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Abstract 

The aim of the project described in this thesis is to understand and predict the 

characteristics and behaviour of a family of bacteria through an analysis of genome 

wide data from a variety of sources. 

The focus of the research is a family of bacteria, Bacillus, whose members show 

a diverse range of phenotypes, from the non-pathogenic B. subtilis to B. anthrncis, 

the causative agent of anthrax. Specifically, the focus was on the genomic scale 

identification and characterisation of secreted proteins from Bacillus species. 

Firstly, the application of Grid-based computational approaches to problems in 

genomic analysis and annotation was investigated, applying mllGrid technology to 

a biological problem not previously addressed using this approach. e-Science work­

flows and a service-oriented approach were developed and applied to predict and 

characterise secreted proteins, and the results automatically integrated into a custom 

relational database. An associated Web portal was also developed to facilitate expert 

curation, results browsing and querying over the database. Workflow technology was 

also used to classify the putative secreted proteins into families and to study the 

relationships between and within these families. The design of the workflows, the 

architecture and the reasoning behind the approach used to build this system, called 

BaSPP, are discussed. 

Analysis of the putative Bacillus secretomes revealed clear distinctions between 

proteins present in the pathogens and those in the non-pathogens. The properties of 

the protein families present in all Bacillus secretomes, as well as those specific either 

to the pathogens or to the non-pathogens were investigated. 

Many of the protein families contained members of unknown function. In the 
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second part of the project, these families were investigated in more depth, using ad­

ditional data integration strategies not previously applied to these organisms. The 

secretomes were modelled at the system level, in the broader context of interactomes. 

A system called SubtilNet was therefore developed, using B. subtilis as the refer­

ence organism. As part of SubtilNet, a toolkit and architecture were developed and 

implemented for building and analysing probabilistic functional integrated networks 

(PFINs). The PFINs built for each Bacillus species using this system were subse­

quently used to delve further into the interactions specific to the secreted proteins by 

extracting and exploring the cross-species PFINs of these proteins. The cross-species 

PFINs for the protein families specific to the pathogens and non-pathogens were ex­

plored, with particular emphasis on the core PrsA-like protein family, which acted 

as a use case to show how the PFIN s can be used to shed light on protein function. 

The addition of orthologous links between species was demonstrated to facilitate net­

work clustering and analysis, enabling putative annotations to be applied to proteins 

previously of unknown function. 
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Chapter 1 

Introduction 

One of the biggest challenges for biology is to understand the complexity of biological 

systems in terms of the interaction of their components, the functions that these 

interactions give rise to, and the consequent behaviour of the system [Nurse, 2003]. 

Within genomics, a great deal of information can be obtained about the biology of 

an organism by analysing its genome, and subsequently interpreting this analytical 

data in the context of existing genome sequence information [Gabald6n and Huynen, 

2004]. However, genomics cannot yet provide us with a complete understanding of 

many aspects of biological function, as it is difficult to predict the behaviour of gene 

products from gene sequences alone [Dove, 1999]. 

New post-genomic approaches are therefore required to bridge the gap between 

the genome and cellular behaviour [Dove, 1999]. Knowledge at a variety of different 

levels is required that provide data on many types of cellular components, including 

the transcriptome (complete set of transcripts), proteome (complete set of proteins), 

interactome (complete set of interactions) and localisome (localisation of all tran­

scripts and proteins) [Ge et al., 2003]. Integrating the information extracted from 

these additional omics approaches provides a bridge to a discipline of biology known 

as systems biology. By understanding the complex interactions of genes, proteins, 

and so forth, knowledge of a biological system (e.g. metabolic pathways) is obtained, 

leading to more precise functional annotations for gene products and relationships 

[Kitano, 2002]. In this study, the application of this approach to integrative biology, 

in combination with an e-science approach, is demonstrated through investigation of 
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the secretome of a genus of Gram-positive bacteria, Bacillus. 

1.1 Computational challenges in systems biology 

With the abundance of information available on the inner workings of the cell, the 

challenge is how to extract biological meaning about systems as a whole from these 

multiple omic datasets. Systems biology addresses these biological questions by inte­

grating omic datasets to create computable mathematical models representing inter­

esting biological phenomena. These models define a set of assumptions and hypothe­

ses that need to be tested or confirmed experimentally. Systems biology is therefore 

both a data- and hypothesis-driven science [Aderem, 2005, Joyce and Palsson, 2006]. 

Computational" dry" experiments (such as simulation) on the biological models 

may agree with the embedded assumptions and hypotheses of the model, or other­

wise highlight inconsistencies with experimentally verified knowledge. Inconsistent 

models may result in model rejection or modification. Consistent models may lead 

to the formation of a number of predictions that can then be used to drive "wet" 

experiments. Analysis of the results from the wet-lab experiments can subsequently 

verify the models predictions [Aderem, 2005, Kitano, 2002]. 

Systems biology therefore combines omic approaches, data integration, modelling 

and wet-lab biology [Ge et al., 2003]. Developments in this area herald a new era 

in which the benefits of comparative analysis of the rapidly growing collection of 

complete genomes will complement experimental approaches aimed at improving our 

understanding of biological systems [Subramanian et al., 2001]. The development of 

scalable computing systems that can rapidly analyse and compare sequenced genomes 

in an efficient manner is required to assist in the knowledge gathering process. The 

development of high-throughput technologies and the desire to understand organisms 

as complex systems, rather than the more traditional approach of studying their com­

ponent parts, is placing new requirements on computing infrastructure. Managing 

the conduct of high-throughput experiments, the data generated by them, and the 

sharing and integration of these datasets enables better-informed or faster decisions. 
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Computational methods can therefore guide and focus traditional wet-lab biological 

research, as computational analysis provides interesting insights into genomic differ­

ences [Aderem, 2005, Subramanian et al., 2001]. The use of computational methods 

for analysis falls into an area of science known as bioinformatics. In general, the 

term bioinformatics means the application of information technology to the manage­

ment and analysis of biological data [Attwood and Parry-Smith, 1999]. It is therefore 

a multidisciplinary research area at the interface between informatics and biology. 

Bioinformatics therefore plays an important role in systems biology. 

1.2 e-Science and Grid technology 

Within bioinformatics, a considerable amount of time is spent dealing with three prolr 

lems: heterogeneity, distribution and autonomy. Bioinformatics tools and datasets 

tend to be highly heterogeneous in content and structure; the datasets are often widely 

geographically dispersed, and are often autonomously controlled as they are main­

tained and deployed by individual scientists within their own laboratories [Stevens 

et al., 2007]. e-Science technologies promise to help to address these issues. 

"e-Science is about global collaboration in key areas of science and the next 

generation of infrastructure that will enable it" [Taylor, http://www.nesc.ac. uk]. 

e-Science therefore refers to a science in which researchers from around the world 

collaboratively share distributed resources. The use of an e-science approach en­

ables faster, better-informed research by providing access to resources located on 

distributed computers as if they were on the user's own machine. The resources can 

include enormous computing power used for large calculations, as well as databases 

and the necessary software to allow this information to be shared and integrated, 

encouraging collaboration amongst researchers from different institutions. Through 

e-science it becomes possible to conduct research that was previously impossible us­

ing a single computer. Bioinformatics is therefore a discipline for which e-science is 

appropriate [Hey and Trefethen, 2005]. 
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The infrastructure supporting e-science is termed the Grid [Hey and Trefethen, 

2003,2005]. The Grid is based upon coordinated resource sharing and problem solv­

ing in virtual organisations. The Grid tackles many concerns and requirements not 

addressed by current distributed technologies, such as the need for flexibility and 

control over how a variety of resources (programs, data, computers, sensors and net­

works) are shared and used, as well as issues concerning quality of service, scheduling 

and accounting [Foster et al., 2001]. The Grid provides a means for scientists working 

on large distributed projects to perform experiments using an array of computational 

resources in order to solve scientific problems [Greenwood et al., 2003]. 

It should be noted that the Grid itself is not e-science, because in order for the 

Grid to support a scientist performing analysis and simulations upon a computer, 

more layers of software are needed on top of the basic computer technology that 

forms the Grid. This software, termed middleware, lies conceptually between the 

operating system software and the applications software that is designed to solve a 

particular problem for a user. The function of the middleware is to organise and 

integrate distributed and heterogeneous Grid resources to provide a "level-playing 

field" for e-scientists to run applications on suitable distributed computers [CERN, 

http://gridcafe.web.cern.ch] . 

Middleware development is the focus of many ongoing Grid projects worldwide, re­

sulting in a number of prototype systems for bioinformatics problems, such as mllGrid l . 

mil Grid is an e-science service based middleware toolkit used to build Grid enabled 

bioinformatics applications. mllGrid aims to support biology and its sub-disciplines. It 

essentially illustrates how Grid technology can be harnessed and enhanced to accom­

modate the needs of biologists and a wider range of e-scientists than was the original 

target audience of the Grid [Stevens et al., 2003J. The ultimate goal of this project 

was to develop open source high-level middleware to support the construction, man­

agement and sharing of personalised data-intensive in-silico experiments in biology 

on a Grid [Greenwood et al., 2003, Stevens et al., 2003J. Using mllGrid, e-scientists 

can use Web services, which provide a standard way of connecting different software 

ImllGrid Website: http://www.mygrid.org.uk/ 
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applications that are located on different platforms or frameworks, to construct their 

in-silico experiments [W3C, http://www.w3.orgj. 

1.3 High-throughput genomic characterisation 

Many bioinformatics experiments can be represented as a series of workflows, integrat­

ing a number of programs and data sources to test a hypothesis in-silico. Workflows 

are essential to allow e-scientists to capitalise on the increasing number of resources be­

ing exposed as Web services, enabling the coordinated use of a variety of distributed 

and heterogeneous resources. These workflows, alternatively called pipelines, form 

the bedrock of computational analysis within bioinformatics [Addis et al., 2003, Oinn 

et al., 2006j. Pipelines are a subset of the more general term workflow, in which there 

exists added layers of control in the workflow. 

Workfiows that integrate a number of bioinformatics software tools with multiple 

databases allow the analysis and storage of genome sequences to be automatically 

managed. One of their most common applications in bioinformatics is to support and 

complement the manual annotation process; an example is Ensembl [Curwen et al., 

2004j. The primary goal in developing annotation workflows is to provide highly ac­

curate and reliable results using the widest possible range of evidence from available 

databases. Current annotation workfiows utilise the consensus based approach in 

which a genome sequence passes through several successive levels of analysis, each 

consisting of a number of different algorithms. By applying this approach, new com­

plex systems can be built from smaller component programs and data sources. The 

component programs and data sources can in theory be located anywhere in the 

world [Addis et al., 2003, Rust et al., 2002j. However, there are practical problems 

limiting the location of databases and resources, as conventional technology requires 

these to be housed in a single location, due to problems relating to coordination and 

distribution, but e-science technology and workflows can overcome these limitations. 

A possible, and rather simple, structure of an annotation workflow is depicted 

in figure 1.1. Within this possible architecture, the core database distributes data 
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between the analysis workflow on the left, and the Website on the right. The Web­

site integrates the annotated data stored in the core database with multiple, external 

databases. In any workflow, the general starting point is the processing of raw se­

quence data. Gene locations can subsequently be predicted by aligning homology 

search matches and making computational predictions on the genomic sequence. Fol­

lowing the identification of predicted genes, the function of the genes needs to be 

determined. The function of genes can be inferred by mapping predicted gene se­

quences to known genes and proteins in sequence databases using similarity search 

algorithms (e.g. BLAST [Altschul et al., 1990]) or by using protein domains (e.g. 

Interpro [Quevillon et al., 2005]). The final stage is to distribute the annotated infor­

mation to the users. The most common means of doing this is via a Website [Rust 

et al., 2002]' although other systems exist [BioDAS, http://www.biodas.orgJ. 

When developing a workflow, a number of factors must be taken into account. 

There is continuing improvement of the quality of sequences and assemblies, and 

consequently the replacement of redundant sequences with new, superior sequences. 

An automated workflow must therefore allow new sequences to be added and analysed 

without disruption. In addition, a workflow must be extensible, so that new or 

improved algorithms and methodologies can be inserted into the analysis process 

without redesign of the system [Addis et al., 2003, Rust et al., 2002J. 

1.3.1 mYGrid and e-science workftows 

Traditionally, workflows have been implemented in one of two different ways. In 

those laboratories with the necessary resources or specialist support, they have often 

been automated using Perl, which is ideally suited to the manipulation of the textual 

representations that biology has traditionally used to store its data. The majority of 

biologists, however, have used cut-and-paste between the myriad of Websites offering 

access to underlying computational resources. e-Science projects such as mil Grid aim 

to provide an alternative to these two approaches for integrating programs and data, 

making use of Web services. The use of Web services, a workflow enactment engine 
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1-------0( Core 

Linked databases 

Comparative 
databases 

Figure 1.1: The basic structure of an automatic genome annotation workflow. 
Adapted from Rust et al. [2002] . 

and a convenient , easy-to-use workflow edi tor, known as Taverna2
, have enabled lab 

biologists to access some of the power of automation previously only available to 

programmers [~inn et al ., 2006]. 

mYGrid provides the capabili ty to integrate a vast range of resources , in terms of 

data and applications that may be available wi thin an organi ation or as ex'ternal 

services , into a workflow. mY Grid has therefore buil t services such as resource discov­

ery, workflow enactment and distributed query processing. Addit ional services, such 

as provenance management , change notification and personalisation have also been 

developed. These services are often neglected at t he workstation, but are required to 

support the scientific method and best pra.ctice found at t he bench [Stevens et al. , 

2003]. mYGrid has previously been applied to biological questions. including problems 

rela.t ing to Graves ' Disease [Li et al. , 2004] and William-Beuren Syndrome [Stevens 

et al. , 2004b]. 

2Taverna Website: http :// taverna .sourceforge. net/ 
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1.4 Secretome analysis of bacteria 

One of the main mechanisms that bacteria use to interact with their environment 

is to synthesise proteins and export them from the cytoplasm (the site of synthesis) 

to an extracytoplasmic location. Secreted proteins are often important in the sur­

vival of a bacterium in a particular environment. The entire complement of secreted 

proteins is often referred to as the secretome. Characterising secreted proteins and 

the mechanisms of their secretion can reveal a great deal about the capabilities of 

an organism. Soil organisms secrete enzymes to recover nutrients from their immedi­

ate surroundings [Tjalsma et aI., 2000J. During infection, many pathogenic bacteria 

secrete virulence proteins (including enzymes and toxins) into their extracellular envi­

ronment can subvert the host defence systems, for example by inactivation of elements 

of the innate immune system, and facilitate the entry, movement and dissemination 

of bacteria within host tissues [Nomura and He, 2005J. Bacteria may also use secreted 

peptides to communicate with each other, allowing them to form complex communi­

ties and to adapt rapidly to changing conditions [Piazza et aI., 1999J. The secretomes 

of bacteria are therefore of great importance and interest. 

Recently, our understanding of the secretome has greatly improved due to the 

availability of increasing numbers of complete bacterial genome sequences, essen­

tially molecular blueprints containing the information that describes the entire pro­

tein repertoire of an organism. Armed with these sequences, it is possible to predict 

which proteins are likely to be secreted, as well as the mechanisms of their secretion. 

Biologists have already begun to apply conventional bioinformatics technology to 

the prediction and classification of secreted proteins. The first, largely genome-based 

survey of a secretome was carried out using bioinformatics tools on the genome of 

Bacillus subtilis (strain 168) [Tjalsma et al., 2000J, using legacy tools called from 

custom scripts in combination with expert curation. A number of studies have conse­

quently been undertaken focusing on various other organisms, in which bioinformatics 

programs and resources playa vital role [Binnewies et al., 2005, Boekhorst et al., 2006, 

Lewenza et al., 2005J. Comparative secretomics can also be used to reveal information 
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about the core and variant secretomes of bacteria [Sibbald et al., 2006J. 

These studies involve the repeated application of a number of different algorithms 

to all of the gene and protein sequences encoded on the genome. Many of these 

algorithms are computationally expensive and, given that an average bacterial genome 

can encode around 4,000 or more proteins, the process can become computationally 

bound. In addition, the results of the application of these algorithms needs to be 

stored and integrated in order to make a prediction about the secretory status of 

the entire set of proteins encoded by a particular genome. Often, the results of the 

classification algorithms may be error prone and mechanisms to permit expert human 

curation and results browsing also need to be established. 

By applying e-science workflows and a service-oriented approach to the genomic 

scale detection and characterisation of secreted proteins, the e-scientist can describe 

and launch experimental processes in a structured, repeatable and verifiable way 

[Addis et al., 2003J. 

1.5 Elucidating protein function using integrated 

networks 

The ability to elucidate protein function is a common problem in the post-genomic 

era. High-throughput sequencing analysis is still revealing large numbers of new genes 

of unknown function. A common approach to computationally assigning function is 

based on querying databases to identify similar sequences with known function (e.g. 

BLAST) or by identifying functional domains (e.g. Interpro). 

However, alternative approaches are required when a protein shows no significant 

similarities or identifiable domains. More recently, an additional strategy has been 

employed, by identifying all functional protein-protein interactions. Originally, these 

protein-protein interactomes were generated based on one data source. However, in­

teractomes have advanced in recent years towards combining multiple data sources, 

providing functionally integrated networks [Joyce and Palsson, 2oo6J. Protein-protein 
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interactomes can be used to infer the function of uncharacterised proteins in the con­

text of its neighbouring environment [Sun et al., 2006, Vazquez et al., 2003]. Alterna­

tively function can be inferred by making comparisons between multiple interactomes 

to identify previously unknown orthologues [Chen et al., 2007] or missing functional 

links. 

Studies have been undertaken in which a variety of protein-protein interactomes 

have been developed for a number of different organisms, incorporating information 

from various omic data sources [Date and Stoeckert, 2006, Deng et al., 2004, Jansen 

et al., 2003, Kiemer et al., 2007, Lee et al., 2004, Rhodes et al., 2005, von Mering 

et al., 2007]. However, solutions are required to better conceptuaHse and interpret 

the vast amount of omic information used to construct interactomes. The aim is to 

take the data from different types of studies and produce detailed models of complex 

systems, particularly biological pathways. In order for this to occur, the datasets 

have to go through some complicated analysis and visualisation, which can be CPU­

intensive. There is therefore a need for tools that take dissimilar datasets and provide 

3D visualisations of complex systems with a high degree of definition and accuracy. 

1.6 Aims and objectives 

1.6.1 Aims 

This project aimed to research aspects of Grid based computational systems designed 

to integrate and analyse data arising from post-genomic technology. The application 

of Grid based computational systems to problems in genomic analysis and annotation 

were investigated. 

Through this work, the application of mil Grid technology to an additional bio­

logical problem than has previously been described was investigated. The aim was 

to understand and predict the characteristics and behaviour of a family of bacteria, 

through an analysis of their complete genomic sequences. The focus of this study was 

on a family of bacteria, Bacillus, whose members show a diverse range of properties. 
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Proteins of unknown function were therefore of particular interest. A means of 

annotating proteins with a putative function was consequently required. To provide 

this capability, novel data integration strategies for identifying protein function at a 

systems level were explored. 

1.6.2 Objectives 

Specifically, this thesis describes the development and application of e-science work­

flows and a service-oriented approach to the genomic scale detection and charac­

terisation of secreted proteins from Bacillus species. This problem places different 

requirements on the workflow and the surrounding architecture than has previously 

been described in the bioinformatics workflow domain. 

Firstly, a novel data mining, integration and knowledge derivation annotation 

workflow was developed to analyse bacterial proteomic data so as to predict and 

characterise secreted proteins. This workflow harnesses provenance generated through 

execution of the workflow. The data generated at key steps in the workflow was stored 

in a database. A Web interface was then developed to provide a means of viewing 

and curating the data within the database. 

Following the classification of proteins, a novel analysis workflow was developed to 

compare the predicted characteristics and behaviour of Bacillus species to make fur­

ther predictions about their pathogenesis and phenotypes. Both workflows were con­

structed using the my Grid workbench Taverna. As with any workflow, these pipelines 

were designed to be flexible and extensible to allow for future adjustments. The sys­

tem was utilised to make predictions about the secretomes of the only 12 Bacillus 

isolates for which complete genomic sequences were publicly available from Genome 

Reviewss at the time of download 4 5; this includes: B. anthmcis (Sterne), B. anthmcis 

(Ames ancestor), B. anthmcis (Ames, isolate Porton), B. cereus (ZK/E33L), B. 

cereus (ATCC 10987), B. cereus (ATCC 14579/DSM 31), B. clausii (KSM-K16), B. 

3Genome Reviews Website: http://www.ebi.ac.uk/GenomeReviews/ 
4Downloaded: April 2006 
6In August 2007, there were 14 BacillU$ isolates with complete genomic sequences 
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halodurans (C-125jJCM 9153), B. licheniformis (DSM 13jATCC 14580, sub...strain 

Novozymes), B. licheniformis (DSM 13jATCC 14580, sub...strain Goettingen), B. 

8ubtilis (strain 168) and B. thuringiensis konkukian (strain 97-27). 

A set of probabilistic functional integrated networks (PFINs) were then developed 

for these Bacillus species, providing a novel approach to characterise the putative 

secreted proteins of unknown function, and to make further predictions about their 

involvement in bacterial pathogenesis and phenotypes. 

The remaining chapters of this thesis are therefore divided as follows: 

• Chapter 2 provides background and a literature review relating to the important 

concepts and previous research in the areas of work covered by this thesis. 

• Chapter 3 describes the construction of the e-science worldlows used to classify 

and analyse the secreted proteins of Gram-positive bacteria. 

• Chapter 4 presents an analysis of the predicted secretomes generated by the 

application of the workfiows to 12 Bacillus genomes. 

• Chapter 5 describes the development and characterisation of functional inte­

grated networks for 12 Bacillus strains. 

• Chapter 6 describes the application of functionally integrated network compar­

ison techniques to the study of selected secretory protein families. 

• Chapter 7 discusses the findings and conclusions that can be drawn and discusses 

possible future work. 
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Chapter 2 

Background 

2.1 Introduction 

The biological questions addressed in this work focus on identifying and character­

ising the secretome of Gram-positive bacteria, specifically in terms of the Bacillus 

species. The first section of this chapter therefore introduces the Bacillus species, 

along with an insight into the mechanisms used by these bacteria to secrete proteins. 

The next section discusses e-science and associated technologies most applicable to 

the development of an e-science based system capable of classifying and analysing the 

secretomes of Gram-positive bacteria. Finally, strategies for developing, analysing 

and visualising integrated functional networks are presented. 

2.2 Bacillus genornes and their secret orne 

In order to understand the mechanisms involved in protein secretion, an appreciation 

of the structure of a bacterial cell is required. The distinction between the two 

different groups of bacteria (Gram-positive and Gram-negative) should also be noted. 

2.2.1 Typical bacteria 

A typical bacterium is generally composed of a number of different structures and 

compartments, as depicted in figure 2.1. The cytoplasm is the region within the bac­

terium where the majority of cellular functions take place; the nucleoid is the region 
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within t he cytoplasm where t he chromosome (usually a single molecule of D:\A) is 

locat ed ; ribosomes are small part icles in t he cytoplasm involved in protein synthe­

sis. The cytoplasm ic m embrane is a layer of phospholipids and proteins that act 

as a selective permeability barrier. The cell wall is a rigid structure giving the cell 

shape, as well as protecting the inner components of t he cell from damage. The 

cell wall may also be surrounded by an outer membrane depending on t he type of 

bacterium. The capsule is an outer layer associated wit h some bacterial species , pro­

viding additional protection. The pili are hair-like structures on the surface of a 

bacteria that aid in the attachment to other surfaces. The flagella are hair-like struc­

tures involved in locomotion [Hale et al. , 1995, Sonenshein et al. , 2002] [Davidi on, 

http://micro.magnet.fsu .edu]. 

Cytoplasm Cytoplasmic membrane 

-.,.;_-- PIII 

Flagella 

Figure 2.1: The cell structure of a typical bacterium. Adapted from Davidison, 

http) / micro.magnet.fsu. edu . 

2.2.2 Gram-positive vs. Gram-negative bacteria 

Bacteria can be differentiated into two distinct groups (Gram-posit ive and Gram­

negative) based on the chemical and physical propert ies of t heir cell walls (fi gure 

2.2). Th m thod employed for this purpose is called Gram's staining. named after 
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t he 19th century Danish bacteriologist Hans Christian Gram. A Gram-po it ive bac­

terium has a single membrane inside a thick rigid structure cell wall. compo ed of 

a number of layers of peptidoglycan, to which anionic polymers (e.g. teichoic acid ) 

are covalently attached . During the Gram stain procedure Gram-positive bacteria 

resist decolorisation and retains the colour of the initial stain , a blue/ violet colour . A 

Gram-negative bacterium has a inner (cytoplasmic) membrane, a thin layer of pepti­

doglycan and an outer membrane. During the Gram stain procedure Gram-negative 

bacteria are decolorised with alcohol and counter stained with fucrun to give a pink 

colour [Hale et al. , 1995, Sonenshein et aI. , 2002]. 

(a) 

Cell wall 
Membrane 

(b) 

---------.... , Outer Membrane 
periPlasm[ • Cell wall 

---------..... Inner Membrane 

Figure 2.2: The cell envelope structures of (a) Gram-positive and (b) Gram-negative 
bacteria. 

2.2.3 Bacillus species 

Bacillus is a genus of Gram-positive, rod-shaped , aerobic or facul tative , endospore­

forming bacteria that can be found in almost any environment , but particularly in 

the soil. Bacillus species are low % GC content bacteria i. e. these bacteria have a 

low percentage of GC base pairs in their genome. Those that have a low GC content 

have more AT base pairs , which are not as tightly coupled as GC base pair , and 

are therefore less stable. Survival is achieved in some low % GC bacteria through 

the formation of endospores , often triggered by a depletion of nutrients in their en­

vironment. An endospore is a dormant , tough , non-reproductive structure produced 

by a small number of bacteria from the Firmicute family. These spores can survive 

for many years in the dormant state, but can be rapidly act ivated through a pro­

ce s called germination. The ability to produce endospores allows Bacillus species 

to survive under environmental stresses that would otherwise kill the bacteria, in-
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cluding high temperature, radiation, desiccation, and toxic damage or destruction 

[Sonenshein et al., 2002] [Kenneth Todar University, 2005]. 

Bacillus species are important not only for their industrial uses in the production 

of enzymes, pharmaceuticals, detergents and other chemicals, but also because of the 

diversity of characteristics shown by the members of the genus Bacillus . 

• Bacillus subtilis 

B. subtilis is found in water, soil, air and decomposing plant residue. Strain 

168 of this non-pathogenic organism has been the focus of intense studies, 

and consequently is the best characterised Gram-positive bacterium. In com­

bination with the model Gram-negative bacterium Escherichia coli, the ev~ 

lutionary divergence of eubacteria into the Gram-positive and Gram-negative 

groups can be studied. In addition, B. subtilis and its close relatives are able 

to secrete enzymes into the culture medium at high concentrations. As a re­

sult, B. subtilis has been used for the study of protein secretion. In a com­

mercial context, B. subtilis provides an essential source of industrial enzymes 

used in products such as household detergents, peptide antibiotics, as well as 

antifungals that are useful in agriculture for crop protection [Kunst et al., 

1997] [Bornemann, http://www.micron.ac.uk. U.S. Environmental Protection 

Agency, http://www.epa.gov]. 

• Bacillus licheni/ormis 

B. licheniformis is a close relative of B. subtilis. It is commonly found in soil 

and plant material. In humans, it is known to cause food poisoning [de Boer 

et al., 1994]. Like B. subtilis, B. licheniformis secretes large quantities of pr~ 

teins and consequently has many uses in industry for the large scale production 

of enzymes [Veith et al., 2004]. Unlike most other bacilli, B. licheniformis is a 

facultative anaerobe and may therefore be possible for this bacterium to grow 

in other ecological niches. These species are usually saprophytic, as they are 

able to breakdown complex polysaccharides, and therefore contributing sub­

stantially to nutrient cycling. Certain strains are capable of denitrification, 
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which may have a relatively small impact on environmental denitrification as 

bacilli generally persist in the soil as endospores [Reyet al., 20(4) [US EPA, 

http://www.epa.gov). 

• Bacillu8 halodurans 

It has been indicated that alkaliphilic B. halodurans is more closely related to B. 

subtilis than any other Bacillus strain. Like B. subtilis and B. licheniformis, B. 

halodurans has applications for the industrial production of enzymes [Takami 

et al., 2001, 2000) [Jamstec, http://www.jamstec.go.jp). 

• Bacillu8 clau8ii 

In addition to having applications in the production of enzymes for the detergent 

industry, alkaliphilic B. clausii is an important human probiotic [Cenci et al., 

2006]. Probiotics are live microbial food supplements use to maintain or improve 

intestinal microbial balance. Probiotic bacterial cultures stimulate the growth of 

favoured microbes, excluding potential pathogens, and so reinforces the natural 

defence mechanisms of the body [Saarela et al., 2000). Some B. clausii strains 

have been found to release antimicrobial substances that have been shown to be 

active against other Gram-positive bacteria, particularly Staphylococcus aUTeUS 

[Cenci et al., 2006]. 

• Bacillus anthracis 

The human pathogen B. anthracis, the causative agent of anthrax, is found in 

the soil of many countries throughout the world, including Asia, Africa, parts 

of Europe, as well as North and South America. Anthrax is mainly a disease of 

herbivorous mammals, but may also be contracted by other animals and some 

birds. Generally humans contract the disease through contact with infected 

animals or contaminated animal products, generally leading to cutaneous (skin) 

anthrax, or rarely ingestinal anthrax. Nowadays this organism is more widely 

associated with the threat posed by bioterrorism, due to the fact B. anthracis 
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can cause lethal inhalation anthrax [Andersen et al., 1996, Han et al., 2006, 

Read et al., 2003J [Health Protection Agency, http://www.hpa.org.ukJ. 

The two plasmids, pXOI and pX02 encode the major virulence factors of B. 

anthmcis. The plasmid pXOI encodes components of the secreted exotox­

ins: protective antigen, lethal factor, and edema factor. The edema factor 

(a calmodulin-dependent adenylate cyclase) and the protective antigen (whose 

function is to allow the toxin to enter the host cell) combine to form the edema 

toxin, which inhibits neutrophil function. Neutrophils are a type of white blood 

cell important in immune response. Lethal toxin is made up of lethal factor 

(a zinc metalloprotease which stimulates the release of tumor necrosis factor 

a and interleukin-l,8 from the macrophages) and protective antigen. In sys­

temic anthrax, these factors are both partially responsible for sudden death. In 

essence, it is believed the exotoxins inhibit the immune response triggered by 

infection. The plasmid pX02 is involved in the synthesis of the immune evading 

polyglutamyl capsule that inhibits the process of phagocytosis, an important 

defence mechanism whereby the bacteria is engulfed by the host's phagocytes 

(e.g. white blood cells). Three genes on the plasmid, capA, capB and cape, are 

responsible for the synthesis of the capsule. The most pronounced virulent ef­

fect is only expressed when both plasmids are present. For instance, the mildly 

virulent Pasteur strain lacks pXOl, hence it is able to synthesise the capsule but 

does not produce the anthrax toxins. The less virulent Sterne strain contains 

pXOI only, so is able to produce the toxins but does not have a capsule [Dixon 

et al., 1999J. B. anthracis shows close phylogenetic relations to B. cereus and 

B. thuringiensis [Rasko et al., 2004J. 

• Bacillus cereus 

As with many organisms, a number of strains have been identified, but only 

three have had their genome completely sequenced: B. cereus (ATCC 14579), 

B. cereus (ATCC 10987) and B. cereus (E33L). These strains are considered 

soil-based opportunistic pathogens that mainly cause food poisoning. Differ-
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ent types of toxins result in two types of gastrointestinal illness: diarrhoeal 

poisoning and emetic poisoning. 

Diarrhoeal poisoning is presently known to be caused by three different enter~ 

toxins: 

- two protein complexes: 

* haemolysin BL (HBL) - consists of three components, two lytic com­

ponents (encoded by hblC and hbLD) and a binding protein B (encoded 

by hbIA). 

* non-haemolytic enterotoxin (NHE) - consists of three components, en­

coded by three genes nheA, nheB and nheC. 

- a single protein cytotoxin (CytK). 

Emetic poisoning is caused by a toxin called emetic toxin or cereulide, a heat 

stable cyclic dodecadepsipeptide encoded in ces genes. It has been shown that 

the genes responsible for this toxin are encoded on a plasmid similar to the 

pXOl plasmid of B. anthracis. 

B. cereus has also been implicated in local or systemic diseases including en­

dophthalmitis, endocarditis, meningitis, osteomyelitis, and periodontitisin. How­

ever, research is ongoing in unravelling the complex virulent pathways involved 

[Ehling-Schulz et al., 2006, Ivanova et al., 2003, Rasko et al., 20071. Of these 

B. cereus pathogens, B. cereus (E33L) shows distinct similarity with the other 

pathogenic organisms B. anthracis and B. thuringiensis [Han et al., 20061. 

Not all strains of B. cereus are pathogenic or soil-based. Other strains have 

been isolated from humans and dairy sources [Rasko et al., 20071. Genome 

sequencing is not complete for these strains [NCBI, http://www.ncbi.nih.gov1· 

• Bacillus thuringiensis 

B. thuringiensis is an insect pathogen that has been widely used as a biological 

insecticide. Products based on this bacteria are produced on a commercial scale 
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for use in the agricultural industry for pest control. The toxicity of this bacteria 

is due to the production of a 8-endotoxin. An endotoxin is a natural toxin 

produced in the mature cell during sporulation. This toxin is released when the 

mature cell lyses to release the endospores. Different strains of B. thuringiensis 

produce 8-endotoxins with different host specificities and consequently can be 

targeted to different insect pests. The cry genes responsible for the toxicity of B. 

thuringiensis have also been introduced into plants through genetic engineering, 

consequently leading to plant insect resistance [Hale et al., 1995, Rasko et al., 

2004J. 

2.2.4 Mechanisms of secretion 

The study of protein secretion not only includes the secreted proteins themselves, but 

also those proteins which form the secretory machinery (a.k.a. the translocase) used 

to export the proteins across the cytoplasmic membrane and cell wall. For a protein 

to be transported from its site of synthesis, the cytoplasm, into the culture medium, 

it first needs to be transported to the cell membrane. Secretory proteins generally 

incorporate a short amino-terminal sequence called a signal peptide, which acts as a 

targeting signal to secretory machinery. Once they are targeted to the translocase, 

the secretory proteins are either exported into the growth medium or retained at an 

extracytoplasmic location (i.e. cell membrane or cell wall) [Tjalsma et al., 2004, 2000, 

van Wely et al., 2001J. 

Within B. subtilis, at least four different protein transport pathways are known to 

exist. These allow proteins to be steered to at least five different subcellular locations 

depending on the presence or absence of an amino-terminal signal peptide and specific 

retention signals [Boekhorst et al., 2005, Tjalsma et al., 2004, 2000J. These protein 

transport pathways (highlighted in figure 2.3), as well as the mechanisms of protein 

retention, are discussed. 
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Figure 2.3: Proteins synthesised by the ribosomes wit h a signal peptide (+SP ) are 
t ransported to different extracytoplasmic locations surrounding t he cell. P roteins 
wi t h t ransmembrane domains (+TMD) are inserted into the membrane via the gen­
eral secretory (Sec) pathway or possibly the twin-arginine (+ RR) t ranslocation (Tat) 
pathway. Lipid-modified proteins (+lipobox) may attach themselves to the outer 
membrane surface via the Sec or Tat pathway ; prepilins exported by the Com path­
way may also function in this way. Proteins exported via the Sec or Tat pathway 
may also be retained in the cell wall if the protein contains cell wall-binding repeats 
(+CWB). Proteins destined for the extracellular medium can be secreted via the Sec 
or Tat pathway, or by ABC t ransporters. Proteins wit hout a signal pept ide (-SP) 
remain in t he cytoplasm or associated with the membrane. Adapted from Tjalsma 
et al. [2000]. 
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2.2.4.1 Amino-termina1signal peptides 

Amino-terminal signal peptides (sometimes referred to as prepeptides) are essentially 

export signals that are recognised by cytoplasmic chaperones. These chaperones 

guide the proteins to the translocation machinery for secretion [Campo et al., 2004, 

van Wely et al., 2001 J. The structure of the amino-terminal signal peptides can be 

split into three distinct domains: 

• The amino-terminal N-domain contains at least one positively charged arginine 

or lysine residue; although this feature does not appear to be needed for protein 

export. It has been suggested that the positively charged N-domain plays a 

role in translocation, interacting with the translocation machinery and negative 

phospholipids in the lipid bilayer of the membrane during this process. 

• The H-domain consists of hydrophobic residues that appear to form an alpha­

helical conformation in the membrane. In the middle of this domain, glycine or 

proline residues are often found. These helix-breaking residues may allow the 

signal peptide to adopt a hairpin-like structure that inserts into the membrane. 

Additional helix-breaking residues at the end of the H-domain possibly aid the 

cleavage of the signal peptide from the protein by a specific signal peptidase 

(SPase) during or shortly after translocation . 

• The cleavage site for the SPase is found in the C-domain. Cleavage at this 

site results in the protein being released from the membrane and folding into 

its native conformation. The signal peptide is then degraded by signal peptide 

peptidases (SPPases) and removed from the membrane. 

Despite the similarity in amino-terminal signal peptides, small differences in their 

structure affects the pathway used in protein export and the final destination of the 

protein. These differences result in cleavage by one of a number of different SPases. 

In B. subtilis, four different types of signal peptides have been identified based on 

SPase recognition [Tjalsma et al., 2004,2000, van Wely et al., 2001J. 
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• Secretory (Sec-type) signal peptides 

Sec-type signal peptides are regarded as the major clas of signal peptid . 

cleaved from the mature protein (during or after translocation) by a type I 

SPase. The resulting processed proteins can potentially be secreted into t he ex­

tracellular medium or alternatively retained at t he membrane or cell wall (figure 

2.4a). A subtype of th is group contains a twin arginine motif (RR motif). which 

directs proteins to an alternative pathway, termed the Tat pathway [Tjalsma 

et al. , 2000 , van Wely et al. , 2001] (figure 2.4b). 

28 ~p r 
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Figure 2.4: The st ructure of (a) Sec-type signal peptides and (b) twin-arginine signal 
peptides. The numbers indicate the average length of the ignal peptide in term of 
the number of amino acid residues. Adapted from Tjalsma et al. [2000]. 

• Lipoprotein signal peptides 

The presence of a well-conserved lipobox in preli poproteins distinguishe li popro­

teins from Sec-type proteins (fi gure 2.5). The lipobox acts as a recogni t ion signal 

for lipid-modification . The lipobox contains an essent ial cysteine residue. It is 

through the lipid-modification of this cysteine residue that the lipoprotein re­

mains attached to the membrane. The signal peptides of prelipoproteins are 

cleaved by type II SPase [Tjalsma et al. , 2004 . 2000 , van Wely et al.. 2001]. 

As with secretory proteins, an RR motif has been ident ified in some prelipopro­

teins, hence some lipoproteins are predicted to be t ransported via the Tat path­

way as opposed to the Sec pathway [McDonough et aI. , 2005]. In view of the 
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small number of lipoproteins t ranslocated via the Tat pathway. the ignificance 

of this pathway with respect to lipoproteins is unclear [Rezwan et aI. , 2007]. 

19 , 
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Figure 2.5: The structure of lipoprotein signal peptides. The numbers indicate t he 
average length of the signal peptide in terms of the number of amino acid residues. 
Adapted from Tjalsma et at. [2000] . 

• Bacteriocins and pheromones signal peptides 

The signal peptides of bacteriocins and pheromones are composed of N- and C­

domains only (figure 2.6) ; they lack a typical hydrophobic domain . Therefore 

regular predictive algorithms cannot be applied . Th e proteins are exported 

by ABC transporters . Removal of the signal peptide from the mature protein 

is carried out either by a subunit of the ABC t ransporter that i pecific to a 

particular bacteriocin or pheromone, or by specific SPases [Biemans-Oldehinkel 

et aI. , 2006, Tjalsma et al. , 2004 , 2000] . 

~~ 
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Figure 2.6: The structure of signal peptides of bacteriocins and pheromones. The 
number indicates the average length of the signal peptide in terms of the number of 
amino acid residues. Adapted from Tjalsma et al. [2000] . 

• Prepilin-like signal peptides 

The C-domain of prepilin-Iike signal peptides is located between the N- and 

H-domains (fi gure 2.7) . Therefore after cleavage by ComC (at t he cytoplasmic 

side of the membrane) , the hydrophobic H-domain remains attached to the 
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mature protein , allowing transport though the membrane [Chen and Dubnau. 

2004 , Tjalsma et al. , 2004 , 2000J. 
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Figure 2.7: The structure of prepilin-like signal pept ides. T he numbers indicate the 
average length of the signal peptide in terms of t he number of amino acid residues. 
Adapted from Tjalsma et a l. [2000J . 

2.2.4.2 Translocation machinery 

As illustrated in fi gure 2.3, proteins can be targeted to different t ranslocation path­

ways depending on t he structure of their amino-termi nal signal peptide, i.e. the 

general secretory (Sec) pathway, the twin-arginine t ran location (Tat) pathway, a 

prepilin-like pathway and via ABC t ransporters [Tjal rna et a l. , 2000J. Interestingly. 

a potentially novel pathway may exist that has previously been un hara teri ed. 

ESAT-6 is a secreted protein of unknown fu nct ion , important in the virulence of 

Mycobact eria tuberculosis. However it lacks a signal peptide, and th refor it must 

utilise an alternative secretion pathway. Advances have been made in recent year to 

understand the mechanisms of t he pathway involved . Homologue of ESAT-6 have 

also been identified computationally in other bacteria , includ ing B. subtilis and B. 

anthracis [Brodin et a l. , 2004, Pallen, 2002J. 

These membrane transport systems generally con ist of one or more protein com­

ponents, where at least one of these proteins contains mul t iple transmembrane alpha­

helical segments aJlowing it to span t he membrane. The t ranslocation of protein 

t hrough the membrane channel is often driven by ATP hydrolysis [Sonenshein et al.. 

2002J. 
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• Genera1secretory (Sec) pathway 

The main pathway through which proteins are transported from bacteria is 

the Sec pathway. Extensive research has been conducted into the functional­

ity of this highly conserved pathway in E. coli and B. subtilis [Tjalsma et al., 

2000, van Wely et al., 2001J. Extracellular, membrane and cell wall proteins are 

translocated via the Sec pathway through a channel formed by the membrane­

embedded protein complex SecYEG in an unfolded or partially folded confor­

mation. The translocation motor SecA, a peripherally bound ATPase, drives 

the translocation process. SecA interacts with the preprotein and subsequently 

undergoes repeated binding and hydrolysis of ATP, combined with conforma­

tional changes, eventually resulting in translocation [Campo et al., 2004J. The 

signal peptide can be cleaved by SPase I, or SPase II in the case of lipoproteins, 

before complete translocation of the mature protein [Berks et al., 2005J. 

• Twin-arginine translocation (Tat) pathway 

The Tat pathway is important in a number of bacterial processes, including 

energy metabolism, cell wall biosynthesis and pathogenesis. This pathway is 

responsible for the export of folded preproteins. It consists of three integral 

membrane proteins TatA, TatB and TatC. Studies on E. coli indicate that 

TatA forms the channel through which proteins pass, and TatBC is respon­

sible for signal peptide recognition. The mechanism begins with the binding 

of the preprotein to the TatBC complex, specifically binding to TatC. The 

TatBC-preprotein complex then associates with TatA for transport across the 

membrane. It is thought that the signal peptide is then cleaved by SPase I, or 

SPase II in the case of lipoproteins, only after the complete translocation of the 

mature protein [Berks et al., 2005, Tjalsma et al., 2004J. 

• ATP-binding cassette (ABC) transporters 

ATP binding cassette (ABC) transporters are integral membrane proteins that 

transport proteins across biological membranes. ABC transporters, like other 
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secretion pathways, are important for uptake of nutrients and elimination of 

waste products, energy generation, and cell signalling. In order to secrete pro­

teins, ABC transporters require a minimum of four domains: two transmem­

brane domains that form the protein binding sites and provide specificity, and 

two ATP binding domains that provide a mechanism for driving the transloca­

tion of the protein via ATP catalysis [Biemans-Oldehinkel et al., 2006, Linton, 

2007] . 

• Type IV prepilin-like pathway 

Type IV prepilin-like proteins are involved in the development of genetic com­

petence. Competence is a state in which a bacteria is able to take up DNA from 

another bacterium; this process is called transformation. These prepilin-like 

proteins are exported via an alternative pathway to those previously discussed, 

called the ComC pathway. ComC is an integral membrane protein that is there­

fore bifunctional. In terms of secretion of prepilin-like proteins, it is required for 

the assembly and anchoring of the pilin-like structures to the membrane, requir­

ing cleavage of the signal peptide. The phenylalanine residue at position 1 in 

the resulting mature protein is then methylated by ComC [Chen and Dubnau, 

2004, Tjalsma et aI., 2000]. 

2.2.4.3 Retention mechanisms 

Despite the presence of an amino-terminal signal peptide-like sequences, not all of 

these proteins are exported into the environment. Many proteins are retained at the 

cell surface through additional retention mechanisms. 

• Thansmembrane domains 

Some proteins contain additional hydrophobic regions that can integrate into 

the membrane and span across the membrane. These membrane proteins are 

only partially translocated; they embed themselves in the membrane once they 

have been released from the translocation process. Thansmembrane proteins are 
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found in transporter complexes, channels and enzymes, all of which have a role 

in protein secretion [Sonenshein et al., 2002, Tjalsma et al., 2004]. 

• Lipid-modifications 

Lipoproteins remain anchored to the membrane through the lipid-modified cys­

teine residue, most likely through hydrophobic interaction. Lipoproteins are 

associated with many different functions important in cell survival, including 

adhesion and invasion, cell wall synthesis, nutrient uptake, degradative pr~ 

cesses, and sensing and transmembrane signalling [Sutcliffe and Russell, 1995]. 

The mechanism through which prelipoproteins undergo lipid-modification is the 

responsibility of two consecutive enzymatic reactions involving diacylglyceryl 

transferase and SPase II. These enzymes are membrane-integral proteins (figure 

2.8). Cleavage of the signal peptide from the mature protein is initiated by 

diacylglyceryl transferase, which targets the cysteine residue in the preproteins, 

adding a diacylglyceryl group to the thiol group of cysteine. The signal peptide 

is subsequently cleaved by SPase II. 

Research suggests that lipoproteins play an important role in pathogenicity. In­

activation of the genes involved in lipoprotein biosynthesis reduces the virulence 

of Gram-positive pathogens [Rezwan et al., 2007]. 

• Cell wall binding 

In Gram-positive bacteria, the cell wall functions as a protective layer, guarding 

the cell against osmotic damage, as well as defining the cell's shape, but also 

providing mechanisms through which the bacteria can interact with its environ­

ment. Pathogenic bacteria can alter their cell wall structure and function to 

adapt to changes in their environment. 

The main component of the cell wall is peptidoglycan, which contains addi­

tional molecules that are covalently and non-covalently attached, including te­

ichoic acids, polysaccharides and proteins. The result of all these interactions 

provides the cell wall with properties specific to the species and strain, greatly 
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Figure 2.8: The steps involved in processing lipoproteins prior to the attachment to 
the outer surface of the membrane. The covalent attachment of a li pid residue to the 
conserved cysteine is the result of three consecutive enzymatic react ions involving: 
diacylglyceryl transferase, SPase II and transacylase. Adapted from Rezwan et a l. 
[2007]. 

contributing to the viru lence , host interactions, and disease symptom develop­

ment and outcome of pathogens [Marraffini et aI. , 2006]. 

Just as a protein (with the necessary domains) can bind to the membrane, 

a protein may also possess the potential to be retained at the cell wall, via 

covalent or non-covalent mechanisms. Of particular interest are t hose cell wall 

proteins that are covalently anchored to the surface. These surface proteins are 

distinguished by the presence of a cell wall sorting signal at the C-terminal end 

of a protein . The cell wall sorting signal is composed of a short pentapeptide 

motif (LPXTG ) followed by hydrophobic region and a posit ively charged tail. 
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It is approximately 30 to 40 residues long (figure 2.9) [Co art and Jonquieres. 

2000 Marraffini et aL, 2006]. 

SP I •• , 

hydrophobtc 

j + I 

SOrti ng signa l 

Figure 2.9: The structure of surface protein precursors, containing a signal peptide 
(SP ) at the N-terminal and the sorting signal at C-terminaL The orting signal 
consists of an LPXTG motif, a hydrophobic domain and a positively charged taiL 

The mechanism of covalent attachment to the cell wall is catalysed by t ranspep­

tidation enzymes known as sortases. The steps involved are highlighted in figure 

2.10. Following the translocation of a surface protein precursor acro s the mem­

brane and t he cleavage of the signal pept ide by SPases , the LPXTG cell wall 

sorting signal retains the mature protein within t he secretory pathway. Th 

sortase enzymes then catalyse a t ranspept idation react ion; the LPXTG motif i 

targeted by the sortase , promoting cleavage of the sort ing signal from the pro­

tein and the subsequent anchoring of the protein to the cell wall by attacking a 

bridge of peptidoglycan precursors [Navarre and Schneewind , 1999] . 

2.3 Data integration, e-SClence and Grid technol-

ogy 

With the advent of the omic revolution t here is a real need for t he development 

of analyt ical tools that can process the vast quantity of data being generated . and 

ensure the sharing and integration of t his data to enable better-info rmed or faster 

decisions, and minimise the rediscovery of already known facts [Hey and Trefethen. 

2005]. However, within bioinformatics, integration is a well-known problem [Hul l 

et aL, 2006 , Stevens et aL, 2007]. Data analysis is often based on data from different 

sources. which may include gene and protein sequence data. measurement data from 
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Figure 2.10: The mechanism of covalent attachment of a protein to the surface of the 
cell wall through an LPXTG motif. Adapted from Cossart and Jonquieres [2000j. 

different types of instruments, and so forth . Along with t he data it elf, metadata 

can be extremely informative. Metadata is data about data that de cribes, explain 

and locates a data resource, facili tating in the retrieval , use, and management of 

the resource [NISO , www.niso.orgj. Of particular interest to biologist i a subt pe 

of metadata known as provenance. Provenance provides information regarding the 

process of biological experiments, the purpose and results of experiments, along with 

annotations and notes provided by the scientist about the experiment . This metadata 

is essential for others to be able to validate and verify t he integrity of the experiment 

[Greenwood et al. , 2003j. 

Data and metadata need to be stored and accessed effi ciently from remote loca­

tions by different groups. Furthermore, tools are needed to compare, classify and 

analyse this data to extract meaning and to generate fur ther hypotheses that can be 

tested in the lab [Gray et al. , 2005 , Srivastava and Velegrakis. 2007j. This process 

is difficu lt since tools and data sources are distri buted all over the world , in differ­

ent formats , and of variable quality. Current ly many life scient ists work round the 

problem by simply cutting and pasting between many different Web pages. However 

this temporary solution does not scale and is not easy to apply to large, omic-scale 

datasets when data about thousands of proteins needs to be handled. 
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There are therefore still many barriers to be overcome to improve the sharing and 

integration of data. Dealing with the three problems - heterogeneity, distribution 

and autonomy - often forms a significant part of the work load of a bioinformatician 

[Hernandez and Kambhampati, 2004, Karasavvas et al., 2004, Stevens et al., 2007]. 

1. Heterogeneity 

Bioinformatics tools and datasets tend to be highly heterogeneous in content 

and structure. When biological and clinical data is represented electronically, a 

multitude of formats are used presenting a barrier to open information exchange 

within the scientific community. Standardised knowledge representations can 

help to address this problem, but so far uniform standardisation has been im­

possible to achieve on a large scale. 

2. Distribution 

Datasets are often widely geographically dispersed, being distributed on mul­

tiple servers in multiple locations. However, using distributed resources has 

associated problems: networks can fail, data transfer is slow and expensive, and 

a crucial requirement is security. 

3. Autonomy 

Tools and datasets are often maintained and deployed by individual scientists 

within their own laboratories. As a result, reliability and robustness of data are 

often a concern [Hernandez and Kambhampati, 2004, Karasavvas et al., 2004, 

Stevens et al., 2007]. 

2.3.1 e-Science and the Grid 

e-Science refers to a science in which scientists from around the world collaboratively 

share data and distributed computing resources [Hey and Trefethen, 2003, 2005]. In 

order to provide a platform for e-science, technologies such as the Web, Web services 

and the Grid are used. The Web is a service for sharing information over the Internet 

[W3C, http://www.w3.org] and the Grid is a service for sharing computer power and 
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data storage capacity over the Internet [Foster et al., 20011. Web services are services 

for sharing applications/algorithms over the Internet [W3C, http://www.w3.org1 that 

can be combined into more complex systems through building workftows. 

The ultimate aim of the Grid is to create a large computational resource utilis­

ing the global network of computers, belonging to different people and institutions, 

including desktop PCs and workstations, mainframes and supercomputers, but also 

incorporating data vaults and instruments such as meteorological sensors and visu­

alisation devices. The advantage of this approach is that it removes the need to 

install programs locally or download data, allowing remote execution of a program 

or analytical tool, using a remote machine where the resource is located, or if this 

machine is busy, the Grid is designed to copy the resource to another computer or 

cluster of computers which are idle for execution. Furthermore, the Grid would allow 

interactive collaborative analysis, by networking computers to give the feel of a local 

network [Clery, 2006j[CERN, http://gridcafe.web.cern.ch1. 

The Grid is based upon coordinated resource sharing and problem solving in dy­

namic, multi-organisational virtual organisations. A virtual organisation consists of 

a set of individuals and/or institutions defined by sharing rules, in which resource 

providers and consumers state clearly what is shared and the conditions under which 

sharing occurs. Essentially, the Grid is the technology to provide transparent data 

sharing between organisational and geographic borders. The Grid tackles many con­

cerns and requirements not addressed by current distributed technologies, such as 

the need for flexibility and control over how a variety of resources (programs, files 

and data or computers, sensors and networks) are shared and used, as well as issues 

concerning quality of service, scheduling and accounting [Foster et al., 2001j[CERN, 

http://gridcafe.web.cern.ch]. 

In reality there is no single Grid. Many Grids exist including Grids that are 

either private or public, regional, national or even global, all-purpose or specific to a 

scientific problem [CERN, http://gridcafe.web.cern.ch]. 

To enable the construction of Grids, complex systems of software and services are 

required [CERN, http://gridcafe.web.cern.ch1. Over recent years the Grid community 
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has succeeded in developing protocols, services and tools that provide an answer to 

many of the challenges being faced in this area [Foster et al., 2001]. 

One of the areas where the interests of scientists and businessmen converge is 

standards. Common open standards are required to ensure that development of the 

Grid is constructive, and that applications that can run on one Grid can run on 

another. This is an important issue with the Grid, as the Grid's main purpose is the 

sharing of resources. Like the Internet Engineering Task Force (IETF) for the Internet 

and the World Wide Web Consortium (W3C) for the Web, the Open Grid Foruml 

is responsible for developing standards specific to the Grid. Through this forum, a 

standard known as Open Grid Services Architecture (OGSA) is being developed that 

already provides a key reference for future Grid development projects. OGSA seeks 

to harmonise the development of the Globus Toolkit, a software package for creating 

grids. The toolkit provides a set of software tools to implement the basic services and 

capabilities required to construct a computational Grid, such as security, resource 

location, resource management, and communications. The Globus toolkit makes use 

of Web services, an additional standard for services offered over the World Wide Web 

[Clery, 2006, Foster, 2003][CERN, http://gridcafe.web.cern.ch]. 

2.3.1.1 Architecture 

The architecture of the Grid is often described in terms of layers, each having a specific 

function (figure 2.11.a) [Foster, 2003][CERN, http://gridcafe.web.cern.ch]; the lower 

layers are focused on computers and networks, whereas the higher layers are focused 

on the user: 

• The network layer connects the resources in the Grid. 

• The resource layer is composed of the actual Grid resources (e.g. computers, 

sensors) that can be directly connected to the network. 

• The middleware layer provides the tools that enable the various Grid resources 

to function on the Grid; this is the 'brain' of the Grid. 

lOpen Grid Forum Website: http://www.ogf.org/ 
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• The application and serviceware layer is the layer t hat user interact wi th , 

incorporating the user applications, and often serviceware that is responsible 

for measuring a user 's Grid usage, t racking resource providers and user of tho e 

(al 

(bl 

resources. 

APPLICATION AND SERVICEWARE LA YER 

MIDDLEWARE LAYER 

RESOURCE LAYER 

NETWORK LA YER 

USER APPLICATIONS 

Tools and lIPPi~ons 

Grid services and protocols 

Resources (e.g. complAers, storage media, nelWOOcs , sensors) 

DeIkIs liar ....... CIIIIIIIICII 

COLLECTIVE SERVICES 

RESOURCE AND CONNECTIVITY PROTOCOLS 

Tools and IIPPicllions 

Directorybrokering, diagnostics and moritoring 

Figure 2.11 : The Grid architecture in terms of (a) tool and resources (adapted from 
CERN , http) /gridcafe.web.cern. ch) and (b) the protocols and applicat ion program­
ming interfaces (adapted from Foster [2003]) . 

An application that was originally implemented to run on a standalone computer 

needs to be modified to run across t he Grid , in order to invoke all the correct services 

and protocols, just as it would otherwise have to be adapted to run on t he Web . A 

redefined model that is shown in fi gure 2.11. b, illustrating the Grid archi tecture in 

the context of protocols: 

• The fab ric defines the physical infrastructure of t he Grid . including omputers 

and the communication network . 

• Resource and connectivity protocols are responsible for the network transaction 

between the different resources on the Grid (commonly obtained t hrough using 

the Globus Toolkit ): 

Communication protocols to al low resources to exchange data over the 

Internet . 
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- Authentication protocols to verify the identity of users and the resources. 

• Collective services are responsible for tracking available resources, brokering 

resources (i.e. mediating between resource providers and users), monitoring and 

diagnosing problems, ensuring multiple copies of data are available at different 

locations, and tracking who is allowed to do what, when. In order to provide 

this functionality additional protocols are used: 

- Information protocols obtain information about the structure and state of 

the resources on the Grid. 

- Management protocols negotiate access to resources in a uniform way. 

• User applications once again represent the users view on the Grid. 

In this latter representation (figure 2.11.b), the middleware layer has been split 

based on resource and connectivity protocols, and the collective services, whereas the 

network layer and resource layer have been fused into the new fabric layer. 

Each layer in the architecture is needed in order to be able to execute an applica­

tion over the Grid. For instance, a Grid application whose function is to analyse the 

data stored in several files follows several steps: 

• Obtain authentication in order to open the files (using resource and connectivity 

protocols) . 

• Determine the current locations on the Grid of the appropriate files, as well 

as the most convenient location of the computational resources (uses collective 

services). 

• Extract the data, analyse, and return the results (uses resource and connectivity 

protocols) . 

• Monitor the progress of the data transfers and analysis, notifying the user when 

the analysis is complete, and responding to any failure (uses collective services) 

[Foster, 2003j[CERN, http://gridcafe.web.cern.ch]. 



37 

2.3.2 Services on the Web 

2.3.2.1 Soap-based Web services 

Web services are the next generation of Web-based technology for exchanging infor­

mation. Web services allow Web-based applications to be built using any platform 

and programming language. Due to their modularity and flexibility, Web services are 

ideal for integrating applications, particularly in making heterogeneous resources in­

teroperable. Following the deployment of a Web service, other applications and Web 

services can discover and invoke that service [Booth et al., 2004, Gottschalk et aI., 

2002, Wang et al., 2004J. 

Exposing bioinformatics applications as Web services eliminate the problems ass0-

ciated with using several different applications that need to be installed locally. The 

execution of these applications can be coordinated by integrating Web services into 

workflows [Altunay et al., 2004J. A number of tools are now available allowing biol~ 

gists to easy compose and enact workflows, without the need for technical expertise in 

computing. An example tool is Taverna, which provides a workflow markup language 

(SCUFL) along with software to construct workflows using distributed technology 

[Oinn et al., 2004J. 

SOAP-based Web services are a common type of Web service. The components 

involved in finding, publishing and binding to a Web service can be described by 

considering the service-oriented architecture of a Web service, as shown in figure 

2.12. This architecture consists of a service provider, service requester and service 

registry: 

• A service provider creates a Web service, and the corresponding service descrip­

tion may be published within a service registry (or obtained by simply emailing 

the service requester). 

• The service registry then provides the service requester with the service de­

scription and a Uniform Resource Locater (URL) indicating the location of the 

service. 
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Figure 2.12: SOAP-based Web services architecture. Adapted from Gottschalk et al. 
[2002]. 

• The service requester can then use this information to bind to t he service and 

execute it [Booth et aI. , 2004 , Gottschalk et aI. , 2002]. 

Web services utilise a number of standardised protocols and application program­

ming interfaces (APls) enabling users to locate and use the operations provided . This 

is highlighted in the Web services programming stack (figure 2.13). The programming 

stack is broken down into a number of levels: 

• The network is the bottom level over which a Web service is made available, 

and is often based on the HyperText Transport Protocol (HTTP) protocol. 

• XML-bas ed m essaging is based on SOAP that defines a mechanism enabling 

communication between Web services, providing a way of exchanging informa­

tion between service requesters, service registries and service providers. 

• A service description describing the operation and location of the available Web 

services is provided through the Web Service Descript ion Language (WSDL), 

a formal, computer-readable XML-based language to describe \Veb services. A 
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Figure 2.13: SOAP-based Web services programming stack. Adapted from Gottschalk 
et al. [2002] . 

services WSDL file is all that is required to create an application that commu­

nicates with a particular Web service. 

• Service publication and hence service discovery can be done through a Universal 

Description , Discovery, and Integration (UDD! ) regist ry t hat stores descriptions 

about services offered by an inst itution in a common XML format to allow 

clients to find a WSDL for a particular Web service and invoke the servi e, 

• The service fl ow layer enables Web services to be integrated into workftows. 

BPEL4WS [Andrews et aI. , 2003] and SCUFL [Oinn et aI. , 2004] are potential 

standards that could be used at this level [Gottschalk et aI. , 2002 , Wang et aI. , 

2004]. 

The network , XML-based messaging and service description layer are requi red 

in order to have interoperable Web services [Gottschalk et al. , 2002]. Apache Axis2 

and Codehaus XFire3 are open source frameworks providing a founda t ion on which 

to build Java Web services, They support the important Web service standards, 

including SOAP over HTTP and ' NSDL. The remaining top-level layers are not nec­

essary, but provide improved means of finding , binding and integrating \Neb services 

2 Apache Axis Website: http ://ws.ap8che.org/ a.xis/ 
3Codehaus XFire Website: http ://xfire.codeha us.org/ 
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[Gottschalk et al., 2002]. 

There are two ways in which SOAP messages are structured: Remote Procedure 

Call (RPC) and Document style. In RPC style, the contents of the body of the SOAP 

message must conform to a structure that indicates the method name and contains a 

set of parameters. In Document style, the contents of the body of the SOAP message 

is structured in any desired fashion [Curbera et al., 2002]. 

2.3.2.2 REST services 

"Representational State Transfer is intended to evoke an image of how a 

well-designed Web application behaves: a network of web pages (a vir­

tual state-machine), where the user progresses through an application by 

selecting links (state transitions), resulting in the next page (represent­

ing the next state of the application) being transferred to the user and 

rendered for their use" [Fielding, 2000]. 

Representational State Transfer (REST) is an architectural style used to describe 

network systems, such as the Web. Therefore, it is not a standard on its own, unlike 

SOAP which is a general protocol that can be used as part of different architectures 

[zur Muehlen et aI., 2005]. 

It is based on the concept of a resource, where a resource is defined as anything 

that has a Universal Resource Identifier (URI). REST services interface with HTTP 

via the following commands: 

• HTTP GET to retrieve a resource representation from a URI. 

• HTTP DELETE to remove a resource representation. 

• HTTP POST to update/create a resource representation. 

• HTTP PUT to create a resource representation [Fielding and Taylor, 2002, zur 

Muehlen et al., 2005]. 

The differences between REST and SOAP is summarised nicely in Swenson [2005], 

which states: 
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"REST says that everything is a resource, and has a distinct Web address. 

In its purist form, it only supports HTTP, and the only supported opera­

tions are GET, PUT, POST and DELETE. Getting a resource gives you 

an XML structure. Web locations are objects, and you send the opera­

tion to the resource. SOAP, on the other hand, uses an address to fix the 

location of an API call. Each operation has an address, and if you want 

to talk about an object, you pass a reference (or a copy) of the object to 

the operation" . 

REST vs. SOAP is equivalent to object-oriented vs. procedur~oriented [Swenson, 

2005j. Compared to SOAP-based approaches, REST is a lighter-weight and less 

featur~rich approach to Web services due to the limited number of operations and 

the unified address schema, as well as the potential scalability of REST-based systems. 

In contrast, SOAP has tight coupling of operations, allowing applications to be tested 

and debugged before deployment [zur Muehlen et aI., 2005j. 

There is now a growing interest in REST services due to benefits it offers in 

terms of scalability, performance, security, reliability and extensibility [Fielding, 2000, 

Fielding and Taylor, 2002j. A compromise is now on offer with the incorporation of 

REST principles into the standards and guidelines of the new version of SOAP [Mitra 

and Lafon, 2007j. 

2.3.3 Taverna and mYGrid 

The mil Grid project has developed tools that allow researchers to develop and execute 

their own workflows. Its aim is to provide free software to support the development 

of workflows. At the core of development is the Taverna workbench. Using Tav­

erna, distributed programs and data sources can be accessed. Workflows can be 

graphically built using a huge number of services, edited, browsed and then executed 

using the built in workflow enactment engine, Freefluo [Hull et aI., 2006](Taverna, 

http://taverna.sourceforge.netj. 

Freefluo coordinates the execution of parallel and sequential activities in the work-
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flow, and supports data iteration and nested workflows. It is integrated into the Tav­

erna workbench, but is also available as a desktop tool and Web service. Workflow 

definitions can therefore be executed by direct submission to the workflow enactor 

[Taverna, http://taverna.sourceforge.net]. Workflows are defined using the language 

called Simple Conceptual Unified Flow Language (SCUFL) [Oinn et al., 2004J. 

Within Taverna, processes can be added to a workflow in many ways, depending 

on the nature of the component. Local components, with existing Java APIs, can 

be imported into a Taverna workflow using the annotations derived by the API Con­

sumer tool for the associated Java libraries [Taverna, http://taverna.sourceforge.netJ. 

Remote components, on the other-hand, can be incorporated into the workflow using 

a multitude of methods. 

• Assess to the operations of a standard SOAP Web service is provided through 

the Web service client. 

• Soaplab is a tool that provides a way to automatically generate and deploy 

Web services to execute existing command-line analysis programs. Java imple­

mentation classes and deployment descriptors for the services are created using 

Apache Axis. The advantage of Soaplab is that it provides a unified access route 

to remote computational methods that may have limited or no user interface 

defined. (As a sub-project to Soaplab, Gowlab can be used to generate Web ser­

vices on top of existing Web resources by providing data from a third-party Web 

page as a Web service) [Senger et al., 2003j[Soaplab, http://www.ebi.ac.ukJ. 

• Styx Grid Service is a method to wrap command-line programs to enable exe­

cution of these programs over the Internet. A Styx service is not a Web service, 

but like Web services, Styx Grid services can be composed into workflows using 

either simple shell scripts or graphical tools. The main advantage of Styx lies in 

its architecture; the Styx Grid service architecture provides a way of streaming 

data peer to peer (i.e. from service to service). Styx is therefore useful when 

using large datasets as it removes the need to transfer data through the client 

[Blower et al., 2006J. 
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In addition, there are a number of local Java operations provided as default 

within Taverna that can be used for common generic tasks (e.g. to flatten lists). 

Also, during workflow construction it is often the case that the output of one pro­

cessor does not have the correct format for the input of the next service. For sim­

ple cases writing a simple script to plug into the workflow as a non-service comp~ 

nent may be appropriate. These Beanshell scripts are interpreted in Java [Taverna, 

http://taverna.sourceforge.netj. 

Furthermore, Taverna also provides ways of managing the resulting data, such as 

the ability to export to Microsoft Excel [Taverna, http://taverna.sourceforge.netj. It 

also records provenance, of which there are two categories: derivation data and ann~ 

tations. Derivation data describes what initial data was used to obtain a result, and 

how the initial data was transformed into the result. In terms of an in-silico experi­

ment, the derivation data is about which services were used and how they transformed 

the initial inputs into the overall result. Annotation data provides background infor­

mation like who performed an experiment and when, were any comments supplied on 

the specific methods and materials used [Greenwood et al., 2oo3j. 

Provenance has a variety of uses. Firstly, another e-scientist should be able to 

repeat the experiment and verify the results with the information provided. Prove­

nance data can also provide management information about what has been done in a 

virtual organisation: who last used a particular workflow, and in what context, what 

have others done with similar data. 

2.3.4 Microbase 

The ability to extract information about an organism's phenotype and metabolic 

potential by analysis of its genome sequence requires genome databases to be searched, 

and comparison and analysis to be performed. A number of tools have been developed 

to perform sequence comparison. Probably the most popular of these is BLAST 

[Altschul et al., 1990j. BLAST searches protein and nucleotide (DNA) databases to 

identify pairwise sequence similarities by local alignment between a query sequence 
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and each sequence in a database. 

However, due to ever increasing volumes of genome data, genomic comparison and 

analysis has become a data-intensive and compute-intensive task. One possible solu­

tion is to employ Grid computing to build integrated genome databases and powerful 

computing environments for genomic data processing. 

The Microbase project has developed a Grid-based system to provide a foundation 

for large-scale genome comparison and analysis by utilising the data and computing 

resources on the Grid [Sun et aI., 2005J [Microbase, http://www.microbase.org.uklJ. 

The system stores pre-computed datasets of all-against-all microbial genome com­

parisons generated by a variety of genome comparison tools. It provides a scalable 

computing environment in which computationally intensive genome comparison and 

analysis can be performed. The system has been used to carry out a variety of appli­

cations including an all-against-all search for gene homologues (including orthologues 

and paralogues). 

The EMBL database is dynamically integrated with the pre-computed dataset; 

through a Web service based notification system, newly published genomes in EMBL 

can be automatically added and compared against all existing genomes, thereby up­

dating the pre-computed dataset. An additional Web service interface also provides 

remote users with access to this resource [Sun et aI., 2005J. 

2.4 Biological network analysis 

One aim of systems biology is to understand biology in the global scale of protein 

interaction networks. However, the interaction between proteins is not well defined 

and is used in various contexts when describing interaction networks, to mean pro­

teins that physically interact, through to proteins that may be involved in some kind 

of common functional or metabolic process or transient protein complex, but may 

not necessarily physically interact. These global networks of proteins and their 'in­

teractions' are called interactomes and can be defined using a variety of experimental 

techniques. 
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Interactomes not only provide a framework to analyse and experimentally ver­

ify theories concerning a pathway, but they can also reveal unknown properties and 

unanticipated consequences of different pathway configurations. Furthermore, they 

also provide a means of managing the complexity of a vast number of cellular com­

ponents and interactions. One of the major applications of interactomes is in the 

prediction of protein function by the so called 'guilt-by-association' procedure [Cu­

sick et a1., 2005J. Guilt-by-association refers to the process of inferring the function 

of an uncharacterised protein on the basis it interacts with one of known function 

[Oliver, 2000J. 

2.4.1 Interactome modelling 

A number of studies have been undertaken for analysing protein-protein interactions 

by computationally modelling the interactomes of single species such as Plasmodium 

Jalciparum [Date and Stoeckert, 2006J, Saccharomyces cerevisiae [Deng et al., 2004, 

Jansen et a1., 2003, Kiemer et a1., 2007, Lee et a1., 2004J, or multi-species such as the 

STRING database and its accompanying Web interface [von Mering et al., 2007J. 

Often a large amount of data is available to describe many different ways that 

proteins can functionally interact. These data often result from high-throughput 

experimental programmes and can include information about which proteins are co­

expressed in a number of microarray studies, for example, through to which protein 

names are cocited in the abstract of a paper. Therefore, the construction of these 

networks is often carried out on information extracted from multiple data sources in­

cluding high-throughput experiments, smaller-scale experiments, curated databases 

and computational prediction methods. Integrating different forms of evidence, each 

with varying degrees of reliability and associated biases, effectively provides a more 

reliable interactome. Furthermore, by combining data sources from studies focus­

ing on different biological properties essentially provides an interactome modelling a 

broader range of characteristics. When combining data sources, it is important that 

the relative quality of the data be assessed in order to determine the contribution 
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of that source to the total edge weight describing the functional association between 

two proteins [Cusick et aI., 2005, Ge et al., 2003, Jansen et al., 2003, Lee et al., 2004]. 

Probabilistic functional interaction networks (PFINs) describe the functional associ­

ations between proteins as a weight on an edge between two genes or gene products 

in a network. The weight on the edge denotes the probability that the two proteins 

functionally interact according to some kind of evidence. 

However, to be able to integrate data sources that employ their own weighting 

schemes, or alternatively those that have no weight associated, a unified weight­

ing method needs to be implemented. Most often a guilt-by-association approach is 

adopted, in which a gold standard dataset is used from which true positives (TP) and 

false positives (FP) can be calculated. A commonly used benchmark is the KEGG 

pathway database, either on its own, as in Lee et al. [2004], or in combination with 

another benchmark such as Gene Ontology (GO), as in Date and Stoeckert [2006]. 

However, the use of a gold standard is not the best approach to uniformly weight 

the data, as it is largely effected by the reliability and content bias of the data source 

used as the benchmark. In addition, it removes the possibility of incorporating the 

chosen gold standard dataset as input to the interactome. Methods are therefore 

required in which integration of data sources do not rely on a gold standard, such as 

Deng et al. [2004]. 

In any modelling process, mathematics plays an important role. In terms of 

interactomes, mathematical methods are required to process the data to construct 

the interactomes, but methods are also used in analysing the properties of networks; 

Bayesian statistics are frequently used for this purpose. Bayesian statistics are often 

applied to biological problems due to their ability to measure the degree of belief in 

a hypothesis. The Bayesian approach to statistics revolves around the concept that 

the probability that a hypothesis is true is based on known observations. In other 

words, the probability of an event occurring is based on the degree of belief in that 

event [Heckerman, 1996]. 
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2.4.2 Interactome comparison 

The aim of developing protein interaction networks is to understand how proteins 

interact and hence how they function, individually and as part of a system. This 

knowledge can be gained through applying prediction methods within the individual 

interactomes themselves. The GOM (Global Optimisation Method) [Vazquez et al., 

2003] and the improved MFGO (Modified and Faster Global Optimisation) [Sun et al., 

2006] methods predict the function of unclassified proteins in the context of the 

surrounding interaction network. Some methods have been devised that generate 

subgraphs based on topological statistics, such as TopNet [Yu et al., 2004] and the 

algorithm termed "local graph alignment" [Berg and Lassig, 2004]. 

More information can be extracted by making comparison across all the interac­

tomes i.e. across species. A standard approach to annotating a protein with specific 

functions is to identify proteins with a similar sequence that are well characterised; 

this involves identifying homologues, or more precisely, orthologues. Homologs are 

proteins that share a common ancestry; this includes orthologues that evolve by speci­

ation, or paralogues that arise by gene duplication. Orthologs generally retain similar 

domains and functions following speciation, whereas paralogues evolve new functions. 

In- and out-paralogues denote genes duplicated subsequent or prior to speciation, re­

spectively. Co-orthologues define orthologues between in-paralogues and genes in the 

other species [Alexeyenko et al., 2006, O'Brien et al., 2005]. Speciation is defined 

as the formation of new species that live independently from the species from which 

they evolved [Hale et ai., 1995]. 

A number of automated methods have been developed for orthologue identifica­

tion, distinguishing between probable (co-)orthologues and paralogues, including: 

• Phylogeny-based methods including: 

- Resampled Inference of Orthology (RIO) [Zmasek and Eddy, 2002], 

- Orthostrapper [Storm and Sonnhammer, 2002]. 

• Evolutionary distance-based methods including: 
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- Reciprocal Smallest Distance (RED) [Deluca et al., 2006, Wall et al., 2003] . 

• BLAST-based methods including: 

- Reciprocal Best Hit (RBH) , 

- COGs [Tatusov et aI., 2003], 

- OrthoMCL [Li et al., 2003], 

- Inparanoid [Remm et aI., 2001] and Multiparanoid [Alexeyenko et al., 

2006]. 

According to a study carried out in Chen et a1. [2007], the best performing al­

gorithms are considered to be OrthoMCL and Inparanoid, which show similar per­

formance when comparing two species. Like Inparanoid, OrthoMCL uses RBH to 

recognise co-orthologue relationships, then defines orthologue clusters using a Markov 

Clustering (MCL) algorithm, in which the cluster granularity depends on the inflation 

parameter. OrthoMCL generates clusters of proteins where each cluster consists of 

orthologues or in-paralogues from at least two species [Li et al., 2003]. A limitation of 

this method is that it does not provide confidence values for the predicted orthologues. 

Additionally the orthologue groups do not necessarily have a unique common ances­

tor, leading to potential inclusion of out-paralogues in the same group. OrthoMCL 

has the advantage that it is capable of clustering orthologues across multiple species. 

The Inparanoid clustering algorithm is limited to pairwise proteome orthology de­

tection, unlike OrthoMCL. However, Inparanoid has the added benefit that it provides 

confidence scores for the predicted orthologues [Remm et al., 2001]. Multiparanoid 

extends the Inparanoid algorithm to allow clustering over multiple species, using the 

output generated by Inparanoid to build multi-species clusters. The drawback of Mul­

tiparanoid is that it may only be used when comparing across closely-related species 

[Alexeyenko et al., 2006]. 

The performance of Multiparanoid and OrthoMCL are comparable, although dif­

ferences have been highlighted between these two algorithms. Orthologues identified 

by OrthoMCL include more out-paralogues compared to Multiparanoid. OrthoMCL 
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produces tighter clusters reducing tree conflicts, and Multiparanoid has a stricter 

inclusion policy [Alexeyenko et al., 2006]. 

Both Inparanoid/Multiparanoid and OrthoMCL are directly applicable to the 

task of comparing across all the Bacillus interactomes to identify Bacillus-specific 

interologs i.e. conserved interactions across species [Matthews et al., 2001]. However, 

since Multiparanoid is only applicable to species that are closely related, this program 

does not offer the diversity required for future analysis. 

The methods described so far focus on comparing interactions individually, from 

which conserved network regions can be identified (as in Gandhi et al. [2006]), but 

there are alternative methods that create a global alignment between networks that 

can also identify conservation. Identifying conserved regions can be used to infer 

conserved components of the cellular machinery and then use those components to 

predict new protein functions and interactions. Conserved interactions across species 

are also less likely to be false positives [Bandyopadhyayet al., 2006]. PathBLAST is a 

program designed for this purpose, that compares the protein interaction networks of 

two species to identify conserved network regions, just as BLAST performs pairwise 

protein sequence alignment [Kelleyet al., 2004]. PathBLAST has also been extended 

to provide a computational framework for comparing multiple protein networks (Net­

workBlast) [Sharan et al., 2005]. However, PathBLAST is not freely downloadable, so 

it cannot be run over the integrated networks of the Bacillus species. NetworkBlast 

bases its initial search on particular types of graphical form modelled on signalling 

pathways (strings) and protein complexes (clusters). The Grremlin algorithm ex­

tended this approach by searching efficiently for similar subgraphs of arbitrary topol­

ogy across multiple networks [Flannick et al., 2006]. Other methods cluster nodes 

based on their distance from one another in each network [Ogata et al., 2000], or a 

combination of the distance of nodes and their edge similarity, as used for comparing 

metabolic networks in MaWish [Koyutiirk et al., 2004]. More recently, a probabilistic 

model described in Hirsh and Sharan [2007] has been developed to identify conserved 

protein complexes that describe the evolution of conserved protein complexes from an 

ancestral species through link dynamics and gene duplication events. This probabilis-
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tic model shows comparable performance to NetworkBlast, although NetworkBlast is 

unable to distinguish conserved motifs to the same degree of detail as this new model. 

An alternative approach called PHUNKEE (Pairing subgrapHs Using NetworK En­

vironment Equivalence) takes into account gaps in the network structure, allowing 

for elements that have been inserted or deleted through the course of evolution. The 

similarity of subgraphs is based on edge, as well as node, similarity. All edges adjoin­

ing nodes belonging to a subgraph are considered (the network context), rather than 

simply the edges connecting nodes within the subgraph [Cootes et al., 2007]. 

Clustering interactomes to identify regions of highly connected nodes is also an 

approach that can be employed in analysing a network. Many clustering algorithms 

have been used to analyse interactomes, including Molecular Complex Detection 

(MCODE) [Bader and Hogue, 2003], MCL [van Dongen, 2oooa], Restricted Neigh­

bourhood Search Clustering (RNSC) [King et al., 2004], Super Paramagnetic Clustering 

(SPC) [Blatt et aI., 1996] and the more recent ensemble framework [Asur et al., 2007]. 

Clustering is not limited to single interactomes, but can be extended to cross-species 

analysis, using orthology is infer vertical links between the individual interactomes. 

Other approaches have been developed that reverse the idea in identifying con­

served interactions, by using conserved interactions to predict functional orthology. 

It is built on the concept that a protein and its functional orthologue are likely to 

interact with proteins in their respective networks, that are themselves functional 

orthologues [Bandyopadhyay et al., 2006]. 

2.4.3 Interactome visualisation 

A variety of software tools are available to visualise and analyse biological networks. 

To display molecular interaction data as a two-dimensional network, there are general­

purpose graph viewers such as Pajek [Batagelj and Mrvar, 1998]. Other viewers link 

the network to molecular interaction and functional databases such as biopixie for 

yeast [Myers et al., 2005], IntNet for humans [Xia et al., 2006]. More general viewers 

for biological networks include Osprey [Breitkreutz et al., 2003] and VisANT [Hu 
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et al. , 2007] . A program called Cytoscape has also been developed; this is a generaJ­

purpose open-source modelling environment for integrating biomolecular interaction 

networks and states [Shannon et al. , 2003] . 

Cytoscape is a modelling environment in which molecules are represented as nodes 

and intermolecular interactions are represented as edges between the nodes. A variety 

of different model parameters describing molecular states and interactions can be 

integrated into the network as attributes on t he nodes and edges. Hierarchical data 

such as ontologies can be incorporated into the network t hrough annotations. sing 

this GUI , selected node and edge at t ributes and annotations can be viewed . 

Cytoscape graphically illust rates a network and its associated integrated data in 

a variety of graph layouts . It also includes ways of altering t he display depending 

on attribute values. Tools are also provided in Cytoscape for electing and fi ltering 

interesting subsets of nodes and edges. In addit ion, the core functionali ty can be ex­

tended by using the interface to implement plugin modules to provide new algorithms, 

additional network analysis, and /or biological semantic [Shannon et al. , 2003]; an 

exam pi is the clustering algorithm MCODE, which is provided as a plugin . The 

separate modules of which Cytoscape is composed are illustrated in fi gure 2.14. 

GUI 

... ___ ~Annotatlon 

Server 

Figure 2. 14: The Cytoscape GUI displays the network graph and node/ edge attribute 
data. Graph editing, graph layout , attribute- to-visual mapping, and graph filtering 
operate over the network and attribute information. Plugins are available that manip­
ulate the network structure in different ways. Annotations are also available through 
a separate server. Adapted from Shannon et a1. [2003]. 
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2.5 Conclusions 

The secretome, a subset of the proteome, is a biologically important group of proteins 

that exert their effect in the extracytoplasmic environment of a cell. For this reason, 

secretory proteins are of great interest, providing insights into how bacteria interact 

with their environment, to not only sustain themselves, but in the case of pathogens, 

to understand how they subvert their hosts. Exposing the functions of secretory 

proteins can therefore lead to a better understanding of the secretome, and more 

broadly, the proteome. A number of previous studies have centred on the model 

Gram-positive bacteria, B. 8ubtilis (strain 168) [Antelmann et aI., 2001, Tjalsma 

et aI., 2004, 2000]. In some cases these predictions have been experimentally verified. 

The extension of this categorisation and analysis process to other Gram-positive 

bacteria is the next logical step. Comparisons across the different secretomes can then 

be carried out to reveal potentially interesting differences between species. In fact, 

the study described in Binnewies et al. [2005] not only predicts secreted proteins, but 

also performs cross-species comparison between the different secretion systems in a 

selected number of Gram-positive and Gram-negative bacteria to identify conserved 

sequences. 

Furthermore, analysing proteins in the context of their interactions can aid in 

the understanding of cellular function, and the possible function of uncharacterised 

proteins. Proteins interact in myriad ways within cells, forming a complex network 

of structural and functional processes. Several methods of constructing PFINs have 

been developed, all of which integrate information from a variety of sources. The 

proteomes of eukaryotic species have largely been the focus of attention; the most 

intensely studied being the model organism S. cerevisiae [Deng et aI., 2004, Jansen 

et al., 2003, Kiemer et aI., 2007, Lee et al., 2004]. 

To date there have been relatively few reports of the application of PFINs to 

prokaryotes. Interactomes representing physical interactions in the entire bacterial 

proteome of E. coli [Butland et aI., 2005] and H. pylori [Rain et aI., 2001], have been 

developed [Noirot and Noirot-Gros, 2004]. In addition, models of networks represent-
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ing specific biological processes have also been constructed, including DNA replication 

in B. subtilis [Noirot-Gros et al., 2002] and type IV secretion systems in Agrobacterium 

tumefaciens [Ward et al., 2002] and Rickettsia sibirica [Malek et al., 2004]. The con­

struction and analysis of these networks has led to the annotation of a number of 

previously uncharacterised proteins. In the case of Rain et al. [2001]' H. pylori was 

compared to E. coli, from which knowledge about proteins of unknown function in H. 

pylori were identified through homologue detection and function assignment based 

on the E. coli interaction network. 

In addition, it is also valuable to compare interactomes across species. Cross­

species interactome comparisons enable similarities and dissimilarities to be observed, 

which can then be used to generate hypotheses about issues such as evolutionary path­

ways or missing interactions. Many methods have been developed for this purpose, 

facilitating the process of cross-species interactome comparison. 

The application of such methods has previously been shown by comparing eu­

karyotes, for instance yeast, worm and fly [Sharan et aI., 2005], and also with human 

[Gandhi et al., 2006]. The majority of studies focus on these model organisms, with 

comparisons between prokaryotes being few and far between. However, a study has 

previously made comparisons between a eukaryote and prokaryote, S. cerevisiae and 

Helicobacter pylori [Kelley et al., 2003], resulting in the prediction of a functionally 

unknown protein in H. pylori as a DNA polymerase, and another as a membrane­

specific protein. The latter protein was found to belong to a pathway that shares 

homology with the yeast nuclear pore complex. Another includes the prokaryotic­

specific comparisons between H. pylori and E. coli [Rain et al., 2001]. Through these 

studies, cross-species specific information can be extracted. The value of interactome 

comparison techniques has therefore been recognised, and is an area of active research. 

There is however still much scope for improvement, particularly for prokaryotes. 
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Chapter 3 

An e-science approach to the 
genomic scale characterisation of 
bacterial secreted proteins 

3.1 Introduction 

The aim of this study was to identify proteins that are likely to be secreted from the 

cytoplasm and to classify them according to the putative mechanism of their secretion. 

Such proteins include those exported to the extracellular medium, as well as proteins 

that attach themselves to the outer surface of the membrane (lipoproteins) and cell 

wall binding proteins (sortase mediated proteins containing an LPXTG motif). Fol­

lowing the classification of the secreted proteins, the composition of the predicted 

secretomes in the 12 species under study were then investigated. 

The BaSPP (Bacterial Secretory Protein Prediction) package was designed and 

implemented in order to meet this objective. The central components to this s:."stem 

are two Web service-based SCUFL workflows: the classification workflow and the 

analysis workflow. The classification workflow is concerned with making predictions 

about the secretory characteristics of a particular protein from a given set of proteins. 

The analysis workflow processes the data from the first workflow in order to analyse 

the function of the secreted proteins that have been identified. 1 

1 Presented at UK e-Science All Hands Meeting 2006 [Craddock et al., 2006]. 
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3.1.1 Computational approaches to predicting and classify-

ing secreted proteins 

Computational approaches are already available to aid in classifying proteins accord­

ing to their secretion potential. These tools generally look for a pattern consistent 

with a specific type of protein, by often implementing a learning algorithm such as 

Hidden Markov Model (HMM) and neural networks. The most relevant programs 

used to characterise secreted proteins apply one or both of these learning algorithms, 

including: 

• SignalP 

Signalp2 predicts the presence of signal peptides and the SPase I cleavage site. 

It uses both neural networks and HMMs [Nielsen and Krogh, 1998]. 

• LipoP 

LipoP3 predicts lipoproteins in Gram-negative bacteria [Juncker et al., 2003]. 

Despite the specificity of LipoP for Gram-negative lipoprotein signal peptides, 

the HMM algorithm was shown to be able to identify a high proportion of Gram­

positive lipoproteins. The HMM algorithm differentiates between lipoproteins 

(SPase II cleaved proteins), SPase I cleaved proteins, cytoplasmic proteins and 

transmembrane proteins [Juncker et al., 2003]. 

• TMHMM, MEMSAT and TMAP 

An evaluation of the tools available to predict the topology of transmembrane 

proteins is detailed in Moller et al. [2001]. From this study, it was determined 

that TMHMM 2.0 is the most reliable and accurate. The approach adopted in 

TMHMM4 uses an HMM algorithm to determine the most probable topology 

for the entire protein [Krogh et al., 2001, Moller et al., 2001]. 

2SignalP Website: http://www.cbs.dtu.dk/services/SignalP / 
3LipoP Website: http://www.cbs.dtu.dk/services/LipoP / 
4TMHMM Website: http://www.cbs.dtu.dk/services/TMHMM/ 
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The runners up to TMHMM included MEMSAT and TMAP. MEMSAT and 

TMAP implement a combined approach in which global heuristics operate over 

local level results [Moller et aI., 2001]. MEMSAT5 uses well-characterised mem­

brane protein data (from bacteria, plants and animals) to calculate loglikeli­

hoods with the aim of identifying biases towards certain amino acids. A novel 

dynamic programming algorithm is then used to predict the membrane struc­

ture by expectation maximisation [Jones et aI., 1994]. TMAJ>6 uses a prediction 

algorithm based on multiple sequence alignments of related proteins [Persson 

and Argos, 1994] . 

• pS-Bcan 

The standalone version of ScanProsite7, known as pS...Bcan, is a Perl program 

that provides a means to scan one or several PROSITE patterns, rules and 

profiles against one or several protein sequences in SWISS PROT or FASTA 

format [Gattiker et aI., 2002]. 

3.2 Results 

3.2.1 System architecture 

The architectural view of the workflow components involved in the prediction and 

analysis of the secretomes of the Bacillus species is shown in figure 3.1. 

A general feature of the workflows is their linear construction. In the classification 

workflow for example, at each step the set is reduced in size, removing those proteins 

that do not require further classification. The results of the classification process 

are stored in a remote relational database and the reduced set of proteins passed 

to the next service in the workflow. In the analysis workflow, data derived from 

the classification workflow is retrieved from the database and analysed sequentially 

using a further series of service enabled tools. Compare these linear workflows to the 

5MEMSAT Website: http://saier-144-37.ucsd.edu/memsat.html 
6TMAP Website: http://srs.ebi.ac.uk/ srsbin/ cgi-bin/wgetz? -page+ LibInfo+-lib+ TMAP 
7ScanProsite Website: http://expasy.org/toois/scanprosite/ 
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Client side Servers/de 

Figure 3.1: Architectural layout of the classification and analysis workflow compo­
nents, illustrating the client side workflow execution using Taverna, and the hosting 
of Microbase, the custom database, Web services and the Website on t he erver ide. 

fanned/tree- like Graves ' Disease workflow [Li et a I. , 2004], which in tead perform all 

tasks in-parallel. 

Web services were not implemented on the cl ient machine t hat enacted the work­

fl ow , but were located as close to the database as po i ble to maximise performan e. 

This is particularly important for t hose services interacting with the database, to 

maximise the efficiency of transfer of large genomic and proteomic dataset from the 

service to the database. The services were orchestrated using SCUFL workflows and 

constructed and enacted using the Taverna workbench [Oinn et a l. . 2004] 

Most of the services used within the workflows both use and return text-based 

information in standard bioinformatics formats , such as FASTA format. At all tep 

of the classification workflow, the intermediate resul ts were extracted into a custom­

designed database. This was achieved using a set of bespoke data storage service 

which parse the raw textual results and store them in a structured form. It is this 

structured data that is used to feed later services in both t he classification and anal)' i 

workflows. The custom database was hosted on a machine in clo e network proximity 

to t he Web services. This has the significant advantage of reducing the net'\'ork co ts 

involved in transferring data to and from t he database. 



58 

After completion of the classification workflow, the custom database contains the 

data relating to each protein analysed, including the raw data as well as an integrated 

summary of the analysis. Tracking the provenance of the data is important in this 

context because there are a number of different routes for the classification workflow 

to designate a protein as secretory. The basic operational provenance provided by 

Taverna also aided in the identification of service failures [Zhao et al., 2004). This was 

particularly important while running the transmembrane domain prediction services, 

as these run concurrently; a failure in one, therefore, does not impact on the execution 

of the classification workflow. However, since the data returned may be incomplete a 

failure needs to be recorded. 

A Web portal was developed to provide a user-friendly and familiar mechanism 

for accessing the secretomes data in the database8 • From this site, users can select 

the bacterial species in which they are most interested and view the corresponding 

results. Data is initially displayed as a table, documenting the entire proteome for the 

selected bacteria in terms of gene names, locus tags, gene location, Uniprot reference 

and classification workflow prediction. The colour coding on the left hand side of 

this table indicates the set of parameters used to generate the results. This allows 

for multiple workfiows to be run on the same bacterium using different parameter 

sets. From the results page, the users can navigate further to view the details of 

the classifications. The protein sequences may be viewed along with an overlay of 

predicted signal peptides and their cleavage sites. Users may also edit and curate 

the database by adding comments on the findings of the classification workflow as 

appropriate. A screenshot of the database portal is shown in figure 3.2. 

In both the classification and analysis workflows, all legacy programs were imple­

mented locally, but exposed using Web services. 

8BaSPP Website: http://bioinf . ncl. ac. uk: 8081/BaSPP 
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Figure 3.2: Screens hot of the Web portal summarising the characterist ic of predicted 
secreted proteins from B . s'ubtilis (strain 168) . 

3.2.2 Development of a secretory protein classification work-

flow 

The first object ive of the classificat ion workflow was the predict ion of li poprotein 

(fi gure 3.3) . This was t he responsibili ty of t he first service in t he workflow, employing 

LipoP 1.0 [Juncker et al. , 2003], which takes as input a set of all predicted protein 

derived from the EMBL record for t he complete genome sequence. Proteins are 

predicted to be lipoproteins if t he LipoP resul ts predict an SPase II cleaved signal 

peptide above the threshold cutoff score of 3.0. The putat ive typ e II signal pept ides 

(SpIJ) are t hen checked for t ransmembrane domains, whereas the non-l ipoproteins 

are checked for the presence of an SPase I signal peptide. 
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Cytoplasmic: + 
membrane protein 

Figure 3.3: Basic representation of the functionali ty of the classificat ion workflow. 
Shaded boxes indicate the set of secreted proteins. 

The prediction of the presence of an SPase I signal pept ide and the location of the 

cleavage site is accomplished by using a SignalP 2.0 Web service [ Tielsen and Krogh. 

1998]. SPase I prediction was performed after the lipoprotein ident ification becau e 

of possible limitations in the effi ciency of SignalP at detecting li poproteins. The u e 

of SignalP at this point also removes most of t he proteins from subsequent analysi . 

Reducing the size of the dataset has considerable advantages as t he dmvnstream 

analyses are potentially computationally intensive. 

SignalP implements two methods to provide separate prediction methods that 

ut ilise neural networks and HM lIs. A combination of both t hese methods are u ed 

to predict whether a protein is a specific substrate for SPase 1. A positive result from 

both neural networks and HMM is required in order to predict a protein to contain a 
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type I signal peptide (SpI). 

Proteins with SpI-like or SpII-like sequences, but which have additional transmem­

brane domains, are likely to be retained in the membrane. To identify these putative 

membrane proteins from among the proteins in either the SpI or SpII datasets, a 

combination of three transmembrane prediction Web services were used, based on 

the tools TMHMM, MEMSAT and TMAP, respectively [Moller et al., 2001]. A sub­

sequent service in the workflow was responsible for integrating the results derived 

from these three tools, to make a final prediction about the presence of a putative 

transmembrane protein. The prediction of a transmembrane protein was determined 

if anyone of the tools made a positive prediction. Each protein, whether a SpI or SpII 

protein, had their first 40 amino acid residues removed and the remaining sequence 

was passed on for analysis by the various transmembrane tools. This cleavage step was 

to ensure the removal of the hydrophobic domain within the signal peptide region, 

which would ultimately be detected as a transmembrane domain. Cleavage of the 

first 30 or 35 amino acids may not result in the complete removal of this hydrophobic 

domain. 

In theory, using a combination of programs to make predictions in this way should 

provide more meaningful results. However, based on selected manual curation of 

results provided by each of the three transmembrane prediction tools, it was decided 

to rely solely on the prediction of TMHMM 2.0, as this tool provided the most accurate 

prediction. 

The subset of the lipoproteins without a predicted transmembrane domain were 

categorised as being lipoproteins and were not subject to further analysis. However, 

the subset of SpI proteins corresponding to proteins with no predicted transmembrane 

domain were further analysed for the presence of the cell wall binding amino acid 

motif, LPXTG using the tool, pS-Bcan that was wrapped as a Web service and called 

from the workflow. 
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3.2.2.1 Workflow design and implementation 

Closer inspection of the classification workflow highlights the complexity involved 

in the categorisation process. For simplicity, the construction of this workflow was 

d iv ided into a number of subworkflows (fi gure 3.4). 

Workfl ow Inputs 

Figure 3.4: Taverna representation of the classification workflow conslstlDg of 
three subworkflows (red) (embLdata extracts information from the El'-1BL fil e, 
staTe_bacteria stores information specific to the bacteria , protein_analy is analyses 
the proteome) and one Web service (green) (stoTe Protein which stores information 
specific to the proteome). 

The workflow is initiated by providing an EMBL file as input , that annotates a 

particular bacterial genome. EMBL fil es provide information in a specific fi le format in 

order to be human as well as computationally readable. A number of specialised Web 

services within the classification workflow are dedicated to processing the information 
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contained within this file. These services use BioJava9 to extract the information 

about an organism's genome and its associated annotated features (figure 3.5). Those 

features that were extracted that relate to the identity of the organism itself include 

accession number (AC) and organism species (OS). The annotated features of interest 

within this study are the coding regions (CDS). The information relating to these CDS 

features were extracted from the EMBL file, include translation, dbxref, gene, locus 

tag, proteinJd, product and note (table 3.1). 

Overall, a total of "" 57,000 proteins were extracted from all 12 genomes supplied 

as input. The data is stored in the database, but only if the organism supplied as 

input to the workflow has not previously been analysed using the same parameter 

settings for the different programs. If the EMBL data has already been stored in the 

database after a previous workflow execution using the same parameters, the workflow 

fails, preventing duplicate entries in the database (figure 3.6 and table 3.2). 

A number of bioinformatics tools, previously highlighted in section 3.1.1, have 

been wrapped as Web services in order to categorise secreted proteins. Additional 

services are provided which store the data generated by each of these tools in a 

custom database (figure 3.7 and table 3.3). Furthermore, filter services allow proteins 

of interest to be provided as input to the services downstream. The filtering process is 

tracked in the database. Essentially the filtering reduces the data being processed at 

each phase in the workflow (shown in figure 4.1). Starting with"'" 57,000 proteins to 

the first service, this number is reduced as the proteins proceed through the workflow 

until all the proteins have been classified. 

Error handling can be incorporated into the workflow using an additional feature 

of Taverna which allows alternative services to be executed, allowing the database to 

be cleared of all entries which may have been added during a failed workflow run. 

As a number of studies have previously been carried out to identify components of 

the B. subtilis secretome, comparing the classification workflow results for this organ­

ism to the documented findings, provides a means to validate the results generated 

through the characterisation process described. 

9BioJava Website: http://biojava.org/wiki/ 
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Service Input Output I Description 
getAccessionN umber EMBL file accession number Unique identifier 

for each EMBL 
entry. 

getOrganismSpecies EMBL file organism species Preferred scientific 
name of the organ-
ism in EMBL en-
try. 

getTranslations EMBL file translation Amino acid se-
quence resulting 
from the sequence 
of nucleotides 

getProteinId EMBL file list of protein 
information: 

dbxref Database cross-
references. 

gene Gene symbol. 
locus tag Uniq ue tag . 
protein-.id Prote in identifier. 
product Prod uct name. 

note Any additional in-
format ion. 

Table 3.1: The Web services used in the classification subworkAow, embLdata. All 
take as input an EMBL fi le (in String format). 

Workflow Inputs 

Figure 3.5: Taverna representation of the classification subworkflow. embLdata. It 
consists of four Web services (green), each responsible for extracting different data 
from an EMBL fil e. 
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Service Input Output I Description 
checkParameters accession number accession number Fails if bacteria 

has been analysed 
with same pa-
rameters already. 
(Parameters are 
set III database 
before running the 
workflow. ) 

storeBacteria accession number accession number Stores bacterial in-
formation. 

storeParameters accession number , parameter reference id Associates set par-
type of bacteria ameters with bact-
(gram + / gram-) eria being anal-

ysed . 

Table 3.2: The Web services used in t he classification subworkflow. store_bacteria. 

Wo rkflow Inputs 

Figure 3.6: Taverna representation of the classification subworkflO\\' . stoTe_bacteria. 
consisting of t hree Web services (green). If the workflow has not previously analy ed 
this bacteria using t he same program parameters i.e. t here is no current entry in the 
database (determined using checkPammeters). t hen the data identifying t he bacterial 
species i tared in the database (using storeBacteria service). as are the program 

parameters (using stm·ePammeters service) . 
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Service Input Output I Description 
PROGRAMS (TAVERNA ITERATION PROCEDURE EXECUTES LISTS) 

lipop protein LipoP results Predicts lipopro-
teins. 

signalp protein, parameters SignalP results Predicts signal 
peptides. 

tmhmm protein Program results Predicts 
memsat (in case of MEMSAT, transmembrane 

tmap parameters too) domains. 
ps..scan protein, motif id ps..scan results Identifies motifs. 

PROGRAM PARAMETERS (FROM DATABASE) 
getMethodParameter method (nn/hmm) SignalP 

getTruncateParameter truncation value parameters. 
getMinimumLoopLength min. loop length MEMSAT 

getHelixScoreCutoff helix score cutoff parameters. 
getMaJdGengthHelix max length helix 
getMinSeqLength min. sequence length 

getMinLengthHelix min. length helix 
getMaxHelices max. helices 

STORE TO DATABASE 
storeJipop..results list of respective Stores results in 

store..signalp..results program results database. 
store_tmhmm..results 
store~emsat..results 

store_tmap..results 
store_psscan..results 

FILTER RESULTS 
filterLipopResults accession number, protein lists Gets appropriate 

filterSignalpResults parameter set id results from 

filterTMHMMResults database for 

filter MemsatResults further analysis. 

filterTmapResults 
getLipoproteins accession number, protein lists Gets lipoproteins/ 

getN onLipoproteins parameter set id non-lipoproteins. 

BEANSHELLS 
getJnput..asJist protein list protein list Reformats input. 

mergeJists lipoproteins list, combined list Merges lists. 

signal peptides list 
append_tagsA_tmhmm lipoproteins list and tagged lipoproteins Appends tags to 

append_tagsA~emsat signal peptides list, list and signal distinguish be-
tween 

append_tagsA_tmap in a list (list of lists) peptides list, in a lipoproteins and 
list (list of lists) signal peptides. 

Table 3.3: The Web services used in the classification subworkflow, protein_analysis. 



........ 111\.. .. 

Figure 3.7: Taverna representa t ion of the classification subworkflow, protein_analysis , responsible for analysing fl bflc leria 's 
proteome to predict its secretome. It takes four parameters as inpu t :accession_llmnber' of the bacteria , bacteri a_type (Grnm­
positive or -negative, although this workflow is currently specific to Gram-posit ive bacteri a , with potentia l for expansion to 
Gram-negative too) , translations is a list of protein sequences, and ref refers to the id of the parameter set being used to run 
the workflow (as different parametric values can be used to run programs used in th is subworkAow) . Web services (green) 
provide the functiona li ty, using beanshells (orange) to reformat data between services where necessary. 

0'> 
--J 
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3.2.2.2 Comparison of BaSPP-based predictions for B. subtiliJJ secreted 

protein to experimentally verified protein annotations 

The classification workflow predictions for B. subtilis were compared to a set of 47 

proteins of B. subtilis whose secretory status has been experimentally verified and 

documented in the literature. Of these 47 proteins: 

• 18 out of 19 were correctly identified as SpI (table 3.4); 

• 11 of 11 were correctly identified as SpII (table 3.5); 

• all 11 transmembrane proteins and 7 cytoplasmic proteins were correctly pre­

dicted not to be secreted (tables 3.6 and 3.7). 

One SpI specific protein, PhoD, was not detected. The unusually long signal 

peptide sequence of PhoD, 51 amino acid residues according to Tjalsma et al. [2000J, 

may explain why SignalP does not predict this protein to be targeted by SPase I. 

Despite the specificity for SPase I, PhoD is actually transported by the Tat pathway, 

not Sec. As detailed in Bendtsen et al. [2005J, PhoD is not predicted to be secreted 

by SignalP, but it is positively identified using Tatp10 and TATFINDll. 

Four transmembrane proteins (encoded by /ruA, pyrP, rbsC and tagH) were also 

not identified by the classification workflow. This omission was because these proteins 

had been removed from the classification process, due to the lack of a positive SpI 

or SpII prediction, before TMHMM analysis. The important point is none of these 

known transmembrane proteins were predicted as being secreted. The intention of 

the classification workflow was only to classify secreted proteins, not cytoplasmic and 

transmembrane proteins. If this were the intention, the workflow would have been 

designed differently, in which every protein in the proteome would be analysed using 

TMHMM. TMHMM analysis of every protein would have resulted in the positive 

identification of these four proteins as transmembrane. 

l°TatP Website: http://www.cbs.dtu.dk/services/TatP / 
llTATFIND Website: http://signalfind.org/tatfind.htmi 
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Gene ! Description Locus tag I Prediction I Reference 
abnA arabinan-endo 1,5-alpha- B8U2881O 8pI [Leal and de 8a.. 

L-arabinase Nogueira, 2004] 
amyE aIpha-amylase B8U03040 8pI [Hirose et aI., 2000] 
bglS endo-beta-1,3-1,4 glu- B8U39070 8pI [Murphy et aI., 

canase 1984] 
bpr bacillopeptidase F B8U15300 8pI [8loma et aI., 1990, 

Wu et aI., 1990] 
cotN translocation-dependent B8U24620 8pI [Hirose et aI., 2000] 

antimicrobial spore 
component 

can chitosanase B8U26890 8pI [Hirose et aI., 2000] 
epr extracellular serine pro- B8U38400 8pI [81oma et aI., 1988] 

tease 
ggt gamma- B8U1841O 8pI [Xu and Strauch, 

glutamyltranspeptidase 1996] 
glpQ glycerophosphoryl di- BSU02130 8pI [Antelmann et aI., 

ester phosphodiesterase 2000] 
mpr extracellular metaIlopro- BSU02240 8pI [Rufo et aI., 1990] 

tease 
pel pectate lyase B8U07560 8pI [Hirose et aI., 2000J 

penP beta-lactamase precursor B8U18800 8pI [Hirose et aI., 2000] 
phoA alkaline phosphatase A B8U09410 SpI [Hulett et aI., 1991J 
phoB alkaline phosphatase III B8U05740 8pI [Antelmann et aI., 

2000, Hulett et aI., 
1991J 

phoD phosphodiesterase / alkalin B8U02620 - [Eder et aI., 1996J 
phosphatase D 

vpr extracellular serine pro- B8U38090 8pI [Hirose et aI., 2000J 
tease 

wapA cell wall-associated pro- B8U39230 8pI [Hirose et aI., 2000J 
tein precursor 

wprA cell wail-associated pro- B8Ul0770 8pI [Hirose et aI., 2000J 
tein precursor 

xynA endo-1,4-beta-xylanase BSU18840 8pI [Roncero, 1983J 

Table 3.4: Comparison of BaSPP SpI protein predictions to a list of experimentally 
verified SpI proteins. (phoD was not predicted to encode a secreted protein by BaSPP 
as no lipoprotein or signal peptide was detected.) 
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Gene I Description Locus tag I Prediction I Reference 
appA oligopeptide ABC trans- BSU1l380 SpII [Koide and Hoch, 

porter ( oligopeptide- 1994] 
binding protein) 

araN arabinose ABC trans- BSU28750 SpII [Sa-Nogueira et al., 
porter (arabinose- 1997] 
binding protein) 

dppE dipeptide ABC trans- BSU12960 SpII [Mathiopoulos 
porter (dipeptide- et al., 1991] 
binding protein) 

glnH glutamine ABC trans- BSU27440 SpII [WU and Welker, 
porter (glutamine- 1991] 
binding protein) 

mntA manganese ABC trans- BSU30770 SpII [Bartsevich and 
porter (membrane pro- Pakrasi, 1995] 
tein) 

oppA oligopeptide ABC trans- BSU1l430 SpII [Perego et al., 
porter ( oligopeptide- 1991] 
binding protein) 

opuBC choline ABC transporter BSU33710 SpII [Kappes et al., 
(choline-binding protein) 1999] 

opuCC glycine be- BSU33810 SpII [Kappes et al., 
taine/carnitine/ choline 1999] 
ABC transporter 
( osmoprotectant-binding 
protein) 

prsA molecular chaperone BSU09950 SpII [Kontinen et al., 
1991] 

pstS phosphate ABC trans- BSU24990 SpII [Allenby et al., 
porter (phosphate- 2004] 
binding protein) 

rbsB ribose ABC transporter BSU35960 SpII [Woodson and 
(ribose-binding protein) Devine, 1994] 

Table 3.5: Comparison of BaSPP SpII protein predictions to a list of experimentally 
verified SpII proteins. 
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Gene Description Locus tag Prediction Reference 
cydD ABC membrane trans- BSU38730 TM [Winstedt et aI., 

porter (ATP-binding 1998] 
protein) 

dltB D-alanine esterification BSU38510 TM [Perego et aI., 
of lipoteichoic acid 1995] 
and wall teichoic acid 
(O-aIanyl transfer from 
Dcp to undecaprenol-
phosphate) 

fruA phosphotransferase BSUl4400 - [Reizer et aI., 1999] 
system (PTS) fructose-
specific enzyme I1ABC 
component 

fisH cell-division protein and BSUOO690 TM [Deuerling et aI., 
general stress protein 1997] 
(class III heat-shock) 

fisX cell-division protein BSU35250 TM [de Leeuw et aI., 
1999] 

fcpB methyl-accepting chemo- BSU31260 TM [Hanlon and 
taxis protein OrdaI, 1994] 

pyrP uracil permease BSU15480 - [Turner et aI., 
1994] 

rbsC ribose ABC transporter BSU35950 - [Park and Park, 
(permease) 1999] 

secDF protein-export mem- BSU27650 TM [Bolhuis et aI., 
brane protein 1998] 

secY preprotein translocase BSU01360 TM [Sub et aI., 1990] 
subunit 

tagH ATP-binding protein BSU35700 - [Lazarevic and 
Karamata, 1995] 

Table 3.6: Comparison of BaSPP transmembrane predictions to a list of experimen­
tally verified transmembrane proteins. (Those not precisely identified by TMHMM 
as transmembrane were not predicted by LipoP or SignalP to be secreted, hence they 
were not analysed by TMHMM for transmembrane domains.) 
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Gene Description Locus tag Prediction Reference 
eno enolase BSU33900 - [Leyva-Vazquez 

and Setlow, 1994] 
groEL class I heat-shock protein BSU06030 - [Schumann et aI., 

( chaperonin) 1998] 
katA vegetative catalase 1 BSU08820 - [Hirose et aI., 2000] 
pdhD dihydrolipoamide de- BSUl46lO - [Borges et aI., 

hydrogenase E3 sub- 1990] 
unit of both pyruvate 
dehydrogenase and 
2-oxoglutarate dehydro-
genase complexes 

roeA pyrroline-5 carboxylate BSU37780 - [Calogero et aI., 
dehydrogenase 1994] 

rocF arginase BSU40320 - [Gardan et aI., 
1995] 

sodA superoxide dismutase BSU25020 - [Hirose et aI., 2000] 

Table 3.7: Comparison of BaSPP cytoplasmic protein predictions to a list of experi­
mentally verified cytoplasmic proteins. 

3.2.2.3 Comparison of BaSPP-based predictions for B. 8ubtilis secreted 

protein to previously published, computationally generated, an­

notations 

The putative B. subtilis secretome was also compared to a study in which the se­

cretome of B. subtilis has been computationally determined and, to some extent, 

experimentally confirmed by proteomic studies [Tjalsma et al., 2004, 2000]. The ven­

drogram shown in figures 3.8 and 3.9 summarise how the predictions from this study 

and that of Tjalsma and co-workers compare. 

In order to compare the data shown in Tjalsma et a1. [2000] with BaSPP more 

easily, the BaSPP-predicted secretome of B. subtilis was formatted in the same way 

as Tjalsma et al. [2000] (shown in appendix A). A detailed comparison of results are 

highlighted over the formatted data shown in tables A.l and A.2, representing the 

putative SpI and SpU proteins respectively. The 22 SpI proteins and 15 SpII proteins 

identified by Tjalsma et aI. [2000], but not by the classification workflow, are shown 

in tables A.3 and A.4 respectively. 
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NID 

Figure 3.8: Comparison of SpI predictions made by the work fl ow ( \~' f ) and those 
described by Tj alsma et al. [2000] (P ). The majori ty of SpI proteins identified in the 
li terature are also identified by t he workflow. The remaining SpI proteins des ribed in 
the li terature are eit her categorised as transmembrane proteins (TN! ) or SpII protein 
by the workflow, or are not found in the dataset supplied as input to the workflow 
(NID). 

NID 

Figure 3.9: Comparison of SpI! predict ions made by the workflow (\\"f) and those 
described by Tjalsma et a1. [2000] (P ). The majori ty of SpI! proteins identified in the 
li terature are also identified by the workflow. The remaining SpI! proteins described in 
the li tera.ture are eit her categorised as transmembrane proteins (Tl'- I) or SpI proteins 
by the workflow, or are not found in t he dataset supplied as input to the ",'orkflo"" 
( ID). 
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3.2.3 Protein analysis workflow 

The analysis workflow was designed to process the data about the ecretory proteins 

derived from the classification workflow to provide information about the relationship 

between the secretome composit ion of the 12 different organisms in the study. Puta­

t ive secreted proteins were extracted from the database, clustered into familie based 

on sequence similarity, and the structure, functional composition and relationships 

between these families were studied (figure 3.10). The set of secreted proteins includes 

those predicted to be lipoproteins, cell wall binding or extracellular. Transmembrane 

proteins and cytoplasmic proteins were disregarded . 

• • ••• • •••• e.: .... 
Putative secreted proteins 

'1 
I 
i 

I 

I 
:. • :: . 
.:. . , 

Protein families 

Functional classification Relationshi ps 

Figure 3.10: Cartoon representation of the functionality of t he analysis workflow. All 
the putative secreted proteins (identified by the classification workflow) . for all 12 
Bacillus st rains, are clustered into protein families, from which functional properties 
of the secretome, and relationships between the secretomes of different organisms. 

can be determined . 

The analysis workflow therefore follows on from the classification workflow. im­

plementing the following procedure (figure 3.11). Analysis of the data was initiated 

by clustering the putative secretory proteins into protein families. In order to per-
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form clustering, the close relatives of the predicted secreted proteins were identified 

using BLASTp, as the BLASTp algorithm provides a score for the putative imilarity 

between proteins. The necessary BLASTp data was retrieved from the Microbase ys­

tern , a Web service enabled resource for the comparative genomlCS of microorgani illS 

[Sun et aI. , 2005j . 

Using the BLASTp data, protein families were identified using the MCL algori thm. 

MCL provides a computat ionally efficient means of clustering large dataset. A single 

option, the inflation value, controls the granularity of the output clustering. It i 

usually chosen somewhere in the range [1.2-5.0j. A value of 5.0 will tend to result 

in fine-grained clusterings whereas a value of 1.2 will tend to result in very coar e 

grained clustering. The value used depends on the characteristic of the data to be 

clustered [van Dongen , 2000bj. 

This approach of combining BLASTp data with MCL follows that do umented 

in Enright et a1. [2002j. For each predicted secreted protein , similar protein with a 

BLASTp expect value of less than l e- IO were used as input to ~CL version 05-321 (in­

Rat ion value 3.0) , providing a cutoff score would remove many of the protein families 

containing a single protein [Enright et aI. , 2002][van Dongen, http://micans.org/ mcl / j. 

EMBL I J ClassifICation Putative 
Record I I Wor1<fIow Secreted 

Proteins 

I 

Analys is Workflow 

Mlcrobue Mel RPilckage 

I Similar I r Cluster I ------+ Statistics 
~ 

Proteins ~ analysis and 

l Protein I visual isation 
Families 

Figure 3.11: Data fl ow through the classification and analysis workflows. 
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Hierarchical clustering was performed to identify phylogenetic relations between 

t he Bacillus species in the context of their contribut ions to the ecreted protein 

families. The R package12 was wrapped as a Web service for thi purpo e. R i 

a package providing a statistical computing and graphics environment . A distance 

matrix was constructed using t he Euclidean dist ance, and clustering was carried out 

using a complete linkage method . 

3.2.3.1 Workflow design and implementation 

Unlike the classification workflow, the Taverna representation of t he analy is workflow 

is far more simple (figure 3.12). The bioinformatics tools used were, again , wrapped 

as Web services, using additional 'shim ' services to parse and store the input and 

output data generated by each of these tools in a custom database. 

'-------' 
~ 

Figure 3.12: Taverna representation of the analysis workflow including two subwork­
flow (red ) (geLsimilaLproteins which extracts t he classified secreted proteins from the 
database and gets similar proteins from Microbase. MGL performs clustering on this 
BLAST weighted protein dataset , and R performs statistical analysis on the clu tered 
families) and one Web service (green) (mergeGommonGlusters which merges common 
families that were initially separate after performing I\ICL). 

12 R Website: http://www.r-project.org/ 
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Due to t he fact the t ime required for t he services geLsimiiaLproteins and MGL to 

complete, exceeded t he timeout in Taverna, a service failure was assumed by Taverna 

for both of these services. Therefore, an additional frontend to these service was 

implemented that utilises threads on the server side to run t he service and update the 

status on completion. On the client side, a feature of Taverna is used that implement 

a specified time delay to re-run a service on failure. The subworkflow (figure 3.13) 

initially runs the job , then simply checks the status of the job on the server side 

at regular intervals. While the job is still running, the status service i designed to 

fail , which after a certain time delay is t hen re-executed to again check t he status 

of the job. On completion of the server side program , the status is updated . and 

consequently Taverna registers a completed service execut ion. The following service 

in the subworkflow then retrieves the results. 

Figure 3.13: Taverna representation of the tandard des ign of the subworkflow 
geLsimiiaLproteins and MGL. It checks the status of a t hread on t he server to de­
termine when a job has fini shed executing. 

For the R subworkflow , firstly a matrix is constructed (Bacillus species vs. protein 

families). This matrix is used by R to produce the dendrogram and heatmap diagram 

II ed to represent the relations between the bacteria graphically, based on t he proteins 

identified in their secretome (figure 3.14). 
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Figure 3.14: Taverna representation of the R subworkflow used to generate the den­
drogram and heat maps. 

3.2.3.2 Comparison of Bacillus secretory protein families to COGs 

The MCL output was verified by manual inspe tion of the protein families and om­

paring this output with entries in t he Clusters of Orthologous Groups of protein 

(COGs) database13
. The manually curated COGs database is based on genome­

specific best hits [Tatusov et aI. , 2003]. Overall the outpu t generated by l\ [CL was 

comparable to COGs (data not shown). The protein families of interest were then 

analysed further, as described in chapter 4. 

3.2.4 Functional mapping of GO terms to the SubtiList clas­

sification hierarchy 

Following the classification of the funct ionally related secreted protein families. the 

properties of these families were then investigated . Of particular importance was the 

desire to summarise families in terms of the function of their member proteins. The 

SubtiList14 classification codes (shown in a.ppendix B) provided a commonly used 

basis on which to define the function of B. subtilis proteins that is well understood 

by the Bacillus community and devised by the creators of the SubtiList database. 

SubtiList is a relational data.base for the genome sequence of B. subtilis (strain 16 

13COGs Website: http: //www .ncbi .nlm .nih .gov/ COG/ 
14SubtiList Website: http : //genolist . pasteur . fr / SubtiList/ 
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[M08zer et al., 2002J. The advantage of using SubtiList codes is that they are well 

known to biologists, have been manually curated, and contains an appropriate number 

of categories for the summation. However, as B. subtilis is the only organism whose 

genes have associated SubtiList classification codes, a method of inferring these codes 

for the genes of the other Bacillus species was required. 

The key was the availability of Gene Ontology15 (GO) terms, assigned to individ­

ual genes, and available from the EMBL record. GO is one of the most important 

ontologies within bioinformatics. The directed acyclic graph (DAG) structure means 

that GO terms change from being very broad near the root of the DAG to more 

specific as the DAG is descended. GO is split into three domains: 

• Molecular function describes activities (e.g. catalytic activity, transporter ac­

tivity or binding) that occur at the molecular level performed by individual gene 

products (or possibly by assembled complexes of gene products). 

• Biological process is a series of events or molecular functions, not necessarily a 

pathway. 

• Cellular component describes the location of a gene product at different levels 

of detail, from subcellular structures to macromolecular complexes [GO Con­

sortium, http://www.geneontology.org/GO.doc.shtmlJ. 

As SubtiList classification codes describe the processes involved in cellular func­

tion, the most appropriate of the GO categories for mapping to SubtiList was "bio­

logical process". The number of GO terms defining the biological processes of gene 

products in the 12 secretomes is large, therefore a method of summarising these GO 

process annotations for the protein families was therefore required. 

The GO terms of the genes encoding the proteins in each protein family were 

examined and then summarised by classifying the terms according to the SubtiList 

classification codes; the GO terms were effectively mapped to the SubtiList classifi­

cation codes. This was initially a manual process, but due to the growing size of the 

dataset, an automated approach was required. 

15The Gene Ontology: http://www . gene ontology . org/ 
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The automated approach developed made use of a program developed by P. Lord, 

called go-graph. This program uses probabilities to locate a common level in the GO 

DAG. It is based on an information content measure of semantic similarity, in which 

the less commonly used terms are more informative [Lord et al., 2003]. 

In order to adapt go-graph to summarise GO process terms using SubtiList clas­

sification codes, additional plugin code was written. Firstly, a script was written to 

calculate the number occurrences of each of the GO process terms used to define the 

12 Bacillus proteomes. A probability was subsequently inferred for each of these GO 

terms based on the number of occurences. Using these probability scores, a smaller 

set of GO process terms were calculated, so as to summarise the biological processes 

of the Bacillus proteomes more effectively. Calculating a subset of GO process terms 

using probabilities avoids the incorporation of those terms that are very common 

(higher probability scores), and hence uninformative. To determine this reduced set 

of GO terms, a cutoff was applied to the probability scores. The most appropri­

ate cutoff was determined based on the number of terms returned in the subset, 

taking into account the proportion of proteins that were uncategorised as a result 

Le. those proteins annotated with GO terms having a probability greater than the 

cutoff probability. The threshold chosen for this purpose was a probability of 0.01. 

FUrther consideration of this subset revealed that some terms that fall outside the 

cutoff probability (higher probability) do not have any associated children in anno­

tated Bacillus proteome. Therefore, for completeness these Bacillus leaf nodes were 

also included. This increased the number of terms included in the subset from 26 to 

135. Following the calculation of this subset of GO terms, additional plugin code was 

written to calculate how many of members of the subset of GO terms were found in 

a selected group of protein families (e.g. the entire group of secreted protein families 

or perhaps the core families). A final script mapped these summarised GO terms, 

along with their associated count, to the SubtiList classification codes. Each Sub­

tiList classification code subsequently had an associated count, defining how many 

proteins were annotated as being involved in that process for the specific group of 

families considered. 
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The go-graph plugin is a standalone program, separate from the classification 

and analysis workflows. This program was designed to simplify and automate the 

process of analysing the resulting data from the analysis workflow. It therefore was 

not incorporated into the BaSPP workflow system. 

3.3 Discussion 

Using a combination of mYGrid and Taverna, a novel e-science based package (set of 

workflows) has been developed that performs aU the tasks required to predict the final 

location (i.e. cytoplasm, membrane, membrane-associated, wall-associated, secreted) 

of each encoded protein. The workflows constructed enable secretory protein predic­

tion over bacterial genomes using multiple prediction tools, integrates the results into 

a database, and then performs analysis on the families. This approach orchestrates 

existing bioinformatics programs in order to make predictions, which would otherwise 

take several days if performed manually. In particular the ease by which a workflow 

may be re-run as and when new genomes are sequenced is a distinct advantage, es­

pecially as the rate of complete genome sequencing continues to increase. Whilst 

building a workflow and the associated services is a time consuming task, the time 

saved in the analysis of each genome compensates for this overhead. Completion of 

the entire workflow took approximately 2-3 hours for each Bacillus proteome, which 

range from 4202 to 5412 proteins in size. 

Another advantage of the BaSPP system is that the generated data is stored in 

a custom database, making the results available for subsequent analysis. The system 

uses this database to provide a way of sharing data and promoting collaboration 

through an accessible and user-friendly Web interface. This approach is different to 

classical workflow methods where individual users need proactive involvement in how 

and where results are stored. 

The command line tools used in the classification phase of the workflow were 

initially implemented using Java Runtime and wrapped as SOAP-based RPC Web 

services. Due to problems encountered during the execution of the classification 
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workflow, BioJava was used instead, using its own runtime method. An improvement 

to the current implementation would be to expose the tools as Web services using 

Soaplab which provides a common interface to the various underlying applications. 

The analysis process is the most computationally intensive section, requiring a 

large number of BLASTp searches. BLAST is the most commonly performed task 

in bioinformatics [Stevens et aI., 2001], and as such there are many available services 

which could have been used. However, because of the computational intensive na­

ture of large BLAST searches, pre-computed BLAST results were retrieved from the 

Microbase database. 

Although the details of the workflow are specific to the problem of predicting 

secretory proteins, the architectural solutions employed highlight some general issues 

in e-science relating to three key issues of distribution, autonomy and heterogeneity. 

Firstly, most of the services in the classification workflow are, in fact, provided 

originally by external parties, autonomous from the workflow authors. As has been 

mentioned previously [Stevens et al., 2004b), the reliability of the services deployed 

by many providers is not high. The problem is particularly serious in our case as 

the workflows are largely linear; the failure of a single service will cause the entire 

workflow to fail. This problem was solved by the simple expediency of hosting the 

services locally, although this is not ideal due to the time and effort required for 

their local implementation. Having developed local services, it would be appropriate 

to republish them for reuse as a service to the community. There is, however, the 

secondary problem of licensing agreements. The programs SignalP, LipoP, TMHMM 

are all subject to license agreements. In most cases, the services are not allowed to 

be exposed for use by non-licensed individuals. 

There were few problems introduced by distribution. Local installation of pr(}­

grams meant there were few network effects due to data transfer. The most signifi­

cant recurrent difficulty came from the relatively large datasets that were being dealt 

with. This was one of the motivations for the linear shape of the classification work­

flow. Two more principled approaches to this problem can be seen. Firstly, improved 

data transport facilities, enabling transfer without SOAP packaging, as well as direct 
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transfer between third parties, would reduce many difficulties. The new Taverna2 

architecture should enable these improved data transport functionalities [Oinn and 

Pocock pers. comm.]. Secondly, the ability to migrate workflows and services closer 

to the data would provide a significant advantage; as the data are large, and the 

executables small, moving the program to the data would make sense. 

Data heterogeneity provided fewer problems than expected for a bioinformatics 

workflow. Relatively few data formats were employed in the workflows. Most often 

simple FASTA formatted protein lists are passed between the services in the work­

flows. Data heterogeneity was dealt with through the use of a custom database to 

warehouse data and parsing code to populate this database. In the second work­

flow, the use of the Microbase data warehouse avoided many heterogeneity related 

problems, simplifying the process of data analysis. The comparison of the bacterial 

proteins had already been done by Microbase, thereby reducing the computing time 

required in protein family construction. 

The architecture of the BaSPP system differs somewhat to most of the other 

mil Grid workflow-based systems described previously. Whilst the original require­

ments appeared to favour a highly distributed approach, technological and licensing 

constraints have led to a hybrid approach: a combination of services and workflows, 

combined with databases for both results storage and pre-caching of analyses. The 

combination of all of these technologies results in a fairly complex architecture but 

provides a system that is fast and reliable enough for practical use. In addition, the 

shape of the workflows constructed are linear, as opposed to fanned/tree-like. This 

perhaps reflects the nature of the analysis being performed, in which the results of one 

service effects the input to proceeding services. Compare this to Graves' Disease in 

which public databases such as EMBL, GO, HGVBASE and MEDLINE are queried 

in tandem in order to extract information about gene structure and function, chromo­

some location, the presence of single nucleotide polymorphisms (SNPs), expression 

control features and association with other genetic diseases. In addition, W 

Th facilitate the process of the functional annotation of protein families, an auto­

matic method of summarising the functional distribution using an appropriate number 



84 

of categories was required . GO terms provided the basis for thi . as GO terms were 

annotated in t he EMBL record for individual genes. However, as GO is a DAG , in 

which GO terms change from being very broad near t he root of the DAG to more 

specific as t he DAG is descended , the obvious way of doing this was to set a cutoff 

at a specific level in t he DAG. The problem with t his approach is that gene prod­

ucts are annotated at different levels in t he DAG. This problem can be illustrated by 

considering a protein family in which all 36 proteins have a related biological proces 

GO term. 32 out of 36 proteins are annotated as transport, whereas the remaining 4 

are annotated as amino acid transport. As highlighted in the screenshot taken from 

AmiGO l6 (figure 3.15) , both terms occur at different levels in the GO hierarchy; the 

term GO:0006810 transport is less specific than t he term GO:0006865 amino acid 

t ransport. 

G all : all (258696 ) • 
EI GO 0008150 bloloQlcal_proc'O'ss 1 192290) 

E1 0. GO 00512:.'.4 'O'slabllshmE'1i1 of locaI12atl"n 1 221.:12 ) 
EI GO 00068 10 lI anspon 121 H' I 

EI (-000 15837 aminE' Iran< f'{)rt ( 1 1 '~t 
E1 <1 GO :0006865 : amino acid transport (1016) 

E1 " GO 0015(149 oroanlc aCid lIansport 1 1.3(7 

E1 ' G':, n0-'16Q.i: rart '11' a'_ld Irar"p"rt 1 2"'" 
El l] GO :0006865 . amino acid transport (1 016 ) 

EI GO 005117Q locall2atl01l ( 2-1 71 ~ I 
E1 Q'IGO 0051234 establlshm .. nt of localizatIOn 1121-'12) 

EI n GO 0006& 10 Iransport 1 ~ 1 Il' 
El l! GO (10 15837 aminE' Iransport 1 IIYb) 

E1 t GO :0006865 : amino acid transport ( 1016) 
E1 a GO 00 158-1 '1 or'JaniC aCid trans.p"rt 1 11(17 ) 

El l ,:;'00046Y..12 cart),-,""',II,_ aCI,j transv'rt \ 1 :Ciq 
EI , GO :0006865 : amino acid transport (1 016 ) 

E1 (f1 GO 0005575 cellulal compon",nl i 1 65f.'i1 ) 
EI GO U003674 mOlecular_,unclion ( 20.'.]"·1 ) 
EI 
EI 
EI 

Figure 3. 15: An example of the GO hierarchy, as displayed by AmiGO. 

A possible solut ion to the annotation problem was to use a subset of GO terms 

(known as GO slims) providing a broad overview, without the fi ne-grained detail [GO 

Consort ium , http: //www.geneontology.org/ GO.slims.shtmlj. However. it became ap-

16 Ami GO Website: http ://vw-w . genedb . org/ amigo/perl / go . cgi 
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parent that the GO slim categories were too vague. While the construction of a new 

set of categories specific to secretion would combat this issue, the SubtiList classifi­

cation codes turned out to provide an appropriate alternative. 

The mapping of GO terms to the SubtiList classification codes was beneficial in 

that these annotations are known by biologists. However, these terms do not entirely 

capture the functional annotations of the secreted proteins. Ideally, a new set of 

terms, specific to the Bacillus species, and more specifically to the secretome, could 

be defined and used to provide a more definitive summary of the functions. 

Despite the optimisation of BaSPP for the analysis of members of the genus Bacil­

lus, the package can easily be adapted for application to other Gram-positive bacteria 

and even Gram-negative bacteria. Using the Web interlace the resulting data can also 

be viewed and curated. In fact all publicly available complete genomes for the Gram­

positive bacteria Staphylococcus aureus were categorised for use in further studies. 

Finally, whilst BaSPP provides an interesting and new example of an e-science­

based application, the results generated are of course of great interest to microbiolo­

gists. The results of categorisation show a high degree of correlation to comparable 

bioinformatics analysis and validated experimental data. This work therefore pro­

vides data to prime further biologically- and computationally-oriented investigations. 

Analysis of the data therefore became the focus of this study, and one to which the 

remaining chapters are dedicated. 
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Chapter 4 

Properties of the predicted 
secretomes of members of the 
genus Bacillus 

4.1 Introduction 

In this study, the BaSPP system was specifically applied to the Bacillus genus, in 

which, as well as B. subtilis (strain 168), an additional 11 Bacillus strains, listed 

in section 1.6.2, for which complete genomic sequences were publicly available from 

Genome Reviews, were analysed. This builds on previous studies that have largel~' fo­

cussed on the model Gram-positive bacteria, B. subtilis (strain 168) [Antelmann et al., 

2001, Tjalsma et al., 2004, 2000]. Following the categorisation and analysis of the 

secretomes by the BaSPP workflow system. the relationships between the secretome 

components were investigated. The different bacterial secretomes were compared to 

reveal potentially interesting differences between species. The numbers of proteins 

categorised as being secreted by the classification workflow were initially' assessed 

in terms of their distribution across the various Bacillus species. The functionally 

related families identified by clustering these secreted proteins were then used to fur­

ther investigate relationships between the different species based on their secretome 

composition. Those protein families containing members from all 12 genomes, and 

those specific to the non-pathogens and known-pathogens, were then inwstigated to 

identify' functional trends. 
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4.2 Results 

4.2.1 Overview of the predicted secretome composition of 12 

Bacillus genomes 

The initial findings from the classification workflow (described in section 3.2.2) are 

highlighted in figure 4.1. It can be seen that the majority of the secreted proteins are 

classified as SpI proteins, followed by Spll, and finally proteins covalently attached 

to the cell wall. Of the organisms used in this study, B. anthracis (Sterne), B. an­

thracis (Ames ancestor), B. anthracis (Ames), B. cereus (E33L) and B. thuringiensis 

konkukian (strain 97-27) are considered known pathogens. The remaining species B. 

clausii (KSM-K16), B. halodurans (C-125), B. licheniformis (ATCC 14580, sub..strain 

Novozymes), B. licheniformis (ATCC 14580, sub..strain Goettingen) and B. subtilis 

(strain 168) form the non-pathogens. The pathogenicity of B. cereus (ATCC 10987) 

and B. cereus (ATCC 14579) is unclear and were therefore not placed in either the 

known pathogen group or the non-pathogen group. In regards to the secretomes of 

these two sets of species, the proportion of proteins that are secreted is higher in 

pathogens than in non-pathogens (table 4.1 and figure 4.2.a), but is proportional to 

the genome size (figure 4.2.b). The predicted secretomes varied in size from 358 pro­

teins in B. clausii (KSM-K16) (9% of the total proteome) up to 508 proteins in B. 

cereus (E33L) (10% of the total proteome). 

Interestingly, of the seven proteins predicted to be covalently attached to the cell 

wall, one is found in each of the five known pathogens: B. anthracis (Sterne), B. an­

thracis (Ames ancestor), B. anthracis (Ames), B. cereus (E33L) and B. thuringiensis 

konkukian (strain 97-27), with the remaining two proteins belonging to B. cereus 

(ATCC 10987). These cell wall proteins may therefore playa role in virulence, and 

therefore further investigation is required. 
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Figure 4.1: Basic representation of the functionality of the clas ificat ion workflow. 
Shaded boxes indicate the set of secr ted proteins i. e. those ext racellular proteins that 
are secreted to the culture medium , as well as the membrane-attached lipoproteins 
and the cell wall covalently attached proteins. The number in brackets repre ents 
the total number of proteins to be classified at each level. across the 12 Bacillu 
proteomes. 
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I Genome size (Mb) I Proteome size I Secretome s' IZe 

B. anthmcis (Sterne) 5.229 5287 487(9.21%) 
B. anthmcis (Ames ancestor) 5.227 5309 494(9.30%) 
B. anthmcis (Ames) 5.227 5311 494(9.30%) 
B. cereus (E33L) 5.301 5134 508 (9.89%) 
B. cereus (ATCC 10987) 5.224 5603 489(8.73%) 
B. cereus (ATCC 14579) 5.412 5234 487(9.30%) 
B. clausii (KSM-K16) 4.304 4108 358(8.71%) 
B. halodumns (0-125) 4.202 4066 393(9.67%) 
B. licheniformis (ATCC 14580, 4.222 4152 365(8.79%) 
sub..strain Novozymes) 
B. licheniformis (ATCC 14580, 4.223 4196 370(8.82%) 
sub..strain Goettingen) 
B. subtilis (strain 168) 4.215 4106 383(9.33%) 
B. thuringiensis konkukian (strain 5.238 5117 501(9.79%) 

97-27) 

Table 4.1: Genome size (number of base pairs), proteome and secretome sizes (number 
of proteins) of each of the bacterial strains in the study. 

4.2.2 Taxonomic similarity between the Bacillus species based 

on predicted secretome composition 

To determine whether the secretomes of the pathogenic organisms were more closely 

related to each other in terms of their activity than to those of the non-pathogens, the 

phylogeny of the Bacillus strains was investigated in the context of the relationships 

between their secretomes. The analysis workflow was used for this purpose (described 

in section 3.2.3) in which the predicted secreted proteins of each strain were classified 

into functionally related families based on their sequence similarity, as defined by 

BLASTp. This resulted in the 5329 secreted proteins of the 12 secretomes being 

arranged into 673 families of two or more members. 618 of these proteins showed no 

significant similarity to other proteins and hence did not fall into any families. 

As part of the output generated by this workflow, a dendrogram was produced 

(illustrated in figure 4.3) in which the relation between the different Bacillus strains 

is shown based on the contribution of the predicted secreted protein families. The 

dendrogram essentially highlights the level of similarity between the secretomes of 
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Figure 4.3: Dendrogram representing the relationship of the Bacillus species in terms 
of their secretome. 

the various strains. 

Within the B. cereus group subcluster (B. anthmcis, B. cereus and B. thuringien­

sis), two sub-clusters were formed by the well-established pathogens (B. cereus (E33L), 

B. thuringiensis konkukian (strain 97-27), B. anthmcis (Ames), B. anthmcis (Ames 

ancestor), B. anthmcis (Sterne)), while the two members of questionable pathogen­

esis (B. cereus (ATCC 10987), B. cereus (ATCC 14580)) formed a separate protein 

family. The environmental strains (B. subtilis (strain 168), B. licheniformis (ATCC 

14580), B. clausii (strain KSM-KI6), B. halodumns (C-125)) formed a separate pro­

tein family from that of the B. cereus group organisms. 

The contribution of these organisms to the various protein families was then in­

vestigated. This is illustrated through the use of a heat map (in a similar fashion to 

the visualisation of microarray data) (figure 4.4). Heatmaps are useful for visuaIising 

large and complex datasets in a way that makes it easy to compare and identify fea­

tures at a glance using colour. Like the dendrogram, the heatmap was also generated 

using the analysis workflow. From the heatmap, trends in the distribution of the 

different species among the protein families can be identified. For example it can be 

seen that B. halodumns and B. clausii have a high proportion of paraIogues specific 
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Figure 4.4: Heatmap representing the relationship of the Bacillus species in terms of 
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family. A colour gradient using three colours was used to show intensity: black hows 
no change in paralogue count , increasingly intense green indicates a more pronounced 
paralogue count in a protein family for a particular species in relation to t he others, 
increasingly intense red indicates less paralogues (or zero proteins) in a protein family 
for a part icular species, white indicates the core protein families containing a member 
from all the species. 
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only to each of these species (illustrated by the green segments in the columns of 

these species). These species-specific families contribute to the fact that B. halodu­

rans and B. clausii are less closely related to the other non-pathogenic species. In 

this study however, particular attention was paid to those families defined as "core" 

protein families, since they combined at least one homologue from each strain under 

study, as well as families specific to the pathogens and non-pathogens. Analysis of 

the functions of these families was subsequently undertaken. 

4.2.3 Functional analysis of the predicted secretomes of the 

Bacillus species 

The secretory protein families defined by BaSPP provide an opportunity to gain an 

overview of how the function of secreted proteins differ across the Bacillus species 

studied. The" core" families are of importance since their function is conserved and is 

therefore required for survival in a variety of different ecological niches. 7% of protein 

families were found to be core and the functions of these were investigated. Protein 

families that are specific to known pathogens (2%) are also of interest since they may 

indicate proteins whose function is related to virulence and pathogenicity. Another 

interesting group was the 12% of secreted proteins not clustered into any family i.e. 

these proteins show no relationship to any other secreted protein and hence are unique 

to specific strains (table 4.2). 

Number of proteins analysed 57623 
N umber of proteins characterised as secreted 5328 
Number of secreted protein families after clustering 673 
of which: 
core secreted protein families 45 
non-pathogen specific protein families 9 
known-pathogen specific protein families 15 

Number of secreted proteins not clustered into a family 618 

Table 4.2: Summary of the number of proteins and families categorised as secreted. 

The functional distribution among the protein families was investigated using the 

automated method described in section 3.2.4. This approach summarises the function 
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of the families by mapping the GO process terms associated with individual genes 

to the SubtiList classification codes. The subsequent functional distribution of the 

12 secretomes is illustrated in figure 4.5. Inspection of the distribution across all 

12 secretomes reveals a large proportion of secreted proteins have functions relating 

to transport and nutrient uptake. However, the majority of protein families have 

unknown function. This demonstrates that the secretomics of the Bacillus species is 

still not fully understood. There is therefore a great need for further studies in this 

area. 

4.2.3.1 Core families 

Figure 4.6 shows a summary of the different functional classifications of the core 

secreted protein families (Le. families containing one or more proteins from each 

Bacillus species). Interestingly, a large number of core families had not been exper­

imentally characterised and remain of unknown function. More predictably, many 

core proteins were grouped into families concerned with cell wall related functions, 

transporter proteins and proteins responsible for membrane biogenesis. 

In particular, a core family of great interest is identified as being PrsA-like. PrsA 

is a major extracytoplasmic folding factor involved in the post-translocation folding 

of proteins into their native conformation after signal peptide cleavage. It has been 

shown to effect the function of some essential translocated proteins involved in cell 

wall synthesis and functions relating to the cell membrane [Tjalsma et at., 2000, 

Wahlstrom et al., 2003]. 

4.2.3.2 Families specific to the non-pathogen 

Of the nine families unique to non-pathogens, four encoded proteins concerned with 

the degradation and transport of plant polysaccharides, one was concerned with the 

structure of fiagellae, and the remaining four were functionally unclassified (table 

4.3). 
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Figure 4.5: Functional classification of all the ecreted protein familie . The graph 
shows the number of protein families per SubtiList category (Protein families 
classified as miscellaneous (unknown) have been excluded; this corresponds to 297 
familie. The GO terms mapping to miscellaneous are: GO:0008150 biological 
process, GO:0009058 biosynthesis, GO:0044249 cellular biosynthesis, GO :0007582 
physiological process, GO:0050875 cellular physiological process , GO:0051244 reg­
ulat ion of cellular physiological process, GO:0050791 regulation of physiological 
process, GO:0009987 cellular process , GO:0050794 regulation of cellular proces , 
GO:0050789 regulation of biological process , GO:0009605 response to external stim­
ulus , GO:0009628 response to abiotic stimulus, GO:0042221 response to chemical 

stimulu .) 
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Function Z I:ti I:ti I:ti I:ti I:ti 
Transport 3 - ABC3357 BH2673 BLOO277 BLi02120 BSU04440 
binding pro- ABC0439 BH2750 
teins and ABC4079 BH3390 
lipoproteins ABC0608 BH0701 

ABC0301 
ABC4046 

amN ABC3471 BH0905 BLOO348 BLi03024 BSU28750 
ABC3774 BHl117 
ABC0385 
ABC3301 
ABC3215 

lplA ABC0724 BHlO64 BL03778 BLi01384 BSU07100 
ABC3117 BH1913 

Metabolism of 1 sppA ABC2747 BH3198 BL00425 BLi03092 BSU29530 
amino acids 
and related 
molecules 
Mobility and 1 ftiL ABC2259 BH2447 BL01263 BLi01851 BSU16300 
chemotaxis 
Unknown 4 pelE ABCOO63 BH0698 BLOO947 BLi03053 BSU07560 

BH3819 BL03760 BLi01404 BSU18650 
BLOO361 BLi04129 

yqfA ABC1672 BH1357 BL01411 BLi02729 BSU25380 
ypmS ABC1528 BH1181 BL03306 BLi02310 BSU21730 
ylbC ABC2386 BH2604 BL02986 BLi01713 BSU14960 

Table 4.3: Functional breakdown of the clusters that only contain members from the 
non-pathogens. The proteins within the families are identified by their locus tags. 
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Function Count 
Unknown 13 
Membrane bioenergetics 1 
Metabolism of amino acids and related molecules 1 

Table 4.4 : Functional breakdown of the protein families t hat only contain represen­
tatives from the known pathogens. 

4.2.3.3 Families specific to the known pathogen 

Perhaps of most significance are the functions of the 15 protein families that " 'ere 

ident ified as being unique to the secretomes of t he potent ially pathogenic bacteria (B. 

cereus (E33L), B. thuringiensis konkukian (strain 97-27), B. anthm cis (st rain Sterne), 

B. anthmcis (Ames ancestor) , B. anthmcis (Ames)) via computational mean , are 

largely of unknown function and remain to be characterised (table 4.4). 

The two families wit h a classified function include the membrane bioenergetics 

family (consisting of BA3674 , BAS3405, GBAA3674, BT9727 _3367, BCE33L3317) 

and the family classified as metabolising amino acids and related molecules (consisting 

of BA5606, BAS5208, GBAA5606, BT9727 _5040, BCE33L5056) . 

Manual inspection of the 15 pathogenic familie found fi ve families showing sig­

nificant similarity with proteins belonging to B. cereus (ATCC 14579) and B. cereu 

(ATCC 10987). Removal of these five families reduced t he dataset to 10 protein fam­

ilies that are specific to the pathogens. The protein components of these pathogenic 

families are shown in table 4.5. The majori ty of these clu ters contain member that 

show very close similari ty to each other and are therefore well conserved (table 4.6). 

Investigation into the function of t he pathogen-specific families (through the ap­

plication of ClustalW, BLASTp and Interproscan) indicated seven of these familie 

have no functional motifs as defined by Interpro, and in some cases are consen'ed 

specifically within t he known Bacill'u.s pathogens, showing no signifi cant similarity to 

any other organisms, as indicated by BLASTp. 

Protein family F is an example of a protein family about " 'hich very little is 

known. Conta ined wi thin t he members of t his family are three paralogues specific to 

B. cereus (E33L). T he ClustalW sequence al ignments fo r the proteins and the degree 
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protein B. anthmcis B. anthmcis B. anthmcis B. cereus B. 
fam- (Ames an- (Ames) (Sterne) (E33L) thuringiensis 
ily cestor) konkukian 

(strain 
97-27) 

A GBAA2803 BA2803 BAS2613 BCE33L2530 B1'9727 -2561 
E GBAA1900 BA1900 BAS1762 BCE33L1711 B1'9727 -1739 
F GBAA2029 BA2029 BAS1885 BCE33L1837 B1'9727..3017 

BCE33L2963 
BCE331A836 

G GBAA2527 BA2527 BAS2350 BCE33L0941 B1'9727 _0952 
BCE33L2267 B1'9727 -2309 

I GBAA1601 BA1601 BASI485 BCE33LI457 B1'9727 _1458 
J GBAA4462 BA4462 BAS4141 BCE33L3991 B1'9727..3981 
K GBAA2986 BA2986 BAS2775 BCE33L2705 B1'9727 -2724 
L GBAA2500 BA2500 BAS2320 BCE33L2241 B1'9727 -2285 
M GBAA3523 BA3523 BAS3267 BCE33L3182 B1'9727..3240 
N GBAA3443 BA3443 BAS3190 BCE33L3092 B1'9727..3171 

Table 4.5: The proteins (identified by their locus tags) belonging to the clusters that 
only contain members from the five known pathogens. 

protein family Percentage similarity 
Range Mean 

A 95 - 100 97.4 
E 98 - 100 98.8 
F 34 - 100 59.7 
G 35 - 100 69.2 
I 95 - 100 97.6 
J 96 - 100 97.8 
K 96 - 100 97.4 
L 98 - 100 99.2 
M 97 - 100 98.8 
N 94 - 100 96.7 

Table 4.6: Measure of the percentage similarity between proteins within the known 
pathogen specific clusters. 
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of similarity between the various sequences is illustrated in figure 4.7. The sequences 

of the proteins in the B. anthracis strains were identical, with their homologues in 

the other strains showing varying degrees of similarity. 

The lipoproteins identified in protein family G contain two B. cereus (E33L) 

paralogues and two B. thuringiensis konkukian (strain 97-27) paralogues. The se­

quence alignment and the degree of similarity between the various sequences is shown 

in figure 4.8. The three proteins belonging to the three B. anthracis strains and 

BT9727_2309, a paralogue of B. thuringiensis konkukian (strain 97-27), were iden­

tical. The paralogue of B. cereus (E33L) (BCE33L2267) differs only with respect 

to a single conserved amino acid substitution. The additional paralogues in this 

protein family, BCE33L0941 (B. cereus (E33L)) and BT9727_0952 {B. thuringiensis 

konkukian (strain 97-27)) showed reduced levels of similarity. 

Little can be determined about the extracellular proteins in protein family J. 

A possibility is that these proteins function like Com since they show similarity to 

RBTH_06021, ComG operon protein 5 of B. thuringiensis serovar israelensis (ATCC 

35646), a Bacillus species not analysed in this study (figure 4.10). ComG is important 

in transformation and DNA binding (defined in section 2.2.4.2). The B. thuringiensis 

serovar israelensis (ATCC 35646) ComG protein has an additional N-terminal seg­

ment not annotated in the Bacillus pathogens analysed in this study. However, closer 

inspection of these ORFs reveal that they may have been misidentified, in which case 

they too would have an additional N-terminal segment showing similarity to ComG: 

MKLYFSLEEGDLKIVKCQKGS[MAE] 

depending on whether [MAE] is present at the N-terminal end already. With the 

addition of this N-terminal segment, the Bacillus proteins would no longer be secreted 

as, like ComG of B. thuringiensis serovar israelensis (strain ATCC 35646), an N­

terminal signal peptide would not be predicted. However, the reverse may also be 

true, in that the start of ComG may have been misidentified. It may therefore be the 

case that there is a different transformation mechanism via which competence proteins 

are secreted through the Sec pathway. This remains to be investigated experimentally. 
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BCE33LI837 99 99 99 42 100 H 43 
BCE33L2963 44 44 « 73 H 100 34 
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Figure 4.7: (a) ClustalW alignment for members of protein family F. As well as 
ClustalW symbols below the alignment C*' means the residues in that column are 
identical in all sequences, ':' means that conserved substit utions have been ob erved. 
' .' means that semi-conserved substitutions are observed) , the colour coding also in­
dicates the degree of similarity (dark red refers to a match, light red means the amino 
acids differ but are related , white means no match). The sequences of GBAA2029 
(B. anthracis (Ames ancestor)) and BA2029 (B . anthracis (Ames)) are identical: for 
simplicity only BA2029 is shown. Three paralogues exist for B. cereus (E33L). one of 
which hows close similarity with BT9727 _3017 (E . thuringiensis konkukian (st rain 
97-27)) . (b) Phylogram from ClustalW alignment highlighting the similarity between 
the protein sequences within protein family F. (c) The percentage identity between 
all s quences in protein family F . 
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Figure 4.8: (a) ClustalW alignment for members of protein family G. Colour cod­
ing indicates the degree of similarity (dark red refers to a match, light red mean the 
amino acids differ but are related , white mean no match). The sequence GBAA2527 
(B. anthracis (Ames ancestor)) , BA2527 (B . anthracis (Ames)) , BAS2350 (B. an­
thracis (Sterne)) and BT9727 _2309 (B . thuringiensis konkukian (strain 97-27)) are 
ident ical; only BA2527 is shown for simplicity. (b) Phylogram from ClustalW align­
ment highlight ing t he similari ty between the protein sequences wit hin protein fami ly 
G. (c) The percentage identity between all sequences in protein fami ly G. 
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Figure 4.9: ClustalW alignment for members of protein family J. The sequences of 
GBAA4462 (B . anthracis (Ames ancestor)) and BA4462 (B. anthracis (Ames)) are 
identical; only BA4462 is shown for simplicity. The other members of thi protein 
family have subtle difference. All members share sequence similari ty with ComG 
(from B. thuringiensis serovar israelensis (AT CC 35646)) . 
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Figure 4.10: ClustalW alignment for members of protein family I. The sequences 
of GBAA1601 (B. anthracis (Ames ancestor)) , BA1601 (B. anthracis (Ames)) and 
BAS1485 (B. anthracis (Sterne)) are ident ical. 

A detailed manual examination of the lipoprotein cl usters I (figures 4. 10) and K 

(figure 4. 11), and extracellular protein clusters L and M (figure 4.12) revealed no 

cl ues about t heir possible function. However , members of protein family I did shmv 

significant sequence similarity (93%) to BC1578 of B. cereus (ATCC 14579), but this 

protein is of unknown function and is not predicted to be secreted . 

The protein families discussed t his far (F , G , I, J , K, L, 11) show no significant 

BLASTp results and no Interpro domains. However , analysis of the remaining three 

families (A , E, N) uncovered a number of interesting findings. Protein fami ly A 

appears to contajn genes encoding surface layer (S-Iayer) proteins (figure 4. 13). S-
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F igure 4.11 : ClustalW alignment for members of protein fami ly K. The sequences 
of GBAA2986 (B. anthracis (Ames ancestor)) and BA2986 (B. anthracis (Ames)) 
are ident ical, as is BT9727 _2724 (B. thuringiensis konkukian (strain 97-27)) and 
BCE33L2705 (B. cereus (E33L)) ; BAS2775 (B . anthraci (Sterne)) lie omewhere in 
between. 
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Figure 4.12: Clusta.lW alignment for members of protein fan1ily ~ I. The protein se­
quences GBAA3523 (B . anthracis (Ames ancestor)) , BA3523 (B. anthraci (Ames)) 
an d BAS3267 (B. anthracis (Sterne)) are ident ical. 
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layers are crystalline assemblies of proteins that coat the outer surface of unicellular 

organisms ranging from the archaea, bacteria and eucarya. Their structures and 

functions are diverse, including acting as targets for other proteins [Sara and Sleytr, 

2000]. 

In Gram-positive bacteria, the region responsible for the inactivation of S-layer 

proteins with the cell wall is termed the surface layer homology (SLH) domain. These 

domains have been found at both the Nand C regions of wall-bound mature proteins. 

An SLH domain is usually composed of either a single or three repeating SLH motifs 

of approximately 50 to 60 residues. Three SLH domains were identified in the respec­

tive protein family member proteins belonging to B. anthracis (Ames ancestor), B. 

anthracis (Ames), B. anthracis (Sterne) and B. cereus (E33L). However, the mem­

ber protein of B. thuringiensis konkukian (strain 97-27) was found to contain only 

two SLH domains, as shown in figure 4.13. It has been suggested that the SLH do­

mains interact directly with peptidoglycan or with other cell wall-associated polymers 

[Navarre and Schneewind, 1999]. 

With the exception of B. thuringiensis konkukian (strain 97-27), a beta-Iactamase­

like region was also identified in members of protein family A. Beta-Iactamases are 

enzymes implicated in the resistance of bacteria to beta-Iactam antibiotics (e.g. peni­

cillins). As the name suggests, beta-Iactam antibiotics contain a four-membered beta­

lactam ring. Beta-Iactamase inactivates the antibacterial activity of beta-Iactam an­

tibiotics by cleaving the beta-Iactam ring [Navarre and Schneewind, 1999, Wilke et al., 

2005]. In Gram-positive bacteria, beta-Iactamases are generally lipoproteins secreted 

by the Sec pathway and processed by SPase II. However, it has also been observed 

that beta-Iactamases may also be processed by SPase I, but these proteins lack the 

ability to protect the bacteria from beta-Iactam antibiotics (as observed in staphylo­

cocci). The membrane anchoring is thought to be important for resistance [Navarre 

and Schneewind, 1999]. These beta-lactamase-Iike proteins also show close similarity 

with the non-pathogenic Bacillus species, as well as Listeria, Clostridium, Yersinia, 

Staphylococcus, Thermoanaerobacter and Streptococcus, although these species appear 

to lack proteins showing the S-layer homology regions. The lack of a beta-Iactamase-
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Figure 4. 13: Interproscan domains mapped onto ClustalW alignment for member of 
protein family A. The sequences BAS2613 (B . anthm cis (Sterne) ), GBAA2803 (B. 
anthm cis (Ames ancestor)) and BA2803 (B . anthracis (Ames)) are identical. T hree 
SLH (IPR001119) domains are ident ified in the B. anthracis st rains and BCE33L2530 
(B. cereus (E33L)) at posit ions 28-70, 89-129 and 147-189 (blue) . A beta-lactamase 
domain (IPR001279) is also ident ified in t he B . anthmcis strains and BCE33L2530 (B. 
ceretLs (E33L)) at posit ion 220-415 (green). BT9727 _2561 (B. thuringiensis konkukian 
(st rain 97-27)) only has two SLH region. 
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like region in B. thuringiensis konkukian (strain 97-27) is due to a deletion of a 

segment of protein sequence corresponding to a length of 272 amino acids (as shown 

in figure 4.13). 

Also of interest are the putative glycoside hydrolase proteins in protein family 

E, containing multiple bacterial neuraminidase repeats (BNR) or Asp-boxes (figure 

4.14). Asp-boxes are found in various non-homologous proteins, such as bacterial ri­

bonucleases, sulphite oxidases, reelin, netrins, sialidases, neuraminidases, lipoprotein 

receptors and glycosyl hydrolases. However, little is known about this motif, apart 

from the observation that they occur most frequently in secreted proteins, and are 

often found in proteins that interact with polysaccharides (e.g. Asp box-containing 

glycosyl hydrolases). O-Glycosyl hydrolases are enzymes that hydrolyse a glycosidic 

bond i.e. a bond between a carbohydrate and an alcohol, where the alcohol may also 

be a carbohydrate. These enzymes are known to regulate the activities of certain 

extracellular signalling proteins. However, it is unlikely that all Asp box-containing 

proteins will be associated with a polysaccharide-binding function. For example in 

barnase-like ribonucleases, the Asp box motif lies with the active site [Copleyet al., 

2001] suggesting a role in catalysis. 

In conjunction with this finding, the proteins in protein family E also show 

close similarity with glycosyl hydrolase, BNR repeat-containing proteins expressed in 

the Gram-negative bacteria Polaromonas sp J8666 and Nitrosomonas eutropha C91. 

However, unlike the proteins within protein family E, the algorithms applied in the 

classification workflow suggest the proteins from these organisms are not lipoproteins 

but rather appear to be secreted. 

Of particular interest are proteins within protein family N. These proteins have 

been identified as zinc metalloprotease enhancins. Enhancins, also known as viral 

enhancing factor, are pathogenicity factor encoded by baculoviruses. Baculoviruses 

are viruses that are pathogenic for invertebrates. Enhancins have been shown to 

enhance baculovirus infections and decrease larval survival time i.e. decreasing the 

survival of the pre-adult forms of an animal. It is thought that enhancins disrupt the 

protective peri trophic membrane, enabling the virion to attack the epithelial cells of 
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Figure 4.14: Interproscan domains mapped onto ClustalW alignment for member 
of protein family E. The sequences GBAA1900 (B. anthrocis (Ames ance tor )) and 
BA1900 (B. anthrocis (Ames)) are ident ical. Each protein within this fam ily contains 
four glycoside hydrolase , BNR repeat domains (IPR002860) (blue). 

the insect gut [Galloway et aI. , 2005, Hajaij -Ellouze et a I. , 2006]. 

Enhancin-like genes are not only limi ted to insect vi ruse , but have also been 

ident ified in bacteria , significant ly in the B. cereus group , including Bacillus an­

throcis (Ames ancestor) (GBAA3443) [Read et aI. , 2003] . Interest ingly. GBAA3443 

is a member of protein family N. Closer inspection also reveals clo e similarity to 

Enhancin proteins in strains of Gram-negative bacteria Yersinia pestis and Yer inia 

pseudotuberculosis, which are also known pathogens. This is also confi rmed in the 

li terature with t he ident ification of bacterial enhancins in Yersinia pe ti (YP00339) 

[Parkhill et aI. , 2001]. Like baculovirus and B. thuringiensi . the similar proteins of 

~ rsinia pestis and Yersinia psw dotuberculosis are insect icidal toxins. Surprisingly. 

close similari ty i also shown towards the BAE55343 protein of t he fungus Aspergillus 

oryzae, thought to be non- pathogenic (despite some reported cases). Unlike the Bacil-
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Ius enhancins , application of SignalP and LipoP to the similar proteins of A pergillus 

oryzae indicates t hey are not secreted . Less surprisingly, similarity i al 0 howD 

towards BC3384 of B. cereus (ATCC 14579) , as also documented in [Ivanova et al.. 

2003J. However this protein is not predicted to be secreted , and presumably is unable 

to exert its toxic effect . 

Enhancins have a distinct HEXXH metal binding motif. This motif is conserved 

in the Bacillus Enhancins (figure 4.16) , as well as in t he Yersinia and baculovirus 

Enhancins (HEIAH in bacterial Enhancins) (figure 4. 17). Approximately 20 residues 

downstream of the first hist idine within t he zinc binding sequence is a conserved glu­

tamic acid ; this is seen in all Enhancins [Galloway et al. , 2005J. Despite conservation 

of the HEXXH motif, the overall sequence similari ty among t he Enhancin varies 

between different genus (t able 4.15) . 

BA34-43 A0090005000254 VPTB0393 LdnYgp 161 
BA3443 100 31 29 17 
A0090005000254 31 100 46 20 
YPTEKl393 29 46 100 16 
LdnYgp161 17 20 16 100 

Figure 4. 15: Measure of percentage similarity between BA3443 from B. anthraci 
(Ames), A0090005000254 from Aspergillus oryzae, YPTB0393 from Yersinia pseu­
dotuberculosis IP 32953 and LdnVgp161 from the virus L ymantria dispar MNPV. 
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Figure 4. 16: Interproscan domains mapped onto ClustalW alignment for member of 
protein family N. The sequences of BAS3190 (E. anthmcis (Sterne)) , GBAA3443 (E. 
anthmcis (Ames ancestor)) and BA3443 (E. anthmci (Ames)) are identical. Pepti­
dase M60 , viral enhancin protein motif (IPR004954) is identified (blue). including the 
HEIAH metal binding motif: the metal ligands (orange). the active site (red). and 
the conserved glutamic acid (green). All sequences are identified except BCE33L3092 
(E. cereus (E33L)) . 
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Figure 4.17: Interproscan domains mapped onto ClustalW alignment for members of 
protein family N. The sequences BA3443 from B. anthracis (Ames) , A0090005000254 
from Aspergillus oryzae, YPTB0393 from Yersinia pseudotuberculosi IP 32953 and 
LdnVgp161 from the virus Lymantria dispar MNP V. Pept idase 1\160, vira l enhancin 
protein motif (IPR004954) is shown (blue), including the HEXXH metal bind ing 
mot if: t he metal ligands (orange), t he act ive site (red ), and th con erved glutami 

acid (green). 

4.3 Discussion 

This section presents an analysis of the pred icted secretome of 12 bacill i based on 

their genome sequences, carried out wit h t he BaSPP workflow based ystem. 

Firstly, the overall composit ion of each individ ual secretome was determined. The 

number of proteins targeted by SpI , SplI and sortase specific mechanism were pre­

dicted for all of the 12 isolates. Whilst t he number of secreted proteins was higher 

in pathogenic organisms such as B. anthm cis, the genomes of these isolates i la rger. 

and once corrected for genome size, t he number of secreted proteins remained rougilly 

constant a t around 9- 10o/c of the total predicted proteome. T hese findings a re in line 

with previously reported findings for Gram-posit ive bacteria. 

However, it may have been ant icipated t hat t he BaSPP classifi cation workflow 

would ha.ve ident ified more cell wall covalent ly attached proteins am ong t hese addi­

t ional Bacillus species. Some may ha.ve been fil t ered as t ransmembrane proteins due 

to the hydrophobic domain following the LPXT G motif. However. fur t her analysi 
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of the putative transmembrane proteins for LPXTG cell wall motifs did not result in 

additional cell wall covalently attached proteins being detected. Therefore, it is likely 

that the other sortase substrates were not found as their motif is slightly different to 

the standard LPXTG motif, documented in Boekhorst et al. [2005]. For this reason, 

additional sortase substrates in the Bacillus species have been identified in Boekhorst 

et al. [2005], that have not been uncovered in this study, which searched solely for 

the major motif LPXTG (table 4.7). 

Genome No. of putative sortase substrates predicted 
[Boekhorst et ai., 2005] BaSPP 

B. anthracis (Ames) 3 1 
B. anthracis (Ames ancestor) - 1 
B. anthracis (Sterne) - 1 
B. cereus (ATCC 14579) 5 -
B. cereus (ATCC 10987) 6 2 
B. cereus (ZKj E33L) - 1 
B. halodumns (C-125) 6 -
B. subtilis (strain 168) 2 -
B. thuringiensis konkukian (strain 97-27) - 1 

Table 4.7: The number of putative sortase substrates in the Bacillus species as pre­
dicted by Boekhorst et al. [2005J and by the BaSPP system developed in this study. 

Next, a method for the functional analysis of the secreted proteins was required to 

progress with the individual and comparative secretome analysis. The classification 

of proteins into families has been shown to be a valuable method of shedding light on 

protein function [Enright et al., 2003, Tatusov et al., 2003]. Secreted proteins were ar­

ranged into functional clusters based on amino acid sequence similarity using an MeL 

algorithm as part of the BaSPP analysis workflow. The clusters were subsequently 

systematically and manually analysed to provide an overview of the variability in the 

function of secreted protein families between the Bacillus species under study. 

The phylogenetic relationships between the 12 bacilli isolates have been explored 

in the context of the similarity between their predicted secretomes as determined 

by the shared contribution of their proteins to the various families. This exercise 

allowed the similarity between the secretomes to be studied at the level of their 
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overall composition. The taxonomic relationships between the Bacillus species as 

defined by their secretomes agrees well with previously reported taxonomic trees 

generated by studies based on ribosomal RNA (rRNA) gene sequence analysis, usually 

16S-rRNA genes. The genes coding RNA are frequently used in the area of molecular 

phylogeny to understand organismal relationships as these genes are highly conserved, 

performing central metabolic functions that are tightly intertwined in the fabric of 

the cell [Hale et al., 1995, Olsen and Woese, 1993]. 

Using rRNA gene sequence analysis, a number of bacterial species have been iden­

tified and classified, summarised in Joung and Cote [2002]. Comparison with these 

studies reveals that the findings presented here relate to, but do not match exactly, 

those documented elsewhere. In fact the Ribosomal Database Project (RDP)[Cole 

et aI., 2005] and the study carried out in Xu and Cote [2003] show significant resem­

blance to the results described here. The phylogeny identified using RDPl is shown 

in figure 4.18 for comparison. The only substantial difference is the relation of B. 

cereus (ATCC 14579) to the known pathogen group containing B. anthracis and re­

lated organisms. RDP shows B. cereus (ATCC 14579) to be more closely related to 

the known pathogens than found by analysing the secretomes. 

Recently, Tettelin and co-workers introduced the concept that a species can be 

described by the pan-genome that consists of a core set of proteins common to all 

isolates (around 80% of the total gene complement in streptococci for example) and 

a dispensable component that are shared across some species but not all (around 

20%) [Tettelin et al., 2005]. The dispensable proteins in the pan-genome are less 

constrained by evolution and are therefore able to contribute to the fitness of an or­

ganism for growth in a particular environment. It is known that secreted proteins 

play an important part in niche adaptation and that the secretory proteins occur in 

young-intermediate aged functional modules overrepresented in the dispensable pro­

tein complement of an organism [Campillos et al., 2006]. The secretome of the genus 

Bacillus is particularly interesting to study in this respect. Whilst all the Bacillus 

spp. studied here share significant sequence similarity at a genomic level, the optimal 

1 RDP Website: http://rdp.cme.msu.edu/ 
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Figure 4.18: Dendrogram representing the relationship of the Bacillus species (a) IQ 

terms of their secretome and (b) as ident ifi ed using RDP. 

growth environments for these species varies t remendously from non-pathogenic soil 

organisms such as B. subtilis, through to t hose t hat are st rict ly pathogenic uch as 

B. anthracis. T he results presented here for the functional classification of the e­

creted protein families, with proteins of unknown function and families responsible 

for niche specific metabolite utilisat ion, support the hypothesis t hat secreted proteins 

are overrepresented in the dispensab le part of t he pan-genome. A more detailed set 

of in-silica experiments could be carried out to confirm these hypot heses. For in­

stance , t h pan-genome for the Bacillus species could be ident ified by clustering the 
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entire proteome into protein families (using the same clustering methodology). The 

core and dispensable components for the Bacillus species could subsequently be dis­

tinguished. The distribution of the secreted protein families could then be assessed 

by analysing the proportion of secreted protein families identified in the core and 

dispensable families. 

Overall, the similarity between the relationships identified by analysing the se­

cretome and rRNA shows the importance of secreted proteins, and the central role 

these proteins play in adapting different species to growth under different conditions. 

Specifically these proteins reflect the common ancestry and environmental niche in 

which the bacteria exist. It can therefore be speculated that the secretome of an 

organism would make useful biomarkers for the determination of its preferred envi­

ronmental niche and properties such as virulence. 

Whilst annotating these protein families, an interesting problem arose with respect 

to assigning functional categories to the protein families. Bacillus biologists are used 

to the functional annotations ascribed by their genome analysis portal SubtiList. In 

addition, when ascribing function to the families, many GO terms could be applied 

to a family. Simply using a broadly defined term, near the root term (as in GO 

slims), resulted in very vague GO annotations. Therefore the approach taken here 

was to map the numerous GO terms generated from a family to the existing SubtiList 

classification codes. This resulted in a classification system that was more human 

readable but less computationally amenable. A Perl-based package called go-graph 

was employed to extract a common set of GO terms that represented all the secreted 

proteins based on the probability distribution of the GO process terms in the secreted 

proteins dataset. This adapted version of go-graph effectively provided an automated 

method to determine the functional distribution across the secretomes, categorised 

using the SubtiList classification codes that are well-known to biologists. Automation 

was important due to the large number of secreted proteins that had been isolated. 

The application of go-graph to this task also demonstrates the advantages of using 

such a measure to categorise function based on the information contained within the 

dataset, as opposed to applying a simple cutoff level, or even using GO slims. 
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An examination of the occurrence of the different protein families in the differ­

ent Bacillus species provides some interesting insights into the evolution of secreted 

proteins. Clearly, some protein families are shared across all of the bacilli, around 

7% of the 673 protein families defined. Since this study was confined to the genus 

Bacillus, it would be interesting to determine the extent to which those families are 

shared across other related bacteria and even other types of organisms. The majority 

of the proteins classified as core are still of unknown function, suggesting there is still 

much to be learned about the secretory process and the role of secreted proteins. In 

addition, these families also generally contain predictably well conserved proteins in­

volved in well characterised processes such as those encoding the secretory processes 

themselves and those involved in cell wall biogenesis and sporulation. 

Of particular interest are those families that are unique to species that share phe­

notypic traits such as the ability to breakdown plant cell wall material and virulence. 

Notably, the strains reported to be able to grow in natural environments, such as B. 

subtilis, share members of families encoding enzymes responsible for the breakdown 

and transport of plant polysaccharides that were absent from species such as B. an­

thracis which is generally accepted not to be able to grow outside of an animal host 

[Jensen et aI., 2003, Wipat and Harwood, 1999J. 

Those protein families that are associated with the pathogens have the potential 

to encode virulence determinants that can help with understanding the process of 

pathogenicity and ultimately act as the target for vaccines and antimicrobial agents. 

These perhaps form the most interesting targets for further laboratory investigation. 

Indeed, the results from this study have prompted further laboratory based exper­

imental studies to further characterise these proteins. The definition of pathogenic 

strains is difficult in the absence of computational methods to describe microbial phe­

notypes from genotype. Many microorganisms are opportunist pathogens, not com­

pletely adapted to causing disease like a true pathogen, but able to take advantage 

of non-typical conditions such as immunocompromised individuals, to cause disease. 

This study imposed a rigid and stringent approach to the definition of pathogenicity. 

The virulence of the B. cereus strains, ATCC 14579 and ATCC 10987 has not been 
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proven, other than as opportunist pathogens. Both are normally soil living microor­

ganisms known for causing food poisoning and opportunist eye infections and hence 

were not considered to be true pathogens. 

Among the putative functional assignments for specific families were some des­

ignated as involved in cell surface activity. Perhaps of most significance was the 

identification of proteins that were potential bacterial enhancins in Bacillus, previ­

ously found in insect viruses; this is in accordance with the findings described in Read 

et al. [2003J. These Bacillus enhancins also show similarity to proteins of the known 

pathogens Yersinia pestis and Yersinia pseudotuberculosis. However, surprisingly this 

cluster of proteins was also found to be similar to a protein of the non-pathogenic 

Aspergillus oryzae. These enhancins may therefore be the result of horizontal gene 

transfer from insect viruses. Despite the cytotoxicity of bacterial Enhancins, the 

mechanism of infection differs to viral Enhancins; this may be the result of a distinct 

biochemical function [Gallowayet al., 2005J. To confirm these findings, experiments 

could be devised to test for protease activity in this protein family and attempt to 

identify the mechanism of action. Furthermore, it would also be worth investigating 

the putative Enhancin activity of Aspergillus oryzae, not thought to be pathogenic. 

Investigations may uncover a pathogenic function not previously associated with As­

pergillus oryzae, or perhaps an evolutionary relationship not considered before. It 

may also be interesting to identify substrate preferences of the proteins, not only for 

those from the Bacillus species, but also compared to other Enhancins. 

Finally, many of the secreted proteins predicted did not cluster into families since 

they do not show sequence similarity to any other of the Bacillus secreted proteins. 

Presumably these proteins are strain-specific and form part of the dispensable genome 

discussed above. 

In conclusion, the results of the BaSPP workflow have generated many novel 

hypotheses about the way that secreted proteins in the Bacillus family are used. Of 

course to be truly applicable, these results need to be confirmed in future laboratory 

based studies. In an ideal world the results of the experimental validation could be 

used to refine the analytical process and methodology. This system is therefore ideally 
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suited to an e-science approach, further demonstrating the useful of such an approach 

to bioinformatics in general. 
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Chapter 5 

The construction of probabilistic 
functional integrated networks 
(PFIN s) for members of the genus 
Bacillus 

5.1 Introduction 

This study aimed to identify the secretomes of the Bacillus species. However. as 

stated in section 4.2.3, a large proportion of the secreted proteins identified through 

BaSPP are of unknown functions. Construction of PFIN s of the Bacillus species could 

provide a way to address this problem by comparing and analysing these PFI~s. 

within and across species, to provide further insight into the functions of the pro­

teins within the Bacillus species in the context of their interactions. The focus was 

specifically on a subset of the proteomes of these bacteria, the secretomes. A com­

parative analysis of the Bacillus species, in the context of their interactomes, has 

not previously been undertaken. In fact, there have been relatively few reports of the 

application of PFINs to prokaryotes in general. The resulting framework representing 

all the Bacillus species is known as SubtiLNet. 
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5.2 Methodology 

The approach used to construct PFINs for the Bacillus species follows that docu­

mented in Lee et al. [2004] for the development of a PFIN of S. cerevisiae genes. This 

approach involves integrating a number of different datasets, each measuring different 

aspects of gene or protein associations, and having differing degrees of accuracy. In­

tegration of these various datasets computationally can be achieved by realising that 

each experiment (genetic, biochemical, computational) adds evidence linking pairs of 

genes. Each dataset has different degrees of coverage (in terms of the size of the pr~ 

teome) as well as different associated error rates. Functional protein-protein linkages 

are therefore probabilistic, providing a way of integrating the various datasets into a 

single interactome [Lee et al., 2004]. 

The generation of PFINs first requires the implementation of a unified scoring 

scheme to derive a consistent weighting across all experimental data sources. The 

scoring method relies on an additional dataset that acts as a gold standard, against 

which the experimental datasets are compared and weighted. Once the interactions 

for each experimental data source are weighted according to a common standard, the 

network is built by integrating all the data. An outline of the general procedures used 

to generate the Bacillus PFINs is given below. 

5.2.1 Unified scoring method 

Using a Bayesian approach, each experimental dataset is evaluated to determine the 

effectiveness of the dataset to reconstruct "known" gene pathways according to the 

gold standard. This procedure produces a log likelihood score, which reflects the 

likelihood that the pairs of genes identified by a particular experiment are functionally 

linked based on a gold standard. The log likelihood score reflects both the noise 

inherent in, and the genome coverage of the experiments, producing comparable scores 

across all experiments [Lee et al., 2004]. Equation 5.1 is used to calculate the log 

likelihood score L based on the probability that a pair of genes are either functionally 

linked or not functionally linked in the experimental dataset S based on the gold 
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standard B. P(SIB) is the probability of an observed link in the dataset given their 

is a link in the gold standard. P(SIB) is the probability of an observed link in the 

dataset given their is no link in the gold standard. P(SIB) is the probability of no 

observed link in the dataset given their is a link in the gold standard. P(SIB) is 

the probability of no observed link in the dataset given their is no link in the gold 

standard.) 

L = In(P(~IB)/P(SI~)) 
P(SIB)/P(SIB) 

(5.1) 

In order to determine all the relevant values for calculating the conditional pro~ 

abilities, a matrix was constructed as shown in table 5.1. 

I II sis I 

I ~ II ~~ I ~Z I 
Table 5.1: Matrix required for calculation of conditional probabilities where B and 
B is the number of positive and negative pairs in the benchmark respectively, and 
Sand S is the number of positive and negative pairs in the experimental dataset 
respectively. 

The calculation of the log likelihood score differs depending on whether the data 

is weighted or unweighted. The values B and B are constant in both cases. For 

unweighted data, the log likelihood score is calculated across all gene pairs within 

the dataset, and the same score is given to each pair associated with this dataset. 

However, for weighted datasets, the pairs are ranked lowest to highest weight, then 

bins of gene pairs are designated. The log likelihood score is calculated for each bin; 

using a regression plot (average weight per bin VB. log likelihood score of the pairs in 

that bin) the associated log likelihood score can then be obtained for each individually 

weighted pair. The only values to change in the log likelihood calculation for each bin 

are the true positives (TP) and false positives (FP). The trend in the log likelihood 

scores depends on the difference of these two values i.e. the lower the number of 

true positives, and the higher the number of false positives means the lower the log 

likelihood score [Lee et al., 2004J. 
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5.2.2 Gold standard 

For all of the PFINs developed, the common benchmark used to weight the various 

input datasets in the network was the KEGG pathway! dataset. KEGG is a database 

providing information about the functions of biological systems from genomic and 

molecular information. It consists of four main databases, but the pathway database 

is of most interest as this database provides information about protein interactions 

[Kanehisa et al., 2006]. Each of the 11 Bacillus genomes in this study are represented 

in this database. 

All genes in the same pathway in the KEGG pathway database may be considered 

to be functionally related. Therefore, all pairs of genes in the same pathway for a 

species are linked to produce a set of positive pairs for that species. Those genes 

present in KEGG pathway for the same species, but not sharing a common pathway, 

produce the negative set of pairs for the species. 

5.2.3 B. subtilis PFIN 

A PFIN was developed for B. subtilis (strain 168) which served as a testbed against 

which the methodology described (in section 5.2) could be developed. This section 

describes the specific details concerning the experimental datasets and the integration 

process used in constructing the B. subtilis PFIN. 

5.2.3.1 Datasets 

A number of datasets were used to create the B. subtilis PFIN, each providing an 

alternative type of evidence. 

• KEGG expression data 

The KEGG database contains publicly available gene expression data for many 

different organisms, including B. subtilis [Kanehisa et al., 2006]. Based on 

this data, a matrix (gene vs. experiment) was constructed on which Pearson 

lKEGG Website: http://www.genome.jp/kegg/ 
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correlation could be calculated in order to provide a weight for each predicted 

pair of functionally related genes. 

• PubMed2 cocitation abstracts 

There are a number of approaches used in mining text data (e.g. Hirschman 

et al. [2002]). The approach employed here is similar to that described in 

Stapley and Benoit [2000j. Abstracts were obtained by searching PubMed for 

the term 'bacillus subtilis'. Using these abstracts, two genes were predicted 

to be functionally related if they appeared in the same abstract. Recording 

the number of abstracts in which a pair of genes appeared together, allowed 

a matrix (gene vs. gene) to be constructed. Using this matrix, pairs of genes 

could be weighted based on Pearson correlation. 

• DBTBS operon predictions3 

This dataset is described in Makita et al. [2004j. It consists of predictions as 

to whether two genes are functionally linked (i.e. in the same operon) based 

on their proximity. The prediction methodology is described in Hoon et al. 

[2004j. Pairs of genes within this dataset already have a weight associated with 

them based on Bayesian probability. By considering the weights describing the 

probability that a pair of genes occur in the same operon, predictions could 

be generated to determine the cluster of genes in the same operon. This was 

done by applying different thresholds to the weights defining the probability 

that a pair of genes belong to the same operon. Following manual inspection of 

the different results, it was decided a cutoff weight of 0.1 best represented the 

operon data. For each of these clusters, links between each gene were generated, 

resulting in a binary set of linkages. 

• STRING fusion 

STRING4 is a database containing integrated interaction data from known 

2PubMed Website: http://www.ncbLnlm.nih.gov /sites/entrez?db=pubmed 
3 http://bonsai.ims. u-tokyo.ac.jp/ mdehoon/publications/Subtilis/ operons. txt 
4STRING Website: http://string.embl.de/ 
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and putative protein-protein interactions obtained from a number of different 

sources. Amongst these sources is gene fusion data. The fusion data extracted 

from STRING is already weighted [von Mering et al., 2007], therefore no mod­

ifications were needed in order to integrate into the B. subtilis network. 

This use of gene fusion events to infer protein interactions relies on the assump­

tion that if a protein is uniquely similar to two proteins in another species (i.e. 

their associated genes fused to produce a hybrid gene), then the component 

proteins most likely interact [Enright et al., 1999] . 

• PREDICTOME phylogenetic profiling 

Predictome is a database containing putative protein-protein functional links 

using three computational methods based on chromosomal proximity, phylo­

genetic profiling and domain fusion5 , as well as high-throughput experimental 

methods such as the yeast two-hybrid method. The data specific to phyloge­

netic profiling simply identifies putative protein-protein interactions, without 

an associated weight [Mellor et aI., 2002] . 

• INTERPRO domains 

Protein-protein interactions can be predicted by identifying pairs of domains 

enriched among known interacting proteins. Following the study described in 

Rhodes et al. [2005], this requires the calculation of a domain enrichment ratio 

(DR), which essentially quantifies the co-occurrence of particular domain pairs 

among interacting proteins. In order to predict domain enriched pairs, a set 

of known protein interactions is needed. The gold standard was used for this 

purpose. High DR values are strongly predictive of protein interactions, whereas 

smaller DR values are less strongly associated with protein interactions. The 

enriched domain pairs may represent physically interacting domains or indirect 

interactions. 

To determine whether a pair of proteins interact based on the coocurrence of 

5Predictome Website: http://predictome.bu.edu/static/data.html 
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domains, where a common domain exists between a pair of proteins, a protein 

interaction was assumed based on the corresponding DR. When a pair of p~ 

teins share multiple common domains, the DR for each common domain was 

summed . 

• BLASTp 

A common approach used to identify paralogues is to take the BLAST reciprocal 

best hits (RBH). Applying this approach to all B. subtilis proteins resulted in 

the identification of 59 paralogue pairs. However, none of these paralogues were 

identified in the benchmark dataset KEGG pathway, hence the log likelihood 

score could not be calculated. 

Therefore, paralogues were identified by analysing all reciprocal BLAST hits, 

as opposed to only the best hits. By using this approach, an paralogue pair 

was assumed for those B. subtilis proteins identified as showing similarity to 

another B. subtilis protein above an e-value cutoff score of le-5• In the case 

where protein A identifies protein B and protein B identifies protein A, the 

lowest e-value was used as the weight. 

As the protein pairs identified by BLAST analysis have an associated weight 

(Le. e-value), a regression plot in which the average BLASTp e-value for bins of 

equal size were plotted against the log likelihood score calculated for each bin. 

However, the scatterplot showed no trend to which a regression curve could be 

fitted. For this reason, the protein pairs identified via BLASTp were treated as 

an unweighted set. This should have limited or no effect on the final outcome, 

as a threshold cutoff score had already been applied to the prediction of protein 

pairs using BLASTp. 

As a possible modification to this approach, clustering was applied to the re­

sulting protein pairs. The clustering algorithm MeL was therefore applied, 

using a variety of inflation values (the parameter effecting the granularity of 

the clustering process), mimicking the process carried out in section 3.2.3. The 
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corresponding datasets resulted in worse log likelihood scores than the original 

dataset supplied as input. (See table D.l in appendix D.) 

The BLAST data used to infer protein pairs was simply extracted from Mi­

crobase, in which BLAST results are precomputed . 

• GO Annotations (GOA) 

A simple way of predicting protein interactions according to GO annotations is 

to use GO process terms to calculate the distance between the lowest annotated 

terms for two potentially interacting proteins. As GO is a DAG, the distance 

between two terms is considered to be the shortest path between two nodes 

in the graph. In addition, the lowest term may be rather broad i.e. closer to 

the root, and hence may not be very informative about the process in which 

the protein is involved. Therefore a cutoff level needs to be applied in order to 

eliminate unspecific terms from the predictive process. 

To determine the level at which to threshold, protein pairs were generated for 

all proteins within B. subtilis whose lowest GO term was below a certain cutoff 

level, with the weight equal to the shortest distance between each protein pair. 

The cutoff levels chosen corresponded to level 3 to 11, where the root is level 

1. Using the KEGG positive and negative pathway interaction datasets as gold 

standards, the number of TPs and FPs were calculated by comparing with the 

predicted protein interactions for each cutoff level. The number of the TPs 

versus the number of FPs was plotted to produce a ROC curve (figure C.I), 

from which deductions could be made regarding the optimal cutoff threshold. 

It was determined from visual inspection of the graph that a minimum level 

of seven showed the best TP:FP ratio, therefore those protein pairs with a 

minimum GO annotation greater than or equal to level seven was used as input 

to the network. The identification of level seven as the optimal threshold level 

in GO agrees with the conclusions drawn in Date and Stoeckert [2006], in which 

they too thresholded GO level seven. 
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• COGs 

COGa6 is a database containing Clusters of Orthologous Groups of proteins 

[Tatusovet al., 2003J. Proteins within the same cluster are regarded as being 

functionally related. Therefore this data source was used as input to the network 

by linking each protein in a cluster to every other gene in the same cluster, 

resulting in a set of protein-protein interactions for each cluster. 

The log likelihood scores for each unweighted dataset (PREDICTOME phyloge­

netic profiling, BLASTp, COGs, DBTBS operon) and weighted dataset (STruNG 

fusion, cocited, KEGG expression, INTERPRO domains, GOA) were calculated as 

described in section 5.2.1. (Data and graphs for this process are shown in appendix 

D.) 

5.2.3.2 Integration of datasets 

Following the uniform weighting of the datasets, integration of this information re­

sulted in the formation of a B. subtilis PFIN. Integration of all of the experimental 

information concerning the linkage of a pair of genes is achieved using a niiive Bayesian 

approach i.e. the log likelihood score for a particular pair of genes are summed over 

all experiments. The various datasets were considered to be independent of each 

other, and therefore the degree of dependence between the various experiments was 

not factored into the equation. 

5.2.4 Other Bacillus species PFINs 

PFINs were developed for remaining 10 Bacillus species, using the same approach. 

As the remaining Bacillus genomes are less well studied, there were fewer datasets to 

integrate into the network. Table 5.2 summarises the datasets used. 

The most significant difference from the B. subtilis data sources was the use of 

pre-computed cocitation data extracted from the STRING database. In addition, due 

to the specificity of DBTBS for B. subtilis, operon data for the other Bacillus species, 

6COGs Website: http://www.ncbi.nlm.nih.gov/COG/ 



129 

excluding B. clausii, were incorporated from Operon DataBase7 . This resource con­

tains operon data that has been extracted from the literature [Okuda et al., 2006]. 

Operon data was not available for B. clausii so gene neighbourhood information 

was used instead. As in STRING and Overbeek et al. [1999], gene neighbours were 

determined based on whether the gap between genes on the same strand were no 

more than 300 bases. For the clusters of genes identified, each gene was paired with 

every other gene within the cluster. 

B. licheniformis (ATCC 14580, sub....strain Novozymes) was analysed, not B. 

licheniformis (ATCC 14580, sub....strain Goettingen) due to the lack of experimen­

tal data specific to the latter substrain. 

Once the datasets had been gathered, each dataset was uniformly scored, as doc­

umented for B. subtilis, using the respective KEGG pathway gold standard positive 

and negative sets. The species-specific PFINs were constructed by integrating the 

appropriate data sources using the previously described naive Bayesian approach. 

5.2.5 Identification of clusters within Bacillus PFINs 

As a first approach to analyse the PFINs, cluster analysis was performed. Clusters 

are highly interconnected regions within the PFINs. The clustering of proteins based 

on their connectivity within the PFINs can represent protein complexes and parts of 

functional and metabolic pathways. 

Due to size of the Bacillus PFINs, an automatic method of clustering was needed. 

For this purpose, a relatively fast clustering algorithm, called MCODE [Bader and 

Hogue, 2003J was used. MCODE is available as a Cytoscape plugin. The MCODE 

parameter that most significantly influences cluster granularity is the node score cut­

off. During the process of cluster expansion, new cluster members are only added to 

a cluster if their node score differs to the score of the cluster's seed node (Le. the 

highest scoring node in the cluster) by less than the cutoff value. The node score 

cutoff is a value between 0 and 1, representing the percentage difference (e.g. a cutoff 

70peron DataBase (ODB) Website: http://odb.kuicr.kyoto-u.ac.jp/ 
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B. cereus (ATCC 10987) ..; X ..; ..; X X ..; ..; ..; X ..; 
B. cereus (ATCC 14579) ..; X ..; ..; X X ..; ..; ..; X ..; 
B. clausii (KSM-KI6) ..; X ..; ..; X X ..; ..; X ..; ..; 
B. halodurans (C-125) ..; ..; ..; ..; X ..; ..; ..; ..; X ..; 
B. licheniformis (ATCC 14580) ..; X ..; ..; X X X X ..; X ..; 
B. subtilis (strain 168) ..; ..; ..; ..; ..; ..; ..; ..; ..; X ..; 
B. thuringiensis konkukian (strain 97-27) ..; X ..; ..; X X ..; ..; ..; X ..; 

Table 5.2: Datasets used to construct the individual PFINs, where KEGG pathway 
data was the gold standard for each respective network. 

of 0.2 allows new members to be added if their node scores are less than the seed node 

by a maximum of 20%). The smaller the cutoff, the more finegrained the clusters; by 

default, this is set to 0.2 [MCODE, http://baderlab.org/Software/MCODEj. Scores 

given by MCODE to the clusters are determined by multiplying the density of the 

cluster by the number of members/nodes [Bader and Hogue, 2003j. 
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5.3 Results 

5.3.1 Threshold determination for network optimisation 

The Bacillus PFINs were analysed further in order to determine a threshold weight 

at which to remove weakly associated interactions by comparing the PFINs against 

the gold standard dataset, KEGG pathway. The results are illustrated in figure 

5.1, showing the distribution of pairs based on their composite weights. Based on 

this graph, a composite cutoff weight of five was chosen for creating the refined B. 

subtilis PFIN. This decision was based on the number of TPs recovered and the size 

of the resulting PFIN (i.e. the total number of interactions). The plots of the other 

organisms show a similar trend to B. subtilis, so a common cutoff weight of five was 

also applied to these PFINs. 

5.3.2 Network properties of Bacillus PFINs 

A number of quantitative measures are frequently applied to networks: 

• Degree 

The degree refers to the connectivity of a node k i.e. how many edges the node 

has to other nodes. For an undirected network, with N nodes and E edges the 

average degree < k > is calculated as in equation 5.2. 

< k >= 2EjN (5.2) 

• Degree distribution 

The degree distribution P{k) gives the probability that a node has exactly 

kedges. P(k) is calculated by counting the number of nodes N(k) with k 

edges and dividing by the total number of nodes N (equation 5.3). The degree 

distribution may define the type of the network. 

P(k) = N(k)jN (5.3) 
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Figure 5.1: By comparison to KEGG pathway, the distribution of TP , acros th 
Bacillus PFINs, was measured as t he composite weight increase. 

• Shortest path and average path length 

Distance in networks is measured using path length i. e. how many edge are 

passed in order to travel between two nodes. As there may be alternative paths 

between two nodes, t he shortest path is used to measure distance. The average 

shortest path length between every possible pair of nodes is therefore used as a 

network measure. 

• Clustering coeffi cient 

T he modularity of t he network can be summarised by using a metric called the 

clustering coefficient . This is measured for node i using the clustering coeffi cient 

C; (equation 5.4) based on the number of edges for this node Ie, and the number 
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of edges connecting the ~ neighbours of the node i to each other, 7li. Cj therefore 

measures the number of triangles that go through node i. However, ~(A; -1)/2 

is the total number of triangles that could pass through node i, if all of its 

neighbours are connected to each other. 

(5.4) 

The average clustering coefficient measures the likelihood of nodes to form clus­

ters. The average clustering coefficient of all nodes with k links is measured 

using C(k). This function is important in defining the structure of the network 

[Assenov, 2006, Barabasi and Oltvai, 2004, Li et al., 2006]. 

The network statistics for the 11 Bacillus PFINs were generated using a Cytoscape 

plugin, called NetworkAnalyzer [Assenov, 2006]. Observation of the basic network 

properties shown in table 5.3 reveals the B. subtilis PFIN is the least connected of all 

the networks, having the lowest number of edges and largest average shortest path 

length. B. licheniformis is the most highly connected, having the lowest average 

shortest path length, the least number of nodes, but containing an average number 

of edges. This probably reflects the broader number of evidence types that were 

incorporated in the B. subtilis PFIN, and consequently, the greater level of detail, 

than was used in developing the B. licheniformis PFIN. 

The network properties captured by P(k) and C(k) are independent of the size of 

the network, therefore these functions define the common properties of the network 

and consequently they can be used to categorise the network. By analysing these 

measures, networks can be compared and characterised against each other [Barab8si 

and Oltvai, 2004, Li et al., 2006]. 

The network distribution plots, shown in table E.l indicate that the PFINs appear 

to be small-world networks. The networks small-world properties are characterised ac­

cording to their clustering coefficients and average shortest path lengths. Small-world 

networks are characterised by an average shortest path length that is comparable to 

their equivalent randomly connected network. The distance between any two nodes is 
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0 

Z Z -< -< 0 

B. anthmcis (Sterne) 2160 40486 37.487 11 4176132 (89%) 
B. anthmcis (Ames ancestor) 2030 37555 37.0 9 3765714 (91%) 
B. anthmcis (Ames) 2019 37082 36.733 lO 3746304 (91%) 
B. cereus (E33L) 2596 57241 44.099 11 5479602 (81%) 
B. cereus (ATCC lO987) 2090 47088 45.060 lO 3954396 (90%) 
B. cereus (ATCC 14579) 2331 43625 37.430 10 4505978 (82%) 
B. clausii (KSM-KI6) 1955 45416 46.461 lO 3260070 (85%) 
B. halodumns (C-125) 2068 41723 40.351 9 3318964 (77%) 
B. licheniformis (ATCC 14580) 1795 36001 40.113 8 2767440 (85%) 
B. subtilis (strain 168) 2547 34791 27.319 15 4777066 (73%) 
B. thuringiensis konkukian (strain 97-27) 2446 38588 31.552 11 4604736 (76%) 

Table 5.3: Basic network statistics. 

small despite the majority of nodes not being neighbours to one another. In addition, 

small-world networks have a larger proportion of neighbourhood connectivity, high­

lighted by having higher clustering coefficients than their equivalent random networks 

[Assenov, 2006, Barabasi and Oltvai, 2004, Li et aI., 2006, Watts and Strogatz, 1998]. 

For a random network, the clustering coefficient is equivalent to the edge density. 

Therefore, in order to determine whether the Bacillus networks are small-world, the 

clustering coefficients (CC) and average shortest path length (ASP) of the Bacillus 

networks and their respective random networks were compared by determining if the 

conditions stated in equations 5.5 and 5.6 were met. Both these conditions were true 

for each of the Bacillus PFINs (table 5.4). The maximum ratio for CCs between the 

real and the random benchmark networks was 98%, whereas the maximum ratio for 

ASPs between the real and the random benchmark networks was 28%. 
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CCreal 

Crr > 1.2 
'-'random 

ASPreal -:----- < 2 
ASPrandom 

(5.5) 

(5.6) 

I Genomes I CC eal I cc nd I ASP. I ASP. r ra real rand 

B. anthracis (Sterne) 0.556 0.017 3.199 2.506 
B. anthracis (Ames ancestor) 0.554 0.017 3.195 2.501 
B. anthracis (Ames) 0.545 0.017 3.201 2.506 
B. cereus (E33L) 0.525 0.017 3.280 2.461 
B. cereus (ATCC 10987) 0.550 0.021 3.255 2.359 
B. cereus (ATCC 14579) 0.516 0.015 3.383 2.540 
B. clausii (KSM-K16) 0.399 0.024 3.051 2.318 
B. halodurans (C-125) 0.584 0.019 3.151 2.447 
B. licheniformis (ATCC 14580) 0.543 0.022 3.012 2.395 
B. subtilis (strain 168) 0.485 0.010 3.815 2.745 
B. thuringiensis konkukian (strain 97-27) 0.542 0.012 3.439 2.655 

Table 5.4: Small-world network properties. 

The networks were then analysed for scale-free properties. Scale-free networks 

consist of nodes with one or two links, to nodes with many links (hubs). The defining 

feature of these networks is a power law relation. The linear relation in the node 

degree distribution plots based on logarithmic scores highlights the potential scale-free 

nature of these networks. However, a statistical measure of the models goodness of fit 

is provided by calculating the coefficient of determination R2. It is generally accepted 

that for scale-free networks R2 is greater than 0.8. The Bacillus networks therefore 

verge on being scale-free, with R2 values ranging from 0.63 for B. lichenifonnis to 0.78 

for B. subtilis (indicated in table E.1), compared to the respective random networks 

which range from 0.007 to 0.102. 

An alternative means of evaluating the PFINs is by graphically visualising and 

querying the networks in order to assess their 'correctness'. By manually delving into 

the protein interactions of the PFINs, implementation errors and weaknesses can be 

uncovered. 
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Visualisation of t he PFINs developed through an edge-weighted pring embed­

ded layout , using Cytoscape, highlights the existence of a number of cluster (table 

5.5). Using the Cytoscape plugin , BiNGO, functional annotations could be as oci­

ated with the major clusters based on GO process terms. Manual inspection reveal 

all 10 Bacillus PFINs possess clusters related to t he regulation of transcript ion , ig­

nal transduction and transport. Other identifiable clusters relate to metabolism and 

biosynthesis. A unique cluster was found in the B. halodurans PFIl\' showing t rans­

position behaviour. Also, in the B. licheniformis PFIN, a cluster responsible for cell 

redox homeostasis was identified. 

Table 5.5: PFINs for the 11 Bacillus species, as viewed using the edge-weighted pring 
embedded layout in Cytoscape. The main clusters detected vi ually are annotated 
using over-represented GO process terms. 
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5.3.3 Determination of optimal clustering settings of the B. 

subtilis PFIN 

In order to assess the value most appropriate for clustering the interactions of the B. 

subtilis PFIN, a range of node cutoff scores (0.0, 0.1 , 0.2 , 0.3, 0.4 , 0.5) were used to 

cluster the B. subtilis PFI . The average composition of the clusters produced were 

investigated with regard to the mean and modal number of members per cluster and 

the MeODE score per cluster , as well as the denseness of the clusters. asse sed by 

summing the Me ODE scores. The plot used to decide which score to use as a cutoff 

is shown in figure 5.2. In this graph the node cutoff score is plotted against the urn 

of all the cluster scores for the respective node cutoff score. It was concluded the 

optimal node cutoff score for clustering the B. subtilis PFIN was 0. 1, due to the p ak 

in the graph at this point. 
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Figure 5.2: Granularity of clusters based on different node cutoff score . 

The highest scoring MeODE clusters were then reclustered using a node cutoff 

value of 0.0. However, the newly formed clusters were not significantly different from 

the original clusters. Reclustering resulted in the formation of only one new cluster 

that is more t ightly clustered. For instance, the top cluster of B. subtilis. which 

after ini tial clustering using parameter 0.1 contains 99 nodes. was reclustered using a 
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parameter 0.0 resulted in 3 clusters, containing 51,5 and 6 nodes each. Reclustering 

the second cluster returns only one cluster, reduced in size from 59 to 38 nodes. The 

third cluster is also reduced, from 41 to 32 nodes. It was therefore decided to continue 

using the original set of clusters, without loss of data. 

To visualise the clusters an additional Cytoscape plugin called GenePro [Vlasblom 

et al., 2006] was used. Using this plugin, clusters are shown as nodes and edges 

represent inter-cluster protein interactions. The variation in cluster size is reflected 

in the size of the nodes. GenePro also allows the incorporation of node attribute 

information by displaying a node (cluster) as a pie chart. 

Following the determination of the most appropriate node cutoff score for the B. 

subtilis PFIN, the other Bacillus PFINs were clustered using the same value, equal 

to 0.1. The cluster information was stored in the database allowing simple querying 

over all the clusters across all species. 

5.3.4 Functional analysis of the clustered B. subtilis PFIN 

A number of distinguishable clusters have previously been highlighted in the Bacillus 

PFINs (figure 5.5). However, the application of an automatic clustering algorithm, 

such as MCODE, enables the identification of less obvious clusters. 

An overview of the MCODE-identified clusters in the B. subtilis PFIN, and their 

functional breakdown based instead on SubtiList classification codes (due to the more 

appropriate number of categories), is shown in figure 5.4. A more detailed view of the 

major clusters identified in the B. subtilis PFIN, using MCODE, is shown in table 

F.1. 

5.3.5 Distribution of secreted proteins within the topology 

of the B. subtilis PFIN 

As shown in the case of B. subtilis, the predicted secreted proteins identified by 

BaSPP are fairly distributed throughout the PFIN (figure 5.3). This distribution 

can be shown in terms of the functional modules/clusters identified in the B. sub-
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titis PFI , refiecting t he global spread of the putative secreted proteins acro t he 

many functionally interacting clusters (figure 5.5). The functionally di t ributed na­

t ure of the secretome is fur t her illust rated in figure 5.4 in which t he cluster member 

functions are summarised in terms of SubtiList classification codes. A more detailed 

view of t hese clusters is provided in table F .l in which both functional and secreted 

information is combined to give an overall view of each cluster. 
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Figure 5.3: B. subtilis PFIN. Green dots represent the putative secreted proteins and 
the red dots are t he non-secreted proteins. 



Cell envelope and celular processes 
• {J 0 oJ e " Cell w all 

• _ TransportJbinding proteins and lipoproteins 
_ Sensors (signal transduction) 

• f:-'I Membrane bioenergetics 
Mobility and chemotaxis 
Protein secret ion 
Sporulat ion , germination and cell division 

_ T ransformation/comp etence 

~ . Intermediary metabolism • - Metabolism of carbohydrates and related molecules • - Metabolism of amino acids and related molecules 
- Metabolism of nucleotides and nucleic acids 

• ~~i&i_' ,/ I ~_- U ,.." - Metabolism of lipids 
,. ~ Metabolism of coenzymes and prosthetic groups - ..... .nPl8 .... . • 
_ Metabolism of phosphate 

~-'- _ Metabolism of sulfur • • • Information pathways 
DNA replicat ion , restrict ion/modificat ion and repair 

- DNA recombination , packaging and segregation 
_ RNA synthesis and modification 
_ Protein synthesis and modification 

Other functions 
Adaptation to atypical conditions 

_ Detoxificat ion 
Ant ibiot ic production 

_ Phage -related funct ions 
Transposon and IS 

Unknown 

• ., . ~ . e •. Q • o L! ., • • • • • . ~ ~ _ Unassigned 

• ' . • 
Figure 5.4: Funct ional distribution of the highly connected clusters in the B. subtilis (strai n 168) PFIN , according to SubtiLi::lt , 
where a pie chart represents the functional breakdown of a cluster and edges represent interactions between 1 or more proteins 
in 2 cl usters. The size of the pie charts reRects the size of the clusters. 

...... 
~ 
CJ1 



~ Transport 

• 

Peptidoglycan biosynthesis 

Establishment of competence for 
transformation • 

Ammo acid transport 

Proteolysis Carboxylic acid 

\ catabolism 

• • e • • • • • • •• 0" . 
• • • • • • • High affinity iron ion 

transport 

.--- Bacteriocin biosynthesis 

• • • 

mgopeptide transport 

/ 
Sulphur amino acid 
bi osynthesi s 

• 

-e 

Hydrogen 
transport 

Folic acid and 
derivative 
biosynthesis 

• 
Negative regulati on of 
enzyme activity 

Lipid modification 

•• i • ••• 
PhosPhoeno\pyruvate-dependent sugar 
phosphotransferase system 

Figure 5.5: Dist ri bution of putat ive secreted proteins , as pred icted by BaSPP, through the highly connected cl uste rs of the 
n .. mblilis (st ra in 168) PFI N. Each circle/ pie chart represents a cluster, where red wedges represent secreted proteins and the 
greell represent non-secreted proteins . The size of t he pie charts refl ects t he size of the clusters. A few of the cl usters contai ning 
a proportion of secreted proteins a re annotated with over-represented GO process terms for that cluster. 

~ 

~ 
O'l 



147 

5.4 Discussion 

PFINs were constructed for each of the Bacillus species in this study. A data ware­

house has been developed containing all the information gathered on each of the 

Bacillus PFINs. The core database schema is not just specific to Bacillus species, 

but can be applied to capture the PFIN information of any species. 

The capability of the B. subtilis PFIN to recover protein interactions identified 

in the KEGG pathway database is shown in figure 5.1. However, within this figure, 

a common trend can be seen for the other Bacillus species. After a composite pair 

weight is exceeded, the number of TPs decrease, unlike that observed for B. subtilis. 

This suggests that KEGG, or the datasets themselves, are incomplete, and a lot still 

remains unknown about these other Bacillus species. 

The lack of data sharing and accessibility were factors that limited the integration 

of a number of resources into the networks. There were cases where appropriate data 

sources were found that could be incorporated into the PFIN, but the inability to 

download these resources prevented this from happening e.g. SPiD [Hoebeke et aI., 

2001J. 

For those data sources that were used, in some cases these could have been used 

more effectively. The method of incorporating BLAST results is one such example, 

which could have been improved by using Inparanoid [Remm et aI., 2oo1J to generate 

orthologous protein links. Another example is the method of inferring protein pairs 

based on GO. A more thorough approach to including GO predicted protein-protein 

interactions is to estimate the semantic similarity between annotated proteins [Lord 

et aI., 2003J. This approach was employed in interactome development in Brown and 

Jurisica [2005J and Wu et al. [2006J. 

The integration of a variety of data sources to build the PFINs was important in 

ensuring a large degree of coverage in terms of the size of the proteome, as the coverage 

of each experimentaI dataset differs. Each experiment has different associated error 

rates too [Lee et aI., 2004J. Therefore using data integration methods strengthens 

links that are common. 
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Relying on a gold standard has many drawbacks in itself. It prevents the inclusion 

of the gold standard dataset into the networks. Perhaps more significantly, the final 

weightings associated with each link between a pair of genes is dependent on the 

accuracy and coverage of the gold standard. The development of methods to integrate 

data sources without having to rely on a gold standard are therefore needed; such a 

method has been documented in Deng et al. [2004]. 

The design and implementation of SubtilNet allows for easy expansion, whether 

that be to include additional evidence datasets or to extend to other species. The 

core framework is generic and therefore does not require any modification in order to 

use. 

The majority of the tasks performed in computing a PFIN are computationally 

intensive. Therefore, a greater utilisation of e-science technology could be most ben­

eficial. The current system setup is e-science-based in the sense that system makes 

use of shared data that is integrated in order to calculate the PFINs. However, 

transferring the current 'single host system setup' to a distributed workflow-based 

implementation would not only improve usability, but also provides a means of using 

remote resources to perform intensive calculations. 

Developing these PFINs provides a mechanism to explore unknown functions and 

hypotheses that would otherwise not be so readily accessible. Specifically, data con­

cerning unknown and previously unidentified links in the PFINs can be determined, 

from which functional predictions and relations can be judged. Functions can be 

inferred by viewing and querying the PFINs individually, but also via cross-species 

comparison. 
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Chapter 6 

The application of PFINs to the 
systems level analysis of secreted 
protein families 

6.1 Introduction 

This chapter documents cross-species interactome comparison between Bacillus species. 

Interactions between members of the protein families representing similar secreted 

Bacillus proteins, identified by BaSPP, were investigated. 

The analysis of these PFINs has been made easier with the availability of com­

putational methods capable of reducing and visualising interactomes, either within 

a single interactome or between interactomes, enabling a more efficient means of ex­

tracting information e.g. by using clusters. Interactome comparison is an area of 

active research, with still much scope for improvement. This is particularly true in 

regards to prokaryotes. Analysing the proteins in terms of their interactions within 

and across species can lead to further insights into the properties of the secretomes 

of Bacillus species. 

6.2 Methodology 

A number of secreted protein families, previously identified as interesting by the 

BaSPP system, were further explored in the context of their PFINs. Each family of 
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interest was taken separately. For each family, clusters identified by MCODE that 

were found to contain a protein member were extracted. In cases where proteins did 

not belong to a cluster, first-neighbours were used instead. 

Links between the separate species-specific clusters (or first-neighbours) were then 

inferred using orthology. To identify orthologous interactions the program Inparanoid 

was used [R.emm et al., 2001 J. This program has the benefit of providing confidence 

scores based on BLAST, which can be used to weight the vertical cross-species links. 

Paralogues were ignored in this process, with only the main orthologue pairs used 

to infer cross-species links. As orthologue links are weighted differently from links 

within the PFINs, the scores associated with the horizontal and vertical links were 

normalised by dividing the edge weights by the maximum edge weights, for the PFIN 

and orthologous links respectively. The links were then integrated to provide a cross­

species subnetwork representation of the regions of interest. This process resulted 

in a multi-species sub-PFIN consisting of horizontal interactions (within the same 

species) and vertical interactions (across species). 

The cross-species subnetwork of highly connected clusters were then displayed in 

Cytoscape, in order to visualise the interactions and their meaning. The network was 

colour-coordinated to highlight the proteins belonging to different organisms. All sub­

networks were then analysed using a Cytoscape plugin, called BiNGO [Maere et al., 

2005J, to identify those GO categories that were over-represented in the subnetwork. 

6.3 Results 

6.3.1 Analysis of cross-species clusters incorporating protein 

families 

Nine protein families identified in chapter 4 were investigated in terms of their interac­

tions, in order to identify additional information to that gathered by sequence analysis 

techniques. This corresponded to five out of nine of the non-pathogen-specific families, 

three out of ten of the pathogen-specific families, and the core PrsA family. In some 
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instances, members of the protein families are not represented within their respective 

PFINs, either because the composite weights associated with their interactions are 

all less than the threshold cutoff, which is generally the case, or because there are no 

associated interactions involving the protein, according to the evidence datasets used. 

This explains the absence of certain members of the remaining protein families from 

being represented in their protein family cross-species subnetworks, but also explains 

why the remaining four non-pathogen-specific families and seven pathogen-specific 

families were not analysed. The core PrsA family was also analysed as much still 

remains unknown about the function of PrsA and its interactions, despite being well 

understood in terms of it structure. The known pathogen and non-pathogen specific 

families were also the focus of the analysis. The cross-species subnetworks, or in some 

cases only a species-specific subnetwork, of the pathogen- and non-pathogen-specific 

families, as well as the core protein family PrsA, are shown in table 6.1. 



Table 6.1: The cross-species subnetworks representing the protein families (identified by BaSPP) specific to the known pathogens 
and non-pathogens , as well as t he core protein family encoded by prsA. Apart from B . s1Lbtilis, whose members are represented 
by gene names, t he members belonging to t he other species are represented as locus tags, with t he gene name in brackets 
if known. B. licheniformis (strain ATCC 14580) refers to the substrain Novozymes for which a PFIN was developed , not 
Goettingen. Three letter abbreviations of the Bacillus species are used to define the colour coding. Square boxes indicate 
family members. 

I Family I Protein members Cross-species subnetwork 

i CORE FAMILY 

prsA Family members: 
BC_I043 - Protein export protein prsA precursor 
BC_1l61 - Peptidyl-prolyl cis-trans isomerase 
BC..2272 - Protein export protein prsA precursor 
BC..2862 - Protein export protein prsA precursor 
BCE33L0952 - protein export protein 
BCE33LI061 - peptidyl-prolyl cis-trans isomerase 
BCE33L2101 - protein export protein 
BL00855 - putative PpiC-type peptidyl-prolyl cis-trans isomerase 
yacD - similar to protein secret ion PrsA homologue 
prsA - molecular chaperone 
BT9727 _0962 - protein export protein prsA 
BT9727 _1066 - peptidyl-prolyl cis-trans isomerase 
BT9727..2115 - protein export protein prsA 
BT9727 _2619 - peptidylprolyl isomerase 
(Note: GBAA1041 , GBAA1l69, GBAA2336, BA_1041 , BA_1l69, 
BA..2336, BAS0974, BAS1084 , BAS2178, BCKll45, BCK1280, BCE..2359, 
ABC1527 , BHll77 and BL02827 are absent from refined PFINs.) 
Subnetwork members: 
BL00853(yacB), BL00854(hsLO) , BL00857( cysK ), map, yacC, clpX, clpP, 
htrA , BCE33L0220( murF) , BCE33L4438( mm"C) , BCE33L3673( murE) , 
BCE33L3500(pepT) , BCE33L3671 (murD) , BCE33L1980( rnurF) 

Blue = bsu, green = bce, orange = bcz, 
red = bli , yellow = btk 
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BT9727 _26111(prsA) 
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[Family IProtein-memhers - - -- -- -- - - - - -- I Cross-species subnetwork 

i NON-PATHOGENIC FANIILIES 
araN I Family members: I Blue = bsu 

fliL 

araN - sugar-binding protein 
(Note: ABC3471 , ABC3774, ABC0385 , ABC3301 , ABC3215 , BH0905, 
BHll17 and BL00348 are absent from the refined PFINs. ) 
Subnetwork members: 
araP, araQ, araA , araB 

Family members: I Blue = bsu 
fl iL 
(Note: ABC2259, BH2447 and BL01263 are absent from the refined PFINs.) 
Subnetwork members: 
fl iP , flhA , flhB , fl iZ, ylxH, flhF, fl iR 

fill 

1HZ 

... " III' 

...... 
en 
w 



[ Family [ Protein members I Cross-species subnetwork 

pelA I Family members: (See figure G.4 for larger version.) 
pelB BH0698 - pectate lyase 

BH3819 - high-alkaline pectate lyase 
BL00947 - pectate lyase , Polysaccharide Lyase Family 1 
BL03760 - pectate lyase family 1,Peil 
BL0036I - pectate lyase , Polysaccharide Lyase Family 1 
pel - pectate lyase 
pelB - pectate lyase 
(Note: ABC0063 is absent from the refined PFIN.) 
Subnetwork members: 
BH1739, BH3072 , BH2996 , BH0292 , BH1952, BHI873 (amA) , 
BH1872 (amB) , BH3460, BH2676(gntK ), BH2708, BH3649, BH206I , 
BH098I , BH1937, BH3348, BH1880, BH3333, BH0275 , BH3815, 
BH0391 , BH0774, BH0545 , BH3077, BH1878, BH2384, BH2504, BH2696, 
BH3635 , BH4044, BH3179(pepQ), BH0694, BH1551 , BH1871(amD) , 
BH2756 (xyIB ), BH4037, BH3887, BH1840(jabF) , BH1843, BH0494(pelX), 
BH385 1(mtLD ), BH1l85(hpr) , BH3212 , BH3683(xyn B) , BH1l32 , 
BH3907(bioF) , BH2800, BH2492(jabD ), BH2164, BH0945, BH0943 (gsaB) , 
BH3160( eitZ) , BH3000(arsR ), BH2734 , BH0080, BH0326, BH3724(kdgK ), 
BH0645 , BH2303 , BH3924 (mmgD ), BH2176, BH1867, BH0065 (gcaD), 
BH1857, BH3043(hemL), BH2086, BL04023 (dhbB ). BL02612 , 
BL02064(yabJA ), BL02316 (aepA ), BL02079(aro D), BL04022(dhbE ), 
BL02370(yaaJ) , BL01727(lehAB ), BL0220l (dal ), BL02771 (trpB ), 
BL03970( tal ), BL02774(t1pD ), BL03966(pyrG) , BL02566(ald n , 
BLOl728( lehA e) , BL02776(aro H ), BL01707(aroK ), BL04020(dhbA ), 
BL03932(dUe) , BL03110, BL01726(lehAA ), BL02779(aro F ), BL00724 , 
BL00522(yabJ ), BL00859(pabA ), BL01 544(yqhS) , BL02773(t1pe) , 
BL02772(t17JF), BL01482(purL ), BL01l26(apt) , BL01892 , BL00244 (io le) , 
BL02768(I,yrA) , BL01477(purK ), BL02766(aroE) , BL02068(yabJB), 
BL03517, BL01495(ywoF) , BL03673( edd) , BL0 1605(jT'UK ), BL00869, 
BL01851 , BL04024(dhbF). BL02148(yunD), BL01308, BL01613(adee) , 
BL00195(gntK) , BL01663 , BL03597(yvpA ), BL02704 (glmS ), BL01750, 
yomE, yfiA , hxlA, tLxae, yeLG, yvpA , ywoF, yobO, ycbe, y07-A , ycbH 

Blue = ban, red = bar. green = bat . 
orange = bcz, yellow = btk. 
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Family members: 
ABC2747 - signal peptidase SppA 
(Note: BH3198 , BL00425 and sppA are absent from the refined PFINs. ) 
Subnetwork members: 
ABC2212( tepA ) 

yqjA I Family members: I Blue = bsu 
yqjA - unknown 

ABC1672 , BH1357 and BL0l411 are absent from the refined PFINs. 

phoH, yqfB 

....... 
Q1 
Q1 



I Family I Protein members I Cross-species subnetwork --~ 

i PATHOGENIC FAMILIES i 

A Family members: 
GBAA2803 - S-layer protein, putative 
BA2803 - S-layer protein , putative 
BAS2613 - S- layer protein , putative 
BCE33L2530 - S-layer protein 
(Note: BT9727~561 is absent from refined PFIN.) 
Subnetwork members: 
BA0607, BAI420 (leuA) , BA0806, BA1330, BAlOI5 , BA3704, BA3631 , 
BA4157 (pyc) , BAI423(leuD ), BAIOI6, BAI 556(mgsA) , BA3208. BA5588, 
BA0589 , BA4109(fosB-2 ) , BA2042(fosB- J) , BA3587, BA4888(ackA) , 
BA3701 , BA3198, BA3399, BA3330, GBAAI330, GBAA4109(fosB-2 ), 
GBAA4888(ackA) , GBAA4157(pyc) , GBAA1420(leuA) , GBAAI016, 
GBAA5588 , GBAA3631 , GBAA3399, GBAA3587, GBAA0589, 
GBAA1423( leuD), GBAA0607, GBAA3701 , GBAAI 556(mgsA) , 
GBAA2042(fosB-J) , GBAA3208, GBAA3704 , GBAA3198, GBAA3330, 
GBAAI01 5, BAS1314 , BAS0574 , BAS3326, BAS3859, BAS3367, BAS3818, 
BAS5192, BAS3431 , BAS1230 , BAS0557, BAS3152 , BASI311 , BAS4535 , 
BAS2973, BASl443 , BAS2983 , BAS0951 , BAS0950, BAS1895 , BAS3434 , 
BAS3087, BCE33L4381(ackA ), BCE33L2530, BCE33L1285(leuA) , 
BCE33L5043( hbd ), BCE33L5085 (pta ), BCE33L2980, BCE33L2152 , 
BCE33 L1 416(mgsA) , BCE33L3707(pyc) 

(See figure G.2 for larger version.) 

Blue = ban, red = bar , green = bat, 
orange = bcz, yellow = btk. 
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[Family [ Protein members I Cross-species subnetwork 

I E I Family members: I (See figure G.1 for larger version.) 
BT9727 _1739 - conserved hypothetical protein 
(Note: GBAA1900, BA1900, BAS1762 and BCE33L1711 are absent from I Blue = btk 
refined PFINs.) 
Subnetwork members: 
BT9727 _0704, BT9727 _0733( serA) , BT9727 _0 152(glmM) , 
BT9727_1060 , BT9727_0421 , BT9727_3469{ ehiA) , BT9727_0878{bgIH) , 
BT9727 _0347, BT9727 _0576{ rbsK) , BT9727 _3364, BT9727 -.2296{ ioIC) , 
BT9727 _0702{ eelB) , BT9727 _0542{ treB) , BT9727 _5049{pJoR) , 
BT9727 _0348{ptsG) , BT9727 _3755{ npIT), BT9727 _0415{ nagE) , 
BT9727 _0543{treC), BT9727 _0818, BT9727 -.2254{ eelB) , 
BT9727 _0044{geaD) , BT972L0877( bgIP) , BT9727 _0362{ ehiA) , 
BT9727 _0666{scrK) , BT9727 _0667{serB) , BT9727 _0668{serA) , 
BT9727 -.2252{yngK) , BT9727 _2498{puLA) , BT9727 -.2564{ampD) , 
BT9727 -.2762 , BT9727 _3028 , BT9727 _3173, BT9727 _3202 , BT9727 _3219 

BT9727 _3261{amyS) , BT9727 _3462{fruA) , BT972L3463{fruB), 
BT9727 _3756( maLL) , BT9727 _3791{ptsG) , BT9727 A007, 
BT9727A434(amyX) , BT9727A577{kdgK ), BT9727A598{glgC), 
BT9727 A599{glgB) , BT9727 A630{gtaB) , BT9727 A631 (manB) , 
BT9727A879(ugd) , BT9727A888{ ceLB ), BT9727A895{ eeIB ), BT9727A949, 
BT9727A956(gtaB) , BT9727A969(murA) , BT972L5018(murA 2 ) 

...... 
c.n 
-.J 



I Family I Protein members I Cross-species subnetwork 

I L I Family members: I (See figure G.3 for larger version.) 
GBAA2500 - hypothetical protein 
BA2500 - hypothetical protein 
BAS2320 - hypothetical protein 
BCE33L2241 - group-specific protein 
BT9727 -.2285 - hypothetical protein 
Subnetwork members: 
BA0784, BA2953(aroA) , BA1251, BAOOlI , BA3131 (adhB ), BA3544(qor-
2), BAI250(trpD ), BAOOIO, BA3435, BAI252(trpF ), BA0675 , 
BA3428(gntK ), BA0665(rbsK) , BAI004, BA2647, BA2267, BA3438, 
BA2113( qor-l ), BA0266(groES ), BA4561 (aroE ) , BA0176, BA2588, 
BA3566, GBAA2953(aroA) , GBAA2647, GBAAI250(trpD) , GBAA2267, 
GBAA3428(gntK) , GBAA0665(rbsK ), GBAAOOI0 , GBAA1252(trpF) , 
GBAA0266(groES) , GBAA1251 , GBAA3131(adhB) , GBAA2113(qor-1) , 
GBAA2588, GBAAI004, GBAA4561(aroE) , GBAA0675, GBAA0784, 
GBAA3566 , GBAA01 76, GBAAOOll , GBAA3438 , GBAA3544(qor-
2) , GBAA3435, BAS0641 , BAS2912, BAS1160 , BAS2744, BAS2111 , 
BAS1l58, BAS0013, BAS1l59 , BAS3306 , BAS3177, BAS3286, 
BAS3186, BAS4232 , BAS0939 , BAS0747 , BAS2466 , BAS0014 , 
BAS0632, BAS3184, BAS2412 , BAS0178, BAS3260, BAS3261 , 
BAS1965 , BAS0252 , BCE33L1l33(trpC) , BCE33 L0012(guaA) , 
BCE33L4080(aroE) , BCE33L1l34(trpF) , BCE33LOOll(pdxl), 
BCE33L1l32(trpD), BCE33L0575(rbsK) , BCE33L2673(aroA), 
BCE33L4596( kdgK) , BCE33 L0155(gntK) , BCE33L3078(gntK ), 
BT9727_3202 , BT9727_0415(nagE) , BT9727_0152(glmM) , 
BT9727 _3791(ptsC) , BT9727 _0011 (pdxl) , BT9727 _0576( l'bsK ) 

Blue = ban, red = bar , green = bat , 
orange = bcz, yellow = btk. 
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6.3.2 A detailed cross-species analysis of the core PrsA pr~ 

tein family and interacting partners using PFlNs 

Cross-species PFINs were used to investigate the distribution of PrsA orthologues and 

interacting functional partners within the core PrsA protein family. The objective 

of the study was to demonstrate how the PFINs can be used to shed light on the 

function of the secreted protein families by focusing on the PrsA protein family as a 

use case. 

6.3.2.1 The PFIN for the core PrsA protein family 

The PrsA cross-species subnetwork, shown in table 6.1, did not provide a detailed 

picture of the functional interactions in which PrsA is involved, as not all PrsA 

family members are represented. Proteins belonging to B. anthracis (Ames), B. 

anthracis (Ames ancestor), B. anthracis (Sterne), B. cereus (ATCC 10987), B. clausii, 

B. halodurans and B. licheniformis were not included in the PrsA cross-species PFINs. 

This was because these proteins were not present in the respective PFINs, as the 

composite weight associated with each of their functional interactions were less than 

the threshold (set to five). It was subsequently decided this threshold was simply too 

high. To overcome this, a lower threshold of two was used to construct a new set of 

PFINs for each Bacillus species. As expected, these new PFINs contain each member 

of the PrsA protein family. Visual analysis of orthologous relations within the PrsA 

family reveals that there are three distinct sub-families of prsA orthologues (figure 

6.1). 

B. subtilis possesses a single copy of the prsA gene [Harwood pers. corom] which 

falls into a subcluster together with a single copy of a prsA orthologue from each of 

the other 10 species. In this analysis B. clausii and B. halodurans also appear to have 

one copy of prsA. All of the B. anthracis strains and B. cereus (E33L) have three 

prsA homologues each, whilst B. cereus (ATCC 14579) and B. thuringiensis appear 

to possess four prsA homologues. 

The products of the three single copy prsA homologues from B. subtilis, B. clausii 



160 

8CE~) 
8T9727 ' Clee(pnA) 

·21 8T9727 _2115UnAJ 

J BCE"~' 

8T9727 0962(",IA) 
3) 

I. • GBM IA" I 

Figure 6.1: A graph-based view of the orthologous relat ionship in the PrsA protein 
family. Dark green = B. anthracis (Sterne) , light blue = B. anthraci (Arne an­
cestor) , light pink = B. anthracis (Ames) , dark pink = B. cereu (E33L), dark blu 
= B. cereus (ATCC 10987) , orange = B. cereus (ATCC 14579), light green = B. 
clausii (KSM-K16) , brown = B. halodurans (C- 125) , pale green = B. lichenifonn i 
(ATCC 14580, sub..Btrain Novozymes) , red = B. subtilis (strain 168) and yellow = B. 
thuringiensis konkukian (strain 97-27) . 

and B. lichenifonnis appear to be central to the network. implying that they may 

have been the root from which the multiple copies of prsA present in B. anthract . 

B. cereus and B. thuringiensis have evolved. Two additional pr A opie from B. 

thuringiensis and B. cereus (ATCC 14579) appear to be most similar to the ingle 

prsA copy from B. halodurans. 

Examination of the annotation from the EMBL records of these genes reveals con­

siderable variation in annotation . Of the 28 proteins in the family. half are annotated 

with the term 'export protein prsA ', whilst the others have various annotations ug­

ge ting that they are peptidyl-prolyl cis-trans isomerases (PPlases) , enzyme that are 

responsible for helping proteins fold correctly. PrsA is a membrane-bound lipoprotein 

that is known to help proteins fold correct ly during the secretory process [\\ 'ahl tram 
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et al., 2003J and has a domain that is homologous with parvulin type PPIases, which 

explains this annotation and the orthologous relationships within this family. 

One of the main uses of PFINs are in the prediction of function for genes which 

have not yet been characterised, using the guilt-by-association approach [Aravind, 

2000, Oliver, 2000J. One candidate for such prediction is present in the prsA homology 

subnetwork. In addition to those proteins in the family annotated with the term 

PPIase, yacD is a protein from B. subtilis that is of unknown function and not yet 

annotated. The association of yacD with PPIases in this family through orthology 

alone, allows us to hypothesise that, it too, is a PPIase; a hypothesis which would be 

easily testable within the laboratory. Similar predictions can be made with respect 

to other protein families. 

The value of the PFIN approach is not, however, restricted to the inference of 

protein function. Other discrepancies with published knowledge can arise, particu­

larly since many of the datasets used to construct a PFIN are derived from pUblicly­

available, but unpublished, databases. Consider, for example, the number of homo­

logues of prsA identified in the different Bacillus species using this approach. To 

date, there has been no reported systematic experimental analysis of prsA and its 

copy number in different Bacillus species. However, a recent experimental analy­

sis of B. anthracis reveals that it actually possesses four functional homologues of 

PrsA [Williams, 2002J, whilst our PFIN identifies only three in all three B. anthracis 

strains investigated. We used quite stringent cutoffs for the identification of homol­

ogous genes, a factor which will undoubtedly affect the number of genes identified. 

The relationship between strength of homology, as measured by Inparanoid scores, 

and gene function in different species clearly requires further investigation. Analyses 

of this kind further illustrates the value of PFINs as hypothesis-generation tools in 

biology, and specifically the cross-species Bacillus PFIN for integrating and directing 

research about this fascinating and economically-valuable group of organisms. 
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6.3.2.2 The global structure of PFIN for the core PrsA protein family 

and functional interacting partners 

Whilst an examination of the orthologous relationships in the cross-species PFINs 

is a valuable approach to help assign function to uncharacterised proteins, another 

powerful way is by visual and computational analysis of the functional relationships 

between the proteins in the Bacillus PFINs within individual species. 

The cross-species PFIN for the PrsA protein family is shown in full in figure 6.2. 

Functional edges were cutoff at a composite weight of two and orthology was assigned 

between pairs of proteins whose sequences possessed reciprocal best BLASTp hits, 

using the Inparanoid program. The resulting network contains 367 nodes representing 

proteins, and 4461 edges representing functional interaction between the proteins. 

Figure 6.2 shows the members of the PrsA protein family (square nodes) and those 

proteins that are predicted to be closely functionally linked (round nodes). Whilst the 

size of this network precludes displaying full details of the nodes, the general structure 

of the network, including the extent of cross-species orthologous links (dotted lines) 

and the density of within-species functional edges (solid lines) is clear. The protein 

nodes fall into 11 clusters, each of which corresponds to a particular Bacillus species 

(as indicated with the colour coding in the figure). Notably, B. subtilis has the most 

dense cluster, almost certainly reflecting the more extensive amount of data available 

for this well-studied organism. 

When applying this network to the inference of function for previously unchar­

acterised proteins, an individual protein may be selected and its immediate neigh­

bourhood examined manually. However, the complexity of this network makes an 

exhaustive manual analysis unfeasible. Alternatively, computational analysis can be 

applied to the network. Algorithms for filtering out specific network properties, for 

identifying pathways, or for identifying structure, such as clusters, can be applied. 

Often a combination of these two strategies is optimal. In the next section such an 

analysis of the PrsA protein family is described, as an example of the type of analysis 

which can be performed. 
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6.3.2.3 Cluster analysis of the PrsA protein family PFIN 

Cluster analysis of the network (in figure 6.2) identifies a number of distinct clus­

ters. Using the default values applied with the MCODE algorithm, approximately 

30 clusters are produced. Interestingly, many of the clusters contain only nodes from 

a single species. Each individual cluster can be the focus of a systematic, manual, 

study. However, the cluster containing PrsA from B. subtilis is shown as an example. 

The distribution of this cluster in the cross-species PFIN is shown in figure 6.3 and 

its composition in figure 6.4. The majority of the edges in the cluster are assigned 

through co-expression. Extracting those nodes that share a co-expression level above 

0.3 from this B. subtilis PrsA cluster reveals two co-expression networks showing 

that prsA is co-expressed with other known heat shock stress response genes such as 

the sigmaB-regulated genes clpP, clpX, groEL and grnES [Hecker and Volker, 1998J. 

Interestingly, the gene ywrO, currently of unknown function, is a member of this 

co-expression subnetwork. ywrO does not possess any orthologous links in the over­

all network but is known to possess orthologues in other Bacillus species [Anlezark 

et aI., 2002J. The known stress response proteins Ctc and Gsi also cluster tightly with 

a number of genes of unknown function, that are also potential targets for further 

directed studies. 

The cluster that contains a protein of unknown function, yacD from B. subtilis, 

also serves as an example for further investigation. The distribution of this cluster in 

the cross-species PFIN is shown in figure 6.5 and its composition in figure 6.6. YacD 

appears to cluster with a number of ribosomal proteins, as well as protein folding 

proteins (Tig and PpiB). 
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6.4 Discussion 

PFIN analysis is becoming a standard approach in systems biology. Analysis can 

infer the functions of uncharacterised proteins, or identify clusters and crosstalk be­

tween pathways (e.g. Hallinan and Wipat [2006]). To date, most analyses have been 

performed on single-species networks, or have involved the comparison of separate 

networks. Here, this approach has been extended to incorporate homology links be­

tween species to construct a single PFIN for multiple species of Bacillus. Special 

emphasis was paid to those interactions related to the secretomes of the Bacillus 

species. Specifically the pathogen and non-pathogen specific protein families uncov­

ered in chapter 4, along with a core lipoprotein family, PrsA. 

The majority of the non-pathogenic families previously identified in section 4.2.3.2 

are not represented in the PFINs developed, as there interactions are below the thresh­

old weight applied. Of the few that do appear in the PFINs, only the proteins AraN 

(BSU28750) and FliL (BSUI6300), as well the PeIA/PeIB family, were found in highly 

connected regions (identified using MeaDE). 

Nothing substantial could be gained from the analysis of the arabinose utilisation 

proteins in B. subtilis than had previously been documented in Imicio et al. [2003J 

and Sa-Nogueira et al. [1997J. The arabinose utilisation pathway is used by the 

soil-based Bacillus species, specifically the non-pathogens, to degrade plant material 

[Inacio et al., 2003J. The cross-species PFIN is based mainly on operon and co­

expression evidence data. It contains tightly clustered interactions involving other 

similar proteins (AraA, AraB, AraN, AraP, AraQ). Missing from this subnetwork 

are the other proteins involved in arabinose utilisation, and located on the same am 

operon encoded by araD, araE, araL, araM, araR and abfA, which would have been 

expected to be observed in relation to these proteins. The only one of these proteins 

not present in cross-species PFIN but that is observed in the B. subtilis PFIN is 

AraE. The localisation of the AbfA enzyme is unknown, however predictions from 

BaSPP indicate this protein is not secreted and is localised in the cytoplasm. As an 

aside note, in addition to AraN, the other two secreted enzymes AraM and AraL are 
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predicted by BaSPP to be secreted and cytoplasmic, respectively [In8cio et aI., 2003]. 

The flagellar network uncovered in the B. subtilis PFIN contains the non-pathogen­

specific FliL protein, whose exact function is unknown. This cross-species PFIN con­

tains other related proteins (FliZ, FliP, FlhA, FliR, FlhB, FlhF, YlxH) involved in 

flagellar synthesis. The interactions within the subnetwork are based on operon and 

co-expression data. It also appears, from Gram-negative studies, that this subnet­

work mainly represents the flagellar export apparatus, thought to be composed of six 

transmembrane components FlhA, FlhB, FliO, FliP, FliQ and FliR, the three chap­

erones FliJ, FliS and FliT, the ATPase FliI, and its regulator FliH [Arnam et aI., 

2004]. Within the FliL subnetwork, four transmembrane components were identified 

(FlhA, FlhB, FliP and FliR). It has been suggested on the basis of the location of 

the jliZ gene in the jliZPQR cluster that in fact FliZ can be assigned as FliO. This 

would leave FliQ as being unassigned to this PFIN cluster. However, as FliQ appears 

in the overall PFIN with links between FlhA, FlhB, FlhF, FliL, FliM, FliR, FliY, this 

suggests it is simply a casualty of the clustering algorithm. As for FlhF, the function 

of this protein is unclear, although a GTP-binding motif has been identified. The 

final protein of this cluster is YlxH, another functionally unknown protein. It has 

been suggested this protein acts as a chaperone for translocation of flagellar proteins 

[Sonenshein et aL, 2002]. 

Pectin lyases are a type of pectin-degrading enzymes secreted by many saprophytic 

and pathogenic organisms. Pectin-degrading enzymes are important industrially, for 

instance they have uses in the food and textile industries. Being able to understand 

their mechanisms and functions will help improve these industrial systems [Soriano 

et aL, 2006]; studying the pectate lyase interactions in the PFlNs can aid in this 

process. However, despite the identification of highly connected pectate lyase (PelA 

and PeIB) regions in the B. halodurons, B. licheniformis and B. subtilis PFINs, with 

exception of B. clausii, there were minimal cross-species interactions identified based 

on orthology. This implies these proteins interact quite differently in the different 

species, which is further suggested by the different sizes of the organism specific 

connected regions. However, if the B. subtilis subnetwork is considered the most 
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accurate, it could also be suggested that there could be missing links in the Pel 

subnetworks of B. halodurans and B. licheniformis that could be inferred on the 

basis of the B. subtilis segment. The large proportion of uncharacterised proteins 

within the PelA and PelS regions also suggests a lot still remains unknown about 

pectate lyase. However, an interesting finding was the discovery of the two protein of 

unknown function Yc1G and YwoF, common across B. subtilis and B. licheniformis. 

The identification of these proteins within this subnetwork indicates that these two 

proteins are involved in the same pathway as PelA and PeIB. However, YclG and 

YwoF are likely to function in quite different ways to each other. Just like PelA and 

PelS, YwoF is predicted to be secreted (as has been documented in Antelmann et al. 

[2001]) whereas Yc1G is localised in the cytosol. 

The members of the signal peptidase sppA family can only be considered in terms 

the B. clausii PFIN. As this SppA protein does not lie within a highly connected 

region, consideration of its neighbours reveals it interacts with only one other pf(). 

tein, another SppA homologue, TepA. These proteins are isolated in the PFIN, with 

neither having any further interactions. The interaction is rather weak, based on 

STRING textmining data and GOA. The identification of this isolated interaction 

however provides no further indication about the functionality of these proteins than 

what has already been determined in Bolhuis et al. [1999J. However, both SppA and 

TepA are involved in secretion. TepA functions in the initial preprotein translocation 

stage of secretion, located in the cytoplasm (consistent with BaSPP's prediction), 

whereas SppA is a typically a membrane protein involved in the processing of prepro­

teins [Bolhuis et al., 1999] (inconsistent with BaSPP). This latter case suggests the 

prediction made by BaSPP that SppA is secreted is erroneous. The lack of any addi­

tional transmembrane domains being predicted by TMHMM is a potential downfall, 

despite MEMSAT providing a positive transmembrane prediction. 

Investigation of the YqfA protein family focused on the B. subtilis PFIN. Within 

the B. subtilis PFIN, YqfA neighbours a functionally unknown protein Y qffi and the 

phosphate starvation induced ATPase PhoH. These three proteins (YqfA, Yqffi and 

PhoH) exist in isolation. The interactions are based mainly on KEGG expression 
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data. This may suggest that the unknowns have functions similar to ATPases. 

Of the 10 known pathogen-specific families identified in section 4.2.3.3, very few of 

the proteins were found in the PFINs developed (by thresholding at a weight of five). 

However, of the proteins in the pathogenic family E, BT9727 _1739 was identified in a 

highly connected region. Analysis of this cluster reveals a high proportion of proteins 

involved in the carbohydrate transport system, phosphotransferase system (PTS). 

Due to the secretory nature of this protein and the proportion of related proteins 

involved in carbohydrate transport, this implies BT9727 _1739 is a polysaccharide­

degrading enzyme, secreted into the environment to allow the organism to reduce the 

polysaccharides into smaller components for the uptake and consequent metabolism 

of these entities [Sonenshein et aI., 2002J. The predictive involvement in carbohydrate 

transport is supported by the finding in section 4.2.3.3 that this protein is likely a 

glycosyl hydrolase, BNR repeat-containing protein. It is therefore likely that this 

family of proteins, including BT9727 _1739, as well as the other related pathogenic 

proteins (GBAAI900, BA1900, BAS1762, BCE33LI711), are likely to be glycosyl 

hydrolase, BNR repeat-containing proteins that operate in the carbohydrate transport 

system PTS. 

The pathogenic specific clusters A and L were the only other protein families that 

could be viewed in the context of their protein interactions. However, as none of the 

proteins in cluster A and L were found to be in a highly connected regions of the 

network, their interactions were considered in terms of their first-neighbours. 

The species-specific interactions of the proteins in cluster A, with exception to 

BT9727 -2561 which is not present in the B. thuringiensis konkukian (strain 97-27) 

PFIN, show a high level of similarity, illustrated by the vast number of ortholo­

gOllS connections. The level of similarity is greatest across the three B. anthracis 

subnetworks, with 22-23 proteins each. A significant proportion of these proteins 

are recognised as being involved in organic acid metabolism, including antibiotic 

responsive proteins. Interestingly, within the cross-species subnetwork, there exists 

four outsider proteins (GBAA3330, BA3330, BAS3087 and BCE33L2980); these have 

been annotated as penicillin acylase proteins. Links exist between the four unknown 
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pathogen specific proteins and these penicillin acylases through Interpro domain en­

richment evidence. Earlier analysis of this protein family, detailed in section 4.2.3.3, 

also revealed the presence of a beta..-lacta.mase-Iike region in all but BT9727 -2561. In 

conjunction with the identification of penicillin acylase proteins it is likely the func­

tions of these proteins relate to penicillin synthesis. The function of the remaining 

protein in this group, BT9727_2561, can potentially be inferred on the basis of these 

findings; although the consequence of not having a beta..-lactamase-Iike region may 

alter the behaviour of this protein. 

Sequence analysis of the pathogenic protein family L had uncovered no infor­

mation about the probable functions of these putative extracellular proteins. How­

ever, PFIN analysis reveals they are likely to be involved in aromatic amino acid 

metabolism, based on their neighbouring proteins. Although showing this general 

behaviour, the first-neighbour networks of these proteins are quite dispersed across 

species, suggesting mechanisms of metabolism are quite different. It has previously 

been identified that the greatest difference between species in regards to aromatic 

amino acid metabolism is the mechanisms they use to regulate their expression [~ 

nenshein et aI., 2002J. Based on this deduction, it could therefore be suggested that 

these pathogenic specific proteins are involved in this variable regulation mechanism. 

The core lipoprotein family, PrsA, was also analysed, but in much greater depth. 

This major extracytoplasmic folding factor has been shown to effect the function 

of some essential translocated proteins involved in cell wall synthesis and functions 

relating to the cell membrane [Tjalsma et al., 2000, Wahlstrom et al., 2003j. Initial 

analysis of this protein family revealed the threshold used to construct the original 

PFINs was set too high, excluding a large proportion of functionally related proteins 

from the species-specific subnetworks, which in turn resulted in a minimal cross­

species PrsA subnetwork. 

Reseting the threshold to a weight of two created a more detailed view of the 

functional associations of PrsA across species. It can therefore be concluded that the 

original threshold of five, used to construct all the cross-species PFINs, removed a 

large proportion of the interactions. Analysis of the pathogenic and non-pathogenic 
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families using the newly refined species-specific PFINs could provide additional insight 

to that which has just been documented. 

Also, as demonstrated by the PrsA cross-species PFIN, some expected orthologue 

links are not identified by simply inferring orthology based on the main orthologue 

pairs i.e. excluding paralogues. The inference of orthologues therefore requires an 

improved strategy in order to increase the level of detail captured through the cross­

species PFINs generated. 

Through analysis of the cross-species PrsA PFIN information concerning the inter­

actions of PrsA could be determined. Despite much being known about the genomics 

of PrsA, the interactions in which it is involved are still not clear. However, in B. sub­

tilis, it appears that PrsA is tightly coupled to other known heat shock stress response 

proteins (ClpP, ClpX, GroEL, GroES), as well as the functionally unknown protein 

YwrO. In addition, within this cross-species PFIN, a number of genes of unknown 

function interact with other known stress response proteins Ctc and Gsi. 

Analysis of the B. subtilis cluster in the PrsA PFIN reveals the uncharacterised 

protein YacD is associated with many ribosomal proteins, stress response proteins, 

and proteins involved in protein folding. There are therefore potential targets iden­

tified in this PrsA PFIN for further directed studies, in particular with respect to B. 

subtilis. 

An advantage of the approach that has been implemented is that it is easily 

extensible to incorporate new species and/or new datasets. Furthermore, alternative 

properties can be investigated. Here the use of PFINs to investigate the secretome 

was demonstrated, but other properties of interest can also be explored, whether that 

be the interactions of a single protein, or a larger collection of proteins. 
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Chapter 7 

General discussion, conclusions 
and future work 

This study has explored the application of e-science technology, in particular \\'eb­

service based workflows, to the analysis of microbial genomes using secretory protein 

prediction and subsequent protein family clustering. The comparison of clusters be­

tween organisms possessing different phenotypic properties (from pathogens to soil 

living bacteria) has revealed novel protein families that are potentially important in 

environmental adaptation. In particular a number of protein families were identified 

that could be potential virulent determinants for the pathogen B. anthrncis and close 

relatives. Despite extensive conventional analysis, many protein families identified 

emerged from this analysis without any clues to their function. :"Iethods for the in­

tegrative analysis of functional genomic data were then applied to develop functional 

integrated networks for all 11 Bacillus isolates whose complete genome sequence was 

available at the time of the beginning of the study. These networks were constructed 

for each species, and then integrated across species using orthology links, to facilitate 

the functional analysis of the protein families of unknown function. Finally. the value 

of cross-species probabilistic functional integrated networks for protein functional in­

ference was demonstrated through their application to a case study of the protein 

family containing the secreted protein chaperone protein PrsA. 
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7.1 Discussion 

The number of publicly available workflows has risen rapidly with the availability of 

accessible Web services and the development of Grid middleware and workflow en­

actors. Hundreds of workflows are available for use and new repositories are coming 

online to promote workflow sharing [Goble and Roure, 2007j. The BaSPP system 

presented here provides a novel set of workflows for the analysis of secreted proteins 

and provides yet another example of the value of an e-science approach to bioinfor­

matics and genomic analysis. The ability to rapidly piece together annotation and 

protein analysis pipelines in a much more rapid and flexible fashion than hand coded 

applications is now becoming an accepted feature of e-science workflows [Alpdemir 

et al., 2005, Li et al., 2004, Stevens et al., 2004a,bj. 

However, in addition to providing a useful tool for biologists, the BaSPP system 

has also played a role in highlighting some of the areas of e-science that require further 

research. Firstly, the available workflow enactors do not provide interfaces that are 

flexible enough to customise for a particular application for a biologist in terms of the 

data querying and result display interface. Hence, it was necessary to design a Web 

portal that would allow a biologist to review and annotate the results of running the 

prediction and analysis workflows. 

Secondly, BaSPP attempts to deal with the three key e-science problems: distri­

bution, autonomy and heterogeneity. There were limited problems associated with 

distribution, the main difficulty arising as a result of the relatively large datasets that 

were being handled. 

However, in many cases licensing issues will prevent a distributed approach from 

being adopted and complicate the issue of workflow sharing. Many legacy applications 

with licensing restrictions cannot be exposed to the outside world as services. Whilst 

Grid technology has promised to address such issues, practical systems to validate 

the rights of a user to access a service have yet to emerge. Service reliability was also 

a persistent problem in this study. As a result of these factors, many of the required 

services were implemented in-house, although still delivered using the Web services 
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infrastructure. 

Dealing with data heterogeneity was less of a problem for this study. The services 

in the workflows mostly exchanged FASTA formatted protein lists. Using a custom 

database and parsing code removed any other issues related with heterogeneity within 

the application. In particular, the Grid based system, Microbase, was used to provide 

previously processed result sets. Using Microbase, in which comparison of the bacte­

rial proteins has already been done and stored in a database, rapidly speeded up the 

operation of the analysis workflow, providing an insight into what can be achieved 

through interoperability of Grid based systems. 

The putative Bacillus secretome data generated by the BaSPP workflows is also of 

great interest to microbiologists. The results of categorisation show a high degree of 

correlation to comparable bioinformatical analyses and validated experimental data. 

The analysis of the secreted protein families also provided some interesting results, 

particularly with respect to the pathogen-specific families. Laboratory verification of 

these findings is needed using mutant, overexpression and microarrayexperiments. 

However, a large proportion of the secretome is of unknown function. In the Bacil­

lus isolates categorised by BaSPP, there were 297 putative secreted families which 

were classified as miscellaneous. This work therefore provides data to prime further, 

biologically- and computationally-oriented investigations, to investigate the proper­

ties of these uncharacterised proteins, but also to confirm the predicted functions 

uncovered from the analysis. 

The BaSPP package can be easily applied to the analysis of other Gram-positive 

bacteria, as demonstrated by application to Staphylococcus aureus, and with minor 

tweaking can even be applied to Gram-negative bacteria. All newly analysed data 

can be viewed and curated via the Web interface. 

The concept of combining current bioinformatics programs is not a novel idea. 

The classification workflow of BaSPP is generally a sequential process, in which the 

predictions of different types of proteins occur at distinct steps in the workflow. How­

ever, three transmembrane tools are combined in parallel execution, which are sub­

sequently integrated in order to make a prediction based on whether one or more 
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programs make a positive transmembrane prediction. Due to the resulting inaccu­

racy from incorporating MEMSAT and TMAP, the final decision rests solely with 

TMHMM. However, the concept of combining the predictions of different tools to 

make an overall decision was demonstrated. The strategy employed here resembles 

Phobius1
, in which transmembrane protein topology and signal peptide prediction is 

combined using TMHMM and SignalP respectively. Phobius demonstrates a more 

sophisticated method, using an HMM, to integrate the results from multiple tools to 

make an overall prediction on the secretory nature of the protein [Kiill et al., 2007]. 

Secretory protein databases that use standard hand coded applications have also 

been reported previously. Secreted Protein Database2 (SPD) is a collection of secreted 

proteins from Human, Mouse and Rat proteomes. As well as manually extracting se­

creted proteins from SWISS PROT based on their subcellular information, a bioinfor­

matics workflow was also used, which incorporates the programs PSORT [Nakai and 

Horton, 1999J, results of which are filtered using TMHMM, and Sec-HMMER (which 

uses a combination of CJ-SPHMM [Chen et al., 2003] and TMHMM to predict signal 

peptides and transmembrane regions respectively) [Chen et al" 2005]. 

In addition, a system called Augur has been developed by Billion and co-workers 

which also automates the process of categorising microbial surface proteins using 

a workflow, displaying the results via a Web interface [Billion et al., 2006]. The 

workflow is made up offour modules: orthologue detection (BLASTp), surface protein 

prediction (SignalP, TMHMM, HMMs from Superfamily [Gough et al., 2001] and 

Pfam [Finn et aI., 2006J for cell surface motifs, and pattern matching for lipoproteins), 

COG classification to assign genes to functional groups based on BLAST, and SCOP 

classification [Murzin et al., 1995]. The results are subsequently stored in a database. 

Unlike Augur, which identifies cell wall binding repeats and covalent attachment 

to the cell wall (LPXTG motif), BaSPP focuses solely on the covalent attachment 

of surface proteins. Covalently linked surface proteins play a key role in the display 

of surface proteins. The majority of these covalently attached cell wall binding pro-

1 Phobius Website: http://phobius.cgb.kLse 
2SPD Website: http://spd.cbLpku.edu.cn/ 
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teins are characterised by the sorting signal LPXTG [Cossart and Jonquieres, 2000]. 

However, fewer LPXTG containing proteins were identified than had been antici­

pated. This may be accounted for by the identification of an additional C-terminal 

cell wall sorting signal NPQTN in S. aureus, B. halodurans, and B. anthracis, struc­

turally related to the LPXTG motif [Boekhorst et al., 2005, Tjalsma et al., 2004]. 

Other identified sortase substrates include an NAKTN motif [Bierne et al., 2004] and 

QVPTGV motif [Barnett et al., 2004]. Therefore, searching for this motif would most 

likely have increased the count of the cell wall covalently attached proteins. 

Augur and SPD are similar in operation to BaSPP, the significant difference being 

that BaSPP uses a service-oriented approach via which users with no programming 

knowledge can execute the workflow over their own datasets, as well as allowing the 

user to view and curate the results via a Web browser; Augur and SPD only provide a 

means of viewing already analysed data. BaSPP is also much more flexible. Services 

can be re-ordered, added and removed much more easily than a hard coded workflow, 

and remote programs and services incorporated more easily. 

PFINs have proved to be very useful for predicting protein function in many dif­

ferent organisms including S. cerevisiae [Deng et al., 2004, Lee et al., 2004, Myers 

et al., 2005, Stark et al., 2006], Human [Rhodes et al., 2005, Xia et al., 2006] and 

others [Date and Stoeckert, 2006, von Mering et al., 2007]. To date the Bacillus 

community have not had the benefit of such a resource. In this study PFINs have 

been constructed for 11 different organisms from the genus Bacillus. The PFINs 

constructed for the Bacillus species provides an insight into biological mechanisms 

that would otherwise not be so easily identified/predicted. Specifically, data con­

cerning unknown and previously unidentified links in the PFINs can be determined, 

from which functional predictions and relations can be judged. FUnctional inference 

can be achieved through viewing and querying the PFINs individually, but also via 

cross-species comparison. The development, analysis and comparison of the Bacillus 

PFINs extend current studies which have largely focused on eukaryotes. Furthermore, 

the scale of analysis has been increased to extend across a genus. 

The integration of a variety of data sources to build the PFINs was important in 
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ensuring a large degree of coverage in terms of the size of the proteome, as the cover­

age of each experimental dataset linking pairs of genes differs. Each experiment has 

different associated error rates too [Lee et al., 2004J. Therefore applying probabilistic 

methods of data integration strengthens links that are common and weakens those 

that are not. The data sources available for Bacillus vary in their quality and size. 

In addition, their have been far fewer genomic scale studies on Bacillus species than 

for organisms such as S. cerevisiae. The PFINs constructed for Bacillus do not incor­

porate physical protein interaction data since no publicly available high-throughput 

experiments have been carried out. In contrast to other model organisms (e.g. S. 

cerevisiae), there are fewer high-throughput omic screens for the Bacillus isolates. 

The use of a gold standard to uniformly weight the experimental data is not ideal. 

This approach not only prevents the inclusion of the gold standard dataset into the 

network, but the final weightings associated with each link between a pair of genes is 

dependent on the accuracy and coverage of this benchmark. Therefore, better, more 

sophisticated approaches are needed to weight experimental datasets for integration. 

Comparison of the global structure of the PFINs visually showed the commonality 

in their structures, especially amongst the closely related isolates. Analysis of the 

network topology of the PFINs revealed the Bacillus PFINs to be small-world, scale­

free, modular networks. 

Using the Bacillus PFINs developed, the properties of some interesting secreted 

protein families were investigated, including those specific to the pathogens and non­

pathogens, as well as the core family PrsA, by developing cross-species PFINs. It is 

currently possible to integrate across species based on the individual protein families 

identified by BaSPP, using clusters or first-neighbour based networks. Due to the 

size and complexity of the Bacillus PFINs, a global network alignment is difficult. 

However, newer network algorithms are now appearing that may make this possible 

[Cootes et al., 2007, Flannick et al., 2006, Hirsh and Sharan, 2007, Koyutiirk et al., 

2004, Sharan et al., 2005J. 

The database contains the data and metadata used in constructing each Bacillus 

PFIN. Through the course of development, the schema underwent continued changed 
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as new constraints were placed on it. The resulting schema is to form the core of 

the continued development in this area, with the planned construction of yeast and 

human PFINs. 

The use of PFINs to complement sequence homology to infer protein function 

is now being recognised. Methods to provide this capability over PFINs are being 

developed. An example is documented in Chua et al. [2007], describing the inference 

of predicted Gene Ontology functional annotations using indirect networks. As mod­

elling and analytical techniques continue to advance, these PFINs can be exploited 

further to explore biological mechanisms. The set of PFINs developed here promise 

to be of great value to the Bacillus community. 

Throughout this work, whether that be in regards to BaSPP or SubtilNet, the fo­

cus has been on sharing and integrating data, collaborating between bioinformatician 

and biologists, in order to optimise the systems developed, and to be able to ex­

tract meaning from the results. To facilitate and help expand this process, e-science 

will be valuable. In the omic era, with the ever increasing amount of data available 

for analysis, e-science techniques will provide benefits in both dealing with scale and 

promoting collaboration required for improving the functional annotation of proteins. 

7.2 Conclusions 

In conclusion, the investigation of predicted bacterial secretomes through the use of 

workfiows and e-science technology, as well as within and between species using PFIN 

modelling techniques, indicates the potential use of computing resources for maximis­

ing the information gained as multiple genomic sequences are generated through data 

integration. The BaSPP and SubtilNet frameworks developed provide a foundation 

on which other studies can be conducted, for a range of organisms. The knowledge 

gained from large scale analysis of secretomes can be used to generate inferences 

about bacterial evolution and niche adaptation. Modelling biological systems using 

PFINs provides a means of expanding component analysis to the broader context 

of the system, as demonstrated within this thesis through application to the secre-
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tome. Both systems, whether used individually or in combination, can potentially 

lead to hypotheses to inform future experimental studies, that can ultimately result 

in a greater understanding of biology. 

7.3 Future Work 

One major future enhancement to this work relates to the e-science workflows devel­

oped. By using a notification service in conjunction with the workflows would provide 

a way of automatically analysing recently annotated genomes for secretory proteins. 

The need for users to interact with the workflow would therefore be removed, provid­

ing automatic updates of the database with new secretory protein data. Microbase 

could be used for this purpose, which essentially provides the necessary framework, 

enabling secretory protein categorisation and analysis to be added as a plugin. 

In addition, the ability to migrate workflows and services closer to the data would 

provide a significant advantage; often the service executables are smaller than the data 

they operate over. However, this would be restricted due to the licensing constraints 

of many of the tools used. Therefore, an alternative would be to investigate the 

migration of workflows from the machine of their conception, to a remote enclosed 

environment from which they are able to access services that are unable to be exposed 

directly to third parties, and again Microbase could be utilised. Overall, the benefits 

of developing a way of implementing a migration process would be most beneficial. 

There were limited problems associated with distribution, the main difficulty aris­

ing as a result of the relatively large datasets that were being handled. Improved 

data transport facilities, enabling transfer without SOAP packaging, as well as direct 

transfer between third parties, would increase the speed of the workflow execution. 

The new Taverna2 architecture should enable these functionalities [Oinn and Pocock 

pers. comm]. 

The effect of using the latest versions of tools in the classification workflow could 

also be explored in relation to the final putative secretomes. New improved versions 

SignalP 3.0 [Bendtsen et aI., 2004] and MEMSAT3 [Jones, 2007] could be added. 
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A further enhancement would be to extend the classification process to identify 

cell wall non-covalently attached proteins. These proteins often bind via a num­

ber of repeated domains, including choline-binding domain, NlpC/P60 domain, LRR 

(leucine rich repeat), LysM domain, GW modules, S-layer homology motif [Desvaux 

et al., 2006J. Currently, searching for these cell wall binding repeats is outside the 

scope of BaSPP, but providing this functionality would be an obvious extension. It 

may also be interesting to add pattern recognition for the cell wall covalent attach­

ment of proteins containing a NPQTN motif, previously identified in S. aureus, B. 

halodurans, and B. anthracis [Boekhorst et aI., 2005J, as well as perhaps the NAKTN 

motif and QVPTGV motifs. 

In tandem with many other ongoing systems biology projects, enhancements can 

also be applied to the development and analysis of PFINs. An obvious addition would 

be to use more data sources to generate the networks. New data sources for inclusion 

may be new external datasets not previously incorporated; motifs identified upstream 

of genes would be one such dataset. Identification of these motifs in-house by simply 

analysing the genome means this source of data is applicable to any organism. Alter­

natively, data generated through analysing the PFIN itself may be plugged back into 

the network, reinforcing links thought to be important; the identification of context 

links would be one such case worth investigating, as utilised in Lee et al. [2004J. 

In building PFINs, the gold standard plays a central role. An investigation could 

therefore be undertaken into the development of a more substantial gold standard 

dataset with a wider coverage of protein-protein interactions. However, as the use of 

a gold standard removes the incorporation of this dataset from integration into the 

PFIN, a better approach would be to weight the data without the need for a gold 

standard. 

The predictive capability and biases of the experimental datasets in relation to 

their contribution to the final network could also be assessed. The contribution of 

each experimental dataset individually to the network, as well the contribution to the 

network of different combinations of datasets, could be analysed, potentially revealing 

some other properties of the data being used. 
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Recently, the analysis of PFINs across species is also an area of great interest. The 

utilisation of the clustering algorithm MCODE to identify regions of high connectiv­

ity could be modified in order to use the alternative, and best clustering algorithm 

(according to BroMe and van HeIden [2006]), MCL. In addition the application of 

alternative methods previously discussed in section 2.4.2 could also be utilised and 

potentially built into the framework. 

It would also be interesting in the future to extend the workflow concept to the con­

struction of PFINs. Due to the computational intensity of evaluating large datasets 

during the development process, the lack of distribution was an obvious benefit. Using 

a single host environment for execution and storage reduced the drawbacks associated 

with moving large datasets. However, using a single host relies largely on the avail­

ability of a platform capable of hosting this environment. FUrthermore, enhancements 

may also be needed to improve performance depending on the growth of the infras­

tructure. Currently, many of the tasks executed in regards to PFIN construction and 

comparison were very time-consuming. For example, the integration of the different 

data sources for a particular organism takes approximately one day. The develop­

ment of e-science platforms for PFIN development and comparison could therefore be 

a valuable contribution to this field, in which Grid resources could also be utilised. 

A user could therefore utilise Grid technology to remotely add new sources, integrate 

all or selected sources, to construct the PFIN, and finally view and query the PFIN. 

For example, the Grid resource Microbase was a valuable commodity in developing 

SubtilNet, in which pre-computed BLAST results were simply extracted, avoiding the 

need to do time-consuming BLAST searches. 

An additional Cytoscape plugin could be developed to allow SubtilNet data to 

be exported to Cytoscape file formats at the click of a button. This could include 

single PFINs, perhaps pre-computed and stored in the database, or cross-species 

subnetworks generated on-the-fly. Exporting Cytoscape files would vastly improve 

the usability of the SubtilNet framework, and make it more attractive to biologists. 

The methodology developed for the Bacillus genomes is planned to be applied 

to other organisms, including yeast and human. Extension of the in-house data 
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warehouse to more species will allow other interesting comparisons to be made. 

Therefore, there are many avenues for future work from the foundation systems 

provided here. The SubtilNet framework provides the basis for the most significant 

computational improvements and extensions, although additions to the BaSPP ~ 

tem could also be applied. In biological terms, BaSPP enables the identification of 

secreted proteins, such as those specific to the pathogens, that can be investigated 

further in the wet-lab. SubtilNet, on-the-other-hand, is much broader in application, 

providing an extensive resource for biologists and bioinformaticians to investigate 

many different biological phenomena, which again, can be tested in the laboratory. 
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Appendix A 

Putative B. subtilis secreted 
proteins 

Table A.l: Putat ive SpI proteins predicted by the BaSPP classificat ion workflow, 
compared to Tjalsma et al. [2000] . Red boxe indicate protein predicted to be SpI 
by BaSPP but not predicted to be secreted by Tjal rna et al. [2000]. Green boxes 
indicate proteins predicted to be SpI by BaSPP, but predicted to be SpII by Tjal rna 
et al. [2000] . 
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MNFSRERllTEIQ?>."DYKEQVERQNQlKKRRRKGL YRRLTVFG 
ALVFLTAIVlASSVWS QTS 
MKKRFFGPIILAFILF AGAIA IPS 
~SCKLWSVTLFFSFLTIGPLAHA Q~S 

A 
MTKKRWVTGLGALSPLGNDVDTSWNNAINGVSGIGPITR\ l>A 
EEY 
MKKKLMIILLm.lVI AA Y 
MSN"LA YQPEKQQRHAISPEKKVIVKKRASITLGEKVI.L VLF 
AVLSV~~~YAAYQ 
MKRTWN"VCLTALLSVLL VAGSVP EAR 

! 

MMNKH\'i"\"K\T ALIGAGFVGSSY AF ~....Q!i lTD 
MNlLLVCAAGMSTSLLV~ AQE 
MKFVKRR.IIAL VTlLMLSVTSLF PSAKA AEH 
~CLSLlLSVLAAPPSGAKA ESV 
MKSCKQIlVCSI..AAILllIPSVS[AADS 
MRSYIKVLIMCFLGLILFVPTALA DNS 
MKKRLlAPMLLSAASLAFF AMSGSAQA AA Y 
MKKQUTATTA WLGALF AHTSIR ELK 
MKKKLAAGLTASAlVGTTL VVTPAE.A A Tl 

.ur.LJU.I~ 

MITDIFKPGCRKLCVFNMKGDYFVl\. "VLLSAJ T T T T F AFEPSASG 
KKL 
MRNERRKKKKTLLLmmGLL VLGTGGYA YYL 

MTSPTRRRTA.KRRRRKIJI.XRGKLLFGLLA VMV 
Nm).1EP 
MKWMCSICCAA VLLAGG.A.AQA EA v 
MNHFYVWHIKRVKQI.IIlllAAF AAASFFYI RA VPLP\ T S TDT 
MKl\."VMLATALFLGLTPA~ ADL 
MKRLCLWFTVFSLFL~ A \T) 
MKLALKASIKFGlCVGLLCLSITGFTPFFNSTHAEA KSI 
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MKKMSUQNMKSKlLPIAA VSVLTAGIF AGAELQQITK"- AK 
MKKFPKKI..LPIA VLSSlAFSSl.ASGSVPEASA QEK -
MKSKWMSGULVAVGFSFTQVM\~ GET 
MKLKSK1.FVIClAAAAIFTAAGVS :'\ EAr. 
~K1.FIS1.SA VLIGLAFFGSMYNGDIK EAS 
MKLK'SK1.llSCLAl.S1VFV A~ PTH 
~GAGVAA~DHQ 
MKbRILLAAVILSsVFSI tYrOS DRNI 
MKKl. V1.CVsn.A VIl.SGV ALTQl.S~~ Y AER 

AA A s\SA 
MNIKKF AKQATVl.1FITAllAGGATQAFA RET 
MKKRl.IQVMlMF1llLTMAFSADA ADS 
MSQSSUVVGGGLAGl.MA1l1UAES 
MNAKTI1LKKKRKIKTIVVLSllMIAALIFTIRL VFYKPFl.IEGSS 
~l'\PTL -
MKKRFWFLAGW T KNA 
MKSKGSIMACLn..FSFlTITFINTETISA F~ 
MKQFAITLSVLCALILL VPTLL VIPFQHNKEAG AS'" 

__ il 

MLKKQTVWl.l.TMLSL WVLSVYYIMSPESKNA VQMQSEKS 
ASD 
MRNKRRNRQIVVAVNGGKA VKAIFLfIVSLlVIFVLSGVLTSLR 
PEL 
MKKTVIIClYIFll.1.SGALVGlAKEETA QKS 
MRVSNVTVRKRLUVllFG\llVFLlIDTR1.GYVQFVMGEKLT,a, 
AKDS 
MNAKRWIAl. VIALGlFGVSIIVSISMSFFES'1(G AQT 
~ TKRlLTIYIMl.LGUA WFPGAAQA EEK 
MELSFTKIL vn.FVGFL VFGPDKLPALGRAAG KAI. 
MFSNIGIPGLlllFVlAIIIFGPSKLPEIGR.\ AKR 
MPIGPGSLA VIAIV Al.IIFGPKKl.PEL~ AGD 
MKKGIIRFll.. VSFVUF Al.STGITG~ APA 

MKRRKFSSWAA VLIF ALIFSLFSPG'I'K.A..U AGA 
MQRFFHFL VWSLTSSAlFVFIGIl.SFFGLNQSIFl.SIVYG~ 
AVY 
MFKFKKNFLVGl.SAALMSISLFSATASA AST 

A AS::>::> 
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ATh 
*-KKVIIAAF1L VGS1LGAFSFSSD~ KH\" 
MKKRlILUA VllAAAAAGVAfl VAK 

MRRSCL'viIRRRKRMFTA V1ll VU VMGTSVCP\ X-\ EG 
MKHMIlAGGGIGGLSAAISLRKAGFS VTL -
MKKKOVMlALTAAAGLGLTALHSAPAAKA APl 
~TLIVLUFSFFGVOPlHA KKQ 
~RLMLKGIFLGAAAGAALSLLHKYTRO ACG 
MSFFKKl.AASAGIGA AKV 
MASGRSLLTGLFVGGnGGAAVllT~KQL 
MR1WKRIPKTIMLISLVSPFLLITPVl.fl4 ALA 

MAIIIAIIAA VIVlAAllIFNVRi';A SPG 
MLFNQRRGISPAAllIGSTMUTALSPQIROR ISG 
MLA VSSAlVSSAMYILSFPGQASG ITK 
MKSLPYTIALLFCGllIVSMAAK&BS lDT 
r . ~ S SLJOJr ..... , ....."LJO, 

AKEV 
MKKIV AAlVVIGLVFIAFFYL YSRSGDllQ S\ 1) 

MKKAAA VllSLGLVFGFSYGAGHV~ KlR 

MQKSISFFVIfSIL WGSLFLFSllGSLGTIPIPL TK DSK 
MKKKU.AF ALCrGA Y AALF AYSY1,S E K 
MKKELLASL VLCLSLSPLVSTNE\ T A ATT 
MKKI\.'TKIILSLLAALIVIlJVLPVLPV\..ll ASS 
~KI\.'1VVSALSISALALSVSGV AS4 HEI 

MAAOlDYKKOWGILLSLAFVLFVFSF~ HEK 
MKKV\VlGIGIA VIV ALFVGlNlYRSAAPTSGS AGK 
*-KK:K"WMVGLLAGClAAGGFSYNAFA TEK 
" S 
MLRDLGRRV AlAAILSGIILGGMSISIANMPHSPAGG n 'K 
MNLFFLA VFVl.FTAllFKLGWO~ EOH 
~SRROFLKGMFGALAAGALrAGGGY~RYL 
~GATAVTASAFSGYF\AY REGI 
MTTKFTALA VFLLCFMPAAKIlJII QAS 
~VGLFTFGGVQQAS.AKEL 
~JFVKKAMLTTAAMTSAALL1FGPDA.~ KlP 

" S 
~GLUMLCLAALFTIGFPAQQADA AEA 
MSGKKKESGKFRSVLLIIILPLMFLIlAGGIVl.JlA AGI 
MRGKSA VLLSlIMUAGFLISFSFQMTKE~ KSA 
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MRRFLI.NVn. VLAIVLFLRY\ 'BY SLE 

MKKI..IMAL vn.GALGTSYlSA DSS 
MKRfll. VLSFLSllV A YPIQThA SPM 
MKLRKVLTGSVLSLGllVSASPAFA TSP 

A 
:ynuauavSI I IT I I I I VYSFFSPNSQLn..li QU 
~SLAVlA VSIIFLGVIVIQ~ KKK 
MKKRLIGFL VL VPAllMWGITLIES NKK 
MKLSVKlAGVLTV AAAAMTAKMYA TA KG_ 
MKl WMRKlL VVLFllVIFGL VSPPAADU DKP 
MRKKAl.IFTVlFGIIFLA VI.I..TIA SlY 
~\VKRLFrn.LAINFll.AAGF\ AL VllPGIQA Q\ 'K 
MKKIWIGMLAAA VLllMVPKVSLA DAA 
MGRII\.1KITIll VU.LLLAGGYMYINDlIL. KD\-

~DDY 
MLL VVIFGLV ALFAL WGVLRS\"R Nl0l 
~VQPIIA VLlALGAFGFLYVL rrnPGDJ4 KMA 
~CS~SPIWPLGENPLPGDPY 
~SRKHEVKNMNIGDVMFQLFVFIIF AA v\ T A A' 1" 
MKKILLAIGALVTAVIAIGIVFSHMIl..FlKK KID 
WAYFGKCLllVTIMFLGVLFGM A.'\lIGMLS 
MfKJ\LLLATSALTFSLSL VLPlDGHAKA QE\­
~QQKAA"Th1.A-vILIFQ~v1FSLTAAlCLQFSDDT~ 

FHD 
MTKRGIQAFAGGIILATAVLAAVFYLTD~ AA , -
- ~ ~ 
MMIKQCVICLSll VFGTI A.<\.HA EET 
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MVSESKSLTGCKKVKRTAFIROOYKVNKLKRLSML lVMIA.S\i 
FIFS AQY 
MTLTKLKMLSMLIVMlASLFIFSSQALAVQYF1V~ AP\' 
MYrnQQKKSFFNKKRIILSSIVVLFLnOOAFL YGKS~ TI( 
DSK ---

MKISKRMKLA VIAFINFFLLLLRLA EIQ 
MSNNQSRYENRDKRRKANL VLNlllAIVSlLIVVVAAN..FDlSPS 
SKD~DSE 
~cmTSALFPlFSSVT~EA\' 

~,~~::> 

MRVPQHYKKPGWQRFFAGMMCGAVlSWFFFI.FIYG~ 
EQV 
MVLAFLGFLACLlALGYGL YHL VRYVLKKEKRFS 
OOL VLLFTGAALAEPDTAAA NAE 
MKLRRERFERRNGSGKNSQSSSSWMV1F1DUTIlL VFFIU..FS 
MSQIDLQKFKA A VD 
MIIIL YLSVAUAVAFLVLVlYLS~ LQL 
MKLRHLLLGAGLGICTA \'Yl:R QY\ 
MKRKLLSSLAISALSLGLLVSAPTASFA AES 
r 
MKTKVVMCSGLFCSVFAGAFMLNQYDG~ AAe: 
~NMIRRLLMfCLFl.LAFGTIFLSVSGII.A KDL 
MPRYRGPFRKRGPLPFRYVMl.LSVVFFILSTTVSL ~G SIK 

YSKSA 
MNKKIAIVTGASSGFGLLAAl:KL ARS 
MAQ1\~EK.1PKSQKIQDRIIMAMIWVV AAL VlALV\ GT~ 
Yll\ 
MKSKLLRl.LIVSMVTIL VFSL VGLSKESS K£'l 
MKKWLlIAVSLAIAIVLFMYIKGEAKA AG~ 

KL~AADE 
MNQKIMA VIAAGSMLFGGAGVY AGThill..EMDKPQTAA VPATA 

DSE 
MRKYTVIASlLLSfL!)"VLSGGHHESKA FPV 
MKKIVSILFMFGLVMGFSQFQPSTI "FA ADK 
~1LRn.CVl.MILSGVIFFGLKIJll KDI 
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Table A.2 : Putative SpII proteins predicted by t he BaSPP classificat ion work1l.o"'·. 
compared to Tjalsma et al. [2000J . Red boxes indicate proteins predicted to be SpIJ 
by BaSP P but not predicted to be secreted by Tjalsma et al. [2000]. Green boxes 
indicate proteins predicted to be SpII by BaSP P, but predicted to be SpI by Tjal rna 
et al. [2000]. 
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MRRlLSll. VFAIMLAG CS 
MSAGKSYRKKMKQ~SKY ALGll.MLSLV'FVL£AS-;.G 
MKKWMTVCALCFVFFI..l.Y.s S-;.Q 
MKKTI.ALAATAA VI..MI.5A CS 
MKKTIYKCVLPUlcnLTG CW 

SN -a::IvSG CS 
MKKWLICSfVLVI..LVSFTA CS­
MfGKKQVLASVI..lJPU.MTG CG 
MKKlMSAITAAAA VIS CF -
MKKVlllLfVLTI~£S 
MTKTIKTVSf AAAAn. \1YII. CT 
MRILFIII L .' CA -

_~G 
MKSKLKRQLPAMVIVCllMICVTG C\V 
MKKIMSAFVGMVllll CF --
MRKKNNIKKWllIIAGFiiI C1 
MPKlGVSLIVLIMI.JIFLAQ C~ 
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Gene Comment 
citH Not in proteome analysed by BaSPP. 
f/iZ Transmembrane domain detected. 
mdr Transmembrane domain detected . 

motB No SpI/ SpII detected by BaSPP. 
rmpG Not in proteome analysed by BaSPP. 
tyrA No SpI/ SpII detected by BaSPP. 
ydbK Transmembrane domain detect ed . 
yfjS Not in proteome analysed by BaSPP. 

ykvV Not in proteome analysed by BaSPP. 
ynzA Not in proteome analysed by BaSPP. 
yodV No SpI/ SpII detected by BaSPP. 
yoU No SpI/ SpII detected by BaSPP. 
ypcP No SpI/ SpII detected by BaSPP. 
yunA Not in proteome analysed by BaSPP. 
yurI Not in proteome analysed by BaSPP. 
yvcE Not in proteome analysed by BaSPP. 
yveB No SpI/ SpII detected by BaSPP. 
yvg V Not in proteome analysed by BaSPP. 
ywdK Transmembrane domain detected . 
ywfM Transmembrane domain detected . 
ywtD Not in proteome analysed by BaSPP. 
yyaB Transmembrane domain detected . 

Table A.3: SpI proteins identifi ed by Tjalsma et al. [2000] but not BaS PP. 

Gene Comment 

ctaC Transmembrane domain detected . 
qoxA Transmembrane domain detected . 

spoIlIJ Not in proteome analysed by BaSPP. 
spoI VB No SpI/ SpII detected by BaSPP. 

ygbA Not in proteome analysed by BaSPP. 
yhaR No SpI/ SpII detected by BaSPP. 
yhf Q No SpI/ SpII detected by BaSPP. 
ykuH Transmembrane domain detected . 
ymzC No SpI/ SpII detected by BaSPP. 
yqjG Not in proteome analysed by BaSPP. 
ytgA Not in proteome analysed by BaSPP. 
ytrF Transmembrane domain detected. 
yvcA Not in proteome analysed by BaSPP. 
ywnJ Transmembrane domain detected . 
yybM No SpI/ SpII detected by BaSPP. 

Table A.4: SpII proteins identified by Tjalsma et al. [2000] but not BaSP P. 
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Appendix B 

SubtiList classification codes 

1. Cell envelope and cellular processes 

( a) Cell wall 

(b) Transport/binding proteins and lipoproteins 

(c) Sensors (signal transduction) 

(d) Membrane bioenergetics (electron transport chain and ATP synthase) 

(e) Mobility and chemotaxis 

(f) Protein secretion 

(g) Cell division 

(h) Sporulation 

(i) Germination 

(j) Transformation/competence 

2. Intermediary metabolism 

(a) Metabolism of carbohydrates and related molecules 

I. Specific pathways 

ii. Main glycolytic pathways 

iii. TCA cycle 

(b) Metabolism of amino acids and related molecules 

(c) Metabolism of nucleotides and nucleic acids 
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(d) Metabolism of lipids 

(e) Metabolism of coenzymes and prosthetic groups 

(f) Metabolism of phosphate 

(g) Metabolism of sulfur 

3. Information pathways 

(a) DNA replication 

(b) DNA restriction/modification and repair 

(c) DNA recombination 

(d) DNA packaging and segregation 

(e) RNA synthesis 

i. Initiation 

ii. Regulation 

iii. Elongation 

iv. Termination 

(f) RNA modification 

(g) Protein synthesis 

i. Ribosomal proteins 

ii. Aminoacyl-tRNA synthetases 

iii. Initiation 

iv. Elongation 

v. Termination 

(h) Protein modification 

(i) Protein folding 

4. Other functions 

(a) Adaptation to atypical conditions 

(b) Detoxification 



(c) Antibiotic production 

(d) Phage-related functions 

(e) Transposon and IS 

(f) Miscellaneous 

5. Similar to unknown proteins 

(a) From B. subtilis 

(b) From other organisms 

6. No similarity 
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Appendix C 

SubtilNet GO level threshold 
deduction based on B. subtilis 
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Figure C. l: Predictive capabili ty of GO proce s annotations at different depth thre h­
old based on KEGG pathway. Points from left to right repre ent a t hre hold of depth 
3 (i.e. terms at level 3 in t he GO DAG and below, where root is level 1) to a maximum 
threshold of depth 11 . 
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Appendix D 

SubtilNet log likelihood 
calculations for B. subtilis 

Before After 
1 = 21 1 = 3 

LLS 1.829 1.7700 1 1.8011 

Table 0.1: Log likelihood scores for unweighted BLASTp pair before and aft r clu -
tering with MeL, using different inflation (1) value. 

DBTBS COGs BLASTp PREDI CTOi\1E 
operon phylogenetic profiling 

LLS 3.7839 0.7568 1.8291 3.0757 

Table 0.2: Log likelihood scores for unweighted datasets. 
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y = 5.3587x2 
- 2.1014x + 1.4805 

. . . • 

0.1 0.3 0.5 0.7 0.9 

Correlation coefficient between cocited genes 

Figure D.l: Log likelihood score calculated for cocited genes based on KEGG pathwa ' 
benchmark using bins of size 215 pairs. 
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Figure D.2: Log likelihood score calculated for proteins sharing com mon interpro 
domains, based on KEGG pathway benchmark using bins of size 4377 pairs. A 
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Appendix E 

SubtilNet network topologies 

Table E.1 shows four distribution plots describing the network topology for each 

Bacillus PFIN. Top left graph shows the node degree distribution. top right shows 

the average clustering coefficient distribution, bottom left shows the shortest path 

length distribution. 
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Table E.l: etwork topology. 
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B. anthracis (Ames ancestor) 
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B. anthracis (Ames) 
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B. cereus (E33L) 
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B. cereus (ATCC 10987) 
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B. cereus (ATCC 14579) 
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B. clausii (KSM-K16) 
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B . halodumns (C-125) 

3 

2.5 R2= 0.711 

2 
Z 
b() 1.5 
~ 

0.5 

0 

0 0.5 1.5 2 2.5 3 

logk 

0 

-0.2 
0 0 

~ 
-0.4 

t) 
-0.6 

b() 
0 0 

0 -0.8 0 
0

0 

-1 ~ 
-1. 2 

0 0.5 1.5 2 2.5 3 

logk 

1600000 
1400000 
1200000 

I>-. 
u 1000000 <:: ., 
::s 800000 0-., .... 600000 I"'-< 

400000 
200000 

0 

2 3 4 5 6 7 8 9 

Path length 



244 

B . licheniformis (ATCC 14580) 
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B. subtilis (st rain 168) 
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B. thuringiensis konkukian (st rain 97-27) 
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Appendix F 

B. subtilis PFIN clusters 

A more detailed breakdown of the clusters obtained using the MCODE plugin for 

Cytoscape. This table highlights the different functional categories represented in 

each cluster and their proportions, as well as indicating those proteins predicted to 

be secreted by BaSPP. 



Table F .1: Detailed view of the major clusters found in the B. subtilis PFIN. Gene names in bold highlights those whose 
products are predicted to be secreted; esample descriptions are given for these genes. 
I Cluster I # nodes r % ~etedl # functions I Function I % function I Genes ] 

----

1 99 1.0 7 Sporulation, germination and cell di- 1.0 spoIIAB 
vision 
Adaptation to atypical conditions 3.0 rsbW htpG rsbT 
DNA replication, restric- 1.0 mutL 
tion/modification and repair 
Mobility and chemotaxis 22.2 motB tlpB ftiM che V motA 

tlpG che W mcpB ftiG cheD 
yvaQ yfmS mcpA cheR ytzE 
cheG mcpG yoaH ytxD 
hemAT ftiY tlpA 

DNA recombination, packaging and 2.0 parE gyrB 
segregation 
Sensors (signal transduction) 36.3 kinA degS phoR dctS yrkQ' 

lytS ykoH kinE ytsB resE 
yocF yxjM yccG comP ycbA 
yvqE yxdK yvfT cssS ydfH 
yycG kinG citS kinD ywpD 
yufL yvcQ yfiJ cheA yhc Y 
yclK ycbM ybdK yvrG kinE 
yesM 

RN A synthesis and modification 33.3 yocG yccH yxjL yr/cP yneI 
ybdJ lytT cssR yxdJ yycF 
dctR ytsA resD citT yhcZ 
ycbL yvrH spoOA yclJ cheB 
ycbB ykoG yVfU yvcP ydfI 
yfiK degU yufM spoOF yesN 
comA phoP yvqG 

Unassigned 1.0 ykoK 
--------- - -----------

~ 



2 59 3.3 6 Cell wall 3.3 dltG dltA 
Mobility and chemotaxis 1.6 yvzB 
Unknown 5.0 yvmG yrdG yddQ 
Unassigned 1.6 yccK 
Antibiotic production 23.7 ppsA srfAG ppsG aepK pksM 

ppsB ppsE pksN pksL ppsD 
srfAB srfAA pksR pksJ 

Metabolism of carbohydrates and re- 32.2 ykvO y.r;;jF yvgN gdh yrpG 
lated molecules yqkF yhdF ytbE yhxG ycsN 

kduD yxbG yxnA ycdF yhxD 
vusZ yuxG ykuF yjmF 

Metabolism of coenzymes and pros- 11.8 dhbA yueJ dhbB yaal dhbE 
thetic groups ywoG dhbF 
Metabolism of lipids 20.3 yvrD ymfI ytkK yqjQ yvaG 

yusS yoxD yjdA fabL aepA 
fabG ywfH ~ 

3 41 14.6 5 Adaptation to atypical conditions 2.4 yveN 
Cell wall 4.8 yngB gtaB 
Transport/binding proteins and 7.3 ybbF ptsG saeP 
lipoproteins 
Unknown 4.8 yvdK yoxA 
Unassigned 19.5 treP malP nagP gamP yvg W 

yvgX yloB ykv W 
Protein synthesis and modification 2.4 hprP 
Metabolism of carbohydrates and re- 58.5 glgD xyLA yekE yvdF treA 
lated molecules bgLA yveB bglH am'IJE sacC 

sacX bglC amyX ydhP saeA 
glgB yugT malL yhe W ycdG 
yveP yfnH BacH pgeM 



I Cluster I # nodes I % secreted I # functions I Function I % function I Genes 

4 30 0.0 4 DNA replication, restric- 6.6 yorL yshC 
tionjmodification and repair 
Metabolism of nucleotides and nucleic 16.6 adk purK purF upp purC 
acids 
Protein synthesis and modification 73.3 rplV rpW rpsH rpsC rpsJ 

rplN rplB rplP map rpsE rpLX 
rplO rpmC rplW rpsN rplE 
rplR rpsQ rpLF rplC rpmD 
rpsS 

Metabolism of coenzymes and pros- 3.3 pabA 
thetic groups 

5 40 0.0 7 Transformationj competence 2.5 comEB 
Sporulation, germination and cell di- 2.5 splB 

t-j 

2S 
vision 
Cell wall 7.5 murE murF murC 
Metabolism of amino acids and related 40.0 hisC thrB yhaA ykuQ dapG 
molecules kbl hisH yxeP lysC dapF yqjE I 

ykuR dapA yclM dapB pepT 
Unknown 10.0 yydG ywnB yfkA yunD 
Metabolism of nucleotides and nucleic 30.0 ytnL purT purD cdd pyrC 
acids cmk udk pdp hprT pyrG yfkN 

yhcR 
Protein synthesis and modification 5.0 amhX ytjP 
Metabolism of coenzymes and pros- 2.5 ykvL 
thetic groups 

----



I Cluster I # nodes I % secreted I # functions I Function I % function I Genes 

6 81 1.2 11 Transformation/competence 1.2 comGA 
DNA replication, restric- 2.4 rodA dnaA 
tion/modification and repair 
Cell wall 1.2 tagH 
Membrane bioenergetics (electron 7.4 yojN atpH atpF qoxG atpD 
transport chain and ATP synthase) qoxB 
Unknown 6.1 yrvN ykqA ykvS yfnB ysaA 
Phage-related functions 2.4 xkdG yqaM 
Adaptation to atypical conditions 4.9 elpG elp Y elpE elpX 
Sporulation, germination and cell di- 7.4 ytpT spoVK spoIIIE ftsE 
vision spoIIIAA cotA 
DNA recombination, packaging and 2.4 YfTG rovB 
segregation 
Transport/binding proteins and 6.1 glnQ /huG expZ rbsA yfiL 
lipoproteins 
RNA synthesis and modification 3.7 levR gutR rocR 
Unassigned 53.0 yveR yybJ mntB ycdl ydbJ 

yhaQ yqiZ ykn Y yelH yjkB 
yydI yudA yxlF yurJ ykpA 
ytmN yfmF yufO ytsG ylmA 
yusG eesA ytlG yckI natA 
ythP ssuB 1ItJr A yfmM yus V 
ygaD yelP yveG ybdA ydiF 
msmX yvrO ykoD yvfR sunT 
yxeO yxdL yfmR 

Metabolism of carbohydrates and re- 1.2 sdhG 
lated molecules 

t-.:I 
C1I 
I-' 



I Cluster I # nodesi % secreted I # functions I Function I % function I GeneS 
-_.-

7 65 3.0 10 DNA replication, restric- 1.5 polC 
tion/modification and repair 
Cell wall 6.1 murD murB murAA murAB 
Detoxification 6.1 yis Y yaaD yrhJ yetO 
Transport/binding proteins and 3.0 glnP yyzE 
lipoproteins 
Metabolism of amino acids and related 23.0 carA hisB araK aroE aspB 
molecules pheA araB tyrA yqhS tTpA 

tTpF tTpD aroD tTpC ureC 
RNA synthesis and modification 1.5 ctsR 
Unassigned 1.5 ypqE 
Metabolism of nucleotides and nucleic 9.2 dck apt WID pyrAA yjbP 
acids purQ 
Protein synthesis and modification 21.5 hisZ glyS fmt tyrS efp leuS 

metS gltX thrS pheT ytxM 
valS pheS tTpS 

Metabolism of carbohydrates and re- 18.4 csn gamA nagB nagA yvaM 
lated molecules yfhM ybbT ydhS pmi manA 

yvyH araM 
Metabolism of coenzymes and pros- 7.6 bioA hemA bioB bioD bio W 
thetic groups 

8 11 18.1 2 Metabolism of carbohydrates and re- 9.0 gpsA 
lated molecules 
Metabolism of lipids 90.9 pgsA ywiE psd yhd W dgkA 

cdsA yvmE yqiK pssA glpQ 
9 17 5.8 4 Sporulation, germination and cell di- 17.6 ydhD cotSA yaaH 

vision 
Cell wall 29.4 ypjH tagE tuaC tuaH ytcC 
Unknown 17.6 ycsE yqgM 1I"bX 
Metabolism of carbohydrates and re- 29.4 glgA ywqF lacA yesZ abfA 
lated molecules 
Metabolism of lipids 5.8 ugtP 

~ 
CTI 
~ 



I Cluster I # nodes I % secreted I # functions I Function I % function I Gelles 

10 11 0.0 6 Cell wall 9.0 yqfY 
Detoxification 9.0 yqfP 
Unknown 18.1 yacM yacN 
RNA synthesis and modification 9.0 comQ 
Metabolism of carbohydrates and re- 18.1 dxs dxr 
lated molecules 
Metabolism of coenzymes and pros- 9.0 hepT 
thetic groups 
Metabolism of lipids 27.2 yisP uppS yqiD 

11 43 2.3 9 Sporulation, germination and cell di- 6.9 yjoB fisH spaIIE 
vision 
Adaptation to atypical conditions 4.6 lonA lonB 
DNA replication, restric- 6.9 dnaC dnaI uvrA 
tion/modification and repair 
Mobility and chemotaxis 2.3 flil 
DNA recombination, packaging and 2.3 recA 
segregation 
Membrane bioenergetics (electron 4.6 ndhF cecA 
transport chain and ATP synthase) 
Transport/binding proteins and 4.6 dppD ybaE 
lipoproteins 
Unknown 2.3 yhaN 
RNA synthesis and modification 9.3 yplP rho acoR bkdR 
Unassigned 51.1 appF pstBB pstBA opuAA 

ykfD appD oppD cydD cydC 
yhcG yhcH yheH yheI opuBA 
yfiC yfiB ylmU ylm V ytrE 
ytrB ybxA opuCA 

Protein secretion 4.6 jtsYjJh 
----------- -- _ .. - - ----- ----- -- ------------------ --- -----

to.:) 
C11 
t,\) 



I Cluster I # nodes I % secreted I # functions I Function I % function I Genes - n - --] 

---

12 27 7.4 9 Adaptation to atypical conditions 3.7 rsbQ 
Detoxification 7.4 nap ybfK 
Metabolism of amino acids and related 3.7 ybaC 
molecules 
Metabolism of nucleotides and nucleic 3.7 deoD 
acids 
Antibiotic production 7.4 pksE pksC 
Protein synthesis and modification 3.7 asnS 
Metabolism of carbohydrates and re- 18.5 ycbF ycgS ykfB yitF yqjD 
lated molecules 
Metabolism of coenzymes and pros- 29.6 menC hemH nasF ylnD hemE 
thetic groups hem Y ylnF menA 
Metabolism of lipids 22.2 yeW /abF aceD ytpA accB 

yusL 

t-,j 

~ 
13 17 11.7 7 DNA replication, restric- 17.6 ydiO ydiP mtbP 

tion/modification and repair 
Metabolism of sulfur 5.8 yvgR 
Sensors (signal transduction) 5.8 luxS 
Unknown 11.7 ykrX ykrZ 
Metabolism of amino acids and related 35.2 ytkP ykrV yrhA cysE serA 
molecules hom 
Metabolism of nucleotides and nucleic 5.8 mtn 
acids 
Protein synthesis and modification 5.8 ykrS 
Metabolism of carbohydrates and re- 11.7 ykrW yoaD 
lated molecules 



I Cluster I # nodes I % secreted I # functions I Function I % function I Genes 

14 22 18.1 7 Metabolism of phosphate 4.5 phoD 
Cell wall 4.5 yqil 
Detoxification 4.5 mrpD 
Transport/binding proteins and 4.5 yvrP 
lipoproteins 
Membrane bioenergetics (electron 27.2 atpB qcrA atpE yhfW ctaA 
transport chain and ATP synthase) atpC 
Unknown 9.0 yvaX ywbN 
Metabolism of nucleotides and nucleic 4.5 pyrE 
acids 
Metabolism of carbohydrates and re- 40.9 abnA ytcB rpe ydjE xylB 
lated molecules gntK tid amD amL 

15 8 12.5 3 Adaptation to atypical conditions 12.5 yveR 
RNA synthesis and modification 37.5 licR mtlR manR 
Metabolism of carbohydrates and re- 50.0 yveO ydhT yveT yuLE 
lated molecules 

t-.:) 

g: 

16 8 12.5 1 Mobility and chemotaxis 100.0 fliP ftiL flhA fihB jliZ ylxH 
jlhF fliR 

17 19 5.2 4 Membrane bioenergetics (electron 36.8 ctaE qcrC ctaF ctaD qcrB 
transport chain and ATP synthase) ctaO ctaB 
Metabolism of amino acids and related 5.2 kamA 
molecules 
Unknown 21.0 ymcB yloN ytqA yqe V 
Antibiotic production 5.2 albA 
Metabolism of coenzymes and pros- 31.5 hemN ybcP moaA lipA bioF 
thetic groups hemZ 

18 13 15.3 3 Cell wall 30.7 lyte mm Y ynJJ tagO 
Detoxification 7.6 yubB 
Unknown 15.3 ywjB yyaP 
Metabolism of coenzymes and pros- 46.1 dfrA folB ykvK sui folK folC 
thetic groups 



I Cluster I # nodes I % secreted I # functions I Function .. _U_ . -T %fullctionTGenes 
- -------

19 11 18.1 4 Detoxification 9.0 ykfA 
'fiansport jbinding proteins and 45.4 appC oppA appA appB 
lipoproteins dppC 
Unassigned 27.2 oppB oppC oppF 
Metabolism of carbohydrates and r&- 9.0 ykfC 
lated molecules 
Protein synthesis and modification 9.0 dppA 

20 7 0.0 1 Metabolism of carbohydrates and r&- 100.0 pgm /baA pgi eno pyk pgk 
lated molecules gapA 

21 21 9.5 5 Metabolism of phosphate 9.5 phoB phoA 
RNA synthesis and modification 4.7 pyrR 
Unknown 4.7 yorR 
Metabolism of amino acids and related 19.0 roeD ansB argB carB 
molecules 
Metabolism of nucleotides and nucleic 52.3 purL guaB thyB pyrD tmk 
acids thyA yncF vosS guaA pyrF ~ 

pyrAB 
Protein synthesis and modification 9.5 lysS aspS 

22 30 6.6 9 Sporulation, germination and cell di- 6.6 spsL spoVFB 
vision 
Detoxification 16.6 cypX pksS yjiB cypA ydjP 
RNA synthesis and modification 20.0 ydgJ ywhA ysmB ykvE ykoM 

yfiV 
Metabolism of amino acids and related 10.0 yurR yclE goxB 
molecules 
Unknown 13.3 ykmA yraK yqjL ybfA 
Metabolism of carbohydrates and r&- 10.0 xsa yom! glpD 
lated molecules 
Metabolism of coenzymes and pros- 6.6 bioI yueK 
thetic groups 
Phag&-related functions 10.0 yqbO xkdO yjbJ 
Metabolism of lipids 3.3 lIwjE 
'fiansposon and IS 3.3 lIddH 

----



, Cluster I # nodes I % secreted I # functions I Function .. _--, % function I Genes 

23 12 0.0 3 Cell wall 8.3 ddl 
Metabolism of amino acids and related 33.3 yncD air dsdA thrG 
molecules 
Protein synthesis and modification 58.3 proS alaS hisS ytpR cysS serS 

ileS 
24 14 0.0 4 Unknown 21.4 yqeJ ytaG yoaP 

Metabolism of amino acids and related 35.7 ylmB yodQ ycgN meA ilvG 
molecules 
Metabolism of carbohydrates and re- 14.2 citG ied 
lated molecules 
Metabolism of coenzymes and pros- 21.4 panG coaA panB 
thetic groups 
Metabolism of lipids 7.1 acpS 

25 11 0.0 5 Metabolism of amino acids and related 27.2 aroP pheB trpE 
molecules ~ 
Antibiotic production 9.0 pksD ~ 

Metabolism of carbohydrates and re- 9.0 pyeA 
lated molecules 
Metabolism of coenzymes and pros- 45.4 yueD dhbG menF menE pabB 
thetic groups 
Metabolism of lipids 9.0 lelA 

26 8 50.0 4 Adaptation to atypical conditions 12.5 ywsG 
Sporulation, germination and cell di- 12.5 spsG 
vision 
Detoxification 12.5 yjiG 
Cell wall 37.5 cwLD lytD murG 
Unknown 25.0 yraJ yral 

27 8 0.0 4 Detoxification 25.0 katX katE 
RN A synthesis and modification 12.5 tenI 
Unknown 25.0 yjbN ytdI 
Metabolism of coenzymes and pros- 25.0 nadA nadG 
thetic groups 
Metabolism of lipids 12.5 des 

-_.-



I Cluster I # nodes I % secreted 1 # functions I Function I % function I· GelI.E;S-- --- . --I 
28 6 0.0 1 Metabolism of coenzymes and pros- 100.0 thiE thiC yjbV thin thiL 

thetic groups thiM 
29 6 0.0 1 Metabolism of nucleotides and nucleic 100.0 pucH pucE pucD pucC pucM 

acids pucE 
30 6 0.0 2 Adaptation to atypical conditions 83.3 rsb V rsbX rsbR rsbS rsbU 

RNA synthesis and modification 16.6 sigB 
31 6 16.6 1 Mobility and chemotaxis 83.3 flU ylxG fliH flgE flil( 

Unknown 16.6 yhF 
32 6 50.0 1 Transformation/competence 100.0 comGD comGC comGB 

comGF comGG comGE 
33 6 83.3 1 Transport/binding proteins and 16.6 /huD 

lipoproteins 
Unassigned 83.3 yfiY yclQ yzeB yfmC yhfQ 

34 6 0.0 2 Metabolism of amino acids and related 16.6 yobN 
molecules 
Unknown 33.3 yabC yjjA 

&1 
Metabolism of coenzymes and pros- 50.0 hemD gsaB hemL 
thetic groups 

35 7 0.0 1 Metabolism of amino acids and related 100.0 proJ argD proA argJ hut! 
molecules rocF argF 

36 13 38.4 2 Unknown 46.1 yorA ywoF yfiA yclG yomE 
ycbH 

Metabolism of carbohydrates and re- 46.1 ycbC pel ytJpA peW hxLA 
lated molecules uxaC 
Phage-related functions 7.6 yobO 

37 5 0.0 0 Unassigned 100.0 fruA ydhO ywbA licC manP 
38 5 0.0 1 Metabolism of nucleotides and nucleic 100.0 purN purH purM gmk guaC 

acids 
39 5 20.0 1 Unassigned 60.0 amP araQ araN 

Metabolism of carbohydrates and re- 40.0 amA araB 
lated molecules 

.. - --



I Cluster I #- nodeS· r % secreted I # functions I Function I % function I Genes 1 
40 5 0.0 1 Transport/binding proteins and 20.0 opuCD 

lipoproteins 
Unassigned 80.0 opuAB opuBD opuCB opuBB 

41 6 33.3 0 Unassigned 100.0 yqiX yckA yckJ yxeN yckK 
ytmM 

42 5 0.0 1 Unknown 80.0 yxlG yxlD yxlC yxlE 
RNA synthesis and modification 20.0 sigY 

43 5 20.0 1 Antibiotic production 100.0 albF albG albD albE albB 
44 5 20.0 2 Detoxification 80.0 mrpE mrpF mrpG mrpB 

Transport /binding proteins and 20.0 mrpA 
lipoproteins 

45 5 20.0 2 Sporulation, germination and cell di- 40.0 minD minC 
vision 
Cell wall 60.0 mreB mreC mreD 

46 5 0.0 1 Metabolism of coenzymes and pros- 100.0 moaD moM mobB moaE f8 
thetic groups moeA 

47 5 0.0 1 Adaptation to atypical conditions 100.0 ykoB yqhA yojH yetI yezB 
48 5 20.0 1 RNA synthesis and modification 20.0 yesS 

Unknown 40.0 yesU yesW 
Unassigned 40.0 yesO yesQ 

49 5 0.0 1 Sporulation, germination and cell di- 100.0 cot V cotX cot Y cotZ cot W 
vision 

50 5 60.0 1 Metabolism of amino acids and related 100.0 ispA aprX aprE bpr vpr 
molecules 

51 5 0.0 2 Adaptation to atypical conditions 40.0 ydaG yocK 
Unknown 20.0 yfkM 
Metabolism of carbohydrates and re- 40.0 yhdN ydaD 
lated molecules 



I Cluster I # nodes I % secrE)ted I # functions I Function I % function I Genes J 
52 12 0.0 3 Unknown 41.6 yteT yvaA yhjJ yulF yfi.l 

Metabolism of amino acids and related 8.3 yrbE 
molecules 
Metabolism of carbohydrates and re- 8.3 yktC 
lated molecules 
Metabolism of lipids 41.6 IpdV bkdAB bed bkdAA ptb 

53 5 20.0 2 Membrane bioenergetics (electron 80.0 ctaC ythA cccB cydA 
transport chain and ATP synthase) 
Metabolism of amino acids and related 20.0 nasE 
molecules 

54 5 0.0 2 Metabolism of carbohydrates and re- 80.0 acoL citZ citA pdhD 
lated molecules 
Metabolism of lipids 20.0 bkdB 

55 5 0.0 2 RNA synthesis and modification 20.0 rpoA 
Protein synthesis and modification 80.0 rpsK rpmJ rplQ in/A 

56 5 0.0 1 Mobility and chemotaxis 100.0 hag fliT fliD yvyC fliS 
~ 

57 5 0.0 1 Sporulation, germination and cell di- 100.0 sspF sspD sspC sspB sspA 
vision 

58 8 0.0 6 DNA replication, restric- 12.5 dnaE 
tionjmodification and repair 
DNA recombination, packaging and 12.5 yrvE 
segregation 
Metabolism of amino acids and related 25.0 proB aryH 
molecules 
Metabolism of nucleotides and nucleic 12.5 yhaM 
acids 
Protein synthesis and modification 25.0 thrZ aryS 
Protein secretion 12.5 csaA 

59 8 12.5 1 Mobility and chemotaxis 62.5 yvyG yvyF flgK flgM flgL 
Unknown 37.5 ybdO ylqB yjcQ 

---



I Cluster I # nodes I % secreted I # functions I F\u:iction I % function JGen.es 

60 5 0.0 3 Cell wall 20.0 tagD 
Metabolism of carbohydrates and re- 40.0 gntZ yqeC 
lated molecules 
Metabolism of lipids 40.0 ykwC yfjR 

61 7 0.0 4 Sporulation, germination and cell di- 14.2 spoVAE 
vision 
Detoxification 14.2 ydhE 
Unknown 14.2 ymfA 
Protein synthesis and modification 14.2 gcp 
Metabolism of coenzymes and pros- 42.8 ribR riM ribC 
thetic groups 

62 4 0.0 1 Metabolism of amino acids and related 100.0 his! hisG hutU hisD 
molecules 

63 4 0.0 2 Transformation/competence 25.0 comER 
Metabolism of amino acids and related 75.0 pro! proH proG ~ 
molecules 

...... 

64 4 0.0 2 Metabolism of amino acids and related 25.0 mmsA 
molecules 
Unassigned 25.0 iolF 
Metabolism of carbohydrates and re- 50.0 iolC idh 
lated molecules 

65 4 75.0 1 Cell wall 100.0 dacB dacF dacA dacC 
66 4 0.0 1 Metabolism of amino acids and related 100.0 leuA leuD leuC ilvH 

molecules 
67 4 50.0 0 Unassigned 100.0 licA licB ydhM ydhN 
68 4 0.0 1 DNA replication, restric- 100.0 priA dnaB dnaD dnaG 

tion/modification and repair 
69 4 25.0 2 Transport /binding proteins and 75.0 rbsC rbsD rbsB 

lipoproteins 
RNA synthesis and modification 25.0 rbsR 

----



I Cluster I # nodes I % secreted I # functions I Function------IL-~_o_fun_c_ti_o_n_'_I_Ge_n_es _______ ____l 

! 70 4 0.0 3 Transport/binding proteins and 25.0 ytrF 
lipoproteins 
RNA synthesis and modification 25.0 ytrA 
Metabolism of carbohydrates and re- 50.0 ytrC ytrD 
lated molecules 

71 4 0.0 0 Unassigned 100.0 levD levG levF levE 
72 4 0.0 0 Unknown 75.0 yxnB yxbA yxbB 

Unassigned 25.0 yxaM 
73 4 0.0 1 RNA synthesis and modification 100.0 ylaC sigM sig V sigX 
74 4 0.0 1 DNA recombination, packaging and 100.0 addA reeF recN addB 

segregation 
75 4 0.0 2 Unknown 50.0 ykvN yteD 

RNA synthesis and modification 25.0 hxlR 
Metabolism of lipids 25.0 ydeP 

76 4 0.0 2 Metabolism of nucleotides and nucleic 25.0 pyrH 
t..:l 

~ 
acids 
Protein synthesis and modification 75.0 rpsB frr ts! 

77 4 0.0 1 Detoxification 75.0 yeeE yeeF yeeC 
Unknown 25.0 yeeG 

78 4 0.0 0 Unknown 100.0 yojI ypnP yisQ yoeA 
79 4 0.0 1 Adaptation to atypical conditions 25.0 pspA 

Unknown 75.0 ydjI ydjG ydjH 
80 4 0.0 1 Membrane bioenergetics (electron 100.0 narG narJ narI narH I 

transport chain and ATP synthase) 
81 4 0.0 0 Unknown 100.0 ywqK ywqH ywqI ywqJ 
82 4 0.0 1 Sporulation, germination and cell di- 100.0 gerPB gerPF gerPD gerPA 

vision 
83 4 50.0 1 Protein secretion 100.0 sipS sipV sipU sipT 



I Cluster I #!l0d.es I % secreted I # functions I Function I % function I Genes -- I 
84 5 20.0 3 Sporulation, germination and cell di- 20.0 spsJ 

vision 
Cell wall 20.0 yfnG 
Metabolism of carbohydrates and re- 60.0 xynB zyn1J galE 
lated molecules 

85 4 0.0 1 RNA synthesis and modification lOO.O alsR yxjO yrdQ yoaU 

86 4 0.0 1 RNA synthesis and modification lOO.O arsR yde T yozA yvbA 

87 4 0.0 2 Metabolism of sulfur 75.0 yitA yisZ yitB 
Metabolism of amino acids and related 25.0 cysH 
molecules 

88 4 25.0 1 Unknown 75.0 fl8eB yviF yjcP 
Metabolism of carbohydrates and re- 25.0 yfrnT 
lated molecules 

89 4 25.0 3 Adaptation to atypical conditions 25.0 degR 
Transformation/competence 25.0 med 
RNA synthesis and modification 50.0 sinR comK 

~ 
90 4 0.0 2 Sporulation, germination and cell di- 50.0 yacA ytgP 

vision 
RNA synthesis and modification 25.0 trmU 
Unknown 25.0 yhcT 

91 4 0.0 1 Transport /binding proteins and 50.0 yeaR ydbO 
lipoproteins 
Unassigned 50.0 czcD ydfM 

92 5 0.0 1 Detoxification 20.0 mmr 
Unassigned 80.0 bmr yusP yitG yceJ 

93 11 0.0 1 RNA synthesis and modification lOO.O ywqM yofA ytU ywbI yybE 
ycgK ywfK cepe citR yvbU 
ycLA 

94 3 0.0 1 Metabolism of carbohydrates and re- 100.0 iolH iolE ioU 
lated molecules 



I Cluster I # nodes I % secr~ functions I Function I % function I Genes J 
95 4 25.0 2 Membrane bioenergetics (electron 25.0 yfmJ 

transport chain and ATP synthase) 
Unassigned 25.0 ydbA 

, Metabolism of carbohydrates and re- 50.0 ispE ybbD 
lated molecules 

96 3 0.0 1 Metabolism of coenzymes and pros- 100.0 menD menD menB 
thetic groups 

97 3 0.0 1 Metabolism of carbohydrates and re- 100.0 licH malA IplD 
lated molecules 

98 3 0.0 1 RNA synthesis and modification 100.0 iolR yulB fruR 

99 3 0.0 1 Antibiotic production 100.0 plesI pksH plesF 

100 3 0.0 1 Metabolism of amino acids and related 100.0 hutH hisF hisJ 
molecules 

101 3 0.0 1 Metabolism of amino acids and related 100.0 asnO asnB asnH 
molecules 

102 3 0.0 1 Membrane bioenergetics (electron 100.0 atpG atpA atpI 
~ 

transport chain and ATP synthase) , 

103 3 66.6 1 Cell wall 100.0 ponA pbpF pbpC 
104 3 0.0 1 Metabolism of carbohydrates and re- 100.0 yisS iolD iolB , 

lated molecules 
105 3 33.3 0 Unassigned 100.0 yzeM ytmL yqi Y 
106 3 0.0 1 Mobility and chemotaxis 100.0 fliE flgC fliF 
107 3 0.0 2 Membrane bioenergetics (electron 66.6 yyaE yoaE 

transport chain and ATP synthase) 
Metabolism of amino acids and related 33.3 nasC 
molecules 

108 3 0.0 2 Sporulation, germination and cell di- 33.3 spoOE 
vision 
RNA synthesis and modification 66.6 abrB sigA 

109 3 0.0 0 Unassigned 100.0 pstC pstS pstA 
110 3 33.3 0 Unknown 100.0 yycH yycI yycJ 



I Cluster I # nodes I % secreted] # functions I Function I % function I Genes- _.m___ -- I 
---- -----

111 3 0.0 1 Cell wall 100.0 tagF tagA tagB 

112 3 0.0 1 Transport/binding proteins and 33.3 aapA 
lipoproteins 
Unassigned 66.6 ybxG ybeC 

113 3 0.0 1 RNA synthesis and modification 100.0 mta yyaN yraB 
114 3 0.0 1 Adaptation to atypical conditions 100.0 cspC cspD cspB 

115 3 0.0 1 Phage-related functions 100.0 xhlB xepA xhlA 

116 3 33.3 0 Unassigned 100.0 yurN yurM yurO 
117 3 0.0 2 Metabolism of amino acids and related 66.6 yrrO yrrN 

molecules 
Metabolism of coenzymes and pros- 33.3 yrrM 
thetic groups 

118 3 0.0 0 Unknown 100.0 ylaA ylaB ylaD 
119 3 0.0 1 Protein synthesis and modification 100.0 rpmGB rpU rpmA 
120 3 0.0 2 Cell wall 66.6 cwlH cwlA 

~ 

ffi 
Phage-related functions 33.3 xlyB 

121 3 0.0 2 DNA replication, restric- 33.3 adaA 
I 

tion/modification and repair I 

RNA synthesis and modification 66.6 yfiF ytdP 
122 3 0.0 2 Transport /binding proteins and 66.6 /euC /euB 

lipoproteins 
RNA synthesis and modification 33.3 ybbB 

123 3 0.0 1 Unknown 33.3 ylqD 
RNA synthesis and modification 66.6 rimM trmD 

124 3 0.0 1 RNA synthesis and modification 66.6 ycnC yerO 
Unknown 33.3 yuxN 

125 3 0.0 1 DNA replication, restric- 100.0 yko U ligB ligA 
tion/modification and repair 

126 3 0.0 1 DNA replication, rest ric- 33.3 ydiS 
tion/modification and repair 
Unknown 66.6 ydjA ydiR 

--- --------



, Cluster , # llodes I % secreted' # functions' Function I % functIOllTGenes -, 
-

127 3 33.3 2 Sporulation, germination and cell di- 33.3 tasA 
vision 
Unknown 33.3 yqzM 
Protein secretion 33.3 sipW 

128 3 0.0 0 Unknown 100.0 yotE yotF yotD 

129 3 0.0 1 Transport/binding proteins and 33.3 yhaU 
lipoproteins 
Unknown 66.6 yhaT yhaS 

130 3 0.0 0 Unknown 100.0 yvcA yvcB yvzA 
131 3 33.3 1 Adaptation to atypical conditions 100.0 ywqC ywqD ywqE 
132 3 0.0 1 Transformation/competence 100.0 comFB comFA comFC 
133 3 0.0 0 Unknown 66.6 yurX yurU 

Unassigned 33.3 yurY 
134 3 33.3 1 Sporulation, germination and cell di- 33.3 divIC 

vision ~ 
Unknown 66.6 yabQ yabP 

135 3 0.0 1 Metabolism of carbohydrates and re- 100.0 malS mleA ytsJ 

I lated molecules 
136 3 0.0 1 Metabolism of amino acids and related 33.3 metE 

molecules 
Unknown 66.6 yxjH yxjG 

137 3 0.0 1 DNA replication, restric- 33.3 holB 
j tion/modification and repair 

Unknown 66.6 yabA yazA 
138 3 0.0 0 Unknown 100.0 yueB yukC yukD 
139 3 33.3 1 Metabolism of sulfur 33.3 ssuD 

Unassigned 66.6 ssuC 88UA 
140 3 33.3 1 Unknown 66.6 yneA ynzC 

Transposon and IS 33.3 yneB 



[ Cluster Ttf nodes [ % ·secreted [ # functions [ Function [ % function· [ -Cenes --- [ 

141 3 33.3 0 Unknown 66.6 yufQ yufP 
Unassigned 33.3 'IIu/ N ~ 

142 3 0.0 1 RNA synthesis and modification 100.0 yurK yvoA ymfC 
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Appendix G 

Cross-species PFIN s 

Figure G.l: The cross-species PFIN of the pathogenic protein fami ly E. 
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Figure C .2: The cross-species PFIN of the pathogenic protein family A. 
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Figure G.3: The cross-species PFIN of the pathogenic protein family L. 
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