do not show sequence similarity to any other of the Bacillus secreted proteins.
Presumably these proteins are strain-specific and form part of the dispensable genome
discussed above.

In conclusion, the results of the BaSPP workflow have generated many novel
hypotheses about the way that secreted proteins in the Bacillus family are used. Of
course to be truly applicable, these results need to be confirmed in future laboratory
based studies. In an ideal world the results of the experimental validation could be
used to refine the analytical process and methodology. This system is therefore ideally
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suited to an e-science approach, further demonstrating the useful of such an approach

to bioinformatics in general.
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Chapter 5

The construction of probabilistic
functional integrated networks
(PFINs) for members of the genus
Bac:illus

5.1 Introduction

This study aimed to identify the secretomes of the Bacillus species. However, as
stated in section 4.2.3, a large proportion of the secreted proteins identified through
BaSPP are of unknown functions. Construction of PFINs of the Bacillus species could
provide a way to address this problem by comparing and analysing these PFINs.
within and across species, to provide further insight into the functions of the pro-
teins within the Bacillus species in the context of their interactions. The focus was
specifically on a subset of the proteomes of these bacteria, the secretomes. A com-
parative analysis of the Bacillus species, in the context of their interactomes, has
not previously been undertaken. In fact, there have been relatively few reports of the
application of PFINs to prokaryotes in general. The resulting framework representing

all the Bacillus species is known as SubtilNet.
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5.2 Methodology

The approach used to construct PFINs for the Bacillus species follows that docu-
mented in Lee et al. [2004] for the development of a PFIN of S. cerevisiae genes. This
approach involves integrating a number of different datasets, each measuring different
aspects of gene or protein associations, and having differing degrees of accuracy. In-
tegration of these various datasets computationally can be achieved by realising that
each experiment (genetic, biochemical, computational) adds evidence linking pairs of
genes. Each dataset has different degrees of coverage (in terms of the size of the pro-
teome) as well as different associated error rates. Functional protein-protein linkages
are therefore probabilistic, providing a way of integrating the various datasets into a
single interactome [Lee et al., 2004].

The generation of PFINs first requires the implementation of a unified scoring
scheme to derive a consistent weighting across all experimental data sources. The
scoring method relies on an additional dataset that acts as a gold standard, against
which the experimental datasets are compared and weighted. Once the interactions
for each experimental data source are weighted according to a common standard, the
network is built by integrating all the data. An outline of the general procedures used
to generate the Bacillus PFINs is given below.

5.2.1 Unified scoring method

Using a Bayesian approach, each experimental dataset is evaluated to determine the
effectiveness of the dataset to reconstruct "known” gene pathways according to the
gold standard. This procedure produces a log likelihood score, which reflects the
likelihood that the pairs of genes identified by a particular experiment are functionally
linked based on a gold standard. The log likelihood score reflects both the noise
inherent in, and the genome coverage of the experiments, producing comparable scores
across all experiments [Lee et al., 2004]. Equation 5.1 is used to calculate the log
likelihood score L based on the probability that a pair of genes are either functionally
linked or not functionally linked in the experimental dataset S based on the gold
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standard B. P(S|B) is the probability of an observed link in the dataset given their
is a link in the gold standard. P(S|B) is the probability of an observed link in the
dataset given their is no link in the gold standard. P(S|B) is the probability of no
observed link in the dataset given their is a link in the gold standard. P(3|B) is
the probability of no observed link in the dataset given their is no link in the gold
standard.)

P(S|B)/P(S|B)
P(3|B)/P(|B) (5.1)

In order to determine all the relevant values for calculating the conditional prob-

L =In(

abilities, a matrix was constructed as shown in table 5.1.

L § | S5 |
(B TP | FN |

B| FP|TN

Table 5.1: Matrix required for calculation of conditional probabilities where B and
B is the number of positive and negative pairs in the benchmark respectively, and
S and S is the number of positive and negative pairs in the experimental dataset
respectively.

The calculation of the log likelihood score differs depending on whether the data
is weighted or unweighted. The values B and B are constant in both cases. For
unweighted data, the log likelihood score is calculated across all gene pairs within
the dataset, and the same score is given to each pair associated with this dataset.
However, for weighted datasets, the pairs are ranked lowest to highest weight, then
bins of gene pairs are designated. The log likelihood score is calculated for each bin;
using a regression plot (average weight per bin vs. log likelihood score of the pairs in
that bin) the associated log likelihood score can then be obtained for each individually
weighted pair. The only values to change in the log likelihood calculation for each bin
are the true positives (TP) and false positives (FP). The trend in the log likelihood
scores depends on the difference of these two values i.e. the lower the number of
true positives, and the higher the number of false positives means the lower the log

likelihood score [Lee et al., 2004].
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5.2.2 Gold standard

For all of the PFINs developed, the common benchmark used to weight the various
input datasets in the network was the KEGG pathway' dataset. KEGG is a database
providing information about the functions of biological systems from genomic and
molecular information. It consists of four main databases, but the pathway database
is of most interest as this database provides information about protein interactions
[Kanehisa et al., 2006]. Each of the 11 Bacillus genomes in this study are represented
in this database.

All genes in the same pathway in the KEGG pathway database may be considered
to be functionally related. Therefore, all pairs of genes in the same pathway for a
species are linked to produce a set of positive pairs for that species. Those genes
present in KEGG pathway for the same species, but not sharing a common pathway,

produce the negative set of pairs for the species.

5.2.3 B. subtilis PFIN

A PFIN was developed for B. subtilis (strain 168) which served as a testbed against
which the methodology described (in section 5.2) could be developed. This section
describes the specific details concerning the experimental datasets and the integration

process used in constructing the B. subtilis PFIN.

5.2.3.1 Datasets

A number of datasets were used to create the B. subtilis PFIN, each providing an

alternative type of evidence.

o KEGG expression data

The KEGG database contains publicly available gene expression data for many
different organisms, including B. subtilis [Kanehisa et al., 2006]). Based on

this data, a matrix (gene vs. experiment) was constructed on which Pearson

IKEGG Website: http://www.genome.jp/kegg/
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correlation could be calculated in order to provide a weight for each predicted
pair of functionally related genes.

o PubMed? cocitation abstracts

There are a number of approaches used in mining text data (e.g. Hirschman
et al. [2002]). The approach employed here is similar to that described in
Stapley and Benoit [2000]. Abstracts were obtained by searching PubMed for
the term ’bacillus subtilis’. Using these abstracts, two genes were predicted
to be functionally related if they appeared in the same abstract. Recording
the number of abstracts in which a pair of genes appeared together, allowed
a matrix (gene vs. gene) to be constructed. Using this matrix, pairs of genes

could be weighted based on Pearson correlation.

e DBTBS operon predictions?

This dataset is described in Makita et al. [2004]. It consists of predictions as
to whether two genes are functionally linked (i.e. in the same operon) based
on their proximity. The prediction methodology is described in Hoon et al.
[2004]. Pairs of genes within this dataset already have a weight associated with
them based on Bayesian probability. By considering the weights describing the
probability that a pair of genes occur in the same operon, predictions could
be generated to determine the cluster of genes in the same operon. This was
done by applying different thresholds to the weights defining the probability
that a pair of genes belong to the same operon. Following manual inspection of
the different results, it was decided a cutoff weight of 0.1 best represented the
operon data. For each of these clusters, links between each gene were generated,

resulting in a binary set of linkages.

e STRING fusion

STRING?! is a database containing integrated interaction data from known

2PubMed Website: http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
3http://bonsai.ims.u-tokyo.ac.jp/ mdehoon/publications/Subtilis/operons.txt
4STRING Website: http://string.embl.de/
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and putative protein-protein interactions obtained from a number of different
sources. Amongst these sources is gene fusion data. The fusion data extracted
from STRING is already weighted [von Mering et al., 2007), therefore no mod-

ifications were needed in order to integrate into the B. subtilis network.

This use of gene fusion events to infer protein interactions relies on the assump-
tion that if a protein is uniquely similar to two proteins in another species (i.e.
their associated genes fused to produce a hybrid gene), then the component

proteins most likely interact [Enright et al., 1999].

e PREDICTOME phylogenetic profiling

Predictome is a database containing putative protein-protein functional links
using three computational methods based on chromosomal proximity, phylo-
genetic profiling and domain fusion®, as well as high-throughput experimental
methods such as the yeast two-hybrid method. The data specific to phyloge-
netic profiling simply identifies putative protein-protein interactions, without

an associated weight [Mellor et al., 2002].

e INTERPRO domains

Protein-protein interactions can be predicted by identifying pairs of domains
enriched among known interacting proteins. Following the study described in
Rhodes et al. [2005], this requires the calculation of a domain enrichment ratio
(DR), which essentially quantifies the co-occurrence of particular domain pairs
among interacting proteins. In order to predict domain enriched pairs, a set
of known protein interactions is needed. The gold standard was used for this
purpose. High DR values are strongly predictive of protein interactions, whereas
smaller DR values are less strongly associated with protein interactions. The
enriched domain pairs may represent physically interacting domains or indirect

interactions.

To determine whether a pair of proteins interact based on the coocurrence of

5Predictome Website: http://predictome.bu.edu/static/data.html
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domains, where a common domain exists between a pair of proteins, a protein
interaction was assumed based on the corresponding DR. When a pair of pro-

teins share multiple common domains, the DR for each common domain was

summed.

BLASTp

A common approach used to identify paralogues is to take the BLAST reciprocal
best hits (RBH). Applying this approach to all B. subtilis proteins resulted in
the identification of 59 paralogue pairs. However, none of these paralogues were
identified in the benchmark dataset KEGG pathway, hence the log likelihood

score could not be calculated.

Therefore, paralogues were identified by analysing all reciprocal BLAST hits,
as opposed to only the best hits. By using this approach, an paralogue pair
was assumed for those B. subtilis proteins identified as showing similarity to
another B. subtilis protein above an e-value cutoff score of le~%. In the case
where protein A identifies protein B and protein B identifies protein A, the

lowest e-value was used as the weight.

As the protein pairs identified by BLAST analysis have an associated weight
(i.e. e-value), a regression plot in which the average BLASTp e-value for bins of
equal size were plotted against the log likelihood score calculated for each bin.
However, the scatterplot showed no trend to which a regression curve could be
fitted. For this reason, the protein pairs identified via BLASTp were treated as
an unweighted set. This should have limited or no effect on the final outcome,
as a threshold cutoff score had already been applied to the prediction of protein
pairs using BLASTp.

As a possible modification to this approach, clustering was applied to the re-
sulting protein pairs. The clustering algorithm MCL was therefore applied,
using a variety of inflation values (the parameter effecting the granularity of

the clustering process), mimicking the process carried out in section 3.2.3. The
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corresponding datasets resulted in worse log likelihood scores than the original
dataset supplied as input. (See table D.1 in appendix D.)

The BLAST data used to infer protein pairs was simply extracted from Mi-
crobase, in which BLAST results are precomputed.

GO Annotations (GOA)

A simple way of predicting protein interactions according to GO annotations is
to use GO process terms to calculate the distance between the lowest annotated
terms for two potentially interacting proteins. As GO is a DAG, the distance
between two terms is considered to be the shortest path between two nodes
in the graph. In addition, the lowest term may be rather broad i.e. closer to
the root, and hence may not be very informative about the process in which
the protein is involved. Therefore a cutoff level needs to be applied in order to

eliminate unspecific terms from the predictive process.

To determine the level at which to threshold, protein pairs were generated for
all proteins within B. subtilis whose lowest GO term was below a certain cutoff
level, with the weight equal to the shortest distance between each protein pair.
The cutoff levels chosen corresponded to level 3 to 11, where the root is level
1. Using the KEGG positive and negative pathway interaction datasets as gold
standards, the number of TPs and FPs were calculated by comparing with the
predicted protein interactions for each cutoff level. The number of the TPs
versus the number of FPs was plotted to produce a ROC curve (figure C.1),
from which deductions could be made regarding the optimal cutoff threshold.

It was determined from visual inspection of the graph that a minimum level
of seven showed the best TP:FP ratio, therefore those protein pairs with a
minimum GO annotation greater than or equal to level seven was used as input
to the network. The identification of level seven as the optimal threshold level
in GO agrees with the conclusions drawn in Date and Stoeckert [2006], in which
they too thresholded GO level seven.
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e COGs

COGs® is a database containing Clusters of Orthologous Groups of proteins
[Tatusov et al., 2003]. Proteins within the same cluster are regarded as being
functionally related. Therefore this data source was used as input to the network
by linking each protein in a cluster to every other gene in the same cluster,

resulting in a set of protein-protein interactions for each cluster.

The log likelihood scores for each unweighted dataset (PREDICTOME phyloge-
netic profiling, BLASTp, COGs, DBTBS operon) and weighted dataset (STRING
fusion, cocited, KEGG expression, INTERPRO domains, GOA) were calculated as
described in section 5.2.1. (Data and graphs for this process are shown in appendix
D.)

5.2.3.2 Integration of datasets

Following the uniform weighting of the datasets, integration of this information re-
sulted in the formation of a B. subtilis PFIN. Integration of all of the experimental
information concerning the linkage of a pair of genes is achieved using a niive Bayesian
approach i.e. the log likelihood score for a particular pair of genes are summed over
all experiments. The various datasets were considered to be independent of each
other, and therefore the degree of dependence between the various experiments was

not factored into the equation.

5.2.4 Other Bacillus species PFINs

PFINs were developed for remaining 10 Bacillus species, using the same approach.
As the remaining Bacillus genomes are less well studied, there were fewer datasets to
integrate into the network. Table 5.2 summarises the datasets used.

The most significant difference from the B. subtilis data sources was the use of
pre-computed cocitation data extracted from the STRING database. In addition, due
to the specificity of DBTBS for B. subtilis, operon data for the other Bacillus species,

8COGs Website: http://www.ncbi.nlm.nih.gov/COG/
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excluding B. clausii, were incorporated from Operon DataBase”. This resource con-
tains operon data that has been extracted from the literature [Okuda et al., 2006].

Operon data was not available for B. clausii so gene neighbourhood information
was used instead. As in STRING and Overbeek et al. [1999], gene neighbours were
determined based on whether the gap between genes on the same strand were no
more than 300 bases. For the clusters of genes identified, each gene was paired with
every other gene within the cluster.

B. licheniformis (ATCC 14580, sub_strain Novozymes) was analysed, not B.
licheniformis (ATCC 14580, sub_strain Goettingen) due to the lack of experimen-
tal data specific to the latter substrain.

Once the datasets had been gathered, each dataset was uniformly scored, as doc-
umented for B. subtilis, using the respective KEGG pathway gold standard positive
and negative sets. The species-specific PFINs were constructed by integrating the

appropriate data sources using the previously described néive Bayesian approach.

5.2.5 Identification of clusters within Bacillus PFINs

As a first approach to analyse the PFINs, cluster analysis was performed. Clusters
are highly interconnected regions within the PFINs. The clustering of proteins based
on their connectivity within the PFINs can represent protein complexes and parts of
functional and metabolic pathways.

Due to size of the Bacillus PFINs, an automatic method of clustering was needed.
For this purpose, a relatively fast clustering algorithm, called MCODE [Bader and
Hogue, 2003] was used. MCODE is available as a Cytoscape plugin. The MCODE
parameter that most significantly influences cluster granularity is the node score cut-
off. During the process of cluster expansion, new cluster members are only added to
a cluster if their node score differs to the score of the cluster’s seed node (i.e. the
highest scoring node in the cluster) by less than the cutoff value. The node score

cutoff is a value between 0 and 1, representing the percentage difference (e.g. a cutoff

?Operon DataBase (ODB) Website: http://odb.kuicr.kyoto-u.ac.jp/
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B. clausii (KSM-K16) VIXIVIVIXIXIVIVIXIVIYV
B. halodurans (C-125) VIVIVIVIXIVIVIVIVIX]V
B. licheniformis (ATCC 14580) VIXTVIiVIXIXTIXIX VXV
B. subtilis (strain 168) VIVIVIVIVIVIVIVIVIXIV
B. thuringiensis konkukian (strain 97-27) | v | X | VI V[ X | X VIV IV IX |V

Table 5.2: Datasets used to construct the individual PFINs, where KEGG pathway
data was the gold standard for each respective network.

of 0.2 allows new members to be added if their node scores are less than the seed node
by a maximum of 20%). The smaller the cutoff, the more finegrained the clusters; by
default, this is set to 0.2 [MCODE, http://baderlab.org/Software/MCODE]. Scores
given by MCODE to the clusters are determined by multiplying the density of the
cluster by the number of members/nodes [Bader and Hogue, 2003].
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5.3 Results

5.3.1 Threshold determination for network optimisation

The Bacillus PFINs were analysed further in order to determine a threshold weight
at which to remove weakly associated interactions by comparing the PFINs against
the gold standard dataset, KEGG pathway. The results are illustrated in figure
5.1, showing the distribution of pairs based on their composite weights. Based on
this graph, a composite cutoff weight of five was chosen for creating the refined B.
subtilis PFIN. This decision was based on the number of TPs recovered and the size
of the resulting PFIN (i.e. the total number of interactions). The plots of the other
organisms show a similar trend to B. subtilis, so a common cutoff weight of five was

also applied to these PFINs.

5.3.2 Network properties of Bacillus PFINs

A number of quantitative measures are frequently applied to networks:

o Degree
The degree refers to the connectivity of a node k i.e. how many edges the node
has to other nodes. For an undirected network, with N nodes and E edges the

average degree < k > is calculated as in equation 5.2.

<k>=2E/N (5.2)

o Degree distribution
The degree distribution P(k) gives the probability that a node has exactly
k edges. P(k) is calculated by counting the number of nodes N(k) with k
edges and dividing by the total number of nodes IV (equation 5.3). The degree
distribution may define the type of the network.

P(k) = N(k)/N (5.3)
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Figure 5.1: By comparison to KEGG pathway, the distribution of TPs, across the
Bacillus PFINs, was measured as the composite weight increases.

e Shortest path and average path length
Distance in networks is measured using path length i.e. how many edges are
passed in order to travel between two nodes. As there may be alternative paths
between two nodes, the shortest path is used to measure distance. The average
shortest path length between every possible pair of nodes is therefore used as a

network measure.

o Clustering coefficient
The modularity of the network can be summarised by using a metric called the
clustering coefficient. This is measured for node ¢ using the clustering coefficient

C; (equation 5.4) based on the number of edges for this node k; and the number
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of edges connecting the k; neighbours of the node i to each other, n;. C; therefore
measures the number of triangles that go through node i. However, k;(k; —1)/2
is the total number of triangles that could pass through node i, if all of its

neighbours are connected to each other.

Ci = 2n/ky(k; — 1) (5-4)

The average clustering coefficient measures the likelihood of nodes to form clus-
ters. The average clustering coefficient of all nodes with k links is measured
using C(k). This function is important in defining the structure of the network
[Assenov, 2006, Barabési and Oltvai, 2004, Li et al., 2006].

The network statistics for the 11 Bacillus PFINs were generated using a Cytoscape
plugin, called NetworkAnalyzer [Assenov, 2006). Observation of the basic network
properties shown in table 5.3 reveals the B. subtilis PFIN is the least connected of all
the networks, having the lowest number of edges and largest average shortest path
length. B. licheniformis is the most highly connected, having the lowest average
shortest path length, the least number of nodes, but containing an average number
of edges. This probably reflects the broader number of evidence types that were
incorporated in the B. subtilis PFIN, and consequently, the greater level of detail,
than was used in developing the B. licheniformis PFIN.

The network properties captured by P(k) and C(k) are independent of the size of
the network, therefore these functions define the common properties of the network
and consequently they can be used to categorise the network. By analysing these
measures, networks can be compared and characterised against each other [Barabési
and Oltvai, 2004, Li et al., 2006).

The network distribution plots, shown in table E.1 indicate that the PFINs appear
to be small-world networks. The networks small-world properties are characterised ac-
cording to their clustering coefficients and average shortest path lengths. Small-world
networks are characterised by an average shortest path length that is comparable to

their equivalent randomly connected network. The distance between any two nodes is
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B. anthracis (Sterne) 2160 | 40486 | 37.487 | 11 | 4176132 (89%)
B. anthracis (Ames ancestor) 2030 | 37555 | 37.0 | 9 | 3765714 (91%)
B. anthracis (Ames) 2019 | 37082 | 36.733 | 10 | 3746304 (91%)
B. cereus (E33L) 2506 | 57241 | 44.099 | 11 | 5479602 (81%)
B. cereus (ATCC 10987) 2090 | 47088 | 45.060 | 10 | 3954396 (90%)
B. cereus (ATCC 14579) 2331 | 43625 | 37.430 | 10 | 4505978 (82%)
B. clausii (KSM-K16) 1055 | 45416 | 46.461 | 10 | 3260070 (85%)
B. halodurans (C-125) 2068 | 41723 | 40.351 | 9 | 3318964 (77%)
B. licheniformis (ATCC 14580) 1795 | 36001 | 40.113 | 8 | 2767440 (85%)
B. subtilis (strain 168) 2547 | 34791 | 27.319 | 15 | 4777066 (73%)
B. thuringiensis konkukian (strain 97-27) | 2446 | 38588 | 31.552 | 11 | 4604736 (76%)

Table 5.3: Basic network statistics.

small despite the majority of nodes not being neighbours to one another. In addition,
small-world networks have a larger proportion of neighbourhood connectivity, high-
lighted by having higher clustering coefficients than their equivalent random networks
[Assenov, 2006, Barabdsi and Oltvai, 2004, Li et al., 2006, Watts and Strogatz, 1998].
For a random network, the clustering coefficient is equivalent to the edge density.
Therefore, in order to determine whether the Bacillus networks are small-world, the
clustering coefficients (CC) and average shortest path length (ASP) of the Bacillus
networks and their respective random networks were compared by determining if the
conditions stated in equations 5.5 and 5.6 were met. Both these conditions were true
for each of the Bacillus PFINs (table 5.4). The maximum ratio for CCs between the
real and the random benchmark networks was 98%, whereas the maximum ratio for

ASPs between the real and the random benchmark networks was 28%.
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CCreal
m >1.2 (5.5)
ASP,en
m <2 (5.6)
Genomes CCreal | CCrand | ASPreat | ASPrand
B. anthracis (Sterne) 0.556 0.017 3.199 2.506
B. anthracis (Ames ancestor) 0.554 | 0.017 3.195 2.501
B. anthracis (Ames) 0.545 | 0.017 3.201 2.506
B. cereus (E33L) 0.525 0.017 3.280 2.461
B. cereus (ATCC 10987) 0.550 | 0.021 3.255 2.359
B. cereus (ATCC 14579) 0516 | 0.015 | 3.383 | 2.540
B. clausii (KSM-K16) 0.399 0.024 3.051 2.318
B. halodurans (C-125) 0.584 | 0.019 3.151 2.447
B. licheniformis (ATCC 14580) 0.543 0.022 3.012 2.395
B. subtilis (strain 168) 0.485 | 0.010 3.815 2.745
B. thuringiensis konkukian (strain 97-27) | 0.542 | 0.012 3.439 2.655

Table 5.4: Small-world network properties.

The networks were then analysed for scale-free properties. Scale-free networks
consist of nodes with one or two links, to nodes with many links (hubs). The defining
feature of these networks is a power law relation. The linear relation in the node
degree distribution plots based on logarithmic scores highlights the potential scale-free
nature of these networks. However, a statistical measure of the models goodness of fit
is provided by calculating the coefficient of determination R2. It is generally accepted
that for scale-free networks R? is greater than 0.8. The Bacillus networks therefore
verge on being scale-free, with R? values ranging from 0.63 for B. licheniformis to 0.78
for B. subtilis (indicated in table E.1), compared to the respective random networks
which range from 0.007 to 0.102.

An alternative means of evaluating the PFINs is by graphically visualising and
querying the networks in order to assess their 'correctness’. By manually delving into
the protein interactions of the PFINs, implementation errors and weaknesses can be

uncovered.
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Visualisation of the PFINs developed through an edge-weighted spring embed-
ded layout, using Cytoscape, highlights the existence of a number of clusters (table
5.5). Using the Cytoscape plugin, BINGO, functional annotations could be associ-
ated with the major clusters based on GO process terms. Manual inspection reveals
all 10 Bacillus PFINs possess clusters related to the regulation of transcription, sig-
nal transduction and transport. Other identifiable clusters relate to metabolism and
biosynthesis. A unique cluster was found in the B. halodurans PFIN showing trans-
position behaviour. Also, in the B. licheniformis PFIN, a cluster responsible for cell

redox homeostasis was identified.

Table 5.5: PFINs for the 11 Bacillus species, as viewed using the edge-weighted spring
embedded layout in Cytoscape. The main clusters detected visually are annotated
using over-represented GO process terms.
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B. cereus (ATCC 14579)

3 Iy
e N - o transcription
o ',. .‘%xi{,. o ® ‘.-'v. pt
Fo o ©

" S fuw < L .:. Regulation of
g SN fe e transcription,
Riia | Ty o b ]

o e ; - . < . . DNA-dependent
oy T

g J AN B N : « . Two-component
. o 4 . . & Tl e :
. ve o o0 o4 A ,«* msignal
. o & VRS »” transduction
" € %ot ® :

. Y \ . system
. Te *\ Vs (phosphorelay)




140

B. halodurans (C-125) ]
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B. subtilis (strain 168) j
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5.3.3 Determination of optimal clustering settings of the B.

subtilis PFIN

In order to assess the value most appropriate for clustering the interactions of the B.
subtilis PFIN, a range of node cutoff scores (0.0, 0.1, 0.2, 0.3. 0.4. 0.5) were used to
cluster the B. subtiis PFIN. The average composition of the clusters produced were
investigated with regard to the mean and modal number of members per cluster and
the MCODE score per cluster, as well as the denseness of the clusters, assessed by
summing the MCODE scores. The plot used to decide which score to use as a cutoff
is shown in figure 5.2. In this graph the node cutoff score is plotted against the sum
of all the cluster scores for the respective node cutoff score. It was concluded the
optimal node cutoff score for clustering the B. subtilis PFIN was 0.1, due to the peak

in the graph at this point.
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Figure 5.2: Granularity of clusters based on different node cutoff scores.

The highest scoring MCODE clusters were then reclustered using a node cutoff
value of 0.0. However, the newly formed clusters were not significantly different from
the original clusters. Reclustering resulted in the formation of only one new cluster
that is more tightly clustered. For instance, the top cluster of B. subtilis. which

after initial clustering using parameter 0.1 contains 99 nodes, was reclustered using a
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parameter 0.0 resulted in 3 clusters, containing 51, 5 and 6 nodes each. Reclustering
the second cluster returns only one cluster, reduced in size from 59 to 38 nodes. The
third cluster is also reduced, from 41 to 32 nodes. It was therefore decided to continue
using the original set of clusters, without loss of data.

To visualise the clusters an additional Cytoscape plugin called GenePro [Vlasblom
et al., 2006] was used. Using this plugin, clusters are shown as nodes and edges
represent inter-cluster protein interactions. The variation in cluster size is reflected
in the size of the nodes. GenePro also allows the incorporation of node attribute
information by displaying a node (cluster) as a pie chart.

Following the determination of the most appropriate node cutoff score for the B.
subtilis PFIN, the other Bacillus PFINs were clustered using the same value, equal
to 0.1. The cluster information was stored in the database allowing simple querying

over all the clusters across all species.

5.3.4 Functional analysis of the clustered B. subtilis PFIN

A number of distinguishable clusters have previously been highlighted in the Bacillus
PFINs (figure 5.5). However, the application of an automatic clustering algorithm,
such as MCODE, enables the identification of less obvious clusters.

An overview of the MCODE-identified clusters in the B. subtilis PFIN, and their
functional breakdown based instead on SubtiList classification codes (due to the more
appropriate number of categories), is shown in figure 5.4. A more detailed view of the
major clusters identified in the B. subtilis PFIN, using MCODE, is shown in table
F.1.

5.3.5 Distribution of secreted proteins within the topology
of the B. subtilis PFIN
As shown in the case of B. subtilis, the predicted secreted proteins identified by

BaSPP are fairly distributed throughout the PFIN (figure 5.3). This distribution
can be shown in terms of the functional modules/clusters identified in the B. sub-
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tilis PFIN, reflecting the global spread of the putative secreted proteins across the
many functionally interacting clusters (figure 5.5). The functionally distributed na-
ture of the secretome is further illustrated in figure 5.4 in which the cluster member
functions are summarised in terms of SubtiList classification codes. A more detailed
view of these clusters is provided in table F.1 in which both functional and secreted

information is combined to give an overall view of each cluster.

- ot
-~

ot cone

Figure 5.3: B. subtilis PFIN. Green dots represent the putative secreted proteins and
the red dots are the non-secreted proteins.
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5.4 Discussion

PFINs were constructed for each of the Bacillus species in this study. A data ware-
house has been developed containing all the information gathered on each of the
Bacillus PFINs. The core database schema is not just specific to Bacillus species,
but can be applied to capture the PFIN information of any species.

The capability of the B. subtilis PFIN to recover protein interactions identified
in the KEGG pathway database is shown in figure 5.1. However, within this figure,
a common trend can be seen for the other Bacillus species. After a composite pair
weight is exceeded, the number of TPs decrease, unlike that observed for B. subtilis.
This suggests that KEGG, or the datasets themselves, are incomplete, and a lot still
remains unknown about these other Bacillus species.

The lack of data sharing and accessibility were factors that limited the integration
of a number of resources into the networks. There were cases where appropriate data
sources were found that could be incorporated into the PFIN, but the inability to
download these resources prevented this from happening e.g. SPiD [Hoebeke et al.,
2001].

For those data sources that were used, in some cases these could have been used
more effectively. The method of incorporating BLAST results is one such example,
which could have been improved by using Inparanoid [Remm et al., 2001] to generate
orthologous protein links. Another example is the method of inferring protein pairs
based on GO. A more thorough approach to including GO predicted protein-protein
interactions is to estimate the semantic similarity between annotated proteins [Lord
et al., 2003]. This approach was employed in interactome development in Brown and
Jurisica [2005] and Wu et al. [2006].

The integration of a variety of data sources to build the PFINs was important in
ensuring a large degree of coverage in terms of the size of the proteome, as the coverage
of each experimental dataset differs. Each experiment has different associated error
rates too [Lee et al., 2004]. Therefore using data integration methods strengthens

links that are common.
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Relying on a gold standard has many drawbacks in itself. It prevents the inclusion
of the gold standard dataset into the networks. Perhaps more significantly, the final
weightings associated with each link between a pair of genes is dependent on the
accuracy and coverage of the gold standard. The development of methods to integrate
data sources without having to rely on a gold standard are therefore needed; such a
method has been documented in Deng et al. [2004].

The design and implementation of SubtilNet allows for easy expansion, whether
that be to include additional evidence datasets or to extend to other species. The
core framework is generic and therefore does not require any modification in order to
use.

The majority of the tasks performed in computing a PFIN are computationally
intensive. Therefore, a greater utilisation of e-science technology could be most ben-
eficial. The current system setup is e-science-based in the sense that system makes
use of shared data that is integrated in order to calculate the PFINs. However,
transferring the current ’single host system setup’ to a distributed workflow-based
implementation would not only improve usability, but also provides a means of using
remote resources to perform intensive calculations.

Developing these PFINs provides a mechanism to explore unknown functions and
hypotheses that would otherwise not be so readily accessible. Specifically, data con-
cerning unknown and previously unidentified links in the PFINs can be determined,
from which functional predictions and relations can be judged. Functions can be
inferred by viewing and querying the PFINs individually, but also via cross-species

comparison.
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Chapter 6

The application of PFINs to the
systems level analysis of secreted
protein families

6.1 Introduction

This chapter documents cross-species interactome comparison between Bacillus species.
Interactions between members of the protein families representing similar secreted
Bacillus proteins, identified by BaSPP, were investigated.

The analysis of these PFINs has been made easier with the availability of com-
putational methods capable of reducing and visualising interactomes, either within
a single interactome or between interactomes, enabling a more efficient means of ex-
tracting information e.g. by using clusters. Interactome comparison is an area of
active research, with still much scope for improvement. This is particularly true in
regards to prokaryotes. Analysing the proteins in terms of their interactions within
and across species can lead to further insights into the properties of the secretomes

of Bacillus species.

6.2 Methodology

A number of secreted protein families, previously identified as interesting by the

BaSPP system, were further explored in the context of their PFINs. Each family of



150
interest was taken separately. For each family, clusters identified by MCODE that
were found to contain a protein member were extracted. In cases where proteins did
not belong to a cluster, first-neighbours were used instead.

Links between the separate species-specific clusters (or first-neighbours) were then
inferred using orthology. To identify orthologous interactions the program Inparanoid
was used [Remm et al., 2001]. This program has the benefit of providing confidence
scores based on BLAST, which can be used to weight the vertical cross-species links.
Paralogues were ignored in this process, with only the main orthologue pairs used
to infer cross-species links. As orthologue links are weighted differently from links
within the PFINs, the scores associated with the horizontal and vertical links were
normalised by dividing the edge weights by the maximum edge weights, for the PFIN
and orthologous links respectively. The links were then integrated to provide a cross-
species subnetwork representation of the regions of interest. This process resulted
in a multi-species sub-PFIN consisting of horizontal interactions (within the same
species) and vertical interactions (across species).

The cross-species subnetwork of highly connected clusters were then displayed in
Cytoscape, in order to visualise the interactions and their meaning. The network was
colour-coordinated to highlight the proteins belonging to different organisms. All sub-
networks were then analysed using a Cytoscape plugin, called BINGO [Maere et al.,
2005), to identify those GO categories that were over-represented in the subnetwork.

6.3 Results

6.3.1 Analysis of cross-species clusters incorporating protein
families

Nine protein families identified in chapter 4 were investigated in terms of their interac-
tions, in order to identify additional information to that gathered by sequence analysis
techniques. This corresponded to five out of nine of the non-pathogen-specific families,
three out of ten of the pathogen-specific families, and the core PrsA family. In some
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instances, members of the protein families are not represented within their respective
PFINs, either because the composite weights associated with their interactions are
all less than the threshold cutoff, which is generally the case, or because there are no
associated interactions involving the protein, according to the evidence datasets used.
This explains the absence of certain members of the remaining protein families from
being represented in their protein family cross-species subnetworks, but also explains
why the remaining four non-pathogen-specific families and seven pathogen-specific
families were not analysed. The core PrsA family was also analysed as much still
remains unknown about the function of PrsA and its interactions, despite being well
understood in terms of it structure. The known pathogen and non-pathogen specific
families were also the focus of the analysis. The cross-species subnetworks, or in some
cases only a species-specific subnetwork, of the pathogen- and non-pathogen-specific

families, as well as the core protein family PrsA, are shown in table 6.1.



Table 6.1: The cross-species subnetworks representing the protein families (identified by BaSPP) specific to the known pathogens
and non-pathogens, as well as the core protein family encoded by prsA. Apart from B. subtilis, whose members are represented
by gene names, the members belonging to the other species are represented as locus tags, with the gene name in brackets
if known. B. licheniformis (strain ATCC 14580) refers to the substrain Novozymes for which a PFIN was developed, not

Goettingen. Three letter abbreviations of the Bacillus species are used to define the colour coding. Square boxes indicate
family members.

[ Family [ Protein members LCross-species subnetwork ]

CORE FAMILY

prsA

Family members:

B(C_1043 - Protein export protein prsA precursor

BC_1161 - Peptidyl-prolyl cis-trans isomerase

BC_2272 - Protein export protein prsA precursor

BC_2862 - Protein export protein prsA precursor

BCE33L0952 - protein export protein

BCE33L1061 - peptidyl-prolyl cis-trans isomerase

BCE33L2101 - protein export protein

BLO00855 - putative PpiC-type peptidyl-prolyl cis-trans isomerase
yacD - similar to protein secretion PrsA homologue
prsA - molecular chaperone

BT9727_0962 - protein export protein prsA
BT9727_1066 - peptidyl-prolyl cis-trans isomerase
BT9727_2115 - protein export protein prsA
BT9727 2619 - peptidylprolyl isomerase

(Note: GBAA1041, GBAA1169, GBAA2336, BA_1041,

ABC1527, BH1177 and BL02827 are absent from refined PFINs.)

BA_1169,
BA_2336, BAS0974, BAS1084, BAS2178, BCE_1145, BCE_1280, BCE_2359,

Blue = bsu, green = bce, orange = bcz,

red = bli, yellow = btk
.
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BT9727_2619(prsA)
BT9727_0962(prsA)

Subnetwork members:

BL0O0853(yacB), BLO0854(hslO), BLOORHT (cysK ), map, yacC, clpX, clpP,
BCE33L3673(murFE),

htrA, BCE33L0220(murF), BCE33L4438(murC),
BCE33L3500(pepT), BCE33L3671(murD), BCE33L1980(murF)
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BT9727_1066(prsA)

BCE3 prsA)

BT9727_2115(prsA)
BCEJ.(pnA)
BCEJ'pnA)
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[Tamily E’rotein members

| Cross-species subnetwork

NON-PATHOGENIC FAMILIES

aralN

Family members:

araN - sugar-binding protein

(Note: ABC3471, ABC3774, ABC0385, ABC3301, ABC3215, BH0905,
BH1117 and BL00348 are absent from the refined PFINs.)

Blue = bsu

Subnetwork members:
araP, araQ), araA, araB

Family members:
flil
(Note: ABC2259, BH2447 and BL01263 are absent from the refined PFINs.)

Blue = bsu

Subnetwork members:

fiiP, fikA, fihB, fiZ, yizH, fIkF, fliR
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[ Family

Protein members

Cross-species subnetwork

pelA/
pelB

Family members:

BHO0698 - pectate lyase

BH3819 - high-alkaline pectate lyase

BL00947 - pectate lyase, Polysaccharide Lyase Family 1
BL03760 - pectate lyase family 1,Pell

BL00361 - pectate lyase, Polysaccharide Lyase Family 1
pel - pectate lyase

pelB - pectate lyase

(Note: ABC0063 is absent from the refined PFIN.)

Subnetwork members:
BH1739, BH3072,

BH1872(araB),
BHO0981,

BH2996, BH0292,
BH3460, BH2676(gntK).
BH1937, BH3348, BHISS0,

BH1952,
BH2708,
BH3333, BHO0275,

BH3635, BH4044, BH3179(pepQ). BH0694, BH1551,

BH3851(mtlD), BHI1185(hpr), BH3212, BH3683(zynB),

BH0645, BH2303, BH3924(mmgD), BH2176,
BH1857 BH3043(hemL),  BH2086,
BL()2064( yabJA), BL02316(acpA),
BL02370(yaal), BLO1727(lchAB),
BLO3970(tal), BLO2774(trpD), BL03966(pyrG).
BLO1728(lchAC), BL02776(aroH), BLO01707(aroK),

(

22(

(

(

BH1867,

BL04023(dhbB),

BL02079(aroD),
BL02201(dal),

BL03932(dItC), BL0O3110, BLO1726(IchAA),
BL00522(yab.J) BLO0859(pabA),

BL02772 lmf) BLO01482(purL),
BLO2768(tyrA), BL01477(purK),
BLO3517, BLO1495(ywoF'),
BLO1851, BL04024(dhbF'), BL02148(yunD), BL01308, BLO01613(ade(),
BL00195(gntK), BL01663, BL03597(yupA). BL02704(glmS), BLO1750
yomE, yfiA, hzlA, uzaC, yclG, yvpA, ywoF, yobO, ycbC, yorA, ycbH

BL02779(aroF),
BL01544(yqghS),

BL02766(aroE),

BLO3673(edd), BLO1605(fruK),

BH1873(araA),
BH3649, BH2061,
BH3815,
BHO0391, BH0774, BH0545, BH3077, BH1878, BH2384, BH2504, BH2696,
BH1871(amD),
BH2756(zylB), BH4037, BH3887, BH1840(fabF'), BH1843, BH0494(pelX ),
BH1132,
BH3907(bioF), BH2800, BH2492(fabD), BH2164, BH0945, BH0943(gsaB),
BH3160(citZ), BH3000(arsR), BH2734, BHOO80, BH0326, BH3724(kdgK ),
BH0065(gcaD),
BL02612,
BL04022(dhbE),
BLO2771(trpB),
BL02566(alr2),
BL04020(dhbA),
BL00724,
BLO02773(trpC),
BLO1126(apt), BL0O1892, BL00244(i0lC),
BL02068(yabJB),
BL00869,

(See figure G.4 for larger version.)

Blue = ban, red = bar, green = bat,
orange = bcz, yellow = btk.
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[ Family

Protein members

Cross-species subnetwork

sppA

Family members:
ABC2747 - signal peptidase SppA
(Note: BH3198, BL00425 and sppA are absent from the refined PFINs.)

Subnetwork members:
ABC2212(tepA)

Red = bel

AB’pA)

AB

pA)

yqfA

Family members:
yqfA - unknown
(Note: ABC1672, BH1357 and BL01411 are absent from the refined PFINs.)

Subnetwork members:
phoH, yqfB

Blue = bsu

L

GaI1



mmily [ Protein members

l Cross-species subnetwork

PATHOGENIC FAMILIES

A

Family members:

GBAA2803 - S-layer protein, putative

BA2803 - S-layer protein, putative

BAS2613 - S-layer protein, putative

BCE33L2530 - S-layer protein

(Note: BT9727_2561 is absent from refined PFIN.)

(See figure G.2 for larger version.)

Blue = ban, red = bar, green = bat,
orange = bcz, yellow = btk.

Subnetwork members:

BA0607, BA1420(leuA), BA0806, BA1330, BA1015, BA3704, BA3631,
BA4157(pyc), BA1423(leuD), BA1016, BA1556(mgsA), BA3208, BA5588,
BA4888(ackA),
BA3701, BA3198, BA3399, BA3330, GBAA1330, GBAA4109(fosB-2),
GBAA1016,
GBAA0589,
GBAA1556(mgsA),
GBAA2042(fosB-1), GBAA3208, GBAA3704, GBAA3198, GBAA3330,
GBAA1015, BAS1314, BAS0574, BAS3326, BAS3859, BAS3367, BAS3818,
BAS5192, BAS3431, BAS1230, BAS0557, BAS3152, BAS1311, BAS4535,
BAS2973, BAS1443, BAS2983, BAS0951, BAS0950, BAS1895, BAS3434,
BCE33L1285(leuA),
BCE33L2152,

BA0589, BA4109(fosB-2), BA2042(fosB-1), BA3587,
GBAA4888(ackA), GBAA4157(pyc),
GBAA5588, GBAA3631,

GBAA1423(leuD),

GBAA1420(leuA),
GBAA3399, GBAA3587,
GBAA0607,  GBAA3701,

BAS3087, BCE33L4381(ackA), BCE33L2530,
BCE33L5043(hbd),  BCE33L5085(pta),
BCE33L1416(mgsA), BCE33L3707(pyc)

BCE33L2980,

991



[Family

Protein members

Cross-species subnetwork

Family members:

BT9727_1739 - conserved hypothetical protein

(Note: GBAA1900, BA1900, BAS1762 and BCE33L1711 are absent from
refined PFINs.)

Subnetwork members:

BT9727_0704, BT9727_0733(scrA), BT9727_0152(glmM)

BT9727_1060, BT9727_0421, BT9727_3469(chiA), BT9727_0878(bglH)

BT9727.0347, BT9727_0576(rbsK), BT9727_3364, BT9727_2296(:0lC)
)
)

Bl
N
N

BT9727_0702(celB), BT9727_0542(treB), BT9727_5049(pfoR

BT9727_0348(ptsG), BT9727_3755(nplT), BT9727.0415(nagE),
BT9727.0543(treC), BT9727.0818, BT9727_2254(celB),
BT9727_0044(gcaD), BT9727_0877(bglP), BT9727_0362(chiA),
BT9727_0666(scrK ), BT9727.0667(scrB), BT9727_0668(scrA),
BT9727_2252(yngK ), BT9727_2498(pulA), BT9727_2564(ampD),

BT9727_2762, BT9727.3028, BT9727.3173, BT9727_3202, BT9727_3219
: BT9727.3261(amyS),  BT9727_3462(frud),  BT9727_3463(fruB),
BT9727_3756(mall), BT9727_3791(ptsG), BT9727_4007,
BT9727_4434(amyX), BT9727_4577(kdgK ), BT9727_4598(glgC),
BTY727_4599(glgB), BT9727.4630(gtaB), BT9727_4631(manB),
BT9727_4879(ugd), BT9727_4888(celB), BT9727_4895(celB), BT9727_4949,
BT9727_4956(gtaB), BT9727_4969(murA), BT9727_5018(murA2)

(See figure G.1 for larger version.)

Blue = btk

LST



Family

Protein members

Cross-species subnetwork

Family members:

GBAAZ2500 - hypothetical protein
BA2500 - hypothetical protein
BAS2320 - hypothetical protein
BCE33L2241 - group-specific protein
BT9727_2285 - hypothetical protein

Subnetwork members:

BA0784, BA2953(ar0A), BA1251, BA0011, BA3131(adhB), BA3544(qor-
2), BA1250(trpD), BAO0010, BA3435, BA1252(trpF), BAO675,
BA3428(gntK), BA0665(rbsK), BA1004, BA2647, BA2267, BA3438,
BA2113(qor-1), BAO0266(groES), BA4561(aroE), BA0176, BA2588,
BA3566, GBAA2953(aroA), GBAA2647, GBAA1250(trpD), GBAA2267,
GBAA3428(gntK), GBAA0665(rbsK), GBAA0010, GBAA1252(trpF),
GBAA0266(groES), GBAA1251, GBAA3131(adhB), GBAA2113(qor-1),
GBAA2588, GBAA1004, GBAA4561(aroF), GBAA0675, GBAA0784,
GBAA3566, GBAA0176, GBAA0011, GBAA3438, GBAA3544(qor-
2), GBAA3435, BAS0641, BAS2912, BAS1160, BAS2744, BAS2111,
BAS1158, BAS0013, BASI1159, BAS3306, BAS3177, BAS3286,
BAS3186, BAS4232, BAS0939, BAS0747, BAS2466, BAS0014,
BAS0632, BAS3184, BAS2412, BAS0178, BAS3260, BAS3261,
BAS1965, BAS0252,  BCE33L1133(trpC),  BCE33L0012(guaA),

BCE33L4080(aroE), BCE33L1134(trpF), BCE33L0011(pdr1),
BCE33L1132(trpD), BCE33L0575(rbsK ), BCE33L2673(aroA),
BCE33L4596(kdgK ), BCE33L0155(gntK ), BCE33L3078(gntK ),
BT9727_3202, BT9727_0415(nagFE), BT9727_0152(glmM ),

BT9727_3791(ptsG), BT9727.0011(pdx1), BT9727_0576(rbsK )

(See figure G.3 for larger version.)

Blue = ban, red = bar, green = bat,
orange = bez, yellow = btk.
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6.3.2 A detailed cross-species analysis of the core PrsA pro-

tein family and interacting partners using PFINs

Cross-species PFINs were used to investigate the distribution of PrsA orthologues and
interacting functional partners within the core PrsA protein family. The objective
of the study was to demonstrate how the PFINs can be used to shed light on the
function of the secreted protein families by focusing on the PrsA protein family as a

use case.

6.3.2.1 The PFIN for the core PrsA protein family

The PrsA cross-species subnetwork, shown in table 6.1, did not provide a detailed
picture of the functional interactions in which PrsA is involved, as not all PrsA
family members are represented. Proteins belonging to B. anthracis (Ames), B.
anthracis (Ames ancestor), B. anthracis (Sterne), B. cereus (ATCC 10987), B. clausi,
B. halodurans and B. licheniformis were not included in the PrsA cross-species PFINs.
This was because these proteins were not present in the respective PFINs, as the
composite weight associated with each of their functional interactions were less than
the threshold (set to five). It was subsequently decided this threshold was simply too
high. To overcome this, a lower threshold of two was used to construct a new set of
PFINs for each Bacillus species. As expected, these new PFINs contain each member
of the PrsA protein family. Visual analysis of orthologous relations within the PrsA
family reveals that there are three distinct sub-families of prsA orthologues (figure
6.1).

B. subtilis possesses a single copy of the prsA gene [Harwood pers. comm] which
falls into a subcluster together with a single copy of a prsA orthologue from each of
the other 10 species. In this analysis B. clausii and B. halodurans also appear to have
one copy of prsA. All of the B. anthracis strains and B. cereus (E33L) have three
prsA homologues each, whilst B. cereus (ATCC 14579) and B. thuringiensis appear
to possess four prsA homologues.

The products of the three single copy prs4 homologues from B. subtilis, B. clausi
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Figure 6.1: A graph-based view of the orthologous relationships in the PrsA protein
family. Dark green = B. anthracis (Sterne), light blue = B. anthracis (Ames an-
cestor), light pink = B. anthracis (Ames), dark pink = B. cereus (E33L). dark blue
= B. cereus (ATCC 10987), orange = B. cereus (ATCC 14579), light green = B.
clausii (KSM-K16), brown = B. halodurans (C-125), pale green = B. licheniformis
(ATCC 14580, sub_strain Novozymes), red = B. subtilis (strain 168) and yellow = B.
thuringiensis konkukian (strain 97-27).

and B. licheniformis appear to be central to the network, implying that they may
have been the root from which the multiple copies of prsA present in B. anthracus,
B. cereus and B. thuringiensis have evolved. Two additional prsA copies from B.
thuringiensis and B. cereus (ATCC 14579) appear to be most similar to the single
prsA copy from B. halodurans.

Examination of the annotation from the EMBL records of these genes reveals con-
siderable variation in annotation. Of the 28 proteins in the family, half are annotated
with the term export protein prsA’, whilst the others have various annotations sug-
gesting that they are peptidyl-prolyl cis-trans isomerases (PPlases). enzymes that are
responsible for helping proteins fold correctly. PrsA is a membrane-bound lipoprotein

that is known to help proteins fold correctly during the secretory process [Wahlstrom
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et al., 2003] and has a domain that is homologous with parvulin type PPlases, which
explains this annotation and the orthologous relationships within this family.

One of the main uses of PFINs are in the prediction of function for genes which
have not yet been characterised, using the guilt-by-association approach [Aravind,
2000, Oliver, 2000]. One candidate for such prediction is present in the prs4 homology
subnetwork. In addition to those proteins in the family annotated with the term
PPlase, yacD is a protein from B. subtilis that is of unknown function and not yet
annotated. The association of yacD with PPlases in this family through orthology
alone, allows us to hypothesise that, it too, is a PPlase; a hypothesis which would be
easily testable within the laboratory. Similar predictions can be made with respect
to other protein families.

The value of the PFIN approach is not, however, restricted to the inference of
protein function. Other discrepancies with published knowledge can arise, particu-
larly since many of the datasets used to construct a PFIN are derived from publicly-
available, but unpublished, databases. Consider, for example, the number of homo-
logues of prsA identified in the different Bacillus species using this approach. To
date, there has been no reported systematic experimental analysis of prsA and its
copy number in different Bacillus species. However, a recent experimental analy-
sis of B. anthracis reveals that it actually possesses four functional homologues of
PrsA [Williams, 2002], whilst our PFIN identifies only three in all three B. anthracis
strains investigated. We used quite stringent cutoffs for the identification of homol-
ogous genes, a factor which will undoubtedly affect the number of genes identified.
The relationship between strength of homology, as measured by Inparanoid scores,
and gene function in different species clearly requires further investigation. Analyses
of this kind further illustrates the value of PFINs as hypothesis-generation tools in
biology, and specifically the cross-species Bacillus PFIN for integrating and directing

research about this fascinating and economically-valuable group of organisms.
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6.3.2.2 The global structure of PFIN for the core PrsA protein family
and functional interacting partners

Whilst an examination of the orthologous relationships in the cross-species PFINs
is a valuable approach to help assign function to uncharacterised proteins, another
powerful way is by visual and computational analysis of the functional relationships
between the proteins in the Bacillus PFINs within individual species.

The cross-species PFIN for the PrsA protein family is shown in full in figure 6.2.
Functional edges were cutoff at a composite weight of two and orthology was assigned
between pairs of proteins whose sequences possessed reciprocal best BLASTp hits,
using the Inparanoid program. The resulting network contains 367 nodes representing
proteins, and 4461 edges representing functional interaction between the proteins.

Figure 6.2 shows the members of the PrsA protein family (square nodes) and those
proteins that are predicted to be closely functionally linked (round nodes). Whilst the
size of this network precludes displaying full details of the nodes, the general structure
of the network, including the extent of cross-species orthologous links (dotted lines)
and the density of within-species functional edges (solid lines) is clear. The protein
nodes fall into 11 clusters, each of which corresponds to a particular Bacillus species
(as indicated with the colour coding in the figure). Notably, B. subtilis has the most
dense cluster, almost certainly reflecting the more extensive amount of data available
for this well-studied organism.

When applying this network to the inference of function for previously unchar-
acterised proteins, an individual protein may be selected and its immediate neigh-
bourhood examined manually. However, the complexity of this network makes an
exhaustive manual analysis unfeasible. Alternatively, computational analysis can be
applied to the network. Algorithms for filtering out specific network properties, for
identifying pathways, or for identifying structure, such as clusters, can be applied.
Often a combination of these two strategies is optimal. In the next section such an
analysis of the PrsA protein family is described, as an example of the type of analysis

which can be performed.
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Figure 6.2: The cross-species PFIN for the PrsA protein family. Dark green = B. anthracis (Sterne), light blue = B. anthracis
(Ames ancestor), light pink = B. anthracis (Ames), dark pink = B. cereus (E33L), dark blue = B. cereus (ATCC 10987),
orange = B. cereus (ATCC 14579), light green = B. clausu (KSM-K16), brown = B. halodurans (C-125), pale green = B.
licheniformis (ATCC 14580, sub_strain Novozymes), red = B. subtilis (strain 168) and yellow = B. thuringiensis konkukian

(strain 97-27).
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6.3.2.3 Cluster analysis of the PrsA protein family PFIN

Cluster analysis of the network (in figure 6.2) identifies a number of distinct clus-
ters. Using the default values applied with the MCODE algorithm, approximately
30 clusters are produced. Interestingly, many of the clusters contain only nodes from
a single species. Each individual cluster can be the focus of a systematic, manual,
study. However, the cluster containing PrsA from B. subtilis is shown as an example.
The distribution of this cluster in the cross-species PFIN is shown in figure 6.3 and
its composition in figure 6.4. The majority of the edges in the cluster are assigned
through co-expression. Extracting those nodes that share a co-expression level above
0.3 from this B. subtilis PrsA cluster reveals two co-expression networks showing
that prsA is co-expressed with other known heat shock stress response genes such as
the sigmaB-regulated genes clpP, clpX, groEL and groES [Hecker and Volker, 1998].
Interestingly, the gene ywrQ, currently of unknown function, is a member of this
co-expression subnetwork. ywrO does not possess any orthologous links in the over-
all network but is known to possess orthologues in other Bacillus species [Anlezark
et al., 2002). The known stress response proteins Ctc and Gsi also cluster tightly with
a number of genes of unknown function, that are also potential targets for further
directed studies.

The cluster that contains a protein of unknown function, yacD from B. subtilis,
also serves as an example for further investigation. The distribution of this cluster in
the cross-species PFIN is shown in figure 6.5 and its composition in figure 6.6. YacD
appears to cluster with a number of ribosomal proteins, as well as protein folding

proteins (Tig and PpiB).
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Figure 6.3: Distribution of the prsA cluster in the cross-species PFIN (shown in
black).

Figure 6.4: A close-up of the functional cluster derived from the PrsA family PFIN,
containing prsA from B. subtilis.
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Figure 6.5: Distribution of the yacD cluster in the cross-species PFIN (shown in
black).

Figure 6.6: A close-up of the functional cluster derived from the PrsA family PFIN,
containing yacD from B. subtilis.
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6.4 Discussion

PFIN analysis is becoming a standard approach in systems biology. Analysis can
infer the functions of uncharacterised proteins, or identify clusters and crosstalk be-
tween pathways (e.g. Hallinan and Wipat [2006]). To date, most analyses have been
performed on single-species networks, or have involved the comparison of separate
networks. Here, this approach has been extended to incorporate homology links be-
tween species to construct a single PFIN for multiple species of Bacillus. Special
emphasis was paid to those interactions related to the secretomes of the Bacillus
species. Specifically the pathogen and non-pathogen specific protein families uncov-
ered in chapter 4, along with a core lipoprotein family, PrsA.

The majority of the non-pathogenic families previously identified in section 4.2.3.2
are not represented in the PFINs developed, as there interactions are below the thresh-
old weight applied. Of the few that do appear in the PFINSs, only the proteins AraN
(BSU28750) and FLL (BSU16300), as well the PelA /PelB family, were found in highly
connected regions (identified using MCODE).

Nothing substantial could be gained from the analysis of the arabinose utilisation
proteins in B. subtilis than had previously been documented in Indcio et al. [2003]
and Sé-Nogueira et al. [1997). The arabinose utilisation pathway is used by the
soil-based Bacillus species, specifically the non-pathogens, to degrade plant material
[Indcio et al., 2003]. The cross-species PFIN is based mainly on operon and co-
expression evidence data. It contains tightly clustered interactions involving other
similar proteins (AraA, AraB, AraN, AraP, AraQ). Missing from this subnetwork
are the other proteins involved in arabinose utilisation, and located on the same ara
operon encoded by araD, araE, araL, araM, araR and abfA, which would have been
expected to be observed in relation to these proteins. The only one of these proteins
not present in cross-species PFIN but that is observed in the B. subtilis PFIN is
AraE. The localisation of the AbfA enzyme is unknown, however predictions from
BaSPP indicate this protein is not secreted and is localised in the cytoplasm. As an
aside note, in addition to AraN, the other two secreted enzymes AraM and Aral are
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predicted by BaSPP to be secreted and cytoplasmic, respectively [Inicio et al., 2003).

The flagellar network uncovered in the B. subtilis PFIN contains the non-pathogen-
specific FliL protein, whose exact function is unknown. This cross-species PFIN con-
tains other related proteins (FliZ, FliP, FlIhA, FliR, FIhB, FIhF, YixH) involved in
flagellar synthesis. The interactions within the subnetwork are based on operon and
co-expression data. It also appears, from Gram-negative studies, that this subnet-
work mainly represents the flagellar export apparatus, thought to be composed of six
transmembrane components FIhA, FIhB, FliO, FliP, FliQ and FliR, the three chap-
erones FliJ, FliS and FliT, the ATPase Flil, and its regulator FliH [Arnam et al.,
2004]. Within the FliL subnetwork, four transmembrane components were identified
(FIhA, FIhB, FliP and FliR). It has been suggested on the basis of the location of
the fliZ gene in the fliZPQR cluster that in fact FliZ can be assigned as FliO. This
would leave FliQ as being unassigned to this PFIN cluster. However, as FliQ appears
in the overall PFIN with links between FlhA, FIhB, FIhF, FliL, FliM, FliR, FliY, this
suggests it is simply a casualty of the clustering algorithm. As for FIhF, the function
of this protein is unclear, although a GTP-binding motif has been identified. The
final protein of this cluster is YixH, another functionally unknown protein. It has
been suggested this protein acts as a chaperone for translocation of flagellar proteins
[Sonenshein et al., 2002].

Pectin lyases are a type of pectin-degrading enzymes secreted by many saprophytic
and pathogenic organisms. Pectin-degrading enzymes are important industrially, for
instance they have uses in the food and textile industries. Being able to understand
their mechanisms and functions will help improve these industrial systems [Soriano
et al., 2006]; studying the pectate lyase interactions in the PFINs can aid in this
process. However, despite the identification of highly connected pectate lyase (PelA
and PelB) regions in the B. halodurans, B. licheniformis and B. subtilis PFINs, with
exception of B. clausii, there were minimal cross-species interactions identified based
on orthology. This implies these proteins interact quite differently in the different
species, which is further suggested by the different sizes of the organism specific

connected regions. However, if the B. subtilis subnetwork is considered the most
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accurate, it could also be suggested that there could be missing links in the Pel
subnetworks of B. halodurans and B. licheniformis that could be inferred on the
basis of the B. subtilis segment. The large proportion of uncharacterised proteins
within the PelA and PelB regions also suggests a lot still remains unknown about
pectate lyase. However, an interesting finding was the discovery of the two protein of
unknown function YclG and YwoF, common across B. subtilis and B. licheniformis.
The identification of these proteins within this subnetwork indicates that these two
proteins are involved in the same pathway as PelA and PelB. However, YclG and
YwoF are likely to function in quite different ways to each other. Just like PelA and
PelB, YwoF is predicted to be secreted (as has been documented in Antelmann et al.
[2001]) whereas YclG is localised in the cytosol.

The members of the signal peptidase sppA family can only be considered in terms
the B. clausii PFIN. As this SppA protein does not lie within a highly connected
region, consideration of its neighbours reveals it interacts with only one other pro-
tein, another SppA homologue, TepA. These proteins are isolated in the PFIN, with
neither having any further interactions. The interaction is rather weak, based on
STRING textmining data and GOA. The identification of this isolated interaction
however provides no further indication about the functionality of these proteins than
what has already been determined in Bolhuis et al. [1999]. However, both SppA and
TepA are involved in secretion. TepA functions in the initial preprotein translocation
stage of secretion, located in the cytoplasm (consistent with BaSPP’s prediction),
whereas SppA is a typically a membrane protein involved in the processing of prepro-
teins [Bolhuis et al., 1999] (inconsistent with BaSPP). This latter case suggests the
prediction made by BaSPP that SppA is secreted is erroneous. The lack of any addi-
tional transmembrane domains being predicted by TMHMM is a potential downfall,
despite MEMSAT providing a positive transmembrane prediction.

Investigation of the YqfA protein family focused on the B. subtilis PFIN. Within
the B. subtilis PFIN, YqfA neighbours a functionally unknown protein YqfB and the
phosphate starvation induced ATPase PhoH. These three proteins (YqfA, YqfB and
PhoH) exist in isolation. The interactions are based mainly on KEGG expression
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data. This may suggest that the unknowns have functions similar to ATPases.

Of the 10 known pathogen-specific families identified in section 4.2.3.3, very few of
the proteins were found in the PFINs developed (by thresholding at a weight of five).
However, of the proteins in the pathogenic family E, BT9727_1739 was identified in a
highly connected region. Analysis of this cluster reveals a high proportion of proteins
involved in the carbohydrate transport system, phosphotransferase system (PTS).
Due to the secretory nature of this protein and the proportion of related proteins
involved in carbohydrate transport, this implies BT9727.1739 is a polysaccharide-
degrading enzyme, secreted into the environment to allow the organism to reduce the
polysaccharides into smaller components for the uptake and consequent metabolism
of these entities [Sonenshein et al., 2002]. The predictive involvement in carbohydrate
transport is supported by the finding in section 4.2.3.3 that this protein is likely a
glycosyl hydrolase, BNR repeat-containing protein. It is therefore likely that this
family of proteins, including BT9727_1739, as well as the other related pathogenic
proteins (GBAA1900, BA1900, BAS1762, BCE33L1711), are likely to be glycosyl
hydrolase, BNR repeat-containing proteins that operate in the carbohydrate transport
system PTS.

The pathogenic specific clusters A and L were the only other protein families that
could be viewed in the context of their protein interactions. However, as none of the
proteins in cluster A and L were found to be in a highly connected regions of the
network, their interactions were considered in terms of their first-neighbours.

The species-specific interactions of the proteins in cluster A, with exception to
BT9727-2561 which is not present in the B. thuringiensis konkukian (strain 97-27)
PFIN, show a high level of similarity, illustrated by the vast number of ortholo-
gous connections. The level of similarity is greatest across the three B. anthracis
subnetworks, with 22-23 proteins each. A significant proportion of these proteins
are recognised as being involved in organic acid metabolism, including antibiotic
responsive proteins. Interestingly, within the cross-species subnetwork, there exists
four outsider proteins (GBAA3330, BA3330, BAS3087 and BCE33L2980); these have

been annotated as penicillin acylase proteins. Links exist between the four unknown
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pathogen specific proteins and these penicillin acylases through Interpro domain en-
richment evidence. Earlier analysis of this protein family, detailed in section 4.2.3.3,
also revealed the presence of a beta-lactamase-like region in all but BT9727_2561. In
conjunction with the identification of penicillin acylase proteins it is likely the func-
tions of these proteins relate to penicillin synthesis. The function of the remaining
protein in this group, BT9727_2561, can potentially be inferred on the basis of these
findings; although the consequence of not having a beta-lactamase-like region may
alter the behaviour of this protein.

Sequence analysis of the pathogenic protein family L had uncovered no infor-
mation about the probable functions of these putative extracellular proteins. How-
ever, PFIN analysis reveals they are likely to be involved in aromatic amino acid
metabolism, based on their neighbouring proteins. Although showing this general
behaviour, the first-neighbour networks of these proteins are quite dispersed across
species, suggesting mechanisms of metabolism are quite different. It has previously
been identified that the greatest difference between species in regards to aromatic
amino acid metabolism is the mechanisms they use to regulate their expression [So-
nenshein et al., 2002]. Based on this deduction, it could therefore be suggested that
these pathogenic specific proteins are involved in this variable regulation mechanism.

The core lipoprotein family, PrsA, was also analysed, but in much greater depth.
This major extracytoplasmic folding factor has been shown to effect the function
of some essential translocated proteins involved in cell wall synthesis and functions
relating to the cell membrane [Tjalsma et al., 2000, Wahlstrém et al., 2003]. Initial
analysis of this protein family revealed the threshold used to construct the original
PFINs was set too high, excluding a large proportion of functionally related proteins
from the species-specific subnetworks, which in turn resulted in a minimal cross-
species PrsA subnetwork.

Reseting the threshold to a weight of two created a more detailed view of the
functional associations of PrsA across species. It can therefore be concluded that the
original threshold of five, used to construct all the cross-species PFINs, removed a

large proportion of the interactions. Analysis of the pathogenic and non-pathogenic
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families using the newly refined species-specific PFINs could provide additional insight
to that which has just been documented.

Also, as demonstrated by the PrsA cross-species PFIN, some expected orthologue
links are not identified by simply inferring orthology based on the main orthologue
pairs i.e. excluding paralogues. The inference of orthologues therefore requires an
improved strategy in order to increase the level of detail captured through the cross-
species PFINs generated.

Through analysis of the cross-species PrsA PFIN information concerning the inter-
actions of PrsA could be determined. Despite much being known about the genomics
of PrsA, the interactions in which it is involved are still not clear. However, in B. sub-
tilis, it appears that PrsA is tightly coupled to other known heat shock stress response
proteins (ClpP, ClpX, GroEL, GroES), as well as the functionally unknown protein
YwrO. In addition, within this cross-species PFIN, a number of genes of unknown
function interact with other known stress response proteins Ctc and Gsi.

Analysis of the B. subtilis cluster in the PrsA PFIN reveals the uncharacterised
protein YacD is associated with many ribosomal proteins, stress response proteins,
and proteins involved in protein folding. There are therefore potential targets iden-
tified in this PrsA PFIN for further directed studies, in particular with respect to B.
subtilis.

An advantage of the approach that has been implemented is that it is easily
extensible to incorporate new species and/or new datasets. Furthermore, alternative
properties can be investigated. Here the use of PFINs to investigate the secretome
was demonstrated, but other properties of interest can also be explored, whether that

be the interactions of a single protein, or a larger collection of proteins.
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Chapter 7

General discussion, conclusions
and future work

This study has explored the application of e-science technology, in particular \Web-
service based workflows, to the analysis of microbial genomes using secretory protein
prediction and subsequent protein family clustering. The comparison of clusters be-
tween organisms possessing different phenotypic properties (from pathogens to soil
living bacteria) has revealed novel protein families that are potentially important in
environmental adaptation. In particular a number of protein families were identified
that could be potential virulent determinants for the pathogen B. anthracis and close
relatives. Despite extensive conventional analysis, many protein families identified
emerged from this analysis without any clues to their function. Methods for the in-
tegrative analysis of functional genomic data were then applied to develop functional
integrated networks for all 11 Bacillus isolates whose complete genome sequence was
available at the time of the beginning of the study. These networks were constructed
for each species, and then integrated across species using orthology links, to facilitate
the functional analysis of the protein families of unknown function. Finally. the value
of cross-species probabilistic functional integrated networks for protein functional in-
ference was demonstrated through their application to a case study of the protein

family containing the secreted protein chaperone protein PrsA.
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7.1 Discussion

The number of publicly available workflows has risen rapidly with the availability of
accessible Web services and the development of Grid middleware and workflow en-
actors. Hundreds of workflows are available for use and new repositories are coming
online to promote workflow sharing [Goble and Roure, 2007]. The BaSPP system
presented here provides a novel set of workflows for the analysis of secreted proteins
and provides yet another example of the value of an e-science approach to bioinfor-
matics and genomic analysis. The ability to rapidly piece together annotation and
protein analysis pipelines in a much more rapid and flexible fashion than hand coded
applications is now becoming an accepted feature of e-science workflows [Alpdemir
et al., 2005, Li et al., 2004, Stevens et al., 2004a,b).

However, in addition to providing a useful tool for biologists, the BaSPP system
has also played a role in highlighting some of the areas of e-science that require further
research. Firstly, the available workflow enactors do not provide interfaces that are
flexible enough to customise for a particular application for a biologist in terms of the
data querying and result display interface. Hence, it was necessary to design a Web
portal that would allow a biologist to review and annotate the results of running the
prediction and analysis workflows.

Secondly, BaSPP attempts to deal with the three key e-science problems: distri-
bution, autonomy and heterogeneity. There were limited problems associated with
distribution, the main difficulty arising as a result of the relatively large datasets that
were being handled.

However, in many cases licensing issues will prevent a distributed approach from
being adopted and complicate the issue of workflow sharing. Many legacy applications
with licensing restrictions cannot be exposed to the outside world as services. Whilst
Grid technology has promised to address such issues, practical systems to validate
the rights of a user to access a service have yet to emerge. Service reliability was also
a persistent problem in this study. As a result of these factors, many of the required

services were implemented in-house, although still delivered using the Web services
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infrastructure.

Dealing with data heterogeneity was less of a problem for this study. The services
in the workflows mostly exchanged FASTA formatted protein lists. Using a custom
database and parsing code removed any other issues related with heterogeneity within
the application. In particular, the Grid based system, Microbase, was used to provide
previously processed result sets. Using Microbase, in which comparison of the bacte-
rial proteins has already been done and stored in a database, rapidly speeded up the
operation of the analysis workflow, providing an insight into what can be achieved
through interoperability of Grid based systems.

The putative Bacillus secretome data generated by the BaSPP workflows is also of
great interest to microbiologists. The results of categorisation show a high degree of
correlation to comparable bioinformatical analyses and validated experimental data.
The analysis of the secreted protein families also provided some interesting results,
particularly with respect to the pathogen-specific families. Laboratory verification of
these findings is needed using mutant, overexpression and microarray experiments.

However, a large proportion of the secretome is of unknown function. In the Bacil-
lus isolates categorised by BaSPP, there were 297 putative secreted families which
were classified as miscellaneous. This work therefore provides data to prime further,
biologically- and computationally-oriented investigations, to investigate the proper-
ties of these uncharacterised proteins, but also to confirm the predicted functions
uncovered from the analysis.

The BaSPP package can be easily applied to the analysis of other Gram-positive
bacteria, as demonstrated by application to Staphylococcus aureus, and with minor
tweaking can even be applied to Gram-negative bacteria. All newly analysed data
can be viewed and curated via the Web interface.

The concept of combining current bioinformatics programs is not a novel idea.
The classification workflow of BaSPP is generally a sequential process, in which the
predictions of different types of proteins occur at distinct steps in the workflow. How-
ever, three transmembrane tools are combined in parallel execution, which are sub-

sequently integrated in order to make a prediction based on whether one or more
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programs make a positive transmembrane prediction. Due to the resulting inaccu-
racy from incorporating MEMSAT and TMAP, the final decision rests solely with
TMHMM. However, the concept of combining the predictions of different tools to
make an overall decision was demonstrated. The strategy employed here resembles
Phobius?, in which transmembrane protein topology and signal peptide prediction is
combined using TMHMM and SignalP respectively. Phobius demonstrates a more
sophisticated method, using an HMM, to integrate the results from multiple tools to
make an overall prediction on the secretory nature of the protein [Kill et al., 2007).

Secretory protein databases that use standard hand coded applications have also
been reported previously. Secreted Protein Database? (SPD) is a collection of secreted
proteins from Human, Mouse and Rat proteomes. As well as manually extracting se-
creted proteins from SWISSPROT based on their subcellular information, a bioinfor-
matics workflow was also used, which incorporates the programs PSORT [Nakai and
Horton, 1999, results of which are filtered using TMHMM, and Sec-HMMER (which
uses a combination of CJ-SPHMM [Chen et al., 2003] and TMHMM to predict signal
peptides and transmembrane regions respectively) [Chen et al., 2005).

In addition, a system called Augur has been developed by Billion and co-workers
which also automates the process of categorising microbial surface proteins using
a workflow, displaying the results via a Web interface [Billion et al., 2006]. The
workflow is made up of four modules: orthologue detection (BLASTp), surface protein
prediction (SignalP, TMHMM, HMMs from Superfamily [{Gough et al., 2001] and
Pfam [Finn et al., 2006] for cell surface motifs, and pattern matching for lipoproteins),
COG classification to assign genes to functional groups based on BLAST, and SCOP
classification [Murzin et al., 1995]. The results are subsequently stored in a database.

Unlike Augur, which identifies cell wall binding repeats and covalent attachment
to the cell wall (LPXTG motif), BaSPP focuses solely on the covalent attachment
of surface proteins. Covalently linked surface proteins play a key role in the display
of surface proteins. The majority of these covalently attached cell wall binding pro-

1Phobius Website: http://phobius.cgb.ki.se
2SPD Website: http://spd.cbi.pku.edu.cn/
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teins are characterised by the sorting signal LPXTG [Cossart and Jonquitres, 2000].
However, fewer LPXTG containing proteins were identified than had been antici-
pated. This may be accounted for by the identification of an additional C-terminal
cell wall sorting signal NPQTN in S. aureus, B. halodurans, and B. anthracis, struc-
turally related to the LPXTG motif [Boekhorst et al., 2005, Tjalsma et al., 2004).
Other identified sortase substrates include an NAKTN motif [Bierne et al., 2004] and
QVPTGYV motif [Barnett et al., 2004]. Therefore, searching for this motif would most
likely have increased the count of the cell wall covalently attached proteins.

Augur and SPD are similar in operation to BaSPP, the significant difference being
that BaSPP uses a service-oriented approach via which users with no programming
knowledge can execute the workflow over their own datasets, as well as allowing the
user to view and curate the results via a Web browser; Augur and SPD only provide a
means of viewing already analysed data. BaSPP is also much more flexible. Services
can be re-ordered, added and removed much more easily than a hard coded workflow,
and remote programs and services incorporated more easily.

PFINs have proved to be very useful for predicting protein function in many dif-
ferent organisms including S. cerevisiae [Deng et al., 2004, Lee et al., 2004, Myers
et al., 2005, Stark et al., 2006], Human [Rhodes et al., 2005, Xia et al., 2006] and
others [Date and Stoeckert, 2006, von Mering et al., 2007]. To date the Bacillus
community have not had the benefit of such a resource. In this study PFINs have
been constructed for 11 different organisms from the genus Bacillus. The PFINs
constructed for the Bacillus species provides an insight into biological mechanisms
that would otherwise not be so easily identified/predicted. Specifically, data con-
cerning unknown and previously unidentified links in the PFINs can be determined,
from which functional predictions and relations can be judged. Functional inference
can be achieved through viewing and querying the PFINs individually, but also via
cross-species comparison. The development, analysis and comparison of the Bacillus
PFINs extend current studies which have largely focused on eukaryotes. Furthermore,
the scale of analysis has been increased to extend across a genus.

The integration of a variety of data sources to build the PFINs was important in
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ensuring a large degree of coverage in terms of the size of the proteome, as the cover-
age of each experimental dataset linking pairs of genes differs. Each experiment has
different associated error rates too [Lee et al., 2004]. Therefore applying probabilistic
methods of data integration strengthens links that are common and weakens those
that are not. The data sources available for Bacillus vary in their quality and size.
In addition, their have been far fewer genomic scale studies on Bacillus species than
for organisms such as S. cerevisiae. The PFINs constructed for Bacillus do not incor-
porate physical protein interaction data since no publicly available high-throughput
experiments have been carried out. In contrast to other model organisms (e.g. S.
cerevisiae), there are fewer high-throughput omic screens for the Bacillus isolates.

The use of a gold standard to uniformly weight the experimental data is not ideal.
This approach not only prevents the inclusion of the gold standard dataset into the
network, but the final weightings associated with each link between a pair of genes is
dependent on the accuracy and coverage of this benchmark. Therefore, better, more
sophisticated approaches are needed to weight experimental datasets for integration.

Comparison of the global structure of the PFINs visually showed the commonality
in their structures, especially amongst the closely related isolates. Analysis of the
network topology of the PFINSs revealed the Bacillus PFINs to be small-world, scale-
free, modular networks.

Using the Bacillus PFINs developed, the properties of some interesting secreted
protein families were investigated, including those specific to the pathogens and non-
pathogens, as well as the core family PrsA, by developing cross-species PFINs. It is
currently possible to integrate across species based on the individual protein families
identified by BaSPP, using clusters or first-neighbour based networks. Due to the
size and complexity of the Bacillus PFINs, a global network alignment is difficult.
However, newer network algorithms are now appearing that may make this possible
[Cootes et al., 2007, Flannick et al., 2006, Hirsh and Sharan, 2007, Koyutiirk et al.,
2004, Sharan et al., 2005).

The database contains the data and metadata used in constructing each Bacillus

PFIN. Through the course of development, the schema underwent continued changed
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as new constraints were placed on it. The resulting schema is to form the core of
the continued development in this area, with the planned construction of yeast and
human PFINs.

The use of PFINs to complement sequence homology to infer protein function
is now being recognised. Methods to provide this capability over PFINs are being
developed. An example is documented in Chua et al. [2007], describing the inference
of predicted Gene Ontology functional annotations using indirect networks. As mod-
elling and analytical techniques continue to advance, these PFINs can be exploited
further to explore biological mechanisms. The set of PFINs developed here promise
to be of great value to the Bacillus community.

Throughout this work, whether that be in regards to BaSPP or SubtilNet, the fo-
cus has been on sharing and integrating data, collaborating between bioinformatician
and biologists, in order to optimise the systems developed, and to be able to ex-
tract meaning from the results. To facilitate and help expand this process, e-science
will be valuable. In the omic era, with the ever increasing amount of data available
for analysis, e-science techniques will provide benefits in both dealing with scale and

promoting collaboration required for improving the functional annotation of proteins.

7.2 Conclusions

In conclusion, the investigation of predicted bacterial secretomes through the use of
workflows and e-science technology, as well as within and between species using PFIN
modelling techniques, indicates the potential use of computing resources for maximis-
ing the information gained as multiple genomic sequences are generated through data
integration. The BaSPP and SubtilNet frameworks developed provide a foundation
on which other studies can be conducted, for a range of organisms. The knowledge
gained from large scale analysis of secretomes can be used to generate inferences
about bacterial evolution and niche adaptation. Modelling biological systems using
PFINs provides & means of expanding component analysis to the broader context

of the system, as demonstrated within this thesis through application to the secre-
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tome. Both systems, whether used individually or in combination, can potentially

lead to hypotheses to inform future experimental studies, that can ultimately result
in a greater understanding of biology.

7.3 Future Work

One major future enhancement to this work relates to the e-science workflows devel-
oped. By using a notification service in conjunction with the workflows would provide
a way of automatically analysing recently annotated genomes for secretory proteins.
The need for users to interact with the workflow would therefore be removed, provid-
ing automatic updates of the database with new secretory protein data. Microbase
could be used for this purpose, which essentially provides the necessary framework,
enabling secretory protein categorisation and analysis to be added as a plugin.

In addition, the ability to migrate workflows and services closer to the data would
provide a significant advantage; often the service executables are smaller than the data
they operate over. However, this would be restricted due to the licensing constraints
of many of the tools used. Therefore, an alternative would be to investigate the
migration of workflows from the machine of their conception, to a remote enclosed
environment from which they are able to access services that are unable to be exposed
directly to third parties, and again Microbase could be utilised. Overall, the benefits
of developing a way of implementing a migration process would be most beneficial.

There were limited problems associated with distribution, the main difficulty aris-
ing as a result of the relatively large datasets that were being handled. Improved
data transport facilities, enabling transfer without SOAP packaging, as well as direct
transfer between third parties, would increase the speed of the workflow execution.
The new Taverna2 architecture should enable these functionalities [Oinn and Pocock
pers. comm].

The effect of using the latest versions of tools in the classification workflow could
also be explored in relation to the final putative secretomes. New improved versions

SignalP 3.0 [Bendtsen et al., 2004] and MEMSAT3 [Jones, 2007] could be added.
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A further enhancement would be to extend the classification process to identify
cell wall non-covalently attached proteins. These proteins often bind via a num-
ber of repeated domains, including choline-binding domain, NIpC/P60 domain, LRR
(leucine rich repeat), LysM domain, GW modules, S-layer homology motif [Desvaux
et al., 2006]. Currently, searching for these cell wall binding repeats is outside the
scope of BaSPP, but providing this functionality would be an obvious extension. It
may also be interesting to add pattern recognition for the cell wall covalent attach-
ment of proteins containing a NPQTN motif, previously identified in S. aureus, B.
halodurans, and B. anthracis [Boekhorst et al., 2005], as well as perhaps the NAKTN
motif and QVPTGYV motifs.

In tandem with many other ongoing systems biology projects, enhancements can
also be applied to the development and analysis of PFINs. An obvious addition would
be to use more data sources to generate the networks. New data sources for inclusion
may be new external datasets not previously incorporated; motifs identified upstream
of genes would be one such dataset. Identification of these motifs in-house by simply
analysing the genome means this source of data is applicable to any organism. Alter-
natively, data generated through analysing the PFIN itself may be plugged back into
the network, reinforcing links thought to be important; the identification of context
links would be one such case worth investigating, as utilised in Lee et al. [2004].

In building PFINSs, the gold standard plays a central role. An investigation could
therefore be undertaken into the development of a more substantial gold standard
dataset with a wider coverage of protein-protein interactions. However, as the use of
a gold standard removes the incorporation of this dataset from integration into the
PFIN, a better approach would be to weight the data without the need for a gold
standard.

The predictive capability and biases of the experimental datasets in relation to
their contribution to the final network could also be assessed. The contribution of
each experimental dataset individually to the network, as well the contribution to the
network of different combinations of datasets, could be analysed, potentially revealing

some other properties of the data being used.
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Recently, the analysis of PFINs across species is also an area of great interest. The
utilisation of the clustering algorithm MCODE to identify regions of high connectiv-
ity could be modified in order to use the alternative, and best clustering algorithm
(according to Brohée and van Helden [2006]), MCL. In addition the application of
alternative methods previously discussed in section 2.4.2 could also be utilised and
potentially built into the framework.

It would also be interesting in the future to extend the workflow concept to the con-
struction of PFINs. Due to the computational intensity of evaluating large datasets
during the development process, the lack of distribution was an obvious benefit. Using
a single host environment for execution and storage reduced the drawbacks associated
with moving large datasets. However, using a single host relies largely on the avail-
ability of a platform capable of hosting this environment. Furthermore, enhancements
may also be needed to improve performance depending on the growth of the infras-
tructure. Currently, many of the tasks executed in regards to PFIN construction and
comparison were very time-consuming. For example, the integration of the different
data sources for a particular organism takes approximately one day. The develop-
ment of e-science platforms for PFIN development and comparison could therefore be
a valuable contribution to this field, in which Grid resources could also be utilised.
A user could therefore utilise Grid technology to remotely add new sources, integrate
all or selected sources, to construct the PFIN, and finally view and query the PFIN.
For example, the Grid resource Microbase was a valuable commodity in developing
SubtilNet, in which pre-computed BLAST results were simply extracted, avoiding the
need to do time-consuming BLAST searches.

An additional Cytoscape plugin could be developed to allow SubtilNet data to
be exported to Cytoscape file formats at the click of a button. This could include
single PFINs, perhaps pre-computed and stored in the database, or cross-species
subnetworks generated on-the-fly. Exporting Cytoscape files would vastly improve
the usability of the SubtilNet framework, and make it more attractive to biologists.

The methodology developed for the Bacillus genomes is planned to be applied

to other organisms, including yeast and human. Extension of the in-house data
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warehouse to more species will allow other interesting comparisons to be made.

Therefore, there are many avenues for future work from the foundation systems
provided here. The SubtilNet framework provides the basis for the most significant
computational improvements and extensions, although additions to the BaSPP sys-
tem could also be applied. In biological terms, BaSPP enables the identification of
secreted proteins, such as those specific to the pathogens, that can be investigated
further in the wet-lab. SubtilNet, on-the-other-hand, is much broader in application,
providing an extensive resource for biologists and bioinformaticians to investigate

many different biological phenomena, which again, can be tested in the laboratory.
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Appendix A

Putative B. subtilis secreted

proteins

Table A.1: Putative Spl proteins predicted by the BaSPP classification workflow,
compared to Tjalsma et al. [2000]. Red boxes indicate proteins predicted to be Spl
by BaSPP but not predicted to be secreted by Tjalsma et al. [2000]. Green boxes
indicate proteins predicted to be Spl by BaSPP, but predicted to be SpII by Tjalsma

et al. [2000].

Gene Signal Peptide SPase I
abnAlBSl 28810 MKKKKTWKRFLHFSSAALAAGLIFTSAAPA EAA

amy’ E /BSU03 1040 MFAKRFKTSLLPLFAGFLLIFHLVLAGPAAASA ETA
aprE/BSU10300 MRSKKLWISLLFALTLIFTMAFSNMSYVQA AGK
aspB/BSU22370 MKLAKRVSALTPSTTLAITAKA KEL

fi_ll_i ;UBS[ 21460 - MKKWIVLFLVLIAAAISIFAYY STG

bdbD/BSU33480 MEKKKQQSSAKFAVILTVVVVVLLAAIVIINNKTEQG NDA
bglC/BSU18130 MKRSISIFITCLLITLLTMGGMIASPASA AGT
bglS/BSU39070 MPYLKRVLLLLVTGLFMSLFAVTATASA QTG
bofC/BSU27750 \ﬂCRFSTAYI.LLQULC SAAVFLIGAPSRALG AEV
bpr/BSU15300 MREKKTKNRLISSVLSTVVISSLLFPGAAGA SSK

bsn/BSU32540
capA/BSU35880

cccA/BSU25190 B
mEA/BSU25590
omGC/BSU24710
omGD/BSU24700

omGG/BSU24670

- MTKKAWFLPLVCVLLISGWLAPAASASA QTT

\{KKELSFHEKU.KLH\QQKKI\T\'KHVHAIPIVFVLMFAFMW‘
AGKA ETP

~ MKWNPLIPFLLIAVLGIGLTFFLSYKG LDD

MNWLNQHKKATLAASAAVFTAIMIFLATGKNKEPVKOQ A\P
MNEKGFTLVEMLIVLFISILLLITIPNVTK HNQ
MNIKLNEEKGFTLLESLLVLSLASILLVAVFTTLPPAYDNTAVR
QAA

MYRTRGFIYPAVLFVSALVLLIVNFVAA QYT

cotC/BSU17700
cotN/BSU24620
csn/BSU26890

cwiD/BSU01530

MKNRLFILICFCVICLFLSFGQPFFPSMILTY QA AKS
MGMKKKLSLGVASAALGLALVGGGTWA AFN
MKISMQKADFWKKAAISLLVFTMFFTLMMSETVFA AGL
MRKKL KWLSFLLGFIILLFLFKYQESN NDs
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ewlO/BSU34800 ~ MRKSLITLGLASVIGTSSFLIPETSKTASA ETL

dacB/BSU23190 MRIFKKAVFVIMISFLIATVNVNTAHA AID

dacF/BSU23480 ~ MKRLISTLLIGIMLLTFAPSAFA KQD

divIB/BSU15240 - MNPGQDREKIVNIEERIPKIKEQRKQKANRRLISEIMI FEDVVLI
VYLQTPISKY STI

divIC/BSU00620 MNFSRERTITEIQNDYKEQVERQNQLKKRRRKGL YRRLTVEG

~ ALVFLTAIVLASSVWS QTS

ditD/BSU38530 MKKRFFGPIOLAFILFAGAIA TIPS i

1/BSU38400 MEKNMSCKLVVSVTLFFSFLTIGPLAHA QNS

ezrA/BSU29610 MEFVIGLLIVII ALFAAGYFFRERKIYA EID S

fabF/BSU11340 MTKKRVVVTGLGALSPLGNDVDTSWNNAINGVSGIGPITRVDA
EEY T

fiL/BSU16300 ~  MKKKLMILLILIVIGALGA AAY -

ftsL/BSU15150 MSNLAYQPEKQQRHAISPEKKVIVKKRASITLGEKVLLVLFAA
AVLSVSLLIVSKAYA AYQ

ggt/BSUIS410 ~  MKRTWNVCLTALLSVLLVAGSVPEHA EAK

glpQ/BSU02130 MRENRILALFVLSLGLLSFMVTPY SA ASK

gtaB %70  MKKVRKAIIPAAGLGTRFLPATKA MPK

1db/BSTU03050 MMNKHVNKVALIGAGFVGSSYAFALINQG ITD

licB/BSU38590 MNILLVCAAGMSTSLLVSKMEKS AQE

lipA/BSU02700 ~ MKFVKRRIALVTILMLSVTSLFALQPSAKA AEH

lipB/BSU08350 MKKVLMAFIICLSLILSVLAAPPSGAKA ESV

IytB/BSU35630 MKSCKQLIVCSLAAILLLIPSVSEA ADS

htC/BSU35620 MRSYIKVLTMCFLGLILFVPTALA DNS

htD/BSU35780 MKKRLIAPMLLSAASLAFFAMSGSAQA AAY

htE/BSU09420 MKKQITATTAVVLGALFAHTSIR ELK

htE/BSU09370 MKKKLAAGLTASAIVGTTLVVTPAEA ATI

IytG/BSU31120 ~ MARKKIKKRKITISIFFLVSIPLAIFVIA TTL

IhtH/BSU32340 MITDIFKPGCRKLCVFNMKGDYFVKVLLSALLLLLFAFEPSASG
KKL

ItR/BSU35650 MRNERRKKKKTLLLTILTIGLLVLGTGGYA YYL

mdh/BSU29120 ~ MGNTRKKVSVIGAGFTGATTAFLIAQKELA D1V

mpr/BSU02240 MKLVPRFRKQWFAYLTVLCLALAAAVSFGVPAKA AEN

mreC/BSU28020  MPNKRLMLLLLCIILVAMIGFSLKGGR NTT

mirpE/BSU31640 MASQILLNVFLAFGWMFLSNSPSAAG

mtbP/BSU20250 MSKLRVMSLFSGIGAEEA ALR

nadB/BSU27870 MSKKTIAVIGSGAAALSLAAA FPP ;

uprB/BSU11100 MRNLTKTSLLLAGLCTAAQMVFVTHASA EES

uprE/BSU14700  MGLGKKLSVAVAASFMSLSISLPGVQA AEG

utdC/BSU10530 MKKIGIIGAGGIARAHA TAL

nucA/BSU03430 MTTDIKTILLVIVIIAAAAVGLIKGDEES ADQ

nucB/BSU25750 MRKKWMAGLFLAAAVLLCLMVPQQIOG ASS -

orfRMI/BSU19590  MKRQLKLFFIVLITAVVASALTLFITGNSSILGQKSASTG DSK|

pbp/BSUIS350  MKKSIKLYVAVLLLFVVASVPYMHQAALA AEK

pbpB/BSU15160 MIQMPKKNKFMNRGAAILSICFALFFFVILGRMAYIQITGKA
NGE

pbpD/BSU31490 MTMLRKIIGWILLLCIIPLFAFTVIASG m’mﬁ

BSUI0110  MFKIKKKKLFIPOILVLTAFLALIGYISIIFL GHY
MTSPTRRRTAKRRRRKINKRGKLLFGLLAVMVCITIWNALHR
NSEE NEP
MKWMCSICCAAVLLAGGAAQA EAV
aB/BSU01570 MNHFYVWHIKRVKQLIILIAAFAAASFFYIQRAVPLPVFS TDT
pel/BSU07860  MKKVMLATALFLGLTPAGANA ADL
pelB/BSU18650 MKRLCLWFTVFSLFLVLLPGKALG AVD

penP/BSU18800 MKLKTKASIKFGICVGLLCLSITGFTPFFNSTHAEA KSI



218

_ MNTLANWKKFLLVAVIICFLVPIMTRAEIAE A DTS

phoA/BST09410 MKKMSLFQNMKSKLLPIAAVSVLTAGIFAGAELQQTEKA SAK

phoB/BSU05740 MKKFPKKILLPIAVLSSIAFSSLASGSVPEASA QEK

phrA/BSU12440 MKSKWMSGLLLVAVGFSFTQVMVHA GET

phrC/BSU03780 MKLKSKILFVICLAAAAIFTAAGVSANA EAL

(phrE/BSU25840 MEKSKLFISLSAVLIGLAFFGSMYNGEMK EAS

phrE/BSU37470 WQKSWMAM PTH

phrG/BSU40310  MKRFLIGAGVAAVILSGWELA DHOQ

1] g MEKISRILLAAVILSSVFSITYL QS DHN|
hrK/BSU18920 MKKLVLCVSILAVILSGVALTQLSTDSPSNIQV AER
hy/BS ~ MKVPKIMLLSTAAGLLLSLTATSVSA HYV

sacB/BSU34450  MNIKKFAKQATVLTFTTALLAGGATQAFA KET

sacC/BSU27030 ~ MKKRLIQVMIMFTLLLTMAFSADA ADS

sdhA/BSU28440 VfSQSSHWGGGLAGI.MAm AES o

sipU/BSU04010 MNAKTITLKKKRKIKTIVVLSIMIAALIFTIRLVFYKPFLIEGSS
MA PTL i

sip\/BSU10490 MKKRFWFLAGVV! " KNA

sleB/BSU22930 MKSKGSIMACLILFSFTITTFINTETISA FSN -

spolID/BSU36750 MKQFAITLSVLCALILLVPTLLVIPFQHNKEAG ASV

spollIAB/BSU24420 ) A -

spolllAH/BSU24360 ~ MLKKQTVWLLTMLSLVVVLSVYYIMSPESKNAVQMQSEKS
ASD

spalIP/BSU25530 MRNKRRNRQIVVAVNGGKAVKAIFLFIVSLIVIFVLSGVLTSLR
PEL

spollR/BSU36970 MKKTVIICTYIFLLLSGALVGLAKEETA QKS

spaVD/BSU15170 MRVSNVTVRKRLLFVLLFGVIVFLIIDTRLGYVQFVMGEKLTSL
AKDS

sppA/BSU29530 MNAKRWIALVIALGIFGVSIIVSISMSFFESVKG AQT

stoA/BSU13840 MLTKRLLTTYIMLLGLIAWFPGAAQA EEK

tatAc/BSU17710 MELSFTKILVILFVGFLVFGPDKLPALGRAAG KAL

tatAd/BSU02630

tatAy/BSU05980
vpr/BSU38090

wapA/BSU39230
wprA/BSUL0770
xpaC/BSU00250

MFSNIGIPGLILIFVIAIIIFGPSKLPEIGRA AKR
MPIGPGSLAVIAIVALIIFGPKKLPELGKA AGD
MKKGIRFLLVSFVLFFALSTGITGY QA APA

"MKKRKRRNFRKRFIAAFLVLAIMISLVPADVLA KST

MKRRKFSSVVAAVLIFALIFSLFSPGTKAAA AGA
MQRFFHFLVWSLTSSATFVFIGILSFFGLNQSIFLSIVYGLASGA
AVY

xynA/BSU18840
5 aH)fBSl 00720
\bb( /BSU01650
ybbE/BSU01670
ybbR/BSU01760
E Et§‘§§( 01930

ybdG/BST01990
ybdN/BSU02040
ybfO/BSU02310
ybxI/BSU02090

MFKFKKNFLVGLSAALMSISLFSATASA AST

MKSK A AGA SSS
MRKTIFAFLTGLMMFGTITAASA SPD
MKTKTLFIFSAILTLSIFAPNETEA QTA
MDKFLNNRWAVKIIALLFALLLYVAVNSNQ APT
MNSLS 'S SKDEA KET
METLWKVLKIVFVSLAALVIIVSYSVFIY
MVKKWLIQFAVMLSVLSTFTYSASAVGYTA ITG
MKRMIVRMTLPLLIVCLAFSSFSASARA ASE
MKKWIYVVLVLSIAGIGGFSVHA ASS

‘byB/BSU02110
<bC
ye

~db1:x35l’64i40, .
vdcC/BSU04630

Emif

ddI/BSU04980

!le 02460

\'II\QKLLLSGLAVS'I'VGITSYI.IXDPS\'R QKA
MSRIRKAPAGILGFPVAPFNTQGTLEE EAL

MKAEFKRKGGGKVRLVVGMTGATGAIFGVRLLQWLEA AGY
MKSLLACLAIMIAGIATALFIG FED
MRLLWYASVLPKRVPS\VPLKSNKRFLPFTSIEKKGLKKVRKSF

VLLLTGLLAVLILSACG QKT =
MIDS J VN SIS &
MKTHIAWASACLLLVMLTGFFTIGQ QTY




\ddT/BSl 05100
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&mvnrvmm.nmmns,x KED
SHYKYPLIFTAFLLIAFCLIFES YHL |

db\/BSUOSE10 MKKILLACSSGMSTSLLVTKMKEY A QSI

vdh T/BST05880 MFKKHTISLLIFLLASAVLAKPIEA HT\

vdiK/BSU06000  MRNPVVWGMIVFAVGCIFTYLAASSPGSMWSEYSILIVVEA
AYN —

vdjM/BSU06250 MLKKVILAAFILVGSTLGAFSFSSDASA KH\'

vdjN/BSU06260 MKKRILLLAVIIAAAAAGVAFY VAK

'\Ql‘ T

vesW/BSU07050 MRRSCLMIRRRKRMFTAVTLLVLLVMGTSV: CPYKA EGA

vetM/BSU07230 MKHMLIAGGGIGGLSAAISLRKAGFS VTL

vhK/BSU08570 MKKKQVMLALTAAAGLGLTALHSAPAAKA APL

fkD/BSU07930 MMKKLFHSTLIVLLFFSFFGVQPIHA KKQ |

AkI/BSU07890 MNNERLMLKGIFLGAAAGAALSLLHKPTRQ ACG

gal/BSU08760 MSFFKKLAASAGIGA AKV

vhaH/BSU10000 MASGRSLLTGLFVGGIIGGAAVLLTAPSSG KQL

vhaK/BSU09960 MRTWKRIPKTTMLISLVSPFLLITPVLEYA ALA

Vi s 4 )\ g ‘

vheC/BSU09030 MAIIAIIAAVIVIAALITENVRNA SPG w

vheM/BSU09140 MLFNQRRGISPAALIIGSTMLITALSPQIROQR ISG

vheO/BSU09160  MLAVSSAIVSSAMYILSFPGQASG ITK

vhdC/BSU09360 Vﬂ\SLPYnALLFCGmVSMAAKgns DT

vheN/BSU09660 SPS 3

[ B AKEV

vhifM/BSU10280 MKKIVAAIVVIGLVFIAFFYLYSRSGDAYO S\VD

vhjA/BSU10440 MKKAAAVLLSLGLVFGFSYGAGHVAEA KTK

vitP/BSU11070 MQKSISFFVIFSILWGSLFLFSIGSLGTTPIPLTK DSK

vitY/BSU11170 MKKKLLAFALCTGAYAALFAYS\NSEQK

YjeM/BSU11910 MKKELLASLVLCLSLSPLVSTNEVFA ATT

vjeN/BSU11920 MKKKTKIILSLLAALIVILIVLPVLSPVYFT ASS

¥ ]dB’BSU11990 MNFKKTVVSALSISALALSVSGVASA HEI

Y Txnmm )

YjiA/BSU12200 MAAQTDYKKQVVGILLSLAFVLFVFSFSER HEK

vknX/BSU14350 MKKVWIGIGIAVIVALFVGINIYRSAAPTSGS AGK

vkoJ/BSU13280 MLKKKWMVGLLAGCLAAGGFSYNAFA TEN )

vkpC/BSU14460 MLRDLGRRVAIAAILSGIILGGMSISLANMPHSPAGG TVK

vkuA/BSU13980 MNLFFLAVFVLFTALIFKLGVVQIYEG EQH

vkuE/BSU14050 MKKMSRRQFLKGMFGALAAGALTAGGGYGYA RYL

vkuO/BSU14160 MFHKGATAVTASAFSGYFVAVQREGI

vivT/BSU13820 MTTKFTALAVFLLCFMPAAKIEHT QAS

vkwD/BSU13970 MKKAFILSAAAAVGLFTFGGVQQASA KEL

vIaE/BSU14750 MKKTFVKKAML TTAAMTSAALL TFGPDAASA KTP

MaF/BSUI4T60  MKKMNWLLLLFAFAAVFSIMLIGVEIAEKS |

VIbC/BSU14960 MEKNILRAMVILLICGTYVLFIQYGSVPEKK 5\13L -

\ 80¢ S

viqB/BSU15960 MKKIGLLFMLCLAALFTIGFPAQQADA AEA

vixF/BSU16260 MSGKKKESGKFRSVLLINLPLMFLLIAGGIVLWA AGI

vixW/BSU15250
".I. T

VixY/BST16700

MRGKSAVLLSLIMLIAGFLISFSFQMTKENN KSA
~ MRIKRSFISISVIMVIFGIMISVQFNSL KHP
~ MYKKFVPFAVFLFLFFVSFEMMENPHA [DY
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ymaC/BSUL7270  MRRFLLNVILVLAIVLFLRYVHY SLE
ymdA/BSUT6960  MIPIMMVLISILLILLGLVVGYFVRKTIAEA KIA
yncM/BSUL7690 MAKPLSKGGILVKKVLIAGAVGTAVLFGTLSSGIPGLPAADAQ
VAKA ASE
wmdA/BSUIT20 VLRF‘I‘KVVGPLSVLGLAAVI—'PLT Q A ERA
o
PISSIYA EDV
yneA/BSU17860 MIMSKESIFVGLFTVILSAVILMLSYTSSG QEL
yofF/BSUISIS0  MIPRIKKITICVLLVCFIMLSVMLGPGATEVLA ASD
-  MRKKVRKAVIPAAGLGTRFLPATEA QPK
yugK/BSU18280 MKVCQKSIVRFLVSLIGTFVISVPFMANA QsD
. m

mbmast 18820 MKIRKILLSSALSFGMLISAVP-\LA AGT
yobV/BSU19100 MKLERLLAMVVLLISKKQVOA AEL
yocA/BSU19130 MKKKRKGCFAAAGFMMIFVFVIASFLLVLLFENR DLI
vocH/BSU19210 MKKTIMSFVAVAALSTTAFGAHASA KEI
vojL/BSU19410 MKKKIVAGLAVSAVVGSSMAAAPAEA KTI
volA/BSU21540 MKKRITYSLLALL AVVAFAFTDSSKAKA AEA
valC/BSU21520 MKKRLIGFLVLVPALIMSGITLIEA NKK
yomL/BSU21320 MRKKRVITCVMAASLTLGSLLPAGYATA KED
vopL/BSU20850 MKKLIMALVILGALGTSYISA DSS
vogqH/BSU20630 MKRFILVLSFLSITVAYPIQINA SPM
vogM/BSU20580 MKLRKVLTGSVLSLGLLVSASPAF A rsp
vorN/BSU20330 ;
vasU/BSU20000 \fIRKILKIVbLLILLLIJ.VYSFFbPNSQI.F}_’B_ QLI
voxC/BSU18510 MIIVYISLAVLAVSIFLGVTVIQN KKK
vozM/BSU18960  MKKRLIGFLVLVPALIMWGITLIES NKK
ypbG/BSU22980 MKLSVKIAGVLTVAAAAMTAKMY ATA KGN
vpiP/BSU21840 MKL WMRKTLVVLFTIVTFGLVSPPAALMA DKP
ypmB/BSU22380 MRKKALIFTVIFGIFLAVLLY'SA STY
ypmS/BSU21730 MNKWKRLFFILLAINFILAAGFVALVLLPGEQA QVK
ypuA/BSU23370 MKKIWIGMLAAAVLLLMVPKVSLA DAA
ypuD/BSU23300 MGRIKTKITILLVLLLLL AGGYMYINDIEL KD\' -
vqfA/BSU25380 MDPSTLMILAIVAVANIVLAVFFTFVPVMLWTS, AGV
vqfZ/BSU25060 VYE ASA
vqgA/BSU25050 MKQGKFSVFLILLLMLTLVVAPKGKAEA ASS
vagF/BSU25000 : S

VQG DDY
vagW/BSU24800 MLLVVIFGLVALFALWGVLRSVR NKN
vqhP/BSU24500 MNHRVQPIAVLIALGAFGFLYVLVTNPGEMA KMA
vqiB/BSU23940 MRFFLCSIFMMISPIWPLGENPLPG DPY
vqiU/BSU23740 MNLSRKHEVKNMNIGDVMFQLFVFIIFAAVVEA AVT
vqkD/BSU23640 MKKILLAIGALVTAVIAIGIVFS, (KTD
vqxA/BSU25520 MIAYFGKCLLLVTIMFLGVLFGMQQANHGMLS
vqxUBSU25890  MFKKLLLATSALTFSLSLVLPLDGHAKA QEV
yqxM/BSU24640 m}mqommwmquwvsumaqrsoms AA
vqzC/BSU24940 VI‘I'KRGIQAFAGGIIIATAVLAAVFYLTDEm_-\ AAV
[yqzD/BSU24930 1

vqzG/BSU24650

MEIATALFIVSIATTAFSYSOR DPM|
- MMIKQCVICLSLLVFGTTAAHA EET
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yral/BSU26930 MVSESKSLTGCKKVKRTAFIRGGYKVNKLKRLSML TVMIASV
. FIFSSHALA AQY

yral/BSU26920 MTLTKLKMLSMLTVMIASLFIFSSQALAVQYFTVSTSSG APV

yirL/BSU27370 MYINQQKKSFFNKKRIILSSIVVLFLIGGAFLYGKSLLEPVEK
DSK

vitR/BSU27310 MKISKRMKLAVIAFLIVFFLLLLRLA EIQ

virS/BSU27300 MSNNQSRYENRDKRRKANLVLNILIAIVSILIVVVAANLFINSPS
SKDYSK DSE

yivI/BSU27580 MNKKYFVLIVCIIFTSALFPTFSSVTAAQG EAV

ytcA/BSU30860 ~ MKICVVGAGYVGLTLSAALASIG

yirl/BSU29240 MRVPQHYKKPGWQRFFAGMMCGAVISWFFFLFTYGTEQE
EQV

VitA/BSU30360 MVLAFLGFLACLIALGYGLYHLVRYVLKKEKRFSKRLFWPLF]
GGLVLLFTGAALAEPDTAAA NAE

vtxE/BSU29720 MKLRRERFERRNGSGKNSQSSSSWMVTFTDLITLILVFFILLFS
MSQIDLQKFKA AVD

vtxG/BSU29780 MIILYLSVALIAVAFLVLVIYLSKTLKS LQL

vizB/BSU29870  MKLRHLLLGAGLGICTAVAYR QYV

yuaB/BSU31080 MKRKLLSSLAISALSLGLLVSAPTASFA AES

yuaG/BSU31010 MTMPIOMIIGVVFFLLIALTAVFITKYRTA GPD ‘

yufS/BSU31590 MKTKVVMCSGLFCSVFAGAFMINQYDGRSGY AAC

yuiC/BSU32070 MMLNMIRRLLMTCLFLLAFGTTFLSVSGIEA KDL

yunB/BSU32350 MPRYRGPFRKRGPLPFRYVMLLSVVFFILSTTVSLWMING SIK

vusR/BSU3900° mmmm\
VSKSA

vusZ/BSU32980 MNKKIATVTGASSGFGLLAAYKL ARS :

vuzG/BSU32120 MAQNEEKTPKSQKIQDRIMAMIWVVAALVIALVVGTALN |
YIN

vwaY/BSU33770  MKSKLLRLLIVSMVTILVFSLVGLSKESSTSA KEN B

ywWhX/BSU34020 MKKWLIAVSLAIAIVLFMYTKGEAKA AGM

WIC/BSU34250  MILKRLFDLTAAIFLLCCTSVIILFTIAVVRL KIG|

W ,o /BSU33410 MKRIRIPMTLALGAALTIAPLSFASA EEN

W 35510 MAERVRVRVRKKKKSKRRKILKRIMLLFALAITVVVGLGGY |
KLYKTINA ADE \

viB/BSU35240 vmqm\mcsm_mcmwmmmmruvmu'

DSE

vwuBBSU35040 MRKYTVIASILLSFLSVLSGGHHESKA FPV

YWpA/BSU34950 MKKIVSILFMFGLVMGFSQFQPSTVFA ADK

ypB/BSU34940 MKTLRTLCVLMILSGVIFFGLKIDA KDI

WiP/BSU33280  MSKKKKWLIGGAICAGVLVLAGIGAGGF YFFTHMNQVAY SSE|

m%D_BsI’_SJTO mmmmml
MDD,
TAA KPS

ywcIBSU38080  MRRLLVSLRVWMVFLMNWVIPDRKTARA AVY

AweA/BSUIT800  MLKRTSFVSSLFISSAVLLSILTPSGQAHA QSA

ywgB/BSU37580 MKMKSGMEQAVSVLLLLSRLPVQASLTSEA ISQ

whEBSU373I0  MDAMINKRLRLTLKTVRAFIFLGAFAAT AAAAVFMTVILIAKY)
QGAPSVQVPQSTILYA SDG

ywEBSU37190  MKVFIVIMOVVIFFALILLDIFMGRAGY RKK

ywmB/BSU36770 MKKKQVSHAIISVMLSFVIAVFHTIHA SEL

yWmC/BSU36740 MKKRFSLIMMTGLLFGLTSPAFA AEK

ywmD/BSU36730 MKKLLAAGIIGLLTVSIASPSFA AEK
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SSS

ywoE/BSU36590  MSISSILISLFFILNILLANVIFKERRDA SAS)

ywnl/BSU36550 MREEEKKTSQVKKL QQFFRKRWVFPAIYLVSAAVILTAVLWY
QSVSN DEV

ywoF/BSU36460 MRKWYFILLAGVLTSVILAFVYDKIKA NEE

ywqC/BSU36260 MGESTSLKEILSTLTKRILLIMIVTAAATAAGGLISFFALTPIYE
NST

ywqO/BSU36140 MKFLLSVIAGLLILALYLFWKVQPPVWIQV ETN

ywsB/BSU35970 MNKPTKLFSTLALAAGMTAAAAGGAGTIHA QQP

ywitC/BSU35870 MKFVKAIWPFVAVAIVFMFMSAFK FND

ywtF/BSU35840 MEERSQRRKKKRKLKKWVKVVAGLMAFLVIAAGSVGAYA
FVK

yxaL/yxaK/BSU39940 MVKSFRMKALIAGAAVAAAVSAGAVSDVPAAKVLQPTAAYA
AET

yxiA/BSU39330 MFNRLFRVCFLAALIMAFTLPNSVY A QKP

vxiT/BSU39030  MKWNNMLKAAGIAVLLFSVFAYAAPSLKAVQA KTP

yx)k/ by

vxzE/BSU38790 MIVILLFISIIVFLSVIQPQPSKN KSR

yWbN/BSU40580 ) TRA SND

yycP/BSU40270 MKKWMITIAMLILAGIALFVFISPLKSHE TVS
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Table A.2: Putative Spll proteins predicted by the BaSPP classification workflow.
compared to Tjalsma et al. [2000]. Red boxes indicate proteins predicted to be Spll
by BaSPP but not predicted to be secreted by Tjalsma et al. [2000]. Green boxes
indicate proteins predicted to be SpIl by BaSPP, but predicted to be Spl by Tjalsma

et al. [2000].

Gene Signal Peptide SPase I
appA/BSU11380 MKRRKTALMMLSVLMVLAIFLSA CS
araN/BSU28750  MKKMTVCFLVLMMLLTLVIAG CS
cccB/BSU35270  MKSKLSILMIGFALSVLLAA CG
dacA/BSU00100 MNIKKCKQLLMSLVVLTLAVT CL
dppE/BSU12960 MKRGKRMKRVKKLWGMGLALGLSFALMG CT
feuA/BSU01630  MKKISLTLLILLLALTAAA CG
fhuD/BSU33320  MTHIYKKLGAAFFALLLIAALAA CG
gerAC/BSU33070 MKIRILCMFICTLLLSG CW
gerBC/BSU35820 MKTASKFSVMFFMLLALCG CW
gerD/BSU01550  MSKAKTLLMSCFLLLSVTA CA
gerKC/BSU03710 MVRKCLLA i CW
ger\/BSU28380 MLKKGPAVIGATCLTSALLLSG CG
ginH/BSU27440  MKKIFSLALISLFAVILLAA CG
IpLA/BSU07100  MKIRMRKKWMALPLAAMMIAG C$
WtA/BSU35640  MKKFIALLFFILLLSGCG
med/BSU11300  MITRLVMIFSVLLLLSG CG |
motA/BSU30770  MRQGLMAAVLFATFALTG CG
oppA/BSU11430  MKKRWSIVTLMLIFTLVLSA CG
opuAC/BSU03000 MLKKIGIGVSAMLALSLAA CG
opuBC/BSU33710 MKRKYLKIMIGLALAATLTLSG CS
opuCC/BSU33810 MTKIKWLGAFALVFVMLLGG CS
pbpC/BSU04140  MLKKCILLVFLCVGLIGLIG CS
prsA/BSU09950  MKKIAIAAITATSILALSA CS
rbsB/BSU35960  MKKAVSVILTLSLFLLTA CS
sip/BSU14620  MRYRAVFPMLIIVFALSG CT
ssuA/BSU08840

xynD/
ybbD/BSU01660

MEKKGLIVLVAVIFLLAG CG

MRPVFPLILSAVLELS CF
vbfJ/BSU02250  MYSTIFNIGQINKYSKLAIFMSILFLCG CS
veeC/BSU02690  MKKQRMLVLFTALLFVETG CS
vedA/BSU02780  MFQKKTYAVFLILLLMMFTAA CS
vedD/BSU02810  MNLPAKTFVILCILFLLDL CF
vedH/BSU02850 MFKKWSGLFVIAACFLLYAA CG
vciB/BSU03350 MKLSLFIIAVLMPVILLSA CS
vekB/BSU03380  MKSFMHSKAVIFSFTMAFFLILAA CS
vekK/BSU03610  MKKALLALFMVVSIAALAA CG
velQ/BSU03830  MKKFALLFIALVTAVVISA CG
vilaJ/BSU04270  MRHVLIAVILFFLSIGLSAG CA
[yddJ/BSU04990  MRNLFIFLSLMMMFVLTA CG

vdeJ/BSU05220

"MKKRRKICYCNTALLIMILLAG CT
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vdhF/BSU05730  MRRILSILVFAIMLAG C$
vdhK/BSU0S790  MSAGKSYRKKMKQRRMNMKISKYALGILMLSLVFVLSA <G
verB/BSU06570 ~ MKKWMTVCALCFVFFLLVS CQ

yerH/BSU06630  MKKTLALAATAAVLMLSA CS

\VIkR/BSU07780  MKKTIYKCVLPLLICILLTG CW
vimC/BSU07520 MRTYSNKLIAIMSVLITACLIVSG CS
vheJ/BSU09110  MKKWLICSFVLVLLVSETA CS
vheN/BSU09150  MFGKKQVLASVLLIPLLMTG CG
vjgB/BSU12150  MKKTMSAITAAAAVTS CF
yjhA/BSU12180  MKKVLLLLFVLTIGLALSA CS
vkol/BSU13270  MTKTIKTVSFAAAAILVVT CT
viaJ/BSU14800  MRILFIIQLTLILSA CA
vie/BSU15700 MLNNRNVLLCVSGGIAVYKA CAl
wyncB/BSU17620  MKKILISMIAIVLSITLAA CG
vudF/BSU17770  MKSKLKRQLPAMVIVCLIMICVTG CW
voaJ/BSU18630  MKKIMSAFVGMVLLIIF CF
voaO/BSU18680  MRKKNNIKKWLLIAGFLI C1
yobA/BSU18810  MPKIGVSLIVLIMLIFLAG CN
vodJ/BSU19620  MKKSGKWFSLAAALSVTAIVGAG CS
vojMU/BSU19400 MHRLLLIMMLTALGVAG CG
vokB/BSU21650  MNIRFSMLVCVSFIFFIGG CA
vokF/BSU21610 MKKVLLGFAAFTLSLSLAA CS
yon$S/BSU21010  MKLFKKLGILLLITSLILLAA CK
yozF/BSU18710  MKRVLFSVIVFTAVGETF CQ
yphF/BSU22810 MGKLKCAIIFAAVVFLSG CL
ypmQ/BSU21750 MKVIKGLTAGLIFLFLCA CG
ypmR/BSU21740 MKLRIFSIMASLILIITA CT
vqeF/BSU25700  MKHFIILFLLLFVIAG CE
vqgG/BSU24990 MKEKNKLVLMLLMAAFMMIAAA CG
vqgU/BSU24820 MLMRSVCFILLAVLLFSLSA CK
vqiH/BSU24200 MKQTVLLLFTALFLSG CS
vqil/BSU24190  MRMLWRSLALCGLALTLAP CA
vqiX/BSU23980 MKKWLLLLVAACITFALTA CG
yipD/BSU26820 MMKKGLLAGALTATVLEGT CA
vipE/BSU26830  MNILFSKRLGILTIGSLLVLAG CQ
vscB/BSU28890 LTGCS
vtcQ/BSU30160  MCLVLALGGVLAG CK

vtkA/BSU30660 MKKMLVVLLFSALLING CG
viLA/BSU30590  MNRWLRLGFACVGSIFLMFALAA CK
vtmJ/BSU29380  MNKRKGLVLLLSVFALLGGG CS
vtmK/BSU29370 vucrlcrArMAn.FSUTVI.;A <G
vufN/BSU31540
yurO/BSU32600 wawn_LFLnAAVSMLmG cs
vusA/BSU32730  MKKLFLGALLLVFAGVMAA CG
vusW/BSU32950 MHLIRAAGAVCLAVVLIAG CR
vutC/BSU32320  MKRTAVSLCLLTGLLSG CG |
wdG/BSU34610 MVLLKKGFAILAASFLAIGLAA CS
yWIK/BSU34160 MKMAKKCSVFMLCAAVSLSLAA CG
wWfO/BSU34120 MKSKVKMFFAAAIVIVSA CS
yvgL/BSU33380 .\m’vsmAALrAmm (&
MTA/BSU34850 ) S, 106G
ywirC/BSU33180 LAG CG
vwhbMUBSU38270 MNFTKIAVSAGCILALCAG CG
vxeA/BSU39620 MKKAMAILAVLAAAAVI CG
yvxeB/BSU39610 MKKNILLVGMLVLLLMFVSA CS
vxeF/BSU39570  MVIPLRNKYGILFLIAVCIMY'SG CQ
vxeMUBSU39500 MKMKKWTVLVVAALLAVLSA CG
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ysiM/BSU39120  MKKWMAAVFVMMLML CF

vxiP/BSU39090  MRRIGLCISLLVTVLVMSA CE
vxkH/BSU38800 MKRLFLSIFLLGSCLALAA CA
)-_\ mrmﬁm—q
SU40280  MKLKKRVSMFLVALTM CG
msrBSt 40240 MRFRWVWLFVIMLLLAE CQ
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Eene Comment T
citH | Not in proteome analysed by BaSPP.
iz Transmembrane domain detected.
mdr Transmembrane domain detected.
motB No SpI/SplI detected by BaSPP.

rmpG | Not in proteome analysed by BaSPP.
tyrA No Spl/SplI detected by BaSPP.
ydbK Transmembrane domain detected.
yfiS | Not in proteome analysed by BaSPP.
ykvV | Not in proteome analysed by BaSPP.
ynzA | Not in proteome analysed by BaSPP.
yodV No SpI/SplI detected by BaSPP.
yoll No SplI/SpllI detected by BaSPP.
ypcP No Spl/SplI detected by BaSPP.
yunA | Not in proteome analysed by BaSPP.
yurl | Not in proteome analysed by BaSPP.
yvcE | Not in proteome analysed by BaSPP.
yveB No Spl/SpllI detected by BaSPP.
yvgV | Not in proteome analysed by BaSPP.

ywdK Transmembrane domain detected.
ywfM Transmembrane domain detected.
ywtD | Not in proteome analysed by BaSPP.
yyaB Transmembrane domain detected.

Table A.3: Spl proteins identified by Tjalsma et al. [2000] but not BaSPP.

[ Gene Comment
ctaC Transmembrane domain detected.
qozA Transmembrane domain detected.

spollIlJ | Not in proteome analysed by BaSPP.

spolVB No SplI/SplI detected by BaSPP.
ygbA Not in proteome analysed by BaSPP.
yhaR No Spl/Spll detected by BaSPP.
yhf@Q No Spl/SpllI detected by BaSPP.
ykuH Transmembrane domain detected.
ymzC No Spl/Spll detected by BaSPP.
yqJG | Not in proteome analysed by BaSPP.

ytgA Not in proteome analysed by BaSPP.

ytrF Transmembrane domain detected.
yvcA Not in proteome analysed by BaSPP.
ywnJ Transmembrane domain detected.

yybM No SpI/SplII detected by BaSPP.

Table A.4: Spll proteins identified by Tjalsma et al. [2000] but not BaSPP.
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Appendix B

SubtiList classification codes

1. Cell envelope and cellular processes

(a) Cell wall

(b) Transport/binding proteins and lipoproteins

(c) Sensors (signal transduction)

(d) Membrane bioenergetics {electron transport chain and ATP synthase)
(e) Mobility and chemotaxis

(f) Protein secretion

(g) Cell division

(h) Sporulation

(i) Germination

(j) Transformation/competence
2. Intermediary metabolism

(a) Metabolism of carbohydrates and related molecules
i. Specific pathways
ii. Main glycolytic pathways
iii. TCA cycle
(b) Metabolism of amino acids and related molecules

(¢) Metabolism of nucleotides and nucleic acids
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{d) Metabolism of lipids
(e) Metabolism of coenzymes and prosthetic groups
(f) Metabolism of phosphate

(g) Metabolism of sulfur
3. Information pathways

(a) DNA replication
(b) DNA restriction/modification and repair
(c) DNA recombination
(d) DNA packaging and segregation
(e) RNA synthesis

i. Initiation

ii. Regulation

iii. Elongation

iv. Termination
(f) RNA modification
(g) Protein synthesis

i. Ribosomal proteins

ii. Aminoacyl-tRNA synthetases
iii. Initiation

iv. Elongation

v. Termination

(h) Protein modification

(i) Protein folding
4. Other functions

(a) Adaptation to atypical conditions

(b) Detoxification



(c) Antibiotic production
(d) Phage-related functions
(e) Transposon and IS

(f) Miscellaneous
5. Similar to unknown proteins

(a) From B. gubtilis

(b) From other organisms

6. No similarity

229
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Appendix C

SubtilNet GO level threshold
deduction based on B. subtilis
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Figure C.1: Predictive capability of GO process annotations at different depth thresh-
olds based on KEGG pathway. Points from left to right represent a threshold of depth
3 (i.e. terms at level 3 in the GO DAG and below, where root is level 1) to a maximum
threshold of depth 11.
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Appendix D

SubtilNet log likelihood
calculations for B. subtilis

Before After
=2 | I=3
LLS | 1.829 | 1.7700 | 1.8011

Table D.1: Log likelihood scores for unweighted BLASTp pairs before and after clus-
tering with MCL, using different inflation (I) values.

DBTBS | COGs | BLASTp PREDICTOME
operon phylogenetic profiling
LLS | 3.7839 | 0.7568 | 1.8291 3.0757

Table D.2: Log likelihood scores for unweighted datasets.
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Figure D.1: Log likelihood score calculated for cocited genes based on KEGG pathway
benchmark using bins of size 215 pairs.

Loglikelihood sco

Figure D.2: Log likelihood score calculated for proteins sharing common interpro
domains, based on KEGG pathway benchmark using bins of size 4377 pairs.
protein pair is based on whether two proteins share one or more domains.
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domain enrichment ratio per shared domain is summed to calculate the final weight

for the pair.
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Figure D.3: Log likelihood score based on the distance between the lowest GO terms
for a pair of proteins compared to KEGG pathway benchmark. A minimum GO term
depth of level 7 was considered. Bins of size 8899 pairs were used.

Loglikelthood score
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Figure D.4: Log likelihood score calculated for co-expressed genes based on KEGG

pathway benchmark using bins of size 69343 pairs.
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Figure D.5:
KEGG pathway benchmark using bins of size 47 pairs.
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Appendix E

SubtilNet network topologies

Table E.1 shows four distribution plots describing the network topology for each
Bacillus PFIN. Top left graph shows the node degree distribution, top right shows
the average clustering coefficient distribution, bottom left shows the shortest path

length distribution.
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Table E.1: Network topology.

log N

log C(k)

Frequency

B. anthracis (Sterne)

0.2 1
0.4
0.6
0.8 -

-1.2 1
-1.4 -

2500000 -

2000000 A

1500000 -

1000000 A

500000 -

05 1 15 2 25 3
log k
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log N

log C(k)

Frequency

B. anthracis (Ames ancestor)

-1.2 4
-1.4 -
0 0.5

2000000 -

1500000 -

1000000 -

500000 -

log k

25 3
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log C(k)

Frequency

0.5

B. anthracis (Ames)

0.2 1
0.4 1
0.6 1
-0.8
-1
-1.2 4
-1.4 4
-1.6 -

2000000 -

1500000 -

1000000 A

500000 -

05

log k

Path length

2.5
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B. cereus (E33L)

0
ek

log C(k)

1.2 * ’

3000000

2500000 }
2000000 -
1500000
1000000 -
500000 -

Frequency

0 A ——
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B. cereus (ATCC 10987)

log N

02 1 o
04
0.6 1
0.8

log C(k)

-1.2 4
-14 -

logk

2000000 A

1500000 -

1000000 -

Frequency

500000 -

Path length
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B. cereus (ATCC 14579)

-0.2
-0.4 1
-0.6
-0.8
-1+
-1.2 4
-1.4 - -

log C(k)

log k

2000000 -

1500000 -

1000000 -

Frequency

500000 -

Path length
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log N

log C(k)

Frequency

B. clausii (KSM-K16)

1600000 -
1400000 -
1200000 -
1000000 A
800000
600000 -
400000 A
200000

0

log k

5 6
Path length
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log C(k)

Frequency

B. halodurans (C-125)

1600000 -
1400000 -
1200000 -
1000000 -
800000
600000
400000 -
200000

0_

0.5 1 15 2 2.5 3
logk
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log N

log C(k)

Frequency

B. licheniformis (ATCC 14580)

-0.2
-0.4 1
-0.6
-0.8

<12
-1.4
-1.6 1
-1.8 -

1600000 -
1400000 -
1200000 A
1000000 A
800000 -
600000 -
400000 A
200000 -

0

log k

Path length
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B. subtilis (strain 168)

log N

log Ck)

logk

1800000 -
1600000
1400000 -
1200000 -
1000000 -
800000 -
600000 -
400000 -
200000 -

Frequency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Path length
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B. thuringiensis konkukian (strain 97-27)

-0.2
-0.4 1
-0.6
-0.8

log C(k)

-1.2 4
-1.4 A o
-16 -

log k

2000000 1

1500000 -

1000000

Frequency

500000 -

0 A T T T 1
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Appendix F
B. subtilis PFIN clusters

A more detailed breakdown of the clusters obtained using the MCODE plugin for
Cytoscape. This table highlights the different functional categories represented in
each cluster and their proportions, as well as indicating those proteins predicted to

be secreted by BaSPP.



Table F.1: Detailed view of the major clusters found in the B. subtilis PFIN. Gene names in bold highlights those whose
products are predicted to be secreted; esample descriptions are given for these genes.

Cluster | # nodes | % secreted | # functions | Function % function | Genes
1 99 1.0 7 Sporulation, germination and cell di- 1.0 spolIAB

vision

Adaptation to atypical conditions 3.0 rsbW htpG rsbT

DNA replication, restric- 1.0 mutL

tion/modification and repair

Mobility and chemotaxis 22.2 motB tpB fiiM cheV motA
tipC cheW mcpB fliG cheD
yva@ yfmS mcpA cheR ytzE
cheC mepC  yoaH ytzD
hemAT fiiY tipA

DNA recombination, packaging and 2.0 parE gyrB

segregation

Sensors (signal transduction) 36.3 kinA degS phoR dctS yrkQ
ytS ykoH kinE ytsB resE
yocF yziM yccG comP ycbA
yugE yzdK yufT cssS ydfH
yycG kinC citS kinD ywpD
yufL yve@Q yfiJ cheA yheY
yclK ycbM ybdK yvrG kinB
yesM

RNA synthesis and modification 33.3 yocG yccH yxjL yrkP ynel
ybdJ WtT cssR yxdJ yycF
dctR ytsA resD citT yhcZ
ycbL yurH spo0A yclJ cheB
ycbB ykoG yufU yvcP ydfl
YK degU yufM spoOF yesN
comA phoP yvqC

Unassigned 1.0 ykoK
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59 ( 3.3 Cell wall 33 | ditC ditA

Mobility and chemotaxis 1.6 | yvzB

Unknown 5.0 | yomC yrdC yddQ

Unassigned 1.6 | yecK

Antibiotic production 23.7 | ppsA srfAC ppsC acpK pksM
ppsB ppsE pksN pksL ppsD
stfAB srfAA pksR pksJ

Metabolism of carbohydrates and re- | 32.2 | ykvO yxzjF ywgN gdh yroG

lated molecules ygkF yhdF ytbE yhzC ycsN
kduD yzbG ymA ycdF yhzD
yusZ yuzG ykuF yjmF

Metabolism of coenzymes and pros- | 11.8 | dhbA yueJ dhbB yaal dhdE

thetic groups ywoC dhbF

Metabolism of lipids 20.3 | yurD ymfl ytkK ygi@ yvaG
yusS yozD yjdA fabL acpA
fabG ywfH

41 | 14.6 Adaptation to atypical conditions 2.4 | yveN

Cell wall 4.8 | yngB gtaB

Transport/binding proteins and | 7.3 | ybbF ptsG sacP

lipoproteins

Unknown 4.8 | yvdK yozA

Unassigned 19.5 | treP malP nagP gamP yvgW
yvgX yloB ykvW

Protein synthesis and modification 24 | hprP

Metabolism of carbohydrates and re- { 58.5 | glgD zylA yckE yvdF treA

lated molecules

bglA yveB bglH amyE sacC
sacX bglC emyX ydhP sacA
9lgB yugT mall yheW ycdG
yveP yfmH sacB pgecM
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
4 30 0.0 4 DNA replication, restric- 6.6 yorL yshC

tion/modification and repair

Metabolism of nucleotides and nucleic 16.6 adk purK purF upp purC

acids

Protein synthesis and modification 73.3 rplV 1plD rpsH rpsC rpsJ
rpIN rplB rplP map rpsE rplX
plO rpmC rplW rpsN rplE
rplR rpsQ@ rplF rplC rpmD
rpsS

Metabolism of coenzymes and pros- 3.3 pabA

thetic groups

5 40 0.0 7 Transformation/competence 2.5 comEB

Sporulation, germination and cell di- 2.5 splB

vision

Cell wall 7.5 murE murF murC

Metabolism of amino acids and related 40.0 hisC' thrB yheA ykuQ dapG

molecules kbl hisH yzeP lysC dapF ygE
ykuR dapA ycIM dapB pepT

Unknown 10.0 yydG yunB yfkA yunD

Metabolism of nucleotides and nucleic 30.0 yinL purT purD cdd pyrC

acids cmk udk pdp hprT pyrG yfkN
yhcR

Protein synthesis and modification 5.0 amhX ytjP

Metabolism of coenzymes and pros- 2.5 ykvL

thetic groups
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
6 81 1.2 11 Transformation/competence 1.2 comGA

DNA replication, restric- 24 radA dnaA

tion/modification and repair

Cell wall 1.2 tagH

Membrane bioenergetics (electron 74 yojN atpH atpF qozC atpD

transport chain and ATP synthase) gozB

Unknown 6.1 yruN ykqA ykvS yfmB ysaA

Phage-related functions 24 zkdC yqaM

Adaptation to atypical conditions 49 clpC clpY clpE clpX

Sporulation, germination and cell di- 74 ytpT spoVK spolllE ftsE

vision spolITAA cotA

DNA recombination, packaging and 24 yrrC ruvB

segregation

Transport/binding  proteins  and 6.1 9inQ fhuC expZ rbsA yfiL

lipoproteins

RNA synthesis and modification 3.7 levR gutR rocR

Unassigned 53.0 yvcR yybJ mntB ycdl ydbJ
vhaQ ygiZ yknY yclH yjkB
yydl yuwjA yzlF yurJ ykpA
ytmN yfmF yufO ytsC ylmA
yusC ecsA ytIC yckl natA
ythP ssuB yvrA yfmM yusV
ygaD yclP yveC ybdA ydiF
msmX yvrO ykoD yufR sunT
yzeO yzdL yfmR

Metabolism of carbohydrates and re- 1.2 sdhC

lated molecules
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
7 65 3.0 10 DNA replication, restric- 1.5 polC

tion/modification and repair

Cell wall 6.1 murD murB murAA murAB

Detoxification 6.1 yisY yaaD yrhJ yetO

Transport/binding  proteins  and 3.0 ginP yyzE

lipoproteins

Metabolism of amino acids and related 23.0 carA hisB aroK aroF aspB

molecules pheA aroB tyrA yghS trpA
trpF trpD aroD trpC ureC

RNA synthesis and modification 1.5 ctsR

Unassigned 1.5 ypgE

Metabolism of nucleotides and nucleic 9.2 dck apt ypfD pyrAA ybP

acids pur@

Protein synthesis and modification 21.5 hisZ glyS fmt tyrS efp leuS
metS glitX thrS pheT ytzM
valS pheS trpS

Metabolism of carbohydrates and re- 18.4 csn gamA nagB nagA yvaM

lated molecules yhM ybbT ydhS pmi manA
yvyH araM

Metabolism of coenzymes and pros- 7.6 bioA hemA bioB bioD bioW

thetic groups

8 11 18.1 2 Metabolism of carbohydrates and re- 9.0 gpsA

lated molecules

Metabolism of lipids 90.9 pgsA ywiE psd yhdW dgkA
cdsA yunE yqiK pssA glpQ

9 17 5.8 4 Sporulation, germination and cell di- 17.6 ydhD cotSA yaaH

vision

Cell wall 294 ypjH tagE tuaC tuaH ytcC

Unknown 17.6 yesE yggM yvbX

Metabolism of carbohydrates and re- 29.4 9lgA ywqF lacA yesZ abfA

lated molecules

Metabolism of lipids 5.8 ugtP
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Cluster | # nodes | % secreted | # functions { Function % function | Genes
10 11 0.0 6 Cell wall 9.0 yofY
Detoxification 9.0 yafP
Unknown 18.1 yacM yacN
RNA synthesis and modification 9.0 com@
Metabolism of carbohydrates and re- 18.1 dzs dor
lated molecules
Metabolism of coenzymes and pros- 9.0 hepT
thetic groups
Metabolism of lipids 27.2 yisP uppS yqiD
11 43 2.3 9 Sporulation, germination and cell di- 6.9 yjoB ftsH spollE
vision
Adaptation to atypical conditions 4.6 lonA lonB
DNA replication, restric- 6.9 dnaC dnal uvrA
tion/modification and repair
Mobility and chemotaxis 2.3 ful
DNA recombination, packaging and 2.3 recA
segregation
Membrane bioenergetics (electron 4.6 ndhF cccA
transport chain and ATP synthase)
Transport/binding  proteins  and 4.6 dppD ybaE
lipoproteins
Unknown 2.3 yhaN
RNA synthesis and modification 9.3 yplP tho acoR bkdR
Unassigned 51.1 appF pstBB pstBA opuAA
ykfD appD oppD cydD cydC
yheG yheH yheH yhel opuBA
YAC yfiB yknU yknV yirE
ytrB ybzA opuCA
Protein secretion 4.6 fisY fih
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
12 27 74 9 Adaptation to atypical conditions 3.7 rsb@
Detoxification 74 nap ybfK
Metabolism of amino acids and related 3.7 ybaC
molecules
Metabolism of nucleotides and nucleic 3.7 deoD
acids
Antibiotic production 74 pksE pksC
Protein synthesis and modification 3.7 asnS
Metabolism of carbohydrates and re- 18.5 ycbF ycgS ykfB yitF ygiD
lated molecules
Metabolism of coenzymes and pros- 29.6 menC hemH nasF ylnD hemE
thetic groups hemY yinF menA
Metabolism of lipids 22.2 yclB fabF accD ytpA accB
yusL
13 17 11.7 7 DNA replication, restric- 17.6 ydiO ydiP mtbP
tion/modification and repair
Metabolism of sulfur 5.8 yvgR
Sensors (signal transduction) 5.8 luzS
Unknown 11.7 ykrX ykrZ
Metabolism of amino acids and related 35.2 ytkP ykrV yrhA cysE serA
molecules hom
Metabolism of nucleotides and nucleic 5.8 min
acids
Protein synthesis and modification 5.8 ykrS
Metabolism of carbohydrates and re- 11.7 ykrW yoaD

lated molecules
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Cluster | # nodes | % secreted | # functions | Function % function | Genes

14 22 18.1 7 Metabolism of phosphate 4.5 phoD
Cell wall 45 yqil
Detoxification 4.5 mrpD
Transport/binding  proteins  and 4.5 yorP
lipoproteins
Membrane bioenergetics (electron 27.2 atpB gcrA atpE yhfW ctaA
transport chain and ATP synthase) atpC
Unknown 9.0 yvaX ywbN
Metabolism of nucleotides and nucleic 4.5 pyrE
acids
Metabolism of carbohydrates and re- 40.9 abnA ytcB rpe ydjE zylB
lated molecules gntK tkt araD aeralL

15 8 12.5 3 Adaptation to atypical conditions 12.5 yveR
RNA synthesis and modification 37.5 licR mtlR manR
Metabolism of carbohydrates and re- 50.0 yveO ydhT yveT yulE
lated molecules

16 8 12.5 1 Mobility and chemotaxis 100.0 JiP fiil fihA RRB fliZ ylzH

fhF fliR

17 19 5.2 4 Membrane bioenergetics (electron 36.8 ctaE qcrC ctaF ctaD gerB
transport chain and ATP synthase) ctaO ctaB
Metabolism of amino acids and related 5.2 kamA
molecules
Unknown 21.0 ymeB yloN ytqA yqeV
Antibiotic production 5.2 albA
Metabolism of coenzymes and pros- 31.5 hemN ybeP moaA lipA bioF
thetic groups hemZ

18 13 15.3 3 Cell wall 30.7 ytC mraY yrvJ tagO
Detoxification 7.6 yubB
Unknown 15.3 ywjB yyaP
Metabolism of coenzymes and pros- 46.1 dfrA folB ykvK sul folK folC

thetic groups

GGe



Cluster | # nodes | % secreted | # functions | Function % function | Genes
19 11 18.1 4 Detoxification 9.0 ykfA
Transport/binding  proteins and 454 appC oppA appA appB
lipoproteins dppC
Unassigned 27.2 oppB oppC oppF
Metabolism of carbohydrates and re- 9.0 ykfC
lated molecules
Protein synthesis and modification 9.0 dppA
20 7 0.0 1 Metabolism of carbohydrates and re- 100.0 pgm fbaA pgi eno pyk pgk
lated molecules gapA
21 21 9.5 5 Metabolism of phosphate 9.5 phoB phoA
RNA synthesis and modification 4.7 pyrR
Unknown 4.7 yorR
Metabolism of amino acids and related 19.0 rocD ansB argB carB
molecules
Metabolism of nucleotides and nucleic 52.3 purl guaB thyB pyrD tmk
acids thyA yncF yosS guaA pyrF
pyrAB
Protein synthesis and modification 9.5 lysS aspS
22 30 6.6 9 Sporulation, germination and cell di- 6.6 spsL spoVFB
vision
Detoxification 16.6 cypX pksS yjiB cypA ydjP
RNA synthesis and modification 20.0 ydgJ ywhA ysmB ykvE ykoM
14
Metabolism of amino acids and related 10.0 yurR yclE gozB
molecules
Unknown 13.3 ykmA yraK ygiL ybfA
Metabolism of carbohydrates and re- 10.0 zsa yoml glpD
lated molecules
Metabolism of coenzymes and pros- 6.6 biol yueK
thetic groups
Phage-related functions 10.0 ygbO zkdO yjbJ
Metabolism of lipids 3.3 ywjE
Transposon and IS 3.3 yddH
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Cluster | # nodes | % secreted | # functions | Function % function | Genes

23 12 0.0 3 Cell wall 8.3 ddl
Metabolism of amino acids and related 33.3 yncD alr dsdA thrC
molecules
Protein synthesis and modification 58.3 proS alaS hisS ytpR cysS serS

ileS

24 14 0.0 4 Unknown 21.4 yqeJ ytaG yoaP
Metabolism of amino acids and related 35.7 ylmB yodQ ycgN rocA ilwC
molecules
Metabolism of carbohydrates and re- 14.2 citG icd
lated molecules
Metabolism of coenzymes and pros- 214 panC coaA panB
thetic groups
Metabolism of lipids 7.1 acpS

25 11 0.0 5 Metabolism of amino acids and related 27.2 aroF pheB trpE
molecules
Antibiotic production 9.0 pksD
Metabolism of carbohydrates and re- 9.0 pycA
lated molecules
Metabolism of coenzymes and pros- 45.4 yueD dhbC menF menE pabB
thetic groups
Metabolism of lipids 9.0 lefA

26 8 50.0 4 Adaptation to atypical conditions 12.5 ywsC
Sporulation, germination and cell di- 12.5 3psG
vision
Detoxification 12.5 yiC
Cell wall 37.5 cwlD lytD murG
Unknown 25.0 yraJ yral

27 8 0.0 4 Detoxification 25.0 katX katE
RNA synthesis and modification 12.5 tenl
Unknown 25.0 yoN ytdl
Metabolism of coenzymes and pros- 25.0 nadA nadC
thetic groups
Metabolism of lipids 12.5 des
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
28 6 0.0 1 Metabolism of coenzymes and pros- 100.0 thiE thiC' ybV thiD thil
thetic groups thiM
29 6 0.0 1 Metabolism of nucleotides and nucleic 100.0 pucH pucB pucD pucC pucM
acids puckE
30 6 0.0 2 Adaptation to atypical conditions 83.3 rsbV rsbX rsbR rsbS rsbU
RNA synthesis and modification 16.6 sigB
31 6 16.6 1 Mobility and chemotaxis 83.3 fiJ ylzG fliH figE fikK
Unknown 16.6 ylaF
32 6 50.0 1 Transformation/competence 100.0 comGD comGC comGB
comGF comGG comGE
33 6 83.3 1 Transport/binding  proteins  and 16.6 fhuD
lipoproteins
Unassigned 83.3 yRY yclQ yxeB yfmC yhfQ
34 6 0.0 2 Metabolism of amino acids and related 16.6 yobN
molecules
Unknown 33.3 yabC yjjA
Metabolism of coenzymes and pros- 50.0 hemD gsaB hemL
thetic groups
35 7 0.0 1 Metabolism of amino acids and related 100.0 proJ argD proA argJ hutl
molecules rocF argF
36 13 384 2 Unknown 46.1 yorA ywoF yfid yclG yomE
ycbH
Metabolism of carbohydrates and re- 46.1 ycbC pel yvpA pelB hilA
lated molecules uzaC
Phage-related functions 7.6 yobO
37 5 0.0 0 Unassigned 100.0 SfruA ydhO ywdA licC manP
38 5 0.0 1 Metabolism of nucleotides and nucleic 100.0 purN purH purM gmk guaC
acids
39 5 20.0 1 Unassigned 60.0 araP ara@ araN
Metabolism of carbohydrates and re- 40.0 araA araB

lated molecules

86¢



Cluster | # nodes | % secreted | # functions | Function % function | Genes
40 5 0.0 1 Transport/binding  proteins and 20.0 opuCD
lipoproteins
Unassigned 80.0 opuAB opuBD opuCB opuBB
41 6 33.3 0 Unassigned 100.0 yqiX yckA yckJ yreN yckK
ytmM
42 5 0.0 1 Unknown 80.0 yzlG yzlD yzlC yzlE
RNA synthesis and modification 20.0 sigY
43 5 20.0 1 Antibiotic production 100.0 albF albG albD albE albB
44 5 20.0 2 Detoxification 80.0 mrpE mrpF mrpG mrpB
Transport/binding  proteins and 20.0 mrpA
lipoproteins
45 5 20.0 2 Sporulation, germination and cell di- 40.0 minD minC
vision
Cell wall 60.0 mreB mreC mreD
46 5 0.0 1 Metabolism of coenzymes and pros- 100.0 moaD mobA mobB moaE
thetic groups moeA
47 5 0.0 1 Adaptation to atypical conditions 100.0 ykoB yqhA yojH yetl yezB
48 5 20.0 1 RNA synthesis and modification 20.0 yesS
Unknown 40.0 yesU yesW
Unassigned 40.0 yesO yesQ
49 5 0.0 1 Sporulation, germination and cell di- 100.0 cotV cotX cotY cotZ cotW
vision
50 5 60.0 1 Metabolism of amino acids and related 100.0 ispA aprX aprE bpr vpr
molecules
51 5 0.0 2 Adaptation to atypical conditions 40.0 ydaG yocK
Unknown 20.0 kM
Metabolism of carbohydrates and re- 40.0 yhdN ydaD

lated molecules
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
52 12 0.0 3 Unknown 41.6 yteT yvaA yhjJ yulF yfl
Metabolism of amino acids and related 8.3 yrbE
molecules
Metabolism of carbohydrates and re- 83 yktC
lated molecules
Metabolism of lipids 41.6 lpdV bkdAB bed bkdAA pth
53 5 20.0 2 Membrane bioenergetics (electron 80.0 ctaC ythA cccB cydA
transport chain and ATP synthase)
Metabolism of amino acids and related 20.0 nask
molecules
54 5 0.0 2 Metabolism of carbohydrates and re- 80.0 acoL citZ citA pdhD
lated molecules
Metabolism of lipids 20.0 bkdB
55 5 0.0 2 RNA synthesis and modification 20.0 rpoA
Protein synthesis and modification 80.0 rpsK rpmJ rpl@Q infA
56 5 0.0 1 Mobility and chemotaxis 100.0 hag fiT fliD yvyC fiS
57 5 0.0 1 Sporulation, germination and cell di- 100.0 sspF sspD sspC sspB sspA
vision
58 8 0.0 6 DNA replication, restric- 12.5 dnaF
tion/modification and repair
DNA recombination, packaging and 12.5 yrvE
segregation
Metabolism of amino acids and related 25.0 proB argH
molecules
Metabolism of nucleotides and nucleic 12.5 yhaM
acids
Protein synthesis and modification 25.0 thrZ argS
Protein secretion 12.5 csaA
59 8 12.5 1 Mobility and chemotaxis 62.5 yvyG yvwyF fluK figM flgL
Unknown 375 ybdO ylgB yjcQ
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
60 5 0.0 3 Cell wall 20.0 tagD
Metabolism of carbohydrates and re- 40.0 gntZ yqeC
lated molecules
Metabolism of lipids 40.0 ykwC yfiR
61 7 0.0 4 Sporulation, germination and cell di- 14.2 spoVAE
vision
Detoxification 14.2 ydhE
Unknown 14.2 ymfA
Protein synthesis and modification 14.2 gcp
Metabolism of coenzymes and pros- 42.8 ribR ribA ribC
thetic groups
62 4 0.0 1 Metabolism of amino acids and related 100.0 hisI hisG hutU hisD
molecules
63 4 0.0 2 Transformation/competence 25.0 comER
Metabolism of amino acids and related 75.0 prol proH proG
molecules
64 4 0.0 2 Metabolism of amino acids and related 25.0 mmsA
molecules
Unassigned 25.0 iolF
Metabolism of carbohydrates and re- 50.0 10lC idh
lated molecules
65 4 75.0 1 Cell wall 100.0 dacB dacF dacA dacC
66 4 0.0 1 Metabolism of amino acids and related 100.0 leuA leuD leuC ilvH
molecules
67 4 50.0 0 Unassigned 100.0 licA licB ydhM ydhN
68 4 0.0 1 DNA replication, restric- 100.0 priA dnaB dnaD dnaG
tion/modification and repair
69 4 25.0 2 Transport/binding  proteins and 75.0 rbsC rbsD rbsB
lipoproteins
RNA synthesis and modification 25.0 rbsR

19¢



Cluster | # nodes | % secreted | # functions | Function % function | Genes
70 4 0.0 3 Trapsport/binding  proteins and 25.0 yirF
lipoproteins
RNA synthesis and modification 25.0 yirA
Metabolism of carbohydrates and re- 50.0 ytrC ytrD
lated molecules
71 4 0.0 0 Unassigned 100.0 levD levG levF levE
72 4 0.0 0 Unknown 75.0 yznB yzbA yzbB
Unassigned 25.0 yzaM
73 4 0.0 1 RNA synthesis and modification 100.0 ylaC sigM sigV sigX
74 4 0.0 1 DNA recombination, packaging and 100.0 addA recF recN addB
segregation
75 4 0.0 2 Unknown 50.0 ykuN ytcD
RNA synthesis and modification 25.0 hzlR
Metabolism of lipids 25.0 ydeP
76 4 0.0 2 Metabolism of nucleotides and nucleic 25.0 pyrH
acids
Protein synthesis and modification 75.0 rpsB frr tsf
77 4 0.0 1 Detoxification 75.0 yceE yceF yceC
Unknown 25.0 yceG
78 4 0.0 0 Unknown 100.0 yojI ypnP yisQ yoeA
79 4 0.0 1 Adaptation to atypical conditions 25.0 pspA
Unknown 75.0 ydjl ydiG ydjH
80 4 0.0 1 Membrane bioenergetics (electron 100.0 narG narJ narl narH
transport chain and ATP synthase)
81 4 0.0 0 Unknown 100.0 ywgK ywqH ywql ywql
82 4 0.0 1 Sporulation, germination and cell di- 100.0 gerPB gerPF gerPD gerPA
vision
83 4 50.0 1 Protein secretion 100.0 sipS 8ipV sipU sipT
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Cluster | # nodes | % secreted | # functions { Function % function | Genes
84 5 20.0 3 Sporulation, germination and cell di- 20.0 spsJ
vision
Cell wall 20.0 ymG
Metabolism of carbohydrates and re- 60.0 zynB xynD galE
lated molecules
85 4 0.0 1 RNA synthesis and modification 100.0 alsR yzjO yrdQ yoaU
86 4 0.0 1 RNA synthesis and modification 100.0 arsR ydeT yozA yvbA
87 4 0.0 2 Metabolism of sulfur 75.0 yitA yisZ yitB
Metabolism of amino acids and related 25.0 cysH
molecules
88 4 25.0 1 Unknown 75.0 yscB yviF yjcP
Metabolism of carbohydrates and re- 25.0 yfmT
lated molecules
89 4 25.0 3 Adaptation to atypical conditions 25.0 degR
Transformation/competence 25.0 med
RNA synthesis and modification 50.0 sinR comK
90 4 0.0 2 Sporulation, germination and cell di- 50.0 yacA ytgP
vision
RNA synthesis and modification 25.0 trmU
Unknown 25.0 yheT
91 4 0.0 1 Transport/binding  proteins  and 50.0 yeaB ydbO
lipoproteins
Unassigned 50.0 czeD ydfM
92 5 0.0 1 Detoxification 20.0 mmr
Unassigned 80.0 bmr yusP yitG yceJ
93 11 0.0 1 RNA synthesis and modification 100.0 ywgM yofA ytll ywbl yybE
yegK ywfK ccpC citR yvbU
yclA
94 3 0.0 1 Metabolism of carbohydrates and re- 100.0 10lH iolE ioll
lated molecules




Cluster | # nodes | % secreted | # functions | Function % function | Genes
95 4 25.0 2 Membrane bioenergetics (electron 25.0 yfmJ
transport chain and ATP synthase)
Unassigned 25.0 ydbA
Metabolism of carbohydrates and re- 50.0 ispE ybbD
lated molecules
96 3 0.0 1 Metabolism of coenzymes and pros- 100.0 menH menD menB
thetic groups
97 3 0.0 1 Metabolism of carbohydrates and re- 100.0 licH malA IplD
lated molecules
98 3 0.0 1 RNA synthesis and modification 100.0 10lR yulB fruR
99 3 0.0 1 Antibiotic production 100.0 pksI pksH pksF
100 3 0.0 1 Metabolism of amino acids and related 100.0 hutH hisF hisJ
molecules
101 3 0.0 1 Metabolism of amino acids and related 100.0 asnO asnB asnH
molecules
102 3 0.0 1 Membrane bioenergetics (electron 100.0 atpG atpA atpl
transport chain and ATP synthase)
103 3 66.6 Cell wall 100.0 ponA pbpF pbpC
104 3 0.0 Metabolism of carbohydrates and re- 100.0 yisS iolD iolB
lated molecules
105 3 33.3 0 Unassigned 100.0 yzeM ytmlL yqiY
106 3 0.0 1 Mobility and chemotaxis 100.0 fUE figC fiF
107 3 0.0 2 Membrane bioenergetics (electron 66.6 yyaE yooE
transport chain and ATP synthase)
Metabolism of amino acids and related 33.3 nasC
molecules
108 3 0.0 2 Sporulation, germination and cell di- 33.3 spoOE
vision
RNA synthesis and modification 66.6 abrB sigA
109 3 0.0 0 Unassigned 100.0 pstC pstS pstA
110 3 33.3 0 Unknown 100.0 yycH yycl yyeJ
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
111 3 0.0 1 Cell wall 100.0 tagF tagA tagB
112 3 0.0 1 Transport/binding  proteins  and 333 aapA
lipoproteins
Unassigned 66.6 ybzG ybeC
113 3 0.0 1 RNA synthesis and modification 100.0 mta yyaN yraB
114 3 0.0 1 Adaptation to atypical conditions 100.0 ¢spC cspD cspB
115 3 0.0 1 Phage-related functions 100.0 zhiB zepA zhlA
116 3 33.3 0 Unassigned 100.0 yurN yurM yurO
117 3 0.0 2 Metabolism of amino acids and related 66.6 yrrO yrrN
molecules
Metabolism of coenzymes and pros- 33.3 yrrM
thetic groups
118 3 0.0 0 Unknown 100.0 ylaA ylaB ylaD
119 3 0.0 1 Protein synthesis and modification 100.0 rpmGB rpll rpmA
120 3 0.0 2 Cell wall 66.6 cwlH cwld
Phage-related functions 33.3 zlyB
121 3 0.0 2 DNA replication, restric- 33.3 adaA
tion/modification and repair
RNA synthesis and modification 66.6 yfiF ytdP
122 3 0.0 2 Transport/binding  proteins  and 66.6 feuC feuB
lipoproteins
RNA synthesis and modification 33.3 ybbB
123 3 0.0 1 Unknown 33.3 yigD
RNA synthesis and modification 66.6 rimM trmD
124 3 0.0 1 RNA synthesis and modification 66.6 yenC yerO
Unknown 333 yuzN
125 3 0.0 1 DNA replication, restric- 100.0 ykoU ligB ligA
tion/modification and repair
126 3 0.0 1 DNA replication, restric- 333 ydiS
tion/modification and repair
Unknown 66.6 ydjA ydiR

S9¢



Cluster | # nodes | % secreted | # functions | Function % function | Genes
127 3 33.3 2 Sporulation, germination and cell di- 33.3 tasA
vision
Unknown 33.3 yqxM
Protein secretion 33.3 sipW
128 3 0.0 0 Unknown 100.0 yotE yotF yotD
129 3 0.0 1 Transport/binding  proteins  and 33.3 yhaU
lipoproteins
Unknown 66.6 yhaT yhaS
130 3 0.0 0 Unknown 100.0 yvcA yveB yvzA
131 3 33.3 1 Adaptation to atypical conditions 100.0 ywqC ywgD yuwgE
132 3 0.0 1 Transformation/competence 100.0 comFB comFA comFC
133 3 0.0 0 Unknown 66.6 yurX yurU
Unassigned 33.3 yurY
134 3 33.3 1 Sporulation, germination and cell di- 33.3 divIC
vision
Unknown 66.6 yab@ yabP
135 3 0.0 1 Metabolism of carbohydrates and re- 100.0 malS mleA ytsJ
lated molecules
136 3 0.0 1 Metabolism of amino acids and related 33.3 metE
molecules
Unknown 66.6 ygH yzjG
137 3 0.0 1 DNA replication, restric- 33.3 holB
tion/modification and repair
Unknown 66.6 yabA yazA
138 3 0.0 0 Unknown 100.0 yueB yukC yukD
139 3 333 1 Metabolism of sulfur 33.3 ssuD
Unassigned 66.6 ssuC ssuA
140 3 33.3 1 Unknown 66.6 yneA ynzC
Transposon and IS 33.3 yneB
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Cluster | # nodes | % secreted | # functions | Function % function | Genes
141 3 33.3 0 Unknown 66.6 yuf@Q yufP
Unassigned 333 yufN
142 3 0.0 1 RNA synthesis and modification 100.0 yurK yvoA ymfC
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Appendix G

Cross-species PFINs
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Figure G.2: The cross-species PFIN of the pathogenic protein family A.
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Figure G.3: The cross-species PFIN of the pathogenic protein family L.
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Figure G.4: The cross-species PFIN of the non-pathogenic pel protein family.
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